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Abstract

This manuscript presents different contributions in the mathematical modeling and the devel-
opment of numerical methods for multiscale transport problems, arising in particular in plasma
physics and collective cell dynamics.

In the first chapter, we present a few reduction methods for kinetic transport equations. Per-
forming a finite element semi-discretization in velocity leads to a linear hyperbolic model with
good conservation properties. Fluid models with entropic or neural network closures have been
studied to obtain even smaller reduced models with only physical quantities as reduced macro-
scopic variables. Reduced order modeling techniques are also proposed to construct reduced
macroscopic variables specifically adapted to a given set of parametric solutions.

The second chapter deals with two numerical issues concerning the discontinuous Galerkin and
its semi-Lagrangian version, namely the recurrence numerical artifact and the approximate
well-balanced property by basis enrichment.

The third chapter presents two implicit numerical methods for solving hyperbolic systems with
low-computational cost thanks to relaxation techniques. The first method relies on the vectorial
kinetic relaxation scheme, whose transport steps are solved using an implicit solver with explicit
cost. The second one proposes a splitting method applied to the two-speed relaxation system for
the Euler system, whose acoustic part involves only constant coefficients. This leads to implicit
steps with controlled conditioning.

Finally, the fourth chapter regards the development of models for collective dynamics of cells.
We present three different models with specific interaction rules: layer interactions, back-to-
back anti-alignment and interactions with surrounding elastic cables. We study their large-scale
dynamics either theoretically, by deriving the associated macroscopic models, or using numerical
simulations. Comparisons with experimental results have also been performed.
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Introduction

This manuscript presents different contributions on the mathematical modeling and the devel-
opment of numerical methods for multiscale transport problems, arising in particular in plasma
physics and collective cell dynamics.

When considering a large number of interacting and moving particles, we are generally interested
in the resulting dynamics at large time and space scales of macroscopic quantities, rather than
in the precise individual trajectories of each particle. Examples of particle systems are (a) ions-
electrons with long-range electromagnetic interactions in plasma, (b) cells with local polarity
alignment in biological tissues or (c) molecules with hard-sphere interactions in a neutral gas.
To derive the macroscopic dynamics from the underlying particle models, an intermediate step
consists in looking for the dynamics of the statistical distribution function of the particles in
phase space. Assuming some independence between particles when their number is large, this
distribution function satisfies a so-called kinetic transport equation with a collision operator,
which makes the distribution relax towards a local thermodynamical equilibrium. Then, in
the large collisional regime, the dynamics can be reduced to the fluid equations satisfied by
the macroscopic quantities that parameterize the local thermodynamical equilibria. In a very
schematic way, this is how the equations of fluid mechanics, e.g. the Euler or the Navier-Stokes
equations, are derived from the particle dynamics.

The obtained fluid models are very attractive from a computational point of view as they are
far less computationally demanding than their kinetic counterparts. However, their domain of
validity is limited to collisional regimes. In weakly- or non-collisional regimes, we must rely on
the statistical kinetic description of the particles. This is for instance the case for the dynamics
of plasma in a fusion device. Solving the corresponding kinetic equation on a supercomputer
is, however, not feasible at the moment, as it would demand too much computational and
storage resources. This is why a number of reduced kinetic or fluid models, with specific
domains of validity, have been developed: they require to first identify appropriate reduced
kinetic or macroscopic quantities, and then to derive their dynamics. Some of them are based
on asymptotic analysis and require a good knowledge of the physical system. Alternatively,
reduced quantities can be constructed using standard discretization methods or directly from
data coming from experiments or numerical simulations. A central question in this program
are how mathematical structures, such as the conservation of physical quantities,
are preserved at the reduced level and more fundamentally how to ensure good
stability properties for the reduced models.

Whether for kinetic or fluid models, numerical methods need to be carefully optimized to tackle
simulations in high dimensions of space or phase space. This is why high-order accurate methods
are generally considered. For instance, when solving fluid models with a hyperbolic structure,
the Discontinuous Galerkin (DG) method is a method of choice, as it can handle unstructured
meshes and is quite appropriate for code parallelization. However specific algorithms are re-
quired to run the code on supercomputers or to take advantage of Graphics Processing Units
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2 Introduction

(GPUs). Another way of improving performance would be to rely on the recent development
of machine learning tools. One current question is how the numerical methods could
be optimized by using data from simulations to increase the accuracy or improve
the stability of the methods.

Another difficulty comes from the fact that explicit numerical methods are limited by the
Courant-Friedrichs-Lewy (CFL) stability condition: the time step has to be smaller than the
maximal characteristic speed of the problem multiplied by the minimal mesh element size.
This condition may be too stringent in possibly two different situations: either the maximal
characteristic speed of the problem corresponds to the propagation of some low amplitude
perturbations, which is not of major interest for the physical problem under consideration, or
the size of the minimal mesh element is not determined by the target dynamics but by some
mesh generation constraints. To bypass this stability condition, implicit methods are generally
employed. However, the difficulty is now transferred to the resolution of large linear systems,
possibly with bad condition numbers. One challenge is the development of implicit
methods with low computational cost.

Returning to the initial hierarchy of models (particle, kinetic, macroscopic), one fundamental
modeling issue concerns replacing inert particles with active ones, like cells. For instance, cells
have the ability to self-propel and have polarity or velocity alignement interactions. At a large
scale, this leads to the emergence of cell collective motions, which can be observed for instance
in embryo development or tissue remodeling. One key feature of these models is that there
is a priori no conservation of momentum and energy, which complexifies the development of
macroscopic models. Another difficulty results from the appearance of phase transitions, like
liquid-gas or disorder-order. From a practical point of view, estimating the parameters included
in such models is crucial to assess the prediction ability of the mathematical models against
experiments. This calls for the development of new mathematical models as well as
close collaborations with biologists and biophysicists.

This manuscript presents several contributions introducing new mathematical models and nu-
merical methods to address these questions. They have been possible thanks to the stimulating
collaborations with colleagues from mathematics, computer science, physics and biology. We
provide below a more precise overview, insisting on the contributions of the PhD students,
whom we supervised. Note that the affiliations are the current ones.

In Chapter I, we present a few reduction methods for kinetic equations developed in
different physical contexts:

(i) The first consists in performing a finite element semi-discretisation in velocity, which leads
to a linear hyperbolic reduced model. The model has good conservation properties and
can be solved using a high-order DG method. The method was tested on the Curie
supercomputer in a Cartesian geometry for the Vlasov-Poisson system in 4 dimensions (2
space, 2 velocity). These results were obtained during the PhD thesis of Nhung Pham,
co-advised with Philippe Helluy (Univ. Strasbourg), and in collaboration with Anaïs
Crestetto, Sébastien Guisset, Michaël Gutnic and Michel Massaro. She defended her Phd
thesis in December 2016. The corresponding publications are [Red7, Red5, Red4].

(ii) Another reduction technique consists in looking at the dynamics of moments of the distri-
bution function. In the context of the study of room acoustics, we apply the entropic clo-
sure method to the kinetic transport equation satisfied by sound particles. This study has
led to the development of a code in the parallel pyopencl language (GPU).Comparisons on
room acoustics test cases have shown that accurate sound energy decays can be achieved.
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These developments have been achieved during the PhD of Pierre Gerhard, co-advised with
Philippe Helluy (Univ. Strasbourg) and Cédric Foy (Cerema, Strasbourg). He defended
his PhD in January 2020.

(iii) Considering the Vlasov-Poisson dynamics with a BGK collision operator, we explored the
ability to extend the validity of the classical fluid models to weakly collisional regimes
by constructing a neural network closure. It consists in learning a nonlocal heat flux
as a function of the density, velocity and temperature profiles. The learning process is
carried out using data from numerical simulations of the kinetic model, and the network
has a multi-scale convolutional structure. This work has been obtained during the PhD
of Léo Bois, co-advised with Emmanuel Franck (INRIA, Univ. Strasbourg) and Vincent
Vigon (Univ. Strasbourg). He defended his PhD in December 2023. The corresponding
publication is [Red3].

(iv) Finally, we present a reduction method which provides the space-time dynamics of a
few macroscopic quantities constructed from data following the Reduced Order Method
(ROM) in the velocity variable. The method is applied to the semi-discretized Vlasov-
Poisson system with a non-linear Fokker-Planck collision operator. This work was initiated
during a CEMRACS 2022 project, co-supervised with Emmanuel Franck (INRIA, Univ.
Strasbourg), and involving Ibtissem Lannabi (Univ. Pau), Youssouf Nasseri (Univ. Stras-
bourg), Guiseppe Parasiliti Rantone (Sorbonne Univ.), and Guillaume Steimer (Univ.
Strasbourg). The corresponding publication is [Red6].

In Chapter II, two different works related to Discontinuous Galerkin methods and its semi-
Lagrangian version are presented.

(i) The recurrence phenomenon is a numerical artifact, appearing in the numerical simulations
of the Vlasov-Poisson system, that results from phase-space filamentation and aliasing
effects. We have proposed an analysis of this phenomenon when a finite element grid is
used in velocity, like in the Semi-Lagrangian Discontinuous Galerkin method. We show
that the first recurrence time depends on the quadrature rule used to compute the density.
This work was conducted in collaboration with Michel Mehrenberger (Aix-Marseille Univ.)
and Nhung Pham. The associated publication is [Num4].

(ii) When considering hyperbolic systems with source terms, a main issue is to preserve equi-
libria at the discrete level, at least approximately. This would enable us to capture pertur-
bation dynamics around these equilibria. To this aim, we propose a DG method with local
Taylor bases enriched with a prior estimate of the equilibrium. This prior can be obtained
using Physics-Informed Neural Networks (PINNs), to capture a whole family of equilibria.
This work was carried out with Emmanuel Franck (INRIA, Univ. Strasbourg) and Victor
Michel-Dansac (INRIA, Univ. Strasbourg). The associated publication is [Num3].

Chapter III concerns implicit numerical methods for multiscale hyperbolic problems
using relaxation techniques. They are based on reformulations of the hyperbolic systems as
singular limits of larger systems, with more variables, but with a simpler mathematical structure.

(i) Based on the vectorial kinetic relaxation technique, we propose a high-order implicit
method with explicit cost. Each additional unknown satisfies kinetic transport equations
at constant velocities that are solved using an implicit solver. A composition method
based on symmetric second-order splitting is used to obtain fourth- or sixth-order time
accuracy. An equivalent equation for both the variables of interest and the additional vari-
ables have been obtained. Finally, we applied this method to the numerical simulation of a
three-dimensional version of the guiding center model for plasma physics: the method pre-
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vents refined poloidal geometries from constraining the resolution of the toroidal dynamics.
This last result has been obtained during the PhD thesis of Romane Hélie, co-advised with
Philippe Helluy (Univ. Strasbourg) and Emmanuel Franck (INRIA, Univ. Strasbourg).
She defended her PhD in March 2023. All these developments were also obtained thanks
to the collaborations with Thomas Bellotti (Univ. Strasbourg), Mathieu Boileau (CNRS,
Univ. Strasbourg), Bérenger Bramas (INRIA, Univ. Strasbourg), David Coulette (ENS
Lyon), Clémentine Courtès (Univ. Strasbourg), Florence Drui (Univ. Strasbourg), Michel
Mehrenberger (Aix-Marseille Univ.). The corresponding publications are [Imp6, Imp7,
Imp3, Imp1].

(ii) A specific implicit relaxation method for the compressible Euler equations is designed
to overcome the CFL stability condition in the low Mach limit while still capturing the
material wave with good accuracy. The method is based on a two-speed Suliciu relaxation
formulation solved using a semi-implicit splitting strategy. The key point is that, due to the
specific relaxation system, the acoustic part leads to a constant-coefficient elliptic problem
whose conditioning can be controlled. This work has been carried out in collaboration with
F. Bouchut (CNRS, Univ. Gustave Eiffel) and E. Franck (INRIA, Univ. Strasbourg). The
corresponding publication is [Imp4].

In Chapter IV, several models for cell collective dynamics are proposed and studied.

(i) Inspired by the layered movements of spermatozoa observed experimentally, we present
a model of disc-shaped particles that exhibits both velocity-aligned interactions (Vicsek-
type interactions) within each layer and nematic-type interactions between layers. The
derivation of the associated macroscopic model required the extension of the method of
generalized collisional invariants. Numerical simulations also show the appearance of in-
teresting metastable states. This work was carried out in collaboration with Pierre Degond
(CNRS, Univ. Toulouse) and the associated publication is [Cell6].

(ii) Phase transitions are studied in the context of an original two-dimensional particle model
with either opposite alignment or alignment of the velocities of neighboring particles de-
pending on whether they are back to back or not. The model exhibit three kinds of phases:
disordered phase, nematic phase and polar-nematic phase. Macroscopic equations have
been obtained for the first two phases. This ongoing work is in collaboration with Nicolas
Meunier (Univ. Cergy) and Raphaël Voituriez (CNRS, Sorbonne Univ.).

(iii) We finally introduced a Vicsek-type model, with contact forces and specific boundary con-
ditions: cells have a ring configuration, confined between two elastic cables. They model
actomyosin cables that form at the periphery of the cell cluster. A parameter calibration
has been performed and we were able to reproduce the emergence of the collective rota-
tion observed in experiments. This study shows for the first time the decisive impact of
these cables in the emergence of the collective movement. This work was carried out with
Simon Lo Vecchio and Daniel Riveline (IGBMC) and Marcela Szopos (Sorbonne Univ.).
The associated publication is [Cell1].

Each chapter will conclude with a number of future research directions.

The following is a list of our publications in peer-reviewed journals or in conference proceedings,
arranged by theme and in reverse chronological order. Publications directly following the PhD
work have been grouped together at the end. The publications that have not been previously
cited will not be described in this manuscript or will be mentioned very briefly.
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Chapter I

Reduction methods of kinetic models

1 Introduction
We are here interested in the dynamics of a large system of interacting particles. In many
physical applications, there are so many particles that a microscopic description of the individual
motions of each particle would be numerically intractable. Instead, we turn to kinetic models,
that describes the dynamics of the statistical distribution function of particles in position-
velocity phase space. The distribution function thus writes f(x, v, t) with x ∈ Ωx ⊂ Rd, v ∈
Ωv ⊂ Rd and t ⩾ 0 and satisfies a so-called kinetic equation. Kinetic equations are, however,
still difficult to solve numerically due to the large dimension of the phase space: considering
N discretization points in each dimension would lead to N2d unknowns. Thus updating the
distribution function requires many computational resources and just storing the distribution
function also requires large resources.

Therefore, we are interested in devising so-called reduced models, which aims at providing
approximate solutions valid at least in some range of parameters. In our work, we focus on
reduced fluid models, where the reduction is made in the velocity variable only. In the
present context, reduced variables can be nodal values of the distribution function at some
velocity grid points (vk),

Uk(x, t) = f(x, vk, t), ∀k ∈ J1,KK, (1)

or integral quantities in velocity

Uk(x, t) =
∫

Ωv

mk(v) f(x, v, t) dv, ∀k ∈ J1,KK, (2)

where (mk(v))k are linearly independent functions. We then would like to derive the space-
time dynamics of the reduced quantities U(x, t) = (U1(x, t), . . . , UK(x, t)). Without any other
assumptions, they satisfy a system like

dU

dt
(x, t) = F

(
U(x, t), f(x, v, t)

)
,

where F is a differential operator. This model still depends on the distribution function f . To
close the system, i.e. remove the dependency on the distribution function, this latter should be
supposed to be entirely reconstructible from the K reduced variables, with a formula like

f(x, v, t) = MU(x,t)(v),

where MU (v) denotes a parametrized function with linear or non-linear dependency with respect
to the reduced vector U(x, t) such that relations (1) or (2) are satisfied. However, the range of
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validity can be limited with small values of K. Extending the range of validity of these reduced
models are thus of interest.

Let us now mention some of the existing methods proposed in the literature. First, reduced fluid
models using spectral discretization methods in velocity have been obtained using either Fourier
transform [34, 20] or Hermite functions [32, 35, 14, 2] when Ωv = Rd or spherical harmonics
when Ωv = Sd−1 and a linear reconstruction to get the reconstructed distribution function. In
these methods, the number of reduced quantity to be taken into account is dictated by the
regularity in velocity of the target solutions. In contrast, moment moments consider possibly
only a few reduced quantities and apply a non-linear reconstruction [38, 5, 49]. For the radiative
transfer equation, where Ωv = Sd−1 is compact, this leads to well-posed reduced fluid models
[17, 18, 25]. However, for gas dynamics equations where Ωv = Rd, so-called realizability issues
may arise: the reduced vector U(x, t) may no longer correspond to a non-negative distribution
function in the course of the dynamics [33, 45].

In this chapter, we explore four different approaches to construct reduced fluid models using (i)
values at velocity grid points and a finite-element vector space closure, (ii) moments and
the entropic minimization closure, (iii) moments and a data-driven closure, (iv) data-
driven reduced variables made of linear combinations of values at velocity grid points. A
specific attention has been paid to the efficient implementation of the reduced models. The main
application will be the construction of reduced models for the Vlasov equation and plasma
simulations, except for (ii), which is dedicated to the free transport kinetic equation with
application in acoustics. We refer to Box 1 for more information on this physical context.

Box 1: Plasma dynamics in Tokamak

Plasma is a gas made of charged particles, i.e. ions and electrons. Ions and electrons
interact with each other through the self-consistent electromagnetic fields E(x, t) and
B(x, t), which satisfies the Maxwell equations.
Fusion reactor aims at extracting energy present in the kernel of ions, in the strong inter-
actions between nucleons. Indeed, when two ions fuse, part of the energy is transformed
into kinetic energy of the reaction output and this energy can be captured by heating
water. To carry out this fusion reaction, the plasma has to be at a very high temperature
during some time so that a few ions can pass through the Coulombic repulsion barrier
and fuse. From a practical point of view, due to the large temperature, the plasma has
to be confined without contact with any material. A solution is to trap it into closed
magnetic field lines. Tokamak is such a fusion device, with a toroidal geometry: a strong
toroidal magnetic field is created using superconducting coils. To avoid plasma leaks due
to the combination of the B × ∇xB and E × B drifts, a toroidal current is generated
inside the plasma to produce a self-consistent magnetic field that bends the magnetic
field lines. The resulting dynamics of the plasma is highly complex, with the appearance
of strong density and temperature gradients and turbulence. Numerical simulations are
thus required to predict and then control the quality of the confinement.
The most complete physical model is the kinetic Vlasov-Maxwell system, which de-
scribes the dynamics of the particles under mean-field approximation. The Vlasov equa-
tion describes the transport in position-velocity phase space of the ions and electrons,
each described by their kinetic distribution functions. The Maxwell equations provide
the dynamics of the self-consistent electromagnetic fields. Collision operators can be
added to take into account short-range interactions. However, this model raises three
main issues from a computational point of view:
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1. large dimension: simulations of the dynamics in six-dimensional position-velocity
phase space is at the moment out of reach because of computation and storage
limitations.

2. multi-scale dynamics: the problem involves many different time and space scales.
3. complex geometry: despite the toroidal symmetry of the fusion device, poloidal

sections may have complex geometries.
To overcome these difficulties, kinetic reduced models have been developed. Indeed, in
the strong magnetic field regime, ions and electrons oscillate rapidly around the magnetic
field lines. By somehow averaging the fast rotations, the so-called gyrokinetic models only
describe the slow dynamics of the rotation centers and the reduced velocity variable has
only two components, one of which is constant over time. The reduced kinetic phase
space is thus of dimension 5 instead of 6.
We refer to [8, 28] for more details on plasma physics and gyrokinetic models.

2 Reduction with nodal values
This first reduction method we studied is based on a semi-discretization of the problem in
velocity: it consists into projecting the distribution function f(x, v, t) in a finite-element vector
space in velocity. The method has first been proposed in dimension 1 in [42] and then extended
in [Red5, Red7, Red4, 41] during the PhD thesis of Nhung Pham, whom I co-supervised with
Philippe Helluy.

We first consider a bounded cubic velocity domain Ωv = [−vmax, vmax]d as well as a regular
Cartesian mesh on this domain. Then we choose the space of continuous piece-wise polyno-
mial functions of degree at most q on each mesh element, based on the tensorial Lagrange Qq

finite-element space. Denoting Nv the total dimension of this space and (φi(v))i=1,...,Nv an
interpolation basis of this vector space, the distribution function writes:

MU(x,t)(v) =
Nv∑
i=1

Ui(x, t)φi(v),

where (Ui(x, t))i=1,...,Nv ∈ RNv denote the Nv coefficients in this basis. We note that the dis-
tribution function is defined such as to satisfy an interpolation property: Ui(x, t) = MU(x,t)(vi)
for all i ∈ J1, NvK.

Vlasov model. Instead of considering at the Vlasov-Maxwell system mentioned in Box 1, let
us consider the simplified Vlasov equation

∂tf(x, v, t) + v · ∇xf(x, v, t) + E(x, t) · ∇vf(x, v, t) = 0, on Ωx × Ωv × R+,

(E(x, t) · nv)−f(x, v, t) = 0, on Ωx × ∂Ωv × R+,

with a given electric field E(x, t), on the bounded domain Ωx × Ωv = [0, L]d × [−vmax, vmax]d,
with periodic boundary conditions in space and zero inflow boundary conditions in velocity:
when the electric field is incoming (E(x, t) · nv < 0 with nv the outward normal to the velocity
domain), then the distribution function is set to zero. Then the weak formulation of this
transport equation writes as follows: find f(x, ., t) ∈ V =

{
f ∈ L2(Ωv), E · ∇vf ∈ L2(Ωv)

}
such

that
∂t

∫
Ωv

fφ+ ∇x ·
∫

Ωv

vfφ+ E ·
∫

Ωv

∇vfφ−
∫

∂Ωv

(E · nv)−fφ = 0, (3)

for all φ ∈ V , where the outflow boundary conditions are weakly imposed.
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Reduced model. The semi-discrete formulation can then be obtained by considering the
following problem: find f(x, ., t) ∈ Vh = span({φi}i) such that

∂t

∫
Ωv

fφ+ ∇x ·
∫

Ωv

vfφ+ E ·
∫

Ωv

∇vfφ−
∫

∂Ωv

(E · nv)−fφ = 0, (4)

for all φ ∈ Vh. Once expressed into the basis (φi(v)), we get the following reduced model:

Proposition 1 (Reduced Vlasov model [41]). The vector U(x, t) = (U1(x, t), . . . , UNv (x, t))T

satisfies the following system

M∂tU +
d∑

k=1
Ak ∂xk

U +B(E)U = 0, (5)

where M , Ak and B(E) are matrices of dimension Nv ×Nv, whose elements are given by

Mij =
∫

Ωv

φiφj , (Ak)ij =
∫

Ωv

vk φiφj , k = 1 . . . 3,

B(E)ij =
∫

Ωv

φi(E · ∇v)φj −
∫

∂Ωv

(E · nv)−φjφi.

M is symmetric positive definite and (Ak) are symmetric: the system is thus hyperbolic.

In addition to its hyperbolicity, the reduced model ensures L2 stability, meaning that f =∑Nv
i=1 Uiφi satisfies

1
2
d

dt

(∫
Ωx×Ωv

f2
)
⩽ −1

2

∫
Ωx×∂Ωv

|E · nv|f2.

Moreover, as soon as p ⩾ 2, the polynomials 1, v and vivj , for 1 ⩽ i, j ⩽ d belong to the
approximation space Vh = span({φi}i) and the following conservation properties hold:

d

dt

(∫
Ωx×Ωv

f

)
= −

∫
Ωx×∂Ωv

(E · nv)+f,

d

dt

(∫
Ωx×Ωv

v2f

)
= −

∫
Ωx×∂Ωv

(E · nv)+f
( |v|2

2 + ∇xE
)
,

d

dt

(∫
Ωx×Ωv

vf

)
= −

∫
Ωx×∂Ωv

(E · nv)+f v,

supposing periodic boundary conditions in space.

Reduction with quadrature approximations. The system is further simplified by consid-
ering a specific choice of basis and quadrature points to compute the coefficients of the matrices
M and Ak. In each square element L, Gauss-Lobatto points (vL,j)0⩽j<(q+1)d are chosen and
integrals are approximated by Gauss quadrature rules with weights (ωL,j)0⩽j<(q+1)d . The as-
sociated Lagrange basis (φi(v)) is made of Gauss-Lobatto polynomials on each element and
satisfies the interpolation property:

φi(vk) = δik,

where we use the notation vi = vL,j with a local-global index correspondence. When using the
Gauss quadrature, the approximated mass matrix M̃ and the approximated advection matrices
Ãk become diagonal with coefficients:

M̃i,i =
∑

vi=vL,j

ωL,j , (Ãk)i,i = Mi,i (vi)k,
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and the approximated system writes as a simple diagonal transport system:

∂tU +
d∑

k=1
Diag((vi)k) ∂xk

U + M̃−1B(E)U = 0. (6)

Note that this is reminiscent of mass lumping technique in finite element methods and is classical
in nodal Discontinuous Galerkin methods [31].

Different spatial and time discretizations. Regarding only the transport part of the
equation, different discretization have been investigated. A finite-volume discretization with
the upwind flux1 has been proposed in [42] in the one-dimensional case for System (5). It has
also been observed that high-order Runge-Kutta time discretizations allow us to dispense with
artificial viscosity or at least to adjust it to as low a level as desired. In [41], a detailed stability
analysis has been carried out, in the one-dimensional case (d = 1) on a regular Cartesian grid
with space step ∆x, which we present here. Considering the standard decentered numerical
flux, the space semi-discretized scheme writes:

∂tUi + (M−1A)Ui+1 − Ui−1
2∆x − κ

2∆x(Ui+1 − 2Ui + Ui−1) = 0,

with a viscosity parameter κ ⩾ 0. After noting that the spectral radius of the matrix M−1A is
actually smaller than vmax, the following proposition gathers stability results for the first four
Runge-Kutta schemes:

Proposition 2 (Stability without the source term [41]). The Runge-Kutta finite-volume schemes
with decentered numerical flux are stable under the condition ∆t = α∆x/vmax with

(RK1) α ∈ (0, 1), α−1 > κ/vmax > α,

(RK2) α ∈ (0,
√

3), α−1 > κ/vmax > α3/4,
(RK3) α ∈ (0, 1.5), (3/4)α−1 > κ/vmax,

(RK4) α ∈ (0, 2), (3/4)α−1 > κ/vmax.

The second case has been only numerically checked and the last two conditions are non optimal.

This proposition shows that the first and second order numerical schemes always require some
viscosity to be stable, while the third and fourth order in time schemes can be used with a
tunable viscosity parameter. We refer to [48] for recent results on this topic.

Taking benefit from the diagonal formulation (6), a semi-Lagrangian scheme can be used to
solve the Nv resulting transport equations. This has been investigated in [Red4]. We refer to
Box 2 for a general presentation of semi-Lagrangian methods. Using a dimensional splitting,
the method consists into the resolution of a succession of one-dimensional transport equations.
High order spatial accuracy can be obtained using either cubic spline or Lagrange interpolation.
The main advantage of the semi-Lagrangian methods is to be exempt from stability conditions:
the time step can be considered as large as desired. Strang splitting can then be used to gain
accuracy in time. However, conservation properties are only ensured when considering a regular
Cartesian grid: this limits us to using cubic spatial domains Ωx.

To hold general domains and still be high order accurate in space, a discontinuous Galerkin
scheme (DG) can also be considered [Red5, Red7], as presented in Box 3. Runge-Kutta time

1The upwind flux coincides with the Godunov flux for linear hyperbolic systems.
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discretizations can be used to achieve high order accuracy in time. Note, however, that this
method has to satisfy a CFL stability constraint.

The reduced Vlasov model also contains a source term corresponding to the advection in the
velocity direction with the electric field. The whole system can be either solve directly or using
an operator splitting strategy, meaning that the two following equations are solved successively

∂tU +
d∑

k=1
(M−1Ak) ∂xk

U = 0,

∂tU + (M−1B(E))U = 0.

In both cases, the source term induces some constraints on the time step: to capture the dynam-
ics induced by the corresponding CFL like condition should be considered: ∆t ⩽ ∆v/∥E∥∞.

Implementation issues. In [Red4], we have carried out performance comparisons between
the finite volume (FV), the semi-Lagrangian (SL) and the DG solvers on a two-dimensional
square spatial domain. The FV and the SL version have been implemented in the SeLaLib2

library, whose parallelism is based on MPI subdomain decomposition for the former and on
MPI-based grid transposition for the latter. The DG version has been implemented in the
schnaps3 library based on the OpenCL framework to perform simulations on GPUs. Figure 1a
shows that the three methods have roughly similar computation time per second-order time
step when considering 32×32 points in velocity, degree p = 2 finite element in velocity, between
32 × 32 to 256 × 256 points in space and with deactivated source term. A first comparison
between the SL (order 3 - cubic spline, order 9 - Lagrange) and the FV schemes have been
done on a classical 1D Landau damping test case with 65 grid points in velocity and 32 spatial
points. As expected, Figure 1d shows that both methods preserve mass up to some loss due to
the boundary conditions in velocity. On Figure 1c, we also observe that the SL methods order
3 and 9 better preserve the L2 norm of the distribution function than the FV method as they
are less diffusive. However, as they hardly preserve the positivity of the distribution function,
the SL lack of preservation of the L1 norm of the distribution function (see Fig. 1b).

Box 2: Semi-Lagrangian method

Considering a transport equation

∂tU + a · ∇xU = 0,

with velocity field a(t, x) ∈ Rd, the semi-Lagrangian method relies on the fact that
the solution is constant along the characteristics curves (s,X(s; t, x)), solutions to the
differential equations:

dX

ds
(s; t, x) = a(X(s; t, x), t), X(t; t, x) = x.

In particular, the solution at time tn+1 at point x equals the solution at time tn evaluated
at the root of the characteristic:

U(tn+1, x) = U(tn, X(tn; tn+1, x)).

2https://selalib.github.io/
3https://github.com/phelluy/schnaps

https://selalib.github.io/
https://github.com/phelluy/schnaps
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Figure 1: Top: Computation time per second-order time step per 106 degrees of freedom for
SeLaLib with 16 CPUs and schnaps with 1 CPU or 1 GPU. Bottom: Time evolution of the
change of the L2 norm of the distribution function (left) and of the change in mass for the
strong Landau damping test-case [Red4].

Now, given a discrete solution (Un
i ) at time tn and points (xi), the solution at time tn+1

can be defined similarly :

Un+1
i = [ΠUn](X(tn; tn+1, xi)),

where Π denotes a reconstruction operator that defines a function of the whole space
ΠUn from the nodal values (xi, U

n
i ).

The method requires the resolution of the characteristic equations. If the velocity field
a is constant (independent of t and x), then they are given explicitly: X(tn; tn+1, xi) =
xi − a(tn+1 − tn). If the velocity field a is nonconstant, this requires to integrate the
characteristic equations with a numerical solver.
Regarding the reconstruction operator Π, several methods have been studied in dimension
1 (see e.g. [13]): it can be either a global interpolation operator using cubic splines (with
accuracy O(∆x3)) or a local Lagrange polynomial interpolation with 2r + 1 neighboring
points (with accuracy O(∆x2r+1)):

[ΠU ]|[xi,xi+1] = π
((
xj , Uj

)
i−r⩽j⩽i+r

)
.

Convergence has been proven on uniform meshes [7, 21]. The main advantage of the semi-
Lagrangian method is that the time step is not subject to a CFL stability condition.
Consequently, the choice of the time step is dictated solely by the precision required.
They are also conservative for constant advection on a uniform mesh [13]. We refer to
[22] for comparisons.
In higher dimensions, the method becomes computationally more expensive. This is
why, semi-Lagrangian methods are often used with dimensional splitting on uniform
Cartesian meshes. Splitting errors can, however, accentuate the problem due to the
non-conservative nature of the method [47]. For non-uniform meshes (in dimension 1)
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and unstructured meshes (in higher dimensions), stability issues also arise when using La-
grange interpolation. Several variants of the semi-Lagrangian scheme have been proposed
to ensure either the stability and the conservativity: e.g. conservative semi-Lagrangian
(PFC) method [23] or semi-Lagrangian Discontinuous Galerkin (SLDG) methods (see
Box 4).
We refer to [46, 16] for a more detailed presentation of the method.

Box 3: Discontinuous Galerkin method

Let us consider a hyperbolic system:

∂tU + ∇ · F (U) = 0,

with F (U) = [F1(U), . . . , Fd(U)]. We recall that it is hyperbolic if for any n ∈ Rd,∑d
k=1 nk∇Fk(U) is diagonalizable with real eigenvalues. Let us consider a mesh of the

domain Ωx. In each cell L of the mesh, the solution is approximated by polynomial basis
functions

UL(x, t) =
q∑

j=1
UL,j(t)ψL,j(x), x ∈ L.

where q is the number of degrees of freedom per cell. The approximated solution satisfies
the discontinuous Galerkin (DG) scheme∫

L
∂tUL ψL,i −

∫
L
F (UL)∇ψL,i +

∫
∂L
F̃ (UL, UR, nLR)ψL,i = 0,

where R denotes cells adjacent to L, nLR is the unit normal vector on ∂L oriented from L
to R, F̃ (UL, UR, n) is a standard finite-volume numerical flux like the local Lax-Friedrichs
flux:

F̃ (UL, UR, n) =
(
F (UL) + F (UR)

2

)
n− α

2 (UR − UL),

where α = maxk(|λk(UL, n)|, |λk(UR, n)|) is a local upper bound of the characteristic
speeds of the system.
The nodal Discontinuous Galerkin method consists into considering a specific poly-
nomial basis made of interpolant polynomials at some given points (xL,j): ψL,j(xL,i) =
δij . Therefore, the degrees of freedom UL,j coincides with the nodal values of the approx-
imate solutions at these points. In addition, the integrals are approximated by Gauss
quadrature and then (xL,j) are Gauss points.
For linear systems, the semidiscrete nodal DG scheme is L2 dissipative as soon as the
interface flux is L2 dissipative too. This also holds for scalar equations if the volume
integrals are computed exactly. When using quadrature methods for the integrals, the
method is no longer stable a priori. Entropic stability can however be recovered using a
split formulation of the method [26]. This has also been extended to a few systems with
general entropic functions. Note that obtaining general entropy stability results for the
fully discrete DG scheme is still an open problem. We refer to [31] for more details.
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3 Fluid models with an entropic closure

Another possible reduction is made by considering the dynamics of some specific moments of
the distribution function f(x, v, t):

U(x, t) =
∫

Ωv

m(v) f(x, v, t) dv, ∀k ∈ J1,KK,

where m(v) = (mj(v))j denotes polynomial functions. In order to close the model satisfied by
this parameter, we use a reduced form of the distribution function. Here we explore the entropy
minimization method to define the distribution function as functions of its moments:

MU (v) = argmin
g s.t. g(v)⩾0,∫

Ωv
m(v) g(v) dv=U.

∫
Ωv

g(v) ln g(v) dv.

Using this ansatz, we can obtain the reduced dynamics on the moments U and this naturally
leads to a hyperbolic system, as introduced by Levermore in [38]. This method has been first
developed for radiative transport applications [17]. During the PhD thesis of Pierre Gerhard,
co-supervised with Cedric Foy (Cerema) and Philippe Helluy, we apply the methodology to
construct reduced models for room acoustics [27].

Acoustic kinetic model. Acoustics in the audible domain ant at the building scale is based
on the propagation of pressure waves at the speed of sound c = 343ms−1 with frequencies
between 20 Hz and 20 kHz. In this regime, acoustic waves can be approximated by the transport
of acoustic particles, also called phonons [44]. Each particle carries a quantity of acoustic energy
and travels in straight lines at the constant sound speed c. They also have reflections on the
boundary. Here the variable v will refer to their directions of propagation: they belong to the
unit sphere Ωv = Sd−1 =

{
v ∈ Rd, |v| = 1

}
. The distribution function f(x, v, t) thus satisfies

the free transport equation:

∂tf(x, v, t) + c v · ∇xf(x, v, t) = 0, in Ωx × Sd−1 × R+. (7)

complemented with the following boundary conditions:

f(x, v, t) = (1 − α)
[
βfs(x, v, t) + (1 − β)fd(x, v, t)

]
, ∀(v, t) ∈ S−(x) × R+, (8)

where α ∈ [0, 1] is the absorption coefficient, β ∈ [0, 1] the so-called accommodation coeffi-
cient and where fs and fd denote the specular and diffusive distribution function of incoming
velocities:

fs(x, v, t) = f
(
x, v − 2(v · n(x))n(x), t

)
, (9)

fd(x, v, t) |v · n(x)| =
∫

v′∈S+(x)
Px(v′, v) f(x, v′, t) |v′ · n(x)| dv′, (10)

and Px(v′, v) the reflection probability. For any boundary points x ∈ ∂Ωx, we denote by S+(x)
(resp. S−(x)) the half sphere of outgoing velocities (resp. incoming velocities): S±(x) = {v ∈
Sd−1 | ± v · n(x) ⩾ 0}, where n(x) denotes the outward normal.
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Entropic reduced model. When considering m(v) = (1, v1, . . . , vd)T , the macroscopic un-
known are denoted U(x, t) = (w(x, t), I1(x, t), . . . , Id(x, t))T ∈ Rd+1: it is composed of the
energy density w(x, t) and the intensity direction I(x, t):

w(x, t) =
∫
Sd−1

f(x, v, t) dv, I(x, t) =
∫
Sd−1

vf(x, v, t) dv. (11)

Multiplying Equation (7) by m(v) and integrating leads to the following fluid model:

∂tw(x, t) + c∇x · I(x, t) = 0, (12)
∂tI(x, t) + c∇x · P (x, t) = 0, (13)

where P (x, t) is the so-called pressure tensor:

P (x, t) =
∫
Sd−1

(v ⊗ v) f(x, v, t) dv.

To close this system, we define the distribution function f(w,I) = MU that solves the optimization
problem (3). Then we define the approximate pressure tensor as the one associated with this
distribution function:

P (w, I) =
∫
Sd−1

v ⊗ vf(w,I)(x, v, t) dv. (14)

Since the velocity domain is compact, the optimization problem has actually a unique solution
[SCHNEIDER2004] as soon as the moment vector U belongs to the so-called realizable set

U = {U = (w, I) ∈ R+ × Rd, |I| < cw}.

Thus we can state the following proposition:

Proposition 3. Let (w, I) ∈ U . Then problem (3) has a unique solution given by:

f(U,I)(v) = w
exp

(
κ I·v

|I|

)
Zκ

, (15)

where Zκ is a normalization constant and κ ⩾ 0 is given by: κ = G−1(r) with r = |I|/(cw).
The two quantities Zκ and G(κ) are given by:

(d = 2) Zκ = I0(κ), G(κ) = I1(κ)
I0(κ) ,

(d = 3) Zκ = 4π sinh κ
κ

, G(κ) = coth κ− 1
κ
,

where In(κ) denotes the Bessel functions of the first kind: In(κ) =
∫ 2π

0 cos(nθ) exp(κ cos θ) dθ/(2π).

Proposition 4 (M1 model). The reduced model writes

∂tw + c∇x · I = 0, (16)
∂tI + c∇x · P (w, I) = 0. (17)

where the pressure tensor (14) associated to f(w,I)(v):

P (w, I) = w

[(
1 − χ(r)

)
d− 1 Id +

(
dχ(r) − 1

)
d− 1

I ⊗ I

I2

]
, (18)

where Id is the identity matrix and χ(r) the Eddington factor, χ(r) = 1 − (d − 1)r/κ, with
r = |I|/(cw). By construction, this is a hyperbolic system, equipped with a convex entropy
H(fw,I) [38].
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(a) α = 0.1 (b) α = 0.5 (c) α = 0.8

Figure 2: Time evolution of the total energy in a two-dimensional room [0, 5] × [0, 1] for ac-
commodation parameter β = 0.7 and different absorption parameters α. Parameters for the
M1, SN (N = 64 velocities): ∆x = ∆y = 0.002, CFL = 0.5, t = 0.00025. Parameter RT: 107

particles. [27].

The one-dimensional version of the model has been studied in [11, 10] and showing that the
Riemann problem can be solved globally. The extension of this result in the two-dimensional case
has been studied in [27]. Higher order models, using more moments, can be derived following
the same strategy. However, the optimization problem (3) has no longer explicit solutions and,
in practice, optimization algorithms have to be used to solve the entropy minimization problem.
Moreover, the realizable set is not fully identified in these cases. We refer to [1, 43] for recent
developments to overcome these difficulties.

Numerical discretization. In [27], the reduced model has been solved using a standard finite
volume scheme with a Lax-Friedrich flux for internal edges and a kinetic flux for boundary edges.

F ∗,b(UL, IL, n) =
∫

v∈S1
v·n>0

fUL,IL
(v)m(v)(v · n)dv (19)

+
∫

v∈S1
v·n<0

(1 − α)
[
βfs

UL,IL
(x, v, t) + (1 − β)fd

UL,IL
(x, v, t)

]
(v)m(v)(v · n)dv.

The implementation has been done using a PyOpenCL python code to perform simulations on
GPUs. Following [18], the Eddington factor has been approximated by a rational fraction to
gain in performance.

Numerical results. The M1 reduced model has been compared with two other methods: a
ray-tracing algorithm (RT) and the discrete-ordinate method (SN ). The latter consists into
solving N independent transport equations corresponding to N discrete velocities, taken regu-
larly spaced on S1 and as Lebedev points on S2 [36]. A comparison between the models have
been performed to assess their ability to recover the right acoustic energy decay after removing
a sound source. The total acoustic energy is defined as the integral of w over the spatial domain:
E(t) =

∫
Ωx
w(t, x) dx. The results can be compared with the Eyring law, which is valid for cubic

rooms. Figure 2 shows that both M1 and SN model (with N = 64 velocities) capture quite well
this energy decay, the M1 model being less computationally demanding than the SN one.
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4 Fluid models with a data-driven closure
In this section, we investigate another way to design fluid models. We directly look for the
dynamics of the moments of the distribution function:

U(x, t) =
∫

Ωv

m(v) f(x, v, t) dv,

by using a data-driven closure. Hence, instead of relying on a reduced form of the distribution
function f(x, v, t), the reduced model is learned from data coming from numerical simulations.
This would help into extending the regime of validity of the reduced models. The following work
has been carried out during the PhD thesis of Léo Bois, whom I co-supervised with Emmanuel
Franck and Vincent Vigon.

Vlasov-Poisson-BGK model. In this work, we were interested in the Vlasov-Poisson-BGK
equation:

∂tf(t, x, v) + v · ∇xf(t, x, v) − E(t, x) · ∇vf(t, x, v) = 1
ε

(M(f)(t, x, v) − f(t, x, v)),

∇x · E(t, x) = ρ(t, x),

where ε > 0 denotes the Knudsen number, that is the mean free path between two collisions
divided by the characteristic length under consideration, and the right-hand side denotes the
simplified BGK (Bathnagar-Gross-Krook) collisional operator. This is a relaxation operator
towards the local Maxwellian distribution:

M(f) = ρ(x, t)
(2πT (x, t))d/2 e

− |v−u(x,t)|2
2T (x,t) ,

where the density ρ(x, t), the fluid velocity u(x, t) and the temperature T (x, t) are defined by:

ρ(x, t) =
∫
Rd
f(x, v, t) dv, (20)

ρ(x, t)u(x, t) =
∫
Rd
vf(x, v, t) dv, (21)

ρ(x, t)T (x, t) = 1
d

∫
Rd

|v − u(x, t)|2f(x, v, t) dv. (22)

Fluid model. Classical fluid models look at the dynamics of the first three moments in
velocity of the distribution function are the density ρ(x, t), the momentum ρ(x, t)u(x, t) and
the energy w(x, t):

w(x, t) =
∫
Rd

|v|2
2 f(x, v, t) dv,

which can be related to the temperature through the relation: w = ρ|u|2/2 + (d/2) ρT . The
dynamics of these first three moments are expected to be enough to capture the dynamics at
least in the strong collisional regime when the distribution function is close to the manifold
of local Maxwellian distribution. We are therefore interested in deriving their dynamics. The
moment method consists into multiplying the Vlasov equation against 1, v, |v|2/2 and then
integrating in velocity. This results into the following system:

∂tρ+ ∇x · (ρu) = 0,
∂tρu+ ∇x · (ρu ⊗ u) + ∇xp+ ∇x · Π = −ρE,
∂tw + ∇x · [wu+ pu+ Πu+ q] = −Eρu,
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where p(x, t) = ρ(x, t)T (x, t) denotes the pressure and Π(x, t) ∈ Md(R) is the traceless part of
the pressure tensor and q(x, t) ∈ Rd is the heat flux, given by:

Π(x, t) =
(∫

Rd
(v − u(x, t)) ⊗ (v − u(x, t)) f(x, v, t) dv

)
− p(x, t) Id,

q(x, t) =
∫
Rd
v |v − u(x, t)|2f(x, v, t) dv.

We thus get a system for the three moments ρ, ρu and w but this system is not closed as Π and
q still depend on the underlying kinetic distribution f .

The first possibility to close the system would be to provide an expression for the distribution
function as a function of its first three moments. Using a Chapman-Enskog analysis, we can
formally determine the following approximation:

f = M(f) − ε (A : σ(u) + B · ∇T )M(f) + O(ε2),

and then deduce the following Navier-Stokes closure (in dimension d = 3)

Π̂ = −εp σ(u) + O(ε2), with σ(u) =
(
∇xu+ ∇xu

T
)

− (∇ · u)Id.

q̂ = −ε3
2p∇T + O(ε2).

However, these relations are only valid for small Knudsen numbers, ε ⩽ 10−2. We refer to [15]
for a review on this topic.

Data-driven reduced model. Another possible way to determine the dynamics is to learn a
closure relation from data, coming from physical measures or numerical simulations. In [Red3],
we have proposed a supervised strategy to learn a nonlocal closure relation of the form:

(Π(., t), q(., t)) = Cθ̂(ε, ρ(., t), u(., t), T (., t)),

where the closure function is defined by a neural network with parameters θ̂ ∈ Θ. Kinetic numer-
ical simulations for various initial conditions and Knudsen parameters ε ∈ [10−2, 1] have been
performed and have provided a collection of data composed of tuples, (ε, ρi, ui, Ti,Πi, qi)i=1,...,N .
Then the neural network has been trained such as to reach a local minima of the following func-
tion:

θ̂ ∈ argmin
θ∈Θ

N∑
i=1

|Cθ(εi, ρi, ui, Ti) − (Πi, qi)|2

Regarding the architecture of the neural network, a V-net architecture has been employed: it
makes multi-scale analysis of the signals thanks to a succession of convolution layers and up
and down-sampling layers [39]. Specific data post-processing has been carried out to avoid the
prediction of two small values, using a normalization thanks to the Navier-Stokes closure.

Stability issues. While the learning process can be made with success, troubles can arise
while using the obtained closure into a fluid solver. Indeed, there is no stability guarantee
and numerical instabilities develop. In the one-dimensional case [Red3], a spatial smoothing
of the neural network output, with a convolution with a Gaussian kernel, proves to be suf-
ficient to stabilize the numerical methods, while still preserving the prediction accuracy. In
the two-dimensional case, however, this process is no longer enough. Several possible numeri-
cal treatments have been tested (smoothing, increased numerical viscosity, restricted range of
Knudsen number, pressure thresholding) but none stabilizes without deteriorating significantly
the results. We refer to [3] for more details.
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Figure 3: Left: Examples of the evolution of the electric energy with different initial conditions
and different Knudsen numbers. Right: L2 relative errors of the fluid models over the kinetic
model depending on the Knudsen number. It shows the median and interquartile interval for
20 uniform classes of Knudsen numbers between 0.01 and 1. Taken from [Red3].

Implementation issues. The neural network and the numerical simulations have been im-
plemented using TensorFlow. While the use of the neural network in a fluid solver is not
competitive with the kinetic numerical simulations in the one-dimensional case, an accelera-
tion factor of order 7 is obtained in the two-dimensional case. This is mostly due to the fact
the neural network approximation capabilities is not greatly affected by the dimension of the
problem: neural networks have approximately the same number of parameters in the two- and
three-dimensional problem.

Numerical results. Figure 3a shows electric energy time evolution obtained with the model
with the neural network closure (Fluid+Network), for different initial conditions and different
Knudsen number, while Figure 3b presents statistical results. The proposed model is compared
with the Navier-Stokes model and the Fluid+Kinetic model, which uses the true heat flux
obtained from the kinetic simulation. The latter is exact at the continuous level, but already
leads to some error once discretized. The main observation is that the Fluid+Network model is
actually able to capture the right dynamics on the considered Knudsen interval, with uniform
relative error below 10%.

5 Fluid models with a data-driven velocity basis
Reduced models have also been constructed by extracting information from the solutions them-
selves. More precisely, in [Red6], we adopt a Reduced Order Modeling (ROM) approach, where
the reduced variables are linear combinations of the nodal values:

Û(x, t) = ΦT [f(x, vj , t)]j=1,...,Nv
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where (vj)j=1,...,Nv are velocity grid points and ΦT ∈ MNv ,K(R) is a linear encoder operator and
Φ ∈ MK,Nv (R) is the associated linear decoder operator: they satisfy the decoding-encoding
property, ΦT Φ = Id. This linear operator is obtained as the solution of the following problem:

min
Φ∈MNv,K(R)
ΦT Φ=Id

∑
i

∣∣∣fi − ΦΦT fi

∣∣∣2,
where fi = (fi(xi, vj , ti))j=1,...,Nv are Ns samples of the discrete distribution functions on the
velocity grid. The optimization problem thus consists into looking for the decoding operator Φ so
as to minimize the encoding-decoding error on the samples. The solution to this minimization
problem is obtained by performing a Proper Orthogonal Decomposition of the matrix (fi,j).
With this technique, the goal is to determine a reduced model valid around a reduced set of
solutions but with the smallest possible number of parameters K.

Note that such a method has been applied for particle discretization of the Vlasov-Poisson
system [30] with a reduction in both space and velocity. In order to efficiently tackle Eulerian
discretization in the six-dimensional phase space, low-rank tensor bases have been proposed
[6, 19] , as well as their dynamic version [29]. Here we propose a mixed method where the
ROM approach only compresses the dynamics in the velocity variable. Like moment models,
the resulting reduced model provides the spatial dynamics of the reduced quantities. Therefore,
the method provides a model, independent of the spatial discretization of the computational
domain.

Vlasov-Poisson Fokker-Planck model. We have considered the one-dimensional Vlasov-
Poisson Fokker-Planck model:

∂tf(t, x, v) + v ∂xf(t, x, v) + E(t, x) ∂vf(t, x, v) = 1
ε
Q(f)(t, x, v), (23)

where ε > 0 still denotes the Knudsen number and Q(f) denotes the non-linear Fokker-Planck
operator:

Q(f) = ∂v

(
(v − uf )f + Tf ∂vf

)
,

where ρ(t, x), u(t, x) and T (t, x) denote the particle density (in space), the velocity, and the
temperature, as defined in (20)-(21)-(22).

Reduced model. Starting from the semi-discrete model (6) with finite element approximation
of order p = 1, the nodal values U(x, t) = (f(x, vj , t)) satisfies the following equation:

∂tU(t, x) + Diag(vj) ∂xU(t, x) + E[U ](t, x)DU(t, x) = 1
ε
Q∆v(U(t, x)), (24)

where D refers to the matrix associated with the centered finite difference approximation and
E[U ] refers to the resolution of the Poisson equation from the discrete solution U . The operator
Q∆v(U(t, x)) is a discretization of the Fokker-Planck operator, like the one proposed in [4],
which is explicit, density, momentum and energy preserving and entropy dissipative. Then to
obtain the dynamics of the reduced variables Û , we perform a Galerkin projection. We insert the
ansatz U = ΦÛ into the equation and apply the projection ΦT . Using the identity ΦT Φ = Id,
we get the following reduced model:

∂tÛ(t, x) + D̂iag(v) ∂xÛ(t, x) + E[ΦÛ ] D̂ Û(t, x) = 1
ε
Q̂∆v(Û), (25)
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where matrices D̂iag(v), D̂ are respectively of size K ×K, K ×K and 1 ×K and given by:

D̂iag(v) = ΦT Diag(v)Φ, D̂ = ΦTDΦ,

and the reduced collision operator is defined by:

Q̂∆v(Û) = ΦTQ∆v(ΦÛ(t, x)). (26)

Preservation of moments. Defining the reduced moment operators:

m̂ =

 m̂ρ

m̂ρu

m̂w

 =

 ∆v 1T

∆v 1T Φ(ΦT Diag(v)Φ)
1
2∆v 1T Φ(ΦT Diag(v)Φ)2

 ∈ M3,K(R). (27)

the following proposition holds

Proposition 5. The reduced moments (ρ̂, ρ̂û, ŵ)T = m̂Û satisfy the following system:

∂tρ̂+ ∂x(ρ̂û) = E[ΦÛ ] m̂ρD̂ Û + 1
ε
m̂ρQ̂∆v(Û),

∂t(ρ̂û) + ∂x(ρ̂û2 + p̂) = E[ΦÛ ] m̂ρuD̂ Û + 1
ε
m̂ρuQ̂∆v(Û),

∂tŵ + ∂x(ŵû+ p̂û+ q̂) = E[ΦÛ ] m̂wD̂ Û + 1
ε
m̂wQ̂∆v(Û),

(28)

where p̂ is such that ŵ = ρ̂û2/2 + p̂/2 and q̂ = 1
2∆v 1T Φ

(
Â− û Id

)3
Û .

From this proposition, we see that if Q̂∆v preserved the reduced moments, then the singular
terms would vanish and the reduced model would lead to a close fluid model. To enforce this
property, a classical method consists into correcting the collision operator in the following way:

Q̂c
∆v(ΦÛ) = argmin

Q̂∈RK s.t. m̂Q̂ = 0
∥ΦT Q̂−Q∆v(ΦÛ)∥2.

The solution to this minimization problem is given by:

Q̂c
∆v(ΦÛ) = ΦTQ∆v(ΦÛ) − m̂T (m̂m̂T )−1m̂ΦTQ∆v(ΦÛ). (29)

Numerical results. We consider the Landau damping test case with initial distribution

f(0, x, v) = 1√
2π

exp(−v2/2) (1 + α cos(kx)), x ∈ [0, 2π/k], v ∈ [−vmax, vmax],

with k = 0.5, vmax = 6 and the aim is to build a reduced model valid for all values in (ε, α) in
the domain D = [1, 10] × [0.01, 0.1] on the time interval [0, 20]. Therefore, we consider 25 pairs
(ε, α), randomly chosen in D and the reduced models is built using 30 samples of the distribution
function per pairs (ε, α), resulting into Ns = 750 samples. These samples are obtained by solving
(24), using a Finite Volume spatial discretization with Nx = Nv = 128. In Figure 4, we can
observe the electric energy damping for three sets of parameters. The first set of parameters
belongs to D and the approximation results are quite good, with a reduced dimension equal
to K = 10. The reduced dimension K have been chosen by computing the singular values
associated with the samples (red curve on Fig. 4a). When considering parameters outside of
the learning domain D, the correction introduced in (29) enables the model to capture the right
dynamics at least for ε smaller than 1 (see Fig. 4c).
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(a) Singular values (b) (ε, α) = (5., 0.05)

(c) (ε, α) = (0.1, 0.3) (d) (ε, α) = (20, 0.3)

Figure 4: Logarithm of the norm of the electric field. Taken from [Red6].

6 Conclusion and perspectives

In this chapter, we have presented several reduction methods for kinetic equations. Reduced
models based on a semi-discretization techniques or entropic closures enjoy hyperbolicity prop-
erties by construction, but may have a limited range of validity unless considering a large number
of reduced variables or restrict ourselves to collisional physical regimes. On the other hand, the
proposed data-driven methods enable us to construct reduced models valid in weakly-collisional
regimes, with a limited number of reduced variables, but without stability guarantees.

To ensure stability, data-driven reduced models should be constrained to preserve some math-
ematical structure. This is what we investigated in the recent work [Red1], which proposes
a data-driven reduction method that preserves Hamiltonian structure. The reduced variables
and the reduced dynamics are learned simultaneously by coupling a convolutional auto-encoder
and a Hamiltonian neural network. The work consisted in implementing this approach on large
differential systems obtained by semi-discretization in the space of non-linear wave equations.
This has been obtained during the ongoing PhD thesis of Guillaume Steimer, co-advised with
Raphaël Côte (Univ. Strasbourg), Emmanuel Franck (INRIA, Univ. Strasbourg) and Vincent
Vigon (Univ. Strasbourg).

In continuation of these works, we would like to further investigate the construction of reduced
models using neural networks. We can list several directions of research:

1. Reduction of particle dynamics. Particle systems arising in plasma physics are de-
scribed by large systems of differential equations with Hamiltonian or Poisson structure.
In the reduction program, the first difficulty concerns the identification of reduced vari-
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ables. As there is no underlying spatial structure, data-driven reduction technique would
require dense auto-encoders that are much more difficult to train. We propose to use a
first algebraic reduction by proper orthogonal decomposition, adapted to the symplectic
case [40]. Another technique to be studied could be the use of permutation-invariant neu-
ral networks [37]. The second issue regards the learning of the reduced dynamics. Specific
work needs to be done to extend the Hamiltonian technique to the Poisson case. Finally,
in order to reduce the algorithmic complexity of the reduced models obtained by neural
networks, SINDY-type models could be considered [9].

2. Moment models. Regarding the reduction of kinetic models, the advantage of velocity
moment models is that they give the dynamics of variables of physical interest such as den-
sity, momentum or energy. In Section4, we only constructed closures with the minimum
number of moments appearing in the classical fluid equations. An interesting extension
would be to construct the dynamics of higher-order moments. One approach could be
to learn the dynamics of these additional moments using recurrent neural networks. The
method could be tested on the Vlasov-Poisson dynamics and could subsequently be ex-
tended to the closure of the gyrofluid model [24].

3. Construction of reduced variables in a strongly oscillating regime. In the strong
magnetic regime, with non-periodic magnetic fields, it is difficult, if not impossible, to an-
alytically figure out a reduced asymptotic model, which would provide the main dynamics
of the particles deprived of fast rotation. Neural networks could also be used in this regime
to learn appropriate reduced variables. In addition, the possible reconstruction of the fast
rotation dynamics would make it possible to add relevant corrections to the slow dynamics
model. This would allow us to build valid schemes in different magnitude regimes of the
magnetic field [12].

4. Adaptive models Reduced models provide a good approximation to solutions, but only
in a necessarily restricted regime of parameters. It would therefore be interesting to de-
termine locally whether the reduced model can be used or whether it is necessary to resort
to the initial model. To do this, one method would be to build classifiers using neural
networks, for which the labels - reduced model or complete model - will be determined
using the error between the reduced model and the complete model. We can also consider
unsupervised reinforcement learning strategies to ensure better stability. Once this clas-
sifier has been trained, it will be necessary to implement model coupling methods, while
ensuring the stability and convergence of the methods. In the longer term, it would be
interesting to design a method in which the reduced model is built on the fly from the
simulations carried out by the full model and where the full model is gradually replaced
by the reduced model when this proves relevant.
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Chapter II

Numerical methods for kinetic and hyperbolic systems

1 Introduction

Among the large variety of method for hyperbolic systems, the discontinuous Galerkin method,
already presented in Box 3, has the advantage to be high-order accurate, compatible with
unstructured meshes and have stability properties in the linear case. To overcome the CFL
stability condition, a semi-Lagrangian version, called Semi-Lagrangian Discontinuous Galerkin
(SLDG), have been proposed for transport equations, which inherit its stability properties. We
refer to Box 4 for a short presentation of the method.

In this short chapter, we will explore two very different kinds of numerical issues. The first one
is how to analyze the recurrence phenomenon appearing in the simulations of kinetic transport
equations with the SLDG scheme. The second one is how to improve the accuracy of the DG
method on stationary solutions.

2 Recurrence phenomenon on a regular finite element mesh

Recurrence phenomenon is a numerical artifact appearing when solving kinetic transport equa-
tions on a regular phase-space grid with periodic boundary conditions, which suddenly destroys
the accuracy of the numerical solution. It has been first mentionned in the seminal paper of
Cheng and Knorr [8]. When considering periodic boundary conditions, the Vlasov dynamics
exhibit phase mixing: small initial spatial perturbations result in oscillations in the velocity
distribution, whose frequency grows in time. Consequently, at some time, the velocity mesh
cannot capture these oscillations anymore. This leads to an aliasing effect: when charge den-
sity is computed, the large frequency oscillations are numerically interpreted as small frequency
ones. As the charge density and the electric field are related through the Poisson equation, the
recurrence phenomenon is rather observed on the electric energy time evolution.

Several works have considered methods to suppress or at least reduce the recurrence phe-
nomenon. This can be done by adding an artificial diffusion [16], outflow boundary conditions
in the Fourier velocity variable [13], using cutoff procedure in Fourier space [12, 11], Filtering
techniques for Hermite-spectral method [7]. In another direction, randomization of the velocity
points in each velocity cells have been considered in [1].

When using a uniform finite-element mesh in velocity, as it can be the case for the SLDG
scheme, it has been observed surprisingly that the recurrence phenomenon behaves unfavourably
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when increasing the degree of approximation [9, 18, 19, 11]: the recurrence time does not depend
on the degree of approximation.

This section briefly presents the analysis of this phenomenon performed and how trigonometric
quadrature weights optimally defers the occurence of the recurrence phenomenon. This was a
work made in collaboration with M. Mehrenberger (Aix-Marseille Univ.) and N. Pham (Univ.
Strasbourg) and published in [Num4].

Recurrence phenomenon on a regular mesh. Let us consider the following kinetic trans-
port problem:

∂tf + v ∂xf = 0,

finit(x, v) = A cos(kx) 1√
2π

exp(−v2/2),

on the domain Ωx × Ωv = [0, 2π/k] × [−vmax, vmax], with spatial periodic boundary conditions.
The solution is given by:

f(x, v, t) = finit(x− vt, v) = cos(k(x− vt)) 1√
2π
e−v2/2.

Then computing the charge density with rectangle quadrature on a regular mesh (vℓ)ℓ with
ℓ ∈ J−Nv/2, Nv/2K, vℓ = ℓ∆v, ∆v = vmax/Nv > 0, then the approximated density writes:

ρ̃(x, t) =
Nv/2−1∑

ℓ=−Nv/2
f(t, x, vℓ)∆v =

Nv/2−1∑
ℓ=−Nv/2

cos(k(x− vℓt))
1√
2π
e−v2

ℓ /2∆v.

Thus this approximate charge density is periodic in time, with period TR = 2π/(k∆v). This
numerical artifact also appears in the numerical simulation of the Vlasov-Poisson system.

Recurrence phenomenon on a regular finite element mesh. Considering the following
finite element velocity mesh

v(ℓ,j) = (ℓ+ v̄j)∆v, ∀(ℓ, j) ∈ J−Nv/2, Nv/2 − 1K × J0, qK

with v̄0 < . . . < v̄q ∈ [0, 1] and q ∈ N. Then, solving the kinetic transport equation consists in
solving d×Nv transport equations:

∂tf(ℓ,j) + v(ℓ,j)∂xf(ℓ,j) = 0,

(finit)(ℓ,j)(x) = cos(kx) 1√
2π
e−

v2
(ℓ,j)

2 ,

and the approximate density writes:

ρ̃(x, t) =
Nv/2−1∑

ℓ=−Nv/2

q∑
j=0

∆v ωj (finit)(ℓ,j)(x− v(ℓ,j)t) = π

k
cos(kx)h(t)

with

h(t) =
Nv/2−1∑

ℓ=−Nv/2

q∑
j=0

∆v ωj cos(kv(ℓ,j)t) e−
v2

(ℓ,j)
2 ,
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and where (ωℓ) are quadrature weights. To analyze the recurrence effect, we introduce the
correlation function:

C(t) =
∫

Ωx

ρ̃(x, t)ρ̃(x, 0) dx = π

k
h(t)h(0).

We then perform a rescaling in time t = (2πt̃)/(k∆v) and C̃(t̃) = C(t) and we get the following
result:

Proposition 6. We suppose that Nv = +∞ and the (v̄j)j=0,...,q are symmetrically distributed
with respect to 0.5. For all m ∈ Z and any τ ∈ R, we have:

C̃

(
m+ k∆v

2π τ

)
= π

k
h(0)

 q∑
j=0

ωj cos (2πm v̄j)

 e− k2τ2
2 +O(∆v), (30)

and for t ̸∈ Z, we have: C̃(t) = O(∆v).

Consequently, the correlation at time m(2π)/(k∆v), with m ∈ N∗ equals the numerical error of
the quadrature rule on the trigonometric function v 7→ cos(2πmv) (since

∫ 1
0 cos(2πvm)dv = 0)

up to a O(∆v) term. Note that this correlation does not vanish as ∆v goes to 0. From this
analysis, we define the recurrence phenomenon as the appearance of local extrema of the semi-
discrete correlation function at positive time (in the limit ∆v goes to 0). Without additional
assumptions on the quadrature rule, this may hold at time t̃rec = 1 that is Trec = 2π/(k∆v).
The first recurrence time thus does not depend on approximation degree q and thus
on the accuracy of the scheme.

One way to make the recurrence time as large as possible is to consider the trigonometric
quadrature rule, which is exact on trigonometric polynomials. Weights (ωj) are then defined
such that

∀m ∈ J1, nK,
q∑

j=0
ωj cos(2πm v̄j) =

∫ 1

0
cos(2πmv) dv,

with n = ⌊q/2⌋. Thus using these trigonometric weights allows us to defer the first recurrence
time to Trec = (⌊q/2⌋+1)2π/(k∆v). On regularly distributed points, the trigonometric quadra-
ture is even exact on trigonometric polynomials up to degree d, which results in a recurrence
time equal to Trec = (q + 1)2π/(k∆v).

Applications. Figure (5) shows the time evolution of the electric energy for a Landau damping
test case and compares the results obtained with Gauss (left) and trigonometric (right) quadra-
tures. The sudden rises of the electric energy correspond to recurrence events and the black
vertical lines indicate the multiple of the recurrence time Trec = 2π/(k∆v). We first consider
a linear Landau damping test case with a perturbation of size α = 10−6 and the SLDG (see
Box 4) method with Gauss-Legendre points in velocity. As expected from the analysis, although
performed in the transport case only, we observe that the trigonometric weight indeed allows us
to defer the recurrence time. Note that, for q ⩾ 4, the first recurrence event is almost not visible
because of the already very good precision of the Gauss quadrature. For q = 2, the recurrence
effect is actually not totally shifted in time due to non-linear effects.

As experimentally observed for non-linear test cases in [Num4], trigonometric weights have more
impact when considering low-order of accuracy. Consequently, rather than a new numerical
method, this analysis provide a validation tool for the concerned codes. It can also lead to
further developments by combining the use of trigonometric weights with filtering techniques.
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Figure 5: Time evolution of the electric energy E(t) (in log scale) when varying q. The black
vertical lines indicate the multiples of the recurrence time Trec = 2π/(k∆v). The red line is
the theoretical damping of the linearized Vlasov-Poisson system. Parameters: Nx = Nv = 64,
vmax = 8, Gauss-Legendre points in space and velocity.

Box 4: Semi-Lagrangian Discontinuous Galerkin method

In this box, we briefly present a Semi-Lagrangian Discontinuous Galerkin (SLDG) method
introduced in [10, 20, 22]. We restrict ourself to the one-dimensional constant advection
equation:

∂tU + a ∂xU = 0.

with a ∈ R on the domain [xmin, xmax]. Considering a subdivision (xℓ)ℓ of the domain
and a time step ∆t > 0, the approximate solution at time tn = n∆t is expressed as a
piecewise polynomial function:

Un(x) =
q∑

j=0
Un

ℓ,j ψℓ,j(x), ∀x ∈ [xℓ, xℓ+1]

where (ψℓ,j)0⩽j⩽q is a basis of polynomial of order q in the ℓ-th cell. To compute the
approximate solution at time tn+1, the method consists in first advecting exactly the
approximate solution and then taking the L2 projection on the vector space of piecewise
polynomials. Supposing that (ψℓ,j)ℓ,j form an L2 orthonormal basis, we have:

Un+1(x) =
∑
ℓ,j

Un+1
ℓ,j ψℓ,j(x),

with coefficients given by:

Un+1
ℓ,j =

∫ ∑
ℓ′,j′

Un
ℓ′,j′ ψℓ′,j′(y − a∆t)

ψℓ,j(y) dy.

The method is L2 stable by construction. Moreover, since we have:∫
Un+1(x)ψℓ,j(x)dx =

∫
Un(x− a∆t)ψℓ,j(x)dx, ∀ψℓ,j ,

and the constant 1 belongs to the vector space spanned by (ψℓ,j), the scheme is mass
conservative. We also refer to [6] for recent developments.
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3 Prior-basis enrichment for the Discontinuous Galerkin scheme
with Physics-Informed Neural Networks

In this section, we present a method to increase the accuracy of the DG scheme on stationary
solutions to hyperbolic systems with source terms:

∂tU + ∇x · F (U) = S(x, U). (31)

on the domain Ω ⊂ Rd. The scheme is said approximately well-balanced. This is particu-
larly important to capture perturbation dynamics around these equilibria. There is an extensive
literature on high order exact or approximately well-balanced schemes (e.g. [25, 2, 15, 14] and
references therein): they generally require an additional computational cost compared with tra-
ditional schemes. Instead, the method proposed here is quite generic, with almost no additional
cost. It is based on a basis enrichment using the knowledge of a prior Uθ(x), which is supposed
to be a good approximation of the stationary solution. This is reminiscent of Treffzt methods
[17, 4].

This work has been done in collaboration with Emmanuel Franck (INRIA, Univ. Strasbourg)
and Victor Michel-Dansac (INRIA, Univ. Strasbourg) and is published in [Num3].

Basis enrichment. For the sake of simplicity, let us expose the methodogoly in the one-
dimensional case (d = 1). We decompose the domain into cells Ωk = (xk−1/2, xk+1/2) of size
∆xk and of centers xk. Instead of the nodal DG scheme used in the other sections of this
manuscript, we here consider the modal Taylor basis. On each cell Lk, the polynomial basis
writes:

Vh = Span (ψk,0, ψk,1, ψk,2, . . . , ψk,q) = Span
(

1, (x− xk), 1
2(x− xk)2, . . . ,

1
q! (x− xk)q

)
.

The main idea is to insert the prior into this approximation basis by considering either

V +
h = Span

(
ψ+

k,0, ψ
+
k,1, ψ

+
k,2, . . . , ψ

+
k,q

)
= Span

(
Uθ(x), (x− xk), . . . , 1

q! (x− xk)q
)
. (32)

or

V ∗
h = Span

(
ψ∗

k,0, ψ
∗
k,1, ψ

∗
k,2, . . . , ψ

∗
k,q

)
= Span

(
Uθ(x), (x− xk)Uθ(x), . . . , 1

q! (x− xk)qUθ(x)
)
.

(33)
In [24], convergence criteria have been exhibited for a non-polynomial basis and we show in
[Num3] that they are satisfied by the two previous bases providing that the prior Uθ has differ-
entiable class Cq+1(R). Then the following proposition provides refined error estimates for the
second basis:

Proposition 7. Assume that the prior Uθ satisfies Uθ(x)2 > m2 > 0, ∀x ∈ Ω. For a given
cell Lk, for any function U ∈ Hq+1(Ωk), the L2 projector onto V ∗

h , denoted by Ph and such that
Ph(U) ∈ V ∗

h , satisfies the inequality

∥∥U − Ph(U)
∥∥

L∞(Ωk) ≲
∣∣∣∣ UUθ

∣∣∣∣
Hq+1(Ωk)

(∆xk)q+ 1
2

(
1 +

∥∥U2
θ

∥∥
L∞(Ωk)
m2

)∥∥Uθ

∥∥
L∞ .

We deduce that for any function U ∈ Hq+1(Ω),

∥U − Ph(U)∥L2(Ω) ≲
∣∣∣∣ UUθ

∣∣∣∣
Hq+1(Ω)

(∆xk)q+1 ∥Uθ∥L∞(Ω).
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This proposition shows that instead of variations of U , it is variations of U/Uθ that control the
error. Therefore, if U is close to Uθ, then the error is expected to be small.

Prior construction using Physics Informed Neural Networks (PINNs). The prior Uθ

should be an approximate solution to the stationary equation:

∇x · F (U) = S(x, U)

To get this approximation, PINNs look for a solution as a fully connected neural network, with
input x ∈ R and output Uθ(x) ∈ Rm. We refer to [21, 5]. Thus, the solution is a parameterized
function, whose parameters θ are actually the weights of the neural network. In order to strongly
enforce the boundary and initial conditions, the solution Uθ is actually written as

Uθ = B(Ũθ),

where B is a boundary operator such as Uθ satisfies the boundary and initial conditions. Then
the weights are obtained by minimizing the loss function, which is the L2 norm of the residual:

J(θ) = ∥∇x · F (Uθ) − S(x, Uθ)∥2
L2(Ω).

In practice this L2 norm is evaluated by a Monte Carlo method. A data loss can be added if
samples of the solution are available. As the loss function involves the derivatives of Uθ, the
PINNs method is expected to provide a good approximation of the stationary solution and its
derivatives. This is a key point to benefit from the error estimate of Proposition 7.

The main advantage of PINNs is that they are mesh free and less sensitive to dimension than
standard numerical methods. In particular, instead of computing one single equilibrium, we
can rather approximate a family of equilibria indexed by some parameters µ.

Application. We present some results obtained on the two-dimensional shallow-water equa-
tion on the domain Ω = [−3, 3]2. The system writes:

∂th+ ∇x ·Q = 0,

∂tQ+ ∇x ·
(
Q⊗Q

h
+ 1

2gh
2Id
)

= −gh∇xZ,

with h(x, t) the water height, Q(x, t) = (Q1(x, t), Q2(x, t))T the water discharge and Z(x, µ) is
a parameterized topography, here chosen equal to:

Z(x;µ) = Γ exp(α(r2
0 − ∥x∥2)).

with µ = (α,Γ, r0) ∈ [0.25, 0.75]×[0.1, 0.4]×[0.5, 1.25]. A family of radially symmetric stationary
solution, denoted (heq(x;µ), Qeq(x, µ)), can be determined for this system. Inspired by its
expression, the prior is constructed using the following relations

hθ(x;µ) = 2 − Z(x;µ) h̃θ(x;µ)2 and Qθ(x;µ) = −Z(x, µ)hθ(x;µ) ũθ(x;µ)x⊥,

where h̃θ and ũθ are two neural networks with about 2500 parameters each. These expressions
involve the function Z, that almost vanishes at the boundary of the domain, in order to ap-
proximately impose the boundary conditions compatible with the targeted stationary solutions
(heq(.;µ), Qeq(., µ)). The loss data, using the analytical expression, is used to prevent the neural
network from learning the lake at rest stationary solutions (h + Z = cst, Q = 0). The train-
ing takes about 10 minutes on an NVIDIA V100 GPU, until the loss function reaches about
4 × 10−7.
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h, basis Vh Q1, basis Vh Q2, basis Vh

K error order error order error order
20 2.17 · 10−2 — 2.58 · 10−2 — 2.58 · 10−2 —
40 5.46 · 10−3 1.99 8.88 · 10−3 1.54 8.88 · 10−3 1.54
80 1.37 · 10−3 2.00 2.50 · 10−3 1.83 2.50 · 10−3 1.83
160 3.42 · 10−4 2.00 6.46 · 10−4 1.95 6.46 · 10−4 1.95
320 8.56 · 10−5 2.00 1.62 · 10−4 2.00 1.62 · 10−4 2.00

h, basis V +
h Q1, basis V +

h Q2, basis V +
h

K error order gain error order gain error order gain
20 8.51 · 10−5 — 254.60 1.42 · 10−3 — 18.21 1.42 · 10−3 — 18.21
40 3.23 · 10−5 1.40 169.11 3.70 · 10−4 1.94 23.99 3.70 · 10−4 1.94 23.99
80 9.43 · 10−6 1.78 145.10 9.35 · 10−5 1.98 26.74 9.35 · 10−5 1.98 26.74
160 2.47 · 10−6 1.94 138.89 2.35 · 10−5 2.00 27.54 2.35 · 10−5 2.00 27.54
320 6.19 · 10−7 1.99 138.25 5.87 · 10−6 2.00 27.55 5.87 · 10−6 2.00 27.55

Table II.1: (2D shallow water equations) Errors, orders of accuracy, and gain obtained when
approximating a steady solution for bases with and without prior. Parameters: DG order q = 1,
µ = (α, µ, r0) = (0.5, 0.25, 0.875), T = 0.01.

Table II.1 compares the numerical errors obtained using the DG method of degree q = 1
with the standard basis Vh and the prior-enriched basis V +

h , on a given set of parameters
µ = (α, µ, r0) = (0.5, 0.25, 0.875). As expected, a significant accuracy gain is observed, especially
on the water height h. Figure 6 shows the deviation from the equilibrium obtained at time
T = 1.2, with a numerical simulation with 162 discretization cells, after initializing with a
perturbed water height:

hinit(x) = heq(x; (0.5, 0.25, 0.875)) − 0.02 exp
(
−2∥x− (−2,−2)∥2

)
,

Qinit(x) = Qeq(x; (0.5, 0.25, 0.875)).

We clearly observe that the prior-enriched basis V +
h better captures the perturbation.

(a) Basis Vh (b) Basis V +
h

Figure 6: (2D shallow water equations) Error between the perturbed solution and the underlying
steady solution h(x, T ) − heq(x, T ) at time T = 1.2. Parameters: K = 16.

4 Conclusion
In this chapter, we presented two works related to high-order methods for kinetic and hyperbolic
equations. The first work provided an analysis of the recurrence effect appearing when solving
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the kinetic transport equation with a finite element grid in velocity and shows that it can be
related to the quadrature rule used for computing the density. The second work proposes an
approximate well-balanced DG method for hyperbolic problems with source terms, based on a
prior enrichment of the approximation basis. The prior can be constructed using the PINNs
method, which is able to capture a whole family of stationary solutions.

Regarding the future developments on these topics, we can mention two of them:

1. Construction of bases adapted to the problems. A second way of proceeding would
be to determine the optimal basis functions, represented by a neural network, directly by
minimizing the approximation error. This requires that the entire scheme can be written
as a differentiable function. The same methodology could also be applied to particle
methods, using a local prior of the solution, in order to reduce the variance.

2. Semi-Lagrangian schemes. Semi-Lagrangian schemes are a very interesting class of nu-
merical method for solving transport equations and therefore kinetic equations.However,
the stability of the method is not always guaranteed, particularly when it is used with
unstructured meshes. But the use of unstructured meshes is particularly useful for cap-
turing solutions locally and taking complex geometries into account. Work has already
been done with Hermite-type (Hsieh-Clough-Tocher) interpolators - of order 3 - for the
Vlasov-Poisson equation [3]. In an ongoing work with Michel Mehrenberger, we would like
to explore the use of a higher degree interpolator. It would also be interesting to exploit
the use of enriched bases in the interpolation operator in order to improve the results.
Finally, an interesting approach would be to couple these semi-Lagrangian methods with
adaptive meshing methods, using strong gradient detection by neural networks on graphs
[23].
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Chapter III

Multi-scale hyperbolic problems and implicit schemes

1 Introduction

This chapter focuses on numerical schemes dedicated to the solution of non-linear hyper-
bolic systems incorporating multi-scale phenomena. Indeed, the characteristic velocities of
the waves present in the solutions of this type of model can differ by several orders of magnitude.
This poses a real challenge for numerical simulations because fast wave velocities impose very
restrictive CFL-type stability conditions, even though these same waves may be of low magni-
tude and therefore represent only a small perturbation of the global dynamics. For instance,
such challenges arise in the simulation of low-Mach number flows, for which acoustic waves
propagate small pressure perturbations and are very fast compared to the so-called material
wave.

To tackle such difficulties and bypass the stringent CFL stability condition, fast waves have
to be discretized using implicit methods. However, implicit methods generally raise difficult
issues in terms of matrix assembly and storage, matrix inversion and parallelization when the
size of the system to be solved is large.

We thus develop and study numerical schemes, whose implicit steps are as simple as possible
in order to improve their efficiency. These methods are based on a relaxation techniques,
which consists in expressing the non-linear hyperbolic system as a singular limit of an extended
system with more unknowns but with a simpler mathematical structure. More precisely, we
explore two kinds of relaxation:

1. vectorial kinetic relaxation, where the extended system contains only transport equa-
tions with constant velocities; this relaxation can be applied to any hyperbolic systems.

2. Suliciu relaxation, where the extended system has only linearly degenerate characteristic
fields; this relaxation is specific to the Euler equation and enables us to separate acoustic
and material transport with a splitting method. Thanks to a modified Suliciu relaxation,
the implicit treatment of the acoustic part can be made very simple.

It is important to note that there is an extensive literature on relaxation schemes, in particular
to develop explicit schemes with controlled mathematical properties. Our aim is clearly different
here.

41
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2 Implicit vectorial kinetic relaxation schemes
To solve a hyperbolic system of conservation law:

∂tU + ∇ · F (U) = 0, (34)

where U(x, t) ∈ Rm is the vector of m conserved quantities depending on x ∈ Rd and t ⩾ 0
and F (U) ∈ Mm,d(R) denotes the flux, kinetic relaxation schemes consist into introducing a
distribution function f(x, λ, t), with λ ∈ Ωλ ⊂ Rd, satisfying a kinetic transport equation
with BGK relaxation term. The BGK relaxation is determined such that, formally, in the
limit of large relaxation frequency, some velocity moments associated with f actually satisfies
(34). As a result, the kinetic formulation is an ad hoc mesoscopic equation, whose macroscopic
version is Equation (34). As the relaxation dynamics is not revelant for our purpose, the
relaxation operator is approximated by a simple projection at the discrete level. Therefore, a
transport-projection discretization is usually considered for the kinetic equation and it results
in the so-called kinetic relaxation schemes for Equation (34). They have been introduced in
[29]. Using the same approach, Lattice Boltzmann Method (LBM) considers a discrete velocity
set Ωv. Discrete kinetic relaxation schemes have then been proposed for any scalar conservation
laws in [27] and vectorial kinetic relaxation have been proposed to tackle any hyperbolic
system [25, 2, 4]. Based on this reformulation, we have proposed an implicit kinetic relaxation
scheme in a series of works [Imp11, Imp7, Imp6, Imp10, Imp3, Imp1].

2.1 Reformulation

Kinetic model. The vectorial kinetic relaxation method consists in introducing p kinetic
velocities

λ1, . . . , λp ∈ Rd,

and a discrete kinetic distribution

f(x, t) = (f1(x, t), . . . , fp(x, t)) ∈ (Rm)p.

According to the naming convention, we will refer to this vectorial kinetic representation as
[Dd,Qp]m, the power referring to the fact that there is a discrete kinetic distribution for each
m conservative variables. The kinetic distribution is then chosen to satisfy the following kinetic
BGK equation:

∂tfi + λi · ∇fi(x, t) = 1
ε

(
M(Uf )i − fi

)
, ∀i ∈ {1, . . . , p}, (35)

Uf (x, t) =
p∑

i=1
fi(x, t), (36)

where Uf is the density associated with f . Equation (35) is a linear transport equation with a
non-linear source term. Each component fi of the kinetic distribution is transported at constant
velocity λi, while their coupling results from the BGK source term: it makes the distribution
f relax to an equilibria kinetic distribution M(Uf ) ∈ (Rm)N , which will be defined below.
Summing the N equations, the density equation writes

∂tUf + ∇ ·Qf = 1
ε

(
UM(Uf ) − Uf

)
, ∀i ∈ {1, . . . , N}, (37)

where Qf denotes the momentum

(Qf )k(x, t) =
p∑

i=1
(λi)kfi(x, t), ∀k ∈ {1, . . . , d}.
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Name Velocities Equilibria Moments

[D1Q2] M(U)i = U
2 + F (U)λi

2λ2 (1, x1)

[D2Q3] M(U)i = U
3 + F (U)λi

3λ2 (1, x1, x2)

[D2Q4] M(U)i = U
4 + F (U)λi

2λ2 (1, x1, x2, x
2
1 − x2

2)

Table III.1: Discrete Velocities

Compatibility conditions and equilibrium distribution. In order to recover the initial
hyperbolic system in the limit ε → 0, the equilibria kinetic distribution M(U) is chosen such
that the so-called compatibility conditions hold:

UM(U) = U, QM(U) = F (U). (38)

The first condition makes the right-hand side of Equation (37) vanish. Then, in the limit
ε → 0, assuming that Ufε converges to U , f ε formally converges to M(U) and Qfε converges
to QM(U) = F (U). Therefore, the limit function U satisfies the original hyperbolic system (34)
and the kinetic model does provide an approximation to this equation.

To define the kinetic approximation completely, we need to identify the equilibrium distribution
function M. As it is composed of n vectors of Rm, this requires n relations in Rm. The
compatibility conditions actually provide (1 + d) linear relations in Rm. Consequently, if p is
strictly larger than (1 + d), additional moments Zf of the equilibrium should be prescribed to
define it. Denoting the moment operator as:

mf = (Uf , (Qf )1, . . . , (Qf )d, Zf ) ∈ (Rm)n,

the equilibrium is then fully defined by a relation like:

mM(U) = (U, (F (U))1, . . . , (F (U))d, 0),

as soon as m is invertible. Table III.1 lists the three different choices of kinetic approximation we
use in practice: all kinetic velocities have the same magnitude, denoted λ > 0. While [D1Q2]
and [D2Q3] are fully defined by the compatibility conditions, [D2Q4] requires an additional
moment, defined by:

Zf =
p∑

i=1

(
(λi)2

x1 − (λi)2
x2

)
fi,
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Box 5: Jin-Xin relaxation

The Jin-Xin relaxation method has been introduced in [25]. It corresponds to the
[D1Q2]m method. Starting from the following one-dimensional conservation equation:

∂tU + ∂xF (U) = 0,

the method consists into introducing an additional variable q and considering the follow-
ing system:

∂tU + ∂xQ = 0,

∂tQ+ λ2 ∂xU = 1
ε

(F (U) −Q).

The non-linear equation has been approximated by a linear hyperbolic system with a stiff
source term. Writing the system in the characteristic variables, f1 = U/2 −Q/(2λ) and
f2 = U/2 +Q/(2λ), we get the diagonal hyperbolic system:

∂tf1 − λ∂xf1 = 1
ε

((
U

2 − F (U)
2λ

)
− f1

)
,

∂tf2 + λ ∂xf2 = 1
ε

((
U

2 + F (U)
2λ

)
− f2

)
,

which coincides with Equation (35) with kinetic velocities λ1 = −λ and λ2 = λ. We also
refer to [24].

2.2 Implicit splitting scheme

The vectorial kinetic formulation (35)-(36) naturally leads us to consider a numerical method
based on a splitting strategy, where the transport part and the relaxation part are solved
successively at each time step. This is a common strategy to solve such kinetic equations
involving a stiff source term modeling collisions (e.g. [10, 13]). Note, however, that, in this
part, this collision term has no physical significance: we are only interested in designing a
numerical method for the limit model (34) and there is no point in capturing the collisional
dynamics precisely. Thus, the above numerical scheme is not, strictly speaking, a discretization
of (35)-(36) but rather a discretization of (34) directly.

The time semi-discretization writes as follows. Denoting fn the distribution function at discrete
time tn = n∆t, then each time step is decomposed into:

(i) a transport step: f∗ = Th(∆t)fn, which consists of solving the p transport equations at
constant velocities over the time step ∆t:

(Th(∆t)fn)i ≈ fn
i (.− λi∆t).

(ii) a relaxation step: fn+1 = Rωf
∗, defined by:

fn+1 = f∗ + ω
(
M(Uf∗) − f∗

)
, (39)

where ω ∈]0, 2] is a numerical parameter. This relaxation operator Rω can be obtained as
the limit ε → 0 in a θ-scheme applied to the relaxation differential equation. We refer to
[Imp5] for more details.
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Gathering both steps, the discrete operator writes:

Ψω(∆t) = Rω ◦ Th(∆t) (40)

We emphasize once more that the relaxation operator is not aimed at capturing the stiff re-
laxation dynamics. In both LBM and kinetic schemes, the classical method is indeed the
transport-projection scheme obtained with ω = 1. Taking ω = 2 yields to the so-called over-
relaxation operator, introduced in [12], which is a symmetric operator with respect to the
equilibria manifold.

The kinetic scheme can be equivalently written on the moments of fn:

(Un, (Qn)1, . . . , (Qn)d, Z
n) = mfn,

and (Un) is actually an approximated solution to the initial hyperbolic equation (34),
as it will be discussed in Section 2.4. This method presents several advantages. First, if the
transport solver is conservative, then the full method is conservative. Secondly, the scheme
concentrates all the non-linear dynamics in the local relaxation operator, while the non-local
coupling between data is ensured by the linear transport step. Because this transport step is
at constant velocities, it can be solved using very efficient implicit solvers.

Implicit transport Th(∆t). The mere advantage of this method is to simplify the advection
step, which is the more time and CPU demanding. The main solver we have considered is
an implicit Discontinuous Galerkin method with upwind fluxes (see Box 3). This method
naturally handles unstructured meshes and has high-order accuracy in space. Since each of
the N linear transport equations are at constant velocities, the scheme formally results into N
triangular systems to invert. Indeed, data in one cell only depends on the data of the upwind
ones and as the transport velocities are constant, there is no dependency loop. More precisely,
with the notation introduced in Box 3, the DG discretization of the i-th component writes:∫

L

(fi)n
L − (fi)n−1

L

∆t ψL
j −

∫
L
λi · ∇ψL

j (fi)n
L +

∫
∂L

(
(λi · nLR)+(fi)n

L + (λi · nLR)−(fi)n
R

)
ψL

j = 0.
(41)

We can rewrite it in the matrix form

ML(fi)n
L = ML(fi)n−1

L + ∆t

AL(fi)n
L −

∑
LR ∈ ∂L,
λi·nLR>0

BLR (fi)n
L −

∑
LR ∈ ∂L,
λi·nLR<0

CLR (fi)n
R

 , (42)

where ML denotes the mass matrix, AL the volume advection matrix, BLR and CLR the flux
advection matrices between cell L and downwind or upwind cells R: cell R is said to be upwind
with respect to cell L if λi · nLR < 0 and downwind otherwise. Their coefficients are given by

(ML)j,k =
∫

L
ψL

j ψ
L
k , (AL)j,k =

∫
L

(λi · ∇ψL
j )ψL

k ,

(BLR)j,k =
∫

∂L
(λi · nLR)ψL

j ψ
L
k and (CLR)j,k =

∫
LR

(λi · nLR)ψL
j ψ

R
k .

In [Imp6], we have proposed a resolution of these triangular systems with an explicit cost.
Indeed, as the system is triangular, a lifting-like algorithm can be used. To each kinetic
velocity λi, we first compute and store the associated dependency graph between cells. Then,
one step of the implicit solver simply consists of going through the dependency graph. Con-
sequently, there is no need of an iterative process and although requiring the storage of the
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dependency graphs, the overall algorithm has an explicit cost. In practice, a second-order
Crank-Nicolson time discretization is used, following the same method.

In order to tackle large problems, a parallel implementation of the algorithm has been carried
out in the chuckrut code, based on a task graph approach [Imp11, Imp6]. It is based on the
StarPu library developed at INRIA Bordeaux, dedicated to task graph parallelism [3] on
GPU-CPU hybrid architecture. One main issue regards the granularity of the tasks: too large
tasks reduce the level of parallelism and too small tasks require a lot of task management and
data movements. A specialized Direct Acyclic Graph (DAG) clustering algorithm has been
proposed in [8, 7] to control the granularity of the tasks.

2.3 High order time splitting method

The first order scheme (40), for ω ∈ [1, 2[, is very diffusive due to the O(∆t) time error coming
from the splitting method. Even with the second-order version ω = 2, the scheme is not accurate
enough for tackling realistic plasma simulations since too small-time steps would be required.
We thus developed a higher order splitting method based on composition techniques.

Time symmetric second order splitting. High order composition methods require a
second-order time-symmetric splitting [20]. As soon as the transport operator is second-order
accurate, the classical Strang splitting

ΨStrang(∆t) = T

(∆t
2

)
◦ R2 ◦ T

(∆t
2

)

is second order accurate and satisfies the symmetric property: Ψ−1
Strang(−∆t) = ΨStrang(∆t).

However, ΨStrang(0) = R2 preserves the macroscopic quantity U but does not equal the identity
operator on the kinetic distribution: by definition, this prevents the scheme to be a time-
symmetric splitting. Therefore we consider the following splitting:

Ψsym(∆t) = ΨStrang

(∆t
2

)
◦ ΨStrang

(∆t
2

)
= T

(∆t
4

)
◦ R2 ◦ T

(∆t
2

)
◦ R2 ◦ T

(∆t
4

)
,

which satisfies the condition: ΨStrang(0) = Id. This splitting is now time-symmetric. Note that,
while the dynamics of U is Eq. (34) by construction, the dynamics of f is not. We refer to
Section 2.4 for further discussion.

Palindromic composition method. Equipped with such a time-symmetric splitting, higher-
order method can be considered just by composing this building blocks:

Ψcompo(∆t) = Ψsym(γ0∆t) ◦ Ψsym(γ1∆t) ◦ · · · ◦ Ψsym(γn∆t), (43)

where γ0, γ1, . . . , γn are the coefficients of the method. To ensure the symmetric property, they
have to be a palindromic sequence: γp = γn−p, for all 0 ⩽ p ⩽ n. Suzuki and Kahan-Li
coefficients lead to respectively fourth and six order schemes, with respectively n+ 1 = 5 steps
and 9 steps [20].

Figure 7 shows a convergence study performed on the one-dimensional isothermal Euler equa-
tion, U = (ρ, ρu)T , F (U) = (ρu, ρu2 + c2ρ)T with sound speed c = 0.6. We use the [D1Q2]2

https://gitlab.math.unistra.fr/tonus/chukrut/chukrut
https://starpu.gitlabpages.inria.fr/
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Figure 7: Convergence study (left: f , middle: ρ, right: ρu) for several palindromic methods
and the second order building blocks ΨStrang and Ψsym.The dotted lines are reference lines with
slopes 2, 4 and 6 respectively. CFL number β = 5. Taken from [Imp6].

kinetic vectorial scheme, with speed λ = 2, and a DG scheme of order 5 for the implicit transport
steps. The initial condition is given by:

ρ(x, 0) = 1 + e−30x2
, u(x, 0) = 0,

and the solution is computed on the interval on the domain [−2, 2] up to time tmax = 0.4.
A reference solution is computed with a very fine grid (Nx = 3200). As expected, we can
observe that fourth and sixth orders are obtained on the distribution function f only when
using the time-symmetric splitting in the composition (44). Regarding the conserved quantities
U = (ρ, ρu)T , keeping the Strang splitting in the composition method seems sufficient for the
Suzuki composition to be fourth-order accuracy, but the time-symmetric splitting is required to
reach six-order accuracy with Kahan-Li.

Composition method with rational coefficients. Let us consider the subclass of palin-
dromic composition methods with even n and which writes:

Ψcompo(∆t) = (Ψsym(γ0∆t))n/2 ◦ Ψsym(γn/2∆t) ◦ (Ψsym(γ0∆t))n/2, (44)

Then, as stated in [26], fourth order accuracy is reached when γ0 and γn/2 satisfies the relations:

nγ0 + γn/2 = 1, nγ3
0 + γ3

n/2 = 0.

For n = 8, these equations have actually a rational solution: γ0 = 1/6, γ4 = −1/3. On a regular
Cartesian mesh, this enables us to replace the DG scheme by a LBM, with exact transport
[Imp1].

2.4 Equivalent equations and stability issues

Equivalent equation. To analyze the time stability of the scheme and derive an equiva-
lent equation for the approximated solution (Un), a Chapman-Enskog expansion in ∆t can
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be formally performed on the transport-relaxation scheme [14, 17, Imp5], supposing that the
transport is exact. For the [D1Q2]m method, the equivalent equation thus writes:

∂tU + ∂xF (U) = ∆t
( 1
ω

− 1
2

)
∂x

((
λ2 Id − F ′(U)2

)
∂xU

)
+O(∆t2), (45)

where Id and F ′(U) are matrices of size m × m. The equivalent equation for the [D2Q4]m
transport-relaxation scheme can be found in [3]. A formal stability condition would be to
enforce the diffusion matrix to be positive definite. For the [D1Q2]m method, this leads to the
so-called subcharactistic or diffusive stability condition:

σ(F ′(U)) ∈] − λ, λ[,

where, for any matrix A, σ(A) denotes its spectrum. The kinetic speed λ should be larger than
the characteristic speed of the hyperbolic system. Note, however, that this condition may not
be sufficient to ensure the stability.

Equivalent system. Instead of focusing on the quantities Un only, an equivalent equation
can be obtained for the dynamics of the p variables (Un, Qn, Zn) = Mfn or equivalently on the
following moments:

(Un, Y n, Zn) = (Un, (Qn − F (Un))1, . . . , (Qn − F (Un))d, Z
n) ∈ (Rm)p.

where the momentum has been replaced by the flux error. In these new variables, the relaxation
operator takes the form:

R̄ω(U, Y, Z) = (U, (1 − ω)Y,Z)
where the bar on the operator indicates that the operator is expressed in the moment variables
(U, Y, Z). Hence the flux error is relaxed to zero for ω = 1 or changes sign for ω = 2. In order
to obtain the equivalent equation while filtering the oscillation due to the relaxation, a finite
difference involving two time steps is expanded:

Ψ̄sym(∆t) − Ψ̄sym(−∆t)
2∆t

U(., t)
Y (., t)
Z(., t)

 = ∂t

U(., t)
Y (., t)
Z(., t)

+O(∆t2).

Performing a Taylor expansion of the first term, we have obtained:

Proposition 8 ([Imp7]). The equivalent system of the [D1Q2]m transport - over-relaxation
scheme (ω = 2) is given by:

∂t

[
U
Y

]
+
[
F ′(U) 0

0 −F ′(U)

]
∂x

[
U
Y

]
= O(∆t2).

Considering the scalar transport equation, with F (U) = aU with U ∈ R and a ∈ 0, the equivalent
system of the [D1Q2]m transport - over-relaxation scheme (ω = 2) writes:

∂t

[
U
Y

]
+
[
a 0
0 −a

]
∂x

[
U
Y

]
+B2 ∆t2 ∂x2

[
U
Y

]
= O(∆t3).

with B2 =
[

(λ2 − a2) 3a
3a(λ2 − a2) −(λ2 − a2)

]
. Under periodicity boundary conditions on the domain

[0, L], this equivalent system preserves the total energy

E(t) =
∫

[0,L]
(λ2 − a2)U(x, t)2

2 + Y (x, t)2

2 dx,

which is convex under the subcharacteristic condition λ < |a|.
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This result shows that, at first order, the conserved quantity U and the flux error Y propagate
in opposite directions. Still for the scalar transport equation, this has been further generalized
to ω ∈]1, 2[ in [16] using a symbolic computing library. Then the equivalent equation reads:

∂t

[
U
Y

]
− Aω

∆t

[
U
Y

]
+Bω ∂x

[
U
Y

]
= O(∆t2),

with
Aω =

[
0 0
0 αω

]
, Bω =

[
a γω

γω(λ2 − a2) −βωa

]
,

with αω = ω(ω− 2)(ω2 − 2ω+ 2)/(2(ω− 1)2), βω = (ω4 − 4ω3 + 6ω2 − 4ω+ 2)/(2(ω− 1)2) and
γω = (ω − 2)2(ω2 − 2ω + 2)/(8(ω − 1)2). The equivalent equation (45) can then be recovered
by supposing that Y = O(∆t). It has been shown that the system is hyperbolic under the
subcharacteristic condition: hyperbolic stability condition for the equivalent system and
diffusive stability condition for the equivalent equation match. Note, however, that it is not
always the case: in [16], the authors show that the hyperbolicity of the equivalent system of the
[D2Q4]m is more restrictive than the diffusive stability condition.

Remark. The information given by the equivalent system has been used in [Imp7] to devise
boundary conditions that ensure second order accuracy for the scalar transport equation.
Indeed, the kinetic scheme involves the additional variables Y , whose boundary conditions
are lacking. Numerical experiments show that second accuracy is reached when imposing a
Neumann boundary condition on Y at the outgoing boundary in addition to the Dirichlet
boundary condition on U at the incoming boundary. Generalizations to non-linear systems
have been investigated in [22].

Entropic stability conditions. Conditions are not sufficient and entropic conditions have
been introduced in [9, 4, 15]. Starting from an entropy-entropy flux pair for the original hyper-
bolic system, it consists into constructing a kinetic entropy H(f) for the relaxation system. We
refer to Box 6 on this construction. Then transport-projection scheme (with ω = 1) is entropy
decreasing, since the projection is so and the transport preserves it. As explored in [Imp1],
entropy conserving method can be designed by defining a non-linear relaxation parameter ω(f)
such that the kinetic entropy is conserved during the relaxation phase.

Box 6: Entropic stability

In this box, we briefly review the entropic stability developed in [4, 15]. Let us consider
a strictly convex entropy η(U) and the associated entropy flux G(U), which satisfies:
η′(U)F ′(U) = G′(U), where the primes denote the Jacobian of the functions in this box.
Then we define entropic variables V through the following mapping:

V = η′(U) ⇔ U = η∗ ′(V )

where η∗(V ) = inf{U · V − η(U)} denotes the Legendre transform of η. We denote by
G✩(V ) = inf{V · F (U) −G(U)}, which satisfies the following relation: G✩ ′(V ) = F (U).
Let us consider functions h∗

i (V ) which satisfies the following compatibility conditions:

η∗(V ) =
p∑

i=1
h∗

i (V ), G✩(V ) =
p∑

i=1
λih

∗
i (V ). (46)
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Supposing that they are differentiable, we can define an equilibrium distribution M(U)
as the gradient of these functions

Mi(U) = (h∗ ′
i (V ))T .

These are indeed an equilibrium distribution, since taking the derivatives of Eq. (46) with
respect to V results in the compatibility conditions (38). In particular, when there exists
a unique solution to these compatibility conditions, like for the [D1Q2]m or the [D2Q3]m,
we recover the same standard equilibrium distributions. Supposing that the functions
h∗

i are convex (which is equivalent to (Mi)′(U) has nonnegative real eigenvalues, since
(Mi)′(U) = h∗ ′′

i (V )η′′(U)), we can introduce their Legendre transform (hi). Then we
have the following relations:

η(U) = min
f,
∑p

i=1 fi=U

p∑
i=1

hi(f) =
p∑

i=1
hi(Mi(U)).

where the second one results from the Lagrange multiplier relation. Consequently, in
that case, we have just defined a kinetic entropy

H(f) =
p∑

i=1
hi(fi),

minimal on the equilibria distribution with given U and compatible with the macroscopic
entropy η. The main point of this construction is to ensure that the h∗

i are convex. For
the [D1Q2]m applied to the transport equation, it can be shown that we recover the
subcharacteristic condition.

2.5 Applications to plasma physics simulations

In [Imp3], we have adapted the vectorial kinetic scheme to the toroidal geometry with the aim
to perform numerical simulations of plasma in Tokamak. As already presented in Box 1, plasma
dynamics involves several multiscale transport phenomena, which implies stringent constraints
on the discretization parameters. Indeed, the large toroidal magnetic field results in a scale sep-
aration between toroidal and poloidal dynamics: particles exhibit fast transport in the toroidal
direction, while the poloidal dynamics follow nearly incompressible dynamics. On the other
hand, numerical constraints could result only from the available mesh: indeed, for explicit nu-
merical schemes, the time step could be severely constrained by the CFL conditions in presence
of small mesh cells.

We aim at solving non-linear transport equations of a charge density ρ(x, t) in a cylindrical
domain: (r, z, φ) ∈ Ω× [0, L]. The numerical methods must naturally be adapted to such geom-
etry both in their structure and parallelism. Very simple numerical methods can be envisaged
in the φ direction (e.g. Fourier or semi-Lagrangian method), while more sophisticated solvers
have to be considered to deal with the transport in unstructured meshes in (r, z) planes. Here
we consider the [D3Q6] kinetic relaxation schemes with different kinetic speeds in the toroidal
and poloidal directions, λp, λt, and different spatial discretization of the transport step in the
poloidal and toroidal directions:

(i) in the toroidal direction [0, L], the mesh is supposed to be uniform with a space step ∆φ.
Thus we can consider an exact transport solver: the time step is then chosen such as to
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verify the relation
∆t = ∆φ/λt,

as in Lattice Boltzmann method. Then the transport step boils down to a simple shift.
Each data associated with one poloidal plane is associated with one MPI process and the
shift consists in an MPI send/receive operation.

(ii) in the poloidal direction Ω, we consider the implicit DG Galerkin scheme as described in
Section 2.2, implemented using the task-based parallelism.

We note that the full CFL number is defined by:

nCFL = umax∆t
min(δp,∆φ) , (47)

where umax the maximal transport speed over the simulation and δp > 0 denotes the minimal
distance between two interpolation points in the poloidal plane. Unlike explicit methods, this
CFL number is not constrained by the scheme and, as a consequence, δp can be set
without stability considerations.

As an application, we consider the following three-dimensional version of the 2D guiding center
model:

∂tρ+ ∇(r,z) ·
(
ρ

[
ur

uz

])
+ ∂φ(ρ uφ) = 0,

u = E × eφ +B,

E = −∇V, −∆(r,z)V = ρ,

B = (−bθ cos(θ), bθ sin(θ), bφ)T .

with bθ = 0.1 and bφ = 200, on the domain {(r, z) | αmin ⩽
√

(r − rt)2 + z2 ⩽ αmax}×[0, L]. We
consider periodic boundary conditions in φ and homogeneous Dirichlet boundary conditions for
the electric potential V . The density is initialized as the perturbation of a stationary solution:

ρinit(r, z, φ) = ρinit(α, θ, φ) =
(

1 + ε cos
(
kθ + ℓφ

2π
L

))
e− (α−α0)2

2σ2 .

where (α, θ) are polar coordinates in the poloidal plane, with σ > 0, α0 ∈ (αmin, αmax) and
where ε > 0 and k, ℓ ∈ N∗ parametrize the perturbation. This model, made of the transport
equation along B and the poloidal E ×B drift, can be viewed as a very simplified drift-kinetic
model with a unique parallel velocity [18].

Figure 8 show the results of one simulation, whose parameters are summarized in its caption.
Let us emphasize the main points. Each poloidal mesh is composed of 4×Nα ×Nθ = 4×80×50
elements. In the toroidal direction, we use np = 128 poloidal planes and so 128 MPI processes.
Consistently with the involved advection velocities, we choose kinetic speeds of norm λp = 7 in
the poloidal plane and λt = 600 in the toroidal direction. As we are using an exact transport
solver, the time step is set to ∆t = L/(npλt) = 0.002604. The relaxation parameter is chosen
equal to ω = 1.99. As expected, we can observe that the density in the poloidal planes are
identical up to a rotation. As time goes on, two vortices develop and lead to fine structures in
the poloidal planes as in the two-dimensional case. The computation takes 26 hours.

We would like to emphasize that the full CFL number, defined in (47), takes the value 33.17.
This is due to the very fast speed in the toroidal direction which is not resolved by the poloidal
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Figure 8: (Three-dimensional diocotron test case) Four successive instants of the 3D solution
showing cross sections of density colormaps and density isosurface colored by the potential.
Domain parameters: rt =, αmin = 1, αmax = 100, L = 200. Initial condition parameters:
σ = 0.5, ε = 10−6, k = 2 and ℓ = 1. Numerical parameters: λp = 7, λt = 600, DG order p = 2,
ω = 1.99, np = 128. Taken from [Imp3].

plane mesh. Indeed, the minimal distance between interpolation points in the poloidal planes
equals δp = 0.01570 and the time step is not small enough to capture a speed of order 200 for
this fine resolution. An explicit scheme would require either decreasing the time step and thus
increasing the toroidal discretization, or a coarser poloidal mesh at the cost of a loss of accuracy.
Consequently, explicit schemes would not be able to cope with both the large velocity in the
toroidal direction and a very fine grid in the poloidal plane.

3 Implicit Suliciu relaxation scheme

In this section, we focus on the Euler system and propose a specific relaxation method to capture
the low-Mach regime.

The Euler system and the low-Mach regime. The Euler system describes the dynamics
of a compressible gas, described by its density ρ(x, t) ∈ R, its velocity u(x, t) ∈ Rd and its total
energy E(x, t) ∈ R. As already introduced in Section I.4, they satisfied the following system:

∂tρ+ ∇x · (ρu) = 0,
∂t(ρu) + ∇x · (ρu⊗ u+ p Id) = 0,
∂tE + ∇x · (Eu+ pu) = 0.
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For a polytropic ideal gaz, the energy is related to the pressure with the following state law:

E = ρ
|u|2
2 + p

γ − 1

where γ > 1 denotes the adiabatic exponent1. The Euler system is hyperbolic with characteristic
speeds given by:

λ1(n) = u · n− c, λ2:d+2(n) = u · n, λd+2(n) = u · n+ c,

where c > 0 denotes the sound speed:
c =

√
γp

ρ
.

The two extreme characteristic speeds are associated with the acoustic waves, i.e. the proga-
pagation of pressure variations, while the central speeds are those of material waves, i.e. the
propagation of the fluid itself. The Mach number is defined as the ratio between the fluid
velocity and the sound speed:

Ma = |u|/c.

In flow regime where the Mach number is very small, Ma ≪ 1, the Euler system involves two-
scale dynamics: acoustic waves propagates very quickly compared to material waves and the
dynamics is asymptotically incompressible. Box 7 presents the its formal derivation.

Box 7: Low-Mach asymptotics of the Euler system

In this section, we recall the formal derivation of the low-Mach asymptotic dynamics (see
also [19]). After space-time rescaling and nondimensionalization,

x̃ = x/x0, ũ = u/u0, t̃ = (u0/x0)t, ρ̃ = ρ/ρ0, p̃ = p/p0, Ẽ = E/p0,

the Euler system writes in nondimensional form (after removing the tildes):

∂tρ+ ∇x · (ρu) = 0,

∂t(ρu) + ∇x · (ρu⊗ u+ p

Ma2 Id) = 0,

∂tE + ∇x · (Eu+ pu) = 0,

E = Ma2ρ
|u|2
2 + p

γ − 1 ,

with Ma2 = u0/(p0/ρ0). Then plugging the following expansions,

ρ = ρ0 + Ma ρ1 +O(Ma2), u = u0 + Mau1 +O(Ma2),
E = E0 + MaE1 +O(Ma2), p = p0 + Ma p1 + Ma2 p2 +O(Ma2),

we get, at order O(1/Ma2) and O(1/Ma): ∇xp0 = 0 and ∇xp1 = 0. Thus p0, p1 are
uniform in space. We can further assume that p1 equals zero (up to renaming p0 + Ma p1
to p0) and we will further assume that boundary conditions impose p0 to be constant

1The adiabatic exponent for a monoatomic gaz equals γ = 1 + 2/3 = 5/3, while for a gaz made of diatomic
molecules (like dinitrogen N2 and dioxygen O2) γ = 1+2/5 = 7/5 = 1.4. The three-dimensonnal Boltzmann-BGK
equation naturally leads to pressure law with γ = 5/3.
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also in time. At O(1), we get the following system

∂tρ0 + ∇x · (ρ0u0) = 0,
∂t(ρ0u0) + ∇x · (ρ0u0 ⊗ u0 + p2 Id) = 0,
∂tE0 + ∇x · (E0u0 + p0u0) = 0,
p0 = (γ − 1)E0.

Using that p0 and thus E0 are constants, the energy equation shows that u0 is divergence
free. The system thus simplifies into

∂tρ0 + u0 · ∇xρ0 = 0,
∂t(ρ0u0) + ∇x · (ρ0u0 ⊗ u0 + p2 Id) = 0,
∇x · u0 = 0,
p0 = (γ − 1)E0.

Therefore, the density is advected by the velocity u0. The pressure p2 is the Lagrange
multiplier associated with this constraint.

Suliciu relaxation system. The Suliciu relaxation system is a specific relaxation method
for the Euler system, where there is only one additional variable: an auxiliary pressure π(x, t).
The extended system writes:

∂tρ+ ∇x · (ρu) = 0,
∂t(ρu) + ∇x · (ρu⊗ u+ π Id) = 0,
∂tE + ∇x · (Eu+ πu) = 0,

∂t(ρπ) + ∇x · (ρπu) + λ2 ∇ · u = ρ

ε
(p− π),

where the pressure p has been replaced by π in the momentum and energy equations and the
last equation mimics the pressure equation: λ > 0 denotes the relaxation speed and ε > 0
the relaxation rate. The left-hand side system is hyperbolic with all fields linearly degenerate.
Hence, Riemann problems have explicitly solutions. This results in an approximate Riemann
solver for the Euler system [5]: at each time step and at each cell interface, the solution to the
Riemann problems in the (ρ, ρu,E, ρΠ) coordinates is solved after setting Π = p. The stability
of the approximation (positivity and entropy preserving) is ensured by the subcharacteristic
condition λ ⩾ ρc and the CFL condition:

∆t ⩽ ∆x/max
x

max
i

{|λi(n(x))|}

In the low-Mach regime Ma ≪ 1, this stability condition becomes very stringent and seems all
the more restrictive as the acoustic waves are small perturbations.

Implicit Suliciu relaxation systems. To overcome the CFL stability conditions, implicit
solvers have to be considered. In [23], a classical splitting strategy has been proposed: the
system is split into a convective part and an acoustic part, with a splitting parameter α ∈ [0, 1]
depending on the effective Mach number. Then the convective part is solved explicitly and the
acoustic part implicitly. However, this second step requires to solve a non-homogeneous elliptic
equation, where the diffusion coefficient depends on the density. Assembling a new matrix at
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each iteration could have important CPU cost for 2D and 3D simulations. Moreover, the matrix
may have a large condition number when the density has large spatial variations.

In [Imp4], we have proposed to introduce a two-speed relaxation system for the Euler
equation following the strategy considered in the barotropic case [6]. Introducing both an
auxiliary pressure π(x, t) and an auxiliary velocity v(x, t), the relaxation system writes:

∂tρ+ ∇x · (ρv) = 0,
∂t(ρu) + ∇x · (ρu⊗ v + π Id) = 0,
∂tE + ∇x · (Eu+ πv) = 0,

∂t(ρv) + ∇x · (ρv ⊗ v) + a

b
∇π = ρ

ε
(u− v),

∂t(ρπ) + ∇x · (ρπv) + ab∇ · v = ρ

ε
(p− π),

∂ta+ v · ∇xa = 0,
∂tb+ v · ∇xb = 0,

where a(x, t) > 0 and b(x, t) > 0 are speed relaxation variables that are advected by the flow.
When a = b and v = u, we recover the Suliciu relaxation model. This system has two main
advantages: first, the diffusion matrix of the associated equivalent equation has a structure
compatible with the low-Mach flows, since it involves only terms depending on the gradient of
the pressure and the divergence of the velocity, which are small in this regime. Secondly, a
splitting strategy can be applied between a convective, an acoustic and a relaxation part:

[Convective part]

∂tρ+ ∇x · (ρv) = 0,
∂t(ρu) + ∇x · (ρu⊗ v) + α2∇xπ = 0,
∂tE + ∇x · (Eu) + α2∇ · (πv) = 0,

∂tv + v · ∇xv + α2 a

bρ
∇π = 0,

∂tπ + v · ∇xπ + χc
ab

ρ
∇ · v = 0,

[Acoustic part]

∂tρ = 0,
∂t(ρu) + (1 − α2)∇xπ = 0,
∂tE + (1 − α2)∇ · (πv) = 0,

∂tv + (1 − α2) a
bρ

∇π = 0,

∂tπ + (1 − α2)χa
ab

ρ
∇ · v = 0,

[Relaxation part]

∂tρ = 0,
∂t(ρu) = 0,
∂tE = 0,

∂tv = ρ

ε
(u− v),

∂tπ = 1
ε

(p− π),

with α = proj[Mmin,1](Ma) = max(Mmin,min(Ma, 1)) and χc + (1 − α2)χa = 1. The splitting of
the π equation is slightly different from the splitting of the other equations. The main point
here is that, as auxiliary variables, the relaxation speeds a and b can be reinitialized at each
time step, such that a/(bρ) and (ab/ρ) are constant in space. The resolution of the acoustic
part can then be made using an implicit numerical scheme:

πn+1 − ∆t2(1 − α2)2χa

(
a

bρ

)(
ab

ρ

)
Divh(∇hπ

n+1) = πn

where Divh and ∇h refers to finite difference approximation of the divergence and gradient
operators. This implicit linear system has constant coefficients. Regarding the convective
part, it can be solved using a explicit Finite-Volume method with the local Lax-Fridriechs
(Rusanov) numerical flux for the conservative parts and the upwind flux for the non-conservative
parts. Finally, the relaxation part can be approximated by a simple projection.
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As exposed in [Imp4], entropic stability criteria on the convective and acoustic parts impose
conditions on the relaxation parameters:

a ⩾ b, χc
ab

ρ2 ⩾ (1 + α2(γ − 1))p
ρ
, χa

ab

ρ2 ⩾ (γ − 1)p
ρ
.

Supposing that a/ρ and b are constant and using the change of variables a = ρλ and b = ϕλ,
with λ, ϕ > 0, the inequalities become:

ρ ⩾ ϕ, ϕ(χcλ
2) ⩾ (1 + α2(γ − 1))

γ
ρc2, ϕ(χaλ

2) ⩾ (γ − 1)
γ

ρc2. (48)

Thus φ is chosen as a lower bound of the density and λ large enough so as to satisfy the two
other equations. In practice, λ2

c = χcλ
2 and λ2

a = χaλ
2 are rather set separately so as to satisfy

(48). This is the reason why parameters χc and χa have been introduced. Then λ2 is determined
such that λ2 = λ2

c + (1 − α2)λ2
a and χc and χa are determined by the relation We note that,

defined in this way, a and b are of the order O(1/Ma).

Numerical results. We first consider a moving smooth contact wave with constant velocity.
The initial data are given by

ρinit(x) = 0.1 + 1
5σ

√
π
e−∥x−x0∥2/2σ2

, uinit(x) = (0.01, 0.01), pinit(x) = 1,

on the domain Ω = [0, 1]2 with σ = 0.05 and the perfect gas law (γ = 1.4). The solution to this
problem consists in the advection of the density at constant velocity u. The numerical solution
is computed up to time T = 1. For the relaxation parameters, we take

λc = 3.2, λa = 2.5, ϕ = 0.099.

As expected, it is shown that for a similar accuracy the proposed method, called “SI two-
speed scheme” hereafter, enables us to take a 40 times larger timestep than the one of the
explicit scheme. The time step is also 1.5 times larger than the one used by the semi-implicit
Suliciu scheme, denoted “SI Suliciu”. Moreover, Table III.3 shows that by removing the spatial
dependency on the density in the elliptic solver, the SI two-speed relaxation method enables a
division by 3.3 of the condition number (at a given time step) compared with the SI Suliciu.

Figure 9 presents different results for the Gresho vortex test case. The initial condition is given
by

ρinit(x) = 1,

(uinit(x), pinit(x)) =


(5r eϕ, pc + 25

2 r
2), for r ⩽ 0.2,

((2 − 5r) eϕ, pc + 4 ln(5r) + 4 − 20r + 25
2 r

2), for 0.2 < r ⩽ 0.4,
(0, pc + 4 ln 2 − 2), for r > 0.4,

on the domain Ω = [0, 1]2 with r = ∥ x− x0 ∥, x0 = (0.5, 0.5) and pc = 1/(γMa2) − 1/2 with a
perfect gas law with γ = 1.4. The Mach number Ma will take the different values 0.5, 0.1, 0.01
or 0.001. Then, since the initial velocity is divergence free, the initial data is well-prepared.
Indeed the above initial data is a steady solution to the incompressible Euler system, as well
as a steady solution to the compressible one. Figure 9 shows 2D plots of the norm of the
velocity at final time T = 1 as well as 1D cuts of the final density and initial density obtained
with the explicit scheme (top) and the SI two-speed scheme (bottom). We observe that with
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a larger time-step independent of the Mach number, the SI two-speed scheme preserves the
structure of the velocity field, contrary to the explicit scheme. More precisely, the accuracy of
the classical scheme decreases with the Mach number and the CPU cost increases since the time
step decreases. Concerning the SI two-speed scheme, the accuracy on the density is almost the
same whatever the Mach number is, and the CPU cost remains almost constant as the time step
is not modified. The CPU cost can be still impacted by the condition number of the implicit
operator, which could be mitigated using preconditioning technique.

λmax ∆t
Explicit max(|(u · n) ± c|) 0.0021
SI Suliciu max(|(u · n) ± αλc/ρ|) 0.056
SI two-speed max(|(u · n) ± αλc|) 0.088

Table III.2: (Smooth contact wave, constant ve-
locity, 2d) Maximal characteristic speed λmax of
the explicit part and timestep ∆t used for the
different numerical schemes, for N = 200 cells.

∆t conditioning
Explicit 0.0575 2400
SI Suliciu 0.088 1750
SI two-speed 0.057 720

Table III.3: (Smooth contact wave,
constant velocity, 2d) Condition num-
bers for the two semi-implicit relaxation
scheme for N = 200 cells.

4 Conclusion and perspectives

This chapter presents two implicit schemes for hyperbolic equations. The first one is based on
a vectorial kinetic approach and can be applied to any hyperbolic system. The second one is a
two-speed Suliciu relaxation system and is dedicated to the Euler system.

We identify two main perspectives of these works:

• Extension to more complex plasma test cases. In order to deal with real physical
test cases, the code already developed for the three-dimensional guiding-center model
could be extended to simulate full gyrokinetic models, where there is an additional velocity
dimension. Additionally, the fourth-order Lattice Boltzmann scheme, developed [Imp1],
could be used to increase the accuracy of the toroidal transport.

• Data-driven optimization of the relaxation schemes. An interesting avenue con-
cerns the improvement of the relaxation methods using neural networks. The method
requires the relaxation parameter to be chosen optimally in order to obtain the greatest
possible accuracy while remaining stable. The choice of this parameter could be learnt by
neural networks. An initial study was carried out during the PhD thesis of Léo Bois [3]
on the transport, the Burgers and the linear wave equations. It will also be interesting to
take a more detailed account of the non-linear stability criteria [21].

In this conclusion, we also mention the related semi-implicit methods for fluid models with
congestion. These models involve a singular pressure that maintains the density below a given
maximal value. By increasing the stiffness of the pressure, the model leads to the coexistence of
incompressible dynamics, in regions of maximal density, and compressible dynamics in regions
of lower density. Based on the methodology exposed in [Phd5]. In [Imp8], we develop a second
order (RK2-Crank Nicolson) scheme for the pedestrian model introduced in [11] and performed
two-dimensional evacuation simulations. In [Imp2], in addition to the theoretical analysis of
the hard congestion limit, we propose a numerical scheme for the one-dimensional dissipative
Aw-Rascle model and performed numerical comparisons with the asymptotic congested Euler
model, whose exact solutions can be obtained thanks to an optimal transport formulation [28].



58 Multi-scale hyperbolic problems and implicit schemes

(a) Explicit scheme. From left to right: Ma = 0.5 (∆t = 1.4 × 10−3), Ma = 0.1 (∆t = 3.5 × 10−4),
Ma = 0.01 (∆t = 3.5 × 10−5), Ma = 0.001 (∆t = 3.5 × 10−6)

(b) SI two-speed scheme. From left to right: Ma = 0.5 (λc = 2.2, λa = 1.8), ∆t = 2.5 × 10−3, Ma = 0.1
(λc = 11, λa = 8.5), ∆t = 2.5 × 10−3, Ma = 0.01 (λc = 120, λa = 100), ∆t = 2.5 × 10−3, Ma = 0.001
(λc = 1150, λa = 950), ∆t = 2.5 × 10−3.

Figure 9: (Gresho vortex) Norm of the velocity (2D plot) at final time T = 1 and initial (red)
and final (blue) density profiles for the explicit (top) and the SI two-speed scheme (bottom) for
different values of the Mach number.

The same numerical method has been introduced independently in [1] and have been extended
in two dimensions there. My collaborators on this topic are Nilasis Chaudhuri (Warsaw Univ.),
Pierre Degond (CNRS, Univ. Toulouse), Piotr Minakowski (Heidelberg Univ.), Charlotte Perrin
(Aix-Marseille Univ.), Ewelina Zatorska (Imperial College, London)
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Chapter IV

Models for cells collective dynamics

1 Introduction
In this chapter, we present some contributions to the modeling of cell collective dynamics. They
range from the development of relevant new particle models to the derivation of associated large-
scale models and comparisons with experimental results.

Collective cell movements are observed in several biological processes, like morphogenesis, tissue
remodeling, bacterial migration or collective swimming of spermatozoa. These collective move-
ments spontaneously emerge at large scale without any leader: they result from the numerous
interactions between cells.

Cells are complex entities involving complex internal physical and chemical processes. In par-
ticular, they are capable of extracting energy from their environment and converting it into a
mechanical rearrangement of their cytoskeletons. As a result, many cells are active particles
that can exhibit persistent movement: this is self-propulsion.

One possible description of their dynamics is provided by particle models: each particle is
represented by its position Xi(t) ∈ Rd, its velocity Vi(t) ∈ Rd, and possibly its polarity vector
Pi(t) ∈ Rd and other geometric quantities. Self-propulsion of the cells generally leads us to
assume that the velocity norms remain constant over time. Interactions between cells can be
of the attraction-repulsion type, but also of the velocity or polarity alignement type. These
alignment interactions can be viewed as a mesoscopic description of the internal activity of the
cytoskeletons. They are generally modeled through Vicsek-type alignment interactions. We
refer to Box 8 for a short presentation of this model, which will be central to our work.

Particle models have the advantage of being quite flexible: modelling assumptions, like specific
cell geometry or specific interactions rules, can be inserted fairly easily. They also has the
advantage to allow the rigorous derivation of the large scale hydrodynamic models in some
regimes. They can thus serves in finding the key dynamical ingredients to explain the observed
collective motions [12, 10, 9]. Let us mention that other modeling approaches for tissues also
exist, either at the cellular scale with vertex models [16, 5] or directly at the macroscopic scale
[18].

In what follows, we present three models with three distinct features: (i) disc-shaped cells
organised in layers, (ii) anti-alignment interaction rules, (iii) self-confinement with an actin
cable. For the first two models, the associated macroscopic models were derived. For the third,
extensive comparisons with experimental results were carried out.
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Box 8: Vicsek Model

The Vicsek model, introduced in the seminal paper [26], consider particles moving at
constant speed interacting with velocity alignment interactions in competition with noise.
The continuous version of the model, introduced in [12], reads:

d

dt
Xi = c Vi, dVi = ProjV ⊥

i
◦
(
ν (V i − Vi)dt+D (dBt)i

)
, V̄i =

∑
j,|Xj−Xi|⩽R Vj∣∣∣∑j,|Xj−Xi|⩽R Vj

∣∣∣ ,
where V̄i is the normalized local averaged velocity of the neighboring particles in a neigh-
borhood of radius R. In this model, the velocities belongs to the sphere Sd−1 = {V ∈
Rd | ∥V ∥ = 1 }. This property is preserved over time thanks to the projection operator
onto V ⊥

i . (dBt) refers to a Gaussian white noise and the operator ◦ indicates that the
stochastic differential equation has to be taken in the Stratonovitch sens. a. This model
involves three parameters: the particle speed c > 0, the alignment rate between velocities
ν > 0, and the angular diffusion of velocities D > 0.
The statistical properties of this model have been intensively studied in the physical
community to characterize the observed phase transition between an ordered-liquid phase,
a disordered-gas phase and a coexistence liquid-gas phase with bands like dynamics. We
refer to [2] for a review.
To analyze the associated large-scale dynamics, a mean-field version of the dynamics
have been considered in [12]. It results in a Fokker-Planck equation satisfied by the
phase-space distribution function of the particles f(t, x, v). This mean-field version of
the model is obtained in the limit of large number of particles [1]. From this mean-
field model, a hydrodynamic model has been derived: this is the so-called Self-Organized
Hydrodynamics (SOH) model. We refer to Box 9.

aIntegrating the equation in the Stratonovitch sens consists into considering the limit of the following
discretization scheme: V n+1

i − V n
i = Proj((V n

i
+V n+1

i
)/2)⊥ (ν(V̄ n

i − V n
i )∆t + (Btn+1 − Btn )i). Multiplying

by (V n+1
i + V n

i ), we get that the norm is preserved: |V n+1
i | = |V n

i |.

Box 9: SOH Model

The Self-Organized Hydrodynamic (SOH) model has been first derived in [12]. It de-
scribes the dynamics of the density ρ(x, t) ∈ R and the mean direction u(x, t) ∈ Sd−1 and
writes

∂tρ+ c1 ∇x · (ρu) = 0,
ρ (∂tu+ c2 u · ∇xu) + κ−1 Proju⊥∇ρ = 0.

where κ = ν/D and the constants c1, c2 are given by:

c1 =
∫ π

0 cos θ exp(κ cos θ) dθ∫ π
0 exp(κ cos θ) dθ ⩾ c2 =

∫ π
0 cos θ(sin θ)d−1hκ(cos θ) exp(κ cos θ) dθ∫ π
0 (sin θ)d−1hκ(cos θ) exp(κ cos θ) dθ > 0.

with hκ(cos θ) is a given function, which is a solution to a second order differential
equation. This system is hyperbolic. However, in contrast with the Euler equation for
classical fluids, it is non-Galilean invariant as soon as c1 ̸= c2, i.e. (ρ(x+V t, t), u(x+
V t, t) − V ) does not solve the system for non-zero constant velocity V ∈ Rd. This also
reflects the fact that the associated sound speed is not isotropic. Due to the projection
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term Proju⊥ , this model is also non-conservative. In particular, there is no clear
definition for shock speeds for discontinuous solutions. In [Phd3], a numerical scheme
based on a relaxation method has been proposed. Although the approximated system
has a restricted hyperbolic region, the designed numerical scheme is able to capture the
dynamics associated with the underlying particle system. We refer to [Phd6] for a review
of this model.

2 A multi-layer model for interacting disks

In collaboration with P. Degond (CNRS - Univ. Toulouse), we have proposed a modeling frame-
work for the three-dimensional motion of spermatozoa [Cell6]. At a large scale, spermatozoa
show collective movements: dark waves are observed and these motions are currently used as
a measure of fertility. These dark waves are thought to be linked with the inclination of the
spermatozoa heads relative to the observer. Indeed, spermatozoa have flat ellipsoidal heads,
which is modeled as infinitely thin flat discs.

There is some experimental evidence that sperm-cell motion in the most common experiments
is mostly planar. We thus propose a multi-layer model where cells remains in a given layer
and interact with the cells of the same layer and the cells of the two neighboring ones.

Although cells exhibit hydrodynamic interactions with the surrounding liquid, the predominant
induction result from the volume exclusion interactions between cells. Indeed, sperm cells
concentration is very high (as large as 5 × 109 cm−3) and they occupy a volume ratio of about
50%. As shown in [21], volume exclusion interactions result in local alignment for self-
propelled elongated particles. This has been also experimentally demonstrated for spermatozoa
dynamics in [4].

Particle model. We consider horizontal layers with inter-distance d. Each spermatozoon is
described by its altitude index hk ∈ N (constant over time), its position Xk(t) ∈ R2, it angle
velocity φk(t) ∈ [0, 2π) and its inclination with respect to the vertical axis θk(t) ∈ [0, π). Then
the particle model reads:

dXk

dt
= V (φk),

dφk = −ν sin(φk − φ̄tot
k ) dt+

√
2DdBφ,k

t modulo2π,
dθk = (−K sin(2(θk − θ̄k)) + µTk) dt+

√
2δ dBθ,k

t moduloπ.

where V (φk) = (cosφk, sinφk)T . The dynamics of positions and velocity angles are very similar
to the original Vicsek model (see Box 8), expressed in the variable (x, φ), except that the
averaged velocity direction φ̄tot

k consider the discs of the same layer and the two neighboring
layers only. The dynamics of the inclination angles result from the torque balance equation of
the discs in the overdamped regime. There are two main ingredients: there is a local alignment
for the discs of the same layer, with rotational stiffness K, and particles of the two neighboring
layers exert a torque Tk defined as follows:

Tk =
∑

,hj=hk±1
|Xk−Xj |⩽R

Tkj , Tkj = sign(hk − hj)(V (φk) × V (φj)) · ẑ.

Angular diffusion of parameter δ > 0 is also considered to the inclination dynamics. To sum-
marize, this model combines a two-dimensional Vicsek alignement dynamics in layers and
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nematic alignement dynamics for inclinations. The latter has been further studied in [11].
Let mention that other three-dimensional interactions could be considered like the body-attitude
model [13, 6].

Mean-field kinetic equation. In order to study the large-scale dynamics of the proposed
model, we are interested in the dynamics of the phase-space distribution f(x, φ, θ, h, t) with
x ∈ R2, φ ∈ [0, 2π), θ ∈ [0, π) and h ∈ N. Formally, this distribution satisfies the following
equation:

∂tf + ∇x · (V (φ)f) = Qnb(f) +Qin(f)
where we have split the interaction of the neighboring layers,

Qnb(f) = − ∂θ(µTff) − ∂φ(Sff)

from the interactions that take place inside layers:

Qin(f) = − ∂φ(−ν sin(φ− φ̄f )f) +D∂2
φf − ∂θ(−K sin(2(θ − θ̄f ))f) + δ ∂2

θf.

where Sf , Tf ∈ R, φ̄f ∈ [0, 2π), θ̄f ∈ [0, π) are mean-field approximations of the associated
quantities at the particle scale. Then, looking at the large time dynamics and space scale, of
size O(1/ε) with ε ≪ 1, and supposing that the interaction frequency inside layers are much
larger interaction frequency between neighboring layers (µ, β are O(ε)), the distribution function
f ε(x, φ, θ, h, t) = f(x/ε, φ, θ, h, t/ε) satisfies the equation:

∂tf
ε + ∇x · (V (φ)f ε) = Qnb(f ε) + 1

ε
Qin(f ε).

Equilibria and macroscopic equations. The set of local equilibria associated with the
non-linear tensorial Fokker-Planck operator Qin is given by:

E = {f,Qin(f) = 0} =
{
ρMφ̄,θ̄ | ρ ∈ R+, φ̄ ∈ [0, 2π], θ̄ ∈ [0, π]

}
with Mφ̄,θ̄(φ, θ) the following function

Mφ̄,θ̄(φ, θ) = 1
Zκ,λ

exp
(
κ cos(φ− φ̄)

)
exp

(
λ cos(2(θ − θ̄))

)
, (49)

where κ = ν/D and λ = K/δ and Zκ,λ is a normalization constant.

Supposing that the distribution function f ε tends to f as ε → 0, then f belongs to the kernel
of Qin. This means that there exists macroscopic quantities ρ(x, h, t) ⩾ 0, φ̄(x, t) ∈ [0, 2π) and
θ̄(x, t) ∈ [0, π) such that

f(x, φ, θ, h, t) = ρ(x, h, t)Mφ̄(x,h,t),θ̄(x,h,t)(φ, θ).

To determine the dynamics of these quantities, we consider the so-called generalized collisional
invariants associated with Qin as introduced in [12]: these are functions ψ(φ̄,θ̄)(φ, θ) orthogonal
to Qin(f), for any distribution f with mean velocity and mean inclination (φ̄, θ̄). We refer
to [Cell6] for a detailed description. After integrating the equation against these generalized
collisional invariants, we get the following equations:

∂tρ+ c1 ∇x · (ρ V (φ̄)) = 0, (50)

ρ
(
∂tφ̄+ c2 (V (φ̄) · ∇x)φ̄

)
+ 1
κ
V (φ̄)⊥ · ∇xρ = νβ′

c3
V (φ̄)⊥ · S, (51)

ρ
(
∂tθ̄ + c1 (V (φ̄) · ∇x)θ̄

)
= µ′

c4
(c1ρV (φ̄))⊥ · T , (52)
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where the constants c1, c2, c3, c4 are weighted averages of the equilibria. On the left-hand side,
this system combines a SOH model (Eqs.(50)-(51), see also Box 9) and a transport equation for
the mean inclination (Eq.(52)). Interactions between layers appear on the right-hand side.

Numerical results: metastable states. Figure 10 presents numerical comparisons between
the initial particle model and the macroscopic one for a homogeneous simulation. We consider
3 layers of size [0, Lx] × [0, Ly] with 25000 particles per layer, uniformly distributed. Particle
velocity and inclination angles are randomly distributed according to their respective von Mises
distribution (49), with mean velocity angles and mean inclination angles:

φ̄1 = −1, φ̄2 = 1, φ̄3 = −2, (53)
θ̄1 = 0, θ̄2 = −0.9, θ̄3 = −0.8. (54)

For the macroscopic model, the initial density is thus constant in each layer given by ρℓ =
(25000)/(LxLy), for ℓ ∈ {1, 2, 3}, and the uniform initial values of φ̄ℓ and θ̄ℓ given by (53) -
(54). A time rescaling is performed in the microscopic model to match the macroscopic time
scale: t̃ = t/ε with ε = 0.1.

Fig. 10 depicts the time evolution of the mean velocity and mean inclination for both micro-
scopic simulations (dotted line) and macroscopic simulations (continuous line), with different
interlayer distances h. We first consider strong interactions between layers by choosing h = R
(Fig. 10a). The dynamics can be divided into two phases: a first relaxation of the mean ve-
locities of layers 1 and 2 and then a second relaxation dynamics between layers 1 and 3 that
leads to the alignment of the three layers. We note that microscopic and macroscopic simula-
tions coincide during the first 1.5 time unit (including the first relaxation mechanism), which
confirms that the macroscopic model captures the right interaction time scale. However, we see
that, due to the finite number of particles, stochastic fluctuations make the second relaxation
occur earlier around time t = 3 (micro) instead of t = 3.5 (macro). We also see that the time
of the second relaxation depends on the simulation, always occurs before the macroscopic re-
laxation and strongly determines the final inclinations. When increasing the interlayer distance
(Fig. 10b), some inclination configurations prevent layers from interacting. We observe that, in
the macroscopic simulation, this slight increase of the interlayer distance results in large-time
translation of the second relaxation step going from t = 3.5 to t = 7.5. This highlights the
metastability of the system between the two relaxation steps. This is in contrast with the
microscopic simulations where this increase does not result in so much change of the second
relaxation time. This second relaxation time strongly depends on the stochastic fluctuations,
which make particle interacting instead of remaining in a non-interacting configuration.

3 Asymmetric interactions and phase transitions

In an ongoing work with N. Meunier (Univ. Évry) and R. Voituriez (CNRS - Sorbonne Univ.),
we are interested in the dynamics of a Vicsek-type model with asymmetric alignment interac-
tions. The effect of the visual field has been already studied in [15]. In this work, we further
investigate this by adding an anti-alignment when the particles are back to back. This is moti-
vated by the so-called Contact Inhibition of Locomotion (CIL) reported in the literature which
is expected to disadvantage the formation of largescale cell clusters with coherent motion (see
for instance [24]).
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(a) h = R = 0.02

(b) h = 0.0205 > R = 0.02

Figure 10: (Homogeneous case, interacting layers, h = R) Comparison of macroscopic (con-
tinuous line) and microscopic (dashed lines) simulations. Left: Mean velocity angles φ̄ℓ as a
function of time. Right: Mean inclination angles θ̄ℓ as a function of time. Alignment interac-
tion parameters: ν = 4, D = 0.1, K = 4, δ = 0.1, R = 0.02. Layer-interaction parameters:
R = 0.02, β = 0.5. Domain parameters: Lx = Ly = 1. Microscopic parameters: 25000 particles
per layer, µ = 3, ∆t = 1 × 10−2. Macroscopic parameters: ∆x = ∆y = 0.5, ∆t = 1 × 10−2.
Taken from [Cell6].

Particle model. We study the two-dimensional dynamics of N particles, described by their
positions Xk(t) ∈ R2 and velocities Vk(t) ∈ S1. They satisfy the Vicsek-type model

dXk = c Vk dt, (55)
dVk = PV ⊥

k
◦ (ν (Wk − Vk) dt+

√
2DdBk

t

)
. (56)

where the vector Wk ∈ R2 is defined by:

Wk = α

N

∑
j,|Xj−Xk|<R
(Xj−Xk)·Vk>0 and/or
(Xk−Xj)·Vj>0

Vj + (1 − α)
N

∑
j,|Xj−Xk|<R
(Xj−Xk)·Vk<0 and
(Xk−Xj)·Vj<0

−Vj . (57)

In this expression, the first-term models the fact that two neighboring particles tend to align
their velocities if ones is in the field of vision of the other, while the second term models the
fact that they tend to anti-align their velocities otherwise.
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Mean-field kinetic model. The mean-field kinetic model associated with this particle model
writes:

∂tf + ∇x · (c vf) = −∇v ·
(
Pv⊥F [f ]f

)
+D∆vf, (58)

where F [f ] denotes the mean-field interaction force:

F [f ](x, v, t) = ν

∫
y∈R2,w∈S1

K
(|x− y|, (y − x) · v, (x− y) · w)w f(y, w, t) dydw.

with interaction kernel K given by:

K(r, δ1, δ2) = 1[r<R](r)
(
α1[(δ1>0) and/or (δ2>0)](δ1, δ2) − (1 − α)1[(δ1<0) and (δ2<0)](δ1, δ2)

)
.

Then considering macroscopic variables x′ = εx, t′ = εst, with s ∈ {1, 2}, the new kinetic
distribution, f ε(x′, v, t′) = f(x, v, t), satisfies the following kinetic equation:

εs ∂t′f ε + ε∇x′ · (c vf ε) = −∇v ·
(
Pv⊥F ε[f ε]f ε

)
+D∆vf

ε. (59)

where the force field is the same as previously expressed in the macroscopic variable. After
applying some linear approximation of the interaction kernel, the expansion of the force field in
the powers of ε leads to the following kinetic equation:

εs ∂tf
ε + ε∇x ·

(
c vfε

)
= Γ (f ε) + εΦ (f ε) +O(ε2), (60)

where Γ (f ε) and Φ (f ε) are the O(1) and O(ε) interaction operators defined by:

Γ (f ε) = −D∇v ·
(
Pv⊥

[
aµJfε + µ

(
Qfεv)

]
f ε
)

+D∆vf
ε, (61)

Φ (f ε) = − µ′ ∇v ·
(
Pv⊥ [∇x ·Qfε + ∇x

ρfε

2 ]f ε
)
. (62)

with a = 4α − 1, µ = νπR2/4 and µ′ = (νR2)(α − 1/2)/2 and where the density ρf (x, t), the
mean flux Jf (x, t) and the Q-tensor Qf (x, t) are defined by

ρf (x, t) =
∫

v∈S1
f(x, v, t) dv,

Jf (x, t) =
∫

v∈S1
vf(x, v, t) dv,

Qf (x, t) =
∫

v∈S1

(
v ⊗ v − 1

2 Id
)
f(x, v, t) dv.

We note that the interaction operator Γ both involves a polar alignment term and a nematic
alignment one. As both terms are acting at the same time scale, they constrain the dynamics.

Equilibria and phase transition. We first note that the interaction can be written:

Γ(f) = D∇v ·
(

MaµJf , µQf
∇v

(
f

MaµJf , µQf

))
.

The set of equilibria of the interaction operator Γ is

E =
{
ρMs

u,κ,λ with ρ ⩾ 0, κ ⩾ 0, u ∈ S1, λ ∈ R and compatibility conditions
}
,
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where the distribution Ms
u,κ,λ is defined by:

Ms
u,κ,λ(v) = 1

Zs
κ,λ

exp (κ(u · v)) exp
(
λ(u · v)2

)
,

and the compatibility conditions are:

aµJρMs
u,κ,λ

= κu, µQρMs
u,κ,λ

= λ

2 (u⊗ u) − λ

2 (u⊥ ⊗ u⊥),

which are equivalent to the following relations:

aµ ρ c(κ, λ) = κ, µρ
ℓ(κ, λ)

2 = λ, (63)

where the function c(κ, λ) and λ(κ, λ) are defined by:

c(κ, λ) =
∫ 2π

0
M s

κ,λ(θ) cos θ dθ2π , ℓ(κ, λ) =
∫ 2π

0
M s

κ,λ(θ) cos(2θ) dθ2π . (64)

We note that like in the previous work the equilibria are the product of a polar and a nematic
distribution in velocity (see Eq. (49)). However, here, both distributions are forced to share
the same axis of symmetry in velocity. Moreover, the compatibility conditions show that the
two order parameters κ and λ cannot be chosen arbitrarily and their values depend on the
density ρ. This is exactly the same kind of conditions appearing in the Vicsek-type model,
without normalization of the local averaged velocity, studied [8, 9]: this can be viewed as a
direct extension with additional nematic interactions.

We then can classify the equilibria into three different phases depending on the values of polar
and nematic parameters κ and λ:

a) The disordered phase corresponds to equilibria with both κ = 0 and λ = 0. This is
a uniform distribution in velocity orientation. In that case, the polar and nematic order
parameters, c(κ, λ) and ℓ(κ, λ), both equal 0.

b) The nematic phase corresponds to equilibria with κ = 0. In that case, the polar order
parameter c(κ, λ) equals 0, which also means that there is no flux.

c) The polar-nematic phase corresponds to equilibria with positive κ > 0 and λ ̸= 0.

A bifurcation analysis shows that there exists two bifurcation points on the curves F (ρ, 0, 0) = 0,
with F (ρ, κ, λ) = (aµ ρ c(κ, λ) − κ, µρ/2 ℓ(κ, λ) − λ)T . Indeed, we have the following

Proposition 9. ∇(κ,λ)F (ρ, 0, 0) is singular if and only if ρ = 8/µ or ρ = 2/(µa). These are
two bifurcation points.

On Figure 11, we numerically observed three different kinds of phase transitions: (I) the disorder
/ nematic phase transition at density ρ∗

d|n = 8/µ (in purple), (II) the disorder / polar-nematic
phase transition at density ρ∗

d|pn = 2/(aµ) (in green and red) and (III) the nematic / polar-
nematic phase transition at density ρ∗

n|pn(a) which is an unknown function of a (in black and
blue). Note that the second phase transition is the same as in [9].

Macroscopic model. Following the method developed in [9], we have been able to derive
the dynamics of the density ρ(x, t) ∈ R and the mean orientation u(x, t) ∈ S1 in the disordered
phase and in the polar-nematic phase.
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Figure 11: Left plots: The solutions (κ, λ) to the compatibility conditions (63) are plotted as
functions of the density ρ for a ∈ {0.15, 0.6} and µ = 4. Right plots: the associated order
parameter (c(κ, λ), ℓ(κ, λ)). We observe five different phase transitions. Purple curves: disorder
/ nematic phase transition. Green and red curves: disorder / nematic-polar phase transition,
Black and blue curves: nematic / polar-nematic phase transition.

Proposition 10. 1. In the disordered phase, the density ρε associated with f ε satisfies the
following equation:

∂tρ
ε − ε∇x ·

(
c/(2D) − (µ′/(4D))ρε

(1 − ρε/ρd|pn) ∇xρ
ε

)
= O(ε2).

2. In the polar-nematic phase, if f ε → f = ρMs
Ωp,κ,λ, then ρ(x, t), θp(x, t) satisfy the following

system:

∂tρ+ c∇x · (ρc1Ωp) = 0,

ρ
(
∂tθp + (c(1)

2 + 2λρc(1)
5 ) Ωp · ∇xθp

)
+
(

−c(1)
3 + (−c(1)

4 + c
(1)
5 (µ2 − ∂ρλ))ρ

)
Ω⊥

p · ∇xρ = 0,

ρ
(
∂tθp + (c(2)

2 + 2λρc(2)
5 ) Ωp · ∇xθp

)
+
(

−c(2)
3 + (−c(2)

4 + c
(2)
5 (µ2 − ∂ρλ))ρ

)
Ω⊥

p · ∇xρ = 0,

with Ωp = (cos θp, sin θp)T and where functions ci are functions of (κ(ρ), λ(ρ)) and are defined
as weighted averages of the equilibria.

Let us make a few comments on this result. The density equation obtained in the nematic
phase is similar to the one obtained for the Vicsek model in [15], except that there is an extra
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term involving parameter µ′ due to the interaction term Φ of order O(1) of Equation (60). The
stability of the disorder state is, however, modified since this parameter can be positive (when
α < 1.2): in that case, the disorder state is stable under the condition that (ρε − ρd|pn) and
(2c/µ′ − ρε) have the same sign. Regarding the macroscopic model in the polar-nematic phase,
the main observation is that there are two different propagation speeds for the polarity angle
θp, which makes the system very constrained. One non-trivial solution, however, consists of
considering a constant velocity Ωp(x, t) = cst and traveling densities, ρ(x, t) = g((x · Ωp) − c1t)
with a given function g : R → R+. The dynamics of the system in the nematic phase is still
under investigation.

4 Effect of self-generated active boundaries and hard-repulsion

In collaboration with Simon Lo Vecchio, Daniel Riveline (IGBMC, Univ. Strasbourg), Olivier
Pertz (Univ. Berne) Marcela Szopos (MAP5, Univ. Paris Cité), we propose a particle model
with self-generated surrounding actomyosin cables [Cell1]. Indeed, as observed in experiments,
actomyosin cables appear at the boundary of multicellular rings: they are intracellular and
form a continuous line that encloses cells and acts as an active physical boundary. These cables
actually play a decisive role in the emergence of the collective movement.

Particle model and hard repulsion. Cells are considered as two-dimensional hard disks
and the vectors of positions, velocities, polarities are denoted X(t), V(t) ∈ (R2)N ,P(t) ∈ (S1)N ,
with N ∈ N. In an overdamped regime with large friction, the velocities are supposed to be
aligned with the polarities direction up to contact forces that prevent cells from overlapping.
Using the framework introduced in [19, 20] for contact forces, the dynamics thus write:

dX
dt

= V, (65)

V = ProjCX

(
cP
)
, (66)

where ProjCX denotes the projection operator onto the set of admissible velocities defined by:

CX =
{

V ∈ (R2)N | ∀i < j, Di,j(X) = 0 ⇒ ∇Di,j(X) · V ⩾ 0
}
,

where Di,j(X) = ∥Xi −Xj∥−2r corresponds to the distance between the i-th and j-th particles
of radius r. Regarding the polarities dynamics, we consider a Vicsek-type model to account for
the local alignment of the polarities in competition with noise:

dPk = ProjP ⊥
k

◦
(
µ

(
Vk

∥Vk∥ − Pk

)
dt+ ν

(
P̄k − Pk

)
dt+

√
2D (dBt)k

)
. (67)

The only additional ingredient with respect to the standard Vicsek model (see Box 8) is the
addition of the relaxation of the polarity onto the velocity direction at a rate µ > 0. Note
that a variant of this model has already been proposed and studied in [7], where repulsion was,
however, treated by using a soft interaction potential.

Self-generated cables and interactions. In the following study, the N cells are initially
distributed in a ring domain. As long as the cells keep a ring-like topological configuration, we
can define inner and outer cables as piece-wise affine curves linking the cells at the boundary.
These two cables are then considered as ensembles of small springs connecting each particle at
the outer and inner boundaries and each particle lying at the boundary will be sensitive to the
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elastic force exerted by the cables, with bending and stretching components. However, thanks
to a scaling analysis, this direct effect is shown to be negligible. Instead, the cables are supposed
to indirectly act on the cell by changing the polarity dynamics. The polarity equations then
read:

dX
dt

= V,

V = ProjCX

(
cP + γ (F cable

passive)k

)
,

dPk = ProjP ⊥
k

◦
(
µ

(
Vk

∥Vk∥ − Pk

)
dt+ ν

(
P̄k − Pk

)
dt+

√
2D (dBt)k

+αp (F cable
passive)k dt+ αa (F cable

active)k dt
)
,

where (F cable
passive)k is the passive elastic force and (F cable

active)k is an additional active force, which
makes the polarity align to the cables. Note that in [25], a similar action of boundary cables
have been proposed.

Numerical methods and simulation set up. The polarity equation is solved using the
semi-implicit method proposed in [Phd3] and the positions and velocities are then updated
using the scheme introduced in [19], which writes:

Xn+1 − Xn

∆t = Vn+1, Vn+1 = ProjC∆t
Xn

(
cPn+1

)
,

where the set of admissible velocities has been replaced by a first-order approximation:

C∆t
Xn =

{
V ∈ (R2)N | ∀i < j, Di,j(Xn) + ∆t∇Di,j(Xn) · V ⩾ 0

}
.

Then this discrete problem is reformulated as an optimization problem with linear constraints,
which is solved using the Uzawa algorithm [3]. We refer to [Cell1] for more details.

Regarding the simulation set up, we consider cells initialized on a ring domain, Ω = {(r, θ) ∈
[Rmin, Rmax] × [0, 2π[}, with Rmin = 40, 90, 150 or 500 µm and Rmax = Rmin + 30 µm. As cells
have a diameter equal to 15 µm, two cells can be present on each radial section of the ring at
initial condition. Accordingly, by taking into account the annular radius, the number of cells is
set to 46, 89, 140 or 439. In all simulations, the time step is chosen equal to ∆t = 10−3h and
the final time T = 24h.

Parameter calibrations. The model involves 12 parameters gathered in Table IV.1. When-
ever possible, we used physical values obtained from measurements or derived from references.
Let us focus on the relaxation parameters ν. While maximal speed and angular diffusion can be
measured on individual cell dynamics, this is not the case of this parameter, as it parameterizes
cell interactions. To extract its value, typical examples of polarity relaxation have been isolated
in experiments: cells with a polarity opposite to the direction of rotation, assumed to be P̄k,
have a shift of angle π after an average time τ and relax to P̄k.

It is noteworthy that only two parameters were calibrated a posteriori: αa was set to 10−2h−1pN−1

and αp was determined by running numerical simulations, with ring radius Rmin = 80, while
aiming at reaching a closure time set by experiments (see Fig.12). We then select the value
6.5 × 10−5h−1pN−1 in order to retrieve the experimentally reported closing time.

We refer to [Cell1] for a detailed discussion on the other parameters.



72 Models for cells collective dynamics

(a) Examples of configurations (b) Coherence length

Figure 13: Taken from [Cell1].

Comparisons with experiments. Using the above parameters, we are now able to investi-
gate the dynamics of rings of internal diameter 80µm 180µm, 300µm and 1000µm respectively.
Remarkably, we are able to recover typical multicellular patterns like fingers and clusters 13a.
We then compare the coherence length, which is defined by:

ξ

p
= min

{
− 1

2π
Cv(0)
C ′

v(0) , 1
}
,

where Cv denotes the correlation of the tangential velocity v(θ) in polar coordinates relatively
to the barycenter of the cell assembly:

Cv(θ) =
∫ 2π

0
v(t+ θ)v(t)dt.

computed in practice using a discrete Fourier transform. This quantity is introduced as a collec-
tive motion indicator in biological works [14]. Remarkably, as shown in Figure 13b, we observe
a good agreement between the coherence lengths measured in experiments and in numerical
simulations for the different sizes of rings, although the parameters have been calibrated on
rings of diameter 80µm only.

Figure 14 gathers results from two numerical test cases to assess the importance of the cables.
First, deactivating the active component of the cables induces a clear reduction of the correlation
length (Fig. 14a): the active component is thus required for the onset of coherence. Secondly, we
perform a comparison with dynamics in a ring-shape domain with a static wall-like confinement
as experimentally studied in [17]. To this aim, we change the properties of the actomyosin
cables to make them very stiff (kstiff

st = 105 × kst, kstiff
b = 105 × kb). Note that the contribution

in the velocity dynamics is not negligible anymore. We also deactivate the dynamic update of
the cells involved in the cables to prevent the ring from contracting when the number of cells
per cables decreases, and thus to preserve the geometry of the ring over time. In Fig. 14b,
we performed a similar numerical experience as in Fig. 13b: in contrast to the case of elastic
cables, the coherent motion occurs systematically for confined rings of diameter 80µm. Note,
however, that these simulations are not strictly equivalent to a confined environment dynamics
as collective translation of the ring is possible.
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Parameters extracted from measures
Cells diameter 2r 15 µm
Cells maximal velocity
amplitude

c 21.6 µm h−1 (mean)

Angular diffusion D 0.96 rad2 h−1

Relaxation parameter:
polarity to velocity

µ 6.2 rad h−1

Relaxation parameter:
polarity to mean polarity

ν 6.2 rad h−1

Parameters estimated from references
Cable stretching modulus kst 5 × 103 pNµm−1

Cable bending modulus kb 103 pNµm
Inverse friction coefficient γ 10−6 pN−1 h−1µm
Symmetric (wall-type)
force amplitude

βsym 104 pN

Asymmetric (nematic-
type) force amplitude

βasym 104 pN

Parameters obtained by numerical calibration
Polarization per Newton
(passive)

αp 6.5 × 10−5 h−1pN−1

Polarization per Newton
(active)

αa 10−2 h−1pN−1

Table IV.1: Parameters of the model.

Figure 12: Effect of the varia-
tion of the parameter αp on the
closing time. Each blue point
corresponds to an independent
numerical simulation and we
perform n = 100 simulations
per parameter value. The me-
dian value is represented as an
orange horizontal line, and the
mean depicted as a green tri-
angle. Taken from [Cell1].
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(a) x (b)

Figure 14: Comparison of the maximal coherence length obtained for simulations with physical
cables (in red) and with stiff cables (in blue) for different ring diameters. Each red and blue
point corresponds to an independent numerical simulation and we perform n = 50 simulations
and nstiff = 50 simulations per diameter. Taken from [Cell1].

5 Conclusion and perspectives

We summarized in this chapter three models for cell collective dynamics, with different modeling
ingredients. The first model is a three-dimensional model of disc structured in layers, the second
one a two-dimensional model with asymmetric interactions rules and the third two-dimensional
hard-sphere model with an active boundary. Of course, each model raises its own mathematical
challenges: well-posedness, rigorous derivation, analysis of the phase transitions. However, in
this conclusion, we rather focus on new modeling objectives:

1. Three-dimensional dynamics of discs. The model presented in Section 2 is based on
the assumption that cells are arranged in layers. It would be interesting to remove this
modeling assumption, while retaining the same kind of anisotropic character of the cells
interactions.

2. Neural network closure of fluid models. Macroscopic models have been derived
in strong interactions regimes and the viscous corrections are derived under specific as-
sumptions [10], which may not be satisfied. Extending the validity of such models with
appropriate closures could therefore be investigated, following the methodology developed
in [Red3].

3. Free-boundary active fluid models. A macroscopic version of the model proposed in
Section 4 could be developed and analyzed, starting from the model proposed in [23]. A
comparison with viscoelastic active fluid models could also be carried out. The inclusion
of steep congestion terms in Vicsek models could also be studied.

4. Including cellular events. Our aim is to explore in a systematic and generic way how
cell apoptosis and mitosis influence the rheological properties of tissue. This can be done
by incorporating these cellular events into a Vicsek-type model, as presented in Section 4.
Cell contractility could also be considered. The model will then be refined by comparison
with both in vitro and in vivo experiments. In order to carry out the comparisons,
common indicators of fluidity will be used, such as those proposed in [22]. Programming
work will have to be carried out in order to generate simulations involving a large number
of particles in a relatively short time so that a parametric study of the model can be
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envisaged. This may prove essential, in particular, to identify certain parameters that are
not accessible by experiment. A comparison with vertex-type models, commonly used in
biology, could be carried out. This is part of the ANR MAPEFLU project (2023-2026),
involving Marcela Szopos (Univ. Paris Cité), Daniel Riveline (CNRS, Univ. Strasbourg)
and Romain Levayer (Institut Pasteur). Roxana Sublet is currently doing her PhD on
this topic, under my supervision and that of Marcela Szopos.
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This manuscript presents different contributions in the mathematical modeling and the development of
numerical methods for multiscale transport problems, arising in particular in plasma physics and collective
cell dynamics.

In the first chapter, we present a few reduction methods for kinetic transport equations. Performing a
finite element semi-discretization in velocity leads to a linear hyperbolic model with good conservation
properties. Fluid models with entropic or neural network closures have been studied to obtain even smaller
reduced models with only physical quantities as reduced macroscopic variables. Reduced order modeling
techniques are also proposed to construct reduced macroscopic variables specifically adapted to a given
set of parametric solutions.

The second chapter deals with two numerical issues concerning the discontinuous Galerkin and its semi-
Lagrangian version, namely the recurrence numerical artifact and the approximate well-balanced property
by basis enrichment.

The third chapter presents two implicit numerical methods for solving hyperbolic systems with low-
computational cost thanks to relaxation techniques. The first method relies on the vectorial kinetic re-
laxation scheme, whose transport steps are solved using an implicit solver with explicit cost. The second
one proposes a splitting method applied to the two-speed relaxation system for the Euler system, whose
acoustic part involves only constant coefficients. This leads to implicit steps with controlled conditioning.

Finally, the fourth chapter regards the development of models for collective dynamics of cells. We present
three different models with specific interaction rules: layer interactions, back-to-back anti-alignment and
interactions with surrounding elastic cables. We study their large-scale dynamics either theoretically,
by deriving the associated macroscopic models, or using numerical simulations. Comparisons with
experimental results have also been performed.
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