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Introduction 

The search for novel drug candidates requires the optimization of various structural and 

physicochemical properties, before the drug is accepted on the pharmaceutical market (Figure 

1). The structural optimization of new leads relies on the improvement of their interactions with 

cell components and membranes. Understanding membrane-drug interaction is of utmost 

importance to increase bioavailability and transport, to decrease toxicity, to avoid possible 

drug-drug interactions (DDI) that may lead to cytotoxicity, and eventually to adjust doses. To 

be approved, the “ultimate” drug candidate should be safe (from the toxic point view) and 

effective at low dose.  

 

Figure 1: Different stages of drug development before clinical studies on humans 

 

Eukaryotic cells are complex organisms that contain nucleus - the genetic reservoir -, different 

organelles such as mitochondria and endoplasmic reticulum, different intracellular 

macromolecules (i.e., enzymes), and endogenous compounds (i.e., cytokines, hormones …). 

They are delimited by membranes, which serve as barriers against harmful and undesired 

particles. Cell membranes are mainly composed of phospholipids, embedded proteins and 

carbohydrates. The cell membrane composition is complex and it changes from one tissue to 

another, i.e., the ratio of the different lipid types and the expression level of functional 

membrane proteins vary.1,2 Cell membranes are highly inhomogeneous and asymmetrical, as 

being very complex molecular assemblies. They mainly contain lipids of many types, sugars, 

and embedded proteins.  

Pharmacology and toxicology study the fate of foreign molecules (xenobiotics) in animals and 

humans. Xenobiotics can be drugs, plant-derived compounds (e.g., vitamins, polyphenols), 

chemicals issued from industry, food additives, or pollutants. To reach their sites of action, the 

vast majority of xenobiotics have to cross membranes, for instance to reach the blood from the 

digestive track or from the skin, or to penetrate cells. Therefore, xenobiotic-membrane 
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interactions are key in pharmacology and toxicology. The disposition of a xenobiotic or its 

metabolites in each organ cell depends on its interaction with cell membranes. Membrane 

crossing events can be mediated by membrane transporters or occur by spontaneous 

permeation through lipid bilayers, or both. However, simple lipoidal permeation is the 

predominant mechanism for most small and amphiphilic drug-like molecules.3 

The interaction between xenobiotics and lipid bilayers is therefore very important in 

pharmacology, toxicology, and drug design in general. Partition coefficients of xenobiotics in 

membranes may affect the extent of the pharmacological effects, but also the toxicity caused 

mostly by drug accumulation inside the organ cells4, and interactions with other molecules 

such as drug-drug interactions. On the other hand, passive permeation is directly related to 

pharmacokinetics (PK). It is characterized by the permeability coefficient, for which an accurate 

prediction would be highly valuable in pharmaceutic, cosmetic and food industries. 

Historically, membrane passive permeation was originally described by the solubility diffusion 

model (SDM).5,6 It originates from Overton’s rule that states that the permeability coefficient is 

correlated to the partition coefficient between oil and water.7 Several experimental techniques 

are used to tackle the passive permeation process, such as liposome-based8–10 or cell-

based11,12 assays. It has been shown that in vitro membrane models are more permeable to 

amphiphilic molecules than hydrophilic compounds and ions.13–15 A balance between 

hydrophilicity and lipophilicity is however required. To date, no simple model can accurately 

and consistently predict the coefficients of permeation through biological membranes, due to 

the structural complexity of biological membranes as well the complexity to decipher 

xenobiotic-membrane interactions.16 

Although the Overton’s and Meyer’s theory7,17 is useful to assess partition in homogeneous 

environments, the lipid bilayer environment is highly heterogeneous and this theory quickly 

reaches its limitations. Extensive studies were based on the SDM to develop the 

inhomogeneous solubility diffusion model (ISDM) theory.18–22 Based on the ISDM theorem, 

many tools were implemented to understand membrane passive permeation.  

MD simulations are efficient to describe intermolecular interactions between a xenobiotic and 

its target (i.e., protein, membrane …) at the atomic scale. In the present work, we study the 

two types of xenobiotic transport (passive permeation and transport through a membrane 

exporter). Concerning the former type, we built an efficient tool (MemCross) to assess 

membrane permeation based on ISDM and using biased MD simulations. This tool was tested 

on a large series of drug-like molecules and the predictions were compared to experimental 

data. Concerning the latter type of transport, we have explored the modes of binding of a large 

number of known substrates and modulators of human ABCC4/MRP4, thorough a docking 

study.  

This thesis is divided into seven chapters. Chapter I is an overview of lipid bilayer membranes, 

their composition and their relationship with diseases. The different lipid properties that are 

useful to understand lipid membranes behaviour are listed at the end of this chapter. 

Chapter II tackles the basic definitions related to the different transport processes across 

membranes, in particular passive permeation and active transport through membrane 

transporters. The different families of membrane proteins involved in the active transport of 

endogenous substrates and xenobiotics are overviewed, and their involvement in 

pharmacology is discussed. Focus is given on the specific case of the MRP4 transporter, which 
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is involved in drug efflux in the kidney and the liver, in relation with cytotoxicity in particular met 

in a specific clinical situation, namely graft rejection. 

Chapter III tells the historical evolution of the permeability assessment, from the Overton’s rule 

to the development of the inhomogeneous solubility diffusion model (ISDM), which is derived 

from the Smoluchowski equation. Furthermore, different in vitro membrane models and 

experimental tools for the quantification of drug-membrane interaction and assessing drugs 

permeability are listed. 

Chapter IV highlights different theoretical methods used to assess passive permeation of 

drugs. It starts with the description of the underlying basic theory of molecular dynamics (MD) 

simulations. The chapter continues with a detailed description of the different enhanced 

methods, used in MD simulations, to model the potential of mean force (PMF) picturing the 

translocation of molecules across the lipid bilayer membrane. Another focus is given to the 

most used techniques employed to predict the diffusivity profiles across the membrane.  

Chapter V describes a study about the first use of the Accelerated Weight Histogram method 

to compute the PMF profile of 13 molecules with different sizes and scaffolds. Fractional 

diffusivity profiles were calculated from the same AWH trajectories. Hence, permeation 

coefficients were calculated. Based on a comparison between the AWH method and the 

alchemical calculations, the AWH method rises clear advantages upon other similar methods. 

The AWH methodology used is named MemCross. 

Chapter VI shows an extension of the usage of MemCross to predict permeation coefficients 

on a larger series of molecules, exhibiting different physical-chemical properties. This study 

aims at providing the validation of the robustness of MemCross. 

Chapter VII investigates the different binding sites of the human MRP4 using a thorough 

molecular docking of hundreds of known hMRP4 modulators and substrates. 
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 Membranes in molecular pharmacology 

I.1. ADME 

PK is the science that studies the fate of xenobiotics in the body. PK consists of four main 

steps: Absorption, Distribution, Metabolism and Excretion (ADME, see Figure 2). PK should 

be distinguished from pharmacodynamics (PD), which describes the effect of xenobiotics on 

the organism, especially based upon its interaction at its biological targets, namely the sites of 

action such as enzymes or receptors. The ADME process reflects the different transfers of 

xenobiotics between different fluid compartments. It is mainly related to xenobiotic-membrane 

interactions, which is often difficult to study, making prediction of ADME a difficult task.23,24 

 

  

Figure 2: Interconnection of the absorption, distribution, metabolism, and excretion (ADME) steps from 

xenobiotics administration to excretion.  

I.2. Absorption 

Absorption is the passage of the xenobiotic from its site of administration into the plasmatic 

compartment (extracellular fluid). It determines the quantity of drugs to be administered to 

reach a desired concentration in the blood. This is directly related to the bioavailability of drugs, 

which is the portion of xenobiotics that reaches the systemic circulation before entering organ 
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cells. Bioavailability is highly dependent on the xenobiotic chemical structure, but also on inter-

individual variability of the organisms. The most common administration mode is the oral intake 

(see Figure 2), for which the epithelial gastrointestinal mucosa constitutes the first barrier that 

xenobiotics encounter. It consists of a thin layer of epithelial cells that xenobiotics must cross 

to reach the systemic blood circulation.25 Membrane crossing, in relation to ADME 

mechanisms, relies mainly on two processes3: (i) passive permeation through the lipid bilayer 

(see Chapter III), or (ii) carrier-mediated transport (solute carriers “SLCs”, ATP-binding 

cassette proteins ‘ABCs”) (see Chapter IV). 

Passive absorption depends on several physicochemical factors such as lipophilicity, solubility 

and acid-base constants (pKa).23 These parameters have a fundamental role in the high-

throughput screening (HTS) where they are mostly considered as criteria to classify bad and 

good hit molecules. For instance, drugs with low solubility in lipids are generally poorly 

absorbed passively. 

Overton and Meyer were the first who demonstrated that membrane crossing relies on a series 

of physicochemical properties of compounds (see Section III.2 for more details).7,17 

Furthermore, the rule of Lipinski (rule of five)26 came to refine the relationship in which a series 

of cut-offs were set to select possible biologically active and safe molecules (see Section III.3 

for more details). 

I.3. Distribution 

Once in the systemic circulation reached, xenobiotics spread widely via the bloodstream and 

they diffuse through a series of interconnected compartments. Thus, blood flow provides a 

rapid distribution independent of the chemical nature of xenobiotics. Conversely, the 

bioavailability of a xenobiotic in a given organ strongly depends on its physicochemical 

properties (e.g., molecular weight, solubility) mainly due to the fact that it should traverse cell 

barriers. There are three types of barriers: (i) the epithelial barrier (e.g., gastrointestinal 

epithelium, renal tubule); (ii) the vascular endothelium and (iii) the blood brain barrier (BBB). 

Their composition differs from each other and from one tissue to another27, which may affect 

xenobiotics permeability. The BBB strongly limits permeation due to tight junctions between 

the epithelial cells, preventing highly hydrophilic molecules to cross. The distribution of 

xenobiotics is ruled by both passive permeation and active transport through membrane 

transporters. The distribution between the different fluid compartments depends on various 

physicochemical parameters.4,25 Once in the cell, xenobiotics may bind to its target receptor 

and exert its therapeutic effect through various mechanisms (e.g., signaling, antagonism, 

agonism). 

I.4. Metabolism and excretion 

To limit their accumulation and potential toxicity, xenobiotics are gradually eliminated by the 

organism. However, before being excreted, most xenobiotics must be metabolized to increase 

their solubility. Xenobiotics metabolism consists of enzymatically-driven drug 

biotransformation leading to metabolites. The predominant organ where metabolism occurs is 

the liver through its hepatobiliary system.   

Metabolic biotransformations consist of two phases named phase 1 and 2 reactions, whereby 

Cytochrome P450 (CYP) is the major enzymatic cell machinery system involved in metabolism 

of xenobiotics. Phase 1 consists of hydrolysis, oxidation or reduction reactions. This usually 

leads to more reactive chemical products. Phase 2 are conjugation reactions, which increases 



 

Mehdi Benmameri | Ph.D. Thesis | University of Limoges | 2022 25 

License CC BY-NC-ND 4.0 

the polarity to increase secretion in the urine and the bile. As an example, biliary acids are 

synthesized in the liver from cholesterol through a cascade of enzymatic reactions, mainly 

ensured by CYP27A1 and CYP7A1. They are then conjugated with glycine to enhance their 

solubilization in the bile and their delivery to the intestine.28 A high polarity is required for an 

efficient elimination, otherwise, xenobiotics may be reabsorbed through the renal tubule. 

Some of inactive metabolites released in the bile may be recycled again through the 

enterohepatic cycle (Figure 3). Once in the intestine, they are usually hydrolyzed into free 

drugs/chemicals and they are then reabsorbed from the intestine to start again a new cycle. 

This can lengthen the journey of some drugs or their metabolites in the body. 

 

Figure 3: Enterohepatic cycle. First, bile acids are released in the intestine through the bile tract. Then, 

they can restart a new cycle and reach the liver through the portal vein, or they can be eliminated 

immediately with feces.   

I.5. Lipid bilayer membranes 

Each step of ADME requires xenobiotics to cross lipid bilayer membranes, either by passive 

permeation (detailed in Chapter III and Chapter IV), by facilitated diffusion, or by active 

transport (detailed in II.1.2). Understanding the complexity of lipid bilayer membranes is crucial 

for pharmacology. Lipid bilayer membranes (Figure 4) are key components that maintain cell 

architecture and function. They define cell boundaries and intracellular organelle barriers. Cell 

membranes ensure many essential physiological functions, wherein interactions between the 

membrane and cellular components (e.g., enzymes, cytokines) maintain the cellular 

homeostasis.29–32 Alterations of the bilayer structure are usually associated with various 

diseases, 30,33,34 in particular lipid bilayer structural properties are known to influence the 

function of transmembrane proteins.35–37 Membranes are highly dynamic and complex 

structures which make the environment along the bilayer leaflets highly heterogeneous. Apart 

from lipids, biological membranes contain many other components among which a wide range 

of proteins.2,38 Membrane-related proteins ensure several functions such as cellular uptake or 

efflux of drugs or ions, biotransformation, chemical reactions and signal transduction.39 The 
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conformations of the proteins within the lipid bilayer are influenced by lipid composition, lipid 

phase and lipid properties.40,41 

 

Figure 4: Fluid mosaic representation of a cell membrane.†

  

The lipid composition of biological lipid bilayers is diverse, and may vary from the inner to the 

outer leaflet, in between organelles, cell types, organs, individuals, and species.43–45 Tackling 

this diversity and rationalizing its effects is still an ongoing challenge for computational, 

biophysical and biological research. There exist three major types of membrane lipids, namely 

glycerophospholipids (GPL), sphingolipids, sterols and fatty acids (see Figure 5).31,42  

 

                                                
† Gathered from 42, Copyright 2022, American Chemical Society. 
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Figure 5: Chemical diversity of membrane lipids in mammals.**

 

I.5.1. Glycero-phospholipids 

Glycero-phospholipids (GPL) are the most abundant lipids in lipid bilayer membranes. They 

are composed of a polar head group and two hydrophobic acyl tails. The head group and the 

acyl chains are linked by a glycerol moiety. The linkage between glycerol and the fatty acid 

chain can be either an ester, an ether or a vinyl-ether group (Figure 5a). The polar head groups 

may differ from the moiety linked to the phosphate group. For instance, various substituents 

can be adapted (Figure 5a). The hydrophobic lipid chains consist of long acyl chains that may 

                                                
** Gathered from 32 
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differ from their length, number, and position of the unsaturations and hydroxylations (Figure 

5d). Phosphatidylcholine (PC), a typical eukaryotic phospholipid, is the most abundant 

component in mammal cell membranes.46 Overall, the chemical nature of GPL head groups 

and lipid tails directly influences the lipid bilayer biophysical properties. 

I.5.2. Sphingolipids 

As for GPLs, sphingolipids consist of a head group and two hydrophobic tails. The difference 

between the two lipid types lies in one of the tails that consist of a sphingoid base. It may vary 

in length, number and position of unsaturations, and hydroxylation. The head group defines 

the name of the sphingolipid (Figure 5b). Sphingolipids are present in most cell types, but are 

found at higher concentrations, as for sphingomyelin and ceramides in neuronal tissues and 

the skin, respectively. Sphingolipids play a major role in modifying the lipid bilayer structural 

properties, but they are also involved in various cell signaling pathways.47 

I.5.3. Sterols 

The major sterol in vertebrates is cholesterol (Figure 5c).48 In mammalian membranes, 

cholesterol can be found up to the same molar concentration as GPLs.48 An increase in 

concentration of cholesterol favors the formation of the liquid ordered state, that is required for 

many biological processes to occur in membranes.48 Other sterols are found in plants 

(stigmasterol, sitosterol) and fungi (ergosterol), however, they are not involved in 

pharmacological processes. 

I.6. Structural properties of lipid bilayers  

I.6.1. Membrane thickness 

The membrane thickness is one the major properties of lipid bilayer membranes, it highly 

depends on the membrane composition. For instance, the length of acyl chains, the order, the 

number of unsaturations and the presence of cholesterol may strongly affect membrane 

thickness.49–51 The membrane thickness can be obtained both experimentally and theoretically 

from MD simulations.52–54 There exist three main definitions of membrane thickness: (i) the 

overall bilayer thickness (DB, see Figure 6) calculated as the ratio of the volume per lipid VL 

and the area per lipid AL, also known as Luzzati thickness, (ii) the distance between the peaks 

of electron density in the head groups, or head-to-head distance (DHH), and (iii) the hydrophobic 

thickness calculated by using the length of the acyl chains (2Dc, see Figure 6). 
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Figure 6: Schematic illustration of the different kinds of thickness in membranes.††† 

I.6.2. Area per lipid 

The area per lipid AL is another important structural property of lipid bilayer membranes. It 

partially reflects lipid packing, and so lipid ordering at the surface. AL can be affected by lipid 

composition but also by the presence xenobiotics in membrane, especially when lying at the 

membrane surface.50,55 From MD simulations, AL can simply be calculated by dividing the xy 

area of the membrane (Smem), so the simulation box, by the number of lipids in one leaflet (Nl): 

𝐴𝐿 =
𝑆𝑚𝑒𝑚
𝑁𝑙

=
𝐿 ×𝑊

𝑁𝑙
  (1) 

Where L and W are the X-length and the Y-width of the lipid bilayer, respectively. 

I.6.3. Order parameter 

The lipid bilayer order parameter, SCH, corresponds to the fluctuations of the carbon−hydrogen 

bond in the hydrocarbon lipid tails with respect to the normal of the membrane surface.56 These 

fluctuations are averaged over all lipids all along the MD simulation, using the following 

formula:56 

𝑆𝐶𝐻 =
〈3 cos2 𝜃 − 1〉

2
  (2) 

where θ is the angle between the C−H bond vector and the bilayer normal (z-axis in MD 

simulations). SCH (see an example in Figure 7) documents on lipid ordering, and thus lipid 

phase. This parameter is strongly affected by lipid composition. Experimentally, the order 

parameter is determined on deuterated lipids, where the hydrogen atoms of the lipid tails are 

replaced by deuterium. Therefore, it is often referred as SCD. 

                                                
††† Gathered from 49. 
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Figure 7: Order parameter of the first acyl chain (SN1, left panel) and the second acyl chain (SN2, 

right panel) for a 1,2-palmitoyl-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer from MD 

simulations with the Slipids57 force field. 

I.6.4. Lipid bilayer Phases 

Depending on lipid compositions, the presence of proteins, environmental parameters 

including temperature, lipid bilayers can adopt different main phases50 (see Figure 8 and Table 

1), mainly (i) the liquid phase (also called liquid disordered, Ld or Lα), which describes lipid 

bilayers of high fluidity. Such phases are mostly composed of unsaturated lipids. They are 

characterized by low thickness, high AL and low order; (ii) the liquid ordered phase (Lo), which 

characterizes lipid bilayers with relatively high order. It is mostly characterized by lipid mixtures 

containing cholesterol; and (iii) the crystalline phase, also known as the gel phase (SO or Lβ), 

which is characterized by increased thickness, low AL and high order. 
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Figure 8: Comparison of the different membrane phases (liquid disordered Ld, liquid ordered Lo and gel 

phase Lβ).‡‡‡ 

 

Table 1 : Lipid bilayer phases and their effect on the main lipid membrane properties. 

 

I.7. Membrane lipids and disease 

The chemical composition of biological lipid bilayer membranes is actively regulated by the 

expression of lipid-metabolizing enzymes (e.g., ceramide synthases, acetyl-CoA carboxylase 

1, serine palmitoyltransferase 1). Moreover, distinct lipid ratios exist between the lipid bilayer 

leaflets, due to flippases (i.e., enzymes that transport some lipids from one leaflet to another). 

These physiological variations extend to different tissues and can affect the general dynamic 

behavior and interactions of membrane lipids with proteins.31,45,59 Hence, changes in lipid 

composition, biosynthesis, metabolism and organization can lead to pathological 

consequences. 

One of the important factors modifying lipid composition and hence function, is a genetic one, 

that can occur in some diseases. A simple mutation of an enzyme related to lipid metabolism 

                                                
‡‡‡ Gathered from 58. 

Lipid phase 
Liquid disordered 

(Ld) 
Liquid ordered (Lo) Gel phase (So) 

Thickness Low Medium High 

Area per lipid High Medium Low 

Order parameter Low Medium High 

Favored by 
increase 

concentrations 
of… 

Unsaturated 
phospholipids 

Cholesterol 
Saturated 

phospholipids +/- 
Cholesterol 
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can lead to severe outcomes.30,60,61 For instance, it was reported that presynaptic membrane 

lipid disorders in the brain are associated with various neurological and psychiatric illnesses. 

Neurotransmission events is sensitive to lipid composition and is largely dependent on 

membrane protein-lipid collaborations.62 

Another example is lipid peroxidation, a radical chain reaction that may occur in case of 

oxidative stress.63 This stress arises from an imbalance between oxidants (e.g., reactive 

oxygen species) and antioxidants (e.g., vitamins E, C, polyphenols). The products of this chain 

reactions are malondialdehyde and conjugated diene, which are mutagenic and cytotoxic.64 

For example, lipid peroxidation was shown to have serious effects in various diseases such as 

Alzheimer and liver diseases.34,65,66  
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 Membrane crossing 

Membranes have a major role in maintaining the homeostasis in living organisms by regulating 

exchanges of ions and molecules (e.g., endogenous substrates, nutrients, toxic agents, drugs 

and metabolites) between the outer and the inner compartments of cells and organelles. This 

balance is maintained thanks to passive diffusion and sophisticated transport systems across 

membranes .67,68 

II.1. Transport types through cell membranes 

 

 

Figure 9: Schematic representation of the different types of transport across biological membranes 

(e.g., the intestinal epithelium) 

II.1.1. Passive diffusion across the membrane 

Many small and lipophilic molecules can cross lipid bilayers by passive diffusion. This process 

is driven by the gradient of concentrations between the aqueous solutions of both sides of the 

membrane (see Figure 9).3 Conversely, the passive diffusion of large hydrophilic molecules is 

usually very limited, and they rather tend to cross the membrane through membrane 

transporters. However, these rules of thumb cannot be generalized, as many exceptions exist. 

The main particularity of passive diffusion is that it is not a saturable process.  

The permeability describes the rate at which a given compound crosses a given membrane. 

The total permeability consists of a combination of different competitive transport pathways. 

Passive permeability can be defined as the quantity of a particle diffusing across a membrane 

per cross-section area in a unit time driven. This is driven by a concentration gradient (see 

sectionIII.1 for more details).69. The rate of passive permeability also depends on pressure, 

temperature, and concentrations in both membrane sides. 

Passive permeability often depends on several intrinsic properties of the molecules including 

its size, chemical structure, or solubility. It also depends on the membrane composition which 
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differs from one tissue to another.70–72 It can be partially understood by the Fick’s first law of 

diffusion (see section III.1). Evaluating passive membrane permeation is required during new 

drug development and optimization processes to enhance their PK, in particular their 

absorption and delivery to reach their targets. Passive permeation is measured by the 

permeation coefficient P.  

II.1.2.  Carrier-mediated transport 

Membrane proteins ensure diverse functions including signal transduction, trafficking and 

recognition.73,74 They cover approximately 20% of protein sequences in the human 

genome.73,75 They are confined in the membrane bilayer in different ways, namely, they can 

entirely span the lipid bilayer (i.e., Integral or transmembrane helical proteins) or partially (i.e., 

peripheral). Integral membrane proteins are assembled in lipid membranes by means of 

translocation and insertion through translocons.76  

A wide range of xenobiotics and endogenous chemicals including those with low passive 

membrane permeability (e.g., highly hydrophilic compounds) can be transported through such 

proteins (carrier-mediated transport) such as ion channels (K+, Na+, Cl- and Ca2+ channels) or 

importers or exporters (see Figure 9).73,77,78 Membrane carriers regulate the entry and exit of 

molecules into or from cells. They have an important role in pharmacology as they are directly 

related to PK (ADME) of xenobiotics. They can be classified as channels or active transporters: 

(i) ATP-binding cassettes and (ii) Solute Carriers. Unlike passive permeation across the 

membrane, carrier-mediated transport is saturable and concentration dependent.69  

Besides, membrane lipids can largely affect the structure of these membrane proteins as well 

as their dynamics, thus their activities. Moreover, the distribution of the various membrane 

proteins varies in between cell types and individuals.62,79  

II.1.2.1. Ion channels 

Channels are membrane proteins which highly facilitate diffusion of ions across the membrane. 

They provide a hydrophilic path that can drive an electric current carried by ion conduction. 

The major properties of ion channels are gating and ion selectivity. Channel-mediated 

transport does not directly require energy from ATP hydrolysis during the transport cycle, 

wherein the direction of ion crossing is along the concentration gradient. An example of ion 

channel is the voltage-gated calcium channels (VGCCs). VGCCs are ion channels essentially 

permeable to Ca2+ ions. They are mainly present in the membrane of excitable tissues (e.g., 

neurons, muscles. etc.).80,81 

II.1.2.2. ATP-binding cassettes (ABC proteins) 

ABC proteins use ATP hydrolysis as a source of energy to drive substrate transport across 

biological membranes. A prototypical ABC transporter consists of two different domains: (i) the 

two transmembrane domains (TMDs), containing each 6 α-helices and mostly embedded 

inside the hydrophobic core of the membrane; and (ii) the two nucleotide-binding domains 

(NBDs) that contain consensus/conserved domains (Walkers A and B and signature domain 

C). In the human organism, ABC proteins are efflux transporters (driving molecules from the 

inner cellular environment to the outer). 

In eukaryotes, ABC genes present high sequence identity of amino acids. In mammalians, 7 

distinct ABC transporter subfamilies were identified, namely: ABCA, ABCB, ABCC, ABCD, 

https://en.wikipedia.org/wiki/Adenosine_triphosphate
https://en.wikipedia.org/wiki/Cell_membrane
https://en.wikipedia.org/wiki/Muscle_cell
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ABCE, ABCF and ABCG. Of main interest are three members of ABC transporters: (i) ABCB1 

(P-glycoprotein or P-gp) member of multidrug-resistance proteins (MDRs); (ii) ABCG2 or 

breast cancer-resistance protein (BCRP); and (iii) ABCC subfamily containing 9 multidrug-

resistance-associated proteins or (MRP 1 to 9). 82 

II.1.2.3. Solute carriers 

The solute carriers (SLCs) are mainly influx transporters, hence strongly contributing to the 

uptake of small molecules into cells. This uptake process is not directly driven by ATP 

hydrolysis.83,84 Transporters of the SLC superfamily include multidrug and toxin extrusion 

proteins (MATEs), organic anion transporters (OATs), organic cation transporters (OCTs), 

organic anion-transporting polypeptides (OATPs), organic cation/carnitine transporters 

(OCTNs). 

II.1.2.4. Distribution of membrane transporters in tissues 

ABC transporters play a substantial role in maintaining homeostasis as they are expressed in 

most of epithelial cell membranes. Their expression and localization in a given tissue barrier 

vary between ABC and SLC members. They regulate the transport of xenobiotics (drugs and 

toxins) and endogenous substrates between fluid compartments. Various members of ABC 

and SLC transporter families have a substantial role in PK, namely ABCG2, P-gp, MRP4, 

OAT1 (SLC22A6), OAT3 (SLC22A8), OCT2 (SLC22A2), OATP1B1 (SLCO1B1) and 

OATP1B3 (SLCO1B3). (see Figure 10)  

 

 

Figure 10:Membrane transporters implicated in the intake (SLCs: blue) and efflux (ABC proteins: 

green) of xenobiotics.  ††††† 

 

                                                
††††† Gathered from 85. 



 

 

Understanding the role and function of membrane transporters, in both healthy and 

pathological conditions, is important to develop new lead drugs or adjust drug doses. 

Membrane transporters are tightly related to various diseases such as cancer. 

Genetic polymorphisms of membrane transporters can affect their expression level, their 

localization and their conformations, thus possibly altering their biological function. In addition, 

drug-drug interactions (DDIs), usually associated to concomitant uptake of several xenobiotics, 

can result from and in a dysfunction of specific membrane transporters. 

II.1.3. Unstirred layers (USL) 

Stagnant water layers are adjacent to the membrane. Their thickness is estimated in between 

170 and 800 µm86–89. These unstirred layers (USL) can slow down the diffusion of molecules 

causing additional resistance to their permeation (see Figure 9). USL complicate the prediction 

of passive permeability based solely on the permeability through the lipid bilayer. The 

permeability through USL, PUSL, is related to the diffusion coefficient, D, and the thickness of 

the USL, δ:90  

II.1.4. Paracellular transport 

Paracellular transport consists in transport between cells, as opposed to trans-cellular 

transport (Figure 9). The absorption of some polar molecules and ions (< 200 Da) relies on the 

paracellular pathway (e.g., exogenous sugars, Na+, Cl-), whereas most drugs permeate 

through the transcellular pathway.69,91–93 It is an important transport pathway in capillaries, 

except at the BBB. The concentration gradient drives para-cellular transport.  Tight junctions – 

membrane protein complexes between adjacent cells – limit the para-cellular transport. In the 

gastrointestinal epithelium, tight junction dysfunctions are related to inflammation and 

metabolic disorders.94  

II.1.5. Endocytosis 

Some biologically active large molecules (e.g., cobalamin, immunoglobulins) require 

endocytosis to be absorbed.95,96 This process consists in the passage of the macromolecule 

into the cellular environment without direct contact with the lipid tails of the lipid bilayer. The 

major mechanisms of endocytosis are pinocytosis, phagocytosis and receptor-mediated 

endocytosis. Many toxins and infectious agents (viruses) utilize this mechanism to enter into 

the body cells. Moreover, several targeted therapies have adopted this mechanism to increase 

the bioavailability of oral drugs.  

II.2. Membrane transporters and organ transplantation 

Organ failure or injury such as acute liver failure and kidney dysfunction are multifactorial life-

threatening diseases. Drug-induced liver injury (e.g., acetaminophen-induced hepatotoxicity) 

or viral infections (i.e., hepatitis A, B, and E) are the main causes of liver failure. Severe 

subsequent complications may result in encephalopathy and other associated dysfunctions. 

Liver failure may be associated, in 50% of cases, with substantial renal dysfunction that may 

increase mortality. In particular cases, with severe complications (e.g., intracranial 

hypertension), transplantation can be lifesaving.97 However, once transplanted, a patient may 

experience graft rejection in short, medium, or long term. The causes for graft rejection are 
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multifactorial, and its prediction is still challenging. The histocompatibility system, tissue typing 

and DDI play a substantial role in graft survival, that can result in graft rejection.98–100 

In the context of liver and kidney transplantation, immunosuppressant drugs are broadly used 

to decrease the immune response toward grafts. Tacrolimus, cyclosporine A and 

mycophenolate mofetil (MPA) are the most commonly prescribed drugs.101–103 Usually, 

immunosuppressant drugs are taken concomitantly with other xenobiotics (i.e., drugs such as 

antivirals, and nutrients). The accumulation of these drugs inside the graft cells may cause 

toxicity, leading to graft rejection. This accumulation is normally prevented by transmembrane 

exporters (e.g., MRP2, MRP4 and P-gp) 85,104–106. Any dysfunction in these transporters may 

thus lead to dramatic drug accumulation and severe toxicity. This is particularly true with DDI 

that may lead to accumulation of drugs inside hepatocytes and renal cells. This accumulation 

is mainly due to the lack of their transport outside cells, through efflux transporters, to reach 

blood and urine. Drug accumulation inside liver and kidney cells results in cytotoxicity. Through 

a series of complex processes, involving several immune mediators such as T-cells and 

cytokines, this leads to graft rejection. 98,107–109 

In the context of liver and kidney transplantation, the MRP subfamily is of utmost importance. 

MRP4 is exclusively an efflux transporter. It is highly expressed in SNC, liver, kidney and blood 

cells. As a multidrug resistance protein, it mediates the elimination of various conjugated drugs 

though the proximal renal tubule. Also, it insures their efflux into blood compartment through 

the basal membrane of hepatocytes. Thus, any dysfunction of hMRP4, mainly caused by DDIs, 

is directly related to drug accumulation, then cytotoxicity and graft failure.85,105,110 In Chapter 

VII, we will studied the potential binding sites of the available hMRP4’s substrates and 

modulators using an advanced molecular docking approach. 

  

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/histocompatibility
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 Passive permeation of drug molecules 

Plasma membranes are the center for all exchanges between the extra- and the intracellular 

compartments. They constitute an interface where a wide diversity of interactions between 

xenobiotics, biomolecules and membrane components can occur. As mentioned in Chapter II, 

endogenous molecules and xenobiotics can be transported in and out of the cell through 

membrane proteins. However, any molecule can theoretically cross the membrane by passive 

permeation, albeit on a very wide range of timescales. Passive permeation is non-saturable 

and depends on both the membrane and the permeant properties. It often plays an important 

role in the membrane crossing of amphiphilic and hydrophobic molecules. For a given 

molecule, the ability to cross biological membranes by passive permeation is evaluated by the 

permeation coefficient P. It is a key property during the drug discovery process, as it helps 

selecting potential lead molecules, and better understanding their PK. 

III.1. Fick’s first law 

During early passive diffusion studies, membranes had been considered as a homogeneous 

one-slab layer through which the particle diffuses from one compartment to another following 

the gradient of concentration (Figure 11).20,111  

 

 

Figure 11: The one-slab membrane model (green slab) with thickness ∆x separating two 

compartments 1 and 2 with their corresponding concentrations c1 and c2 of the particle (red 

circles), respectively. 

 

The transmembrane flux J is the quantity of particles, Q, diffusing across the one slab 

membrane, from compartment 1 to compartment 2, per area A, during time t: 

J =
1

A
.
∂Q

∂t
 (1) 

J is given by the Fick’s first law, which is valid under the assumption of a steady state, i.e. 

when the concentration gradient remains constant. The one-dimensional flux J can be written 
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as a function the diffusivity of a particle diffusing in the membrane, Dm, and the change in 

concentration cm as a function of the particle’s position x along the membrane (
∂cm

∂x
): 

J = −Dm
∂cm
∂x

  (2) 

The diffusion across the homogeneous membrane layer requires partition of the particle 

between the aqueous medium and the membrane (Figure 11). At equilibrium, the ratio between 

the concentration at the lipid bilayer leaflet and the aqueous phase is the partition coefficient 

K given by: 

K =
cm
c𝑎𝑞

 (3) 

Moreover, at the steady state, the flux J is constant, and it is proportional to the concentration 

difference Δc of the particle between the two aqueous compartments.  

J = P × ∆c  (4) 

Where the proportionality factor, P, is the permeation coefficient, often expressed in cm.s-1, 

and it represents the rate at which the particle can cross the membrane.  

III.2. Overton’s rule 

The Overton’s rule was proposed by Ernest Overton in the beginning of 19th century through 

a series of publications. The first starting point of the fundamental knowledge of cell 

membranes was discovered by investigating the osmotic properties (free water diffusion 

through cell membranes) of both plant and animal cells. Overton demonstrated that cell 

membranes were permeable to various undissociable organic solutes (e.g., chloroform, ether, 

and acetone), at different rates over time. Therefore, he could estimate the permeability of a 

given solute. These solutes were chosen because they did not show plasmolytic effect, 

contrary to impermeable solutes such as amino acids or sugars.112–114 

This study was extended to establish a relationship between the permeability and the chemical 

structure of molecules. A range of solvents was used to experimentally model the partition 

between water and the lipid environment. The findings upon these series of experiments 

revealed that solutes having solubility in lipid environment (e.g., ether, lipid oils) greater than 

in water are likely to passively diffuse through the membrane. In addition, Overton raised 

evidences about selective permeability of neutral permeants with respect to their charged 

forms.112,115 This highlights the essential role of the lipid/water partition coefficient on the 

permeability (P).42 These findings are known today as the “Overton’s Rule”.20,112,114. It was 

shown that the choice of the optimal oil solvent depends on the solute. For instance, octanol 

is adapted when studying highly hydrated amino acids and peptides, as it forms inverse 

micelles trapping water molecules at the interior.116,117 Conversely, hexadecane is more 

suitable for small nonelectrolytes molecules.118  

III.3. Lipinski’s rule of five 

Given the wide diversity of drug-like molecules, the relationship between permeability and 

physicochemical properties of drug-like molecules has been studied to select potential and 

orally active drug candidates with increased bioavailability. Molecular properties such as 
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molecular weight, lipophilicity, number of H-bond donors and acceptors were shown to be 

important factors to predict a good bioavailability of drugs, hence, a good absorption or high 

permeability. A balance between nonpolar and polar properties is required for oral drugs.119,120 

In 1997 Christopher Lipinski postulated a rule of five, often coined RO5. It relies on the 

evaluation of four parameters to estimate a favorable drug likeliness, i.e. the probability that a 

drug absorbed orally is bioavailable. The four parameters are : (i) less than 10 H-bond 

acceptors (nitrogen and oxygen atoms), (ii) 5 H-bond donors (N-H and O-H bonds), (iii) a 

molecular weight lower than 500 g.mol-1, and (iv) a logKo/w greater than 5.121  

Lipinski’s rule of five is widely used in high throughput screening (HTS) techniques during the 

drug discovery process. HTS are used to yield potential hits that exhibit good bioavailability 

and high therapeutic efficiency.  

III.4. Biopharmaceutics classification system 

Biopharmaceutics classification system (BCS) is based on the Fick’s first law. It correlates in 

vitro drug solubility and intestinal permeability with its in vivo bioavailability.  

Solubility can be defined as the ability of a molecule to dissolve in a fluid environment. To cross 

a membrane barrier, the molecule should exhibit the correct balance in solubility between water 

and the lipid medium. In aqueous medium, solubility can be defined as the sum of the 

concentrations of all dissolved species in the medium. In the case of weak acids HA, solubility 

is:122 

𝑆 = [𝐻𝐴] + [𝐴−] = [𝐻𝐴] × (10𝑝𝐻−𝑝𝐾𝑎 + 1) (5) 

Moreover, lipid solubility is related to lipophilicity of the molecule of interest, which can be 

estimated (i) by measuring the partition coefficient between water and lipid (oil) or octanol 

(Ko/w), or (ii) theoretically by computing the free energy of partitioning where 

𝐾 =
𝑐1
𝑐2
= 𝑒−

∆𝐺𝑝𝑎𝑟𝑡
𝑅𝑇  (6) 

Where c1 and c2 are the concentrations in membrane and aqueous phase, respectively, and 

∆Gpart is the free energy of partition. Lipid solubility is affected by lipophilicity, H-bonding, 

electrostatic bonding, ionization state of the particle and temperature.123 

The permeability can be determined experimentally either by (i) PK studies on human subjects, 

(ii) intestinal perfusion on animals, (iii) in vitro models using intestinal epithelium, or (iv) 

monolayers of epithelial cells (e.g. Caco-2 cells, see section III.7).124,125 The Biopharmaceutical 

classification system defines 4 classes (see Figure 12): 

- Class 1: High solubility - High permeability drugs: drugs that satisfies class 1 are readily 

absorbed. The bioavailability of drugs of this class is usually low due the rapid 

metabolism. 

- Class 2: Low solubility - High permeability drugs: drugs have lower absorption rate than 

Class 1. Their dissolution is the rate-limiting step. 

- Class 3: High solubility - Low permeability drugs: permeability is the limiting step. The 

rate of absorption may be highly variable due the variable gastrointestinal transit. 
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- Class 4: Low solubility - Low permeability drugs: both drug dissolution and permeability 

are low, therefore bioavailability is poor.  

 

 

Figure 12: Schematic representation of the Biopharmaceutics Classification System (BCS) 

III.5. Solubility-Diffusion Models 

III.5.1. Homogeneous solubility diffusion model 

Based on the Overton’s rule, the homogeneous solubility diffusion model was often used to 

describe the permeation of small molecules through polymer membranes.126 Here, the 

membrane is treated as a one-slab homogeneous layer (Figure 13). The diffusivity and the 

driving forces are assumed to be uniform. The Fick’s second law describes the evolution of the 

concentration inside the one-slab membrane over time as follows:  

∂c𝑚
∂t

=  𝐷𝑚.
∂2c

∂x2
 (7) 

Where c is the concentration in the membrane, x the position, and Dm is the diffusivity of the 

molecule inside the membrane. At equilibrium, 
∂c𝑚

∂t
= 0 and the flux J is constant. 
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Figure 13: The Homogeneous Solubility Diffusion Model (HSDM). The one-slab membrane medium is 

separated by two aqueous phases with two different concentrations c1 and c2 of the diffusing particle 

(brown filled circles) in both sides. K is the partition coefficient between membrane and water and Dm 

is the diffusion coefficient of the particle inside the membrane. 

 

At steady state, the concentration profile inside the membrane, is assumed to be linear and c1 

and c2 are maintained constant. The flux J is constant and it is proportional to the difference in 

concentrations between the two aqueous compartments (Δc).  

J =
K. D𝑚
∆x

. ∆c𝑚 (8) 

Where K is the partition coefficient between the aqueous phase and the membrane interior 

and Δx is the membrane thickness. 

Combining equation (4) and equation (19) yields the expression of the permeation coefficient 

P =
K. D𝑚
∆x

 (9) 

However, there are structural differences between polymer membranes and biological lipid 

bilayer membranes, which makes the homogeneous model fails at describing the latter 

membranes. The phospholipids that compose lipid bilayers consist of a polar head groups and 

non-polar tails. Therefore, the polarity of lipid bilayers is very inhomogeneous and the diffusivity 

inside lipid bilayers is neither homogeneous.111 

III.5.2. Inhomogeneous solubility diffusion model 

The main concept of the inhomogeneous solubility diffusion model (ISDM) is that the diffusivity, 

the partitioning (related to the free energy landscape across the membrane) and thus the 

resistance to cross membrane are not uniform, in other words, they are depth-dependent. 18,127–

129 This model describes the membrane as an inhomogeneous fluid medium where molecule 

dynamics is driven by a Brownian motion under the influence of a driving force F. 

Consequently, the diffusing molecule undergoes random walk along the membrane thickness, 

i.e., along the z-axis, but also the x-y plane.  
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The one-dimensional translocation rate can be straightforwardly discretized to the z-axis alone, 

as it represents an inhomogeneity of chemical composition, and thus a variability in diffusivity 

and free energy landscape as a function of the position of the molecule. 18 

The general formalism can be described by the one-dimensional Fokker-Planck equation 

derived into the Smoluchowski equation. It describes the motion of a diffusive particle inside 

the membrane under the influence of a force F(z,t):18,130 

∂c(z, t)

∂t
=
∂

∂z
D(z) [

∂

∂z
− βF(z, t)] c(z, t) (10) 

Where 
∂c(z,t)

∂t
 is the rate of change of the concentration at position z versus time, c(z, t) is the 

concentration of the molecule at a given depth z at time t, D(z) is the position-dependent 

diffusivity, F(z) is the driving force, equals to the derivative of the free energy w(z) (also called 

potential of the mean force, PMF) at position z : F(z) = −
∂w(z)

∂z
. Here β =

1

k𝑏T
 where k𝑏 is the 

Boltzmann’s constant and temperature T. 

The Smoluchowski equation (20) can thus be derived as a function of both the diffusivity and 

the free energy profile as follows: 

∂

∂t
c(z, t) =

∂

∂z
D(z) [

∂

∂z
c(z, t) + c(z, t)β

∂

∂z
w(z)] (11) 

Multiplying the right side by 
eβw(z)

eβw(z)
  yields: 

∂

∂t
c(z, t) =

∂

∂z
D(z)

1

eβw(z)
[eβw(z)

∂

∂z
c(z, t) + c(z, t)eβw(z)

∂

∂z
βw(z)] (12) 

Manipulation inside the square brackets of equation (12), setting 𝑢 = c(z, t) and v = eβw(z), and 

reminding that 𝑢′𝑣 + 𝑢𝑣′ = (𝑢𝑣)′, yields: 

∂

∂t
c(z, t) =

∂

∂z
[D(z)e−βw(z)

∂

∂z
eβw(z)c(z, t)] (13) 

The primitive of the left term of this equation is a flux, J(z), i.e., a particle quantity going through 

a surface per unit time, thus this equation can be re-written as:18  

J(z) =  −D(z)e−βw(z)
∂

∂z
[eβw(z)c(z, t)] (14) 

The integration of equation (24) over the membrane thickness yields:   

∫
J(z)

D(z)e−βw(z)

+
L
2

−
L
2

dz = − ∫
∂

∂z
eβw(z)c(z, t)

+
L
2

−
L
2

dz (15) 

At steady state, the flux is constant and independent of z. This yields: 

J∫
eβw(z)

D(z)

+
L
2

−
L
2

dz = −[eβw(z)𝑐(𝑧, 𝑡)]
−
𝐿
2

𝐿
2 (16) 
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Which leads to: 

J ∫
eβw(z)

D(z)

+
L
2

−
L
2

dz = e
βw(−

𝐿
2
)
𝑐 (−

𝐿

2
) − e

βw(
𝐿
2
)
𝑐 (
𝐿

2
)  (17) 

At both membrane boundaries (i.e., water medium), the potential of the mean force w is equal 

to 0 (w(
L

2
) =  w(−

L

2
) = 0), hence, the exponential terms equal 1. Integrating between the two 

sides of the membrane yields: 

J∫
eβw(z)

D(z)

+
L
2

−
L
2

dz = [c (−
L

2
) − c (

L

2
)] = Δc (18) 

The right side of equation (28) defines the difference in concentration between the two sides 

of the bilayer in the positive direction of the flux (Δc =  𝑐 (−
𝐿

2
) − 𝑐 (

𝐿

2
)). Combining equation (4) 

and equation (28) (see section III.1): 

𝑃𝑒𝑟𝑚 =
J

∆c
(19) 

Hence, the resistance to permeation R, i.e., the inverse of Perm, is given by: 

𝑅 =
1

𝑃𝑒𝑟𝑚
= ∫

𝑒𝛽𝑤(𝑧)

𝐷(𝑧)
 𝑑𝑧

+
𝐿
2

−
𝐿
2

(20) 

Equation (20) is the central equation in the ISDM formalism, and it allows computing 

permeation coefficients from both the underlying Gibbs free energy and diffusivity profiles. 

Four major steps were suggested to describe a molecule crossing a lipid bilayer:131,132 

(i)  For ionizable molecules, a protonation step at the water-polar head group interface 

is usually favorable. This step is characterized by free energy of deprotonation ∆Gdeprotonation 

driving the chemical reaction (equation (23)). 

(ii)  Partitioning from the membrane surface in contact with the bulk water into the lipid 

bilayer core. This entry step is defined by the partition coefficient (Kpart) that is based on the 

free energy of partitioning (∆Gpart), which is the difference between the free energy minima in 

the membrane and in water. 

(iii)  Flip-flop, from one to another leaflet, crossing the hydrophobic membrane center. 

This is characterized by a free energy difference (∆G flip-flop), which is the difference between 

the minimum and the maximum of free energy inside the membrane. 

(iv)  Membrane exit to the other aqueous medium, where the molecule can be re-solvated 

in water. The exit of the molecule through the polar head groups requires a free energy (∆Gexit), 

which is equal to –∆Gpart in the case of symmetric lipid bilayers.  

Depending on the physicochemical characteristics of the molecule, any of these steps can be 

the rate-limiting step to membrane permeation. 
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III.6. Ionization state and passive permeation 

It has long been suggested that only the undissociated and uncharged form of a molecule 

could cross passively the lipid bilayer membrane, which is known as the pH-partition 

hypothesis.133 

 

Figure 14: Diagram showing the ionization and the transfer process of weak acids across the 

membrane 

 

However, the molecule-membrane interaction is highly complex to capture within a single rule 

and it depends on various physicochemical properties related to both the molecule and the 

membrane. Several physicochemical properties of the molecule were shown to affect its 

interactions with the membrane and thus its passive diffusion. Among others, the following 

parameters are key: the molecular weight (MW), lipophilicity (often expressed as the 

octanol/water partition coefficient, written as logPo/w or logKo/w), the number of H-bond donor 

(HBD) and acceptor (HBA) chemical groups, the number of rotatable bonds, the presence of 

aromatic rings, the ionization state (acid/base properties; dissociation constant pKa) and the 

polar surface area (PSA). 119,120,134–136 In some specific PK issues like absorption of xenobiotics 

through the gastrointestinal tract, additional parameters are at stake, such as the accessible 

intestinal surface area and the gastrointestinal transit.137 Most of these xenobiotics are 

amphiphilic molecules (i.e., weak acids or bases). Their absorption depends on their solubility 

in the lipid medium (related to their lipophilicity or partition coefficient, logKo/w), but also on their 

dissociation constant (pKa) and the local pH.123 

The charged state of an ionizable molecule is one of the limiting factors for its transport through 

biological membranes during the ADME steps. As an example of weak acid (HA), the ionization 

state at a given pH can be determined from knowing the pKa of the molecule, as derived from 

the Henderson–Hasselbalch equation:  

 

𝑝𝐾𝑎 = 𝑝𝐻 − 𝑙𝑜𝑔
[𝐴−]

[𝐻𝐴]
(21) 

On the other hand, the free energy of deprotonation HA ⇌ A- is:  
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∆𝐺𝑑𝑒𝑝𝑟𝑜𝑡𝑜𝑛𝑎𝑡𝑖𝑜𝑛 = −𝛽
−1𝑙𝑛

[𝐴−]

[𝐻𝐴]
= −2.3 𝛽−1𝑙𝑜𝑔

[𝐴−]

[𝐻𝐴]
 (22) 

Merging equation (21) and equation (22) give rise to the equation of the deprotonation free 

energy in water as a function of pKa and pH (see Figure 14): 

∆𝐺𝑑𝑒𝑝𝑟𝑜𝑡𝑜𝑛𝑎𝑡𝑖𝑜𝑛 =  2.3 𝛽
−1 (𝑝𝐾𝑎 − 𝑝𝐻) (23) 

III.7. Experimental studies on passive transport across lipid bilayer membranes 

The in vivo, the assessment of permeability of drugs can be an expensive and challenging 

task. The permeability depends on several factors including intrinsic physicochemical 

properties of the molecule but also environmental properties among which the membrane 

composition of the studied tissues is of key importance (e.g., presence of specific membrane 

transporters in the intestinal epithelium cell or the blood−brain barrier endothelial cells).138–141. 

To predict the bioavailability of orally administered drugs, the BCS has been adopted to select 

and classify potential biopharmaceutical drugs. According to BCS, solubility and permeability 

are crucial parameters that have to be evaluated to monitor the drug PK and if needed to adjust 

doses.125,142 Additionally, octanol/water partition coefficients are widely used to describe 

passive permeation. This parameter remains controversial due to the observed differences 

between octanol/water and membrane/water partition coefficients as the hydrophobic media 

in both systems are highly different at the atomistic level.143–145 To assess permeability with 

more complex and more realistic models, and to avoid unnecessary experiments on animal or 

human subjects, various in vitro experimental setups based on natural and artificial 

membranes have been developed to evaluate passive membrane permeation of xenobiotics 

(Figure 9).23,146 In this section, we will first outline the most common in vitro experimental 

setups, and then the most recent detection systems to quantify permeation coefficients.  

III.7.1. In vitro membrane models 

Several biomimetic membrane models coupled with advanced techniques were developed to 

quantitatively assess the ability of drug-like molecules to passively traverse biological 

membranes (Figure 15). The advantage of using various membrane models is to allow 

rationalizing the influence of membrane properties on the permeation of molecules.  

 

Figure 15: Schematic representation of different experimental membrane models namely Black lipid 

membranes (BLM), Liposomes, PAMPA, Caco-2 and BBB. 
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III.7.1.1. Cell-based permeability assays 

Cell-based experimental assays are used to evaluate the permeability and the interactions with 

membrane transporters of drugs.147  

III.7.1.1.1. Caco-2/MDCK cell-based assay 

Cultured colorectal adenocarcinoma-derived cells (Caco-2) (see Figure 15) and Madin-Darby 

canine kidney epithelial cell lines (MDCK) have been used to evaluate drug absorption through 

the gastrointestinal tract.11,12,148–152 These cells model the epithelial barrier, which xenobiotics 

may cross from the luminal medium into the blood (systemic circulation). They often contain 

membrane transporters such as H+/peptide co-transporter (PEPT1), Glucose transporter 2 

(GLUT2), organic cation transporter  (OCTs), Na+/glucose transporter 1 (SGLT1), organic 

anion-transporting polypeptide (OATPs), breast cancer resistance protein transporter (BCRP) 

and multidrug resistance protein 1 (MDR1, known also as P-gp).153,154 The presence of active 

transport in this system may result in a biased estimation of oral absorption due to the over- or 

under-expression of active carriers in the cultured cells.155  

These assays can thus describe transcellular, paracellular and carrier mediated transport of 

xenobiotics. However, they require cell culture, which can be expensive and time consuming. 

Therefore, cell-based systems are not suited for high throughput investigations. In addition, 

USL can affect the measured (effective) permeability coefficients. Their contribution can be 

limited – but not entirely eliminated – by vigorous stirring process in order to thin out these 

stagnant aqueous layers.51, 70, 79 

III.7.1.1.2. Blood Brain Barrier cell-based assay  

The blood brain barrier (BBB) consists of highly specialized endothelial cells (astrocytes, 

pericytes and vascular endothelial cells) that regulate the interplay, molecular trafficking and 

communication between the brain and the periphery.157 The blood and the brain parenchyma 

endothelial cells of the central nervous system contain specific membrane transporters that 

regulate the uptake and/or efflux of both endogenous substrates and xenobiotics. This includes 

organic anion transporter 3 (OAT3), organic anion-transporting polypeptide (OATP1A2), 

mono-carboxylate transporter 1 (MCT1), breast-cancer-resistance protein (BCRP/ABCG2), P-

glycoprotein (P-gp; MDR1), and multidrug-resistance-associated protein 4 (MRP4).158,159 Cell-

based assays consist of primary cell lines or cultured cells arranged as a thin monolayer of 

BBB endothelial cells, attached with tight junctions (Figure 15).160–164 

Different types of transport are represented in BBB cell-based assays, namely transcellular, 

carrier-mediated transport, transport across unstirred layers, and paracellular, although the 

latter is severely limited due to tight junctions between cells.165–167 In vitro, ions transport 

through the cell layer is very low due to the tight junctions that minimize the leakage of 

hydrophilic molecules between the endothelial cells. This produces a trans-endothelial 

electrical resistance (TEER) that can be monitored to evaluate the integrity of the BBB. 168,169 
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BBB cell-based assays suffer from controlling the expression of membrane transporters. This 

issue constitutes the main drawback of using these models to evaluate transport through a 

specific membrane protein. In addition, cells are not exposed to the blood flow. Therefore, they 

lack the influence of shear stress on the endothelial cells present in the in vivo conditions. 

III.7.1.2. Parallel Artificial Membrane Permeability Assay  

The parallel artificial membrane permeability assay (PAMPA) is an artificial membrane model 

that consists of a porous hydrophobic filter matrix impregnated with a lipid membrane 

separating two aqueous buffer compartments, the donor well and the acceptor well. The test 

compound is added into the donor well at a known concentration. Then, it migrates into the 

acceptor well through the artificial membrane (see Figure 15). 42,142,170,171 PAMPA systems are 

mainly related to passive diffusion, and are used to predict oral absorption and bioavailability 

of drugs in the gastrointestinal tract.172 The main advantages of PAMPA are its low cost and 

time efficiency compared to cell-based models. It can tolerate pH variations and therefore can 

be used as a high throughput technique to predict permeability. Most PAMPA models do not 

include active transport, which is the preferred absorption route of most drug.14,173,174 

Various compositions of the artificial membrane have been used in PAMPA systems. For 

instance, n-dodecane solution of DOPC (DOPC-PAMPA), dilute dodecane solution of egg 

lecithin-based lipid compositions (double sink PAMPA or PAMPA-DS), biomimetic lipid mixture 

(BM-PAMPA), porcine brain tissue-based (BBB-PAMPA), and skin PAMPA system to assess 

transdermal entry/entrance.172,173,175–179  

PAMPA-DS is the most common PAMPA system as it mimics the physiological conditions of 

the gastrointestinal tract. The first sink is the pH gradients between the donor and the acceptor 

wells. The pH of the donor well can be adjusted between 3 and 10 depending on the compound 

and the absorption medium.14 In the acceptor well, the pH is usually set at 7.4, reflecting the 

physiological value in the blood. For instance, to mimic the absorption of acidic xenobiotics in 

the stomach, pH is set at 5, so that the acid molecule enters the gastric epithelium under its 

neutral form and exit into the blood circulation under its ionized form, then it can be trapped by 

blood transporters to be distributed in the targeted cells. The second sink is the presence of 

micellar surfactant agents that play a role of chemical scavengers in the acceptor 

compartment. They trap lipophilic compounds in the acceptor well and hinder their 

accumulation inside the hydrophobic membrane core, favoring an unidirectional permeation. 

Several factors can alter the correlation of passive permeation coefficients measured by 

PAMPA to in vivo, in vitro or in silico experiments. For instance, the presence of unstirred water 

layers (USL), the presence or absence of sinks in the acceptor solution, the formation of 

aqueous pores, transmembrane pH conditions, or the retention of highly lipophilic 

compounds.14,180,181 

III.7.1.3. Black lipid membranes 

Black lipid membranes (BLM) were first introduced by Mueller et al. in 1962.182 They are 

simplistic artificial membrane models composed of a thin film of phospholipids isolated from 

natural sources such as egg lecithin. Different phospholipids can be utilized including 

phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), 

phosphatidylinositol (PI) or sphingomyelin (SM). Essentially, a thin single bilayer film is formed 

between two sheets of Teflon or polyethylene submerged in aqueous solution. A small lateral 
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tension is applied to hold the bilayer (Figure 15). BLM has been considered as simplistic model 

to assess passive permeation of xenobiotics as well as to study the physicochemical 

characteristics of complex lipid membranes. Upon projection of a light source on the central 

region of the bilayer to control its quality, it turns out as black spots all over the film, hence the 

name of black lipid membranes. Moreover, BLM are sensitive to modifications in the electrical 

properties and allow the measurement of electrical characteristics of membranes that are built 

in this system.183,184 

The main drawback of BLM is the instability of the freestanding phospholipid bilayer. For 

instance, a slight evaporation in one well may cause large fluctuations in lateral membrane 

pressure, which in turn can disrupt the bilayer. 

III.7.1.4. Liposomes 

Liposomes are biomimetic membranes widely used to model transport and permeability of 

xenobiotics thanks to their easiness of use. They are either made of a single phospholipid type 

or of a mixture of lipids. To prepare liposomes, lipids are solubilized in an organic solvent, 

which is then evaporated. Lipids deposit on the surface forming a film, which is then hydrated 

with an aqueous solution to form a liposome suspension.9 

The diameters of liposomes are in the ranges 20-100 nm (small unilamellar vesicles, SUV),  

100 nm - 1 µm (large unilamellar vesicles, LUV) and 1-100 µm (giant unilamellar vesicles, 

GUV).42,185–189 When using certain lipid mixtures, care should be taken in the choice of the 

organic solvent. In addition, oxidation reactions can occur when using unsaturated 

phospholipids (e.g., PS, PE) and cholesterol in aerobic conditions, and/or high illumination.  

The potential presence of several layers in a single liposome can be an issue in predicting 

permeation through single lipid bilayer membranes.184 

III.7.2. Experimental methods to assess membrane permeability 

The permeation coefficient (logPerm) can be experimentally determined using several 

experimental techniques and various in vitro membrane models. In this section, the recent 

detection techniques to quantify logPerm will be described. 
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Figure 16: Recent experimental techniques to quantify permeation coefficients.††

 

III.7.2.1. Fluorescence-based techniques 

Based on spectroscopy and imaging techniques, fluorescence-based permeability assays 

have been widely used to study passive transport of molecules across membrane model 

systems.190 Many drug-like molecules contain chromophoric aromatic moieties detectable by 

UV-visible spectrophotometry. However, these molecules must exhibit high solubility to be 

detectable.190–192 Otherwise, a fluorescent dye-host complex can be used to indirectly monitor 

transport kinetics, such as in the fluorescent artificial receptor membrane assay (FARMA).193–

195 (Figure 16 and Figure 17) 

 

                                                
†† Adapted from 42. Copyright 2022, American Chemical Society. 
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Figure 17: The fluorescence-based techniques. (A) Based on a fluorescent molecule, (B) Based on 

fluorescent host-dye complex: the fluorescent artificial receptor membrane assay (FARMA). When the 

molecule of interest (black) binds the fluorescent artificial receptor FAR (red), its fluorescence is turned 

off, resulting in a decrease of signal intensity.§§ 

 

As an example, the fluorescent artificial receptor (FAR) consists of a fluorescent complex of a 

dye (dicationic D1–D3) and a host (macrocycle cucurbit[8] uril; CB8). Upon the competitive 

binding of the translocating molecule of interest with FAR, the dye is displaced from the host. 

Thus, the fluorescence intensity decreases. The change in signal intensity can be 

quantitatively measured in real time using UV-visible spectroscopy, even for non-fluorescent 

drugs.196,197 However, the tested compounds should possess high binding affinities to the host. 

FARMA are used to track the transport of large set of compounds with different chemical 

scaffolds in liposomes.193,198 One of the advantages of this assay is that it allows high 

throughput screening using microplates. 

The fluorescence intensity is proportional to the concentration of the molecule c(t) in the inner 

compartment of the liposome:  

I(t) = I0 +  β × 𝑐(𝑡) (24) 

Where I0 is the initial offset, β is the scaling factor. Correspondingly, the concentration c(t) is 

related to the rate constant kp of crossing the vesicle membrane and thus the permeation 

coefficient P through a phenomenological model, 42,197  where 

𝑃 =
𝑘𝑝𝑟

3
 (25) 

Where r is the inner radius of the liposome. 

                                                
§§ Adapted from 42. Copyright 2022, American Chemical Society. 
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III.7.2.2. Surface plasmon resonance 

Surface plasmon resonance (SPR) biosensing is a real time analytical technique that was 

developed to assess surface-related drug- and protein-membrane interactions, as well as 

membrane proteins and ligand interactions during the drug discovery processes.199–202 

Recently, several studies on drug−membrane interactions at the surface of lipid bilayers and 

transport kinetics were carried out using SPR technique. 199,203–205 

SPR is a label-free, sensitive and sufficient technique that allows quantitative kinetics 

determination and screening assays on both cell-based and artificial planar lipid bilayer 

systems without the need of fluorescence or radiolabelling. For permeation studies, liposomes 

are mainly used to assess the transport of molecules through the lipid bilayer. Experimentally, 

liposomes are immobilized on a SPR sensor surface using DNA strands, attached onto the 

surface for one strand and to a cholesterol molecule for the other. 206–208 

For SPR technique, a polarized light is emitted from an optical source in a prism, then reflected 

on biosensor (membrane-solution surface) to a detection unit. The internal reflected light 

produces an electromagnetic field wave extending a short distance into the solution 

(evanescent-wave phenomenon) changing the plasmon resonance. (Figure 16) 

Upon binding of the molecule of interest at the surface of the immobilized membranes, the 

refractive index of the environment close to the surface is altered. The amount of the bound 

molecules, and their affinities to the membrane and association/dissociation kinetics can be 

measured in real time.200  

Tracking the SPR response as a function of time can highlight several phenomena: (i) 

adsorption and transport of the molecule of interest characterized by an increase of the SPR 

response, (ii) desorption/efflux or dissociation, transfer out of the liposome to regenerate the 

first free liposome.42 Passive permeation coefficients can be determined by fitting to the time-

resolved SPR response evolution. The linear dependency of the passive permeation rate on 

the concentration gradient is represented by the observed rate constant kp.199 As for the 

FARMA assay, the permeation coefficient can be determined using equation 34. 

SPR has many advantages for permeation studies: it is sensitive, label-free, cost-efficient, can 

be automatized, and the liposomes can be reused. However it requires large molecular 

compounds to detect the mass change at the sensor-membrane surface.209 

III.7.2.3. Second-Harmonic Light Scattering  

Second-Harmonic Light Scattering (SHS) is a label-free optical bioassay that is used to 

investigate surface-specific and surface-related interactions between biomolecular systems in 

real-time, in particular interactions at the lipid bilayer interfaces.210–212 It includes binding of 

proteins at a membrane surface, tracking the kinetics of permeating molecules across the lipid 

bilayer membrane of liposomes and investigating specific orientations of an adsorbed molecule 

to the lipid membrane.213–216 SHS relies on the use of resonant targets to enhance the second 

harmonic response,217,218 which is related to the number of molecules bound at the membrane 

surface. For passive transport studies, time-evolution of the adsorption of the molecules of 

interest on both sides of the lipid bilayer membrane with opposite orientations yields a 

decrease in SH response.219–222 This decrease is proportional to the transport rate of the 

molecules across the membrane.223 As for other methods, the transport rate is characterized 

by rate constants that can be directly converted into permeation coefficients. 
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 SHS provides a distinct analytical advantage compared to linear spectroscopic methods (e.g., 

fluorescence and UV-visible spectroscopy) as it is highly sensitive and capable to detect low 

concentrations of the biomolecules of interest (i.e., proteins, nanoparticles, small molecules). 

SHS also has the advantage over SPR and fluorescent techniques to detect low molecular 

weight species. However, the SH response is only produced in non-centrosymmetric media 

such as collagen.224 

III.7.3. Comparison between experimental models 

Comparing passive permeation coefficients between in vivo and in vitro experiments requires 

a normalization regarding the differences in both measurement conditions (e.g., paracellular, 

efflux, and carrier mediated permeabilities, unstirred layers contribution (USL), and accessible 

surface area). In addition, pH conditions play an important role in the transport of xenobiotics 

and should be adjusted regarding the type of experiment.78,86,87,225–230 Avdeef’s compilation 

sets a correction of permeation coefficient for USL, carrier-mediated transport contribution, pH-

dependent ionization and non-transcellular effects.14,137,165,231 Moreover, the same corrections 

should be carried out to correlate to theoretical predictions of passive permeation coefficients. 

The total (effective) permeability Ptot is the sum of inverse different n sequential permeabilities 

(PUSL, Ptrans …): 

1

Ptot
=∑

1

Pn
n

(26) 

In the intestine, the Surface Accessibility Area (ASA) is the available epithelial surface that is 

accessible to the molecule in order to be absorbed. In in vitro membrane models (e.g., cell-

based), ASA is much smaller than in vivo. This may play an important role in reproducing the 

in vivo membrane permeability, especially for hydrophilic molecules whose absorption is 

supposed to be slow so that they are more exposed to the whole surface of the adjacent cell 

membranes.232 
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 Theoretical determination of passive permeation coefficients  

Based on the ISDM theory (equation (20) section III.5.2), the determination of the passive 

permeation coefficient (Perm) requires the modelling of two different ingredients/parameters that 

vary along the membrane normal (z-coordinate), namely, the potential of mean force (PMF, 

w(z)) and the diffusivity (D(z)). 

Given the inhomogeneity of lipid bilayer membranes, the dynamics of the molecule diffusion 

inside the membrane depends on its interactions with the surrounding lipid components. When 

a molecule reaches a membrane, it first interacts with the polar head groups. In this region, 

the molecule can be blocked outside, or insertion can be initiated, depending on  its molecular 

properties. Upon interaction of the molecule with the polar head groups, this region can be 

perturbed. The subsequent reorganization may either trap the molecule in this region or allow 

easier diffusion of the molecule to be inserted deeper in the membrane, then to reach the lipid 

hydrophobic core. Here, the molecule can be trapped at a given depth of the bilayer leaflet due 

to favorable interactions, or it can diffuse a lot and can possibly jump from one to another leaflet 

(flip-flop). The transmembrane crossing is usually the rate-limiting step due the energetic 

penalty encountered by the molecule at the membrane center. The height of the crossing 

barriers is quantified by the potential of mean force (PMF).20,233 Most drugs are amphiphilic 

compounds, their partition in the membrane is usually favorable, with possibly some 

reorientations in particular in the lipid head group region.  

MD simulations can be used to model the PMF and the diffusivity profiles across the 

membrane.70,233–235 To get a correct PMF profile along the membrane translocation path, a 

sufficient sampling of the configurational space along the normal to the membrane surface is 

required. 

IV.1. Introduction to molecular dynamics simulations 

Molecular dynamics simulations (MD) simulations are a powerful tool that can be used to 

describe molecular events, e.g., molecular processes which allow xenobiotics to cross lipid 

bilayer membranes.20,233 Based on numerically and iteratively solvation of classical physics 

equations, MD simulations allow monitoring time-dependent evolution of a molecular system, 

in particular atom positions, velocities and potential energies.236 Usually, the algorithms used 

to proceed MD simulations are applied within specified ensembles of physical constants, 

mainly the canonical ensembles NVT or NPT, considering constant the number of particles in 

the system (N), the temperature (T) and either the volume (V) the pressure (P), respectively.236 

Based on the ISDM theory, permeation coefficients can be calculated by means of the 

Smoluchowski differential equation (20) in section III.5.2. This is suitable by modeling both (i) 

the free energy surface w(z) (PMF) picturing the molecule’s translocation along the bilayer 

normal, and (ii) the position-dependent diffusivity D(z) that describe the local motion of the 

molecule.237 

IV.1.1. Equations of motion 

The dynamics of molecular systems is described by different independent variables, for which 

the most convenient one are the spatial positions q and momenta p of all atoms. All possible 

sets/combinations of coordinates (q, p) define the phase space with 6N dimensions, with N 

being the number of atoms.238 
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For each of the atoms i in the system, the time-evolution of the coordinate q and momenta p 

are described by the Hamilton equations:239 

 

{
 

 
dpi
dt

=  −
dV

dqi
            (1)

dqi
dt

=  
dTi
dpi

                (2)

 

Where V is the potential energy function of the system and Ti is the kinetic energy for atom i. 

In practice, Newton’s equations are used instead. Therefore, during MD simulations, the 

solution of these equations can be solved numerically by considering the velocity v and the 

coordinate q of the atoms that moves within a short time step ∆t. At time t=0, initial velocities 

are guessed and the initial coordinates (e.g., obtained from experiments) allow to initiate the 

iterative solvation of the equations. This is achieved step by step, considering that the 

coordinates at time t plus an interval of time ∆t, depend on the coordinates at t, q(t), as 

follows:239,240 

q(t + ∆t) = q(t) + ∆t. v(t) −
∆t2

2m

dV(t)

dq
  (3) 

Similarly, the new velocities at t+∆t are given by: 

v(t + ∆t) = v(t) −
∆t

2m
(
dV(t + ∆t)

dq
+
dV(t)

dq
)  (4) 

From equations (3) and (4), we notice that the resolution of the equations of motion strongly 

depends on the gradient of the potential energy. During MD simulations, the latter can be 

computed using a force field. 

IV.1.2. Force fields 

The force field describes all inter-atomic interactions of a molecular system. It relates the 

potential energy with the internal coordinates of a system (bonds, angles, dihedrals…). These 

interactions are divided into bonded and non-bonded interactions.20,241 The former correspond 

to all covalently linked atoms and consider the potential energy of bonds, angles and dihedrals. 

The latter are non-covalent interactions, mainly Coulomb and van der Waals. These 

interactions depend strongly on the nature of the interacting atoms (C, N, O, …), their electronic 

properties (hybridization, partial charges…), bond types, angle types, or torsion types, which 

all define the force field parameters (see Figure 18). 
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Figure 18: Representation of the force filed bonded and non-bonded interactions 

 

Here, we will only consider additive and non-polarizable force fields, for which atomic partial 

charges do not change during the MD simulations. Polarizable force fields with varying charge 

distributions along the simulation are not discussed.   

IV.1.2.1. Bonded interactions 

Bond potential (Vbond): 

In classical MD simulations, the potential energy of the bond is described by a harmonic 

potential: 

𝑉𝑏𝑜𝑛𝑑 =
1

2
𝑘𝑏(𝑟 − 𝑟0)

2  (5) 

Where kb is the bond force constant, r0 is the equilibrium distance and r is the distance between 

the two corresponding atoms. 

Angle potential (Vangle): 

The potential energy of angles is also defined by a harmonic potential: 

𝑉𝑎𝑛𝑔𝑙𝑒 =
1

2
𝑘𝑏(𝜃 − 𝜃0)

2  (6) 

Where ka is the angle force constant, θ is the angle defined by the atoms. 

 

Torsion potential (Vdihedral): 

The potential energy of the torsion around a bond, is defined by the dihedral angle of four 

adjacent atoms (14) and is described by a Fourier potential as follows: 

𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = 𝑘𝑡(1 − cos (𝑛𝜔 − 𝛾))
2  (7) 
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Where kt, n and 𝛾 are parameters defining the shape of the potential, 𝜔 is the dihedral angle 

between the two planes, both defined by three bonded atoms (i.e., atoms 1,2,3 and 2,3,4). 

IV.1.2.2. Non-bonded interactions: 

Coulomb Interactions (Vcoul): 

The electrostatic potential between two atoms i and j is: 

𝑉𝑐𝑜𝑢𝑙 =
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑟𝑖𝑗
  (8) 

Where qi and qj are the charges of the atoms i and j, respectively. 

van der Waals Interactions (Vvdw): 

These interactions are modeled by the Lennard-Jones potential that combines an attractive 

and a repulsion contribution: 

𝑉𝐿𝐽 = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]  (9) 

Where 𝜀𝑖𝑗 is the depth of the VLJ potential between atoms i and j, 𝜎𝑖𝑗 is the separation between 

the atoms when VLJ = 0, and 𝑟𝑖𝑗 is the distance between atoms i and j. VLJ is supposed to be 

different for each pair of atoms. 

When adding all the energetic terms which picture most of inter-atomic interactions, the general 

formula for the potential energy of the system is given by: 

𝑉𝑡𝑜𝑡 = ∑
1

2
𝑘𝑏(𝑟 − 𝑟0)

2

𝑁𝑏

𝑖=1

+∑
1

2
𝑘𝑏(𝜃 − 𝜃0)

2

𝑁𝑎

𝑖=1

+∑𝑘𝑡(1 − cos(𝑛𝜔 − 𝛾))
2

𝑁𝑑

𝑖=1

+∑
𝑞𝑖𝑞𝑗

4𝜋𝜀𝑟𝑖𝑗
𝑖𝑗

+∑4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]

𝑖𝑗

  (10)

 

 

IV.2. Biased MD methods to obtain the free energy 

With the current computational facilities, conventional MD simulations cannot easily capture 

molecular motions for systems too large (number of atoms greater than a million) or too long 

molecular processes (longer than tens of µs).242 As both parameters are inversely proportional 

to the simulation speed (in ns/day), tradeoffs are possible, for instance very large systems but 

for short simulations. However, some events occur in time scales beyond the reach of current 

unbiased MD simulations. In particular, the translocation of molecules across lipid bilayer 

membranes is driven by free energy barriers that hinder the straightforward exploration of the 

configurational space, especially inside the central hydrophobic membrane core.20,236  For 

instance, for small molecules, the potential of mean force underlying their translocation through 

a lipid bilayer membrane would require averaging over many crossings in a large number of 
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long simulations, hence necessitating huge computational effort20. This type of non-biased 

simulations can only sample states for relatively small molecular systems and ns to µs time 

scale. The probability distribution of a molecule to be in different states can be readily 

calculated leading the estimation of the PMF profile. However, this is not affordable for most 

amphiphilic drug-like molecules where the different possible states are separated by very high 

energy barriers, which are not visited by using conventional MD simulations, leading to a non-

ergodic behavior. 

Alternatively, enhanced sampling can be afforded by biased MD simulations, which have 

proven their time-effectiveness and robustness to extend the range of sampling and to assess 

the free energy landscape of complex molecular systems (i.e., allowing suitable translocation 

between the different states). Various methods have been developed to model the free energy 

surfaces of different molecular systems. For instance, umbrella sampling (this was used by 

Marrink and Berendsen in their original study)243,244, Adaptive Biased Force method, 

Metadynamics245,246, Alchemical free energy calculations70 or Accelerated Weight Histogram 

(AWH) method247. In the following sections, we will cover basic concepts of these methods and 

their applicability in the context of predicting PMF profiles of membrane permeability. 

If the energy barrier to cross between two states is larger than the thermal free energy (kbT), 

the system will likely be trapped in given regions close to one state and cannot populate the 

other states (quasi-nonergodicity) (see Figure 19). Usually, molecular systems contain many 

degrees of freedom that cannot be all sampled during conventional MD simulations. Most 

enhanced sampling methods account for one to three degrees of freedom, called reaction 

coordinates. For passive permeation processes, the reaction coordinates can straightforwardly 

be related to the z-axis, normal to the lipid bilayer surface. 

 

Figure 19: Schematic representation showing the high-energy barrier in the free energy surface that 

hinders the transitions from state A to state B. 
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IV.2.1. Introduction to statistical thermodynamics 

At thermodynamic equilibrium, the free energy F of the system for a thermodynamic state 

equals to: 248 

𝐹 = −
1

𝛽
ln𝑄  (11) 

Where Q is the partition function describing the number of states accessible at a given 

temperature. Q is related to the Hamiltonian H as follows:  

𝑄 =
1

𝑁! ℎ3𝑁
∬e−𝛽𝐻(𝑥,𝑝)𝑑𝑥𝑑𝑝  (12) 

Where N is the number of particles, h the Planck’s constant, β is the inverse temperature and 

it equals to 1/(kbT), x are the coordinates and p the momenta. 

The Hamiltonian describes the total energy of the thermodynamic system: 

𝐻(𝑥, 𝑝) =∑𝐾(𝑝) + 𝑉(𝑥)

𝑁

𝑖=1

(13) 

Where K(p) is the kinetic energy which depends on the momentum p, and V(x) is the position-

dependent potential energy. In classical MD simulations, V(x) is described by a force field. At 

thermodynamic equilibrium, only the configurational term of the partition function is considered 

since the temperature and particle’s masses do not change. Therefore, the kinetic contribution 

to the Hamiltonian is considered constant. Moreover, in the isothermal-isobaric NPT ensemble, 

the low change in average volume at p = 1atm does not affect the free energy between 

states.249 

The configurational partition function Z can be used instead of Q. In the NPT ensemble, the 

free energy is described by the Gibbs free energy G, which approximates the Helmholtz free 

energy A in the phase space Г:236,248 

𝐺 ≈ 𝐴 = −
1

𝛽
ln 𝑍 = −

1

𝛽
𝑙𝑛∫ e−𝛽𝑈(𝑥)

Г

 (14) 

The normalized configurational distribution at state k is described by the Boltzmann distribution 

as follows: 

𝑃𝑘 =
1

𝑍
e−𝛽𝑈𝑘 =

e−𝛽𝑈𝑘

∫ e−𝛽𝑈𝑘
𝑘

= 𝑒𝐹𝑘−𝛽𝑈𝑘  (15) 

Where: 

𝐹𝑘 =
1

𝛽
∫ e−𝛽𝑈𝑘
𝑘

 (16) 
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For complex molecular systems, an analytical expression for Z cannot be derived. Only free 

energy differences between macrostates or between systems can be computed. For instance, 

the free energy difference between two states A and B is given by: 

 

∆𝐺𝐴,𝐵 = 𝐺𝐵 − 𝐺𝐴 = −
1

𝛽
ln𝑍𝐵 +

1

𝛽
ln𝑍𝐴 = −

1

𝛽
ln
𝑍𝐵
𝑍𝐴
 (17) 

 

In MD simulations, we can compute the free energy from the potential energy if we have a 

sufficient overlap between two phase spaces. Conversely, when the two targeted states are 

distant from each other, intermediate states can be simulated and equation (17) can be applied 

between neighboring states.  

IV.2.2. Alchemical calculations 

Alchemical free energy calculations are efficient and practical approaches to calculate free 

energies of transfer between two end-states (e.g., bound and unbound states) by decoupling 

the interactions (electrostatics and van der Waals) between the molecule and its environment 

(i.e., aqueous medium, membrane or protein binding site), using bridging potential energy 

functions (see Figure 20).250 These functions are represented by non-physical (alchemical) 

intermediates connecting the end-states using a coupling parameter λ.  

 

Figure 20: Illustration of the interaction decoupling during alchemical free energy calculations between 

a molecule and a membrane at a given depth z. First the electrostatic interactions are removed 

gradually, then the vdW interactions. 

 

Recently, alchemical free energy calculations have been used to model the PMF profiles of 

small molecules in lipid bilayer membranes.70 The PMF profiles can then be used to compute 

passive permeation coefficient.  

Based on equation (17), the free energy of transition between the fully uncoupled (λB) and the 

fully coupled (λA) states is:249,250 

∆𝐺𝑒𝑛𝑣 = −
1

𝛽
ln
𝑍(𝜆𝐵)

𝑍(𝜆𝐴)
) = −

1

𝛽
ln
∫ 𝑒

(𝑢(𝑞⃗⃗;𝜆⃗⃗⃗𝐵))𝑑𝑞⃗⃗

Г

∫ 𝑒
(𝑢(𝑞⃗⃗;𝜆⃗⃗⃗𝐴))𝑑𝑞⃗⃗

Г

 (18)  

Where 𝑢(𝑞⃗; λ⃗⃗) is the reduced potential which can be simplified, in a thermodynamic equilibrium, 

as follows: 
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𝑢(𝑞⃗; λ⃗⃗) = 𝛽𝑈(𝑞⃗; λ⃗⃗) (19)  

Here, U is the potential energy function of the coordinate q at state λk. When the two end-states 

are distant from each other, the free energy cannot be directly estimated from computing the 

partition function of the two end-states, as the overlap between these two states is poor or 

absent. In practice, the decoupling of a molecule from its environment (e.g., membrane or 

water) relies on introducing intermediate coupling parameters λ connecting the two end-states. 

In alchemical calculations, the potential is scaled alchemically, namely applying a linear 

transformation, in the simplest case, so that the net potential energy, 𝑈(𝜆,  𝑞⃗⃗ ⃗), can be computed 

as follows: 

𝑈(𝜆,  𝑞⃗⃗ ⃗) = (1 − 𝜆)𝑈0( 𝑞⃗⃗⃗) + 𝜆𝑈1( 𝑞⃗⃗⃗) (20) 

Where U0 and U1 are the potentials of the two end states. 

Generally, for each λ, a separate MD simulation is performed. Therefore, the free energy 

between pairs of neighboring λ states can be computed by: 

∆𝐺𝑒𝑛𝑣 =∑∆𝐹(𝜆𝑖, 𝜆𝑖+1)

𝑖−1

𝑖=0

=∑−
1

𝛽
ln
𝑍(𝜆𝑖+1)

𝑍(𝜆𝑖)

𝑖−1

𝑖=0

 (21) 

Where ∆𝐹(𝜆𝑖, 𝜆𝑖+1) is the free energy between two successive λ states. Moreover, the absolute 

free energy of environment (∆Genv) can be computed using various estimators such as 

Thermodynamic Integration (TI), Bennett Acceptance Ratio (BAR) or the Multistate Bennett 

Acceptance Ratio (MBAR).250,251 

IV.2.2.1. Thermodynamic Integration 

The Thermodynamic Integration (TI) is used to calculate the free energy difference between 

two separate states A and B of λ = 0 and λ = 1, respectively. The free energy difference ∆f can 

be obtained by integrating the ensemble average, over all λ states between A and B, of the 

derivative of the potential energy function with respect to λ: 

∆𝑓 = ∫
𝑑𝑓

𝑑𝜆

1

0

= ∫ ⟨ 
𝑑𝑢(𝜆,  𝑞⃗⃗ ⃗)

𝑑λ⃗⃗
 ⟩

𝜆⃗⃗⃗

1

0

𝑑𝜆 (22) 

In practice, the simplest numerical integration scheme is the trapezoid rule where ∆f can be 

expressed as follows: 

∆𝑓𝑖𝑗 =
∆𝜆𝑖𝑗

2
 [⟨ 
𝜕𝑢𝜆
𝜕𝜆
 ⟩
𝜆𝑖

+ ⟨ 
𝜕𝑢𝜆
𝜕𝜆
 ⟩
𝜆𝑗

] (23) 

In the context of membrane permeation, the PMF profile can be modeled using alchemical 

calculations.70 It has been suggested that in order to obtain the overall PMF along the 

membrane thickness, the molecule of interest can put at specified depths of the membrane, 

and then the absolute free energy difference is calculated using alchemical transformation 

calculations. 70 These depths are specified by the user and should reflect the different chemical 

interfaces of the membrane system (i.e., aqueous medium, polar head groups, glycerol 
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moieties, hydrophobic core of the acyl chains and the membrane center). The overall PMF 

profile can be obtained by interpolating in between these points. The main issue of this method 

is the bias of the numerical quadrature that increase the level of statistical noise, i.e., may lead 

to large uncertainties during the propagation of the error through λ. 

IV.2.2.2. Bennett Acceptance Ratio (BAR) method 

The Bennett Acceptance Ratio (BAR) method is used to significantly improve the estimate of 

the free energy difference between neighboring states. The free energy difference between i 

and j neighboring states can be written as follows: 

∆𝑓𝑖𝑗 = 𝛽∆𝐺𝑖𝑗 = − ln〈𝑒
−∆𝑢𝑖𝑗〉𝑖 (24) 

From equation (24), ∆f is critically dependent on the convergence of the ensemble average. In 

other words, ∆uij should converge and the distributions of the simulated molecule in both states 

should overlap. BAR method is used to solve this issue by considering the potential free energy 

differences: (i) from the state i to the state j and (ii) from the state j to the state i. The reduced 

free energy difference equals: 

∆𝑓𝑖𝑗 = ln

⟨
1

1 + 𝑒−∆𝑢𝑖𝑗+∆𝑓𝑖𝑗
⟩
𝑗

⟨
1

1 + 𝑒−∆𝑢𝑖𝑗−∆𝑓𝑖𝑗
⟩
𝑖

+ ∆𝑓𝑖𝑗 − 𝑙𝑛
𝑁𝑗

𝑁𝑖
  (25) 

Where Ni and Nj are the number of the samples performed in states i and j, respectively. 

Equation (25) relies on solving the following formula: 

∑
1

1 + 𝑒−∆𝑢𝑖𝑗+∆𝑓𝑖𝑗

𝑁𝑖

𝑖=1

=∑
1

1 + 𝑒−∆𝑢𝑖𝑗−∆𝑓𝑖𝑗

𝑁𝑗

𝑗=1

 (26) 

Given the samples from both states i and j, this equation can be solved in a self-consistence 

manner and then ∆fij can be predicted. The overall free energy difference between end-states 

is the sum of ∆fij over the intermediate λ-states. 

IV.2.2.3. Multistate Bennett acceptance ratio method 

In the same spirit as BAR, the Multistate Bennett acceptance ratio (MBAR) method is used to 

estimate the free energy differences between all states instead of two neighboring states for 

BAR method. The general formula for the free energy fi at state i is: 

𝑓𝑖 = − ln∑
𝑒−𝑢𝑖( 𝑞⃗⃗⃗⃗ 𝑛)

∑ 𝑁𝑘𝑒
𝑓𝑘−𝑢𝑘( 𝑞⃗⃗⃗⃗ 𝑛)𝑘

𝑘=1

𝑁

𝑛=1

 (27) 

Where N is the total number of samples over all states, Nk is the number of samples at each 

state k. MBAR has the lowest variance of the free energy252 compared to the the TI method. 
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IV.2.3. Umbrella sampling  

The Umbrella Sampling (US) method allows computing the free energy landscape underlying 

the translocation of a molecule along the reaction coordinate ξ, projected on the z-axis 

perpendicular to the membrane surface.253 ξ is discretized into several overlapped windows i 

(Figure 21). 

 

Figure 21: Illustration of the Umbrella sampling protocol. The reaction coordinate ξ is split into several 

windows. At each window, MD simulations are run using harmonic potential (umbrella)  as a bias (red). 

The bottom panel shows the computed biased probabilities. They can be used to yield the unbiased 

free energy profile (blue) using WHAM method. 

 

At each window i of ξ, the MD simulation runs are performed using a harmonic potential ω(ξ) 

that is applied on the restrained molecule of interest. The biased potential Vb of the system is: 

Vb = Vu +ω(ξ) (28) 

Where Vu is the unbiased potential and the artificial potential is: 

 ω(ξ) = 𝑘𝑖(ξ𝑖 − ξ0,𝑖)
2 (29) 

Where ξ0,i and ξi are the window center and the interval positions of window i, respectively, and 

ki the force constant. Subsequently, the probability distributions Pb(ξ) at each of the overlapped 

windows i are obtained (i.e., along ξ). 

In the canonical NVT ensemble, the Helmholtz free energy can be calculated from the 

probability distribution:253 

A𝑢(ξ) = −
1

𝛽
ln P𝑢(ξ) (30) 
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In the NPT ensemble, the Gibbs free energy can be computed as follows: 

G𝑢(ξ) = −
1

𝛽
ln P𝑢(ξ) (31) 

To compute the unbiased free energy G𝑢(ξ), the unbiased probability P𝑢(ξ) has to be 

estimated. This requires to relate P𝑢(ξ) and P𝑏(ξ). Therefore, the equation is solved iteratively 

until convergence. The Weighted Histogram Analysis Method (WHAM)249,254 can be used to 

combine the distributions and yield the free energy profile (i.e., the PMF) along ξ. 

G𝑢(ξ) = 𝑓 (P𝑏(ξ)) (32) 

 The choice of the ki parameter is a rate-limiting step during the US process. Setting this 

parameter to a very small value will drive the system far from the free energy barrier and the 

total biased potential will be close to the unbiased one. In other words, we are falling in the 

conventional MD simulations limits (Vb ≈ Vu). Conversely, very high force constant will 

produce narrow probability distributions, which will lead to an inaccurate free energy profile. 

Commonly, a convenient ki value, which can reproduce overlapped probability distributions, is 

required.  

The rate of convergence in each window is the major disadvantage of US as it is comparable 

to classical MD, and may lack of sampling for the molecule of interest. The global simulation 

time is increased compared to other biased methods such as alchemical calculations. US can 

combined with other enhanced sampling techniques to overcome these issues (e.g., replica 

exchange).255,256 

IV.2.4. Well-tempered Metadynamics 

Metadynamics is a widely used biasing method to predict the free energy surface and 

overcome sampling limits.257,258  In metadynamics, a history-dependent bias potential Ub (ξ, t) 

is applied along a predefined collective variable ξ. Ub (ξ, t) consists of a sum of Gaussian 

kernels that are periodically applied along ξ and time t; it is updated at each of n iterations (see 

Figure 22) and the sum is given by: 

U𝑏(ξ, t) = ∑𝑒
−
𝛽
𝛾−1

U𝑘−1
𝑏 (ξ𝑘)𝐺(ξ, ξ𝑘)

𝑛

𝑘=1

= ∑ℎ 𝑒
−
𝛽
𝛾−1

U𝑘−1
𝑏 (ξ𝑘)𝑒

−
1
2
 ∑

(ξ𝑖−ξ𝑘,𝑖)
2

𝜎𝑖
2

𝑑
𝑖=1

𝑛

𝑘=1

 (33) 

Where γ is the bias factor, h is the Gaussians height and G(ξ, ξk) is the Gaussian function: 

𝐺(ξ, ξ𝑘) = ℎ 𝑒
−
1
2
 ∑

(ξ𝑖−ξ𝑘,𝑖)
2

𝜎𝑖
2

𝑑
𝑖=1

 (34)
 



 

Mehdi Benmameri | Ph.D. Thesis | University of Limoges | 2022 66 

License CC BY-NC-ND 4.0 

 

 

Figure 22: Illustration of the Metadynamics procedure. The upper panel shows the evolution of the 

collective variable ξ over the simulation trajectory. The middle panel shows results obtained with 

different numbers of Gaussians (evolution of bias potential G). The system escapes to the second 

minimum after filling the first minimum using Gaussian functions (blue line); red line reflects when also 

the second minimum is filled and the orange line reflects when the whole profile is filled. In the lower 

panel, the evolution of the free energy surface with added bias potential with different number of 

Gaussians, and the final energy surface (thick black line) at convergence.§§§§ 

 

Well-tempered metadynamics (WT-MetaD) is a form of metadynamics where the more a region 

is sampled, the lower the height of the Gaussian hills (h) becomes. Upon the increase of the 

simulation time, the bias potential exhibits asymptotic regime and becomes much smaller. This 

accelerates the convergence of the free energy profiles.246,260  

U𝑏(ξ, t → ∞) = −(1 −
1

𝛾
)𝐴(ξ) + 𝑐(𝑡) (35) 

                                                
§§§§ Adapted from 259 
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Following this equation, the free energy surface A(ξ) can be obtained from the bias potential 

using several reweighting methods.261–265 WT-MetaD and US have been used to assess the 

PMF profile of permeating molecules such as water and arginine by discretizing the reaction 

coordinate to the distance between the centers of mass (COM) of the molecule and the 

membrane, along z-axis (the membrane normal).266 The accurate choice of input parameters 

constitutes the main limitation of WT-metaD as it affects the rate of convergence of the free 

energy profiles. 

IV.2.5. Adaptive biasing force method  

The adaptive biasing force (ABF) method267,268 is based on thermodynamic integration 

formalism236,269 where the average force is calculated to yield the PMF.  ABF is used to assess 

the free energy surface in molecular systems exhibiting high free energy barriers. In ABF, the 

free energy along the one-dimensional reaction coordinate (ξ) is seen as the potential, V, that 

results from the average force F where 𝐹(𝜉) = −
𝜕𝑉(𝜉)

𝜕𝜉
. During the simulation, the gradient of 

the free energy surface A(z) is related to the average force applied on ξ as follows:2 

𝜕𝐴

𝜕𝜉
= −〈𝐹𝜉(𝑥)〉𝜉=𝑧 (36) 

In ABF, the gradient of the free energy (i.e., the average force) is calculated after a sufficient 

sampling time, and is then used to apply a time-dependent force 𝐹𝑡
𝑏𝑖𝑎𝑠(𝑧) on z that opposes 

the estimated average force. Therefore, the resulting force cancels out, leading to a local flat 

free energy. By this way, the exploration of the reaction coordinate is enhanced by bypassing 

the free energy barriers. While the simulation is under progress, mainly at long simulation time, 

the negative gradient of the free energy converges and equals the applied biasing force. 

Consequently, the effective free energy surface can be estimated by integrating all the average 

forces over the transition coordinate ξ(x). 

A(ξ) = ∫−〈Fξ(x)〉ξ(x)=z dξ(x) (37) 

In practice, the reaction coordinate is usually split into several overlapping strata, or windows, 

(ξ(x) ∈ [zmin, zmax]) in order to improve the efficiency of the free energy estimate (i.e., exploring 

more efficiently the reaction coordinate).269–271 The ABF method was used to estimate the free 

energy profiles in several biological phenomena.271–275 Moreover, it has been used to model 

the PMF profile underlying the translocation of small molecules across lipid bilayers70,270,276. 

IV.2.6. Accelerated Weight Histogram method 

The accelerated weight histogram (AWH) method is an efficient extended-ensemble method 

that can be used to predict the free energy landscape.247,277,278 In AWH, a history-dependent 

bias potential is applied adaptively to flatten the free energy barriers along the chosen the 

reaction coordinate ξ. To proceed in the free energy calculations, the AWH algorithm acts on 

a reference the reaction coordinate ξ is discretized into grid points, λ, which constitutes a 

dynamic variable. 

During MD simulations, the bias g(λ) is assigned as a weighting factor. The states are sampled 

according to a joint distribution P(x, λ), where 
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𝑃(𝑥, λ) =
1

Z
𝑒𝑔(λ)−E(x,λ) (38) 

Where x is the configuration of the system (x ∈ X). This yields the marginal distribution P(λ) 

𝑃(λ) =  ∫𝑃(𝑥, λ) 𝑑𝑥 =
1

Z
𝑒𝑔(λ)−f(λ) (39) 

Where f(λ) is the dimensionless free energy (f(λ) = βF(λ)). The weighs 𝑒𝑔(λ) are adjusted during 

the simulation so that P(λ) approaches a predefined target distribution 𝜌(λ), often chosen to be 

flat. The bias function is thus equal to: 

𝑔(λ) =  𝑓(λ) + ln ρ(λ) (40) 

In the case of uniform (flat) target distribution, the bias function g(λ) is tuned to be equal to the 

desired free energy f(λ) along the system parameter λ though several updates. Here, neither 

the free energy nor the bias is known. Therefore, it requires to proceed adaptively until the 

convergence is reached (i.e., the marginal probability approaches the target distribution).247,279 

In practice, the transition of λ follows a conditional probability given for the current configuration 

x 

𝜔(λ|𝑥) =  𝑃(λ|𝑥) =
𝑒𝑔(λ)−𝐸(𝑥,λ)

∑ 𝑒𝑔(λ
′)−𝐸(𝑥,λ′)

λ′
 (41) 

which can computed using a Gibbs sampler280.  

After collecting nλ samples, the free energy is updated (f ← f + ∆f) based on the weights ω(λ|x) 

that consists of the samples of the AWH method, where: 

∆𝑓(λ) = − ln(1 +
𝑛𝜆 𝜔̅(𝜆)

𝑁𝜌(𝜆)
) + 𝑐 (42) 

Here c is a constant, N is the total number of the samples, nλ is the number of λ samples after 

each update, (λ) is the target distribution and 𝜔̅(λ) corresponds to nλ𝜔̅(λ) = ∑ 𝜔𝑖(λ)
𝑛λ
𝑖=1  . The 

effective number of samples is then updated by nλ: N ← N + nλ. It is worth noting that the 

update size ∆𝑓 is proportional to 1/N. 

Finally, the bias, g(λ), is updated following equation (40) and is equal to the new free energy 

(f(λ)) in the case of uniform (flat) target distribution. The bias update evolves inversely 

proportional to the number of samples N. However, at the very beginning of the simulation, the 

hyperbolic decay of update size ∆𝑓 would cause the PMF to depend largely on the initial value 

of the reaction coordinate ξ. Therefore, instead of a rapid hyperbolic decay, the simulation is 

divided in two stages: (i) during the initial stage, the update size ∆𝑓 is kept constant until the 

whole reaction coordinate has been explored; by this way, the same (coarse) update size is 

applied along the whole reaction coordinate. Then, each time the whole reaction coordinate is 

explored (i.e. a covering has occurred), the update size is divided by 3 (Figure 23). (ii) the final 

stage is simply to let the number of samples evolve linearly over time, thus the update size 

decreases as 1/t. The final stage allows the fine-tuning of the bias. 
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Figure 23: (A) Evolution of the reaction coordinate over time (𝑡) for a Brownian particle in a double-well 

potential, where the particle covers the reaction coordinate several times in the initial stage before 

entering the final stage. (B) The times of covering are shown as ×-markers of different colors. At these 

times the free energy update size ∼ 1/𝑁 at different times of covering (shown in panel A), where 𝑁 is 

decreased by scaling 𝑁 by a factor of 𝛾 = 3. ***** 

 

The AWH algorithm works internally along the discretized coordinate λ. However, the free 

energy of interest is the PMF along ξ (Φ(ξ)). It can be estimated by coupling the system to 

harmonic potentials Q(ξ, λ) (on-the-fly reweighting procedure) that relates the reaction 

coordinate ξ to λ: 

𝑒−𝑓(λ) = ∫𝑒−𝑄(ξ,λ)𝑒−Φ(ξ)𝑑ξ (43) 

Where the umbrella potential 𝑄(ξ, λ) =  −
𝑘

𝛽
(ξ − λ)2, k is the force constant. For large k, F(λ) ≈ 

Φ(ξ). 

Before running the simulation, the initial update size N0 has to be set by the user and it is linked 

to the user-defined diffusion coefficient D and the initial error of the free energy ɛ0: 

1

𝑁0
~ 𝐷𝜀0

2 (44) 

The performance of the algorithm is largely insensitive to these values, as the update size 

exponentially converges at the beginning of the simulation. The diffusion coefficient can be 

roughly guessed from a previously calculated diffusion coefficient of the molecule along the 

reaction coordinate. If the input parameters D and ɛ0 are difficult to estimate, they can also be 

determined by a simple trial and error procedure. Indeed, if D and ɛ0 were set too low, the 

                                                
***** Gathered from 279 
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system might be pulled apart, and if they were set too high, the update size would be too small, 

therefore this yields slow convergence. 

In the context of passive membrane permeation, we have used the AWH method, for the first 

time on all-atom membrane systems, to estimate the PMF profile along the POPC lipid bilayer 

membrane for a set of different molecules (i.e, small and drug-like xenobiotics) (Chapter 5 and 

6). The reaction coordinate (ξ) was specified to be the distance between the centers of mass 

of the molecule and the membrane. The AWH method shows its simplicity to setup and time 

efficiency compared to alchemical calculations or other adaptive biasing methods (e.g., US, 

ABF, metadynamics). 

Several advantages can be derived from the AWH method: (i) simple setup as it requires less 

input parameters than other adaptive biasing techniques, (ii) it allows exploration of multiple 

pathways of the system and thus being quite independent on the initial configurations and (iii) 

the Gibbs sampler allows large transitions in parameter space λ. 

IV.3. Diffusivity 

Along with the PMF, the diffusivity is an important parameter in the prediction of passive 

permeation coefficients. Using conventional MD simulations, the dynamics of diffusion of a 

molecule inside the membrane can be limited when it is trapped in regions with low free energy. 

There exist several methods to determine the diffusivity coefficients from the trajectories of 

equilibrium and non-equilibrium MD simulations. 

IV.3.1. Mean-Square Displacement (MSD) method 

MD simulations allow to compute one-dimensional diffusion coefficients D(z) (i.e., along z-axis, 

the reaction coordinate) based on calculating the mean square displacements (MSD(z)) of the 

molecule as a function of several time steps. Here, the position-dependent diffusion coefficient 

can be computed using the Einstein formula:281 

D(z) =
1

2
 lim
t→∞

d

dt
MSD(z) =  

1

2
 lim
t→∞

d

dt
〈(z(t) − z(0))

2
〉 (45) 

From equation (45), we notice that the accurate estimate of the MSD requires sufficiently long 

simulations. In other words, the diffusive process occurs when averaging the MSDs over long 

time-steps. This is often a limiting step in conventional MD simulations, which pictures local 

MSDs as the exploration of the reaction coordinate is limited in the PMF profile. A convenient 

way to overcome this issue is to compute local diffusion constants over short times (1-5ps) 

where the local PMF (w(z)) is supposed to be relatively constant.126 In the absence of a mean 

force applied on the molecule during its translocation through the lipid bilayer, i.e., flat free 

energy landscape, the MSD can be computed using longer lag-times.270 

IV.3.2. Autocorrelation methods  

For restrained systems using a harmonic potential (e.g., a given window of the reaction 

coordinate)282,283, the degrees of freedom of the molecule are limited and thus its motion can 

be described by the generalized Langevin equation for a harmonic oscillator.284 Therefore, the 

position-dependent diffusivity can be calculated using the velocity autocorrelation function as 

introduced by Roux and co-workers.285,286 Moreover, Hummer237 reformulated Roux and co-
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workers’ formula and derived the position autocorrelation function to calculate the position-

dependent diffusion coefficient. For a harmonically restrained molecule at a certain position i 

(e.g., a given window of the reaction coordinate)282,283, the diffusion coefficient can be 

computed using the following equation:237,283 

D(ξi) =
〈δξ2〉i
τi

 (46) 

Where ξ is the reaction coordinate, τ is the time correlation function of the reaction coordinate 

ξ which equals: 

τi =
∫ 𝑑𝑡 〈δξ(t)δξ(0)〉i
∞

0

〈δξ2〉i
 (47) 

With δξ = ξ(t) − 〈ξ〉.  

IV.3.3. Force correlation method  

This method was used to predict diffusion coefficients over free energy barriers.126 Position-

dependent diffusion (D(z)) and friction coefficient (f(z)) are related through the Einstein’s 

equation:20,126,287 

D(z) =
kbT

f(z)
 (48) 

On the other hand, based on the fluctuation-dissipation theorem, the local time-dependent 

friction constant f(z,t) can be calculated from the autocorrelation function of the random forces 

that are acting on the molecule: 

f(z, t) =
〈∆𝐹(𝑧, 𝑡) ∆𝐹(𝑧, 0)〉

kbT
 (49) 

Where ∆𝐹(𝑧, 𝑡) =  𝐹(𝑧, 𝑡) − 〈𝐹(𝑧, 𝑡)〉. 

From equation (49), the position-dependent friction coefficient can be calculated by integrating 

over time the local time friction coefficients: 

𝑓(𝑧) = ∫ 𝑓(𝑧, 𝑡)
∞

0

𝑑𝑡 =
1

𝑘𝑏𝑇
∫ 〈∆𝐹(𝑧, 𝑡) ∆𝐹(𝑧, 0)〉
∞

0

𝑑𝑡 (50) 

Combining equation (48) and equation (50), the diffusion coefficient is given as a function of 

the force autocorrelation function: 

D(z) =
(kbT)

2

∫ 〈∆𝐹(𝑧, 𝑡) ∆𝐹(𝑧, 0)〉
∞

0
𝑑𝑡

(51) 
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IV.3.4. Bayesian method  

IV.3.4.1. Classical diffusivity from Smoluchowski diffusion equation 

For most drug-like molecules that are diffusing across lipid bilayer membranes, the energetic 

variations in the PMF (w(z)) are higher than kbT in some regions of the membrane, in particular 

at the hydrophobic membrane center. Therefore, estimating diffusivity using Einstein equation 

(45) is not an appropriate approximation, as an unacceptable bias is introduced.126 The 

Bayesian inference method can be used to determine, self-consistently, the position-

dependent diffusivity D(z) but also the free energy w(z) from the trajectory data of MD 

simulations.237,288 Long MD runs or short independent replica runs can be used to assess these 

parameters. Furthermore, Comer and co-workers276,289 developed a methodology to compute 

the position-dependent diffusivity in biased MD simulations.  

The motion of the molecule can be modeled using the Smoluchowski diffusion equation 

(equation (11) section III.5.2), which describes the probability of the molecule to move from 

position z1 at time t to position z2 at time t+∆t. For biased simulations, the diffusivity can be 

estimated on a flat energy landscape along the one-dimensional reaction coordinate. In this 

case, the molecule can diffuse freely without the interference of a deterministic force F(z) (i.e., 

the effective free energy surface is flattened, weff(z) = 0, as in the case of ABF method).270 

The trajectories obtained from MD simulations can be discretized into a series of transitions 

over a time step ∆t. The likelihood P[Z(t)|D(z)], which is the probability of the observed 

trajectory Z(t) given the initially guessed D(z), can be computed as the product of the 

probabilities of each observed transitions of the molecule from Z(tj) to (Z(tj,+∆t) over time 

interval ∆t.270 

𝑃[𝑍(𝑡)|𝐷(𝑧)] =∏𝑝[𝑍(𝑡𝑗 + ∆𝑡)|𝑍(𝑡𝑗), 𝐷(𝑧)]

𝑗

 (52) 

As suggested by Chipot and Comer,270 the probability of transition can be calculated 

numerically by solving equation (11), see section III.5.2 using the Crank-Nicolson method.290  

Using Bayes’ theorem, the desired posterior probability 𝑃[𝐷(𝑧)|𝑍(𝑡)] of the unknown position-

dependent diffusion coefficient given the observed trajectory can be obtained from the 

likelihood 𝑃[𝑍(𝑡)|𝐷(𝑧)]:  

𝑃[𝐷(𝑧)|𝑍(𝑡)] = 𝑝𝑝𝑟𝑖𝑜𝑟[𝐷(𝑧)] × 𝑃[𝑍(𝑡)|𝐷(𝑧)] (53) 

Where 𝑝𝑝𝑟𝑖𝑜𝑟[𝐷(𝑧)] is the prior distribution of the diffusion coefficient. The prior can be set 

uniform; furthermore, it can be defined as the product of priors assuming scale invariance and 

smoothness of the diffusivity. The position dependent diffusivity between neighboring intervals 

of the reaction coordinate is usually smooth. This prior knowledge can be imposed to obtain a 

smooth diffusivity by setting the prior (𝑝𝑝𝑟𝑖𝑜𝑟[𝐷(𝑧)]) as a weighting function that applies a 

harmonic penalty on the deviations of D(z) (|D(zi) − D(zi+1)|):237,270 

𝑝𝑠𝑚𝑜𝑜𝑡ℎ  [𝐷(𝑧)] =∏𝑒
−
[𝐷(𝑧𝑖)− 𝐷(𝑧𝑖+1)]

2
2ℎ2𝛾2

𝑖

(54) 

And  
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𝑝𝑠𝑐𝑎𝑙𝑒 [𝐷(𝑧)] =∏
1

𝐷(𝑧𝑖)
𝑖

 (55) 

Here, the smaller γ, the smoother the diffusivity profile. Then, the posterior probability is 

maximized using a Monte Carlo-based procedure through several iterations.289,291 

Using trajectory data from independent MD runs or from the same trajectories of biased MD 

simulations (e.g., ABF70,270, AWH292), the Bayesian inference scheme can be performed to 

estimate the diffusivity profiles using the open-source DiffusionFusion tool.270,289,293 

However, it has been shown that for membrane permeation, the estimated diffusivity profiles 

for small alcohols largely depend on the lag time ∆t used in the Bayesian inference, in particular 

in the membrane core (Figure 24A).270 In this case, the longest feasible lag-time (e.g., ∆t = 64 

ps) can be used to compute the diffusivity profile that will later be used to obtain the permeation 

coefficient.  

 

Figure 24: (A) example of position-dependent diffusivity (D(z)) profile as a function of lag-time (∆t) , 

using Bayesian analysis, of methanol crossing a POPC lipid bilayer membrane. The grey filled circles 

reflect the diffusivity as calculated using MSD method from a simulation containing 5% of methanol in 

aqueous solution. (B) Variation of the mean diffusivity as a function of lag-time within two different 

regions of the membrane (|z| < 2 Å and 9 < |z| < 19 Å from the membrane center) and one region in 

the aqueous medium (30 < |z| < 40 Å from the membrane center). (C) Normalized correlations of 

consecutive displacements of methanol over z in a flat energy landscape for different lag-times. The 

symbols reflect the same correlation in an ideal Brownian dynamics trajectory of equal length using the 

position-dependent diffusivity from A with Δt = 32 ps.†††††

 

IV.3.4.2. Fractional diffusivity: subdiffusion 

The diffusive motion for many biological systems was known to exhibit a subdiffusive behavior, 

where the mean square displacement as a function of lag time ∆t, obeys a power law, with a 

factor α, with 0 < α < 1; (〈x2〉 ~ tα).294–297 The lateral diffusion of membrane phospholipids was 

also shown to obey a subdiffusive motion on time-scales spanning between 100 fs and 10 

ns.298,299 In the context of passive permeation of molecules, Chipot and Comer270 reported the 

evidence of a subdiffusive behavior for small molecules that are crossing lipid bilayers. 

Accordingly, they developed a convenient framework to assess subdiffusion in membrane 

                                                
††††† Gathered from 270 
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permeation of small molecules along the one-dimensional reaction coordinate (i.e., the 

membrane normal) using MD simulations.270 

In water, methanol molecules exhibited a classical diffusion described by the linear fit (r=0.99) 

of the MSD along z (〈∆Z2〉 ~ t), but also tested on x and y planes, over a range of lag-time 

values (Figure 25A). The spatial probability distribution of the molecule exhibits approximately 

a Gaussian form, a hallmark of a classical diffusion. 

The diffusivity calculated using the MSD method was in agreement with the results obtained 

using Bayesian scheme for the range |z| > 30 Å (grey filled circles in Figure 24A). 

Conversely, in the hydrophobic membrane medium (i.e., 9 < z < 19 Å) and near the center of 

the membrane, the MSD is nonlinear and it follows a power law, written as 〈Z2〉 ~ tα where the 

exponent α = 0.65 and 0.76, respectively. An example of the fit between MSD on the x-axis 

and lag-time is depicted in Figure 25A-B. This is a strong indicator of an anomalous diffusion 

compared to diffusion in water. In addition, the spatial probability distribution is not Gaussian 

anymore (i.e., cusp-like shape, in Figure 2 C), reflecting that the molecule spends more time 

at the initial position before moving out, which is a typical behavior in a subdiffusive regime.300 

 

Figure 25: Example of variation of the MSD along the x-axis of methanol as a function of lag-time 

within two different regions of z; in (A) the aqueous medium and (B) the membrane core, with power-
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law fits to the data (dashed curves). (C) The probability of methanol displacements for ∆t = 10 ps and 

(D) the same histogram on a logarithmic scale. ******

 

Another evidence of subdiffusion across lipid bilayer membranes is shown by calculating the 

mean correlation between consecutive displacements over 2∆t intervals. This highlighted a 

negative correlation within the membrane suggesting that the displacements are anti-

correlated, reflecting a subdiffusive behavior as opposed to a Markovian behavior in the 

aqueous phase (Figure 24C). The origin of this subdiffusive process can be assigned to the 

formation of transient empty volumes within the membrane where the molecule may spend 

more time before a next jump occurs.270,300 

Similar to classical diffusivity, the Bayesian scheme can be applied to a MD trajectory Z(t) to 

estimate the position-dependent fractional diffusivity of fractional order α, Kα(z) (instead of 

D(z)). Using the Bayesian scheme, the position-dependent fractional order α(z) and fractional 

diffusivity Kα(z) can be optimized simultaneously. The probability of the observed Z(t) is given 

by: 

𝑃[𝑍(𝑡)|𝐾𝛼(𝑧), α(z)] =∏𝑃[𝑍(𝑡𝑗 + ∆𝑡)|𝑍(𝑡𝑗), 𝐾𝛼(𝑧), α(z)]

𝑗

 (56) 

Which is the product of all the observed transitions of the molecule from Z(tj) to (Z(tj,+∆t) over 

time interval ∆t. Each of the observed transitions 𝑃[𝑍(𝑡𝑗 + ∆𝑡)|𝑍(𝑡𝑗), 𝐾𝛼(𝑧), α(z)] can be 

determined using the Crank−Nicolson finite difference method.301 This is used to numerically 

solve the fractional Smoluchowski equation with the fractional order α given by the following 

equation:270 

D∗
𝛼(𝑧)

𝑡 𝑃(𝑧, 𝑡) =
𝜕𝛼𝑃(𝑧, 𝑡)

𝜕𝑡𝛼
=
𝜕

𝜕𝑧
[𝐾𝛼(𝑧)

𝜕

𝜕𝑧
− 𝛽𝐾𝛼(𝑧)𝐹(𝑧, 𝑡)] 𝑃(𝑧, 𝑡) (57) 

Then, the posterior probability can be maximized using a Monte Carlo procedure  

𝑃[𝐾𝛼(𝑧), α(z)|𝑍(𝑡)] = 𝑝𝑝𝑟𝑖𝑜𝑟[𝐾𝛼(𝑧)] × 𝑃[𝑍(𝑡)|𝐾𝛼(𝑧), α(z)] (58) 

The same rule can be followed to smooth out the resulting fractional diffusivity profiles. Chipot 

and Comer270 showed that the resulting α(z) values from the Bayesian scheme were in 

agreement with the observations cited above, namely in the aqueous medium, α(z) 

approaches 1 suggesting a classical diffusion, while α(z) was around 0.7 within the membrane. 

This reflects regions with negative correlation (Figure 24C). Moreover, using the fractional 

model for several lag-times ranging from 2 to 32 ps, yielded fractional diffusivity profiles with 

similar values that are independent from the lag-time value (Figure 26B).  

                                                
****** Gathered from 270 
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Figure 26: (A) Example of estimated fractional order α values over z, using the fractional 

Smoluchowski model and Bayesian analysis. (B) Estimated position-dependent fractional diffusivity for 

different lag-times using the Bayesian scheme. *******

IV.4. Permeability from methods using implicit solvent models 

Implicit solvent models have been used to predict thermodynamic and physiological properties 

with a time-effectiveness, as the total number of atoms in the simulation is greatly reduced.302–

304 One of the important assumption of these methods is that the surrounding solvent (i.e., 

water, organic solvents) as well as the lipid bilayer304,305 can replaced by a continuum 

characterized by its dielectric constants ɛ.  In this formalism, a solute (molecule of interest) is 

defined as a molecular volume (vdW volume) (Figure 27) and the corresponding solvent 

accessible surface (SAS), on which the charge density 𝜎 is applied.  

 

 

Figure 27: Illustration of the molecular vdW surface (orange) that is calculated from vdW radii, and the 

solvent accessible surface (blue) defined by the center of the probe (grey circle; it reflects an ideal 
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solvent molecule). The solvent molecules are not represented explicitly, but implicitly by the dielectric 

constant of the solvent. 

 

In these models, all information required about the conformation and the charge distribution of 

the molecule can be gathered from quantum calculations (e.g., density functional theory 

calculations).306 In COSMO (conductor-like screening model)307, SAS is divided in tesserae, 

for which the surface charge q* can be calculated and assigned. For solvents with finite ɛ 

values, the charge q is approximated to; 

𝑞 = 𝑓(𝜀)𝑞 (59) 

Where f is a lowering factor equal to  

𝑓(𝜀) =
𝜀 − 1

𝜀 + 0.5
 (60) 

Consequently, by knowing q* and q, the electrostatic interaction between the molecule and the 

solvent can be determined.  

COSMO-RS (COSMO for Real Solvents)308–310 is a COSMO-based approach to predict 

chemical potentials µ in solvents. COSMO-RS combines the dielectric continuum solvation 

model and statistical thermodynamics.306 It considers the polarization surface charge density 

𝜎 from DFT/COSMO307. Indeed, the molecular system can be considered as a charged surface 

interacting with a continuum solvent. Such interactions can picture both electrostatic and 

hydrogen-bonding interactions.306 The polarization charge density σ on the molecular surface 

can be parametrized to calculate the polarization free energy:  

𝐸𝑒𝑠(𝜎, 𝜎
′) =

𝛼′(𝜎+𝜎
′)
2

2
 (61) 

And  

𝐸ℎ𝑏𝑜𝑛𝑑(𝜎, 𝜎
′) = 𝑐ℎ𝑏𝑜𝑛𝑑min{0, 𝜎𝜎

′ + 𝜎2ℎ𝑏𝑜𝑛𝑑} (62) 

where 𝜎 and 𝜎’ are the counteracting surface densities and a’, chbond and 𝜎hbond are adjustable 

parameters.306 Then, a statistical thermodynamic procedure can be used. First the σ potential 

µ(σ) is equal to: 

µ𝑆(𝜎) = −
𝑅𝑇

𝑎𝑒𝑓𝑓
ln [∫𝑝𝑆(𝜎

′) 𝑒
𝑎𝑒𝑓𝑓
𝑅𝑇 [µ𝑆(𝜎

′)−𝐸(𝜎,𝜎′)] 𝑑𝜎′] (63) 

Where aeff is an average molecular contact area, pS(σ) is the distribution function of the 

ensemble S (i.e., the system may consist of a mixture of compounds X) and E(𝜎,𝜎’) is the sum 

of electrostatic and hydrogen-bonding contribution energies (equations 61 and 62). Next, µS(σ) 

can be solved iteratively as it appears in both sides of equation (63). Finally, the chemical 

potential of compound X (µX) can be calculated by integrating the σ potential µS(σ) over the 

molecular surface of each compound X: 

µ𝑆
𝑋 = ∫𝑝𝑋(𝜎) µ𝑆(𝜎)𝑑𝜎 + µ𝑐𝑜𝑚𝑏𝑆

𝑋  (64) 

https://en.wikipedia.org/wiki/Electrostatic
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 Here, pX(σ) is a distribution function of σ and µcombS is a combinatorial contribution that 

considers shape effects and size of the solute and the solvent.306,311 The resulting chemical 

potential allows the assessment for other thermodynamic properties such as solvation free 

energy and partition coefficients.  

 In the context of passive membrane permeation, a convenient method (COSMOperm)312 

that is based on the COSMO-RS model, was developed to predict passive membrane 

permeability in an lipid bilayer membranes for neutral and ionized molecules. COSMOperm 

relies on calculating the free energy profiles ∆G(z) along the z-axis of the lipid bilayer 

membrane (i.e., the membrane normal), using another COSMO extension method 

(COSMOmic)304, as well as the diffusivity profiles D(z) using COSMO-RS parameters. 

COSMOmic is specific to inhomogeneous systems such as lipid bilayer membranes. The 

virtual membrane is seen as a layered liquid system with different composition per layer (i.e., 

different 𝜎-profiles). To predict an accurate layer-dependent free energy and a membrane-

water partition coefficient, all orientations and conformations of the molecule of interest are 

sampled.  

Similar to MD-simulations, COSMOperm is based on the ISDM theory to compute passive 

membrane coefficient P. Moreover, COSMOperm prediction of passive membrane permeation 

coefficients showed a good correlation with experiments for a large set of neutral and ionized 

molecules.312 

Another recent implicit solvent-based method (PerMM) was developed to predict the passive 

membrane permeation coefficients. The PeMM method is based on the PPM model 

(positioning of proteins in membranes)313,314 to predict free energy of transfer from water to the 

lipid bilayer of membrane proteins. This was developed to optimize their rotational and 

translational positions.314 In the PPM theory, the hydrocarbon core of the membrane is 

considered as a planar slab with interfacial polarity profiles. The transfer free energy of a 

molecule from water to positions z, along the membrane bilayer normal, ∆Gtransfer(z), is the 

sum of short-range terms, long-range terms and deionization energy of ionizable groups.22,315 

The short-range terms, related to the solvent-accessible area (ASA) depict vdW and hydrogen-

bonding interactions, as well as hydrophobic effects. The long-range terms depict dipole-dipole 

interactions, and polarization terms constitute the electrostatic contribution of the dipole 

moment µj. The transfer free energy (∆Gtransfer(z)) is given by the following formula: 

∆𝐺𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑑, 𝜑, 𝜏) =∑𝜎𝑖
𝑤𝑎𝑡→𝑚𝑒𝑚𝑏 (𝑧𝑖)

𝑁

𝑖=1

𝐴𝑆𝐴𝑖 +∑ η𝑗
𝑤𝑎𝑡−𝑚𝑒𝑚𝑏(𝑧𝑗)µ𝑗

𝑀

𝑗=1

+∑min{∆𝐸𝑘
𝑖𝑜𝑛,  ∆𝐸𝑘

𝑛𝑒𝑢𝑡}

𝐿

𝑘=1

 (65) 

Where d, j, and τ are spatial positions of the molecule with respect to the lipid bilayer,  𝜎wat 

memb is the atomic solvation parameter that describes the surface transfer energy (per Å2) of 

atom i from water to the point zi, ASA is the solvent-accessible area for atom i, N is the number 

of atoms of the molecule, ηwat memb (zj) is the dipolar solvation parameter that describes the 

penalty energy of transferring the dipole moment of 1D from water to the point zj, µj is the dipole 

moment of group j, M is the number of group dipoles, Eneut and Eioniz are transfer energies of 

the ionizable group k in the neutral and ionized states, respectively. The solvation parameters 

σi depends on the position-dependent polarity parameters of the lipid bilayer and can be 

estimated according to the universal solvation model.22,315,316 Indeed, the partition coefficient 

K(z) equals: 

𝐾(𝑧) = 𝑒−𝛽∆𝐺𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑧) (66) 
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 In the PerMM method, the diffusivity coefficient D is related to ASA as follows: 

𝐷𝑖 =
𝑘𝐷0(η)

𝐴𝑆𝐴𝑖
𝑛  (67) 

Where D0 is a constant for a particular membrane type with micro-viscosity n and the subscript 

n is ~2/3. Correspondingly, the intrinsic permeation coefficient equals:  

𝑙𝑜𝑔𝑃∑𝑖 = − log(𝐴𝑆𝐴𝑖
𝑛∫

𝑑𝑧

𝐾𝑖(𝑧)

𝐿
2

−
𝐿
2

) (68) 

Using the PerMM method, the calculated permeation coefficients of many molecules, in a 

DOPC bilayer, showed a good correlation with experiments, in particular with black lipid 

membrane (BLM) models. The correlations with PAMPA-DS and cell-based membrane 

models, Caco-2 and Blood Brain Barrier (BBB), exhibited lower correlation. This might be 

explained by the difference in membrane compositions and contribution of other transport 

mechanisms.22 

Other implicit models were used to estimate solute partitioning into lipid bilayer considering 

either isotropic or anisotropic properties.313,317 Other physics-based methods were also 

developed to predict passive membrane permeation.318–322 Although these implicit solvent 

models are useful for simulations of bimolecular systems and in the prediction of membrane 

permeation properties, with a remarkable gain of computational time, they still miss some 

detailed atomic descriptions that are critical to fully capture the underlying molecular 

processes, e.g., arrangement of water molecules around the permeating molecule or specific 

interactions or impact of the molecule within the lipid bilayer system. 
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Foreword 

In this study, we describe our developed methodology (MemCross) to compute passive 

permeation coefficients through a POPC lipid bilayer. Accordingly, we used the AWH method 

to model the PMF and Diffusivity profiles. Subdiffusion and ionization state of ionizable 

molecules were taken into account. This article was submitted in chemrxiv.org (doi : 

10.26434/chemrxiv-2022-rk82h) and will be submitted in a journal in the near future. 

V.1. ABSTRACT  

Passive permeation events across biological membranes are determining steps in the 

pharmacokinetics of xenobiotics. To reach an accurate and rapid prediction of membrane 

permeation coefficients of drugs is a complex challenge, which can efficiently support drug 

discovery. Such predictions are indeed highly valuable as they may guide the selection of 

potential leads with optimum bioavailabilities prior to synthesis. Theoretical models exist to 

predict these coefficients. Many of them are based on molecular dynamics (MD) simulations, 

which allow calculation of permeation coefficients through the evaluation of both the potential 

of mean force (PMF) and the diffusivity profiles. However, these simulations still require 

intensive computational efforts, and novel methodologies should be developed and 

benchmarked. Free energy perturbation (FEP) method was recently shown to estimate PMF 

with a significantly reduced computational cost compared to the adaptive biasing force method. 

This benchmarking was achieved with small molecules, namely short-chain alcohols. Here, we 

show that to estimate the PMF of bulkier, drug-like xenobiotics, conformational sampling is a 

critical issue. To reach a sufficient sampling with FEP calculations requires a relatively long 

time-scale, which can lower the benefits related to the computational gain. In the present work, 

the Accelerated Weight Histogram (AWH) method was employed for the first time in all-atom 

membrane models. The AWH-based protocol, named MemCross, appears affordable to 

estimate PMF profiles of a series of drug-like xenobiotics, compared to other enhanced 

sampling methods. The continuous exploration of the crossing pathway by MemCross also 

allows modelling subdiffusion by computing fractional diffusivity profiles.  The method is also 

versatile as its input parameters are largely insensitive to the molecule properties. It also 

ensures a detailed description of the molecule orientations along the permeation pathway, 

picturing all intermolecular interactions at an atomic resolution. Here, MemCross was applied 

on a series of 12 xenobiotics, including four weak acids, and a coherent structure-activity 

relationship was established. 

https://doi.org/10.26434/chemrxiv-2022-rk82h
https://doi.org/10.26434/chemrxiv-2022-rk82h
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V.2. INTRODUCTION 

Most xenobiotics (i.e., drugs, vitamins, toxics, nutrients, which can be natural, bio-transformed 

or synthetic compounds) are crossing many biological membranes before reaching their 

targets. The crossing events can occur either through membrane proteins/channels or by 

passive permeation through the lipid bilayer, both processes being possibly in competition. 

The latter process is a spontaneous thermodynamic process, which is called "passive" as it 

does not require any additional energy but the intermolecular interactions between the 

xenobiotics and its environment. Virtually, all xenobiotics can cross passively, however the 

kinetics of the process is key and can take a few microseconds up to centuries. To rationalize 

this membrane permeability process and to estimate its timescale is of particular interest in the 

development of new drugs or improvement of existing treatments, as it is directly related to 

ADME/Tox.323,324,18 A fast and accurate prediction of permeation coefficients (Perm) is a major 

issue in pharmaceutical industries. One of the major reasons for clinical trial failure is the lack 

of efficacy, part of which can be attributed to poor bioavailability.325 A variety of experimental 

techniques have been developed to estimate Perm values.23,42 The most common techniques 

rely on cell-based lipid membranes (Caco-2, MDCK),326 planar bilayers,327 PAMPA328 or 

liposomes,195 by creating a concentration gradient between the inner and the outer 

compartments of the biomimetic or biological membranes, and measuring the xenobiotic 

transfers. However, such experimental assessments do not easily allow large screening on 

large drug databases, and they cannot be used to predict permeability of drugs not yet 

synthetized (e.g., prediction of the impact of chemical modifications from a collection of hit 

compounds).42 

As an alternative to experimental techniques, many computational approaches have been 

developed to predict Perm values.329–332 Among them, physics-based methods have been 

developed to rapidly estimate the partition and the permeation of molecules.115,333,22 Although 

these methods allow screening on large databases, they cannot capture the atomic resolution 

of the permeation process to fully describe interplays between xenobiotics and membrane 

constituents. In this respect, molecular modeling methods have also been used to follow the 

passive permeation process, which can be seen as a 3-step mechanism, namely, membrane 

insertion, flip-flop from one to another leaflet, and resolvation into the second water 

compartment. Because the timescale of permeation events is often beyond the reach of free 

molecular dynamics (MD) simulations, there is a need of using biased MD methods. Among 

others, Umbrella sampling243, Adaptive Biasing Force method (ABF)269,334, Free Energy 

Perturbation (FEP)70, or Metadynamics335,258 have been tested to quantify drug Perm values. 

They provide an atomic-scale description of the positioning and orientation of molecules along 

the permeation path. The main issue of these methods is that they still require highly 

demanding computational resources, and the setup of some of them often requires delicate 

parametrizations to reach accuracy. As it is a highly statistically-driven process, Kinetic Markov 

State models can also be used to assess Perm values.336–338 Although they represent the most 

precise ab initio technique, their high computational cost still prohibits large scale screening. 

Taking the chemical variability and inhomogeneity of lipid bilayer structure into account, a 

quantitative theory based on inhomogeneous solubility-diffusion model (ISDM) and consistent 

with MD simulations was developed to assess passive permeation20,128,339. However, the ISDM 

formalism does not account for the subdiffusion of xenobiotics through the lipid bilayer 

membrane. Chipot and Comer, demonstrated that subdiffusion exists for small alcohol 

molecules,270 and that it is necessary to take it into account for a more accurate prediction of 

Perm.340 Contrary to the classical diffusion, subdiffusion means that the mean squared 
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displacements of a molecule inside the lipid bilayer is not proportional to time, but it obeys a 

power-law fit, namely 〈x2〉 ~ tα with 0 < α < 1. The factor α is a key variable to estimate the 

motion of the molecules along the permeation path. Although the methodology developed in 
270 provided an accurate estimation on prototypical compounds, the need of performing multi-

µs long ABF simulations hampers its use as a high-throughput screening tool. More recently, 

the same authors proposed a faster method to obtain the free energy profile w(z) of short chain 

alcohols across membranes, using FEP calculations, thus reducing the computational cost by 

one order of magnitude.70 

Here, we computed Perm values of a set of 12 xenobiotics (quercetin, resveratrol, curcumin, 

rutin, viniferin, caffeic acid, coumarin, testosterone, ceefourin1/2, MK571, methotrexate) 

bulkier than the compounds used in 70 (Figure S1). These xenobiotics exhibit a wide variety of 

chemical scaffolds, and are of pharmacological relevance, as most of them serve as 

modulators or substrates of crucial membrane proteins such as human ABC membrane 

proteins.341–345 Ethanol was added as reference compound to compare to existing data from 

the literature. The potential of the mean force (PMF) profiles through a prototypical lipid bilayer 

membrane was obtained for a subset of four compounds (ethanol, quercetin, resveratrol and 

curcumin) to choose the most appropriate method between Free energy perturbation (FEP)346 

and Accelerated Weight Histogram (AWH) methods247,278,347,348. To the best of our knowledge, 

this study proposes the first use of the AWH method on xenobiotic-membrane interaction 

simulations with an all-atom model. AWH was recently successfully applied to the 

determination of the permeabilities of small compounds with a coarse-grain model.349 Then 

fractional diffusivity profiles (i.e., taking subdiffusion into account) were computed by using the 

AWH trajectories. Finally, using this AWH-based protocol coined MemCross, Perm values were 

calculated for the whole series of compounds providing structure-property comparisons.   

V.3. METHODS 

V.3.1. Theoretical background 

ISDM takes the normal to the membrane surface (named z-axis) as the reaction coordinate 

along which the molecule undergoes a random walk. At steady state, the Perm value is the 

inverse of integral of the resistance R(z) to permeation events along the z-axis: 18,270 

 

𝑃𝑒𝑟𝑚
−1 = ∫ 𝑅 (𝑧) 𝑑𝑧 

𝐿/2

−𝐿/2
= ∫

𝑒𝛽𝑤(𝑧)

𝐷(𝑧)
  𝑑𝑧

𝐿/2

−𝐿/2
       (1) 

Where β = 1/kbT, kb is the Boltzmann constant and T the temperature. 

As seen in equation (1), Perm depends on both the potential of the mean force w(z) picturing 

its translocation from an initial (aqueous) to a final (aqueous) compartment through the 

membrane, and the diffusivity D(z) along the z-axis. Uncoupled methodological effort can thus 

be given to calculate the two profiles separately, and then to merge them again to obtain Perm 

values. 
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V.3.2. Computational setup 

The lipid bilayer system, containing 128 molecules of 1-palmitoyl-2-oleyl–sn-glycero-3-

phosphocholine (POPC), was built using CHARMM-GUI membrane builder.350 To ensure 

reliable molecular organization and membrane properties, the system was equilibrated for 500 

ns. The dimensions of the simulation box were 66 Å × 66 Å × 90 Å. A pure POPC membrane 

model was chosen here as a reasonable model of mammal cell membranes, which contain a 

majority of phospholipids, POPC being one of the major representative lipids.70 

All xenobiotics (Figure S1) were parametrized using GAFF2 (second generation generalized 

amber force field).351 Particular attention was given to all dihedral angles, but only the dihedral 

between the aromatic rings of quercetin, rutin and ceefourin 2 needed to be reparametrized as 

described in the literature to ensure a correct π-conjugation of the systems.352 Different 

conformers were then generated using the Confab software353 with 100 kcal/mol as the energy 

cutoff, and with a limit of 10 conformers. Afterwards, geometry optimization was carried out on 

all conformers with the Gaussian09 software354 using B3LYP/cc-pVDZ in an implicit 

diethylether solvent. The atomic RESP partial charges were derived from Gaussian 

calculations using R.E.D.III software and Duan et al. method.355 

All MD simulations were performed using Gromacs2020.3241 and the Slipids 2016 force field53 

for POPC molecules, GAFF2 for xenobiotics and TIP3P for water molecules. Temperature and 

pressure were maintained at 310 K and 1 atm, respectively. Bonds involving hydrogen atoms 

were constrained by applying the LINCS algorithm356. The Particle-Mesh-Ewald method was 

used to evaluate the long range electrostatic forces357. The simulation time step was set at 2 

fs.  

V.3.3. Alchemical free energy perturbation (FEP) 

Alchemical FEP calculations were performed to determine the one-dimensional PMF profile 

along the reaction coordinate of the permeation process for ethanol, quercetin, resveratrol and 

curcumin. To estimate the complete PMF profile, the free energy of binding was calculated at 

six different depths of one layer of the membrane, namely at z = 0, 4, 13, 22, 30 and 40 Å, 0 

being the center of the lipid bilayer (see Figure S2).70 In order to maximize sampling, the 

orientation θ of the molecule was set and monitored during equilibration simulations. θ was set 

as the angle between the z-axis and the longest vector of each molecule, as shown in Figure 

S3A. Three different initial θ-values (0°, 90° and 180°) of each molecule were subjected to 

equilibration at each depth, except in water, i.e., at 30 and 40 Å, as in this region sampling 

reorientations of the molecules is very fast. Inspection of the orientation of quercetin over time 

revealed that when convergence of θ was reached (Figure S3B), the standard deviation of 

the θ was lower than 20°. Therefore, for all molecules, an equilibration simulation was 

considered converged if the standard deviation of θ was less than 20° during the last 10 ns of 

equilibration (Figure S3B and Table S1). The equilibration simulations lasted from 10 to 100 

ns, with an average of 35 ns per window. The geometries resulting from the equilibration 

process were taken as initial coordinates to run the FEP calculations. 

Once the orientations were converged at a given depth, FEP calculations were performed. 

During these alchemical calculations, the molecule is progressively decoupled from its 

environment (molecule vanishing) using the coupling parameter λ. Here we performed 16 

simulation windows, corresponding to 16 λ-values (2 at the edges of the process, i.e., both the 
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molecule fully present in its environment and the molecule fully vanished, respectively and 14 

intermediate windows). A restraint was applied to the distance between the molecule and the 

center of mass of the membrane using a harmonic potential with a force constant of 50000 

kJ.mol-1.nm-2. The restraint was applied along the z-axis letting the molecule freely explore the 

xy plane at a given depth. The simulation time per λ window was about 10 ns for ethanol, as it 

was sufficient for the three replicas to converge. For bulkier molecules, this time was increased 

to 20 ns for quercetin 25 ns for resveratrol and curcumin. As discussed in the Results section, 

this increased simulation time was not sufficient to obtain convergence between the 3 replicas 

for resveratrol and curcumin. As the computational effort was too high compared to the AWH 

method, the FEP calculations were not extended further.  

The decoupling was done separately for both electrostatic and van der Waals interactions. The 

decoupling of electrostatic interactions was performed using replica exchange over five λ-

values ranging from 0 to 1 with Δλ = 0.25. These simulations were carried out on CPUs as 

Gromacs 2020 does not allow the perturbation of charges on GPUs. The decoupling of van 

der Waals interactions were done using 11 λ-values ranging from 0 to 1 with Δλ = 0.1 on GPUs. 

The free energy of solvation of the molecule in a given environment was estimated using 

alchemlyb.pymbar library358–360 and the Multistate Bennett Acceptance Ratio (MBAR)361 

method.  

The adequate spacing between λ-values was ensured by calculating the overlap matrix for 

both electrostatics and van der Waals interaction decoupling and for all z-windows (Figure S4). 

The matrix was estimated using multistate Bennett acceptance ratio estimator (MBAR),361 

mapped over λ-states. Briefly, the overlap matrix carries the information about the overlap of 

the phase space probability distributions between the neighboring states where the probability 

of overlap fraction should exceed 3%.358 

To obtain the complete PMF profile along the z-axis, the six free energy values, obtained at 

the six different depths, were interpolated using a cubic Hermite interpolator. The 

corresponding profile was symmetrized to build the full PMF profile, picturing the energy cost 

of molecule translocation from one to another water compartment through the membrane, i.e., 

from z = -40 to 40 Å. 

V.3.4. Accelerated Weight Histogram method (AWH) 

The AWH method was also performed to compute the PMF along the z-axis. The one-

dimensional reaction coordinate was chosen as the distance between the center of mass of 

both the xenobiotics and the membrane, projected on the z-axis. Similar to other adaptive 

biasing methods,243,258,269,334 an history-dependent biasing potential was added to the system 

in an adaptive manner to flatten the free energy barriers along the reference reaction 

coordinate and to reach the chosen target distribution. The main advantage of the AWH 

method lies in its fast convergence, exponential during the initial stage, and asymptotic 

afterwards.247 This allows rapid determination of PMF profiles with a very few input parameters, 

that are only very weakly dependent on the xenobiotics.348 

Each xenobiotic was initially placed in the water bulk, at z ~ 40 Å. Here, the targeted distribution 

was chosen to be flat. The initial diffusion constant D0 was set at 5.10-3 nm2.ps-1 and the error 

estimate (ε0) was limited to 3 kJ.mol-1. The force constant for the umbrella harmonic potential 

was chosen to be large enough (128000 kJ.mol-1.nm-2). The AWH simulations were run for a 

minimum of 1 µs. The time required to escape the initial stage was monitored, and for some 
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molecules, the simulations were prolonged up to 4 µs to ensure the convergence of the PMF 

profiles for the 3 replicas. 

V.3.5. Position-dependent diffusivity 

Subdiffusion was shown to occur for small molecules in membranes.270 In brief, analyzing the 

mean square displacement along z- and x-axes of methanol in a molecular POPC membrane 

system using increased lag times exhibited a linear dependence on time in water. However, a 

power law dependence (tα for 0 < α < 1) was highlighted inside the membrane.270 A fractional-

order Smoluchowski equation was developed by Chipot and Comer, in which the diffusion 

coefficient D(z) is replaced by the position-dependent fractional diffusivity profiles Kα(z). 270 In 

order to estimate the diffusivity within this more accurate theoretical framework, we estimated 

Kα(z) from the second half of the AWH trajectories, using a Bayesian inference scheme 

implemented in the open-source DiffusionFusion tool.270,289 The z-dependent fractional order 

α-values were gathered from the α-values used for ethanol in a POPC bilayer.270 Several lag 

times (∆t), ranging from 2 ps to 16 ps, were investigated as suggested in reference 270 to 

confirm the time-independency of the fractional diffusivity. Diffusions at each z-step, every 0.5 

Å from 0 to 40 Å, were initialized with a value of 100 nm2.ps-1. The probability of the observed 

trajectory is computed as the product of the probabilities of the observed movements from z(tj) 

to z(tj + Δt), in other word the probabilities that the molecule at 𝑧(𝑡𝑗 + ∆𝑡) under the condition 

that it was at 𝑧(𝑡𝑗): 

𝑃[𝑧(𝑡)|𝐾𝛼(𝑧)] = ∏ 𝑝[𝑧(𝑡𝑗 + ∆𝑡)|𝑧(𝑡𝑗), 𝐾𝛼(𝑧)]𝑗        (2) 

The posterior probability is maximized using Monte Carlo procedure with 2000 cycles: 

𝑃[𝐾𝛼(𝑧)|𝑍(𝑡)] = 𝑝𝑝𝑟𝑖𝑜𝑟[𝐾𝛼(𝑧)] × 𝑃[𝑍(𝑡)|𝐾𝛼(𝑧)]        (3) 

Smoothed fractional diffusivity can be obtained by multiplying the likelihood 𝑃[𝑍(𝑡)|𝐾𝛼(𝑧)] by 

a weighting function using a harmonic potential of grid space h and of parameter γ.237 The 

smoothness of the diffusivity is given by:  

𝑝𝑠𝑚𝑜𝑜𝑡ℎ  [𝐾α(𝑧)] = ∏ 𝑒−[𝐾α(𝑧𝑖)− 𝐾α(𝑧𝑖+1)]
2/ 2ℎ²𝛾²

𝑖        (4) 

V.3.6. Protonation state assessment 

The protonation state and the total charge are major factors ruling lipid bilayer crossing and 

only neutral molecule are expected to cross membrane at physiological pH (pH-partition 

hypothesis). However and against this hypothesis, acidic compounds were seen to partition in 

membranes at physiological pH under their anionic forms.192 Here, we considered two different 

charge states for the four acid molecules, namely caffeic acid, methotrexate, MK571 and 

ceefourin 2. The simulations were performed with (i) the mono-anionic form that is most 

probable ionized state in water at pH = 7.4, and (ii) the neutral form, as it is usually the most 

likely to diffuse through the membrane interior.133 For such compounds, acid-base exchanges 

can occur at the polar head-group surface of the lipid bilayer or deeper,133 thus impacting on 

the PMF profiles. To take this acid-base property into account, the free energy and fractional 

diffusivity profiles were calculated for both ionization forms and then they were combined to 

provide the most realistic profile 362. To do so, the free energy profile of the protonated form 

was shifted by the free energy difference between those two forms (∆𝐺𝑑𝑒𝑝𝑟𝑜𝑡𝑜𝑛𝑎𝑡𝑖𝑜𝑛) in water 

(at 40 Å from the membrane center) with respect to the free energy profiles of the ionized form. 
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To set the reference in water, the profile of the deprotonated form was shifted to 0 in water. 

∆𝐺𝑑𝑒𝑝𝑟𝑜𝑡𝑜𝑛𝑎𝑡𝑖𝑜𝑛 was derived from the Henderson Hasselbalch equation: 

∆𝐺𝑑𝑒𝑝𝑟𝑜𝑡𝑜𝑛𝑎𝑡𝑖𝑜𝑛 = 2.3 𝑘𝑏𝑇 (𝑝𝐾𝑎 − 𝑝𝐻)  (5) 

 

Where kb and 𝑇 are the Boltzmann constant and temperature, respectively.  

The combined profile was then obtained as the minimum energy of the two profiles all along 

the z-axis Figure S5A). The crossover point between the two profiles corresponded to the 

most probable depth (ztransition) for acid-base exchange and transition between the two forms. 

Knowing ztransition, a combined diffusivity profile was obtained by keeping the diffusivity value 

corresponding to the chosen protonation state (Figure S5B). The permeation coefficients of 

these acid molecules can be calculated using equation (1) and these combined free energy 

and diffusivity profiles. 

V.3.7. Error estimation of the permeation coefficient  

A Monte Carlo procedure was used to propagate the error estimation of the parameters w(z) 

and Kα(z) from the 3 replicas on the estimation of Perm coefficient obtained using equation (1). 

This procedure generated 1000 values of logPerm from 1000 values of w(z) and Kα(z), leading 

to the mean permeation coefficient (logP
erm
calc

) and its corresponding standard deviation (± 𝜎logP). 

w(z) was generated from a normal distribution of parameters µw(z), 𝜎w(z). Instead of using directly 

the estimates of µw(z) and 𝜎w(z) from the 3 replicas, which could underestimate the real 

uncertainty of the parameters, µw(z) and 𝜎w(z)  are randomly generated for each simulation.  

µw(z) is generated in a normal distribution of mean x̄ (the PMF mean over 3 replicas) and 

standard deviation σx̄ =
sw(z)

√n
 , where sw(z) is the standard deviation of the PMF over 3 replicas, 

𝜎x̄ is the standard deviation of the mean and n number of replicas (i.e., n=3). 

Similarly, 𝜎w(z) was generated in a normal distribution with mean 𝜎x̄ and standard deviation 

SD(𝜎x̄) given by the following equation; 

SD(σx̄) =  σx̄ .
Γ(
n−1

2
)

Γ(
n

2
)
. √

n−1

2
− (

Γ(
n

2
)

Γ(
n−1

2
)
)

2

  (6) 

Where Γ is the gamma function, and n the number of replicas. This equation arises from the 

distribution of the standard error of a sample in a normal distribution. Likewise, the same 

procedure was used to estimate Kα(z). 

The MemCross protocol regroups the use of the AWH method, fractional diffusivities, the 

protonation state assessment, and the error estimation procedure. 
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V.4. RESULTS AND DISCUSSION 

V.4.1. Decision making about the methodology to compute Perm  

V.4.1.1. Alchemical free energy perturbation (FEP) 

The membrane crossing was decomposed into two steps corresponding to two different free 

energy terms read on the PMF (Figure 28A). The difference in free energy between the water 

bulk and the PMF minimum was named ∆Gpartition, as it corresponds to partitioning, i.e., insertion 

of xenobiotics into the lipid bilayer. The opposite of ∆Gpartition corresponds to the energy required 

for the molecule to exit from the lipid bilayer into water (resolvation). The second term (∆Gflip-

flop) was the difference in free energy between the local PMF maximum near the lipid bilayer 

center, and the PMF minimum. This term corresponds to the energy required to cross the 

center of the membrane, in other words, the energy required for the molecule to flip-flop from 

one to another leaflet. 

  



 

Mehdi Benmameri | Ph.D. Thesis | University of Limoges | 2022 90 

License CC BY-NC-ND 4.0 

 

Figure 28. Calculated PMF profiles picturing the translocation of molecules from the water 

bulk (z=40 Å) to the center of the membrane (z=0 Å):  A) for ethanol using alchemical FEP 

(red: gathered from [70], purple: the current study) and the AWH method (blue); B-D) 
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comparison between PMF profiles of quercetin, resveratrol and curcumin using FEP for 

different time scales per λ-value (2, 10 and 20-25 ns) and the AWH method; E) for a set of 

neutral molecules using the AWH method; F) combined PMF profiles for caffeic acid, 

methotrexate, MK571 and ceefourin 2. For the FEP method (Panels B to D), error bars are 

shown for tsim = 25 ns. 

 

The PMF profile of ethanol obtained here was similar to the one predicted by Tse et al.70 ( 

 A). Both profiles exhibited a small local maximum at around z = 22 Å (0.18 kcal.mol-1). This is 

explained by the unfavorable local rearrangements of the lipid polar head groups in the 

presence of ethanol. The ∆Gpartition value of ethanol (-1.04 kcal.mol-1) calculated here was 

slightly lower than the one reported in the literature (-0.32 kcal.mol-1, Figure S6A)70. The ∆Gflip-

flop value was 2.35 kcal.mol-1, very close to 2.81 kcal.mol-1 as obtained in 70. Such slight 

differences in the free energy of binding below the polar head groups likely arises from the two 

different force fields used in both studies. The ∆G value at 13 Å and at the center of the 

membrane, obtained with the CHARMM force field by Tse et al.70 are 0.7 and 1.0 kcal/mol 

higher, respectively, than those obtained here with Slipids and GAFF. This fully agrees with 

the benchmarking study performed with these forcefields for small molecules and membrane 

interactions.363 Whatever the methodology used, the driving forces appeared adequately 

pictured for such small molecules, and FEP can provide reliable estimates of the ∆G profiles. 

The PMF profiles were calculated with the same method for three test compounds with much 

larger molecular size than ethanol, namely quercetin, resveratrol, and curcumin (Figure 28B-

D). To optimize the sampling time for these large compounds during the FEP calculations, the 

orientation of the molecules in the lipid bilayer, pictured by θ (see Methods section), was 

followed during equilibration simulations. The relaxation time of θ was in the order of tens of 

ns. This is comparable with the time of each FEP simulation (10-25 ns). Therefore, despite 

equilibration simulations, an exhaustive sampling of θ (hence of conformational relaxation of 

the molecule) is unlikely with FEP, for which the molecule is fully coupled to its environment.  

For quercetin, the 3 replicas converged, as the free energy profile at 20 ns exhibited low 

standard deviations at each depth (Figure 28B). However, the free energy minimum was at z 

= 22 Å, i.e., unexpectedly outside the membrane. This disagrees with a previous work364, 

where the most favorable position of quercetin was just below the lipid head groups, due to its 

amphiphilic character, showing that 22 Å as a minimum is not realistic. For resveratrol and 

curcumin, FEP calculations yielded large standard deviations of several kcal/mol between 

replicas, even after 25 ns of simulation per λ, especially in the lipid tail region of the bilayer 

(Figure 28C-D).  

Overall, to implement FEP calculations for molecules of such large size compared to ethanol, 

the calculation time was increased from 2 ns to 25 ns per λ window. This amounts to 6-7.5 µs 

of global simulation time per xenobiotic, which was even insufficient for a complete sampling. 

It must be stressed that alteration of the lipid bilayer properties in the presence of relatively 

large molecules are likely to occur,365 which requires longer sampling to capture the entire 

process. This is intricate with the fact that the bias applied during these simulations could 

locally change the membrane properties leading to a misarrangement of the molecule, here in 

the polar head groups. Hidden barriers can arise, particularly in the latter region and may 

impact on the sampling in this region.366 Without a sufficient sampling of conformational 

reorganization, a correct estimate of the free energies is unlikely. Based on these three 

prototypical compounds, absolute alchemical FEP simulations of such large molecules suffers 



 

Mehdi Benmameri | Ph.D. Thesis | University of Limoges | 2022 92 

License CC BY-NC-ND 4.0 

from a lack of sampling of intermolecular interactions, which could be solved by a drastic 

lengthening of the simulation time. Nevertheless, FEP is very efficient at estimating relative 

binding free energies. That is, for molecules A and B differing by a few atoms, the free energy 

of molecule B can be quickly calculated upon progressively adding or removing these few 

atoms to molecule A. In database screening, these relative FEP-derived free energy values 

could be useful for families of structurally related compounds, if the absolute free energy profile 

is known for at least one of them. 

V.4.1.2. AWH method 

AWH is a recent method that was used to accurately predict the PMF profile of a DNA base 

pair splitting, followed along a hydrogen-bond distance between the two residues as a reaction 

coordinate.348 In the current study, we used the AWH method as an alternative to estimate the 

PMF profile picturing the permeation process.  

To validate the effect of the input parameters on the sampling of the initial stage, we first 

computed the PMF profiles for ethanol using different values of key parameters of this method: 

D0 and ε0. D0 can be roughly set within a few orders of magnitude of the expected diffusivity.241  

Only a weak effect on the PMF profile of ethanol when D0 was set between 5.102 and 5.10-4 

nm².ps-1 (Figure S7). A value of 5.10-3 nm².ps-1 is close to the measured diffusivity in water340 

and allowed the time required to exit the initial stage of the AWH algorithm to be shorter than 

the whole simulation time (Figure S7). Similarly, changing ε0 from 3 to 5 kJ.mol-1 did not affect 

the PMF. Therefore, for the sake of simplicity and to standardize the MD inputs, the following 

two values (D0 = 5.10-3 nm2.ps-1 and ε0 = 3 kJ.mol-1) were used for ethanol and later all 

xenobiotics. 

The profiles of ethanol, and the three test compounds, namely quercetin, resveratrol, and 

curcumin exhibited low standard deviations (Figure 28A-C). As for the alchemical FEP, using 

the same force field, the AWH method showed a very good agreement in predicting the PMF 

profile of ethanol (Figure 28A). However, for the larger quercetin, curcumin and resveratrol, 

AWH exhibited many advantages (Figure 28B-D), especially the lower standard deviations 

between replicas. The AWH-derived minimum free energy of quercetin, which was located 

inside the lipid bilayer below the polar head groups, also agreed with the most stable position 

previously found just below the lipid head groups (10 to 15 Å from membrane center).56, 58 

Additionally, the computational time required to obtain converged estimate of permeability 

coefficients was relatively short, at around 600 ns per replica (Figure S8). 

To rationalize convergence issues, it must be stressed that although the overall simulation time 

per xenobiotic was longer in FEP than in AWH, individual simulations were 40-50 times shorter 

with FEP (20-25 ns vs 1000 ns). Therefore, the sampling of the orientation of the xenobiotics 

was at stake. This was confirmed by following the normalized distributions of the 𝜃-angle 

(between the z-axis and the longest vector) of quercetin, resveratrol and curcumin (Figure 

S3A) with both FEP and AWH calculations over the three replicas (Figure 29). For the four 

molecules (i.e., ethanol, quercetin, resveratrol and curcumin), AWH exhibited similar 

distributions with the 3 replicas, i.e., similar distribution irrespective from the initial orientation 

(see Figure 29). This confirms the ability of this methodology to sample the orientation inside 

the membrane. Although orientation was well sampled for ethanol (highly fluctuating 𝜃-angle 

as seen in Figure S9) with FEP, large differences were observed in between the different 

replicas and for each window for quercetin, resveratrol and curcumin. For the latter molecules 

and at each depth of the FEP calculations, the distribution of θ orientation often remained 
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concentrated around the initial orientation, especially inside the lipid bilayer (Figure 29). 

Orientation sampling thus appears to be one of the major factors rationalizing the uncertainties 

in the absolute FEP-based PMF profiles. 
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Figure 29. θ-angle distributions for ethanol, quercetin, resveratrol and curcumin through one 

layer of the membrane obtained with both FEP and AWH methods, and over three replicas. 

The star makers reflect the initial orientations of the molecules (each corresponding to a 
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replica), gathered at the end the equilibration simulations before running FEP. For FEP, θ 

was measured only for the first λ, in which the molecule is fully interacting with its 

environment.  

 

V.4.1.3. Validation of the α-values for the fractional diffusivity calculations 

Position-dependent fractional diffusivity profiles were computed using lag times ranging from 

2 to 16 ps for quercetin and ethanol. Quercetin is taken as a prototypical case for drug-like 

xenobiotics, as it is amphiphilic, aromatic, and has a molecular weight in the range of the great 

majority of drugs.26 Using the same power-law coefficient α as in ref 270, the fractional diffusivity 

of ethanol was roughly independent of all lag times, in agreement with Chipot and Comer270 

(Figure S10). The independence of lag times was also observed for quercetin, using the same 

α-values (Figure 30A). Therefore, α-values can be applicable to larger molecules.  

Moreover, as the software Diffusion-Fusion was validated on trajectories obtained with the ABF 

method, here we reproduced the fractional diffusivity profile of ethanol using the AWH method. 

Figure 30B shows the smoothed fractional diffusivity (Kα) profiles for ethanol using a lag time 

of 4 ps. The diffusivity profile of ethanol (Kα ≈ 363 Å2.ns-α in water and Kα ≈ 50 Å2.ns-α at the 

membrane center) was very similar to that reported in the literature using Adaptive Biasing 

Force (ABF) method.70,340 This suggests that the positions obtained from AWH simulations 

where the molecule diffuses on a flat PMF along the z-axis can indeed be used to compute the 

fractional diffusivity profiles. 

V.4.2. Comparison between molecules  

The use of AWH and the MemCross protocol was extended to all other xenobiotics of the 

series of twelve exhibiting a variety of chemical structures, namely quercetin, resveratrol, 

curcumin, coumarin, viniferin, rutin, caffeic acid, testosterone, methotrexate, MK571 and 

ceefourin 1 and 2. 

The PMF profiles of neutral molecules obtained with the AWH method (Figure 28E) exhibited 

a variety of partition and membrane-center crossing free energies (ΔGpartition and ΔGflip-flop, see 

also Figure S6B). AWH-based minima were coherent for all molecules as well as relative 

energies. To give only a few examples, it is interesting to note that curcumin exhibited a low 

|∆Gflip-flop| value of 2.5 ± 0.43 kcal.mol-1,  suggesting that curcumin can cross the center of the 

lipid bilayer at a low cost, which agrees with the literature showing its capability to flip-flop in 

several lipid bilayer systems.368 Also, the difference in angle distribution between replica 1 and 

the other replicas of curcumin near the center of membrane or near the polar head groups, 

i.e., 20-22 Å, can be explained by the symmetry of the curcumin molecule, which can adopt 

two orientations of the C-C vector: ~20° or the complementary angle ~160° with respect to z-

axis. The orientation of quercetin ranges from 90° to 120° with respect to the z-axis, while 

resveratrol and curcumin had similar orientations, relatively parallel to z-axis, i.e., ~20°/160°, 

near the center of the membrane, and parallel to the membrane surface below the polar head 

groups, i.e., angle of the longest vector of the molecule and the z-axis ~90°. Such orientations 

have already been described for these polyphenols in lipid bilayer.369,370 

Taking all compounds into account, interesting correlations were highlighted between free 

energy differences and molecule descriptors such as the molecular weight (MW), the number 
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of H bond donors (HDon) and acceptors (HAc) (Figure 30D). A strong negative correlation was 

highlighted between ΔGpartition and the molecular weight (R = -0.796) as well as with the average 

diffusivity in water (R = -0.868). On the other hand, translocation free energy (ΔGflip-flop) was 

positively correlated to the molecular weight (R = 0.713). Thus, for the molecules studied here 

the larger the molecule, the stronger its partition, and the harder its translocation through the 

bilayer center. This is in agreement with Lipinski’s rule-of-five26, however the limited dataset in 

this study prevents from generalization of these correlations. 

V.4.2.1. Protonation state assessment 

The combined free energy profiles of the four acids are shown in  

 F. More detailed profiles (neutral and ionized) are shown in Figure S5. Table 2 compares the 

depth of transition from ionized to the neutral form (ztransition) to the depth at which the molecule 

exhibits an energy minimum (zmin). For all four acids, ztransition values were deeper in the lipid 

bilayer than the zmin of both forms. This means that the xenobiotics enter inside the membrane 

in their ionized form, and may then reprotonate to cross the lipid bilayer center, as already 

described362. It must be stressed that ztransition was very different for all molecules, i.e., 3-4 Å 

deeper than zmin for caffeic acid and methotrexate, and almost at the membrane center for 

MK571 and ceefourin 2. This indicates that the latter two molecules may permeate the 

membrane center equally in their ionized or neutral forms. At ztransition, all forms still exhibited 

several contacts with water molecules (Figure S11). 

At neutral and alkaline pH, caffeic acid action on membranes was shown to be confined at the 

membrane surface in the lipid head groups, suggesting that at this pH, the carboxylic group is 

under its ionized form and points toward the positive choline moiety of the polar head group. 

Conversely, at acidic pH, only neutral form is present and therefore can permeate the 

membrane.371 This agrees with the PMF profiles of both forms of caffeic acid (Figure S5A), as 

the barrier at the center of the membrane is lower for the neutral than for the charged form. 

V.4.2.2. Fractional diffusivity calculations 

Figure 30B shows the smoothed fractional diffusivity (Kα) profiles for the twelve xenobiotics. 

As expected, all twelve compounds diffuse much slower than ethanol due to bulkier chemical 

structures. As expected, the diffusivity coefficients drastically decrease inside the membrane.  
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Figure 30. A) Fractional diffusivity (Kα) profiles of quercetin for different lag-times Δt compared 

to the diffusivity profiles calculated based on the classical Smoluchowski equation. B) 

Smoothed Fractional diffusivity profiles for Δt = 4 ps of all molecules. C) Combined Fractional 

diffusivity profiles for caffeic acid, methotrexate, MK571 and ceefourin 2. Standard errors were 

calculated over three replicas. D) Heatmap matrix showing the correlation coefficients R 

between free energy differences (ΔGpartition and ΔGflip-flop), three molecular descriptors (HAc: 

number of hydrogen-bond acceptors, HDon: number of hydrogen-bond donors and MW: 

molecular weight), averaged diffusivity in water of neutral molecules (〈Dw〉) and logPerm. 

 

The fractional diffusivity of coumarin was Kα ≈ 219 Å2.ns-α in water. As for ethanol, but to a 

lesser extent due to larger structures (MW = 46.07 and 146.14 g.mol-1 for ethanol and 

coumarin, respectively), coumarin exhibited a slight increase in diffusivity at the membrane 

center, due to the presence of the free volumes. Resveratrol diffuses faster in the aqueous 

phase with a diffusivity coefficient Kα ≈ 169 Å2.ns-α, while rutin exhibited the lowest diffusivity 

in water with Kα ≈ 77 Å2.ns-α. Being glycosylated, rutin preferentially binds to the polar heads 
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through hydrogen bonding formed with its sugar moiety, thus being less prone to diffuse than 

non-glycosylated and smaller molecules. All molecules but coumarin, highlighted a decrease 

in diffusivity at the membrane center. The correlation matrix in Figure 30D shows a negative 

correlation between the diffusivity coefficient of a molecule in water and its molecular weight, 

confirming that the larger the molecule, the lower its diffusivity. 

Diffusivity profiles were computed for both molecule forms of the four acid molecules (Figure 

S5B). There were no significant differences between the diffusivity profiles of the two forms 

suggesting that the diffusivity of a molecule is not related to its ionization state (Figure 30C). 

Table 2. z-coordinates of the energy minima (zmin) and transition points (〈ztransition〉) of acid molecules 

used in this study. 

Molecule zmin (Å) 〈ztransition〉 (Å) 

 Neutral Ionized Combined  

caffeic acid 14 18 18 14 

methotrexate 15 18 18 11 

MK571 12 13 13 0 

ceefourin2 10 13 13 1 

 

V.4.2.3. Permeability assessment 

Interestingly, most xenobiotics exhibited faster permeation ability compared to ethanol, see 

Table 3. The following hierarchy for permeation capacity was observed with all xenobiotics: 

MK571 > quercetin > curcumin > ceefourin 1 > resveratrol > viniferin > rutin > coumarin > 

ceefourin2 > ethanol >> methotrexate > caffeic acid (see Table 3). Based on equation (1), 

Perm
calc is exponentially related to the PMF especially at the membrane interior. The higher the 

barrier, the lower the logPerm
calc value. Besides, diffusivity values are comparable for all 

xenobiotics, and thus play a minor role. Hence, the free energy barrier at the center of the 

membrane is the key factor in logPerm. The lower values of rutin and viniferin compared to the 

other polyphenols is likely due to their higher molecular mass, and to the presence of a polar 

sugar moiety for rutin, which strongly anchors the molecule to the polar head group region. 

Although their hydrophobic moieties partition deeper in the membrane (low ∆Gpartition, see 

Figure S6B), they exhibit high free energy barriers to cross the bilayer center (high ∆Gflip-flop, 

see Figure S6B). Regarding the ionizable molecules, MK571 exhibited the highest permeation 

coefficient, in agreement with its low free energy value at the membrane center, followed by 

ceefourin 2. Conversely, caffeic acid and methotrexate exhibited much lower logPerm
calc values (-

4.85 ± 0.32 and -4.09 ± 0.17, respectively), almost precluding passive permeation for these 

two compounds. This is rationalized by their high PMF barrier at the membrane center (Figure 

28F). 
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Table 3. Computed permeation coefficient (logPerm
calc) with MemCross compared to experimental 

permeation coefficient (logPerm
exp

), calculated partition coefficient (logPart
calc) and octanol-water partition 

coefficient (logPo/w) for the set of molecules used in this study. 

Molecules 
𝐥𝐨𝐠𝐏𝐞𝐫𝐦

𝐜𝐚𝐥𝐜 
(MemCross) 

𝐥𝐨𝐠𝐏𝐞𝐫𝐦
𝐞𝐱𝐩

 𝐥𝐨𝐠𝐏𝐚𝐫𝐭
𝐜𝐚𝐥𝐜 logPo/w 

ethanol 0.47    ± 0.0 -4.42372, -3.2822 0.69 -0.31373, -0.16374 

quercetin 1.73    ± 0.03 
-4.7722, -4.422, -3.222, -3.3822, -

4.0322 
8.68 1.82375 

resveratrol 1.64    ± 0.02 -4.3822, -4.422, -4.8222 5.39 3.1376, 1.53377 

curcumin 1.70   ± 0.0  7.04 ~ 3378 

testosterone 1.59    ± 0.0 -2.8322, -3.9922, -3.5822, -3.1022 5.35 3.32373 

coumarin 1.40    ± 0.0  2.63 1.39373 

ceefourin1 1.68    ± 0.0  5.09  

viniferin 1.60    ± 0.03  8.50 1.58377 

rutin 1.49    ± 0.03  7.04 -0.64375 

ceefourin2 1.23    ± 0.07  6.01  

caffeic acid -4.35    ± 0.24  1.38 1.15379 

MK571 1.74    ± 0.01  8.65  

methotrexate -4.33    ± 0.16 -7.0422, -922, -5.5722 3.54 -1.85373 

 

Convergence of  logPerm
calc was assessed over the simulation time with a time step of 100 ns. As 

shown in Figure S8, 500-700 ns per replica were suitable to get converged logPerm values for 

all neutral molecules except large and polar ones. For rutin, viniferin, methotrexate and caffeic 

acid, 1 to 3 µs were required to converge. Regarding rutin, it exhibited the slowest convergence 

among all the molecules studied here. Therefore, the MemCross may have limitations for large 

xenobiotics containing many polar moieties. For large xenobiotics, biasing only one collective 

variable (the projection of their center-of-mass on the z-axis) may not be sufficient to achieve 

fast convergence. Additional collective variables such as the xenobiotic orientation or solvation 

may help reduce sampling time. Alternatively, collective-variable independent biased methods 

such as GaWTM-eABF380 can be used.  

V.4.2.4. Comparison with experimental values 

Experimental permeation coefficients are only available for a subset of the xenobiotics studied 

here (ethanol, quercetin, resveratrol, testosterone, methotrexate, Table 3), that does not allow 

a proper benchmarking of the method. Methotrexate was however correctly identified as the 

xenobiotic with the lowest logPerm value. This is likely due to its ionizable acid moieties that 

confer more resistivity to permeation across the lipid bilayer. Calculated logPerm
calc values with 

MemCross were systematically higher than the experimental ones by 3 to 6 log units for these 

molecules. Such discrepancy is akin to what was described in the literature for other theoretical 

methods.22,340,381 Several reasons may contribute to these large differences. The free energy 
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estimation is the most critical to calculate Perm, due to the exponential function. Force field 

inaccuracies could lead to errors in the free energy profiles. Although the Slipids force field in 

combination with GAFF for small molecules was shown to be accurate to reproduce 

experimental ΔGpartition for small molecules in lipid bilayers,363 that may not be the case for ΔGflip-

flop which drives logPerm
calc. Although the correlation between logPart and logPo/w in this study is 

weak (Table 3), the largest differences can be attributed to the distinction between octanol and 

POPC. Indeed, polar molecules such as MK571 or rutin exhibit a strong affinity for POPC and 

not for octanol. This can be attributed to the increased polarity of phospholipid head group, 

absent in octanol. Another source of error correlating with the overestimation of the permeation 

is the overestimated diffusivity of the TIP3P model.382 Discrepancies may also arise from the 

difference between intrinsic and apparent permeabilities. Apparent permeability is typically 

measured experimentally, and involves the slow diffusion in a broader aqueous medium, 

including unstirred water layers.111 Intrinsic permeability only considers the lipid bilayer. It is 

evaluated by simulations, or it can be obtained through corrections applied to experimental 

apparent permeabilities.326,383,384 Additionally, the variety of experimental setups and 

membrane composition further hinders the comparison with simulations, discrepancies within 

logPerm
exp

 values reported here are often up to 1.5 log units (Table 3). Finally, MemCross can 

also account for a part of the discrepancies within experimental values. Other theoretical 

methods, such as ABF, were able to reproduce experimental results for a few drug-like 

molecules with a better precision (i.e., logPerm
calc within one log units).385 However, ABF required 

multi-µs simulations to achieve convergence. Therefore, MemCross appears as a compromise 

among other theoretical methods. We showed that it can provide converged estimates of 

logPerm
calc within a few hundreds of ns for drug-like molecules, with full atomistic details. Although 

absolute predictions of experimental values are poor, relative predictions are promising. 

Regarding the relatively low computational cost, this may allow navigating and extending 

databases. 

V.5. CONCLUSION 

AWH is a promising method to assess all ingredients (PMF and diffusivity) required to calculate 

Perm. One of the major advantages of AWH is that the individual simulations allow an efficient 

sampling of the movements of the xenobiotics inside the membrane. This leads to convergence 

of the PMF profiles along the translocation path. Fractional diffusivity profiles can be directly 

calculated from the AWH trajectories with the MemCross protocol. The computational cost to 

obtain a converged estimate of Perm with MemCross for drug-like compounds was often lower 

than other enhanced sampling methods, such as ABF or umbrella sampling, which require 

multi-µs simulations for each replica385–387. AWH has the advantages of both an exponential 

convergence, and of being almost insensitive to the input parameters D0 and ε0. Overall, all 

these advantages make MemCross a very promising method to evaluate permeation 

coefficients of series of structurally unrelated compounds. Although the agreement with 

experimental permeability values was limited and the small number of xenobiotics prevented 

from a comprehensive exploration of all drawbacks and limitations, MemCross appeared as a 

very promising method to study and evaluate permeation coefficients on large databases, 

hence considering a wide diversity of organic molecules, which is particularly fruitful in the 

pharmacological context. 
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Foreword 

In this study, we benchmark the MemCross methodology to compute passive permeation 

coefficients and compare with different sets of experimental measurements. Convergence of 

the permeation coefficient and the impact of diffusivity calculations in the logPerm assessment 

were also discussed. This study will be submitted in the near future. 

 

VI.1. INTRODUCTION 

One of the most important causes of drug attrition in the pharmaceutical industry is a poor 

bioavilability. Simple structure-activity relationships based on common molecular descriptors 

do not correlate with preclinical studies outcomes.388 Therefore, a better rationalization of a 

drug bioavailability is very desirable. One of the critical feature of bioavailability is membrane 

crossing, which is often the rate-limiting step in pharmacokinetics. The crossing of biological 

membranes often goes through a complex process combining active transport through 

membrane proteins, para-cellular crossing, and spontaneous passive permeation across lipid 

bilayers.3,73,81,82,93 In the case of lipophilic or amphiphilic compounds, the latter process is 

dominant, especially for drug influx.18,42,70,115,122,127,318,339 Therefore, the prediction of 

permeation coefficients is key to rationalize and predict the pharmacokinetics of xenobiotics.  

There exist several in vitro methods that have extensively been used to predict drug absorption 

in the human body. The most common are based on cultured colorectal adenocarcinoma-

derived, Caco-2, Madin-Darby canine kidney epithelial (MDCK) and blood brain barrier (BBB) 

cell lines.11,42,137,147,148,165,167 These cell-based models contain membrane transporters,155,158,159 

which complexifies the evaluation of passive permeation, as it is difficult to discriminate passive 

permeation events from translocation through membrane proteins. Furthermore, with these in 

vitro models, the time required for cell culture precludes from high-throughput screening. 

Artificial lipid bilayer models as used in the parallel artificial membrane permeability assay 

(PAMPA) or liposomes and black lipid membranes (BLM) have raised an interesting 

alternative.9,10,14,173,183 These biomimetic models offer many advantages against their cell-

based counterparts, mainly because active transport is absent from these models. The 

community has thoroughly produced a large amount of experimental data, however with 

significant variability in the protocols, and this lack of standards hinders from easy comparison 

between data.14,137,165 

 In an effort to speed up screening processes under the specification of comparison between 

compounds, many theoretical models have been developed to predict membrane permeation 

coefficients. Historically, membrane permeation has been assessed by evaluating the partition 
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coefficient of organic molecules between aqueous phase and organics solvents like octanol 

(logPoctanol/water).389–391 Several quantitative structure−activity relationship (QSAR) models were 

developed to predict logPoctanol/water values,392–394  with very low computational resources. 

However, biological membranes are more complex than simple organic solvents such as 

octanol. This is a major drawback to allow a comprehensive description of passive permeation 

based solely on logPoctanol/water, in turn precluding accurate predictions of permeation 

coefficients. Lipinski’s rule of five introduced other factors to improve this prediction, however 

many compounds are found to be exceptions to that rule.115 Another theoretical model, the 

solubility diffusion model (SDM), was developed to determine permeation coefficients of 

molecules diffusing through membranes.6,111 At steady state, it relates the permeation 

coefficient to the flux of molecules crossing the membrane and to the concentration gradient. 

The homogeneous solubility diffusion model (HSDM) has shown good correlations in 

predicting passive diffusion through polymer membranes.20,126 The theoretical framework of 

HSDM considers the permeation coefficient related to the diffusivity in the homogeneous 

membrane, the partition coefficient between both phases (aqueous solvent and membrane 

interior) and the membrane thickness. Yet, this model has failed at describing the anisotropic 

nature of lipid bilayers. Later on, the inhomogeneous solubility diffusion model (ISDM) was 

developed to evaluate the translocation of particles across inhomogeneous lipid bilayer 

membranes, under the influence of a deterministic force that is acting on the particle along the 

permeation path. This was formulated through the Smoluchowski diffusion equation.18,128,129 

The ISDM theory is a promising formalism to predict permeation coefficients that can be 

calculated  by introducing a resistance, R, to crossing events given by: 

R =
1

Perm
= ∫

eβw(z)

D(z)

L
2

−
L
2

dz (1) 

where w(z) is the free energy profile along the permeation path, D(z) is the diffusivity at a given 

depth, z, and β =
1

𝑘𝑇
 with k the Boltzmann constant and T the temperature. z is the coordinate 

along the permeation path and it is integrated from one to the other side of the membrane. 

The computational methodologies to evaluate the major two ingredients of equation (1) (i.e., t 

w(z) and D(z)) should be developed for a chemical library large enough to sample the wide 

chemical diversity of compounds, while keeping an affordable computational cost. Many 

studies were performed on series made of only a few compounds, which has prevented from 

generalization and validation of the methodologies for large molecule screening applicable to 

drug design.70,395–397 To test the robustness of a computational method requires comparison to 

experimental data. However, this is the apparent permeability which is usually measured, 

whereas theoretical methods provide an intrinsic permeability. By intrinsic permeability we 

mean that focus is only given on the neutral form of the molecule crossing passively the lipid 

bilayer, without taking into account the large unsitirred water layers, transport by membrane 

proteins, or paracellular permeability.14 In other words, the theoretical methods usually only 

consider the free energy underlying the translocation of the neutral form of the molecule and 

diffusivity profiles along the membrane normal (i.e., z-axis) that is delimited by membrane 

boundaries (from –L/2 to L/2).22,398 

Many physics-based models have shown promising results in predicting passive membrane 

permeation coefficients. The advantage of such methods is their low computational cost and 

thus their relatively easy usage in screening drug databases. However, the inherent physical 
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formalisms do not allow to capture the process at the atomic scale. The passive permeation 

prediction based on molecular dynamics (MD) simulations has been a promising solution to 

address this understanding together with predicting permeation coefficients. Although the 

computational cost of observing membrane-crossing events within conventional MD 

simulations is prohibitive, biased MD simulations allow the determination of permeation 

coefficients in a reasonable computational time. The main benefit of using MD simulations is 

the explicit description of all interatomic interactions. Nevertheless, the accuracy of the 

permeation coefficient predictions is still a methodological challenge. The use of several biased 

MD methods have been reported, such as Umbrella sampling, Adaptive Biasing Force or 

metadynamics. 70,269,270,395–397 We have developed a protocol named MemCross based on the 

AWH algorithm that has shown efficacy at predicting permeation coefficients of molecules 

through a POPC lipid bilayer by assessing both free energy and diffusivity profiles from a single 

simulation.292 MemCross was tested on 12 different molecules and it showed promising results 

obtained at a lower computational cost compare to other biased methods. Here, we assess 

the accuracy of MemCross by computing the permeation coefficients of more than 350 

compounds, for which experimental permeation coefficients are available. The impact of 

diffusivity on the permeation coefficient values are also discussed. The most adapted 

simulation times were also highlighted according to the molecular sizes. Finally, we compared 

our results with experimental measurements obtained with biomimetic membrane models 

(liposomes and BLM, double-sink PAMPA) and cell-based membrane models (BBB and 

Caco2/MDCK).  

VI.2. METHODS 

VI.2.1. MD simulations 

MD simulations were performed using the Gromacs 2021 software.241 The Slipids 2020 force 

field57 was used for the lipids and the TIP3P model for water molecules. The pdb files for the 

permeants (i.e., undissociated and ionized forms, neutrals, acids, bases, zwitterions) used in 

this study were gathered from Lomize et al.22,399 (Table S2). They were parametrized using 

GAFF2 (second generation generalized amber force field)351. First, several conformers were 

generated using Confab software353 within a 100 kcal/mol energy cutoff, then geometry 

optimization was carried out using the Gaussian09 software354 with the B3LYP hybrid 

functional and the cc-pVDZ basis set in an implicit diethylether solvent. Atomic RESP partial 

charges were derived from Gaussian calculations using the R.E.D.III software and Duan et al. 

method355. Among permeants, monoatomic ions and large molecules (i.e., molecular weight 

(MW) greater than 800) were omitted. Periodic boundary conditions were applied in all three 

dimensions. The MD time step was set to 2 fs. The cutoffs for electrostatic and van der Waals 

interactions were set to 14 Å. Long-range electrostatic interactions were calculated using the 

Particle-Mesh-Ewald (PME) method. The V-rescale thermostat was used to maintain the 

temperature at 310 K and the Parrinello-Rahman barostat was used to maintain the pressure 

at 1.013 bar.  

A 1-palmitoyl-2-oleyl–sn-glycero-3-phosphocholine (POPC) lipid bilayer containing 128 

molecules was used. The pure POPC membrane was chosen as a model of lipid bilayers used 

experimentally.70 The x-y box dimensions were 66 Å × 66 Å. The box dimension along the z 

axis was set according to the permeant size, as follows: 

zbox = 2 × (zinit + zpermeant + zmargin) (2) 
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Where zinit was set to 38 Å, which corresponds to the initial positioning of the molecule in the 

water bulk with respect to the membrane center (zcenter = 0 Å), zpermeant was the length on the 

permeant longest axis, and zmargin represents an extra thickness of solvent set to 6 Å.  The 

smallest value for zbox was 90 Å.  

VI.2.2. Potential of the mean force  

We used the same protocol to predict the potential of the mean force (PMF) and diffusivity 

profiles as described in our previous work.292 In brief, the accelerated weight histogram (AWH) 

is an enhanced sampling method that can be used to predict free energy landscapes of 

biomolecular systems.247 As we showed in our previous work, AWH can compute the PMF 

along the translocation pathway (i.e., membrane normal that is the z-axis). The molecule was 

initially placed in the water compartment at z ~ 40 Å.  The distance between the center of 

masses of both the molecule of interest and the membrane projected on the z-axis constitutes 

the one-dimensional reaction coordinate. This coordinate is biased within the AWH simulation. 

The target distribution was set to be uniform. This allows the free energy along the chosen 

reaction coordinate to be flattened during the simulations by applying a history-dependent bias 

potential. The error on the free energy was limited to 3 kJ.mol-1 and the initial diffusion constant 

was set to 5.10-3 nm2.ps-1. The force constant for the harmonic potential was chosen to be 

large enough (128000 kJ.mol-1.nm-2). For each molecule, three replicas with identical inputs 

were simulated. The simulation time was 1 µs per replica for all membrane-molecule systems, 

regardless the size of the molecule.  

VI.2.3. Position-dependent diffusivity 

The subdiffusive behavior of molecules within the POPC lipid bilayer membrane was taken 

into account.70,270,292 As reported in our previous work292, the position-dependent fractional 

diffusivity profiles 𝐾𝛼(𝑧) were estimated from the AWH trajectories using a Bayesian scheme 

provided in the DiffusionFusion software.270,289 The likelihood of the observed trajectory is 

computed as the product of the probabilities of the observed movements from Z(tj) to Z(tj + Δt): 

P[Z(t)|Kα(z)] =∏p[Z(tj + ∆t)|Z(tj), Kα(z)]

j

 (3) 

In practice, the observed movements are calculated by numerically solving the fractional 

Smoluchowski diffusion equation using Crank-Nicolson finite difference method.301 

Then, the posterior probability is maximized using a Monte Carlo procedure: 

P[Kα(z)|Z(t)] = pprior[Kα(z)] × P[Z(t)|Kα(z)] (4) 

The 𝑝𝑝𝑟𝑖𝑜𝑟[𝐾𝛼(𝑧)] probability was set uniform with a value of Kα = 100 Å2.ns-1. The z-dependent 

fractional order α values were ranging from 0.7 at the membrane center to 1 in the water bulk, 

as previously described.270,292  

Classical diffusivity profiles were also evaluated using the same Bayesian algorithm, but with 

the classical Smoluchowski diffusion equation. A lag time of 4 ps was used in the diffusivity 

calculations. For convergence assessment (Figure 32), a lag time of 2 ps was used. 
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VI.2.4. Ionization state assessment 

The full permeation from one side to the other side of the membrane of ionizable molecules 

usually requires protonation and deprotonation events. Here, we only considered either the 

neutral form or the ionized form at a time, to mimic different acid-base conditions.133,292 The 

PMF and the fractional diffusivity profiles were calculated for both forms. In water, the free 

energy difference driving the deprotonation reaction (ΔGdeprotonation) is derived from the 

Henderson Hasselbalch equation and is equal to: 

∆Gdeprotonation = 2.3 kbT (pKa − pH) (5) 

Where kb and T are the Boltzmann constant and the temperature, respectively. 

As the ionized form is predominant in water, the free energy of the ionized form in water was 

set to 0. Then, the PMF profile of the neutral form was shifted by ΔGdeprotonation. A combined 

PMF profile was defined as the minimum free energy of both PMFs along the z-axis. The z-

coordinate corresponding to the transition point between the PMFs of both forms was used to 

combine the diffusivity profiles in the same manner. These combined profiles were used to 

calculate the permeation coefficient of ionizable molecules. 

VI.2.5. Determination of permeation coefficients  

The permeation coefficient Perm was evaluated based on ISDM (equation 1). To reproduce the 

experimental conditions, the integration interval was set to -22 Å to +22 Å (i.e., membrane 

thickness). 

VI.2.6. Estimation of the error on permeation coefficients  

The propagation of the error of the PMF (w(z)) and of the diffusivity Kα(z) on the permeation 

coefficient (equation 1) was evaluated using a Monte Carlo procedure with 1000 cycles from 

the three replicas, as previously reported.292 Using this procedure, one thousand logPerm-values 

were generated for each molecule. This yielded a more accurate estimate of an averaged 

value of logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 and its corresponding standard deviation. 

VI.2.7. Linear fit to experimental permeation coefficients 

The experimental permeation coefficients (logP𝑒𝑟𝑚
𝑒𝑥𝑝

) values of the in vitro different membrane 

types (i.e., liposomes, BLM, PAMPA-DS, BBB, Caco2/MDCK) were collected from the PerMM 

database.399 These experimental values come from different sources, which makes difficult the 

correlation between theoretical and experimental logP𝑒𝑟𝑚
𝑒𝑥𝑝

. First, a linear regression model fit 

between the calculated logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠

 and the experimental logP𝑒𝑟𝑚
𝑒𝑥𝑝

 values was performed with 

each experimental dataset. Then, linear corrections from the regressions were applied to the 

theoretical data in the form:  

logPerm
f = a × logP𝑒𝑟𝑚

𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 + b (6)  

Where logP𝑒𝑟𝑚
𝑓

 is the refitted logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 and a and b are the slope and the intercept, 

respectively.  
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For each correlation fit, the quality of the linear regression fit was evaluated by the coefficient 

of determination R². Outliers were defined as compounds that deviated more than twice the 

standard deviation from the fit line. 

VI.3. RESULTS AND DISCUSSION 

VI.3.1. Potential of mean force (PMF) and diffusivity profiles of selected examples 

Here, we applied the AWH-based protocol that have been previously reported292 to model the 

free energy profiles across a POPC lipid bilayer membrane. This method was capable to 

predict the PMF as well as the fractional diffusivity profiles of a set of drug-like molecules, and 

thus the permeation coefficients from equation (1). It also highlighted its accuracy to sample 

the orientation of the permeants all along the bilayer membrane normal (i.e., z-axis). Moreover, 

the permeation of ionizable compounds can be assessed by considering both the neutral and 

the ionized (at a given pH) forms, then integrate over the combined free energy and factional 

diffusivity profiles (equation 5).In order to validate the accuracy of our tool, the prediction of 

permeation coefficients for a larger set of molecules (i.e., more than 417 compounds, see 

Table S2) was established and compared with experimental values.  

The PMF and diffusivity profiles of 10 representative molecules with different molecular 

structures are plotted in Figure 31A. 
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Figure 31: (A) Potential of mean force (PMF), (B) Fractional diffusivity profiles and (C) Classical 

diffusivity profiles for 9 molecules with different molecular sizes. The two forms (neutral and ionized) of 

salicylic acid are shown with red dotted lines and red straight lines, respectively.  

 

Codeine is a prototypical example of hydrophobic molecules. It exhibited the lowest free energy 

barrier at the membrane center, and thus its accumulation in the core of the membrane. The 

relatively flat PMF in the lipid tail region of the membrane (i.e., between the center and 11 Å) 

suggested frequent flip-flop events from one to another membrane leaflet. 

Both prednisolone and hydrocortisone are taken as prototypical amphiphilic molecules. They 

exhibited a favorable partition below the lipid polar head groups, where the polar moieties 

interact with the polar head groups, and the lipophilic moieties with the lipid tails. Conversely 

to codeine, an increase in the free energy was observed at the center of the membrane for 

both compounds, due to unfavorable interactions of polar moieties with the highly apolar 

environment in this region. Ethylamine is a different example of amphiphilic molecule, 

exhibiting a relatively iso-energetic PMF with a slight increase in the surrounding of the polar 

head group region. 

The 1,4-butanediol, histamine, adenine, and urea compounds are typical neutral hydrophilic 

molecules. As expected, they exhibited a high free energy barrier at the center of the 

membrane, consistent with a disruption of the bilayer organization caused by the presence of 

polar moieties in this region. 

Salicylic acid is a prototypical polar and ionizable drug. Due to the non-favorable interactions 

of its ionized carboxylic group with the surrounding hydrophobic environment, its ionized 

(charged) form exhibited a much higher energy penalty at the membrane center than the 

neutral form. Salicylic acid is expected to approach the membrane in its ionized form, then to 

re-protonate below the polar head groups at 0.65 nm, when the number of surrounding water 

molecules decreases. This would ease crossing of the membrane center in its neutral form.  

The standard deviations between the 3 replicas of the PMF profiles of Figure 31A were lower 

than 1 kcal/mol. The reproducibility of the results indicates that the simulation time of 1 µs per 

replica allowed a sufficient conformational sampling for most of the molecules and their direct 

environments along the permeation path. 

The fractional and classical diffusivities were calculated using the respective Smoluchowski 

equations (Figure 31B-C). In the water phase, both fractional and classical diffusivities 

exhibited similar values. This is expected because the two Smoluchowski equations are 

identical in water, with a fractional order of 1. Within the membrane core, the fractional 

diffusivity profiles were relatively flat and lower than 50 Å².ns-α. Conversely, classical diffusivity 

profiles (Figure 31C) exhibited larger variations within the membrane, according to the size of 

molecule. Interestingly, both fractional and classical diffusivity profiles exhibited an increased 

diffusivity at the membrane center for the small compounds, namely ethylamine and 1,4-

butanediol, albeit the effect is smaller with fractional diffusivity. This agrees with the literature 

about short-chain alcohols.70 Moreover, both forms of salicylic acid exhibited similar diffusivity 

profiles, indicating the non-dependence of the diffusivity on the charge of the molecule. 
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VI.3.2. 𝒍𝒐𝒈𝑷𝒆𝒓𝒎
𝑴𝒆𝒎𝑪𝒓𝒐𝒔𝒔 convergence 

The convergence of the calculated permeation coefficient values, referred here as 

logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠, was evaluated for all the molecules used in this study. It was assessed by 

following the average of differences between logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 along the simulation (every 100 ns) 

and logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 obtained at 1 µs (Figure 32). The logP𝑒𝑟𝑚

𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 values were considered 

converged when the difference was around half log unit. By subdividing the permeants 

according to their MW, the results shown in Figure 32 confirmed that the smaller the molecule, 

the faster the convergence.  

 

 

Figure 32: Convergence of 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠along the simulation for as a function of MW. The 

convergence is followed by the difference between 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 at time t (along the simulation, x-axis) 

and the 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 at time t = 1µs. 

 

After 100 ns MD simulation, the differences were high for all the molecules, along with high 

standard deviations between permeants. This can be explained by the coarse bias updates 

during the initial stage of the AWH procedure, and it indicates that longer simulations are 

necessary for a finer estimate of logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠. For very small molecules (MW lower than 100 

g.mol-1), logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 convergence was reached within only 300 ns. To reach convergence for 

molecules with MW lower than 400 g.mol-1, the required simulation time was in the range 800-

900 ns. Molecules with a MW larger than 500 g.mol-1 may require more than 1 µs of simulation 

time to reach convergence. However, their drug-likeliness is likely lower according to Lipinski’s 

rule of five.26 

VI.3.3. Diffusivity prediction 

To the best of our knowledge, here we have computed the largest collection of diffusivity 

profiles of permeants in membrane from all-atom MD simulations. Based on this dataset, we 

have investigated whether the fractional diffusivity can be predicted from a few molecular 

descriptors, namely the logarithm of the molecular weight (logMW), the logarithm of radius of 

gyration, the accessible surface area (ASA), the number of rotatable bonds, and the inverse 

of the smallest cross-sectional area (Inv-CSA). Figure 33 shows the correlation matrix between 

each pair of the parameters.  
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Figure 33: (A) Correlation matrix between diffusivity values (in water, within the membrane and at the 

membrane center) and different molecular descriptors. 

 

Strong negative correlation was highlighted between the diffusivity in water (Dz=40A) and logMW 

(Figure 33A and B) with a correlation coefficient R = -0.95. Less, but still important negative 

correlation was found between logMW and the diffusivity in the region of the lipid chains (Dz=10A, 

R = 0.75) and at the membrane center (Dz=0A, R = 0.73). Both the logarithm of the radius of 

gyration and the logarithm of the accessible surface area (logASA) were highly correlated to 

the MW and thus they also exhibited high correlations with the diffusivity values (Figure 33). 

On the other hand, the inverse of cross-sectional area was strongly correlated to Dz=40A with R 

= 0.89, but with less correlation with the diffusivities in the membrane including the membrane 

center. The number of rotatable bonds exhibited relatively weak correlation with all diffusivity 

values. Given the abovementioned results, the diffusivity in water can be predicted from MW 

with high confidence. Conversely, diffusivity within the membrane appears to be multifactorial. 

  

The impact of the diffusivity on the calculated permeation coefficients was investigated by 

computing logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 using both classical and fractional diffusivity profiles (Figure S12A-B). 

The only significant difference was a decrease of the intercept of the linear regression equation 

(-3.30 and -3.93 log units for fractional and classical models, respectively). Consequently, by 

comparing logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 values using both the classical and the fractional diffusivities (Figure 

S12C), a very good correlation (R² = 0.997) was highlighted. This arises from equation 1, where 

the exponential term of the PMF drives the value of P over the linear proportionality between 

P and diffusivity. Although the fractional model provides a more accurate description of the 

dynamics within the lipid bilayer, the classical diffusivity model can be used without losing 

accuracy by adding a corrective term of 0.69 log units to logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 (Figure S12C). 

Furthermore, logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠calculated using a constant value for diffusivity (10 Å².ns-1) yielded 

an excellent correlation to logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 obtained with fractional diffusivity (y = 0.98x – 0.77, R² 

= 0.994, Figure S12D). Therefore, carefully defining a constant value of the diffusivity may 
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appear almost as accurate as using the fractional diffusivity, since logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 is 

(exponentially) more dependent on the PMF than on the diffusivity. 

VI.3.4. Benchmarking against experimental permeability coefficients 

To assess the ability of this AWH-based protocol at predicting experimental results, we 

compared the logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 values obtained here with the logP𝑒𝑟𝑚

𝑒𝑥𝑝
 values issued from 4 

different datasets corresponding to different experimental methods split as follows, 114, 254, 

168 and 146 obtained from the phosphatidylcholine-based (PC-based) method, the PAMPA-

DS  system, the BBB cells and the Caco2/MDCK protocol, respectively. 

VI.3.4.1. PC-based methods 

An exclusion criterion was defined as follows, a logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 standard deviation 𝜎 greater than 

half the root mean square error of the original dataset. According to this criterion, two 

compounds, phloretin and loperamide, were excluded from the dataset, i.e., logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 

values were poorly reproduced.   Taking these two exclusions into consideration, a linear 

regression model was found: 

𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑓

= 0.98 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑡ℎ − 3.3 (7)

   

With a coefficient of determination of R² = 0.69, and RMSE = 3.1 log units. The correlation for 

the whole set of molecules highlighted all sugars as outliers namely D-glucose, D-fructose and 

sucrose (see Figure S12A). This suggests that the Gaff2 force-field may not be well suited for 

carbohydrates. To better describe the correlation between logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 and logP𝑒𝑟𝑚

𝑒𝑥𝑝
 , a linear 

regression step was performed after excluding these three sugar molecules. This yielded the 

following linear regression, 

logPerm
f = 0.94 logP𝑒𝑟𝑚

𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 − 3.23 (8) 

With a slight increase in the correlation coefficient to R² = 0.71, and a decrease in the RMSE 

to 2.62 log units (Figure 34A). 
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Figure 34: Fitted linear regression models between 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 and 𝑙𝑜𝑔𝑃𝑒𝑟𝑚

𝑒𝑥𝑝
 for (A) the whole set of 

liposomes/BLM membrane measurements and (B) the set of liposomes measurements for different 

molecule types: neutrals, acids, bases and zwitterions. 

 

Given the variability of the different experimental conditions, we then compared logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 

values to the experimental ones for measurements using only liposomes (Figure 34B). This 

provided the following regression: 

logPerm
f = 0.88 logP𝑒𝑟𝑚

𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 − 4.23 (9) 

With a good correlation coefficient R²=0.83 and low deviation error from the mean (RMSE 

=1.67 log units) (Figure 34A). 

Interestingly, both data sets exhibited negative intercept values (b = -3.23 and -4.23 log units 

for the whole set and for liposomes only, respectively). This means that logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 values 

were overestimated compared to logP𝑒𝑟𝑚
𝑒𝑥𝑝

 (i.e., underestimation of the free energy barriers). 

Several factors can rationalize this discrepancy including differences in membrane 

composition temperature, inherent force-field or protocol-based errors, or impact of diffusivity 

at different scales 22. Another plausible hypothesis to the underestimation of the free energy 

barrier within the membrane is the underestimation of the partial charges of the permeants.  

VI.3.4.2. PAMPA-DS 

The MemCross permeation coefficients (logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠) were evaluated for compounds tested 

with the more complex PAMPA-DS membrane systems. Here, we considered only intrinsic 

permeability values, as reported by Avdeef after corrections accounting for permeability 

through the unstirred layers (USL) and all non-passive transport.14,137,165  

The linear regression obtained was:  

logPerm
f = 0.77 logP𝑒𝑟𝑚

𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 − 4.68 (10) 

With R² = 0.66 and RMSE = 2.39 log units. 
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The correlation was slightly weaker than for more simplistic membrane models (liposomes and 

BLM), which can partly be rationalized by the imperfect correlation between both experimental 

methods (RMSE = 1.75 log units).22  

 

 

Figure 35: Fitted linear regression models between 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠and 𝑙𝑜𝑔𝑃𝑒𝑟𝑚

𝑒𝑥𝑝
 for (A) the set of 

PAMPA-DS and (B) Blood Brain Barrier, and (C) Caco2/MDCK measurements for different molecule 

types: neutrals, acids, bases and zwitterions. 

 

VI.3.4.3. Cell-based assays 

The linear regression for BBB was:  

logPerm
f = 0.31 logP𝑒𝑟𝑚

𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 − 4.1 (11) 

With R² = 0.44 and RMSE = 1.44 log units. 

For Caco2/MDCK, the linear regression was: 

logPerm
f = 0.27 logP𝑒𝑟𝑚

𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 − 4.43 (12) 

With R² = 0.31 and RMSE = 1.44 log units. 

The correlations of logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 with BBB and Caco2/MDCK (Figure 35B-C) yielded low 

correlation coefficients and low linear regression slopes. Since MemCross can achieve 

relatively accurate predictions for simple systems such as liposomes, the most probable 

explanation of the poorer performance on cell-based assays lies in the higher complexity of 

the experimental models. Indeed, cells may have different membrane compositions, 

paracellular transport, and most importantly active transport. This is in agreement with the 

imperfect correlations found between experimental methods.22,137 For instance, the 

experimental values of permeation coefficients of a few acids in BBB and Caco2/MDCK 

measurements were overestimated compared to the predicted logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 values (Figure 

35B-C), whereas the acids were not outliers in simpler systems. This could be due to the 

existence of active membrane transport specific for these acids in cells. Interestingly, the 

RMSE values (1.44 log units) were lower than for PAMPA-DS and even liposomes/BLM. 

Overall, this means that MemCross can be used to obtain coarse estimates of the permeation 

coefficients on cell-based models for non-acidic molecules. 
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VI.3.5. Source of the error between theory and experiments 

To rationalize the sources of error between logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 and logP𝑒𝑟𝑚

𝑒𝑥𝑝
, we evaluated correlated 

the residual errors between both with respect to different descriptors. Only the dataset of 

liposomes and BLM measurements was used, as they yielded the best correlation to 

theoretical predictions and the errors observed when comparing to the cell-based methods 

were already discussed above. The descriptors used were the mean PMF barrier at the 

membrane center, the mean standard deviation of the whole PMF profile from three replicas 

(on the whole profile and at the membrane center), the numbers of aliphatic hydroxyl and 

carboxylic acid moieties, the number of OH and NH moieties, the number of rotatable bonds, 

and the MW (Figure 36).  

 

 

Figure 36: Correlation matrix of the logPerm residual and different molecular descriptors and PMF-

linked parameters. 
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Weak positive correlations between MW, number of rotatable bonds, number of aliphatic 

hydroxyl groups and number of polar NH and OH groups were noticed (R = 0.42, 0.36, 0.43 

and 0.39, respectively). However, no single descriptor was identified to fully rationalize the 

residual error, confirming that the error is multifactorial. Multivariate linear combination models 

were probed using all possible combinations between the parameters (except the ASA 

parameter as it is correlated to MW), see Figure 36. The quality of each of these models was 

assessed by computing the Akaike information criterion (AIC), the lower the AIC, the better the 

model. The whole Liposomes/BLM dataset was randomly split into the training set (80% of 

molecules) and the test set (20% of molecules). The multivariate model (on the training set) 

corresponds to the lowest AIC value and a combination of the following 6 parameters: MW, 

number of NH/OH groupments, number of aliphatic carboxylic acids, number of aliphatic 

hydroxyl groups, standard deviation of PMF at z = 0, partial charge and the height of the PMF 

barrier:  

Residual𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 0.004 MW+  0.22 NHOHCount + 0.95 frAICOO + 0.37 frAIOH
                                         −1.04 STDPMF𝑧=0Å, −4.03 Partialcharge − 0.05 PMFbarrier + 2.94 (13)

 

With AIC = 270.9 and R² = 0.47. 

Applying equation (13) to the test set resulted in a very poor prediction correlation between the 

predicted and actual residual errors (R² = 0.001, Figure S13). In other words, the best 

multivariate model was not able to predict the residual error. This suggests that the error is 

very difficult to predict, and that it depends on other parameters, which might be numerous. 

VI.3.6. Comparison to another theoretical model 

In order to improve the benchmarking of MemCross, the logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 values were compared 

betwenn MemCross and a recently developped physics-based method (PerMM) by Lomize et 

al22. Here, for the correlations to each experimental dataset, we investigated whether common 

outlier molecules were identified. As previously described, a molecule was considered as an 

outlier if it was outside the linear regression line by more than twice the residual standard 

deviation. Outliers common to both theoretical methods were excluded from the benchmark, 

as an issue with the experimental measurment is plausible. Outliers found in only one method 

were kept, as in this case, the discrepancy is more likely attributed to the theoretical model. 

For PAMPA-DS data set, ganciclovir was highlighted as a common outlier, hence it was 

ommited. Finally, for the BBB and Caco2/MDCK data sets, ascorbic acid, neotrofin, ganciclovir 

and terfenadine were identified as common outliers. 

Correlations between logP𝑒𝑟𝑚
𝑒𝑥𝑝

  and logP𝑒𝑟𝑚 from MemCross and from PerMM on the 

liposomes/BLM data set are shown in Figure S14A-B. When considering the whole data set, 

the correlation coefficients were 0.71, 0.79, and RMSE 2.62 and 1.90 for MemCross and 

PerMM, respectively. Therefore, the performance of PerMM was slighly higher. Conversely, 

regarding the liposome-only data subset (Figure S14C-D), MemCross correlation was slighlty 

better (R² = 0.83, RMSE = 1.67) compared to PerMM (R² = 0.80, RMSE = 1.93).  

Regarding the PAMPA-DS dataset, MemCross exhibited a slighly better correlation (R² = 0.66, 

RMSE = 2.38) compared to PerMM (R² = 0.59, RMSE = 2.83, Figure S15A-B). The slope of 

regression was lower for PerMM (0.59) than for MemCross (0.79). A plausible explanation 

comes from the smaller integration interval used in PerMM for PAMPA-DS (between -15 and 

15 Å). Reducing the integration interval results in a higher estimated logP𝑒𝑟𝑚 for lipophilic 
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molecules (i.e., with a low free energy barrier at the membrane core), which can flatten the 

linear regression.  

As for cell-based assays, both MemCross and PerMM exhibited low correlation coefficients 

(0.47 and 0.57, respectively for BBB, 0.29 and 0.34, respectively for Caco2/MDCK, see Figure 

S15C-F). RMSE and slopes were also very similar between both methods. This confirms the 

difficulty for theoretical methods to catch the entirety of the permeation process occuring in cell 

membranes. 

Overall, comparable correlation coefficients and RMSE values were obtained with both 

methods, MemCross being slightly more accurate for liposomes and for PAMPA-DS. It is clear 

that the more complex the membrane, the weaker the correlation. Therefore, the in silico 

models should match as close as possible to the experimental conditions (e.g., lipid 

composition, temperature, ion concentrations, pH), so that to improve the accuracy of the 

predicted logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠. It should also be noted that the computational cost of PerMM is much 

lower than for MemCross. However, MemCross offers a full atomistic description of the 

molecule-membrane interaction, as well as complete diffusivity profiles, and its computational 

time could also be lowered with multiple walkers and replica-exchange AWH for instance. 

VI.4. CONCLUSION 

This work is a benchmark study to validate the robustness of a novel computational 

methodology, named MemCross, to estimate membrane permeation coefficients. Both PMF 

and diffusivity profiles along the permeation path through the membrane were computed for 

more than 400 xenobiotics, mostly drugs. To the best of our knowledge, this is the largest study 

performed with drug-like database, while performing all-atom MD simulations, totaling more 

than 1.2 millisecond simulation time. MemCross accurately reproduced experimental data 

obtained with simple biomimetic models, such as liposomes and BLM. This success was 

attributed to the similarities between the in silico POPC lipid bilayer model used in this study 

and these PC-based in vitro membrane models. It is worth mentioning that due to variability in 

experimental protocols, the membrane permeability coefficients are experimentally relevant 

within an error range of one order of magnitude.400 MemCross also exhibited a good correlation 

with PAMPA-DS experiments, although some discrepancies could be rationalized by the 

difference in membrane composition and the contribution of aqueous boundary layers. The 

comparison to cell-based assays appeared more limited, which is likely due to the presence of 

other transport types such as active membrane and para-cellular transports that are competing 

with the passive diffusion process. Such discrepancies have also been reported with other 

theoretical models.22 Overall, the correlations obtained with MemCross were comparable to 

PerMM, a physics-based model developed to predict permeation coefficients. 

The simulation time per replica required to get a converged estimate of the permeation 

coefficient was 300 and 900 ns for molecules with a molecular weight lower than 100 g.mol-1 

and in the range 100-400 g.mol-1, respectively. Apart from sugars, the PMF, the diffusivity and 

the permeation coefficients of all chemical scaffolds can be readily modelled by MemCross. 

Although the fractional diffusivity model provides the best correlations with experimental data, 

however we highlighted a weak dependence of the permeation coefficient on fractional, 

classical, or even constant diffusivity profiles. 

To summarize, MemCross is an affordable and useful tool to predict permeation coefficients. 

It provides a full atomistic description of molecule-membrane interactions, which is very 

desirable in the pharmacological context targeted by pharmaceutical industry. 
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Foreword 

In this study, we investigate the potential binding sites in the human MRP4 protein of a range 

of MRP4 substrates and modulators. The AlphaFold2 protein structure was equilibrated during 

an MD simulation step, then a thorough docking procedure was established on the whole 

protein. Here, binding sites, molecules entry and key residues that are involved in the binding 

are discussed. This study will be submitted in the near future. 

 

VII.1. ABSTRACT:  

The human Multidrug Resistance Protein 4 (hMRP4) is a membrane protein, of clinical 

importance, responsible for the active efflux of large number of xenobiotics from inside the liver 

and kidney cells. The uptake of concomitant drugs and/or nutrients may favor drug-drug or 

drug-nutrient interactions that can lead to several outcomes such as cytotoxicity caused by 

drug accumulation inside the liver and kidney cells. No experimental structure was reported for 

hMRP4 so far. Here, we investigate the binding sites in the hMRP4 structure, issued from 

AlphaFold2, using thorough molecular docking of 129 known substrates and inhibitors. We 

highlighted five major regions, the chamber at the central part of the protein being the most 

favorable binding site for all ligands. Key residues for ligand binding in the different regions 

were listed. Connections between the regions through iso-energetic paths were studied, 

highlighting gating routes to the main chamber.  

 

Keywords: Multi-Drug Resistance Protein 4 (MRP4), Membrane Transporters, Molecular 

Docking, MD simulations, Binding sites. 
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VII.2. INTRODUCTION 

The ATP-binding cassette (ABC) transporters constitute one of the largest superfamily of 

membrane proteins in all living organisms.401 They are involved in the translocation of a wide 

range of substrates including endogenous compounds, xenobiotics, metabolites, ions or 

macromolecules.402,403 In particular, they are known to efflux drugs across biological 

membranes in the human body. They play a substantial role in maintaining cellular 

homeostasis by favoring outer-to-inner cell exchanges in various organ tissues. Due to their 

diversity and low specificity, they play a key role in the pharmacokinetics of xenobiotics. 

In eukaryotes,  ABC transporters typically ensures the unidirectional substrate efflux across 

the membrane.404–407 They are composed of four distinct domains, namely two cytoplasmic 

nucleotide binding domains (NBDs) and two helical transmembrane domains (TMDs).408 Each 

of the NBDs is responsible for the binding of one ATP molecule. The ATP hydrolysis provides 

the energy required for conformational changes during the transport cycle. The NBDs of the 

ABC membrane transporters are characterized by seven highly conserved motifs, named A-

loop, Walker A, Q-loop, the signature motif or C-loop (LSGGQ), Walker B, D-loop and H-

loop.409,410 The TMDs are composed of twelve transmembrane helices (TMHs) and represent 

the most variable sequences between ABC transporters. They confer the specificity of 

substrate binding to most of these proteins.411  

In eukaryotes, apart few exceptions,412–415 ABC proteins are all efflux transporters.416 

Dysfunctions in the efflux process ensured by these proteins are often associated with 

pathological outcomes. First, these dysfunctions can be attributed to mutations in the ABC 

coding genes, which are associated with various diseases (e.g., cystic fibrosis417, Tangier 

disease418, obstetric cholestasis419, and Scott syndrome420). A second type of dysfunction may 

come from the overexpression of these transporters. To follow these dysfunctions has gained 

a growing interest in the treatment of cancer, as they can be responsible for multidrug 

resistance (MDR), in turn leading to treatment failure.421,422 This makes these transporters are 

known as multidrug resistance proteins (MRPs).423–425 Among ABC transporters, breast cancer 

resistance protein (BCRP), P-glycoprotein (P-gp, MDR1) and Multi-Drug Resistance Proteins 

(MRPs, ABCC family) play an important role in the disposition and pharmacokinetics of a wide 

range of drugs (e.g., antibiotics, immunosuppressants) thanks to their ubiquity/versatility (i.e., 

in the liver, the kidney, the intestine and the brain).426,427 Drug-drug interactions (DDI) can also 

be associated with dysfunctions of these transporters, leading to the accumulation of 

xenobiotics inside cells, hence causing cytotoxicity. DDI may occur when various xenobiotics 

compete in the binding sites of the ABC transporters.  

The human Multidrug Resistance Protein 4 (hMRP4) is a member of the ABCC subfamily. It 

exhibits a versatile localization in different organs, in particular in the liver and the kidneys.428–

430 In basolateral membranes of the hepatic cells, hMRP4 is involved in the export of substrates 

from the liver cells to the portal blood. In the kidneys, it is responsible for their excretion from 

the renal cells into urine across the apical membrane of renal proximal tubule cells.428,431–433 

The hMRP4 exports diverse organic (sometimes aromatic) anions  such as endogenous cell 

signaling molecules (e.g., cAMP), but also immunosuppressants and antiviral drugs (e.g., 

methotrexate, tenofovir) and glucuronide conjugates (e.g., mycophenolate glucuronide).428,434–

436 In hMRP4, as for other eukaryotic MRPs, the two NBD are not symmetrical: NBD2 contains 

the canonical site (NBS2) which is the main ATP hydrolysis site, while NBD1 contains the 

degenerate site (NBS1) and strongly binds to the ATP altering its hydrolysis.437 Several DDI 

were reported for hMRP4, for example between methotrexate, one of the most prescribed 
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immunosuppressant drugs to prevent kidney graft rejection, and anti-inflammatory drugs 

(NSAIDs), which slow down the export of the former438,439. This leads to methotrexate 

accumulation in cells and subsequent cytotoxicity. Therefore, DDI represent a plausible cause 

of graft rejection.341,440–442 

Understanding the structural patterns and binding modes of hMRP4 ligands (substrates and 

modulators) is of utmost clinical importance to decipher its transport cycle and rationalize DDI. 

In vitro studies showed a series of key residues involved in hMRP4 function, namely PHE368, 

PHE369, GLU374, ARG375, GLU378, TRP995 and ARG998.435,443,444 However, to the best of 

our knowledge, there is no experimentally resolved structure for hMRP4 yet. Various in silico 

hMRP4 3D models were proposed based on homology modeling approaches. The main 

drawback of these models is the low sequence identity between hMRP4 and other MRPs of 

the same subfamily, leading to possible structural errors in key domains. Recently, 

AlphaFold445,446 provided a new structure that outperforms the quality of the previous homology 

models. Here, we use the hMRP4 model from AlphaFold to perform a thorough molecular 

docking then to establish a comprehensive list of the binding sites, based on the mode of 

binding of 129 known substrates and modulators of hMRP4. 

VII.3. METHODS 

VII.3.1. hMRP4 structure model 

The inward facing (IF) conformation of the wild-type human MRP4 structure was obtained from 

the AlphaFold 2 protein structure database.445,446 The model confidence assigned by Alphafold 

is “confident” or “very high” for a substantial part of both TMD and NBD domains (Figure S16). 

This corresponds to 1172 residues. However, the confidence is lower for the flexible loops, in 

particular for the experimentally unresolved linker (L1), i.e., the GLY624-PHE698 sequence in 

between the first nucleotide-binding domain (NBD1) and the second transmembrane domain 

(TMD2). The linker lies inside the chamber of the protein, which is a solvent-accessible area, 

close to the inner polar head groups. The dihedral angles of the protein backbone model were 

checked using Procheck447 Ramachandran diagram (Figure S17).448,449 About 92.4% of 

residues were in most favored regions of the Ramachandran plot, confirming a good quality 

model (> 90%). Additionally, 99.5% of residues were in the most favored or allowed regions 

(Figure S17). The ERRAT server estimated the overall quality factor to 96.8%, equivalent to a 

good high-resolution structure (> 95%).449,450 The protonation state of the HIS residues at 

pH=7.4 was verified using ProteinPrepare server.451,452 This yielded the following protonation 

states: δ-nitrogen protonation (HID) was assigned to HIS: 35, 55, 152, 153, 158, 172,  411, 

466, 583, 592, 710, 798, 831, 930, 1037, 1111, 1141, 1225, 1233, 1299, 1302 and 1305, and 

ε-nitrogen protonation (HIE) was assigned to HIS 213, 472, 572, 903, 934 and 1060. The 

orientation of the protein inside the lipid bilayer core was predicted using PPM3453. Then, it 

was embedded into a POPC:CHOL (3:1) membrane using CHARMM-GUI membrane 

builder350. This membrane model was thus made of 315 POPC molecules and 105 cholesterol 

molecules. The whole system (protein + membrane) was solvated with water. Then, Na+ and 

Cl- ions were added to neutralize the system with a physiological concentration of 0.154 M. 

Two ATP molecules, each associated with one Mg2+ ion each, were added in their 

corresponding nucleotide binding sites. To do so, the NBD structures of hMRP4 and bovine 

MRP1454 (PDB ID 6UY0) were aligned.437 
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VII.3.2. Setup of molecular dynamics simulations  

MD simulations were performed using the Amber20 software455. The Lipid17 force field456 was 

used for the lipids, Amber FF14SB457 for the protein residues and TIP3P458 for water molecules. 

ATP force field parameters were gathered from the Amber Parameter database459. The 

modified DNA.OL15460,461 force field was used to the ATP molecules . During the thermalization 

step, the distance between different atoms of the ATP, Mg2+ and the ATP-binding site were 

restrained using a harmonic potential as suggested in Wen et al 462 and Tóth et al 415. Periodic 

boundary conditions were applied in the x, y and z directions. 

Electrostatic and van der Waals (vdW) interaction cutoffs were set to 10 Å. Long-range 

electrostatic interactions were calculated using the Particle Mesh Ewald (PME)463 method. 

Bonds involving hydrogen atoms were constrained using the SHAKE algorithm. The time step 

was set to 2 fs. 

The system was thermalized in two steps. First, from 0 to 100 K in the NVT ensemble for water 

and ions. Then, up to 310 K in the NPT ensemble for the whole system. Finally, in order to 

allow relaxation of the protein’s side chains, the whole molecular system was equilibrated in 3 

replicas for 1 µs each. The temperature was maintained at 310 K during the production runs 

using Langevin thermostat.464 Berendsen barostat465 was also used to maintain the pressure 

at 1 atm.  

VII.3.3. Selection of reliable protein conformations for docking 

Representative protein structures were extracted from the MD simulations based on the free 

energy landscape with the InfleCS clustering method466 . The InfleCS method is based on a 

Gaussian mixture free energy estimator (GMM). Free energy-based clusters were defined 

using the following parameters: NBD distance, NBD twist, cavity volume of the central protein 

chamber and the root mean square displacements (RMSD) of each ARG residue of the protein 

chamber in contact with water. ARG residues were selected for this analysis because they 

exhibited more flexibility than other aminoacids. The density of states was estimated with an 

80×80 grid and 5 iterations. Up to 16 gaussian components were allowed for Gaussian mixture 

model. 

First, a one-dimensional clustering was carried out for each variable. Three variables exhibited 

at least two energy minima: NBD twist, NBD distance, and the RMSD or ARG998 (Figure S18). 

ARG998 was selected because it was identified as a key residue of MRP4,443 and because its 

RMSD exhibited two separated clusters, contrary to other ARG residues in the protein chamber 

(Figure S18). These variables were selected for further 2D clustering, yielding 25 clusters 

(Figure S19). For the sake of limiting the calculation time, 13 clusters were selected (with 

probability greater than or equal to 0.03), which provided 13 conformations for further docking, 

thus mimicking a partially dynamic docking. For each of them, the conformation corresponding 

to the cluster center was selected as a representative protein structure for docking calculations. 

VII.3.4. Molecular docking 

A thorough docking was performed on the 13 protein structures using Autodock Vina 1.2 

software.467 26 overlapping cubic grid boxes, each 29Å wide, were needed to cover the whole 

protein (Table S3)., to cover the whole protein. The overlap between neighboring boxes was 

10 Å. For each ligand and for each grid, 10 independent replicas, and the exhaustiveness 
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parameter set to 40, ensured a thorough exploration of the conformational space. Up to 20 

poses were saved for each docking calculation, with a maximum energy range of 3 kcal.mol-1 

with respect to the best pose. This extensive procedure generated more than 8 million poses. 

In order to normalize the number of poses in each docked area of the protein structure, among 

poses that were completely inside the common area between overlapped grids, only the poses 

of one of the grids were kept. Following this procedure, about 2 million poses were omitted. 

Additionally, an ATP molecule was also docked to both Nucleotide Binding Sites (NBS1 and 

NBS2) using two grids of 29Å wide (Table S3) and 20 replicas each.  

VII.3.5. Protein structures 

The PDBQT files of the hMRP4 structures were generated using AutoDock tools. The selected 

structures were considered rigid during the docking runs. Although rigid docking does not allow 

the sampling of rotameric states during the docking procedure, the use of 13 structures from 

different clusters allowed mimicking a dynamic docking while drastically reducing the 

computational cost. 

VII.3.6. Ligands 

hMRP4 substrates and modulators were gathered from the CHEMBL database.468,469 Only the 

ligands with available standard values (Km, IC50, Activity and Inhibition) were selected. Ligands 

with Km and IC50 values upper than 100 µM were then omitted, because these ligands are 

likely to be neither substrates nor inhibitors of MRP4. ceefourin 1 and 2, which are specific 

inhibitors or MRP4,345 were added to the dataset. Eventually, 129 ligands remained after this 

selection process.  Ligands were divided into three groups, namely substrates (11), inhibitors 

(112) and substrates/inhibitors (6) (see Table S4). The PDBQT files of ligands were generated 

using Open babel software470 from the their corresponding smiles. The protonation states of 

ligands were set with respect to pH = 7.4. 3D conformations were generated and minimized 

with the GAFF force field using Open babel, and then saved as PDBQT files.471  

VII.3.7. MOLE channels analysis 

Gating channels in a representative structure of hMRP4 from MD simulations were analyzed 

using MoleOnline.472 the accessible radius for the channel entry was set to 5 Å. 

VII.4. RESULTS AND DISCUSSION 

VII.4.1. Relaxation of the hMRP4 structure 

The evolution of several structural parameters was followed during MD simulations. The 

backbone RMSD (Figure S20E) increases up to 5 Å during the first 300 ns (relaxation of the 

protein in the lipid bilayer). Then it stabilizes, showing the convergence towards a stable protein 

structure in its new environment. Prior to adding ATP-Mg molecules, the inward-facing 

domains of the protein tend to close,as the distance between the two NBDs decreased. . 

Although the time scale afforded by conventional MD simulations hinders from observing the 

complete transport cycle, this trend confirms that the presence of ATP molecules favors the 

closure towards an inward-facing closed structure, as already suggested for the alternating-
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access transport cycle.412,473 The linker (L1) exhibited a higher flexibility than the rest of the 

protein backbone (Figure S20). However, at the end of the equilibration stage, L1 stabilizes 

and resides far from residues of interest.   

VII.4.2. Molecular docking highlights five binding regions 

The docking procedure was applied for the 129 hMRP4 ligands. For each ligand, only poses 

having an energy of binding 1 kcal.mol-1 greater than the most favorable one were kept for 

further analyses. The selection of binding regions was based on a visual inspection of the 

density of centers of mass (COMs) of the molecules. Among the twelve identified binding 

regions, five (Regions 1 - 5) exhibited a particularly high density of ligand COMs (Figure 37A 

and Table S5). Most of them were located in the central region of the protein. Other seven 

minor regions (Regions 6-12) were observed (Figure 37B and Table S5).  
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Figure 37: (A) Most important regions defined after projecting the center of masses (COM) of all 

ligands exhibiting a binding energy not greater than 1 kcal/mol compare to the best pose. Regions 1 - 
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5 exhibited high density of COMs. (B) Peripheral regions of ligand COMs (Regions 6 - 12). Region 8 

contains only inhibitors and the residues involved in the binding are depicted in the top of the panel B. 

 

Region 1 is the center of the protein chamber, which constitutes the main binding site for all 

ligand types. This region lies inside the inner cavity of the transmembrane core of the protein 

and it contains key residues which have been reported to rationalize the MRP4 protein 

function.435,443,444 It exhibited the highest density of poses compared to other regions (Figure 

37). The solvent-accessible part of this region 1 contains 13 % of positively charged, less than 

9 % anionic, 27 % of polar and 22 % of aromatic residues, and 28 % residues with hydrophobic 

side chain (Figure 38 and Table S6). The relatively high proportion of cationic and aromatic 

residues correlates with the aromatic and anionic substrates transported by MRP4.  

Region 2 is between region 1 and a part of the linker L1 (from PHE654 to SER668). It is located 

at the entry of the protein chamber at the top of the polar head groups in the lipid bilayer 

membrane. Compared to region 1, it contains a lower proportion of aromatic residues (11 %), 

and a higher proportion of cationic (28 %) and anionic (21 %) residues (Figure 38 and Table 

S6). This suggests that typical aromatic ligands may have a better affinity for region 1 than 

region 2, while charged ligands may bind rather in region 2. Region 2 also shares three known 

key residues with region 1, namely GLU374, ARG375 and GLU378. 

 

 

Figure 38: Fraction of positively charged (ARG, LYS), negatively charged (GLU, ASP), polar (SER, 

THR, ASN, GLN, CYS), aromatic (TRP, PHE, TYR, HID, HIE) and hydrophobic residues in each of the 

identified regions. 

 

Region 3 lies in an outer solvent-exposed area in between TMD1 and NBD1. It contains mostly 

polar residues. The analysis of access channels by MOLE highlighted an entry channel (brown 

surface in Figure 39), which connected the path observed between Regions 1, 2 and 3. (Figure 

39 and Figure 37A). Interestingly, nearly half of the ligands in this study (60 ligands: 8 

substrates, 48 inhibitors and 4 substrates/inhibitors) were found to bind to all these three 

regions, with poses within 1 kcal.mol-1 of each other (Table S7). Therefore, interconnection 

between these three regions may consist of an iso-energetic path through which ligands can 

access the center of the protein chamber. Interestingly, a flexible part of linker L1 is located 

between regions 2 and 3. It may play a regulatory role in this potential entry channel. 
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Figure 39: Pore channel predicted using MOLE (brown transparent surface) and ligand COMs from 

Region 3 (black circle) to Region 2 (the elbow of the arrow) to Region 1 (head of the arrow) projected 

on a representative hMRP4 structure.  

 

Region 4 is located at the degenerate ATP binding site 1 (NBS1, see Figure 37A). Most of the 

substrates binding this region possess a purine-like moiety, such as mercaptopurine 

(CHEMBL1425), adefovir (CHEMBL484) and tenofovir (CHEMBL483). Likewise, inhibitors 

such as thioguanine (CHEMBL727), indoprofen (CHEMBL15870), nalidixic acid (CHEMBL5) 

also bind this region. The aromatic moiety of the bound ligands is mainly interacting with A-

loop of NBS1.  

Region 5 is located in between both NBDs. The proportion of cationic residues is higher than 

anionic ones (Figure 38). The inhibitors which are binding here could hinder the ABC closing, 

thus slowing down or even blocking the transport cycle.  

The seven minor regions (Regions 6-12) are smaller and exhibit a lower density of ligands 

(Figure 37B). Region 6 lies in the vicinity of the TMD1 between TMH1, 2, 3, and 6 at the outer 

surface of the protein chamber. This region is isolated, as channel analysis revealed no 

interconnection with other regions. It lies near the lipid polar head groups. Region 6 highlighted 

no charged residues (Figure 39).  

Region 7 and 8 are in the outer surface of the chamber, in contact with the lipid bilayer part. 

Interestingly, region 8 contains many aromatic residues such as TYR701, PHE705, PHE840 

and PHE843 and the positively charged ARG782 which is a residue exclusive to MRP4 and 
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MRP5 proteins435 (Figure 37B and Figure 39). Accordingly, region 8 binds amphiphilic 

molecules with both a hydrophobic (often aromatic) moiety, and a polar moiety (carboxyl, nitro 

or sulfonyl). Interestingly, only inhibitors bind in region 8, namely ibuprofen, ketoprofen, 

flurbiprofen, acitretin, undecylenic acid, entacapone and etoricoxib. 

Region 10 is in the entry from the solvated open part while region 9 is more in contact with the 

L1 and TMH3. Region 9 does not contain any solvent-accessible aromatic residue (Figure 38). 

Region 10 lies between the top of NBD2, THM4 and TMH5. Regions 11 and 12 are both in the 

NBD2 but far from NBS2. 

VII.4.3. Identifying new key residues 

To identify key residues in the binding regions, the contacts between ligands and aminoacids 

were counted. A contact was defined as a distance lower than 5 Å between any C, N or O 

atoms of the ligand and the aminoacids. Since hMRP4 is an efflux transporter for aromatic and 

negatively charged substrates,428 only positively charged and aromatic residues were 

considered here. Concerning the ligands, only poses having an energy of binding 1 kcal.mol-1 

lower than the best ranked pose were taken into account. The contact counts are reported in 

Figure 40. Contacts considering all non hydrophobic residues are reported in Figure S21. 

Key residues already identified in the literature as necessary for hMRP4 function (namely: 

TRP995, ARG998 and PHE368)443,444 were found in contact of most ligands (Figure 40). They 

are located in Region 1, i.e., in the main part of the chamber. 

Interestingly, we highlighted many other residues (Figure 40). Among them, ARG362, 

PHE324, TYR728 and LYS106 interacted strongly with known substrates, inhibitors, and 

substrate-inhibitors. These residues of region 1 may constitute potential targets for 

mutagenesis studies to further investigate their role in functioning and transport cycle of 

hMRP4.  

Another interesting residue common to all ligand classes, TRP419, is located at the degenerate 

ATP binding site of NBS1 (Region 4), where it binds the aromatic adenosine moiety of the 

ATP. TRP419 is actually the A-loop, a residue known in ABC transporters to bind the aromatic 

moieties of purine-like substrates. However, it has been reported that, for ABC exporters, the 

aromatic TRP residue, in NBS1, confers strong binding to the adenosine moiety compared to 

the canonical site where it is replaced by the canonical TYR residue.437 This suggests that the 

binding of any ligand to the degenerate site requires better binding affinity than the ATP 

molecule. An example of mercaptopurine bound to NBS1 and interacting with TRP419 by π-π 

stacking, was comparable to the binding of the ATP purine moiety (Figure S22). The docking 

score for mercaptopurine was -5.3 kcal.mol-1 in NBS1 and it was -8.4 kcal.mol-1 for ATP. This 

significant difference indicates a stronger binding of ATP compare to mercaptopurine. 

TYR985 exhibited numerous contacts only with substrates, while LYS1116 was found close to 

only inhibitors. This may suggest the potential role of TYR985 in the substrate export 

mechanism. It is worth noting that the aromatic residue from Region 6 (TYR88) were found to 

interact only with inhibitors, which may suggest a probable allosteric site to hinder the 

conformational change and, hence, the transport of substrates through hMRP4 protein. 
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Figure 40: Count of the first 30 cationic and aromatic aminoacids in contact with the ligands 

(substrates, inhibitors and substrates/inhibitors) and their corresponding regions. Counts are 

normalized in each ligand class by the maximum number of counts among residues.  

 

VII.4.4. Differences in binding regions for substrates and inhibitors 

Comparing the binding positions of both inhibitors and substrates over the whole protein 

highlighted that the inhibitors can occupy all substrate binding regions (Figure S23). The 

contrary is not true, as a few small binding regions are specific to inhibitors (e.g. Region 8).  

In order to assess whether some binding regions could be associated primarily with ligand 

binding for transport or inhibition, the binding of substrates, inhibitors, and substrates-inhibitors 

was analyzed separately (Figure 41). Region 1 exhibited the highest binding fraction for all 

ligand types (i.e., substrates, inhibitors and substrates/inhibitors). This correlates well with the 

fact that region 1 corresponds to the main binding pocket. This corresponded to 35% of 

substrates that are bound in Region 1, while it was the most favored region for 54% of inhibitors 

and 33% of substrate-inhibitors. Since the majority of inhibitors bind in this region, it is likely 

that the inhibitors may act via competitive inhibition.  

Moreover, estradiol 17β-D-glucuronide, a known MRP4 substrate, as well as several ligands 

(e.g., clofazimine, sildenafil, and estradiol-disulfate) were highlighted to bind only in region 1 

(see Table S8).  

 

 

Figure 41: Fractions of the bound ligands (substrates, inhibitors and substrates/inhibitors) at every 

defined region. Here, as in the all the results in this work, only poses within 1 kcal.mol-1 from the best 

ligand pose were considered. 

 

Regions 2 and 3 account for 24% of all substrate binding. This supports the hypothesis that 

substrates bind equivalently to several adjacent zones from Region 3, following the iso-

energetic path (Figure 39) to the central protein chamber.  

Region 2 binds a very small fraction of inhibitors (5% of bound poses). Inhibitors are mostly 

concentrated in Region 1 and to lesser extent in Region 3 (15%).  In Region 4 (ATP binding 

site), only 5% of inhibitors were found, including thioguanine, indoprofen and nalidixic acid. 

Substrates-inhibitors exhibited a distribution in binding regions similar to substrates, with a 

higher proportion in region 5 (23%). One prototypical example of substrate-inhibitor binding in 

Region 4 is cyclic adenosine monophosphate (cAMP), which is a well-known endogenous 
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substrate of MRP4 and shares most of its structure with ATP. However, the small number of 

substrates-inhibitors in this study (i.e., 6) prevents generalization.  

Region 6 exhibited higher binding to all types of ligands than the other minor binding regions 

(Regions 5- 12) that accounted for 12% of binding of substrates and inhibitors, and almost no 

substrates-inhibitors.  

VII.5. CONCLUSION 

Here, we performed a thorough docking study for 129 substrates, inhibitors and 

substrate/inhibitors of hMRP4 on the overall structure of the protein. Five major binding regions 

were highlighted, where Region 1 is the protein chamber in which the key residues previously 

reported in the literature were present. It is the most favorable binding region for all ligands. 

An equivalent implication of Regions 2 and 3 was observed, which suggested an iso-energetic 

gating path leading the central chamber of the protein. This was supported by MOLE channel 

analysis, which highlighted an overlap of the resulting channels from Region 3 to Region 1. 

Other small regions were also identified and account for less ligand binding. Several regions 

were common for substrates and inhibitors, in particular Region 1 and 3, while Region 8 was 

exclusively specific to inhibitors, which may suggest an allosteric binding site for inhibitors with 

its own key residues. 

Moreover, the analysis of residues in contact with each type of ligands was established. We 

identified key residues namely TRP995, PHE368 and ARG998 (correlating with the literature) 

as well as other potential residues, namely ARG362, PHE324, TYR728 and LYS106 to be in 

tight interaction with all types of ligands. Interestingly, TYR985 was found to be specific to 

substrates. These identified residues may guide further targeted mutagenesis studies to 

investigate their role in substrate binding and translocation, and in the inhibition process. 
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Conclusion 

Transport of xenobiotics inside the body involves their passage through lipid bilayer 

membranes. This mostly consists of two major membrane transport processes: (i) passive 

permeation along the concentration gradient across the membrane,  and (ii) active transport 

requiring energy via membrane proteins. Passive permeation is common to most hydrophobic 

and amphiphilic molecules. Understanding the ability of xenobiotics to spontaneously cross 

the membrane is important in the drug discovery process. Passive permeation is commonly 

measured by the logarithm of the passive permeation coefficient (logPerm). It can be measured 

experimentally or calculated by theoretical methods. Based on the ISDM theory, computational 

methods must determine two main ingredients across the lipid bilayer normal: the potential of 

mean force (free energy), and the diffusivity profiles. 

In Chapter V and Chapter VI of this thesis, we used the AWH method for the first time on all-

atom POPC membrane system to model both PMF and diffusivity profiles, creating a method 

named Memcross. In Chapter V, 13 different molecules (mostly substrates for ABC 

transporters) were subjects for determining their logPerm. First, we compared the performance 

of FEP and Memcross methods to model the PMF profiles of a small alcohol molecule (i.e., 

ethanol) and larger polyphenols (quercetin, resveratrol and curcumin). Memcross has the 

advantage over FEP for being more accurate to assess the free energy profile and the 

orientation of the three molecules along the lipid bilayer, and faster in terms of simulation time. 

Moreover, fractional diffusivity profiles were computed from AWH trajectories, which allowed 

to take the subdiffusive behavior of permeants in the membrane core into account. We 

extended the use of Memcross to another set of 9 molecules including 4 acids, for which the 

protonation state across the permeation path was assessed. 

In Chapter VI, to evaluate the performance of Memcross for logPerm predictions, we compared 

logPerm values of a large number of structurally different compounds with four different 

experimental measurements (Liposomes/BLM, PAMPA-DS, BBB and Caco2/MDCK). This 

includes neutral molecules, acids, bases and zwitterions. The correlations yielded a very good 

correlation with simplistic PC-based liposomes (R²=0.83). Adding measurements from mixed 

datasets (liposomes and BLM) slightly decreased the correlation (R²=0.71). We identified that 

Memcross might not be suited for carbohydrates. Furthermore, a relatively good agreement 

with PAMPA-DS experimental logPexp was highlighted (R²=0.66). Weaker correlations were 

identified with datasets from cell-based membrane model (i.e., BBB and Caco2/MDCK) mostly 

due to the difference in membrane composition, (e.g., cholesterol and other non-PC-based 

lipids), the presence of non-suspected membrane transporters, USLs, and transport across 

tight junctions. The residual error between calculated and experimental logPerm was shown to 

be multifactorial. In addition, we evaluated the required simulation time for each type of 

molecules based on their molecular weight as it was shown to be strongly related to the 

convergence of logPerm during the AWH simulations. The diffusivity profile calculated either by 

using the fractional, classical or set as a constant value does not have a substantial role in 

determining logPerm for most hydrophilic and amphiphilic molecules. 

These projects raise future perspectives to optimize the correlation of the calculated logPerm 

with PC-based membrane models. First, a benchmark of logPerm values over different methods 

for predicting the partial charges of the ligand atoms should be considered. Regarding 

carbohydrates, proper force filed such as GLYCAM can be used instead of GAFF2. For ions, 

standard dedicated forcefields can be used. Second, a benchmark over different forcefields 
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such as CHARMM36, Lipid21 and Slipids2021 could be of interest. Third, it would be 

interesting to evaluate the effect of different membrane compositions using mixtures of lipids 

including sphingolipids and cholesterol on Memcross performance. Fourth, biasing additional 

collective variables such as the orientation of the molecules could improve sampling and 

reduce the computational effort. Finally, and simulations using the whole translocation pathway 

(i.e., from one water medium to the other water side), particularly in the case of asymmetric 

membranes, could be adopted in the AWH algorithm to improve the free energy surface 

prediction. Furthermore, thanks to the full atomic resolution of our model and its flexibility, the 

permeation of molecules in the presence of other compounds (e.g., membrane proteins, 

peptides, or other small molecules) in the lipid bilayer medium can be investigated. 

Correspondingly, the impact of these accompanying biomolecules may affect the permeation 

could improve the correlation to more complex membrane systems (BBB and Caco2). 

In Chapter VII, we tackled the active transport event through the human MRP4 membrane 

protein. First, the best model of hMRP4 structure was gathered from AlphaFold2, an artificial 

intelligence-based tool, which provides models with an accuracy rivaling the best experimental 

methods. The protein was embedded into a POPC and cholesterol lipid bilayer and relaxed 

using MD simulations. Second, a thorough molecular docking was established on the whole 

protein structure to identify potential binding sites of known hMRP4 substrates and inhibitors. 

Mainly, 6 binding regions were highlighted to bind all ligands. The main chamber of the protein 

(Region 1) was identified to be the most occupied region for all ligands. The interconnection 

between these regions, in particular from region 3 to 1 suggested an iso-energetic path that 

could allow these ligands to enter the main chamber. The ATP-binding site 1 was also identified 

to bind substrates/inhibitors in the A-loop domain. Other small regions were identified to bind 

specific ligands (Region 8 for inhibitors). Finally, the analysis of binding residues highlighted 

previously reported key residues (ARG368 and PHE995). New potential key residues were 

identified from this study. They constitute potential targets to investigate the substrates 

translocations or in the inhibitory mechanism. Based on these results, a further step would be 

to study the drug-drug interaction mechanism. One way to do this could be to select a known 

couples of substrates and inhibitors and to study the impact of the inhibitors on the dynamics 

of the protein structure using previously developed tools in our lab (e.g., clustering, allosteric 

network analysis, machine learning-based studies of the transport cycle). 
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Appendix 1. Supplementary information for Chapter VI: “MemCross, a robust 

computational tool to evaluate permeability coefficients of drug-like molecules” 

 

 

 

 

 

Figure S1: Chemical structures of the set of molecules used in the current study. (A): neutral and (B): 

acids. 
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Figure S2: A representative snapshot showing the different depths of quercetin used in FEP 

calculations. z = 0 Å is the center of membrane and z = 40 Å is water. 

 

 

Figure S3: A) Molecular vectors used to calculated angle distributions and angle convergence 

assessment for quercetin, resveratrol and curcumin. B) Example of angle convergence of quercetin 

during equilibration runs before starting FEP calculations. The different panels represent different 

depths (windows) where the molecules were put with three different orientations over three runs. 
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Figure S4: Overlap matrices plotted using MBAR from FEP calculations decoupling runs (electrostatic 

and VWD) for ethanol, quercetin, resveratrol and curcumin. They represent the overlap between the 

distributions of potential energy differences. 

 

 

 

 

Figure S5: A) Computed PMF profiles, shifted by a the free energy of deprotonation in water (ΔGdeprot) 

and B) Fractional diffusivity profiles (neutral, ionized and combined) for caffeic acid, methotrexate, 

MK571 and ceefourin 2. Standard errors were calculated over three replicas. 
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Figure S6: Comparison of free energy of partition (blue) and flip-flop (red). A) for ethanol between the 

FEP and AWH methods used in the current paper and the literature [70]. B) for neutral molecules. C) 

for ionizable molecules. 
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Figure S7: A) PMF profiles of ethanol using various values of initial diffusion constant (D0) and error 

limit value (ε0). B) Table showing initial stage times where the molecules has sampled all the reaction 

coordinate and after which the sampling is supposed to obey a asymptotic regime. 

 

 

 

Figure S8: Convergence of computed permeation coefficient by MemCross (reported as 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑐𝑎𝑙𝑐) as a 

function simulation time with Δt = 100 ns. 
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Figure S9: Normalized angle distributions of ethanol, quercetin, resveratrol and curcumin during FEP 

calculations at different windows. Only trajectories for the first λ-state were considered where the 

molecules maintain all their interactions with their environment. 

 

 

Figure S10: A) Fractional diffusivity (𝐾𝛼) profiles of ethanol for different lag-times Δt compared to B) 

the diffusivity profiles calculated based on classical Smoluchowski equation. 

 



 

Mehdi Benmameri | Ph.D. Thesis | University of Limoges | 2022 173 

License CC BY-NC-ND 4.0 

 

Figure S11: Number of contacts between water molecules and the permeant at Z-transition point 

(crossover point between neutral and ionized PMF profiles) at which the permeant neutralizes. 

 

 

Table S1: Equilibration times required for angle convergence during equilibration runs before 

launching FEP calculations. * Window here reflects the depth where the molecules were placed, i.e., 

the distance between the membrane and the molecule center of masses. 

 

 

  

Window 
(Å)* 

Angle 
(°) 

Equilibration time (ns) 

Ethanol Quercetin Resveratrol Curcumin 

0 

0 50 40 15 10 

90 50 50 15 15 

180 50 50 15 100 

4 

0 50 50 10 20 

90 50 30 10 20 

180 50 30 10 15 

13 

0 50 20 15 50 

90 50 10 10 35 

180 50 50 25 15 

22 

0 50 40 100 30 

90 50 25 50 25 

180 50 10 50 35 
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Appendix 2. Supplementary information for Chapter VI: “MemCross, a robust 

computational tool to evaluate permeability coefficients of drug-like molecules” 

 

 

 

Figure S12: Fitted linear regression models upon correlations between 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠and 𝑙𝑜𝑔𝑃𝑒𝑟𝑚

𝑒𝑥𝑝
 for 

the whole set of liposomes/BLM membrane measurements for (A) the fractional model for diffusivity 

calculations and (B) the fractional model for diffusivity calculations. We highlight all sugars (D-glucose, 

D-fructose and sucrose) as outliers as they all overpass the dotted lines with corresponds to twice the 

standard deviation of 𝑙𝑜𝑔𝑃𝑒𝑟𝑚residuals where (residual = 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑒𝑥𝑝

 - 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠). (C) Correlation 

between 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠using fractional vs classical diffusivities. (D) Correlation between 

𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠using fractional vs flat (D = 10 Å².ns-1) diffusivities. 
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Figure S13: Predicted logPerm residual vs Actual logPerm residual calculated using a multivariate linear 

combination model based on different molecular descriptors and PMF-linked parameters. 
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Figure S14: Comparison of of 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠  (A) and 𝑙𝑜𝑔𝑃𝑒𝑟𝑚

𝑃𝑒𝑟𝑀𝑀 (B) with the mixed set of 

liposomes/BLM (C) and liposomes-only set (D). 
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Figure S15: Comparison of 𝑙𝑜𝑔𝑃𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠and 𝑙𝑜𝑔𝑃𝑒𝑟𝑚

𝑃𝑒𝑟𝑀𝑀with the PAMPA-DS data set (A-B), with BBB 

data set (C-D), and with Caco2/MDCK data set (E-F), respectively. 
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Table S2: Molecules used in this study with their corresponding logP𝑒𝑟𝑚
𝑀𝑒𝑚𝐶𝑟𝑜𝑠𝑠 and logP𝑒𝑟𝑚

𝑒𝑥𝑝
 values. 

Molecules MemCross LogPerm Experimetal 
LogPerm 

Membrane 
type 

1,6-Hexanediol -0.01624 -3.65 BLM 

Butanol 1.41852 -2.92 Liposomes 

Ethanol 0.48974 -4.42 Liposomes 

Isobutyramide -0.43765 -3.7 BLM 

n-Butyramide -0.60675 -3.52 BLM 

Propanol 1.05386 -3.55 Liposomes 

Propionamide -1.22571 -4.21 Liposomes 

Erythritol -1.84684 -6.4 Liposomes 

Theophylline 0.47019 -3.53 BLM 

1,4-Butanediol -0.63081 -3.57 BLM 

2,3-Dideoxyadenosine -0.78663 -4.2 BLM 

2-Deoxyadenosine -2.22795 -6.03 BLM 

Acetamide -2.18757 -3.54 BLM 

Adenine -3.59046 -4.86 BLM 

Ethylene glycol -1.18629 -4.06 BLM 

Formamide -2.9115 -4 BLM 

Glycerol -1.0259 -5.27 BLM 

Hydrocortisone 0.68849 -3.25 BLM 

Prednisolone -0.6072 -3.82 BLM 

Propylene glycol -0.44829 -3.55 BLM 

Urea -6.36484 -5.4 BLM 

Water -1.56571 -2.72 BLM 

D-Glucose -3.8 -10.52 Liposomes 

D-Fructose -2.1 -9.4 Liposomes 

Sucrose -4.25 -13.1 Liposomes 

1-Naphthoic acid 0.92247 0.36 BLM 

2-Naphthoic acid 2.25314 1.23 BLM 

4-Carboxymethylphenyl acetyl-
NHMe 

-1.93156 -4.47 Liposomes 

4-Carboxymethylphenyl acetyl-
Gly-NMe2 

-2.20721 -5.8 Liposomes 

4-Carboxymethylphenyl acetyl-
NMe2 

-0.39656 -3.48 Liposomes 

p-Hydroxybenzoic acid -1.399 -3.08 BLM 

9-Anthroic acid -0.49271 0.51 BLM 

Acetic acid -1.84131 -2.3 BLM 

Carbamide methylhippuric acid -5.82982 -8 Liposomes 

Carbamoyl-p-Toluic acid -3.73687 -4.39 BLM 

Carboxy methylhippuric acid -4.34812 -6.77 Liposomes 

ɑ-Carboxy p-Toluic acid -1.82176 -3.74 BLM 

Cl methylhippuric acid -1.2294 -3.46 Liposomes 

ɑ-Chloro p-Toluic acid 1.77929 -0.19 BLM 

CN methylhippuric acid -2.56638 -5.04 Liposomes 

ɑ-Cyano p-Toluic acid -0.03919 -1.57 BLM 

Hydroxy methylhippuric acid -2.28293 -6.26 Liposomes 
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ɑ-Hydroxy p-Toluic acid 0.10707 -2.8 BLM 

Methoxy methylhippuric acid -1.90195 -4 Liposomes 

ɑ-Methoxy p-Toluic acid 1.19925 -0.46 BLM 

Benzoic acid 0.98645 -0.24 BLM 

Butyric acid 0.40472 -1.02 BLM 

Hexanoic acid 1.34714 0.04 BLM 

Lactic acid -2.07662 -4.3 BLM 

Propionic acid -0.73673 -1.46 BLM 

Salicylic acid 0.01393 -0.11 BLM 

Tol  GLY-GLYSar -2.32206 -7.31 BLM 

Tol GSar -0.67994 -4.72 BLM 

Tol-Ala 0.47334 -2.64 Liposomes 

Tol-Ala-Ala 0.59732 -4.96 Liposomes 

Tol-Ala-Ala-Ala -0.9628 -7.02 Liposomes 

Tol- Gly -1.00E-05 -3.19 Liposomes 

Tol  Gly-Gly -0.94718 -6.38 Liposomes 

Tol-Gly-Gly-Gly -2.79398 -8.77 Liposomes 

Tol- Gly-Sar- Gly -3.40142 -7.32 Liposomes 

Tol-Sar- Gly -0.68125 -5.49 Liposomes 

Tol-Sar Gly-Gly -2.7838 -7.85 Liposomes 

Tol-Sar-Sar- Gly -1.31115 -7.12 Liposomes 

Tol-Sar -1.51587 -2.82 Liposomes 

2,4-Dihydroxybenzoic acid -0.04675 -3.33 BLM 

2-Hydroxybutyric acid -2.56778 -3.91 BLM 

2-Hydroxycaproic acid 0.17874 -3.67 BLM 

2-Hydroxyvaleric acid -0.2393 -3.53 BLM 

Acetylsalicylic acid 0.28451 -0.82 BLM 

BromoAcetic acid 0.19282 -2.91 BLM 

ChloroAcetic acid -0.4906 -2.94 BLM 

Citric acid -6.3002 -10.51 Liposomes 

Epinephrine -0.28743 -5.57 Liposomes 

Formic acid -2.78605 -2.54 BLM 

Isobutyric acid 0.68119 -3.03 BLM 

Isovaleric acid 0.80872 -2.88 BLM 

Malic acid -5.48207 -7.92 Liposomes 

PhenylAcetic acid 0.48792 -3.09 Liposomes 

Pivalic acid 0.70853 -3.62 BLM 

Sebacic acid -0.41166 -3 BLM 

Tiglic acid 1.0331 -2.87 BLM 

Valeric acid 0.39185 -1.1 Liposomes 

Vanillic acid -1.58868 -3.58 BLM 

Tol-Gly -5.15422 -9.36 Liposomes 

12-Hydroxydodecanoic acid -0.40215 -4.7 BLM 

2-Hydroxynicotinic acid -5.18328 -6.78 Liposomes 

3,5-Dichlorobenzoic acid -0.83058 -7.17 Liposomes 

Carbamide methylhippuric acid -9.81947 -12.7 Liposomes 
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Carboxy methylhippuric acid -9.75713 -12.52 Liposomes 

CN methylhippuric acid -6.82312 -10.02 Liposomes 

Hydroxy methylhippuric acid -7.38991 -11.66 Liposomes 

Methoxy methylhippuric acid -4.35144 -9.82 Liposomes 

Salicylic acid -4.0263 -6.94 Liposomes 

Codeine 3.98951 -0.85 BLM 

Ethylamine 0.69211 -0.92 BLM 

Methylamine 0.25298 -1.1 BLM 

Chlorpromazine 4.00177 0.59 Liposomes 

Domperidone 1.48224 -2.6 Liposomes 

Ethanolamine -0.6835 -4.89 Liposomes 

Histamine -2.35669 -4.46 BLM 

Labetalol 3.49936 -2.1 Liposomes 

Propranolol 3.57007 0.19 Liposomes 

Tryptamine 0.82336 -0.76 BLM 

Verapamil 4.23183 0.01 Liposomes 

Methylamine -2.50347 -6 Liposomes 

Ethylamine -2.48251 -6.15 Liposomes 

Propylamine -1.24315 -5.37 Liposomes 

Pentylamine 0.19321 -3.4 Liposomes 

Enrofloxacin 2.65011 -3.91 Liposomes 

Fleroxacin 0.38521 -4.96 Liposomes 

Norfloxacin -2.27105 -6.23 Liposomes 

Pefloxacin 0.45868 -4.28 Liposomes 

Glycine -6.47581 -11.24 Liposomes 

L-Tryptophan -4.7912 -9.39 Liposomes 

L-Phenylalanine -2.61806 -9.6 Liposomes 

L-Serine -5.76824 -11.26 Liposomes 

L-Lysine -9.94105 -11.29 Liposomes 

11-b-Hydroxyprogesterone 2.88227 -3.46 L- 

11-Dehydrocorticosterone 1.46552 -4.36 PAMPA-DS 

11-Deoxycortisol 1.78603 -3.8 PAMPA-DS 

Acetaminophen -1.53702 -5.81 PAMPA-DS 

Albendazole 2.75159 -3.12 PAMPA-DS 

Alfuzosin 3.51092 -4.34 PAMPA-DS 

Aminoglutethimide -0.24223 -3.76 PAMPA-DS 

Aniline 2.01529 -3.71 PAMPA-DS 

Bendroflumethiazide -0.3255 -5.27 PAMPA-DS 

Benserazide -6.75521 -10.7 PAMPA-DS 

Budesonide 2.46789 -2.62 PAMPA-DS 

Caffeine 1.25375 -5.55 PAMPA-DS 

Carbamazepine 0.90506 -3.73 PAMPA-DS 

Chloramphenicol 1.57653 -5.3 PAMPA-DS 

Chlorthalidone -1.56055 -6.64 PAMPA-DS 

Clonidine 2.85891 -3 PAMPA-DS 

Corticosterone 2.60259 -3.86 PAMPA-DS 
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Cortisone 1.31022 -4.46 PAMPA-DS 

Creatinine -4.8657 -7.52 PAMPA-DS 

Cyclothiazide -2.94835 -5.46 PAMPA-DS 

Danazol 5.57251 -1.79 PAMPA-DS 

Deoxycorticosterone 3.85085 -2.85 PAMPA-DS 

Dexamethasone 1.45582 -4.05 PAMPA-DS 

Diazepam 2.79862 -2.44 PAMPA-DS 

Erythritol -1.8474 -8.56 PAMPA-DS 

Ethosuximide 0.12484 -5.2 PAMPA-DS 

Famciclovir 0.74962 -4.59 PAMPA-DS 

Felodipine 4.12118 -3.48 PAMPA-DS 

Flavone 3.45306 -2.1 PAMPA-DS 

Genistein 1.99184 -4.69 PAMPA-DS 

Griseofulvin 3.20544 -3.61 PAMPA-DS 

Guanfacine -0.97434 -2.56 PAMPA-DS 

Hydrochlorothiazide -1.89534 -8.3 PAMPA-DS 

Hydrocortisone 0.69603 -4.32 PAMPA-DS 

Lamotrigine 1.46983 -5.87 PAMPA-DS 

Lansoprazole 2.25359 -3.89 PAMPA-DS 

Meprobamate -0.81755 -5.71 PAMPA-DS 

Methylprednisolone -2.57974 -4.38 PAMPA-DS 

Metolazone 0.20647 -4.85 PAMPA-DS 

Minoxidil 0.25048 -4.62 PAMPA-DS 

Nifedipine -0.61202 -3.35 PAMPA-DS 

Nitrendipine 2.15984 -1.8 PAMPA-DS 

Pemoline -1.84907 -4.93 PAMPA-DS 

Phenytoin 0.26141 -4.37 PAMPA-DS 

Praziquantel 2.60208 -2.78 PAMPA-DS 

Prednisolone -0.58889 -4.46 PAMPA-DS 

Prednisone 2.75626 -4.33 PAMPA-DS 

Primidone -0.06058 -5.44 PAMPA-DS 

Progesterone 3.69713 -2.55 PAMPA-DS 

Propylthiouracil -1.3749 -5.36 PAMPA-DS 

Quintozene 4.15779 -2.2 PAMPA-DS 

Resveratrol 1.26145 -4.38 PAMPA-DS 

Testosterone 2.69058 -2.83 PAMPA-DS 

Theophylline 0.47457 -5.99 PAMPA-DS 

Thiabendazole 2.87504 -3.45 PAMPA-DS 

Valdecoxib 2.71161 -4.1 PAMPA-DS 

Alprazolam 2.45839 -3.73 PAMPA-DS 

Antipyrine 1.82347 -5.69 PAMPA-DS 

Etoposide 1.95707 -5.22 PAMPA-DS 

Ganciclovir -7.83583 -8.26 PAMPA-DS 

Isocarboxazid 2.9566 -4.75 PAMPA-DS 

Netivudine -3.77393 -7.26 PAMPA-DS 

Omeprazole 3.98469 -3.49 PAMPA-DS 
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Pantoprazole 0.14234 -3.4 PAMPA-DS 

Triamcinolone 1.29987 -5.22 PAMPA-DS 

Trioxsalen 3.48321 -2.89 PAMPA-DS 

b-Naphthoic acid 2.40248 -2.72 PAMPA-DS 

3,4-Dihydroxyphenylacetic acid -2.90888 -6.15 PAMPA-DS 

3-Hydroxyphenylacetic acid -1.90329 -4.25 PAMPA-DS 

3-Phenylpropionic acid 1.26349 -3.89 PAMPA-DS 

Acetylsalicylic acid 0.29759 -4.45 PAMPA-DS 

Carbamoyl-p-Toluic acid -3.7512 -5.91 PAMPA-DS 

ɑ-Carboxy p-Toluic acid -1.81884 -4.51 PAMPA-DS 

ɑ-Chloro p-Toluic acid 1.84601 -3.03 PAMPA-DS 

ɑ-Cyano p-Toluic acid -0.04416 -4.33 PAMPA-DS 

ɑ-Hydroxy p-Toluic acid 0.10779 -5.02 PAMPA-DS 

ɑ-Methoxy p-Toluic acid 1.23872 -4.13 PAMPA-DS 

Benzoic acid 1.01083 -3.94 PAMPA-DS 

Benzthiazide -1.12085 -6.43 PAMPA-DS 

Cerivastatin 4.76792 -3.01 PAMPA-DS 

Diclofenac 3.55177 -1.37 PAMPA-DS 

Flufenamic acid 3.12798 -1.19 PAMPA-DS 

Flumequine 1.0282 -3.85 PAMPA-DS 

Flurbiprofen 2.26276 -1.78 PAMPA-DS 

Fluvastatin 4.89625 -2.73 PAMPA-DS 

Furosemide 1.07221 -4.03 PAMPA-DS 

Gemfibrozil 4.1455 -1.59 PAMPA-DS 

Glipizide 1.17516 -4.41 PAMPA-DS 

Ibuprofen 3.16277 -2.11 PAMPA-DS 

Indomethacin 2.74208 -1.65 PAMPA-DS 

Isoxicam 0.34366 -3.2 PAMPA-DS 

Kaempferol 0.11367 -5.66 PAMPA-DS 

Ketoprofen -1.81804 -2.67 PAMPA-DS 

Lactic acid -2.08076 -6.2 PAMPA-DS 

Mefenamic acid 3.78755 -1.41 PAMPA-DS 

Nalidixic acid 2.58264 -3.88 PAMPA-DS 

Naproxen 0.04117 -2.3 PAMPA-DS 

Oxolinic acid 0.0533 -4.66 PAMPA-DS 

Phenylbutazone 3.94962 -1.96 PAMPA-DS 

Piroxicam 3.49688 -3.32 PAMPA-DS 

Probenecid -1.14405 -1.83 PAMPA-DS 

Quercetin 2.56898 -4.77 PAMPA-DS 

Rosmarinic acid -0.96183 -7.39 PAMPA-DS 

Salicylic acid 0.01882 -2.64 PAMPA-DS 

Warfarin 1.21298 -2.59 PAMPA-DS 

Zomepirac 4.0084 -2.61 PAMPA-DS 

Ceftibuten -2.36902 -7.64 PAMPA-DS 

Chlorothiazide -3.80057 -6.58 PAMPA-DS 

Meloxicam 2.03521 -2.86 PAMPA-DS 
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Amlodipine 4.92079 0.62 PAMPA-DS 

4-Phenylbutylamine 2.56929 -0.59 PAMPA-DS 

Acebutolol 1.26768 -3.39 PAMPA-DS 

Albuterol 0.31352 -4.92 PAMPA-DS 

Alfentanil 5.8105 -3.53 PAMPA-DS 

Alprenolol 3.63416 0.02 PAMPA-DS 

Amantadine 2.66254 -1.21 PAMPA-DS 

Amiloride -2.40586 -7.38 PAMPA-DS 

Amitriptyline 5.2088 1.3 PAMPA-DS 

Amoxapine 5.07623 -1.66 PAMPA-DS 

Astemizole 6.16269 1 PAMPA-DS 

Atenolol 0.50824 -5.06 PAMPA-DS 

Bepridil 5.84237 1.63 PAMPA-DS 

Bremazocine 5.0693 -1.49 PAMPA-DS 

Brompheniramine 5.54741 -0.35 PAMPA-DS 

Bupivacaine 2.26436 -2.07 PAMPA-DS 

Buspirone 4.20922 -2.48 PAMPA-DS 

Butacaine 4.95271 0.25 PAMPA-DS 

Chlorpheniramine 5.32323 -0.6 PAMPA-DS 

Chlorpromazine 5.23662 1.62 PAMPA-DS 

Chlorprothixene 5.96525 1.44 PAMPA-DS 

Citalopram 2.88082 -0.95 PAMPA-DS 

Clemastine 6.2966 1.96 PAMPA-DS 

Clotrimazole 2.78923 -1.31 PAMPA-DS 

Clozapine 4.23818 -0.39 PAMPA-DS 

Cyproheptadine 5.45069 0.44 PAMPA-DS 

Desipramine 4.14644 1.74 PAMPA-DS 

Dextromethorphan 4.92205 -0.18 PAMPA-DS 

Dextrorphan 3.7634 -1.34 PAMPA-DS 

Diltiazem 4.83928 -1.33 PAMPA-DS 

Diphenhydramine 4.59085 -0.71 PAMPA-DS 

Disopyramide 4.42037 -1.14 PAMPA-DS 

Domperidone 1.49756 -2.78 PAMPA-DS 

Doxepin 5.21672 0.44 PAMPA-DS 

Ephedrine 2.89256 -2.9 PAMPA-DS 

Famotidine -2.93706 -7.75 PAMPA-DS 

Fendiline 4.56654 1.62 PAMPA-DS 

Guanabenz 2.31108 -1.34 PAMPA-DS 

Haloperidol 5.64944 0.05 PAMPA-DS 

Hydroxyzine 4.69895 -1.5 PAMPA-DS 

Imipramine 4.96521 0.98 PAMPA-DS 

Indinavir 5.13547 -3.57 PAMPA-DS 

Labetalol 4.18911 -4.94 PAMPA-DS 

Lidocaine 3.21448 -1.42 PAMPA-DS 

Loxapine 5.79587 -1.09 PAMPA-DS 

Meperidine 3.29378 0.79 PAMPA-DS 
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Methadone 4.50692 0.08 PAMPA-DS 

Metipranolol 4.54594 0.3 PAMPA-DS 

Metoclopramide 3.92224 -1.94 PAMPA-DS 

Metoprolol 4.24169 -1.17 PAMPA-DS 

Mexiletine 2.87936 -0.45 PAMPA-DS 

Miconazole 3.62115 -0.45 PAMPA-DS 

Midazolam 2.80229 -2.47 PAMPA-DS 

Morantel 4.04093 -2.05 PAMPA-DS 

Morphine -0.33939 -3.59 PAMPA-DS 

Nadolol 3.24761 -4.34 PAMPA-DS 

Nalbuphine 3.02482 -2.56 PAMPA-DS 

Naltrindole 1.47383 -0.94 PAMPA-DS 

Nicotine 3.02892 -3.42 PAMPA-DS 

Nortriptyline 4.80707 2.02 PAMPA-DS 

Ondansetron 0.7504 -2.38 PAMPA-DS 

Oxprenolol 3.70907 -0.6 PAMPA-DS 

Papaverine 4.01434 -2.44 PAMPA-DS 

Penbutolol 5.05142 1.7 PAMPA-DS 

Pilocarpine -0.73541 -4.88 PAMPA-DS 

Pindolol 2.24678 -1.75 PAMPA-DS 

Pirenzepine 2.40859 -3.46 PAMPA-DS 

Practolol 1.14287 -3.4 PAMPA-DS 

Procaine 4.09916 -2.46 PAMPA-DS 

Procyclidine 5.26787 1.7 PAMPA-DS 

Promethazine 5.32968 0.96 PAMPA-DS 

Propafenone 2.50117 0.72 PAMPA-DS 

Propoxyphene 1.64327 0.72 PAMPA-DS 

Propranolol 4.3307 0.43 PAMPA-DS 

Pumafentrine 4.94957 0.59 PAMPA-DS 

Pyridoxine -0.90603 -6.62 PAMPA-DS 

Quetiapine 6.35019 -1.85 PAMPA-DS 

Quinidine 1.49982 -1.56 PAMPA-DS 

Quinine 4.35467 -1.05 PAMPA-DS 

Ranitidine 1.44528 -5.14 PAMPA-DS 

Risperidone 4.10991 -2.01 PAMPA-DS 

Rizatriptan 3.24786 -2.76 PAMPA-DS 

Scopolamine 2.37284 -3 PAMPA-DS 

Sertraline 5.33341 2.1 PAMPA-DS 

Sotalol -0.01277 -4.83 PAMPA-DS 

Sulpiride 0.8342 -4.57 PAMPA-DS 

Sumatriptan 2.43265 -4.18 PAMPA-DS 

Tamoxifen 3.51289 1.98 PAMPA-DS 

Terfenadine 7.53512 2.63 PAMPA-DS 

Thioridazine 7.00065 1.81 PAMPA-DS 

Topotecan 0.93092 -5.12 PAMPA-DS 

Trihexyphenidyl 4.30693 2.09 PAMPA-DS 
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Trimipramine 5.48201 1.58 PAMPA-DS 

U69593 4.4204 0.37 PAMPA-DS 

Venlafaxine 4.21827 -1.63 PAMPA-DS 

Zimelidine 4.32949 -0.43 PAMPA-DS 

Ziprasidone 6.49834 -0.61 PAMPA-DS 

Zolpidem 3.03973 -3.06 PAMPA-DS 

Doxorubicin 0.47934 -3.67 PAMPA-DS 

Fentanyl 3.49252 -0.95 PAMPA-DS 

Fluvoxamine 4.31464 0.88 PAMPA-DS 

Hydralazine -0.54341 -4.53 PAMPA-DS 

Noscapine 2.94002 -2.25 PAMPA-DS 

Perphenazine 6.15359 0.81 PAMPA-DS 

Prazosin 4.4254 -2.58 PAMPA-DS 

Primaquine 4.2301 0.56 PAMPA-DS 

Timolol 4.18507 -0.97 PAMPA-DS 

Triamterene 0.1727 -3.58 PAMPA-DS 

Trimethoprim 1.5171 -3.38 PAMPA-DS 

Verapamil 5.09213 0.26 PAMPA-DS 

Zolmitriptan 1.25711 -1.71 PAMPA-DS 

Chlortetracycline 1.17764 -5.39 PAMPA-DS 

Enalaprilat -2.44683 -7.43 PAMPA-DS 

Acrivastine 4.777 -4.07 PAMPA-DS 

Amoxicillin -3.63343 -6.8 PAMPA-DS 

Cefadroxil -3.91008 -8.87 PAMPA-DS 

Cefatrizine -5.94374 -9.81 PAMPA-DS 

Cephalexin -2.46053 -7.53 PAMPA-DS 

Cephradine -0.04804 -7.98 PAMPA-DS 

Cetirizine 2.67187 -4.13 PAMPA-DS 

Ciprofloxacin 1.50219 -5.47 PAMPA-DS 

CNV97100 0.34639 -5.32 PAMPA-DS 

CNV97102 5.97687 -4.32 PAMPA-DS 

CNV97103 1.8357 -3.81 PAMPA-DS 

CNV97104 6.39353 -3.34 PAMPA-DS 

Enoxacin -0.21098 -4.9 PAMPA-DS 

Gabapentin -0.43832 -3.36 PAMPA-DS 

Gatifloxacin 2.58379 -4.5 PAMPA-DS 

Gly Pro -5.08197 -10.4 PAMPA-DS 

Gly Sar -4.21536 -10.5 PAMPA-DS 

Grepafloxacin 3.9485 -4.49 PAMPA-DS 

L-Alanine -3.59116 -8.07 PAMPA-DS 

L-Arginine -4.04139 -5.82 PAMPA-DS 

L-Dopa -3.4121 -7.52 PAMPA-DS 

L-Leucine -0.54627 -7.19 PAMPA-DS 

Lomefloxacin 0.8757 -4.73 PAMPA-DS 

L-Phenylalanine -1.30861 -5.36 PAMPA-DS 

L-Tryptophan -1.59833 -8 PAMPA-DS 
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Me-ciprofloxacin 3.76121 -4.44 PAMPA-DS 

Melphalan 2.60868 -3.45 PAMPA-DS 

Norfloxacin 0.91219 -6.16 PAMPA-DS 

Ofloxacin 4.35006 -5.21 PAMPA-DS 

Sarafloxacin 0.58489 -4.84 PAMPA-DS 

Sparfloxacin 2.18626 -4.04 PAMPA-DS 

Trovafloxacin 1.41039 -3.75 PAMPA-DS 

1,4-Butanediol -0.62817 -5.03 BBB 

Alfuzosin 3.51092 -4.64 BBB 

Antipyrine 1.82347 -4 BBB 

Arabinose -1.7351 -6.63 BBB 

Butanol 1.67449 -2.88 BBB 

Caffeine 1.25375 -4 BBB 

Carbamazepine 0.90506 -3.26 BBB 

Corticosterone 2.60259 -4.29 BBB 

Creatinine -4.8657 -6.69 BBB 

D-Fructose -2.08754 -6.8 BBB 

Dianhydrogalactitol -0.1603 -5.6 BBB 

Diazepam 2.79862 -3.01 BBB 

Erythritol -1.8474 -6.57 BBB 

Estradiol 3.4353 -2.83 BBB 

Ethanol 0.51607 -3.28 BBB 

Ethosuximide 0.12484 -4.46 BBB 

Ethylene glycol -1.1921 -4.99 BBB 

Etoposide 1.95707 -5.91 BBB 

Formamide -2.91436 -5.72 BBB 

Galactitol -1.69265 -6.41 BBB 

Hispidulin 4.74867 -3.11 BBB 

Hydrocortisone 0.69603 -5.85 BBB 

Hydroxyurea -6.84745 -6 BBB 

Hypoxanthine -5.55769 -5.49 BBB 

Isocarboxazid 2.9566 -3.22 BBB 

Isopropanol 0.97972 -3.66 BBB 

Lamotrigine 1.46983 -4.67 BBB 

Loratadine 0.32538 -3.48 BBB 

Mannitol -2.87104 -6.27 BBB 

Meprobamate -0.81755 -5.09 BBB 

Methanol -0.00183 -3.66 BBB 

Methylurea -4.15785 -5.7 BBB 

Metronidazole 0.22732 -4.85 BBB 

Pemoline -1.84907 -5.45 BBB 

Phenytoin 0.26141 -4.15 BBB 

Procarbazine 1.33385 -4.62 BBB 

Progesterone 3.69713 -3.74 BBB 

Propylene glycol -0.44513 -4.49 BBB 

Ritonavir 1.75983 -4.87 BBB 
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Sucrose -4.26908 -7.27 BBB 

Temazepam 3.13066 -3.35 BBB 

Testosterone 2.69058 -3.1 BBB 

Theobromine -0.38733 -5 BBB 

Theophylline 0.47457 -5.24 BBB 

Thiourea -5.98672 -5.3 BBB 

Thymidine -5.6378 -5.84 BBB 

Thymine -2.25984 -3.93 BBB 

Urea -6.37329 -6.12 BBB 

Xanthine -2.78675 -5.62 BBB 

Zaleplon 1.23219 -4.25 BBB 

Adenosine -1.8427 -4.42 BBB 

D-Glucose -3.77133 -4.82 BBB 

Methylprednisolone -2.57974 -7 BBB 

Phenelzine 0.95798 -4.32 BBB 

Butyric acid 0.41771 -2.15 BBB 

Flurbiprofen 2.26276 -0.58 BBB 

Fluvastatin 4.89625 -2.28 BBB 

Ibuprofen 3.16277 -1.22 BBB 

Kynurenic acid -1.02061 -5.42 BBB 

Naringenin -0.42099 -3.96 BBB 

Octanoic acid 2.82911 -1.14 BBB 

Probenecid -1.14405 -2.55 BBB 

Quercetin 2.56898 -4.03 BBB 

Quinolinic acid -3.45653 -6.26 BBB 

Taurocholic acid -0.56335 -6.1 BBB 

Thiothixene 6.63522 -2.35 BBB 

Tolbutamide 1.08213 -3.53 BBB 

Valproic acid 0.81017 -2 BBB 

Warfarin 1.21298 -1.56 BBB 

Ascorbic acid -3.06831 -2.54 BBB 

Chlorambucil 3.56424 -0.8 BBB 

Indomethacin 2.74208 -1.06 BBB 

Naproxen 0.04117 -0.77 BBB 

Neotrofin -5.05166 -3.8 BBB 

Salicylic acid 0.01882 -1.02 BBB 

Alfentanil 5.8105 -2.98 BBB 

Amantadine 2.66254 -0.86 BBB 

Aminoguanidine -4.04399 -5.85 BBB 

Amitriptyline 5.2088 -1.13 BBB 

Amoxapine 5.07623 -2.75 BBB 

Astemizole 6.16269 -2.61 BBB 

Bremazocine 5.0693 -2.76 BBB 

Brompheniramine 5.54741 -1.58 BBB 

Bupropion 3.71539 -2.09 BBB 

Buspirone 4.20922 -2.53 BBB 
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Chlorpheniramine 5.32323 -1.84 BBB 

Chlorpromazine 5.23662 -1.23 BBB 

Cimetidine -6.03474 -5.61 BBB 

Citalopram 2.88082 -2.07 BBB 

Clemastine 6.2966 -0.95 BBB 

Clozapine 4.23818 -3.11 BBB 

Codeine 4.9126 -3.8 BBB 

CP-141938 1.55664 -3.98 BBB 

Diltiazem 4.83928 -2.81 BBB 

Diphenhydramine 4.59085 -1.9 BBB 

Domperidone 1.49756 -4.45 BBB 

Donepezil 6.25877 -1.68 BBB 

Dopamine -3.32486 -2.68 BBB 

Doxepin 5.21672 -1.24 BBB 

Fentanyl 3.49252 -2.24 BBB 

Fluoxetine 4.91776 -0.93 BBB 

Fluphenazine 4.48729 -3.35 BBB 

Guanidine -4.67972 -5.6 BBB 

Haloperidol 5.64944 -2.46 BBB 

Hydroxyzine 4.69895 -3.04 BBB 

Imatinib 2.32093 -3.7 BBB 

Indinavir 5.13547 -5.37 BBB 

Lidocaine 3.21448 -3.24 BBB 

Loxapine 5.79587 -3.36 BBB 

Meperidine 3.29378 -2.08 BBB 

Mesoridazine -2.73434 -1.41 BBB 

Methadone 4.50692 -2.02 BBB 

Metoclopramide 3.92224 -2.86 BBB 

Midazolam 2.80229 -3.11 BBB 

Mirtazapine 5.28522 -2.75 BBB 

Morphine -0.33939 -4.86 BBB 

Naltrindole 1.47383 -3.03 BBB 

Olanzapine 4.18562 -2.73 BBB 

Oxycodone 2.98717 -3.48 BBB 

Pergolide 5.30534 -1.14 BBB 

Perphenazine 6.15359 -2.61 BBB 

Pramipexole 3.14048 -2.57 BBB 

Prazosin 4.4254 -4.36 BBB 

Propranolol 4.3307 -1.42 BBB 

Pyrimethamine 3.68917 -3.57 BBB 

Quetiapine 6.35019 -3.06 BBB 

Quinidine 1.49982 -2.82 BBB 

Quinine 4.35467 -3.45 BBB 

Rimantadine 3.53366 0.13 BBB 

Risperidone 4.10991 -2.94 BBB 

Rizatriptan 3.24786 -4.43 BBB 
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Saquinavir -0.43986 -4.63 BBB 

Selegiline 3.46389 -3.12 BBB 

Sertraline 5.33341 -1.99 BBB 

Sufentanil 5.57783 -3.87 BBB 

Sumatriptan 2.43265 -5.06 BBB 

Terfenadine 7.53512 -0.92 BBB 

Thioridazine 7.00065 -1.95 BBB 

Trazodone 5.10217 -3.13 BBB 

Trifluoperazine 6.00862 -3 BBB 

U69593 4.4204 -2.1 BBB 

Venlafaxine 4.21827 -1.66 BBB 

Verapamil 5.09213 -2.26 BBB 

Ziprasidone 6.49834 -3.25 BBB 

Doxorubicin 0.47934 -3.35 BBB 

Gabapentin -0.43832 -4.34 BBB 

Glycine -2.75814 -5.5 BBB 

Grepafloxacin 3.9485 -4.86 BBB 

L-Alanine -3.59116 -5.5 BBB 

L-Arginine -4.04139 -4.64 BBB 

L-Aspartic acid -4.90294 -6.66 BBB 

L-Dopa -3.4121 -3.99 BBB 

L-Glutamic acid -4.79927 -6.26 BBB 

L-Glutamine -4.54 -5.28 BBB 

L-Histidine -3.81368 -4.28 BBB 

L-Isoleucine -0.10646 -4.16 BBB 

L-Leucine -0.54627 -3.63 BBB 

L-Lysine -1.954 -4.93 BBB 

L-Methionine -0.54663 -4.39 BBB 

L-Ornithine -2.99849 -4.68 BBB 

L-Phenylalanine -1.30861 -4.13 BBB 

L-Threonine -2.53356 -5.21 BBB 

L-Tryptophan -1.59833 -4.22 BBB 

L-Tyrosine -2.50359 -3.9 BBB 

L-Valine -0.82165 -4.68 BBB 

Melphalan 2.60868 -5.27 BBB 

Tiagabine 4.0367 -4.45 BBB 

Cetirizine 2.67187 -5.63 BBB 

Antipyrine 1.82347 -4.05 Caco2 

Benserazide -6.75521 -5.58 Caco2 

Chloramphenicol 1.57653 -4.47 Caco2 

Erythritol -1.8474 -6.56 Caco2 

Ethosuximide 0.12484 -4.91 Caco2 

Guanfacine -0.97434 -4.73 Caco2 

Hydrochlorothiazide -1.89534 -6.32 Caco2 

Isocarboxazid 2.9566 -4.54 Caco2 

Meprobamate -0.81755 -4.94 Caco2 
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Minoxidil 0.25048 -5.68 Caco2 

Netivudine -3.77393 -6.2 Caco2 

Pemoline -1.84907 -5.3 Caco2 

Praziquantel 2.60208 -3.44 Caco2 

Primidone -0.06058 -5.59 Caco2 

Propylthiouracil -1.3749 -3.76 Caco2 

Thiabendazole 2.87504 -3.51 Caco2 

Water -1.56556 -6 Caco2 

Acetaminophen -1.53702 -4.34 Caco2 

Alfuzosin 3.51092 -4.27 Caco2 

Amprenavir -1.4552 -4.38 Caco2 

Caffeine 1.25375 -4.14 Caco2 

Carbamazepine 0.90506 -3.69 Caco2 

Clonidine 2.85891 -3.91 Caco2 

Creatinine -4.8657 -5.9 Caco2 

Dexamethasone 1.45582 -4.65 Caco2 

Diazepam 2.79862 -4.2 Caco2 

Etoposide 1.95707 -6.11 Caco2 

Famciclovir 0.74962 -4.79 Caco2 

Flavone 3.45306 -4.48 Caco2 

Ganciclovir -7.83583 -6.99 Caco2 

Genistein 1.99184 -2.59 Caco2 

Hydrocortisone 0.69603 -4.63 Caco2 

Lamotrigine 1.46983 -4.45 Caco2 

Lansoprazole 2.25359 -3.76 Caco2 

Loratadine 0.32538 -4.75 Caco2 

Methylprednisolone -2.57974 -4.63 Caco2 

Omeprazole 3.98469 -3.86 Caco2 

Phenytoin 0.26141 -4.16 Caco2 

Resveratrol 1.26145 -4.82 Caco2 

Testosterone 2.69058 -3.58 Caco2 

Theophylline 0.47457 -4.17 Caco2 

Urea -6.37329 -6 Caco2 

Pantoprazole 0.14234 -3.87 Caco2 

Flumequine 1.0282 -2.47 Caco2 

Acetylsalicylic acid 0.29759 -1.53 Caco2 

Ampicillin -3.85522 -7.08 Caco2 

Ceftibuten -2.36902 -5.32 Caco2 

Chlorothiazide -3.80057 -6.62 Caco2 

Furosemide 1.07221 -3.5 Caco2 

Warfarin 1.21298 -1.54 Caco2 

Diclofenac 3.55177 -1.07 Caco2 

Fluvastatin 4.89625 -1.33 Caco2 

Glipizide 1.17516 -2.47 Caco2 

Ibuprofen 3.16277 -0.53 Caco2 

Indomethacin 2.74208 -0.81 Caco2 
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Isoxicam 0.34366 -1.68 Caco2 

Ketoprofen -1.81804 -1.23 Caco2 

Naproxen 0.04117 -0.95 Caco2 

Piroxicam 3.49688 -2.01 Caco2 

Quercetin 2.56898 -3.2 Caco2 

Salicylic acid 0.01882 -0.43 Caco2 

Zomepirac 4.0084 -1.51 Caco2 

Alfentanil 5.8105 -3.54 Caco2 

Bremazocine 5.0693 -2.86 Caco2 

Brompheniramine 5.54741 -2.7 Caco2 

Chlorpheniramine 5.32323 -2.72 Caco2 

Clemastine 6.2966 -2.5 Caco2 

Dextromethorphan 4.92205 -2.6 Caco2 

Dextrorphan 3.7634 -2.53 Caco2 

Diphenhydramine 4.59085 -3.12 Caco2 

Ephedrine 2.89256 -2.91 Caco2 

Hydroxyzine 4.69895 -4.13 Caco2 

Loxapine 5.79587 -4.23 Caco2 

Nicotine 3.02892 -3.62 Caco2 

Practolol 1.14287 -3.43 Caco2 

Pumafentrine 4.94957 -3.36 Caco2 

Rizatriptan 3.24786 -4.18 Caco2 

Scopolamine 2.37284 -4.57 Caco2 

Sulpiride 0.8342 -4.16 Caco2 

Acebutolol 1.26768 -4.19 Caco2 

Alprenolol 3.63416 -2.23 Caco2 

Amantadine 2.66254 -2.17 Caco2 

Amiloride -2.40586 -4.75 Caco2 

Amoxapine 5.07623 -3.84 Caco2 

Atenolol 0.50824 -4.34 Caco2 

Citalopram 2.88082 -2.99 Caco2 

Desipramine 4.14644 -1.67 Caco2 

Diltiazem 4.83928 -3.12 Caco2 

Domperidone 1.49756 -4.46 Caco2 

Famotidine -2.93706 -6.41 Caco2 

Guanabenz 2.31108 -2.86 Caco2 

Imipramine 4.96521 -1.82 Caco2 

Indinavir 5.13547 -4.72 Caco2 

Labetalol 4.18911 -4.27 Caco2 

Metoclopramide 3.92224 -2.54 Caco2 

Metoprolol 4.24169 -1.85 Caco2 

Midazolam 2.80229 -3.44 Caco2 

Morphine -0.33939 -4.55 Caco2 

Nadolol 3.24761 -4.47 Caco2 

Nalbuphine 3.02482 -3.3 Caco2 

Pindolol 2.24678 -2.22 Caco2 
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Pirenzepine 2.40859 -5.11 Caco2 

Prazosin 4.4254 -4.54 Caco2 

Propranolol 4.3307 -1.54 Caco2 

Quinidine 1.49982 -3.31 Caco2 

Quinine 4.35467 -2.83 Caco2 

Ranitidine 1.44528 -5.27 Caco2 

Saquinavir -0.43986 -5.35 Caco2 

Sotalol -0.01277 -4.6 Caco2 

Sumatriptan 2.43265 -4.29 Caco2 

Terfenadine 7.53512 -3.74 Caco2 

Timolol 4.18507 -2.42 Caco2 

Topotecan 0.93092 -4.77 Caco2 

Trimethoprim 1.5171 -3.95 Caco2 

Venlafaxine 4.21827 -2.84 Caco2 

Verapamil 5.09213 -2.18 Caco2 

Ziprasidone 6.49834 -4.75 Caco2 

Zolmitriptan 1.25711 -4.26 Caco2 

Doxorubicin 0.47934 -4.12 Caco2 

CNV97100 0.34639 -5.05 Caco2 

CNV97102 5.97687 -4.38 Caco2 

CNV97103 1.8357 -4.45 Caco2 

CNV97104 6.39353 -4.53 Caco2 

Gly-Pro -5.08197 -5.18 Caco2 

Me-ciprofloxacin 3.76121 -3.7 Caco2 

Sarafloxacin 0.58489 -5.24 Caco2 

Amoxicillin -3.63343 -5.7 Caco2 

Cefadroxil -3.91008 -6.07 Caco2 

Cefatrizine -5.94374 -5.57 Caco2 

Cephalexin -2.46053 -6.03 Caco2 

Cephradine -0.04804 -6.11 Caco2 

Cetirizine 2.67187 -5.31 Caco2 

Ciprofloxacin 1.50219 -5.22 Caco2 

Enalaprilat -2.44683 -5.55 Caco2 

Gatifloxacin 2.58379 -4.81 Caco2 

Gly-Sar -4.21536 -5.54 Caco2 

Grepafloxacin 3.9485 -4.23 Caco2 

L-Alanine -3.59116 -5.74 Caco2 

L-Leucine -0.54627 -5.45 Caco2 

Lomefloxacin 0.8757 -4.54 Caco2 

Phenylalanine -1.30861 -4.63 Caco2 

Norfloxacin 0.91219 -5.54 Caco2 

Ofloxacin 4.35006 -4.49 Caco2 

Sparfloxacin 2.18626 -4.16 Caco2 

Acrivastine 4.777 -5.74 Caco2 

Gabapentin -0.43832 -6.57 Caco2 
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Appendix 3. Supplementary information for Chapter VII: “Thorough evaluation of 

binding sites in the human ABCC4/MRP4 Alphafold2 structure” 

 

 

 

Figure S16: Structure of the human MRP4 from AlphaFold. Colors indicate the confidence of the 

model. 
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Figure S17: Ramachandran plot of hMRP4 structure from AlphaFold. 
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Figure S18: The one-dimentional clustering using InfleCS method for single parameters from 

equilibration MD simulations of hMRp4 structure. 

 

 

Figure S19: The 2-dimentional clustering using InfleCS method. The top panel represents the free 

energy landscapes sampled during MD simulations according to couples of selected parameters (i.e., 

NBD twist, NBD distance and ARG998 RMSD). The bottom panel depicts the cluster probabilities. 
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Figure S20: Evolution of different parameters during equilibration MD simulations over 3 replicas. 
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Figure S21: Count of the first 30 non-hydrophobic aminoacids in contact with the ligands (substrates, 

inhibitors and substrates/inhibitors) and their corresponding regions. Counts are normalized in each 

ligand class by the maximum number of counts among residues. 
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Figure S22: Poses of ATP and Mercaptopurine (substrate) in the nucleotide-binding site 1 (NBS1). 

Both ligands highlight a pi-stacking interaction with TRP419. 
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Figure S23: Comparison between substrate (green surfaces) and inhibitor (red transparent surfaces) 

COM locations in the hMRP4 structure. 
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Table S3: Coordinates of the grids used for the docking procedure 

Grid name X Y Z Xmin Xmax Ymin Ymax Zmin Zmax 

Grid_1    66.5 87.5 140.5 52 81 73 102 126 155 

Grid_2    66.5 87.5 121.5 52 81 73 102 107 136 

Grid_3    66.5 87.5 102.5 52 81 73 102 88 117 

Grid_4    66.5 87.5 83.5 52 81 73 102 69 98 

Grid_5    66.5 87.5 64.5 52 81 73 102 50 79 

Grid_6    66.5 68.5 140.5 52 81 54 83 126 155 

Grid_7    66.5 68.5 121.5 52 81 54 83 107 136 

Grid_8    66.5 68.5 102.5 52 81 54 83 88 117 

Grid_9    66.5 68.5 83.5 52 81 54 83 69 98 

Grid_10   66.5 68.5 64.5 52 81 54 83 50 79 

Grid_11   47.5 87.5 140.5 33 62 73 102 126 155 

Grid_12   47.5 87.5 121.5 33 62 73 102 107 136 

Grid_13   47.5 87.5 102.5 33 62 73 102 88 117 

Grid_14   47.5 87.5 83.5 33 62 73 102 69 98 

Grid_15   47.5 87.5 64.5 33 62 73 102 50 79 

Grid_16   47.5 68.5 140.5 33 62 54 83 126 155 

Grid_17   47.5 68.5 121.5 33 62 54 83 107 136 

Grid_18   47.5 68.5 102.5 33 62 54 83 88 117 

Grid_19   47.5 68.5 83.5 33 62 54 83 69 98 

Grid_20   47.5 68.5 64.5 33 62 54 83 50 79 

Grid_21   79.5 85.5 78.5 65 94 71 100 64 93 

Grid_22   79.5 85.5 64.5 65 94 71 100 50 79 

Grid_23   79.5 71.5 78.5 65 94 57 86 64 93 

Grid_24   79.5 71.5 64.5 65 94 57 86 50 79 

Grid_25   20.5 80.5 73.5 6 35 66 95 59 88 

Grid_26   20.5 71.5 73.5 6 35 57 86 59 88 

Grid_ATP_NBS1 67.6 70 74.8 25 54 82 111 60 89 

Grid_ATP_NBS2 39.9 96 74.5 53 82 56 85 60 89 
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Table S4: The different ligands used in the docking procedure of the current study and their 

corresponding binding regions. 

CHEMBL_Code Molecule_name Type Regions 

CHEMBL34259 METHOTREXATE Substrate ['Region1', 'Region2', 

'Region3', 'Region5'] 

CHEMBL495 ALPROSTADIL Substrate ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region7'] 

CHEMBL548 DINOPROSTONE Substrate ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region7'] 

CHEMBL84 TOPOTECAN Substrate ['Region1'] 

CHEMBL2074980 Bimane-glutathione Substrate ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5'] 

CHEMBL35 FUROSEMIDE Substrate ['Region1', 'Region5'] 

CHEMBL1425 MERCAPTOPURINE Substrate ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region7', 'Region9', 

'Region10', 'Region11', 

'Region12'] 

CHEMBL1543 GLUTATHIONE Substrate ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region9'] 

CHEMBL484 ADEFOVIR Substrate ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region9'] 

CHEMBL257695 AZIDOTHYMIDINEMONOPHOSP

HATE 

Substrate Others 

CHEMBL483 TENOFOVIR Substrate ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region9'] 

CHEMBL495244 
 

Inhibitor ['Region1', 'Region2', 

'Region4', 'Region5'] 

CHEMBL213947 
 

Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5'] 

CHEMBL897 PROBENECID Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6'] 

CHEMBL139 DICLOFENAC Inhibitor ['Region1', 'Region3', 

'Region5', 'Region7'] 

CHEMBL932 DIPYRIDAMOLE Inhibitor ['Region1'] 

CHEMBL571 KETOPROFEN Inhibitor ['Region1', 'Region3', 

'Region4', 'Region5', 
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'Region6', 'Region7', 

'Region8'] 

CHEMBL521 IBUPROFEN Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region7', 'Region8', 

'Region9', 'Region10', 

'Region11', 'Region12'] 

CHEMBL6 INDOMETHACIN Inhibitor ['Region5'] 

CHEMBL6966 VERAPAMIL Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5', 

'Region6'] 

CHEMBL563 FLURBIPROFEN Inhibitor ['Region1', 'Region3', 

'Region4', 'Region5', 

'Region6', 'Region8'] 

CHEMBL15177 MK-571 Inhibitor ['Region1', 'Region3', 

'Region4', 'Region5'] 

CHEMBL2074695 
 

Inhibitor ['Region1', 'Region5'] 

CHEMBL1478 LITHOCHOLICACID Inhibitor ['Region1'] 

CHEMBL118 CELECOXIB Inhibitor ['Region1', 'Region3', 

'Region6'] 

CHEMBL411070 GLYCOCHOLICACID Inhibitor ['Region1', 'Region2'] 

CHEMBL285913 TREQUINSIN Inhibitor ['Region1', 'Region5'] 

CHEMBL185878 TAUROCHENODEOXYCHOLATE Inhibitor ['Region1'] 

CHEMBL122 ROFECOXIB Inhibitor ['Region1', 'Region3'] 

CHEMBL832 SULFINPYRAZONE Inhibitor ['Region1', 'Region3', 

'Region6'] 

CHEMBL272427 TAURURSODIOL Inhibitor ['Region1'] 

CHEMBL28079 ZAPRINAST Inhibitor ['Region1', 'Region3', 

'Region5', 'Region6'] 

CHEMBL2074738 
 

Inhibitor ['Region1'] 

CHEMBL15870 INDOPROFEN Inhibitor ['Region1', 'Region3', 

'Region5', 'Region6', 

'Region11'] 

CHEMBL727 THIOGUANINE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region9', 

'Region10', 'Region11', 

'Region12'] 

CHEMBL1552426 THROMBOXANE-B2 Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region7', 'Region9'] 

CHEMBL258818 LITHOGLYCOCHOLATE Inhibitor ['Region1', 'Region2', 

'Region4'] 
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CHEMBL1551 URSODIOL Inhibitor ['Region1', 'Region2'] 

CHEMBL1325783 PROSTAGLANDINF1ALPHA Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region7', 'Region11'] 

CHEMBL388590 BENZBROMARONE Inhibitor ['Region1', 'Region3', 

'Region4', 'Region5', 

'Region6', 'Region7'] 

CHEMBL224867 TAUROCHOLICACID Inhibitor ['Region1'] 

CHEMBL192 SILDENAFIL Inhibitor ['Region1'] 

CHEMBL1084644 PROSTAGLANDINA1 Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5', 

'Region6', 'Region7'] 

CHEMBL5 NALIDIXICACID Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region11'] 

CHEMBL939 GEFITINIB Inhibitor ['Region1', 'Region3'] 

CHEMBL193 NIFEDIPINE Inhibitor ['Region1', 'Region2', 

'Region5'] 

CHEMBL1726 NISOLDIPINE Inhibitor ['Region1', 'Region2', 

'Region5'] 

CHEMBL393220 ATORVASTATINCALCIUM Inhibitor ['Region1', 'Region3', 

'Region4'] 

CHEMBL1017 TELMISARTAN Inhibitor ['Region1'] 

CHEMBL1200896 DINOPROSTTROMETHAMINE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5', 

'Region6', 'Region7'] 

CHEMBL1200799 TRAVOPROST Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5', 

'Region6'] 

CHEMBL4063475 
 

Inhibitor Others 

CHEMBL2074591 
 

Inhibitor ['Region1', 'Region4', 

'Region5'] 

CHEMBL415324 TRANILAST Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5', 

'Region6'] 

CHEMBL383634 GLIQUIDONE Inhibitor ['Region1', 'Region3', 

'Region5'] 

CHEMBL611 TERAZOSIN Inhibitor ['Region1', 'Region3'] 

CHEMBL3349339 
 

Inhibitor ['Region1', 'Region3', 

'Region4', 'Region5'] 

CHEMBL957 BOSENTAN Inhibitor ['Region1'] 

CHEMBL2074644 
 

Inhibitor ['Region1'] 

CHEMBL2074584 
 

Inhibitor ['Region1', 'Region2', 

'Region4'] 
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CHEMBL1162492 ESTRADIOLDISULFATE Inhibitor Others 

CHEMBL408701 TAUROLITHOCHOLICACID Inhibitor ['Region1'] 

CHEMBL1200621 GEMIFLOXACINMESYLATE Inhibitor ['Region1', 'Region2', 

'Region4', 'Region5'] 

CHEMBL1200523 CEFAZOLINSODIUM Inhibitor ['Region1'] 

CHEMBL685 MEBENDAZOLE Inhibitor ['Region1', 'Region3'] 

CHEMBL1316 CARPROFEN Inhibitor ['Region1', 'Region3'] 

CHEMBL77305 RUBITECAN Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5'] 

CHEMBL421 SULFASALAZINE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5'] 

CHEMBL1201124 KETOROLACTROMETHAMINE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region7', 

'Region9', 'Region10', 

'Region11', 'Region12'] 

CHEMBL408 TROGLITAZONE Inhibitor ['Region1', 'Region3', 

'Region5'] 

CHEMBL260315 
 

Inhibitor ['Region1', 'Region2', 

'Region4'] 

CHEMBL1164729 FEBUXOSTAT Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region10'] 

CHEMBL1421 DASATINIB Inhibitor ['Region1'] 

CHEMBL729 LOPINAVIR Inhibitor ['Region1', 'Region3'] 

CHEMBL1324 TOLCAPONE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region11'] 

CHEMBL589973 
 

Inhibitor ['Region1', 'Region3', 

'Region5'] 

CHEMBL416146 ETORICOXIB Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region8'] 

CHEMBL126075 DILAZEP Inhibitor ['Region1', 'Region3', 

'Region5'] 

CHEMBL1010 CEFOTAXIMESODIUM Inhibitor ['Region1', 'Region2', 

'Region4', 'Region5'] 

CHEMBL413965 FELBINAC Inhibitor ['Region1', 'Region3', 

'Region4', 'Region5', 

'Region6', 'Region7', 

'Region8', 'Region12'] 
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CHEMBL953 ENTACAPONE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region8'] 

CHEMBL603 ZAFIRLUKAST Inhibitor ['Region1', 'Region5'] 

CHEMBL572 NITROFURANTOIN Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region9', 

'Region11', 'Region12'] 

CHEMBL1095930 CEFUROXIMEAXETIL Inhibitor ['Region1', 'Region2', 

'Region4'] 

CHEMBL65 CAMPTOTHECIN Inhibitor ['Region1', 'Region3'] 

CHEMBL295416 PIRINIXICACID Inhibitor ['Region1', 'Region3', 

'Region5', 'Region6'] 

CHEMBL1276010 UNDECYLENICACID Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region7', 'Region8', 

'Region9', 'Region10', 

'Region11', 'Region12'] 

CHEMBL1484 NICARDIPINE Inhibitor ['Region1'] 

CHEMBL1294 QUINIDINE Inhibitor Others 

CHEMBL1096 AMLEXANOX Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region10'] 

CHEMBL1737 SILDENAFILCITRATE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5'] 

CHEMBL367463 PRANOPROFEN Inhibitor ['Region1', 'Region3'] 

CHEMBL1071 OXAPROZIN Inhibitor ['Region1', 'Region3', 

'Region5', 'Region6'] 

CHEMBL595 PIOGLITAZONE Inhibitor ['Region1', 'Region3'] 

CHEMBL388978 STAUROSPORINE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region6'] 

CHEMBL180022 NERATINIB Inhibitor ['Region1'] 

CHEMBL1131 ACITRETIN Inhibitor ['Region1', 'Region3', 

'Region8'] 

CHEMBL19224 PAPAVERINE Inhibitor ['Region1', 'Region3', 

'Region5'] 

CHEMBL412272 DEOXYCHOLATE Inhibitor ['Region1', 'Region4'] 

CHEMBL2074982 
 

Inhibitor ['Region1', 'Region5'] 

CHEMBL1744447 ROSUVASTATIN-CALCIUM Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5'] 

CHEMBL4101392 
 

Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5'] 
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CHEMBL282724 SITAXENTAN Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5'] 

CHEMBL1272 REPAGLINIDE Inhibitor ['Region1', 'Region3'] 

CHEMBL56337 EPALRESTAT Inhibitor ['Region1'] 

CHEMBL551978 DROTAVERINE Inhibitor ['Region1'] 

CHEMBL21333 PRANLUKAST Inhibitor ['Region1'] 

CHEMBL995 LOSARTANPOTASSIUM Inhibitor ['Region1', 'Region3'] 

CHEMBL95 TACRINE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5', 'Region6', 

'Region7', 'Region9', 

'Region10', 'Region12'] 

CHEMBL1481 GLIMEPIRIDE Inhibitor ['Region1'] 

CHEMBL1200692 OLMESARTANMEDOXOMIL Inhibitor ['Region1'] 

CHEMBL4064157 
 

Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5', 

'Region6', 'Region7'] 

CHEMBL1456 MYCOPHENOLATEMOFETIL Inhibitor ['Region1', 'Region3', 

'Region4', 'Region5'] 

CHEMBL799 CILOSTAZOL Inhibitor ['Region1', 'Region3'] 

CHEMBL1292 CLOFAZIMINE Inhibitor ['Region1'] 

CHEMBL418509 NITROBENZYLMERCAPTOPURIN

ERIBONU 

Inhibitor ['Region4'] 

CHEMBL2218867 CLOPROSTENOLSODIUM Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5', 

'Region6'] 

CHEMBL121 ROSIGLITAZONE Inhibitor ['Region1', 'Region2', 

'Region3', 'Region5', 

'Region12'] 

CHEMBL4097197 
 

Inhibitor ['Region1'] 

CHEMBL2 PRAZOSIN Inhibitor ['Region1', 'Region3', 

'Region4'] 

CHEMBL623 NEFAZODONE Inhibitor ['Region1', 'Region2', 

'Region3'] 

CEE1 Ceefourin1 Inhibitor ['Region1', 'Region2', 

'Region3', 'Region4', 

'Region5'] 

CEE2 Ceefourin2 Inhibitor ['Region1', 'Region3', 

'Region4', 'Region6'] 

CHEMBL1622 FOLICACID Substrate/Inhi

bitor 

['Region1', 'Region2', 

'Region3', 'Region5'] 

CHEMBL259898 PRASTERONESULFURICACID Substrate/Inhi

bitor 

Others 
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CHEMBL395336 
 

Substrate/Inhi

bitor 

['Region2', 'Region3', 

'Region4', 'Region5'] 

CHEMBL1697724 ESTRADIOL17BGLUCURONIDE Substrate/Inhi

bitor 

['Region1'] 

CHEMBL1679 LEUCOVORIN Substrate/Inhi

bitor 

['Region1', 'Region2', 

'Region3', 'Region5'] 

CHEMBL316966 CYCLICADENOSINEMONOPHOS

PHATE 

Substrate/Inhi

bitor 

['Region1', 'Region2', 

'Region4', 'Region5'] 
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Table S5: Coordinates of the defined regions after projecting ligand COMs on the hMRP4 structure 

from docking calculations. 

 Grid center coordinates Grid dimension 

 X Y Z X Y Z 

Region1  58.0  76.0  129.0  24.0  24.4  25.0 

Region2  53.5  83.0  107.5  13.5  35.0  16.0 

Region3  58.0  93.1  89.8  41.5  17.0  19.5 

Region4  69.7  69.2  77.5  14.0  18.0  20.0 

Region5  53.0  76.4  62.5  13.0  22.4  22.0 

Region6  75.6  73.3  116.4  10.0  11.0  7.5 

Region7  53.5  95.0  127.0  17.0  13.5  23.0 

Region8  40.0  82.5  129.0  8.5  15.0  27.0 

Region9  57.4  76.9  87.9  9.4  10.0  7.5 

Region10  46.0  65.3  88.0  18.0  10.0  7.0 

Region11  31.8  69.0  76.3  13.5  9.5  8.5 

Region12  39.3  81.0  62.0  13.5  25.0  20.0 
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Table S6: Fraction of positively charged (ARG, LYS), negatively charged (GLU, ASP), polar (SER, 

THR, ASN, GLN), aromatic (TRP, PHE, TYR, HID, HIE, CYS) and hydrophobic residues in each of the 

identified regions. 

 Positively 

charged 

Negatively 

charged 

Polar Aromatic Hydrophobic 

Region1 0.1343 0.0896 0.2687 0.2239 0.2836 

Region2 0.2766 0.2128 0.2340 0.1064 0.1702 

Region3 0.1264 0.1264 0.3103 0.1379 0.2989 

Region4 0.0968 0.1290 0.2903 0.0968 0.3871 

Region5 0.2000 0.0889 0.2667 0.1333 0.3111 

Region6 0.0000 0.0000 0.2000 0.4000 0.4000 

Region7 0.2273 0.1364 0.2273 0.2727 0.1364 

Region8 0.1250 0.0000 0.1250 0.5000 0.2500 

Region9 0.4000 0.2000 0.4000 0.0000 0.0000 

Region10 0.2727 0.1818 0.1818 0.1818 0.1818 

Region11 0.5000 0.0000 0.0000 0.2500 0.2500 

Region12 0.1364 0.1136 0.2727 0.0455 0.4318 

 

  



 

Mehdi Benmameri | Ph.D. Thesis | University of Limoges | 2022 212 

License CC BY-NC-ND 4.0 

Table S7: List of ligands that are present in Region 1, Region 2 and Region 3. Only ligands exhibiting 

a binding energy not greater than 1 kcal/mol compare to the best pose are considered. 

CHEMBL_Code Molecule_name Type 

CHEMBL34259 METHOTREXATE Substrate 

CHEMBL495 ALPROSTADIL Substrate 

CHEMBL548 DINOPROSTONE Substrate 

CHEMBL2074980 Bimane-glutathione Substrate 

CHEMBL1425 MERCAPTOPURINE Substrate 

CHEMBL1543 GLUTATHIONE Substrate 

CHEMBL484 ADEFOVIR Substrate 

CHEMBL483 TENOFOVIR Substrate 

CHEMBL213947  Inhibitor 

CHEMBL897 PROBENECID Inhibitor 

CHEMBL521 IBUPROFEN Inhibitor 

CHEMBL6966 VERAPAMIL Inhibitor 

CHEMBL15177 MK-571 Inhibitor 

CHEMBL118 CELECOXIB Inhibitor 

CHEMBL272427 TAURURSODIOL Inhibitor 

CHEMBL28079 ZAPRINAST Inhibitor 

CHEMBL15870 INDOPROFEN Inhibitor 

CHEMBL727 THIOGUANINE Inhibitor 

CHEMBL1552426 THROMBOXANE-B2 Inhibitor 

CHEMBL1325783 PROSTAGLANDINF1ALPHA Inhibitor 

CHEMBL388590 BENZBROMARONE Inhibitor 

CHEMBL1084644 PROSTAGLANDINA1 Inhibitor 

CHEMBL5 NALIDIXICACID Inhibitor 

CHEMBL939 GEFITINIB Inhibitor 

CHEMBL1200896 DINOPROSTTROMETHAMINE Inhibitor 

CHEMBL1200799 TRAVOPROST Inhibitor 

CHEMBL415324 TRANILAST Inhibitor 

CHEMBL611 TERAZOSIN Inhibitor 
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CHEMBL77305 RUBITECAN Inhibitor 

CHEMBL421 SULFASALAZINE Inhibitor 

CHEMBL1201124 KETOROLACTROMETHAMINE Inhibitor 

CHEMBL1164729 FEBUXOSTAT Inhibitor 

CHEMBL1324 TOLCAPONE Inhibitor 

CHEMBL589973  Inhibitor 

CHEMBL416146 ETORICOXIB Inhibitor 

CHEMBL126075 DILAZEP Inhibitor 

CHEMBL1010 CEFOTAXIMESODIUM Inhibitor 

CHEMBL953 ENTACAPONE Inhibitor 

CHEMBL572 NITROFURANTOIN Inhibitor 

CHEMBL1095930 CEFUROXIMEAXETIL Inhibitor 

CHEMBL1276010 UNDECYLENICACID Inhibitor 

CHEMBL1484 NICARDIPINE Inhibitor 

CHEMBL1096 AMLEXANOX Inhibitor 

CHEMBL1737 SILDENAFILCITRATE Inhibitor 

CHEMBL1071 OXAPROZIN Inhibitor 

CHEMBL388978 STAUROSPORINE Inhibitor 

CHEMBL1744447 ROSUVASTATINCALCIUM Inhibitor 

CHEMBL4101392  Inhibitor 

CHEMBL282724 SITAXENTAN Inhibitor 

CHEMBL21333 PRANLUKAST Inhibitor 

CHEMBL95 TACRINE Inhibitor 

CHEMBL4064157  Inhibitor 

CHEMBL2218867 CLOPROSTENOLSODIUM Inhibitor 

CHEMBL121 ROSIGLITAZONE Inhibitor 

CHEMBL623 NEFAZODONE Inhibitor 

CHEMBLCEE1 Ceefourin1 Inhibitor 

CHEMBL1622 FOLICACID Substrate/Inhibitor 

CHEMBL395336  Substrate/Inhibitor 
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CHEMBL1679 LEUCOVORIN Substrate/Inhibitor 

CHEMBL316966 CYCLICADENOSINEMONOPHOSPHATE Substrate/Inhibitor 

 

 

Table S8: List of ligands that bind only Region 1. Only ligands exhibiting a binding energy not greater 

than 1 kcal/mol compare to the best pose are considered. 

CHEMBL_Code Molecule_name Type 

CHEMBL1697724 ESTRADIOL17BGLUCURONIDE Substrate/Inhibitor 

CHEMBL1292 CLOFAZIMINE Inhibitor 

CHEMBL4097197  Inhibitor 

CHEMBL1200692 OLMESARTANMEDOXOMIL Inhibitor 

CHEMBL1481 GLIMEPIRIDE Inhibitor 

CHEMBL551978 DROTAVERINE Inhibitor 

CHEMBL56337 EPALRESTAT Inhibitor 

CHEMBL1294 QUINIDINE Inhibitor 

CHEMBL1421 DASATINIB Inhibitor 

CHEMBL1162492 ESTRADIOLDISULFATE Inhibitor 

CHEMBL957 BOSENTAN Inhibitor 

CHEMBL1017 TELMISARTAN Inhibitor 

CHEMBL192 SILDENAFIL Inhibitor 

CHEMBL2074738  Inhibitor 

CHEMBL185878 TAUROCHENODEOXYCHOLATE Inhibitor 
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In silico exploration of membrane transport events: prediction of passive permeation 

coefficients and binding sites of human MRP4 

La prédiction du transport membranaire des xénobiotiques est cruciale pour les industries 

pharmaceutique, cosmétique et agro-alimentaire. Le franchissement des membranes est en 

effet directement à la biodisponibilité des actifs utilisés dans ces différents domaines. Il repose 

sur deux processus majeurs : la perméation passive à travers les bicouches lipidiques et le 

transport à travers des protéines membranaires. Comprendre les interactions des 

xénobiotiques avec les différents composants des membranes cellulaires est un passage 

obligé pour rationaliser ces deux processus. Atteindre cette compréhension à l’échelle 

atomique est un réel défi au vu de la diversité des membranes cellulaires et de la diversité 

chimique des xénobiotiques. 

Plusieurs méthodes expérimentales utilisent des lignées cellulaires pour mesurer la vitesse de 

ces processus. Des modèles membranaires plus simplistes ont également été utilisés pour 

déterminer les coefficients de perméation passive (premier processus). D'autre part, des 

modèles in silico, en particulier utilisant des simulations de dynamique moléculaire (MD), 

permettent de prédire les coefficients de perméation passive avec une précision grandissante, 

mais au prix d’un temps de calcul important. Dans cette thèse, nous avons utilisé des 

simulations de MD biaisées pour prédire les coefficients de perméation passive à travers les 

membranes. Nous avons développé le protocole MemCross, basé sur la méthode AWH, et 

l'avons testé sur une série de 13 molécules. Ensuite, nous avons étendu l’utilisation de 

MemCross à plusieurs centaines de xénobiotiques et nous avons comparé les coefficients de 

perméation calculés aux valeurs expérimentales. MemCross présente une bonne corrélation 

avec les données expérimentales provenant de modèles de membranes de 

phosphatidylcholine (R² = 0,83). Les coefficients de corrélation avec les modèles 

expérimentaux plus complexes utilisant des cellules sont plus faibles. MemCross est un outil 

prometteur car il est le premier à utiliser l’AWH pour prédire les coefficients de perméation 

avec des simulations de MD « tout-atome ». Le coût de calcul relativement faible de cette 

méthodologie a permis le premier benchmark sur des centaines de coefficients de perméation 

avec une description « tout-atome ». 

Le processus de transport actif (deuxième processus) a également été abordé. Nous avons 

utilisé le récent modèle Alphafold 2 du transporteur humain MRP4. Des simulations de MD et 

de docking moléculaire, sur la protéine entière, nous ont permis de mettre en évidence les 

sites de liaison potentiels de tous les substrats et inhibiteurs connus de MRP4. Nous avons 

notamment mis en évidence plusieurs régions de liaison contiguës à la chambre principale de 

la protéine. Nos résultats suggèrent que trois de ces régions constituent un canal d'entrée iso-

énergétique vers la chambre centrale. De plus, nous avons révélé de potentiels nouveaux 

résidus clés interagissant avec les ligands. 

 

Mots-clés : transport membranaire, dynamique moléculaire, AWH, coefficient de perméation 

passive, transporteurs ABC, hMRP4, docking moléculaire 



 

 

In silico exploration of membrane transport events: prediction of passive permeation 

coefficients and binding sites of human MRP4  

Predicting membrane transport of xenobiotics is crucial to the pharmaceutical, cosmetic and 

food industries. Membrane crossing of active compounds used in these different fields is 

directly related to their bioavailability. There exist two major membrane crossing processes: 

passive permeation across lipid bilayers, and transport through membrane proteins. To reach 

a full understanding of these processes requires an atomic-scale rationalization of all 

intermolecular interactions between xenobiotics and membrane components. This is a delicate 

challenge because of the wide structural diversity of membranes and xenobiotics. 

There exist several experimental protocols based on cultured cell-based membrane models to 

study both transport events. More simplistic membrane models have also been used to 

determine passive permeation coefficients (first process). Alternatively, theoretical tools, in 

particular molecular dynamics (MD) simulations, have been shown to predict the passive 

permeability with a growing accuracy, albeit for an important computational cost. Here, we 

used biased MD simulations to predict passive membrane permeation coefficients across 

membranes. We have developed a protocol named MemCross, based on the AWH method, 

and we tested it on a series of 13 molecules. Then, we extended our predictions to 350 

xenobiotics and the predicted permeation coefficients were compared to experimental values. 

The results from MemCross correlated well with the experimental values obtained with 

phosphatidylcholine membrane models (R² = 0.83). Lower correlation coefficients were 

obtained with more complex cell-based assays. MemCross is a promising tool, as it is the first 

to use AWH to predict permeation coefficients based on all-atom MD simulations. Moreover, 

its relatively low computational cost allowed the first benchmark on hundreds of permeation 

coefficients with an all-atom description. 

The active transport process (second process) was also tackled. Using the recent Alphafold 2 

model of the human MRP4 transporter, we performed MD simulations and molecular docking 

on the whole protein. A comprehensive mapping of potential binding sites was established for 

all known substrates and inhibitors of MRP4. We highlighted several binding regions besides 

the main chamber of the protein. Our results have suggested that three of these regions 

constitute an iso-energetic entry channel to the central chamber. In addition, we revealed new 

potential key residues interacting with the ligands.  
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