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Abstract

Global Navigation Satellite Systems (GNSS) have undergone a boom in recent years in a
wide range of applications. These applications often include use in urban environments where
most of the consumers are. However, urban canyons are the most challenging conditions for
a GNSS receiver to operate in without large position errors. Thanks to the increased avail-
ability of GNSS signals via new constellations(Galileo and Beidou) and new frequencies (e.g.
E6), this has led to a better positioning accuracy in challenging conditions. But, the sheer
nature of urban environments still leads to positioning errors despite the increased number
of signals.

The presence of high obstacles such as buildings and trees can create an environment where
the incoming GNSS signal is reflected, diffracted, or even blocked before reaching the an-
tenna. This phenomenon is called multipath. The blockage of direct signals means that only
reflected or diffracted signals can reach the antenna called non-line of sight signals (NLOS).
On the other hand, when the original signal reaches the antenna on top of reflections and/or
diffractions, this is referred to as multipath reflections which will be studied in this thesis.
Multipath depends on the satellite positions and the surrounding environment; therefore,
predicting its impact is near impossible for real-time systems. Multipath impacts the three
GNSS observables that can be generated to estimate the receiver’s position: code pseudor-
ange, carrier phase and Doppler measurement.

In GNSS positioning, carrier phase measurements are widely used as they are much more
precise than the code pseudoranges. However, these observables are ambiguous as the total
number of cycles is not exactly known. To reap the accuracy benefit of these measurements,
the ambiguity has to be estimated and then fixed in some cases. This mandatory process is
often complicated and complexifies the positioning algorithms by including additional pro-
cessing steps. Furthermore, if the lock on the phase of the signal is temporarily lost - called
a cycle slip, the ambiguity must be re-estimated/fixed. In urban conditions, cycle slips fre-
quently occur due to lower carrier to noise density ratios (CN0) or temporary signal blockage.

This thesis was part of the collaboration between the research group SIGNAV at ENAC
and 3D Aerospace. The goal was to develop a light-weight GNSS receiver that functions in
real-time and can operate in urban conditions. Thus, there was an emphasis on making algo-
rithms lightweight so that they could be implemented in the real-time receiver down the line.

To alleviate some of the computational burden brought by using raw carrier phase mea-
surements, this work presents an extended Kalman filter that uses time differenced carrier
phase measurements (TDCP) tightly coupled with an inertial navigation system (INS). TD-
CPs are the difference of two consecutive carrier phase measurements. In the absence of
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cycle slips, the ambiguity term remains constant so the difference effectively removes it. The
proposed filter is 57% faster than a filter that estimates the ambiguities due to its much
smaller state vector size. Furthermore, as there is no convergence period on the ambiguities,
the TDCP filter performs 5% and 17% better for the 68% and 95% horizontal errors than
the ambiguity estimation filter in urban conditions.

It was observed on the TDCP filter that its performance is still heavily reliant on the accu-
racy of code pseudoranges. Yet, this measurement is the most impacted by multipath out of
the three. Therefore, another goal of this thesis was to detect when multipath reflections af-
fected the code pseudoranges. As convolutional neural networks (CNN) can be very efficient
in finding features that are hard to model, they were used in this work as a binary classifier
to detect multipath. The CNN inputs are obtained thanks to correlator output values as
a function of their delay (with respect to the prompt correlator) and as a function of time
yielding a 2D image. The presented model has a F score of 94.7% on Galileo E1-B and 91.6%
on GPS L1 C/A. To reduce the computational load, the number of correlator outputs and
correlator sampling frequency was then decreased by a factor of 4, and the CNN still had a
F score of 91.8% on Galileo E1-B and 90.5% on GPS L1 C/A.

To take advantage of the detected multipath rays from the CNN, this work proposes an
algorithm that fuses a weighted least squares estimator (WLSE) with a robust MM estima-
tor. WLSE estimators can be severely impacted by outliers but perform optimally in ideal
conditions. On the other hand, robust MM estimators can mitigate the impact of outlier
but suffer from a loss of efficiency when no outliers are present. Hence, a hybrid positioning
solution is investigated: when multipath is detected by the CNN, the robust MM estimator
is used and when no multipath is detected the WLSE algorithm is used. For the presented
data, it was shown to improve the horizontal positioning accuracy by 20% and 11% for 20%
and 60% of the time.
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CHAPTER 1
Introduction

1.1 Thesis background and motivation

This PhD was funded by 3D Aerospace; a start-up currently developing a multi-frequency,
multi-constellation (GPS + Galileo) receiver. This receiver will serve as one of the main
bricks of a positioning engine called the eHermes. This system has two targeted applica-
tions. One is to detect various anomalies in the vineyard. These include detecting missing
or sick plants. The system also aims at estimating the wine yield from the detected grapes
using several onboard cameras. The other targeted application by the eHermes is to detect
potential potholes and other road anomalies in urban environments. This PhD was con-
ducted with a focus on the latter. The whole global navigation satellite system (GNSS)
signal processing chain was developed by myself for 3D Aerospace, so there was a large flex-
ibility on the data being used for research purposes. On the other hand, as the eHermes
needs to operate in real time, there was an emphasis on having light-weight algorithms.

The receiver is required to operate in cities; therefore, a heavy focus of this PhD was placed
on designing and testing algorithms in urban conditions. GNSS in urban conditions is one of
the most researched topics due to the difficulty of modeling all errors affecting the received
signals. One of the most difficult errors to model is multipath due its dependency on the
surrounding environment.

The baseline receiver was a tight coupling between an inertial measurement unit and GNSS
observables using an extended Kalman filter and using precise point positioning (PPP) cor-
rections. Improving the position solution of this baseline receiver in urban conditions despite
the presence of multipath was targeted while keeping the computational complexity of algo-
rithms to a minimum. To do so, two main research axes were identified:

• Using a combination of consecutive carrier phase measurements in a PPP algorithm.

• Mitigation of the multipath effect in the positioning algorithm.

For low cost systems that are not connected to any real time kinematics correction provider,
PPP based solutions are often the preferred choice. Thanks to the use of multi constella-
tion and frequency observations, carrier phase measurements, and satellite corrections, the
accuracy of position velocity time (PVT) solutions is increased with respect to standard
precision positioning solutions. A common approach to PPP solutions is to use an extended
Kalman filter (EKF). A Kalman filter (KF) fuses a statistical model of the state evolution
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with observations and the corresponding model to estimate the chosen states.

In GNSS positioning, carrier phase measurements are widely used as they are much more
precise than the code pseudoranges. Thus, the EKF can be configured to estimate the am-
biguity of each carrier phase measurement as done in [Li, 2019] [Duong, 2019]. However,
by estimating the ambiguity for each measurement in an Extended Kalman Filter, this aug-
ments the size of the state vector. The benefit of using carrier phase measurements, while
keeping a low state vector size, can be obtained by using Time Differenced Carrier Phase
(TDCP) measurements [Kim et al., 2020], [Soon et al., 2008], and [Kai et al., 2021]. TD-
CPs are formed by differencing two consecutive carrier phase observables which effectively
removes the ambiguous term if no cycle slips are present. This yields a more lightweight
algorithm but at the expense of absolute positioning.

To increase the robustness of the navigation solution and mitigate the downsides of GNSS sig-
nals, inertial measurement units (IMU) are often combined with GNSS observations. IMUs
measure the acceleration and angular rate. Their performance does not depend on the sur-
rounding environment and have great short-term accuracy making them especially useful in
challenging GNSS conditions. This comes at the expense of additional states to account for
- attitude angles and IMU biases - and initialization processes. In this work, the IMU was
tightly coupled to the GNSS solution in the EKF.

Even though carrier phase measurements are more accurate, code pseudoranges are also
used in PPP solutions as they are unambiguous and do not suffer from cycle slips. Hence,
the performance of the solution still relies on the code pseudoranges. Code pseudoranges
have bigger multipath errors than carrier phase measurements [Jong-Hoon Won, 2017]. It
is then important to determine when a code pseudorange is affected by multipath in order
to either exclude the measurement or mitigate its effect. This thesis had as an objective to
improve the positioning accuracy by detecting multipath affected measurements.

Since the GNSS receiver of 3D Aerospace employs a JETSON nano -a small computer
on a printed circuit board with a graphical power unit - machine learning (ML) is possible
onboard. Therefore, the second part of this thesis focused on detecting multipath with the
help of deep learning. GNSS multipath can be divided into two categories [Lau, 2021]:

• A line of sight (LOS) signal with one or multiple reflections of the signal reaching the
antenna.

• Only non-line of sight (NLOS) signals arriving to the antenna.

Multipath reflections occur when the direct signal is reflected or diffracted by surrounding
materials before reaching the antenna. These reflections are contained in the original signal
to produce a distorted version of the signal. After being processed by the receiver, this
distorted signal degrades the accuracy of the GNSS observables (code pseudoranges, carrier
phase, and Doppler measurements). These observables are used to compute a position solu-
tion ultimately resulting in a degraded solution.

NLOS signals happen when the direct signal is masked, yet one or more reflections reach
the antenna. If the power of the NLOS signal is large enough, the GNSS tracking loops can

2



process it without detecting its nature. This type of multipath also induces a bias in the
position solution.

In this thesis, detection of NLOS multipath is not the primary focus as the methods proposed
herein do not allow for precise NLOS detection. Yet, their effects will be mitigated by the
robust estimation technique presented. Detection of NLOS measurements can be performed
by other methods such as the ones presented in [Sanromà Sánchez et al., 2016], [Suzuki and
Amano, 2021], or [Matera et al., 2019].

In the existing literature, most algorithms focus on the detection of one category of multi-
path at a time with a focus on NLOS detection with a wide array of techniques. [Hsu, 2017]
tried to detect NLOS satellites with a support vector machine SVM. [Jiang C., 2021] aimed
at modeling the code discriminator with Gaussian fitting to detect NLOS. [Sanromà Sánchez
et al., 2016] and [Marais et al., 2014] used fisheye images and the carrier to noise density
ratio. This is due to the fact that NLOS signals and multipath reflections often affect the
positioning solution very differently [Groves et al., 2013]. Some account for LOS reflections
and NLOS in the same algorithm such as [Matera et al., 2019] who isolates the multipath
from reference base stations data fused with fisheye images, or [Suzuki et al., 2020] who uses
a rotating antenna to mitigate both categories of multipath errors.

Lately, machine learning has been applied to GNSS data processing especially for multi-
path detection/mitigation with promising results. For example, [Munin et al., 2020] and
[Blais et al., 2022] fed synthetic correlator outputs to convolutional neural network (CNN)
to detect multipath. Since they generated controlled multipath and knew when multipath
affected the correlators, their method lacked a classification process that would make the
method applicable to real signals. Furthermore, the images containing the correlator out-
puts fed to the CNN were generated from every integration epoch of the tracking process.
However, in real-life scenarios, due to the tracking filters and multipath, correlator outputs
are correlated in time. [Suzuki and Amano, 2021] also used correlator outputs but to detect
NLOS via neural networks and SVMs by classifying NLOS measurements using a fisheye
camera based algorithm. They, too, used correlator outputs at every integration epoch
leading to correlation between the machine learning inputs. [Quan et al., 2018] also used
convolutional neural networks for multipath detection/exclusion but uses the signal to noise
ratio and pseudoranges as inputs to the network. [Xu et al., 2020] and [Hsu, 2017] used
SVMs to detect NLOS using shadow matching and GNSS measurements (pseudoranges and
Doppler shifts) respectively.

Multipath rays depend on the environment; they cannot be predicted unless 3D maps are
built and/or ray-tracing is used [Bétaille et al., 2013][Peyret et al., 2014]. Current com-
putational power units (CPU) are not able to process such amounts of data in real-time.
To avoid extra processing power on the CPU , no external information regarding the envi-
ronment was used. The definition of multipath depends on the targeted positioning accuracy.

As using CNNs can be very efficient in finding features that are hard to model [Liu, 2018],
they were used in this work as a binary classifier to detect multipath. The CNN was used
to detect multipath, but this alone does not improve the positioning accuracy. The CNN
classification needs to be fed to a positioning algorithm to take into account this information.
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Due to the presence of multipath, classical positioning algorithms such as the weighted least
squares estimation (WLSE) tend to perform poorly. Indeed, the WLSE algorithm is opti-
mal for measurements that follow a centered Gaussian distribution. Yet, when multipath is
present in the GNSS observables, especially the pseudoranges, their distribution cannot be
assumed as centered and/or Gaussian. In this case, robust statistics can be very efficient as
shown in [Medina et al., 2019b] as they are able to deal with multiple erroneous observations.
The downside of these robust estimators is their loss of efficiency when the data follows a
centered Gaussian distribution making them sub-optimal when the pseudoranges are unaf-
fected by multipath. There is a trade-off between using the regular WLSE algorithm with
a risk of large positioning errors in heavy multipath conditions and using robust estimators
at the expense of slightly degraded position in ideal conditions. Thus, by knowing when
the observables are affected by multipath, the positioning solution could switch between the
WLSE algorithm and robust estimator according to the multipath conditions.

This kind of algorithm was investigated in [Ding et al., 2023] by using pseudorange residu-
als to decide which environment the receiver is in. The solution proposed in this thesis is
based on the CNN multipath decision to decide on the multipath conditions. It will also
investigate adapting the robust estimator parameters according to the estimated multipath
environment.

1.2 Thesis objectives

The focal points of this research were to design a PPP algorithm for a real-time GNSS
receiver and to mitigate the effect of multipath from the positioning solution to improve the
positioning accuracy. To do so, the thesis was divided into three phases.

1. Develop a PPP algorithm with a limited computation power requirement

• One goal of this work is to present an alternative to carrier phase ambiguity
estimation in PPP algorithms. Indeed, as these algorithms have become more
complex in an effort to maximize positioning accuracy, these approaches present
a challenge for systems that require real-time capabilities with limited compu-
tational power or energy consumption. The presented TDCP based EKF aims
at matching the accuracy of a conventional PPP algorithm, which estimates the
carrier phase ambiguities.

• Another goal of the presented algorithm is to be much faster than the carrier
phase ambiguity estimation one so that it can be implemented on a real-time
receiver.

2. Detect multipath from correlator outputs using GNSS data only

• The goal is to detect line of sight reflections and then exclude them on real signals
(Galileo E1-B and GPS L1 C/A) using GNSS data only. This is accomplished
thanks to CNNs fed by multiple correlator outputs. The labeling of data (multi-
path present or not) is obtained by computing the tracking bias of the discrimi-
nator function.
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• The number of correlators used to detect multipath will also be varied to re-
duce the computational power required to have multiple correlators. The CNN
performances will be investigated accordingly.

• The benefit of using CNNs over the raw tracking bias will be demonstrated both
in terms of metric performance and computational speed.

3. Mitigate multipath in positioning solutions

• The goal was to improve the accuracy of WLSE or robust estimators based so-
lutions by proposing an algorithm that fuses both solutions depending on the
multipath conditions.

• Another goal was to adapt the parameters of the robust estimators based on
the multipath conditions to further improve the quality of the robust estimator
solution.

1.3 Thesis contributions

The three objectives of the thesis presented have been reached. The main contributions are
the following:

1. Proposal and design of a dual frequency, dual constellation PPP engine using an EKF
and TDCP measurements that performs better than an EKF estimating the carrier
phase ambiguity without cycle slip repair and is much faster.

2. Proposal and implementation of an algorithm to classify multipath based on the mag-
nitude of the tracking bias using the pseudorange multipath error envelope (MEE) of
frequently encountered materials in urban environments.

3. Presentation of a deep learning based method to detect multipath on the fly by using
multiple correlator outputs coming from a modified delay lock loop (DLL).

4. Validation of proposed algorithms on real data collects

5. Fusion of the WLSE algorithm and robust estimators in an algorithm that estimates
the multipath environment to decide which solution to use.

6. Performance assessment on the adaptation of parameters of robust estimators based
on the estimated multipath environment of the receiver.

On top of this thesis, these contributions can be found in the articles listed below:

1. Guillard, Anthony, Thevenon, Paul, Milner, Carl, ”Using TDCP Measurements in a
Low-Cost PPP-IMU Hybridized Filter for Real-Time Applications,” Proceedings of
the 35th International Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS+ 2022), Denver, Colorado, September 2022, pp. 2090-2103.
https://doi.org/10.33012/2022.18331

2. Guillard A, Thevenon P and Milner C (2023) Using convolutional neural networks to
detect GNSS multipath. Front. Robot. AI 10:1106439. doi: 10.3389/frobt.2023.1106439
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3. Guillard, Anthony, Thevenon, Paul, Milner, Carl, Macabiau, Christophe ”Benefits
of CNN-Based Multipath Detection for Robust GNSS Positioning,” Proceedings of
the 37th International Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS+ 2023), Denver, Colorado, September 2023.

1.4 Thesis outline

The manuscript is structured as follows.

Chapter 2 describes the necessary algorithms to implement in order to successfully process
an incoming GNSS signal. It starts with the reception of the signal at the antenna which
digitalizes the signal so that it can be acquired and tracked. The generation of GNSS ob-
servables is also explained as well as the impact that multipath has on both tracking and
measurements.

Chapter 3 presents the different positioning algorithms that can be implemented from
the obtained GNSS observables. The traditional least squares algorithm and Kalman filter
are presented first. The Kalman filter will also be presented when an inertial measurement
unit is fused to the GNSS measurements for added robustness. Then, the three most com-
mon robust estimators are described - M, S, and MM.

Chapter 4 deals with the theory behind convolutional neural networks. This chapter high-
lights the difference with traditional neural networks and also presents the elements making
up a CNN. It also gives insight on how to reduce the risk of overfitting.

Chapter 5 presents the PPP algorithm implemented with TDCP measurements. It de-
scribes how to generate the TDCP measurements and the necessary algorithms to implement
this solution. The test set-up and conditions under which this filter was evaluated on are
also mentioned. Lastly, the results are discussed from both an accuracy and computational
performance point of view.

Chapter 6 details the implementation of the CNN model to detect multipath and the
data labeling used to train the CNN. It also deals with the signal deformation caused by
hardware. The test set-up and data used for the results are also presented before the results
which detail the metrics and computational performance.

Chapter 7 defines the algorithm used to mitigate the effect of multipath in the positioning
solution based on the CNN algorithm of chapter 6. It also details the different parameters of
robust estimators that can be changed. Then, the data and test set-up are expressed before
presenting the results and their conclusions.

Chapter 8 reflects on the work presented and their conclusions as well as depicting re-
search leads that can be pursued in the future.
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CHAPTER 2
GNSS Receiver Processing and Observables

GNSS signals are transmitted from satellites in the form of electromagnetic waves. Upon
reaching a GNSS receiver, several steps must be performed before being able to retrieve the
underlying information in the signal. One such receiver solution, is the software defined
radio (SDR) which is divided into hardware and software blocks. The hardware is made of
the antenna and the front-end. On the other hand, the software blocks are the algorithms
required to demodulate the signal bits and compute the GNSS measurements. Indeed, the
signal contains the Keplerian parameters to compute the positions of the satellites in the form
of data bits. Furthermore, by tracking the incoming signal, measurements of the pseudo-
distance to the satellite, phase cycles, and the Doppler offset can be obtained. During the
course of this PhD, the development of the software blocks was also done. This chapter
will detail the traditional algorithms to be implemented to retrieve these GNSS observables.
It will also describe alternative acquisition and tracking algorithms used in modern day
receivers. This chapter will also look into the effect that multipath has on the tracking
process and the generated observables.

Chapter Contents

2.1 Signal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Data Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Pseudo-Random Noise Code . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Carrier Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 IF Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Signal Conditioning and Digitization by the RF front-end . . . . . . . . . . . 10
2.2.1 Filtering and Amplification . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Down Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Automatic Gain Control and Analog to Digital Converter . . . . . . . 12

2.3 Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Generating in-phase and quadrature phase correlator outputs . . . . . 13
2.3.2 Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Alternate Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Carrier frequency offset (Doppler shift) and phase . . . . . . . . . . . 18
2.4.2 Code Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Effect of Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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2.4.4 Alternate Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Observables Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Code Pseudorange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.2 Carrier Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.3 Doppler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.4 Effect of Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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2.1 Signal Structure

A GNSS signal is composed of a carrier wave whose purpose is to transmit the information
as an electromagnetic wave. This carrier wave has a ultra high frequency (in the L-band)
and a large bandwidth of several Mega Hertz. A GNSS signal is also composed of a Pseudo
Random Noise (PRN) code which is a series of X bits – also called chips – where X depends
on the signal. Navigation bits also make up the signal.

These elements are presented in the sections below and illustrated in Figure 2.1 but are
not to scale.

Figure 2.1: GNSS Signal Elements (not to scale).

2.1.1 Data Bits

Data bits in GPS and Galileo signals are sent with a very low data rate. They contain the
Keplerian parameters, also called ephemeris, which are the information required to compute
the position of the satellites. They also contain the values of the satellite clock correction
parameters with respect to their true constellation time. Other parameters are transmitted
as the almanac, the satellite health status, etc..

2.1.2 Pseudo-Random Noise Code

A PRN code is a periodic sequence of bits that is pseudo-random. Galileo and GPS systems
are based on code division multiple access, which allows several transmitters to send a
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message on the same frequency band but with different codes, in this case the PRN. This
means that every GPS and Galileo satellite transmit a unique PRN code. The PRN codes
generators are the linear feedback shift registers. This is due to the fact that they are
very efficient to generate the codes and provide a very high performance with respect to
correlation purposes. This can be broken down into two properties:

1. Cross Correlation (correlation on two different PRNs): if the cross correlation
function of a PRN code is computed, the result will be close to 0 for all delays.

∀k ∈ Z s.t (cx ∗ cy)(k) ≈ 0 (2.1)

As the discrete form of the correlation operation is presented, equation 2.1 can be
expressed as:

Rcxcy(k) =
1

N

Nc−1∑
n=0

cx(n)cy(n− kTc) ≈ 0 (2.2)

2. Autocorrelation (PRN correlated with itself): if the autocorrelation function of
a PRN code is computed, the maximum value will be for a delay of 0 (or equal to the
period of a PRN), but for a delay different than 0 then the autocorrelation value will
be close to 0.

Rcxcx(k0) = 1

∀k ∈ Z∗ s.t Rcxcx(k) ≈ 0
(2.3)

Where:

• Rcicj is the correlation result of PRNs from satellite i and j

• Nc is the number of chips in a PRN period

• ci denotes the PRN code for satellite i

• Tc is the duration of a PRN chip in seconds

The PRN code has a period of TP which depends on the type of signal. When the signal
reaches the antenna, the start of the PRN code is offset by an unknown value called τ in
(2.5). To demodulate the data bits and to estimate the code pseudoranges, the PRN code
must be removed in the signal processing blocks. Hence, the code delay must be estimated.
During acquisition, one goal is to roughly estimate this code delay, and during the tracking
process, this code delay estimation is refined.

2.1.3 Carrier Wave

The carrier wave is a waveform that is modulated with an input signal for the purpose of
conveying information. In GNSS, this carrier wave is of the form:

ϕ(k) = cos
(
2π(fIF + fD(k))kTs + θ(k)

)
+ j sin

(
2π(fIF + fD(k))kTs + θ(k)

)
(2.4)

When the satellite and receiver are moving, it induces a frequency shift of the signal. This
is called the Doppler effect and the offset is denoted fD in (2.4). To access the data bits
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contained in the signal and estimate the Doppler shift and carrier phase measurements, the
carrier wave must be removed from the signal. To do so, the Doppler frequency shift must
be estimated. One of the purposes of the acquisition process is to give a first estimate of
the Doppler shift. Once the signal is acquired, the tracking process will finely estimate the
Doppler shift.

2.1.4 IF Signal Model

After going through the RF front-end, a GNSS signal can be modeled as follows.

s(k) =
A

2
exp
(
2jπ(fIF + fD(k))kTs + θ(k)

)
c
(
kTs − τ(k)

)
d
(
kTs − τ(k)

)
+ n(kTs) (2.5)

Where:

• k is the discrete index at which the signal was sampled

• A is the complex amplitude of the signal

• c(t) represents the PRN code

• d(t) represents the data bits

• τ is the receiver PRN code delay in seconds

• n(t) is the incoming noise assumed as Additive White Gaussian Noise (AWGN)

• fD(t) is the induced Doppler frequency of the GNSS signal in Hz

• θ(t) is the phase of the signal in radians

2.2 Signal Conditioning and Digitization by the RF

front-end

The front-end is the hardware block that transforms an analog signal to digital values so
that the characteristics of the signal can be obtained by the signal processing algorithms.
Figure 2.2 illustrates a typical GNSS radio frequency (RF) front-end.
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Figure 2.2: Illustration of a GNSS RF front-end.

2.2.1 Filtering and Amplification

The transmitted signal has a carrier wave with a frequency of 1575.42 MHz for GPS L1 C/A
and a wideband spectrum that depends on the type of signal. A bandpass filter is applied
around the carrier frequency to only select the desired frequency range. An example of an
ideal bandpass filter applied around the main lobe of the GPS L1 C/A power spectral density
is depicted in Figure 2.3.

Figure 2.3: Illustration of an ideal bandpass filter.

When reaching the antenna, the GNSS signal has very low power and is mostly composed
of noise. In order to increase the power of the signal, an amplifier is used. However, when
raising the power of a signal, the amplifier also increases the noise of the signal. In most
cases, a low noise amplifier is used in GNSS front-ends as they have good gains while having
a low noise figure.
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2.2.2 Down Conversion

The analog signal has an ultra high frequency. Digital processors that replicate such a
carrier wave is financially costly. Therefore, the signal must be down converted before
digitalizing it. To do so, a mixer and a local oscillator are used to bring the signal to an
intermediate frequency while conserving its structure. The local oscillator will generate a
sine wave with a chosen frequency fLO. The signal is then multiplied with this sine wave,
and the mixer will bring the signal down to the chosen intermediate frequency. This process
is illustrated mathematically below. For now, the GNSS signal model is simplified and its
detailed definition will be given in section 2.1. The GNSS signal has an in-phase component
(I - cos(ωt)) and an quadrature phase component (Q - sin(ωt)).

s(t) = sGNSS(t)

(
cos
(
2jπt(fc + fD(t) + θ(t)

)
− (sin

(
2jπt(fc + fD(t) + θ(t)

))
(2.6)

Supposing we have only one signal (no Q component), the signal can be brought down to:

s(t) cos(2jπfLOt) =
1

2
sGNSS(t)

(
cos
(
2jπt(fc+fD(t)+fLO)+θ(t)

)
+cos

(
2jπt(fIF+fD(t))+θ(t)

))
(2.7)

Where:

• s(t) is the analog GNSS signal at time t

• sGNSS(t) is the analog GNSS signal without the carrier wave at time t

• fc is the carrier frequency of the GNSS signal in Hz

• fD(t) is the induced Doppler frequency of the GNSS signal at time t in Hz

• fLO is the frequency of the local oscillator in Hz

• fIF is the intermediate frequency in Hz which is equal to fIF = fc − fLO

• θ(t) is the phase of the signal at time t in radians

By then using another bandpass filter around the intermediate frequency, it is possible to
remove the high frequency component. Then, only the low frequency component is left,
leaving the signal to be passed through the analog to digital converter (ADC).

2.2.3 Automatic Gain Control and Analog to Digital Converter

The signal is then passed through an automatic gain control which essentially amplifies the
signal while controlling its increase in amplitude automatically [Hui, 2020]. This adapts the
signal amplitude to benefit from the full quantification range of the ADC, independently
from the receiving conditions (antenna gain, cable length, noise or interference levels).

The amplified signal is then passed through an ADC, which is responsible for transform-
ing the analog signal to digital samples. Essentially, it takes snapshots of the analog signal
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at every sampling period denoted by Ts. The sampling frequency chosen for the ADC should
satisfy the Nyquist criterion, meaning that:

fs > 2Bw (2.8)

Where:

• fs = 1/Ts is the sampling frequency in Hz

• Bw is the bandwidth of the bandpass filter defined in 2.2.1

An important parameter of the ADC is the number of bits used to quantize the signal. Every
analog value of the signal must be mapped to a chosen but fixed number of bits. Increasing
the number of quantization bits reduces the power loss due to the quantization operation, but
increases the power consumed and the number of operations in the digital signal processing.
Once, the signal is digitized through the ADC, it can be fed to the signal processing blocks
of the receiver.

2.3 Acquisition

Once the signal has passed through the front-end, it is now a digital signal and can be
processed by the digital signal processing blocks. The first step is to check which satellites
are in view and roughly estimate the parameters of the corresponding signal. This is the
role of the acquisition process.

2.3.1 Generating in-phase and quadrature phase correlator out-
puts

As mentioned earlier, to estimate the GNSS raw measurements, the carrier wave and the
PRN code must be wiped off the signal in separate but linked processes. The PRN code is
made of a sequence of -1s and 1s; so multiplying it with a synchronized replica would remove
it. However the receiver code delay, defined in (2.5) is unknown. Hence, the correlation
operation is used between the incoming signal and a locally generated code replica. Since
every satellite of a given signal type has a different PRN code, the local code replica must
correspond to the targeted satellite to acquire. To wipe-off the carrier, a local carrier replica
of the carrier must also be generated. The local replica must be multiplied with the incoming
signal and a low-pass filter applied to remove the high frequency component. However, the
Doppler frequency shift is unknown; therefore, it must be estimated to remove the carrier
wave. The correlation operation is also used for the carrier and code wipe-off. This is
illustrated in Figure 2.4.
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Figure 2.4: Generation of I and Q correlator outputs during the acquisition process.

During the coherent integration interval, three hypotheses are made [Julien, 2006]. The code
delay, Doppler shift, and phase are assumed constant. The coherent integration is performed
within the duration of one data bit, so its value is assumed constant (d(kTs− τ(k)) = d(n)).
With these assumptions and filtering the high frequency term, Figure 2.4 equates to:

I(n) =
A(n)

2

d

NTs

N∑
k=0

c(kTs − τ)cL(kTs − τ̂) cos
(
2πεfDkTs + θ

)
+ nI(k) (2.9)

Q(n) =
A(n)

2

d

NTs

N∑
k=0

c(kTs − τ)cL(kTs − τ̂) sin
(
2πεfDkTs + θ

)
+ nQ(k) (2.10)

Where:

• cL is the locally generated code replica

• τ̂ is the estimated code delay in seconds

• εfD is the Doppler shift error in Hz

• N is the number of samples during the integration interval

Equations (2.9) and (2.10) can be simplified to:

I(n) =
A(n)

2
dRc(ετ ) cos

(
πεfDNTs + θ

)
sinc

(
πεfDNTs

)
+ nI(n) (2.11)

Q(n) =
A(n)

2
dRc(ετ ) sin

(
πεfDNTs + θ

)
sinc

(
πεfDNTs

)
+ nQ(n) (2.12)

Where:

• ετ is the code delay error in seconds

• nI and nQ are the noise of the correlators
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2.3.2 Decision

As there are no previous information regarding the code delay or Doppler shift, all potential
values are evaluated. This means that there areNτ×ND I and Q correlator outputs generated
per satellite. The resolution of the code delay is set to half a chip or less with the range going
from zero to the number of PRN chips. On the other hand, the Doppler resolution depends
on the integration time NTs. For a maximum 3.5 dB loss, the resolution is of 1/2(NTs)
[Foucras et al., 2016]. The range of values is given by the maximum and minimum Doppler
offset that can be induced by a satellite as it is the predominant Doppler term. It does not
exceed [−5kHz, 5kHz] [Borre et al., 2007]. This yields an acquisition grid where a pair of
Doppler shift and code delay are used to compute the I and Q correlator outputs.

Figure 2.5: Acquisition Grid.

To decide whether a satellite is present, a decision test must be performed. The test statistic
is given by:

T = I2(n) +Q2(n) (2.13)

T =
A(n)2

2
Rc(ετ )sinc

2
(
πεfDNTs

)
+ nT (n) (2.14)

Where:

• T is the test statistic

• nT (n) is the noise of the statistic which is equal to:

nT (n) = nI(n)
2 + nQ(n)

2 + 2nI(n)
A(n)

2
dRc(ετ ) cos

(
πεfDNTs + θ

)
sinc

(
πεfDNTs

)
+

2nQ(n)
A(n)

2
dRc(ετ ) sin

(
πεfDNTs + θ

)
sinc

(
πεfDNTs

)
A Neyman Pearson test is frequently used [Neyman and Pearson, 1933] where two hypotheses
are tested: {

H0, Correlation Peak Absent : T < γ

H1, Correlation Peak Present : T ≥ γ
(2.15)

Where:
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• γ is the threshold value

In a NP test, there are four distinguishable cases shown in Table 2.1.

Truth
Expected

H0 H1

H0 PN PFa

H1 PMd PD

Table 2.1: Neyman-Pearson Test Probabilities

Where:

• PN is the probability of not acquiring a satellite when it is absent

• PFa is the probability of false alarm meaning the probability of acquiring a satellite
when it is absent

• PMd is the probability of missed detection meaning not acquiring a satellite when it is
present

• PD is the probability of acquiring a satellite when it is present

The threshold value is determined by the desired theoretical probability of false alarm. As
the noise terms of the I and Q components are assumed uncorrelated [Van Dierendonck et al.,
1992], the test statistic is the sum of squared independent Gaussian variables. Therefore, T
follows a chi-square distribution with 2 degrees of freedom.

To increase the detection performance, two methods are widely used:

1. Increasing the coherent integration time when computing the I and Q correla-
tors. However, increasing the coherent integration can also be detrimental to the test
statistic. Indeed, one assumption made for (2.9) and (2.10) was that the bit value
was constant during the integration. Increasing the coherent integration increases the
chance of invalidating this hypothesis.

2. Using non-coherent summations. This means that the test statistic becomes:

T =
M∑
n=0

I2(n) +Q2(n) (2.16)

Where:

• M is the number of non-coherent summations

T now has 2M degrees of freedom. The downside of using non-coherent summations is
that the noise cross-terms are increased due to the squaring of the I and Q correlators.

2.3.3 Alternate Methods

The algorithms presented in 2.3 are the traditional ones; however, more efficient algorithms
exist. Their principle is presented in the following section.
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2.3.3.1 Parallel Searching

Instead of testing a pair of values – code delay and Doppler offset – one by one, this method
either computes all possible Doppler values for one code delay or all code delay values for
one Doppler offset. These two methods are illustrated in Figures 2.6 and 2.7. These methods
use the Fast Fourier Transform to compute all code delay or all frequency bins at once, as
described in [Leclère et al., 2014].

Figure 2.6: Parallel Doppler Search Method. Figure 2.7: Parallel Code Search Method.

2.3.3.2 Double Block Zero Padding

Double block zero padding has a reduced number of operations and can acquire weaker GNSS
signals than the conventional algorithm [Prasad, 2019].This algorithm relies on splitting the
incoming signal into N blocks. The PRN code is also split into N blocks with zero padding
on each one. Circular correlation is performed between the incoming signal and PRN blocks
where the FFT is then applied on each resulting correlation block. Finally, the PRN blocks
are permuted and the circular correlation is repeated for all permutations. The test statistic
is unchanged. This method is further detailed in [Van Neem D.J.R, 1991].

2.3.3.3 Pilot Acquisition

Some signals, such as Galileo E1, are made up of a data and pilot signal. The pilot signal does
not contain any bit so is immune to data bit transitions. Hence, the coherent integration
time can be increased for a more reliable acquisition decision. The acquisition using the
pilot signal can be done by computing the I and Q correlators of both data and pilot signals
independently and fuse the results into one test statistic as presented in [Borio and Lo Presti,
2008]:

T =
M∑
n=0

I2D(n) +Q2
D(n) + I2P (n) +Q2

P (n) (2.17)

Where:

• subscript D stands for the data component

• subscript P stands for the pilot component

2.4 Tracking

Once rough estimates of the Doppler and code delay are obtained, they need to be refined
to fully wipe off the PRN code and the carrier wave and estimate the GNSS measurements.
In most receivers, this is achieved thanks to the delay lock loop and phase lock loop (PLL)
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which estimate the code delay, phase, and Doppler shift of the incoming signal. This section
will describe their functioning as well as how noise and multipath affect these loops.

2.4.1 Carrier frequency offset (Doppler shift) and phase

From acquisition, two errors (remaining Doppler shift and phase) remain from the carrier
wipe-off that make the bit demodulation not possible yet. The goal of carrier tracking is
to minimize these errors and update the estimates over time. Indeed, due to the relative
motion between satellite and receiver, the Doppler shift of the signal is not constant in time.
The PLL as its name suggests estimates the phase of the signal and also the Doppler shift.

To do so, signal samples are first accumulated and multiplied with a locally generated carrier
replica with the Doppler estimate from the acquisition process for the first iteration and then
from the PLL for the other iterations. This generates I and Q correlators. A discriminator is
then computed with a combination of I and Q measurements. Afterwards, the discriminator
is filtered by the PLL filter. A numerically controlled oscillator (NCO) uses the filtered
discriminator to generate new carrier replicas with updated parameters. The process is then
repeated as is depicted in Figure 2.8.

Figure 2.8: Phase Lock Loop.

2.4.1.1 Generation of I and Q components

Similarly to the acquisition process, I and Q correlators are computed by the integration
of the multiplication between the incoming signal and a locally generated replica. During
tracking, only one set of values is used for the generation I and Q correlators, which are the
ones estimated from the tracking loops. The I and Q correlators outputs are equal to:

I(n) =
A(n)

2
dRc(ετ ) cos

(
πεfDNTs + εθ

)
sinc

(
πεfDNTs

)
+ nI(n) (2.18)

Q(n) =
A(n)

2
dRc(ετ ) sin

(
πεfDNTs + εθ

)
sinc

(
πεfDNTs

)
+ nQ(n) (2.19)

Where:

• εθ is the phase error in radians
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The goal of the PLL is to drive the Doppler and phase errors to zero meaning εfD →
0 and εθ → 0. Assuming this, equations (2.18) and (2.19) become:

I(n) =
A(n)

2
dRc(ετ ) + nI(n) (2.20)

Q(n) = nQ(n) (2.21)

It can be observed, in this case, that the I arm only contains the code delay error. If the
code delay error is correctly estimated, then the data bits can be retrieved from the original
signal from the I arm. On the other hand, the Q arm is only composed of noise.

2.4.1.2 Discriminator

The goal of the PLL discriminator is to combine the I and Q correlators to isolate and thus
estimate the phase and Doppler errors. The error will then be used to generate a new carrier
replica with updated phase and Doppler estimates.

An example of a discriminator, the arctangent discriminator, is presented in (2.22):

DATAN(εfD ; εθ) = tan−1
(Q
I

)
(2.22)

By replacing (2.18) and (2.20) in (2.22) and assuming no noise, this yields:

DATAN(εfD ; εθ) = tan−1

(
��

���
��A(n)

2
dRc(ετ ) sin

(
πεfDNTs + εθ

)
���

���
���

sinc
(
πεfDNTs

)
���

���
�A(n)

2
dRc(ετ ) cos

(
πεfDNTs + εθ

)
���

���
���

sinc
(
πεfDNTs

)) (2.23)

DATAN(εfD ; εθ) = tan−1
(
tan(πεfDNTs + εθ)

)
(2.24)

DATAN(εfD ; εθ) = πεfDNTs + εθ (2.25)

Every discriminator has a region of quasi-linearity where the discriminator output is assumed
linearly proportional to the phase error. The arctangent discriminator is widely used due to
its large linear region of [(2k− 1)π/2; (2k + 1)π/2] ∀k ∈ Z [Julien, 2005]. The discriminator
value is used to generate a new carrier replica. The value of (εfD ; εθ) for DATAN(εfD ; εθ) = 0
yields the extra phase error caused by the errors affecting the PLL. To find this phase error,
the zero crossing of the discriminator must be found. When no errors affect the signal, this
is straightforward, however, when adding noise to the ATAN discriminator becomes:

DATAN(εfD ; εθ) = tan−1

( (
tan(πεfDNTs + εθ)

)
+ nQ

1 + nI

A(n)
2

dRc(ετ ) cos

(
πεfDNTs+εθ

)
sinc

(
πεfDNTs

)
)

(2.26)

Increasing the noise also shortens the linear region of the discriminator. Since the slope of
the discriminator must be of the same sign as its linear region for it to be a stable lock point
[Julien, 2005], this means that the number of potential stable lock points decreases with the
carrier to noise ratio. Figure 2.9 depicts the ATAN discriminator for different carrier to noise
density ratios.
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Figure 2.9: Arctangent discriminator linearity region for several CN0s [Foucras et al., 2014].

2.4.1.3 Loop Filter

As highlighted by (2.26), the discriminator output is noisy. To attenuate the effect of noise,
a filter is used on the discriminator. The design of these filters greatly affects the tracking
performance of the PLL. The three parameters to choose in a loop filter are:

1. Filter order A low filter order is better for accuracy but will most likely lose lock
under high dynamics of the signal.

2. Integration time A long integration time will increase the accuracy of the tracking
loop if and only if there are no data sign transitions during the integration interval and
if the Doppler shift and phase of the incoming signal have not changed.

3. Loop bandwidth The loop bandwidth is how much noise is filtered out by the filter.
A low equivalent loop filter bandwidth will filter out most of the noise but will respond
poorly to high signal dynamics.

The design of a PLL filter is based on trade-offs. The chosen filter characteristics depend on
the targeted application.

The noise, even after being filtered by the loop is still present in the discriminator output.
In a PLL where only Additive White Gaussian Noise affects the signal, the propagated noise
can be estimated as Zero Mean Gaussian Noise [Legrand et al., 2000]. For the arctangent
discriminator, the variance of the noise can be expressed as:

σ2
Noise =

λ2

4π2

BDLL

C/N0

[
1 +

1

2NTsC/N0

]
(2.27)

2.4.1.4 NCO Carrier Generator

The NCO is a digital signal generator which adapts its frequency based on the input. In
a PLL, the input to the NCO is the filtered discriminator. The NCO either increases or
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decreases the frequency of the carrier wave generated based on the filtered discriminator. By
changing the frequency of the carrier wave every tracking interval, the goal is to remove the
effect of the carrier wave of the signal.

2.4.2 Code Delay

Similarly to the Doppler offset, the estimated code delay value must be refined to demodulate
the data bits. To retrieve the delay error, the DLL uses at least 3 correlators (early, prompt,
and late). The delay error estimate is used to refine the frequency of the locally generated
code replica with the incoming signal. If the code replica is aligned with the incoming PRN
sequence, then the early and late correlator values are equal to each other in an error-free
scenario. The difference in chips between the early and late correlator position is called the
Early-Late (EL) spacing. This parameter has a quintessential role for the DLL as a large
EL spacing will lead to a better tracking of the dynamics while a smaller one will reduce the
effect of multipath [Van Dierendonck et al., 1992].

The DLL architecture is similar to the one of the PLL. First, the signal samples are ac-
cumulated and multiplied with the early, late, and prompt code replicas with the code delay
estimate computed in the acquisition process for the first iteration and then coming from
the DLL. This generates three I and three Q correlators which are then passed through a
chosen discriminator. Afterwards, the discriminator is filtered by the DLL filter. A numer-
ical controlled oscillator uses the filtered discriminator to generate new code replicas with
updated parameters. The process is then repeated and is depicted in Figure 2.10.

Figure 2.10: Delay Lock Loop.

2.4.2.1 Generation of I and Q components

As mentioned earlier, three correlators per component are generated. The prompt correlators
are obtained by multiplying a code replica with the incoming signal. The early correlators
are computed by multiplying the signal with a code replica advanced by EL/2 with respect
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to the prompt correlator, hence the name early. On the other hand, late correlators are
computed by multiplying the signal with a code replica delayed by EL/2.

These correlators can be expressed as:

IP (n) =
A(n)

2
d(n)Rc(ετ )sinc(πεfDNTs) cos

(
πεfDNTs + εθ

)
+ nIP (n)

IE(n) =
A(n)

2
d(n)Rc(ετ +

EL

2
)sinc(πεfDNTs) cos

(
πεfDNTs + εθ

)
+ nIE(n)

IL(n) =
A(n)

2
d(n)Rc(ετ −

EL

2
)sinc(πεfDNTs) cos

(
πεfDNTs + εθ

)
+ nIL(n)

(2.28)

QP (n) =
A(n)

2
d(n)Rc(ετ )sinc(πεfDNTs) sin

(
πεfDNTs + εθ

)
+ nQP

(n)

QE(n) =
A(n)

2
d(n)Rc(ετ +

EL

2
)sinc(πεfDNTs) sin

(
πεfDNTs + εθ

)
+ nQE

(n)

QL(n) =
A(n)

2
d(n)Rc(ετ −

EL

2
)sinc(πεfDNTs) sin

(
πεfDNTs + εθ

)
+ nQL

(n)

(2.29)

Where:

• EL is the early-late spacing in chips

It can be seen that the prompt correlators (I and Q) are equal to the correlators from the
PLL (2.18) and (2.19).

2.4.2.2 Discriminator

There are two types of discriminators:

• Coherent Discriminators

• Non-Coherent Discriminators

Coherent Discriminators assume that the PLL is locked; hence, the phase error must be
small for this discriminator to be used. On the other hand, non-coherent discriminators do
not make any assumption on the state of the PLL. The discriminator functions are given for
a coherent discriminator (early minus late) and for the early minus late power (EMLP), a
non-coherent discriminator [Braasch, 2017]. In the absence of noise, the two discriminator
functions are given in (2.30) and (2.32):

DEL(τ) = IE − IL (2.30)

Since a coherent discriminator assumes that the PLL is locked this means that εθ ≈ 0 and
εfD ≈ 0. Hence, (2.30) can be written as:

DEL(τ) =
A(n)

2

(
Rc(τ +

EL

2
)−Rc(τ −

EL

2
)
)

(2.31)

On the other hand, the non-coherent discriminator function removes the effect of the phase,
the early minus late power is shown:

DEMLP (τ) =
I2E +Q2

E − I2L −Q2
L

2
(2.32)
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DEMLP (τ) =
A(n)2

4
sinc(πεfDNTs)

2

(
|Rc(τ +

EL

2
)|2 − |Rc(τ −

EL

2
)|2
)

(2.33)

In this thesis, only non-coherent discriminators will be studied, with a heavy focus on the
EMLP. The goal of the discriminator is to isolate the code delay error to generate a new code
replica with updated frequency. When normalized by early and late I and Q correlators, it
can be shown that the code delay is equal to [Julien, 2006]:

ετ =
(2− αELNTs)DEMLP

2α(I2E +Q2
E + I2L +Q2

L)
(2.34)

Where:

• α is the absolute value of the slope of the autocorrelation function main peak (α = 1
for GPS L1 C/A and α = 3 for Galileo E1-B)

The value of τ for DEMLP (τ) = 0 yields the extra delay caused by the errors affecting the
DLL. To find this delay, the zero crossing of the discriminator must be found. The slope of the
EMLP discriminator must be negative for it to be a stable lock point. As the autocorrelation
function of the PRN code is an even function (∀x ∈ R s.t f(x) = y & f(−x) = y) and
considering that the signal is unaffected by errors, the only possible value of τ is zero.
Therefore, the discriminator will have a zero crossing where the tracking delay is equal to 0
as shown by Figure 2.11.

Figure 2.11: EMLP Discriminator with no error.

2.4.2.3 Loop Filter

The design of DLL loop filter is made of the similar trade-offs as the ones presented for the
PLL loop filter in 2.4.1.3, so they will not be presented again.

Before reaching the NCO, the discriminator and its noise are filtered. Each discriminator
has a different variance. In an ideal case for a DLL where it is assumed that only additive
white Gaussian noise affects the signal, the propagated noise can be estimated as zero mean
Gaussian noise [Legrand et al., 2000]. For the early-late power discriminator, the variance
of the noise can be expressed as:

σ2
Noise = L2

c

BDLLEL

2C/N0

[
1 +

2

(2− EL)NTsC/N0

]
(2.35)
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Where:

• Lc is the chip length in meters

• BDLL is the equivalent loop filter bandwidth of the DLL in Hz

• C/N0 is the carrier to noise density ratio in Hz

• σ2
Noise is the variance of the DLL noise in meters2

2.4.2.4 NCO Code Generator

The NCO of the DLL functions like the one of the PLL. The difference is that the filtered
discriminator input to the NCO is used to refine the frequency at which the PRN code is
generated to account for the remaining code delay error.

2.4.3 Effect of Multipath

In a realistic scenario, tracking errors will always be present in GNSS receivers. Noise is not
the sole cause for errors being propagated from the tracking stage to the code pseudorange
but also multipath. As conveyed by [Bellad and Petovello, 2013] multipath can distort the
autocorrelation function (ACF). This distortion depends on the number of multipaths, their
phase, their amplitude, and their delay. When the ACF is distorted, this shifts the zero
crossing of the discriminator function of the DLL. Multipath also shifts the total phase of
the signal, changing the zero crossing of the PLL discriminator function.

When adding multipath, (2.28) and (2.29) become:

IP (n) =

NMp∑
i=1

Ai(n)

2
d(n− τi)Rc(ετi)sinc(πεfDi

NTs) cos(πεfDi
NTs + εθi) + nIP (n)

IE(n) =

NMp∑
i=1

Ai(n)

2
d(n− τi)Rc(ετi +

EL

2
)sinc(πεfi(k)NTs) cos(πεfDi

NTs + εθi) + nIE(n)

IL(n) =

NMp∑
i=1

Ai(n)

2
d(n− τi)Rc(ετi −

EL

2
)sinc(πεfDi

NTs) cos(πεfDi
NTs + εθi) + nIL(n)

(2.36)

QP (n) =

NMp∑
i=1

Ai(n)

2
d(n− τi)Rc(ετi)sinc(πεfDi

NTs) sin(πεfDi
NTs + εθi) + nQP

(n)

QE(n) =

NMp∑
i=1

Ai(n)

2
d(n− τi)Rc(ετi +

EL

2
)sinc(πεfDi

NTs) sin(πεfDi
NTs + εθi) + nQE

(n)

QL(n) =

NMp∑
i=1

Ai(n)

2
d(n− τi)Rc(ετi −

EL

2
)sinc(πεfDi

NTs) sin(πεfDi
NTs + εθi) + nQL

(n)

(2.37)

Where:
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• i is the index of the signal received (direct or reflected)

• NMp is the number of multipath reflections

2.4.3.1 PLL

In the case of a single multipath ray, the direct and reflected signal form a composite signal
that can be seen as the sum of two vectors. Therefore, this vector can be broken down into
two orthogonal components equivalently to the I and Q correlators. This is illustrated in
Figure 2.12. The goal of the PLL is to estimate the resulting composite phase of the new
signal. By using the arctangent of the Q and I components, the composite phase can be
estimated.

Figure 2.12: Decomposition of a single multipath ray on top of the direct signal.

Figure 2.12 can be generalized for NMp multipath signals and results in [Irsigler et al., 2005]:

θ = arctan

( ∑NMp

i=1 αiRc(τ − τi) sin(θi)

Rc(τ) +
∑NMp

i=1 αiRc(τ − τi) cos(θi)

)
(2.38)

Where:

• αi is the relative amplitude of the multipath signal (αi = Ai/A0)

2.4.3.2 DLL

Due to the several multipath delays, the zero crossing for the discriminator function is not
at τ = 0 anymore. This is illustrated by Figure 2.13 and (2.39).

DEMLP (τ) =

NMp∑
i=1

Ai(n)
2

4
sinc(πεfDNTs)(

| exp(jπεfDi
NTs + εθi)Rc(τ − τi +

EL

2
)|2 − | exp(jπεfDi

NTs + εθi)Rc(τ − τi −
EL

2
)|2
)

(2.39)
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Figure 2.13: Early late power discriminator function affected by some multipath.

Assuming the DLL is at a stable lock point, the tracking bias can be obtained by multiplying
the delay value at the discriminator zero crossing by the speed of light. This is shown in
(2.40).

∃ t0 ∈ [−Tobs, Tobs] such that D(t0) = 0

Trb = ct0 (2.40)

Where:

• Tobs is the maximum delay for which the discriminator is observed

• c is the speed of light in m/s

• Trb is the tracking bias in meters

2.4.4 Alternate Methods

To increase the robustness of the generic tracking process, many algorithms have been de-
veloped and researched. A few examples are given in this section.

2.4.4.1 FLL Aided PLL

Some loop architectures increase the robustness of the PLL by adding a Frequency Lock
Loop (FLL). The FLL solely estimates the frequency component of the signal . A typical
discriminator for a FLL is the cross dot product given in (2.41).

DCP (εfD) =
I(n− 1)Q(n)− I(n)Q(n− 1)

I(n− 1)Q(n) + I(n)Q(n− 1)
(2.41)

The FLL is more robust to dynamics than the PLL and is often used as a pull-in loop.
Meaning that after acquisition, the FLL is used without the PLL. Once a lock criterion has
been met by the FLL, the loop switches to a PLL architecture for better accuracy.
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2.4.4.2 Pilot aided Tracking

The method presented herein is only possible is the signal being tracked is also composed
of a pilot – data less – signal. It is based on the adaptive weighting of data and pilot dis-
criminators according to their carrier to noise density ratio.The method is fully presented in
[Muthuraman et al., 2008].

First the carrier to noise density ratio of the data and pilot signal are computed sepa-
rately. Then, the noise variance of the discriminator outputs are estimated. Afterwards, the
weights of each signal are calculated:

wD =
σ2
D

σ2
D + σ2

P

wP =
σ2
P

σ2
D + σ2

P

(2.42)

Where:

• σ2
D is the variance of the tracking noise error for the data signal

• σ2
P is the variance of the tracking noise error for the pilot signal

Finally, both weights are combined with the discriminator outputs to yield a combined
discriminator value:

Dc = wPDP + wDDD (2.43)

Where:

• DP is the discriminator corresponding to the pilot signal

• DD is the discriminator corresponding to the data signal

• DC is the discriminator obtained when fusing both pilot and signal discriminators

2.4.4.3 Kalman Filter Tracking

Another approach proposed in [Macabiau et al., 2012] and [Won et al., 2012] is to replace the
generic PLL presented in this thesis by a Kalman filter to estimate the phase of the signal.
[Macabiau et al., 2012] proposes to use the following states:

Xk = [εθ; εfd ;α] (2.44)

Where:

• α is the difference between the jerk of the incoming and estimated carrier

The measurement update uses the discriminator output.

2.5 Observables Generation

The observables used for to compute a position are not contained in the data bits but must
be estimated by the receiver. These are estimated thanks to the receiver’s tracking loops.
The generic algorithms to generate them will be presented in this section.
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2.5.1 Code Pseudorange

A code pseudorange is the difference between the time of reception of the signal in the
receiver’s time frame with the time of transmission from the satellite in the satellite time
frame multiplied by the speed of light, given in (2.45). This results in an estimated distance
from the receiver to the corresponding satellite, offset by their clock. Code pseudoranges also
contain statistical noise and other errors. These errors are due to the signal passing through
media having different refraction indices, the receiver and satellite clocks being asynchronous,
and possibly multipath.

ρsv = c(trxrx − tsvsv) (2.45)

Where:

• ρsv is the code pseudorange for a given satellite in meters

• trxrx is the reception time in the receiver time frame in seconds

• tsvsv is the transmission time in the satellite time frame in seconds

• c is the speed of light in m/s

In most receivers, the code pseudoranges are generated from the DLL information and the
preamble start. The preamble is a known sequence of bits of the navigation message with a
given period for each signal. By finding this sequence, the receiver can compare the arrival
times of all satellites with respect to each other. In the common reception method, the first
arriving one is the reference. This reference is assigned the minimal propagation delay for
that constellation; therefore, all the other satellites will have longer propagation delays. The
expression of the first arriving code pseudorange is given as:

ρ1st = τrefc (2.46)

Where:

• ρ1st is the code pseudorange for the first arriving satellite in meters

• τref is the minimum time a signal can take to reach a user on Earth (∼68.802 ms for
GPS satellites and ∼77.46 ms for Galileo satellites) in seconds

The other code pseudoranges are then computed by adding the difference in time between
the reference channel and the other ones:

ρjth = ρ1st + c(tjth − t1st) (2.47)

Where:

• ρjth is the code pseudorange for the satellite arriving in jth position in meters

• tjth is the receiver time at which the jth satellite arrives

• t1st is the receiver time at which the first satellite arrives
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This method is highlighted in Figure 2.14 provided by [Marco Rao, 2012].

Figure 2.14: Common Reception Technique illustration [Marco Rao, 2012].

Once code pseudoranges are generated, they can be used for position calculation. However,
as mentioned earlier, these measurements are still affected by numerous errors. The code
pseudorange model is given in (2.48).

ρjRx = (r⃗j − r⃗Rx) · ⃗eRx
j + c(dtRx − dtj) + T j

Rx + IjRx + δjρ,Rx + εjρ,Rx (2.48)

Where:

• r⃗j is the satellite’s position in meters

• r⃗Rx is the receiver’s position in meters

• ⃗eRx
j is the line of sight vector

• dtRx is the receiver clock error in seconds

• dtj is the satellite clock error in seconds

• T j
Rx is the troposphere error in meters

• IjRx is the ionosphere error in meters

• δjρ,Rx is the multipath of the given observable in meters

• εjρ,Rx is the noise of the given observable in meters

• ρjRx is the code pseudorange in meters
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2.5.2 Carrier Phase

The carrier phase is the difference between the received phase and the transmitted phase of
the signal. This equates to:

ϕj
Rx = [ϕj

NCO − ϕj] mod N (2.49)

Where:

• ϕj
Rx is the carrier phase in cycles

• ϕj
NCO is the phase estimated by the NCO of the PLL

• ϕj is the phase of the signal at transmission

• N is the number of periods of the carrier wave from the satellite to the receiver

The total number of cycles occurring between the satellite and receiver is unknown. When
taking into account the error sources, (2.49) can be rewritten as:

ϕj
Rx = fc(tRx + dtRx + ϕj

Rx,0)− fc(t
j + dtj + ϕj

0) + εjϕ,Rx (2.50)

Where:

• tRx is the receiver time

• ϕj
Rx,0 is the initial phase of the receiver

• tj is the satellite time

• ϕj
0 is the initial phase of the satellite

When multiplied by the wavelength of the signal λ, the carrier phase measurement can be
expressed as range measurement in meters, which can be used for positioning if the ambiguity
is dealt with.

Φj
Rx = (r⃗j − r⃗Rx) · ⃗eRx

j + c(dtRx − dtj) + T j
Rx − IjRx + λN j

Rx + δjϕ,Rx + εjϕ,Rx (2.51)

Where:

• λN j
Rx is the ambiguity term

• δjϕ,Rx is the multipath of the given observable in meters

• εjϕ,Rx is the noise of the given observable in meters

• Φj
Rx is the carrier phase in meters
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2.5.3 Doppler

The Doppler measurement is given by the estimated Doppler shift of the receiver and can
be expressed as:

Dj = f̂Rxj
− fcj (2.52)

Dj = fcj
( ⃗vRx − v⃗j) · ⃗eRx

j

c+ v⃗j · e⃗j
(2.53)

Where:

• Dj is the Doppler measurement in Hz

• f̂Rxj
is the estimated frequency of the signal when received in Hz

• fcj is the central frequency of the signal when emitted by the satellite in Hz

• e⃗j is the velocity unitary vector of the satellite

Since the speed of the signal is much higher than the velocity of the receiver or satellite,
(2.53) can be simplified as:

Dj ≈ fcj
(vRx − vj) · ⃗eRx

j

c
(2.54)

It is shown in [Gaglione, 2015] that the full Doppler measurement can be expressed as:

Dj =
fcj
c

(
(v⃗j − v⃗Rx) · ⃗eRx

j + c(ḋtRx − ḋt
j
)

)
+ εjD,Rx (2.55)

Where:

• v⃗j is the satellite’s velocity in m/s

• v⃗Rx is the receiver’s velocity in m/s

• dtRx is the receiver clock drift in seconds2

• dtj is the satellite clock drift in seconds2

• εjD,Rx is the noise of the given observable in meters

The Doppler measurement can also be expressed as the derivative of the phase measurement
for a differentiating interval equal to the PLL refresh rate. Yet, the Doppler measurement and
carrier phase measurement can be assumed as uncorrelated. Indeed, the Doppler measure-
ment is affected by noise over the correlation period whereas the carrier phase measurement
is generated over time intervals (refresh rate of 1-10 Hz).

2.5.4 Effect of Multipath

Since multipath affects the tracking loops, shown in 2.4.3, and the GNSS observables are
generated from the tracking loops, it is evident that they are also affected by multipath. The
effect multipath has on each measurement will be detailed in this section.
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2.5.4.1 Code Pseudorange

The code pseudorange is the noisier of the three GNSS observables and is most affected by
multipath. For multipath weaker than the direct signal and a correlator spacing of one chip,
the maximum error on GPS L1 C/A is one-half chip, approximately 147 meters [Braasch
and Dierendonck, 1999]. In 2.4.3.2, the method to compute the tracking bias was detailed.
Once this bias is passed through the low-pass filter of the tracking process, this filtered bias
is what is propagated onto the code pseudorange measurement as follows.

ρb = LPF (Trb) (2.56)

Where:

• LPF is the low-pass filter of the DLL

• ρb is the code pseudorange bias induced from the tracking bias in meters

This method requires an estimation of the discriminator function with multiple correlators
and is used in 6.2 for the proposed multipath detection.

Most commonly, the error added to the code pseudorange is characterized by the multi-
path error envelope (MEE). The MEE provides the maximum error a single multipath ray
with a given relative amplitude, α, can add to the code pseudorange. It is called an enve-
lope because the maximum error is given for an in-phase and an out-of-phase multipath ray
corresponding to the two worst case scenarios. All potential errors from this multipath ray
will land within these two bounds.

The maximum in-phase error can be obtained by adding the autocorrelation function of
the PRN multiplied by the chosen relative amplitude to the nominal autocorrelation func-
tion of the PRN. The maximum out-of-phase error can be obtained in the same way but by
subtracting the autocorrelation of the PRN affected by multipath. Then the induced tracking
bias for each delay is computed. This is mathematically expressed in (2.57) - (2.61).

Rcin−phase
(τ | τi) = Rc(τ) + α ∗Rc(τ − τi) (2.57)

Rcout−of−phase
(τ | τi) = Rc(τ)− α ∗Rc(τ − τi) (2.58)

Din−phase(τ | τi) = RcE,in−phase
(τ | τi)−RcL,in−phase

(τ | τi) (2.59)

Dout−of−phase(τ | τi) = RcE,out−of−phase
(τ | τi)−RcLate,out−of−phase

(τ | τi) (2.60)

∃ t0 ∈ [−Tobs, Tobs] such that D(t0 | τi) = 0

Trb = ct0 (2.61)

Where:

• Rc is the autocorrelation function of the PRN

• α is the amplitude of the multipath with respect to the LOS signal

• E represents the early version of the ACF of the PRN

• L represents the late version of the ACF of the PRN
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• in− phase represents the ACF of the PRN for the in-phase multipath

• out− phase represents the ACF of the PRN for the out-phase multipath

• Tobs is the observation interval on which the ACF is studied in seconds

• Trb is the tracking bias in meters

The tracking bias (2.61) gives the code pseudorange error induced by the in-phase or out-of
phase multipath with the input delay. This process can be repeated for all desired multipath
delays to the MEE. Figure 2.15 illustrates the MEE on GPS L1 C/A for two different EL
spacing for α = 0.5.

Figure 2.15: MEE of code pseudorange for two different EL spacing with an α = 0.5.

As shown in [Van Dierendonck et al., 1992], the multipath error decreases with a lower
EL spacing. However, this reduces the stability of the loop as the linearity region of the
discriminator is reduced. Furthermore, increase the relative amplitude of the multipath ray
increases the MEE.

2.5.4.2 Carrier Phase

To evaluate the multipath error on the carrier phase measurement, the MEE can also be
computed. By using (2.38) for one reflection, it is equal to:

θ = arctan

(
α1Rc(τ − τ1) sin(θ1)

Rc(τ) + α1Rc(τ − τ1) cos(θ1)

)
(2.62)

Determining the MEE for a carrier phase measurement is more complex as the maximum
phase error is not given for an obvious θ1. Hence, the maximum value of θ must be selected
for a given delay and all possible values of θ1. Figure 2.15 illustrates the MEE of the carrier
phase measurement on GPS L1 C/A for α = 0.5.
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Figure 2.16: Simplified MEE of carrier phase for an α = 0.5.

Figure 2.16 is a simplified model of the MEE for the carrier phase measurement. As shown
by [Braasch, 2017], this simplification is valid especially for narrow correlators. This model
assumes that τ = 0 whereas the exact model computes the maximum and minimum angle
error for each potential multipath delay and total delay.

2.5.4.3 Doppler

By multiplying the Doppler measurement with the wavelength of the signal, the pseudo-rate
measurement is obtained [Gaglione, 2015]. The pseudo-rate can be seen as the derivative of
the code pseudorange measurement. Hence, the multipath affecting the Doppler measure-
ment can be written as:

δjD,Rx =
δ̇jρ,Rx

λ
(2.63)

Where:

• δjD,Rx is the multipath affecting the Doppler measurement

The effect of multipath on the Doppler measurement is hard to quantify theoretically as its
MEE cannot be computed. The presented term in (2.63) was shown to cause poor velocity
estimations in dense multipath environments in [Sadrieh et al., 2012] and [Matera et al.,
2018].

2.6 Conclusions

In this chapter, the generic algorithms required to process a GNSS signal were presented.
Some more complex ones were also discussed to improve the robustness of the GNSS signal
processing chain. Furthermore, the method to compute GNSS observables was also detailed.
These observables will be used in chapter 3 to explain how a position solution is computed.
Lastly, the effect that multipath on both the signal processing algorithms and measurements
was examined. This chapter highlighted the effect that multipath has on the signal processing

34



blocks and showed why this error can severely impact the positioning solution. This impact is
the motivation to detect and mitigate its effect for positioning solutions as shown in Chapters
6 and 7.
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CHAPTER 3
GNSS Positioning Algorithms

Once the GNSS observables are generated, they may be used in order to compute a position,
and potentially velocity and time (PVT), solution. The following chapter will present the
two most implemented estimators when using only GNSS observables: the LSE estimator
and the Kalman filter. The Kalman filter will also be presented when the GNSS observables
are tightly coupled to an IMU. Another category of estimator will also be presented: robust
estimators, which are useful when a portion of the input data is affected by outliers.
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3.1 Positioning Principles

GNSS positioning is based on the trilateration principle. Indeed, by finding the point of
intersection of the code pseudoranges or carrier phase measurements, if the ambiguity is
accounted for, the position solution can be found. As the name indicates, trilateration uses
three measurements to find the intersection point. However, in GNSS, the receiver clock
bias from the true constellation time also has to be estimated. Therefore, when employing
measurements from a single constellation, a minimum of four code pseudoranges or carrier
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phase measurements must be used to estimate the 3D position and the receiver clock bias.
This is illustrated on Figure 3.1.

Figure 3.1: Tri-lateration for GNSS purposes.

GNSS signals are now transmitted by several constellations. Adding more measurements is
beneficial as it increases the geometric diversity of the satellite to receiver links. However,
constellations are not perfectly synchronized in time. Thus, with every extra constellation
used, the time bias between the reference and the added one must be estimated. This means
that the minimum number of satellites required to compute a position must follow the two
criteria:

NSV s ≥ 4 +Nconst − 1 (3.1)

NSV s =
Nconst∑
i=1

NSV s,i s.t NSV s,i ∈ [1, NSV/Const] (3.2)

Where:

• NSV s is the number of satellites used for a position computation

• Nconst is the number of constellations used for a position computation

• NSV/Const is the number of satellites per constellation

From the code pseudorange and carrier phase measurement equations given in (2.48) and
(2.50), on top of the receiver clock bias, multipath, and noise, other errors still affect the
measurement. Indeed, the tropospheric, ionospheric errors, and satellite clock bias are the
largest remaining errors. These errors must be accounted for to increase the accuracy of the
positioning solution.

The satellite clock bias can be estimated thanks to the transmitted satellite clock parame-
ters. It can then be removed from the observable.

The ionospheric error occurs when the signal passes through the ionosphere and is then
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diffracted. When using single frequency measurements, the ionospheric error can be cor-
rected by 64.8% by using the Klobuchar model [Wang et al., 2018] on GPS L1 C/A. This
error is frequency-dependent and its first order component [El-naggar, 2011], making up more
than 99% of the error [Datta-Barua et al., 2008], can be removed from the code pseudorange
or carrier phase by combining dual frequency measurements as such:

ObsIF =
Obs1f

2
1 −Obs2f

2
2

f 2
1 − f 2

2

(3.3)

Where:

• Obsx are either the code pseudorange or carrier phase measurement for a given fre-
quency x in meters

• fx the frequency of the signal processed in Hz

• ObsIF the observable with the first order ionospheric delay removed in meters

The tropospheric error happens when the signal is diffracted by the troposphere before
reaching the antenna of the receiver. The tropospheric error is composed of a dry and wet
component.

T = Td + Tw (3.4)

Where:

• Td is the dry component of the tropospheric error in meters

• Tw is the wet component of the tropospheric error in meters

The tropospheric error depends on the elevation of the satellite. A widely used model to
correct the tropospheric error is the mapping of Niell detailed in [Boehm et al., 2006].

Once these errors are corrected, the measurements can be used with greater accuracy to
compute a position solution. The most common algorithms to do so are presented in the
following sections.

3.2 Least Squares Estimator

In the following section, the position computation will be demonstrated when using code
pseudoranges. The ambiguities of the carrier phase measurements are assumed to still affect
the measurement and accounting for them is outside the scope of this section.

3.2.1 Classical Estimator

The least squares estimator (LSE) minimizes the sum of squared residuals. The residual
is defined as the difference between the observation and a linear function predicting the
observation. This can be denoted as:

J(x⃗) =

( N∑
i=1

(
yi − h(x⃗)

)2)
(3.5)
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J(x⃗) =

( N∑
i=1

r2i

)
(3.6)

Where:

• J(x⃗) is the loss function

• yi is the observation

• h(x⃗) is the linear function of the form Hx⃗

• ri is the residual

• N is the number of observations

To apply the LSE to GNSS, the code pseudoranges are used as the observables yi or the
carrier phase measurements if the ambiguity are estimated/fixed prior to using the LSE,
which is seldom done. Recalling the code pseudorange model:

ρjRx = (r⃗j − r⃗Rx) · ⃗eRx
j + c(dtRx − dtj) + T j

Rx + IjRx + δjρ,Rx + εjρ,Rx (3.7)

From (3.7), it is easily seen that the code pseudorange is not linear so the LSE cannot be
used as is. The first step is to linearize the measurement around a point and apply Taylor’s
expansion theorem. This yields:

ρjRx = ρj0 +
∂ρj

∂x
∆x+

∂ρj

∂y
∆y +

∂ρj

∂z
∆z +

∂ρj

∂cdtRx

∆cdtRx (3.8)

Since the satellite positions and the linearization point coordinates are known, the distance
ρj0 can be computed. Assuming this as the linear function of (3.5), the residual can be written
as:

∆ρjRx =
∂ρj

∂x
∆x+

∂ρj

∂y
∆y +

∂ρj

∂z
∆z +

∂ρj

∂cdtRx

∆cdtRx + ϵjρ,Rx (3.9)

Where:

• ϵjρ,Rx = δjρ,Rx + εjρ,Rx + ξjρ,Rx is the total error of the code pseudorange in meters with

ξjρ,Rx being the remaining ionosphere, troposphere, and satellite clock error

When generalizing (3.9) for all N code pseudoranges, it becomes:∆ρ
1
Rx
...

∆ρNRx

 =


∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z

∂ρ1
∂cdtRx

...
...

...
...

∂ρN
∂x

∂ρN
∂y

∂ρN
∂z

∂ρN
∂cdtRx




∆x
∆y
∆z

∆cdtRx

+

ϵ
1
ρ,Rx
...

ϵNρ,Rx

 (3.10)

This equation is equivalent to a linear system of the form:

∆y⃗ = H∆x⃗ (3.11)

Since all code pseudoranges are linearized around a point, (3.5) can be written as:

J(∆x⃗) = (∆y⃗ −H∆x⃗)T (∆y⃗ −H∆x⃗) (3.12)

To minimize the cost function, its derivative can be computed and find when it is equal to
0.

∂
(
(∆y⃗ −H∆⃗̂x)T (∆y⃗ −H∆⃗̂x)

)
= 0 (3.13)

Where:
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• ∆⃗̂x is the estimated position delta for which the cost function is minimized

From [Blewitt, 2000], it can be shown that the value at which ∆x̂ is minimized is:

∆⃗̂x = (HTH)−1HT∆y⃗ (3.14)

The ∆y vector is the generated code pseudoranges after linearization from the receiver, but
the H matrix must be computed to retrieve the estimated position delta. H is given as:

∂ρ1
∂x

∂ρ1
∂y

∂ρ1
∂z

∂ρ1
∂cdtRx

...
...

...
...

∂ρN
∂x

∂ρN
∂y

∂ρN
∂z

∂ρN
∂cdtRx

 =


x0−x1

d̂1

y0−y1
d̂1

z0−z1
d̂1

1
...

...
...

...
x0−xN

d̂N

y0−yN
d̂N

z0−zN
d̂N

1

 (3.15)

Where:

• d̂j is the estimated distance between the receiver and the satellite obtained by removing
errors from the pseudorange (troposphere, ionosphere, satellite clock bias etc.)

As ∆⃗̂x is the estimated position difference between the linearization point and the true
position, the estimated receiver position is written as:

⃗̂xRx = x⃗0 +∆⃗̂x (3.16)

Where:

• ∆ ⃗̂xRx is the estimated receiver position and its clock bias error with regards to the
linearization point

• x⃗0 is the linearization point

Since the non-linear LSE is used, the linearization process presented from (3.8) to (3.16)
needs to be repeated for an infinite amount of iterations so that this estimator would lead
to a perfect position assuming there are no errors. However as indicated by the term n⃗,
errors also affect the LSE estimation process. The LSE is only optimal when each element
of n⃗ denoted ni is assumed as a zero-mean Gaussian noise written as ∼ N(0, σ2). Another
assumption made is that GNSS measurements are uncorrelated with one another. Hence,
the covariance matrix of n is then equal to:

RLSE =


σ2 0 · · · 0

0 σ2 . . .
...

...
. . . . . .

...
0 · · · 0 σ2

 (3.17)

The LSE algorithm can also be used to compute the velocity of the receiver by using Doppler
measurements. Identically to using code pseudoranges, the Doppler measurement can be
linearized around a given point to use the LSE. The states to estimate are the velocities (x,
y, and z) and the receiver clock drift as shown in 3.18.

∆vx
∆vy
∆vz

∆ ˙cdtRx

 (3.18)
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The residuals and measurement matrix are given in (3.19) and (3.20).

∆Dj
Rx =

∂Dj

∂vx
∆vx +

∂Dj

∂vy
∆vy +

∂Dj

∂vz
∆vz +

∂Dj

∂ ˙cdtRx

∆ ˙cdtRx + ϵjD,Rx (3.19)

H =


∂D1

∂vx
∂D1

∂vy
∂D1

∂vz
∂D1

∂ ˙cdtRx
...

...
...

...
∂DN

∂vx

∂DN

∂vy

∂DN

∂vz

∂DN

∂ ˙cdtRx




x0−x1

d̂1

y0−y1
d̂1

z0−z1
d̂1

1
...

...
...

x0−xN

d̂N

y0−yN
d̂N

z0−zN
d̂N

1

 (3.20)

Then the velocity increment from the linearization point, denoted as ∆⃗̂v in (3.21), can be
estimated by solving the same equation as for the position:

∆⃗̂v = (HTH)−1HT∆y⃗ (3.21)

3.2.2 Weighted Least Squares Estimator

The WLSE is a variant of the classical LSE. This estimator still assumes that the noise
affecting the measurements is centered Gaussian noise. However, the noise for all measure-
ments is not considered identical on all measurements. Therefore the cost function equates
to:

J(x⃗) =
N∑
i=1

r2i (ni) (3.22)

The measurements are still assumed uncorrelated with a centered Gaussian distribution,
[Ruppert and Wand, 1994] shows that (3.14) can be written as:

⃗̂x = (HTR−1
WLSEH)−1HTR−1

WLSE y⃗ (3.23)

The covariance matrix of the measurement noise is different from the ordinary LSE described
above (3.17) and is now equal to:

RWLSE =


σ2
1 0 · · · 0

0 σ2
2

. . .
...

...
. . . . . .

...
0 · · · 0 σ2

N

 (3.24)

Each measurement has a different effect on the estimation of ⃗̂x hence the name weighted least
squares. If a measurement has a high variance with respect to other measurement variances,
this measurement will be less relied upon during the parameter estimation .

In GNSS, the noise of a code pseudorange increases with lower elevations of the satellite
with respect to the user as shown in [Paziewski et al., 2019]. A common mapping function
to determine the variance of the measurement is:

σ2
i =

σ2
D

sin(eli)2
(3.25)

Where:

• σ2
i is the variance of measurement i in meters

• σ2
D is the variance of a measurement for a 90 degree elevation in meters

• eli is the elevation of satellite i with respect to the user in radians
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3.2.3 Dilution of Precision

To evaluate the confidence in the estimates, the covariance of the LSE estimator must be
computed. Identically to the state estimate ⃗̂x, the incoming error will be mapped in the
same way:

⃗̂e = x̂− x (3.26)

⃗̂e = (HTH)−1HT n⃗ (3.27)

The covariance of the resulting estimation error is computed as:

P = E(⃗̂e⃗̂eT ) (3.28)

Where:

• P is the covariance matrix of the estimation error

If the covariance of the measurement noise is diagonal, it can be then shown that for the
LSE it is equal to [Blewitt, 2000]:

P = σ2(HTH)−1

P = σ2Q
(3.29)

Where:

• Q = (HTH)−1 is the geometry matrix

Thanks to the geometry matrix, the overall quality of the LSE solution can be computed.
These quality indicators are called the dilution of precision.

These indicators are given for the LSE case [Langley, 1999].

GDOP =
√
Q11 +Q22 +Q33 +Q44 (3.30)

PDOP =
√
Q11 +Q22 +Q33 (3.31)

HDOP =
√
Q11 +Q22 (3.32)

V DOP =
√
Q33 (3.33)

TDOP =
√
Q44 (3.34)

Where:

• σX is the standard deviation of the X component (North, East, Up, or Time)

• QMN is the element of the geometry matrix of element (M ×N)

In GNSS, the lower these values are the better the geometry of the satellites is and the better
the positioning accuracy is.
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3.3 Kalman Filter

The Kalman Filter is a recursive algorithm that estimates states based on the knowledge of
the parameters of the system model and measurements. This estimation process is recursive
as it uses previous information of the system coupled with new incoming measurements to
estimate the next values of the chosen states. This fusion of previous state estimates and
current observations aims to minimize the mean of the squared error. The elements of the
KF that must be chosen by the algorithm designer are briefly described below.

Every KF is composed of a state vector which contains the parameters that the user
wants to estimate and of measurements coming from external sensors. For GNSS based
applications, the position and receiver clock bias are always present (error or absolute) as
states, and other states may be added such as the velocity, other sensor errors, etc. GNSS
observables presented in 2.5 are used as measurement inputs to the filter. The KF assumes
that current state is a linear function of the previous states and white noise [Groves, 2008].
The measurement model is modeled as a linear function of the true state vector and white
noise. The true state and true observation model can be expressed as:

x(k) = f(x, k − 1) + u(k − 1) (3.35)

z(k) = h(x, k) + v(k) (3.36)

Where:

• x is the state vector of the system

• f is the state transition function

• u is the state process noise assumed as AWGN

• z is the measurement vector

• h is the measurement function

• v is the measurement noise assumed as AWGN

To each estimated state vector x̂k, is associated a state covariance matrix, Pk, which
illustrates the quality of the state estimation along with the correlation between the state
estimates.

The state transition matrix, Φk, depicts how the model is projected to evolve over time.
A process noise covariance matrix, Qk, is also defined to account for the uncertainties of the
state evolution that may be unmodeled or changing over time.

The observation vector, zk, are measurements coming from one or different sources that
are fed to the filter in order to fuse this information with the projected state estimate com-
ing from the state transition matrix. It is possible that measurements come in at different
times based on their source and/or frequency update. This is possible in the KF but mea-
surements must then either be on the same time scale or the time bias must be accounted for.
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Each measurement vector has its associated measurement covariance matrix, Rk, de-
picting the noise of each measurement and the potential correlation between incoming mea-
surements.

The measurement observation matrix, Hk, links the behavior of the measurements
with respect to the state vector.

The Kalman filter assumes that state dynamics and the observation process are linear, as well
as the normal distribution of noise in the state dynamics and input measurements [Ghadrdan
et al., 2012]. The block diagram in Figure 3.2 depicts the steps taken by the KF to update
the state estimates for one iteration.

Figure 3.2: Kalman Filter steps during one iteration.

Each step can be mathematically described. The state prediction is equal to:

x̂−k = Φk−1x̂
+
k−1 (3.37)

Where:

• x̂−k is the propagated state at iteration k

• x+k−1 is the estimated state at iteration k − 1

• Φk−1 is the state transition matrix from the previous iteration to the current one

The covariance prediction is equal to:

P−
k = Φk−1P

+
k−1Φ

T
k−1 +Qk−1 (3.38)

Where:

• P−
k is the propagated covariance matrix at iteration k

• P+
k−1 is the estimated covariance matrix at iteration k − 1
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• Qk−1 is the covariance matrix of the state transition model noise

The Kalman gain is computed as:

Kk = P−
k H

T
k

(
HkP

−
k H

T
k +Rk

)−1

(3.39)

Where:

• Kk is the Kalman gain matrix

• Hk is the measurement matrix

• Rk is the measurement noise covariance matrix

The innovation is provided by:
ik = zk −Hkx̂

−
k (3.40)

Where:

• ik is the innovation vector

• zk is the observation vector

Finally, the updated state and covariance matrix are computed as:

x̂+k = x̂−k +Kkik (3.41)

P+
k = (IN −KkHk)P

−1
k (3.42)

Where:

• x̂+k is the estimated state at iteration k

• P+
k is the estimated covariance state matrix at iteration k

• IN is the identity matrix of size N ×N

As mentioned earlier and illustrated by (3.37) and (3.41), the KF assumes linearity between
the states and the measurement and prediction models. However, GNSS models are non-
linear as shown in 3.2.1. Hence, the KF must be adapted to be used for GNSS purposes.

The extended Kalman filter is a widely used type of KF for non-linear measurements. The
EKF linearizes the state prediction around the previous state update and the measurement
model is linearized around the state prediction. Assuming the system model and measure-
ment model are not linear with respect to the state vector, they can be written as:

x̂−k = f(x̂+k−1) (3.43)

ik = zk − h(x̂−k ) (3.44)

It is possible to linearize (3.43) around the previous state update point so that:

x̂−k = f(x̂+k−1) +

[
∂f

∂x

]
x=x̂+

k−1

δx̂−k (3.45)
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Which can be expressed as:
x̂−k = x̂+k−1 + Fk−1δx̂

+
k−1 (3.46)

For a discrete EKF, (3.46) can be further simplified into [Groves, 2008]:

x̂−k = Φk−1δx̂
+
k−1 (3.47)

Where:

• Φk = exp(Fk−1∆T ) and ∆T is the sampling frequency of the state update

And the innovation is linearized around the state prediction:

ik = zk − h(x̂−k )−
[
∂h

∂x

]
x=x̂−

k

δx̂−k (3.48)

As the measurement model of the EKF is assumed to be of the form z(k) = h(k)+wk, (3.48)
can be simplified as:

ik = Hkδx̂
−
k + wk (3.49)

Where:

• Hk is the Jacobian matrix of the function h as a function of the state estimates

• wk is the measurement noise at iteration k

3.3.1 GNSS Only

This section will present a conventional EKF using only GNSS measurements: code pseudor-
anges, carrier phase, and Doppler observables. GNSS satellite positions are computed in the
Earth Centered Earth Fixed (ECEF) frame [Zhu, 1994] so the presented EKF computes the
position of the receiver in the ECEF as well. Indeed, this avoids coordinate frame rotations.
The state vector used in this EKF implementation is equal to:

xk = [rek vek dtRxk
ḋtRxk

dtGPS−GAL,k ztdk N1 . . . Nn] (3.50)

Where:

• rek is the receiver position in the ECEF in meters

• vek is the receiver velocity in the ECEF in meters per second

• dtRxk
is the receiver clock bias in meters

• ḋtRxk
is the receiver clock drift in meters per second

• dtGPS−GAL,k is the inter-system bias between GPS and Galileo in meters

• ztdk is the zenith tropospheric delay in meters

• Nx is the ambiguity term for the corresponding measurement

Each carrier phase ambiguity is estimated in this filter to make use of the accuracy brought
by the carrier phase measurements. The zenithal tropospheric delay is also estimated because
in (3.4), the wet component is a non-deterministic variable. The total tropospheric delay
depends on the elevation and is at its lowest, in a statistical sense, when the satellite is at
the zenith with respect to the receiver (π/2 elevation).
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3.3.1.1 State Transition Model

It can be shown (in Appendix A) that the state transition matrix is equal to:

Φk−1 =



I3 ∆T I3 0 0 0 0 01×N

03 I3 0 0 0 0 01×N

01×3 01×3 1 ∆T 0 0 01×N

01×3 01×3 0 1 0 0 01×N

01×3 01×3 0 0 1 0 01×N

01×3 01×3 0 0 0 1 01×N

0N×3 0N×3 0N×1 0N×1 0N×1 0N×1 IN


(3.51)

Where:

• IN is the identity matrix of size N

• 0N×M is a zero matrix of size [N, M]

3.3.1.2 Process Noise Covariance Matrix

The process noise covariance matrix Qk is defined as:

Qk−1 = E
[
uk−1u

T
k−1

]
(3.52)

The states are assumed independent and the noise of the states are all assumed to be white.
(3.52) is equal to:

Qk−1 = diag(



03
Qvel

0
QrxDrift

QinterGnss

QTropo

Qamb


) (3.53)

Where:

• Qstate matrices are equal to the variance of the state noise multiplied by the state
refresh rate.

The state process noise is zero for both the position and receiver clock bias as their temporal
evolution is known and modeled in the state transition model. In the state transition matrix,
the acceleration is assumed to be null over the sampling interval which is false; thus, an
uncertainty on the velocity evolution is typically used to account for acceleration changes.
The process noise of the clock drift is dependent on the oscillator of the receiver. The
remaining process noise values are subject to tuning according to the performance of the
filter, but it is assumed that the inter-system bias and tropospheric error have slow temporal
evolution. The ambiguity process noise value depends on the assumption on the frequency
of loss of locks. If loss of locks are frequent, the ambiguity process noise should be higher
for decreased convergence time.
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3.3.1.3 Observation Model

All three GNSS observables are used in this filter, therefore, there are three different obser-
vation models to build. As the three observations are assumed independent, the matrix can
be computed as (developed in Appendix A):

Hk =

 Hk,ρ

Hk,Φ

Hk,Doppler

 (3.54)

By reusing (3.48, H =

[
∂h
∂x

]
x=x−

k

) and the GNSS observable models presented in 2.5, each

observation matrix can be written as:

Hk,ρ =

− ⃗eRx
1 01×3 1 0 Cind ztd 0 . . . 0

...
...

...
...

...
...

...
. . .

...

− ⃗eRx
N 01×3 1 0 Cind ztd 0 . . . 0

 (3.55)

Hk,ϕ =

− ⃗eRx
1 01×3 1 0 Cind ztd δ1,1 . . . δ1,N

...
...

...
...

...
...

...
. . .

...

− ⃗eRx
N 01×3 1 0 Cind ztd δN,1 . . . δN,N

 (3.56)

Hk,Doppler =

01×3 − ⃗eRx
1 0 1 0 0 0 . . . 0

...
...

...
...

...
...

...
. . .

...

01×3 − ⃗eRx
N 0 1 0 0 0 . . . 0

 (3.57)

Where:

• Cind is equal to 0 for GPS observables and 1 for Galileo observables

• ztd is the zenithal tropospheric delay

• δj,i is the ambiguity value for the carrier phase measurement, if and only if i = j then
δi,i = 1 and 0 otherwise

The measurement noise covariance matrix R accounts for noise like errors in the measure-
ments such as the thermal noise, satellite clock noise, multipath variations etc. However,
this term does not account for remaining constant biases. In the presented EKF, all mea-
surements are assumed uncorrelated with one another and have the same mapping function
as the one presented in (3.25). An element of R can be characterized as:

σ2
i =

σ2
obs

sin(eli)2
(3.58)

The whole matrix can then be defined as:

Rk = diag(



σ2
1,obs1
...

σ2
N,obs1

σ2
1,obs2
...

σ2
N,obsN


) (3.59)

Where:
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• σ2
i,obsj is the variance of the ith measurement for the jth different type of measurement

3.3.2 GNSS/INS Hybridization

Adding an inertial navigation system (INS) to the GNSS solution is widely implemented. An
INS uses an IMU to compute a positioning, orientation, and velocity solution. As mentioned
earlier, the fusion of GNSS and INS overcomes some of the shortcomings of both positioning
solutions. Despite the added complexity, the coupling of the two is beneficial for the accuracy
of the position [Vezinet, 2014]. Three main couplings exist with INS/GNSS fusion are
detailed below and are illustrated in Figure 3.3.

1. Loose coupling: This method fuses the position solution of the INS and the GNSS
receiver together. This is the easiest method to implement but has relatively poor
performance especially in challenging GNSS conditions as shown in [Falco et al., 2017]
and [Dong et al., 2020].

2. Tight coupling: This algorithm combines the GNSS observables with the INS to
compute a position with the INS solution considered as the reference position. This
solution can operate with less satellites than required as a pure GNSS position is not
computed unlike in loose coupling [Dong et al., 2020].

3. Ultra-tight coupling: This approach associates the INS solution with the correlator
outputs from the tracking loops. The benefit of this method is that the accuracy of
tracking loops and observables can be improved thanks to the INS aiding [Jovancevic
et al., 2004] but it is the most complex coupling.
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Figure 3.3: Different GNSS/INS hybridization techniques.

This section will present an EKF using an INS tightly coupled to the GNSS observables
thanks to its robustness to poor GNSS conditions and medium complexity for implementa-
tion on a real-time receiver. This EKF will be an error, closed state filter.

A KF can be in open or closed loop structure. In the case of an error state GNSS/INS
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hybridization, the open loop configuration uses the errors of the states to correct the INS
solution and results in a corrected and a raw INS solution. This is especially useful when the
IMU is of high quality for integrity uses. On the other hand, a closed loop uses the error of
the estimated states to correct the INS during the computation process. The error estimates
are zeroed each iteration. Closed loop filters are useful to limit the impact of linearization
errors when using low-quality IMU [Groves, 2008]. As a MEMS IMU is used in the eHermes,
a closed loop filter was designed.

Another design choice for the EKF is whether to have a total state or an error state fil-
ter. A total state filter estimates the absolute values of the states whereas an error state
filter estimates the error of the states. In GNSS/INS hybridization, using an error state
filter is useful to keep the error state values low which ensures the validity of small angle
approximations.

The state vector of this tight-coupling fusion is given as:

δxk = [δrek δvek δdtRxk
δḋtRxk

δdtGPS−GAL,k δztdk δN1 . . . δNn δψe
k δbacck δbgyrok ]

(3.60)
Where:

• δψe
k are the errors of the receiver attitude in the ECEF in radians.

• δbacck are the errors of the IMU accelerometer bias in m/s2.

• δbgyrok are the errors of the IMU gyroscope bias in rad/s.

To obtain the total states from the error state EKF, the error states are added to the INS
states (except for the attitude angles). This results in:

xk,Total = δxk + xk,INS (3.61)

And for the attitude update, the attitude error can be multiplied to estimate the rotation
matrix from the body to the desired frame:

Re
b = (I3 − [δψe

k×])Re
b,INS (3.62)

Where:

• Re
b is the rotation matrix from the body frame to the ECEF.

• Re
b is the rotation matrix from the body frame to the ECEF computed with the INS

estimates.

• [δψe
k×] denotes the skew matrix of the attitude errors in brackets which is equal to: 0 −δψe

k,3 δψe
k,2

δψe
k,3 0 −δψe

k,1

−δψe
k,2 δψe

k,1 0


Then, the attitude angles can then be obtained from the matrix, which are called the Euler
angles.

ψe
k =

arctan2(Re
b3,2, R

e
b3,3)

−arcsin(Re
b1,3)

arctan2(Re
b2,1, R

e
b1,1)

 (3.63)

Where:

51



• Re
b,X,Y is the element [X, Y] of the rotation matrix from the body frame to the ECEF.

To obtain the state estimates Xk,INS, the INS solution must be computed. Mechanization
is the process by which IMU measurements are used in order to compute the displacement,
velocity, and rotation of the IMU over time. The particular equations of the mechanization
depend on which frame the computation is performed. The main steps are:

1. Update of the attitude from the gyroscope measurements

2. Update of the velocity from the accelerometer measurements

3. Update of the position by integration of the velocity

3.3.2.1 State Transition Model

To compute the state transition matrix, the same reasoning applied in 3.3.1.1. It can be
shown (in A) that the state transition matrix is equal to:

Φk−1 =

I3 ∆T I3 03×1 03×1 03×1 03×1 03×N 03 03 03
03 −2Ωie∆T 03×1 03×1 03×1 03×1 03×N ∆T [−Re

bf
b×] −∆TR

e
b 03

01×3 01×3 1 ∆T 0 0 01×N 01×3 01×3 01×3

01×3 01×3 0 1 0 0 01×N 01×3 01×3 01×3

01×3 01×3 0 0 1 0 01×N 01×3 01×3 01×3

01×3 01×3 0 0 0 1 01×N 01×3 01×3 01×3

0N×3 0N×3 0N×1 0N×1 0N×1 0N×1 IN 0N×3 0N×3 0N×3

03 03 03×1 03×1 03×1 03×1 03×N ∆TΩie 03 −∆TR
e
b

π
180

03 03 03×1 03×1 03×1 03×1 03×N 03 I3 03
03 03 03×1 03×1 03×1 03×1 03×N 03 03 I3


(3.64)

Where:

• Ωie =

 0 −ωie 0
ωie 0 0
0 0 0

 with ωie = 7.292115 × 10−5 rad/s being the WGS84 Earth’s

angular rate

• Rb
imu is the rotation matrix from the IMU’s frame to the body frame

• Re
b is the rotation matrix from the body frame to the ECEF

• f b is the accelerometer reading rotated to the body frame with respect to the inertial
frame

• ωb is the gyrometer reading rotated to the body frame with respect to the inertial
frame

• [v×] denotes the skew matrix of the vector in brackets which is equal to:

 0 −v3 v2
v3 0 −v1
−v2 v1 0
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3.3.2.2 Process Noise Covariance Matrix

The process noise covariance matrix Qk is defined as:

Qk−1 = diag(


QGNSS

Qatt

Qacc

Qgyro

) (3.65)

Where:

• QGNSS is the state covariance matrix of (3.53)

The values of the added states of the state covariance matrix (Qatt, Qacc, and Qgyro) depend
on the quality of the IMU. In this thesis, a low-cost MEMS IMU was used. To quantify
the process noise, the Allan variance of the sensor was determined. The attitude noise was
given by the gyroscope standard deviation noise. The accelerometer and gyroscope bias
process noise were estimated with the lowest value of the Allan deviation curve as done in
[Woodman, 2007].

3.3.2.3 Observation Model

Identically to the GNSS only EKF, all three GNSS observables are used. The observations
are still assumed independent. The observation model is similar but takes into account the
lever arm between the IMU and the GNSS receiver.

Hk,ρ =

− ⃗eINS
1 01×3 1 0 Cind ztd 0 . . . 0 − ⃗eINS

1Re
b(−p⃗bRx×) 01×3 01×3

...
...

...
...

...
...

...
. . .

...
...

...
...

− ⃗eINS
N 01×3 1 0 Cind ztd 0 . . . 0 − ⃗eINS

NRe
b(−p⃗bRx×) 01×3 01×3


(3.66)

Hk,ϕ =

− ⃗eINS
1 01×3 1 0 Cind ztd δ1,1 . . . δ1,N − ⃗eINS

1Re
b(−p⃗bRx×) 01×3 01×3

...
...

...
...

...
...

...
. . .

...
...

...
...

− ⃗eINS
N 01×3 1 0 Cind ztd δN,1 . . . δN,N − ⃗eINS

NRe
b(−p⃗bRx×) 01×3 01×3


(3.67)

Hk,Doppler =

01×3 − ⃗eINS
1 0 1 0 0 0 . . . 0 − ⃗eINS

1Re
b(v⃗

b
INS×) 01×3 − ⃗eINS

1Re
b(p⃗

b
Rx×) π

180
...

...
...

...
...

...
...

. . .
...

...
...

...

01×3 − ⃗eINS
N 0 1 0 0 0 . . . 0 − ⃗eINS

NRe
b(v⃗

b
INS×) 01×3 − ⃗eINS

NRe
b(p⃗

b
Rx×) π

180


(3.68)

Where:

• pbRx is the lever arm between the antenna and IMU in the body frame

• vbINS is the INS antenna velocity in the body frame

The measurement covariance matrix is identical to the one defined in (3.59).
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3.4 Robust Estimator

Robust estimators are designed to limit the effect of outliers in the estimation of a given set
of parameters. There are three main classes of robust estimators:

1. M estimators: Like the LSE, M estimators are a generalisation of maximum likelihood
estimators (MLE). They can be expressed as:

Mest : θ̂M = minθ

( N∑
i=1

ρ(
ri(θ)

σ̂
)
)

(3.69)

Where:

• ρ is the robust loss function

• r is the residual element

• N is the number of residuals

• θ is the parameter to estimate

• θ̂M is the estimated parameter

• σ̂ is the estimated scale of errors

2. L estimators: They are obtained by linearly combining order statistics, an example
is the median which is an L-estimator. Each observation is arranged according to its
value and then multiplied by its associated weight. For the median, it is equal to
x((N+1)/2) if N is odd and the average between the (N/2) and (N + 1)/2 -th order
statistics if N is even. L estimators are solved as:

Lest : θ̂L =
N∑
i=1

wix(i) (3.70)

Where:

• x(i) is the i-th order statistic

• wi is the i-th weight

3. R estimators: These estimators minimize the sum of residuals based on assigning a
rank to each residual according to its value. They are given as:

Rest : θ̂R = minθ

( N∑
i=1

ρ(Ri)ri(θ)
)

(3.71)

Where:

• Ri = R(ri) is the rank of the residual ri

The performance of robust estimators are characterized by three factors:

1. The choice of the loss function, popular choices are the Huber or Tukey’s biweight
functions.
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2. The breakdown point of the estimator, which is the proportion of outliers contained
in the dataset at which the robust estimator yields large erroneous estimates.

3. The efficiency of the estimator is its asymptotic behavior and variance when no out-
liers are present [Zoubir et al., 2018].

In this work, only M estimators were studied for their effect on positioning solutions. As
mentioned in [de Menezes et al., 2021], M estimators are easier to handle as a function
bounds the estimator. The S and MM estimators presented are variants of the basic M
estimator.

3.4.1 M Estimator

This estimator assumes that the observations are independent but not necessarily identically
distributed [Stefanski and Boos, 2002]. To ensure robustness against outliers the residuals
must be bounded, so an estimate of the scale of errors (with its computation given in (3.75)
is used along with a bounded loss function. To minimize (3.69), assuming the loss function
chosen is differentiable, it can be written as:

∂

∂θ

( N∑
i=1

ρ(
ri(θ)

σ̂
)
)
= 0 (3.72)

By applying the chain rule:

( N∑
i=1

∂ri(θ)/σ̂

∂θ
ψ(
ri(θ)

σ̂
)
)
= 0 (3.73)

Where:

• ψ is the influence function that must be bounded which is equal to ψ(x) = ∂
∂x
ρ(x)

To solve this equation, a weight function is defined, which is equal to w(x) = ψ(x)/x, to
make (3.73) equivalent to a WLSE problem.

N∑
i=1

∂ri(θ)/σ̂

∂θ

ri(θ)

σ̂

(
w(
ri(θ)

σ̂
)
)
= 0 (3.74)

To estimate the scale of residuals, robust measures of scale such as the inter-quantile range
or the median absolute deviation (MAD) need to be used. This is due to their resistance to
outliers unlike the variance which is greatly affected by outliers. The MAD can be defined
as:

σ̂ = Med(|x−Med(x)|) (3.75)

This scale estimate can be multiplied by a normalizing constant to make the scale estimate
consistent with the standard deviation of a normally distributed dataset or other chosen
distributions. For the Gaussian distribution the constant of the MAD is roughly equal to
1.4815 [Rousseeuw and Croux, 1993]. The proof is given in Annex B. Therefore (3.75), for
estimated Gaussian distributions, is equal to:

σ̂ = 1.4815 Med(|x−Med(x)|) (3.76)
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To apply (3.74) for GNSS positioning purposes, the residual is obtained by the linearization
of the code pseudorange around a point. The equation is recalled in (3.77). It is worthwhile
to note that, identically to the LSE algorithm, robust estimators can be used to compute
the velocity of the receiver with Doppler measurement.

∆ρjRx =
∂ρj

∂x
∆x+

∂ρj

∂y
∆y +

∂ρj

∂z
∆z +

∂ρj

∂cdtRx

∆cdtRx + ϵjρ,Rx (3.77)

Afterwards, the residuals are scaled by the scale estimate. For GNSS purposes, the normal-
izing constant chosen is for the Gaussian distribution.

Then, based on the selected loss function, the weights for each value are computed. Then
the position solution is re-estimated with a process taking into account the new weights, for
example the WLSE algorithm. This process is then repeated with the new residuals until a
convergence on the position has been reached, which is depicted in Figure 3.4.

Figure 3.4: M Estimator Algorithm for GNSS positioning.

3.4.2 S Estimator

S estimators are a variation of M estimators which minimize the dispersion of the residuals
[Toka and Cetin, 2010]. These estimators tend to have high breakdown points but at the
cost of low efficiency. The S estimator can be defined as:

Sest : θ̂S = minθ

(
s(r1(θ), . . . , rN(θ))

)
(3.78)

The dispersion of s(r1(θ), . . . , rN(θ)) is defined as the solution of:

K =
1

N

N∑
i=1

ρ

(
ri(θ)

σ̂S

)
(3.79)

Where:

• K is the expected value of the loss function for a standard normal distribution

• σ̂S is the estimated scale of errors with the S estimator

To use the S estimator for GNSS positioning, the algorithm is almost unchanged with respect
to M estimators presented in Figure 3.4. First, a targeted breakdown point must be defined
for this estimator. The other change comes from estimating the scale residual each iteration
instead of computing it from the MAD before scaling the residuals.
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3.4.3 MM Estimator

MM estimators target a high efficiency and a high breaking point, essentially improving
upon the S estimator. To do so, two loss functions are used. One loss function is used to
estimate the scale estimate of the residuals like the S estimator. Then the set of parameters
is estimated with the S-estimated scale residual. The MM estimator is given as:

MMest : θ̂M = minθ

( N∑
i=1

ρMM(
ri(θ)

σ̂S
)
)

(3.80)

Where:

• ρMM(x) is the loss function used once the scale residual is estimated

To compute the MM estimator applied to GNSS positioning, the first iteration is where the
scale estimate of the S estimator is computed using a loss function for the S estimator ρS.
After this scale estimate has converged, the other iterations use ρMM as the loss function
and the estimated scale of errors.

3.5 Conclusions

This chapter detailed three of the most widely used positioning techniques for GNSS pur-
poses. Firstly, the basic LSE algorithm was described and how it can be implemented for a
GNSS receiver. Secondly, conventional GNSS-only and INS/GNSS tight coupling EKFs were
presented and their model detailed. Lastly, robust estimators applied to GNSS positioning
were defined. Each presented algorithm has its upsides and downsides.

An LSE based algorithm is simple to implement and fast, but performs poorly when the
data does not follow a Gaussian law. For example, when multipath occurs, the LSE per-
formance can be severely impacted. The EKF based solution uses the precise carrier phase
measurements and is less sensitive to large biases, but is very sensitive with respect to tuning
and slowly growing errors, is computationally heavy, and adds a sensor if the INS coupling
is used. Lastly, robust estimators can deal with outlier measurements making them useful
for obstructed GNSS environments but lack the LSE efficiency when the data is not severely
impacted by unmodeled errors. However, one downside is the difficulty to predict their per-
formance (i.e. positioning error bounds, protection levels etc.).

As the eHermes is a GNSS receiver equipped of a micro-electromechanical systems (MEMS),
implementing an EKF with GNSS/INS hybridization maximizes the receiver’s hardware.
The implemented solution is presented in Chapter 5. However, characterizing the perfor-
mance of a hybridized solution is challenging due to the difficulty to tune the filter. It has
also been observed that the main driver of the accuracy of the solution is the code measure-
ments. Therefore, a focus was placed on GNSS code solutions only to simplify the analysis
with the assumption that improving this solution would apply to the hybridized filter.

To improve the GNSS code only solution, a method to limit the impact of large multipath
biases on the positioning solution is presented in Chapter 7.
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CHAPTER 4
Convolutional Neural Networks

In this thesis, convolutional neural networks (CNN) were studied within the scope of GNSS
multipath classification. As shown in Chapter 2, multipath can severely impact the signal
processing of a GNSS receiver. Indeed, multipath impacts the tracking loops of the receiver,
more specifically their correlator outputs. Furthermore, multipath depends on the environ-
ment of the receiver and modeling it is computationally expensive. The eHermes can has the
flexibility to increase the number of correlator outputs and their values are accessible. Since
the eHermes is bound to operate in different conditions, determining whether GNSS multi-
path affects the code pseudorange was investigated. This was done using machine learning,
more specifically CNNs.

CNNs were popularized by [Krizhevsky et al., 2012] for their capacity to deal with im-
age inputs. They were inspired by the way animals analyze images [Hubel DH, 1968]. As
their name suggests, they make use of the convolution operation to analyze patterns in an
image. This convolution process resembles how filters are applied to images for corner edge
detection for example. This chapter will highlight the differences between a CNN and an
artificial neural network and describe the different layers that constitute a CNN. The impor-
tance of a loss function and the gradient descent to recompute the weights of the network will
be explored. Lastly, two common ways to limit the model from overfitting will be described.
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4.1 Differences with Artificial Neural Networks

Machine learning development can also be done using traditional artificial neural networks
(ANN) instead of CNNs. In an ANN, each neuron is connected to all the following neurons
via a weight and is composed of a bias as illustrated by (4.1) and Figure 4.1.

xli =
N l∑
k=1

wk,ix
l−1
k + bli (4.1)

Where:

• xli is the i-th neuron at the l-th layer

• N l is the number of neurons at the (l-1)-th layer

• wk,i is the weight of the k-th neuron of the previous layer to the i-th neuron of the
current one

• xl−1
k is value of the k-th neuron of the previous layer

• bli is the bias value of the i-th neuron at the l-th layer

Figure 4.1: Artificial neural network architecture example.

It can be seen that ANNs use many weight connections between neurons. Hence, when the
input layer size increases, the number of weights increases as well. The weights and biases
are the quantities that are being trained in an ANN to achieve its purpose. When images are
used in ANNs, they need to be flattened to ressemble the architecture of Figure 4.1. Images
are 2D or 3D inputs, so each pixel is assimilated as an input neuron making the number
of parameters to train drastically increase. Another downside of ANN classification is that
features need to be identified before training for the model to know which features to rely
on and detect.
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When it comes to image classification, artificial neural networks were shown to not be very
efficient due to their structure [Krizhevsky et al., 2012]. On the other hand, CNNs identify
the features deemed notable thanks to filters and then classify images [Alzubaidi et al., 2021].
As in this PhD, images were used to detect multipath and the features indicating what is
multipath are not assumed in this work; CNNs were a better fit.

Other types of neural networks exist such as recurrent neural networks (RNN) and gen-
erative adversarial network (GAN). RNNs function by using the previous model predictions
as memory for the current prediction. It is vastly used in speech recognition or in other
applications where there is high correlation between the successive inputs. GANs operate
as two models competing, where one’s gain is the other’s loss. GANs are mostly used in
unsupervised learning meaning that the data is not labeled. In this thesis, the input data
was labeled as supervised learning methods were used.

4.2 Layers

A convolutional neural network is composed of several layers - hidden and visible - making
up its architecture. A generic CNN architecture is given in Figure 4.2. These layers are
described in the subsections below.

Figure 4.2: CNN Architecture Example.

4.2.1 Convolutional Layer

As indicated by the name, convolutional neural networks rely on the convolution operation.
The input, for example an image, is a 2D matrix (or 3D if in color). This input is then
convoluted with multiple filters, all the same size but with different values. Filters can be
thought of as feature detection matrices. In computer vision, kernels can be used to detect
edges or sharpen the images [Lampert, 2009]. CNNs are based on the same principle but
keep updating the values of their filters to detect the most prominent features of the input
images. The number of filters used in a convolutional layer will determine the number of
2D outputs. These 2D outputs are called feature maps as each one was passed through a
different filter, thus detecting different features.

The convolution is a time consuming process increasing with the size and desired num-
ber of feature maps. A stride can be implemented to skip elements on which to perform
the convolution on. The mathematical expression of a convolutional layer is given below
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[Carneiro et al., 2017].

Al
o =

N∑
k=1

W l
o,k ∗ Al−1

k + blo (4.2)

Where:

• k is the number of channels in the image (1 for Black and White and 3 for RGB)

• o indicates the number of channels in the output image

• ∗ is the convolution product

• Al−1
k is the image input

• W l
o,k is the filter with which the convolution is performed

• blo is an additional bias

This convolution is illustrated on Figure 4.3 by taking a 5× 5 image and convoluting it with
a 3 × 3 matrix with no stride yielding a matrix of 3 × 3. This process is repeated for the
specified number of filters in the layer giving N feature maps.

Figure 4.3: Convolution illustration.

Once the feature maps are generated from the convolutional layer, an activation function is
used to transform the values of the maps. Numerous activation functions have been proposed,
such as the rectified linear unit (ReLU) [Agarap, 2018]. These functions are generally non-
linear to adapt to a wider variety of data. Indeed, a combination of linear functions is a
linear function itself as shown in (4.3), so the network would not need several layers.

f(λx+ y) ̸= λf(x) + f(y) ∀ λ, x, y ∈ R (4.3)

On top of being non-linear, activation functions need to be differentiable. These functions
may not be continuously differentiable like the ReLU, but can still be used for the backprop-
agation of weights using the gradient descent described in 4.4.
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4.2.2 Pooling Layer

Pooling layers are used to down-sample feature maps in order to reduce the computational
load, created by the convolutional layers. Pooling is most often done as max pooling or
average pooling. The pooling layer uses a filter of specified size (N ×N) that slides over the
whole feature map with a given step called stride. Max pooling selects the highest value of
the feature map. Average pooling takes the average value of the map. Max pooling brings
out the most prominent feature of the pooling region for a given image while average pooling
keeps most of the information. One does not necessarily perform better than another and
their uses depend on the input data [Zafar et al., 2022]. The max and average pooling
formulas are given in (4.4) and (4.5) respectively.

Ao(s, t)
l = max(Al−1

o (αls+ i, βlt+ j)) ∀i ∈ [1, N1] and ∀j ∈ [1, N2] (4.4)

Ao(s, t)
l =

1

N1N2

N1∑
i=1

N2∑
j=1

Al−1
o (αms+ i, βmt+ j) (4.5)

Where:

• N1 is the size of the pooling window in the X axis

• N2 is the size of the pooling window in the Y axis

• αm is the stride of the pooling window in the X axis

• βm is the stride of the pooling window in the Y axis

The two pooling methods are illustrated in Figure 4.4.

Figure 4.4: Max Pooling and Average Pooling example.

4.2.3 Output Layer

Convolutional and pooling layers output feature maps that have several dimensions; yet, it
is not possible to classify them directly. So, the final layer in a CNN is flattened to a 1-D
layer. This layer is composed of one or more neurons to classify the data. The number of
neurons will influence the activation function used. For binary classification, the sigmoid
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function, given in (4.6) should be used as it returns a probability between 0 and 1 for the
data to belong in either class 0 or class 1.

f(x) =
1

1 + e−x
(4.6)

On the other hand, for multi-class classification, the softmax function should be implemented
and can be given as:

f(xi) =
exi∑N
j=1 e

xj
(4.7)

Where:

• N is the number of output neurons

4.3 Predictions and Training

To decide how many convolutional, poolings layers, and which activation functions to use,
there are several factors to take into account. One factor is the complexity of the problem.
Indeed, if the problem at hand is very complex, then there should be multiple convolutional
layers. One downside of adding convolutional layers is that the network will take much more
computational time due to the increased number of convolutions. Another downside is that
by increasing the number of convolutional layers (and any layer with trainable weights in
them) will lead to more data needed to train the network.

Pooling layers are not mandatory in a CNN but recommended as they decrease the size
of feature maps without losing valuable information for the network. The choice of activa-
tion function is dependent on the problem at hand as well as performance. The goal is to
choose a function that limits the vanishing gradient problem presented in section 4.4.

Once a first network has been built using estimates of what could be the best network
for the given problem, it needs to be trained and tested. To evaluate a network based on
supervised learning, this implies that the input data has been pre-labeled without the help
the network. When the data is fed to the built network, it will yield predictions. The pre-
diction is defined as the output of the neural network. The difference between the prediction
and the labeled truth is the error. The goal of the network is to minimize this error using
a loss function, which is presented in section in section 4.4. This recurring process is called
the training of the network.

The network is usually trained on most of the available data (∼70-80%) multiple times.
This means that the training data will be presented several times to the network to keep
updating its knowledge as it gained knowledge about the problem from the previous time.
The number of time the data is presented for training is called the number of epochs. Once
the network has been trained, it is then referred to as a model as its characteristics and
weights do not change anymore. The model is then tested on the remaining data (∼20-30%)
to evaluate its performance on unseen data. Sometimes validation data can also be used
during training (∼10-20%) to optimize hyperparameters.
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Once the performance of the model is characterized, it may occur that it performs badly or
is affected by overfitting, detailed in section 4.5. There may be a lack of data for the correct
training of the CNN and/or a bad network architecture. To fix bad network architectures,
networks can be built gradually. This means that a first model can be built using one con-
volutional layer with one pooling layer and output layer before moving on to more complex
architectures if need be.

4.4 Weight Update and Gradient Descent

Loss functions are primordial in all neural networks as they yield the error between the
prediction and the truth. During training, this function is minimized. Many loss functions
exist, and some are better suited according to the application. For regression, the mean
squared error is popular while the categorical cross entropy is used for multi-classification
[Zhang and Sabuncu, 2018] and the binary cross entropy for two classes. The binary cross
entropy function is written as:

J(ŷ) = −1

2

1∑
i=0

yi log(ŷi) (4.8)

Where:

• J is the loss function

• y is the truth of 0 or 1 corresponding to the class

• ŷ is the probability corresponding to the class

ŷ is the resulting probability from the CNN; therefore, this value is obtained by passing
through all the layers of the network. (4.8) can be rewritten as:

J(ŷ) = −1

2

2∑
i=0

yi log(f
l(W lf l−1(W l−1 . . . )) (4.9)

Where:

• f l is the activation function at layer l

• W l are the weights at layer l

The goal is to minimize the loss function, to do so the gradient descent algorithm is applied.
The gradient descent is an iterative algorithm consisting in computing the gradient of a given
function to update its parameters to move closer towards its minimum. In the case of neural
networks, the predictions are updated to move the loss function towards its minimum. Its
expression can be given as [Ruder, 2017]:

ŷn+1 = ŷn − η∇ŷnJ(ŷ) (4.10)

Where:

64



• ŷn is the probability prediction at iteration n

• η is the learning rate

• ∇ is the gradient operator

The learning rate is an important parameter as it influences by how much the gradient
descent updates the prediction values. The gradient descent is illustrated on Figure 4.5 for
a simple quadratic loss function with two different learning rates.

Figure 4.5: Gradient Descent technique for low and high learning rates.

It can occur that due to a low value of the gradient, the predictions are barely updated
and the loss function does not reach the actual minimum. This is known as the vanishing
gradient problem. On the other hand, the predictions can be updated by large values which
causes the gradient to increase. This is known as the exploding gradient. To reduce the
impact of this phenomenon, some methods have been proposed such as adding momentum
to the gradient descent. This results in a weighted update equal to [Ruder, 2017]:

ŷn+1 = ŷn − η∇ŷnJ(ŷ) + α∆ŷn (4.11)

Where:

• α is the exponential decay factor between 0 and 1

• ∆ŷn = ŷn − ŷn−1 is the difference in the previous estimation

The gradient descent is computationally demanding. For, the stochastic gradient descent
(SGD) computes the gradient descent by randomly selecting a training sample of the dataset
and performs the gradient descent and updates the weights of the network directly. To re-
duce the computational load, variants of the SGD are implemented in machine learning
algorithms. A common algorithm is the mini-batch gradient descent. It does not compute
the gradient descent on the whole dataset but splits the dataset into random batches of
chosen size and performs the gradient descent algorithm on these batches. The weights are
updated after each batch is processed by the gradient descent. This procedure is repeated
for all batches to reduce the overall loss function. Having a large batch size causes the model
to be slow and will have poor generalization. On the other hand, a small batch size will
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have faster convergence but could reach sub optimal performance [Masters and Luschi, 2018].

Another method to improve the effectiveness of the stochastic gradient descent is by us-
ing the Adam: adaptive moment estimation optimizer presented in [Kingma and Ba, 2017].
This optimizer adapts the learning rate of the gradient descent for a given training sample
based on the running averages of the gradient and on the second moment of the gradient.
This leads to a more accurate estimation of the minimum. Indeed, adapting the learning
rate helps when some data parameters are more sensitive than others. The two running
averages are given in (4.12) and (4.13).

mn+1 = β1mn + (1− β1)∇ŷnJ(ŷ)

m̂ =
mn+1

1− β1

(4.12)

vn+1 = β2vn + (1− β2)
(
∇ŷnJ(ŷ)

)2
v̂ =

vn+1

1− β2

(4.13)

Where:

• mn+1 is the running average of the gradient

• vn+1 is the running average of the second moment of the gradient

• m̂ is the exponential average of the gradient

• v̂ is the exponential average of the second moment of the gradient

• β1 is the forgetting factor for the gradient

• β2 is the forgetting factor for the second moment of the gradient

The prediction update is then computed as [Kingma and Ba, 2017]:

ŷn+1 = ŷn − η
m̂√
v̂ + ϵ

(4.14)

Where:

• ϵ is a small scalar to avoid division by 0

Finally, to update the weights of each layer, the chosen gradient descent method can be
applied but on each layer. Each weight computation depends on the following weight value.
This is called backpropagation and is achievable thanks to the chain rule. The weight update
for each layer can be defined similarly to (4.10).

ŵj
n+1 = ŵl

n − η
(
f

′l · ∇ŵl+1
n+1
J(ŷ)

)
(4.15)

Where:

• ŵj
n+1 is the weight value for the iteration n+ 1 on the layer j
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4.5 Overfitting

A common problem in ML is overfitting. Overfitting is when a model works well for the
training data but performs poorly when fed new data. This is due to the model adapting
too much to the training data. The model then creates a function that minimizes the loss
function of the training data very well. However, the validation and/or test loss functions
can not be minimized to the same extent. The most frequent reasons of overfitting are:

• The trained data is not fully representative of the potential input data

• The network is too complex for the problem at hand

• The network has been trained for too many iterations

• Data leakage, which is when the network has access to information during training
that it will not have when predicting.

A good rule of thumb is to compare the loss function values of the training and validation
dataset to check overfitting. This section details two widely implemented methods that
reduce the risk of overfitting.

4.5.1 Dropout

Dropout deactivates a neuron during the training phase with a given probability (chosen
in the implementation) to reduce reliance on certain connections. Dropout does not occur
when the model predicts outputs after the training phase. As shown by [Srivastava et al.,
2014], this is an effective way to reduce the likelihood of overfitting. However, introducing
a low dropout will not reduce overfitting nor increase the performance while a high dropout
will lead to longer convergence.

This method is illustrated in Figure 4.6 for a CNN, after being flattened resembling the
architecture of an ANN, with a hidden layer of neurons.

Figure 4.6: Dropout example for a flattened CNN.
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4.5.2 Regularization

Another method to limit overfitting is by using L1 and/or L2 regularization to the weights
[Ying, 2019]. On the weights, L1 regularization, also known as the LASSO regression, can
be defined as:

L1reg(θ) = J(θ) + λ
N∑
j=1

|wj| (4.16)

Where:

• J(θ) is the existing cost function

• λ is the regularization factor

• wj are the weights of the network

• N is the number of weights in the network

• L1reg(θ) is the new cost function with L1 regularization

And L2 regularization, also known as RIDGE regression, can be defined as:

L2reg(θ) = J(θ) + λ
N∑
j=1

w2
j (4.17)

L1 regularization drives the number of used features to be small causing the model to be
sparse. On the other hand, L2 regression enables a faster learning of the network [Ng, 2004].
Hence, a combination of both, called the elastic net presented in [Zou and Hastie, 2005], not
only reduces overfitting but also takes advantage of both regression methods. The new loss
function becomes:

ENET (θ) = J(θ) + λL1

N∑
j=1

|wj|+λL2
p∑

j=1

w2
j (4.18)

Where:

• J(θ) is the existing cost function

• θ is the parameter to minimize

• λ is the regularization factor (L1 or L2)

• ENET (θ) is the new cost function with L1 and L2 regularization

Reducing overfitting via regularization comes at the expense of adding a bias in the estimated
parameters. Therefore, the choice in magnitude of λ depends on the tolerated bias for the
dataset. In machine learning, this hyper parameter, λ, is often empirically determined by
testing different values and analyzing which one performs best on a given network with the
other hyper parameters of the model constant.
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4.6 Conclusions

In this chapter, the architecture of a CNN was detailed as well as the different implementa-
tion choices to make when designing a network. Indeed, for the model to perform as intended,
many factors come into play such as the activation functions, number of layers, loss func-
tion etc. All these implementation choices are trade-offs to the computational complexity,
the time, and amount of data required to train the network with the desired performance.
This chapter also presented two methods to limit overfitting of the model to its training data.

A focus was placed on using CNNs for classifying images in this chapter. Indeed, in this
thesis, CNNs were used to classify whether the correlator outputs were affected by multipath
or not. The correlator outputs were dependent on time and delay and were in the form of
2D images. The CNNs implemented in this PhD are detailed in Chapters 6 and 7.
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CHAPTER 5
Proposed TDCP based EKF

The positioning algorithm to be implemented in the eHermes needs to be as lightweight as
possible and also be accurate in challenging conditions. Therefore, the LSE algorithm or its
variants are not sufficient. An EKF was chosen as the positioning algorithm for the receiver.
However, as already mentioned, to reap the benefit of the precise carrier phase measurement,
the ambiguity has to be dealt with, for example being estimated in the EKF states as shown
in Chapter 3.

By differencing two consecutive carrier phase measurements, the accuracy of these observ-
ables can be used to improve the positioning accuracy without having additional states which
speeds up the computation time of the filter. The downside of only using TDCPs is that this
comes at the expense of absolute positioning. This chapter presents an EKF that still uses
code pseudoranges, Doppler measurements but adopts time differenced carrier phase mea-
surements instead of raw carrier phase measurements as in 3.3.2 which led to the publication
[Guillard et al., 2022]. The formation of these TDCP measurements will be presented as
well as the changes on the EKF models to take into account these observables. Since cycle
slips still affect TDCPs, two methods to detect them will be detailed. Then, the datasets on
which the filter was tested will be presented along with the corresponding results.
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5.1 Formation of TDCP Measurements

Figure 5.1: Formation of TDCP Measurements.

The time differenced carrier phase differences two consecutive carrier phase measurements
to effectively eliminate the ambiguity term in the absence of cycle slips as shown in Figure
5.1. Thus, the TDCP still benefits from the precision of the carrier phase measurement
with a lower implementation complexity. Indeed, when using TDCPs over carrier phase
measurements in a hybridized GNSS/INS EKF, a lower state vector size is needed since the
ambiguities are no longer estimated. The TDCP measurement can be obtained as:

∆Tϕ
i
Rx = ϕi

Rx(t+∆T )− ϕi
Rx(t) (5.1)

∆Tϕ
i
Rx = (r⃗i(t+∆T )− r⃗Rx(t+∆T )) · ⃗eRx

i(t+∆T )− (r⃗i(t)− r⃗Rx(t)) · ⃗eRx
i(t)

+∆T (cdtRx)−∆T (cdt
i) + ∆TT

i
Rx +∆T I

i
Rx +∆T δ

i
ϕ,Rx +∆T ε

i
ϕ,Rx

(5.2)

As long as ∆T is not too big, the tropospheric, ionospheric, and multipath temporal evolu-
tions are considered to be negligible [Park and Kee, 2010]. These error sources are included
in the TDCP residual noise term (∆TE

i
Rx).

∆Tϕ
i
Rx = r⃗i(t+∆T ) · ⃗eRx

i(t+∆T )− r⃗i(t) · ⃗eRx
i(t)−∆T r⃗Rx · ⃗eRx

i(t+∆T )−
r⃗Rx(t)∆T · ⃗eRx

i +∆T (cdtRx)−∆T (cdt
i) + ∆TE

i
Rx

(5.3)
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Where ∆TE
i
Rx = ∆TT

i
Rx + ∆T I

i
Rx + ∆T δ

i
ϕ,Rx + ∆T ε

i
ϕ,Rx represents the temporal change of

GNSS errors as well as the noise.

5.2 State of the Art EKF/PPP Algorithms

Most PPP based EKF solutions use raw carrier phase measurements and do not difference
them such as [Li, 2019], [Gao et al., 2017], and [Vana et al., 2019].

[Li, 2019] proposes a dual frequency PPP GNSS only EKF that estimates carrier phase
ambiguities. Their algorithm uses GPS and GLONASS measurements; the latter are based
on frequency-division multiple access. Thus, they also estimate the inter-frequency biases
between GLONASS measurements as states. In the EKF states, they account for cycle slips
by adding additional states in the EKF. They try to detect cycle slips on each frequency and
satellite by using the geometry free combination ϕGF = ϕ1 − ϕ2 and computing a threshold
based on the cycle slip state and covariance values.

[Gao et al., 2017] designed a tightly coupled solution GNSS/INS EKF algorithm. They
used multi constellation data and first order ionosphere free combinations on the code pseu-
doranges, carrier phase and Doppler measurements. They estimate the same states as in
(3.60) plus the scale factor of the accelerometers and gyroscopes. They account for the
inter-system bias of constellations and inter-frequency biases separately in order to speed up
the convergence of the filter.

[Vana et al., 2019] also processes ionosphere free code and carrier phase measurements using
a low-cost MEMS IMU and GNSS receiver. They estimate the same states as presented in
(3.60).

On the other hand, some authors have already discussed the potential benefit of using TD-
CPs instead of raw carrier phase measurements such as [Kim et al., 2020], [Soon et al., 2008],
and [Kai et al., 2021].

[Kim et al., 2020] used uncombined TDCPs on multiple constellations and frequencies. The
TDCPs used in this paper were also differenced with a chosen reference satellite to remove
the receiver clock drift. Their algorithm tightly coupled the single differenced TDCPs with a
high quality INS without other measurements. Therefore, their position was externally ini-
tialized, and the proposed algorithm worked incrementally. They excluded cycle slips with a
modified version of the method described in 5.4.2. As they removed the effect of the receiver
clock drift, they estimated the receiver position, velocity, attitude, and IMU biases.

[Soon et al., 2008] used TDCPs on GPS L1 C/A as a replacement of carrier phase mea-
surements. However, his method did not include a method to detect cycle slips. This
algorithm uses a tight coupling between the INS and the GNSS receiver. Only the TDCPs
are used as GNSS measurements. The position of the receiver is first initialized and then
iteratively updated with the proposed EKF.

[Kai et al., 2021] implements a tightly coupled EKF with INS/TDCP measurements similarly
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to [Kim et al., 2020]. Indeed, they compute single differenced TDCPs, on GPS L1 C/A and
L2, by subtracting each TDCP with the TDCP of a chosen reference satellite and estimate
the same states. They use this EKF for incremental positioning with an initialized position
from a receiver. They deal with cycle slips based on the innovation magnitude and re-adapt
the weights of the EKF measurement matrix.

The algorithm proposed in this chapter compares the use of uncombined and first order
iono-free TDCPs which has not been investigated in the mentioned papers. Furthermore,
two methods of cycle slip detection are proposed and analyzed according to different scenar-
ios. It is not mentioned in the literature whether consecutive TDCPs are used which would
result in a correlation of measurements and should be accounted for. In this implementa-
tion, TDCPs are used every two epochs to avoid this problem and keep the complexity of
the filter as low as possible. Furthermore, TDCPs are rarely used alongside pseudoranges
and Doppler measurements for absolute positioning as most implementations use them as
incremental positioning tools from a predetermined position such as [Kim et al., 2020] and
[Soon et al., 2008]. As this algorithm is designed to work in real time on a GNSS receiver,
the computational gain of using TDCPs is also discussed.

5.3 Adaptation of the EKF

The overall architecture of the presented TDCP based EKF is illustrated in Figure 5.2.

Figure 5.2: EKF Filter Architecture for one epoch.

As it will be shown in section 5.3.2, the equations for the measurement update are different
for TDCPs than for code pseudoranges and Doppler measurements. Hence, the extended
Kalman filter was designed so that the measurements were treated separately. To further
reduce the computational burden, the observables were processed sequentially as done in
[Welch and Bishop, 1997]. Indeed, finding the inverse of a MxM (with M ∈ N ∖ {0, 1})
matrix is never computed except for the state transition matrix, Φ−1

k−1. The other benefit
is that the filter can have two sets of measurement update equations depending on the
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observable treated at a given instant: one for TDCPs and the other set for code and Doppler
measurements.

5.3.1 Measurement correlation

As shown in (5.1), TDCPs are constructed as the difference of two consecutive carrier phase
measurements; therefore, two consecutive TDCPs use the same carrier phase measurement
as highlighted in (5.4).

∆Tϕ
i
Rx(t) = ϕiRx(t)− ϕi

Rx(t−∆T )

∆Tϕ
i
Rx(t+∆T ) = ϕi

Rx(t+∆T )− ϕiRx(t)
(5.4)

Hence, two consecutive TDCPs are mathematically correlated. [Teunissen, 1996] proposed
to decorrelate double difference carrier phase measurements by applying transformation ma-
trices. This method can be applied for TDCP measurements as well and is shown in (5.5):

z = ZTy (5.5)

Where:

• z is the transformed measurement

• Z is the transformed matrix

• y is the original measurement

Similarly to double difference carrier phase measurements, the transformation matrix to
decorrelate TDCPs must have the three following properties with the demonstration shown
in [Teunissen, 1996]:

1. All elements of Z are integers

2. All elements of Z−1 are integers

3. The determinant of Z is equal to ±1

However this transformation also changes the TDCP measurement input to the EKF. Thus,
the observation matrix would have to take into account the transformation of the decorre-
lated TDCP measurement.

In the proposed implementation, another solution was chosen: performing the TDCP mea-
surement update once every two epochs. Although, the potential benefit of using TDCP
every epoch is lost, this ensures that measurements remain uncorrelated as well as a simpler
implementation, and saves computational power.

5.3.2 Adapted EKF Equations

In this thesis, it is assumed that the state process noise and measurement noise are not
correlated in time, yielding:

E[wk−1v
T
k ] = 0 (5.6)
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The incorporation of the TDCP measurements invalidates this assumption as these observ-
ables are obtained from positions of different time epochs (current and past) yielding that
wk−1 and vk are correlated [Brown, 2012]. As shown in (3.3), the true state is given as:

x−k = Φk−1x
+
k−1 + wk−1 (5.7)

Rewriting (5.7), it yields:
x+k−1 = Φ−1

k−1x
−
k − Φ−1

k−1wk−1 (5.8)

The measurement model may also be rewritten as a function of the current and previous
states:

zk = Hkx
−
k + Jkx

+
k−1 + vk (5.9)

Where:

• Jk is a measurement matrix equal to Jk = −Hk

By plugging (5.8) into (5.9), the new measurement model is given as:

z
′

k = (Hk + JkΦ
−1
k−1)x̂

−
k + (−JkΦ−1

k−1wk−1 + vk) (5.10)

Since Rk is computed as the covariance of vk, the updated measurement noise matrix is given
by:

R
′

k = E

[
(−JkΦ−1

k−1wk−1 + vk)(−JkΦ−1
k−1wk−1 + vk)

T

]
(5.11)

After simplification, this equates to:

R
′

k = Rk + JkΦ
−1
k−1Qk−1Φ

−1
k−1

T
JT
k

(5.12)

This also has repercussions on the Kalman Gain and state covariance matrix update steps,
with the new formulas given in (5.13) and (5.14). This is detailed in Appendix A.

K
′

k = (P−
k H

T
k + Φk−1Pk−1J

T
k )(HkP

−
k H

T
k +Rk + JkPk−1Φ

T
k−1H

T
k +HkΦk−1Pk−1J

T
k + JkPk−1J

T
k )

−1

(5.13)
P+
k = P−

k −KkLkK
T
k (5.14)

Where:

• Lk = (HkP
−
k H

T
k +Rk + JkPk−1Φ

T
k−1H

T
k +HkΦk−1Pk−1J

T
k + JkPk−1J

T
k )

5.3.3 Error State vector

The size of the state vector of the hybridized solution is smaller compared to the one presented
in section 3.3.2 as it does not contain the error of the estimated ambiguities. The state vector
is then equal to:

δxk = [δrek δvek δdtRxk
δḋtRxk

δdtGPS−GAL,k δztdk δψe
k δbacck δbgyrok ] (5.15)
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5.3.4 State Transition Model and State Process Noise Matrix

With respect to the state transition matrix of the hybridized EKF with carrier phase mea-
surements, , the ambiguity term is no longer present and the state transition matrix, Φk−1

is equal to:

Φk−1 =



I3 ∆T I3 03×1 03×1 03×1 03×1 03 03 03
03 1− 2Ωie∆T 03×1 03×1 03×1 03×1 ∆T [−Re

bf
b×] −∆TR

e
b 03

01×3 01×3 1 ∆T 0 0 01×3 01×3 01×3

01×3 01×3 0 1 0 0 01×3 01×3 01×3

01×3 01×3 0 0 1 0 01×3 01×3 01×3

01×3 01×3 0 0 0 1 01×3 01×3 01×3

03 03 03×1 03×1 03×1 03×1 1 + ∆TΩie 03 −∆TR
e
b

π
180

03 03 03×1 03×1 03×1 03×1 03 I3 03
03 03 03×1 03×1 03×1 03×1 03 03 I3


(5.16)

Identically, the state process noise is as presented in (3.65) without the ambiguity state noise.
Its expression is:

Qk−1 = diag(



03
Qvel

0
QrxDrift

QinterGnss

QTropo

Qatt

Qacc

Qgyro


) (5.17)

5.3.5 Observation Model

The observations are still assumed independent even with the addition of TDCP as carrier
phase measurements are no longer used. Despite the equation change for the observation
model for TDCPs, its observation matrix and covariance matrix are still defined classically.

Hk,ρ =

− ⃗eINS
1 01×3 1 0 Cind ztd − ⃗eINS

1Re
b(−p⃗bRx×) 01×3 01×3

...
...

...
...

...
...

...
...

...

− ⃗eINS
N 01×3 1 0 Cind ztd − ⃗eINS

NRe
b(−p⃗bRx×) 01×3 01×3

 (5.18)

Hk,Doppler =

01×3 − ⃗eINS
1 0 1 0 0 − ⃗eINS

1Re
b(v⃗

b
INS×) 01×3 − ⃗eINS

1Re
b(p⃗

b
Rx×) π

180
...

...
...

...
...

...
...

...
...

01×3 − ⃗eINS
N 0 1 0 0 − ⃗eINS

NRe
b(v⃗

b
INS×) 01×3 − ⃗eINS

NRe
b(p⃗

b
Rx×) π

180


(5.19)

Hk,TDCP =

[ − ⃗eINS
1(t) ⃗eINS

1(t)− ⃗eINS
1(t−∆T ) 0 1 0 0 − ⃗eINS

1(t)Rb
e(t)(−p⃗bRx×) 01×3 01×3

...
...

...
...
...
...

...
...

...
− ⃗eINS

N (t) ⃗eINS
N (t)− ⃗eINS

N (t−∆T ) 0 1 0 0 − ⃗eINS
N (t)Rb

e(t)(−p⃗bRx×) 01×3 01×3

]
(5.20)

The observation covariance matrix for code pseudoranges and Doppler measurement is un-
changed. The covariance for TDCP measurements is still only composed of diagonal ele-
ments. The variance of a TDCP measurement can be given as the variance of the remaining
TDCP error, ∆TE

i
Rx, chosen here as 2σ2

ϕ.

76



5.4 Cycle Slip Detection

As highlighted by (5.1), the ambiguous term present in carrier phase measurements is absent
of TDCPs under one condition: no cycle slips occur during the sampling interval. If a cycle
slip occurs during this time interval, (5.1) can be re-written as:

∆Tϕ
i
Rx = ϕi

Rx(t+∆T )− ϕi
Rx(t) + ∆Nλ (5.21)

The TDCP filter does not estimate the ambiguity nor does it try to estimate the ambiguity
change, so ideally the cycle slip affected TDCP should be discarded by the filter. To do so,
two methods are implemented in the filter:

1. EKF rejection based on the innovations and their covariance as proposed in [Tanil,
2022]

2. Threshold comparison between the wavelength of the signal and the expected obser-
vation noise of the innovation implemented in [Kim et al., 2020]

In a hypothesis test, there are four distinguishable cases shown in Table 5.1.

Truth
Expected

H0 H1

H0 PN PFa

H1 PMd PD

Table 5.1: Hypothesis Test Probabilities

Where:

• PN is the probability of not detecting a cycle slip when there is none

• PFa is the probability of detecting a cycle slip when there is none

• PMd is the probability of not detecting a cycle slip when there is one

• PD is the probability of detecting a cycle slip when there is one

Figure 5.3: Hypothesis Test for cycle slips.
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As illustrated by Figure 5.3 and Table 5.1, there is a trade-off between a low missed detection
and a low false alarm probability. A false alarm in this case will reduce the TDCP measure-
ment availability as it will be excluded from the EKF process whereas a missed detection
will result in a cycle slip being processed in the EKF.

5.4.1 EKF based Cycle Slip Rejection

The EKF rejection is not specifically made to detect cycle slips but rather to monitor the
innovations and exclude abnormally large innovations. Cycle slips can produce large inno-
vations for TDCPs that exceed a threshold determined based on the expected measurement
noise, given in (5.12). First the innovation covariance is computed:

Ik,cov = (Hk + JkΦ
−1
k−1)P

−
k−1(Hk + JkΦ

−1
k−1)

T +R (5.22)

The innovations are normalized by the innovation covariance and then squared, resulting in
the metric to be compared to a given threshold as given by [Tanil, 2022]:

M = ITk I
−1
k,covIk (5.23)

M has a chi square distribution with a number of degrees of freedom equal to the number
of measurements processed. As the presented filter processes measurements sequentially, it
equals one in this case. The selection of the threshold depends on the desired sensitivity vs
false alarm rate. In this project, the threshold is obtained by fixing a measurement rejection
rate as follows:

T = Inv − χ2(1− PEKFrej
) (5.24)

Where:

• T is the threshold

• PEKFrej
is the desired probability at which the filter rejects a measurement set at 0.1

in this method.

Finally, the decision to exclude or not the measurement was made as such:

Decision =

{
M ≥ T → Reject measurement

M < T → Accept Measurement
(5.25)

5.4.2 Wavelength based Cycle Slip Rejection

This method is a slightly modified version of the algorithm proposed in [Du and Gao, 2012]
as they were using double differenced TDCPs which influenced their noise model. The small-
est cycle slip that can exist in (5.21) is ∆N = 1. So, the detector should be able to detect
a change superior or equal to the wavelength of the processed signal (or signals if using
ionosphere free TDCPs).

(5.2) is re-used but also adding the cycle slip to the measurement. Then by using the
predicted TDCP measurement from the filter, the two measurements are differenced (which
is also the innovation). This yields:

M = ∆Tϕ
i
Rx −∆Tϕ

i
INS (5.26)
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To detect a cycle slip, the terms other than the displacement of the receiver affectingM must
be accounted for. The difference between the predicted and observed satellite and receiver
clock drift must be small.

With the variance of M being:

σ2
M = var(∆T cḋtRx) + var(∆T r⃗RxINS

) + σ2
∆TE (5.27)

Where var(∆T cḋtRx), var(∆T r⃗RxINS
), σ2

∆TE, and σ
2
M are the variance of the clock drift dif-

ference, the variance of the IMU’s positioning error, the variance of the remaining errors,
and the variance of the metric M respectively.

To decide whether a cycle slip occurs, a Neyman-Pearson test is implemented. A NP test
makes two hypotheses [Neyman and Pearson, 1933]:

• H0: No Cycle slip occurs, there is only noise.

• H1: A Cycle slip occurs: there is noise and at least a change of one wavelength.

The detection threshold can then computed as:

T = λ (5.28)

Where:

• λ is the wavelength of the signal.

The hypothesis H0 can be modeled as a centered chi squared distribution, as the variance of
M is a sum of Gaussian variables [Rahman et al., 2015]. On the other hand, the hypothesis
H1 can be also be modeled as a chi squared distribution but with a non-centrality parameter
that is equal to λ.

The decision on the cycle slip presence is given as follows:

Decision =

{
M ≥ T → Reject measurement

M < T → Accept Measurement
(5.29)

5.5 Method and Scenarios

The filter was run on several datasets that were collected either using IGS data from the
TLSE reference station or using a vehicle in Toulouse, France (in different environments).
Dynamic datasets include open sky scenarios, mid-urban environments, and deep urban sce-
narios. On the other hand, the IGS data is collected in an open-sky, static environment
and has dual frequency observables. The precise clock and orbit products (rapid), and phase
center offset files were also downloaded and used in the filter’s navigation solution to emulate
a real-time PPP solution.

IGS Dataset
The IGS dataset was used to verify that the filters were performing as expected. Indeed,
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the IGS station is in an open sky environment, static with a geodetic antenna. The GNSS
receiver used to generate the observables is the Trimble NETR9 on the L1 (1575.42 MHz)
and L5 (1176.45 MHz) bands. Due to the lack of IMU data from this IGS station, this
version of the EKF filter was implemented in GNSS-only. The observables were available at
a rate of 1 Hz and gathered on the 4th of October 2021 for a duration of one hour.

Dynamic Datasets
The dynamic datasets were obtained with the same equipment but the IMU for all datasets.
A Novatel passive antenna was used and connected to a uBlox F9P receiver generating the
measurements at a rate of 5 Hz. There were two IMUs used. One was a low-cost MEMS: the
Bosch BMI160 at a rate of 200 Hz and the other was a high quality IMU from the Novatel
SPAN at a rate of 200 Hz. The GNSS observables are obtained on Galileo (E1b + E5b) and
GPS (L1 C/A + L2). Both types of IMUs were tested to evaluate whether the quality of
the IMU influenced the conclusions of the proposed TDCP filter.

5.5.1 Synchronization of sensors

Since the MEMS IMU is not time synchronized with the uBlox receiver, both sensors had to
be synchronized for the EKF measurement update to be coherent in time. Thus, all observa-
tions have been referenced to GPS system time (GPST) in post processing. In the following
section, the synchronization process between the IMU and GNSS receiver is explained. This
is further illustrated by Figure 5.4.

Figure 5.4: GNSS and IMU Synchronization Set-up.

The BMI160 IMU chip is configured to provide measurements at 200 Hz. The availability of
new measurements is signaled to the host micro-controller (ESP32) via the BMI160’s data-
ready interrupt output. The host micro-controller then reads the BMI160’s output registers
via serial peripheral interface.

To enable synchronization to GPST, the ESP32 also receives the uBlox F9P’s “Timepulse”
output, triggering an interrupt on the ESP32 and the recording of a time stamp. In addition,
the ESP32 decodes the corresponding UBX NAV-PVT message received from the uBlox F9P
on its serial port to retrieve the GPST seconds of week corresponding to the most recent
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“Timepulse” signal. Both pieces of information allow us to track the time-varying offset
between the ESP32’s CPU time and GPST. In post processing, a cubic spline is fitted to the
observed time offset to obtain GPST time for all recorded CPU time stamps.

Observations of most GNSS receivers are given in the receiver’s time, and the F9P is no
exception. The unknown receiver clock offset is typically simply solved as part of the esti-
mation. However, to process GNSS observations at the correct point in time when running
the navigation filter in post processing, the GNSS observations must be referenced to the
same time scale as the observations of the IMU. To this end, to generate the dataset, the
receiver clock bias is estimated using the reference solution position and satellite ephemeris
and the GPST time stamps of each epoch of GNSS observations are computed.

5.5.2 Reference Trajectory

5.5.2.1 IGS Dataset

The reference position of the IGS TLSE station is given by the IGS website.

5.5.2.2 Dynamic Datasets

The SPAN reference system consists of a high-performance IMU and a GNSS receiver. In
post processing with Novatel’s Inertial Explorer software, inertial and differentially-corrected
GNSS observations are combined in a forward-backward smoother. The SPAN GNSS receiver
tracks GPS and Glonass constellations whose observations were used in post processing to
obtain a more accurate reference trajectory.

5.5.2.3 Map Reference Trajectories

Figures 5.5, 5.6, 5.7, and 5.8 depict the trajectories of the static data collect from the IGS
data and the dynamic datasets using the high-end SPAN IMU for INS/GNSS hybridization.
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Figure 5.5: Map reference trajectory for the
static dataset of the 4th of October 2021.

Figure 5.6: Map reference trajectory for the
open-sky dataset of the 7th of October 2020.

Figure 5.7: Map reference trajectory for the
sub urban dataset of the 16th of December
2020.

Figure 5.8: Map reference trajectory for the
deep urban dataset of the 27th of June 2023.

5.5.3 Differences between Datasets

To quantify the benefit of using TDCP measurements, several environments had to be ex-
plored in the datasets. Hence, there are two open sky, two mid-urban environments, and
two deep urban scenarios. The dates and duration of each scenario is given below.
For the high-end SPAN IMU data collects:

• 7th of October 2020: Highway/open-sky of 1 hour 45 minutes

• 16th of December 2020: Sub Urban of 2 hours 15 minutes

• 27th of June 2023: Deep Urban of 2 hours 30 minutes

For the MEMS IMU data collects:

• 29th of October 2020: Mid-Urban of 12 minutes

• 23rd of April 2021: Deep Urban of 15 minutes
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• 21st of September 2021: Highway with few bridges for a total of 20 minutes

5.6 Results

This section is divided into two subsections: the IGS dataset and the dynamic data collects.
The first results presented are from the IGS data collect to both explore the addition of
TDCPs in a static open sky environment and the performance of the presented filters in
”ideal” conditions.

The second part of the results are for the dynamic datasets which highlight the benefit
of using TDCP measurements in different scenarios.

To illustrate the benefit of using TDCPs in the EKF instead of raw carrier phase measure-
ments, variants of the EKF were also implemented. Indeed, a filter using only code pseu-
doranges and Doppler measurements was designed along with a filter using code + Doppler
+ carrier phase measurements that estimates the ambiguities. The code and Doppler only
filter is the baseline filter while the code + Doppler + carrier phase measurements filter is
the filter to compare the proposed TDCP filter. Furthermore, the TDCP filter will be eval-
uated by using either uncombined TDCPs or first order ionosphere free ones. Both types of
measurements will be tested by the cycle slip rejection algorithms - the EKF based rejection
and the wavelength methods detailed in 5.4.

The results will also assess the computation times of the three different filters to present
the computational gain of using TDCP measurements instead of raw carrier phase measure-
ments in the EKF.

These filters are denoted with different names according to their versions:

• v2: Uses Code + Doppler measurements in the EKF measurement update, with the
states of (5.15)

• v3: Uses Code + Doppler + Carrier phase measurements in the EKF measurement
update, with the states of (3.60)

• v3TDCP: Uses Code + Doppler + TDCP measurements in the EKF measurement
update, with the states of (5.15). When the EKF cycle slip rejection based method
is used, it will be denoted as v3, Irej, and the wavelength method will be denoted as
v3, λrej. The benefit of using first order iono-free TDCPs versus uncombined TDCPs
is also investigated: iono-free measurements are denoted as v3TDCPIF

and uncombined
ones as v3TDCPUnc

.

The dynamic results were obtained using dual frequency observables on GPS (L1 C/A and
L2) and Galileo (E1-B + E5b). The full results will be presented in tables while the CDFs of
the ambiguity estimating filter and only of the best performing TDCP filter will be presented
for the sake of readability. The data collects using the IMU of the SPAN for the INS
hybridization are to be seen as the main data collects of this work. The results using the
MEMS IMU are to be seen as tests to emulate the eHermes conditions and are too short to
draw definite conclusions from.
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5.6.1 IGS Dataset

Figure 5.9: Number of satellites as a function
of time.

Figure 5.10: IGS time series v3.

Figure 5.11: IGS time series v3TDCP.

Figure 5.9 represents the number of satellites over the observation time. The number of
satellites is identical for both the TDCP based filter and the conventional ambiguity estima-
tion filter. It can be seen that the number of satellites is steady thanks to the open sky and
static conditions.

Figures 5.10 and 5.11 depict the estimated position with respect to the reference in the
North East Down (NED) coordinate frame as a function of time for the ambiguity estima-
tion and TDCP filter respectively.
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Figure 5.12: IGS CDFs.

Figure 5.12 shows the cumulative distribution function (CDF) of the position error in meters
for the x and y axes of the NED (north and east). This batch of results was generated using
dual frequency observables on GPS (L1 C/A and L2) and Galileo (E1-B + E5b) that were
combined to remove the first order ionospheric term.

Both filters display low positioning error and validate the proposed implementation. How-
ever, the benefit of TDCP measurements in a static environment seems to be non-existent
as the performance of the TDCP filter is equal to the one without its inclusion (v2). This is
not surprising as TDCPs estimate the distance between two consecutive epochs. As there is
no distance being traveled, the code pseudoranges take over the precision of the filter.

Moreover, the performance of the filter is not improved by adding raw carrier phase mea-
surements either. This can be explained by the high quality of code pseudoranges. Indeed,
the IGS station uses a choke ring antenna which is robust to multipath [Tranquilla et al.,
1994] and is in static, open-sky.
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Filter Version 68% Horizontal Error 95% Horizontal Error Normalized Exec Time

v2 0.36 0.76 0.28
v3 0.36 0.75 1.00
v3TDCPIF

, Irej 0.36 0.76 0.32
v3TDCPUnc

, Irej 0.36 0.76 0.43
v3TDCPIF

, λrej 0.36 0.76 0.33
v3TDCPUnc

, λrej 0.36 0.76 0.38

Table 5.2: IGS CDF results for all configurations.

It is noteworthy that for static conditions with a steady total of 13 satellites, the TDCP
filter is much faster than when using carrier phase measurements regardless of the nature
of the TDCPs (first order ionosphere free or uncombined) and the exclusion method. This
mainly results from a much lower number of states in the state vector.

5.6.2 SPAN IMU Datasets

This section presents the dynamic data collects obtained from using the IMU of the SPAN
system for the INS/GNSS hybridization.

5.6.2.1 Open-Sky

Figure 5.13: Number of satellites as a function
of time.

Figure 5.14: Highway Time series v3.

Figure 5.15: Highway Time series v3TDCP.

Figure 5.13 illustrates the number of satellites used as a function of time for both filters.
There is a noticeable drop of satellites around the 300 seconds of observations which is due
to signal blockage. Figures 5.14 and 5.15 show the estimated trajectories of both filters.
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Figure 5.16: Highway CDFs (with an uncombined TDCP filter with EKF based rejection).

Filter Version 68% Horizontal Error 95% Horizontal Error Normalized Exec Time

v2 0.80 1.27 0.32
v3 0.80 1.25 1.00
v3TDCPIF

, Irej 0.79 1.24 0.48
v3TDCPUnc

, Irej 0.80 1.22 0.57
v3TDCPIF

, λrej 0.80 1.26 0.41
v3TDCPUnc

, λrej 0.80 1.24 0.57

Table 5.3: Highway CDF results for all configurations.

The results from Table 5.3 highlight that in open-sky conditions, even in a dynamic scenario,
the precision of the TDCP filter is mostly dictated by the code and Doppler observables.
Indeed, the accuracy of the code and Doppler (v2) filter is very similar to the one of the
TDCP filters. The difference in accuracy is not big enough to claim, in this case, an added
value from the TDCPs. Furthermore, the different configurations on the TDCP filter do not
provide any significant difference between the configurations. This conveys a limited use of
the TDCP measurements in low obstructed environments.
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5.6.2.2 Sub-urban

Figure 5.17: Number of satellites as a function
of time.

Figure 5.18: Sub-Urban Time series v3.

Figure 5.19: Sub-Urban Time series v3TDCP.

Figure 5.17 depicts the number of satellites over the dataset for the filters. It can be noted
that the number of satellites have frequent significant drops. This is reflected in the estimated
trajectories of the filters in Figures 5.18 and 5.19 with positioning error spikes.
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Figure 5.20: Sub-Urban CDFs (with an uncombined TDCP filter with EKF based rejection).

The CDF of both filters from this data collect is presented in Figure 5.20. For this scenario,
the TDCP filter provides a 10.7% positioning accuracy gain with respect to the carrier phase
measurement for the 95% horizontal error.

This can be explained by the several signal obstructing moments as shown by Figure 5.17.
The occurrences at ∼ 1000, ∼ 2500, ∼ 5500 and ∼ 6500 seconds were slightly smoothed
out by the TDCP filter as highlighted by Figure 5.19. The spikes contained in the carrier
estimation filter are also present in the v2 filter. This implies that this comes from the code
measurements which are likely affected by multipath. On the other signal obstructions, the
TDCP filter does not outperform the v3 filter. For most of the obstruction, there were a
low number of visible satellites; hence, the accuracy of the filter relies more heavily on the
drifting INS.
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Filter Version 68% Horizontal Error 95% Horizontal Error Normalized Exec Time

v2 1.37 4.71 0.25
v3 1.32 4.57 1.00
v3TDCPIF

, Irej 1.35 4.22 0.34
v3TDCPUnc

, Irej 1.29 4.08 0.36
v3TDCPIF

, λrej 1.38 4.44 0.44
v3TDCPUnc

, λrej 1.35 4.23 0.58

Table 5.4: Sub-urban CDF results for all configurations.

The benefit of TDCP measurements in suburban environments is that it slightly outperforms
a simple ambiguity estimation process while being 64% faster, when using uncombined TD-
CPs with an innovation based rejection method. Furthermore, the code and Doppler only
filter is outperformed by 13.8% in 95% of the horizontal error by the TDCP filter. This
further highlights that TDCPs can help smooth out the solution when obstacles are present.
In Table 5.4, it is shown that the filters processing uncombined TDCPs outperform the iono-
free TDCP based filters. This implies that there is an added benefit to using more TDCP
measurements in the EKF than fully removing the first order ionosphere effect.

The TDCP filter is still much faster than the ambiguity estimation filter despite a lower
number of satellites with respect to the IGS dataset indicating that the computational gain
comes from the lower number of states in the EKF.

5.6.2.3 Deep Urban

Figure 5.21: Number of satellites as a function
of time.

Figure 5.22: Urban Time series v3.

Figure 5.23: Urban Time series v3TDCP.

Figure 5.21 shows the number of satellites as a function of time for the deep urban dataset.
The number of satellites used varies frequently with low points of 5 satellites being reached
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around the 1000 and 7000 second marks. It can be seen in 5.23 that the v3TDCP filter is
less affected by the sudden drop of satellites (e.g. at ∼ 1000 seconds) unlike the v3 filter
(5.22) in which several positioning error spikes are present.

Figure 5.24: Urban CDFs (with an uncombined TDCP filter with EKF based rejection).

As highlighted by Figure 5.24, the uncombined TDCP filter with innovation based rejection
brings a significant positioning improvement in deep urban conditions with respect to the
ambiguity filter. As shown by Figures 5.22 and 5.23, the time series of the TDCP filter is
much smoother thanks to the lack of ambiguity estimation. Indeed, this frequent reset in
the EKF, due to cycle slips, leads to position uncertainty. The constant reset is highlighted
by the constant varying number of satellites in Figure 5.21. This scenario demonstrates that
TDCP measurements are most useful in heavily obstructed environments.

During cycle slips, TDCP measurements are only excluded for that epoch and then the
filter goes back to using them as the position increments are computed. The filter is on
average 57% faster (in MATLAB) than the ambiguity estimating filter and performs 16.7%
better for the 95% horizontal error. Finally, the TDCP filter is 7.6% and 33.3% more ac-
curate for 68% and 95% of the horizontal error respectively than the v2 filter while only
taking 39% longer per epoch. This illustrates the perks of including TDCPs in the filter as
the environment of the receiver becomes more obstructed.
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Filter Version 68% Horizontal Error 95% Horizontal Error Normalized Exec Time

v2 5.53 16.49 0.26
v3 5.43 13.19 1.00
v3TDCPIF

, Irej 5.07 12.45 0.33
v3TDCPUnc

, Irej 5.11 10.99 0.43
v3TDCPIF

, λrej 5.66 19.17 0.46
v3TDCPUnc

, λrej 5.28 13.66 0.47

Table 5.5: Urban CDF results for all configurations.

Table 5.5 further highlights that the TDCP filter can outperform v3. However, it also demon-
strates that the tuning of the filter is very important. There is a big positioning discrepancy
between the filter using ionosphere-free TDCPs and excluding them with innovation moni-
toring and the one based on wavelength difference. When excluding iono-free TDCPs with
the latter, the wavelength of the combined measurement is reduced as shown by (5.30).

λIF = c
f1 − f2
f 2
1 − f 2

2

(5.30)

Where:

• f1 is the carrier frequency of the first signal in Hertz

• f2 is the carrier frequency of the second signal in Hertz

• λIF is the wavelength of the first order iono-free combination signal in meters

For GPS L1 C/A, its signal has a wavelength of approximately 19 cm while the iono-free
combination of GPS L1 C/A and GPS L2 has a wavelength of around 10 cm. So, by factoring
the shorter wavelength and the increased noise due to the combination [Salós et al., 2010],
the cycle slip detection method presented in 5.4.2 becomes even more stringent. This leads
to a high rejection of TDCPs (15% vs 1%), most of which are not affected by cycle slips and
thus a very degraded solution.

For uncombined TDCPs as well, the lambda based rejection method is stricter as it re-
jects 4% of uncombined TDCPs whereas the innovation method rejects 1%. The lambda
rejection method also rejects useful TDCP measurements which leads to a sub-optimal use
of TDCP measurements.

5.6.3 MEMS IMU Datasets

This section presents the results of the data collects when using a MEMS IMU for the
INS/GNSS hybridization in an effort to emulate the eHermes. Due to the relatively short
duration of these datasets, firm conclusions cannot be made, and the conclusions from the
SPAN datasets prevail.
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5.6.3.1 Highway Data Collect

Figure 5.25: Number of satellites as a function
of time.

Figure 5.26: Highway Time series v3.

Figure 5.27: Highway Time series v3TDCP.
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Figure 5.28: Highway CDFs.

Filter Version 68% Horizontal Error 95% Horizontal Error Normalized Exec Time

v2 1.00 0.97 0.28
v3 1.10 1.63 1.00
v3TDCPIF

, Irej 0.98 1.70 0.32
v3TDCPUnc

, Irej 0.97 1.70 0.43
v3TDCPIF

, λrej 0.99 1.73 0.33
v3TDCPUnc

, λrej 1.01 1.71 0.38

Table 5.6: Highway CDF results for all configurations.

The results from Table 5.6 and Figure 5.28 highlight that the precision of the TDCP filter
is dictated by the code and Doppler observables. Furthermore, the different configurations
on the TDCP filter do not provide any significant difference between the configurations.
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5.6.3.2 Sub-urban Data collect

Figure 5.29: Number of satellites as a function
of time.

Figure 5.30: Sub-Urban Time series v3.

Figure 5.31: Sub-Urban Time series v3TDCP.
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Figure 5.32: Sub-urban CDFs.

Filter Version 68% Horizontal Error 95% Horizontal Error Normalized Exec Time

v2 1.21 3.11 0.28
v3 1.20 2.94 1.00
v3TDCPIF

, Irej 1.18 2.89 0.32
v3TDCPUnc

, Irej 1.18 3.05 0.43
v3TDCPIF

, λrej 1.19 2.92 0.33
v3TDCPUnc

, λrej 1.18 3.01 0.38

Table 5.7: Sub-urban CDF results for all configurations.

For this scenario, the TDCP filter provides a marginal gain with respect to the carrier phase
measurement. The benefit of TDCP measurements in suburban environments is that it
matches the performance of a simple ambiguity estimation process while being 66% faster.
Furthermore, the code and Doppler only filter is outperformed by 7% in 95% of the time
by the TDCP filter. This further highlights that TDCPs can help smooth out the solution
when obstacles are present.
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5.6.3.3 Deep Urban Data collect

Figure 5.33: Number of satellites as a function
of time.

Figure 5.34: Urban Time series v3.

Figure 5.35: Urban Time series v3TDCP.
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Figure 5.36: Urban CDFs.

Filter Version 68% Horizontal Error 95% Horizontal Error Normalized Exec Time

v2 5.21 15.52 0.28
v3 3.64 8.07 1.00
v3TDCPIF

, Irej 3.21 7.43 0.32
v3TDCPUnc

, Irej 3.31 11.60 0.43
v3TDCPIF

, λrej 4.74 25.5 0.33
v3TDCPUnc

, λrej 3.72 9.17 0.38

Table 5.8: Urban CDF results for all configurations.

As shown by Figures 5.34 and 5.35, the time series of the TDCP filter is much smoother
thanks to the lack of ambiguity estimation. On top of this accuracy gain of 11%, the filter
is on average 66% faster (in MATLAB) than the ambiguity estimating filter. Finally, the
TDCP filter is 39% and 52% more accurate for 68% and 95% of the epochs respectively than
the v2 filter while only taking 25% longer per epoch.

Table 5.8 further conveys that the tuning of the filter is very important. There is a big
positioning discrepancy between the filter using ionosphere-free TDCPs and excluding them
with innovation Monitoring and the one based on wavelength difference. As discussed on
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the SPAN datasets in section 5.6.2, the wavelength of the combined measurement is reduced
as shown by (5.30), which impacts the correct detection of cycle slips when using the wave-
length difference method.

It can also be seen that the filter using ionosphere-free TDCPs performs better on the
95% horizontal positioning than the one using uncombined TDCPs with the same cycle slip
detection method (innovation based). As the data collect is of 15 minutes, the 95% position-
ing error is based on the worst 45 seconds of data. This short amount of time is too small to
conclude that the ionosphere-free TDCP performs better than the uncombined one. There
could have been a TDCP that was affected by a cycle slip and not excluded in this time
which could cause the filter to reconverge. These two filters also perform similarly for 68%
of the horizontal positioning error which is more telling on their overall performance for this
dataset.

With more data, it is presumed that the uncombined filter using innovation rejection of
cycle slips would perform similarly or better than the iono-free TDCP filter as shown in
5.6.2.

5.7 Conclusions

This chapter presented how to form time differenced carrier phase measurements as well as
how to use them in an EKF based solution. Existing PPP solutions were also discussed
along with the differences with the presented one. The TDCP filter algorithm was detailed
along with the different implementation variations. This filter was characterized and pitted
against a conventional ambiguity estimation filter to evaluate their performance. It was
shown that as the conditions degraded, the impact of TDCP measurements increased and
even outperformed the simple ambiguity estimation filter. It was shown that the best TDCP
filter configuration was with uncombined TDCPs and an innovation based test to detect
cycle slips. Furthermore, the computational load of the ambiguity filter was compared with
the TDCP filter which is 57% faster in deep urban conditions.

The goal was to develop a lightweight algorithm that could also perform in challenging
conditions given the limited computational resources of the eHermes receiver. Hence, the
proposed algorithm can be used for the receiver of 3D Aerospace as a baseline algorithm
that does not overly consume computational resources presented in [Guillard et al., 2022].
Even though, the absolute accuracy of the proposed solution could be improved by adding
more complex algorithms, it was observed that the main driver of the solution accuracy is
the quality of code pseudoranges. Thus, Chapters 6 and 7 investigate a method to mitigate
the impact of low quality code pseudoranges on the positioning solution.
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CHAPTER 6
CNN Based Multipath Detector

As the eHermes aims at working in urban environments, GNSS multipath is bound to affect
the measurements. To answer this challenge, a study was done to develop a method that
was as lightweight as possible while keeping a good multipath detection. Since the correlator
values of the eHermes can be retrieved from the tracking loops, correlators were used for
multipath detection. Indeed, these parameters had already shown promising results in signal
quality monitoring and ML.

This chapter details the detection of multipath using a CNN model that resulted in [Guil-
lard et al., 2023]. The model has been trained reconstructing the discriminator function to
compute the tracking bias. Based on the magnitude of the tracking bias over a time interval,
the data was labeled as affected by multipath or not. This method accounts for the time
correlation of multipath and loop filters to detect multipath. Furthermore, the number of
correlators used in the CNN to detect multipath is varied to quantify the benefit of using
less correlators for the same goal. The computational gain of using CNNs with respect to
the labeling method is also investigated and discussed.
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6.1 State of the Art Multipath Detection

Multipath detector algorithms are not always machine learning based. Indeed, [Pagot et al.,
2015], [Pagot et al., 2017], [Suzuki et al., 2020], and [Matera et al., 2019] all use different
techniques to mitigate/exclude multipath reflections.

[Pagot et al., 2015] proposes three different techniques to investigate GNSS distortions in-
cluding multipath. The first technique proposed was to observe chip transitions over a given
time window to average out the noise affecting the samples. They also observe the correla-
tion function to quantify the difference in correlator outputs. The last technique was to use
the S-crossing of the discriminator to quantify the bias as detailed in (2.40).

[Pagot et al., 2017] used in-phase correlators to detect the deformation of the signal. To
do so, they generated correlators with different delays and then compute metrics -ratio, dif-
ference ratio, sum ratio. These metrics are then compared to determined threshold to decide
whether the signal is affected by distortions including multipath.

[Suzuki et al., 2020] use a horizontally rotating antenna to mitigate LOS and NLOS multi-
path errors. They mitigate LOS reflections by using the assumption that the relative phase
between the LOS signal and its reflections change when the antenna is moving. They exclude
NLOS signals by looking at the incidence angle of the signal as NLOS signals are assumed
to arrive at different angles from LOS signals.

[Matera et al., 2019] tries to isolate and characterize the multipath residual from the pseu-
dorange by using a referencing station to remove the atmospheric terms and receiver clock
bias from a filtering process. They also use a fisheye camera to exclude satellites that are
estimated as NLOS.

[Bétaille et al., 2013] use 3D maps to classify the potential multipath sources into categories
and simplify the input map. They then use this information to detect NLOS satellites. Fi-
nally, these detected satellites can either be excluded from the position solution or corrected
to be used in their positioning algorithm.

With the rise of machine learning and the difficulty of modeling multipath behavior, machine
learning has been used towards multipath detection recently. A few research proposals are
detailed below.

[Munin et al., 2020] and [Blais et al., 2022] generate synthetic images composed of the
autocorrelation function for one tracking iteration. These images are obtained thanks to
a multipath simulator which generates synthetic multipath with desired properties. Then,
they are fed to a CNN using supervised learning to classify whether the ACF image is af-
fected by multipath or not.

[Suzuki and Amano, 2021] implemented both an ANN and a SVM for multipath but to
detect NLOS. They labeled their data using a fisheye camera and represented the satellite in
the image to see whether its LOS signal was obstructed. They fed correlator outputs images
to the ANN. For the SVM, their inputs were the number of peaks in the ACF, distribution of
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the delay of the maximum correlation, and the signal strength as a function of the elevation
angle of the satellite.

[Quan et al., 2018] details a multipath detection technique based on CNNs. Their inputs
to the CNN are the time series of a linear combination of pseudoranges and carrier phase
measurements as well as the CN0 over that time span. This is in the form of an image sent
to the CNN. The approach was trained using labeled, simulated data and then tested to real
data.

[Hsu, 2017] uses GNSS data collected in urban and open-sky conditions to classify the pseu-
dorange in three categories: NLOS measurement, multipath, and no multipath. To do so,
they used a SVM with the following features: received signal strength and its variation, the
pseudorange residual, and the difference between the delta pseudorange and pseudorange
rate. To label their data, they used raytracing to determine whether the data was multipath
or NLOS and used the open-sky data collect as the no-multipath data.

The approach proposed in this chapter detects multipath on a time series of correlators
at different correlation delays. Indeed, the mentioned articles, that use ML techniques, do
not take the temporal correlation of consecutive correlator values induced by both multipath
and the loop filters. Furthermore, they do not propose theoretical classification to train the
networks. Here, the data labeling is based on finding the tracking bias of the S-curve of the
discriminator similar to the method proposed in [Pagot et al., 2015]. The labeling method
also takes into account the materials of the reflecting surfaces frequently encountered in ur-
ban conditions to set a threshold on what is considered multipath.

To justify the use of ML, the performance of the CNN model is compared to the perfor-
mance achieved when using the theoretical data labeling method. An important parameter
for the computational complexity and the performance of the theoretical labeling method
is the number of correlators available at each tracking loop epochs. It was assumed that
CNNs would be able to work with limited numbers of correlators. The computational gain
obtained by using CNNs is also investigated and analysed. However, the computational cost
of computing correlators is out of the scope of the presented study.

6.2 Data Labeling Classification

As presented in section 2.4.3.2, the tracking bias is computed by finding the delay corre-
sponding to the zero crossing of the discriminator function. Then, multiplying the time
bias by the speed of light, the tracking bias is obtained. Once this bias is passed through
the low-pass filter of the tracking process, this filtered bias is what is propagated onto the
pseudorange measurement. This process is given in (6.1) - (6.3).

∃ t0 ∈ [−Tobs, Tobs] such that D(t0) = 0 (6.1)

Trb = ct0 (6.2)

ρb = LPF (Trb) (6.3)

Where:
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• Tobs is the maximum delay for which the discriminator is observed

• c is the speed of light in m/s

• Trb is the tracking bias in meters

• LPF is the low-pass filter of the DLL modelled by a Butterworth Filter of order 2 with
a bandwidth of BDLL

• ρb is the pseudorange bias induced from the tracking bias in meters

Figure 6.1 illustrates the tracking bias computed using (6.1)-(6.3) and the pseudorange error
from multipath on synthetic data. Their magnitude are similar and almost always yielded
the same multipath decision (99% similitude) when using the multipath criterion presented
in this section.

Figure 6.1: Multipath error on the pseudorange vs tracking bias error as a function of time
on synthetic data.

In this method, up to 101 correlators were used to reconstruct the ACF of the PRN code.
Only non-coherent discriminators, more specifically the EMLP presented in (2.32), will be
studied as this is the most robust type of discriminator since it does not assume any PLL lock.

Since the DLL noise is assumed to follow a Gaussian law with a known distribution (ϵNoise ∼
N(0, σ2

Noise)), it implies that:

ϵnoise ≤ 3× σNoise for 99.7% of the time (6.4)

The EMLP discriminator was used in this study, so the variance of the discriminator noise
is equal to:

σ2
Noise = L2

c

BDLLEL

2C/N0

[
1 +

2

(2− EL)NTsC/N0

]
(6.5)
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The transient errors are ignored so the tracking bias is assumed to be only caused by multi-
path and noise which can then be expressed as [Braasch, 2017]:

ρb ≈ ϵMP + ϵNoise (6.6)

Hence, any bias exceeding 3 × σNoise can be considered as caused by multipath. However,
labeling every error exceeding this threshold would lead to a lot of measurements being clas-
sified as affected by multipath especially in urban and suburban environments. If excluded,
this would only leave the most accurate measurements for positioning but would surely leave
very few measurements for the positioning solution.

If too many satellites are excluded due to being labeled as affected by multipath, it may
occur that:

• Not enough satellites to compute a position

• An increase in the dilution of precision values

On the other hand, if faulty measurements are not excluded from the positioning, then the
positioning solution cannot be trusted.

To establish a new threshold, the idea was to find a value that would be small enough
to not cause a large bias in the pseudorange but also large enough to not cause availability
issues due to frequent multipath labeling.

As the largest availability versus multipath challenge occurs in degraded environments, the
multipath sources can be identified. Indeed, multipath will often come from buildings, the
road, or other vehicles.

When looking at attenuation factors of common surfaces at normal incidence, a thresh-
old can be established based on materials that yield a tolerable multipath error. The values
of these materials, for the L1 frequency, are given below and available in [Braasch, 2017].

Surface Attenuation Factor (dB)

Asphalt -18.3
Brick -9.24
Concrete -7.87
Glass -7.51
Tinted Glass -0.446

Table 6.1: Reflection and attenuation factors for common urban surfaces at normal incidence
on L1 frequency

By retrieving the attenuation factor from the table, the maximum amplitude of the multipath
coming from this material can be known. Therefore, the multipath error enveloppe (MEE)
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can be computed for a given material. The algorithm to compute the MEE is given in 2.4.3.2
The maximum induced multipath bias by a given material is given as:

bMaterial = max(|MEE(tMP ;EL, αMaterial)|) (6.7)

Where:

• MEE is the multipath error enveloppe value for a given early late spacing and relative
multipath amplitude factor

• tMP is the multipath delay in chips

• bMaterial is the maximum multipath error caused by a reflection from a given material

• αMaterial is the relative multipath amplitude factor of a given material

For example, the MEE of brick is given in Figure 6.2 for an EL spacing of 0.04 chips for
Galileo E1-B (left) and the MEE of brick given on Figure 6.2 (right) is for an EL spacing of
0.125 chips for GPS L1 C/A.

Figure 6.2: Multipath Error Enveloppe for a brick induced multipath for an E-L spacing
of 0.04 chips on Galileo E1-B (left) and for an E-L spacing of 0.125 chips on GPS L1 C/A
(right).

As assumed in [Zhao et al., 2013], the most commonly encountered materials in challenging
environments will be: asphalt, glass, tinted glass, brick, and concrete. Brick is assumed to
not be the most common building material. Since it has a high attenuation coefficient, it was
decided that any multipath that has a lower amplitude than the ones generated from brick
would be tolerated. However, this method still functions if the chosen material is different
as its selection depends on the desired multipath detection sensitivity. Relating to Figure
6.2 (left), this means that any multipath, for a DLL with an EL spacing of 0.04 chips, that
causes a bias smaller than 0.708 meters would be tolerated.

The early late spacing used on GPS L1 C/A was higher than for Galileo E1-B as a low
EL spacing on L1 C/A led to a prolonged convergence of the tracking loops of the receiver.
This change also induces an increase in the bias of (6.8) meaning that the threshold for mul-
tipath classification is higher on GPS L1 C/A than Galileo E1-B (bMaterial = 2.23 meters).
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As shown by [Prochniewicz and Grzymala, 2021], GPS L1 C/A is more affected by multipath
than Galileo E1-B so this rise in threshold for L1 C/A makes sense to keep a high availability.

Thus, the threshold for multipath can be written as:

T = 3× σNoise + bBrick (6.8)

Where:

• bBrick is the maximum multipath error caused by a reflection from brick (2.23 and 0.708
meters for GPS L1 C/A and Galileo E1-B in this study)

This gives the following classification:

Decision =

{
|ρb|≥ T → Multipath

|ρb|< T → Not Multipath
(6.9)

As shown in [Vergara et al., 2009], the DLL noise increases due to the presence of multipath.
However, The increase of the noise is assumed to be accounted for by the addition of bbrick.

The decision given in (6.9) will be the method used to classify multipath and train to the
convolutional neural network presented in section 6.6.

By reconstructing the ACF of each tracking epoch with multiple correlators, the discrimi-
nator function can be obtained with great accuracy. However, if the discriminator function
is subsampled, the tracking error has to be linearly interpolated at the zero crossing. The
further the correlators are spaced from one another, the less accurate the interpolation is.
This phenomenon is depicted in red on Figure 6.3.

Figure 6.3: EMLP discriminator affected by some multipath fully sampled (blue) and under
sampled (red).
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When the number of correlators is insufficient or does not cover enough of the ACF, the
delay may not be computed due to the lack of zero crossing. In this study, when this occurs
(only with low correlator resolutions), the delay is assumed to be zero to not reset the low
pass filter.

The discriminator function can have several zero crossings. The zero crossing that is the
closest to the prompt index and with a negative slope is chosen as the stable lock point
from which to compute the tracking bias - since the EMLP discriminator is used. On the
presented dataset, when this occurs, the second zero crossing is much farther in terms of
delay than the one chosen as the stable point with respect to the prompt correlator.

6.3 Method and Scenarios

The static data was used to validate that the filtered tracking bias was a valid approach
as a theoretical classification algorithm. This dataset was obtained in open-sky on the L1
frequency band on GPS and Galileo with a 200 MHz sampling frequency.

The dynamic data were collected in all challenging conditions (sub-urban and deep urban).
This was to obtain multipath errors to detect. The dataset is on the L1 Frequency band on
GPS and Galileo with a 200 MHz sampling frequency. This large sampling frequency was
used as it enabled a better reconstruction of the ACF over the span of the collect. An IFEN
SX3 was used as the GNSS receiver [IFEN, 2023]. The IFEN SX3 is a GNSS receiver that
is capable of tracking all constellations and frequencies. It is very modular and can record
raw data to then replay with different configurations. Indeed, the number and placement of
correlators are selectable, along with the loop filter bandwidths, E-L spacing, etc.

6.3.1 Static Dataset

This data was collected at ENAC, in Toulouse France, with a static Leica AR20 choke ring
antenna. It is not possible to fully remove multipath reflections or avoid any NLOS signals.
However, by placing the antenna at the top of a building in open-sky condition, its effect
was mitigated as best as possible. The goal of the dataset was to check that the computed
pseudorange bias (ρb) was almost always under the 3×σNoise threshold. This would indicate
that, in optimal conditions, where multipath reflections should rarely occur, this method of
multipath classification is valid. The distribution of the pseudorange bias in this scenario is
given in Figures 6.4 and 6.5.
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Figure 6.4: Static Distribution of Multipath
Decision for Galileo E1-B.

Figure 6.5: Static Distribution of Multipath
Decision for GPS L1 C/A.

As the number of detected multipath has the right order of magnitude (3% observed, vs
1% expected from theory), it can be concluded that the classification method is valid. Fur-
thermore, most of the multipath detected in static conditions occurs while the loops are
converging at the beginning of the dataset.

The IFEN receiver was run with the same parameters as for the dynamic scenario, given in
Table 6.2. This data was used to verify that most, if not all, of the multipath was under the
multipath classification presented in section 6.2.

6.3.2 Dynamic Dataset

This dataset was obtained with a car. The collect was in the city center of Toulouse, France,
in a mix of urban and sub-urban environments for a total duration of approximately 40
minutes. The neural network had more than 4000 images to be trained upon, for each sig-
nal. There were more than 4 million correlator outputs used per signal, and the satellite
geometry was diverse. Having more multipath scenarios would likely be beneficial for the
networks, but the number of images and correlators was deemed sufficient to validate the
proof of concept.

The assumptions made on the material types as most buildings are made out of either
concrete or bricks with glass windows and the road in asphalt. The IFEN SX3 was con-
nected to a Novatel GPS 704-X pinwheel antenna. The data was replayed in post-processing
to retrieve the full correlators for each epoch as it cannot be done in real-time with this large
number of correlators. The main parameters for each signal is given in Table 6.2.
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GPS L1 C/A Galileo E1-B

E-L Spacing (chips) 0.125 0.04
DLL Bandwidth (Hz) 1 1
Integration Time (ms) 1 4
Number of correlators 101 101
Correlator Sampling Frequency (MHz) 200 200

Table 6.2: IFEN SX3 Settings for GPS L1 C/A and Galileo E1-B.

6.4 Signal Deformation

When first plotting the tracking biases and its filtered version, it was noticed that they were
not centered around zero. These biases were slightly offset by a different value depending
on the satellite number and constellation. Because of this, setting a threshold would not
be possible according to the decision given in (6.9). This tracking bias is caused by the
digital and/or analog hardware distortions [Song et al., 2020]. [Pagot et al., 2015] used the
S-crossing of the discriminator amongst other techniques to quantify the bias. [Pagot et al.,
2017] used in-phase correlators to detect the deformation of the signal. In [Fan Liu, 2006],
their solution estimated the satellites and receiver hardware biases by estimating the bias
caused on each correlator. However, it required several identical receivers to do so, which
was not possible in this study. Thus, the proposed solution here is a modified version from
[Fan Liu, 2006] and estimates the satellite and receiver biases as one bias altogether.

This method assumes that the hardware and receiver biases are constant over the dura-
tion of the dataset. They are also assumed to be the same over other data collects even
though they will vary according to temperature and the incidence angle. These supposedly
small variations are assumed to be accounted for in the standard deviation of the noise, and
so in the threshold of (6.8). The method is presented in Figure 6.6.

Figure 6.6: PRN Deformation Correction Algorithm.

6.5 Inputs

The images that are input to the CNN are the correlator values as a function of the chip
delay (on the y axis) with respect to the prompt correlator and time (on the x axis) to yield
2D images. As detailed in section 6.2, the filtered tracking bias is used to label data as
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multipath or not. Figure 6.7 represents the tracking bias and its filtered version for a given
satellite on Galileo E1-B (left) while an example, from the training dataset, of both not
multipath and multipath are given on Figure 6.7 (right) for the 101@200 correlator variation
(colorized).

Figure 6.7: Filtered (black) and non filtered (blue) tracking bias with its multipath bounds
(red) for Galileo E1-B on PRN 3 (left) and their corresponding CNN inputs (right).

To reduce the computational cost of using multiple correlators and evaluate the CNN per-
formance over the number of correlators, several set of images were generated with different
correlator sampling frequencies. The CNN architecture and labeled data remain identical
no matter the correlator configuration. However, each correlator configuration induces a
training period with the corresponding images of the chosen correlator configuration. The
different configurations are given in 6.5.2.

6.5.1 Cross Correlation

CNNs can also be affected by overfitting when the input data is too correlated. Hence,
special care was taken to ensure that the input images were not correlated with one another.
This correlation can come from the DLL filter and is dependent on the bandwidth. Indeed,
the filtered pseudorange biases depend on the previous ones. To make sure that they were
generally not correlated with one another, the cross correlation factor - given in (6.10) - was
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computed between the filtered tracking bias outputs.

ρx,y =
Cov(x, y)√

σ2
xσ

2
y

(6.10)

The cross correlation factor for a given Galileo satellite on E1-B is given in Figure 6.8. This
figure represents the cross correlation factor of a sample of the filtered tracking bias over a
second with a delayed the filtered tracking bias over a second. After one second, the cross
correlation is small; therefore, images spaced out of one second each can be considered as
uncorrelated.

Figure 6.8: Cross correlation factor of a sample of the filtered tracking bias over 5 seconds.

6.5.2 Correlator Configurations

This section presents the different correlator configurations for Galileo E1-B, and the ones
for GPS L1 C/A. In order to investigate the benefits of using correlator images to detect
multipath, the number of correlators used in images was varied. To obtain an accurate data
labeling, the pseudorange bias has been computed with the most amount of correlators –
101 at 200 MHz. In total, there are 7 correlator variations presented in Table 6.3.
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Configuration Name Number of correlators Correlator Sampling Frequency (MHz)

101@200 101 200
51@100 51 100
51@200 51 200
51@200&100 17 & 34 200 & 100
25@50 25 50
25@200 25 200
25@200&50 9 & 16 200 & 50

Table 6.3: Correlator configurations for GPS L1 C/A and Galileo E1-B.

Figure 6.9 illustrates the 101@200 correlators configuration along with the three configu-
rations using 25 correlators by comparing the range of values obtained with the different
variations versus the full theoretical autocorrelation function for GPS L1 C/A.

Figure 6.9: Illustration of some correlator variations for GPS L1 C/A.

6.6 CNN Architecture

To construct the CNN for multipath mitigation, Tensorflow [Abadi et al., 2016] and Keras
[Chollet, 2015] were used as the backbone. Tensorflow is an open source deep learning library
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owned by Google that enables one to develop a machine learning algorithm from end to end.
Keras is also an open source machine learning library that runs on top of Tensorflow and
allows one to easily build networks and train models. The images are grey-level to reduce
the number of parameters to be trained, with a 256x256 pixel size. As there are at most 101
correlators used, the images were upscaled on the correlator delay axis. On the temporal
axis, the slightly upscaled for E1-B (250 values per correlator position per second) while
they were downscaled for GPS L1 C/A (1000 values per correlator position per second).
The images are then passed to the CNN model described below. This model is a simple one;
it was observed that a complex CNN was not needed to successfully detect multipath from
the correlator images. Indeed, with respect to [Munin et al., 2020] who also uses CNN for
multipath detection, the presented network uses one less convolutional layer making it more
lightweight. Furthermore, special attention was put on overfitting by implementing dropout
and L1 and L2 regularization while [Munin et al., 2020] and [Quan et al., 2018] do not
mention this threat. As multipath and the tracking loop filters can introduce correlation be-
tween data inputs, overfitting can be even more prominent when using post-tracking outputs.

The first layer is a convolutional layer made of 20 filters of size 3x3 with a stride of 1
computed. This layer uses the ReLU activation function. Then this layer is followed by a
max pooling layer of size 2x2 with a stride of 2x2. The outputs of the 20 filter maps are
flattened (passed into 1D) to a layer of 1 neurons with a sigmoid activation function which
yields the result for the image:

• 0 → Not Multipath

• 1 → Multipath

This layer is implemented with a dropout rate of 0.5 meaning that each neuron connection
has a 50% chance of being ignored at each epoch. This layer is also regularized with the
elastic net method given in (4.18) (L1 and L2 regularization with λ = 0.001 for both). The
loss function chosen in this architecture is the binary cross entropy. The batch size was of 64.

The full architecture is given in Figure 6.10.

Figure 6.10: CNN Architecture for Multipath Detection.

6.7 Results

To train a binary classifier, the two classes – here multipath and no multipath – need to be
equally represented. Otherwise this can lead to the network over predicting the dominant
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class. This leads to a class imbalance in the datasets. There exist several countermeasures
for this condition as given in [Buda et al., 2017]. The chosen method is to down-sample the
dominant class. Indeed, the no multipath class will be reduced in size to roughly match the
multipath one. To still train all images, the no multipath images will be divided in several
datasets and the final results presented in the following sections will be the average of all
the trained models.

As discussed in Chapter 4, overfitting makes the model overly optimistic on training data
and perform worse on test and validation data. Thus, it is important to make sure that the
proposed model is not overfitting. A good metric to check overfitting is the difference of
the training loss with the validation loss of the binary cross entropy function. The accuracy
and loss values of the 101@200 configuration on Galileo E1-B are presented in Figure 6.11.
As the difference in loss value is very small at the end of the training epochs (∼0.05), this
displays the fact that the model is not affected by overfitting.

Figure 6.11: Accuracy and loss values over training iterations for training and validation
datasets.

To analyze the results of a machine learning model, several metrics are often given: accuracy,
precision, recall, and F score. The accuracy represents the proportion of correct classification
the model made. Precision represents the proportion of correct multipath classification.
Recall represents how well the model can detect multipath. The F score is the harmonic
mean of precision and recall, it better highlights the impact of false negatives and false
positive than accuracy [Powers, 2020]. The binary classification results can be represented
as shown by the Table 6.4.

Truth
Actual

Positive Negative

Positive True Positive False Negative
Negative False Positive True Negative

Table 6.4: Confusion Matrix
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The accuracy, precision, recall, and F score are equal to [Dalianis, 2018]:

Acc =
TP + TN

TP + TN + FP + FN

Prec =
TP

TP + FP

Rec =
TP

TP + FN

Fscore =
2Prec ×Rec

Prec +Rec

(6.11)

Where:

• TP is a true positive

• FP is a false positive

• TN is a true negative

• FN is a false negative

To better highlight the benefit of using CNNs for multipath prediction, these metrics will
also be computed with the tracking bias method when the number of correlators is reduced.
This means that the pseudorange bias will be estimated for each correlator configuration.
Their accuracy, precision, recall, and F score for that configuration with respect to the mul-
tipath classification done with 101 correlators at 200 MHz will also be computed.

The differences between the time taken to predict the presence of multipath with the use
of CNN with respect to the tracking bias method will also be presented. To have a fair
comparison, both methods are compared when using the same number of correlators and are
evaluated in the same coding language and on the same hardware.

6.7.1 Galileo E1-B

In Figure 6.12, the accuracy, precision, recall, and F score are given for all correlator com-
binations for both CNN and tracking bias based multipath classification. The tracking bias
results are in blue while the CNN results are in orange. The CNN results presented here are
from the test dataset; the data split was of 80% for the training data and of 20% for the test
data. As there is just one model and the hyperparameters of the model are not varied, no
validation data was used to generate the results presented.
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Figure 6.12: E1 Metrics of the CNN.

101@200 51@100 51@200 51@200&100 25@50 25@200 25@200&50

CNN 0.17 0.18 0.17 0.18 0.16 0.16 0.16
TB 1 0.51 0.80 0.70 0.32 0.67 0.41

Table 6.5: Normalized Mean Execution time for all configurations.

6.7.1.1 CNN vs Tracking Bias

The tracking bias method, when using 101@200, is the configuration used for determining
the truth; so its metrics are all equal to one. When using 51 correlators – no matter the
correlator sampling frequency – the tracking bias method performs better or at least equiv-
alently to CNNs as conveyed by the higher F score and accuracy results. But when only 25
correlators are used, both F scores and accuracies plummet for the tracking bias approach.
When the number of correlators is decreased, the tracking bias metrics quickly degrade in
performance. This is shown by the 11%, 7.5%, and 36% F score differences between the
25@50, 25@200, and 25@200&50 configurations respectively.

To compute the tracking bias, the reconstructed discriminator function linearly interpo-
lates the delay when there is a zero crossing. By reducing the number of correlators and
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the correlator sampling frequency, the linear interpolation between two delays is greater and
leads to a higher uncertainty on the resulting tracking bias based on the effect of multi-
path and noise at this time. On the other hand, reducing the number of correlators while
maintaining a high correlator sampling frequency leads to a shortened discriminator func-
tion where the zero crossing may not be present. In that case, the tracking bias cannot be
estimated. The metrics highlight that, when the number of correlators is reduced, the CNN
method outperforms the tracking bias one.

6.7.1.2 Computational load

Table 6.5 displays the time taken by each method, normalized by the most time consuming
method. This table illustrates that all CNN based configurations are two to six times faster
than their tracking bias counterpart. This results from the tracking bias being computed
250 times per second since the integration period used here was of 4 milliseconds. On the
other hand, as images are generated every second to limit cross-correlation, the CNN only
predicts once per second explaining the gain in time.

6.7.1.3 CNN Correlator Configurations

The 101@200 variation is the benchmark configuration for the CNN approach, but the over-
all performance of other correlator configurations, when looking at accuracy and the F score,
is very similar. This indicates that, even with a lot less correlators, the CNN used to de-
tect multipath is still effective while using less computational power. This is depicted when
the correlator sampling frequency is lowered from 200 MHz to 50 MHz, and the number of
correlators is reduced by a factor of 4 for only a 2.8% reduction on the accuracy and 3%
reduction on the F score. Thus, after this model is trained, the sampling frequency and
number of correlators could be reduced to alleviate some of the computational load while
keeping a high correct classification rate.

Despite the very high precision of the CNN from both correlator configurations of 51@200&100
and 25@200&50, their recall is lower with respect to the other variations. It illustrates that
the two configurations are the worst at detecting multipath. Even though, this model is
more precision oriented, the recall should not be fully sacrificed at the expense of precision.
This is also reflected in the F scores of these variations as they have the worst F scores.

The two CNN variations of 25@200 and 51@200 perform worse than 25@50 and 51@100
by and 0.8% and 2% on their F score respectively while outperforming the two configura-
tions using 51@200&100 and 25@200&50. Thus, the multipath effect is more observable on
a larger delay range of correlator outputs.

6.7.2 GPS L1 C/A

In Figure 6.13, the accuracy, precision, recall, and F score are given for all correlator com-
binations for both CNN and tracking bias based multipath classification. The tracking bias
results are in blue while the CNN results are in orange.

The data split used here was the same as Galileo E1-B, 80% for the training data and
20% for the test data and no validation data was used.
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Figure 6.13: L1 Metrics of the CNN.

101@200 51@100 51@200 51@200&100 25@50 25@200 25@200&50

CNN 0.0085 0.0090 0.0091 0.0092 0.0093 0.0093 0.0093
TB 1 0.40 0.29 0.27 0.20 0.047 0.073

Table 6.6: Mean Execution time for all configurations.

6.7.2.1 CNN vs Tracking Bias

Like for Galileo E1-B, the tracking bias method using 101 correlators is used for determining
the truth explaining the perfect metrics. When using 51@100 the tracking bias configuration
performs better as the range of the delay of the ACF is kept while maintaining a narrow
enough linear interpolation. For 51@200, the F Score is higher of 1.8% than for its CNN
counterpart. Despite having a perfect precision, this variation has a much lower recall (77%)
indicating that it is much worse at detecting multipath. This is further highlighted by the
tracking bias results using 51@200&100. Indeed, the recall for this configuration is of 49.1%
but has a perfect precision score.

When decreasing the number of correlators to 25, this becomes even more apparent as the
25@200 or 25@200&50 have recall scores of 0 meaning that these configurations classify every
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measurement as not affected by multipath. This can be explained by the fact that the early
late spacing is higher for GPS L1 C/A. Indeed, when the early late spacing is increased, the
linear region of the discriminator function is also increased. On the downside, the number
of correlators needed to cover the linear region to find the zero crossing of the discriminator
function increases. The zero crossing can even be shifted further in the delay domain due to
multipath and noise. Hence, the two variations using 25@200 and 25@200&50 do not cover
enough of the ACF to get a correct estimate of the tracking bias.

Moreover, when using 25@50, the F score of the CNN based approach is 1.6% higher which is
due to its much higher precision with respect to the tracking based approach despite its lower
recall. Just like for Galileo E1-B, this conveys the fact that when the number of correlators
is reduced, the CNN is a more viable solution to predict the presence of multipath than the
tracking bias method.

6.7.2.2 Computational load

Just like for Galileo E1-B, the CNNs are much faster than the tracking bias method. Indeed,
the CNN is at 21 times faster on the 25@50 configuration as shown by Table 6.6. It is even
more pronounced on GPS L1 C/A as the tracking bias is computed 1000 times per second.
The time taken by the tracking bias method also depends on the number of correlators used
whereas the CNN method execution time is almost identical. This can be explained by
the fact that the CNN architecture is the same regardless of the correlator configuration.
Therefore, the only change between correlator variations are the values of the filters and
weights of the neurons. Since the time taken to generate an image is very low, this does not
make a computational difference between the correlator inputs to the CNN.

6.7.2.3 CNN Correlator Configurations

From all the correlator variations,he CNN configurations using less correlators at a reduced
correlator sampling frequency (51@100 and 25@50) have only slightly lower metrics than the
CNN benchmark variation of 101@200 with respect to other correlator configurations. This
can be explained by the higher early-late spacing chosen for this signal with respect to E1-B.
Hence, the distortion caused by the multipath on the tracking bias is larger for higher E-L
spacing [Van Dierendonck et al., 1992]. So, maintaining the same delay range on the ACF is
more important with larger early late spacing than having narrow correlators. Indeed, the
decrease in F score from 101@200 to 51@100 is of 0.33 % and 1.14% from 101@200 to 25@50.

Furthermore, the two CNN configurations using 51@200 and 25@200 perform the worst.
This is due to the fact that both of these variations do not display enough of the ACF –
especially the 25 correlators configurations that display just enough the correlators between
the early and late correlators. Hence, these variations combine too little information on the
ACF while still overcrowding the image with narrow correlators that do not add enough
benefit to the classification.

For the CNN based approach, the 51@200&100 to 25@200&50 variations have a perfor-
mance that is in between the two previous configurations. As this configuration still requires
a high sampling frequency of the signal yet does not improve the classification, a lower
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correlator sampling frequency for correlators is favored for both computational and metric
performances.

6.8 Conclusions

This chapter proposed a theoretical classification of multipath using GNSS tracking correla-
tor outputs. This classification has been used to label data to train a convolutional neural
network. Then, this CNN has been used to predict whether multipath was present or not on
correlator outputs from GPS L1 C/A and Galileo E1-B leading to a publication [Guillard
et al., 2023]. This CNN has been developed to be low in complexity so that it can be trained
with a low amount of data while limiting the risk of under or overfitting.

The model uses tracking correlators values as a function of delay (with respect to the prompt
correlator) and time in the form of images of 256x256 pixels. The computational cost of com-
puting correlators was not investigated but the inputs of the model are lightweight, making
the predictions yielded by the CNN to be swiftly computed. This is illustrated by the fact
that it is around 21 times faster to compute than the tracking bias for GPS L1 C/A and
two to six times faster for Galileo E1-B, when using 25@50. The metrics between the CNN
approach and the tracking based approach were also compared, and the CNN performed
better as the number of correlators was lowered. For example, when using 25@50, the F
score was of 91.8% for the CNN and of 80.8% for the tracking bias on Galileo E1-B. The
same conclusion applies to GPS L1 C/A as the F score was of 88.9% for the tracking bias
and 90.5% for the CNN with 25@50.

Several variations have been tested in the CNN to test how the CNN performs when re-
ducing the number of correlators to generate the input images. The favored configuration
is to decrease the number of correlators along with the correlator sampling frequency. This
result in an observation of the correlation function over the same delay range, but with a
lower resolution. Indeed, it was shown that by reducing the number of correlators from 101
to 25 and reducing the resolution by a factor of 4, the F score only decreased from 94.7%
to 91.8% on Galileo E1-B and from 91.6% to 90.5% on GPS L1 C/A. This highlights the
robustness of this method to detect multipath and then exclude the corrupted measurement
from the positioning solution.

Indeed, as mentioned earlier, recall is how well the model detects multipath, thus exclud-
ing it. So, if a model correctly detects all the multipath, the confidence in the positioning
solution would be higher. On the other hand, solutions that satisfy a certain precision re-
quirement would improve the solution availability, i.e having enough GNSS observations to
have a full-rank system that can yield a GNSS Position Velocity Time (PVT) solution. As
precision is how well the model classifies multipath, if there are very few false positives, then
the model rarely falsely excludes useful measurements.

In an accurate model, precision and recall are inversely correlated with one another [Davis
and Goadrich, 2006], meaning that increasing one would decrease the other. To increase
the recall of the model, the threshold of the sigmoid function of the last neuron could be
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changed. The proposed decision in this study is:

y = sigmoid(x){
y ≥ 0.5 → Multipath

y < 0.5 → No Multipath
(6.12)

By lowering the threshold to below 0.5, it would increase the recall at the expense of preci-
sion: it would only classify no multipath for very low values of y. In this research, availability
was deemed more important than integrity as shown by the models having higher precision
than recall. This is because additional integrity algorithms can be added on top of this
solution such as fault detection and exclusion [Rakipi et al., 2015]. By orienting the model
towards excluding all multipath, this could lead to less satellites than needed for a position
computation.

The proposed CNN model could be implemented in the eHermes thanks to its lightweight
nature, but further investigation needs to be done in the reduction of correlators. Indeed,
using 25 correlators per satellite is still resource consuming. Therefore, the number of cor-
relators needed for a given accuracy is still to evaluate.

The described model is re-used in Chapter 7 to detect pseudoranges that are affected by
multipath and apply the proposed algorithm based on the combination of robust estimators
and WLSE.
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CHAPTER 7
Positioning Performance of Adapted Robust

Estimator

Chapter 6 detailed a method to detect multipath using CNNs. However, detecting multipath
by itself does not lead to an improved positioning solution. To do so, the multipath affected
observable(s) must either be excluded or their effect mitigated in the positioning solution.
The approach taken in this PhD was to mitigate their effect but to keep the degraded ob-
servable in the positioning solution. Indeed, in challenging GNSS environments, multipath
is unavoidable. Hence, excluding multipath-riddled measurements could lead to availability
issues of the GNSS position.

It was seen in Chapter 5 that the positioning accuracy of the tightly coupled INS/GNSS
EKF is dominated by the code pseudorange accuracy. Furthermore, multipath has the high-
est effect on code pseudoranges. Therefore, a study of snapshot positioning only using code
pseudoranges is proposed here to study the mitigation of the multipath effect.

This chapter proposes a fusion of a robust estimator and a classical WLSE algorithm. This
fusion is used to mitigate the effect of multipath by using the optimal WLSE algorithm
when no multipath is detected and by using robust estimators when multipath is detected.
This algorithm was published in an article at the ION GNSS+ 2023 (to be published). The
variation of robust estimator efficiency as a function of the multipath environment will also
be analyzed. The results and benefits of this method versus nominal robust estimators and
WLSE algorithms will also be discussed.
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7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1 State of the Art Robust Estimation

Various authors have investigated the use of robust estimators for GNSS positioning whether
it be to compare their performances with WLSE such as [Medina et al., 2019b] and [Gar-
cia Crespillo et al., 2020] or to incorporate them in Kalman filter algorithms as [Ding et al.,
2023]. They found that robust estimators provided better results than traditional position-
ing algorithms in challenging GNSS environments.

[Medina et al., 2019b] and [Garcia Crespillo et al., 2020] implement a traditional WLSE
algorithm to compare with M, S, and MM robust estimators. They compared the different
results on experimental data with all kinds of GNSS conditions - highways, urban, bridges
etc. They showed that robust estimators based solutions performed better than the WLSE
algorithm when the receiver was in harsh conditions.

[Chai et al., 2022] uses robust statistics to compute a positioning solution with carrier phase
measurements and mitigate the effect of carrier phase measurements that either have con-
verging ambiguity terms or poorly estimated ambiguity terms due to harsh conditions.

[Wei et al., 2021] aims at detecting outliers to reevaluate the variance of the outliers. After-
wards, they use the new weights to decide if the outlier is small, medium, or large. They use
this information to increase the breakdown point of their robust estimator.

[Gaglione et al., 2017] compares the WLS and a receiver autonomous integrity monitoring
(RAIM) algorithm (observation subset testing) with a M estimator. He compared these three
algorithms in both static and kinematic environments. It was shown that robust estimators
outperformed both the WLS and RAIM algorithms regardless of the dynamics of the receiver.

[Wang et al., 2022] implemented a tightly coupled cubature Kalman filter for an INS/GNSS
system. They modified this KF to incorporate robust estimation in the measurement update.
The proposed robust estimator uses a Geman McClure loss function to reduce the weight of
outliers [Barron, 2019].

Some authors have also modified the parameters of robust estimators according to the esti-
mated GNSS conditions such as [Ding et al., 2022] and [Ding et al., 2023]. Their approach is
based on using several GNSS parameters such as number of satellites, PDOP etc to vary the
weights used in the robust estimations. The weights values vary according to the estimated
environment by the classifier. This was done with a neural network for [Ding et al., 2022]
and with a SVM for [Ding et al., 2023].

The presented algorithm in this chapter uses a Machine Learning decision on the multi-
path conditions (presented in chapter 6) to decide if the WLSE algorithm should be used or
the robust estimator. As mentioned previously, the WLSE is optimal when the noise can be
assumed as Gaussian. Therefore, when no multipath is detected by the CNN, the optimal
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estimator can be used. On the other hand, when multipath is detected, the MM estimator
is used to limit the impact of outliers.

The proposed approach also uses the number of multipath measurements detected to adapt
the robust estimator parameters. The mentioned articles do not explore the potential bene-
fits of an adaptive positioning algorithm. Furthermore, the variation of the efficiency and/or
breakdown point has only been investigated by authors in separate works with different clas-
sifying methods. A study of both parameters is performed to understand which parameter
is more beneficial to vary for the positioning solution.

7.2 Algorithm Implementation

In section 3.4, several robust estimators were presented. As the MM estimator combines the
good efficiency of M estimators and high breakdown point of S estimators, the MM estimator
was chosen as the robust estimator to be fused with the WLSE.

Assuming the CNN model for each signal is already trained, correlators are then accu-
mulated over a second, in this case the time window corresponding to the correlation of the
loop filter. An image per tracked satellite is then generated resembling the inputs presented
in Figure 6.7. Each image is passed onto the corresponding CNN model and yields a decision
on whether multipath affects the input correlators or not.

This decision is then passed onto the positioning algorithm. This is a fusion of the ro-
bust MM estimator and the traditional WLSE. When multipath is detected by the CNN
in at least one measurement, the position is computed using the MM estimator. On the
other hand, when no multipath is detected, the WLSE algorithm is used for the position
calculation. This algorithm is depicted in Figure 7.1 for one position computation.

Figure 7.1: Robust Estimator Fusion Algorithm Diagram for one epoch.

WLSE algorithms break down with one outlier and are only optimal when the data error
sources can be assumed as Gaussian. However, when multipath affects a code pseudorange,
its error can not be assumed as Gaussian anymore [Matera et al., 2018]. On the other
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hand, robust estimators are great for dealing with outliers in data but are not optimal when
the errors follow a Gaussian distribution. Therefore, the idea was to design an algorithm
that could perform ideally when multipath was not detected in the code pseudoranges while
resisting when multipath affected the code pseudoranges. As the CNN model is designed to
detect if multipath affects the code pseudoranges, the proposed algorithm was implemented
and tested.

7.3 Variation of Robust Estimator Parameters

Unlike the LSE algorithm, robust estimators have parameters that can be adapted according
to their targeted use. Indeed, the loss function, along with the breakdown point (if using
an S or MM estimator), and the efficiency parameter can all be changed according to the
application.

Since Chapter 6 introduced a method to detect multipath, the idea was to change the values
of the breakdown point of the MM estimator and/or its efficiency for Gaussian distributions.
With an estimate of the proportion of measurements that are affected by multipath, the
breakdown point and efficiency can be varied. Varying the efficiency of the loss function was
proposed in [Ding et al., 2022] and [Ding et al., 2023] with improved accuracy with respect
to fixed parameters.

Even though the loss function is a design choice when implementing a robust estimator,
changing loss functions according to multipath conditions was not implemented. Indeed,
the bounds of the loss functions would constantly change, making the robust estimation not
continuous. Therefore, this parameter was not investigated, and the Tukey biweight loss
function was used in the presented algorithm. It was used because its corresponding weight-
ing function brings large residuals towards zero. This implies that code pseudoranges that
are largely affected by errors (including multipath) will not impact the positioning solution
or only slightly. The Tukey biweight loss function expression is given in (7.1).

ρc(x) =

1−
(
1−

(
x
c

)2)3

if |x|≤ c

1 if |x|> c

(7.1)

7.3.1 Variable efficiency

The efficiency of a robust estimator indicates how well the estimator performs when there
are no outlier affecting the estimator. This is also referred to as the Gaussian efficiency as it
is the performance ratio between a robust estimator and the LSE under the nominal noise
model [Medina et al., 2019a].

Figure 7.2 illustrates the Tukey bi-weight loss and weight functions as a function of the
residuals for different parameters of c corresponding to different efficiencies.
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Figure 7.2: Tukey and LSE bi-weight loss functions (left) and weight functions (right) for
different values of c.

It can be seen that as c increases, the Tukey bi-weight weight function tend to the least
squares function. Indeed, as the constant parameter c increases, the efficiency of the robust
estimator increases. On the other hand, this leads the measurements to affect the position-
ing solution equally. Therefore, there is a trade-off between the efficiency under Gaussian
conditions and the weighting of measurements in degraded conditions.

Most algorithms set the parameter c in (7.1) for an efficiency of 95%. Similarly to the
breakdown point methods presented in section 7.3.2, two methods for varying the efficiency
were designed and are described in (7.3) and (7.4). By varying the efficiency, the parameter c
of (7.1) is changed which has impacts on how the measurements are weighted. The efficiency
can be defined as [Kafadar, 1983]:

efficiency =
minimum variance

variance(ρc(x))
(7.2)

Therefore, for a given efficiency, the corresponding constant value c can be computed by
solving (7.2).

The first method consists in using the estimated proportion of multipath to decrease the
efficiency of the estimator. The second method classifies the proportion of multipath mea-
surements into one of four efficiency values depending on its magnitude.

• Proportion of multipath to compute an efficiency: By multiplying the efficiency
at 95% with a decreasing exponential, this results in a smaller efficiency but more
robustness towards outliers. This method is inspired by [Ding et al., 2023] which used
exponential factors to impact the efficiency.

ϵ = ϵ0.95 exp
(
− Mp

N

)
(7.3)

Where ϵ is the efficiency and ϵ0.95 is the efficiency at 95% under nominal conditions,Mp

is the number of multipath measurements, and N the total number of measurements.
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• Discrete efficiencies: This method uses the proportion of multipath to assign it to
its corresponding breakdown point value. This method tries to limit the impact of
erroneous estimation by the CNN which could negatively affect the efficiency of (7.3).

ϵ =



ϵ0.95 exp
(
− 1) if Mp

N
≥ 0.75

ϵ0.95 exp
(
− 0.75) if 0.75 < Mp

N
≤ 0.5

ϵ0.95 exp
(
− 0.5) if 0.5 < Mp

N
≤ 0.25

ϵ0.95 exp
(
− 0.25) if Mp

N
< 0.25

(7.4)

7.3.2 Variable breakdown point

The breakdown point is the proportion of outlier measurements that would cause the esti-
mator to produce large errors. Its expression is given in (7.5) from [Rousseeuw and Yohai,
1984].

β = minm/N{
m

N
s.t ∥T (Y ′)− T (Y )∥ → ∞} (7.5)

Where:

• β is the breakdown point

• m is the number of corrupted measurements

• N is the number of total measurements

• Y is the vector of measurements

• Y ′ is the vector of measurements where m measurements of the total N measurements
have been corrupted

• T is the estimator

Robust estimators aim to have higher breakdown points than LSE algorithms, which are
of 1/N . However, doing so induces a loss of efficiency when the model is not affected by
outliers. Therefore, increasing the breakdown point comes at the expense of efficiency under
nominal conditions.

Most implementations suggest a breakdown point with a fixed value of 0.5 indicating that
half of the measurements can be outliers. Since the CNN predicts if each measurement is af-
fected by multipath, then the proportion of outliers at each epoch can be known. Therefore,
in the proposed algorithm, the breakdown point variability was tested with two different
methods. One was to use the proportion of multipath affected measurements as the break-
down point. The other method was an adaptation of the one proposed in [Ding et al., 2023]
using discrete values of the breakdown point as a function of the outlier proportion.

Similarly to the efficiency, varying the breakdown point influences the parameter c of (7.1)
which has impacts on how the measurements are weighted. The corresponding constant
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parameter c can be computed for a given breakdown point as given in (7.6) [Rousseeuw and
Croux, 1993].

β =
E[ρc(x)]
ρc(x)

(7.6)

The breakdown point values for each method are given in (7.7) and (7.8):

• Proportion of multipath as the breakdown point: This method is straightfor-
ward and the breakdown point is given as:

β =
Mp

N
(7.7)

Where β is the breakdown point.

• Discrete breakdown points: This method uses the proportion of multipath to assign
it to one of four breakdown point values. This method is a way of limiting the impact
of erroneous estimation by the CNN which could greatly impact the breakdown point
of (7.7).

β =


0.6 if Mp

N
≥ 0.75

0.5 if 0.75 < Mp

N
≤ 0.5

0.4 if 0.5 < Mp

N
≤ 0.25

0.3 if Mp

N
< 0.25

(7.8)

7.4 Method and Scenarios

The data setup for these data collects were very similar to the one presented in section 6.3.2.
The data was collected in both open-sky and urban conditions. The open-sky collect was
used to have data that would not be greatly impacted by multipath. On the other hand, the
urban data was used to obtain multipath errors to detect. Similarly to the dataset presented
in Chapter 6, the data was gathered on GPS L1 C/A and Galileo E1-B, with a 200 MHz
sampling frequency. The IFEN SX3 was still used as the software GNSS receiver [IFEN,
2023] and to gather correlator values. The parameters used on the IFEN are the same as
in section 6.3.2 and are recalled in Table 7.1. The processed pseudoranges come from the
RINEX observation files which are generated by the IFEN SX3 itself.

GPS L1 C/A Galileo E1-B

E-L Spacing (chips) 0.125 0.04
DLL Bandwidth (Hz) 1 1
Integration Time (ms) 1 4
Number of correlators 101 101
Correlator Sampling Frequency (MHz) 200 200

Table 7.1: IFEN SX3 Settings for GPS L1 C/A and Galileo E1-B.

To evaluate the position performance of the proposed algorithm, a reference position has to
be used. The Novatel SPAN, presented in section 5.5.2.2, was used as the reference system.
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The data setup is very simple as it requires two PCs, each connected to either the IFEN or
the SPAN. The data setup is illustrated by the diagram on Figure 7.3.

Figure 7.3: IFEN Data set-up to record data.

To quantify the benefit of the positioning solution, four data collects were performed to have
different training data for the CNN. This also allowed for the CNN to be trained on three
different independent data collects and to test the positioning method on an independent
data collect:

• 12th of September 2022: Dynamic sub-urban and deep urban of 40 minutes

• 13th of January 2023: Static open-sky of 1 hour

• 20th of March 2023: Dynamic sub-urban and deep urban of 20 minutes

• 21st of March 2023: Dynamic sub-urban and deep urban of 45 minutes

7.5 Results

In order to demonstrate the benefit of the proposed algorithm, the results presented in this
section will treat the four data collects as one whole data collect. This can be done because
snapshot positioning is used in the investigated algorithms. Indeed, WLSE and MM algo-
rithms do not use previous information but just the measurements at the current time index.
This means that the CDF will group the different data collects into one curve.

The MM estimator is expected to perform better than the WLSE in challenging conditions
due to its higher breakdown point and to its capacity to minimize the impact of outliers.
On the other hand, the WLSE is expected to outperform the MM estimator in outlier free
scenarios. Therefore, combining all data collects as one data collect theoretically allows for
both algorithms to showcase their strengths while also demonstrating their weaknesses. The
proposed combination of WLSE and MM estimator based on the CNN predicted environ-
ment should then maximize both estimators’ strengths.
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The results are presented for the combination of MM and WLSE algorithms along with
their comparative algorithms: using WLSE only and using the MM estimator only. Firstly,
the mix of WLSE and MM estimators to compute a positioning solution is investigated with-
out varying the parameters of robust estimators. Then, the variation of the robust estimator
parameters with the method presented in section 7.3 is studied and discussed.

The number of used satellites does not depend on the variation of parameters. The number
of measurements detected as multipath affected are also independent from the parameters of
the robust estimator. Therefore, these figures are given in Figure 7.4 and Figure 7.5. Since
the data collects are used together as one data collect grouped together, sudden drops of
used satellites can be observed in these figures.

Figure 7.4: Number of satellites used over the
concatenated data collects.

Figure 7.5: Number of detected multipath af-
fected satellites over the concatenated data
collects.

Figure 7.4 depicts the number of satellites used for the compounded data collect. The
open-sky collect is contained between the 2000 and 6000 epoch indices. The other epochs
corresponds to the urban collects where the number of satellites fluctuates more. Figure
7.5 illustrates the number of code pseudorange measurements that have been detected as
affected by multipath. The number of affected code pseudoranges is quite high on urban
environments indicating that the GNSS conditions are sub-optimal. On the other hand,
there is a low frequency of multipath on the open-sky data collect.

7.5.1 No Parameter Variation

Figure 7.6 illustrates the CDF of the positioning solution over the different datasets when
using the WLSE, MM estimator or the proposed mix of WLSE and MM estimator.
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Figure 7.6: CDF of the WLSE, MM estimator, and proposed MM + WLSE mix.

It can be seen that the WLSE algorithm outperforms the MM estimator at the beginning of
the CDF curve (∼ 40%) as this is the proportion of data that is collected in open-sky data
where the WLSE is barely affected by multipath. Therefore, in this portion the MM estima-
tor is affected by a loss of efficiency due to the data being more Gaussian than it would be
in multipath heavy conditions. However, as the position solution degrades, coinciding with
higher multipath, the MM estimator positioning solution is much better. This confirms that
MM estimators outperform the WLSE algorithm in the presence of outliers.

It can also be observed that the best performing algorithm is the proposed mix of WLSE
and MM estimator. Even though the 68% and 95% horizontal errors are very similar to
the one of the MM estimator, it can be seen that the mix of MM+WLSE outperforms the
MM estimator significantly between 20% and 60% of the position outputs. Indeed, there is
a 20.6% and 11.0% increase in positioning accuracy in the 20% and 60% horizontal error
respectively. This can be explained by the fact that when multipath is correctly detected by
the CNN, the mix of WLSE and MM algorithms uses the most optimal positioning solution
for the conditions. Indeed, when the MM estimator computes a positioning solution with low
error with respect to the reference by mitigating multipath, the mix of WLSE + MM uses
the MM estimator as well. On the other hand, the WLSE algorithm is used when there is no
multipath detected which also has low positioning error as it mostly used when in open-sky
conditions.

The CDF of the WLSE + MM algorithm resembles more the one of the MM estimator
as the horizontal error percentage increases. This is due to large multipath errors affecting
the positioning solution which is detected by the CNN. Thus, the mixed algorithm only uses
the MM estimator in these conditions.

Figure 7.7 represents the normalized 2D error of each discussed algorithm as a function
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of the percentage of urban data used with respect to open-sky data. This graph is designed
to highlight the benefit of the proposed method in urban and open-sky scenarios and was
created with the steps given below.

1. Randomly select 100 epochs from both static and urban datasets to construct one
randomly subsampled open-sky dataset and one for urban conditions with a chosen
mix of epochs coming from either open-sky or urban environment.

2. Compute the positioning solutions using the 3 algorithms.

3. Take the x-th quantile of the horizontal error for each data mix.

4. For each percentage of urban data, repeat steps 1, 2, and 3 for N iterations for Monte-
carlo simulation - chosen as 2000.

5. As there are a cloud of points (N) for each urban/open-sky ratio, take the median of
each ratio.

6. Normalize by highest value of the median values to have a range from 0 to 1.

Figure 7.7: Normalized horizontal error as a function of the percentage of urban data used
with respect to open-sky data for the WLSE, MM estimator, and MM+WLSE algorithms
for the 20-th, 50-th, 68-th, and 95-th quantile.
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The beginning of the x-axis of Figure 7.7 represents when mostly open-sky data is used
and at the end of the x-axis represents when mostly urban data is used. Each sub-figure
corresponds to a different horizontal position error quantile used to generate these plots as
described in step 3. Different quantiles are shown to illustrate the benefit of the proposed
algorithm according to the different GNSS environment.

Figure 7.7 illustrates that the MM estimator performs sub-optimally when no code pseu-
dorange outliers are present with respect to the WLSE for all but the 95th quantile. The
MM performance is steady and performs much better than the WLSE when the conditions
tend to be more urban. For the 95th quantile of the normalized horizontal error, the MM
estimator always outperforms the WLSE even in open-sky conditions. This can be explained
by the fact that the open-sky data can still be affected by multipath which can correspond
to the highest positioning errors. Furthermore, larger residual biases like the atmospheric
errors etc can impact the positioning solution and be mitigated by the MM estimator and
not the WLSE.

It can be observed that the proposed MM + WLSE algorithm performs similarly to the
WLSE algorithm when mostly open-sky data is used for all quantiles. As more urban data
is used, the normalized horizontal error of the WLSE rapidly increases and then performs
worse than the MM estimator. On the other hand, the normalized horizontal error of the
MM+WLSE algorithm increases steadily to eventually match the one of the MM estimator.
This illustrates the fact that the proposed algorithm takes advantage of the optimality of
the WLSE algorithm when the data is unaffected by multipath while limiting the impact of
outliers when multipath affects pseudoranges.

On the other hand, the figure for the 95-th quantile shows that the proposed mix of the
MM and WLSE algorithm performs worse than using only the MM estimator. This can
be explained by the fact that the proposed algorithm uses the WLSE which, as mentioned
earlier, can be still affected by multipath for the 95-th quantile of the horizontal positioning
error. Furthermore, due to false detection of the multipath conditions by the CNN, the
WLSE may sometimes be used instead of the MM estimator. However, the difference be-
tween the two normalized errors is small, and as the percentage of urban data increases, the
proposed algorithm performs similarly to the MM estimator.

7.5.2 Robust estimator parameter variation

This section presents the results of the mix of WLSE and MM algorithm when the efficiency
and/ or breakdown point are varied as presented in section 7.3. The algorithms discussed
have the following notation:

• MM + WLSE EC : Uses a mix of WLSE and MM estimator with a variable efficiency
point computed in (7.3).

• MM + WLSE ED: Uses a mix of WLSE and MM estimator with a variable efficiency
point computed in (7.4).

• MM + WLSE BC : Uses a mix of WLSE and MM estimator with a variable breakdown
point computed in (7.7).
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• MM + WLSE BD: Uses a mix of WLSE and MM estimator with a variable breakdown
point computed in (7.8).

Table 7.2 shows the results of the CDF for all parameter variation methods corresponding
to their horizontal error.

Algorithm 68% Horizontal Error 95% Horizontal Error

MM + WLSE Constant Parameter 6.30 24.48
MM + WLSE EC 6.30 24.66
MM + WLSE ED 6.37 26.32
MM + WLSE BC 6.92 32.93
MM + WLSE BD 6.50 27.26

Table 7.2: CDF results for all algorithm parameter variations.

Table 7.2 shows that there is no parameter configuration that improves the MM+WLSE al-
gorithm when the efficiency and breakdown point were kept constant for the MM estimator.
Indeed, the best parameter variation was to vary the efficiency according to (7.3) which was
worse than when the efficiency was constant.

The efficiency variations based on the multipath conditions do not add any benefit to the
robust estimator. Both (7.3) and (7.4) decrease the efficiency according to the multipath
environment. As highlighted by Figure 7.2, the weights of the Tukey biweight function,
for c = 2.5, decreases as residual values increase. However, the value of weights increase
again when w > c. Therefore, if the code pseudorange residuals are too high, which can oc-
cur in heavy multipath environments, these measurements have even more importance than
non-multipath affected ones. However, increasing the efficiency to c = 10 for example, as
shown in Figure 7.2, leads all measurements to almost be weighted equally. Hence, keeping
the efficiency value for 95%, c = 4.685 is preferred as it reduces high residual weights and
re-increases for a higher c value.

The breakdown point variation did not improve the positioning accuracy of the WLSE+MM
algorithm either. This can be explained by the fact [Rousseeuw and Yohai, 1984] does not
recommend the breakdown point to be higher than 0.5 and lower than 0.25 which can occur
when varying the breakdown point of (7.7) and (7.8). Furthermore, the varying breakdown
point of (7.7) could be wrongly estimated due to a CNN error which would significantly im-
pact the positioning solution. Even though the breakdown point computed by (7.8) reduces
the impact of potential CNN errors which is conveyed by its higher positioning accuracy, the
discrete mapping applied may be erroneous.

7.6 Conclusions

This chapter described an algorithm that uses either the weighted least squares estimation
algorithm or the MM estimator. The decision to use one or the other is based on the esti-
mated multipath environment. Each code pseudorange is classified as multipath affected or
not. This classification is obtained by the CNN presented in Chapter 6. The MM estimator
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is used as the positioning algorithm when one or more measurement is deemed as multipath
affected and the WLSE is used when no multipath is detected. This algorithm was proposed
to take advantage of the robustness of MM estimators when outliers are present and the op-
timal WLSE when there are no outliers. This work led to a publication in the ION GNSS+
2023 (to be published).

The proposed algorithm showed that it overcomes the loss of efficiency of the MM esti-
mator when no outliers are present and mitigates the positioning degradation of the WLSE
in heavy multipath environments. Therefore, this algorithm fuses the benefits of the WLSE
algorithm and MM estimator with minimal downsides. When the data is collected in open-
sky and urban conditions, it was shown to improves the MM estimator accuracy by 20%
and 11% on the 20% and 60% horizontal positioning accuracy. It was also shown that
the proposed variation of the parameters of the robust estimator parameters -efficiency and
breakdown point- as a function of the number of detected multipath could be detrimental
to the positioning accuracy.
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CHAPTER 8
Conclusions and Perspectives

This chapter summarizes the conclusions brought by the research presented in this work. It
also provides insight on potential future research in the different investigated fields.

8.1 Conclusions

As presented in Chapter 1, the goal of this thesis was to develop light-weight algorithms, for
a potential implementation on the eHermes navigation solution of 3D Aerospace, that would
improve the positioning solution especially in challenging environments.

This was achieved in three phases. The first one consisted in improving the computational
load of an ambiguity estimating EKF by using time differenced carrier phase measurements
(TDCP) instead of raw carrier phase measurements. The second phase was based around
detecting multipath affecting code pseudoranges by using CNNs applied to multicorrelator
outputs. The last one was to use the multipath classification from the CNN to improve the
positioning accuracy of weighted least squares and MM estimators. The different conclusions
are arranged to their corresponding phases and given below.

• Inclusion of TDCP in an EKF

To better understand the functioning of Kalman filters, their theoretical equations were pre-
sented along with two EKFs using GNSS measurements in Chapter 3. One filter was based
on using only GNSS measurements and the other used a INS/GNSS tight coupling EKF
while estimating the ambiguity of carrier phase measurements. The latter served as the
benchmark to compare the proposed TDCP filter presented in Chapter 5. The ambiguity
estimating filter used carrier phase, Doppler, and code pseudoranges measurements which
were presented in Chapter 2 to illustrate how they were generated and their differences.

Chapter 5 presented how to form time differenced carrier phase measurements. It was shown
that using measurements from two different time epochs had an influence on the measure-
ment update equations of the KF. The TDCP measurements were used to replace carrier
phase measurements in the filter. This is because using raw carrier phase measurements leads
to estimating the carrier phase ambiguities within the EKF state vector. The increase in the
number of states to estimate inevitably leads to more calculations. Since the eHermes has
limited computational resources, the additional state estimation would be too cumbersome.
Therefore, the computational load of the ambiguity estimating filter was compared with the
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TDCP filter. It was demonstrated that the TDCP filter was 57% faster than the ambiguity
estimation filter in urban conditions.

Cycle slips also affect TDCPs as they are a combination of two carrier phase measurements.
Hence, cycle slip detection methods were implemented. More specifically, two methods
were tested to analyze the performance of each method. One method was based on rejecting
TDCP measurements based on normalizing the innovations by the innovation covariance and
pitting this against a threshold value. The other method involved comparing the innovation
with the wavelength of the signal as cycle slips induce at least a change of one wavelength. It
was proven that the EKF innovation-based method performed better especially when using
ionosphere-free TDCPs as it rejected less useful measurements as the wavelength method is
too stringent.

The GNSS observations used were collected in dual frequency. Thus, the differences in
position accuracy and innovations between first order ionosphere free and uncombined TD-
CPs were also studied. When the filter was using uncombined TDCPs, it performed similar
to the iono-free TDCP filter for 68% and 11% better for 95% of the horizontal error in urban
conditions. This demonstrated that having more TDCP measurements is more beneficial to
the positioning solution than fully removing the first order differential ionosphere effect.

It was shown that as the conditions degrade, the impact of TDCP measurements increases
and even outperforms the ambiguity estimation filter. Indeed, the TDCP filter using ionosphere-
free measurements with the EKF rejection based method performed 5% and 16.7% better
than the ambiguity estimation filter in deep urban conditions for the 68% and 95% of the
horizontal error respectively. In sub-urban conditions, the performance of the TDCP filter
was similar for the 68% horizontal error to the carrier ambiguity estimation filter. However,
the TDCP filter outperformed the carrier filter by 13.8% for the 95% horizontal error. This
further shows the benefit of TDCPs as a light-weight and robust solution in challenging
environments.

• Detecting Multipath using Convolutional Neural Networks

GNSS correlators were used as inputs to a convolutional neural network (CNN); thus, to
give insight and knowledge on how correlators are computed in a GNSS tracking loop, the
signal processing chain was detailed in Chapter 2. As the goal of this research was to detect
GNSS multipath with CNNs, the theory behind CNNs and how to construct a model was
described in Chapter 4.

Chapter 6 proposed a reference classification of multipath using GNSS tracking correla-
tor outputs. The classification criterion revolved around computing the estimated filtered
tracking bias, which is almost equivalent to the pseudorange error, by reconstructing the
autocorrelation function of the corresponding signal. Then, the filtered tracking bias over
one second was compared to a threshold to decide whether multipath affected the receiver
over this one second span. The threshold was determined by using the multipath error en-
velope expected from GNSS signal propagation in urban environments taking into account
frequently encountered materials.

This classification was used to label data to train a supervised convolutional neural network.
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Then, this model was used to predict whether multipath was present or not on correlator
outputs from GPS L1 C/A and Galileo E1-B. The CNN architecture was kept to a low
complexity so that it could be trained with a limited amount of data while limiting the risk
of under or overfitting.

The inputs of the proposed model were the correlators values from the DLL as a function
of delay (with respect to the prompt correlator) and time in the form of images of 256x256
pixels in grey scale. The inputs of the model are lightweight, making the predictions yielded
by the CNN to be swiftly computed. This is illustrated by the fact that predicting multipath
using the CNN model is around 21 times faster than computing the tracking bias from a
large number of correlator outputs for GPS L1 C/A and two to six times faster for Galileo
E1-B.

Several variations have been tested in the CNN to test how the CNN performs when re-
ducing the number of correlators to generate the input images. The favored configuration
is to decrease the number of correlators along with the correlator sampling frequency. This
results in an observation of the correlation function over the same delay range, but with a
lower resolution. Indeed, it was shown that by reducing the number of correlators from 101
to 25 and reducing the resolution by a factor of 4, the F score only decreased from 94.7% to
91.8% on Galileo E1-B and from 91.6% to 90.5% on GPS L1 C/A.

• Robust Estimator Fusion Algorithm according to the Estimated Multipath Environ-
ment

Since the proposed algorithm used a combination of a robust estimator and the WLSE,
these algorithms were theoretically presented in Chapter 3. The design of a MM estimator
and WLSE for positioning purposes was discussed. The robustness of the MM estimator to
outliers was also presented thanks to the loss function bounding the residual estimates. The
impact that multipath can have on measurements was also illustrated in Chapter 2.

Chapter 7 proposed an algorithm that uses either a MM estimator or the WLSE based
on the estimated multipath conditions. The MM estimator is used as the positioning algo-
rithm when one or more measurement is deemed as multipath affected, and the WLSE is
used when no multipath is detected. This multipath decision came from the CNN results
presented in Chapter 6. It was shown that this algorithm took advantage of optimality of
the WLSE in open-sky conditions and robustness of the MM estimator in urban environ-
ments. Indeed, when the data is collected in open-sky and urban conditions, it was shown
to improves the MM estimator accuracy by 20% and 11% on the 20% and 60% horizontal
positioning accuracy.

Varying the efficiency and breakdown points of the MM estimator according to the de-
tected number of multipath-affected pseudoranges was also studied. The efficiency of the
estimator under Gaussian distributions was reduced to reduce the weights of high residual
measurements. This was done using the number of detected multipath in one epoch and
based on [Ding et al., 2022] but did not yield promising results with respect to leaving the
efficiency constant. The variation of the breakdown point was also tested. The breakdown
point is the maximum proportion of corrupted measurements at which the robust estimator
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breaks down. Therefore, it was thought that by varying it, the robust estimator would per-
form best. However, the variation of the breakdown point did not improve the positioning
accuracy of the proposed algorithm.

8.2 Perspectives

Resulting from the presented research, several questions were induced that have not been
answered in this work. These questions could lead to future research. The different research
perspectives are given below.

• TDCP Filter EKF

As Global Navigation Satellite Systems (GNSS) continue to expand, there is an increase in
the number of available signals. Indeed, Galileo is introducing Galileo E6 (High Accuracy
Service), on top of the already existing signals (E1, E5a, and E5b). Meanwhile, GPS con-
tinues to transition its satellites to being L5 capable. Furthermore, Beidou has also become
triple frequency capable [Chu and Yang, 2018]. In challenging GNSS conditions, such as ur-
ban canyons, the addition of new signals and constellations almost systematically improves
the positioning accuracy, convergence or availability [Li, 2018] [Li, 2020].

The proposed filter could add triple frequency capabilities on the code and/or TDCP mea-
surements. Triple frequency combinations could be used to remove the first order ionospheric
effect while decreasing the noise of the iono-free measurement with respect to the dual fre-
quency combination. To keep the filter computationally lightweight, a simple combination
as the one proposed in [Deo and El-Mowafy, 2016] could be implemented. Having triple
frequency measurements could also lead to more (uncombined) TDCP measurements being
used. Indeed, as shown in Chapter 5, having more TDCP measurements lead to a better
positioning solution in challenging GNSS conditions.

Longer data collects could also be performed using the MEMS IMU along with the rest
of the dataset up presented in Chapter 5. This would better highlight the benefit of the
TDCP filter when using a set-up similar to the eHermes receiver, especially in deep urban
conditions. Moreover, it would also prove the assumption that the best performing TDCP
filter is when using uncombined TDCPs over iono-free measurements even with a MEMS
IMU.

• Detecting Multipath using Convolutional Neural Networks

In the future, the number of correlators used to build an input image to the CNN could
be further reduced. The position of the correlators could also be varied to investigate what
could be the minimum number of correlators to correctly classify multipath at a given per-
formance. This could lead the method to be more implementable on real time receivers as
the number of computed correlators would be more achievable. 3D images could also be built
by taking into account the Doppler offset of the received signal as done in [Munin et al.,
2020]. Furthermore, other factors could be added for the threshold determination such as
the elevation of the satellite.
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Excluding measurements as they are affected by multipath does not always lead to bet-
ter positioning solution as it can lead too few measurements to compute a position solution,
or sometimes this satellite was more important to the overall geometry than excluding the
error was. Hence, the next step is to find a criterion to know if removing the multipath
affected measurement is worth it. Then based on the results of the positioning accuracy, the
multipath threshold can be redefined and optimized accordingly.

Another lead to explore would be to classify satellites into several groups based on their
elevation or CN0. Then, a CNN model per group could be built. Evidently, each CNN
would be trained with sufficient data and that data would correspond to the elevation or
CN0 of the targeted group. As predicting with a CNN was shown to not be a computational
bottleneck, the only downside of this solution would be storing the models. This method
would most likely increase the detection of multipath for low elevations or CN0s.

• Robust Estimator Fusion according to the Estimated Multipath Environment

The proposed algorithm was implemented for snapshot positioning. However, snapshot po-
sitioning is not the most accurate positioning algorithm. For example, the EKF presented
in Chapter 5 would be more robust than the presented algorithm. It is possible to adapt the
EKF to use a robust estimator. This was done in [Garcia Crespillo et al., 2017]. Therefore,
a future implementation of the proposed algorithm would be to use ”nominal” EKF obser-
vation update equations when no multipath is detected and switch to the robust EKF when
multipath is detected by the CNN.

Tukey biweight’s function is a popular loss function for MM estimators and performed better
than the other tested loss functions. However, as shown in section 7.3, the weight function
can increase when the residual is higher than the constant c causing problems for high resid-
uals. Another loss function could be investigated when the breakdown point or efficiency of
the MM estimator are varied. This loss function would need to have better mitigation of
high residuals.

The proposed CNN models were designed to detect multipath on Galileo E1-B and GPS
L1 C/A. A future lead could be to extend the multipath detection to other frequencies such
as the L5 band (1176.45 MHz) to detect multipath on both Galileo E5a and GPS L5. This
could be more resource demanding as a higher number of correlators would probably be
needed for the same performance due to the higher chipping rate of PRN codes on both
signals. An alternate solution to use dual frequency measurements, could be to assume that
if a measurement on the L1 band is estimated as multipath affected then it is also affected
on the L5 band. Even though it may not be the case as L5 and E5a signals are more robust
to multipath [Circiu et al., 2017]; this would avoid extra models to train. It would also lead
to less correlators computed for real-time receivers while only using estimated multipath-free
measurements on dual frequencies.
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APPENDIX A
EKF State and Observation Models

This appendix details the computation of the elements of the state transition matrix Φk−1

and of the observation matrix Hk for the GNSS/INS hybridization given in section 3.3.2. The
computation for the GNSS only filter presented in section 3.3.1 are identical when removing
the terms linked to the INS.

A.1 State Transition Model

The state transition matrix is equal to:

Φk−1 =

I3 ∆T I3 03×1 03×1 03×1 03×1 03×N 03 03 03
03 −2Ωie∆T 03×1 03×1 03×1 03×1 03×N ∆T [−Re

bf
b×] −∆TR

e
b 03

01×3 01×3 1 ∆T 0 0 01×N 01×3 01×3 01×3

01×3 01×3 0 1 0 0 01×N 01×3 01×3 01×3

01×3 01×3 0 0 1 0 01×N 01×3 01×3 01×3

01×3 01×3 0 0 0 1 01×N 01×3 01×3 01×3

0N×3 0N×3 0N×1 0N×1 0N×1 0N×1 IN 0N×3 0N×3 0N×3

03 03 03×1 03×1 03×1 03×1 03×N −∆TΩie 03 −∆TR
e
b

π
180

03 03 03×1 03×1 03×1 03×1 03×N 03 I3 03
03 03 03×1 03×1 03×1 03×1 03×N 03 03 I3


(A.1)

The state transition matrix of (A.1) can be obtained by Φk−1 = exp(Fk−1∆T ). The matrix
Fk−1 is composed of the coefficients that express the derivative of a given state as a function
of other states. (A.2)-(A.11) express all state derivatives as a function of other states. For
state derivatives that cannot be expressed as a function of other states are expressed as zeros.

∂δre

∂t
= δve (A.2)

∂δve

∂t
≈ R̂e

b f̂
b −Re

bf
b

∂δve

∂t
≈ [−Re

bf
b×]δψe − 2Ωieδv

e −Rδ
bbacc

(A.3)

In (A.3), the variation in gravity is assumed to be null.

∂δdtRx

∂t
= δḋtRx (A.4)
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∂δḋtRx

∂t
= 0 (A.5)

∂δdtGPS−GAL

∂t
= 0 (A.6)

∂δztd

∂t
= 0 (A.7)

∂δN j

∂t
= 0 (A.8)

∂δψe

∂t
≈ R̂e

b(ŵ
b − wb)

∂δψe

∂t
≈ −Ωieδψ

e −Re
bδbgyro

(A.9)

In (A.9), the small angle approximation was used.

∂δbacc
∂t

= [0; 0; 0] (A.10)

∂δbgyro
∂t

= [0; 0; 0] (A.11)

A.2 Observation Model

The model for the three observables are detailed: code pseudorange, carrier phase, and
Doppler measurement.

A.2.1 Code Pseudorange and Carrier Phase

The observation model is recalled:

Hk,ρ =

− ⃗eINS
1 01×3 1 0 Cind ztd 0 . . . 0 − ⃗eINS

1Re
b(−p⃗bRx×) 01×3 01×3

...
...

...
...

...
...

...
. . .

...
...

...
...

− ⃗eINS
N 01×3 1 0 Cind ztd 0 . . . 0 − ⃗eINS

NRe
b(−p⃗bRx×) 01×3 01×3


(A.12)

The matrix of (A.12) can be obtained by differentiating the code pseudorange with respect
to the states of the state vector. The pseudorange is received at the GNSS antenna, but the
EKF position is computed at the IMU’s position. Therefore, the lever arm must be taken
into account to transform the GNSS code pseudorange to the IMU’s coordinates as given in
(A.13).

r⃗eINS = r⃗eRx +Re
b p⃗

b
Rx (A.13)

The code pseudorange model is given in (A.14).

ρjINS = (r⃗j − r⃗INS) · ⃗eINS
j + c(dtRx − dtj) + T j

Rx + IjRx + δjρ,Rx + εjρ,Rx (A.14)

From the model of (A.14), we can simply differentiate the code pseudorange model with
respect to each state of the EKF:

∂ρjINS

∂δxe
= − ⃗eINS

j (A.15)
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∂ρjINS

∂δve
= [0; 0; 0] (A.16)

∂ρjINS

∂δdtRx

= 1 (A.17)

∂ρjINS

∂δḋtRx

= 0 (A.18)

∂ρjINS

∂δdtGPS−GAL

= 1 if Galileo measurement or 0 if GPS (A.19)

∂ρjINS

∂δztd
= ztd (A.20)

∂ρjINS

∂δNi

= 0 (A.21)

∂ρjINS

∂δψe
= − ⃗eINS

jRe
b(−p⃗bRx×) (A.22)

∂ρjINS

∂δbacc
= [0; 0; 0] (A.23)

∂ρjINS

∂δbgyro
= [0; 0; 0] (A.24)

The carrier phase measurement observation matrix can be obtained with the same reasoning.

The only difference is that
∂ϕj

INS

∂δNi
= 1 to account for the ambiguity term of the carrier phase

measurement

A.2.2 Doppler

The measurement matrix for the Doppler measurement is recalled:

Hk,Doppler =

01×3 − ⃗eINS
1 0 1 0 0 0 . . . 0 − ⃗eINS

1Re
b(v⃗

b
Rx×) 01×3 − ⃗eINS

1Re
b(p⃗

b
Rx×) π

180
...

...
...

...
...

...
...

. . .
...

...
...

...

01×3 − ⃗eINS
N 0 1 0 0 0 . . . 0 − ⃗eINS

NRe
b(v⃗

b
Rx×) 01×3 − ⃗eINS

NRe
b(p⃗

b
Rx×) π

180


(A.25)

Similarly to the code pseudorange, the matrix of (A.25) can be obtained by differentiating the
Doppler measurement with respect to the chosen EKF states. The Doppler is also received
at the GNSS antenna; thus, the lever arm must be taken into account to express the Doppler
measurement at the IMU’s coordinates.

v⃗eINS = v⃗eRx +Re
b(ω⃗b × p⃗bRx) (A.26)

The Doppler measurement model is recalled as:

Dj
INS = fcj

( ⃗vINS − v⃗j) · ⃗eINS
j

c+ v⃗j · e⃗j
(A.27)
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The differentiation for each state is given in (A.28)-(A.37).

∂Dj
INS

∂δxe
= [0; 0; 0] (A.28)

∂Dj
INS

∂δve
= − ⃗eINS

j (A.29)

∂Dj
INS

∂δdtRx

= 0 (A.30)

∂Dj
INS

∂δḋtRx

= 1 (A.31)

∂Dj
INS

∂δdtGPS−GAL

= 0 (A.32)

∂Dj
INS

∂δztd
= 0 (A.33)

∂Dj
INS

∂δNi

= 0 (A.34)

∂Dj
INS

∂δψe
= − ⃗eINS

jRe
b(v⃗

b
INS×) (A.35)

∂Dj
INS

∂δbacc
= [0; 0; 0] (A.36)

∂Dj
INS

∂δbgyro
= − ⃗eINS

jRe
b(p⃗

b
Rx×)

π

180
(A.37)
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APPENDIX B
Median Absolute Deviation Relationship with

Standard Deviation for Gaussian Laws

The median absolute deviation (MAD) can be defined as:

MAD = median(|X −median(X)|) (B.1)

Where:

• MAD is the median absolute deviation

• X is a set of variables following a given law

The MAD can be linked to the standard deviation for a given law as such:

σ = k ·MAD (B.2)

Where:

• σ is the standard deviation

• k is a scale factor which depends on the distribution

For a Gaussian law, k = 1.4826 with the derivation shown in (B.3)-(B.8). Since the MAD
covers 50% of the Gaussian CDF, it can be expressed as:

1

2
= P (MAD ≥ |X − µ|) (B.3)

We then divide both by the standard deviation to incorporate it.

1

2
= P (

MAD

σ
≥ |X − µ|

σ
) (B.4)

Using that P (a < X ≤ b) = FX(b)− FX(a) where FX is the CDF function:

1

2
= Φ(

MAD

σ
)− Φ(−MAD

σ
) (B.5)

Where:

• Φ is the CDF of a Gaussian distribution
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With the identity:

1 = Φ(
MAD

σ
) + Φ(−MAD

σ
) (B.6)

By plugging (B.6), it yields:
3

4
= Φ(

MAD

σ
) (B.7)

By taking the inverse of the CDF funcion, we have:

σ =
MAD

Φ−1(3/4)
= 1.4826 ·MAD (B.8)
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APPENDIX C
Different CNN Architecture Results

Before settling on the CNN architecture presented in Chapter 6, different architectures were
tested that did not perform as well or were much more computationally heavy without a
clear benefit in metric performance. This section aims at showing that the chosen CNN
architecture was the best performing amongst the tested ones. It is also meant to convey
that the problems presented in Chapter 4 can occur if not accounted for.

C.1 Overly Complex Model

Figure C.1 depicts the CNN architecture of a network that has two convolutional layers to
detect multipath.

Figure C.1: Complex CNN Architecture for Multipath Detection.

Table C.1 displays the metrics results of the CNN architecture presented here. It can be seen
that the model performs worse than the one presented in Chapter 6. It is due to the fact that
the additional convolutional layer leads to more connections which need to be trained. The
amount of data required to train this network is then much more substantial as conveyed by
the difference in training and test results. Furthermore, this network is much slower due the
increased number of convolutions performed.

Metric Training Test

Accuracy 0.94 0.91
Recall 0.90 0.83
Precision 0.97 0.97
F Score 6.50 27.26

Table C.1: CNN Performance Metric on Galileo E1-B for 101@200 with a complex CNN
model.
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C.2 Overfitting model

Figure C.2 illustrates the CNN architecture of a network that causes overfitting when training
to detect multipath. The difference between this network and the one presented in Chapter
6 is the absence of dropout and elliptic net regression.

Figure C.2: Overfitting CNN Architecture for Multipath Detection.

Table C.2 displays the results of the network presented in Figure C.2. The metrics clearly
show that the model performs better when using trained data than test data. This is because
of the absence of dropout and regression. This causes the network to ”learn” the training
data and heavily adapt its connections based on it. However it has trouble generalizing as
the test metrics are far off the training ones.

Metric Training Test

Accuracy 0.98 0.90
Recall 0.97 0.85
Precision 1.00 0.95
F Score 6.50 27.26

Table C.2: CNN Performance Metric on Galileo E1-B for 101@200 with an overfitting CNN
model.
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