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Abstract

The origin of oxygenic photosynthesis is one of the most dramatic evolutionary
events that the Earth has ever experienced. During the Great Oxidation Event (GOE) ca.
2.5 to 2.3 billion years ago (Ga), Oz accumulated permanently in the atmosphere, forever
changing the chemistry of the Earth's surface and marine environments. Earth's modern
biosphere owes its existence to this planet-defining metabolism, and understanding its
origin is a primary challenge for Earth system science. However, due to uncertainties in the
primary nature of geochemical signals of oxygen in ancient and altered rocks, exactly when
oxygenic photosynthesis evolved on Earth remains highly debated. This PhD work focused
on novel geochemical and isotopic signatures preserved in chemical sedimentary rocks and
other marine sediments from the Canadian Superior Craton, deposited between 2.93 and
2.8 Ga, to better understand the evolution of photosynthetic pathways on the early Earth.
Iron isotope chemostratigraphy of stromatolitic carbonates and deep-water sediments
preserved in drill core from the 2.93 Ga Red Lake Greenstone Belt reveals complex iron
redox cycling across a shallow-to-deep transect, with coupling between Fe and S cycling
that is best explained by offshore photosynthetic activity. Comparative REE systematics of
three Mesoarchean carbonate platforms of the Superior Craton, preserved on three different
Greenstone Belts (2.93 Ga Red Lake, 2.86 Ga Woman Lake, and 2.80 Ga Steep Rock Lake)
and representing Earth’s earliest known large carbonate platforms, provide clear evidence
for estuarine processes, hydrothermal inputs, and crucially, for the production of free
oxygen, as tracked by important negative Ce anomalies of unprecedented magnitude for
the Archean. High-precision La-Ce geochronology was successfully applied to samples
from all three sites, yielding three clear isochrons that constrain the timing of La/Ce
fractionation, and thus Ce oxidation, to the time of deposition. These results constitute the
first geochronological constraint on the origin of oxygenic photosynthesis and place it
firmly within the Mesoarchean, with important implications for our current understanding

of Earth’s biological and geochemical evolution.



Résumé

L'origine de la photosynthése oxygénique est I'un des événements évolutifs les plus
dramatiques que la Terre n’ait jamais connus. Au cours du Grand événement d'oxydation
(GOE), il y a environ 2,5 a 2,3 milliards d'années (Ga), 1'0, s'est accumulé de facon
permanente dans I'atmosphére, modifiant & jamais la chimie de la surface de la Terre et des
environnements marins. La biosphére moderne de la Terre doit son existence a ce
métabolisme, et la compréhension de son origine est un défi majeur pour les Sciences de
Terre. Cependant, en raison des incertitudes quant a la nature primaire des signaux
géochimiques de l'oxygéne dans les roches anciennes et altérées, la chronologie de
1'évolution de la photosynthése oxygénique sur Terre reste treés débattue. Ce travail de theése
s'est concentré sur de nouvelles signatures géochimiques et isotopiques préservées dans des
roches sédimentaires chimiques et d'autres sédiments marins du Craton Supérieur canadien,
déposés entre 2,93 et 2,8 Ga, afin de mieux comprendre l'évolution des voies
photosynthétiques sur la Terre primitive. La chimiostratigraphie isotopique du fer des
carbonates stromatolithiques et des sédiments d'eaux profondes préservés dans une carotte
de la ceinture de schistes verts de Red Lake (2,93 Ga) révele un cycle complexe
d'oxydoréduction du fer sur un transect de faible profondeur a grande profondeur, avec un
couplage entre le cycle du fer et du soufre qui est mieux expliqué par l'activité
photosynthétique marine. La systématique comparative des REE de trois plateformes
carbonatées Mésoarchéennes du Craton Supérieur, préservées sur trois ceintures de schistes
verts différents (2,93 Ga Red Lake, 2,86 Ga Woman Lake et 2,80 Ga Steep Rock Lake) et
représentant les plus anciennes plateformes carbonatées épaisses connues sur Terre, fournit
des preuves de processus estuariens, d'apports hydrothermaux et, surtout, de la production
d'oxygene libre, comme le montrent d'importantes anomalies négatives en Ce d'une
ampleur sans précédent pour I'Archéen. La géochronologie La-Ce de haute précision a été
appliquée avec succés aux échantillons des trois sites, produisant trois isochrones claires
qui datent le fractionnement La/Ce, et donc I'oxydation du Ce, au moment du dépot. Ces
résultats constituent la premicre contrainte géochronologique sur I'origine de la
photosynthése oxygénique et la placent fermement dans le Mésoarchéen, avec des
implications importantes pour notre compréhension de 1'évolution biologique et

géochimique de la Terre.
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CHAPTER 1 : INTRODUCTION

This doctoral thesis presents new research at the intersection of the geological,
biological, and isotope geochemical sciences, with the overarching goal of better
understanding of biogeochemical cycling and the evolution of Earth’s earliest
photosynthetic communities. Accordingly, in this chapter, the geological, biogeochemical,
and isotope geochemical context of this thesis work is introduced to the reader via a
synthesis of current knowledge and the literature works supporting the current state of the
art. In the final section of this chapter, the original goals of the thesis work are summarized,

and the organization of the individual chapters are presented.

1.1 The Precambrian Earth

1.1.1 Evolution of Earth’s different envelopes

Since its formation, the Earth has never ceased to evolve, and these changes have
contributed to define the different periods of what is now known as the "Geological Time
Scale". This geological time scale is divided into 4 main Eons: Hadean, Archean,

Proterozoic and Phanerozoic (Fig. 1.1). The first three eons together form the Precambrian.

Precambrian

Phanerozoic

45 4 3.5 3 25 2 1.5 1 0.5 0
Age (Gyr ago)

Figure 1.1. Geological time scale representing the four Eons: Hadean, Archean, Proterozoic and Phanerozoic
through time.

The Hadean Eon, named by geologist Preston Cloud in 1976 (Harland et al., 1989)
after the Greek god Hades, is the oldest eon encompassing Earth’s first 550 million years.

This Eon is characterized by Earth’s initial accretion, the stabilization of its core and crust,
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CHAPTER 1 : INTRODUCTION

and the development of its atmosphere and oceans. The Archean Eon, which lasted from 4
to 2.5 billion years ago, was named after the Greek word for “pertaining to the beginning”
by American geologist James Dwight Dana in 1872. With Earth’s crust having cooled
enough to form the first continents, the Archean represents the beginning of the rock record
and the earliest known form of life. The Proterozoic Eon extended from 2.5 billion to 541
million years ago and is mostly characterized by the formation and breakup of
supercontinents, compelling changes of the ocean’s composition, and the accumulation of
oxygen in Earth’s atmosphere significantly increasing the biological activity. The
Phanerozoic Eon, covering from 541 million years ago to the present, is the current
geological eon and the one where Earth has experiences abundant animal and plant life,

minus the relatively short periods of extinctions.

1.1.1.1  Lithosphere

The lithosphere is the rigid outer layer of Earth divided into two parts (the crust and
the upper mantle), its formation and evolution depend on the thermal energy of the planet's
interior and is modulated by solar radiation. The lithosphere is the long-term archive of the
Earth's history, recording the interactions with the underlying asthenospheric mantle and
the overlying hydrosphere and atmosphere. Stable and billion years old remnants of
continental lithosphere called “Cratons” (Fig. 1.2) that survived cycles of merging and

rifting of continents are essential tools in understanding the early history of Earth.

The oldest known terrestrial rocks are the Acasta gneisses located in the Slave
Craton, Northern Canada with components dated at ~4.02 Ga (Bowring and Williams,
1999). Nevertheless, the oldest terrestrial zircons from the 3.3 Ga Jack Hills formation,

Yilgarn Craton, Western Australia indicate the presence of felsic magmas and surface water
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CHAPTER 1 : INTRODUCTION

from ~4.4 Ga (Wilde et al., 2001; Valley et al., 2002; Cavosie et al., 2007). But there is
considerable controversy about the setting in which these Hadean zircons were generated

and so their significance for continental crustal growth (Harrison, 2009; Kemp et al., 2010).

45

0
Z
<
& ARCHEAN (>2.5 Ga)
s
& PROTEROZOIC (0.5-2.5 Ga)
o
= T
BN e
-90 00’ o %0

Figure 1.2. Distribution of Archean cratons and Proterozoic continental crust in the world (Petrescu, 2017).

Records of Archean oceanic crusts called "Greenstone Belt", because of the green
minerals (chlorites) produced by the low-grade metamorphism (Condie, 1981), are mainly
composed of volcanic (basalt, gabbro, serpentinite, and komatiite) and sedimentary rocks
(Banded iron formation, chert, carbonate, black shales and sandstone). With a warmer
mantle reflected by the abundance of komatiites (Jaupart et al., 2007; Coltice et al., 2009)
and partial melting rates about twice as high as today, the Archean oceanic crusts were
thicker and much less dense (Smithies et al., 2003). This led to rock instability and a vertical
tectonic phenomenon named “Sagduction” (Goodwin and Smith, 1980), when the

gravitational sinking of superficial greenstone cover sequences generates concomitant
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CHAPTER 1 : INTRODUCTION

exhumation of the deeper granitic crust into large domes (Frangois et al., 2014). Thicker
oceanic crust and presence of sagduction do not mean that there was no subduction during
the Archean. In fact, the granitic-gneissic or TTG (Tonalite, Trondhjemite, and
Granodiorite) basement record of Archean continental crust reinforces the idea of the
presence of subduction during the Archean. Indeed, the TTG which groups metamorphic
plutonic rocks of tonalitic to granitic composition (Martin et al., 1983), that are poor in
alkali feldspar but rich in quartz and plagioclase, seem to be mostly able to form in context
of subduction (van Hunen and Moyen, 2012; Roman and Arndt, 2020). Although Archean
tectonics is still a hotly debated topic, it is widely believed that plate tectonics appearance
was around 3 Ga (van Kranendonk, 2011; Tang et al., 2016; Condie, 2018; Cawood et al.,
2018). However, a recent study by Windley et al. (2021), proposes that plate tectonics was
operating since the Eoarchean (i.e., 4 Ga ago), in the form of Accretionary Cycle Plate
Tectonics and that around 2.7-2.5 Ga plate tectonics started to appear in a form of the

Wilson Cycle as we know today (Fig. 1.3).

Pre - 3.0 Ga Plate Tectonics Modern Plate Tectonics
Accretionary Accretionary plus
orogens Wilson Cycle

Z — — collisional
/ orogens

Models of Total
% Present  Absolute
Total Volume  Radiogenic Heat Flux N
Continental Crust (TW) from U, Th, and K

Age (Ga) Age (Ga)

Figure 1.3. Schematic diagram illustrating the two types of plate tectonics in Earth’s history proposed by
Windley et al. (2021): the Accretionary cycle plate tectonics before 3 Ga and the “Modern” Wilson cycle
plate tectonics after 2.7 Ga.
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The evolution of the lithosphere during the history of the Earth is complex,
nevertheless 5 main steps determined by Hawkesworth et al. (2016) can be retained: The
first stage corresponds to the initial accretion and differentiation of the core/mantle system,
and the development of an ocean of magma within the first 5-10 million years (Kamber,
2015). The second stage refers to the period before 3.0 Ga when crust started to be formed
for the first time in a pre-plate tectonic regime (as it is widely thought) or in an accretionary
cycle plate tectonics (as proposed by Windley et al., 2021, see above). The third stage began
ca. 3.0 Ga when Archean cratons stabilized, crustal growth rates changed thickening the
continental crust and is characterized by early plate tectonics involving collisional
orogenies, development of supercontinent cycles and hot subduction with shallow slab
breakoff until 1.7 Ga (Sizova et al., 2014). The fourth stage, extending from 1.7 to 0.75 Ga,
referred to as the “boring billion” (Holland, 2006) and more recently as “Earth middle age”
(Cawood and Hawkesworth, 2014) has been a period of great stability and is particularly
marked by the absence of preserved passive margins, of orogenic gold and volcanic-hosted
massive sulfide deposits, of glacial deposits and iron formations, and by the absence of
significant anomalies in the paleoseawater Sr isotope record and in Hf isotopes in detrital
zircon (Cawood and Hawkesworth, 2015). The last and fifth stage started with the
supercontinent Rodinia breakup around 0.75 Ga and corresponds to the development of the
modern cold subduction that has likely been controlled by changes in mantle temperature
enabling the development of high- to ultrahigh-pressure metamorphic rocks (Brown, 2006).
This last stage, marked by a strongly episodic age distribution related to the cycles of the
Gondwanaland and Pangea supercontinents, also witnessed the increase of oxygen levels

in the deep oceans and in the atmosphere.
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1.1.1.2  Atmosphere

The Earth’s primitive atmosphere was the product of late-accretionary and internal
heat-driven processes acting on late-accreting material that mixed with the outer hot parts
(early mantle) of Earth (Shaw, 2008). It is widely assumed that this primitive degassed
atmosphere was dominated by CO> and Nz (Fig. 1.4), however the possibility of a more
reduced early phase and an early surface environment dominated by reduced carbon
compounds cannot be ruled out, as the precise conditions of the initial degassing remain
open to supposition (Holland, 1984). There is a wide consensus that fifty percent or more

of Earth’s surface volatiles may have been degassed from the early mantle by about 4 Ga

(Shaw, 2008).
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For the early Earth, models of stellar evolution predict that the sun was only about
70 to 75% as bright as today (Gough, 1981; Gilliland, 1989; Feulner, 2012). This would
result in a completely frozen world over the first 2 billion years if the early Earth had its
current albedo and greenhouse effect (Sagan and Mullen, 1972). Yet the geological
evidence suggests presence of liquid water and even life in the Archean, this inconsistency
is called the “Faint Young Sun Paradox” (FYSP; Sagan and Mullen, 1972; Kasting, 1993).
Warm conditions under a faint sun implies that some effects must have been compensating,
such as either higher concentrations of atmospheric greenhouse gases or a lower planetary
albedo, or both. Sagan and Mullen (1972) suggested that ammonia (NH3) could have offset
the lower insolation, but ammonia appears less likely because it would have to be shielded
against photodissociation by ultraviolet radiation (Abelson, 1966; Sagan and Mullen, 1972)
and because it would be washed out by rain (Levine et al., 1980) then dissolved as NH4" in

the oceans (Kasting, 1982; Walker, 1982).

Earth’s modern atmosphere is mainly composed of N> (78.08%), Oz (20.95%), Ar
(0.93%) and CO; (0.036%) and has an atmospheric pressure about 1.013 bar which
corresponds to partial pressures (P) of Pno= 0.78 bar, Poo= 0.2 bar and Pco>= 0.36 mbar. In
2013, Marty et al. showed from nitrogen and argon isotopes that Px> during the Archean
was between 0.5 and 1.1 bar and argued that N did not play a significant role in explaining
the FYSP. The hypothesis of a low nitrogen pressure throughout the Archean is further
supported by Avice et al., (2018) who suggested similar or lower Pn> level than present-
day and by Gebauer et al. (2020) who suggested Pn2 <420 mbar at the time of the
appearance of life. Furthermore, total air pressure from 2.7 billion years ago is constrained
to less than half of modern levels, with P.m=0.23 bar, and these data place an upper cap of

around 0.5 bar for late Archean (Som et al., 2012, 2016). However, Goldblatt et al. (2009),
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using a radiative-convective climate model, concluded that nitrogen (N>) levels about twice
as high as present day would have contributed to warming the early Earth, and the
hypothesis that Px2 across the Hadean and Archean was above today's values is supported
by several other studies (Barry and Hilton, 2016; Mallik et al., 2018; Johnson and Goldblatt,
2018). It thus remains debated the role of atmospheric N> as well as total atmospheric

pressure in resolving the FYSP.

The role that clouds could play in resolving the Faint Young Sun Paradox (FYSP)
has been studied by Goldblatt et al (2011), nevertheless they concluded that no matter how
many high clouds (which tend to warm the surface with downwelling infrared) or low
clouds (which tend to reflect sunlight) there were, it would not be enough forcing to resolve

the FYSP.

Carbon dioxide (CQO,) is an attractive solution to the FYSP because of Earth’s
carbonate-silicate cycle thermostat that stabilizes Earth climate on geological timescales
(Walker et al., 1981; Krissansen-Totton et al., 2018). Indeed, if global temperatures and
CO; are low, CO; removal from precipitation is slow, as are weathering rates of silicates
on the continents and seabed. Geological CO> emissions then increase atmospheric CO2
levels, which increases global temperatures. Paleosols were used to estimate CO; pressure
during the Archean and the results place Pco» between 10 to 2500 times present
atmospheric level (PAL) in the period between 2.2 Ga and 2.77 Ga (Kasting, 1987;

Sheldon, 2006; Driese et al., 2011; Kanzaki and Murakami, 2015).

Methane is also of particular interest because of its potentially large greenhouse

heating effects and long photochemical lifetime in an oxygen-poor atmosphere (Pavlov et
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al., 2001). The possibility of methanogenic bacteria producing a high flux of biogenic CH4
on the early Earth (Kharecha et al., 2005) is supported by evidence for the activity of
methanogens and methanotrophs from light carbon isotopes in Archean kerogen (Stiieken
and Buick, 2018). In addition, presence of Sulfur-Mass Independent Fractionation (S-MIF),
a proxy for atmospheric anoxia, indicates significantly higher pCH4 in deep geological
time, placing pCHs at >20 ppmv, the minimum required to generate the particulate sulfur
Sg necessary to S-MIF preservation in sediments (Zahnle et al., 2006). Thus, methane may
have played an important role in heating the early earth. Higher methane concentrations
may also have participated in the more rapid loss of hydrogen to space because of UV
photolysis of CHs in the upper atmosphere (Catling et al., 2001). The deuterium-to-
hydrogen (D/H) ratio estimated from serpentine minerals, for a 3.7-billion-year-old
seawater, is 2.5% lighter than today, which can be explain by a rapid loss of hydrogen in
the Archean but also by isotopic fractionation (Pope et al., 2012; Kurokawa et al., 2018).
Hydrogen escape to space may have been one of the main causes of the rise of atmospheric
oxygen (Zahnle et al., 2013) about 2.32 billion years ago (Bekker et al., 2004) known as
the Great Oxidation Event (GOE) and marked by the appearance of red beds (Holland,

1984; Eriksson and Cheney, 1992; Song et al., 2017).

Finally, although some argue that the Archean climate was warm, glacial rocks from
2.7,2.9, and 3.42 billion years ago and recent isotope analyses combined with the current
understanding of geological carbon cycle feedbacks suggest surface temperatures between
0° and 40°C (Catling and Zahnle, 2020). Despite the problem of the FYSP and the various
possible mechanisms for overcoming it, the early earth clearly possessed a clement,

habitable environments and a large liquid hydrosphere.
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1.1.1.3 Hydrosphere

The earliest evidence of liquid water on Earth comes from oxygen isotopes evidence
of the oldest terrestrial zircons from the Jack Hills Formation in Western Australia and is
dated at 4.4 Ga (Mojzsis et al., 2001; Valley et al., 2002). The origin of water on Earth has
been debated for several decades and it would come either from carbonaceous chondrites,
comets or from the solar nebula. The average deuterium/hydrogen ratio (D/H) of
carbonaceous chondrites is close to the current D/H of the terrestrial ocean, while those of
comets and the solar nebula are respectively higher by a factor of two and lower by a factor
of seven than the terrestrial ocean (Robert, 2001). However, Genda and Ikoma, (2008),
investigating the early evolution of D/H in the ocean in a hydrogen-rich atmosphere,
showed that even if the values pointed to a similarity between the terrestrial ocean and the
carbonaceous chondrites, this did not necessarily mean that the origin of the water on Earth
came from the carbonaceous chondrites and that the possibility of a nebular origin should

not be excluded.

The existence of metasediments going back to at least 3.8 Ga constrains the
presence of oceans and provides important clues to the early marine environment and
hydrosphere. Marine sediments as old as at least 3.8 Ga are found in the Isua supracrustral
rocks in West Greenland (Appel et al., 1998) as well as in the Nuvvuagittuq Greenstone
Belt, Northern Quebec (Cates and Mojzsis, 2007) and in the case of the latter may be as
old as ~4.3 Ga based on the short lived '*Sm-'%*Nd chronometer (O’Neil et al., 2012)
although this age is controversial (Cates et al., 2013). Slightly younger marine sediments
that are ~3.7 Ga are found in the Nulliak supracrustal rocks of the Saglek Block,
northeastern Labrador (Nutman et al., 1989; Yoshida et al., 2021). While all these

Eoarchean sedimentary occurrences are highly metamorphosed, at least upper amphibolite
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facies, a large variety of well preserved (upper greenschist or lower) metasediments
deposited between 3.5 and 2.5 billion years ago are found on a wide variety of Archean
cratons. Their analysis over the past few decades, as well as theoretical considerations,

constitute the basis of current knowledge on the Earth’s early hydrosphere.

While the pH of the early oceans is poorly constrained, they were almost certainly
more acidic due to higher atmospheric pCO», likely in the pH 6.5 to 7.5 range (Grotzinger
and Kasting, 1993). There are significantly more rock record constraints, but also
controversy, surrounding the temperature of the ancient oceans. Studies of oxygen (5'30)
and silicon (8°°Si) isotopic compositions of Paleoarchean cherts indicate seawater
temperatures between 55 and 85°C (Knauth and Lowe, 1978, 2003; Robert and
Chaussidon, 2006). While the interpretation of the silicon isotope data is highly theoretical,
the 830 of both cherts and carbonates is remarkably low for the first two billion years of
sedimentary records, with the conclusion that Earth’s early hydrosphere was significantly

different than today (Kasting et al., 2006, Fig. 1.5).
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Figure 1.5. 380 values from about 10 000 ancient marine calcites over time, from Archean to the present
(Kasting et al., 2006).
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The isotope fractionation of oxygen between water and authigenic oxide minerals
generally shows important temperature dependence, with isotope fractionation decreasing
with increasing temperature. As a result, at higher paleoseawater temperatures, the §'30 of
oxide minerals (which are generally heavier than their formation waters) approaches that
of seawater in which they formed, which is isotopically lower. Thus, a palacothermometry
interpretation of the low 830 isotope compositions of Archean cherts and carbonates

indicates high seawater temperatures, first estimated by Knauth and Lowe, (1978).

The interpretation of the unusually low §'®0 data in a paleothermometer framework
depends on the assumption of the §'%0 value of seawater, which has long been believed to
be strongly buffered by water-rock interaction during seafloor hydrothermal circulation
(Muehlenbachs et al., 1974). However, light '%0 values have also been reported in ancient
iron oxides, whose & 10 value is largely independent of temperature but highly dependent
on the water formation value (Galili et al., 2019). This would indicate that rather than being
hot, the ancient oceans had an oxygen isotope composition far from modern seawater.
Killingsworth et al. (2019) similarly observed unusually light §'®0 values in GOE-era
sulfates, which they suggested also indicates a hydrological cycle anchored on lighter ocean

water than today.

This would only be possible by inefficient oxygen isotope exchange during
hydrothermal circulation at mid-ocean ridges. Indeed, this might have been possible if the
oceanic crust was much hotter than today, so that water did not circulate at the same depths
as today (Kasting et al., 2006). Finally, it has been recently suggested that most Archean
chert and carbonate records may have an inherent bias to high temperature precipitation,

for example by their association with large impacts and deposition from what may have
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been superheated surface waters during massive evaporation events associated with ultra-
large impacts (Lowe and Byerly, 2015). Photosynthesis itself is today limited to
approximately 73°C (Loiacono et al., 2012; Bennett et al., 2022) which probably places an
approximate upper limit on paleoseawater temperatures wherever microbial photosynthetic
structures (e.g., stromatolites) are found. In any case, the temperature of seawater during

the Archean remains largely open.

The first oceans were anoxic and Fe (II)-rich (ferruginous), and these conditions
persisted in the deep-ocean for most of Earth’s history (Kato et al., 1996; Poulton and
Canfield, 2011; Li et al., 2013). During these "ferruginous" ocean periods, dissolved iron
came mainly from hydrothermal sources or from sediments during anoxic diagenesis
(Poulton and Raiswell, 2002; Raiswell et al., 2006). Large deposits of iron-enriched marine
chemical sediments called Banded Iron Formations (BIFs) attest of the abundance of Fe
and thus iron-bearing conditions over time. The oldest BIFs are 3.8 Ga old (Isua, West
Greenland) and the youngest are 527 Ma old (Taxkorgan terrane, Western China, Li et al.
2018). BIFs are part of Archean cratons from 3.5 to 2.5 Ga, and they disappear from the
geological record at about 1.8 Ga, to reappear between 0.8 and 0.5 Ga (Fig. 1.6; James and

Trendall, 1982; Klein, 2005).
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Figure 1.6. Schematic diagram showing the relative abundance of Precambrian BIFs as a function of time,
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These important changes in the composition of seawater, especially with respect to
iron, are intimately linked with the redox evolution of the Earth, as discussed in section 1.2
below. Initially, it was thought that BIF disappeared due to complete oxidation of the large
Archean and Paleoproterozoic dissolved iron reservoir. However, Canfield (1998)
proposed another hypothesis, where atmospheric oxygenation after the GOE generated
oxidation of pyrite, supplying sulfates to the Proterozoic Ocean, and thus titrated dissolved
Fe (II) from the ocean and thereby terminating global BIF deposition. Such dramatic
changes would have had important effects on biogeochemical cycling (Habicht et al., 2002;
Planavsky et al., 2012) and even biological evolution (Anbar and Knoll, 2002) as discussed

below.

1.1.1.4  Biosphere

The oldest evidence of life may be in the highly 3C-depleted graphite in Eoarchean
rocks such as the 3.8 Ga Isua supracrustal belt in West Greenland (Schidlowski, 2001), the
3.8 Ga Nuvvuagittuq Greenstone Belt in Northern Quebec (Papineau et al., 2011) or the
3.95 Ga Saglek block from the Nulliak supracrustal rocks in Western Labrador (Tashiro et
al., 2017). However, due to the high degree of metamorphism (amphibolite to granulite-
facies) of these rocks (van Zuilen, 2019), it is not impossible that these carbonaceous
materials are in fact derived from abiotic processes such as extensive re-equilibration of
the isotopic compositions between carbonates/metamorphic fluids and graphite (Chacko et
al., 2001) or through thermal decomposition of carbonate minerals (Ueno et al., 2002).
Older '*C-depleted graphite preserved in the 4.1 Ga detrital zircons from Jack Hills in
Western Australia with 8!°Cppg values as low as -24 +/- 5%o could be considered as the

potential oldest trace of life (Bell et al., 2015).
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While ambiguous in highly metamorphosed rocks deposited prior to 3.7 Ga, the
presence of life on Earth from ca. 3.5 Ga onwards is much less controversial and indeed
widely accepted based on available rock records evidence. There are only a few recognized
places on Earth where well-preserved sedimentary rocks were deposited between 3.5 and
2.8 Ga, and they are largely restricted to three cratons: the Pilbara craton in Western
Australia, the Kaapvaal craton in South Africa, and the Superior craton of Eastern Canada.
The Pilbara craton is divided into three terranes: the East Pilbara Granite-Greenstone
Terrane comprised of 36552850 granitic complexes and 3515-3000 Ma greenstones of the
Pilbara supergroup, the West Pilbara Granite-Greenstone Terrane comprised of two distinct
greenstone belts (ca. 3270 Ma Roebourne Group and ca. 3120 Ma Whundo Group), and
the Kurrana Granite-Greenstone Terrane comprised of ca. 3190 Ma gneisses and a few
older greenstone enclaves (van Kranendonk, 2006). Here, the East Pilbara Terrane is host
to particularly well-studied cherty sedimentary units preserving some of Earth’s earliest
life traces, notably the ca. 3480 Ma Dresser Formation and the ca. 3400 Strelley Pool Chert.
On the Kaapvaal craton, the Barberton Greenstone Belt hosts the Barberton Supergroup,
which was deposited over the period 3.55 to 3.20 Ga and is subdivided into three units: the
3547 to 3258 Ma volcanic-dominated Onverwatch Group, 3258 to 3223 Ma Fig Tree
Group, and 3223 to 3219 Ma Moodies Group. Cherts of the Onverwatch Group and
sandstones and conglomerates of the Moodies Group are particularly known for their
abundant life traces (Homann, 2019). The Superior Craton of East-Central Canada is the
largest known Archean craton and records a complex history spanning 4.3 to 2.57 Ga. It is
comprised of northern and southern subprovinces dominated by high-grade gneiss, with a
central region comprised of multiples granite-greenstone belts preserving abundant
metasediments. The greenstone belt-hosted metasediments of the Superior Craton contain

some of the earliest and thickest Archean carbonate successions known for the Archean

36



CHAPTER 1 : INTRODUCTION

(Kusky and Hudleston, 1999) and similarly includes abundant evidence for ancient
microbial life, largely in the form of preserved stromatolitic structures (Hofmann, 1985;
Mclntyre and Fralick, 2017). These three cratons paint a unified picture of a rich biosphere
that had already emerged by 3.5 Ga and colonized multiple environments of the early

Archean Earth.

The multiple lines of evidence for ancient life in the cratons described above is
found in both morphological and chemical forms. In terms of morphological evidence, a
variety of sedimentary structures may be preserved that implicates the activity of microbes
in their formation. In the 3.48 Ga Dresser and 3.40 Ga Strelley Pool Formations (Pilbara),
~3.47 Ga, ~3.42 Ga, and ~3.33 Ga cherts of the Onverwacht Group (Barberton), and
multiple carbonate platforms of Superior Craton overlapping 2.94 to 2.80 Ga, chert and
carbonate metasediments preserve abundant stromatolites (Hofmann, 1985; wvan
Kranendonk, 2006; Riding et al., 2014a; Homann, 2019), organo-sedimentary structures
that accrete towards the sun by the grain-binding and carbonate-cementing activity of
photosynthetic microbial communities (Riding, 2000). Similar morphological evidence in
the form of microbially-induced sedimentary structures (MISS), which include fossilized
microbial mats and microbially-influenced desiccation cracks, are also preserved on the
Pilbara and Barberton Cratons (Noffke, 2009; Noffke et al., 2013). Additional
morphological evidence for early Archean life that has proven more controversial is the
purported presence of microfossilized remains of individual cells, most often preserved in
cherts. Early excitement over cell-like structures preserved in chert, including some
reported to reflect the presence of cyanobacteria as far back as 3.47 Ga (Schopf, 1993),
generated significant debate as to their primary, biological origin (Brasier et al., 2002;

Wacey et al., 2016). Further investigations have revealed a large diversity of kerogenous,
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microfossil-like structures preserved in Archean rocks across the globe, including
spherical, lenticular, and tubular forms, however important questions continue to surround
their bio- and syn-genecity in all except the most convincing cases (Lepot, 2020).
Nonetheless, the ensemble of morphological evidence is best explained by a thriving

microbial biosphere influencing sedimentary environments since at least 3.5 Ga.

Abundant geochemical evidence supports this interpretation and provides
additional insight into Earth’s early microbial biosphere. Carbon stable isotope
compositions of preserved kerogen in sediments deposited between 3.5 and 2.8 Ga
generally fall in the -25 to -35%o range and are rarely lighter than -40%., consistent with
biological carbon acquisition by several possible autotrophic carbon fixation pathways, but
light enough to exclude important methanotrophy (Havig et al., 2017). Similarly, nitrogen
stable isotope data indicate predominately diazotrophic and anaerobic nitrogen cycling
over this period (Stiieken et al., 2015). Both records contrast to data from sediments
deposited after 2.7 Ga, when isotopically light C isotope compositions and heavy N isotope
compositions indicate important roles for aerobic carbon cycling (methanotrophy) and
aerobic nitrogen cycling (diazotrophy) in the run-up to the Great Oxidation Event starting
ca. 2.45 Ga (Eigenbrode and Freeman, 2006; Thomazo et al., 2011; Ader et al., 2016; Kipp
et al., 2018; see also Section 1.2). Additional insights into the evolving metabolic
capabilities of Earth’s early biosphere come from the sulfur stable isotope compositions of
sedimentary pyrites. Already in the 3.48 Ga Dresser Formation (East Pilbara), stable
isotope fractionation of sulfur preserved in both pyrites and barites, as well as variable mass
dependent overprinting of photochemically-generated sulfur mass independent fraction (S-
MIF; see section 1.2), point to non-negligible biological sulfate reduction and perhaps S-

disproportionation (Philippot et al., 2007; Ueno et al., 2008; Wacey et al., 2015). Similarly,
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iron stable isotope compositions in oxides and pyrites that deviate strongly from crustal
values are consistently found in sediments deposited between 3.8 and 2.5 Ga, with a large
negative excursion peaking ca. 2.7 Ga (Johnson et al., 2008) ; these are also best explained
by microbial redox cycling, although the relative role of partial iron oxidation vs.
dissimilatory iron reduction in generating the large range in compositions observed is

subject to debate (Rouxel et al., 2005).
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Figure 1.7. Synthesis of the evolution of atmospheric oxygen and microbial metabolism as recorded in
Earth’s ancient rock record. Figure from Lepot (2020).

The emergent picture, supported by both morphological and geochemical fossil
evidence, is that the Earth was colonized by an important microbial biosphere already by
3.5 Ga, and that diversification occurred relatively early, with evidence for most major
microbial metabolisms appearing in the rock record in the 3.5 to 2.8 Ga range (Fig. 1.7).

Evidence for the origins of oxygenic photosynthesis, however, have proven highly
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controversial. Early organic geochemical investigations of Archean sediments tentatively
identified the presence of 2-methyl-hopane compounds in drill core from the 2.7 Ga
Fortescue Group (Western Australia), which were thought to indicate the presence of
cyanobacteria already at this time. However, it was later revealed that these biomarkers
were unlikely to be primary components of the sediment, but rather represent later
contaminants (Rasmussen et al., 2008; French et al., 2015). Furthermore, it was later
revealed that 2-methyl-hopane compounds are also produced by anoxygenic phototrophs
under strictly anoxic conditions. As currently available biomarker and microfossil evidence
(discussed above) for an Archean origin for oxygenic photosynthesis is widely considered
ambiguous at present, most workers over the last decade have focused on the detection of
free oxygen itself to better constrain the origin of oxygenic photosynthesis on Earth. As we
shall see below, Earth’s oxygenation and redox history is complex, and there remain
important uncertainties regarding the fidelity of geochemical proxies for ancient O

production, including some that are directly addressed by this thesis.

1.2 Earth’s surface oxygenation

The Precambrian witnessed a dramatic evolution in Earth surface oxygenation,
including the first significant accumulation of atmospheric oxygen around the Archean-
Proterozoic boundary. This important transition in Earth history was first discovered in the
late 1960s by Preston Cloud while studying Banded Iron Formations (BIFs). Hypothesizing
that BIFs must have formed in anoxic oceans because oxidized iron is insoluble, he
concluded that the abundance of BIFs implied the presence of soluble iron in ionic form
capable of being transported over great distances to the sites of deposition and that the
absence of BIF deposition after 2 billion years must be explained by the increase in oxygen

concentrations in the atmosphere around that time. This first rise of oxygen now known as
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the ‘Great Oxidation Event’ or GOE (Holland, 2002, 2006) is well-defined in the rock
record by multiple lines of evidence that points to irreversible oxidation of Earth’s

atmosphere ca. 2.5 to 2.3 Ga (Lyons et al., 2014).

One common possible mechanism to explain the increase in atmospheric oxygen is
that oxygen would be a secondary consequence of the Earth’s cooling (Holland (1962)
caused by a change from submarine to subaerial volcanics (Kump and Barley, 2007) or
decrease in degassing pressure (Gaillard et al., 2011) that both act to increase the oxidizing
potential of volcanic degassing and volcanic sulfur emissions, and therefore lead to the rise
of oxygen in the atmosphere. However, splitting of H>O and escape of hydrogen to space
represents clearly recognized mechanism for planetary oxidation on other solar system
bodies, and its calculated effect on Earth’s atmosphere over geological time could also
readily explain the GOE (Zahnle et al., 2013). Finally, many workers look to a strong
biological role in driving the GOE, that being the splitting of CO; and massive worldwide
burial of reduced carbon, and to a lesser degree reduced sulfur, that would remove reducing
equivalents from Earth’s surface; on short geological timescales, biological productivity
and carbon burial is often evoked for regulating atmospheric O> (Berner, 2006). Indeed,
there exists potential evidence for massive carbon burial associated with the GOE in the
form of a large, synchronous, and global positive isotope excursion in the 8"°C of
carbonates, known as the Lomagundi-Jatuli Event. This event, considered as the largest
and longest positive carbon isotope excursion in Earth history, implicates such an intense
degree of burial of isotopically light reduced carbon that it would have increased pO:
between 12 to 22 times present atmospheric level (Karhu and Holland, 1996). However, as
we see below, this excursion happened after the initial oxidation of the atmosphere as

tracked by other proxies, and some today suggest that it reflects instead a response to the
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GOE, whether as the result of increased nutrient availability (Bekker and Holland, 2012)
or as the result of weathering of exotic redox sensitive components influencing the carbon

cycle such as siderite weathering (Bachan and Kump, 2015).

The GOE is characterized by the first appearance of red beds on land (Holland,
1984; Eriksson and Cheney, 1992; Song et al., 2017), the disappearance of redox-sensitive
minerals such as pyrite (FeS>) from ancient fluvial and deltaic deposits (Canfield, 2005;
Holland, 2006), and an enrichment of Cr and U in iron formations (Konhauser et al., 2011;
Partin et al., 2013). However, it was the discovery of mass-independent fractionation of
sulfur isotopes (S-MIF), resulting from photochemical SO processing in an oxygen
depleted atmosphere, and its disappearance from sedimentary records between 2.2 and 2.45
Ga, that is considered the most irrefutable proof for the GOE (Farquhar et al., 2000; Bekker
et al., 2004; Guo et al., 2009). S-MIF of diagenetic pyrite from the Transvaal Supergroup,
South Africa, would constrain the age of the GOE at 2.33 Ga and suggest a rapid
oxygenation of Earth’s atmosphere within 1-10 million years followed by the slow rise of
oceanic sulfates (Luo et al., 2016). Detrital pyrite and uranite from the 2.415 Ga South
African Koegas Subgroup indicate that the rise of oxygen is at least younger than 2.415 Ga
(Johnson et al., 2014). However, Reinhard et al. (2013b) showed using geochemical
modeling that S-MIF is susceptible to undergo a crustal memory effect that generates an
extension of the visibility of the S-MIF signal about 10 to 100 million years after the
beginning of oxygenation when the signal ceased to be produced in the atmosphere.
Furthermore, the S-MIF record from around the world (Transvaal Basin in South Africa,
Huronian Supergroup in North America and Hamersley Basin in Australia) appears to be
asynchronous, arguing in favor of regional-scale modulation of the S-MIF crustal memory

effect (Philippot et al., 2018). This S-MIF recycling effect has been confirmed by coupled
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S and O stable isotopes measured on barites from the Turee Creek Basin, Western
Australia, showing clearly that S-MIF signals were transferred from the paleo-continent
under an oxygenated atmosphere (Killingsworth et al., 2019). The GOE was not only
accompanied by profound perturbations to Earth’s surface environments and atmosphere,
but the biosphere was also profoundly affected, with carbon and triple oxygen isotope
evidence indicating dramatic swings, and potentially even a collapse, in productivity

(Hodgskiss et al., 2019).

The evolution of the Earth's surface geochemistry has been closely linked to the
presence of Oz and the evolution of photosynthetic cyanobacteria. Oxygenic photosynthesis
appeared after anoxygenic photosynthesis (Hohmann-Marriott and Blankenship, 2011) so
the direct ancestors of cyanobacteria may have been anoxygenic (Johnson et al., 2013;
Fischer et al., 2016), or lacked photosynthetic machinery, acquiring it later via lateral
transfer (Soo et al., 2017). Microfossils have been used for understanding the evolution of
early phototrophs (Schopf, 1993) however (Brasier et al., 2002) reinterpreted as secondary
artefacts the most ancient microfossil-like structures purported to represent cyanobacteria.
Moreover, the Precambrian microfossil record is now known to be inconclusive
(Butterfield, 2015; Schirrmeister et al., 2016) and molecular biomarkers (Brocks et al.,
1999) are also considered unreliable in rocks older than ~2 Ga (French et al., 2015) .So,
evidence for cyanobacterial origins relies on geochemical data, i.e., abundances or isotopic

compositions of redox-sensitive elements indicative of free oxygen.

While it had been long hypothesized that the origin of cyanobacteria might be the

cause for the GOE itself, intriguingly the possibility that they existed for hundreds of

millions of years prior to the GOE is becoming more and more likely. Multiple redox
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proxies (trace element and metal isotope) indicate the presence of O» oases prior to the GOE
between 2.5 Ga and 3 Ga (Anbar et al., 2007; Crowe et al., 2013; Planavsky et al., 2014;
Riding et al., 2014; Wang et al., 2018; Thoby et al., 2019). In 2018, Eickmann et al.
suggested with S and Fe isotopes measurement the presence of oxygenated near-shore
shallow marine environments ca. 2.96 Ga, despite of the clear presence of an overall
reduced atmosphere. Moreover, models of the oxidation of crustal sulfide minerals without
concomitant accumulation of oxygen in atmosphere (Reinhard et al., 2013a) also suggest
localized oxygenic photosynthesis before the GOE. Prior to 2.5 Ga, the discrepancy
between persistent MIF-S, which indicates the presence of an anoxic atmosphere, and redox
proxies implying the presence of localized oxygen pre-GOE, was initially explained by the
idea of marine oxygen oases, whereby O» produced in the upper water column of the oceans
wafted over the continents and effectuated early oxidative weathering (Anbar et al., 2007).
Model studies indicate that under reducing Archean ocean and atmospheric conditions,
cyanobacterial productivity could have generated upper water column dissolved O:
concentrations of a few micromolar in nutrient-rich nearshore environments (Olson et al.,
2013), however degassing and transport under such conditions remained problematic. This
problem can be resolved by a benthic terrestrial and shallow-water biosphere populated by
cyanobacteria producing O; and driving oxidative weathering more locally but with little

effect on atmospheric composition (Stiieken et al., 2012; Lalonde and Konhauser, 2015).

However, the syngenetic nature of many of these signals is questioned, leaving the
Archean origins of oxygenic photosynthesis in doubt. For example, the isotopically light
Mo isotope compositions reported by Planavsky et al. (2014) for outcrop samples from the
[jzermign BIF of the 2.95 Ga Mozaan Group, Pongola Supergroup, South Africa,

interpreted to represent oxic Mo cycling in the presence of Mn oxides, was shown to be
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absent in drill core samples (Albut et al., 2019). Furthermore, non-crustal Cr isotope
compositions reported in the Ijzermign BIF by Crowe et al. (2013) that were also
interpreted to represent the presence of O2 were shown to be absent in drill cores that were
subsequently analzyed and reported by Albut et al. (2018). In the 2.5 Ga Mount McRae
shale where the idea of a whiff of O, was first proposed based on Mo and Re enrichments,
it was shown that the Mo-rich intervals show signs of important sulfur remobilization, with
Mo concentrated in the latest stage mineralization phases (Slotznick et al., 2022). In a more
general study, Planavsky et al. (2020) examined the presence or absence of Ce anomalies
in a large Archean and Paleoproterozoic sedimentary geochemical database and concluded
that appreciable Ce anomalies are found mostly in surface outcrop samples but are absent
from most drill core samples throughout the Archean. These observations of redox proxy
mobilization and resetting complicate heavily the challenge of identifying the origins of

oxygenic photosynthesis in the Archean rock record.

Recent advances in radiometric isotope geochemistry may be the solution to resolve
this challenge. At least three currently applied redox tracers form radiogenic parent-
daughter pairs that can be used for dating isotope system closure on timescales are suitable
for ancient Earth studies. These are Re-Os (Kendall et al., 2015), U-Th-Pb (Li et al., 2012)
and La-Ce (Bonnand et al., 2020). All the above examples represent unique breakthrough
papers that confirmed or rejected closure of the redox sensitive isotope system in question
using radiometric isotope decay. At the same time, such applications are limited to the
above references at present. In this thesis work, I specifically explore the La-Ce
chronometer, applied here in an attempt to directly date Ce oxidation events in deep
geological time, and provide new constraints on the earliest production of O» by

cyanobacteria.
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1.3 The Ce redox proxy and La-Ce geochronology

The rare earth elements (REE) have very similar chemical properties, but cerium is
the only REE, except for Eu, for which anomalies due to redox reactions are detected in
aqueous solutions and their precipitates. Oxidation of Ce*" to Ce*" and subsequent
decoupling of Ce from the other REEs (due to formation of less soluble Ce (IV) species
and/or preferential adsorption of Ce (IV) species on particle surfaces) can explain the
appearance of Ce anomalies (Bau and Dulski, 1996). Positive Ce anomalies can be found
in marine hydrogenetic Fe-Mn crusts (Fig. 1.8; Bau and Dulski, 1996) and in Fe-Mn
nodules (Amakawa et al., 1991; Bau et al., 2014) when Ce (IV) is adsorbed on the surface
of Fe-Mn (oxyhydr)oxides under oxic conditions, leaving residual seawater depleted in Ce
relative to the other trivalent REE (German and Elderfield, 1990). Modern seawater is
characterized by a strong negative Ce anomaly (Fig. 1.8), a positive yttrium (Y) anomaly
and an enrichment in heavy rare earth element (HREE) compared to light rare earth element
(LREE). In addition to seawater, negative cerium anomalies can be found in riverine waters
and in authigenic carbonate that have captured the signature of seawater during their
formation (Fig. 1.8). Therefore, REE spectra in authigenic carbonates and chemical
sedimentary rocks (i.e., BIF), have been used to know the characteristic of seawater and its

redox conditions over geological time.

The development of Ce anomalies being generally attributed to oxidizing
environments (see chapter 6, section 6.3.4 for further discussion), widespread occurrence
of negative Ce anomalies in sediments beginning ca. 2.5 Ga was used to argue in favor of
the presence of oxidized Precambrian surface waters (Towe, 1991; Riding et al., 2014).
However, as explained in the previous section, these signals may be subject to post-

depositional alteration, therefore, determining whether these signals are primary or
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secondary is of critical importance and the use of radioactive decay systems proves to be

essential.
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Figure 1.8. Post-Archean Australian Shale (PAAS) normalized REE+Y (REY) patterns showing typical REY
signatures and anomalies of La, Ce, Eu and Y in different environments and minerals (Tostevin et al., 2016).

For several decades, radioactive decay systems (Lu-Hf, Sm-Nd, Re-Os, Rb-Sr, etc.)
have been used to date geological events and to establish temporal constraints on the

differentiation history of the Earth. For example, the Rb-Sr geochronometer, based on the
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B~ decay of radioactive 3’Rb to *’Sr, has a half life of about 49 Ga and the Sm-Nd system,
based on the a decay of radioactive '*’Sm to '*3Nd, has a long half-life of about 106 Ga.

In this thesis, I used the La-Ce system to determine the La-Ce closure age and whether the
cerium anomalies were primary or in fact secondary artifacts. In this system with a half-
life of 102 Ga (Sonzogni, 2003), '*8La decays into two parallel processes: 34 % of the
isotope undergoes f— decay (conversion of a neutron into a proton) transforming into the
stable 13%Ce, while the remaining 66% of '*®La disintegrates by electronic capture
(conversion of a proton to a neutron by interaction with an electron) leading to the
formation of stable '3¥Ba (Bortoluzzi and Ferraro, 2020). This system was used for the first
time in 1982 by Tanaka and Masuda in combination with the Sm-Nd system to determine
the age of a gabbro from the upper zone of the Bushveld complex in South Africa and
confirm that the ages obtained with the two systems were consistent. These two systems
combined were later used for ocean island basalt (OIB) source determination (Dickin,
1987), to constrain the evolution of the moon (Tanimizu and Tanaka, 2002), to characterize
the nature of the sediments involved in the genesis of lavas (Bellot, 2016; Bellot et al.,
2018) and to study the behavior of LREE in mid-ocean ridge basalts (MORBs) and OIBs

(Schnabel, 2019).

Hayashi et al. (2004) were the first to attempt to deduce the origin of negative
cerium anomalies and constrain their age of formation in ancient sedimentary rocks using
the La-Ce isotopic systematics. The calculated initial Ce isotopic ratios in samples from
the 3.25 Ga Barberton Greenstone Belt, South Africa, indicated that the Ce anomalies were
not primary and with two different models, they deduced that these negative cerium
anomalies appeared during episodes of alterations younger than 1.1 Ga. Recently, Bonnand

et al. (2020) constrained the timing of Ce anomalies in 3.22 Ga BIFs from the Moodies
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Group, Barberton Greenstone Belt, South Africa, to the last 100 million years with the La-
Ce geochronometer leading to an isochron of 60 & 32 Ma, unquestionably confirming these

anomalies as secondary artefacts.

1.4 Summary and PhD presentation

The origin of oxygenic photosynthesis is one of the most dramatic evolutionary
events that the Earth has ever experienced. Earth’s modern biosphere owes its existence to
this planet-defining metabolism, and understanding its origin is a paramount challenge in
Earth system science. However, due to uncertainties in the primary nature of ancient signals
of oxygen in ancient and altered rocks, exactly when oxygenic photosynthesis evolved
remains largely unresolved. This PhD work focuses on novel chemical and isotopic signals
(Ce anomalies, Fe isotopes, Ce isotopes) preserved in chemical sedimentary rocks and other
marine sediments deposited between 2.93 and 2.8 Ga to better understand the evolution of

photosynthetic pathways on the early Earth.

After this introductory Chapter 1, a general geologic context of the samples
examined in this work is detailed in Chapter 2. I also provide some general characteristics
of the diverse lithologies examined (carbonates, BIFs, and black shales) as well as
information related to their analysis and interpretation as environmental and redox proxies.

Chapter 3 detail the analytical methodologies used to obtain elemental and isotopic data.

Chapters 4, 5, and 6 present results and discussion in the form of scientific articles
(i.e., with abstracts). In Chapter 4, rare earth element (REE) and Fe isotope analyses are
reported from diverse sediments associated with a shallow water stromatolitic Archean

carbonate platform preserved in the 2.93 Ga Red Lake Greenstone Belt, Ontario, Canada.
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This thick accumulation of carbonates interbedded with deep-water pyritic black shales and
BIF provides an unparalleled opportunity to study the Mesoarchean iron cycle and
microbial metabolisms driving it in a deep-to-shallow transect. Chapter 5 presents a
comparative rare earth element (REE) systematics from three Canadian Mesoarchean
carbonate platform displaying negative cerium anomalies: Red Lake, Woman Lake and
Steep Rock. In Chapter 6, La-Ce geochronology is used to date the cerium anomalies from
the three Mesoarchean platforms studied in Chapter 5 to definitively determine whether
those anomalies, used to argue the presence of pre-GOE oxygen, are primary or secondary.
At the time of submission of this thesis, Chapter 4 were in advanced stages of preparation
for submission to Geology and Chapter 6 for Nature, which is at times reflected in their

formatting.

Chapter 7 concludes the thesis with a summary of the principal findings as well as

perspectives for future workers looking to geochemically examine ancient sediments

bearing evidence of photosynthetic activity and/or working on Ce isotope systematics.
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2.1 Regional geology and sample sites

In this study, all samples came from three different Mesoarchean carbonate
platforms that are all located (Fig. 2.1) in the Superior Province in Canada: Red Lake (2.93
Ga), Woman Lake (2.85 Ga) and Steep Rock (2.80 Ga). The Superior Province is the largest
known Archean craton, covering about 23% of the Earth's exposed Archean crust (Thurston
et al.,, 1991). It lies in the south-central zone of the Canadian Shield and extends from
northwestern Quebec to the shores of Lake Superior in Ontario and south to the northern
fringes of the United States. The Superior Province has been divided into various
subprovinces by Card and Ciesielski, (1986) (e.g., Uchi Subprovince, English River
Subprovince, Wabigoon Subprovince, Quetico Subprovince, etc.) based on unique rock

types that are primarily Meso-Neoarchean and have undergone significant deformation.
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Figure 2.1. Geological map modified from Kusky and Polat, (1999) with the three different study site location
(Red Lake, Woman Lake and Steep Rock) in the Superior Craton in Western Ontario, Canada.
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2.1.1 Red Lake

The Red Lake carbonate platform is located in the Superior Province on the
southern margin of the Uchi Subprovince between the North Caribou Terrane in the North
and the English River Subprovince in the South and is part of the Red Lake Greenstone
Belt. The latter is mainly composed of a complex succession of metavolcanic-
metasedimentary rocks and comprise the Confederation, Slate Bay, Bruce Channel,
Huston, Balmer and Ball assemblages. In the Eastern part of the belt is the Balmer
assemblage, dated at 2992-2960 Ma by U-Pb on zircons, and includes tholeiitic basalts,
basaltic komatiites, komatiite lava flows, and minor interbedded units of felsic
metavolcanic rocks and metasedimentary rocks (Corfu and Andrews, 1987; Hollings et al.,
1999). In the Western part of the belt lies the Ball assemblage which is mainly composed
of a dominantly calc-alkaline mafic to felsic volcanic sequence including minor komatiite,
siliciclastic and stromatolitic carbonates (Sanborn-Barrie et al., 2001). This ~200 m-thick
stromatolitic carbonate unit is constrained in age by overlying and underlying felsic
volcanic rocks dated to between 2940 + 2 Ma and 2925 + 3 Ma (Corfu and Wallace, 1986).
The metasediments of the Ball assemblage have experience at least upper greenschist to
lower amphibolite phase metamorphism on the basis of rare garnet horizons in oxide facies
BIF (Afroz, 2019). The Red Lake stromatolitic carbonate platform is one of the oldest
carbonate platforms in the world and yet has not attracted much attention and has been the
subject of few studies apart from Hofmann (1985). Recently, however, it has regained
attention, as MclIntyre and Fralick (2017) conducted a more thorough study of the
lithofacies of the platform and also performed geochemical analyses involving REE
measurements and O, Sr, and C isotopic measurements on the limestones and dolomites.
Most of the platform is comprised of structures reflecting a low-energy and supratidal flat

to distal platform environment. Initial geochemical data from the carbonates indicated the
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possibility of the development of limited zones where oxygen production may have
influenced redox conditions in the water column (Mclntyre and Fralick, 2017). Another
study conducted by Afroz (2019) significantly improved the knowledge of this platform by
examining major and trace elements, REE systematics, and organic carbon, carbonate
oxygen, and sulfur stable isotope compositions of both chemical sedimentary rocks and
siliciclastic black shales. She concluded that carbonates may have formed in a mildly oxic
shallow-water environment, magnetite and chert in more distal suboxic environments, and
iron sulfides accumulated in a reducing anoxic environment influenced by hydrothermal
fluids. The black shales accumulated during the cessation of chemical sedimentation. In
addition, the intercalation of the stromatolitic carbonate successions with the deep-water
sediments suggests multiple carbonate platform flooding events (Afroz, 2019). Follow-up
PhD thesis work examining the entire Ball assemblage in chemostratigraphic profile across
multiple drill cores (Afroz, 2023, PhD thesis in prep) reveals highly dynamic major element
indicators of fluctuating water column composition and likely redox as well (e.g., Mn, S
enrichments), important authigenic enrichments in redox sensitive trace elements such as
Mo, Cr, U, and V, and rare Ce anomalies, both positive and negative, that further point to
the likely production of free oxygen by oxygenic photosynthesizers in trace amounts, at

least temporarily, during deposition of the Ball Assemblage (Afroz, 2023, thesis in prep).

The samples analyzed during this PhD were collected, in the context of the ERC
EARTHBLOOM project, from the Red Lake carbonate platform in the Ball Assemblage.
More precisely, samples were obtained from drill core NGI10-31 that was collared on the
mainland north of Galena Island and from drill core 17-GA1 from the North coast of the
Golden Arm area (Fig. 2.2). The NGI10-31 drill core is one of 11 PQ-sized diamond drill

cores (approximately 4000m in total) that were donated by Goldcorp, Inc. to the
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EARTHBLOOM project following their gold exploration activities in the area over the
2009-2013 period executed in partnership with Halo Resources, Ltd. The NGI10-31 core
reveals a shallowing-downward sequence largely composed of stromatolitic carbonates at
its base, giving way up section to black shales and sulfurized shales, and eventually to BIF
and interbedded siltstone. The short NQ-sized core 17-GA1 was drilled during the summer
2017 fieldtrip by the EARTHBLOOM team using a Shaw backpack drill and samples a
large calcitic dome composed of alternating layers of carbonate microbialite and former

crystal fans that were likely aragonite in composition before later recrystallization to

calcite. See Figure 2.3 for field images of representative microbialites.
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Figure 2.2. Geological map of the Ball Assemblage in Red Lake adapted from Riley (1975, 1978) showing
the location of the two drill-core analyzed in this study.
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Figure 2.3. Dolomitic domal stromatolites (A) and laminated stromatolitic calcite (B) from the Red Lake
carbonate platform. Figure taken from Afroz (2019).

2.1.2 Woman Lake

The 2.857 Ga Woman Lake carbonate platform from Western Ontario, Canada is
located in the Uchi subprovince of the Superior province and is part of the Birch-Uchi-
Confederation Greenstone Belt. It consists primarily of mafic and felsic metavolcanics and
lesser metasediments, with rare chemical sediments (Fig. 2.4 and Thurston, 1980), all of
which have been intruded by granitic rocks of Neoarchean age (Ayres et al., 1971;
Beakhouse et al., 1999). These volcanic sequences were first recognized by Goodwin
(1967) and Pryslak (1971) and then interpreted by Thurston (1980) as three major cycles
occurring at 2.959 Ga, 2.840 Ga and 2.738 Ga and are estimated to be about 8.5 to 11.2 km
in stratigraphic thickness. Following extensive observations and geochronological
measurements, Stott and Corfu (1991) decided to instead redefine the three cycles into three
lithotectonic assemblages: the Balmer (2.96 Ga), Woman (2.84 Ga) and Confederation
(2.725 Ga) assemblages. The Uchi-Confederation Greenstone Belt was then
stratigraphically reinterpreted in 2000 by Rogers et al., who proposed the Balmer
assemblage (2.985 Ga), the Narrow Lake assemblage (2.88 Ga) and the Confederation
assemblage (2.74 Ga). However, Rogers, (2002) revises the stratigraphy to include five

distinct volcanic assemblages separated by unconformities, and considered Woman Lake
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as its own assemblage. These five assemblages in order from oldest to youngest are the
Balmer assemblage at 2.980 and 2.975 Ga, the Narrow Lake assemblage that is not directly
dated but stratigraphically constrained to between 2.975 and 2.870 Ga, the Woman Lake
assemblage at 2.870 Ga, the Confederation assemblage at 2.745 to 2.735 Ga and the St.

Joseph assemblage at 2.725 Ga (Rogers et al., 2000; Rogers, 2002).

The Woman Lake assemblage begins with pillowed basaltic flows overlain by
subaqueous intermediate ash flows, then felsic tuffs and lapilli tuffs with textures indicating
local subaerial volcanism (Thurston, 1980). This volcanic sequence is capped by the
Woman Lake carbonate platform. The tuff underlying the carbonate was first dated at 2.794
Ga £ 6 Ma using the U-Pb dating system by Nunes and Thurston (1980), then Rogers (2002)
reported a new age of ca. 2.870 Ga (V. McNicoll, personal communication to Rogers) and
recently it was dated at 2.857 Ga = 5 Ma by Ramsay (2020), in agreement with the age
presented by Rogers (2002). The Woman Lake assemblage has experience temperatures of
at least 300°C (Passchier and Trouw, 2005) and thus experienced at least greenschist facies

metamorphism (Hofmann et al., 1985; Ramsay, 2020).

The Woman Lake carbonate unit was studied extensively by Ramsay (2020) as part
of a Master's thesis with field, petrographic and geochemical investigations to better
understand the paleoenvironmental context of this platform. The platform is comprised of
stratiform stromatolites interbedded with thin beds of massive carbonate grainstone,
followed by laterally linked low domal stromatolites, which gradually become larger
domes, then bioherms with walled pseudocolumnar stromatolites (Ramsay, 2020). The
main stromatolitic morphologies here support the idea of a peritidal environment on a

carbonate platform undergoing fluctuations in sea level and water energies in an overall-
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deepening succession. REE patterns, major and trace element concentrations, as well as C
and Sr isotope compositions all suggest that the carbonates preserve chemical signatures of
ancient seawater and the surrounding environment, and more importantly, show strong
evidence for free oxygen in the water column, making Woman Lake a previously-

unrecognized Mesoarchean oxygen oasis (Ramsay, 2020).

The samples analyzed from Woman Lake are from the core “A” drilled at the top
of the southern stratigraphy, map point 2 (Fig. 2.4) and from outcrop samples all collected
during 2019 summer fieldwork. These carbonate samples are low domal silicified
stromatolites, massive carbonate grainstone, banded carbonate microbialite, or fenestrated

microbialite. See Figure 2.5 for field images of representative microbialites.

FELSIC INTERMEDIATE CHEMICAL METASEDIMENTS
METAVOLCANICS METAVOLCANICS CARBONATES
METAMORPHOSED MAFIC

MAFIC INTRUSIVES METAVOLCANICS @& LOCALITY

_ | STRIKE AND DIP

* ONTARIO

*\:NOMAN LAKE

£

STEEF_ROCK &

LAKE &°

*
RED LAKE

MANITOBA

&% MV NVINOM

U.S.A.

7
)
W

Figure 2.4. Location of Woman Lake relative to Canada (A) and relative to other carbonate platforms in
Ontario (B), and its bedrock geology map (C). Figure from Ramsay (2020)
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Figure 2.5. Example outcrop and microbialite photos from the Woman Lake carbonate platform (Unit M
from Ramsay, 2020). Beds of laterally linked small domal stromatolites alternating with carbonate grainstone
and carbonate microbialite (A), cross sectional view of carbonate and silicified stromatolite (S) beds (B). A
different view of silicified stromatolite beds alternating with carbonate grainstone (C). Circular stromatolite
tops (white arrows) and drill hole locality (red arrow), drill hole diameter is 6 cm (D). Figure taken from
Ramsay (2020).
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2.1.3 Steep Rock

The 2.8 Ga Mosher Carbonate Formation outcrops around Steep Rock Lake is part
of the Steep Rock Group situated in the southern part of the Wabigoon Subprovince, 5 km
north of the town of Atikokan in the Quetico Subprovince. The latter, the Lumby Lake
Greenstone Belt and the Finlayson Greenstone Belt form a series of correlative sedimentary
units disrupted by a major shear zone (Fig 2.6.; Fenwick, 1976; Stone and Pufahl, 1995;
Fralick and King, 1996; Wyman and Hollings, 1998; Tomlinson et al., 1999; Fralick et al.,
2008). These sedimentary units overlie thick successions of tholeiitic basalts and komatiites
that span a time interval from 3.014 Ga near an intrusive contact at their base to 2.828 Ga
+ 1 Ma in the upper part of the Lumby Lake belt beneath the sedimentary rocks (Tomlinson

et al., 2003).
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Figure 2.6. Outcrop location of the Steep Rock Group and the two correlative sedimentary successions in the
Finlayson Lake and Lumby Lake Greenstone belts.
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The number and names of formations included in the Steep Rock Group have been
modified many times (Smyth, 1891; Lawson and Walcott, 1912; Jolliffe, 1955). According
to Fralick and Riding (2015), the most practical division of the units would be as per Wilks
and Nisbet (1988) into four formations: the Wagita Formation (conglomerate, sandstone),
the Mosher Carbonate, the Jolliffe Ore Zone, and the Witch Bay Formation.

The sedimentary sequence begins with sandstone and conglomerate of the Wagita
Formation that show evidence of erosion into the underlying volcanics and contain zircons
as young as 2.779 Ga £ 22 Ma. These zircons place the current upper bound on the age of
the overlying Mosher Carbonate at 2801 Ma (Fralick and Riding 2015). Zircons from
volcanic rocks in the overlying Dismal Ashrock (Witch Bay Formation) show an age of
2780 £ 1 Ma (Tomlinson et al., 2003), thus constraining the depositional age of the Mosher

Carbonate Formation to between 2.801 and 2.780 Ga.

The Mosher Carbonate Formation experienced lower greenschist metamorphism
and contains a remarkable and well-preserved assemblage of diverse stromatolite
morphologies and associated carbonate sediments that have been the subject of numerous
studies (e.g. Smyth, 1891; Lawson and Walcott, 1912; Jolliffe, 1955; Hofmann, 1971,
Wilks and Nisbet, 1985, 1988; Kusky and Hudleston, 1999). Stromatolite morphologies
show a general trend from stratiform or pseudocolumnar in the lower part, followed by
branched and conical forms, to end the upper part of the formation with giant domal
stromatolites. In 2015, Fralick and Riding divided the Mosher Carbonate Formation into
two parts: (i) the lower Hogarth Member containing domal, pseudocolumnar, columnar and
fenestral stratiform stromatolites which are interpreted to have accumulated in a relatively
protected inner platform environment, and (ii) the upper Elbow Point Member with giant

domes interpreted represent a platform margin deposit in which the alternating calcite-
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aragonite mineralogies in each dome reflect a fluctuating redox environment offshore.
Major and trace element data as well as C and Fe stable isotope data from the Mosher
Carbonate Formation support the idea of an early marine oxygen oasis driven by oxygenic
photosynthesis was established on this platform (Riding et al., 2014; Fralick and Riding,

2015; Wilmeth et al., 2021).

Figure 2.7. Giant domes of the Steep Rock carbonate platform (Elbow Point Member, Locality 6 from Fralick
and Riding, 2015). Giant dome in outcrop (A). Close up of the giant domes that are composed of cuspate
fenestral fabric (black arrow) and crystal fan fabric (red arrow). (B). Close up of a crystal fan layer growing
on an iron- and carbon-rich horizon (white arrow) (C). Crystal fans growing from underlying sediment (D)
and nucleated (E, F) on the upturned edges of underlying cuspate fenestral fabric (white arrows on F) and
appearing to overprint the cuspate fabric. Coins are 19 mm in diameter. Figure taken from Fralick and Riding,
2015.
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The samples analyzed in this thesis from Steep Rock are from outcrops from both
the Hogarth Member and Elbow Point Member. These carbonate samples are mainly
carbonate grainstone, laminar carbonate, and carbonate with crystal fans. See Figure 2.7

for field images of representative microbialites.

2.2 Sedimentary Lithologies

Several different sedimentary lithologies were examined in this thesis, and many
have the potential to record paleogeochemical and paleoenvironmental signals from the
time of their deposition. However, these different lithologies also differ with respect to their
(1) own specific depositional conditions and environments, (2) different biological controls
or contributions, and (3) different chemical or isotopic proxy signals that they are most apt
to record or preserve. In this section, the above three aspects of the three main lithologies
studied in this thesis (carbonate, BIF, and shale) are briefly synthesized; additional details
concerning these aspects are further discussed in the individual chapters presenting the

research findings of this thesis.

2.2.1 Carbonates

Carbonate rocks are chemically and biochemically formed sedimentary rocks of
carbonate composition, predominantly limestones and dolostones. Limestones are
composed of calcium carbonate (CaCOs: calcite, aragonite), including high-Mg varieties,
while dolostones are mainly composed of dolomite i.e., CaMg(COs).. Generally,
carbonates form above pH>6.5 in alkaline environments where carbonate ions (COs>)

associate with dissolved Ca?+ (or Mg?+) ions, and carbonate precipitation occurs readily
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upon saturation. They can form in reduced environments (e.g., at depth in the Baltic Sea)
as well as in oxygenated environments (e.g., Bahamas) when aqueous conditions reach
carbonate mineral saturation. The precipitation of carbonate minerals is also closely linked
to biology since many metabolic processes, such as photosynthetic uptake of CO> and/or
HCOs" by cyanobacteria, and ammonification, denitrification and sulfate reduction by other
bacteria, can increase alkalinity and stimulate carbonate precipitation (Riding, 2000).
Microbial structures such as biofilms, stromatolites and microbial mats, all formed by

bacteria, have thus been important components of carbonate sediments since the Archean.

As carbonates that precipitate directly from seawater may record the chemical
characteristics of seawater of the time, and because of their close connection to microbial
processes, they are regarded as valuable archives in the reconstruction of the different
paleoenvironments preserved in Earth history (Riding, 2000; Kamber et al., 2014).
However, one must be sure that the recorded signals reflect the original signal created
during sample formation (primary signals), and not that of post-depositional processes
(secondary signals). Diagenetic effects, i.e., physical and chemical changes at low pressure
and temperature that affect the sediments after deposition but before metamorphism, should
also be considered when interpreting geochemical proxy data. The major processes of
diagenesis are:

(1) dissolution by which the constituent ions of a carbonate mineral are released
into solution, as a consequence of the increase of CaCOjs solubility controlled by either (i)
decreases in temperature, salinity, or pH, or (ii) increases in pressure, fluid pCO,, or rates

of respiration of organic matter (James and Jones, 2015);
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(2) recrystallization, which is the consequence of pH-controlled dissolution and re-
precipitation cycles that change the orientation, shape and volume of mineral (Bathurst,
1972; Gorski and Fantle, 2017);

(3) inversion, also called neomorphism, which is when a mineral is replaced by a
more stable polymorph of similar chemical composition but with different atomical
arrangement and crystal structure as a result of an increase in pressure and/or temperature,
or pH-driven dissolution-precipitation cycles (Bathurst, 1972);

(4) dolomitization, which is the process of dolomite formation, often by altering
calcite/aragonite into dolomite, driven by a variety of proposed processes such as meteoric-
seawater mixing, evaporative or hydrothermal fluid alteration, and early microbially-driven
diagenesis as well as later burial diagenesis (Machel, 2004; James and Jones, 2015);

(5) cementation, which can be abiotic or biotically-induced and consists in the
precipitation of authigenic cement due to the augmentation of CO3* inducing CaCO3
supersaturation, driven by water mass mixing, fluid flow, elevated alkalinity, an increase
in temperature, salinity or by microbial anaerobic metabolisms (Irwin et al., 1977; Berner,
1980; Given and Wilkinson, 1987);

(6) compaction, which is a mechanical compression of the sediments due to the
increase in the overload pressure with the deposition and burial of overlying sediments,

leading to dewatering and loss of porosity (Croiz¢ et al., 2013).

Geochemical indicators such as 8'30, 813C, ®’Sr/®°Sr, as well as selected trace
element ratios, have been applied for over half a century to identify signatures of diagenetic
alteration in carbonate rocks, which are generally considered more sensitive to post-
depositional alteration than the other lithologies examined in this thesis. Nevertheless,

traditional isotope systems (8'%0, 8'3C, §3*S) have sometimes proven less sensitive to
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alteration than previously thought (Swart, 2015). Furthermore, the fact that certain isotope
systems may act at the same time as a paleoenvironmental proxy and as an indicator of
diagenetic alteration (e.g., 8'%0 may reflect depositional temperature or may reflect the
degree of diagenetic alteration) means that additional constraints are often required (Fantle
et al., 2020). Novel non-traditional stable isotopic proxies such as §**Ca and §°Mg are
currently emerging as useful tools to distinguish primary from secondary signals in altered
carbonate (Blittler et al., 2015; Lau et al., 2017; Ahm et al., 2018). Importantly, most
carbonate diagenetic metamorphic processes, and late alteration processes do not appear to
affect the rare earth element (REE) geochemical signatures, which often remain similar to
those of seawater for carbonates of marine origin, confirming their usefulness in
reconstructing the seawater composition and redox conditions of ancient marine

environments (Hood et al., 2018; Liu et al., 2019; Luo et al., 2021).

2.2.2 BIF

Banded Iron Formations (BIFs) are chemically precipitated sedimentary rocks
composed primarily of silica (40-60 wt.% Si0O) and Fe (15-40 wt.% Fe). Layers containing
magnetite (Fe3O4) and/or hematite (Fe2O3) which alternate with microcrystalline silica
layers (chert, quartz) form their distinctive macro- to micro-bands (Bekker et al., 2014).
The majority of BIFs formed during the Archean and Paleoproterozoic, from 3.5 to 1.8 Ga,
with a brief reappearance ca. 0.7 Ga associated with the Neoproterozoic Snowball Earth
events (Klein, 2005). This temporal distribution is related to the special conditions
necessary for their formation. First, in view of their high iron concentrations, a precursor
sediment precipitated from seawater with Fe(Il) concentrations above 100 uM is implied
(Holland, 1973, 1984). The accumulation of Fe(II) is best explained by the presence of a

reducing atmosphere or one with a low oxidizing potential (Holland, 1984; Bekker et al.,
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2004), low marine concentrations of sulfate and thus sulfide (Habicht et al., 2002), and/or
a high hydrothermal flux of iron (Kump and Seyfried, 2005). Secondly, the deposition of
BIFs requires an oxidative process converting Fe?* to solid-phase iron oxyhydroxide
particles that will deposit and accumulate on the seafloor. Three main oxidation
mechanisms were originally proposed: (i) oxidation of Fe(II) by oxygenic cyanobacteria at
the interface between oxygenated shallow waters and reduced upwelling iron-rich waters
(Cloud, 1965, 1973) or (ii) oxidation of Fe(Il) by anoxygenic photosynthesis, commonly
known as “photoferrotrophy”, that uses Fe(Il) instead of H>O as an electron donor and thus
producing Fe(Ill) instead of O> (Baur, 1978; Ehrenreich and Widdel, 1994), or finally (iii)
ultraviolet photooxidation of Fe(II) (Cairns-Smith, 1978). However, with new geochemical
insights from non-traditional isotopic systems such as Fe, Cr, U, Mo, Cu, it is now generally
believed that the key process for the deposition of Banded Iron Formations is microbial
(i.e. enzymatic) oxidation of Fe(Il) (Czaja et al., 2013; Konhauser et al., 2017) with
microbial reduction of Fe(III) such as DIR likely playing an important role in Fe(Il) supply
to the water column, as well as in BIF diagenesis (Johnson et al., 2008; Heimann et al.,

2010; Lietal., 2011, 2015).

BIFs were deposited in deep-water environments near or above continental slopes
and during periods of sea level high stand (Simonson and Hassler, 1996; Krapez et al.,
2003; Fralick and Pufahl, 2006). In a transgressive sequence they are generally underlain
by organic-rich shales with which they are in some cases interbedded e.g., the 2.48 Ga
Dales Gorge Member of the Brockman Iron formation in Western Australia alternating 17
layers of BIF with 16 layers of shales (Trendall and Blockley, 1970), and are often
considered the most distal, sediment starved facies of platform sedimentation, although

shallow water examples of iron oxide chemical sedimentation also exist (see review by
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Bekker et al., 2014). Considering that their precursor minerals precipitated directly from
ancient seawater, and that their generally low concentrations of crustal-derived elements
(such as Al, Ti, Zr, Th, Nb, and Sc) can be used to confirm their authigenic origin, elemental
enrichments in BIFs have been widely examined as proxy indicators for the chemical
composition of seawater in deep geological time (Bau and Dulski, 1996; Bolhar et al.,
2004), including the nutrients available in ancient seawater for the ancient marine microbial

biosphere (Konhauser et al., 2007; Planavsky et al., 2010).

2.2.3 Black Shales

Black shales are dark-colored, organic matter-rich sedimentary rocks that
accumulate slowly in low energy environments. They may contain authigenic iron sulfide
minerals, but are mostly dominated by fine detrital components (silts and clays)
representative of their crustal provenance. The depositional processes of these reduced
sediments involve a series of relationships between factors such as organic productivity,
the rate of clastic sedimentation, water column depth, and the rapidity of oxidation through
which sinking organic matter is remineralized. In most cases, they accumulate under anoxic
bottom water and/or bottom sediment conditions in marine or continental sedimentary
basins (Wignall, 1994). Indeed, under oxic conditions, organic matter is rapidly degraded
by aerobic respiration in the water column and the upper sediment-water interface, favoring
the preservation of sediments with low levels of organic matter. In contrast, in suboxic or
anoxic conditions, partial degradation (due to lower energetic efficiency) of organic matter
by anaerobic bacteria via denitrification, Mn(IV) reduction, Fe(Ill) reduction, sulfate
reduction, and/or methanogenesis (Fig. 2.8), generally leads to enhanced delivery and
preservation of organic matter in sediments. Under euxinic conditions (both anoxic and

sulfidic), the degradation of organic matter is even less efficient, organic matter is
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preservation is further enhanced. Anoxia in the modern marine environment can occur

today under certain conditions as the result of a combination of physical and biological

factors. For example, in cases of intense upwelling, oxygen poor and nutrient-rich bottom

waters mix with oxygen-rich surface waters and result in very high primary productivity.

Exportation and decomposition of this new organic matter consumes all available oxygen,

leading to the enrichment in organic matter in the sediments (Kdmpf and Chapman, 2016).
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1 10 100 1000 10000
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NO;-
Denitrification
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MnQO,
MnZ* SO, Mn(IV)
T reduction
3 | Mnfll)-precipitates
5 .
5 Fe?* Fe(lll)
_‘E’ reduction
‘g | Fe(ll|-precipitates
2 .
Sulfate
reduction

FeS/FeS,

CH,
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CH,COO- + 20, & H,0 + 2CO, + OH-
AG® =-854 kl/reaction

CH,COO™ + 1.6NO; —» 2CO, + 0.8N, + 2.60H" + 0.2H,0
AG® =-801 kJ/reaction

CH;COO™ + 4MnQ; + 3H,O —» 4Mn? + 2HCO,; + 7OH-
AG® =-558 kJ/reaction

CH,COO" + 8Fe(OH); —» 8Fe?* + 2HCO;™ + 150H" + 5H,0
AG® =-337 kl/reaction

CH,COO" + SO, —» HS + 2HCO;,"
AG® = -48 kJ/reaction

Methanogenesis CH;COO™ + H,O = CH, + HCO;~

AG® =-31 kJ/reaction

Figure 2.8. Schematic of a typical marine sediment porewater profile showing the successive utilization of
terminal electron acceptors that develop during the decomposition of marine sedimentary organic matter.

Reproduced from Konhauser (2007).

Organic rich sediments are also frequently deposited in silled basins with a positive

water balance and a close, shallow connection to the open ocean/sea, such as in the modern

Black Sea (Stewart et al., 2007). Silled basins are often characterized by low-salinity

surface water outflow and a higher-salinity deeper water inflow. The difference in density
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between the low and high salinity waters results in the formation of a permanent halocline
and stratification that prevents convection and oxygen supply in the lower parts of the water
column, thus leading to the development of anoxic conditions. Oxygen minimum zones
(OMZs) and Ocean anoxic events (OAEs) are characterized by oxygen depletion of
intermediate waters in significant portions or even entire ocean basins. The development
of weakly oxic to anoxic conditions with increased preservation of organic matter is
thought to be driven by several factors during OAE events, such as (i) the intensification
of deep-water formation at high latitudes, (ii) the origin of warm and salty bottom waters
at low latitudes, (iii) the increase in freshwater runoff from the continents associated with
high rates of nutrient input, and (iv) an increase in primary production associated with

extreme greenhouse conditions.

Black shales are generally highly enriched in many redox-sensitive and/or sulfide-
forming metals and metalloids, including Cr, V, Mo, Re, U, As, Cd, Ag, Cu, Ni, Zn, Co,
Pb and P (Vine and Tourtelot, 1970), which makes them a particularly attractive potential
paleoenvironmental archive. Enrichments in redox—sensitive elements such as S, Mo, Re,
Os, as well as Fe, Mo and Cr isotope compositions, may serve as important indicators of
changes in oxygen levels in the ancient atmosphere and oceans. Indeed, several studies that
examined these geochemical proxies in ancient marine black shales have provided
important geochemical evidence for establishment of Archean oxygen oases between ca.

2.6 and 3 Ga (e.g., Wille et al., 2007; Czaja et al., 2012; Stiieken et al., 2012).

Detailed methods relating to the preparation and geochemical analyses of Archean

sediment samples representing all three lithology types are provided in the following

Chapter.
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3.1 Field and laboratory sampling

The samples analyzed throughout this thesis were from 1) cores recovered from
Goldcorp (gold exploration company) for the ERC EARTHBLOOM project, 2) cores
drilled by the EARTHBLOOM team directly in the field and 3) outcrops sampled by the

EARTHBLOOM team.

All rock samples were crushed, first with carbon tungsten hammer mortar, then with
an agate puck mill, to generate powders without contact with steel. Pyrite (FeS;) grains
were picked from selected samples and grains less than 1 mm in size were collected using
500 pm and 1.0 mm sieves then the sulfide minerals were isolated by hand-picking under

a binocular microscope.

3.2 Major and trace elements

3.2.1 Digestion

Two types of digestions were performed for the measurement of Fe isotopes and
trace element concentrations: a weak leach digest on the carbonates to isolate the carbonate
fraction, and a total digest on the carbonates, black shales, and BIF for true whole-rock
measurements. A third digest specifically for major elements (Al, Fe, S, Mg, Si, Ca, etc.)

was also performed.
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3.2.1.1 Major elements

Each sample powder was digested into PFA vials in 1ml of concentrated HNO3, 3
ml of HCI and 3ml of HF, reacted overnight in heating blocks at 90° then at 110° for an
hour. All reactants were reagent grade for major element analyses. Then, they were
transferred into 100 ml PFA bottles with 93ml of boric acid to neutralize the HF and keep
Si from volatilizing as SiF4. A wait of one week before measuring major elements by
Horiba Jobin Yvon Ultima 2 ICP-AES (Pdle Spectrometry Océan, Brest, France) was

necessary to ensure the complete neutralization of the HF.

3.2.1.2 Trace elements

Leach digest: An aliquot of each sample powder (~ 100 mg) was digested in PFA
vials in 2 ml of 5% trace-metal grade acetic acid and was left overnight at room
temperature. The next day, the samples were transferred into centrifuge tubes and were
centrifuged at ca. 3000 g for 5 min to separate the solid and liquid phase. Then, 100ul from
the liquid phase was extracted and 4.9 ml of 2% PFA-distilled HNO;3 + Indium (In) was
added in 5ml tubes for the REE measurement using a ThermoFisher Scientific ElementXR
HR-ICP-MS. This method has been optimized to fully digest diverse carbonates while
minimizing digestion of clays, oxides, and crystalline silicates (Rongemaille et al., 2011).
The rest of the liquid was evaporated, re-digested with concentrated HNO3, evaporated then

archived in 4ml 6N HCI for later Fe separation on columns.

To verify the reliability of the method, two carbonate reference materials with low
REE abundances were used for this study, CAL-S and BEAN. CAL-S is an Oxfordian
limestone prepared and distributed by the Centre de Recherches Pétrographiques et

Géochimiques (CRPG) in Nancy and BEAN is the in-house carbonate standard from Brest,
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a pure calcium carbonate powder sold by Acros Organics® (Barrat et al., 2020). Yttrium,
barium and rare earth element abundances from this study are consistent with the results

obtained by Barrat et al., 2020 (Tab. 3.1).

CAL-S BEAN
Element This study Barrat et al., This study Barrat et al.,
Abundances | 2SD 2020 Abundances | 2SD 2020

Y 1.771 0.036 1.948 4.846 0.569 5.373
Ba 1.324 0.207 1.180 87.885 10.195 88.265
La 0.765 0.013 0.745 2.012 0.206 2.028
Ce 0.283 0.009 0.286 0.794 0.089 0.786
Pr 0.083 0.003 0.083 0.287 0.030 0.282
Nd 0.340 0.015 0.342 1.237 0.145 1.237
Sm 0.057 0.001 0.060 0.254 0.032 0.256
Eu 0.015 0.001 0.015 0.091 0.009 0.068
Gd 0.089 0.004 0.090 0.379 0.045 0.378
Tb 0.014 0.001 0.013 0.057 0.005 0.055
Dy 0.096 0.004 0.097 0.357 0.043 0.360
Ho 0.025 0.001 0.026 0.083 0.009 0.084
Er 0.080 0.003 0.081 0.237 0.022 0.241
Tm 0.012 0.001 - 0.031 0.004 -

Yb 0.062 0.003 0.065 0.165 0.018 0.173
Lu 0.010 0.000 0.010 0.026 0.002 0.025

Table 3.1. Y, Ba and REE abundances (in ppm) from the carbonate reference materials CAL-S (n=3) and
BEAN (n=3) obtained in this study compared to Barrat et al., 2020.

Total/bulk digest: All reagents were either PFA-distilled (HNO3 and HF) or

Quartex-distilled (HCI) in the clean lab. Sample powders (~70 mg) were digested in PFA
vials in 2 ml of concentrated HNO3 and 2 ml of concentrated hydrofluoric acid (HF) and
left 24h on hot plates at 80°C to react, then were evaporated. Thereafter, samples were
taken up in 3 ml of concentrated HCI and 1 ml of HNO3 (forming aqua regia) and were
evaporated, after having reacted few hours at room temperature. After complete
evaporation, the samples were taken up in 4 ml of 6N HCI and reacted in closed vials

overnight. From these archives, 100ul was extracted from the liquid phase and added to 4.9
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ml of 2% HNO; + In in 5 ml tubes for REE analysis by ThermoFisher Scientific ElementXR
HR-ICP-MS at the Pole Spectrometry Océan in Brest, France, while the remaining solution

was stored for later Fe separation on columns.

3.2.2 Mass spectrometry

3.2.2.1 ICP-AES

Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) enable the
simultaneous analysis of major and trace elements with a measurement range of the order
of 10° mg L! to a few ug L-!. A first step, called nebulization, allows the transformation of
the liquid sample into an aerosol. The liquid sample is pumped or naturally aspirated into
the nebulizer where it is pushed through a small (typically 25 — 300 um) orfice under gas
pressure (sample gas) and is transformed into a fine aerosol. Once passed through the
nebulizer, the aerosol formed is mixed with an Argon plasma, reaching temperatures
between 6000 and 10000°K. To avoid disturbance of the temperature and properties of
Argon in the plasma, only the finest drops (< 10 pm) pass into the plasma, about 1% of the
initial sample volume collected. Ionized and excited by the plasma, the characteristic atoms
in the sample return to their ground state by emitting photons at specific wavelengths. The
beam of photons produced by the de-excitation of the ions is diffracted by a grating, then,
thanks to pivoting mirrors, a specific wavelength can be isolated and sent to a
photomultiplier which transforms the photon into electrical intensity. These intensities are
converted into elemental concentrations using standards of different concentrations to

perform a calibration range and thus calibrate the machine.
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3.2.2.2 HR-ICP-MS Element XR

The ElementXR is a High Resolution Inductively Coupled Plasma Mass
Spectrometer (HR-ICP-MS) that uses a magnetic sector to separate ions according to their
atomic mass, which is very suitable for the measurement of trace elements. The sample, in
liquid form once passed through a nebulizer or in microparticulate form in the case of laser
ablation of solid materials, is injected into an Ar plasma (between 6000 and 10000°K)
which ionizes the elements. The generated ions are then accelerated in the mass
spectrometer, focused into an ion beam and separated according to their m/z ratio by a
magnetic sector, and collected on a single faraday detector. Although many different
elements possess radiogenic or stable isotopes that fall on the same masses (isobaric
interferences), or combine with other elements in the plasma to form polyatomic
interferences that may also fall on the masses of interest. These may be identified and
avoided or corrected by monitoring multiple isotopic masses of an element to identify
interferences driving isotope ratios beyond natural abundances, or by the measurement of
test solutions designed to monitor the production of polyatomic interferences, such as a
mono-elemental Ba solution generating potential BaO interferences on Ce masses. Both

strategies were employed in this thesis to ensure high-quality, interference-free data.

3.2.2.3 Trace element data treatment

First, all samples (rinses and standards included) were corrected for signal drift
using an internal indium (In) standard that was added to the sample dilutant to ensure
identical concentrations across all samples in a run. We corrected the signals of each sample
by applying a correction factor determined by dividing the indium signal intensity of each
sample by the mean indium value of the session. This was done separately for elements

measured in low, medium, and high-resolution mode of the ElementXR based on
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systematic measurement of In in all three modes. The standards for the calibration were
prepared from commercial multi-element solutions (0.1, 1, and 5 ppb) that were analyzed
at the beginning and end of each session, and the 1 ppb standard was further repeated every
~10 samples. Standard drift across the session was corrected by dividing the signal intensity
for each measurement by the mean indium value for each group of standards (0.1, 1 or 5
ppb). Calibration slopes (in terms of V/ppb), coefficients of determinations (R?), and
relative standard deviation (RSD) of standard repeats were then determined. Data was also
collected for each rinse between samples and their averages were used to calculate
instrumental detection limits. Method blanks as well as international geostandards were
also included as unknowns (IF-G and BHVO-2 for whole-rock digests, CAL-S for acetic
acid leaches) in each sample set. The elemental concentrations in the original 6N HCI or
Acetic acid (AA) archives (for total digests or leaches, respectively) were calculated by
multiplying the drift-corrected elemental intensities obtained for the diluted solutions by
the dilution factor and dividing all values by the slopes of the calibration curves. Finally,
the preceding result was multiplied by the HCI or AA archive volume and divided by the

mass of the sample powder to determine solid phase concentrations.

3.3 Iron isotopes

3.3.1 Purification

Samples were Fe-purified by anion exchange chromatography on columns filled
with 2 mL Biorad AG1-X8 resin, 200-400 mesh (Fig. 3.1). Beforehand, the columns were
washed with 3N HNO3, H>O MQ and 0.24N HCI, and were conditioned with 6N HCI. After

loading sample (320ug Fe) in 6N HCl solution to the column, the matrix was washed away
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with 6N HCl and Fe fraction was eluted with 0.24N HCI, the full procedure is given in Tab.
3.2. The recovered Fe fraction was dried down and taken up in 2% HNOs3 for measurement

by ThermoFisher Scientific Neptune MC-ICP-MS (Pdle Spectrometry Océan, Brest,

France).

2 mL AG1-X8 resin— 10 mL Bio-Rad columns

Steps Acid volume Type of acid
10 mL 3M HNO3
Cleaning 10 mL H>O mmQ
10 mL 0.24M HCI
Conditioning 4 mL 6M HC1
Sample loading x mL 6M HC1
1 mL 6M HC1
1 mL 6M HC1
Elution of the matrix
10 mL 6M HC1
10 mL 6M HC1
3 mL 0.24M HCI
3 mL 0.24M HCI
Elution of Fe
5mL 0.24M HCI
5mL 0.24M HCI

Table 3.2. Fe separation protocol using 2 mL Bio-Rad AG1-X8 (200-400 mesh) in 10 mL Bio-Rad columns.

Figure 3.1. Resin AG1-X8’s and 10 mL Bio-Rad columns used for the iron separation. This picture was
taken at the time of the iron recovery stage.

114




CHAPTER 3 : MATERIAL AND METHODS

3.3.2 MC-ICP-MS Neptune

The Thermo-Finnigan MC-ICP-MS Neptune operates like the HR-ICP-MS, but
instead of having a mono-collector at the end the isotopes are collected simultaneously by
an array of detectors, which in the case of the IFREMER instrument used in this study
comprises 9 Faraday cups. The central cup is fixed and the other eight are mobile and can
be adjusted. The central ion beam can be measured using the central Faraday cup or, for
low ion intensity beams, deflected to a secondary electron multiplier (SEM) ion counting

detector located behind an energy filter (RPQ).

This instrument permits high precision Fe isotope analysis without interferences of
isobaric polyatomic ions such as “°Ar'®O+ on *’Fe+, “°Ar!OH+ on *’Fe+ and “°Ar'*N+ on
4Fe+. Interference-free Fe isotope analysis is achieved by using the medium resolution
mode (mass resolution power about 8000) and producing “flat top” peak shapes (Weyer
and Schwieters, 2003). This peak is composed by a plateau on the left that corresponds to
the only place where iron can be measured without interferences (Fig. 3.2). Indeed, since
the Fe isotopes have a lower mass than the isobaric polyatomic ions interferences, they
enter the detector first and form the left plateau. The higher plateau represents the sum of
polyatomic interferences and Fe isotopes. The significantly smaller plateau on the right
reflects the polyatomic interferences only. To verify the absence of instrumental artifacts
generated by residual matrix elements after chemical purification of samples, we employed
two methods. First, in each sample, we added 8 ppm of Ni used as internal standard to
correct the instrument mass bias and secondly, we used the “sample-standard bracketing”
technique with an 8-ppm standard of Fe and Ni to correct instrumental mass discrimination
by normalizing the isotopic ratios of Fe to the measured mean composition of the standard

that was measured before and after the sample.
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Figure 3.2. MC-ICP-MS mass scan showing all Fe isotopes and polyatomic interferences. All Fe signals are
normalized to the signal of §°°Fe (Wang, 2013).

The >*Fe, °Fe, *'Fe, >®Fe-Ni, ®“Ni, *!Ni and %2Ni isotopes were collected on the
faraday cups with respectively L4, L2, L1, C, H1, H2 and H4 position. Samples were
analyzed one, two, or three times, and the precision of the data is given at 95% confidence
levels based on the isotopic deviation of the bracketing standards analyzed during the same
analysis session. The Fe isotope standard IRMM-14 demonstrated a 2SD reproducibility of
0.07 %o across all sessions, comparable to the external reproducibility of 0.10 %o from
Rouxel et al. (2005). Two georeference materials, including a banded iron formation (IF-
G) and a Hawaiian basalt (BHVO-2) were measured several times as different unknown

duplicates passed through the same chemical purification and isotopic analyses
independently for each session. IF-G showed an average value of 8 °Fe = 0.59 + 0.02 %o

(20) which is similar within uncertainties to the 0.64 + 0.06 %o (2c) value obtained by
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Rouxel et al. (2005). The standard BHVO-2 showed an average value of §°Fe = 0.01 +
0.06 %o (20) which is similar within uncertainties to the 0.11 £ 0.11 %o (20) value obtained
by Rouxel et al. (2005). The isotopic compositions of Fe were calculated relative to the Fe

isotope standard IRMM-14 using the following equations (Rouxel et al., 2005) :

8°°Fe=1000 * [(°Fe/”*Fe)sumpie/CFe/ *Fe)mpm14-1]
8 "Fe=1000 * [("Fe/ *Fe)sumpie/C Fe/ *Fe)mpm14-1]

57*°Fe=1000 * [(*"Fe/ Fe)sampic/(" Fe/ Fe)rmu-14-1]

In Figure 3.3 are presented the relationships between 6°Fe and 8°’Fe for the samples
analyzed in this study. Both possible cross-plots produce a mass fractionation line, which

corresponds to the natural mass dependent fractionation, which confirms that the

measurements were interference-free.
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Figure 3.3. Triple isotope plot of Fe isotope values of carbonates, black shales and BIF analyzed in this study.
White circles show 3°°Fe vs. 8°’Fe data and black circles represent 5°°Fe vs. 5°7*°Fe data.
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3.4 Sulfur isotopes

To obtain the §**S data, the samples were sent to the Laboratoire Biogéosciences,
Universit¢ de Bourgogne, Dijon, France. Sulfur isotopes were measured on isolated
sulfides (pyrite and pyrrhotite) using an extraction scheme applied to recover chromium
reducible sulfide (CRS). The powdered samples were stirred and reacted in a 1 M CrCl,
solution (Canfield et al., 1986) to release CRS as hydrogen sulfide, which in turn was
precipitated as Ag>S. After centrifugation, the silver sulfide precipitates were rinsed several
times with deionized water and dried at 50 °C for 48 h in an oven. Analyses were performed
on SO> molecules by burning 250-500 pg of Ag>S using a Vario PYRO cube (Elementar
GmbH) connected to an IsoPrime IRMS system. International standards IAEA-S1, IAEA-
S2, IAEA-S3 were used for calibration. The results are reported in delta notation against
the Vienna Canyon Diablo Troilite (VCDT) standard and the reproducibility is better than

+0.12 %o (20).

3.5 La-Ce geochronology

3.5.1 Analytical challenges of the La-Ce system

The La-Ce isotope system based on the B-decay of *¥La to stable **Ce has been
used as a geochemical tracer, for the age determination of rocks and more recently to
directly date the formation of the cerium anomalies (Shimizu et al., 1988; Bellot et al.,
2018; Israel et al., 2020; Bonnand et al., 2020). The long half-life (B-decay; t'? = 1.02 x
10° years; Sonzogni, 2003) and the low abundance (0.089 %) of '3®La generate very small

variations in the isotopic ratio '38Ce/!'*>Ce compared to other systems.
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Cerium has four isotopes of mass 136, 138, 140 and 142 respectively. The abundances of
these 4 isotopes are very contrasted: '3°Ce = 0.185%; 38Ce = 0.251%; !4°Ce = 88.45%;
142Ce = 11.114% (Lide, 2009). Therefore, the high abundance of *°Ce, about 400 times
more abundant than the isotopes **Ce and '3®Ce, makes Ce measurement difficult. In
addition, the 138Ce/'**Ce ratio is affected by isobaric interference on the isotopic mass 138
by barium and lanthanum, and on the isotopic mass 142 by neodymium (Tab.3.3). And
finally, '°Ce and '*®Ce are affected by the tailing effect from mass '*°Ce during
measurement (Bonnand et al., 2019). As a result, a good chemical separation between Ce
and isobaric interfering elements is essential, as well as specific analytical approaches, such

as detailed below.

Isotopic mass
134 135 136 137 138 139 140 142 143 144
Ba 2417 | 6.592 | 7.854 | 11.232 | 71.698

Element

La 0.089 | 99.911
Ce 0.185 0.251 88.45 | 11.114
Nd 27.2 12.2 23.8

Table 3.3. Ce, Nd, La and Ba isotope relative abondances in percentage (%) (Lide et al., 2009).

3.5.2 Sample digestion

The amount of powder required for this analysis was based on the minimum amount
needed for TIMS analysis, i.e., 1000ng Ce. With low and varying cerium concentrations
across the 3 sites, between 535mg and 14g of powder per sample was required to reach the
1000ng of Ce. The samples were digested with 5% trace-metal grade acetic acid in either
PFA vials or 250ml HDPE bottles, depending on the acetic acid volume needed (from 20ml
to 374ml) relative to the amount powder, then left overnight at room temperature. The next

day, the samples were centrifuged to extract the liquid phase from the solid phase using a
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pipette. The pipetted liquid was then deposited into clean PFA vials and evaporated on hot
plates at 90 degrees. Samples were then taken up in concentrated HNOj3 and evaporated,

three times.

3.5.3 Cerium purification protocol

Chemical separation of cerium from the carbonate matrix required four steps of
columns. The first column was used to remove most of the major elements (Ca, Fe, etc.),
the second column managed to separate the REEs from the remaining cations and
especially from Ba, the third column allowed to isolate the Ce from the other REEs, and
the last column was used to remove the Na added during the third column separation

protocol.

3.5.3.1 First column: removal of major elements

The first step of cerium purification was performed on TRU.Spec resin
(TRansUranic-element Specific). The TRU.Spec resin comprises a solution of 13%
octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide (CMPO) dissolved in
27% tributylphosphate (TBP) and supported on the inert porous polymeric substrate (60
wt%) Amberchrom CG-71ms (Horwitz et al., 1993). The TRU.Spec resin is generally used
for the separation of actinides or iron. Here, we use this resin to remove a large part of the
major elements but mostly calcium and iron which are in high concentrations in the
samples. To achieve this separation, the samples in 1 M HNOj3; were loaded onto 1 mL of
TRU resin (50-100um) in 10 mL Bio-Rad columns. The major elements were eluted in 1
M HNOs and the REEs were then eluted in 0.05 M HNOs and 0.1 M HCI + 0.29 M HF

(Fig. 3.4 and Tab.3.4).
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Figure 3.4. Elution curves of chemical elements during the first step of cerium purification using 1 mL
TRU.Spec resin (50-100pum) in 10 mL Bio-Rad columns.

1 mL TRU resin (50-100pm) — 10 mL Bio-Rad columns
Steps Acid volume Type of acid
20 mL 0.1M HCI + 0.29M HF
Cleaning
20 mL 0.05M HNO:;
Conditioning 10 mL IM HNOs
Sample loading x mL IM HNOs
Elution of major elements 6 mL IM HNOs
4 mL 0.05M HNO:;
Elution of the matrix and REE
2.5 mL 0.1M HCI + 0.29M HF

Table 3.4. Separation protocol of the first step using 1 mL TRU.Spec resin (50-100pm) in 10 mL Bio-Rad

columns.

Cerium yields were calculated from the quantitative results measured on HR-ICP-

MS before and after elution on columns. The average yield of cerium after elution on TRU

resin is 90.7%. Each time the TRU resin columns were used, blanks following the same
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dissolution and separation steps as the samples were measured. This allows to check the
purity of the analyses and to estimate the possible contaminations. The values of the blanks

are given in the Table 3.5.

Elements Ba La Ce Nd Ca Fe

0.178 0.013 0.025 0.017 0.000 1.024
0.478 0.001 0.001 0.001 0.000 0.409
0.011 0.013 0.007 0.009 0.355 0.132

Blanks

(n=7) 0.008 0.001 0.006 0.001 0.037 0.059
0.012 0.000 0.001 0.001 0.000 0.007
0.009 0.040 0.014 0.009 0.000 0.132
0.007 0.000 0.002 0.000 0.000 0.019

Table 3.5. Quantity (in ng) of Ba, La, Ce, Nd, Ca and Fe measured in the blanks while using the TRU.Spec
resin.

3.5.3.2 Second column: REE separation from the matrix

The second step of cerium purification was performed on AGW50-X8 (200-400
mesh), an analytical grade cation exchange resin useful for separation of small peptides and
amino acids, removal of cations, and metal separations. Here we use this resin to remove
the remaining major cations and mostly barium. To achieve this separation, the samples in
2.5 M HCI were loaded onto 2 mL of AGWS50-X8 (200- 400 mesh) in 10 mL Bio-Rad
columns. The remaining major cations were eluted in 2.5 M HCI, Ba was then eluted in 2

M HNO:s and the REEs were finally eluted in 6 M HCI (Fig. 3.5 and Tab. 3.6).
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Figure 3.5. Elution curves of the remaining cations and REE during the second step of cerium purification
using 2 mL AG50W-X8 (200-400 mesh) resin in 10 mL Bio-Rad columns.

2 mL AG50W-X8 resin (200-400 mesh) — Bio-Rad 10mL columns
Steps Acid volume Type of acid

Cloaning 20 mL 0.3M HCl

20 mL 6M HCl
Conditioning 20mL 2.5M HCl
Sample loading I mL 2.5M HCl
Matrix elution 9mL 2.5M HCl
Ba elution 10mL 2M HNO3

LREE elution 15 mL 6M HC1

Table 3.6. Separation protocol of the second step using 2 mL AG50W-X8 (200-400 mesh) resin in 10 mL

Bio-Rad columns.

The average yield of cerium after elution on AG50W-X8 resin is 92.4% and the

values of the blanks while using the cationic resin are given in the Table 3.7.
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Elements Ba La Ce Nd Ca Fe

0.008 0.533 0.127 0.007 0.373 0.000

0.018 0.248 0.136 0.020 0.000 0.030

0.009 0.000 0.000 0.000 0.190 0.000

Blanks 0.015 0.010 0.000 0.000 0.168 0.000
(n=8) 0.006 0.002 0.001 0.000 0.000 0.126
0.009 0.002 0.001 0.000 0.068 0.097

0.037 0.000 0.002 0.000 0.057 0.204

0.010 0.000 0.000 0.000 0.216 0.005

Table 3.7. Quantity (in ng) of Ba, La, Ce, Nd, Ca and Fe measured in the blanks while using the AG50W-
X8 resin.

3.5.3.3 Third column: isolation of cerium

The third step of cerium purification was performed on Ln-Spec Eichrom resin (50-
100pum) which is based on di-(2-ethylhexyl)-phosphoric acid (HDEHP) loaded on the same
polymeric adsorbent (40 wt%) as used for TRU Spec, Amberchrom CG71ms (Pin and
Zalduegui, 1997). This resin was used to separate Ce*" from the other REEs and the
oxidation of Ce from Ce*" to Ce*" was achieved with 20 mM of NaBrOs in 10 M HNO:.
The samples in 10 M HNOs3 + NaBrOsz were loaded onto 0.4 mL Ln-Spec resin (50-100pm)
in 2 mL Bio-Rad columns. The cerium was then eluted in 6 M HCI + H>O; (Fig. 3.6 and

Tab. 3.8).
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Figure 3.6. Elution curves of the rare earth elements during the third step of cerium purification using 0.4
mL LnSpec Eichrom resin (50-100pum) in 2 mL Bio-Rad columns.

0.4 mL LnSpec resin (50-100pm) — Bio-Rad 2mL columns
Steps Acid volume Type of acid
Cloaning 16 mL 0.3M HCl
16 mL 6M HCI

Conditioning 6 mL 10M HNOs + NaBrOs

Sample loading 1 mL 10M HNOs + NaBrOs

La, Pr, Nd, Sm and Eu elution 6 mL 10M HNOs + NaBrOs

Ce elution 6 mL 6M HCI + H,0;

Table 3.8. Separation protocol of the third step using 0.4 mL LnSpec Eichrom resin (50-100pum) in 2 mL
Bio-Rad columns.

The average yield of cerium after elution on Ln-Spec resin is 91.1% and the values

of the blanks while using the cationic resin are given in the Table 3.9.
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Elements Ba La Ce Nd Ca Fe

0.030 0.002 0.000 0.000 0.000 0.000

0.006 0.000 0.000 0.000 0.000 0.156

0.004 0.001 0.001 0.001 0.000 0.000

Blanks 0.013 0.000 0.000 0.000 0.000 0.000
(n=8) 0.005 0.000 0.001 0.000 0.000 0.000
0.021 0.000 0.004 0.000 0.000 0.000

0.003 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.000 0.000 0.000 0.445

Table 3.9. Quantity (in ng) of Ba, La, Ce, Nd, Ca and Fe measured in the blanks while using the LnSpec
resin.

3.5.34 Fourth column: removal of Na

The last step of cerium purification was performed on AGW50-X8 (200-400 mesh),
the same resin used for the second step of purification but with a different amount of resin
in smaller columns. This last step is essential to remove the sodium added during the first
step of purification. The samples in 2 M HCI were loaded onto 0.4 mL AG50W-X8 in 2
mL Bio-Rad columns. The remaining cations were eluted in 2 M HCI, Ba was then eluted

in 2 M HNO3 and the REEs were finally eluted in 6 M HCI (Tab. 3.10).

Even if we use the same resin (AG50W-X8) as for step 2, we cannot use it under
the same conditions for this step. Indeed, for step 2, we use 2 mL of resin in 10 mL Bio-
Rad columns but if we use the same amount of resin for this step, too much organic material
from the resin will be in the sample and will prevent the emission of cerium on TIMS.
Therefore, we reduced the volume of resin to 0.4 mL and used 2 mL Bio-Rad columns.
Consequently, we had to reduce the normality from 2.5 M HCI to 2 M HCI for conditioning,
loading and first elution, which was too high for this amount of resin and resulted in a loss

of cerium.
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0.4 mL AGS50W-X8 resin (200-400 mesh) — Bio-Rad 2mL columns

Steps Acid volume Type of acid
Cloaning 12 mL 0.3M HCl
12 mL 6M HCl
Conditioning 12 mL 2M HCI
Sample loading I mL 2M HCl
Remaining matrix and Na elution 4mL 2M HCI
Remaining Ba elution 4mL 2M HNO3
Ce elution 12mL 6M HCl

Table 3.10. Separation protocol of the fourth step using 0.4 mL AG50W-X8 (200-400 mesh) resin in 2 mL
Bio-Rad columns.

The average yield of cerium after elution on AG50W-X8 (0.4 mL) resin is 92.3%

and the values of the blanks while using the cationic resin are given in the Table 3.11.

Elements Ba La Ce Nd Ca Fe

0.037 0.000 0.276 0.000 0.000 0.046

0.008 0.000 0.264 0.000 0.099 0.183

0.026 0.001 0.157 0.000 0.000 0.000

Blanks 0.024 0.000 0.015 0.000 0.185 0.000
(n=8) 0.020 0.000 0.001 0.000 0.000 0.938
0.008 0.000 0.002 0.000 0.000 0.276

0.013 0.000 0.005 0.000 0.000 0.000

0.005 0.000 0.001 0.000 0.000 0.000

Table 3.11. Quantity (in ng) of Ba, La, Ce, Nd, Ca and Fe measured in the blanks while using the AG50W-
X8 resin.

3.5.3.5 Yields

These 4 separation steps, although essential, generate a significant loss of cerium
depending on the matrix. The final cerium yields are rather homogeneous for the artificial
and rock standards, with an average of 82% Ce yield for BHVO-2, 85% for JDO-1, and

80% for Ce LMV. The final yields of the carbonate samples are however quite
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heterogeneous, with yields varying from 1 to 100% between the three sites. The average
final cerium yield for the three sites was 39%, with an average of 47% for Red Lake, 51%
for Woman Lake and 16% for Steep Rock. Cerium yields appear to be clearly related to Ca
concentrations as the higher the calcium concentrations, the lower the cerium yield. (Fig.
3.7). Indeed, the higher the Ca concentrations are, the more the column risks saturation by
Ca and is unable to retain Ce. Although an optimal yield is desired to ensure that enough
Ce is recovered for TIMS measurements (about 1000 ng), low yields are not problematic
for radiogenic Ce measurements. Indeed, even if isotopic fractionation occurs on the

columns, it is corrected during normalization to the 13Ce/!*?Ce ratio.
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Figure 3.7. Ca concentrations (ppm) plotted against Ce yields (%), it is clear that Ca concentrations influence
cerium yield as the more calcium there is, the more cerium is lost, due to the saturation of the column by
calcium.
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3.5.4 Mass spectrometry

3.54.1 TIMS Triton

Ce isotopic analyses were performed on the Thermo-Scientific Triton plus TIMS at
the Laboratoire Magmas et Volcans in Clermont-Ferrand, France. The Thermo-Ionization
Mass Spectrometer (TIMS) Triton is a magnetic sector mass spectrometer capable of
making highly accurate measurements of isotopic ratios of elements that can be thermally
ionized by passing a current through one or two thin metal filaments under clean vacuum
conditions. The generated ions are then accelerated through an electrical potential gradient
and focused into a beam via a series of slits and electrostatically charged plates and
separated according to their m/z ratio by a magnetic sector. These mass-separated beams
are then directed to collectors where the ion beam is converted into a voltage. By comparing
the voltages corresponding to the different ion beams, accurate isotope ratios can be

obtained.

Thermo-ionization is the most suitable method for Ce isotopic measurements in
comparison with MC-ICP-MS (Willbold, 2007). On MC-ICP-MS, the plasma ionizes all
the elements, and this makes it difficult to correct Ba interferences. Also, a small amount
of Xe is present in the Ar, which interferes with Ce at mass 136. In TIMS, Ce can be emitted
in oxide form, which allows better control of isobaric interferences, especially those from
Ba because the molar enthalpy energy of BaO is higher than CeO. To measure cerium in
oxide form, we deposit 1ul of H3PO4 (0.5 M) on the Re filament (99.99%) before depositing
the sample. The sample is then very carefully deposited in 2 M HCl with a pipette on the

drop of H3PO4 on the filament heated to 0.8 A. Once the deposit is dry, the samples are
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"flashed" by heating the filaments up to about 2/3A, until a little white smoke comes out,

then the current is brought down to zero very quickly.

The measurements are done in double Re filament, i.e., two filaments are positioned
opposite each other, the evaporating filament on which the sample is deposited and the
ionizing filament on which no deposit is made. The presence of the ionizing filament allows
cerium to ionize at a lower temperature than that at which it normally does. For standards
Ce LMV, the ionization filament is heated to 3800 mA while the evaporating filament is
heated to approximately 800 mA. For the samples, it’s much more variable, the ionization
filament is heated up between 3120 to 4025 mA while the evaporating is heated up between
450 to 1300 mA. This corresponds to a pyrometer temperature between 1550 and 1750°C.
The heating temperature of the evaporating filament varies because of small soldering
defects or deformation of the filament feet. This is because the filament supports are reused
several times. The filament posts and plates are sanded, then washed in a bath with diluted
RBS25 (10% with deionized water) with ultrasound, between each use (RBS25 is an
alkaline detergent which is used for washing in medical and light radioactive
decontamination). Re filaments are pre-degassed for 20 min up to 4.8 A to eliminate any

pollution coming from the filament, especially from Ba.

3.54.2 Cup configuration and corrections

For Ce isotopic measurements on TIMS, the faraday cups were positioned as shown
in Table 3.12 (Bonnand et al. 2019). The samples are usually measured with an intensity
between 8 and 10V on mass 158 (142Ce!'®0), which corresponds to an intensity of 80V on
mass 156 (1*°Ce!®0). The signal strength received in the faraday cups cannot be higher than

50V without damaging them, therefore, the 4°Ce is not measured. However, its emission
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generates a peak tailing effect, due to the large differences in abundance of Ce isotopes,
that must be corrected to not overestimate the intensities of the smallest isotopes. Part of
140Ce ions lose some of their kinetic energy by colliding with residual molecules in the tube
and are therefore more deflected than others by the magnetic field and increase the signal
on the smaller masses 136 and 138. Consequently, the effect of peak tailing has been

measured in L2, L1 and H1 cups at 152.64, 153.37 and 154.61 masses, respectively.

Facr;‘say L4 L3 L2 L1 C H1 H3 H4
Oxides | **Ba'®O | B¢Ce!®0O PT PT 138Cel®O PT 192CelQ | 2Ce’®0
Masses 150 152 152.64 | 153.37 154 154.61 158 160

Table 3.12. Cup configurations used on the Thermo-Scientific Triton plus TIMS at the Laboratoire Magmas
et Volcans for Ce isotopic measurement to date cerium anomalies. L2, L1 and H1 cups are used to measure
the peak tailing (PT) effect of the 140 Ce mass on the 136 and 138 Ce masses.

Moreover, since Ce is measured in oxide form, it is necessary to correct the
138Ce/!*2Ce ratio of CeO formed with the minor oxygen isotopes '30. For this, the ¥0/'°0
ratio is determined in situ using an iterative calculation that integrates the mass
discrimination law with direct measurements of '*>Ce'®0 and 3°Ce!%0 (Makishima et al.,
1987; Willbold, 2007). In addition, the mass fractionation caused by the preferential
evaporation of lighter atoms over heavier atoms at the beginning of analysis must also be
corrected, using the exponential law applied to cerium according to Hart and Zindler
(1989).

3.5.4.3  Reproducibility and precision

The artificial reference standard used for cerium measurements is Ce LMV. Figure
3.8 shows all the values obtained during these analyses; the average '**Ce/'*>Ce value is

0.02256983 with an external reproducibility of 21.14 ppm 2SD (n=11).
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Figure 3.8. '3¥Ce/'*?Ce ratio measured for Ce LMV standard corrected from tailing, oxygen and mass
fractionation. The error bars correspond to the 2SE of each measurement.

Two rock standards, JDO-1 and BHVO-2, that followed the same chemical
preparation as the samples were also analyzed. The mean value of the Japanese dolomite
standard JDO-1 of the '3¥Ce/!**Ce ratio is 0.02258463 with an external reproducibility of
32.14 ppm 2SD (n=3). For the Hawaiian basalt standard BHVO-2, the mean value of the
138Ce/142Ce ratio is 0.02256337 with an external reproducibility of 5.44 ppm 2SD (n=3).
This value is consistent with other BHVO-2 '38Ce/!'**Ce ratios from literature such as
0.02256550 (68 ppm 2SD; Doucelance et al., 2014), 0.02256460 (75 ppm 2SD; Bellot et
al., 2015), 0.02256482 (26 ppm 2SD; Willig and Stracke, 2018), 0.02256499 (10 ppm 2SD;

Bonnand et al., 2019) and 0.02256453 (44 ppm,; Israel et al., 2020).

Uncertainty on the *8La/!'*?Ce ratio was evaluated by independent digestions and

repeat analyses of the JDo-1 international dolomite geostandard that were included in the
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same ElementXR sessions used to generate the sample data. JDo-1 was duplicated a total
of 6 times across all sessions, yielding and average '**La/!'*?Ce ratio of 0.0315434 and
precision of 0.00023266 (2c). The worst 2SE error of the three duplicate JDo-1 analyses

passed over the three sessions (0.00035707) was used for isochron calculation. See
Appendix Tables C.3 and C.4 for the *8Ce/!**Ce and '*8La/'**Ce values determined for the

various standards analyzed alongside the samples.
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Abstract

The global marine carbonate factory has Archean origins, yet relatively little is
known about the sedimentological, geochemical, and redox conditions associated with
Earth’s oldest carbonate platforms deposited from 2.96 to 2.80 Ga. Here we report rare
earth element (REE) data and Fe stable isotope chemostratigraphy obtained across an
exceptional transgressive sequence spanning >70 m of stromatolitic marine carbonate and
>60 m of deep-water-facies (iron formation and black shales) in drill core from the ~450m
thick 2.93-billion-year-old (Ga) Ball Assemblage of the Red Lake Greenstone Belt
(Superior Craton, Northwestern Ontario, Canada). Major element and REE data reveal that
the accretion of the stromatolitic dolostones occurred under ferruginous marine conditions
with important hydrothermal influence and a combination of Eh conditions and REE
residence times that were generally insufficient for Ce oxidation. However, Fe isotopes
reveal a dynamic iron redox cycle spanning this shallow-to-deep transect, with 8°°Fe values
ranging from -2.88%o to +1.50%0 across all lithologies combined. The large range and
stratigraphic evolution of 3°°Fe values are best explained by plume depletion of Fe via iron
oxide precipitation offshore, yielding low 6°°Fe values in the upwelling residual Fe(II)
pool. Important and remarkable secular §°°Fe variations were observed in the stromatolitic
carbonates that are not readily explained by a Rayleigh distillation model nor by their trace
pyrite contents, instead co-varying with the latter’s sulfur concentrations and stable isotope
composition. Our data indicate that §°°Fe(Il).q values on the platform were controlled by
an indirect driver linking the Fe and S cycles, which we suggest was variations in primary
production. Our data indicate an important role for photosynthesis in modulating Earth’s

major biogeochemical cycles already by 2.93 Ga.
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Résumé

Les conditions sédimentologiques, géochimiques et d'oxydoréduction associées aux
plus anciennes plateformes carbonatées de la Terre déposées entre 2,96 et 2,80 Ga restent
encore peu connues. Nous présentons ici des données sur les éléments des terres rares
(REE) ainsi qu’une chimio-stratigraphie des isotopes stables du Fe obtenues sur une
séquence transgressive couvrant plus de 70 m de carbonates marins et 60 m de faci¢s d'eaux
profondes (BIF et schistes noirs) dans une carotte de forage provenant du Ball Assemblage
de la ceinture de schistes verts de Red Lake (Ontario, Canada), agé de 2,93 milliards
d'années. Les données sur les éléments majeurs et les REE révélent que l'accrétion des
dolomies s'est produite dans des conditions marines ferrugineuses avec une influence
hydrothermale importante et des conditions généralement insuffisantes pour oxyder le Ce.
Cependant, les isotopes du fer révelent un cycle dynamique d'oxydoréduction du fer
couvrant ce transect peu profond a profond, avec des valeurs de §°°Fe allant de -2,88%o a
+1,50%o toutes lithologies confondues. La large gamme et 1'évolution stratigraphique des
valeurs de 8°°Fe sont mieux expliquées par l'appauvrissement en Fe du panache via la
précipitation d'oxyde de fer au large, engendrant de faibles valeurs 8°°Fe dans le réservoir
de Fe(Il) résiduel remontant. Des variations séculaires importantes en &°°Fe ont été
observées dans les carbonates qui ne peuvent étre expliquées facilement par un modele de
distillation de Rayleigh, ni par leur teneur en pyrite, mais qui varient plutdt avec les
concentrations de soufre et la composition isotopique stable de ces derniers. Nos données
indiquent que les valeurs de 8°°Fe(Il)aq sur la plate-forme étaient contrdlées par un facteur
indirect reliant les cycles du Fe et du S, que nous suggérons étre des variations dans la
production primaire. Nos données indiquent un role important de la photosynthese dans la

modulation des principaux cycles biogéochimiques de la Terre déja a 2,93 Ga.
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4.1 Introduction

The Great Oxygenation Event (GOE) marks the first significant accumulation of
atmospheric oxygen ca. 2.5 to 2.3 Ga, yet multiple redox proxies indicate the establishment
of both marine and lacustrine O oases between 2.5 and 3.0 Ga (e.g., (Anbar et al., 2007;
Planavsky et al., 2014; Riding et al., 2014; Robbins et al., 2016; Wilmeth et al., 2022). Prior
to 2.5 Ga, the discrepancy between persistent mass-independent fractionation of sulfur
isotopes (MIF-S) indicating atmospheric anoxia and marine redox proxies implying
oxygenic photosynthesis pre-GOE can be explained by either pelagic (Olson et al., 2013)
or benthic (Lalonde and Konhauser, 2015) shallow-water and terrestrial Oz-producing
communities that had little effect on atmospheric composition. Recently, paired S and Fe
isotope data from stromatolite-hosted trace pyrites have indicated the occurrence of
oxygenated near-shore shallow marine environments ca. 2.96 Ga, despite clear evidence

for atmospheric anoxia (Eickmann et al., 2018).

The above studies converge on the idea that shallow marine environments showing
evidence of strong photosynthetic activity are promising targets for identifying robust
chemical and isotopic indicators of local oxygen production early in Earth history.
However, Archean carbonate platforms, often preserving hundreds of meters of near-
continuous stromatolitic carbonate deposition in shallow-water environments, remain

largely unexplored for the geochemical and paleoredox signals that they may record.

Recent work on stromatolitic carbonates from the 2.43-2.46 Ga Griqualand
Formation, S. Africa, demonstrate the proxy potential of such targets (Heard et al., 2022).
Here, modest but appreciable enrichments in Ce and Mn reveal high oxidation potential in

the stromatolitic carbonate-depositing environment relative to the enclosing deep-water
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banded iron formation (BIF) facies, while strong iron isotope homogeneity in the
stromatolite facies (-1.55%o to -1.45%o) relative to the BIF (-0.07%o to -1.75%o; data from
Thibon et al., 2019) was suggested to indicate quantitative oxidation of Fe in the former.
However, this stromatolitic interval spanned only ~1m, and the Fe isotope results are odds
with prior work that revealed significant Fe isotope variation (-3.69%o to 0.08%o) at the
platform scale in the underlying Campbellrand-Malmani carbonate platform that is at most
150 Ma younger (Eroglu et al., 2018). It remains to be seen what Earth’s earliest thick
carbonate platforms, deposited between ~2.93 and 2.80 Ga (Riding et al., 2014) reveal

about iron cycling and paleoredox in shallow-water stromatolite-accreting environments.

Accordingly, here we report on the REE and Fe isotope compositions of diverse
sediments associated with the shallow-water stromatolitic Archean carbonate platform
preserved in the 2.925 to 2.940 Ga Ball Assemblage of the Red Lake Greenstone Belt,
Superior Craton, Western Ontario, Canada. This platform is the Earth’s first thick (>100
m) accumulation of carbonates, and is interbedded with siltstones, deep-water black shales
(pyritic at times), and BIF (Mclntyre and Fralick, 2017; Afroz, 2019). The transition
between conformable shallow-water and deep-water facies provides an unparalleled
opportunity to study the Mesoarchean iron cycle, and the abiotic or metabolic processes

driving it, in a continuous chemostratigraphic shallow-to-deep transect.

In this work we focused on two paleoredox proxies of particular promise, cerium
(Ce) anomalies and Fe stable isotope compositions. With the exception of Eu, Ce is the
only REE for which abundance anomalies occur in aqueous solutions and their precipitates
due to redox reactions. Oxidation of Ce(IIl) to Ce(IV) and subsequent decoupling of Ce

from the other REEs due to the formation of less soluble Ce(IV) species and/or preferential
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adsorption of Ce(IV) on particle surfaces drives the water-column development and
sedimentary preservation of Ce anomalies (Bau and Dulski, 1996). Cerium oxidation
requires redox electrode potentials significantly higher that of the Fe(Ill)/Fe(Il) half-cell,
and hence, the widespread occurrence of negative Ce anomalies in sediments beginning ca.
2.5 Ga has been used to argue in favor of the presence of oxidized Precambrian surface
waters (Towe, 1991; Riding et al., 2014) and its first appearance provides convincing
evidence for the origin of cyanobacteria by 2.7 Ga (Riding et al., 2014). Iron stable isotopes
also provide important information about ancient Fe cycling that speaks directly to water
column paleo-redox (Johnson et al., 2003; Rouxel et al., 2005a; Dauphas et al., 2007).
While igneous materials possess a narrow range in 3°°Fe, Fe isotope fractionations greater
than ~0.5%o/amu are associated exclusively with Fe redox cycling (Beard et al., 2003). We
thus also examined the whole-rock Fe stable isotope systematics of oxide-facies BIF and
sulfidized BIF (S-BIF), black shales, and stromatolitic dolostones, as well as isolated
pyrites and carbonate-associated Fe isolated via a weak-leach technique, in order to
understand iron redox cycling and microbial metabolic processes in a unique Archean
transgressive sequence that preserves a history of Fe-rich deep waters upwelling onto what

constitutes Earth’s first thick carbonate platform.

4.2 Methods

See Chapter 3, section 3.2 for major and trace elements, section 3.3 for Fe isotopes,

and section 3.4 for S isotopes. All data are available in Appendix A.
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4.3 Results and discussion

4.3.1 Major and trace element constraints on

paleoenvironmental conditions

The NGI10-031 drill hole captures a wide range of lithologies (iron formations,
shales, carbonates) and this lithological diversity is reflected in the wide range in major
element compositions. In this sample set, Fe,O3 contents ranged from 0.39 to 63.07 wt.%,
ALO3 from 0.05 to 25.97 wt.%, and CaO from 0.12 to 30.55 wt.% (Appendix A.1). Certain
intervals in both carbonate and shale sections are remarkably sulfur-rich; at depths around
58 m and 80 m, carbonates reach up to 10 wt. % S, largely as fine-grained disseminated
pyrite and pyrrhotite, while higher in the core ca. 80 m, shales reach up to 24 wt.% S, where
the same sulfur minerals are observed to occur as cm-scale nodules and disseminated bed-
parallel layers. The stratigraphic evolution upwards from stromatolitic dolomite to sulfide-
and organic-rich shales and then iron formations paints a clear picture of sea-level
transgression and provides a shallow to deep perspective on the geochemical zonation of

this unique Mesoarchean shoreline.

Trace element compositions from the NGI drill hole provide important additional
insights into the paleoenvironment at the time of deposition. PAAS-normalized REE
spectra (Fig. 4.1) show multiple characteristics shared by both modern and Archean
seawater that confirm the marine origin of these carbonates, notably heavy REE
enrichment, positive La anomalies, and positive Y/Ho ratios (German et al., 1990; Bau and

Dulski, 1996; Bolhar et al., 2004).
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Figure 4.1. Shale-normalized REE + Y patterns of BIF (red squares), stromatolitic dolostones (blue circles),
black shales (black triangles) and sulfidic black shales (yellow triangles). BIF and carbonate chemical
sediments show clear seawater-like patterns, but with pronounced Eu anomalies indicating the upwelling of

hydrothermally influenced basinal waters onto the platform and a clear absence of Ce anomalies reflecting
anoxic water column conditions.
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These seawater features are most pronounced in weak carbonate digests relative to
whole-rock digest of BIF, sulfidic shales, and black shales, the latter two showing flatter
(shale-like) spectra and higher total REE concentrations concomitant with their higher
concentrations of crustal components. The Red Lake carbonates differ from modern
seawater in two important aspects, specifically with regards to the presence of strong Eu
anomalies and general absence of Ce anomalies. The existence of Eu anomalies reveals the
presence of a high-temperature hydrothermal component in seawater (Bau, 1991),
confirming that upwelling basinal fluids affected by hydrothermal venting were likely an
important Fe source even to shallow waters, and that the Red Lake carbonate platform
likely had a strong connection to the open ocean. This is also observed for the 2.96 Ga
shallow-water Singeni iron formation (S. Africa; (Alexander et al., 2008). Strong negative
cerium anomalies characterize modern oxygenated seawater, and their general absence in
the studied section indicates against the presence of free oxygen in the water column (Bau
and Dulski, 1996). The localized production of oxygen cannot be ruled out; one might
imagine a case where Fe(Il) supply exceeded O production, such that the water column
remained anoxic and ferruginous even if oxygenic photosynthesis were occurring. In any
case, Eh conditions were too reducing, or REE residences times to short, to generate
significant amounts of Ce(IV) (Bau and Dulski, 1996) in this particular section. While the
absence of cerium anomalies is important evidence for generally reducing water column
conditions, it does not conclusively indicate which oxidative mechanisms may have been
responsible for BIF deposition. Iron isotopes provide important additional insight into

redox structure and iron cycling across and offshore of the platform.
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4.3.2 Iron cycling from deep water to the platform: an

iron perspective

Iron isotope variations are mainly associated with redox changes (Johnson et al.,
2004; Beard and Johnson, 2004), and sediments from the Red Lake Greenstone Belt show
clear isotope evidence of iron redox cycling in both shallow and deep-water facies, with

8°Fe values ranging from -2.88 %o to 1.50%o (Fig. 4.2).
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Figure 4.2. Chemostratigraphic profiles of iron isotope compositions (8°Fe), Fe concentrations, sulfur
isotope compositions (8°*S), and S concentrations in the NGI-31 drill core, where shallow water stromatolitic
dolostones (blue circles) are overlain by deep-water sediments in the form of shales (black and yellow
triangles) and iron formations (red and orange squares) in a shallow-to-deep transgressive sequence.

Indeed, the different lithologies cover a wide range of 8°°Fe values, with BIF
spanning -0.84 to 1.5%o, sulfidic black shales from -2.88 to -1.09 %o, black shales from -

1.01 to -0.08 %o, carbonates from -2.07 to -0.05 %o, and isolated pyrites from -2.54 to
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0.30%0. Assuming a deep-water Fe(II) source close to values of the crust or high-
temperature hydrothermal fluids (~0%o; Beard et al., 2003), sedimentary variations away
from this value represent a combination of fractionating oxidation, reduction, and mineral

precipitation processes onto which reservoir effects may be superposed.

Near-zero to highly positive 8°°Fe values in the BIF are consistent with a near-zero
8°SFe source that experienced variable degrees of reservoir drawdown. Indeed, oxidative
precipitation of Fe(Il)aq to Fe(Ill)pp: by Oz as well as microbial Fe(II) oxidation by
anoxygenic photosynthesis causes enrichment in heavy Fe isotopes in the precipitate by 1
to 2%o (Croal et al., 2004; Swanner et al., 2015) and up to 2%o (Bullen et al., 2001; Beard
et al., 2003), respectively. The negative BIF values reflect either dissimilatory Fe(III)
reduction (DIR) that releases isotopically light Fe(IT) (Icopini et al., 2004; Johnson et al.,
2004), or alternatively, isotope distillation during oxide precipitation, yielding to low &°°Fe
values in residual Fe(Il) pool (Rouxel et al., 2005). In either scenario, the alternance
between BIF, sulfidic black shale, and ordinary black shale indicate instability of Fe(II)
and/or S(-II) concentrations in the water column. Trendall et al. (2004) suggested that BIF
deposition occurs rapidly as a function of iron supply, while shale deposition represents
slower deposition under more iron-depleted conditions. The iron isotope compositions are
consistent with this model, whereby values become increasingly negative from iron
formation to sulfidic shales as 8°°Fe(Il)aq decreased with increasingly iron-starved
conditions. While there may be important iron isotope fractionation expressed during the
precipitation of sulfides (Guilbaud et al., 2011), negative values in the oxide-facies BIF
require negative excursions in 8°°Fe (II)aq, either in the water column (via oxidative Fe(II)
depletion) or porewater (via DIR). The non-sulfidic black shales continue the upward trend

of iron depletion, recording crustal values for a lack of iron enrichment from seawater. In
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a Rayleigh distillation model where A’*Feoxide-aq is set at 2%o, 8°°Fe (I1)aq values as low as -
3%o (corresponding to BIF values as low as -1%o) reflect to up to 70% Fe loss by

precipitation of oxides in the offshore.

The Fe isotope composition of the carbonates indicates that an exclusively lighter
8°SFe(Il)oq reservoir was consistently upwelled onto the shelf. As Fe(Il) substitution into
carbonates involves no change in redox state, carbonates are thought to directly record
8°%Fe(Il)aq values at the time of their formation (Eroglu et al., 2018). Inferred carbonate
8°%Fe(Il)aq values range between -2.07 and -0.05%o and show clear secular trends up section.
This begs the question as to whether these important variations in 8°°Fe(Il)aq during the
formation of carbonates can be related to ambient concentrations of iron upwelling on the
shelf. The assumption that §°°Fe(Il)yq in Precambrian carbonates was controlled by the
influence of oxide precipitation on ambient Fe concentrations has been suggested by Eroglu
et al. (2018) based on a Rayleigh distillation model applied to carbonates of the 2.6-2.5 Ga
Campbellrand carbonate platform. We also applied this approach to our carbonate 8°°Fe
dataset. Briefly, dissolved Fe concentrations are estimated from carbonate Fe/Ca ratios
using experimentally determined partition coefficients, and a best-fit isotope fractionation
factor is determined iteratively using a Rayleigh isotope distillation model (see Eroglu et
al. (2018), for details). A best-fit fractionation factor &Feoxide-aq = O °Fe(Il)oxide
— 8°Fe(I)aq = 0.517 %o was determined for our data, however the fit is poor, which implies
that secular variations in the 8°Fe compositions of the carbonates were not directly related

to dissolved Fe concentrations that were upwelled onto the shelf.

Some insight is gained by the additional data provided by isolated pyrites. Guilbaud

et al. (2011) proposed that Archean negative Fe isotope excursions may reflect partial
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Fe(II)aq utilization and associated fractionation during abiotic pyrite formation, suggesting
that there is no need to invoke the production of a large °Fe-depleted Fe(I)aq pool to
explain isotopically light Archean pyrites, and that fractionation during pyrite formation
may be attributed exclusively to mineral fractionation. However, at Red Lake the 8°°Fe
values from co-occurring pyrites and carbonates are generally within error of one another,
indicating that the carbonates and pyrites both recorded ambient marine 5°¢Fe(11)aq and that
there was no mineral fractionation during pyrite formation. Furthermore, at the broader
scale of the entire dataset, no correlation is observed between 3°°Fe and iron contents (Fig.
4.3). Remarkably, however, sulfur seems to play a controlling role in setting §°°Fe values
on the carbonate platform; indeed, §°°Fe values in carbonates tend to lighter values as sulfur
concentrations increase. This is surprising because it implies that sulfur cycling in some
way determined Fe isotope compositions of Fe incorporated into these ferruginous
carbonates — yet in a manner unrelated to the sulfur isotope composition of the pyrites

themselves.

4.3.3 Productivity control over Mesoarchean Fe and S

biogeochemical cycling

Coupled 8°°Fe-6**S data revealed important 534S variation only in carbonates (Fig.
4.3), which indicates that shallow water settings where carbonate precipitation was
occurring also experienced the most important sulfur redox cycling, with the negative
values representing times when the SO4 pool was largest, while positive values indicate
near total-drawdown of the SO4 pool by sulfate reduction. Moreover, the more important
84S variation in the carbonates is linked to °°Fe values that tend to become lighter as 534S

becomes more negative (Fig. 4.3).
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Figure 4.3. Iron stable isotope compositions plotted against sulfur stable isotope compositions (A), iron
concentrations (B) and sulfur concentrations (C). Also plotted for comparison are iron and sulfur isotope
composition data for isolated pyrites of the 2.96 Ga Chobeni carbonate (Eickmann et al., 2018).
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This indicates coupling between the Fe and S redox cycles, whereby when SO4
concentrations are lowest on the shelf (positive **S), Fe upwelled onto the shelf after
minimal oxidative processing, whereas conversely, when SO4 contents on the shelf were
highest (most negative 5*4S), the aqueous Fe pool was smaller and/or subject to greater
losses by oxidative precipitation during upwelling from deep waters onto the shelf. In other
words, it appears that sulfate reduction modulated Fe availability on the shelf (where S>Fe),
while in the offshore, an abundant Fe pool led to BIF precipitation with generally minimal
drawdown of the aqueous Fe(Il) reservoir (Fe>S). During deposition of sulfidic black
shales at the interface, the cross product of Fe and S concentrations attained the necessary
values for abundant pyrite precipitation. The combined dataset paints a picture of a
Mesoarchean carbonate platform that experienced non-negligible sulfate reduction in near-
shore settings, leading to an euxinic wedge at the platform edge that modulated the ability
of deep-water Fe to upwell onto the shelf. The unique insights provided by the shallow to
deep transect approach has important implications for the interpretation of potential
Archean oxygen oases. While Eickmann et al. (2018) interpreted a similar dataset for the
2.96 Ga Chobeni carbonates of the Pongola Supergroup to represent an oxygen oasis, here
we show that Fe isotope variations in shallow water Archean carbonates may not
necessarily be attributed to the establishment of a localized oxygen oases, but that offshore
Fe processing may strongly influence Fe isotope systematics on the shelf. In the case of
Red Lake, we suggest that the data does not permit the resolution of Fe oxidation
mechanisms, whether by oxidative photosynthesis, photoferrotrophy, or possibly (but less
likely) UV photooxidation (Konhauser et al., 2007; Nie et al., 2017). However, the above
observations permit another interesting but overlooked possibility, that being that S-based
anoxygenic phototrophy on the shelf is responsible at the same time for the localized

accumulation of sulfate, fueling sulfate reduction and generation of the offshore euxinic
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wedge that acted as partial barrier to upwelling Fe. The important secular trends in 8°°Fe
that we report in the stromatolitic carbonates reveal that even if they may record localized
and near-quantitative Fe oxidation in shallow waters at a given point in time (e.g., (Heard
et al., 2022), evolution of the Fe isotope composition of upwelling Fe(Il).q over unit-
depositional timescales reveals dynamic Fe redox processing in the upwelling environment.
As we show here, this processing is also coupled to biogeochemical sulfur cycling, painting
a picture where variations in primary productivity drove coupled Fe- and S-
biogeochemical cycling in surface waters and shallow-water shelf environments already by

2.93 Ga.
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4.4 Conclusion

The Red Lake Greenstone Belt hosts the oldest thick (>100m) accumulation of
carbonate in Earth's history and holds significant promise for better understanding
biological control over the early evolution of Earth’s biogeochemical cycles. In this study,
rare earth elements and Fe stable isotope compositions were examined in detailed
stratigraphic section to better understand iron precipitation processes as Fe-rich deep waters
upwelled onto the shallow carbonate platform. REE results reveal a complete absence of
negative Ce anomalies at this locality and thus a largely oxygen-free environment, while
positive Eu anomalies indicate the presence of a high temperature hydrothermal component
in seawater and therefore a strong connection of the Red Lake carbonate platform to the
open ocean by a significant upwelling system. Fe stable isotopes reveal active iron redox
cycling, with 8°°Fe values ranging from -2.88 to +1.50%o across this shallow-to-deep
transect. The large 3°°Fe variations between the different lithologies is best explained by
progressive plume depletion by iron oxide precipitation during upwelling, yielding to low
8°°Fe values in the residual in Fe(Il) pool. Remarkably, important and clear secular
variations in 8°°Fe are recorded in the carbonates that aren’t easily explained a Rayleigh
isotopic distillation (when combined with carbonate Fe concentrations), nor by mineral
fractionation during pyrite formation. However, carbonate 5°°Fe values show remarkable
co-variation with S contents, and pyrite S isotope data reveals an active microbial sulfur
cycle with appreciable sulfate reduction at times. We suggest that the most parsimonious
explanation for observed links between Fe and S cycling at this locality is overarching
control by photosynthetic primary production. This work reveals that already by 2.93 Ga,
photosynthetic activity both on- and off-shore exerted important control over Earth’s major

marine biogeochemical cycles, as it does today.
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Abstract

Rare Earth Elements (REE) are powerful paleoenvironmental tracers that are generally
well-preserved in carbonate rocks and provide important information on the composition
of ancient seawater. Here I describe and compare the REE enrichment characteristics of
three Mesoarchean carbonate platforms (Red Lake, Woman Lake and Steep Rock),
combining new geochemical data from carbonate samples from the three platforms that
were selected for La-Ce geochronology with a larger database of geochemical data from
these same sites produced by myself and others in the context of the ERC StG project
EARTHBLOOM. All three sites show typical seawater signatures with elevated La/La*,
Y/Ho, and Pr/YD that reflect a variety of environments that were affected differently by
particulate flocculation and other estuarine processes. They also show appreciable Eu
anomalies indicative of hydrothermal input to contemporaneous seawater. The presence of
negative Ce anomalies in all three sites provides strong evidence of redox conditions
conducive to Ce oxidation. Bearing the smallest Ce anomalies, the largest Eu anomalies,
and relatively high Fe but rather low Mn concentrations, Red Lake is interpreted as weakly
oxidizing, with O> concentrations buffered by the abundance of Fe from nearby
hydrothermal sources. Steep Rock, which shows intermediate Fe and Mn concentrations,
seems to capture more oxidizing conditions than Red Lake, with oxidative loss of Fe and
Mn occurring in conjunction with increasingly oxic local conditions, as tracked by the Ce
anomaly. Woman Lake, richer in Mn and more depleted in Fe, appear to record the most
oxidizing conditions, where Mn oxides were delivered directly to the sediment pile from a
severely Ce-depleted water column. This study of REE systematics in these carbonate
platforms confirms the marine sedimentary origin of these carbonates and reveals that O-
driven oxidative processes were likely in operation at each of these sites, as revealed by

unambiguous evidence for the redox cycling of Ce and Mn.
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Résumé

Les terres rares (REE) sont de puissants traceurs paléo-environnementaux qui sont
généralement bien conservés dans les roches carbonatées et fournissent des informations
importantes sur la composition de 1'eau de mer ancienne. Je décris et compare ici les
systématiques des REE de trois plateformes carbonatées Mésoarchéennes (Red Lake,
Woman Lake et Steep Rock), en combinant de nouvelles données géochimiques provenant
d'échantillons carbonatés qui ont été sélectionnés pour la géochronologie La-Ce avec une
base de données élargie de ces mémes sites produites par moi-méme et d'autres dans le
contexte du projet ERC StG EARTHBLOOM. Les trois sites présentent des signatures
typiques de 1'eau de mer avec des valeurs élevées de La/La*, Y/Ho et Pr/Yb qui reflétent
une variété d'environnements qui ont été affectés différemment par la floculation des
particules et d'autres processus estuariens. Elles présentent également des anomalies d'Eu
qui indiquent un apport hydrothermal a l'eau de mer contemporaine. La présence
d'anomalies négatives de Ce dans les trois sites fournit des preuves fortes de conditions
redox propices a l'oxydation du Ce. Un comportement systématique dans les
enrichissements en Fer et Mn qui suivent la mise en place des conditions oxydantes tracées
par les anomalies en Ce révele des conditions de plus en plus oxydantes entre les trois sites
avec dans I’ordre Red Lake, Steep Rock, puis Woman Lake. Cela montre également
I’importance des apports de métaux réduits des eaux profondes, et leur consommation lors
de la production de dioxygene, qui régule I’accumulation d’O» dans ces trois sites. Cette
¢tude de la systématique des REE dans ces plateformes carbonatées confirme I'origine
sédimentaire marine de ces carbonates et montre que des processus d'oxydation induits par
1'0, étaient probablement en cours sur chacun de ces sites, comme le révélent les preuves

non ambigués du cycle redox du Ce et du Mn.
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5.1 Introduction

The rare earth elements are a group of 17 elements of the periodic table including
the 15 lanthanides (with atomic number from 57 to 71) as well as scandium (Sc, Z=21) and
yttrium (Y, Z=39). The latter are considered REE because they appear to occur in the same
deposits as the lanthanides and to have similar chemical properties. However, with a
substantially smaller ionic radii and difference in geochemical behavior, Sc is generally
treated separately from the REEs whereas Y, mimicking REE behavior and particularly
that of holmium (Ho) due to close similarity in their ionic radii (Qu et al., 2009), is
commonly examined in association with the lanthanides (REE+Y or REY) and inserted
between dysprosium (Dy) and Ho (Bau and Dulski, 1995). Rare earth elements are
generally subdivided into three groups based on their atomic numbers: the light REEs
(LREE), including lanthanum (La), cerium (Ce), praseodymium (Pr) and neodymium (Nd);
the middle REEs (MREE) including samarium (Sm), europium (Eu), gadolinium (Gd),
terbium (Tb), dysprosium (Dy) and holmium (Ho); and the heavy REEs (HREE) including
erbium (Er), thulium (Tm), ytterbium (Yb) and lutetium (Lu) (Tostevin et al., 2016; Smrzka
et al., 2019). With increasing REE atomic number, for each consecutive atom, the nuclear
charge is more positive by one, accompanied by a corresponding increase in the number of
electrons present in the inner 4f orbitals. The 4f electrons imperfectly protect each other
from the increased positive charge of the nucleus, so that the effective nuclear charge
attracting each electron increases steadily in the lanthanide elements, resulting in
successive reductions in atomic and ionic radii with values ranging from 1.03 angstroms
for La(III) to 0.8 angstroms for Lu(III), the so-called "lanthanide contraction" (Goldberg et
al., 1963; Elderfield and Greaves, 1982; Nozaki, 2001). This contraction of lanthanides
leads to an increase of the strength of complex formation from La** to Lu** (Byrne and

Kim, 1990), as well as an increase in electronegativity, and since the ionic radii of the
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lanthanides change very little, REEs generally act as geochemical twins, making their
separation difficult. However, small differences in complexation behavior between the rare
earth elements leads to REE fractionation in natural systems and leading them to adopt

unique characteristics specific to low-temperature aqueous environments.

REEs are commonly normalized to chondritic values, or to shale values that are
thought to be representative of REEs in the upper continental crust. Normalization by shale
eliminates the Oddo-Harkins effect, the notorious odd-even variation in natural abundance
of REEs (Schmitt et al., 1963; Wildeman and Haskin, 1965; Piper and Bau, 2013), but also
allows an immediate visualization of their fractionation relative to continental crust
sources. Several different composite shale values, averaging shale compositions over wide
geographic areas, have been used for normalization, such as for example the North
American Shale Composite (NASC, Gromet et al., 1984), or Post-Archean Archean Shales
(PAAS, Taylor and McLennan, 1985), the former which is employed in this study. To
evaluate fractionation between different water masses in the modern ocean, it is
recommended to normalize the data to the values of a distinct reference water mass, such
as North Pacific Deep Water (NPDW), for example (Alibo et al., 1999a). Normalization by
NPDW removes the common seawater characteristics that appear in shale-normalized REE
spectra and can be useful for isolating REE fractionation processes relative to the final
dissolved product observed in global ocean circulation (Nozaki, 2001), however for ancient
seawater reconstruction, where REE systematics may show significant departures from
modern values, normalization to a sedimentary reference material representing crustal

weathering sources remains de rigueur.
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The first analyses of REE concentrations and Sm-Nd isotope systematics in
seawater were first performed on isolated samples (Goldberg et al., 1963; Hogdahl et al.,
1968; Piepgras et al., 1979; Piepgras and Wasserburg, 1980; Elderfield et al., 1981), until
the first systematic study of vertical profiles of REE in the North Atlantic Ocean by
Elderfield and Greaves (1982) that revealed the REE distribution in the marine water
column. Rare earth elements and yttrium (REY) are delivered to the ocean primarily by
rivers (which have largely negligible cerium anomalies and a flat continental-type REY
pattern as normalized to PAAS, Fig. 5.1) but also by hydrothermal vents (which have flat
or HREE-depleted pattern but significant Eu positive anomalies) as well as eolian inputs,
and are largely removed by particle scavenging, especially during estuarine flocculation,
where several of the characteristic features of seawater are generated (Elderfield et al.,

1990; Byrne and Kim, 1990; Douville et al., 1999).
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Figure 5.1. Post-Archean Australian Shale (PAAS) normalized REE+Y (REY) patterns showing typical REY
signatures and anomalies of La, Ce, Eu and Y in different environments and minerals (Tostevin et al., 2016).
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The typical REY profile of seawater is depleted in LREE, with a progressive
enrichment in HREE as the consequence of the stronger complexation of carbonate ions
with HREE (due to the contraction of lanthanides, explained above), leaving seawater more
enriched in HREE (Byrne and Kim, 1990; Zhong and Mucci, 1995). The slope of the REY
pattern and therefore the LREE/HREE ratio is commonly measured with the Pr/Yb ratio,
with values >1 indicating LREE enrichment and values <1 indicating HREE enrichment
(i.e., Pr/Yb values lower than 1 are considered as characteristic of seawater, Lawrence et
al., 2006). Deviations from the general tendency of HREE enrichment occur when different
REE show a unique chemical property that affects their solubility and removal via
scavenging onto Fe and Mn oxyhydroxides, organic matter, and clay particles, which
generates in modern seawater the characteristic positive La, Gd and Y anomalies, and
negative Ce anomalies in the case of oxic seawater. To correctly identify these abundance
anomalies, it is necessary to choose appropriate elemental neighbors for normalization, i.e.,
the nearest neighbors that do not experience anomalies. For example, when calculating La
anomalies, Ce cannot be used because it is also subject to it’s own redox-dependent
anomalies, and therefore La anomalies are calculated using the projection of expected La
determined by the closest anomaly-free REE, specifically Pr and Nd (Bau and Dulski,
1996; Lawrence et al., 2006; Bolhar and van Kranendonk, 2007). Similarly, due to the
possible presence of positive La anomalies, Ce anomalies are usually calculated via the
projection to expected values from Pr and Nd (Lawrence et al., 2006; Ling et al., 2013;
Tostevin et al., 2016). In this study, all anomalies were calculated geometrically (e.g.,
logarithmically, for straight lines in logarithmic plots) according to Lawrence et al. (2006)

with respect expected (non-anomalous) reference values (Ln*) calculated as follows:

La*n = Prn * (:Prn/N(1n)2
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Ce*n=Pry * (Pro/Ndn)
Eu*n = (szn * Tbn)l/3

Gd*, = (Tb%, * Sm,)!

Strong positive La anomalies are a consistent characteristic of marine REY patterns
and represent a reliable indicator of water chemistry, with (La/La*)x > 3 for seawater or
marine carbonates (Bau and Dulski, 1996; Kamber and Webb, 2001; Shields and Webb,
2004; Kamber et al., 2004) and (La/La*)x <2 for freshwaters and resulting chemical
precipitates (Lawrence et al., 2006; Zhao et al., 2022). Positive lanthanum anomalies are
common REY features of marine chemical precipitates inherited from seawater (Bau and
Dulski, 1996; Kamber and Webb, 2001), where they develop as the result of the empty 4f
electron shell of La that significantly increases its relative stability during complexation in
seawater (de Baar et al., 1985a; Byrne and Kim, 1990; Byrne et al., 1996). Positive La
anomalies may also result of their release from suspended barite particles (Grenier et al.,
2018), or may be generated by the enzymatic activity of methanotrophs (Wang et al., 2020),
demonstrating that REE are not immune from so-called “vital effects”, although these

remain little explored and poorly understood.

With the exception of Eu, Ce is the only REE to form anomalies due to redox
processes. Oxidation of more soluble Ce*" to more insoluble Ce*', either abiotically
(Koeppenkastrop and de Carlo, 1992; Bau, 1999) or via microbial mediation related to
microbial Mn oxidation (Moffett, 1990), results in the decoupling of Ce from other REEs,
i.e., cerium anomalies (Bau and Dulski, 1996; Ling et al., 2013; Liu et al., 2019). The
incorporation of Ce(IV) into MnO; minerals results in a CeO; coordination state (Goldberg

et al., 1963; de Baar et al., 1985a). The true diversity of Ce(IV) coordination in modern
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seawater is more complex, involving various phases such as biogenic manganese oxides
and organic ligands (Tanaka et al., 2010), Fe-Mn (oxyhydr)oxides, and clays (de Baar et
al., 2018). Positive Ce anomalies are found in marine hydrogenetic Fe-Mn crusts (Bau and
Dulski, 1996) and in Fe-Mn nodules (Amakawa et al., 1991; Bau et al., 2014) as a result of
Ce*" adsorption and scavenging by Fe-Mn (oxyhydr)oxides (German et al., 1995; Bau and
Dulski, 1996; de Baar et al., 2018), leaving residual seawater depleted in Ce relative to the
other trivalent REE, i.e., negative Ce anomalies (German and Elderfield, 1990). The
magnitude of negative Ce anomalies varies within and between modern ocean basins
(German and Elderfield, 1990; de Baar et al., 2018), but the general trend of vertical Ce/Ce*
values remains rather the same, with a progressive decrease from the surface to deeper
ocean waters, i.e., an accentuation of the negative Ce anomaly with depth (Alibo et al.,
1999b; Nozaki and Alibo, 2003b; Ling et al., 2013). On the contrary, in restricted marine
environments, inland seas, and lakes, negative Ce anomalies develop in oxic surface waters
and are rapidly recycled away in anoxic deep waters by reductive dissolution of sinking
Fe-Mn hydroxides, concomitant with an increase in dissolved Mn?* and Fe?* (e.g., Bau et
al., 1997; de Carlo and Green, 2002). Ce anomalies can also develop in suboxic and anoxic
environments underlying oxic surface waters; results from studies in the Saanich Inlet, the
Black Sea, and Lake Vanda suggest that Ce anomalies are responsive to the onset of
manganous (Mn?*) conditions rather than ferruginous (Fe**) conditions. For examples of
detailed examinations of the water column behavior of Ce in diverse modern ocean basins,
marginal seas, and closed basins, the reader is referred to the studies of German and
Elderfield (1989) in the Saanich Inlet in Canada, German et al. (1991) in the Black Sea,
Bau et al. (1997) in the Mediterranean Sea, Alibo and Nozaki (1999) in the Western North
Pacific near Japan, De Carlo and Green (2002) in Lake Vanda, Antarctica, and Nozaki and

Alibo (2003a) in the Southern Ocean Southwest of Australia in comparison to South
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Atlantic data. During the Archean, the atmosphere as well as the oceans were mostly
anoxic, and the negative Ce anomaly was globally absent (i.e., Ce/Ce*=1) in surface waters
(e.g., Bau and Dulski, 1996; van Kranendonk et al., 2003; Kamber et al., 2004), although
several studies have show its presence locally, suggesting the establishment of so-called
“oxygen oases” during the Archean (Riding et al., 2014; Mukhopadhyay et al., 2014; Siahi
et al., 2018; Thoby et al., 2019). In the early Proterozoic, when oxygen levels in the
atmosphere and surface seawater increased as a result of the Great Oxidation Event (GOE)
and exceeded the threshold needed to oxidize Ce** to Ce**, negative anomalies began to
form, but never exceeded Ce/Ce*= 0.55 in currently available sedimentary records (Fig.
5.2, Liuetal., 2021). Ce anomalies slowly increase towards the end of the Proterozoic, and
increase drastically during the Phanerozoic, to eventually reach the magnitude of modern
anomalies (ca. 0.4 to 0.2), most likely as a simple reflection of the increase in atmospheric

oxygen levels (Wallace et al., 2017; Bellefroid et al., 2018; Liu et al., 2021).
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Figure 5.2. Ce/Ce* from marine carbonates and estimated atmospheric evolution of pOz from the early
Proterozoic to the present (Liu et al., 2021).
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Like all other trivalent REEs, europium generally occurs as Eu(Ill), which is its
dominant form in aqueous environments at low temperatures, however it can be reduced to
Eu(Il) at higher temperatures (above ~250 °C) and at elevated pressures (Bau, 1991).
Indeed, at these temperatures, the reduction of Eu(IIl) occurs at much higher oxygen
fugacities (Drake, 1975; Sverjensky, 1984) making Eu(Il) the dominant under these
conditions. Thus, Eu(IIl)/Eu(Il) ratios in aqueous solutions depend primarily on
temperature and, to a lesser extent, on pressure, pH, and REE speciation (Sverjensky, 1984;
Bau, 1991). Positive Eu anomalies are thus strongly expressed in modern hydrothermal
vent fluids from mid-ocean ridges worldwide (James et al., 1995; Douville et al., 1999; Bau
and Alexander, 2009; Craddock et al., 2010; Bau et al., 2010; Johannessen et al., 2017).
These Eu excesses in high-temperature (>250 °C) hydrothermal fluids may be further
driven by alteration of Ca-rich plagioclase in the oceanic crust that bear significant Eu
anomalies (Michard and Albaréde, 1986; Bau, 1999; Barrat et al., 2000; Alexander et al.,
2008; Sylvestre et al., 2017), or the preferential affinity of Eu(Il) in the dissolved phase
relative to Eu(III) for sorption onto or reaction with secondary minerals during water-rock
interaction (Bau, 1991). Low-temperature fluids generally do not have positive Eu
anomalies, and when they occur the anomalies are minor to negative (Bau et al., 2010).
Cooling of high-temperature hydrothermal fluids, by conduction or mixing with low-
temperature fluids, results in the reoxidation of dissolved Eu?* to Eu** and the loss of
positive Eu anomalies (Bau et al., 2010). Hence, positive Eu anomalies in ancient chemical
sediments are generally interpreted as residual signals from high-temperature hydrothermal
fluids, and used to identify the high-temperature water-rock interaction occurring beneath
the ocean floor (Michard et al., 1983; James et al., 1995; Douville et al., 1999; Kamber and
Webb, 2001; van Kranendonk et al., 2003; Bolhar et al., 2004; Bau and Alexander, 2009;

Craddock et al., 2010; Bau et al., 2010; Johannessen et al., 2017).
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Gd lies midway in the REY series and has very similar vertical concentration
distributions to its neighbors Sm, Eu, and Tb in the northwestern Atlantic Ocean and eastern
equatorial Pacific Ocean (de Baar et al., 2018; Luong et al., 2018). Its 4f shell is exactly
half-filled with 7 electrons, which makes the Gd*" cation particularly stable, with a
spherically symmetric ligand field giving rise to a unique hydration pattern in itself
(Masuda and Ikeuchi, 1979; de Baar et al., 1985b). This peculiarity is thought to be
responsible for the appearance of positive Gd anomalies present in seawater from the
Pacific, Atlantic, and Indian oceans when normalized to PAAS (de Baar et al., 2018). That
said, both positive and negative Gd anomalies have been observed in seawater (de Baar et
al., 1985a, 2018). In addition, two competing phenomena affecting REE solubility in
seawater, the varying strengths of REE complexation with carbonate (Luo and Byrne,
2004) as well as the distribution coefficients for REE sorption on most particles, partially
cancel out when combined (Schijf et al., 2015). Thus, although much less pronounced than
those of La, Ce, and Y (Lawrence et al., 2006; de Baar et al., 2018), the positive Gd anomaly
in seawater is thought to be due to very subtle interactions between the inorganic
complexation of REE in seawater and the different types and concentrations of particles
present in seawater (de Baar et al., 2018). However, the Gd anomaly must be evaluated
with caution, as an uncertainty of + 0.07-0.10 related to a propagation of reproducibility
error on REE concentrations show have been shown in one study that 19-40% of the
observed Gd anomalies are statistically not significant (Garcia-Solsona et al., 2014). In
addition, the inherent uncertainties of the REE database underlying the PAAS reference
affects the definition and accuracy of the Gd/Gd* calculation in seawater (de Baar et al.,
2018). Furthermore, with positive anomalies between 1.1 and 1.2 in the northern Pacific
Ocean (de Baar et al., 2018), 1.22 for the Amazon River (Elderfield et al., 1990; Sholkovitz,

1993), and 1.16 for 12 different rivers (Elderfield et al., 1990), Gd/Gd* does not necessarily
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differentiate between fluvial, lacustrine, and marine deposits, and therefore cannot be
qualified as unique characteristic of seawater, unlike the strong positive anomalies in La,
Y, and LREE/HREE ratios greater than 1 (Lawrence et al., 2006; Bolhar and van

Kranendonk, 2007).

The Y anomaly (mass ratio of Y to Ho) is a specific feature of seawater, with the
largest anomalies (Y/Ho = 40-80) corresponding to open marine environments and the
smallest anomalies (Y/Ho = 33-40) to near shore or restricted environments (de Baar et al.,
1985a, 1985b; Bau et al., 1997; Nozaki et al., 1997). Y and Ho have similar charges and
ionic radii, with Y>*= 0.900A and Ho*"= 0.901A (Shannon, 1976) and act as twins and
according to Goldschmidt's rules, and generally behave consistently in different
environments (Nozaki et al., 1997; Shahkarami et al., 2017). Igneous rocks and epiclastic
sediments thus have generally constant Y/Ho ratios close to the chondritic Y/Ho mass ratio
of 28 (molar ratio of 52) (Bau, 1996). However, modern seawater has highly variable and
fractionated Y/Ho ratios, with values above 44 (de Baar et al., 1985a; Alibo and Nozaki,
1999; van Kranendonk et al., 2003; Luong et al., 2018), which can be explained by a faster
uptake of Ho into calcite compared to Y despite their similarly high affinity for
incorporation (Qu et al., 2009). This was attributed to the binding covalency associated
with ligand exchange between the two elements during incorporation of REE(CO3)*
complexes into calcite (Tanaka et al., 2008; Qu et al., 2009). The Y/Ho ratio also varies
with salinity, phosphate mineral solubility, and fractionation during chemical weathering,
biological processes, and redox cycling (Liu and Byrne, 1997; Hill et al., 2000). Indeed, Y
anomalies in riverine, estuarine, and possibly lacustrine waters (Zhang and Nozaki, 1996;
Nozaki et al., 1997) are much lower than those in seawater, with Y and Ho concentrations

decreasing with increasing salinity (Akagi et al., 1986; Nozaki et al., 1997). In estuarine
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environments, Y/Ho variations that cannot only be explained by the mixing of continental
crust and marine surface water, suggesting either a preferential release of Y from the
sediments or a preferential removal of dissolved Ho in estuaries (Nozaki et al., 1997). In
the eastern Mediterranean Sea, Y/Ho ratios have a narrow range between 47 and 48 whether
in intermediate oxic or deep waters (Bau et al., 1997), whereas in oxidized Pacific waters
Y/Ho ratios are between 46 and 65 (Bau and Dulski, 1995; Luong et al., 2018). In Archean
and post-Archean marine sedimentary carbonate rocks, Y/Ho ratios are generally similar
to modern seawater with values above 44 (Kamber et al., 2004; Komiya et al., 2008;
Planavsky et al., 2010b; Bolhar et al., 2015). The Y anomaly, and specifically a Y/Ho ratio
greater than 44, is thus a reliable indicator of deposition in the ocean environment (de Baar
et al., 1985a; Alibo and Nozaki, 1999; Kamber and Webb, 2001; van Kranendonk et al.,
2003; Bolhar et al., 2004; Kamber et al., 2004; Luong et al., 2018; Li et al., 2019; Zhao et

al., 2022).

The full range of REE signatures observed in modern marine basins can be
recognized in the ancient sedimentary rock record, as under certain conditions sedimentary
rocks can preserve REE signatures reflecting the composition of the waters in which they
formed. Chemical sediments, such as carbonates, cherts, iron formations, ironstones,
manganese crusts and nodules, are particularly suitable lithologies for preserving
paleoenvironmental information as they may derive an important proportion of their REE

directly from ancient seawater by adsorption and co-precipitation reactions.

Early work conducted by Dymek and Klein (1988) on banded iron formation (BIF)

from the 3.8 Ga Isua Supracrustral Belt, West Greenland, showed partial REE spectra

(limited to 8 REEs analyzed by neutron activation analysis, prior to the widespread
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adoption of ICP-MS) normalized to chondrites with positive La, Eu anomalies and negative
Ce anomalies. In view of the similarity between the REE features of the Isua samples and
modern deep-sea hydrothermal deposits, these BIFs were interpreted to be products of
precipitation from dilute hydrothermal solutions. Furthermore, the presence of negative
cerium anomalies opened the possibility that the ancient oceans may have been
substantially more oxidized than previously thought (Dymek and Klein, 1988). In 1996,
Bau and Dulski conducted one of the first PAAS-normalized REY studies for samples from
the Kuruman and Penge BIF in the Transvaal Supergroup. Both formations exhibit typical
seawater characteristics such as HREE enrichment and positive La, Gd, and Y anomalies.
They have neither positive nor negative cerium anomalies but show a strong Eu anomaly
similar to those found in formations of similar age, interpreted as the influence of a high
temperature hydrothermal component (Bau and Dulski, 1996). In 2009, Planavsky et al.
examined the 1.89-billion-year-old Gunflint and Bibawik iron formations using redox-
sensitive tracers including REE and found positive cerium anomalies and evidence for the
presence of Fe-oxidizing bacteria. Subsequently, Planavsky et al. (2010a) conducted a
comprehensive and systematic REE study of BIFs by analyzing samples from 18 units
dated between 3 and 1.8 billion years ago in order to re-evaluate with new analytical
methods the depositional mechanisms and significance of these deposits. These new data
suggest a shift in marine redox conditions ca. 1.9 Ga, with older formations showing no
appreciable negative Ce anomalies while younger ones do, and that these deposits would
have been deposited by microbial oxidation of Fe, implying that the distribution of Fe in
the Archean oceans may have been controlled by microbial cycling of Fe rather than by the

oxidative potential of shallow marine environments (Planavsky et al., 2010a).
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REE geochemistry is also proving to be a powerful tool for constraining the
depositional environments of carbonate rocks, for example as demonstrated by Bolhar and
Van Kranendonk (2007) in their analysis of carbonates from the Neoarchean Fortescue
Group (2.78-2.63 Ga) in the Hamersley Basin, Pilbara Craton, Western Australia. These
carbonates lack typical seawater characteristics such as distinct La, Gd anomalies and
supra-chondritic Y/Ho ratios, nor do they show LREE depletion relative to HREE unlike
seawater, and have thus been interpreted as deposited in a lacustrine environment, or a very
shallow lagoon environment dominated by freshwater inflow from rivers (Bolhar and van
Kranendonk, 2007). PAAS-normalized REE spectra presented by Allwood et al., (2010) in
carbonate and chert samples from stromatolites and associated facies in the 3.43 billion
year old Strelley Pool Formation, Pilbara Craton, Western Australia that show consistent
REY patterns with an origin associated with hydrothermal and mixed marine-hydrothermal
fluid precipitation for the cherts, and a seawater origin for the carbonates with heavy rare
earth depletion, positive La and Gd anomalies, absence of negative Ce anomaly and
strongly superchondritic Y/Ho ratio. Allwood et al. (2010) therefore concluded that ancient
carbonates and associated cherts record the geochemical characteristics of the waters in
which they precipitated. While some studies have used REE systematics to show that there
are no cerium anomalies in microbial carbonates aged 2.52 to 3.45 Ga, and suggest that
free oxygen concentrations in seawater did not exceed trace amounts (Kamber et al., 2014),
others have shown strong negative Ce anomalies in 2.80 Ga stromatolitic carbonates from
Steep Rock Lake (one of the three sites examined in this study) that were interpreted to
represent the presence of an Archean oxygen oasis, with O> concentrations in seawater of
at least 10.25 uM (Riding et al., 2014). More recently, Wallace et al. (2017) used REE in
marine carbonates to trace the history of marine oxygenation over the last 760 million years

and demonstrated through the Ce anomaly that Earth's oxygenation was neither
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unidirectional nor a simple two-step process, and that oxygen levels reached values

comparable to those of the modern world when large land plants and forests appeared (Fig.

5.3).
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Figure 5.3. Plot of Ce/Ce* accompanied by a schematic of evolving surface oxygenation over the last 760
million years, with the appearance of animals and land plants accompanied by an accentuation of negative
cerium anomalies in marine carbonates (Figure from Wallace et al., 2017).

Numerous studies have thus used REE+Y in several chemical sediment types, such
as BIFs and carbonates, and demonstrated the great utility of these elements to constrain
the depositional environments of these rocks (Dymek and Klein, 1988; Bau and Dulski,
1996; Bolhar et al., 2004; Bolhar and van Kranendonk, 2007; Allwood et al., 2010;
Planavsky et al., 2010a; Viehmann et al., 2020), to trace the evolution of oxygen in seawater
over time (Wallace et al., 2017; Liu et al., 2021), and argue for the presence of oxygen
oases during the Archean (Riding et al., 2014; Mukhopadhyay et al., 2014; Siahi et al.,

2018; Thoby et al., 2019).

However, when working with ancient sediments, especially carbonates, care must

be taken to ensure that REE signatures are not altered by post-depositional processes or
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contaminated during dissolution. Indeed, non-carbonate phases such as clastic detritus
(Elderfield et al., 1990; van Kranendonk et al., 2003; Bolhar and van Kranendonk, 2007;
Zhao et al., 2009), Fe-Mn(oxyhydr)oxides (Bayon et al., 2004), or phosphates (Byrne et
al., 1996) have higher REY concentrations that can weaken the anomalies. Therefore,
partial carbonate dissolution with 2.5% (Li et al., 2021) or 5% (Rongemaille et al., 2011)
acetic acid for 24 hours at room temperature is recommended as a robust method for
recovering pristine REY signatures (Zhao et al., 2022). In this study, carbonate samples

have been dissolved in 5% acetic acid according to Rongemaille et al. (2011).

While still poorly understood, post-depositional alteration of REE signatures tends
to increase REE contents, alter Ce and Eu anomalies, and enrich preferentially MREE
(Shields and Stille, 2001) or LREE (Bonnand et al., 2020). Such preservational issues may
not have been considered as seriously as they should have in prior work, as a recent
literature compilation study comparing REE data and specifically Ce anomalies from
outcrop and core samples show that many outcrop samples have in fact probably been
affected by surface weathering (Planavsky et al., 2020). This is consistent with other recent
work showing that for certain metal isotope systems (e.g., Mo, Cr, U; Albut et al., 2018;
2019), important redox-dependent fractionation processes indicated in outcrop samples are
absent in drill core from the same units. It has also been suggested that early diagenetic
alteration may also possibly affect REY concentrations and distributions in sedimentary
carbonates (Holser, 1997). However, in their REY study of carbonate successions from
Australia, the USA, and Ireland that have undergone several common types of diagenetic
alteration, Hood et al. (2018) showed that normalized REY profiles appear to be well
preserved during diagenetic recrystallization. Similarly, a study by Liu et al. (2019) on

carbonates from drill core collected in the Bahamas, which show the loss or retention of a
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variety of primary carbonate proxy signals through a series of different alteration processes,
mainly under anoxic conditions, revealed that regardless of mineralogy, diagenetic fluid
composition, and redox state, the REY patterns as well as the Ce anomaly in these
carbonates remained similar to those in modern oxic seawater, suggesting that REY
patterns retain the seawater characteristics recorded in the primary chemical precipitates.
In addition, REY compositions in different diagenetic Quaternary carbonates from a deep
well drilled on an isolated coral atoll in the South China Sea have very similar REY patterns
to seawater that similarly do not vary during diagenetic facies changes (Luo et al., 2021).
And since the Ce anomaly did not correlate with any isotopic, elemental, or mineralogical
proxies tracing carbonate diagenesis, the Luo et al. (2021) data further support the
conservative behavior of the Ce redox proxy in carbonate rocks across diagenetic alteration

processes and its robustness for reconstructing past changes in seawater composition.

As described above, REE (henceforth, including Y) are powerful paleoenvironmental
tracers that show important resistance to diagenetic and metamorphic alteration, and their
systematics in marine chemical sediments reveal important clues to ancient depositional
environments, including redox state. Accordingly, REE systematics were examined in a
large dataset spanning three Mesoarchean carbonate platforms (Red Lake deposited at 2.93
Ga, Woman Lake deposited at 2.85 Ga, and Steep Rock deposited at 2.80 Ga, all located
in the Superior Province in Canada; see Chapter 2) in order to better understand the
depositional environments and geochemical conditions in seawater at the time of deposition

of these important Mesoarchean carbonate deposits.
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5.2 Methods

The data for this study represent a combination of data generated over the 2017-
2022 period by the ERC StG EARTHBLOOM team (specifically, by Munira Afroz for the
Red Lake industry drill hole samples, Martin Homann for the Red Lake backpack drill core
samples, Brittany Ramsay for the Woman Lake samples, and Dylan Wilmeth for the Steep
Rock Lake samples, referred to below as the EARTHBLOOM compilation), as well as new
analyses made during this thesis (all leach data for the NGI10-31 drill core from Red Lake,
additionally discussed in Chapter 4 and included in the EARTHBLOOM compilation, as
well new analyses of all samples selected for La-Ce geochronology from the three sites that
are highlighted independently in many of the figures below; see also Chapter 6). All were
analyzed using the 5% acetic acid weak leach procedure and ElementXR HR-ICP-MS
analysis as described in Chapter 3 (see section 3.2.1.2 and 3.2.2.2). All of these data are
tabulated in Appendices B.1 and B.2. In places, these new data were compared to other
available Archean data extracted from a large literature compilation of major and trace
element data from sedimentary carbonates spanning geological time made by (Rigoussen,
2017, M2 thesis, UBO). The reader is referred to that compilation and its detailed annexes

(including all data) for further information.
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5.3 Results

5.3.1 Mineralogy and distribution of carbonates

Carbonates from Red Lake are mainly composed of dolomite (about 65% of
samples, Fig. 5.4-A) while the Woman Lake and Steep Rock carbonates are composed
almost entirely of calcite (about 90% of samples, Fig. 5.4-B and C). The high abundance
of calcite at Woman Lake and Steep Rock appears unique compared to carbonates of
similar ages that appear to be composed primarily of dolomite. The mineralogy of Red
Lake samples is consistent with the other Archean sites dominated by dolomite, although

it also shows abundant calcite where deposition is inferred to occurred to have in more

distal settings (Afroz, 2019).
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Figure 5.4. Histograms showing the distribution of Mg/Ca and Ce/Ce* values from the Red Lake (blue),
Woman Lake (orange), and Steep Rock (green) sites compared to data from other Archean occurrences as

compiled by Rigoussen (2017) (grey).

The Red Lake carbonates show few Ce anomalies, either positive or negative, and

when they do occur, they are not very pronounced, with Ce/Ce* values ranging from ~ 0.75
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to 1.4 (Fig. 5.4-D). Conversely, Woman Lake and Steep Rock show abundant and
significant Ce anomalies that are quite pronounced, with Ce/Ce* values ranging from ~

0.38 to 1.25 and from ~ 0.38 to 1.45, respectively (Fig. 5.4-E and F).

5.3.2 REE patterns

The Red Lake REE spectra show overall depletion of LREEs relative to HREEs as
well as anomalies in La, Ce, Euand Y (Fig. 5.5-A). Lanthanum anomalies range from 0.77
to 5.32, with an average La/La*=1.66. Ce anomalies at Red Lake are not very present with
values ranging from 0.75 to 1.40 and an average Ce/Ce*=1.04. Eu anomalies are very
pronounced, with values ranging from 0.90 to 19.99 and an average Eu/Eu*=3.14. Y/Ho
ratios are highly variable, but relatively high, with values ranging from 24 to 157 and an
average value of 70. The REY spectra of Woman Lake show the same overall
characteristics as Red Lake, with depletion of LREEs relative to HREEs, and anomalies in
La, Ce, Euand Y (Fig. 5.5-B). La anomalies range from 0.66 to 4.13 with an average value
of 2.06. Ce anomalies at Woman Lake are much more numerous and pronounced than those
at Red Lake, with values ranging from 0.38 to 1.24 and an average Ce/Ce*=0.84. In
contrast, Eu anomalies are much less pronounced at Woman Lake, with Eu/Eu* values
ranging from 0.70 to 4.58 and an average of 1.75. Y/Ho ratios range from 22 to 118 with
an average value of 70, similar to Red Lake. The Steep Rock REE spectra are composed of
the same features as Red Lake and Woman Lake, i.e., depletion of LREEs relative to
HREESs and anomalies in La, Ce, Eu and Y (Fig. 5.5-C). The La anomalies at Steep Rock
are even more pronounced compared to the other two sites, with La/La* values ranging
from 1.11 to 6.87 and a mean value of 3.42. Ce anomalies range from 0.38 to 1.43, with an
average Ce/Ce*=0.88. Eu anomalies are less pronounced than those of Red Lake but more

pronounced than those of Woman Lake, with Eu/Eu* values ranging from 1.16 to 9.11 and
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a mean value of 2.60. Y/Ho ratios range from 34 to 155 and average of 105, significantly

higher than the other two sites.
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Figure 5.5. PAAS-normalized REE spectra of samples analyzed for La-Ce geochronology (see Chapter 6)
from Red Lake (A), Woman Lake (B) and Steep Rock (C). Colored areas correspond to currently available
data from each site from the EARTHBLOOM compilation; additional data from Afroz (2019, 2023), this
thesis work (Chapter 4), Ramsay (2020), and Wilmeth et al. (2021).
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5.3.3 Red Lake

The Red Lake carbonates, composed mostly of microbialitic dolomite (65%) with
lesser microbialitic and crystal fan calcite (35%), have Mg/Ca values ranging from 0.002
to 1.18 with an average equal to 0.56. Positive and negative Ce anomalies are more
pronounced in calcite samples than in dolomite samples (Fig. 5.6-A). Indeed, Ce/Ce*
values vary from 0.89 to 1.2 in the dolomite samples and from 0.75 to 1.40 in the calcite
samples. Fe/Mn ratios also show a wide range, varying from 0.25 to 13.11 with an average
of 2.57. The positive Ce anomalies appear to be somewhat more pronounced at smaller
Fe/Mn ratios and to a lesser extent this also appears to be true for the negative cerium
anomaly (Fig. 5.6-B). The Y/Ho ratios have values between 25 and 157 with an average
Y/Ho=70. The negative Ce anomalies are clearly more pronounced above Y/Ho=90 and
the positive anomalies reach their maximum values (Ce/Ce*>1.2) when Y/Ho is above 120
(Fig. 5.6-C). Fe concentrations in the Red Lake carbonates range from 235 to 70,000 ppm
with an average value of about 7000 ppm. There does not appear to be a strong correlation
between Fe concentrations and Ce anomalies, although it would appear that Ce anomalies
are somewhat more pronounced at lower Fe concentrations (Fig. 5.6-D). Sr concentrations
range from 1.8 to 774 ppm with an average of 59 ppm. Ce anomalies clearly appear more
pronounced when Sr concentrations are higher (Fig. 5.6-E). Mn concentrations in these
carbonates range from 20 to 14,600 ppm with an average value of 3200 ppm, however, Ce

anomalies do not appear to correlate with Mn concentrations (Fig. 5.6-F) at this site.
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Figure 5.6. Graphs displaying Red Lake Ce anomalies versus Mg/Ca (A), Fe/Mn (B), Y/Ho (C) ratios, and
Fe (D), Sr (E), and Mn (F) concentrations. “EARTHBLOOM?” data correspond to currently available
EARTHBLOOM compilation data from Red Lake generated by Afroz (2019, 2023) and from this thesis work
(Chapter 4). “La-Ce geochron.” data correspond to the samples selected for La-Ce geochronology and re-
analysed independently from their REE systematics in this work (see also Chapter 6).
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5.3.4 Woman Lake

The Woman Lake carbonates, composed almost entirely of calcite (90%), have
Mg/Ca values ranging from 0.005 to 1.49 and an average equal to 0.08. The numerous
strong negative Ce anomalies (Ce/Ce*<0.8) are present only in the calcites (Fig. 5.7-A).
Fe/Mn ratios range from 0.04 to 116 with an average of 1.21. Negative Ce anomalies appear
to be somewhat more pronounced with smaller Fe/Mn ratios (Fig. 5.7-B). The Y/Ho ratios
have values between 22 and 118 with a mean Y/Ho=70. A correlation between Y/Ho and
cerium anomalies is clearly visible with a progressive appearance of anomalies when the
Y/Ho ratio increases (Fig. 5.7-C). Negative Ce anomalies are strongly accentuated (Ce/Ce*
between 0.4 and 0.7) when Y/Ho ratios are above 70. Fe concentrations in the Woman Lake
carbonates range from 4 to 16,600 ppm with a mean value of about 1800 ppm. There does
not appear to be a strong correlation between Fe concentrations and Ce anomalies (Fig. 5.7-
D). Sr concentrations range from 0.3 to 342 ppm with an average of 76 ppm. The strong
Ce anomalies appear to be present only in Sr concentrations between 20 and 100 ppm (Fig.
5.7-E). Mn concentrations in these carbonates range from 2 to 28,600 ppm with an average
value of 8850 ppm and Ce anomalies appear to become increasingly present and

pronounced with increasing Mn concentrations (Fig. 5.7-F).
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Figure 5.7. Graphs displaying Woman Lake Ce anomalies versus Mg/Ca (A), Fe/Mn (B), Y/Ho (C) ratios
and Fe (D), Sr (E), and Mn (F) concentrations. “EARTHBLOOM” data correspond to currently available
EARTHBLOOM compilation data from Woman Lake generated by Ramsay (2020). “La-Ce geochron.” data
correspond to the samples selected for La-Ce geochronology and re-analysed independently from their REE

systematics in this work (see also Chapter 6).
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5.3.5 Steep Rock

The Steep Rock carbonates, composed almost entirely of calcite (90%), have
Mg/Ca values ranging from 0.003 to 0.63 with an average equal to 0.06. Strong negative
and positive Ce anomalies are present only in the calcites, and the more Mg-rich carbonates
do not show appreciable Ce anomalies (Fig. 5.8-A). Fe/Mn ratios vary from 0.27 to 3.79
with an average of 0.96. Positive Ce anomalies appear more pronounced as Fe/Mn ratio
increases, and negative Ce anomalies do not appear to correlate with Fe/Mn ratio (Fig. 5.8-
B). The Y/Ho ratios have values between 35 and 155 with an average Y/Ho=105. Ce
anomalies appear above Y/Ho=75, and positive Ce anomalies seem to increase with
increasing Y/Ho ratio (Fig. 5.8-C). The negative anomalies, however, do not seem to
correlate particularly well with the Y/Ho ratio. Fe concentrations in the Steep Rock
carbonates range from 392 to 12,700 ppm with an average value of about 3,000 ppm. There
does not appear to be a strong correlation between Fe concentrations and Ce anomalies
(Fig. 5.8-D). Sr concentrations range from 22 to 1924 ppm with an average of 405 ppm. Ce
anomalies only appear at Sr concentrations >60 ppm and the anomalies appear to increase
somewhat with increasing Sr concentrations (Fig. 5.8-E). Mn concentrations in these
carbonates range from 269 to 8500 ppm with an average value of 3300 ppm, and the
pronounced Ce anomalies at low Mn concentrations appear to lessen with increasing Mn

concentrations (Fig. 5.8-F).
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Figure 5.8. Graphs displaying Steep Rock Ce anomalies versus Mg/Ca (A), Fe/Mn (B), Y/Ho (C) ratios and
Fe (D), Sr (E), and Mn (F) concentrations. “EARTHBLOOM” data correspond to currently available
EARTHBLOOM compilation Steep Rock data from Wilmeth et al. (2021). “La-Ce geochron.” data
correspond to the samples selected for La-Ce geochronology and re-analysed independently from their REE
systematics in this work (see also Chapter 6).
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5.4 Discussion

5.4.1 Detrital contamination

Pure chemical sediments contain little REE (generally less than 0.1 to 0.01 PAAS)
and are therefore highly susceptible to contamination by detrital components. Despite a
careful weak leaching procedure, some clays were also digested, as shown by detectable
aluminum (Al) concentrations in the studied samples. In Figure 5.9, Ce, La, and Eu
anomalies, as well as the Y/Ho ratios, Pr/Yb ratios, and the total REE concentrations (plus
Y) are plotted against Al concentrations to assess the effects of detrital contamination. Two
mixing curves between the PAAS pole and two selected chemically pure carbonates are
also shown on the different plots. In general, the data reveal very pure chemical sediments
with little Al, however, at higher Al concentrations, mixing toward crustal values appears
evident. At low Al concentrations, a large variability of "detrital free" endmembers in
multiple parameters indicate that the most chemically pure sediments have preserved
different REE compositions from contemporaneous seawater. This most likely represents
a variety of environmental and redox conditions captured by the carbonates that are
discussed in more detail in Sections 5.4.2 and 5.4.3. More specifically, Ce anomalies are
most pronounced at low Al concentrations and tend to disappear with increasing Al
concentrations (Fig. 5.9-A). La/La* and Y/Ho show very high variability at low Al
concentrations, and at higher Al concentrations show clear detrital mixing behavior (Fig.
5.9-B and C). Total REE also scale with Al, but not always as predicted by mixing with
PAAS (Fig. 5.9-D). Pt/Yb and Eu/Eu* also show behavior indicative of high variability at
low Al, consistent with a wide range of alkalinity and hydrothermal influence in the parent

waters, with little detrital influence (Fig. 5.9-E and F). In the following sections, we
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consider only the samples showing a negligible effect of detrital mixing on REE proxies,

i.e., those below 38 ppm Al (about 0.1% of REE derived from detrital sources).
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Figure 5.9. Graph showing multiple features of the REE patterns, such as Ce/Ce* (A), La/La* (B), Y/Ho (C),
Total REE concentrations (plus Y) (D), Pr/Yb (E) and Eu/Eu* (F) versus Al concentrations for carbonate
samples from Red Lake, Woman Lake, and Steep Rock. On each panel, two mixing curves represent mixing
between PAAS and two selected pure carbonate endmembers of contrasting composition. The same two
selected samples were used for all mixing curves.
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5.4.2 Paleoenvironmental context

Rare earth element compositions from Red Lake, Woman Lake and Steep rock provide
important insights into the paleoenvironmental context of the diverse carbonates at the time
of deposition. PAAS-normalized REE spectra from these three Mesoarchean platforms
(Fig. 5.5) show multiple characteristics typical of modern seawater that confirm the marine
origin of these carbonates, notably a depletion of LREE compared to HREE, strong positive
La and Y anomalies, and in some samples, negative Ce anomalies (German et al., 1990;
Bau and Dulski, 1996; Bolhar et al., 2004). Indeed, these three platforms combined have
La/La* and Ce/Ce* values ranging from 0.66 to 6.87 and 0.38 to 1.43, respectively, a range

comparable to available literature data throughout all geological time (Rigoussen, 2017).

Although calculated independently according to Lawrence et al. (2006), these two
anomalies appear to be correlated, whereby positive or negative Ce anomalies are more
pronounced as La/La* increases (Fig. 5.10-A). Since positive La anomalies are considered
a reliable indicator of aqueous chemistry and correlate with salinity, with lower La/La*
values in freshwater (La/La* < 2; Lawrence et al., 2006) and higher values in seawater, i.e.,
La/La* > 2 (Bau and Dulski, 1996; Kamber and Webb, 2001; Shields and Webb, 2004;
Kamber et al., 2004), these values support the marine nature of these carbonates and their
formation in an open ocean environment. This is also strongly supported by the Y/Ho ratios
ranging from 22 to 157 with an average value of 70, which is well above the minimum
Y/Ho=44 value after which the depositional environment is considered fully marine (de
Baar et al., 1985a; van Kranendonk et al., 2003; Bolhar et al., 2004; Luong et al., 2018; Li

etal., 2019; Zhao et al., 2022).
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Figure 5.10. Graph with several panels presenting the paleoenvironmental context of the Red Lake, Woman
Lake and Steep Rock sites. Two hydrothermal poles are represented and correspond to the Lucky Strike (main
smoker Y3) and TAG hydrothermal sites, REE data from Douville et al. (1999) and Fe/Mn data from (Waeles
etal., 2017).

The visible correlation between Ce/Ce* and La/La* appears to be equally valid
between Ce/Ce* and Y/Ho, with positive and negative Ce anomalies more pronounced as
the Y/Ho ratio increases (Fig. 5.10-B). In addition, Y/Ho ratios appear to vary with
mineralogy, with dolomites restricted to Y/Ho ratios between 40 and 100 while calcites
have ratios ranging from 40 up to 160 (Appendix B.3-A). Furthermore, Y/Ho ratios appear

to correlate with Sr concentrations, as Y/Ho ratios are higher at higher Sr concentrations
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(Appendix B.3-B), most notably at Red Lake and Steep Rock. Luo et al. (2021) showed
that calcified corals had average Y/Ho ratios of 60 and aragonitic corals 118, thus, higher
Y/Ho ratios would reflect primary aragonite formation instead of calcite. At Steep Rock,
the calcites have Y/Ho ratios between 70 and 155, which according to Luo et al. (2021)
would correspond to aragonite, consistent with the findings of Fralick and Riding (2015)
who suggested that the high Sr concentrations indicate that Steep Rock carbonates were
originally aragonite. In the case of Red Lake, where the carbonates are predominantly
dolomite (65%), the remaining 35% of samples that are calcitic in composition today may
have originally been calcite when Y/Ho ratios and Sr concentrations are low, or aragonite
when Y/Ho ratios and Sr concentrations were high. With Y/Ho values predominantly
between 40 and 100, the Woman Lake samples were likely primary calcite precipitates,
and indeed, crystal fans indicative of aragonite are rare (absent? Check Ramsay) at this site.
The distribution of Ce anomalies, which also seems to be correlated with mineralogy, with
very pronounced anomalies in the calcites and inferred former aragonites, would thus
similarily indicate important paleoenvironmental control on expression of the Ce anomaly.
In addition, the distribution of Ce anomalies does not appear to correlate with total REE
concentrations at Woman Lake, but appears to correlate to a lesser extent at Red Lake and
Steep Rock, with a predominance of positive anomalies at low total REE concentrations
and negative anomalies at rather high total REE concentrations, which likely reflect several
depositional environments with varying REE inputs, particulate scavanging intensity, and

corresponding water column residence time (see below).

The Red Lake, Woman Lake, and Steep Rock carbonates are distinguished from

modern seawater by the presence of strong Eu anomalies, that appear to correlate with the

Fe/Mn ratio (Fig. 5.10-D), which is consistent with other Precambrian carbonates. Red

192



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Lake has higher Eu anomalies and Fe/Mn ratios than Woman Lake and Steep Rock,
approaching those of modern marine high-temperature hydrothermal systems (data from
TAG and Lucky Strike on the mid-atlantic ridge; REE data from Douville et al., 1999 and
Fe/Mn data from Waeles et al., 2017). The existence of Eu anomalies revealing the presence
of a high-temperature hydrothermal component in the seawater (Bau, 1991), coupled with
the high Fe concentrations, confirms that ascending basinal fluids affected by hydrothermal
venting were probably a major source of Fe, even in shallow water, and that the Red Lake
carbonate platform had a strong connection to the open ocean (Chapter 4). Woman Lake,
with lower Eu anomalies and higher Mn than Fe concentrations, was probably situated
further from hydrothermal sources than Red Lake. With Eu/Eu* values and Fe/Mn ratios
rather intermediate relative to the other two sites, Steep Rock would have been more
influenced by hydrothermal fluids present in ambient seawater than Woman Lake, but

significantly less so relative to Red Lake.

5.4.3 Redox processes

As described in the results, a subset of samples shows pronounced Ce anomalies,
both positive and negative, that provide strong evidence of Ce redox cycling and thus the
establishment of conditions sufficiently oxidizing to enable Ce oxidation. The behaviour
of other redox-sensitive elements, such as Fe and Mn, also provide information on ancient
redox conditions. Fe is rapidly oxidized under mildly oxidizing conditions (Rouxel et al.,
2005; Taylor and Konhauser, 2011), and modern seawater is highly depleted in Fe due to
rapid Fe(Il) oxidation. However, Mn oxidation requires higher oxidation potentials and is
also a kinetically slow process, and therefore, even in the modern ocean, Mn oxidation is

slow, and the modern dissolved Mn pool is significantly higher than that of Fe (Konhauser,
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2007). In this way, Fe/Mn ratios may similarly serve as a redox proxy. A graph of Fe vs.
Mn for the three sites shows high Fe and lower Mn for Red Lake, intermediate Fe and Mn
for Steep Rock, and lower Fe and even higher Mn for Woman Lake (Fig. 5.11-A). To first
order, this suggests that different oxidation potentials characterize these different sites, with
Red Lake, Steep Rock, and then Woman Lake attaining progressively higher oxidation
potentials in this order. This is also supported by the frequency and magnitude of their Ce
anomalies, as well as the behavior of Fe and Mn at each of the three sites when examined

individually (Fig. 5.6-; 5.7- and 5.8-D and F).

Red Lake, where the sample set shows the fewest and smallest Ce anomalies, is also
the site with the highest Fe concentrations (Fig. 5.11-B) which correlate with the increase
in Eu/Eu* (Fig. 5.10-F), suggesting a strong connection to a nearby hydrothermal system
(see section 5.4.2 above). The smaller Ce anomalies at Red Lake could be a consequence
of lower O> concentrations dampened in part by buffering by the abundant Fe(II) supplied
by this strong hydrothermal connection. Furthermore, Red Lake shows Fe depletion in
samples with minor Ce anomalies that is relatively minor compared to Steep Rock and
Woman Lake, both of which show similar and more important levels of Fe depletion

concomitant with their more important Ce anomalies.

The behavior of Mn is more complex. In the case of Red Lake, Mn concentrations
are relatively static for samples containing significant Ce anomalies compared to the other
two sites. This may indicate that Mn redox cycling was minimal at Red Lake compared to
the other two sites. Nevertheless, it was almost certainly present, which is supported by
both Mo isotopic evidence (Thoby et al., 2019) and the fact that samples with pronounced

Ce anomalies tend to be among the most Mn-rich samples at Red Lake (Fig. 5.11-C).
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Figure 5.11. REE and Fe-Mn cross plots further indicating important redox processes occurring at the Red
Lake, Woman Lake and Steep Rock sites. Two hydrothermal poles are represented that correspond to the
Lucky Strike (main smoker Y3) and TAG hydrothermal sites; REE data from Douville et al. (1999) and
Fe/Mn data from (Waeles et al., 2017).

At Steep Rock, significant Ce anomalies are observed at low Mn concentrations.
This may reflect oxidative precipitative loss of Mn from the water column; however, the
analyzed sediments appear to reflect only residual waters that has undergone loss of both
Mn and Ce. The Woman Lake case is different, where the magnitude of negative Ce
anomalies in the samples increase with increasing Mn content, which may reflect oxidative

precipitation of Mn oxides that were delivered directly the sediment pile, resulting in Mn
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enrichment. One might assume that this would provide REE with positive Ce anomalies in
the sediments, however one can also imagine a scenario where highly Ce-depleted waters
produced Mn oxides with negative Ce anomalies, despite the tendency for surface-
catalyzed Ce oxidation of the Mn oxide to lead to local Ce enrichment on particle surfaces.
Alternatively, a scenario could also be considered where significant sedimentary Mn
enrichment due to oxidative Mn precipitation occurred, but that most REEs were derived
from the Ce-depleted water column independently from the Mn oxides, as opposed to the
sinking Mn oxide phase that would have carried positive Ce enrichment relative to the

source water (which may have already been Ce-depleted).

In any case, a clear order of increasing redox potential emerges from this dataset,
whereby (1) Red Lake developed weakly oxidizing conditions, expressing minor Ce
anomalies accompanied by oxidative Fe loss with no major effect on the dissolved Mn
reservoir, followed by (2) Steep Rock, more oxidizing, where Fe and Mn loss occurred in
conjunction with increasingly oxic local conditions, as traced by the magnitude of the Ce
anomalies, and (3) Woman Lake, where Mn oxides were delivered directly to the sediment
pile from a highly Ce-depleted water column. This may not have so much to do with the
oxidative capacity of the respective photosynthetic ecosystems at each site, but rather with
the different environments preserved at each site, as in all cases, oxygenic photosynthesis

is clearly indicated.

As discussed above, the generation of Ce anomalies in the water column at each
site appears to be related to specific environments, namely intermediate depth waters that
are neither strongly influenced by coastal waters (e.g., low Y/Ho and low La/La) nor

completely open to the ocean (high Y/Ho, La/La or Eu/Eu). One possibility is that in a
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nutrient-limited world, the most intense productivity was driven by upwelling bringing
nutrients from the deep to the margins of continental shelves - as occurs today in the context
of modern oxygen minimum zones (OMZs, Kdmpf and Chapman, 2016). Alternatively, the
reason for this specific paleoenvironmental distribution of large Mesoarchean negative Ce
anomalies at the platform-open ocean interface may instead be related to specific aspects
of REE cycling in different environments, notably the slow kinetics of Ce oxidation relative
to short REE residence times in more particulate-rich coastal environments, the need to
physically separate phases bearing positive and negative Ce anomalies, and the burial of
these phases without REE recycling and remixing. As discussed further in Chapters 6 and
7, these observations provide important insights into ancient redox cycling and water
column chemistry at the dawn of oxygenic photosynthesis, that we will see in Chapter 6, is

placed firmly in the Archean by La-Ce geochronology.
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5.5 Conclusion

In this chapter, a systematic examination of carbonate REE signatures and
corresponding paleoenvironmental implications across three Mesoarchean carbonate
platforms, Red Lake (2.93 Ga), Woman Lake (2.85 Ga) and Steep Rock (2.80 Ga), was
performed. The REE (plus Y) patterns from these three sites show typical seawater
characteristics, such as LREE depletion relative to HREE and strong La and Y anomalies,
confirming the marine origin of these carbonates. These carbonate sediments are also
chemically very pure, with low REE and Al concentrations. The REE patterns also show
strong Eu anomalies, more pronounced at Red Lake than at the other two sites, indicating
the presence of a high temperature hydrothermal component in the seawater. Significant
Ce anomalies are observed at all three sites, are predominantly present in primary calcites
and secondary calcites representing recrystallized aragonite, and are more pronounced at
Woman Lake and Steep Rock. The presence of these anomalies provides strong evidence
of cerium redox cycling and the establishment of sufficient oxidation conditions for Ce
oxidation in the Mesoarchean. These anomalies are also associated with shifts in Fe and
Mn abundances, which are also sensitive to redox processes and provide additional
information on redox processes that took place in the water column. At Red Lake, which
has the smallest magnitude Ce anomalies and the largest Eu anomalies, is rich in Fe and
rather poor in Mn, while Steep Rock has intermediate Fe and Mn concentrations, and
Woman Lake shows strong Mn enrichment and important Fe depletion. The muted nature
of the Ce anomalies at Red Lake may thus be explained by an abundance of hydrothermal
Fe that buffered O> due to its greater proximity to high temperature hydrothermal sources.
Furthermore, Ce anomalies are present at low Mn concentrations at Red Lake and Steep
Rock but increase at Woman Lake with increasing Mn concentrations, which can be

explained as by increasing redox potential between the sites as follows: (1) at Red Lake,
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conditions were more weakly oxidizing, and relatively muted Ce anomalies were
accompanied by oxidative loss of Fe with no major effect on the dissolved Mn reservoir,
followed by (2) Steep Rock, where conditions were more oxidizing, and oxidative
precipitation of Fe and Mn occurred in conjunction with increasingly oxic local conditions
as tracked by the magnitude of the Ce anomaly, and finally, (3) at Woman Lake, Mn oxides
are delivered directly to the sediment pile from a severely Ce-depleted water column. The
differences between these sites were not necessarily related to the oxidative capacity of the
respective photosynthetic ecosystems at each site, but may also reflect the different marine
environments preserved at each site. This study of rare earth systematics in the Red Lake,
Woman Lake, and Steep Rock carbonate platforms supports the marine and primary nature
of these carbonates as well as the REE signals that clearly recorded geochemical
fingerprints of the Mesoarchean seawater — including the production of free O2 by oxygenic

photosynthesis.

199



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

5.6 References

Akagi, T., Kodama, T., Haraguchi, H., Fuwa, K., and Tsubota, H., 1986, Distribution of
heavy metals in seawater around the Shikoku Island.: GEOCHEMICAL JOURNAL,
v. 20, p. 127-135, doi:10.2343/geochem;.20.127.

Alexander, B.W., Bau, M., Andersson, P., and Dulski, P., 2008, Continentally-derived
solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in
iron formation from the 2.9Ga Pongola Supergroup, South Africa: Geochimica et
Cosmochimica Acta, v. 72, p. 378-394, doi:10.1016/j.gca.2007.10.028.

Alibo, D.S., and Nozaki, Y., 1999, Rare earth elements in seawater: particle association,
shale-normalization, and Ce oxidation: Geochimica et Cosmochimica Acta, v. 63, p.
363-372, doi:10.1016/S0016-7037(98)00279-8.

Alibo, D.S., Nozaki, Y., and Jeandel, C., 1999a, Indium and yttrium in North Atlantic and
Mediterranean waters: comparison to the Pacific data: Geochimica et Cosmochimica
Acta, v. 63, p. 1991-1999, doi:10.1016/S0016-7037(99)00080-0.

Alibo, D.S., Nozaki, Y., and Jeandel, C., 1999b, Indium and yttrium in North Atlantic and
Mediterranean waters: comparison to the Pacific data: Geochimica et Cosmochimica
Acta, v. 63, p. 1991-1999, doi:10.1016/S0016-7037(99)00080-0.

Allwood, A.C., Kamber, B.S., Walter, M.R., Burch, I.W., and Kanik, 1., 2010, Trace
elements record depositional history of an Early Archean stromatolitic carbonate
platform: Chemical Geology, V. 270, p. 148-163,
doi:10.1016/j.chemgeo.2009.11.013.

Amakawa, H., Ingri, J., Masuda, A., and Shimizu, H., 1991, Isotopic compositions of Ce,
Nd and Sr in ferromanganese nodules from the Pacific and Atlantic Oceans, the Baltic
and Barents Seas, and the Gulf of Bothnia: Earth and Planetary Science Letters, v.

105, p. 554-565, doi:10.1016/0012-821X(91)90192-K.

200



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

de Baar, H.J.W., Bacon, M.P., Brewer, P.G., and Bruland, K.W., 1985a, Rare earth
elements in the Pacific and Atlantic Oceans: Geochimica et Cosmochimica Acta, v.
49, p. 1943-1959, doi:10.1016/0016-7037(85)90089-4.

de Baar, H.J.W., Brewer, P.G., and Bacon, M.P., 1985b, Anomalies in rare earth
distributions in seawater: Gd and Tb: Geochimica et Cosmochimica Acta, v. 49, p.
1961-1969, doi:10.1016/0016-7037(85)90090-0.

de Baar, H.J.W., Bruland, K.W., Schijf, J., van Heuven, S.M.A.C., and Behrens, M.K.,
2018, Low cerium among the dissolved rare earth elements in the central North Pacific
Ocean:  Geochimica et Cosmochimica Acta, v. 236, p. 540,
doi:10.1016/j.gca.2018.03.003.

Barrat, J.A., Boulégue, J., Tiercelin, J.J., and Lesourd, M., 2000, Strontium isotopes and
rare-earth element geochemistry of hydrothermal carbonate deposits from Lake
Tanganyika, East Africa: Geochimica et Cosmochimica Acta, v. 64, p. 287-298,
do0i:10.1016/S0016-7037(99)00294-X.

Bau, M., 1996, Controls on the fractionation of isovalent trace elements in magmatic and
aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect:
Contributions to  Mineralogy and Petrology, v. 123, p. 323-333,
do0i:10.1007/s004100050159.

Bau, M., 1991, Rare-earth element mobility during hydrothermal and metamorphic fluid-
rock interaction and the significance of the oxidation state of europium.:

Bau, M., 1999, Scavenging of dissolved yttrium and rare earths by precipitating iron
oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and
lanthanide tetrad effect: Geochimica et Cosmochimica Acta, v. 63, p. 67-77,

doi:10.1016/S0016-7037(99)00014-9.

201



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Bau, M., and Alexander, B.W., 2009, Distribution of high field strength elements (Y, Zr,
REE, Hf, Ta, Th, U) in adjacent magnetite and chert bands and in reference standards
FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of
the Neoarchean ocean: Precambrian Research, v. 174, p. 337-346,
doi:10.1016/j.precamres.2009.08.007.

Bau, M., Balan, S., Schmidt, K., and Koschinsky, A., 2010, Rare earth elements in mussel
shells of the Mytilidae family as tracers for hidden and fossil high-temperature
hydrothermal systems: Earth and Planetary Science Letters, v. 299, p. 310-316,
do0i:10.1016/j.epsl.2010.09.011.

Bau, M., and Dulski, P., 1995, Comparative study of yttrium and rare-earth element
behaviours in fluorine-rich hydrothermal fluids: Contributions to Mineralogy and
Petrology, v. 119, p. 213-223, d0i:10.1007/BF00307282.

Bau, M., and Dulski, P., 1996, Distribution of yttrium and rare-earth elements in the Penge
and Kuruman iron-formations, Transvaal Supergroup, South Africa: Precambrian
Research, v. 79, p. 37-55, doi:10.1016/0301-9268(95)00087-9.

Bau, M., Moller, P., and Dulski, P., 1997, Yttrium and lanthanides in eastern Mediterranean
seawater and their fractionation during redox-cycling: Marine Chemistry, v. 56, p.
123-131, doi:10.1016/S0304-4203(96)00091-6.

Bau, M., Schmidt, K., Koschinsky, A., Hein, J., Kuhn, T., and Usui, A., 2014,
Discriminating between different genetic types of marine ferro-manganese crusts and
nodules based on rare earth elements and yttrium: Chemical Geology, v. 381, p. 1-9,
doi:10.1016/j.chemgeo.2014.05.004.

Bayon, G., German, C.R., Burton, K.W., Nesbitt, R. W., and Rogers, N., 2004, Sedimentary

Fe—Mn oxyhydroxides as paleoceanographic archives and the role of aeolian flux in

202



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

regulating oceanic dissolved REE: Earth and Planetary Science Letters, v. 224, p. 477—
492, doi:10.1016/j.epsl.2004.05.033.

Bellefroid, E.J., Hood, A. v. S., Hoffman, P.F., Thomas, M.D., Reinhard, C.T., and
Planavsky, N.J., 2018, Constraints on Paleoproterozoic atmospheric oxygen levels:
Proceedings of the National Academy of Sciences, v. 115, p. 8104-8109,
doi:10.1073/pnas.1806216115.

Bolhar, R., Hofmann, A., Siahi, M., Feng, Y., and Delvigne, C., 2015, A trace element and
Pb isotopic investigation into the provenance and deposition of stromatolitic
carbonates, ironstones and associated shales of the ~3.0 Ga Pongola Supergroup,
Kaapvaal Craton: Geochimica et Cosmochimica Acta, v. 158, p. 57-78,
do0i:10.1016/j.gca.2015.02.026.

Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M., and Whitehouse, M.J., 2004,
Characterisation of early Archaean chemical sediments by trace element signatures:
Earth and Planetary Science Letters, v. 222, p. 43—-60, doi:10.1016/j.epsl.2004.02.016.

Bolhar, R., and van Kranendonk, M., 2007, A non-marine depositional setting for the
northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry
of stromatolitic carbonates: Precambrian Research, v. 155, p. 229-250,
doi:10.1016/j.precamres.2007.02.002.

Byrne, R.H., and Kim, K.-H., 1990, Rare earth element scavenging in seawater:
Geochimica et Cosmochimica Acta, v. 54, p. 2645-2656, doi:10.1016/0016-
7037(90)90002-3.

Byrne, R.H., Liu, X., and Schijf, J., 1996, The influence of phosphate coprecipitation on
rare earth distributions in natural waters: Geochimica et Cosmochimica Acta, v. 60, p.

3341-3346, doi:10.1016/0016-7037(96)00197-4.

203



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

de Carlo, E.H., and Green, W.J., 2002, Rare earth elements in the water column of Lake
Vanda, McMurdo Dry Valleys, Antarctica: Geochimica et Cosmochimica Acta, v. 66,
p. 1323-1333, doi:10.1016/S0016-7037(01)00861-4.

Craddock, P.R., Bach, W., Seewald, J.S., Rouxel, O.J., Reeves, E., and Tivey, M.K., 2010,
Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua
New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins:
Geochimica et Cosmochimica Acta, V. 74, p. 5494-5513,
do0i:10.1016/j.gca.2010.07.003.

Douville, E., Bienvenu, P., Charlou, J.L., Donval, J.P., Fouquet, Y., Appriou, P., and Gamo,
T., 1999, Yttrium and rare earth elements in fluids from various deep-sea
hydrothermal systems: Geochimica et Cosmochimica Acta, v. 63, p. 627-643,
doi:10.1016/S0016-7037(99)00024-1.

Drake, M.J., 1975, The oxidation state of europium as an indicator of oxygen fugacity:
Geochimica et Cosmochimica Acta, v. 39, p. 55-64, doi:10.1016/0016-
7037(75)90184-2.

Dymek, R.F., and Klein, C., 1988, Chemistry, petrology and origin of banded iron-
formation lithologies from the 3800 MA isua supracrustal belt, West Greenland:
Precambrian Research, v. 39, p. 247-302, doi:10.1016/0301-9268(88)90022-8.

Elderfield, H., and Greaves, M.J., 1982, The rare earth elements in seawater: Nature, v.
296, p. 214-219, doi:10.1038/296214a0.

Elderfield, H., Hawkesworth, C.J., Greaves, M.J., and Calvert, S.E., 1981, Rare earth
element geochemistry of oceanic ferromanganese nodules and associated sediments:
Geochimica et Cosmochimica Acta, v. 45, p. 513-528, doi:10.1016/0016-

7037(81)90184-8.

204



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Elderfield, H., Upstill-Goddard, R., and Sholkovitz, E.R., 1990, The rare earth elements in
rivers, estuaries, and coastal seas and their significance to the composition of ocean
waters: Geochimica et Cosmochimica Acta, v. 54, p. 971-991, doi:10.1016/0016-
7037(90)90432-K.

Fralick, P., and Riding, R., 2015, Steep Rock Lake: Sedimentology and geochemistry of an
Archean carbonate platform: FEarth-Science Reviews, v. 151, p. 132-175,
doi:10.1016/j.earscirev.2015.10.006.

Garcia-Solsona, E., Jeandel, C., Labatut, M., Lacan, F., Vance, D., Chavagnac, V., and
Pradoux, C., 2014, Rare earth elements and Nd isotopes tracing water mass mixing
and particle-seawater interactions in the SE Atlantic: Geochimica et Cosmochimica
Acta, v. 125, p. 351-372, doi:10.1016/j.gca.2013.10.009.

German, C.R., and Elderfield, H., 1990, Application of the Ce anomaly as a paleoredox
indicator: The ground rules: Paleoceanography, v. 5, p. 823-833,
doi:10.1029/PA005i005p00823.

German, C.R., and Elderfield, H., 1989, Rare earth elements in Saanich Inlet, British
Columbia, a seasonally anoxic basin: Geochimica et Cosmochimica Acta, v. 53, p.
2561-2571, doi:10.1016/0016-7037(89)90128-2.

German, C.R., Holliday, B.P., and Elderfield, H., 1991, Redox cycling of rare earth
elements in the suboxic zone of the Black Sea: Geochimica et Cosmochimica Acta, v.
55, p. 3553-3558, doi:10.1016/0016-7037(91)90055-A.

German, C.R., Klinkhammer, G.P., Edmond, J.M., Mura, A., and Elderfield, H., 1990,
Hydrothermal scavenging of rare-earth elements in the ocean: Nature, v. 345, p. 516—

518, doi:10.1038/345516a0.

205



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

German, C.R., Masuzawa, T., Greaves, M.J., Elderfield, ~ H, and Edmond~, J.M., 1995,
Dissolved rare earth elements in the Southern Ocean: Cerium oxidation and the
influence of hydrography.:

Goldberg, E.D., Koide, M., Schmitt, R.A., and Smith, R.H., 1963, Rare-Earth distributions
in the marine environment: Journal of Geophysical Research, v. 68, p. 4209—-4217,
doi:10.1029/J2068i014p04209.

Grenier, M., Garcia-Solsona, E., Lemaitre, N., Trull, T.W., Bouvier, V., Nonnotte, P., van
Beek, P., Souhaut, M., Lacan, F., and Jeandel, C., 2018, Differentiating Lithogenic
Supplies, Water Mass Transport, and Biological Processes On and Off the Kerguelen
Plateau Using Rare Earth FElement Concentrations and Neodymium Isotopic
Compositions: Frontiers in Marine Science, v. 5, doi:10.3389/fmars.2018.00426.

Gromet, L.P., Haskin, L.A., Korotev, R.L., and Dymek, R.F., 1984, The “North American
shale composite”: Its compilation, major and trace element characteristics:
Geochimica et Cosmochimica Acta, v. 48, p. 2469-2482, doi:10.1016/0016-
7037(84)90298-9.

Hill, I.G., Worden, R.H., and Meighan, 1.G., 2000, Yttrium: The immobility-mobility
transition during basaltic weathering: Geology, v. 28, p. 923, doi:10.1130/0091-
7613(2000)28<923:YTITDB>2.0.CO;2.

Hogdahl, O.T., Melsom, S., and Bowen, V.T., 1968, Neutron Activation Analysis of
Lanthanide Elements in Sea Water, in p. 308325, doi:10.1021/ba-1968-0073.ch019.

Holser, W.T., 1997, Evaluation of the application of rare-earth elements to
paleoceanography: Palacogeography, Palaeoclimatology, Palaeoecology, v. 132, p.
309-323, doi:10.1016/S0031-0182(97)00069-2.

Hood, A. v. S., Planavsky, N.J., Wallace, M.W., and Wang, X., 2018, The effects of

diagenesis on geochemical paleoredox proxies in sedimentary carbonates:

206



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Geochimica et Cosmochimica Acta, V. 232, p. 265-287,
do0i:10.1016/j.gca.2018.04.022.

James, R.H., Elderfield, H., and Palmer, M.R., 1995, The chemistry of hydrothermal fluids
from the Broken Spur site, 29°N Mid-Atlantic ridge: Geochimica et Cosmochimica
Acta, v. 59, p. 651-659, doi:10.1016/0016-7037(95)00003-1.

Johannessen, K.C., vander Roost, J., Dahle, H., Dundas, S.H., Pedersen, R.B., and
Thorseth, I.H., 2017, Environmental controls on biomineralization and Fe-mound
formation in a low-temperature hydrothermal system at the Jan Mayen Vent Fields:
Geochimica et Cosmochimica Acta, V. 202, p. 101-123,
do0i:10.1016/j.gca.2016.12.016.

Kamber, B.S., Bolhar, R., and Webb, G.E., 2004, Geochemistry of late Archaean
stromatolites from Zimbabwe: evidence for microbial life in restricted epicontinental
seas: Precambrian Research, V. 132, p. 379-399,
doi:10.1016/j.precamres.2004.03.006.

Kamber, B.S., and Webb, G.E., 2001, The geochemistry of late Archaean microbial
carbonate: implications for ocean chemistry and continental erosion history:
Geochimica et Cosmochimica Acta, v. 65, p. 2509-2525, doi:10.1016/S0016-
7037(01)00613-5.

Kamber, B.S., Webb, G.E., and Gallagher, M., 2014, The rare earth element signal in
Archaean microbial carbonate: information on ocean redox and biogenicity: Journal
of the Geological Society, v. 171, p. 745-763, do0i:10.1144/jgs2013-110.

Kéampf, J., and Chapman, P., 2016, Upwelling Systems of the World: Cham, Springer

International Publishing, doi:10.1007/978-3-319-42524-5.

207



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Koeppenkastrop, D., and de Carlo, E.H., 1992, Sorption of rare-earth elements from
seawater onto synthetic mineral particles: An experimental approach: Chemical
Geology, v. 95, p. 251-263, doi:10.1016/0009-2541(92)90015-W.

Komiya, T., Hirata, T., Kitajima, K., Yamamoto, S., Shibuya, T., Sawaki, Y., Ishikawa, T.,
Shu, D., Li, Y., and Han, J., 2008, Evolution of the composition of seawater through
geologic time, and its influence on the evolution of life: Gondwana Research, v. 14,
p. 159-174, doi:10.1016/j.gr.2007.10.006.

Konhauser, K., 2007, Introduction to Geomicrobiology:

van Kranendonk, M.J., Webb, G.E., and Kamber, B.S., 2003, Geological and trace element
evidence for a marine sedimentary environment of deposition and biogenicity of 3.45
Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean
ocean: Geobiology, v. 1, p. 91-108, doi:10.1046/j.1472-4669.2003.00014.x.

Lawrence, M.G., Greig, A., Collerson, K.D., and Kamber, B.S., 2006, Rare earth element
and yttrium variability in South East Queensland waterways: Aquatic Geochemistry,
v. 12, p. 39-72, doi:10.1007/s10498-005-4471-8.

Li, Y., Li, C., Chu, Z., and Guo, J., 2021, Evaluation and optimisation of the dissolution
method for bulk analysis of carbonate neodymium isotopic composition based on
chemical leaching of carbonate certified reference materials: Microchemical Journal,
v. 171, p. 106880, doi:10.1016/j.microc.2021.106880.

Li, F., Webb, G.E., Algeo, T.J., Kershaw, S., Lu, C., Ochlert, A.M., Gong, Q., Pourmand,
A., and Tan, X., 2019, Modern carbonate ooids preserve ambient aqueous REE
signatures: Chemical Geology, v. 509, p. 163-177,
doi:10.1016/j.chemgeo.2019.01.015.

Ling, H.-F., Chen, X., Li, D., Wang, D., Shields-Zhou, G.A., and Zhu, M., 2013, Cerium

anomaly variations in Ediacaran—earliest Cambrian carbonates from the Yangtze

208



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Gorges area, South China: Implications for oxygenation of coeval shallow seawater:
Precambrian Research, v. 225, p. 110-127, doi:10.1016/j.precamres.2011.10.011.

Liu, X., and Byrne, R.H., 1997, Rare earth and yttrium phosphate solubilities in aqueous
solution: Geochimica et Cosmochimica Acta, v. 61, p. 1625-1633,
doi:10.1016/S0016-7037(97)00037-9.

Liu, X.M., Hardisty, D.S., Lyons, T.W., and Swart, P.K., 2019, Evaluating the fidelity of
the cerium paleoredox tracer during variable carbonate diagenesis on the Great
Bahamas Bank: Geochimica et Cosmochimica Acta, v. 248, p. 25-42,
do0i:10.1016/j.gca.2018.12.028.

Liu, X.-M., Kah, L.C., Knoll, A.H., Cui, H., Wang, C., Bekker, A., and Hazen, R.M., 2021,
A persistently low level of atmospheric oxygen in Earth’s middle age: Nature
Communications, v. 12, p. 351, doi:10.1038/s41467-020-20484-7.

Luo, Y.-R., and Byrne, R.H., 2004, Carbonate complexation of yttrium and the rare earth
elements in natural waters: Geochimica et Cosmochimica Acta, v. 68, p. 691-699,
doi:10.1016/S0016-7037(03)00495-2.

Luo, Y., Li, G., Xu, W., Liu, J., Cheng, J., Zhao, J., and Yan, W., 2021, The effect of
diagenesis on rare earth element geochemistry of the Quaternary carbonates at an
isolated coral atoll in the South China Sea: Sedimentary Geology, v. 420, p. 105933,
doi:10.1016/j.sedgeo.2021.105933.

Luong, L.D., Shinjo, R., Hoang, N., Shakirov, R.B., and Syrbu, N., 2018, Spatial variations
in dissolved rare earth element concentrations in the East China Sea water column:
Marine Chemistry, v. 205, p. 1-15, doi:10.1016/j.marchem.2018.07.004.

Masuda, A., and Ikeuchi, Y., 1979, Lanthanide tetrad effect observed in marine
environment.: GEOCHEMICAL JOURNAL, V. 13, p. 19-22,

doi:10.2343/geochem;j.13.19.

209



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Michard, A., and Albaréde, F., 1986, The REE content of some hydrothermal fluids:
Chemical Geology, v. 55, p. 51-60, doi:10.1016/0009-2541(86)90127-0.

Michard, A., Albaréde, F., Michard, G., Minster, J.F., and Charlou, J.L., 1983, Rare-earth
elements and uranium in high-temperature solutions from East Pacific Rise
hydrothermal vent field (13 °N): Nature, v. 303, p. 795-797, doi:10.1038/303795a0.

Moffett, J.W., 1990, Microbially mediated cerium oxidation in sea water: Nature, v. 345,
p. 421423, doi:10.1038/345421a0.

Mukhopadhyay, J., Crowley, Q.G., Ghosh, S., Ghosh, G., Chakrabarti, K., Misra, B.,
Heron, K., and Bose, S., 2014, Oxygenation of the Archean atmosphere: New paleosol
constraints from eastern India: Geology, v. 42, p. 923-926, doi:10.1130/G36091.1.

Nozaki, Y., 2001, Rare earth elements and their isotopes in the ocean: Encyclopedia of
Ocean Sciences, v. 4, p. 2354-2366.

Nozaki, Y., and Alibo, D.S., 2003a, Dissolved rare earth elements in the Southern Ocean,
southwest of Australia: Unique patterns compared to the South Atlantic data.:
GEOCHEMICAL JOURNAL, v. 37, p. 47-62, doi:10.2343/geochemj.37.47.

Nozaki, Y., and Alibo, D.S., 2003b, Importance of vertical geochemical processes in
controlling the oceanic profiles of dissolved rare earth elements in the northeastern
Indian Ocean: Earth and Planetary Science Letters, v. 205, p. 155-172,
doi:10.1016/S0012-821X(02)01027-0.

Nozaki, Y., Zhang, J., and Amakawa, H., 1997, The fractionation between Y and Ho in the
marine environment: Earth and Planetary Science Letters, v. 148, p. 329-340,
doi:10.1016/S0012-821X(97)00034-4.

Piepgras, D.J., and Wasserburg, G.J., 1980, Neodymium isotopic variations in seawater:
Earth and Planetary Science Letters, v. 50, p. 128-138, doi:10.1016/0012-

821X(80)90124-7.

210



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Piepgras, D.J., Wasserburg, G.J., and Dasch, E.J., 1979, The isotopic composition of Nd in
different ocean masses: Earth and Planetary Science Letters, v. 45, p. 223-236,
do0i:10.1016/0012-821X(79)90125-0.

Piper, D.Z., and Bau, M., 2013, Normalized Rare Earth Elements in Water, Sediments, and
Wine: Identifying Sources and Environmental Redox Conditions: American Journal
of Analytical Chemistry, v. 04, p. 69—83, doi:10.4236/ajac.2013.410A1009.

Planavsky, N., Bekker, A., Rouxel, O.J., Kamber, B., Hofmann, A., Knudsen, A., and
Lyons, T.W., 2010a, Rare Earth Element and yttrium compositions of Archean and
Paleoproterozoic Fe formations revisited: New perspectives on the significance and
mechanisms of deposition: Geochimica et Cosmochimica Acta, v. 74, p. 6387—6405,
do0i:10.1016/j.gca.2010.07.021.

Planavsky, N.J., Robbins, L.J., Kamber, B.S., and Schoenberg, R., 2020, Weathering,
alteration and reconstructing Earth’s oxygenation: Interface Focus, v. 10, p.
20190140, doi:10.1098/rsfs.2019.0140.

Planavsky, N.J., Rouxel, O.J., Bekker, A., Lalonde, S. v., Konhauser, K.O., Reinhard, C.T.,
and Lyons, T.W., 2010b, The evolution of the marine phosphate reservoir: Nature, v.
467, p. 1088—1090, doi:10.1038/nature09485.

Planavsky, N., Rouxel, O., Bekker, A., Shapiro, R., Fralick, P., and Knudsen, A., 2009,
Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified
oceans: Earth and Planetary Science Letters, v. 286, p. 230-242,
do0i:10.1016/j.eps1.2009.06.033.

Qu, C., Liu, G., and Zhao, Y.F., 2009, Experimental study on the fractionation of yttrium
from holmium during the coprecipitation with calcium carbonates in seawater

solutions: Geochemical Journal, v. 43, p. 403—414, doi:10.2343/geochem;.1.0036.

211



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Riding, R., Fralick, P., and Liang, L., 2014, Identification of an Archean marine oxygen
oasis: Precambrian Research, V. 251, p. 232-237,
doi:10.1016/j.precamres.2014.06.017.

Rigoussen, D., 2017, Carbonate geochemistry, new redox tracer analyses through the
Precambrian: Msc 2 diss., Université de Bretagne Occidentale (UBO),.

Rongemaille, E., Bayon, G., Pierre, C., Bollinger, C., Chu, N.C., Fouquet, Y., Riboulot, V.,
and Voisset, M., 2011, Rare earth elements in cold seep carbonates from the Niger
delta: Chemical Geology, v. 286, p. 196206, doi:10.1016/j.chemgeo.2011.05.001.

Rouxel, O.J., Bekker, A., and Edwards, K.J., 2005, Iron isotope constraints on the Archean
and Paleoproterozoic ocean redox state: Science, v. 307, p. 1088-1091,
doi:10.1126/science.1105692.

Schijf, J., Christenson, E.A., and Byrne, R.H., 2015, YREE scavenging in seawater: A new
look at an old model: Marine Chemistry, v. 177, p. 460471,
doi:10.1016/j.marchem.2015.06.010.

Schmitt, R.A., Smith, R.H., Lasch, J.E., Mosen, A.W., Olehy, D.A., and Vasilevskis, J.,
1963, Abundances of the fourteen rare-earth elements, scandium, and yttrium in
meteoritic and terrestrial matter: Geochimica et Cosmochimica Acta, v. 27, p. 577—
622, doi:10.1016/0016-7037(63)90014-0.

Shahkarami, S., Mangano, M.G., and Buatois, L.A., 2017, Discriminating ecological and
evolutionary controls during the Ediacaran—Cambrian transition: Trace fossils from
the Soltaniech Formation of northern Iran: Palacogeography, Palaeoclimatology,
Palaeoecology, v. 476, p. 15-27, doi:10.1016/j.palae0.2017.03.012.

Shannon, R.D., 1976, Revised effective ionic radii and systematic studies of interatomic
distances in halides and chalcogenides: Acta Crystallographica Section A, v. 32, p.

751-767, doi:10.1107/S0567739476001551.

212



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Shields, G., and Stille, P., 2001, Diagenetic constraints on the use of cerium anomalies as
palacoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites:
Chemical Geology, v. 175, p. 29-48, d0i:10.1016/S0009-2541(00)00362-4.

Shields, G.A., and Webb, G.E., 2004, Has the REE composition of seawater changed over
geological time? Chemical Geology, V. 204, p. 103-107,
doi:10.1016/j.chemgeo.2003.09.010.

Sholkovitz, E.R., 1993, The geochemistry of rare earth elements in the Amazon River
estuary: Geochimica et Cosmochimica Acta, v. 57, p. 2181-2190, doi:10.1016/0016-
7037(93)90559-F.

Siahi, M., Hofmann, A., Master, S., Wilson, A., and Mayr, C., 2018, Trace element and
stable (C, O) and radiogenic (Sr) isotope geochemistry of stromatolitic carbonate
rocks of the Mesoarchaecan Pongola Supergroup: Implications for seawater
composition: Chemical Geology, V. 476, p. 389406,
doi:10.1016/j.chemgeo.2017.11.036.

Smrzka, D., Zwicker, J., Bach, W., Feng, D., Himmler, T., Chen, D., and Peckmann, J.,
2019, The behavior of trace elements in seawater, sedimentary pore water, and their
incorporation into carbonate minerals: a review: Facies, v. 65, p. 41,
do0i:10.1007/s10347-019-0581-4.

Sverjensky, D.A., 1984, Europium redox equilibria in aqueous solution: Earth and
Planetary Science Letters, v. 67, p. 70-78, doi:10.1016/0012-821X(84)90039-6.
Sylvestre, G., Evine Laure, N.T., Gus Djibril, K.N., Arlette, D.S., Cyriel, M., Timoléon,
N., and Jean Paul, N., 2017, A mixed seawater and hydrothermal origin of superior-
type banded iron formation (BIF)-hosted Kouambo iron deposit, Palacoproterozoic

Nyong series, Southwestern Cameroon: Constraints from petrography and

213



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

geochemistry: Ore Geology Reviews, v. 80, p. 860875,
doi:10.1016/j.oregeorev.2016.08.021.

Tanaka, K., Takahashi, Y., and Shimizu, H., 2008, Local structure of Y and Ho in calcite
and its relevance to Y fractionation from Ho in partitioning between calcite and
aqueous solution: Chemical Geology, V. 248, p. 104-113,
doi:10.1016/j.chemgeo.2007.11.003.

Tanaka, K., Tani, Y., Takahashi, Y., Tanimizu, M., Suzuki, Y., Kozai, N., and Ohnuki, T.,
2010, A specific Ce oxidation process during sorption of rare earth elements on
biogenic Mn oxide produced by Acremonium sp. strain KR21-2: Geochimica et
Cosmochimica Acta, v. 74, p. 5463-5477, doi:10.1016/j.gca.2010.07.010.

Taylor, K.G., and Konhauser, K.O., 2011, Iron in Earth Surface Systems: A Major Player
in Chemical and Biological Processes: Elements, v. 7, p. 83-88,
doi:10.2113/gselements.7.2.83.

Taylor, S.R., and McLennan, Scott.M., 1985, The continental crust: its composition and
evolution:

Thoby, M., Konhauser, K.O., Fralick, P.W., Altermann, W., Visscher, P.T., and Lalonde,
S. v., 2019, Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by
the Mo isotope composition of Precambrian carbonates: Geology, v. 47, p. 559-562,
doi:10.1130/G45706.1.

Tostevin, R., Shields, G.A., Tarbuck, G.M., He, T., Clarkson, M.O., and Wood, R.A., 2016,
Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine
settings: Chemical Geology, v. 438, p. 146—162, doi:10.1016/j.chemge0.2016.06.027.

Viehmann, S., Reitner, J., Tepe, N., Hohl, S. v., van Kranendonk, M., Hofmann, T.,
Koeberl, C., and Meister, P., 2020, Carbonates and cherts as archives of seawater

chemistry and habitability on a carbonate platform 3.35 Ga ago: Insights from Sm/Nd

214



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

dating and trace element analysis from the Strelley Pool Formation, Western
Australia: Precambrian Research, V. 344, p. 105742,
doi:10.1016/j.precamres.2020.105742.

Waeles, M., Cotte, L., Pernet-Coudrier, B., Chavagnac, V., Cathalot, C., Leleu, T., Laés-
Huon, A., Perhirin, A., Riso, R.D., and Sarradin, P.-M., 2017, On the early fate of
hydrothermal iron at deep-sea vents: A reassessment after in situ filtration:
Geophysical Research Letters, v. 44, p. 4233-4240, doi:10.1002/2017GL073315.

Wallace, M.W., Hood, A., Shuster, A., Greig, A., Planavsky, N.J., and Reed, C.P., 2017,
Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land
plants: Earth and Planetary Science Letters, v. 466, p. 12-19,
do0i:10.1016/j.epsl.2017.02.046.

Wang, X., Barrat, J.-A., Bayon, G., Chauvaud, L., and Feng, D., 2020, Lanthanum
anomalies as fingerprints of methanotrophy: Geochemical Perspectives Letters, v. 14,
p. 2630, doi:10.7185/geochemlet.2019.

Wildeman, T.R., and Haskin, L., 1965, Rare-earth elements in ocean sediments: Journal of
Geophysical Research, v. 70, p. 2905-2910, doi:10.1029/JZ070i012p02905.

Zhang, J., and Nozaki, Y., 1996, Rare earth elements and yttrium in seawater: ICP-MS
determinations in the East Caroline, Coral Sea, and South Fiji basins of the western
South Pacific Ocean: Geochimica et Cosmochimica Acta, v. 60, p. 46314644,
doi:10.1016/S0016-7037(96)00276-1.

Zhao, Y., Wei, W., Santosh, M., Hu, J., Wei, H., Yang, J., Liu, S., Zhang, G., Yang, D.,
and Li, S., 2022, A review of retrieving pristine rare earth element signatures from
carbonates: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 586,

doi:10.1016/j.palaeo0.2021.110765.

215



CHAPTER 5 : COMPARATIVE RARE EARTH ELEMENT SYSTEMATICS

Zhao, Y.-Y., Zheng, Y.-F., and Chen, F., 2009, Trace element and strontium isotope
constraints on sedimentary environment of Ediacaran carbonates in southern Anhui,
South China: Chemical Geology, V. 265, p. 345-362,
doi:10.1016/j.chemgeo.2009.04.015.

Zhong, S., and Mucci, A., 1995, Partitioning of rare earth elements (REEs) between calcite
and seawater solutions at 25°C and 1 atm, and high dissolved REE concentrations:
Geochimica et Cosmochimica Acta, v. 59, p. 443-453, doi:10.1016/0016-

7037(94)00381-U.

216



CHAPTER 6:
Archean origins of oxygenic
photosynthesis confirmed by

La-Ce geochronology

217



CHAPTER 6 : ARCHEAN ORIGINS OF OXYGENIC PHOTOSYNTHESIS BY LA-CE

Abstract

Significant debate exists as to when oxygenic photosynthesis evolved on Earth.
Geochemical data from ancient sediments indicates localized or ephemeral photosynthetic
O> production prior to Great Oxidation Event ca. 2.5-2.3 billion years ago (Ga) and
currently suggests Archean origins, around 3 Ga or earlier. However, sedimentary records
of the early Earth often suffer from important preservation issues, and a lack of constraints
on the timing of oxidation leaves geochemical proxy data for the ancient presence of O
open to significant critique. Here we report rare earth element data from three different
Archean carbonate platforms preserved in greenstone belts of the NW Superior craton
(Canada) that were deposited by the activity of marine photosynthetic bacteria at 2.93 Ga,
2.86 Ga, and 2.80 Ga ago. All three present clear evidence of O» production before the
GOE in the form of significant depletions in cerium (Ce) reflecting oxidative Ce removal
from ancient seawater. For the first time using the '%La-'38Ce radiometric isotope
geochronometer, we demonstrate clearly for all three sites, and with a high statistical degree
of certainty for two of them, that La/Ce fractionation, and thus cerium oxidation, occurred
at the time of deposition. These results firmly place the origin of oxygenic photosynthesis
in the Mesoarchean, necessitating a revised view of biological and geochemical evolution

on Earth.
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Résumé

Il existe un débat important sur la date d'apparition de la photosynthése oxygénique
sur Terre. Les données géochimiques des sédiments anciens indiquent une production
photosynthétique d'O> localisée ou éphémeére avant le Grand événement d'oxydation
(GOE), il y a environ 2,5 a 2,3 milliards d'années (Ga), et suggérent actuellement des
origines archéennes autour de 3 Ga ou plus tot. Cependant, les enregistrements
sédimentaires de la Terre primitive sont souvent sujets d’altérations d'importantes, et le
manque de contraintes sur le moment de l'oxydation laisse les données géochimiques de
substitution pour la présence ancienne de 1'0O2 ouvertes a d’importantes critiques. Nous
présentons ici des données sur les éléments de terres rares (REE) provenant de trois
plateformes carbonatées archéennes différentes préservées dans les ceintures de schistes
verts au Nord-Ouest du Craton Supérieur (Canada), qui ont été¢ déposées par l'activité de
bactéries photosynthétiques marines il y a 2,93 Ga, 2,86 Ga et 2,80 Ga. Toutes trois
présentent des preuves évidentes de production d'O; avant le GOE sous la forme
d'appauvrissements significatifs en cérium (Ce) reflétant 1'élimination oxydative du Ce de
I'eau de mer ancienne. Pour la premiére fois, en utilisant le géochronométre isotopique
radiométrique '*¥La-'*%Ce, nous démontrons clairement pour les trois sites, avec un degré
¢levé de certitude statistique pour deux d'entre eux, que le fractionnement La/Ce, et donc
I'oxydation du cérium, a eu lieu au moment du dépdt. Ces résultats placent fermement
l'origine de la photosynthése oxygénique au Mésoarchéen, ce qui nécessite une révision de

la vision de 1'évolution biologique et géochimique sur Terre.
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6.1 Introduction

The Great Oxygenation Event (GOE) places a lower limit on the evolution of
oxygenic photosynthesis at the time of the first significant accumulation of atmospheric
oxygen around 2.5 to 2.3 Ga. However, its upper limit is poorly defined, and multiple redox
methods indicate the establishment of marine and lacustrine oxygen oases between 2.5 and
3.0 Ga (Anbar et al., 2007; Planavsky et al., 2014; Riding et al., 2014; Robbins et al., 2016;
Eickmann et al., 2018; Thoby et al., 2019; Wilmeth et al., 2022) and perhaps as far back as
3.8 Ga (Rosing and Frei, 2004; Frei et al., 2016). Theoretical considerations support the
establishment of pelagic (Olson et al., 2013) and benthic (Lalonde and Konhauser, 2015)
oxygen oases, where shallow-water and terrestrial Oz-producing communities may have
thrived for hundreds of millions of years before having any effect on atmospheric
composition. Molecular clock analyses also support a relatively early origin of oxygenic
photosynthesis between 3.5 and 3.0 Ga (Cardona et al., 2019; Boden et al., 2021) but
estimates may vary widely, from 4.5 Ga to 2.32 Ga (Fischer et al., 2016; Oliver et al.,
2021). In the absence of unambiguous evidence for oxygen photosynthesis during the
Archaean in the form of cyanobacterial microfossils or biomarkers, resolution of the
question of whether oxygen was present at this time depends largely on geochemical and

isotopic proxies.

However, the primary nature of geochemical signals of early photosynthetic O
production on Earth is often questionable, given the diverse diagenetic, metamorphic,
hydrothermal, and surface oxidative weathering processes that affect the Precambrian
sedimentary record. The issue of syngenicity is particularly problematic for sensitive trace
metal isotope redox proxies because many sedimentary sequences of paleobiological

interest have been in close proximity to oxygen-rich surface conditions for millions of years
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or more. On the one hand, many studies have reported trace element or metal isotope
evidence for transient free oxygen production prior to the ~2.5-2.3 Ga GOE; first in the 2.5
Ga Mount McRae Shale (Anbar et al., 2007), and in the last decade, pushing it back to the
Mesoarchean, often in ~3.0-2.8 Ga sediments (Planavsky et al., 2014; Riding et al., 2014;
Crowe et al., 2014; Wang et al., 2018; Thoby et al., 2019). On the other hand, follow-up
work has revealed significant concerns regarding the syngenetic nature of many of these
signals, whether by the fact that they may be present in surface samples but absent in drill
core (Albut et al., 2018, 2019; Planavsky et al., 2020), or showing evidence of
remobilization and re-concentration in the later phases of mineralization (Slotznick et al.,
2022). Therefore, there is still significant debate regarding when oxygenic photosynthesis

arose on Earth.

Recent advances in radiometric isotope geochemistry offer one solution to this
problem. At least three currently applied redox tracers (based on U, Re, and Ce) form
radiogenic parent-daughter pairs (U-Th-Pb, Re-Os, and La-Ce) that can be used to date the
closure of isotope systems on time scales suitable for ancient Earth studies. For example,
Li et al. (2012) applied the U-Th-Pb dating system on basalt samples from drill core
recovered from over 100 m depth in the Marble Bar region of the Pilbara Craton,
Northwestern Australia, to reveal that the hematite present is due to later alteration of the
basalts by oxidizing fluids, and not the presence of an Archean O-bearing atmosphere, as
previously suggested by Hoashi et al. (2009). Samples from this core do not form isochrons
in the U-Th-Pb system, indicating post-depositional addition of U or Pb. Modeled U/Th
ratios indicate U enrichment during the last 200 Ma, which clearly excludes the possibility
that basalt oxidation occurred in the Archean, and ultimately, that these rocks cannot be

used to demonstrate an oxygenated atmosphere at that time. Several years later, in what
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constitutes a positive confirmation of an ancient paleoredox signal, Kendall et al. (2015)
evaluated the Re-Os systematics of the Late Archean Mount McRae Shale from Western
Australia. In this intensely studied deposit, a pre-GOE oxygen oasis has been previously
identified (Anbar et al., 2007) and since supported by multiple lines of evidence, including
stratigraphic trends in Mo, U, Se, as well as S and N (see Kendall et al., (2015) for
synthesis). Their results show an evolution of initial '¥7Os/!®80s values that indicates the
onset, and then termination, of a transient episode of pre-GOE oxidative continental ca.
2.495 Ga, in a unique case where Re-Os isotopic closure is effectively demonstrated to be

near syn-depositional.

The La-Ce system is similarly capable of anchoring La-Ce separation processes,
and thus including redox reactions, in geological time. La-Ce geochronology was applied
for the first time by Tanaka and Masuda (1982) in combination with the Sm-Nd system to
determine the age of a gabbro from the upper zone of the Bushveld complex in South
Africa, and they determined that the ages obtained with the two systems were consistent
within error. These two systems combined were later used for ocean island basalt (OIB)
source determination (Dickin, 1987), to constrain the evolution of the moon (Tanimizu and
Tanaka, 2002), to characterize the nature of the sediments involved in the genesis of lavas
(Bellot, 2016), and to study the behavior of LREE in mid-ocean ridge basalts (MORBs)

and OIBs (Schnabel, 2019).

In the La-Ce system, *8La decays via two parallel processes: 34 % of the isotope
undergoes p— decay (conversion of a neutron into a proton), transforming into stable '3¥Ce,
while the remaining 66% of '*®La disintegrates by electronic capture (conversion of a

proton to a neutron by interaction with an electron), leading to the formation of stable **Ba
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(Bortoluzzi and Ferraro, 2020). The long half-life (B-decay; t'> = 102 x 10° years;
Sonzogni, 2003) and the low abundance (0.089 %) of '3®La generate very small variations
in the isotopic ratio *3Ce/'*>Ce compared to other systems (Bonnand et al., 2019). Figure
6.1 shows the evolution of the '38Ce/!*?Ce ratio over time as a function of the **La/'**Ce

ratio.
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Figure 6.1. Evolution of the '3¥Ce/!**Ce ratio over time and as a function of the '*¥La/'**Ce ratio.

In this figure, we can see that CHUR has a '3%La/!'**Ce ratio of 0.00311447 and a
138Ce/!42Ce ratio that has varied in 3 billion years from '38Ce/'**Ce initial = 0.02254340 to
138Ce/1*2Ce modem = 0.02256577 + 66 (2SD; Israel et al., 2020). If we take a sample with a
138 a/1*2Ce ratio of 0.030, after 3 billion years this sample will have a '*¥Ce/!*?Ce ratio of
0.0227589. Therefore, different La/Ce ratios can appreciably influence the evolution of

138Ce/!42Ce ratios within a range that may be resolved by modern high-precision mass
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spectrometry. This is illustrated graphically in Figure 6.2, which presents the theoretical
isochrons of the La-Ce system for '3%La/!*>Ce values ranging from 0 to 0.030 and ages from
0.1 to 3 Ga, showing the evolution of the *Ce/!*?Ce ratio in time as a function of these
different initial compositions. The older a sample is, the more the '*8Ce/!**Ce ratio evolves
to radiogenic values, and the greater the initial '3®La/!'**Ce ratio, the faster this occurs.
However, in the best case, i.e., for a ratio '*¥La/'*?Ce = 0.030 and an age of 3 Ga
(representing the upper limit of Mesoarchean carbonates showing extreme negative Ce
anomalies examined in this study), the ratio '3¥Ce/!**Ce varies by only 0.0002155 from the
initial CHUR, which demonstrates that a high level of precision in the measurement is

essential for geochronological applications.
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Figure 6.2. Theoretical La-Ce isochrons calculated for several different ages (0.1, 1, 2 and 3 Ga). The
evolution of the 38Ce/!**Ce ratio depends on the age and the '3¥La/'**Ce fractionation, the older the samples
and the higher the '*La/!"**Ce ratio, the more the '*3Ce/!*?Ce ratio becomes radiogenic.
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Cerium has 4 stable isotopes (136, 138, 140 and 142) with very contrasted
abundances: 3°Ce = 0.185%; 38Ce = 0.251%; '4°Ce = 88.45%; #?Ce = 11.114% (Lide et
al., 2009). Therefore, the high abundance of '*°Ce, about 400 times more abundant than the
isotopes 13Ce and !*¥Ce, renders Ce isotopic analysis particularly challenging. In addition,
the 138Ce/!'*2Ce ratio is readily affected by isobaric interferences on the mass 138 by
isotopes of barium and lanthanum that are significantly more abundant in nature than '*Ce.
The isotopic mass 142 is additionally prone to interferences from neodymium (Fig. 6.3).
Moreover, the isotopic abundances of Ce being so disparate, *Ce and '**Ce may be
affected by peak tailing effects from the strong signal on mass '*°Ce during measurement.
As a result, a highly efficient chemical separation between Ce and isobaric interfering
elements is essential, and additional Ce isotope-specific analytical and instrumental

approaches must be adopted, as detailed in Chapter 3.
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Figure 6.3. Relative isotopic abundances of Ba, La, Ce and Nd normalized to elemental abundances from the
primitive mantle (Bonnand et al., 2019).
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Although '38Ce/!#?Ce variations are very small in nature and their measurement
requires extreme precision, this system is nonetheless very promising for determining the
closure age of the La-Ce system and thus the age of generation of Ce anomalies generated
by redox processes. Hayashi et al. (2004) were the first to attempt to deduce the origin of
negative cerium anomalies and constrain their age of formation in ancient sedimentary
rocks using La-Ce isotope systematics. The calculated initial Ce isotopic ratios in samples
from the 3.3 Fig Tree and 3.2 Ga Moodies Groups of the Barberton Greenstone Belt, South
Africa, indicated that the Ce anomalies could not be primary. Using two different models,
they deduced that these negative cerium anomalies appeared during episodes of alteration
that took place sometime in the past 1.1 Ga. Recently, Bonnand et al. (2020) constrained
the timing of Ce anomalies in 3.22 Ga BIFs from the Moodies Group to the last 100 million
years with the La-Ce geochronometer, generating an isochron of 60 +32 Ma that
unquestionably confirms that these anomalies are secondary artefacts of Phanerozoic

surface alteration.

Crucially, there exists no proxy evidence at present for the photosynthetic production
of Oy prior to 2.5 Ga that has been confirmed as syndepositional in origin using a
radiometric geochronological approach. For this study, we examined multiple carbonate
platforms in the Northwest Superior Province (see Chapter 2 for geological context) that
all contain geochemical indications of Archean photosynthetic O2 production in the form
of significant negative Ce anomalies (see Chapter 5). Fresh carbonate samples from the
2.93 Ga Red Lake Greenstone Belt (Hofmann, 1985; Corfu and Wallace, 1986; Mclntyre
and Fralick, 2017), 2.86 Ga Woman Lake Greenstone Belt (Hofmann, 1985; Ramsay et al.,
2020), and 2.80 Ga Steep Rock Group (Riding et al., 2014; Fralick and Riding, 2015) were

collected in the field from short NQ-size backpack drill cores (Red Lake, Woman Lake) or
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from outcrop samples of recent quarry exposures (Steep Rock) and analyzed for their trace
element and Ce isotope compositions. All three sites also show unambiguous fossil
evidence for photosynthetic bacterial construction by the abundant carbonate microbialites
they preserve. Dominated by stromatolitic dolostones, microbialitic and aragonite crystal
fan limestones, and associated clastic and chemical sediments (see Chapter 2), these little-
explored northern Canadian fossilized microbial ecosystems are at the heart of a trend of
increasing thickness in Earth’s known sedimentary carbonate deposits through the Paleo-
and Meso-archean. Surface exposures often show glacial striations as they were recently
exposed to the surface after the last glacial maxima ca. 20 Ka, and thus are excellent targets
for Precambrian paleoredox investigation as they have experienced minimal modern

surface weathering.

As discussed in Chapter 5, rare earth element (REE) data from all three sites show
clear evidence of oxidative processing of cerium (Ce), whereby oxidation of Ce(Ill) to
Ce(IV) under mildly oxidizing conditions, and enhanced particle scavenging of Ce(IV) to
organic and mineral surfaces (Bau, 1999). These processes generate characteristic positive
and negative anomalies in shale-normalized REE spectra in marine sediments (Bau and
Dulski, 1996; Bolhar et al., 2004). This long-studied (e.g., Elderfield and Greaves, 1982;
Hoyle et al., 1984; Murphy and Dymond, 1984) and well-understood (German and
Elderfield, 1990; Tostevin et al., 2016) redox proxy has been shown to effectively track
progressive ocean oxygenation from the Neoproterozoic through the Phanerozoic (Wallace
et al., 2017). Post-Archean Australian Shale (PAAS)-normalized REE data for weak
leaches of highly pure carbonate samples from all three sites confirm their marine origins
via characteristic anomalies in La, Gd, Y/Ho, as well as heavy REE (HREE) enrichment,

as well as their open-ocean connection via the presence of Eu anomalies characteristic of
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Archean hydrothermally influenced basinal waters. Importantly, samples from all three
sites show variable degrees of Ce depletion or enrichment. From a larger REE dataset
generated using similar techniques in Brest by multiple collaborators of the ERC StG
EARTHBLOOM project (Afroz, 2019; Ramsay, 2020; Wilmeth et al., 2021), a subset of
samples was selected for La-Ce isotope analysis. The samples of this subset were selected
to generate a maximum range in La/Ce (which inherently includes those samples showing
the most significant Ce anomalies) as well as consistent spacing in their La/Ce values,
minimal concentrations in detrital-sourced elements such as Al and Ti, and more arbitrarily,
on the basis of a visual and numeric assessment of their REE spectral features (e.g., non-
flat slopes and clear seawater indicators). Ce/Ce* values in this subset, as calculated using
the geometric projection from Pr and Nd according to (Lawrence et al., 2006), range from
0.79 to 1.02 for Red Lake, 0.46 to 0.74 for Woman Lake, and 0.38 to 0.84 for Steep Rock.
These anomalies are comparable in magnitude to those found in modern oxygenated
seawater (mean Ce/Ce* of 0.36 above 400 m depth as compiled by Wallace et al., 2017)
and are some of the largest yet described for Precambrian sediments. See Chapter 5 for a

more detailed examination of their REE systematics.

6.2 Methods

See Chapter 3, section 3.2 for trace elements and section 3.5 for Ce isotopes. All

uncertainties are provided as 2c.
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6.3 Results and discussion

6.3.1 Variations in La/Ce

The 38Ce/!*?Ce ratios of natural materials show only small variations over time and
the largest possible dispersion in '*8La/'*?Ce values offers the highest possible precision
when evaluating the closure age of the La-Ce system. Figure 6.4 shows the distribution of
138 a/142Ce ratios in Archean, Proterozoic and Phanerozoic carbonates, as calculated from
carbonate REE data compiled by Rigoussen (2017) in comparison with carbonates from

the three sites examined in this study.
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Figure 6.4. Histograms showing the distribution of *8La/!*2Ce ratios from Archean (A), Proterozoic (B) and
Phanerozoic (C) carbonates as compiled by Rigoussen (2017) as well as available data from the Red Lake
(D), Woman Lake (E) and Steep Rock (F) carbonates.

Compiled data for Archean carbonates show '*8La/!*>Ce values between 0.003 and
0.009, with 55% falling in the 0.0035 to 0.0053 bin. Proterozoic carbonates range from
0.002 to 0.007, with 75% of the values falling in the same ~ 0.004 bin. Phanerozoic

carbonates have values between 0.002 and 0.010, with over 65% of the values in the ~
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0.004 bin. By contrast, the Red Lake carbonates have a range of '3¥La/!**Ce values from
0.003 to 0.015 with about 50% of the values in the ~ 0.004 bin. At Woman Lake, values
range from 0.002 to 0.034, with the majority of values falling between 0.006 and 0.010.
The Steep Rock carbonates show '3¥La/!*>Ce values between 0.004 and 0.032, with a more

even spread of values over the range of the data.

Comparing all of these data, it’s immediately apparent that the carbonates from this
study (which includes both new data from this thesis as well as other workers on the
EARTHBLOOM project, see above) have a much wider range in '*®¥La/!*?Ce than the data
in literature, regardless of age. This can be explained by a combination of several factors.
First, the carbonates from Red Lake, Woman Lake and Steep Rock are all chemically very
pure, and perhaps rather uniquely so; Archean carbonates tend to show evidence of high
degrees of carbonate supersaturation and textural evidence of predominately chemical
growth modes, such as abundant giant aragonite crystal fans and stromatolites with textures
consistent with in-situ chemical sediment encrustation, as opposed to later Proterozoic and
Phanerozoic carbonates where such evidence is more rare and stromatolites show a more
important role for grain trapping and binding (Grotzinger, 1989). Second, the carbonates
examined in this study were digested by a weak leach technique (5% Acetic acid;
Rongemaille et al., 2011), which favors the recovery of uncontaminated seawater
signatures by avoiding the digestion of clays which tend to flatten the resulting REE spectra
and thus attenuate authigenic seawater signatures. While such weak leach methods are
slowly enjoying greater adoption by the scientific community, most carbonate REE data in
existing literature was obtained via diverse, more aggressive digestions, often total
digestion that practically ensures clay dissolution and thus important contamination of

authigenic seawater signatures. Finally, the Red Lake, Woman Lake, and Steep Rock
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carbonate platforms all preserve a wide range of depositional environments, representing
both shallow and deep waters, which also contributes to the diversity of values (see Chapter
5). A closer look at La/Ce fractionation at the three study sites and its relation to La and
Ce anomalies (Fig. 6.5) reveals that the La/Ce fractionation is controlled by the different

specific behaviors of La and Ce.
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Figure 6.5. Graph showing the controlling factors of the La/Ce fractionation which are the behaviors of Ce
and La.

Indeed, as expected, *8La/!'**Ce ratios increase rapidly with increasing magnitude
of the negative Ce anomaly (Fig. 6.5-A), and the largest negative Ce anomalies correspond
to the highest 3®¥La/'*?Ce values (up to 0.034). Also as expected, in the absence of Ce
anomalies, La/Ce ratios do not increase as rapidly with increases in the La anomaly alone
(Fig. 6.5-B), as the highest values of La/La*, i.e., La/La*>4.5, have La/Ce ratios that do
not exceed 0.018. The behavior of Ce and its ability to form strong anomalies is thus the
main factor controlling the fractionation of La and Ce. However, these figures also
demonstrate that variations in La/La* alone should be sufficient to enable La-Ce
geochronology for sedimentary samples that do not show appreciable Ce anomalies (see

Chapter 7) — in which case the La-Ce system is analogous to high-temperature applications.
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6.3.2 La-Ce isotope compositions

Plotting the '*8La/'**Ce vs. 138Ce/!'*?Ce isotope compositions determined for the
three Mesoarchean carbonate platforms for a global look at the combined data from the
three sites is highly revealing (Fig. 6.6). Compared to the theoretical isochrons for 0.1 Ga,
1 Ga, 2 Ga and 3 Ga, the data acquired in this thesis clearly demonstrates that the negative

Ce anomalies must be very ancient.
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Figure 6.6. Plot of 133Ce/'*>Ce vs. *8La/!**Ce for the combined dataset (purple circle) from the three study
sites (Red Lake, Woman Lake and Steep Rock) superposed on the theoretical La-Ce isochrons calculated
for several different ages (0.1, 1, 2 and 3 Ga).

The 18 samples analyzed across the three sites combined have '3¥La/!#*Ce ratios
ranging from 0.005 to 0.029 and '3¥Ce/!**Ce ratios ranging from 0.0225796 to 0.0227408.
They clearly align with the 3 Ga isochron. These 18 values form a slope of 0.00742 +
0.00011 with a corresponding age of 3.10 + 0.05 Ga, an MSWD = 64 and an &'3¥Ceinitial =
-2.78 £ 0.12. When 4 outliers are removed (see below for a discussion on outliers), the

remaining 14 values form a slope of 0.00666 + 0.00010 with a corresponding age of 2.78
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+ 0.04 Ga, an MSWD = 1.5, and an £'*3Ceinitia = 0.56 £ 0.12. This significantly more
coherent subset points to an initial 3¥Ce/!**Ce that is close to that of CHUR, as expected
for a crustal REE source ca. 3 Ga. In the rest of this section only these 14 datapoints are
considered; see section 6.3.3 for discussion of the four outlier samples and possible

processes driving La-Ce perturbation.

The data from the three different sites form three individual isochrons (Fig. 6.7).
The coherent Red Lake samples form a slope of 0.00668 + 0.00051 with a corresponding
age 0of 2.79 £ 0.21 Ga, a MSWD of 0.19, and an £'*¥Ceinitial = 0.86 £ 0.12 (Fig. 6.7-A). The
Woman Lake samples (without outliers, n=4) form a slope of 0.00686 + 0.00023 with a
corresponding age of 2.87 = 0.10 Ga, an MSWD of 2.7 and £'38Ceinitial = -0.76 £ 0.12 (Fig.
6.7-B). The Steep Rock samples (n=5) form a slope of 0.00666 + 0.00015 with a
corresponding age of 2.78 + 0.06 Ga, an MSWD of 2, and £'*¥Ceinitiar = 0.34 £ 0.12. All
uncertainties are based on global external errors determined for '*8Ce/!*?Ce by repeat
analyses of the Ce isotope standard Ce-LMV across all TIMS analytical sessions (26 =
0.000000144, or 6.37 ppm; n=11), and for **La/!'**Ce by the highest dispersion obtained
between duplicates of weak leach digests of the international geostandard JDo-1 measured
across all three HR-ICP-MS analytical sessions (2o = 0.000358; worst of three duplicate

analyses across three sessions).
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Figure 6.7. La-Ce isochrons and corresponding La-Ce ages for carbonate sample sets showing important Ce
anomalies from the (A) Red Lake, (B) Woman Lake, and (C) Steep Rock Mesoarchean carbonate platforms.

These ages all fall within error of their respective depositional ages as constrained by zircon U-Pb
geochronology (2.93, 2.86, and 2.80 Ga, c.f. chapter 2).
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MSWD values of 0.19, 2.7, and 2 for the isochrons from Red Lake, Woman Lake,
and Steep Rock, respectively, all meet the criteria for true isochrons considering the F
values corresponding to the number of points on the respective isochrons and the number
of standard duplicates employed for the global estimation of uncertainties (c.f. Brooks et
al., 1972 and Appendix 3 therein). That said, the MSWD value significantly lower than 1
obtained for the Red Lake data indicates that the global analytical uncertainties may be
overestimated for these analyses. If this were globally true, and the analytical uncertainties
globally overestimated based on the most dispersed repeat analyses of JDo-1 across the
various independent sessions, then the true MSWD would be higher for the Woman Lake
and Steep Rock isochrons. Above MSWD values of ~3 to 6, according to the tables of
Brooks et al. (1972), this would indicate that true dispersion exists in the distribution of
138La/!%2Ce and '*¥Ce/'*’Ce, which would be presumably the result of metamorphic and
surface alteration processes affecting '*®La/!*>Ce and/or 13¥Ce/'**Ce ratios. This may not be
unexpected considering that the Red Lake samples experienced upper greenschist to lower
amphibolite facies metamorphism, the Woman Lake samples lower to middle Greenschist
metamorphism, and the Steep Rock Lake samples experienced lower Greenschist
metamorphism (see Chapter 2). The 2c errors on the isochron ages indeed increase with
increasing metamorphic grade. The identification of 4 clear outliers in the combined dataset
further suggests that caution is warranted with respect to potential resetting of the La-Ce

isotopic system at higher metamorphic grades.

Despite the occurrence of four clear outliers out of 18 analyzed samples, as well as
dispersions in the outlier-free isochrons that increase with increasing metamorphic grade,
approaching the statistical distinction between strictly isochron behavior and true

geological dispersion within identified (and possibly overestimated) analytical
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uncertainties, a Mesoarchean origin for the negative Ce anomalies observed in these
Mesoarchean carbonate platforms is abundantly clear. All three sites demonstrate with a
high statistical certainty (>95%) that the negative Ce anomalies at Red Lake, Woman Lake,
and Steep Rock were all formed during the Archean, within error of their independently
determined depositional ages (Fig. 6.8 ;see also Chapter 2), and well before the GOE ca.
2.5 to 2.3 Ga. They thus represent primary paleoenvironmental signals of ancient seawater,
and as discussed below, constitute highly robust evidence for the production of free oxygen
in the marine water column between 2.80 and 2.94 Ga. Before addressing the implications
of the most well-preserved samples in section 6.3.4, it is worthwhile to further examine the
identified outliers in light of potential mechanisms of perturbation of the La-Ce isotope
system.
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Figure 6.8. Plot of U-Th-Pb age vs. La-Ce age showing that the negative Ce anomalies at Red Lake (blue),
Woman Lake (orange), and Steep Rock (green) were all formed during the Archean, within error of their
independently determined depositional ages.
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6.3.3 Perturbations of the La-Ce system: potential

mechanisms and trajectories

Two out of the three sites, namely Red Lake and Woman Lake, show clear outliers
(two each) which invite further investigation of the robustness of the La-Ce system and an
examination of possible perturbation mechanisms. A variety of later alteration events, such
as the addition of external REE from crustal sources, the internal redistribution of REE
between different mineral phases, the exchange of REE with metamorphic fluids, and the
mobilization of REE to and from infiltrating marine and meteoric waters, could
conceivably fractionate La from Ce after deposition by the addition or removal of either

La, Ce or both.
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Figure 6.9. Evolution of *8Ce/!**Ce ratios as a function of time for different perturbation scenarios in the
138 a/142Ce — 138Ce/!*?Ce system. In green and blue, two unperturbed '*¥Ce/!'**Ce evolution scenarios with
133La/'*2Ce equal to 0.015 and 0.22, respectively. In red and yellow are '3¥Ce/'*>Ce evolutionary trajectories
for post-depositional perturbations in La/Ce from the arbitrary blue reference line of '*¥La/'*?Ce = 0.015. The
red lines represent perturbations that reduce in half the *8La/'**Ce ratio (to 0.0075) at 1 Ga and 2 Ga after
deposition, while the yellow trajectories trace perturbations that double the '3¥Ce/!'*?Ce ratio (to 0.030) at 1
Ga and 2 Ga after deposition.
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Figure 6.9 demonstrates how different perturbations of the La/Ce ratio, occurring
at different times after deposition, affects the evolution of '*8Ce/!*?Ce ratios in time. This
figure re-illustrates classic perturbation trajectories for radiogenic isotope systems, very
simply adapted here to the La-Ce system. It indicates schematically how later additions of
La, or the later emplacement of negative anomalies in Ce, drives '3¥Ce/!*2Ce ratios to higher
values than expected for unperturbed samples. The earlier the perturbation, the more
important the effect on 38Ce/!*?Ce. Given enough time, a large enough increase in the
La/Ce ratio may drive the '38Ce/!**Ce ratio to surpass that of unperturbed samples that
began their evolution at a higher La/Ce ratio than the pre-perturbed sample (c.f. the
unperturbed trajectory in green for '*8La/'*?Ce = 0.022 vs. in yellow the perturbation from
0.015 to 0.030 1 Ga after deposition). Conversely, the loss of La, or addition of Ce, lowers
La/Ce and leads to trajectories that yield lower 33Ce/!*?Ce ratios than expected in light of
the true initial La/Ce ratio (trajectories in red). The addition of REE in near-crustal
proportions resembles this category, as it acts to pull the '*8La/!*?Ce ratio towards the
CHUR value of ~0.004, which is significantly lower than nearly all samples analyzed in

this study.

Such alteration processes can readily explain the four outliers in this new dataset,
and they may also be responsible for the isochron dispersions (as measured by the MSWD
term) that in two out of three cases approach the limits of those expected given the
estimated analytical uncertainties. The four identified outliers, two for Red Lake and two
for Woman Lake, each falling above and below the 3 Ga isochrons, can be explained by
two simple perturbation trajectories. Figure 6.10-A shows the theoretical evolution of
138La/1*2Ce in time; Trajectories A and C represent the evolution of 138Ce/!#?Ce for two

different La/Ce ratios that experienced modern perturbation to higher and lower La/Ce
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ratios, respectively. Trajectory B represents a late enrichment in La, or more geologically
plausible, a late depletion in Ce. Trajectory D represents the opposite — a depletion in La,
or an enrichment in Ce (again more geologically plausible), sometime after deposition.
Trajectory E represents an unperturbed evolution of the *3Ce/!*>Ce ratio over time for a
fairly high '*8La/'*?Ce ratio. Figure 6.10-B shows the trajectories of these same *8La/!**Ce
perturbation scenarios in a !3¥La/'*?Ce vs. *8Ce/!*?Ce plot. These diagrams illustrate
schematically how small perturbations in the La/Ce ratio at various times in the post-

depositional history may readily account for the outliers observed in this La-Ce isotope

dataset.
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Figure 6.10. Perturbation models showing different scenarios of alteration of the La/Ce ratio (A) and
corresponding trajectories on a '3¥La/'*2Ce vs. 38Ce/!**Ce plot (B). These two diagrams demonstrate plausible
trajectories of two different hypothetical perturbation events that readily explain the outliers identified in this
study. CHUR: evolution of material of chondritic composition, approximating the bulk silicate Earth; A and
B: perturbation involving an increase in La/Ce, i.e., late La addition or Ce depletion, 1 Ga after deposition in
the case of B, and a modern increase in the case of A; C and D: perturbation involving a decrease in La/Ce,
i.e., late La depletion or Ce addition, in the case of D 2 Ga after deposition and in the case of C, a modern
decrease; E: unperturbed evolution of materials of progressively higher La/Ce ratios.
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6.3.4 Oxygenic photosynthesis in the Archean

confirmed by La-Ce geochronology

The only process known to generate such large Ce anomalies is the oxidation of
Ce(IIT) to Ce(IV). The oxidation of Ce in aqueous solution occurs at a redox potential close
to the Mn(II)/Mn(IV) couple, but appears highly sensitive on the presence of diverse
ligands, and is significantly lowered in the presence of Mn oxides where oxidation is
surface-catalyzed (de Carlo et al., 1997). Even in modern oxygenated seawater, oxidation
is rarely complete (German et al., 1991). Ce oxidation is limited by kinetic factors; under
high-pH conditions such as in alkaline lakes, Ce oxidation is significantly accelerated
(Moller and Bau, 1993) whereas at circumneutral pH such as in rivers and seawater,
oxidation is slow, and largely driven by Mn oxide mineral surface catalysis surfaces (Bau,
1991). Indeed, rivers today transport largely Ce(Ill) and generally lack significant Ce
anomalies except at unusually high pH (Goldstein and Jacobsen, 1988). Upon oxidation,
the resulting Ce(IV) is less soluble than its neighbors and rapidly scavenged from solution

by surface adsorption onto sinking organic matter, clays, and Fe- and Mn-oxides.

To generate appreciable Ce anomalies in natural waters, several criteria must be
met. Physically, particulates bearing surface adsorbed Ce(IV) must be isolated from their
formation waters in order for the latter to develop an anomaly in the residual aqueous phase;
efficient remineralization of potential Ce(IV) carriers (organic matter, Mn and Fe
oxyhydroxides) in shallow water settings such as estuaries prevents efficient sequestration
of Ce(IV) from Ce(Ill). Furthermore, Ce(IV) oxidation rates are generally slow compared
to Ce(III) scavenging rates in shallow-water marine environments, and only in waters poor

in settling particular matter does the Ce(I'V) oxidation rate become important relative to the
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rate of Ce(Ill) removal, also by adsorption (Moffett, 1990). Thus, Ce oxidation may be
cryptic in shallow-water, particulate-rich environments, whereas the development of
important water column Ce anomalies are favored in offshore environments with slower
scavenging of trivalent REE. As discussed in Chapter 5, the observed REE systematics of
the three carbonate platforms examined in this thesis are consistent with the above
requirements and limitations known from modern environments on the development of

water column Ce anomalies.

Chemically, several Ce(Ill) oxidation pathways are possible, however there are
only a few that are relevant to the Precambrian. Firstly, H>O is an efficient Ce(III) oxidant,
however its photochemical production in the Archean atmosphere is thought to have been
insignificant relative to other potential oxidants (Pecoits et al., 2015), which are limited to
O(-II), and Mn(IV) based on current knowledge. While appreciable Ce anomalies have
been generated by adsorption to iron oxyhydroxides under experimental conditions (Bau et
al., 2014), Archean seawater was ferruginous in nearly all settings, such that Archean
seawater was likely buffered around the relatively low redox potential set by the
Fe(IT)/Fe(IIT) couple. The rock record itself further indicates that Ce oxidation by Fe(III)
was negligible during the Precambrian, as banded iron formations do not show widespread
and appreciable Ce anomalies until the beginning of the GOE ca. 2.5 Ga (Warchola et al.,

2018).

Recent experimental work has shown that complexation of REE by organic ligands
(specifically, siderophores) during experimental weathering of mafic rocks can generate
appreciable Ce anomalies even under anoxic weathering conditions (Kraemer and Bau,

2022). However, only positive Ce anomalies were observed in the aqueous phase by this
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mechanism, and considering the low amounts of mobilized REE in these experiments, mass
balance considerations limit the potential shifts in Ce abundances in the basalts subjected
to weathering. While they were not analyzed, it is highly improbable that appreciable
negative Ce anomalies developed anywhere outside of a very fine altered surface layer, if
at all. Such mechanisms are unlikely to drive the large magnitude Ce anomalies (Ce/Ce™* <
0.5) observed in the current sample set. Furthermore, they would not explain the clear
trends between Ce/Ce* and a variety of paleoenvironmental (e.g., La/La, Y/Ho) and redox
(Fe, Mn) indicators. This leaves oxidation by O as the most likely explanation for these
important and clearly ancient Ce anomalies. This explanation is also highly parsimonious
in that it represents the sole mechanism by which important negative Ce anomalies are
known to be generated in modern marine environments. As further explored in Chapter 7,
these findings have important implications for the evolution of oxygenic photosynthesis on
Earth as well as future possible applications of the La-Ce geochronometer to ancient

sedimentary rocks.
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6.4 Conclusion

In this chapter, the '3%La-!*¥Ce radiometric isotope geochronometer was applied to
selected samples from three different Archean carbonate platforms preserved in greenstone
belts of the NW Superior craton (Canada) that were deposited by the activity of marine
photosynthetic bacteria at 2.93 Ga, 2.86 Ga, and 2.80 Ga ago. These three platforms show
clear evidence of O2 production before the GOE in the form of significant depletions in
cerium (Ce) reflecting oxidative Ce removal from ancient seawater. Robust La-Ce
isochrons were obtained for all three sites and with a high statistical degree of certainty for
two of them, that La/Ce fractionation, and thus cerium oxidation, occurred at the time of
deposition. These results firmly place the origin of oxygenic photosynthesis in the
Mesoarchean, necessitating a revised view of biological and geochemical evolution on

Earth.
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7.1 Summary of the principal findings

The origin of oxygenic photosynthesis is one of the most important evolutionary
events the Earth has ever known. Earth's modern biosphere owes its existence to this planet-
defining metabolism, and understanding its origin is a major challenge for Earth system
science. However, due to uncertainties about the primary nature of oxygen signals in
ancient and weathered rocks, the exact timing of the evolution of oxygenic photosynthesis
has remained unresolved. This PhD work focused on new chemical and isotopic signals
(Ce anomalies, Fe isotopes, Ce isotopes) preserved in chemical and other marine
sedimentary rocks deposited between 2.93 and 2.80 Ga to better understand the evolution

of photosynthetic pathways on the early Earth.

After an introductory chapter, a general geological background of the samples
examined in this work was detailed in Chapter 2, as well as the analytical methodologies

used to obtain the elemental and isotopic data in Chapter 3.

In Chapter 4, major element data, REE compositions, and iron stable
isotope chemostratigraphy were presented for an exceptional transgressive sequence
spanning more than 70 m of stromatolitic marine carbonate and more than 60 m of deep-
water facies (iron formation and black shale) captured in a drill core from the 2.93-billion-
year (Ga) Ball Assemblage of the Red Lake Greenstone Belt, Superior Craton, NW
Ontario, Canada. Major element and REE data revealed ferruginous marine conditions with
significant hydrothermal influence and a combination of Eh conditions and REE residence
times that were generally insufficient for Ce oxidation. However, iron isotopes revealed a
dynamic iron redox cycle covering this shallow to deep transect, with 8°°Fe values ranging

from -2.88%o to +1.50%o across all lithologies combined. The wide range and stratigraphic
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evolution of §°°Fe values are best explained by Fe depletion in an upwelling plume via
offshore iron oxide precipitation, resulting in low 8°¢Fe values in the residual Fe(II) pool.
Remarkable large secular variations in 8°Fe were observed in stromatolitic carbonates that
are not easily explained by a Rayleigh distillation model nor by their pyrite content, but
rather vary with the samples sulfur concentrations and sulfur stable isotopic compositions.
Our data indicate that §°°Fe(IT)sq values on the platform were controlled by an indirect
driver linking Fe and S cycles, which we suggest are variations in primary production. This
unique dataset indicates an important role for photosynthesis in modulating the Earth's

major biogeochemical cycles already at 2.93 Ga.

Chapter 5 presented a systematic REE+Y study describing and comparing the trace
element geochemistry of three Mesoarchean carbonate platforms of Red Lake (2.93 Ga),
Woman Lake (2.86 Ga), and Steep Rock (2.80 Ga). All three sites show characteristic
REE+Y patterns typical of seawater, with LREE depletion relative to HREE and strong La
and Y anomalies, confirming the marine origin of these carbonates. Strong Eu anomalies,
more pronounced at Red Lake than at the other two sites, indicate the presence of a high
temperature hydrothermal component mixed into ambient seawater. The presence of
negative Ce anomalies in samples from all three sites provides strong evidence for cerium
redox cycling and the establishment of sufficient oxidation conditions for Ce oxidation.
Red Lake samples, which have the smallest Ce anomalies and the largest Eu anomalies,
have relatively high Fe but rather low Mn concentrations. Steep Rock samples show
intermediate Fe and Mn concentrations, while Woman Lake samples tend to be rich in Mn
and depleted in Fe. These patterns were interpreted to indicate that Red Lake was weakly
oxidizing, with O> concentrations buffered by the abundance of Fe from nearby

hydrothermal sources, where slight negative Ce anomalies are accompanied by oxidative
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losses of Fe without major effect on the dissolved Mn reservoir. Steep Rock samples
capture more oxidizing conditions than Red Lake, with oxidative Fe and Mn loss occurring
in conjunction with increasingly oxic local conditions, as tracked by the Ce anomaly.
Woman Lake samples appear to record the most oxidizing conditions, where Mn oxides
were delivered directly to the sediment pile from a severely Ce-depleted water column.
This study of rare earth systematics in the Red Lake, Woman Lake and Steep Rock
carbonate platforms confirms the marine sedimentary origin of these carbonates and reveals
that O»-driven oxidative processes were likely in operation at each of these sites, as revealed

by unambiguous evidence for the redox cycling of Ce and Mn.

In Chapter 6, we applied the *8La-!3¥Ce radiometric isotope geochronometer on
selected samples from the three carbonate platforms studied in Chapter 5, with special
attention to those showing clear evidence of pre-GOE O production in the form of
significant Ce depletions. Robust La-Ce isochrons were obtained for all three sites and
constitute clear evidence for all three, and with a high degree of statistical certainty for two
of them, that La/Ce fractionation, and thus cerium oxidation, occurred at the time of
deposition. These results provide important perspectives for future applications of La-Ce
radiometric geochronology, which are elaborated below in section 7.2. They also firmly
place the origin of oxygenic photosynthesis in the Mesoarchean, which requires a revised
view of biological and geochemical evolution of the early Earth, as further discussed below

in section 7.3.

7.2 Implications for La-Ce geochronology

In Chapter 6, high-precision La-Ce isotope compositions are reported for sediment

samples bearing negative Ce anomalies from three Mesoarchean carbonate platforms. The
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determined '3¥Ce/!**Ce values are the most radiogenic reported to date for any Earth
material. As described in Chapter 6, the observed range in values corresponds to that
expected for samples that experienced important fractionation in La/Ce billions of years
ago, and incompatible with a modern (post-depositional) process that might have drove
La/Ce fractionation at a later time. Indeed, with the exception of a few outliers, the data
can be seen to closely align with the 3.0 Ga La-Ce isochron (Figure 6.6). Furthermore, the
data from all three sites define clear isochrons that all fall with error of their known
depositional ages previously constrained by U-Th-Pb TIMS analyses on zircons (Figure
6.8). These results constitute an important proof of the potential of the La-Ce
geochronometer to date ancient oxidative events affecting sedimentary Ce enrichments,
enabled by over a decade of progressive improvements in the analytical methods for La-
Ce isotope characterization. These results also offer an important opportunity to evaluate
future potential applications as well as potential pitfalls of La-Ce geochronometry going

forwards.

This study is the first to report La-Ce isotope compositions from ancient chemical
sedimentary carbonates. It is demonstrated here that these samples effectively captured
REE from ancient seawater that was characterized by La/Ce ratios that were highly
fractionated, similar to seawater today, well outside of the range of crustal materials.
Importantly, their widespread in La/Ce is driven not only by the occurrence of negative Ce
anomalies, but also by their large spread in La/La*. This characteristic signature of modern
and ancient seawater develops during REE scavenging onto flocculating particles,
especially across estuarine mixing gradients (Lawrence et al., 2006), and its presence in
anoxic marine waters as well as in Archean-age sediments lacking significant Ce anomalies

indicates that it develops consistently under marine conditions of all ages regardless of
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redox state. Crucially, the presence of La anomalies alone in ancient marine chemical
sediments appears to drive sufficient La/Ce fractionation to enable geochronological
studies of ancient sediments lacking appreciable Ce anomalies. For example, in Figure 6.5,
it can be seen that samples from all three sites showing no appreciable Ce anomalies may
attain La/Ce ratios that are at least as high as those presented by the Red Lake samples that
do show important Ce anomalies (albeit muted relative to the other sites), i.e., *¥La/!**Ce
as high as ~0.015. In other words, the presence of important La/La* anomalies alone in
ancient chemical sediments should enable radiometric dating by decay of La to Ce with a
precision comparable to that obtained for Red Lake (26 on the isochron of 200 Ma or better)
even in the absence of Ce anomalies. This means that the La-Ce isotope system may not
only constrain post-depositional processes affecting Ce, but those that affect only La as
well. Similarly, the absence of an appreciable Ce anomaly (Ce/Ce* ~1) could be effectively
constrained with respect to emplacement age using the La-Ce isotope system. This means
that the La-Ce isotope system is likely applicable to a wide variety of ancient sediments,
with or without appreciable Ce anomalies, whenever mobility of the LREE needs to be
constrained in age, especially redox-dependent mobility. These results are thus highly
encouraging for the future application of the La-Ce isotope system to chemical sedimentary

rocks regardless of the presence of important Ce anomalies.

The novel La-Ce isotope dataset presented in this thesis also provides new insights
into possible post-depositional REE mobility that might affect the La-Ce system. For two
out of the three sites, namely Red Lake and Woman Lake, two outliers were clearly
identified at each site. These samples show mostly minor but clearly resolved departures
from the ca. 3 Ga isochron. In Chapter 6, La/Ce perturbation models are explored, and it is

demonstrated schematically that later additions of La and/or Ce can act to raise or lower

258



CHAPTER 7 : CONCLUSION AND PERSPECTIVES

the La/Ce ratio and readily explain these outliers by post-depositional processes (c.f.
Figures 6.9 and 6.10). Importantly, the presence of outliers in this dataset demonstrates that
such processes necessarily affected the sample set. Even when considering only those
aliquots not rejected as outliers (14 out of 18 analyzed; those used to generate the
isochrons), with the exception Red Lake where analytical errors appear to be overestimated
for the obtained isochron (low MSWD of 0.19), the other two isochrons show MSWD
values that are relatively elevated (2.7 and 2 for Woman Lake and Steep Rock,
respectively). These values approach their respective F value cutoffs (determined by the
different numbers of points on each isochron and number of replicates employed) that
would designate them as errorchrons instead of isochrons (see Brooks et al., 1972, and F
value tables therein). This means that within the analytical uncertainties, they are close to
showing behavior in '3¥La/!'*?Ce vs. 133Ce/'*?Ce space that cannot be accounted for strictly
by radioactive decay, and that other processes have induced true geological dispersion, for
which statistical support is approaching 2. In other words, with the exception of Red Lake
for which errors appear to be overestimated, even the non-outlier aliquots appear to show
evidence for mobility and/or other sources of dispersion in the La-Ce system, despite the
coherent ages and small 2c errors obtained from the isochrons. This is perhaps not
surprising considering that both previously published La-Ce isotopic studies of
Precambrian metasediments (in both cases >3.2 Ga samples from the Barberton Greenstone
Belt; Hayashi et al., 2004; Bonnand et al., 2020) showed significant late perturbation to the
La/Ce system, in these cases leading to late negative Ce anomalies. It is further not
surprising that due to redox considerations, La and Ce should be separated more readily
from each other than Sm from Nd, for example, the Sm-Nd system is widely considered a
generally robust source tracer and radiometric dating system that nonetheless may be

isotopically perturbed at high metamorphic grades (e.g., Gruau et al., 1996). While La-Ce
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isotope systematics nonetheless has strong potential going forwards for constraining in time
REE signatures of Ce redox processing, it is important to keep in mind that it is subject to
natural processes that may generate true geological dispersion in La and Ce, at the time of

deposition or anytime afterwards, beyond that expected by radioactive decay.

7.3 Implications for the origin of oxygenic

photosynthesis and early biogeochemical cycling

As detailed in Chapters 5 and 6, certain carbonate samples from three different
Mesoarchean carbonate platforms from the NW Superior craton show clear evidence of Ce
redox cycling by the presence of mild positive as well as mild to strong negative Ce
anomalies. La-Ce geochronology confirms an ancient (pre-GOE) origin of these signals for
all three sites, with important implications for our understanding of the timing of the
evolution of oxygenic photosynthesis and the early evolution of biogeochemical cycles. As
discussed in Chapter 6, even if recent laboratory experiments indicate that it may be
possible to generate appreciable Ce anomalies during weathering under anoxic conditions
in the presence of siderophores (Kraemer and Bau, 2022), in modern marine environments
the water column and sedimentary expression of Ce anomalies stemming from Ce redox
cycling is to date, based on currently available data, universally dependent on the presence
of Oa. Furthermore, it was seen in Chapter 6 that alternative possible oxidants driving Ce
oxidation, e.g., H,O», were unlikely to have been produced in sufficient amounts to drive
appreciable Ce oxidation. The presence of important negative Ce anomalies in the
Mesoarchean carbonates examined in this study thus indicate that free oxygen was indeed

being biologically produced at least as far back as 2.93 Ga.
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These findings have important ramifications for our current understanding of
Mesoarchean biogeochemical cycling. Firstly, at all three sites, the presence of negative Ce
anomalies was far from universal across the hundreds of samples analyzed by the
EARTHBLOOM project and examined in this thesis for their REE systematics. Indeed, at
Red Lake, only a small number (<20) of samples showed important negative Ce anomalies,
and the vast majority came from one site in particular, the Golden Arm site where m-scale
domes comprised of alternating carbonate microbialite and carbonate crystal fans outcrop
at the lakeshore. This indicates that even at Archean sites where oxygenic photosynthesis
is confirmed to been occurring, sedimentary trace element signals for the presence of O
may be rare. As discussed in Chapter 6, this is not surprising for the Ce redox proxy
considering that even in modern shallow-water environments with abundant water column
O, Ce(Ill) oxidation rates may be slow, and only in more open-ocean settings where
flocculating particulate concentrations reach a minimum does the Ce(IIl) oxidation rate
exceed the Ce(III) turnover time and permit the water column expression of important Ce
anomalies (Moffett, 1990). In other words, it is unlikely that O, production was restricted
to deeper water environments, but rather it is only here where REE residence times were
sufficiently long to permit accumulation of a significant Ce(IV) reservoir in the face of
sluggish Ce(III) oxidation kinetics. This observation should help guide future workers in
the search for ancient signals of oxygenic photosynthesis using the Ce redox proxy. It also
means that early oxygenic photosynthesis may have been cryptic from the point of view of
a variety of proxies. The possibility remains open that other proxy systems may reveal the
ancient presence of Oz whereas others indicate anoxic conditions for analysis of the very
same sample. It follows that sediments deposited in even more shallow-water
environments, where rapid Ce(Ill) turnover prevents the accumulation of important Ce

anomalies, may still hold clues to early O2 production, and that future work should pay
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special attention to lessons obtained from modern oceanography (e.g., redox proxy
residence times in different environments) when selecting paleoredox proxies for
application to these environments. For shallow-water environments with rapid trace metal
and REE turnover, other paleoredox proxies, especially those with rapid oxidation rates

relative to anoxic renewal processes, should be explored.

The results of this thesis work also have important bearing on previously published
sedimentary records suggested to indicate pre-GOE O production. There exist multiple
studies demonstrating convincingly that ancient sedimentary records deposited before the
GOE may be subject to later elemental and isotopic modifications during more modern
surface weathering (e.g., Albut et al., 2018, 2019; Planavsky et al., 2020; Bonnand et al.,
2020). The generally well-preserved samples in this work clearly do not represent such a
case, and sheds little insight into modern resetting processes. It does, however,
fundamentally change the burden of proof required for claims of pre-GOE O production.
Quite simply, now that it has been confirmed with high statistical support that oxygenic
photosynthesis was operating in the Mesoarchean, it cannot be said that oxygenic
photosynthesis is an unlikely source of ancient signals for free O2. Rather, the burden of
proof should swing in the direction of those claiming that such signals are universally the
product of later surface weathering. No longer should claims of pre-GOE oxygenic
photosynthesis be shot down by the simple argument that all available records could be
explained by later surface weathering. Rather, the most parsimonious explanation for pre-
GOE signals of free O2 production captured in ancient sedimentary rocks should now be
that oxygenic photosynthesis was likely recorded, barring robust evidence for the
secondary nature of such signals. Adoption of this shift in the current paradigm should help

advance research in this domain, as important datasets that may be easily critiqued as
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representing “late alteration” with relatively little confirmatory evidence should now enjoy
additional support that should act to raise the bar in terms of geochemical or

geochronological evidence that might be used to otherwise discredit them.

Finally, in what is likely the most important ramification of this work, these results
provide for the first time a chronological anchor point in deep geological time where it may
be stated with high certainty that oxygenic photosynthesis had already evolved. Such
anchor points are critical for phylogenetic molecular clock reconstructions of the evolution
of early microbial metabolism. Such efforts have to date yielded highly discrepant
conclusions : the origins of oxygenic photosynthesis is indicated by some studies to have
occurred within 100 Ma or so of the GOE itself (Soo et al.; Shih et al., 2017), and thus its
evolution may coincide GOE itself, vs. others that indicate its origins as far back as 3.3 —
3.6 Ga or earlier (Cardona et al., 2019; Cardona, 2019; Boden et al., 2021). The data
presented in this thesis clearly support the latter, and should enable a new generation of
molecular clock reconstructions based on this critical updated timepoint. While it remains
to be seen whether it is the Oz-producing activity of direct cyanobacterial ancestors that has
been effectively dated by this study, or whether the O, was produced by a more ancestral
but unrelated group, presumably now extinct, that simply transferred their photosynthetic
machinery to the ancestors of modern cyanobacteria. Regardless, this work has placed a
new critical anchor point in geological time for early O production, firmly in the
Mesoarchean, and should hopefully stimulate further research and insight into the evolution

of Earth’s most important microbial metabolism.
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Contraindre I'évolution précoce des voies photosynthétiques de la Terre : une approche

isotopique

Mots clés : Archéen, photosynthése, oxygéne, géochronologie La-Ce

Résumé : Ce travail de thése s'est concentré sur
de nouvelles signatures géochimiques et
isotopiques préservées dans des roches
sédimentaires chimiques et d'autres sédiments
marins du Craton Supérieur canadien, déposés
entre 2,93 et 2,8 Ga, afin de mieux comprendre
I'évolution des voies photosynthétiques sur la
Terre primitive.

La chimiostratigraphie isotopique du fer des
carbonates stromatolithiques et des sédiments
d'eaux profondes préservés dans une carotte de
la ceinture de schistes verts de Red Lake (2,93
Ga) révele un cycle complexe d'oxydoréduction
du fer sur un transect de faible profondeur a
grande profondeur, avec un couplage entre le
cycle du fer et du soufre qui est mieux expliqué
par l'activité photosynthétique marine.

Les données de REE de trois plateformes
carbonatées (2,93 Ga Red Lake, 2,86 Ga
Woman Lake et 2,80 Ga Steep Rock Lake)
représentant les plus anciennes plateformes
carbonatées épaisses connues sur Terre,
fournissent des preuves de processus
estuariens, d'apports hydrothermaux et, surtout,
de la production d'oxygéne libre, comme le
montrent d'importantes anomalies négatives en
Ce d'une ampleur sans précédent pour
I'Archéen. La géochronologie La-Ce de haute
précision a été appliquée avec succés aux
échantillons des trois sites, produisant trois
isochrones claires qui datent le fractionnement
La/Ce, et donc I'oxydation du Ce, au moment du
dépot.

Constraining the Early Evolution of Earth’s Photosynthetic Pathways: An Isotopic Approach

Keywords : Archean, photosynthesis, oxygen, La-Ce geochronology

Abstract : This PhD work focused on novel
geochemical and isotopic signatures preserved in
chemical sedimentary rocks and other marine
sediments from the Canadian Superior Craton,
deposited between 2.93 and 2.8 Ga, to better
understand the evolution of photosynthetic
pathways on the early Earth. Iron isotope
chemostratigraphy of stromatolitic carbonates
and deep-water sediments preserved in drill core
from the 2.93 Ga Red Lake Greenstone Belt
reveals complex iron redox cycling across a
shallow-to-deep transect, with coupling between
Fe and S cycling that is best explained by offshore
photosynthetic  activity. Comparative REE
systematics of three Mesoarchean carbonate
platforms of the Superior Craton (2.93 Ga Red
Lake, 2.86 Ga Woman Lake, and 2.80 Ga Steep
Rock Lake) and representing Earth’s

earliest known large carbonate platforms,
provide clear evidence for estuarine processes,
hydrothermal inputs, and crucially, for the
production of free oxygen, as tracked by
important  negative @ Ce  anomalies  of
unprecedented magnitude for the Archean.
High-precision La-Ce geochronology was
successfully applied to samples from all three
sites, vyielding three clear isochrons that
constrain the timing of La/Ce fractionation, and
thus Ce oxidation, to the time of deposition.
These results constitute the first
geochronological constraint on the origin of
oxygenic photosynthesis and place it firmly
within the Mesoarchean, with important
implications for our current understanding of
Earth’s biological and geochemical evolution.
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