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Résumeé

Cette these traite du comportement en temps long des équations stochastiques de Fokker-Planck en
présence d’un bruit commun additif et présente des méthodes statistiques pour estimer la mesure in-
variante des processus de diffusion ergodiques multidimensionnels a partir de données bruitées. Dans
la premiére partie, nous analysons les équations différentielles partielles stochastiques de type Fokker-
Planck non linéaires, obtenues comme la limite du champ moyen de systémes de particules en in-
teraction dirigés par des bruits browniens idiosyncrasiques et en présence de bruit commun. Nous
établissons des conditions sous lesquelles I’ajout d’un bruit commun premet de restaurer I'unicité de
la mesure invariante. La principale difficulté provient de la dimension finie du bruit commun, alors
que la variable d’état - interprétée comme la loi marginale conditionnelle du systéme compte tenu du bruit
commun - opére dans un espace de dimension infinie. Nous démontrons que I'unicité est rétablie dés
lors que le terme d’interaction du champ moyen attire le systéme vers sa moyenne conditionnelle (par
rapport au bruit commun), en particulier lorsque I'intensité du bruit idiosyncrasique est faible, qui sont
des cas typiques de perte d’unicité en ’absence de bruit commun.

Dans la deuxiéme partie, nous développons une méthodologie statistique afin d’approximer la
mesure invariante d’un processus de diffusion a partir d’observations bruitées et discretes de ce méme
processys. Cette méthode implique une technique de pré-moyennage des données qui réduit 'intensité
du bruit tout en conservant les caractéristiques analytiques et les propriétés asymptotiques du sig-
nal sous-jacent. Nous étudions le taux de convergence de cet estimateur, qui dépend de la régularité
anisotrope de la densité et de I'intensité du bruit. Nous établissons ensuite des conditions sur 'intensité
du bruit qui permettent d’obtenir des taux de convergence comparables a ceux des cas sans bruit. Enfin,
nous démontrons une inégalité de concentration de type Bernstein pour notre estimateur, ce qui premet

de mettre en place une procédure adaptative pour la sélection de la fenétre du noyau.

Mots clés : Equations de Fokker-Planck Stochastiques, Bruit Commun, Mesure Invariante, Estima-
tion de Densité par Noyau, Processus de Diffusion Ergodique, Réduction du Bruit, Estimation Non-

paramétrique






Abstract

This thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive com-
mon noise and presents statistical methods for estimating the invariant measure of multidimensional
ergodic diffusion processes from noisy data. In the first part, we analyze stochastic Fokker-Planck
Partial Differential Equations (SPDEs), obtained as the mean-field limit of interacting particle systems
influenced by both idiosyncratic and common Brownian noises. We establish conditions under which
the addition of common noise restores uniqueness if the invariant measure. The main challenge arises
from the finite-dimensional nature of the common noise, while the state variable — interpreted as the
conditional marginal law of the system given the common noise — operates within an infinite-dimensional
space. We demonstrate that uniqueness is restored if the mean field interaction term attracts the system
towards its conditional mean given the common noise, particularly when the intensity of the idiosyn-
cratic noise is small. In the second part, we develop a new statistical methodology using kernel density
estimation to effectively approximate the invariant measure from noisy observations, highlighting the
crucial role of the underlying Markov structure in the denoising process. This method involves a pre-
averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical
characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate
of our estimator, which depends on the anisotropic regularity of the density and the intensity of the
noise. We establish noise intensity conditions that allow for convergence rates comparable to those in
noise-free environments. Additionally, we demonstrate a Bernstein concentration inequality for our

estimator, leading to an adaptive procedure for selecting the kernel bandwidth.

Keywords : Stochastic Fokker-Planck, Common Noise, Invariant Measure, Kernel Density Estimation,

Ergodic Diffusion Processe, Noise Reduction, Non-parametric Estimation
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Résumé succint en francais

This is the only chapter in French

Cette thése est composée de deux parties :

« la premiére aborde les questions probabilistes en relation avec des systémes de particules en
intéraction soumis a un bruit commun. Plus précisément, nous examinons dans cette premiere
partie 'influence du bruit commun sur le comportement en temps long de la limite champ moyen

de ces systémes.

« Dans la seconde partie, nous nous penchons sur des questions d’ordre statistique liées a des mod-
éles de diffusion ergodique. En particulier, on cherche a comprendre 'impact d’un bruit venant
polluer les observations d’un processus de diffusion multidimensionnel sur la vitesse d’estimation

de la mesure invariante du processus sous-jacent.

Partie 1: Comportement en temps long des équations Fokker-Planck non linéaires
stochastiques

La premiére partie est composée de deux papiers de recherche. L'un d’entre eux a été réalisé en collabo-
ration avec Francois Delarue et Etienne Tanré. Ces deux travaux s’inscrivent dans une démarche visant
a comprendre 'impact potentiel d’une corrélation entre les diffusions de différentes particules d’un
systéme sur le comportement en temps long de celui-ci. Plus précisément, I’objectif est de répondre a

la question suivante :

Comment un bruit commun affecte-t-il le comportement en temps long des systéemes en

interaction avec un grand nombre de particules ?

Ainsi, dans la premiére partie de ce manuscrit, on considére un systéme de la forme

dX} = b(X},m])dt + cdB! + 0¢dB?
L(X&7 A 7Xév) = M%@N7

avec

1 N
=1

—_
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Les (B"); sont des mouvements browniens indépendants en dimension d, ce sont les bruits indiosyn-
cratiques, et B est un mouvement brownien standard indépendant des B?, appelé bruit commun. o et
o sont des coefficients positifs.

Chaque particule est représentée par une quantité X’ € R? qui correspond généralement a sa
position (X} indique alors la position de la particule i au temps t). La fonction b : R x P(R?) — R?
est appelée drift ou transport. 1l est courant (et c’est ce que nous ferons dans la premiére partie de ce
manuscrit), lorsque 'on considére le comportement en temps long de ce type de systémes, de supposer

que b s’écrit de la maniére suivante :
b(xz,v) = G(x) + F(x,v).

Dans ce cas, GG est appelé force de confinement, c’est une force extérieure qui dirige le mouvement des
particules. La fonction F est dite force d’interaction et définit la maniére dont chaque particule interagit
avec les autres.

A ce stade, il est important de noter que dans la suite, nous ne considérerons que des cas ou
linteraction entre les particules du systeme est de type champ moyen, c’est-a-dire qu’elle intervient
a travers la mesure empirique du systéme. Cela empéche deux particules d’interagir entre elles sans
prendre en compte le comportement des autres: I'interaction ne peut intervenir qu’a travers le com-
portement moyen du systéme au temps donné. Ce type d’interaction est usuel et confére de bonnes
propriétés asymptotiques (propagation du chaos), que nous détaillerons dans la suite. Lorsque le nom-
bre de particules devient trés grand, on peut essayer de caractériser le comportement du systéme en
étudiant sa mesure empirique. On obtient alors par des arguments de compacité [CD18a, CD18b] que
(m¥)¢=0 admet une limite lorsque N — +00, cette limite, notée (m);=o, est solution (en un certain

sens) de

o? + U% 0
dm; = TAmtdt -V (mtb(-, mt))dt —ooVmy - dBt . (1)

Le flot (m¢)>0 est ainsi un processus stochastique a valeur dans I’espace des mesures de probabilité,
processus dont nous étudierons le comportement en temps long. Il est important de bien noter que
pour étudier le comportement en temps long de ce processus, nous allons en réalité nous élever d’'un
espace et étudier le flot de mesure généré par sa loi. En particulier, nous allons nous intéresser au
comportement en temps long de (P});>0 := (£(my))i>0. La difficulté et originalité de cette question

résident alors dans le fait que ce flot de mesures évolue dans P(P(R?)).

— Résumé du chapitre 2.

Le chapitre 2 corresponf au papier [Mai23]. Dans ce chapitre on considére le cas ou le terme de transport

b s’écrit de la maniére suivante:

b(w, ) = =VV(x) = VW * p(z),
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pour deux fonctions différentiables V" et W et ou * désigne 'opérateur de convolution. L’équation (1)

se réécrit alors
o? + 0(2) 0
dm; = TAmtdt + V- (my(VV + VW s« my))dt — ogVmy - dB; . (2)

Dans le cas 0p = 0, le processus (m;); est simplement un flot de mesures déterministe et son com-
portement en temps long a été trés étudié, aussi bien avec des approches EDP [CMV03, CMV06] que
des approches probabilistes [Mal01, CGMO08]. En particulier, il est bien connu (voir par exemple [Mal01])
que lorsque le potentiel V' est strictement convexe et W est convexe, avec oy = 0, ’équation (1) admet
une unique solution stationnaire. L’idée sous jacente est que (m;);>o peut-alors étre vu comme le flot

associé a la loi de X solution de

pour un mouvement brownien d-dimensionnel 8. Lorsque le potentiel V' est uniformément convexe,
le processus X est fortement attiré vers 'unique minimiseur de V' assurant ainsi un comportement
asymptotique unique. La premiére question traitée dans ce chapitre est alors de montrer que de tels
résultats d’unicités sont préservés lorsqu’on ajoute du bruit commun dans le systéme. Plus précisément
on montre dans [Mai23] que sous des hypothéses de convexité fortes, le flot de mesure (P;); converge
toujours vers la méme limite (en un certain sens), cette limite notée P est alors I'unique mesure invari-

ante associée au processus (1m;)¢>0 avec dynamique (1). Plus précisément, on obtient
P(R? 5 —ct 1P(RY 5
d2( )(Pt7p)<€ CtdQ( )(P07P)7

d
pour toute condition initiale Py € Po(P2(R%)) et ot dg(R ) est la distance de Wasserstein-2 sur Ps (R9).

Ces résultats, assez naturels, sont les premiers concernant le comporement en temps long de I’équation
(1) pour laquelle la source de bruit est fini-dimensionnelle. D’autres résultats, récents, existent dans le
cas ou le bruit commun est un mouvement Brownien cylindrique [ABKO23, ACKO24], et donc de di-
mension infinie.

La suite du chapitre traite d’un cas particulier : ’absence de bruit idiosyncratique, o = 0. Dans ce

cas, I’équation d’intérét se réécrit
a3 0
dm; = ?Amtdt + V- (mi(VV + VW = my))dt — ogVmy - dBy .

Nous portons notre attention sur ce cas car il est alors clair que quand o9 = 0, le flot de mesures

(déterministe) est solution de I’équation suivante

omy =V - (my(VV + VW = my)). 4)
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Lorsque V' n’est pas supposé convexe, pensons par
exemple a un double puit, il est facile de voir que
I'équation (4) admet plusieurs solutions station-

naires. Par exemple, pour V : z — |z[*/4 — |z|?/2,

on voit bien que d_; et §; sont des solutions station-

naires.

Se pose alors naturellement la question suivante :

L’ajout de bruit commun peut-il permettre de récupérer l’unicité de la mesure invariante ? Si

oui, dans quel(s) modéle(s) ?

La réponse a cette question peut sembler évidente au premier abord. En effet, il existe de nombreux
exemples pour lesquels ’ajout de bruit restaure 'unicité du comportement asymptotique de particules
en interaction. Cependant, la difficulté ici réside dans le fait que le bruit commun posséde une structure
particuliére et vient modifier subtilement la dynamique : le bruit commun est un mouvement brownien
dans R? agissant sur la dynamique d’un processus a valeurs dans P(R?). Cette asymétrie entre la
dimension du processus d’intérét et de la source de bruit est a 'origine de notre question.

Dans la suite du chapitre 2, nous démontrons I’existence et I'unicité de la mesure invariante lorsque

oo > 0, de plus on donne explicitement cette unique mesure invariante:

P= ds,m*(da), (5)

R4
ou m* est la solution stationnaire de I’équation de Fokker-Planck linéaire avec terme de transport
—VV et coefficient de diffusion op. On montre également que la vitesse de convergence vers le régime

(Rd)(,, ).

stationnaire est exponentielle en temps pour la distance dff

— Résumé du chapitre 3.

Le chapitre 3 est issue d’une collaboration avec Francois Delarue et Etienne Tanré. L’idée provient
d’une volonté de mieux comprendre le phénomene sous-jacent qui a mené au résultat de récupération
d’unicité du chapitre 2. On considérera néanmoins un cas un peu plus général. Plus précisément, nous
nous intéressons au comportement en temps long du flot de mesure généré par I’équation

2 2
dm; = %Amtdt ~ V- (G + F(- — g (me))))dt — 0oVimy - dBY, ©)

avec

p1(m) = J]Rd xm(dz) e RY,

pour tout m € P;(R?). Ce modéle est une généralisation de celui du chapitre précédent a de nombreux
égards. La modification la plus importante est la prise en compte de modeéles pour lesquels 0 > 0. Ce
cas est d’'un intérét primordial au regard des travaux [Daw83, HT10] qui exhibent des cas pour lesquels,

méme avec o > 0, il existe plusieurs solutions invariantes pour (m;) solution de (6) avec oy = 0. On
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se pose alors exactement la méme question que dans le chapitre précédent, I’ajout de bruit commun
peut-il permettre de récupérer 'unicité du comportement asymptotique ? Ce cas présente une difficulté
supplémentaire par rapport au cas du chapitre 2. En effet, la présence de bruit idiosyncratique (o > 0)
nous empéche complétement d’identifier la mesure invariante de la méme maniere que dans (5).

Dans ce chapitre nous montrons que dans des régimes ou o est supposé assez petit, la dynamique
du processus (my)>( est fortement dirigée par la dynamique de sa moyenne (x4 (m;¢))i=0. Le point
positif découlant de cette observation est que le processus (p1(m;))¢=0 évolue dans un espace de di-
mension finie. On montrera alors que I'ajout de bruit commun permet de récupérer de 'ergodicité pour
(121 (my¢))e=0, ergodicité se propageant alors a tout le flot de mesures (1m;)¢>o.

Une restriction importante néanmoins est que le modéle considéré dans ce chapitre est assez parti-
culier car la non linéarité n’intervient qu’a travers la moyenne. Méme s’il est clair que I’ajout de bruit
commun ne peut pas permettre de restaurer I'unicité de la mesure invariante dans tous les modéles, il
serait intéressant d’étudier des modeles plus généraux ol la dynamique dépend de plusieurs moments.
Par exemple, on pourrait envisager d’ajouter un bruit commun de dimension finie dans des dynamiques

du type [Sch85a, Sch85b, Sch93], présentant des propriétés de périodicité.

Partie 2: Analyse statistique pour des modéles diffusifs ergodiques
— Résumé du chapitre 4

Le dernier travail de cette thése s’inscrit dans une volonté de bien appréhender le comportement en
temps long des processus de diffusions. Il est tiré d’un article co-écrit avec Grégoire Szymanski. Dans

ce papier on considere le processus de Markov suivant

Sous des conditions de croissance pour le potentiel V, et dés lors que o > 0, il est bien connu que le
processus X est ergodique et admet une unique mesure invariante, absolument continue par rapport a

la mesure de Lebesgue de densité

pla)ocesp (- 5V (a) ).

Les questions de 'estimation du potentiel V' et de la mesure invariante ont été le sujet de nombreuses
recherches en statistique des processus ces derniéres années [AG21, AG22, AG23, Str18, DR06, DR07].
Le chapitre 4 s’appuie pleinement sur ces nombreuses références en essayant d’étendre encore le cadre
statistique. A I'image des papiers [Sch11, Sch12], le but de ce chapitre est de mettre en place des méth-
odes statistiques permettant de prendre en compte la présence d’un éventuel bruit dans les observa-
tions. Il est naturel que les données observées soient bruitées, c’est un phénomeéne courant dans de
nombreuses applications pratiques telles que la finance, la biologie ou encore I’analyse de données de
capteurs. Ce bruit peut provenir d’erreurs de mesure ou de perturbations extérieures, et peut avoir un
impact significatif sur les résultats obtenus. Il est donc important de prendre en compte le bruit dans

Panalyse et la modélisation de ces systémes diffusifs. On répondra a la question suivante:
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Comment la présence de bruit dans les données observées affecte-t-elle la vitesse d’estimation

de la mesure invariante ?
Pour répondre a cette question nous considérerons le schéma d’observation suivant:

« observations discrétes a des temps fixés kA,, pour k € {0, ...,n};
- observations haute fréquence : A,, — 0, et en temps long : nA,, — +00;

« observations bruitées.

En définitive, notre but est d’estimer la mesure invariant du processus X solution de I’équation (7) a

partir de 'observation des (Y;)"_; avec
Y;:XiAn‘i‘Tnfia iE{l,...,n}.

Nous sommes donc confrontés a un probléme de déconvolution, bien connu et traité dans la littérature.
Les modeles de déconvolution sont réputés pour étre difficiles a résoudre en pratique et les taux de
convergence sont souvent lents (logarithmiques) [CL13]. L’intérét de ce travail est de montrer que
dans ce cas, la structure markovienne du probléme permet une meilleure extraction de 'information
et donc d’obtenir des vitesses de convergence polynomiales, et ce méme lorsque l'intensité du bruit est
grande.

Pour obtenir ces vitesses, la stratégie adoptée dans ce chapitre est de procéder a un pré-traitement
des données visant a réduire 'impact du bruit dans les observations, plus précisément, I'idée est de

moyenner les observations par paquets de taille p, afin d’obtenir les observations suivantes:

= [n/p]—1
- Z Yipti : (8)
P i k=0

A partir de ces données modifiées, nous mettons en place une procédure d’estimation par noyau clas-

sique combinée a une méthode de réduction du biais. Plus précisément, en considérant un noyau K,

on définit pour toute fenétre h = (hy, ..., hg) € (0, +00)%, for any = € RY,
1 el 1p-1
V7h7 l‘):i Kh xr — — Yk i ,
who® = G 2 p 2 Yiots

avec la structure suivante : Yy € R% and h € (0, +0)¢,
d
En(y) = | [0 'K (0 y0).
i=1

La mise en place d’un tel estimateur génére un terme non usuel dans I’étude du biais. Pour se défaire
de ce terme supplémentaire, on met en place une procédure de débiaisage qui sera détaillée dans le

chapitre 4. Finalement, on obtient ’estimateur suivant
ﬁn7h’7p(m) = Z uﬂyynzhﬁp(x)’
v

6
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pour une suite ()~ construite dans le but de diminuer I'influence du bruit et du pré-averaging des
données. On étudie ensuite la qualité d’estimation en démontrant des bornes supérieures pour le risque
quadratique ponctuel. Les résultats obtenus sont cohérents avec les résultats minimax dans le cas ou
Pintensité du bruit est supposée faible. Dans les cas ou I'intensité du bruit est trop importante, on voit

apparaitre de nouvelles vitesses d’estimation, polynomiales en I'intensité du bruit.
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Chapter 1. Introduction

The structure of this thesis is mainly divided into two parts. The first part is dedicated to the analysis
of the behaviour of solutions to some Stochastic Partial Differential Equations. The second part shifts
its focus towards statistical methods, specifically dealing with estimation in diffusion models in the

presence of noise.

« The focus of the first part is the long-time behaviour of the solutions to the non-linear stochastic
Fokker-Planck equation. This equation can be thought of within an ecosystem consisting of a
stochastic partial differential equation, a partial differential equation that is equivalent to it in
some way, and a system of stochastic differential equations composed of N interacting diffusion
processes with common noise that serve as a mean-field approximation in a large population

limit.

« The second part deals with statistical estimation for multidimensional ergodic diffusion pro-
cesses. More precisely, it consists of a new methodology based on Kernel density estimation
to be able to approximate in a non-parametric way the invariant measure of an ergodic Markov

process from noisy observations over time.

We begin this introduction chapter with reminders on the space of measures, which is a central

space in the whole manuscript.

1 The space of probability measures

1.1 Wasserstein metrics

Throughout the manuscript, for any separable metric space (E,d), we use P(E) to denote the space
of Borel probability measures on E. There are multiple methods to define a metric on the space
P(FE), such as the Lévy-Prokhorov metric, the bounded-Lipschitz metric, or the Wasserstein metric,
see [Zol76, Bog07, Dud02] for references on the subject. In this manuscript, we will focus solely on the
latter. The definition of the Wasserstein metric is based on the idea of coupling. For u,v € P(E), let
IT(p, v) stands for the transport plan between p and v. Precisely, I1(u, v) is the set of Borel probability

measures on £ x E with first marginal ;4 and second marginal v.

For p > 1, define P, (E) to be the set of probability measures ;1 € P(E) satisfying

J d (z,x0)" p(dzr) < oo,
E

for some point xg € E, the choice of which does not influence the definition of the space. The p-

Wasserstein metric on P, (E) is defined by

1/p
df(u,v :=< inf J d(z,y)Pr(dz,d > .
o (1, 1) et ExE( y)Pm(dz,dy)

Given a non-atomic probability space (2, F, P), an equivalent definition reads
E _ 1/
dp (:u’a V) =infE [d<X7 Y)p] P )

10



1. The space of probability measures

where the infimum runs over the set of random variables (X,Y") on (2, F,P), such that £L(X) =
and £(Y) = v. It is well known, see for example [Vil09, AGS08], that d7 is a distance on P, (E) which
is compatible with weak convergence so that we can view P,(FE) itself as a metric space. Moreover,
as soon as (F,d) is a complete and separable space, so is (Pp(E), df ). Finally, we say that df is

compatible with weak convergence in the sense that for a given a sequence (m,,) € P,(E)Y,

lim dZ(m,,m) = 0 { m,, weakly converges to m,

n—+o P (my,) has uniformly integrable p-moments.

Also, for any probability measure m € P(F) and any measurable ¢ : E — R (so that the following

quantity makes sense), we define the duality product (- ; ) as
miipye = | ole) m(do).

1.2 Differential calculus on P, (R?).

In this manuscript, we often work with a stochastic flow of probability measures. To study the be-
haviour of this stochastic process, we want to derive some properties from its law. To do so, we will
repeatedly use the notion of derivative in the space of measures, mainly in the space of probability
measures that admit a second moment of order 2. See however [LSZ23, Lac18] for a careful definition
on the whole space of probability measures P(R?). Let us begin with two notions of differentiability in

the space of measures.

Definition 1.1. We say that ® : Po(R%) — R admits a L-derivative, whenever there exists a unique
jointly continuous function 6,,® : (m,z) € Po(R?) x R? — §,,®(m,z) € R?, at most of quadratic
growth in x for any m, such that

®(m + h(m' —m)) — ®(m)

li = | 6,0 g
lim - y I ®(m,v)(m' —m)(dv),

for allm,m’ € P(R?) and
Sm®(m,v)m(dv) =0, m e Py(RY).
R4

This definition is also called linear functional derivative, see for example [JT21] for a nice introduc-
tion. One can also think of it as a derivative in the direction of &, more precisely, for any m € Py (R9),
(1 = p)m + pds) — (m)

Im®(m,z) = lim ,
p—0t p

and for any m, m € Py (RY),
1
®(m) = d(m) + J{) N Om®((1 —t)m + tm,y)(m —m)(dy). (1.1)

A way to consider this derivative is that it is the natural notion of derivative whenever the space

11



Chapter 1. Introduction

of probability measures is equipped with the geometry of the straight paths, i.e the paths of the form
(L =t)m + (1 — )M)seqo,1]-

Let us now introduce another notion of differentiability called the intrinsic differentiability:

Definition 1.2. We say that ® : Py(R?) — R? is @1 (Py(IR?)) in the intrinsic sense whenever it admits an
L-derivative and for any m € Po(R?), the mapping x — 6,,®(m, x) is differentiable, with the gradient
being denoted D, ®(m, z) := Vi, ®(x); the mapping (m,x) — Dp,®(m,x) is jointly continuous in

(m, x) and at most of linear growth in = uniformly in m in bounded subsets of Po(R?).

The natural way to understand this definition and to compare it with the one of Definition 1.1 is

via displacement of measure. More precisely, the following proposition stands

Proposition 1.3. Let ¢ : R? — R be Borel measurable and bounded assume that ® admits an intrinsic

derivative. Then
O ((id + hep)tm) — U(m)

hl_i)n([)1+ Y = y Dp®(m, z) - o(z)m(dz) VYm e Po(RY),

where for any Borel set A of R,
¢tm(A) = m(¢~'(A4)).

The previous proposition enables us to interpret the notion of intrinsic derivative as being associ-
ated with a particular geometry on the space of measures, similar to what we did for the L-derivative.
However, in this case, we are not limited to the straight paths into the space of measures, but rather
we can move along all paths of the form ((Id + £¢)m)¢[o,1] for some Borelian and bounded function
. This is just another point of view that appears as naturally as the one of Definition 1.1.

Another way to understand the intrinsic derivative is through the lifting of the map to a space
of random variables: let us fix a generic probability space (2, F,P) and define L?(2) as the set of
random variables with a finite moment of order 2. Given a map ® : P5(RY) — R, we define its lifting
& : L2(Q) — Rby
O(X) = ®(L(X)) VX e L*Q).

Then we have the following proposition,

Proposition 1.4 ([CD18a, GT19]). Assume that ® € CL(Py(R%)) (in the intrinsic sense). Then ® is

Fréchet differentiable with a continuous Fréchet derivative in L*($)) with
VO(X) = Dp,®(L(X),X) VX e L*Q).

In this manuscript, we will always use this notion, and will no longer be precise on the underlying
sense of differentiability. We finally give the following definition which will be referred to in the whole
chapter:

Definition 1.5. We say that ® € CZ(P(R?)) if ® : P(R?) — R and such that:

12



2. Non-linear stochastic Fokker-Planck equation

« The function ® belongs to C1(P(R%));

« For every fixed x € R?, each component of the R?-valued function m — D,,,® (m, x) satisfies the
properties described in definition 1.1, resulting in some D2, ® (m, x,y) € R¥*?. The function D ®

is bounded and continuous.

« Form € P(R%), we write D, D,,®(m, x) for the Jacobian of the function x — D,,®(m,z) and

assume it to be continuous and bounded in (m, x).

Remark 1.6. One may develop a similar theory of differentiation for functions on ‘J’p(Rd),for anyp = 1,
as long as one is careful to require that the derivative 6,, D, satisfies some growth conditions to ensure that
the integral on the right-hand side of Equation (1.1) is well-defined.

The reader unfamiliar with this notion can refer to the following illuminating references for a de-
tailed treatment of the subject [Car10], [CD18a, Chap. 5].

Example 1.7. In the sequel, we will frequently use the notion of derivative for functions with the following
structure:

O:m— | ox)m(dz), (1.2)

for some differentiable function ¢ : R? — R that smooth and bounded (or has controlled asymptotic

growth, depending on the integrability assumptions of m so that this object makes sense). In this case, for
all x € RY,

Dy, ®(m, x) = Vyp(x).

2 Non-linear stochastic Fokker-Planck equation

In the first part of the manuscript, we are interested in the solutions of the non-linear stochastic Fokker-

Planck Equation

o? + 03

dtmt =V- < th — mtb(~,mt)> dt — UOth . dBP, on [0, +OO) X Rd, (13)

where BY = (BY);> is a d-dimensional Brownian motion, called common noise. Above, the unknown
(my)¢=0 is regarded as a stochastic process with values in the space of probability measures P(R?) on
R<. Accordingly, the coefficient b is a function from R? x P(R?) to R? depending on both space and
measure arguments. The two parameters o and o are non-negative scalars: the former is the intensity
of the so-called idiosyncratic noise and the latter is the intensity of the common noise. In the whole
manuscript, Equation (1.3) is understood in the weak sense, i.e., the process (m;);>o satisfies for all

t > 0and ¢ € CP(R?), the space of infinitely differentiable functions with compact support,

d<mta 80> = <mt> gmt90> dt + 00<mta (V(p)T> de?a

13



Chapter 1. Introduction

where for any probability measure m € P(R?), the operator %, acts on a smooth function ¢ with

compact support in the following manner:

2 2
o5 +o

Ly = —b(-,m) -V + 5

Ap.
To study the time evolution of this stochastic flow of measures, it is natural to study the flow of

measures on the space of probability measure (P);=0 = (£(m¢)),(- Using It6 formula for stochastic
flow of measures, [CD18a, Chap. 5] and [CD18b, Chap. 4] , we obtain the following result

Proposition 1.8. For any function ® € CZ(P2(R?)), for anyt > 0,
t
Pi= Py = [ (P, (14
0

where for any m € Po(R?),

%+ o}
M®(m) ::J [Dm@(m,x) (G(z) + F(x — pa(m)) + hl 0p2 ®(m, :1:)] m(dx)
B 2 (1.5)
+ % Tr [Dfnmq) (m, z, y)] m(dz)m(dy).
R2d

Proposition 1.8 gives a way to understand the flow of measures generated by the stochastic process
(m¢)¢=0. However, the equation for (P;)¢=g is posed on P(P(R?)) and then difficult to study because
we lack some classical analysis tools. However, as previously mentioned, Equation (3.7) (and conse-
quently Equation (1.3)) are part of a complete ecosystem of equations. This means that we can leverage
probabilistic techniques to study the behaviour of the flows of measures (172;),-, and (F;), . The next

section is a step in this direction.

2.1 Between macroscopic and microscopic scales: interacting particle systems, the

origin of the model

The solution to Equation (1.3) can be approximated in the mean-field limit by an interacting particle
system as the number N of particles goes to infinity. It is important to clarify upfront that, in this
manuscript, the term "particle” is used in a broad sense to mean an individual. Interacting individual
systems of considerable scale is of paramount importance in a multitude of scientific fields, with the
individuals ranging from biology (collective dynamics of animals), physics (elementary particles, ions,
atoms, molecules, celestial bodies, galaxies), social science (crowd movements, interactions of financial
agents, propagation of ideas) or financial markets (systemic risks). Let us do a quick historical recap on
the introduction of interacting particle systems and mean field limits.

Let us consider a state space F, and a system of particles 2V = (ZMV,... 2ZV") where each
particle is completly described by its state variable. The state variable can be anything, typically the
position or speed of a particle, or the value of an asset ...). The concept of describing such systems
can be traced back to the early works of Statistical Physics and Kinetic Theory of dilute gases [Bol70].
As in the Boltzmann example, when modelling particles in a gas the number of particles in 2V =

(25N, 2NN must be very large. It is known that there are approximately N4 ~ 6.02 - 102
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2. Non-linear stochastic Fokker-Planck equation

particles per mole [DHB"74]. Considering systems with such many particles imposes the following

question:
Question 1.9. Is there a limit, in some sense, when N — +00?

Answering Question 1.9 is central in several domains [LL63, Spo80, GKM 96, LL06a, LLO6b, HJ15].
However, the answer really is a matter of scale. In order to describe such a system, three scales are
possible (generating three differents types of limit): (1) The microscopic scale. One possibility is
to stay at the particle level, this is for example interesting when working with interacting particles
systems on a graph or network. We follow the trajectory of each particle 2"V over time. (2) The
macroscopic scale. We only have access to measurable quantities of the system, for example, the
mean of the particles at each time. (3) The mesoscopic scale. In between the two previous scales is
the mesoscopic or statistical scale. This corresponds to the scale where we are only interested in a
statistical description of the system studying the density of particles in a region of the space.

The last point of view will be the only one studied in this manuscript. The concept of describ-
ing such systems in this manner is due to the so-called hypothesis of molecular chaos, presented by
Boltzmann in [Bol70], giving birth to the equation bearing his name. This hypothesis posits that the
particles in the system are uncorrelated. The molecular chaos introduced by Boltzmann mainly state
that there exists a probability measure 4 sur that for any i # j, £(Z*Y,2/"V) = 1 ® p. The rigorous
formulation and proof of these is still an important subject of research in many cases. The ideas of
Boltzmann quickly have been adopted for practical models: Currie-Weiss model for ferromagnetism
[Wei07], Stellar-dynamic systems [Jeal5, Jeal9], Vlasov models [V1a45]. The underlying idea is that in

the system, all the particles have the same role:

Definition 1.10. We say that a system 2N = (ZVN ... ZN:N) is exchangeable (or that the N particles
are indistinguishable), if for any permutation T : {1,...,N} — {1,..., N},

L(ZWN 2NNy = g(z7ON (NN

In 1956, Kac published his seminal paper [Kac56] in which he derives the space homogeneous Boltz-
mann equation as the limit as the number of particles IV goes to infinity of a system of IV indistinguish-
able particles. The underlying idea is that when the number of particles IV goes to infinity, two particles

become statistically independent. This is the birth of Propagation of chaos:

Definition 1.11 (Kac’s chaos, Propagation of chaos). For a sequence
2N = (27,...,2})

of N -indistinguishable (in the sense of Definition 1.10) particle systems with N — o0, the stochastic chaos

according to Kac means that there exists a probability measure 1 such that
L(2N,2N) > p@p as N —>o, Vi j fixed.

Finally, McKean developed a stochastic version of the Vlasov equation, creating the McKean-Vlasov

model, and proved propagation of chaos properties [McK66] linked to the latter. This is the origin of
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the model of this manuscript.

Remark 1.12. It is important to note that the definition of chaos propagation relies on a crucial assump-
tion: indistinguishability. This assumption is essential because chaos propagation fundamentally implies

that finally, we end up with a system composed of various versions of a typical particle.

2.1.1 Introduction of the interacting particle system with common noise

Let us now introduce carefully the underlying interacting particle system of this manuscript. We con-
sider another complete probability spaces (2!, F*,P!) endowed with a right-continuous and complete
filtration F! = (fﬂl)po.

ian motion B playing the role of the common noise. Similarly, (Ql, F!, Pl) is assumed to support

We shall also assume that (QO, FO, IP’O) is rich enough to support a Brown-

a sequence of independent Brownian motions (Bi)z}l. By convention, in the whole manuscript, the
index 0 always refers to the common noise and the index 1 to the idiosyncratic ones. We then define
the product structure

Q=0"xQ", F F=(F)s, P

where (F,P) is the completion of (F® F!, P’ ® P') and F is the complete and right continuous
augmentation of (3’? & 3}1) 1>(- Generic elements of {2 are denoted w = (w07 wl) with w® € Q0 and
w! € OL. Given such a setup, let us introduce the following definition:

Definition 1.13. Let us consider a random variable X defined on the filtered probability space (2, F, F, P),
and P € P(P(R?)). According to Lemma 2.4 in [CD18b], for P* — a.e. wy € Q°, X (wy,-) is a random
variable on (Y, F1 PY). Then, £1(X) : Q° 3 wy — L(X(wo,")), we get a random variable from
(Q°, F0, PY) into P(RY), providing a conditional law of X given F°. Finally, we say that L(X) = P
whenever £1(X) is distributed with respect to P.

The previous definition is a slight abuse of notation that allows us to consider random initial con-
ditions. In the whole manuscript we denote by Eg, E; and E the expectations on (£2y, 50, F0, Py),
(Q1,FY, FL Py) and (Q,F,F,P) respectively. Analogously, for any random variable X defined on
(2, F,F,P), we denote by £(X) and £1(X) the conditional laws of the random variable X given 7
and F0 respectively. Of course, £(X) stands for the law of X on the whole product space.

We now consider the interacting particle system XV = (X!, --- | XV) on the space (Q, F, P), with
dynamic

{ AX} = b (X}, m}) dt + 0d B} + ood BY, »
LX) = POV, |

for some initial condition Py € P(P(R?)), and where

N

mi :sz(XiV):Gévawz(wl,...,wN)l—»N_IZ(Swi
i=1

is the empirical measure of the particles. In the following of this section, let us consider the following

set of assumptions.
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2. Non-linear stochastic Fokker-Planck equation

1. The initial conditions (X{); are i.i.d and E[| X}|?] < +o0;

2. The map b : R% x Py(R%) — R is globally Lipschitz continuous, in the sense that there
exists L > 0 such that

[6(z, 1) = by, v)| < L (!w —yl+ &5 (i, V)) :

for all z,y € RY, and (u, v) € Po(RY).

Lemma 1.14 (Thm. 2.12 [CD18b]). Under the set of Assumptions (CPoC), the interacting particle system

(1.6) admits a unique solution for any N > 1.

The unfamiliar reader may wonder at this point: why do we consider the mesoscopic scale? One
could, in fact, consider the microscopic point of view and proceed as in Equation (1.12) to prove that the

law of X%V, denoted (miv ’N)t, is the solution of

NN  o%2402 N,N N.__N.N
{@mt = T2 Am, " = V- (0NmVY) |

N,N N
mo == Trla(O)9 5
; N
where b : RNY 5 2 = (2!, 2) — (b(z",mN (z!,...,2")));_, € RN, The flow of measures
m™Y is the solution of a linear equation, but in high dimension. Such an equation (called the Liouville

equation [Dar70, Ves42]) becomes increasingly difficult to manage as the number N grows. Given that
this number is likely to be very large, such a description of the system proves challenging to use, thus
justifying that the microscopic scale is not the most suitable for studying these types of interacting
systems. One main objective here is to consider an object that "remains of order one” in N.

Models similar to (1.6) are very well known and studied in the case without common noise, see for
example [Lac18] for a very nice course on the subject. Before going into more detail on the question
of asymptotic behaviour of (1.6) in N, let us present a few examples that motivate the technical efforts

made here to integrate common noise into the model.

2.1.2 On the importance of common noise

The system (1.6) has been extensively studied in the literature [Mé196, Szn91, CD18a, CD18b, CGMO08,
Mal01, JT21, CDL16]. In this section, we give some examples of systems that are similar to (1.6) in

which the necessity of modelling interacting particle system is clear.

« Inter-bank transactions

We consider a simple model of inter-bank borrowing and lending where the evolution of the

log-monetary reserves of N banks is described by a system of diffusion processes. The model is:

{ dX{ = & 3N (X] - X])dt + odW] + ood WY, wn

L(Xg, o, X)) = 08N,
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Value

This model, proposed in [CFS15], highlights the importance of common noise in such systems.
Here, each particle X represents the log-monetary reserve of bank i. We study the probability
of default for the system, introducing a default level D < 0 where bank ¢ defaults by time 7" if its
log-monetary reserve hits D before T'. The figures below show simulations of the log-monetary
level for N = 100 banks, with one system including common noise and the other not. The dotted

line indicates the default level.

Trajectories Trajectories

Value

0.005 0.010 0.015 0.020 0.025 0.030 0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time Time

Figure 1.1: Without common noise, o9 = 0, Figure 1.2: With common noise, og > 0,

N = 100. N = 100.

We can observe (see [CFS15] for a formal proof) that adding correlation between the Brownian

makes the whole system more sensitive and allows for a non-vanishing probability of default.

Mean-Field Game

Mean field game (MFG) theory is a mathematical framework for analyzing complex systems of
many interacting agents. Initially proposed by Lasry and Lions [LL06a, LLO6b, LL07] and by
Huang, Malhamé, and Caines [HCM07, HMCO06], MFG theory examines the actions of a repre-
sentative agent assuming all other agents behave similarly, see [Car10] for a nice course on the
subject. This leads to a set of partial differential equations describing the system’s temporal devel-
opment. Since its development, MFG theory has grown rapidly, with applications in economics,
finance, engineering, and social sciences, including traffic flow, energy management, and crowd
dynamics. Many MFG models now include common noise, particularly in economic models with

aggregate shocks [BB92]. For a specific example, see [Tch18a].

Climat risk integration

The impact of climate change on financial markets is a growing concern for insurers, financial
institutions, and investors. They recognize the need to assess and manage this risk to ensure fi-
nancial stability and sustainable practices. According to [Fra24], insurers could integrate climate
risk into financial sector models by introducing a common noise, called carbon risk, affecting sec-
tors like chemicals, electricity, gas, and real estate. The Black & Scholes model describes sector

dynamics as:

dS; = 0}SidB; + 00S;dZ;, (1.8)
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2. Non-linear stochastic Fokker-Planck equation

where Z is the carbon risk martingale, and B® are Brownian motions. Recently [Yag20] report
that climate-related natural disasters and economic losses almost doubled from 1980-1999 to 2000-
2019. These risks affect company valuations and share prices, and stringent policies under the
Paris Agreements are expected to achieve carbon neutrality by 2050. This necessitates incorpo-

rating common noise into models of large systems.

2.1.3 Conditional propagation of chaos

As mentioned in the beginning of Section 2.1, it is important to understand the asymptotic behaviour

(in N) of the particle system (1.6). Let us first note that for our system, the following Lemma stands

Lemma 1.15. Let assumptions (CPoC) be in force. Then, the interacting particle system (1.6) is exchange-
able in the sense of Definition 1.10.

The previous lemma is the reason why we are going to study the system at a mesoscopic scale. To
that extent, let us study the behaviour of the empirical measure (m}); of the system. Indeed, thanks
to Lemma 1.15, we know that (m}); contains all the necessary information to establish the asymptotic
behaviour of the system when the number of particles tends to infinity, see [Szn91] for more details.

As we are in the framework of an exchangeable model, we can use De Finetti’s results (see e.g
[Kin78]):

Theorem 1.16 (Conditionnal law of large numbers). For any exchangeable sequence of random variables

(Xi);>, define on (2, F,IP) with a finite moment of order one, we have,

N
1
li —EX<=]EX
Nl—I}(l)ONZ':l ' [ 1|SFOO]’

where

Foo 1= ﬂa{Xk,k>n},

n=1

and the convergence holds in the almost sure sense.

Intuitively, this form of law of large numbers says that, when exchangeability holds, the empirical
measure of the random variables (X;),-, behaves asymptotically as if they were conditionally inde-
pendent and identically distributed given the tail o-algebra Fo,. In our setting, individuals are always
linked through the common noise so there is no way to expect full independence in the limit. However,
in the light of the previous paragraphs we expect conditional independence, given the common noise.

That is why we need a conditional version of Kac’s chaos. We can revisit the Definition 1.10

Definition 1.17 (Conditional Kac’s chaos, Conditional Propagation of chaos). For a sequence
N N N
Z :(Z’lv'-wZ’N)

of N -indistinguishable particle systems with N — 0, the conditional stochastic chaos with respect to a

o-algebra G,means that there exists a random probability measure (i, adapted to G, such that
L(zY,2M8) > p®p as N— oo, Vi j fixed,
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Chapter 1. Introduction

where the previous limit holds in the almost sure sense.

Due to the particular form of the interaction and the presence of common noise, models as (1.6)
exhibit conditional propagation of chaos properties under some reasonable set of conditions. These
ideas are the cornerstone of the MFG theory. Mainly, the more general result on the subject is stated

as follows:

Theorem 1.18 ([(CD18b] Theorem 2.12). Within the above framework and under the set of Assumptions
(CPoC), the system of particles (1.6) has a unique solution for every N = 1. Moreover for any T > 0,

N
i -il2 d 1 S
max E[ sup |X{ — X}| } + sup E [dlg (N Zl(thNi,L]_(th)>] — 0, (1.9)

IsisN - |ogt<T o<t<T

where (X1, ..., XN) is called the mean-field limit system of (1.6) and is given by

{ dX} = b (X}, £1(X])) dt + odB; + aodBY, (1.10)

L(XN) = PN,

Historically, one of the first tools used to prove propagation of chaos (in the case without common
noise) is probabilistic as used by McKean in [McK66], and then popularised by Sznitman [Szn91], it is
a coupling method. In the cases with common noise, the proofs can be done in the same manner using
tools of DeFinetti’s theory as Theorem 1.16, see [CDL16, CD18b].

Of course, the rate of convergence to 0 in Theorem 1.18 has been the subject of many studies. This
is not a central question in our framework and we refer the interested reader to [CD22a, CD22b]. A

question of huge interest however in our context is the following

Question 1.19. How does (conditional) propagation of chaos behave in time? Can we prove uniform in

time (conditional) propagation of chaos for the system (1.6)?

Uniform in-time (Conditional) Propagation of Chaos is shown easily with coupling methods when-
ever strict space monotony assumptions are in force for the drift b (along with (CPoC)), see for example
[Mal01] in the case without common noise or [Mai23] (Chapter 3 of this manuscript) in the case with
common noise. When we lose the strict monotony assumptions, things become more complicated.
It would be interesting to obtain uniform in-time propagation of chaos particularly because it would
enable us to understand in a better way the long-time behaviour of the limit process.

In [DEGZ20] the authors demonstrate uniform in-time propagation of chaos (without common
noise), without relying on strict monotonicity assumptions for b, using specific coupling methods that
will be discussed in detail later in this manuscript. Additionally, they establish exponentially fast con-
vergence to the stationary regime for the solutions of Equation (1.16). These methods can be extended
to scenarios involving common noise, provided the intensity of the idiosyncratic noise ¢ > 0 is suf-
ficiently large. More details on this phenomenon are given in Section ... If this condition is not met,

achieving uniformity in time becomes challenging, opening a significant area for further research.
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2. Non-linear stochastic Fokker-Planck equation

2.2 McKean-Vlasov/Fokker-Planck ecosystem

Let us consider a measure Py € P(P(R?)), a random variable mg constructed on the space (g, F°, FO Py)
such that £y (mg) = Py, and a random variable X constructed on the product space (2, F, F,P) such
that £1(Xo) = mo almost surely. Now, we can construct the process X with dynamics given by the

stochastic differential equation

{ dX; = b(Xy, £1(X,))dt + 0dBy + 0od By, w11)

Xt|t:0 = X() a.s

for some Brownian motion B adapted to F!, and thus independent of B°. The particularity of the SDE
(1.11) is that the process X is interacting with its own conditional law given the common noise BP.
Such type of interaction is called McKean non-linearity.

The connection between the process X and Equation (1.3) is quite straightforward and was already
mentioned in the paper of McKean [McK66] (in the case o9 = 0). Considering a function ¢ € C¥(RY),

we write for any 0 < s < ¢,

t t
O(Xt) = d(Xs) + f Vo (X, )b( Xy, my)dr + aj Vo(X,)dB,
s s (1.12)

t 2 2 rt
+00 J Vo(X,)dBY + % f Ap(X,)dr.

s

Taking the conditional expectation with respect to the common noise B, we obtain for all 0 < s < t,

02—1-0(2]
2

+ f (my; ¢b(-,my) ydr + aof (my; (Vo)) dBY.

(s @) = (ma; 8y + f (mp; Aydr

This being true for any 0 < s < t and ¢ € C¥(RY), we deduce that (m;);>¢ satisfies Equation
(1.3). Under various assumptions, existence and uniqueness results are known for Equation (1.11) (see
[KX99, HvS21, CD18b]) and for the SPDE (1.3) (see [DV95, KX99, CG19, CDLL19]). For example, the

following result stands

Proposition 1.20 (Prop. 2.8, [CD18b]). Let the Assumption on the drift b in (CPoC) be in force. Assuming
furthermore that E[| Xo|?] < +o0, there exists a unique solution to (1.11) on the filtred probability space
(Q,F,F,P).

It is quite straightforward to observe that the existence of a solution to (1.11) implies the existence
of a solution to (1.3) with the initial condition £¢(mg) = Py. This result further implies the existence
of a solution for the Fokker-Planck equation on P(R?) as given by (3.7). In [LSZ23], the authors even
demonstrate that the converse implications are true, which allows for the verification of uniqueness
results directly. These findings also lay the groundwork for characterising an invariant measure in
Chapters 3 and 4. Ultimately, it becomes clear that our equation of interest is part of a broader ecosystem

of equations that originates from the system of interacting particles described in (1.6).
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X=(X%...,XN),
Rde

valued process

meso micro - - .
mN = N3N 6y, dX} = b(X}, mN)dt + odB} + cdB?

P(RY) valued process R?- valued process.

m = (mt)t>0 d. ~ 0 vi| R0 i 0
¢ dX, = b(X,, L(X/|B”))dt dB dB
(3 vlud prcess, - I e
solution of (1.3) L(XtB%)
L(mt) P = (Pt)tZO,

R 4

P(P(R?)) valued process,
solution to (1.4)

Figure 1.3: McKean-Vlasov/Fokker-Planck ecosystem of equations with common noise.

Let us now provide a concrete and simple example of McKean-Vlasov/Fokker-Planck ecosystem.

Example 1.21. Let us now consider a particular case to make the things clear:

dX; = —(X; — E1[X;])dt + 0d By + ood BY
Xijt=0 =0 as.

This process is uniquely determined and can be approximated in the mean-field limit by an interacting

particle with
b(x,m) = — <:c —J xm(dm)) ,
Rd

which satisfies (CPoC). This process can be treated exactly as an Orstein-Uhlenbeck process in RY. Then,

we get an explicit solution
¢

X; = JOBS + O'J e~ =34 B,. (1.13)
0

Then we obtain that for anyt > 0,

1 1

02
o/rl et © (Jz(l_etﬂx —00B;]| ) : (1.14)

In this example, we see explicitly the fact that the flow of measures (my)¢>0 is random and adapted to the

common noise. In this example, we can also explicitly write the deterministic flow of measures associated

my(z) =
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2. Non-linear stochastic Fokker-Planck equation

to (m¢)e=0, for allt > 0,

Py(dm) fRd (o intn(ie iy [dm)y(de),
where 7y stands for the standard Gaussian density.

2.3 Long time behaviour: reminders on the case without common noise

Let us comment on the previously introduced system in the case oy = 0. In this case, the particle

dynamics are only dictated by independent Brownian motions, then the system reads

{ dX} = b (X}, m}) dt + 0d B, (L15)

LX) = mg™,

for some probability measure mg € P(R?). The particles would be i.i.d if not for the interaction coming
through the empirical measure. In this case, under the same conditions on b (see (CPoC)), all the propa-
gation of chaos results are true, see [Szn91, Mél96, CD18a, CD22a, CD22b]. Taking o¢ = 0 in Equation
(1.3), we obtain the following Fokker-Planck equation

2
6tmt = %Amt -V (mtb(-, mt)) (1.16)

This changes the nature of the objects considered, but all the probabilistic tools are still valid in
both cases. The formalism used to describe these equations with common noise can be used to deal
with problems without common noise. Indeed, Figure 1.3 remains true and it is then sufficient to note

that (my)¢>0 is a deterministic flow of measure. The flow of measure (F;);>( then becomes trivial:
V=0, P;=0pm,. (1.17)

where for any measure m € P(R?), 6,, stands for the Dirac measure centered at m. Moreover, the

McKean-Vlasov process X, with dynamic
dX; = b(Xt, L(Xt))dt + od By (1.18)

generates the flow of measures (m;);>0 solution of (1.16). Let us begin by presenting some classical
existence and uniqueness results for the solutions of these equations. The aim of the following section
is not to provide an exhaustive state-of-the-art, but rather to present a reading grid that will help to
understand the fundamental results concerning notably the long-time behaviour of solutions of (1.3) in
the rest of the manuscript. Naturally, as in the case with common noise, Equation (1.16) is understood
in the weak sense. We say that (m;) is a solution of (1.16) if for any smooth and bounded function ¢,

we have

t 0_2 t
Gy = iy + [ Contam)smodr+ 5 [ (agsmar
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2.3.1 Long time behaviour

The question of the long-time behaviour of the solutions of (1.16) has been an important subject of
interest for a long time. When discussing the long-time behaviour of solutions of (1.16), it is usual
[CGMO08, DEGZ20, BRV98, HT10, HIP08] to assume the following structure for the drift b:

b(x,u) = =VV(x) = VW * u(x). (1.19)

The function V is then called the confinement potential and defines the landscape in which the associ-
ated process X evolves. The function W is called the interaction potential and defines how the process
X interacts with its law. This is the source of nonlinearity in equation (1.16).

It is well known in the case where W = 0, that there exists a unique stationary solution to the
equation (1.16), provided that V" has good asymptotic properties (such as, coercivity) and o > 0. More-
over, this unique invariant measure admits a density with respect to the Lebesgue measure, this density
denoted m is written as

m(z) oce o2V, (1.20)

When W # 0, the equation of interest becomes non-linear, and the situation becomes more intri-
cate. Similar results on the existence and uniqueness of the stationary solution have been shown under
strict convexity assumptions on V/, both with PDE [CMV03, CMV06] and probabilistic [CGM08, Mal01]
techniques.

However, this is not the case anymore if we relax the convexity assumption as highlighted by
[DV95] or [HT10]. In the latter, the authors show that any stationary solution of (1.16) is a solution to
the following fixed-point problem:

M) = —— exp (-(722 V(@) + W« m(z) — W « m(o))) , (1.21)

for some normalising constant Zy,. Let us consider an example to clarify the previous equation. Through-
out this manuscript, a central case of study is given by: V (z) = 2*/4 — 22/2 and W () = ax?/2, for
o > 0. This example is one-dimensional. In this case, the equation (1.21) satisfied by the stationary

solutions rewrites:
2
m(zx) = 7 eXp (—2 (:U4/4 —2?/2 4+ ax?/2 — a:L‘,ul(m))> , (1.22)
m g

where for any probability measure m € P1(R?), p1(m) = {3, 2m(dz). In particular, it follows that m

is a solution of

pa(m) = W (p1(m)),

where, for all y € R,

_ Jpzew (=% (z%/4 — 2?/2 + az?/2 — azy)) dz

o2

\If(y) = SR exp (_% (:L'4/4 _ $2/2 + Ozx2/2 — omcy)) dr

Let us first notice that ;1 (m) = 0 is always a solution. Moreover, it has been shown in [Daw83]
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2. Non-linear stochastic Fokker-Planck equation

that there exists a critical value o, > 0 such that, if 0 > o, p1(m) = 0 is the only solution. However,

when o < o, there exist two other solutions. In other words, when o is too small, there are three

stationary solutions to Equation (1.16).
A good way to understand this phenomenon, at least intuitively, is to go back to the study of a

system with many particles:

N
dX} = —-VV(X}))dt —a | X} - % Y X] | dt +odB;. (1.23)
j=1
At this stage, it is natural that most particles are attracted by the minimizers of the potential V' :  —
x*/4 — 22/2. When o is large enough, it dominates the interaction term, allowing particles to move
from one minimizer to another, resulting in a distribution of particles between the two minimizers. On
the other hand, when o is too small, the interaction term dominates, and the particles will all gather
near a minimum.

Trajectories

Value

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Figure 1.4: N = 100, o/a = 600, V : x> 2*/4 — 22/2.

Trajectories

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Time

Figure 1.5: N = 100, 0/a = 6,V : x> 2 /4 — 22/2.

In the N-particle system for o small, it is expected that particles will move around one of the points.
If one of the N noises takes an extreme value and pushes the corresponding particle to the other stable

state, then the dominant attractive force in the drift should quickly pull this particle back to the average

particle location.
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Trajectories

0.5

Value

0.0

-0.5

Figure 1.6: Particle attracted by the mean behaviour of the system - N = 100, o/« = 6,
Vixe at/4—22/2

Studying the probability that many particles, say n » 1, escape from the minimiser they are located

in, within a time interval A > 0 is of the order of
P(3I = {iy,...,in}, Viel, By >1),

which is exponentially small in n. This roughly says that the probability that a large number of par-
ticles go from one minimiser to the other vanishes, creating multiplicity of the equilibria for (m;)¢>o.
This result concerning the existence of several stationary solutions is extended to much more general

contexts (however in dimension d = 1) in [HT10].

2.4 Contibutions of the first part

The addition of common changes the asymptotic behaviour of the empirical measure of the system
in N. As explained in Section 2.1, the limit when the number of particles N — 400 is random. The
long-time behaviour of this process has not been the subject of many studies. Indeed, apart from two
papers [ABKO23, ACKO24] in the case where the common noise added to the system is a cylindrical
Brownian motion, little is known. In the first part of this manuscript, we focus exclusively on studying

the long-time behaviour of the solutions of this equation. We will address the following questions:
Question 1.22. What is an invariant measure for the process (m;);>o? How can it be characterised?

Question 1.23. In the frameworks where uniqueness of the invariant measure holds without common

noise, do we preserve uniqueness for the case without common noise, 69 = 0?

Naturally, since the process (m;):>0 is a stochastic process taking values in the space of measures,
we seek to understand its asymptotic behaviour in law. In the following, we then study the existence

and uniqueness of invariant measures P € P(P(R?)). Let us state the following definition:

Definition 1.24. We say that P € Py(P1(R?)) is an invariant measure for the process (my)¢=o when the
latter is regarded as taking values in P(RY), if the law of m; is independent of t, when my is distributed
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2. Non-linear stochastic Fokker-Planck equation

according to P, i.e., for all continuous and bounded function ¢ € C,(P(R%))

Bolo(m)] = Bolg(m)] = | otm)Plam). vt 0.
R
This answers the first part of Question 1.22. In chapter 2, we show the following characterisation

of an invariant measure, which is an adaptation of the previously mentioned result of Proposition1.8:

Proposition 1.25 ([LSZ20, Mai23]). P is an invariant measure for the process (m;) if and only if
(P,MF) =0, VF € C2(Po(RY)), (1.24)

where the generator M is defined in Equation (1.5).

Let us now consider a concrete example of what constitutes an invariant measure in our context.

To illustrate this, we will examine a linear process, making all the computations explicit.

Example 1.26. In this example, we consider an Ornstein-Uhlenbeck process with common noise, that is
taking V : x v~ |x|?/2 and W = 0. Let X be a real-valued stochastic process evolving in R?, driven by

the following stochastic differential equation:
dX; = —X,dt + odB; + 0odBY. (1.25)

Then, the process associated process (my)¢=o is solution of

2 2
demy = V- [U;%th + mtx] dt — 0oV, - dBY, (1.26)

Moreover, we consider the following initial condition £ (Xo) = Py (in the sense of Definition 1.24), for
some Py € Pa(Po(R?)). In this particular setting, we are able to explicitly describe the invariant measure.
The unique invariant measure P of the process on the space P(R?) is the image, by the function x €
RY > Ny(—z,021d) € P(RY) of the measure 7y, ; where Yy, (dz) = (20(2])_1/26_|$‘2/2”(2)dx, where for
all p e RE, Y € My(R), Ny (11, ) denotes a gaussian distribution in dimension d centered in j. and with

variance-covariance matrix 2. We can rewrite

P(dm) = , ONy(=z,021d) (A1) Voo (dT). (1.27)

R
Thanks to Proposition 1.25, we can characterise an invariant measure. However, we can already
notice that the equation satisfied by the invariant measure is difficult to study since we need the classic
tools of differential calculus in the space of measures. This difficulty is the reason for the need to
develop probabilistic approaches that we will not detail for the moment. Let us start by stating some

assumptions under which we will work throughout the first part of this manuscript.
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1. There exists a continuous function & : [0, +00) — R, such that

liminf k(r) > 0,
r—+00

and
(VV(z) = VV(y) - (& —y) = Kz —y|)lz —yl*
2. VV is Ly -Lipschitz continuous.

3. W is symmetric, i.e., W (z) = W(—=z) for all 2 € R%;

4. VW is Lyy-Lipschitz continuous.

The first result of this thesis states that under the set of assumptions (LTBa), there always exists at
least one invariant measure for the process (m¢);=0 solution of (1.3). This provides a first element of the
answer to the Question 1.23. To complete the answer to this question, it is interesting to consider the
classical cases of uniqueness in the case oy = 0. For example, when the potential V' is uniformly convex,
which corresponds to the case x = § > 0 in (LTBa). In Chapter 2, we show that this uniqueness result
is preserved in the case with common noise. We prove this result by developing probabilistic methods.
More specifically, we prove uniform in time propagation of chaos results that allow us to conclude the

desired result. Ultimately, we obtain the following result,
Theorem 1.27. Let us consider P, Q € Po(P2(R?)), and two particle systems X = (X',..., X") and
XN = (XUN . XNNY with dynamics,

dX}] = —-VV(X})dt — VW % my(X})dt + od B} + 0odBy, Vie{l,...,N}, (1.28)

and
) ) 1 X ) . )
ax; N = —VV(XZ’N)dt—N DIVW(XPN - XPM)dt+odB) +00d By, Vie{l,...,N}, (1.29)
j=1

where (X{);eq1,. N} are independent and identically distributed such that L(XZ) = P in the sense of
Definition 1.13, and where the same holds for the second system with L(Xé’N) = ). Under Assumptions
(LTBa), and assuming that k = 3 > 0, we get

RY, PN QN Bt 1
E|df" mig mGn) | < o(e +2B\/ﬁ)’

PN _ 1 N ) QN _ 1 N ,
wheremy,' = Dict (5th and mXiv =¥ D1 5X;L,N.
The following corollary provides an answer to the Question 1.23:

Corollary 1.28. Under the set of Assumptions (LTBa), the stochastic process (m;) admits a unique invari-
ant measure P € Po(P2(R%)). Moreover, for each Py € Po(P2(RY)), there is an exponential convergence
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2. Non-linear stochastic Fokker-Planck equation

to the invariant measure in Wasserstein-2 distance
d — d —
)P, P) < e Pta] ") (py, P).

This consists in a restoration of uniqueness result, at least in Po(P2(R?)). Moreover, the following
Lemma allows us to recover uniqueness among all the invariant measures (as defined in Definition
1.24):

Proposition 1.29. Let Assumptions (LTBa) be in force. For any invariant measure P in the sense of
Definition 1.24, we get that P € Po(Po(R?)).

In Section 2.1, we saw that there are examples of loss of uniqueness in the case without common
noise when the diffusion coefficient ¢ is too small. As the addition of common noise completely changes

the structure of the problem, it is natural to ask the following question:
Question 1.30. Are there any cases where the common noise allows for uniqueness recovery?

Question 1.30 is the focus of Chapters 2 and 3. It is quite common that the addition of noise allows
for uniqueness recovery of the asymptotic behaviour for stochastic processes or the uniqueness of the
Nash equilibria in MFG [Del19, DFT20]. However, two points should be emphasised here, justifying
the difficulty of the question:

1. For processes with nonlinear dynamics, there are examples where the introduction of noise cre-

ates periodic asymptotic behaviours [Sch93, Sch85b, Sch85al];

2. Inthis specific case, the common noise has a very particular structure since this finite-dimensional

noise is the only source of randomness in the dynamics of the infinite-dimensional process

(m4) 0.

The second point highlights the subtlety of the problem. It is clear that there is no chance to get
the uniqueness of the invariant measure for a generic class of stochastic Fokker-Planck SPDEs forced
by a simple noise like B°. For example, it is quite easy to find similar models for which the common
noise does not allow at all to recover the uniqueness of the asymptotic behaviour. The thrust of the
works [Mai23, DMT24] is more to identify one class of mean field dynamics for which the common

noise helps in this matter.

Example 1.31 (A simple case without restoration of uniqueness). A counter-example in dimension d =
1is

o(v(m)) + o3
2 Tx

for some function o : [0, +00) — (0, +00). Whenever oy = 0 and the function 0*(-)/4 admits several

dymy = mydt + 0, (zmy)dt — o90ymdBY,

fixed points, the stationary solutions to the above equation cannot be unique. In this case, (m;)¢>o is indeed

solution of

a(v(mt))

2
Oy = =50y (mu) + a(@m), > 0. (1.30)
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Then, similar to the stationary solutions found in the previous example, the stationary solutions (equiva-

lently, the invariant measures of (3.5)) are here solutions of

%”(:ﬁ) ~ exp <_202(f<2m)>> . zeR

Then, one can show that, if the function x — o*(x)/4 admits several fixed points, then there are several
stationary solutions to (3.20).

When adding common noise, the situation does not get better. For instance, assuming that Xo = 0 a.s.,
one can show that for all t > 0, Pg-almost surely, my; is a (random) Gaussian probability measure with
parameters

t
p1(mye) = JQL es_tng,

t
v(myg) = f 25752 (v(my))ds.
0
Then, it is not difficult to see that (11(my¢))i=0 is an ergodic process (it is in fact an Ornstein-Uhlenbeck
process with a negative mean-reverting parameter). As for the dynamics of the variance (v(my))i=0, we
get
1
orw(my) = —2v(my) + 5‘72(7’(7’%)), t=0.

Obviously, the above equation has several stationary solutions (say o* ) if the function x — o*(z)/4 admits
several fixed points. In the latter case, (my);=0 has several invariant measures, whose form is similar to
(3.18) except that o therein is now replaced by any o*. In this specific example, it is noteworthy that the
common noise has no influence on the mean field term (v(my))i=0 (which is completely deterministic).
Clearly, this is a consequence of the additive structure of the noise, the effect of which is just to shift (or to

translate) the measures (m¢)>0.

Chapter 2 takes a first step in the direction of identifying the classes of mean field dynamics for
which the common noise allows for uniqueness recovery by studying the case of a non-convex potential
V, a linear interaction force and no idiosyncratic noise, i.e ¢ = (. This case is not covered by [Daw83,

HT10], however, it is quite easy to see that when V' is not convex and o = gy = 0, the equation
omy =V - (VVmy + a(z — pi(my))my), (1.31)

admits several stationary solutions located on the minimisers of V.

When we add common noise to the system, the mean-field limit gives the following equation
a3 0
dymy = ?Amtdt + V- (VVm + alx — pi1(my))my)dt — oo Vmy - dBy . (1.32)

We show in Chapter 2 that under assumption (LTBa) and assuming that W (z) = a|z|?/2, for some
« > 0, which allows us to consider double-well potentials and therefore non-convex, we may recover

uniqueness of the invariant measure in the sense of the Definition 1.24. More precisely, we have

Theorem 1.32. Under the set of Assumptions (LTBa) and assuming that W (z) = «|z|?/2, for some o >

0, there exists & > 0, such that for any a > @, there exists a unique invariant measure P € Py(Po(R?))
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2. Non-linear stochastic Fokker-Planck equation

for the solutions of (1.32). Moreover,

P(dm) = s, (dm)m*(dz), (1.33)
R4

where m* admits a density with respect to the Lesbegue measure, also denoted m™ and satisfying for any
x € RY,

m* ()5 exp (-221/(9@)) (1.34)

)

Also, we show exponentially fast convergence to the invariant regime in Wasserstein distance.

Unfortunately, in this case, we are no longer able to prove uniform in time propagation of chaos
results. In chapter 3, we prove similar results extended to a more general framework. The major
difference being that we are now able to consider models with idiosyncratic noise, i.e. when o > 0.

More precisely, we consider classes of models of the form

2
demy = %Amtdt — V- (Gmy + F(x — p1 (my))my)dt — ooV, - dBY. (1.35)

We then make the following assumptions on G and F’, which are similar to the ones on —VV and the

interaction:

1. There exists a continuous function & : [0, +00) — R, such that

liminf k(r) > 0,
r—+00

and
(G(z) = G(Y) - (x —y) < —r(lz — y|)|z —y[*;

2. G is Lg-Lipschitz continuous.

3. F'is Lp-Lipschitz continuous and there exists & > 0 such that
(F(z) = F(y) - (z —y) < —alz —y|*

These assumptions are generalisations of the case treated in Chapter 2 as we only get ride of the
gradient structure for the confinement and interaction forces. Nevertheless, the underlying intuition
remains quite similar: (1) the confinement term G brings the particles back into a compact set thanks
to its strict asymptotic monotonicity properties. However, we can consider forces G that are not mono-

3

tonic near the origin, such as  — z° — x. (2) The interaction term F still involves the first moment.

We do indeed separate from the linearity assumption, but we keep in mind the idea that F' must help

attract the process m towards its first moment.

In this case, we can still exhibit cases of uniqueness recovery thanks to common noise. More pre-
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cisely, we have the following result:

Theorem 1.33. There exists c > 0, & > 0, such that for all 0 < 7, and o = & in Assumption (LTBb),

there is a unique invariant measure P € Po(Po(R?)) for the process (my)¢=0, solution of Equation (3.4).

The study of this kind of models and the impact of a finite-dimensional common noise on the
long-time behavior is far from being covered by the two papers [Mai23, DMT24] mentioned in this
introductory chapter.

There are of course still many questions to be addressed on this topic, a few are listed here:

1. Can we extend the results obtained in this thesis to more general models? In particular, we would

like to get rid of the assumption that interaction only occurs via the first-order moment.
2. Can we study the impact of the common noise on the propagation of chaos property?

3. Can we develop numerical schemes to approximate the invariant measure of the process and

study their convergence properties?

3 Statistical Analysis of diffusion models

The second section of this thesis deals with non-parametric estimation for diffusion processes. The
general framework is the following: we consider a stochastic process X solution of the Stochastic
Differential Equation (SDE)

{ AX? = —VV(X?) + o(t, X/)dB, (136)

L(X(l)/) =V,

for some initial condition v € Py(R?). We want to recover information on the dynamic of X from
observations of this process. Under some mild conditions on V' and o, there exists a unique solution
to (1.36). For decades, the study of this type of dynamics has attracted much attention in order to an-
swer the following questions: What can be estimated in this model? From what observations? What are
the optimal estimation rates? These natural questions have been the origin of the publication of many
research papers, see [GC16] for a very nice introduction. We refrain here from presenting an extensive
literature review on the subject. However, the following table contains a summary of the main refer-

ences on the subject in different contexts.

; Est. of o Est. of VV Est. of the invariant measure

Continuous obs. [CGC20] [Bos97] [DR06] [DRO7] [Str18]
[CMO5] [Leb97]

[Hof97] [CGCRO07] | [Hof99][CGCRO07]
Discrete obs. [GCJ94] [JLMT09] [Sch13] [BP03]

[GCLP92] [GHR04]

Noisy obs. [Sch12] [Sch11] [MS24]

[AG21] [AG22]
[AG23] [Sch12]

32



3. Statistical Analysis of diffusion models

This type of process appears in many fields [Pap95, Ber93, Hul03, Bai57, Ric77]. With the devel-
opment of data collection methods, it seems necessary to implement statistical methods to (1) develop
predictive models adapted to real-life data; (2) ensure the validity of the probabilistic models used based
on observed data, see for example [AS]J10].

In Chapter 4, we focus on the case where the diffusion matrix is diagonal and constant. More
precisely, there exists o > 0 such that for all z € R¢, o(x) = old. In this case, the model (1.36) can be

rewritten as

dX; = —VV(Xt) + odBy, (1.37)

where B is a standard Brownian motion in R?. It is easy to prove that we can characterise the flow of
laws of the solutions of (1.37), (u¢)i=0 = (£(X3))t=0 by

2
Ouptr = 5 Dt + V- (VV). (1.38)

This linear equation has been widely studied in the literature, see [Ris89] and the references therein.
Under fairly mild assumptions on V' (linear behaviour at infinity), we know that there exists a unique
invariant measure for (1.37) denoted by fi. This invariant measure is absolutely continuous with respect

to the Lebesgue measure. This density is also denoted by p, and is given by

i) = e (- 5V (139)
for some normalization constant Zy .

3.0.1 Ergodicity for diffusion models with constant volatility

In this section, we make some quick reminders on the notion of ergodicity for diffusion models of the

form (1.37). Let us introduce the following set of assumptions

1. The function b is differentiable and satisfies
|b(0)| < by and Vie {l,...,d}, |[0iblew < b1/d,

where by and b; are positive constants.

2. There exists a function V : R¢ — R differentiable and bounded below by a constant 1}
such that b = —VV and V(0) = 0.

3. There exists C}, > 0 and , > 0 such that (z, b(z)) < —Cy|z

NV o |z| = py.

Moreover, when considering this kind of process, it is possible to show results of exponential con-
vergence towards the invariant measure. This has been a very vast field of research in the past decades.
Such convergence results can be shown using functional inequalities see for example [ABC*00] or

the very nice course [CL17]. More recently, the use of coupling techniques developed by [LR86] allowed
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to prove with purely probabilistic approach some contraction properties resulting in exponentially fast

convergence to the stationary regime under (Ergo).

Theorem 1.34. Under Assumptions (Ergo), there exists a constant ¢ > 0, such that for any initial condi-
tions i, v € Po(R?),
d d _
Ay’ (L(X7), £(X7)) < dY (p,v)e ", (1.40)

This approach has since been widely use in various domain, particularly in control [Con23] or
interacting particle system theory [DEGZ20]. The unfamiliar reader shall find details on coupling by
reflection and the proof of Theorem 1.34 in the Appendix A.

3.1 Presentation of the model and literature review

In Chapter 4, we consider a large range of potential V. Mainly, we work under the set of Assumptions
(Ergo). In this case, we know that X is ergodic and admits a unique invariant density denoted by
. The topic of estimating the invariant measure for ergodic processes has been addressed in many
contexts [DR06, DR07, Str18, AG21, AG22, AG23]. Several works have considered various structures of
processes, including jump processes [AN22].

It is well-known and natural that the estimation rate of a function strongly depends on its regularity.

The adapted notion of regularity in such a context is Holder regularity:

Definition 1.35. Let a = (a1,...,0q) € (0,00)% and £ = (Lq,...,L4) € (0,00)% A function
g : RY — R is said to belong to the anisotropic Holder class Hy(c, £) of functions if, forall1 < i < d, g
is |a;|-differentiable in the i-th variable and the partial derivatives satisfy for 0 < k < | o]

|6Fgllc < £i and Vi e R, [o™g(- + te)) = 9" g()],, < Lifel* )

where (e1, ..., eq) is the canonical basis of RY.

We now provide a more detailed review of the literature on our topic of interest: the estimation of
the invariant measure for ergodic diffusion processes. Statistical studies on this subject focused on two
different asymptotic regimes: continuous observations of the process (X;);<7 with T — 0, or low
frequency observations given by (X;a); with 0 < 7 < n. Since X is exponentially S-mixing under
mild assumptions on b, low-frequency observations naturally relate to the i.i.d. case and present similar
convergence rates.

On the other hand, continuous observations can be studied using fine probabilistic tools for er-
godic continuous-time Markovian dynamics [BCG08, CG08, Lez01, Paul5] and precise estimates on
the transition densities [CW97, QRZ03, QZ04]. The seminal works of [DR06, DR07] first established
convergence rates of kernel estimators under continuous observations of X over a time interval [0, T'].
In these works, the invariant density is still estimated through a kernel based estimator as in the ii.d.

case. [DR06, DR07] also obtain the convergence rate

T—a/(2a+d—2)
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when d > 3 and 7i° is a-Hélder in the sense of Definition 1.35, with & = (a, . .., ), for some o > 2.
When considering an anisotropic framework, the convergence rate depends on the effective average

smoothness [Str18] and minimax rates are derived in [AG21]. Two natural questions remain:

Question 1.36. What happens if we access discrete high-frequency observations of X, i.e. we observe
(Xin,, )i for0 < i < n when A, — 0 and nA,, - 0?

Question 1.37. Can we still estimate the invariant measure when the observations are blurred by some

noise?

The Question 1.36 naturally arises with the advent of high-frequency data collection in particular
in finance [ASJ14]. Hence, understanding the estimation rates under different asymptotic conditions
becomes crucial. This includes specifying conditions on A,, that determine when continuous or low-
frequency observations are more analytically pertinent. While this topic has only recently received sub-
stantial attention, pioneering works like [GHR04] and [CT16], which explore random sampling times,
stand out. However, this question has recently been addressed in full generalities in [AG23] where
the breakeven point between the high-frequency observations similar to continuous observations and
low-frequency observations similar to the i.i.d. case is identified and studied. The continuous rate is
known to be optimal [AG21] in any dimension, but the question of the optimality of the low frequency
rate is still an open question, with the exception of the one dimensional case, solved in [AG22].

Answering Question 1.37 is crucial in statistical analyses for several compelling reasons. The pres-
ence of noise in observations is often unavoidable, especially in practical applications such as finan-
cial modelling, biological experiments, or sensor data analysis. Addressing the impact of noise in the
analysis can help develop models and methodologies that are more applicable to real-world scenarios,

increasing the external validity. This is the purpose of Chapter 4.

3.2 Contributions

As in [Sch11, Sch12], the aim of chapter 4 is to develop a statistical method that can take into account
the presence of noise in the observations, this time to estimate the invariant measure. When noise
is assumed to have an additive structure, existing literature uses Fourier inversion and kernel-based
methods to recover the distribution of interest [Dev89, LT89, SC90]. Later works [CH88, Fan91, Fan93]
establish minimax optimality of this procedure under the assumptions that the noise distribution is
known and has a non-vanishing Fourier transform. It is important to note that in this setup, the con-
vergence rates are slow. For instance, when the distribution of interest is a-Holder regular and the
noises are independent standard Gaussian variables, the optimal rate of convergence for any estimator

is only log(n)~*/2

. This leads us to the following questions in our context:
Question 1.38. What is the impact of noise on the estimation rates?

Question 1.39. Can we use the Markovian structure of the underlying process to obtain better convergence

rates than for the classical deconvolution problems?

In Chapter 4, we answer both questions 1.38 and 1.39. More precisely, we obtain that unlike the
i.i.d. case, the structure of (4.2) and (4.3) allows better extraction of the information hidden by the noise.

The estimation procedure is composed of three steps
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+ Step 1: Pre-averaging. To reduce noise effects, data is split into groups of equal size p and em-
pirical means are built into the batches. These techniques are usual in the literature of statistical
estimation for diffusion processes [JLM 09, JPV10, HP13, JM15, Sch11, Sch12].

We obtain the following process

L pe1 In/pl—1
( Z Ykarl)
p =0

Even though we lose some information, this pre-processing of the data allows us to significantly

k=0

reduce the intensity of the noise. Indeed, for any k € {0, ..., |n/p| — 1},

153
- Z Ykarl =
P

Of course, since (§;); are standard Gaussian random variables, we have

18]

p—1
-
= Xpprna, + — Z Skp+i- (1.41)
P P

VP

p—1
T d T
LN opr = =41, (1.42)
P %

where equality holds in distribution.

Simulation of OU Process with Noise and Preaveraging Denoising
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Figure 1.7: Pre-averaging of noisy observations of an Ornstein-Uhlenbeck process

+ Step 2: Construction of a classical Kernel estimator. From the previously constructed process,

~ 1 [n/p]—1 lp—l
Unhp(x) = /o] ];0 K, (fc —-p ;}Ykp+é>>

where for any y € RY, Kp(y) = []¢ h; 'K (h;ty;), for some Kernel function K : R — R.

i=1"%

This estimation procedure is classical see [Tsy09] or Appendix B.

« Step 3: Debiaising procedure. Intuitively, the approach of Step 2 works because of the regularity
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of X . Indeed, we have

-1 p—1 p—1
15 1 -
= Yipren = Xipa, + = D) (Xeproa, — Xipan) + = D Ekprem: (1.43)
P P P S

This expression can be seen as XA, + noise and the effective sampling frequency becomes
(pA,,) 1. Moreover, the noise now comes from two sources: in addition to the noise (&in)in, we
now have a preaveraging error p~— le;é (X(kp+0)a, — Xkpa,, ). Using the pathwise regularity
of X, this error should remain small when p is not too large. Moreover, since the random vari-
able (¢; )i are independent standard Gaussian variables, we can rewrite p~ Zé:é Skpttn =

Tnp_l/ ng,n where E,m is also a standard Gaussian variable. Using finally the fact that

1 p—1 1 p—1
> Y Kiproa, — Xipa,) = » > (Bup+oa, — Bipa,,),
£=0 £=0

where the precise sense of the previous Equation is detailed in Chapter 4, we obtain that the

effective noise intensity in the observation is now

~ <Tﬁ (P—1)(2p— 1)An>1/2
Tn,p - — + .
p 12p
Then we define,
[in,hp(T) = Z Uy U hp(T + YTp), (1.44)
for some sequence u~ and where the sum holds over all ¥ = (71, ...,74). Note that the choice

of the sequence u~ is explicit in Chapter 4 and made in order to reduce the bias. Moreover, it is
important to notice that such a combination of estimators does not change the variance (up to

some constant independent of n, p, h).

To study the rate of estimation for the estimator, we control the pointwise quadratic loss:

Ellfinnp(@) = pl(@)].
Then we separately control the bias and the variance of fi,, p ,():

Proposition 1.40 (Control of the Bias). Under (Ergo), assuming moreover that i is c-Holder with op <
-+ < g, there exists a constant C > 0 so that foranyx € R%, anyp e {1,..., [Aﬁlﬂ]} and anyh € RY,

we have

Tgl+zgzlh?i lf‘p:17

Ealnnple)] - B(@)| < C . N
VDA, + p?l/g + Z?:l hit ifp=2.

The control of the bias term is somehow the main contribution of Chapter 4. In fact the presence
of the residual terms coming from the noise are identified in the paper [MS24] for the first time. The
upper bound for the variance term on the contrary is similar to the one of [AG23] even if the presence

of noise makes the derivation more technical. The previous proposition allows to answer Question 1.38.
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Proposition 1.41. The best choice of pre-averaging is given by
p* - [(T3Q1A;1)1/(1+a1)—| v 1,

and the impact of the noise on the estimation speed is then of order

o
T’I'L

p*oq/Q :

P*A, +

The optimal choice of the hyperparameters h and p depends on the regularity of the quantity of
interest. Of course, this regularity has no reason to be known. In Chapter 4, we set up an adaptive choice
for the bandwidth h inspired by the works [GL08, GL09, GL11], allowing to obtain Oracle inequalities,
see [Cha13] for a nice introduction to these topics. The non-familiar reader shall also have a look to
the appendix B where an example of an adaptive method is detailed. Finally, the choice of p is much

more intricate and is an interesting research direction, more details are given in Chapter 4.
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Chapter

An introduction to long time behavior of
non-linear stochastic Fokker-Planck

equation

Abstract

This paper presents an investigation into the long-term behaviour of solutions to a nonlin-
ear stochastic McKean-Vlasov equation with common noise. The equation arises naturally
in the mean-field limit of systems composed of interacting particles subject to both idiosyn-
cratic and common noise. Initially, we demonstrate that the addition of common diffusion
in each particle’s dynamics does not disrupt the established stability results observed in the
absence of common noise. However, our main objective is to understand how the presence
of common noise can restore the uniqueness of equilibria. Specifically, in a non-convex
landscape, we establish uniqueness and convergence towards equilibria when there is no
idiosyncratic noise in the system.
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1. Introduction

1 Introduction

We consider the following non-linear Stochastic Partial Differential Equation on [0, +00) x RY,

o? + U(Q) 0
dtmt =V- Tth + mtb(t, *y mt) dt — aont : dBt . (21)

This SPDE is posed on a filtered probability space (Qo, F9 O, IP’O), BY is a d-dimensional F-Brownian
motion, the drift b : [0, +00) X RY x P (Rd) — R4 depends in time, space and measure, o and o are
two non-negative constants. This paper aims to study the long-time behavior of solutions of Equation
(3.1), and more precisely, to understand the effect of the common noise on the asymptotic stability. We
assume that the drift term b has a specific linear structure with respect to the measure variable, with two
continuously differentiable functions V' and W such that b(t, z, ) = —VV (x) — VW = p(z), where
* stands for the convolution operator. This assumption is typical when studying long-time behavior
in McKean-Vlasov type equations, see e.g [Bas20, BGG13, DMT19, HT10, Tug13]. In the following, we
are interested in getting existence and uniqueness results for the invariant measure of the probability
measure valued process (m;). As the problem under consideration falls within the realm of McKean-
Vlasov type, one may expect existence of an invariant measure and uniqueness at least in some specific
cases. In this paper, we verify whether, in the case where W is convex and V is uniformly convex, the
introduction of common noise does not compromise the classical uniqueness results of [BRV98]. When
V is not convex, the matter becomes considerably more intricate, studied so far without the presence
of common noise, only partial results are known. There exist cases in which the uniqueness of the
invariant measure is not satisfied. Unlike linear elliptic equations, the presence of nonlinearity leads to
the existence of multiple invariant measures. Specifically, it has been proven in [HT10] that when the
confinement potential uniformly convex outside of a ball centred in the origine, admits a double-well
and the diffusion coefficient o is sufficiently small, there exist exactly three invariant solutions of the
following equation:

2
oymy = %Amt + V- (my(VV + VW = my)).

Since 2019, several papers [Del19], [DFT20] or [DV21] investigate the restoration of uniqueness in
mean-field games derived from deterministic differential games with a large number of players by in-
troducing an external noise. In a similar manner, this paper explores the restoration of uniqueness of
the invariant measure by introducing common noise to the system. More precisely, we prove existence
and uniqueness of the invariant measure for process (m;) in the following cases: (1) when the confine-
ment potential V' is uniformly convex and the interaction potential is convex; (2) when the potential
V' is not convex and there is no idiosyncratic noise in the system, i.e ¢ = 0. More precisely, in the

previously mention case, we get uniqueness of the invariant measure for solutions of

2
dtmt =V. (JQOth + mtb(t, ‘ mt)) dt — O'vat . dB? (22)
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In this case, we also get exponential rates of convergence to the invariant measure. More precisely, we
show the existence of P € P(P(R%)), and a constant 7 > 0, such that for all initial condition Py, we

get the existence of a constant C' > 0, such that for each time ¢ > 0,
P(R4 =
dl( ) (P, P) < Ce ™,
P(R?) o
where P, = £(m;), and d; (-, -) stands for the Wasserstein distance.

Obtaining uniqueness of the invariant measure in the general case of Equation (3.1) without strong
convexity assumptions on the confinement potential appears to be a challenging problem that is not
completely solved in this paper. The results obtained in the present paper are a step towards under-
standing the long-time behavior of the solutions to Equation (3.1), but are far from providing a complete
understanding of the asymptotic stability for that kind of Stochastic Fokker-Planck Equations with ad-

ditive common noise.

Probabilistic setting & Motivation. Let us consider a filtered probability space (2!, F!, F! P).

Then, we define the following product structure
O=0"xQ' 7 F, P,

where (F,P) is the completion of the set (F° ® F!,PY ® P!) and F is the right continuous aug-
mentation of (F? ® F});>0. We also consider a d-dimensional Brownian motion B° supported by
(20,59 PY), adapted to F” and another Brownian motion B supported by (Q!, F!, P!), adapted to F!
and independent of F. Let us now consider a probability measure on the space of probability measures
Py € P(P(R?)), we are able to define mg, a F)-measurable random variable with value in the space of
probability measure P(R?) and such that £(mg) = Py, in the sense that for any bounded measurable
function F' : P(RY) — R, Epo[F(mg)] = {Po; F). We can now define on the whole probability space
(Q, F,F,P) arandom variable X such that £(Xo|F]) = mg almost surely. Let us define the stochastic
process X evolving in R?, supported by (2, F,F, P), which dynamic is given by

{ dX; = —VV(Xy)dt — VWV = my(Xy)dt + od B, + JOdB? -

X|t=0 = XO)

where m; stands for the conditional law of the random variable X;, with respect to the o-algebra J9.
Precisely, m; = £ (Xt\??) almost surely, and B is a d-dimensional F!-Brownian motion independent
of F¥. The dynamic of the process (m;)¢>o is well known and given by the following Lemma (see for

example [CD18b] among other references).

Lemma 2.1. The measure valued process (my)o is solution in the weak sense of the following Stochastic

Partial Differential Equation:

02—1-0(2)

dgmy =V - < Vm; + mtb(t, N mt)> dt — ogVmy - dB?,
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with initial condition £ (mg) = P.

Equation (3.1) connects closely to the McKean-Vlasov Equation with common noise. It shows how
large systems of interacting particles evolve. In mathematical finance, this model is particularly useful
for situations like inter-bank borrowing and lending systems (see [CFS15] or [GSSS15]). Studying the
long-term behavior of solutions to Equation (3.1) is important because it gives us insight of the behavior

of the solution to Equation (3.5).

Literature. Stochastic Partial Differential Equations in the more general form,

dymy = [Z V2 (aij(t, -, me)me) + div (meb(t, -, my)) ]dt — oo(t, -, me)Vimg - dBY,  (2.4)
0]
have been extensively studied in recent decades as it naturally arises in several applications. Equation

(2.4) is linked to the stochastic scalar conservations law of the form
dymy + V- (o0(-, up)ug) o dWy = 0, (2.5)

where o stands for the Stratonovich stochastic integral. In the case where o (x, 1) = oo(u(z)), mean-
ing that the diffusion coefficient depends in the measure in a local way, this class of equations has been
introduced in [LPS13] paving the way to several papers dealing with well-posedness of solutions of
(2.5) in various frameworks [LPS14, GS15, FG16, GS17, FG19]. Uniqueness of the solutions to (3.1) is a
well known result in the class of solutions admitting a square integrale density with respect to the Les-
begue measure, see [KX99], and has been shown recently without any further moments assumptions
in [CG19].

In a slightly different context, a series of papers demonstrated the well-posedness for a large class of
Stochastic Differential Equations similar to (3.1), called Mean Reflected Stochastic Differential Equations,
see [BEH18], [BH21] and [BCCdRH20]. More precisely, [BH21] and [BCCdRH20] state conditional
propagation of chaos under regularity conditions on the drift and diffusion terms. This equations natu-
rally appears when considering interacting particle systems with constraint on the empirical measure of
the systems and then the study of such equations is particularly important for example for applications
to Mean Field Games.

In this paper, we focus on the following specific Stochastic McKean-Vlasov Equation with common

noise:

2
dtmt =V- <J20th + mtb(t, ‘y mt)> dt — UOth . dB? (26)

As mentioned before, extensive research has been conducted on the equation in question, and recent
studies have made notable contributions to understanding its properties. For example [HvS21] explores
the existence and uniqueness of solutions for McKean-Vlasov Stochastic Differential Equations (SDEs)
with common noise. Similarly, [Mar21] proposes a regularization approach in an infinite-dimensional
setting for the McKean-Vlasov equation with Wasserstein diffusion, enhancing the understanding of

solutions’ regularity properties. Additionally, [KNRS22] investigate the well-posedness and numerical
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methods for McKean-Vlasov equations with common noise, providing valuable insights on the stability
and convergence of computational approaches for solving these equations.

However, to the best of our knowledge, little is known about the asymptotic behavior of the solu-
tions of equations of the form (2.6). In the case without common noise, og = 0, where m is a determin-
istic flow of measures, past research has focused on various aspects of the solutions of (3.5), including
existence, uniqueness ([McK66], [Fun84], [GKM " 96]), and stability. Over the past two decades, signif-
icant advancements have been made in understanding the convergence to equilibrium for solutions of
the deterministic McKean-Vlasov equation. For example, see [CMV03] or [CMV06] for proofs of an ex-
ponential convergence rate to equilibrium under strict convexity conditions on the potentials V and W.
The case without strict convexity assumptions is more intricate. Nevertheless, through a thorough ex-
amination of the dissipation of the Wasserstein distance, [BGG13] showed an exponential convergence
to equilibrium in a weakly-convex case. Recently, involving a coupling method issued from [LR86], it
has been shown using nice concentration properties from [Ebe16] that the convergence to equilibrium
holds with an exponential speed in the case of a confinement potential that is only convex far from
the origin, as seen in [DEGZ20]. The latter shows uniform in time propagation of chaos property, as
introduced in [Kac56] and [Szn91], allowing one to conclude the uniqueness of the invariant measure

and provide a rate of convergence to equilibrium.

Organisation of the paper. This paper has three main parts in which we adopt a probabilistic
approach. In Section 2, we study the existence of an invariant measure for the process (m¢)>0, with
dynamic given by Equation (3.1), and provide conditions on the potentials V' and W for the existence
of such an invariant measure. We also give moment estimates for the invariant measures. In section
3, we study the uniqueness of invariant measures with a uniformly convex confinement potential V/,
adapting known results without common noise. We also discuss the Ornstein-Uhlenbeck process with
common noise, where the invariant measure can be explicitly described. Moreover, we demonstrate
uniform-in-time propagation of chaos and convergence to equilibrium. Section 4 explores the same
topic for non-convex potential V' when ¢ = 0 and we prove that common noise can help to restore

uniqueness of the invariant measure. Technical proofs are provided in Appendix 5.

Definition and notation. Throughout the paper, for a Polish space F we write P(E) for the
space of Borel probability measures on E equipped with the topology of weak convergence and the
corresponding Borel o-algebra. We also denote by (- ; -) the duality product on P(E). In this paper,
we consider a stochastic process (m;);>o with value in the space of probability measures P (]Rd). We
denote by P, the law £ (m;) of my, for ¢ > 0, which is a probability measure on the space of prob-
ability measure. Then (m;)¢>o is a continuous P (R?)-valued process, and P = (P;);0 belongs to
C ([0, +oo[; P (P (R?))), the space of continuous functions from [0, +oo[ to P (P (R?)).

Whenever there exists a distance d so that (E, d) is a metric space, we call P,(E), for any p > 0,
the collection of elements p € P,(E) such that

Jxpe E: f d(zp, x)Pp(dz) < +o0.
E
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In fact, the integral above is finite or not, whatever the choice of xyp. We then define for any p > 1, the

p-Wasserstein distance on P, (E) as

1/p
4y (p,v) = inf <J d(xyy)pﬂ(dﬂ%dy)) . v e Pp(E),
WEH(%V) ExE

where IT(u, v) stands for the set of all couplings of 1 and v (i.e., all the joint probability measures on

E x E with p and v as first and second marginals).

In this paper, we mainly use a probability-based approach, often switching between the measure-
valued stochastic process m and its probabilistic counterpart X, which solves Equation (3.5). At this
point, it is worth noting that we are concerned with a stochastic process (m;);>0 that takes values in
the space of probability measures P(R?). This means that at each time ¢t > 0, we are dealing with
measures on the space of probability, rather than on the underlying space R. To study this process,
we use a probability-based approach and introduce several definitions that are specific to this setting.
For instance, we define the notion of an invariant measure in P(P(R%)), which is a probability measure
that remains invariant under the evolution of the stochastic process. These definitions are essential for

our analysis and detailed below.

Definition 2.2. Let us consider a random variable X defined on the filtered probability space (0, F,F, P),
and P € P(P(R?)). According to Lemma 2.4 in [CD18b], for P* — a.e. wy € Q°, X (wy,-) is a random
variable on (', F*, P1). By defining L1(X) : Q° 5 wy — L(X (wo,-)), we get a random variable from
(Q0, 30 PO) into P(R?), providing a conditional law of X given F°. Finally, we say that L(X) = P
whenever L'(X) is distributed with respect to P.

Definition 2.3 (Invariant measure). « We say that P € Py(P2(R?)), is an invariant measure for
the process (my)¢=0, if whenever my is distributed according to P, then at each time, the law of m;

is independent of t. More precisely, we say that P is an invariant measure if and only if

L(mgy) = P = L(my) =P, Yt>0.

« Wesaythat a stochastic process X on the probability space (Q, FF=(Ft)=0> ]P’) admits an invari-
ant measure in Po(Po(R?)) if and only if, the measure valued stochastic process m; = £ (Xﬂ&’?)

admits an invariant measure.

Definition 2.4. For any function f, with at most linear growth, such that (x,y) — f(|z — y|) defines a
distance on R?, we define the following distance on P1(R?)

5= ot ([ e shys(anan). @)

Moreover, we define on P1(P1(RY)),

Q) = e | )
Pa(RE)
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forany P,Q € P1(P; (Rd)).

1.1 The process m as a mean field limit

Thanks to the definition of the previous subsection, we are now ready to give an interpretation of
the process (m;) in terms of mean field limit for interacting particle system. Let us consider Py €
Po(P2(R?)), let also N > 1 be an integer, and (Xé’N, o ,XéV’N), N random variables which are
conditionally independent and identically distributed with respect to F3, such that £ (X S’N) = P for
alli e {1,..., N}. We now define the following interacting particle system

de’N — —‘VV(Xf’N )= NI VWY — x)N)dt + odBf + ood B,

X2 = Xgt, vie{l,...,N},

where the B? are independent d-dimensional F!-Brownian motion which are independent o . Then,
h he B’ dependent d-d 1F!-B hich depend fFO. Th

we consider the mean-field limit system (X', ..., X®) driven by

dX} = —VV(X}) — VW = my (X}) dt + 0d B} + 0odBY,
X\it:O =X{, Vie{l,...,N},

where (X(i])i are conditionally 7id random variables with respect to 9, such that £ (Xé) = Py, for all
i € {1,...,N}. Our framework is exactly the same as the classical one for mean field games system
with common noise. However here, the law of the initial conditions is random. Then, conditioning
with respect to the o-algebra 9, we get back to a more classical framework where the initial condition
is a deterministic measure. More precisely, as stated in [CD18b], under sufficient regularity conditions
on the transport part b mainly Lipschitz continuity with respect to the space and measure variables, we
get that for any fixed ¢t > 0,
Jim B[X] - XY+ B[ (Y me)] = 0,

where d]§d (-, -) stands for the classical Wasserstein distance on R, and m\ := N~ 3N § XN i the

empirical measure of the interacting particle system.

2 Existence of an invariant measure for the stochastic flow of mea-

sures.

Let us consider a stochastic process (m¢);>o with value in the space of probability measures P (Rd),

and with dynamic given by (3.1). Then, m is a weak solution of

02—1-0(2]

dimy =V - ( Vg +my(VV 4+ VIV mt)>dt — ooVmy - dBY. (2.8)
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More precisely, for all ¢ > 0 and p € C(R?),
d<mt7 §0> = <mt7 Lmt¢> dt + 00<mt7 (VSD)T> dB)?a

where for any probability measure m € P(R?), the operator L,, acts on a smooth function ¢ of compact

support by ) )
oy +o
A
5 ®,

where V, A respectively stands for the gradient and laplacian operator, while - denotes the usual inner

Ly =—(VV + VW xm)- Vo +

product in R?, and for any ¢ € C*°(R?) and any probability measure m,

(m; ) = f p dm.
R4
In this section, we aim at giving conditions on the potentials V' and W to ensure existence of an in-

variant measure for the process (m;). Let us now consider the following assumptions:

Assumption 1. 1. There exists a continuous function r : [0, +00) — R, such that

liminf k(r) > 0,
r—+00

and
(VV(2) = VV (1)) - (& —y) = w(lz — y )z - y|*.
2. VV is Ly -Lipschitz continuous.
Assumption 2. 1. W is symmetric, i.e, W (x) = W(—x) for allz € RY,
2. VW is Ly -Lipschitz continuous.

In the following, we work under the set of assumptions 1&2. The assumption regarding confinement
potential V' primarily ensures convexity at infinity, which helps keep the process within a compact set
with a high probability. We can moreover note that this implies the existence of my > 0 and My > 0,
such that

(VV(z) = VV(y) - (z —y) = my|z —y|* — My.

The two following propositions stand.

Proposition 2.5. Under Assumptions 1 and 2 and for an initial condition Xg satisfying E[| Xo|?] < oo,
the conditional McKean-Vlasov equation (3.5) has a unique F-progressively measurable solution (X)¢>0,

with continuous trajectories, such that, for all T > 0, E[supg<,<7 | X¢|?] < o0.

Proof. The proof consists in a straightforward fixed point argument, using the Lipschitz properties of
the two coefficients VV and VW. We refer to [CD18b, Chap. 2]. O

By the superposition principle for conditional McKean-Vlasov equations, see [LSZ20], we deduce

that existence and uniqueness also hold true for the stochastic Fokker-Planck equation:
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Proposition 2.6. Let Assumptions 1 and 2 be in force. For an initial condition mg such that
Epof |z|mo(dz) < o,
Rd

the stochastic Fokker-Planck equation (2.8) has a unique solution (m;);>¢ in the space of F°-progressively

measurable processes with values in Po(R?). Moroever, this solution satisfies

Epo[ sup f |z|?my (dz)] < 0.
0<t<T JRd

In this section, we start with a result regarding uniform-in-time control of the process (X} ):>o with

initial condition in Py (P (R?)) dynamic given by (3.5). To prove the existence of an invariant measure

for (my)¢=0 solution of (3.1), we will use the concept of intrinsic derivative for a functional defined on

a space of measure, as seen in [CDLL19].

Definition 2.7. Let us define CZ(P(R?)) as the collection of continuous, bounded functions I : P(R%) —
R with the following properties:

« There exists a unique continuous and bounded function 0,, F' : P(R%) x R — R such that

. F(m+ h(m' —m)) — F(m) ,
}1}3}) W = y OmF (m,v)(m' —m)(dv),

for allm, m’ € P(RY) and

OmF(m,v)m(dv) =0, me PRY);
Rd

« The mapping x +— OmF(m,x) is continuously differentiable with uniformly bounded gradient
Dy, F(m,z) in (m,x);

« For any fixed x € RY, every component of the R?-valued function m > D,,F (m,x) satisfies the

same conditions as the first two bullet points, resulting in a continuous and bounded D2, F (m, z,y) €
R d;

« Form € P(RY), we use D, D,, F(m,v) to denote the Jacobian of the function x — D, F(m,x),

which is assumed to be continuous and bounded in (m, z).

Proposition 2.8. Considering a measure valued process (m;), which dynamic is given by (3.1), and defin-
ing P, = £ (my), we have that for any bounded and twice differentiable function F € CZ(P(R?),R):

t
(P, — Py, F) =f (Py, MF)ds, Vt>0, (2.9)
0
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where we define, form € P(R%),

024—03

MF(m) = fRd [DmF(m, z) - b(z,m) + v (DmF(m,:v))]m(dx)

2
+ 2 J Tr [Dfan (m, z,y)| m(dz)m(dy),
2 R2d

and where for all measurable and bounded function ® : P(R?) — R, and all P € P(P(RY)),
(P;®) — f B(m) P(dm).
P(RY)
Moreover, P is an invariant measure if and only if
(P,MF)y=0, VFeC(PR,R). (2.10)
The proof of Proposition 2.8 is based on [LSZ20, Section 1.2] and postponed to the Appendix 5.1.

2.1 The existence result

We now present a result about the existence of an invariant measure for the equation of interest, adapt-
ing classical results for McKean-Vlasov equation without common noise where the flow of probability
measures, represented as (my);>¢ is deterministic. We begin this section with the following Lemma,

the proof of which is classical and postponed to Appendix 5.2.

Lemma 2.9. Under Assumptions 1 & 2, let us consider Py € Po(P2(R?)). Then, denoting by (X;); the
associated stochastic process with initial condition £ (Xo) = Py in the sense of Definition 3.1, and dynamic

given by (3.5), we have the following uniform in time moment control:
supE [\Xt|2] < +00.

t>0

Now, we are ready to state the following Proposition:

Proposition 2.10. Under Assumptions 1 & 2, the dynamical system given by (3.1) admits at least an
invariant measure P € Po(Po(RY)), i.e such that

J J |z|?*m(dz)P(dm) < +o0.
PRI JRd
Proof of Proposition 2.10. Let us fix Py € Py(Po(R?)), 4.¢ such that:
f J |z|?*m(dz) Py(dm) < +co0.
P(Rd) JRA

Step 1. Let us now consider a random flow of probability measures (m;);>¢ with dynamic given
by (3.1) and initial condition Py € Po(Po(R?)). At each time ¢ > 0, we denote by P; the law of this
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

measure valued process. For 7' > 0, we define the process (Qr)- o with value in Po(P2(R)) by

T
Qr = T‘lf P,dt.
0

This defines a sequence of probability measures on P(R?). Let us show that (Q7)7>0 admits at least
a convergent subsequence. Thanks to Prohorov theorem, we only need to show that this sequence is

tight. For R > 0, let us consider the set

Kp = {meT(Rd), f

lz[2m(dz) < R}.
R4

This set is compact for the topology of weak convergence in P(R?). Now, for 7' > 0,
T

Qr(Kg)=T7" JO Py(Kg)dt

T
= Til f J ]l{mEKR}Pt(dm)dt
0 JP(RY)
T
1

T L E [ Limierny] dt

where ¢ = sup,.( E [|X;|?] < +00, thanks to Lemma 2.9. Hence, for any € > 0, there exists R. > 0
such that Q7 (Kpg_) > 1 — ¢, for all T > 0. This gives tightness of the sequence and then existence of
a converging subsequence that we keep denoting by (Q7)7~0 in the following.

Step 2. Let us denote by () the limit of this converging subsequence, and show that () is an invariant
measure. Let 7 > 0, and F' € CZ(P(R?), R), thanks to Proposition 2.8, we get that

02—1-0(2)

Qe ME) = [ ([ [DuF(m) b + V - (D F(m, 2))m(dz)
P(RY) N JRA

2

+ 2 o TDmm F (2, y)lm(dz)m(dy) ) Qr(dm)
__1T m,x) - blx,m 02+U(2) m,z))|m(dz
=T LL(W)(JW[DWLF( ,x) b, m) + ——5—=V - (D F(m, z))|m(dz)
2
+ % Tr[D?an(m, T, y)]m(dx)m(dy))Pt(dm)
R2d

=T YPr— Py, F).

Hence, for all F' € CZ(P(R?)), (Q,MF) = 0. This ensures that () is an invariant measure.

Step 3. Finally we move on to the moment estimate. We know that there exists a subsequence of
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3. The case of a uniformly convex confinement potential

Qr which converges weakly to P. Moreover,

f}}ad de 2fm(dz)Qr (dm) J L(Rd JRd |z ?m(dz) P (dm)dt,

and

sup J J f |z|?>m(dz) P;(dm)dt < +oo,
>0 1 P(RY) JRY

as sup;- E [| X;|?] < +00. Moreover, the function m € Py (R?) — o, [z]>m(dz) is lower semi

continuous, and then,

J fm|2 (dz)P (dm) < hmmfff fx|2 (dz) P (dm)dt < +co.
Rd) R4 T—4o0 T Rd) Rd

From the previous result we get the following Corollary

Corollary 2.11. For P € Po(Po(R?)), we have that dfp( )(P, P) < +oo.

3 The case of a uniformly convex confinement potential

In this section, we show that the process (m;)¢>0, driven by equation (2.8), has a unique invariant
measure under strong convexity assumptions on the confinement potential. Moreover, our method
allows us to find exponential rates of convergence toward the invariant measure for a specific set of
initial conditions. We again consider Py € P2 (P2(R%)) and a random variable X such that £ (Xg) =
Py, following Definition 3.1. Next, we study the stochastic process (X;) driven by equation (3.5) with
the initial condition Xg. In this part of the paper, we consider strict convexity assumptions on the

confinement potential V. To be specific, we adopt the following assumptions throughout this section:

Assumption 3. « V' is uniformly convex, more precisely, there exists 3 > 0 such that:

v > p1d.

« VV is Lipschitz continuous.
o W is even, convex, and VW is globally Lipschitz continuous, with Lipschitz constant Lyy .

Thanks to the previous section, under Assumption 3, a process X driven by equation (3.5) has an
invariant measure. Specifically, there exists P € Py(Po(R?)) such that the process (1;);>0, governed
by the dynamic in Equation (3.1) and with an initial condition of £(mg) = P, is invariant. This section
starts with a key result that states uniform propagation of chaos uniformly in time. This result will
then help us establish the uniqueness of the invariant measure and to give a rate of convergence to

equilibrium.
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

3.1 Uniform in time propagation of chaos

In the case without common noise, the uniqueness of the invariant measure for the process X has
been already been established see e.g [CGMO08], [Mal01], and [BGG13]. In this section, our aim is to
adapt this result to the case with common noise and obtain the uniqueness of the invariant measure
for the probability measure valued stochastic process (m;), and exponentially fast convergence to the

equilibria.

Theorem 2.12. Let us consider P,Q € P2 (P2(R?)), and two particle systems X = (X',..., XV) and
XN = (XUN . XNNY with dynamics,

dX} = —VV(X}))dt — VW s my(X})dt + od B} + 0odB?, Vie{l,...,N}, (2.11)

and

dxiN = —vv (X ’N)dtf—ZVW XN - XINVdt+0dBl +00dBY, Vie{l,...,N}. (2.12)
7j=1

where (X{)ie(1,. N} are independent and identically distributed such that L(X}) = P in the sense of
Definition 3.1, and where the same holds for the second system with L(X, Xb N) Q. Then, under assump-
tions 3, there exists a constant C' > 0 depending only on the dimension d and the probability measures P
and @), such that
d, PN N -
E[dIQR (my, ,m?cg\,)] < C(e At 4

1
2&/1\/-1)’
wheremX = NZ 1 0x: andeN = NZZ 1 Xuv

The proof of this result closely follows the approach presented in [BRV98] and [Mal01], which
shows the propagation of chaos for particle systems in cases without common noise. However, in our

situation, we need to be careful with the interaction term and its dependency on the common noise.

Proof. We only sketch the proof, as it follows closely the proof of [Mal01, Thm 3.3]. Leti € {1,..., N},

using It6 formula, we get
d inN ; iN ; iN ;
&|Xt - Xt|2 = _2(Xt - Xt) ’ (VV(Xt ) - VV(Xt))

- = 2 XN X (VWX = XYY - VW s my (X)),
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3. The case of a uniformly convex confinement potential

In order to control the second term, we make the following decomposition:

N
—2(xpN - xp) (N Z WX = XPN) = VW (X)) )

N N
= 20N = xH (N D IW Y - XN - NS YW (X - X))
j=1 =1
. N . ] .
—2(xpN = XD (NN WK - X]) = VW mi(X)))
j=1
_ ~2N T’LN ’

Summing the first term over ¢ shows and using the convexity of the interaction potential, we get

N N
¥ Z g = 2N Y (XY - XPN - X+ X)(YW (X - XT) - YW(X] - X])) <.
i=1 i,j=1

Moreover, the second term can be decomposed into two terms

N
TPV = —20N = X)) - (V= )7 Y VWX - X) = VW emy(X)) )
j=1

. 4 1 N
S (5 ) S )
For the first one

N
E[[VW # mq(X}) Z X))

— E[E[|[VW « mi(X}) - ﬁ Z VI (X] - Xf)‘z‘XZ’??H
j=1

- sl -

N .
S - x|

1 . .

< mIE[IE[WW(X; — X)) A1x},97]]),  forsomej # i
L3 i j i

S Vo w TE[E[]X; - X{1?1x, 971]
2L2

where the first inequality comes from the fact that E[VW (X} — X7)|X{, 9] = VW % my(X{). Then,

57



Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

thanks to Lemma 2.9, there exists a constant C' > 0, such that

B[ (XY - x))- (N =1)! i VW (X} — X{) = VW xmy (X)) |
j=1

N

i i i 1 i NERE
gE[’XtJV _Xt’2]1/2E|:’VW*mt(Xt) — m Z VW(Xt —X'tj)‘ :|
C i,N 11271/2
< —E[| X — X} .
m [| t t|]
Now,
N 2

1 1 i J 2 2LW 12
R — < —7 .
E|| v Nglvmxt X[ | < e BlX

Finally, using once again Lemma 2.9 we get the existence of a constant C, such that:

N 1 1 Ny
B < 05— + o= BN - X{P12
Finally, we get that
N N N
1 d , N 28 , N C - N oN1/2
- o) XZ_XZ, 2 < -2 E Xz_XZ, 2 7(]\7 1 E le _X’LQ)
N;dt [lX¢ ha Nz‘; [|X¢ T+ N1 Z; [1X; (1)

for some constant C' > 0. Let us now denote vy (t) = N~ SN E[| X} — X["N|2], then we have

C

V() < -2 t) + ———un(t) Y2
Uy () < ~280(0) + o (1)
This gives, using Gronwall Lemma:
on ()2 < e Plun(0) + L (2.13)
2B+/N —1

Moreover, vy (0) = N~ SN E[| X} — XS’NP] < E[| X2+ ]Xé’N|2] is bounded uniformly in NV, and
as B[}’ (m’%,, mf)V(N)] < vy (t)/2, we conclude the proof of Theorem 2.12. O
t

3.2 Uniqueness of the invariant measure

The main consequence of the previous result is the uniqueness of the invariant measure for the process
(m¢)=0 driven by (3.1). As recalled at the beginning of the section, we have already shown that under
Assumptions 1 and 2, there exists an invariant measure P. From Theorem 2.12, we get the following

Corollary

Corollary 2.13. Under Assumptions 3, the stochastic process (m;) admits a unique invariant measure

Pe P (T (Rd)). Moreover, for each Py € Po(Po(R?)), there is an exponential convergence to the
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3. The case of a uniformly convex confinement potential

invariant measure:
d — d —
;) (P, Py < e} ") (1, P)2.

This implies uniqueness of the invariant measure and the convergence to this equilibria for a large

class of initial conditions Fy. In order to prove the previous result, we begin with a technical Lemma:

Lemma 2.14. Letm and p be two probability measures valued random variables which are F)-measurable.
Then, there exists a random variable ¢ defined on the space (2, F,P) and with value in P(R?), such that

almost surely:

€€ argminj |z — y|>m(dz, dy).
mell(m,p) JRE

The proof of this Lemma is postponed to Appendix 5.3 and relies on mesurability arguments for set

valued functions issued from [SV79].

Proof of Corollary 2.13. The proof of this result relies on the result and the proof of Theorem 2.12, but
the important difference is the choice of the initial conditions. More precisely, for Py € Po(Po(R?)), we
pick I' € IT (P, P) which is not empty. Let us consider a couple of probability measure valued random
variables (mq, mg), and such that £ ((mg,mg)) = I'. It means that £(mg) = Py and £L(mg) = F.

Thanks to Lemma 2.14, we know that there exists £ random variable such that almost surely,

¢ € argmin J |z — y|?m(dz, dy).
Rd

well(mo,mo)
We consider once again the particle system:
dX} = —V(X})dt — VW = my(X})dt + 0dB! + 0odB?, Vie{l,...,N},

and

N
. ) 1 ) ) .
axiN = —v(xNyat — v YMW(X;N = XPN)dt + 0dB] + 00dBY,  Vie{l,...,N},
j=1

where the (X{, Xé’N) fori e {1,..., N} are independent and such that £((X}, Xé’N)|ff"8) = ¢ From
Theorem 2.12, and more precisely Equation (2.13), we know that there exists a constant C' > 0, such
that:
d - 1N -
E[d3" (mX, miyn)*] < e PE[|IXg — Xo" ]+ CN V2. (2.14)

Moreover, with the particular choice we made for the initial conditions, we get that
1L,N 1,N
E[|Xg — X |*] = E[E[|Xp — X [*F0]]
—|[ o= vPetaza)|
Rd

- f A& (1, )T (dps, o).
T(Rd)
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

Taking the infimum over all the transport plan I' between Py and P in (2.14), we get that

d _ C
B[ (mk, miyy)?] < e 1Ry, Py + I (2.15)
Moreover,
d _
&P, P) < E[d§d(mt,mt)2], (2.16)

where (1) is the stochastic flow of measure driven by (3.1) with initial condition P and (m;) has the
same dynamic with initial condition Py. Now combining (2.15) and (2.16), taking the limit N to infinity,
we get

3®)(p,, P) < B (py, P).

O]

Remark 2.15. Some remarks are in order: (1) We recall that thanks to Proposition 2.11, the distance
d —

dg(R )(Po, P) is finite because Py € Po(P2(R%)); (2) Common noise does not ruin the usual convergence

results. It makes sense because the common noise mainly acts like a drift term in Equation (3.1) and should

not make the usual convergence results go haywire.

3.3 Example

In this section, we consider an Ornstein-Uhlenbeck process with common noise, that is taking V' :  +—
|2|2/2 and W = 0. Let X be a real valued stochastic process evolving in RY, driven by the following

stochastic differential equation:
dX; = —X;dt + 0dB; + 5odBY. (2.17)

Then, the process associated process (m¢);>0 is solution of

02+0§

dymy = V- Vmy +myx | dt — ogVmy - dBY, (2.18)

Moreover, we consider the following initial condition £ (X() = Fp (in the sense of Definition 3.1),
for some Py € Pa(P2(R?)). In this particular setting, we are able to explicitly describe the invariant

measure.

Proposition 2.16. The unique invariant measure P of the process on the space P(R?) is the image, by the
functionw € R? v Ny(—xz,021d) € P(R?) of the measure,,; whereyy, (dz) = (20(2))_1/26_|“|2/2"gdx,
where for all ;1 € R%, ¥ € Mg(R), Ny (11, X) denotes a gaussian distribution in dimension d centered in

and with variance-covariance matrix 2.

The fact that in this case we are able to exhibit the invariant measure comes from the linearity of
the equation and the linearity of the confinement forces which derives from a quadratic potential, as

shown in the proof. The convergence to the equilibria holds at an exponential thanks to Theorem 2.12.
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4. Non-convex potential without idiosyncratic noise

Proof of Proposition 2.16. Let be the process X defined dynamic given by:

dX) = —XPdt — 0od B
L (Xo) = N(0708) :

The initial condition is such that the process X! is stationary. We now define the process (m;), with

mo, such that £(mg) = P as initial condition and staying

o+ o3

dying = V- [ Vi + mtx]dt — 0oViny - ABY. (2.19)

Let us define 7y := (Id — 0" BY)#m;, where § stands for the pushforward operator. Then, applying

[t6-Wentzell formula, we get that m; satisfies

{ Oy =V - [";Vﬁzt + My (z + BY)], (2.20)

mo = mo.
Moreover, we get that m; := N(—(X? + 0¢B}), 0%1d) satisfies,
dimy(z) = =02 (2 4+ XP + 0" B)Ymy (2) d(XP + 00 BY) = 0 2(x+ X + 00 BY) - XPmy(2) dt. (2.21)
Then, as
%ogAmt +div (my (z + BY)) = —0 2XVmy = 02X} - (z + X{ + 00 BY) mu(z),

it shows that (1), satisfies (2.20) with mg = mg and then ((Id + ¢" BY)fim, ), is solution of (2.19) with

the same initial condition. Finally,

mi(dz) = (Id + 6" B)tm,(dz) = cexp{—|z + X?|?/20%}dz.
As (X?); is stationary in R?, (), is also in P(R?), which shows the first part of the Proposition. The
uniqueness of this invariant measure is then given by Corollary 2.13. O

4 Non-convex potential without idiosyncratic noise

In this section, we consider the case of a non-convex potential V' in the particular setting o = 0. It turns
out that in some specific situations, we can use the presence of interaction to achieve an exponential
rate of convergence to the unique invariant measure. More precisely, let us consider m with dynamic
given by
2
o
demy =V - (?Oth +my(VV + VIV % mt)>dt — ooV, - dBY. (2.22)

In the following of the section, let us consider that the potential V' satisfies Assumption 1:
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

1. There exists a continuous function « : [0, +00) — R, such that

liminf k(r) > 0,
r—+00

and
(VV(z) = VV(y) - (& —y) = Kz —y|)lz —y|*.
2. VV is Ly -Lipschitz continuous.

Moreover, in the sequel, we only consider the particular setting where W is quadratic in order to be

able to control the long time dynamic of (m;); with respect to its first moment.

Assumption 4. There exists > 0, such that W (z) = a|z|?/2.

4.1 Existence of an invariant measure

This section begins with a discussion on the existence of an invariant measure, which in this case can be
described explicitly. This comes from the absence of idiosyncratic noise within our system coupled with
the strong convexity of the interaction, which allows the measure process driven by Equation (2.22), to
get close to its first moment on a large time scale, a concept further detailed in Lemma 2.19. Then, we
see that the variance within the stochastic flow of measure decays to zero. It is then natural that the

invariant measure finds its support in Dirac masses, as detailed in the following Proposition.

Proposition 2.17. Under Assumptions 1 and 4, for o large enough, there exists a unique invariant measure

P in the sense of Definition 3.1, and this measure is supported by Dirac masses. More precisely,
P(dm) = J ds, mo(da)
R4

where my is the probability measure on R? solution of—%‘%Amo -V - (VVmg) = 0.

Proof of Proposition 2.17. If P(dm) = {34 ds,mo(da), then for all twice differentiable function in the
sense of Lions derivarives F' € C2(P(R?), R)

I(F) := f?2(Rd) [ fRd (DmF(m,x) (=VV(z) — VIV # m(z)) + J;’divxDmF(m, x)))m(dx)

—i-(;% Tr [D?an(m, x, y))] m(d$)m(dy)} P(dm)
R2d
- f {DmF(éa, a) - (—=VV(a)) + UjdivxDmF(éa, a) + J28Tr [D2,,.F (5., a, a)]] mo(da),

- (2.23)

where, if we define ¢(a) = F(d,), then
V(a) = Dy F(0q,a), Ap(a) = Tr [DZ,,,F(0a,a,a) + D2, F(6q,a)] .
Then, )
I(F) = J {—Vgp(a) VV(a) + U;Acp(a)} mo(da) = 0, (2.24)
R4
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4. Non-convex potential without idiosyncratic noise

as my is solution of U—QgAmo + V- (VVmy) = 0. d

4.2 Uniqueness of the invariant measure and exponential decay

The previous section shows that for ¢ = 0, we can explicitly identify an invariant measure, though
its uniqueness is uncertain due to the non-convex nature of the confinement potential. This section
establishes that, in the absence of idiosyncratic noise, the invariant measure is indeed unique. More

precisely, let us state the following result:

Theorem 2.18. Whenevero = 0 and under Assumptions 3, for any initial conditions Py, Qg € Po(P2(R?)),

there exists a constant C' that does not depend on t such that
d
d‘f(R )(Pt7 Qt) < C<ef€o'(2)t + 67(a72Lv)t>,

for some positive constant £. Moreover, P defined in Proposition 2.17 is the unique invariant measure in
the sense of Defintion 3.4.

This is the main result of this paper, showing is that when o = 0, there is only one invariant mea-
sure, which contrasts with scenarios lacking common noise where multiple invariant solutions exist
as we are in a context with non-convex confinement potential. This theorem reveals that introduc-
ing finite dimensional noise to the system uniquely determines the invariant measure, a result that is
stronger than previous one in the literature. Earlier studies (see e.g [ABKO23]) showed that adding
cylindrical noise could achieve invariant measure uniqueness, but our results go further by showing

that even finite dimensional noise is enough for this purpose.

Proposition 2.17 shows that when ¢ = 0, we are able to identify the unique invariant measure.
Moreover, in Theorem 2.18, we can see that the string interaction structure helps in order to get ex-
ponentially fast convergence to this invariant measure. This may seem surprising initially, but the ex-
planation lies in how the interaction term affects convergence rates. Specifically, in contexts of strong
interaction, the process (m;) is significantly drawn towards its first moment on a large time scale.
This observation plays a crucial role in proving Theorem 2.18, showing that the law of the infinite-
dimensional random measure process m can be equated with the law of its first moment, as detailed in

the following lemma.

Lemma 2.19. Let us consider a probability measure Py € Po(Po(R?)). If (my4); defines the stochastic
flow of measure solution of (2.22) with initial condition Py, we define for allt > 0, p; € Po(R?) the law
of the first moment of my, My = Sz xmy(da). Then, we have for some constant C' that depends only on
Py

7Y (P, 6;,) < Ce~@200)t,

Remark 2.20. The specific form of the invariant measure, as detailed in Proposition 2.17, showcases a
scenario unique to quadratic interactions. However, the insights from Lemma 2.19 holds true even when

we tweak the interaction term to something like

(T, ) >V -—W <x—f@/u(dy)> :
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

provided W is a uniformly convex potential. The critical aspect we are looking at here is not the specific
form of the interaction but how it allows us to identify the process with its mean on a large time scale.

Then, uniqueness of the invariant measure holds for more general interaction potential.

Proof of Lemma 2.19. The proof of this result is quite straightforward and due to the strong interaction

regime. Let us now consider the process X evolving in R? with dynamic
dX; = —VV(Xy)dt — a(X; — Ep [ X¢])dt + 0od BY.
Now, by definition of the Wasserstein distance, we know that
df(Rd)(Pt» 0p,) < E[d} (my, )],
It is also known that the conditional law of the process X at time ¢ > 0 is given by m;. Then
E[d}" (my, pr)] < E[1X, — Ep [X]]].

We are now left with the study of a stochastic process evolving into a finite dimensional space. Writing

the dynamic of the process and using the fact that V'V is Lipschitz continuous, we get

%E [1X: — Epi [X¢]°] < —2(a — 2Cv)E [|X; — Ep1 [ X]?] .

This gives the result applying Gronwall Lemma, we get
E [|X¢ — Ep [X])?] < E[|Xo — Epi [X0]|?] exp (—2(ar — 2Cy)t)

Moreover, we can write
E [|XQ — E]pl [X0]|2] < 2E[|X0|2].

This term is finite as P is assumed to admit a finit moment of order 2, which concludes the proof. [

The aforementioned result shows that over large time scales, the conditional law of the process
X can be identified with its first moment. Consequently, to understand the long-term behavior of the

solution (m;) to Equation (2.22), it is enough to study the long-term behavior of

([, 2metan) n

=

In particular, we would like to show that it admits a unique equilibrium. We are then left with the study

of the following dynamic:
dEpi [X¢] = —Ep [VV(Xy)]dt + ood BY.

The dynamic here looks like the one of a classical diffusion process. This similarity is explicited in
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4. Non-convex potential without idiosyncratic noise

the following expression:
dEpi [X;] = =VV (Ep [X;])dt + ) dt + ood BY,

where £/ := —Ep1 [VV(X;)] + VV (Ep1[X¢]). Further, using the Lipschitz continuity of V and with
a similar approach as in the proof of Lemma 2.19, we can show that " decays exponentially fast to
0 over time. Then, the dynamics of (Ep:[X;])t > 0 closely look like the one of a diffusion process
with confining potential. Following the methodology of [Ebe16], we show that such process exhibits a

contraction property in the Wasserstein distance. More precisely, we have the following result:

Proposition 2.21. Let us consider two probability measures Py, Qg € Pa2(P2(R%)). Moreover, if (mf);
and (m?)t define the stochastic flows of measure solution of (2.22) with initial condition Py and Qo
respectively, we define for allt > 0, p;, and G; the law of the first moment of m{’, and m? respectively.
Then, we have for some constant C' that depends only on Py and Qg

A% (B, @) < C(e= @200t 4 o~lotty,

In order to prove Proposition 2.21, let us proceed as in [DEGZ20], and introduce the following
quantity:
Ry =inf{s > 0,k(r) >0, Vr > s},

Ry =inf {s > Ry, s(s — Ro)x(r) > 4og, ¥r > s}.

Moreover, we consider ¢, @, g : [0, +0) — [0, +00) defined by

() = exp <—212 J m_(s)ds> ,

-1
m q)(s)gp(s)_lds) . We now define an increasing function

where _ = max(0,—k) and ¢ = ( 0

f:[0,400) — [0, +0) by: )
£) =f o(s)g(s)ds.

0
The function f that has been constructed is clearly positive, non-decreasing and concave. Moreover, it
satisfies
(Ro)r/2 < f(r) <. (2.25)

This ensures that (z,y) — f(|]z — y|) defines a distance which is equivalent to the Euclidean one.
Below, we will use contraction properties in Wasserstein-1 distance based on the underlying distance

f(Jz — y|). These contraction property is a consequence of Proposition 2.22.
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

Proposition 2.22. The following inequalities holds for all v > 0:

F10r) = () () < —LF ()2

2
20

The proof of this Proposition is found in Appendix 5.4 for sake of clarity but is exactly the same

as in [Ebel6]. However, it is essential to emphasize that the function f was constructed to achieve

a contraction inequality, ensuring uniform propagation of chaos over time. These techniques were

greatly inspired by [LR86] and further developed in [Ebe16]. Let us now consider Let us also consider

§ > 0, and define X% and Y with common dynamic given by:

dX? = —VV(X?)dt — a(X? — Ep [XP])dt + oo{ms(ED)ABY + As(ES)dBY}

and

AYP = —VV(YP)dt — a(YP — Ep YP)dt + oo{(Id — 2e2e8” Vs (ES)dBY + \s(ES)ABY}.

where
« BY and B are independent Brownian motions adapted to F°

« Forallt > 0and § > 0, we denote

E} = Ep, [X] = Y/);

e« Forallt > 0andéd > 0,

s BB 1B %0,

0 else.

+ We define a non-decreasing and continuous function 7, such that for x € RN,

1 if|z] =1

0 if|z] <1/2,
and, consider a non negative function A such that

m(z)? + M) =1, VYzeRY.

Moreover, we extend 7 on the whole space, with the constraint that this remains a non decreasing

and Lipschitz continuous function. Finally, we define 75 : = +— 7 (2/9).

The coupling just introduced is known as coupling by reflection. However, its application in this

context is not immediately intuitive. Particularly intriguing is the reflection performed on the common

noise component. However, the forthcoming Lemma proves that such a reflection on the common noise

does not affect the properties of the conditional law.
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4. Non-convex potential without idiosyncratic noise

Lemma 2.23. There exist two d-dimensional Brownian motions () and (8Y) adapted to the filtration
FO such that if we define for allt > 0, mg(,é = LY(X)) and mf’(s = L1(Y}), we have

2
dtmtX’(S =V- (%thX’é + mi(’(s (VV + oz(mtX’(S — f xmtx"s(dx))))dt —oogVmy - dﬁ?,
Rd

and

i

dtmf’é =V ( 5

me"; + m}“(vv + oz(mz/’(S — J xmf’é(dx))ndt —ooVmy - dﬁ?.
R4

The proof of this lemma is quite straightforward and then postponed to the Appendix 5.5. This is
quite natural because we only reflect with respect to something that is measurable with respect to the
common noise, see [CD18b, Thm 4.14] for further details.

Now that we defined the coupling and that Lemma 2.23 ensures that this coupling gives the expected

Equation, for any § > 0, we can show the following proposition:

Proposition 2.24. Foranyd > 0 andt > 0,

AEp [X7] — B [V]] = —€f - (B [V (X))] — Epr [VV(¥)] )t (2.26)

+ 200ms(E?)(e9)TdBY.
Proof. Using 1td’s formula, we get that for any § > 0,

d[Epr [X7] = Ep [YY])? = = 2(Bpi [X[] — Bpa [YY]) - (Bpa [VV(X))] = B [VV (YY)])dt
+ 400 (Ep1 [X7] — Bpr [V )5 (E7)ef (e)) T dBY
+ dodrs(E2)?(e))Tdt.

For any ¢ > 0, let us introduce 1. : [0, +00] € 7 — (r + €)¥/2. This function is continuously twice

differentiable, then we can write

e (|Bp: [X7] — Ept [YP11?) = = 20L( B ) By - (B [VV(X7)] = Epi [VV (Y?)])dt
+ dooyl(|B) [P By ms (e (ef) " dBY
+ dog UL (1B [*)ms (E7 ) (e) dt
+ 8ol (| B 1) By [Pus () (ef) dt.

€
We now want to take the limit ¢ — 0. Using dominated convergence theorem and stochastic dominated

convergence theorem as stated in [RY99], combined to the fact that 47/ (r?) < 1, we can deal with
the first two lines and get that for all ¢ > 0

i [ QLB P)ES - (Ent [VV(XD)] — Bt [VV(YD)])ds
e=0Jo (2.27)

_ f e (B [VV (X)) — Bt [TV (V)]s
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

and

t t
lim f 4ol (|ES ) Ems (E2)ed(e2)TdBY = f 4ooms(E2)(e2)TdBY (2.28)
—vJo 0

For the two last, we need to take advantage of the presence of the function 75 for 6 > 0. In fact, we

have
3L Dm0 e) + ot () D P (B e)
< |ma(Bf)2at (40tEP) + suL( BB ).
Moreover, we know that . (r?) + 2" (r?)r? < r=3, for all 7 > 0 and ¢ < 1. Using the presence of

ms, we have that the integrand is null near 0. Then, we can once again apply dominated convergence

theorem and obtain

t
timy [ 4 {oBu B RS (BT + 8B EIP)ES Pus (D) h s —0. (229)
Finally, combining Equations (3.61), (3.63) and (3.65), we get the expected result. O

Using the results of Proposition 2.24, we are ready for the proof of Proposition 2.21:
Proof of Proposition 2.21. From Proposition 2.21 and using Itd formula to the function f, we obtain
AF (L) = ~F (EDel - (Em[VV(X])] — B [TV (V)] )dt
+ 200 f' (1B} )75 (E) (€)' d By

+ 200 " (| B} |)ms(E7)?dt.

To control the first term, we carry out the following decomposition

—f (1B} - (Bm[VV(XP)] = Em[VV(YD)]) = —F/(IE]))e} - (Bpa [VV(X])] = VV (Em [X]]))
— F(IE{ e - (VV (Epi [X]]) — VV (Ep [Y)]))
— LB De] - (Bpa [VV(X))] = VV (Ep1 [X]])).

Taking the expectation and leveraging on the fact that f’ is globally bounded, the existence of C; > 0,
independent of ¢ and 4, such that

—f' (1B et - (Bp[VV(XP)] = VV (Epi [XP])) < CLE [| X7 — Eps [X7]]]
~f(E])e} - (Be [VV(XP)] = VV(Ep [X7])) < CLE[|X] — Epa [X7][]
Moreover, using Proposition 2.19, we obtain

—E[f'(|E)e) - (Em[VV(XD)] — Em[VV(Y)])]
< Che VIR f(|E]|)ed - (VV (Ep [X7]) — VV (Ep [YY]))].
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4. Non-convex potential without idiosyncratic noise

Now, using the contraction property of f stated in Proposition 2.22, we get

d —(a—
SEF(IB)] < Cre™@2b — (o3 {(|B?) + (B3 + || (2:30)

Now, letting § — 0, we obtain:

()] < Cae o250 — to3 ().

Using Grénwall Lemma in Equation (2.30), we get
E[f(|Epi [Xi] — Epi [Vi]])] < Cy(e= (@720 4 o=t
for some C3 that only depends on Py and (). Finally,
dF' (P, @) < El[Bpi [X,] — Ep [Yi][] < Cafe (07200 4 e70").

Thanks to Equation (2.25), we know that dﬂ}d and dlfd are equivalent, and we have the expected result:

A% (5, §1) < C(e=@=2LV)t . ~tobty

for some C' > 0. Moreover, C' < +00 as soon as
d,_ _
4t (po, @) < +0,
which is the case since Py and )y admit a finite moment of order 2. O

The proof of Theorem 2.18 is now quite straightforward. In fact, we have shown in Lemma 2.19
that we can identify on a large time scale the process of interest (m;); solution of Equation (2.22) with
its first moment. Then, in Proposition 2.21, we proved that the dynamic of the latter admits a unique

equilibrium, which shows the expected result.

Proof of Theorem 2.18. Taking advantage of the previous sections, we can perform the following de-

composition:
P(RY P(RE P(RE P(R?
75 (P, Q) < dTFV (P, 65,) + A7) (85,00 + AT (64, Qu).

From Lemma 2.19, we immediately get

P

d d
dl(]R )(Pt7 6@) + dff(R )(6@57 Qt) < Cei(a+2LV)t'

d
Moreover, for the remaining term, one can write that df(R )((5@, dq,) < dlfd (Pt, @). Then, one can

conclude to the expected result using the result of Proposition 2.21, we can conclude the proof. O
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

5 Appendix

5.1 Proof of Proposition 2.8

Equation (2.9) comes from Section 1.5 in [LSZ20] (Equation (1.15)). Hence, if (m;) is an invariant
measure in the sense of Definition 3.4, then P straightforwardly is a solution of Equation (2.10). Con-
versly, let us consider a probability measure P, solution of Equation (2.10). More precisely, for all
F e C3(P(RY))

(P,MF) =0.
Let us consider T" > 0, then
f [VV + TW «m|2s,, P(dm)

P(R4)

<c(i+] |vv<x>|2m<dx>ﬁ<dm>+j |, 19w (o) Pmia) Pam) )
P(RY) P(RY) JRA

<c(1+ f Jm? (dz)P(dm) + J W = m(0)[2P(dm))
P(R) JRd P(RA)

< C’ 1+ L(Rd) JRd Ix!2m(dw)15(dm)),

for some constant C' that may change from line to line and depends only on the Lipschitz constant of
VV and VW. Then using Proposition 2.10, we get that

f [VV + VW % m|7a,, P(dm) < +o.
P(R4)

Applying Theorem 1.5 in [LSZ20], we get the existence of a process (11¢) € C([0, T], P(R?)) such that s
has dynamic given by (3.1) and for all ¢ € [0, 7], £(u;) = P. Then by weak uniqueness of the solutions

of (3.1), we get that P is an invariant measure for m in the sense of Definition 3.4.

5.2 Proof of Lemma 2.9

We consider the process (X;), driven by the dynamic (3.5) and with initial condition X such that
L(Xy) = Py, in the sense of Definition 3.1. Let us denote in the following ma(t) = E [\Xt\z]. Then

expanding using Ito formula and taking the time derivative, gives:

mh(t) = —2E[X; - (VV(Xy) + VIV 5 my(Xy))] + (02 + 03)d
= 2E[ X; - (VV(X;) — VV(0))] — 2VV(0)E [X;] — 2E[X; - VWV 5 my(Xy)] + (08 + 02)d.

Moreover, if X; an independent copy of X4, then:

VW s my(Xy) = JRd VW (X — y)m(dy)

— E[VW (X, — X,)|X;, 53]
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5. Appendix

Now, the fact that W is even gives 2E[ X, VW = m,(X,)] = E[(X, — X;) - VW (X, — X;)]. This de-
composition is the key, the end of the proof'is straightforward using Assumption made on the potential

W (see Assumption 2).

5.3 A measurable selection result

In this part, we will mainly prove Lemma 2.14:

Lemma 2.25. Letm and p be two probability measure valued random variables which are F)-measurable.
Assuming that both random measures m and p admit a moment of order two almost surely, then there exists

a random variable &, such that almost surely:

€€ argminf |z — y|*m(dz, dy).
mell(m,p) JR

Proof. The purpose of the proof is to show that there exists a measurable function ¢ : P(R?) x P(R?) —
P(R?), such that for all (m, p) € P(R?) x P(R?) — P(R?), ¢(m, p) € ope(m, p), the set of minimizers
for the transport problem. First of all, it is straightforward that Il is never empty. Then, we need to

show that the set valued function

P(R?) x P(RY) — 2P
(m, p) = TL(m, p),

D

is measurable, where 24 stands for the set of subsets of A. Considering the graph I's, of ®:

Iy = {((mvp)7§)7 fe (b(m?p)}a

itis clear that it is a closed set, and then measurable. In particular, the multi-application ® is measurable.
Moreover, Lemma 12.1.7 in [SV79], the application ¥ which associate to any compact set K € P(R)?
the set

U(K) = arg inf J | — y|7(dz, dy)
€K JRr2

T
is measurable. Then the function

P(RY) x P(RY) — Ens(P(R?))
(m, p) — HOpt(m» p);

A

is a compound of two mesurables functions. Finally by the measurable selection theorem, there exists
a measurable function ¢ such that for all (m, p) € P(R?) x P(RY), ¢(m, p) € Lope(m, p). O
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

5.4 Proof of Proposition 2.22

This proof is given in [Ebel6], we repeat it here for the reader convenience. We begin with the easy

case, which is whenever r < R;. In fact in this case we have:

f'(r) = ¢'(r)g(r) + ¢(r)g'(r)

1 l
= _2(0_2 + Ug)rﬁ—(r)f(r> - 5@(7’)
1 l
_2(0_2 + Ug)rﬁ—(r)f(r> - §f(7°)
This gives:
7 1 , 1
P00 = RO ) < g ) (50 4 () = 50
1
< _if(r)a
because x_(r) — k() = 0. The case where r > R; is more intricate. We can easily see that f”'(r) = 0,
and
1 1
—mrm(r)f/(r) < —mrﬁ(r)cp(Ro) (2.31)

< —r¢(Ro) (Ri(R1 — Ro)) ™.

We easily show that the function r» — 7/®(r) is non-decreasing on [R;, +0o[. Then, it comes that
rRyY < ®(r)®(Ry)~", which gives:

ST a2y ) <~ RR() (1) (R~ F)
Moreover, .
B(r) = | plo)ds = (= Ra)e(Ro) + B(Fo).
and R1
| @e)ts) s = (R0 (Ro) (s = Ro) + 5 (R = Ro)®
= (R~ Bo)oo)™ (®(R0) + 3 (R~ Ro)o(Ro))
> (R1 — Ro)®(R1)p(Ro) ™" /2.
Finally, .
(RO @) Ry~ Ro)) ™ < =580 | B(e)ele)as)
< _gf(r)v

because ®(r) = f(r) for all r > 0;
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5.5 Proof of Lemma 2.23

Let us consider a bounded and twice differentiable function ¢ : R? — R, using It6’s Lemma

A6(X,) = VO(X)dX, + J AG(X)d(X

= —Vo(Xy) VV(Xy)dt — Vo(Xy) VIV (X, — Eq[X])de
+ 00V o(Xy){ms(E)dB) + As(Ey)dBY}

0.2
+ ?OAgb(Xt)dt.
Now, taking the expectation under P!, we have

dEp: [¢(X;)] = —Epi [Vo(X)VV (X)]dt — Epi [V (X)) VIV (X, — Eq[X,])]dt
+ 00Ep [V (X)) {ms(E)dB? + M\s(E;)dBY}

02
+ 30151?1 [Ap(X,)]dt.

This is quite important here to notice that everything comes from the fact that we perform the reflection
with a term that is measurable with respect to the common noise part. Then, performing integration by

part we get the expected result.
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Chapter

Ergodicity of some stochastic Fokker-Planck

equations with additive common noise

Abstract

In this paper we consider stochastic Fokker-Planck Partial Differential Equations (PDEs),
obtained as the mean-field limit (i.e., as the number of particles tends to c0) of weakly in-
teracting particle systems subjected to both independent (or idiosyncratic) and common
Brownian noises. We provide sufficient conditions under which the deterministic coun-
terpart of the Fokker-Planck equation, which corresponds to particle systems that are just
subjected to independent noises, has several invariant measures, but for which the stochas-
tic version admits a unique invariant measure under the presence of the additive common
noise. The very difficulty comes from the fact that the common noise is just of finite dimen-
sion while the state variable, which should be seen as the conditional marginal law of the
system given the common noise, lives in a space of infinite dimension. In this context, our
result holds true if, in addition to standard confining properties, the mean field interaction
term forces the system to be attracted by its conditional mean given the common noise and
the intensity of the idiosyncratic noise is small.
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1. Introduction

1 Introduction

This paper addresses the long-term behavior of solutions to a class of non-linear Stochastic Partial
Differential Equations (SPDEs) of the form

d¢my =V - <02J2H78th — mtb(‘,mt)> dt — ooVmy - dB?, on [0, +0) x RY, (3.1)
where BY = (BY);> is a d-dimensional Brownian motion, called common noise. Above, the unknown
(my¢)¢=0 is regarded as a stochastic process with values in the space P(R?) of probability measures on
R?. Accordingly, the coefficient b is a function from R? x P (Rd) to R? depending on both space and
measure arguments. The two parameters ¢ and o are non-negative scalars: the former is the intensity
of the so-called idiosyncratic noise and the latter is the intensity of the common noise.

Equation (3.1) is in fact intended to describe the flow of conditional marginal laws of the solution

to the conditional McKean-Vlasov equation:
dX; = b(Xy, £(X¢|B°))dt + 0dB; + 00dBy, t =0, (3.2)

where B is another Brownian motion, independent of B?, and £(-| B") stands for the conditional law
given the realization of the common noise. Formally, m; in (3.1) is expected to coincide with £(X;|BY)

in (3.2). The rigorous connection between (3.1) and (3.2) is addressed more carefully in the core of the

paper.

1.1 Deterministic Fokker-Planck equations

When o = 0, i.e,, in absence of common noise, Equation (3.1) boils down to a standard Fokker-Planck
equation describing the evolution of the marginal laws of the solutions to the standard McKean-Vlasov
equation (3.2) obtained by replacing £ (X;| B%) by the law of X;. In this setting, the long-time analysis of
the solutions has been a notoriously challenging problem for over twenty years, giving rise to numerous
contributions, many of them still recent. While the problem is of mathematical interest in its own right,
it also finds some application to calculus of variation since certain equations like (3.1) can be interpreted
as gradient flows on the space of probability measures, see the seminal works [AGS08, CMV03, JKO98,
Ott99, Ott01]. For instance, such a gradient structure occurs when b(x, ) = =VV(z) — VIV * u(x),
for two differentiable real-valued functions V and W on R%, W being symmetric, where * stands for

the convolution operator. In this case, the potential lying above the dynamics writes

2
ped®) e [ v+ [ | We o + G [ n(e)ud. 6

In fact, due to the mean field interaction (whether it derives from a potential or not), the sole pres-
ence of the noise B in the dynamics (3.2) (with g = 0) does not suffice to guarantee the uniqueness
of an invariant measure (or equivalently of a stationary solution to (3.1)) under quite general condi-
tions on b. This is in contrast with the long run behavior of Stochastic Differential Equations (SDEs) (or

equivalently linear Fokker-Planck equations), for which mere confining properties of the drift suffice to
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produce ergodicity (provided o > 0). In the mean field setting, some further structural conditions are
necessary. In the potential example (3.3), a standard condition is to demand V and W to be (strongly)
convex, which forces in fact a form of convexity of the potential (3.3) on the space of probability mea-
sures. We refer for instance to the earlier works [BRV98, CMV03, Mal01, Mal03], which also include
additional convergence results to the stationary regime. For a tiny list of variants, in which perturba-
tions of the convex potential case are addressed, we refer to [Bas20, BGG13, But14, DMT19, DEGZ20].
We refrain from detailing all the possible extensions of the previous cases under which the invariant
measure remains unique. Let us just say, for our purposes, that the above list of references includes
cases where the lack of convexity is compensated for by the presence of a strong enough diffusion co-
efficient. This large noise regime is compared with our own setting in Remark 3.9 below. At this point,
we would especially like to stress that there are known explicit simple cases in which uniqueness does
not hold, which observation supports our previous claim: the presence of a nonlinear mean field term
may easily lead to the existence of multiple invariant measures, even in situations where the mass stays
confined under the dynamics (3.1). Specifically, it has been proven in [HT10] (see also [Daw83]) that,
when V is only uniformly convex outside of a ball but admits a double-well, W is quadratic (but non-
zero) and the diffusion coeflicient o is sufficiently small, there exist several stationary solutions to (3.1)

when it derives from the potential (3.3) (and o¢ = 0).

1.2 Common noise

Very basically, our primary objective in this article is to revisit the class of examples addressed in
[HT10] , but in presence of a common noise, i.e., g > 0. In this regard, it is worth noting that, when
b(xz,u) = =VV(x) — VW % p(x), with V being uniformly convex and W being convex, the common
noise does not change the picture recalled in the previous paragraph. Indeed, the second author has
shown in [Mai23] that (3.1) has a unique invariant measure, which is consistent with the results obtained
earlier without common noise with the slight subtlety that the invariant measure is then understood
as a probability measure on P(R%).

Of course, our goal is to go one step beyond and prove that the common noise can change the picture
positively, meaning that it can force uniqueness of the invariant measure even though the deterministic
analogue of (3.1) (i.e., with og = 0) has several stationary solutions. Actually, this type of result, if
it holds true, must be part of the very broad theory of ergodic Markov processes, with the specific
feature that the state space here is P(R%). It is worth observing that, from the same point of view, the
deterministic and linear analogue of (3.2) (i.e., b only depends on x and og = 0) should be regarded as
a Fokker-Planck equation obtained by forcing a standard ordinary differential equation by a Brownian
motion of intensity o. This is just to say that, in the Euclidean setting, the same program is very
well-understood and just consists in addressing the ergodic properties of a non-degenerate SDE. For
sure, the very difficulty in our setting comes from the fact that the unknown in (3.1) lives in a space
of infinite dimension (once again, the space of probability measures) while the noise (i.e., B) is just
finite-dimensional and thus completely degenerate. This says that, at best, noise can be expected to
restore uniqueness of the invariant measure only in specific cases. And, precisely, this is our objective
to identify a class of cases that would become ergodic under the action of the common noise and that

would include some of the examples addressed in [HT10].
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In fact, this question was already addressed by the second author in [Mai23] when o = 0, leaving
open setting with o > 0. Apart from this, the idea of using the averaging properties of the common
noise has been used in several contexts, for instance in the analysis of existence and uniqueness of
equilibria to mean field games (see for instance [DFT20, Tch18b] for games with a finite dimensional
common noise and [Del19] for games with an infinite dimensional common noise). More recently,
the first author has just released an article, [DH24], in which the ergodic properties of (3.1) (or, more
precisely, (3.2)) are studied when b is general but the common noise is infinite dimensional and the
dimension d is 1. Part of the challenge then precisely lies in the construction of the noise, which is
a question different from the one addressed here. A similar problem was addressed in the prior work
[ABKO23], for another type of infinite dimensional common noise that may not preserve the space of

probability measures.

1.3 Our contribution

We here focus on drifts of the type
b(x,p) =G(x)+ F <x - J x u(d:c)) , zeRY peP(RY),
R4

where I and G are functions from R? into itself. The function F is assumed to be strictly decreasing,
which occurs for instance if ' = —VW for a strictly convex function. More interestingly, G is just
assumed to be confining in a mild sense that is detailed in Assumption 5 below. In particular, G is
not required to be strictly decreasing and, when it derives from a potential V, V may not be convex.
Therefore, this framework allows us to choose G = —VV for a non-convex potential V and F' =
—VW, for W(z) = ax? for some o > 0, and thus contains the case treated by [HT10] (up to an
additional common noise), since b(z, p) rewrites —VV (x) — VW * u(x).

Our main contribution is to establish that, for a small diffusion coefficient ¢ and for an interaction
force F' that is sufficiently decreasing, the system has a unique invariant measure, which attracts ex-
ponentially fast any other initial condition (with appropriate integrability properties). Our strategy of
proof is based on the key idea that the long run behavior of (3.2) should be dictated by the long time
dynamics of the conditional mean E[X;|B°] given the common noise. However, this intuition is not
completely correct, as the distance between X; and its conditional mean E[X;|B°] does not tend to 0
in long time, at least when o > 0. In fact, some residual fluctuation persists due to the presence of the
idiosyncratic noise and this is one of our main achievement here to explain how to handle this residual
fluctuation in long time. This is precisely the point where we need o to be small and the interaction
force F' to be sufficiently decreasing. As for the function G, it mainly plays a role in the long time anal-
ysis of the conditional mean E[ X;|B"] itself, which is shown to share many similarities with the long
time analysis of the (standard) SDE driven by the drift G and the noise 0o B°. In particular, we draw
heavily on previous works on coupling methods for long time analysis of SDEs, especially the approach
developed in [Ebe16] on couplings by reflection (inspired from [LR86]), which plays a key role in our

study. Notice that our result complements the earlier one [Mai23] dedicated to the case o = 0.
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1.4 Further connections with the literature on mean field models

Stochastic PDEs like (3.1) and related conditional McKean-Vlasov equations of type (3.2) were intro-
duced in [DV95, KX99]. Further, they were studied in a series of works [LPS13, LPS14, GS15, FG16,
GS17, FG19] in connection with stochastic scalar conservations laws, in which case oq is typically
required to depend on the local value at point = of dm;/dxz. The more recent contribution [CG19]
addresses uniqueness to (3.1) under weaker conditions than in [KX99]. Equation (3.1) has also become
very popular in mean field game theory, see for instance the book [CDLL19]. A variant, including a
reflection term, has been studied recently in [BCCdRH20]. As for (3.2), we refer to [HvS21] for a general
existence and uniqueness result of weak solutions.

Last but not least, it is worth recalling that the connection between nonlinear Fokker-Planck equa-
tions and McKean-Vlasov equations (without common noise) goes back to the pioneering works of
[Kac56, McK66, Fun84]. In this context, a key question concerns the particular approximation of the
solutions, usually referred to as propagation of chaos, see for instance [Szn91, Mél96]. In connection
with the existence of stationary solutions to the Fokker-Planck equation (3.1), it is in general a difficult
question to wonder whether propagation of chaos holds uniformly in time or not. We feel better not
to give a list of references in this direction but we quote that the question appears for instance in the
earlier contribution [CGMO08]. Obviously, this would be very interesting to address the same problem

but in presence of a common noise for the model studied here.

1.5 Organisation of the paper

In Section 2, we list the assumptions and give the main statements of the paper. We also address some
examples and compare in particular our results with those from [HT10] (when og = 0 and uniqueness
does not hold). The proof of the main theorem (Theorem 3.8) is split in two parts. A first step is to
derive Theorem 3.8 from a key auxiliary estimate (Proposition 3.7) on the contraction properties of the
semigroup induced by the solution of (3.1). This is done in Section 3. A second step, which is in fact
the core of the paper, is to prove this key estimate. We do so in Section 4, using coupling arguments.

Auxiliary results are proven in Appendix.

1.6 Notation

Throughout the paper, for a Polish space F, P(F) stands for the space of Borel probability measures
on E equipped with the topology of weak convergence and the corresponding Borel o-algebra (which
is induced by the mappings m € P(E) — m(A) for any Borel subset A of E). Whenever there exists
a distance d so that (E, d) is a metric space, we call P,(E), for any p > 0, the collection of elements
p € Pp(E) such that

Jxpe E: J d(zo, x)Pp(dz) < +o0.
E

In fact, the integral above is finite or not, whatever the choice of zy. We then define for any p > 1, the

p-Wasserstein distance on P, (E) as

1/p
4y (p,v) = inf (J d(z,y)" m(dz, dy)) . v e Pi(E),
el () \JExE
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where IT(u, v) stands for the set of all couplings of 1 and v (i.e., all the joint probability measures on
E x E with p and v as first and second marginals).

Also, for any measurable ¢ : E — R and any probability measure m € P(E), we define the duality
product (- ; -)g as

@m@Esz@m@m

whenever the integral in the right-hand side does exit (for instance so is the case if ¢ is bounded or ¢
is at most of linear growth and m € P (E) and so forth...). When E = R¢, we define

pi(m) == fRd zm(dz), me Pi(RY);
iz (m) = fRd w2 m(dz), m e Pa(RY);
om) i= | o= pam)? mida), me P2

which stand respectively for the expectation, the moment of order two and the variance of m. It is
important to pay attention to the fact that despite the similarities in the notation, the objects p;(m) €
R? and j2(m) € R are of different dimensions.

When m is random, say is a measurable mapping from (£2y, F°, Py) into P(E) (or P1(E)), its law
P is an element of P(P(E)) (or P(P1(F))), in the sense that, for any bounded measurable function
¢ : P(E) — R, Eo[p(m)] = {(P;¢)p) (and similarly, when working on P1(F)), where Eq is
the expectation associated with Py. Repeatedly in this paper, we also consider continuous stochastic
processes (1 );>0, typically constructed on (Qo, F°, F?, Py ), with values in the space P; (R?) equipped
with d%w (and thus also in P(RY), equipped with the weak convergence topology). When (m;)¢0 is
Markovian, we define its semigroup (% );=¢ by letting, for any function ¢ : P(R?) — Randany ¢ > 0,

P(R?) — R

m — Eo[o(my)|mo = m].

,@t(ﬁi

Moreover, for any twice differentiable function f : R¢ — R, Vf, Af and V2 f respectively stand
for the gradient, Laplacian and Hessian matrix of f. For any differentiable function F : R — RY, we
denote by DF : R? — My(R) its Jacobian matrix.

For any real squared matrix A € My(R), we denote the Euclidian norm of A by

Al = +/Tr(ATA),

with AT and Tr respectively standing for the transpose matrix of A and the Trace operator on M4(R).

Lastly, the Euclidean norm on R is denoted | - | and the inner product -.
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2 Main result: uniqueness recovery thanks to common noise

2.1 Stochastic Fokker-Planck PDE and Conditional McKean-Vlasov SDE

In this paper, we focus on a mean field model with common noise in which the nonlinearity in the
dynamics occurs through the mean (i.e., the expectation). To make it clear, on a filtered probability
space (Qo, F9 IO, IP’O) (satisfying the usual conditions) equipped with a d-dimensional F*-Brownian
motion BY and for F,G : R — R? two interaction and confinement forces, we are interested in the
solutions of the following Stochastic Partial Differential Equation (SPDE):

o2 + 03 0
dymy =V - Tth —my (G + F(-— p1(my))) | dt — ooVmy -dB;, t =0, (3.4)

which is understood the weak sense, i.e., the process (m;);>¢ satisfies for all £ > 0 and ¢ € CZ°(R?),
d<mt7 90> = <mt> zmt80> dt + 00<mt’ (VSD)T> dB?v

where for any probability measure m € P;(R%), the operator .%,, acts on a smooth function ¢ with

compact support in the following manner:

2 2
O'O+O'

Zinp == (G+F(—p(m) Vo + =

Ap.

Equation (3.4) admits a Lagrangian representation in the form of conditional McKean-Vlasov equation.
Throughout the article, this McKean-Vlasov equation is constructed on a product probability space, ob-
tained by tensorizing the filtered probability space (€29, F°, F®, Py) (on which Equation (3.4) is defined)
with another filtered probability space (1, F*,F!, IP1). The product structure is denoted

(QZZ Q()XQl, St, F, P),

where (F,P) is the completion of (F° ® F1, Py ® P1) and F is the right continuous augmentation
of (7Y ® F})i=0. In this paper we denote by Eg, E; and E the expectations on (£, F°, F°, Py),
(Q1,FL, FL Py) and (Q,F,F,P) respectively. Analogously, for any random variable X defined on
(9, F,F,P), we denote by L(X) and £1(X) the conditional laws of the random variable X given F!
and F0 respectively. Of course, £(X) stands for the law of X on the whole product space.

Next, the initial law of (3.4) may be random and then distributed according to a probability measure
Py € P(P1(R%)). The initial condition my is then defined as an FJ-measurable random variable with
values in P (R?) such that £(mg) = Py. We can now define on the whole probability space (2, F, F, P)
a random variable X such that £1(Xy) = mg almost surely. Precisely, by Lemma 2.4 in [CD18b], for
PP-ae. wy € Qo, Xo(wo, ) is a random variable on (Q1,F*,P;) and the conditional law of X given
F9, L1 : Q9 3 wp — L(X (wo,-)), defines a random variable from (99, F°, Py) into P(R?), which can
be taken equal to mg almost surely.

In addition to B°, we consider a d-dimensional F!-Brownian motion B supported by the space

(21,1, Py). The Lagrangian formulation of (3.4) then reads in the form of the following conditional
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2. Main result: uniqueness recovery thanks to common noise

McKean-Vlasov equation, set on (Q2, F,F, P):
dX; = G(Xy)dt + F (X; — Eq[X¢]) dt + 0dB; + 0odBY, t >0, (3.5)
with X as initial condition.

2.2 Assumptions, existence and uniqueness of solutions
In the sequel, we make the following assumptions on the coefficients F' and G. We start with G:
Assumption 5. The drift G : R? — RY is differentiable in R%. Moreover,

« G is confining in the sense that there exists a function k : [0; +00) — R such that

0.2
Vz,ye R (G(z) = G(y)) - (x—y) < —5 il =yl - y?,

with .
lim sup k(r) >0 and J re(r)”dr < oo,

r——+00 0

where k= = max(0, —k).

« G is Lipschitz-continuous on R%, meaning that there exists a constant Lg > 0 such that

Vz,y e R, |G(2) — Gy)| < Lelo —y-

« G is differentiable and its Jacobian matrix DG is Lipschitz-continuous on RY, meaning that there

exists a constant Cg > 0 such that for any x,y € R?,

IDG(z) = DG < Calx —yl.

In order to state properly the assumption on F', we introduce the following definition:

Definition 3.1. For a pair (a,C) € R x [0,+0), we call 8(cv,C, L) the collection of L-Lipschitz-
continuous and differentiable functions H from R? into itself that are a-decreasing and whose derivative

is C' Lipschitz-continuous, i.e., for all (x,y) € R,

2.

>

() (z—y)- (H(z) - H(y)) < —alz -y

(i) [DH(z) — DH(y)| < Clz —yl.

Given Definition 3.1, we make the following assumption on F":

Assumption 6. F : R? — R? satisfies F'(0) = 0. Moreover, there exist ar > 0 and Cp > 0 such that
Fe S(OéF,CF,CF).
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Chapter 3. Ergodicity of some stochastic Fokker-Planck equations with additive common noise

About Assumption 5
The following remarks about Assumption 5 are in order:

« Assumption 5 is quite intuitive and consistent with the ideas presented in [HT10]. Essentially,
this assumption guarantees that G is confining and behaves linearly at infinity. Also, it is worth
noting that our approach can accommodate a force that derives from a non-convex potential,

which, around the origin, behaves for example like = > |2|* — |z|2.

« When o > 0, there exists a canonical choice of x, given by

) 2 (x—vy) - (Glx) — G
n(r):zlnf{—ag( y) |35_(y|)2 (y))7 z,yeRest. |x—y\=r}, r > 0.

Assumption 5 says that x is necessarily positive outside of a ball. This implies in particular that

02k~ /2 is bounded from below by some constant m¢ € R, which gives
(¢ —y) - (G(x) = G(y)) < —mglz —y*, z.yeR™ (3:6)

This implies in particular that G € 8(mg, Cq, Lg).

When mg > 0 we say that the drift is (strictly) decreasing. This case is easier to study under
similar conditions on F' because the monotone structure of G ensures that two solutions of the
SDE (3.5) (with different initial conditions) get closer in large time. In this context, uniqueness
of the invariant measure of the solutions of Equation (3.4) is covered in [Mai23, Section 2], but
it is fair to say that the common noise then plays little role because the invariant measure is
also unique when oy = 0. Notice that in the specific case when G derives from a potential, this

potential is strictly convex under the condition mg > 0.

About Assumption 6

Assumption 6 is somewhat surprising, especially as we are asking below the coefficient ar to be large
(see the statement of Theorem 3.8). Intuitively, one might indeed expect that uniqueness of the invariant
measure becomes less likely if the interaction is strong. At least, this is exactly what happens in absence
of common noise, the extreme case being /' = 0 in which the dynamics become a mere diffusion
equation (the long time analysis of which is much easier to study). However, the situation is different
here, thanks to the peculiar structure of the dynamics and to the presence of the common noise (79 >
0). In brief, F' has a contracting effect, which forces the process to be attracted by its conditional
expectation (given the common noise), with the latter being a nearly solution of an ergodic SDE. Even
though this picture is not exactly correct due to some minor errors caused by the idiosyncratic noise,
this is indeed a key step in our analysis to quantify the accuracy of this approximation and to derive

from it uniqueness of the invariant measure. We refer to Section 3.1.

Throughout, we work under Assumptions 5 and 6. In this context, we claim

Proposition 3.2. Under Assumptions 5 and 6 and for an initial condition X satisfying E[| X|] < oo (or
equivalently Eq (pq |z|mo(dz) < o0 for mg := Lo(Xo)), the conditional McKean-Vlasov equation (3.5)
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2. Main result: uniqueness recovery thanks to common noise

has a unique F-progressively measurable solution (X;)i>0, with continuous trajectories, such that, for all

T > 0, E[supogr [ Xil] < 0.

Proof. The proof consists in a straightforward fixed point argument, using the Lipschitz properties of
the two coefficients F' and G. We refer to [CD18b, Chap. 2]. O

By the superposition principle for conditional McKean-Vlasov equations (see [LSZ23]), we deduce

that existence and uniqueness also hold true for the stochastic Fokker-Planck equation:

Proposition 3.3. Under Assumptions 5 and 6 and for an initial condition mg satisfying Eq SRd |z|mo(dz) <
o0, the stochastic Fokker-Planck equation (3.4) has a unique solution (my)¢> in the space of F*-progressively

measurable processes with values in P1(R?) satisfying Eo[supg<;<r §ga [|me(dz)] < oo.

Proof. Existence of a solution is a straightforward consequence of the existence part in the statement
of Proposition 3.2. This is Proposition 1.2 in [LSZ23]. Uniqueness is more difficult to obtain. We invoke
Theorem 1.3 in [LSZ23]. In brief, any solution (m;)¢>0 (in the weak sense) to (3.4) induces a weak
solution to the McKean-Vlasov equation X = ()Z't)t>g to (3.5), weak in the sense that the private (or
idiosyncratic) noise, say B, becomes part of the solution. It holds m; = L()?ASF‘%) In fact, by strong
uniqueness to (3.5), a relevant form of Yamada-Watanabe theorem applies to the current setting and
implies that L()N(t]frr{%) is necessarily equal to £o(X}), with X = (X})¢>0 being the solution given by
Proposition 3.2. O

2.3 Restoration of uniqueness

We now collect our main results about the long time behaviour of the process (m;)¢>0, solution of
Equation (3.4). Before we do so, we first state the precise definition of an invariant measure for such a

stochastic process, when seen as a process with values in the space of probability measures:

Definition 3.4 (Invariant measure). We say that P € Po(P1(R?)) is an invariant measure for the process
(my¢)i=0 when the latter is regarded as taking values in P (R?), if the law of m; is independent of t, when
my is distributed according to P, i.e., for all continuous and bounded function ¢ € Cy(P1(R%))

Eo[¢(my)] = Eo[¢(mo)] = L - p(m)P(dm), Vt> 0.

Of course, if P is an invariant probability distribution, then the process (1 );>0 with initial con-
dition P, has the same law as the process (m;.7)¢>0 for any 7' > 0. This follows directly from the
fact that mo and m7 have the same law combined with the weak Markov property. Moreover, it is
worth observing that, under the condition P € P5(P;(R%)) imposed in the statement, the function
m — dlﬁd((so, m) = §pa |z|m(dz) is square integrable. This constraint may seem rather artificial. In
fact, given the form of the dynamics in Equation (3.4), it is natural to require the invariant measures to be
supported by P; (R?). Then, the aforementioned integrability condition provides an additional growth
property that makes easier the identification of those invariant measures, see the proof of Proposition
3.5 right below.

Let us begin with the existence of an invariant measure P:
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Proposition 3.5. Under Assumptions 5 and 6, there exists at least one invariant measure P for the process

defined by Equation (3.4). Moreover, under the condition o« > Lg, any invariant measure belongs to

Po(P2(R)).

The proof of Proposition 3.5 makes use of the notion of derivatives on the space of measures. Fol-
lowing [Car10] (see also [CD18a, Chap. 5] and [CD18b, Chap. 4]), we recall the following definition:

Definition 3.6. Let us define C%(?Q(Rd)) as the collection of continuous and bounded functions ® :
Pa(RY) — R with the following properties (throughout the definition, Po(RY) is equipped with d§d ):

« There exists a unique jointly continuous function 0,,® : (m, z) € P(R?) x R? — 0,,®(m, z) € R,
at most of quadratic growth in x for any m, such that
®(m + h(m' —m)) — ®(m)

. — , [e—
}ILIE%) W N Om®(m, v)(m’ —m)(dv),

for allm, m’ € P(RY) and

Om®(m,v)m(dv) =0, m e P(RY);
Rd

« For any m € Po(R?), the mapping x — 0,,®(m,x) is differentiable, with the gradient being
denoted D,,,®(m, x); the mapping (m,z) — D,,®(m,x) is jointly continuous in (m,x) and at

most of linear growth in x uniformly in m in bounded subsets of Pa(R%);

« For any x € R?, every component of the R%-valued function m — D,,® (m, z) satisfies the same
conditions as in the first bullet point, resulting in a mapping (m,z,y) € Po(R?) x R? x R? —
D2,®(m, z,y) € R¥9, which is jointly continuous (in the three arguments) and at most of quadratic

growth in (z,vy), uniformly in m in bounded subsets of Po(RY);

« For any m € Po(R?), the function x € R? v D,,®(m, x) is differentiable; the Jacobian, denoted
(m,z) — D2, ®(m,x), is jointly continuous in (m, ) and at most of linear growth in x, uniformly
in'm in bounded subsets of Py (R?).

Proof of Proposition 3.5. Step 1. The proof of the existence of an invariant measure closely follows the
approach taken in Proposition 2 of [Mai23], using the results of Section 1.2 of [LSZ23]. The key step
therein is to control, uniformly in time, the second-order moments of the solutions to Equation (3.4),

which can be achieved with relative ease in our context. Details are left to the reader.

Step 2. We now address the second part of the statement (any invariant measure in Po(P;(R%))
is in fact in Po(P2(IRY))). Let us thus consider an invariant measure P € Po(P1(R%)) and call mg an
Fo-valued random variable with values in P1(R%) such that £y(mg) = P. We denote by (m;);>¢ the
solution to Equation (3.4) with my as initial condition. We also introduce for any R > 0, a smooth
function x4 : R? — R? that coincides with the identity on the ball Bpa(0, R) and that is equal to 0
outside Bya(0,2R). We can assume the Lipschitz constant of x% to be bounded by 1. For any R > 0,
we denote by P{ the law of Xthtmo (where { is the pushforward operator) and construct (m{%);=q,
the solution to Equation (3.4) with x%fimo as initial condition. Letting (P%)i=0 1= (Lo(mf))e=o,
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we deduce from the truncation performed on the initial condition and from Equation (3.4) that, for
any R > 0 and any t > 0, PE(P2(R%)) = 1. We obtain from the chain rule proven in [CD18a,
Chap. 5] and [CD18b, Chap. 4] (see [LSZ23] for the form that is retained below) that for any function
® € C2(P2(R?)), for any t > 0,

t
(PI - pfis0) = [ (PRI, (5.7
0

where for any m € Po(R?),

MP(m) ::J MTr[

[qu)(m, z) - (G(x) + F(x — p1(m)) +
Rd

D2 ®(m, :p)]] m(dx)

2

P [ e[ ] .

Let us now consider ®(m) := {5, ¢(z—p1(m))m(dz), for afunction ¢ : R? — R which we assume
to be bounded and smooth, with bounded derivatives of order 1 and 2. In particular, ® is bounded. Now,

m — ®(m) € C2(P2(RY)) and we can write, for any m € Po(R?) and z,y € RY,

D,b(m,a) = V(o = u(m) = | Voly = s (m))m(cl).

D2, ®(m, ) = V2p(x — i1 (m)),

D2, ®(m,2,y) = —V2p(x — i (m)) — V2(y — 1 (m)) + fRd V26(z — i (m))m(d2).

Plugging this into Equation (3.7), we obtain
| st - A
‘Pg(]Rd)
_ f [ J Vé(x — p1(m)) - (G(z) + Fx — pi(m)))m(de)PE(dm)
0 LJPy(rd) Jre

- fw) ([L, vot = mtmpmtan) - ([ (€ + Flo - m)m(an) pian

+ %(02 +07) fRd Te[V2p(z — pa(m))|m(dz) — %08 fRd Te[V3¢(z — ,ul(m))]m(dz)] ds,
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which gives (by simplifying the last line)

j &(m)(PE — BE)(dm)
‘J’Q(Rd)

t
0

_ f [ J%(Rd) V0 = () - (G@) + Fw = i (m)ym(da) P (dm)
_ L(Rd) ([, vots = m@mpman) - ([ (@) + Flo = patmppmiaa) ) fiam

+50* [[ 0900z = pom) ) s

(3.8)
Step 3. We now want to let R — c0. Let us begin with the term on the left-hand side

j &(m)(PR — PR)(dm) = f &(m)(PE — P)(dm) + j B(m)(P — PR)(dm).
P(RA) P(RY) P(RY)

Using the Lipschitz-continuity of F' and GG, we can show that, for any 7" > 0, there exists a constant
Cr = 0, such that, for any ¢ € [0, 77,

A EV(PR, P) < Cr a3 ®(PE, P). (3.9)

Moreover, we can write

dg’l(Rd) (PR P)? < L(Rd)

2
([, Whto) ~slmiaa) ) Pram)
Since % is equal to 0 in 0 and is 1-Lipschitz continuous and since P € Po(P;(R?)), the above right-
hand side tends to 0 as R tends to oo, that is

. P1(RY , bR 5
lim d;! Pt P)=0. 3.10
R1+002 (Py', P)=0 (3.10)

Equations (3.9) and (3.10) say that for all 7" > 0,

lim  sup d3'®V(PE, P) = 0. (3.11)

R—+w0 0<t<T

Back to (3.8), we observe that all the functions of m that are integrated with respect to P therein are
continuous in m with respect to d]i{d. Moreover, they are all at most of linear growth with respect to

§ga |£/m(dx). This makes it possible to let R tend to +00. We get
f Vo(z — p1(m)) - (G(x) + F(z — pr(m)))m(dz) P(dm)
P (R4) JR

_ le ([, ot = watmpmian ) - ([ () + Fo = mim)mias) ) Pam)

T f Tr[V26(z — a1 (m))]m(dz) P(dm) = 0.
P (Re) JRd
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Step 4. Now, we take ¢(z) in the form ¥(|x|) where ¥ is a smooth function from [0, +00) into itself,
that is equal to the identity on [0, A] and that is equal to 34/2 on [2A4, +00), for some A > 0. We
assume 1’ to be non-negative and bounded by the identity and ¥’ to take values in [0, 2]. Under this
choice, V(x) rewrites [ (|z])/|z|]x and Tr[V2¢(x)] is bounded by a constant ¢4 only depending on
the dimension d. Then, we can find a constant C, only depending on GG (and whose value is allowed to

change from line to line) such that, for any m € Py(R%),

|, vote = mm) - Glpm(aa)

<|| Vé@—pm(m)) - [G(x) = G(p(m))]m(dz)

R4

< Lg fRd V(|2 — pa(m)])|w — pa (m)|m(dz) + CfRd 9 (Jz = pa(m)]) (1 + |pa (m)|)m(dz)

N ’ J V(e — pn(m)) - G (m))m(de)
R4

<L fRd (|2 — jun(m))z — ur(m)m(dz) + C(1 + ¥ (50, m)>).

We insist on the fact that C is independent of . Now using the assumption on F' (see Assumption 6),

we obtain
Vé(z — pr(m)) - F(x — pr(m))m(dr) < —aJ V' (|lz — pr(m)]) |z — pa(m)m(dz).
R4 Rd

Rewriting the conclusion of the third step gives

(o L) f j (1 — i (m))z — por (m)|m(dz) P(dm)
Pr(RE) RE (3.12)
< cgo? + (1(1 + L - d® (5, m)QP(dm))

Now, we can choose 9 along a non-decreasing sequence converging pointwise to the identity function
on [0, +00). By monotone convergence, we obtain

(o Le) jmd) [ o= mmPm(an) Pram) < cao® + c<1 N Ll( 0 (5o, m>2P<dm>>,

R%)
which completes the proof. O

Uniqueness is much more challenging to establish. When the intensity of the idiosyncratic noise
o is positive, this question has not been addressed yet. The following proposition is one key step in

this regard and demonstrates that, under certain assumptions, the initial condition is forgotten in long

time.

Proposition 3.7. For any ap > max(Lg, mq) in Assumption 6, for any oo > 0, there exists ¢ >
0, depending on F', G, 09 and d, such that for all o < &, for any 1-Lipschitz continuous function ¢ :
P1(RY) — R (with P1(R?) being equipped with d]ﬁd) and any m, m € Py(R%),

|<@t¢(m) - ytgb(m” < :K(m’ﬁ)e_dv t= Oa
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forsome ¢ := ¢(G, F,0,00) > 0 and some K (m, m), which is described next.
Indeed, given the choice of aup, there exist a constant ¢{'* > 0, depending on G and F, and a constant

Cy, depending on d (and thus independent of ¢, m and m), such that

K(m, W) = Calpa(m)'? + pa () /?) exp ( (vm)*? + v<m>“2)> ,

Cap
where ¢, 1= ap — L. We recall that |11, pio and v are defined in Section 1.6.

Proposition 3.7 shows that we forget the initial condition at an exponential rate for any sufficiently
integrable initial conditions m and . This is a key result of the paper, the proof of which is postponed
to Section 4.

As a consequence of Proposition 3.7, we get uniqueness of the invariant measure and deduce that
the system converges exponentially fast toward the stationary regime, both facts being stated in the

main statement below.

Theorem 3.8. For any ap > max(Lg, mq) in Assumption 6, for any og > 0, there exists & > 0,
depending on I, G, o¢ and d, such that for all o < &, there is a unique invariant measure P € Po(P2(R%))
for the process (my)¢=0, solution of Equation (3.4). More precisely, there exists a constant C' > 0, such that
for any probability measure m € P(R?) and any 1-Lipschitz continuous function ¢ : P1(R?) — R, (with
P1(R?) being equipped with dI{&d), we have

Pyp(m) — L(Rd) Py () P(din)| < C(1 + pa(m)'?) exp(v(m)?)e ™, ¢ >0,

with X 1= 17 [cqa, > 0, and for ¢, o, and c{'* as in the statement of Proposition 3.7.

Remark 3.9. Let us comment here on the choice of parameters in the above statement. First, it is important
to note that the type and strength of the interaction play a central role in our framework. The interaction,
in both its form and intensity (ap = @), forces the long-time behaviour of the entire process (my)=o to be
dictated by its mean (fu1(my))i=0, which is the cornerstone of the proof. Asking the interaction to be strong,
as we require in the condition ap > &, may seem surprising at first sight. Indeed, this is fundamentally
different from the standard picture that exists for models without common noise, where strong interactions
are typically expected to give rise to several invariant measures. In our case, the presence of the common
noise, even of a possibly small intensity, induces a phase transition. For any positive value of oy and for
a sufficiently large interaction (independently of the value of 0(), we can indeed find ¢ > 0 such that
uniqueness of the invariant measure is ensured in presence of a common noise of intensity oy but is lost
when the common noise is disabled. This makes a conceptual difference with the previous results obtained
on the subject in [724], where uniqueness is restored when the global contribution of the two noises is large
enough with respect to the strength of the interaction. In comparison, o and oy have opposite roles to each

other in our approach.
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2.4 Discussions and examples

In this section, we present two explicit examples in which common noise forces uniqueness of the
invariant measure. The first example fits explicitly the framework of this work and the second one may
be seen as a variant of (3.4). At last, we also provide a counter-example where uniqueness does not

hold despite the presence of the common noise.

A prototype: dynamics driven by a confining potential and a linear interaction.

Let us consider the case G(z) = —VV (z), z € R, for a differentiable function V : R — R, and
F(r) = —ax, z € RY, for a certain o > 0. Then, (3.4) becomes
02—1—03

dym; = Amdt + V- [mt (VV +a(-— m(mt)))] dt — ooVmy - dB,?, t>0. (3.13)

When o = 0, this equation reduces to

oymy = U;Amt +V- [mt <VV +a(-— ,ul(mt)))] . (3.14)

When V is a double well potential, the latter equation may have several stationary solutions. For
instance, if ¢ = 0 (in addition to the assumption oy = 0), any critical point 2y of V induces a stationary
solution, concentrated at . In the standard example where d = 1 and V (x) = |z[*/4 — |2]?/2 (see
for instance [Daw83, HT10]), those stationary solutions are the Dirac masses 01, dgp and §_;. Non-
uniqueness persists when o is strictly positive but small: with the same potential V' and for o less than
a certain threshold &, there are three invariant measures, respectively centered around 1, 0 and —1, to
the McKean-Vlasov SDE

dX; = —V'(Xy)dt — a(X; — E1[X¢])dt + 0dBy, t>0.

Lack of uniqueness can be explained as follows. There is a competition between the noise B (weighted
by the intensity factor o) and the interaction term function (z,m) — —a(xz — p1(m)). On the one
hand, the process X is attracted by the minimizers of V' and by its expectation. On the other hand, it is
subjected to the diffusive effect of the noise. Whenever the coefficient o is too small, the interaction term
dominates. Any invariant measure has a small variance and must be concentrated around a minimizer
of V, hence forcing the multiplicity of the stationary solutions to (3.14).

When oy > 0 but 0 = 0 (and under conditions similar to Assumption 5), whenever « is assumed
large enough, the second author has shown in [Mai23] that the process (m;):>¢ admits a unique in-
variant measure Py € P(P(R?)), and thus established restoration of uniqueness in this situation. In

this particular case, the invariant measure is supported by Dirac masses:

Py(dm) = y ds, (dm)m*(da),
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where m* is solution of the stationary Fokker-Planck equation (03 /2)Am*+V - (m*VV) = 0. More-

over, as consequence of the contracting properties of I, it can be shown that
v(myg) — 0,

when ¢t — +00, which implies that, asymptotically (in time), the solution X to (3.5) coincides with its
conditional expectation given the common noise, hence justifying the shape of the measure P,.

In the case gy > 0 and ¢ small but (strictly) positive, our result extends the analysis carried out
in [Mai23]. However, the long-time behaviour of (v(m;))¢>0 is different and the latter does not tend
to 0 as ¢ tends to co. This difference is substantial and makes the proof significantly more challenging
in our analysis. The argument is explained in the next two sections. In short, one shows that the
long-time behavior of the conditional mean (1 (m¢))>0 coincides with that one of the standard SDE
dY; = ~VV(Y;)dt+0odBY, t > 0up to an error that is small with o and 1/a. Although the fluctuation
(X: — E1(Xy) = Xy — pi(my))i=0 does not vanish in long time, which is the main mathematical
difficulty here, the regime 0 < ¢ « 1 shares many conceptual similarities with the case ¢ = 0. In
particular, the long-time behavior of (m;)¢>¢ is mostly dictated by the ergodic properties of the standard
SDE obtained by putting F' = 0 and o = 0in (3.5). This example is typical of our study. When the value
of o is significantly large and « is relatively small, it is straightforward to establish the uniqueness of
the invariant measure using coupling arguments on the idiosyncratic noise, as in [DEGZ20]. Still, it
is fair to say that we do not have, at this stage, a good understanding of the behaviour of the model

between these two regimes.

A variant: dynamics driven by a quadratic potential and a nonlinear first order mean field

term

In this paragraph, we cook up a variant of the model covered by Theorem 3.8 that does not exactly fit
the form postulated in (3.4) but that can be studied in a similar manner. This example is built up as
a perturbation of an Ornstein-Uhlenbeck process. Precisely, we consider the stochastic Fokker-Planck

equation

02+08

dymy = Amudt + V- [mt (a:c — f(ul(mt))] dt — ogVmy -dBY, t =0, (3.15)

whose probabilistic counterpart writes
dX; = —aXdt + f(E1[X¢])dt + 0dB; + 0od By, =0,

for some a > 0 and f : R — R? Equivalently, the conditional law (£1(X;))i=0 of X given the
common noise (£1(X¢)); is a solution to (3.15).

Obviously, the mean field term f(E;[X;]) cannot be put in the form F'(X; — E;[X]), from which
we see that this example is outside the scope of Theorem 3.8. That said, it is in fact not that far from
the framework addressed in this article and, in particular, it obeys phenomena similar to those under-

pinning the proof of Theorem 3.8.
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Actually, the long-time analysis of equation (3.15) is rather straightforward. When oy = 0, any

invariant measure m is solution to
02 d
?Am = V- [m(f(p(m)) —az)] =0, zeR™
By integrating with respect to x, the previous equation leads to the condition

flpa(m)) = apr(m), (3.16)

which is in fact sufficient in the following sense: once p1(m) has been found, the entire measure m can
be defined as the invariant measure of the Ornstein-Uhlenbeck dynamics d X; = —a(X; — p1(m))dt +
0dB, t = 0. Therefore, Equation (3.16) says that there exist several invariant measures as soon as f/a
admits several fixed points in R

In presence of a common noise (i.e., og > 0), the conditional mean (1 (m¢)):=0 solves the SDE
dpr (my) = —apy (mg)dt + f(u1(mye))dt + oodBY, ¢ >0, (3.17)

and under appropriate confining conditions on the effective drift  — —az + f(x) (which may be com-
patible with the fact that (3.16) has several fixed points), (3.17) admits a unique invariant measure, say
m* (on RY), which implies that any two invariant measures on P1(R?) (in the sense of Definition 3.4)
must have the same marginal law by the projection m — p1(m). As above, the entire invariant mea-
sure (on P; (R?)) can be recovered by observing that d(X; — Eq(X;)) = —a(X; — Ey(X;))dt + 0d By,

t = 0. This shows that the invariant measure is
P(dm) = de 5Nd(97[02/(2a)]1d) (dm)m* (d9), (3.18)

where Ny(6, [0?/(2a)]1) is the d-dimensional Gaussian law with § as mean and ¢2/(2a)I; as co-
variance (/4 standing for the d-dimensional identity matrix). In particular, there is a unique invariant
measure even though (3.16) has several fixed points.

The spirit of this new example is clear: similar to the prototype addressed in the previous paragraph,
its long-time analysis is in fact governed by the simpler Fokker-Planck equation (3.17) for the sole
conditional mean. Here the situation is even simpler because the residual fluctuation (X; —E; (X))o

has a trivial behavior (whilst the analysis of the residual is non-trivial in the prototype example).

Combining the two examples

For sure, the reader may wonder about a global framework that would cover both the prototype and the
variant examples. While this would be indeed possible to extend in such a way the current setting, we
have decided not to go up to this level of generality in order to keep the presentation and the notation
at a reasonable level. In order to guess what the more general form of (3.4) should be, one first needs to
understand which of the two coefficients F' and G (in (3.4)) correspond respectively to x — —ax and
m — f(p1(m)) in (3.15). At first sight, one may be tempted to regard x — —ax as a specific example

of G, but this is the wrong choice. In fact, the correct answer is to write —ax as —a(x — p1(m)), which
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prompts us to associate the coefficient a in this model with the coefficient « in the prototype example.
Next, we should see the remaining coefficient m — —ayu1(m)+ f(11(m)) as a new G, with the subtlety
that, in our global framework, G must be allowed to depend on both x and 1 (m). In clear, the new
version of (3.4) should be

024-08

dim; =V - < Vmg — my [G(,ul(mt), ) + F(-— m(mﬂ)]) dt — ogVmy - dB?, (3.19)
for a function G : R? x RY — RY. Back to the prototype example addressed in the previous paragraph,
this says that the long-time behavior of (m;);>0 should now be compared with those of the standard
SDE dY; = G(Y;,Y;)dt +0odBY, up to some fluctuation terms that one may expect to control properly
if F' is sufficiently decreasing. In this context, what truly matters are the confining properties of the
doubled mapping (z,z) — G(x, x).

We strongly believe that Theorem 3.8 could be extended to this setting, with a similar analysis.
From a technical point of view, the gain would be limited: the difficulty would not come from the
variable 111 (m) in G but from the variable x (precisely because the strategy is to replace in the end the
argument X; by its conditional expectation E;(X}) in (3.5)). This difficulty is already present in the
prototype example (3.13) and, in contrast, it is clear from the example (3.15) that the presence of the
variable 1 (m) in G does not raise any substantial difficulty. This explains how choice to work on (3.4)
(and not on (3.19)).

An example without restoration of uniqueness

As highlighted earlier, the finite-dimensional nature of the common noise constitutes a significant lim-
itation to obtain ergodic properties on the process (m;)¢>0 (see in contrast the recent work [DH24]
by the first author for a 1d case with an infinite dimensional noise). In particular, this is the thrust of
our work to identify one class of mean field dynamics for which the common noise really helps in this
matter. However, it is clear that there is no chance to get uniqueness of the invariant measure for a
generic class of stochastic Fokker-Planck SPDEs forced by a simple noise like BY.

A counter-example in dimension d = 1 is

ov(m)* + 8

5 cmedt + 0y (zmy)dt — Uoé’xmtdB?,

dgmy =

for some function o : [0, +00) — (0, +00). Whenever ¢ = 0 and the function o%(-)/4 admits several

fixed points, the stationary solutions to the above equation cannot be unique. In this case, (m;);>0 is

a(v(m))

2
5 02 (my) + 0x(zmy), t=0. (3.20)

Then, similar to the stationary solutions found in the previous example, the stationary solutions (equiv-

indeed solution of

oymy =

alently, the invariant measures of (3.5)) are here solutions of

dm

(@) = exp (-202("5(771))) , zeR.
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3. Proof of Theorem 3.8

Then, one can show that, if the function 2 ~— ¢?(x)/4 admits several fixed points, then there are several
stationary solutions to (3.20).

When adding common noise, the situation does not get better. For instance, assuming that the
initial condition Py = ds,, one can show that for all ¢ > 0, Po-almost surely, m; is a (random) Gaussian

probability measure with parameters

t

w1 (my) = UOJ es_tng,
0

v(my) = Jo 26052 (v(my))ds.

Then, it is not difficult to see that (141 (m4))¢>0 is an ergodic process (it is in fact an Ornstein-Uhlenbeck
process with a negative mean-reverting parameter). As for the dynamics of the variance (v(my))=0,
we get

orv(my) = —2v(my) + %az(v(mt)), t=0.

Obviously, the above equation has several stationary solutions (say o*) if the function x + o?(z)/4
admits several fixed points. In the latter case, (m;);>0 has several invariant measures, whose form
is similar to (3.18) except that o therein is now replaced by any ¢*. In this specific example, it is
noteworthy that the common noise has no influence on the mean field term (v(my)):>0 (which is
completely deterministic). Clearly, this is a consequence of the additive structure of the noise, the

effect of which is just to shift (or to translate) the measures (m;)>o.

Conclusion

All these examples illustrate that the form of the mean field interaction in (3.4), based on the sole
(conditional) mean state is key in the derivation of Theorem 3.8. In particular, this structure makes it
possible to transmit the noise from the dynamics of the state variable (X};);>0 in (3.5) to its conditional
mean (E;(X}))¢>0. As suggested in the discussion on the prototype example, the next step is to prove
that the long run behavior of (E;(X})):>0 is dictated by the ergodic properties of the SDE dY; =
G(Y;)dt +oodBY, at least if o is large and o is small. This is the main line of the proof that is presented

in the next two sections.

3 Proof of Theorem 3.8

In this section, we explain how to deduce Theorem 3.8 from Proposition 3.7, but the proof of the latter
is postponed to Section 4.

Before moving on to the proof of Theorem 3.8, we need two preliminary estimates: the first one ad-
dresses the conditional variance of the solution to (3.4), and the second one the conditional exponential

moments of the solution.

3.1 First preliminary estimate: conditional variance

Given a solution X to Equation (3.5), we first focus on the conditional expectation given the common
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noise (E1[X¢])¢=0:

Proposition 3.10. Let us consider a d-dimensional Brownian motion 3° defined on (Qqg, F°,Py) and
adapted to the filtration FO. Let Assumptions 5 and 6 be in force with the additional constraint c, =
ar — Lg > 0. Let us consider Py € P(P1(R?)) and X such that £1(Xo) = my a.s, for some random
measure my satisfying Lo(mg) = Py. Then, for X with dynamic given by

dX, = G(X,)dt + F(X; — B [X.])dt + 0dB; + 00d 3
Xt|t=0 = X07

we have for allt = 0,
Ei [|X: — B[ Xe]*] < Ei [|Xo — Ea[Xo]|*] e 2or® 4+ —, (3.21)

where the previous inequality holds Py — a.s.

Remark 3.11. (1) Inequality (3.21) does not depend on the choice of the Brownian motion (3));>¢ in the
dynamics of X. Accordingly, it can be recast in terms of the solution (3.4) in the form

oo ¢ do?
v(mg) <v(mgle “er' + — t>=0. (3.22)
Cop

(2) The result can be interpreted as follows. When o = 0, the result is consistent with [Mai23] and
says that the process (X¢)i=0 is attracted by its conditional expectation in the long run. When o > 0, the
result provides a sharp estimate of the residual conditional variance.

(3) Back to Theorem 3.8, the challenge is precisely to prove that the long-time behaviour of X is dictated
by the long-time behaviour of E1[ X | even though the residual term is not zero.

Proof of Proposition 3.10. Using the dynamics of the process X, one can write
d(X: — E1[Xy]) = (G(Xy) — E1[G(Xy)])dt + (F (X — Eq[Xy]) — Eq[F (X — Eq1[X¢])])dt + od By
Then, applying It6’s formula, it comes

d| Xy — B [X]]? = 2(X; — E1[X¢]) - (G(Xy) — E1[G(Xy)])dt
+2(X: — Eq[Xe]) - (F(Xe — Ea[X¢]) — Ea[F(Xe — Eq[Xq])])dt
+ 20 (X — Eq1[Xy]) - dBy
+ do*dt

Using the fact that G is Lipschitz continuous and taking expectation, we get that

%El [1X: — E1[Xi]?] < 2LGE: [|X: — B [X]?] + 2B [(Xy — Ev[X4]) - (X — Eq[Xy])] + do?.
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Moreover, we can write

E1 [(X¢ — Eq[X¢]) - F(Xe — Eq[Xe])] = By [(Xe — Eq[X3]) - (F (X — Eq[Xe]) — F(0))]
< —ap By [1X — B[ X)),

where we recall that o > 0 is defined in Assumption 6. Then,

d
T ElIX: = Ea[Xi]P] < —2(ap — Lo)Ea[| Xy — Ba[X] ] + do”.
Finally, we get the result using Gronwall’s Lemma, as soon as ap > Lg. O

3.2 Second preliminary estimate: conditional exponential moments

Let us state the following lemma which allows us to control the exponential moments of the process

(m¢)¢=0 under one invariant measure P (which will be in the end ‘the’ invariant measure):

Lemma 3.12. Under Assumptions 5 and 6, assuming that ap > Lg, there exists an invariant measure

P € Py(P2(R?)) for the process (1my)¢=0, such that
f exp (2621}(7%)1/2) P(dm) < +oo, (3.23)
P(RD)

where ¢3 := ¥ [cap.

Remark 3.13. The result presented in Lemma 3.12 aligns with the global picture we gave for the behavior
of the model. In particular, it is natural (and in fact well-expected) in the regime 0 < 1 (which corresponds
to the framework of Proposition 3.7). Indeed, we already know from [Mai23] (see also Section 2.4) that, if
o = 0, the invariant measure P is supported by Dirac masses; therefore, the conclusion of Lemma 3.12
becomes straightforward when replacing P by P in the statement. The thrust of Lemma 3.12 is thus to
extend the result to positive values of o. Although our proof relies on a direct computation, it is worth

noticing that any invariant measure P (for o > 0) should satisfy
d7®Y(p, PY) < €0,

for some constant C' independent of o. In particular, any invariant P is close to P° when o is small, hence

justifying our intuition that Lemma 3.12 is a perturbation of the regime o = 0.

Proof of Lemma 3.12. Consider a probability measure Py € P(P(R?Y)) with Py(Po(R?)) = 1 and the
measure valued stochastic process (m;)¢>0 solving (3.4) with £o(mg) = Py as initial condition. Then,
letting P, = Lo(my), YVt = 0, we can easily show with arguments similar to those used in the proof of

Proposition 2 in [Mai23] that the sequence (Qr)7>( defined by

1 T
QT = f Ptdt
T Jo
admits a converging subsequence, still denoted by (Q7)750, that converges to an invariant measure P.
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Forany T > 0,

N _o_ 1 N N
J exp <262U(m)1/2> Qr(dm) = TJ J exp (202v(m)1/2) P(dm)
P(RY) 0 Jp(ra)

= ;JOT Eo [exp (2c2v(mt)1/2>] dt.

Moreover, (3.22) gives
~\1/2 ~ 1" 12, 2c20
exp (262v(m) ) Qr(dm) < T Eo |exp | 2cov(mp)™/* + —— | | dt
P(RY) 0 Cap

2
< E {exp (262U(M0)1/2 + CCQCI)] ,
o

which can be assumed to be finite by choosing an appropriate initial condition. Recall indeed that the

choice of Py in the construction of the sequence (Q7 )7 is free. Therefore, assuming that
J exp(2czv(ﬁl)1/2)Pg (dm) < 40, (3.24)
P(R4)

and using lower-semi-continuity of the function P — (exp(2cav(-)"/?); P)pway, we get that

J exp (2@@(7%)1/2) P(din) < lim _inf J exp (20211(771)1/2> Qp(di) < +00,  (3.25)
P(R?) T—+ P(Rd)

which is (3.23). In order to prove that P € Po(P2(R%)), we use the same approach and get for any

T >0,
1 T
| mianam) = [ (i) i
P(RY) T Jo Jpmwray (3.26)

T
=;LEwMWWt

Now, we claim that, under (3.24) and Assumptions 5 and 6,

sup Eo[ pa(my)] < +00.
t=0

Indeed, there exist two positive constants by, by > 0, such that for all (z,y) € R,

(z—y) - (G(x) — G(y)) < —bi|z — y|* + ba.

Then, we get

%EO[M(W] < — 2 Eo[pa(my)] + 2bs + (02 + 02)
+ 2|G(O)]Eg[,u2(mt)]1/2 + 2CrEg [,ug(mt)l/%(mt)l/z] )
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Using once again (3.22) and Jensen’s inequality to control the last term, we obtain

Cro

afp

A s (me)] < —2byEo[ps(my)] +2 (|G<o>r + Cpo(mo)/? +

" ) B i)

+ 2by 4 d(0? + 0?)

C 2
< —b1Eo[pa(me)] + byt (yG(O)\ + Cpu(mg)/? + FU) + 2by 4 d(0? + 0?),

ap
and conclude using Gronwall’s Lemma that sup,~q Eo[ 12(m¢)] < +00. Finally, using the same lower-

semi-continuity argument as in (3.25) and returning to (3.26), we get

f Lo () P(di) < lim 1 (F)Qp (i) < +00. (3.27)
P(RY) T—+o0 P(R?)

The latter implies that P € Po(Po(R?)). O

3.3 Completion of the proof of Theorem 3.8

We are now ready for the proof of Theorem 3.8 which is a straightforward combination of Proposi-

tion 3.7 and Lemma 3.12.

Proof of Theorem 3.8. We know from Proposition 3.7 that for any ap > max(Lq, m¢) and any og > 0,
there exist @ > 0 (depending on F, G, 0¢ and d) such that for all ¢ < & and for any 1-Lipschitz
continuous function ¢ : P1(R?) — R and all m,m € Po(RY),

|<@t¢(m) - yﬁb(m” < K(m’ﬁ)e_dv t= Oa

for some ¢ > 0 independent of m and 7. Let us now consider an invariant measure P € Py(P2(R?)),

with a finite conditional exponential moments, whose existence is ensured by Lemma 3.12. Then,

‘@tcb(m) = [y e P )

<[ 1#10tm) - 2o Plam)
PERS (3.28)
< ectf K(m,m)P(dm).
P(RA)

Now, coming back to Proposition 3.7 for the shape of X(m, m), we obtain that

JTP(W) K(m, 1) P(41) < Copra(m)''* exp <C2v(m)1/2> J

exp <02v(m)1/2) P(dm)
P(RY)

+ Cgexp (cw(ﬁl)l/2> J - pi2 ()2 exp (CQ’U(m)l/2> P(dm),
P(R

. «
with ¢g 1= 7 [eap.

Using Hoélder inequality and leveraging on Lemma 3.12 we have
J K(m, ) P(di) < Cq(1 + pa(m)"?) exp (CQU(m)W) .
P(R)
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Substituting in (3.28), we complete the proof. O

4 Proof of Proposition 3.7

This section is dedicated to the proof of Proposition 3.7.

4.1 Ansatz

The strategy of proof of Proposition 3.7 relies on the auxiliary Proposition 3.10. This latter result says
that the residual conditional variance of X (solution to Equation (3.5)) is small with ¢. In turn, it

prompts us to focus on the process E1[ X ] = (E1[X}])t>0. The latter has the following dynamics:
dE [ X¢] = BEq[G(Xy)]dt + By [F(X; — B[ X])]dt + 0odBY, t=0.

Whilst this is not a closed equation (in E1 [ X}]), our approach is to write it as a perturbation of a finite-
dimensional stochastic differential equation. Heuristically, we have (thanks to Proposition 3.10) that

on a large time scale

Ei[F(X; — Ei[Xe])] ~ 02/cap, (3.29)
Ei[G(X1)] = G(E1[Xe]) + [E1[G(X:)] — G(E1[Xe])] ~ G(E1[Xe]) + 0% /cap- (3.30)

Equations (3.29) and (3.30) are rather informal, and we refrain from giving here a rigorous meaning to
the symbol ~ in both of them. However, these two expansions suggest that the dynamics of (E1 [ X¢])¢>0

indeed resembles to the one of the diffusion process Y, constructed on (29, F, Py) as the solution of
dY; = G(Y;) dt + 0odB?, t=0; Yy=E(Xo). (3.31)

Here, it is worth emphasizing that, even obvious, (3.31) is not a McKean-Vlasov but a mere diffusion
equation. In particular, the long time analysis of (3.31) falls within a much wider literature, since the
study of the long time behaviour of diffusion processes has been an important topic of interest, see
[ABC'00, BBCGO08, BE85] to name just a few. Below, we make use of coupling arguments, in the spirit
of Eberle [Ebe16], who stated contraction properties for the law of the solution of (3.31) by building
on ideas developed earlier in [LR86]. The next section gives some details on this approach and the

contraction results available in this framework.

4.2 Contraction for classical diffusion processes

Following [Ebe16], we introduce the following quantities :

Ry :=inf{R>0:k(r) =20, Vr=R},
Ry :=inf{R> Ry :k(r)R(R— Ro) =28, Yr=R},
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4. Proof of Proposition 3.7

so that Ry < R;. Thanks to Assumption 5, Ry and R; are finite. Moreover, let

o) i exp (= [Csntoas). wi= [ (o)

0 0
o) =1- ([ o B(e)o(s) s (2] - B(s)(s) s N
" F0) 1= | o(olalo)ds. (3.32)

Then, we have that

«  is non-increasing, ¢(0) = 1, and ¢(r) = ¢ (Ryp) for any r = Ry;
« g is non-increasing, g(0) = 1, and g(r) = 1/2 for any r > Ry;
« f’is bounded on [0, +0);

« fisconcave, f(0) =0, f/(0) = 1, and

&(r)/2 < f(r) < ®(r) foranyr = 0.

The last display combined with the fact that for all » > 0, ®(r)/2 = ¢(Rp)r/2 and ®(r) < r, implies
kir < f(r) <, (3.33)

with k1 := ¢(Rp)/2. This allows us to define the equivalent deformation of 1-Wasserstein distance

& (= inf [ £z =yl dz, dy),
mell(p,v)
for any two probability measures 1, v on R?, where the infimum is taken over all couplings 7 of 1 and

v. Last but not least, the function f we constructed satisfies

1
f'(r) — =re(r) f'(r) < —%f(r) forall r > 0, (3.34)
4 204
and for some ¢ > 0. Such concentration property for the function f is classical, and the proof of
inequality (3.34) can be found in [Con23, DEGZ20, Ebe16]. Leveraging on the contraction property of

f given by Equation (3.34), we get the following result (as a direct consequence of [Ebe16]):

Theorem 3.14 (Corollary 2 in [Ebel16]). Under Assumption 5 and with og > 0, there exists a constant
¢ 1= Cyy > 0, such that for any pair (Y, 17) of solutions to Equation (3.31) with different initial conditions,
we have
d ~ d ~ _
a5 (£1%0), £4(7)) < df* (£1(%0). £1(F)) e, 0. (3.35)
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Remark 3.15. Thanks to (3.33), we get that inequality (3.35) holds (up to some constant) when replacing
dE}d by the classical dI{Rd Wasserstein distance.

The idea of the proof of Theorem 3.14 is to use the reflection coupling introduced in [LR86] and
widely used in the literature [Con23, DEGZ20, Ebe16, EZ19]. The classical reflection coupling is con-
structed by multiplying the noise by a symmetry matrix mapping instantaneously Y; — Y; on its oppo-
site, see [LR86, Section 3] for details. In this framework, the distance between the two processes Y and
Y evolves according to an Itd process with constant noise intensity. The hope is thus to benefit from
the presence of the noise to obtain further recurrent properties that prevent the processes from staying
away from one another. For sure, one cannot expect this intuition to hold true for any type of drift; in
order to guarantee a relevant form of recurrence, some further confining properties are necessary.

When dealing with the stochastic differential equation (3.31), the condition limsup,_,  ,, £(r) > 0
required in Assumption 5 is key in the verification of the latter confining properties. In itself, this is
not an obvious result: one must indeed keep in mind that G is not strictly decreasing, meaning that
k may be negative on some part of the space. Clearly, things become even more subtle in presence
of the conditional McKean-Vlasov interaction. Still, one would like to settle down a similar reflection
argument for Equation (3.5), which raises preliminary questions of measurability. Briefly, in order to
preserve the form of the common noise, one must consider a reflection matrix that is measurable with
respect to the latter (and not to the idiosyncratic noise). The idea developed in the next subsection is to
introduce a coupling (X, X ) of solutions to (3.5) in which the reflection is achieved by reflecting with
respect to E1[X;] — E1[X;]. However, while reflecting with respect to the conditional expectations
may seem appropriate to our objective, it cannot suffice on its own to get a proof of Proposition 3.7 that
would be a mere copy and paste of the argument of [Ebe16]. The difficulty that one meets when adapting
[Ebe16] to (3.5) is clear: the processes that solve (3.5) are not those that are used in the reflection. This
is where Proposition 3.10 comes in and this is one of the main innovation of our work: we use the fact
that the distance between the solutions to (3.5) and their conditional expectations (which are also the
processes entering the reflection) is small with 0. Mathematically, the difficulty is to revisit the whole

machinery of [Ebel6] by using the fact that, although it is not zero, the latter distance is small.

4.3 Proof of Proposition 3.7

To ease the reading of this subsection, we briefly outline the strategy of proof:

Proof Outline.

« Step 1. We construct a coupling (X, X ) inspired by the reflection coupling introduced in [LR86]

(as explained in subsection 4.2) and adapted to the presence of a common noise.

« Steps 2, 3 & 4. We prove that this coupling allows the conditional expectations E;[X] and E; [ X]
to get closer in time, up to some residual error that depends on the distance between the centred
processes X —E;[X] and X — E;[X]. This is established thanks to the confining property of G

guaranteed by Assumption 5.
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4. Proof of Proposition 3.7

« Step 5. In parallel (the key point is to run the two arguments at the same time), we prove the
mirror result, namely we show that the centred processes X — E1[X] and X — E;[X] get closer

in time, up to some residual error that depends on the distance between the conditional expec-

~

tations E1[ X | and E; [ X]. This is established thanks to the strictly contracting properties of the

interaction term F' guaranteed by Assumption 6.
« Step 6. We combine together the results of Step 4 and Step 5 to conclude.

Proof. Step 1. Let us consider a bounded and d]i{d—Lipschitz continuous function ¢ : P;(R%) — R. In
particular there exists ¢y, > 0 such that for any m, i € P;(R?),

|p(m) — ¢(i)| < ¢ |ipdl” (m, ).

Let us then fix m, m € P2(R?) together with two independent random variables Xy, X, defined on
(1, F!,Py) such that £1(Xg) = m and Ll()?o) = m. Then, we extend X, and Xo to the product

space (€2, F,P) in a natural manner.

Remark 3.16. It is important to notice here that, even if the initial conditions X, X are defined on the
product space (0, F, P), they are independent of F°.

For a given 6 > 0, let us now introduce the following coupling of two solutions of the SDE (3.5)

with initial conditions X and )?0:

(dX? = G(XO)dt+F (Xf _E [Xf]) dt + odB, + o {m(Ef)dB,? + Ag(Ef)df??} ,

| 4XF = G(X)at+F (XP - B [X]]) dt + 0d B, (3.36)

T ~
+ 09 {m;(Ef) (Id —2¢¢ (ef) > dBY + Ag(Ef)dB?} ,

where
« the initial conditions are given by Xg = Xy and )?g = )Nfo ;

« BYis a d-dimensional Brownian motion defined on (Q0,F°,Py) adapted to the filtration F® and

independent of BY;

. forallt > 0, B} := Ei[X?] — E,[X?], and

s J BB i |E]|#0

0 otherwise;

« the function 7 is Lipschitz continuous on R? with value in [0, 1], such that for any = € R,

0 if |z]<9d/2
1 if |z| =4.

ws(x) =
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« the function ) is Lipschitz-continuous and satisfies A\?(z) = 1 — 72(x), for all x € R%,

The first thing to notice is that under the Lipschitz continuity assumptions on GG and F, and the inte-
grability properties of the initial conditions, we have existence and uniqueness of a weak solution of
(3.36). Moreover, thanks to the choice of 75 and A, the pair (X%, X9) is a coupling of (Z, Z) where for

Z and Z admits the same dynamic,
dZ; = G(Zy)dt + F(Z; — By[Z;])dt + 0d By + o0d BY, (3.37)

with initial condition Zy = X, and 20 = )?0. This is mainly due to Levy’s characterisation of the
Brownian motion which is applicable here as for all z € R, A}(z) + 72(z) = 1. Details on the

coupling method are given in subsection 4.2. Below, we focus on the long-time behavior of
Eo [ [1X7 — X71]],
for a given § > 0.

Step 2. Letting A := X9 — E1[X?] and A9 := X9 — E,[X?], we get that for all ¢ > 0,
X7 — XP| < [Ea[X7] — Ea[X7]] + |47 — A7).

The idea of the proof is to control both [E[X?] — E1[X?]| and |A¢ — A?| simultaneously. This will
allow us to prove that both terms converge in fact to 0 (in some sense). Let us begin with the difference

of the conditional expectations:

a (B [X]] - B [X]]) =Ea[G(X]) — G(RD)]dt + Ba[F(A) — F(A])]at
+20qms(E)eled - dBY.
Using It&’s formula and recalling that E¢ = E,[X?] — E1[X?] and ¢} - E} = |E?|, we obtain
A 7] - B3] =2 (Ba[X0) - i [X7)) - (Ba[C (X)) — EalC(RD)))
+2 (EX]] — Ba[X7]) - (Ea[F(AD)] — Ea[F(AD)]) at
+ dog [Ba[X7] — Ba[R7]| s (ED)ef - By
+ 20272 (E?)dt.

This combined with the particular shape of the reflection, and noting that ( é e%-dBY); is a 1-dimensional

Brownian motion tank’s to Levy’s characterisation allows us to write

A [E1[X7] — B [R])] = ¢f - (Ba[G(X])] - Ba[G(X)] )t
+ e (Ei[F(AD)] ~ Ea[F(A))]) at (3:38)

+ 200m5(EY)el - dBY, ¢ = 0.
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Deriving Equation (3.38) is not straightforward and can be done using similar techniques as in [DEGZ20].
The underlying concept is that the presence of 75 keeps the process E? from lingering near zero. The
complete proof of (3.38) can be found in Appendix 5. We now recall (see Assumption 5) that x is a

continuous function on (0, o) satisfying

1
liminf x(r) >0 and J re(r)”dr < oo. (3.39)

T 0
Then, using It6’s formula once again, we obtain
af ([Ealx] - Ea(Z71)) = 7 ([EaLxF) - B K1) of -
+ f ([BXT] = BLX7)]) ef - (BalF(AD)] — Ba[F(A])])
|

+200f" ([EaX7] — B[ X))} s (B - B

Then, we rewrite

df ([Baixf] = Eaf&9)) = f ([Balx?] - EaL%7)]) €f - (GERLXT]) — GEEL LKD) at
+ 202 1" (’El Ry X‘S]D n2(E9)dt (3.40)

+ 200 f’ (’El ~Eq| Xt]D ws(ES)el - dBY + rldt,
where for allt > 0, 7} := I;(t) + Iy () + I, (t), with
1) = (|B]) ] [ (06X + (- )0 = DOGELX + (1 - =R o
(B[ X)) - E[X))] ;
m () = /' (|B]) ef - | fo (DG(pX} + (1 - ) XP) — DX} + (1 - pELRED) dp
(47 - D) ;

1
m(e) = £ (&) e B[ | DFGoa] + (1= p)AD dp (47 - D),
0
(3.41)
where we used the following two identities: E;[X?] — E1[X7] + A9 — A9 = X — X? and E,[A?] —
E;[A7] = 0.

Step 3. Recall (3.34):

() = =re(r)f'(r) < === f(r) forallr > 0.
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Combining the above equation with the fact that, from Assumption 5,

(x—y) - (G(x) - Gy)) < —fgm —yDlz—y?, zyeRY

we obtain

1 (B - ELR)]) e - (GELXD) - GERTD)

+ 208 1" (| [X0] — B [X01)) w3 ()
D) f/ ( Ey D |Et I (‘Et D + 20’0f” (‘Et ‘) 7T5(Et)
< 203 ( 11 (1) 8t (8]) + 7 (|2 ) it — S (|t v (|22]) N30
—ef <‘E1 LR X‘S]’) + h(d),
(3.42)
where )
n) = 20 (|20)) 1291 (|22)) (D).
Now, recalling that A\s(z) = 0 as soon as |z| > ¢, we obtain for ¢ € [0, 1],

h(3)) < %017 ot 649
where K9 = supy<,< k(r), from which we deduce that 2(0) — 0 with d. Then, back to (3.40), we can
write

(’El El[X5]D <—cf (’El[Xf] - El[)?f]D dt + [ri|dt + h(s)dt
+200f" ([E1[X0] — Ea[XP]]) mo (B)ed - dBY,
and

CEo |7 ([Ealx?] ~ EalX01))| <~ Bo 7 ([BalXF] ~ EALREY]) | + Bollrd ] + EollR(a)]

Using Gronwall’s Lemma, we obtain

Eo [f (’EﬂXf] - E1[)?E]D] <Ep [f <‘E1[Xg] - El[)?g]D] e+ Lt —IE[|ri[]ds

(3.44)

Step 4. It remains to control the three parts in the expansion of the residual term r!, see (3.41). For
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the two first ones, we use the Lipschitz continuity of DG with respect to the norm || - || and write

)

~ ~ 1/2 ~
T(6)] < CaBa [1X7 — Ea[X71P + 1XF — B[ R712] T B [X7] - B [ X7

~ ~ 1/2 ~e o11/2
T ()] < CoBa |1X7 — Ba[X7112 + 1 XF — B[ X71P] B [14] - A0 ]

~ ~ 1/2
Letting n} = [\Xf — B[ X0])? + | X — By [Xf]|2] , for all ¢ > 0, and recalling from Proposi-
tion 3.10 that
77§S < nSefCO‘Ft + 200;;/2\/ﬁ7

we obtain

L (8)] + M (?)]

a1/ N (3.45)
< Cg (e~ o' + 205 12Vd) <E1 (14 = B2 + [Ea[X7] - B [Xf])) .
For the term IIT; (), we use the fact that E1[A%] = E,[A?] = 0 and write
1 ~ ~
(o) = 5 | [ (DF(aL+ (- )8 - DFO)ap - (aF - R
(3.46)

~e o71/2
<Cp (nge_C“Ft + 2(70;;/2@) Eq [|A§5S - A?\z] ,

where we used once again Proposition 3.10 together with the Lipschitz continuity of F' to get the last
line. Then, combining (3.40), (3.45) and (3.46), we have

Eo[|r[] < Eo [T (8)] + [T (8)] + I (1)
~ 1/2 ~
< (Cg + Cr) (mhe™*r" + 20¢;1Vd) Ko [E (147 = ZP| 7 + X7 - El[Xf]H.

Here, we recall that ng is deterministic because m and m are deterministic, see Remark 3.16. Finally,

using inequalities (3.33) and (3.44), we obtain

By 4]~ B, [R5]] + 7

w1 Eo[[E1[X7] — Ex[XP]] < ™ -

t ~ 1/2 ~
+ be et (nge—Can - 2ac;;/2\/&) Eq [E1 [|Ag - A§|2] +[E1[X0] - El[Xf]|]ds,
0
(3.47)
where Cy := Cq + CF.

Step 5. We now focus on the (normed) difference process (| A9 — g?|)t>0. Thanks to the properties
of F', as stated in Assumption 6, we are here able to show that it decreases exponentially fast to zero.
Recalling from Step 2 that A = X7 — E;[X?] for t > 0, we have

dA? = (G(xX]) ~ GO ) dt + (FOXP = B[ X))t — By [F(X] — Ea[X]]]) dt + 0B,
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from which we obtain

S - &) =[aex) - o) + [P - P
— [EAGD] - BAGED)| - [Ea[P(49)] - EA[F(AD)]]
Then, 1
1A= A (G(x]) - G(XD)

(F(A) = F(A}))
(E1[G(XD)] - EA[G(XD)])
(E1[F(AD)] = Ea[ F(AD)))

+

( ) -

2( ) -
- 247 - A7)
2( A7)

(3.48)
We can immediately leverage on Assumption 6 to control the second term on the right hand side:

2(47 — A) - (F(4]) — F(A) < —2ap|4] — AP, (3.49)
Let us now focus on the terms involving G. We have

- g - )| f{DG(pr+<1—p>f<f>—DG<pE1[Xf] +L- BRI} ap) (62 - D)
+(A?—71?)-[

- at- 3 m | ( 1{DG<pr+<1—p>5<3>—DG<pE1[XE] + L= BRI} ap) (X2 - )|

By combining the second and fourth term in the right hand side, we obtain
(4] = &) (G(X) = GIRD) ~ B [G(X)) + B [G(XD)])
1
~a2 = )| ([ {D6ox2 + (1= X)) - DEGEXTT + (- DB} ap) (2 - )|

1
(A7 ). (jo DG(pEL[X?) + (1 - p)Ex [)?fbdp) (4f — &)

0
=45 (t) + Aa(t) + As(t).

~af = ([ (POt + - ) - DGR + (1 - R ap) (xF - 5D)

Then, if we perform the following decomposition of the first term on the right-hand side, we obtain

Ay(t) = B (t) + BEa(t), (3.50)
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with

7m0 = (4] - 7)) - ([ (DG} + (1 p)RD) ~ DG(EALX]) + (1 - PR fa )

(Ea[XP] — E, [X'ED]

1

B, (t) i— (A — 0. (J

{DG(X] + (1 p)XD)
0

— DG(pE[X]] + (1= p)ES[X7]) fdp) (4] — AD).
Then, combining the terms A5(t) and AA5(t), we get
(4 - &) - (G(xP) - GXD) - B[GXD)] + B1[G(X))])

= B () + [E2(t) + B&o ()] + Ea(t) (3.51)
=: KA (t) + Ia(t) + As(t),

where AA (t) and A3(t) have been already defined and II5(¢) is defined by

1
(o) = (4] - B [ DGGx? + (1= p)RDap) (42 - 2D,
We now control II3(¢) as we handled Equation (3.49). We get
I (t) < malA] — A2, (3.52)

where we recall from (3.6) that m¢ € R stands for the upper bound of the function r +— [—o3k(r)/2]

introduced in Assumption 5. Indeed, as a consequence of 5, one can show that for any z, y € R,
y- (DG(x)y) < malyl*.
Then, inserting (3.49), (3.51) and (3.52) into (3.48), we obtain
d -
gz
< —2(ap —mg)|A] — A° + BEE(t) + Bs(t) + 2(A7 — A7) - (Ea[F(A])] — Ea[F(AD))).

By taking expectation under P; and by using the fact that E,[A9] = E;[A?] = 0, we get rid the last

two terms in the above right-hand side. We obtain

d N N
ZE1 [|Af _ A \2] < —2(ap —mg)Ey [|Af _ A \2] + 9F, [A&:(1)]. (3.53)

In order to control AA (£), we come back to (3.50) and use the fact that E;[X?] — ;[ X?] is measurable

with respect to the common noise. By Cauchy-Schwarz’ inequality, we obtain
E; [A&1 ()] < CEi[|A} — A1 2l |EA[X7] — 1 [X7]),
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where we recall that n} = E{[|A2|? + | A%|2]*/2. Then, from Proposition 3.10, we get
Ei [BA: ()] < Edf|A7 - A7) (7765670“” + UC;;Q\/E) B4 [X7] - Ea[X7]],

and (3.53) rewrites

S (147 - AP < — 2Aar — o) [14F - AP

at (3.54)

+ B[4 — BP)2 (nhecor + oeal V) B [XF] — B [XF]).
Then, we get

d ~sin]1/2 ~e 011/2
SE (147 = AR | < — (ar — ma)E [14] - AP

dt (3.55)

+ Ca(nper" + oeg PVA)E[X7] — E [X7]],
see Appendix 5.2 for details. Using Grénwall’s Lemma, we obtain
Ei[]A7 — A7P)? < Eaf|4) - AGP]Y? exp (—(ar — me)t)

t
4 CGJO 6_(06F—mG)(t_5) (ng@_Can + UC(;;/2\/E)‘E1 [Xg] —E; [Xg]]ds

Finally, taking again expectation Eg,

~

Eo [Ea[|4] - A71*)"2] < exp(—(ar — ma)t)Ea[| 4] — AP]"2

. N (3.56)
+ OGJ e~ (rmme)i=) (yle=cars 4 ge V2V/d)Ey [|1E1[X§] - ]El[Xg]|] ds.
0

Step 6. Now, as (3.47) remains true replacing the rate ¢ by ¢ < ¢, we can assume without loss of

generality that ap > mg + c¢. We can then combine Equations (3.47) and (3.56) to obtain, for all ¢ > 0,
5 xo2]Y? 5 6
Eo [Er [14] - A2| " + EA[X7] - Ea [ X))
~51971/2 > _ h(d

< (B0 (143 - 2] 4 ) - maLR ) e 4 2O

oy

t ~ 2 ~
+ f e~ (e cor® + 20,12V d) By [El 142 - 22| + [ [x7] - ]El[Xf]qu,
0

(3.57)

for some constant c§ > 0 that depends on F and G.

o 11/2 ~
With the notation ©9 := E; [\Af "y 12] +E[X?] - Eq[X7]

, Equation (3.57) reads

h(d t
Eo[0?] < ©e™ + (c) + cgf e~clt=s) (nge_C“Fs + 206(;;/2\/3) Eo [@g]ds.
0
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Then, using Gronwall Lemma, we obtain

b b
e, [@f] < (@0 + h(5)> exp (63770 + CgUﬁt)

c Ca /Ca
t bF ) \/f (3.58)
qovd
+ h(9) f e exp (ano + 37 (t— 3)) ds.
0 Cap v Cap

We emphasize here that we write O and 7y without reference to J because these quantities are prede-
termined and independent of §. Now, let us notice that creating the couplage we defined two Brownian
motions adapted to the filtration [Fy:

t

t
B = f m5(ES)(Id — 2¢2(e2) T)d B? +J As(E9)dBY
0 0

t t
B = J m5(E2)dB? +J As(E)dBY.
0 0

Setting m? = £1(X?) et mf = £1(X?), we get

%+ of
dymd =V - < 5 OTm? —m! (G +F(-— ul(mf))>> dt — ooVm? - ds?,
~ P+ 0F s~ ~ ~5 1738
dymy =V - 5 Vg —my (G—i—F(-—ul(mt))) dt — ooV - dg;.

Then, one has 2,¢(m) = Eq [¢(m{)|md = m] and 2, () = Eq [¢(mg)|M = m]. Then, we obtain
that for any § > 0,
|2u0(m) — 216()] < |6lhipo [Ea [|X7 — X7 ]

< | ¢)ipEo[©]]

Plugging the estimate given by Equation (3.58) into Equation (3.59) gives

Cb CbO'
| 2d(m) — 2od()] <|dlp (90 ; h(5)> exp <c‘°’770 N ( jﬁ _ ) t)

(3.59)

C

ap Cap
t b b d
Flelliph®) [ e exp [ Dy G ) g
0 CaF CO[F
The latter being true for all § > 0, we can consider the limit 6 — 0 to finally obtain
e ovd
P — Zvp(m)| < |p)p© — St —ct]|.
|Z1p(m) — Zip(m)] < | ¢hip©o exp (CaF M+t

b —1/2

Then, for o and ar satisfying ¢ := oc3ca,/”—c < 0, we get the expected exponential rate of convergence.
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Moreover, writing

b ~ 112 ~ b
O exp <03770> = <E1 [le - A0|2] + [Eq[Xo] — IE1[Xo]|> exp <C?’770>

ap afp

<Ca (uatm) + a0 exp - oom) 7 5 00 )

Cap

for a new constant positive Cy, we complete the proof of Proposition 3.7. O

5 Appendix

5.1 Proof of Equation (3.38)

Proof. Using Itd’s formula, and recalling that £% = X9 — X9, we get that for any § > 0,

d[E1[X7] — B[]

— 2B [X]] - Ea[R])) - (BA[G(X])] — Ea[G(X7)] ) at

+ 2B [X]] ~ EA[X7]) - (Ba[F(XT — EBA[XP])] — Ea[G(P(X] — Ea[RP])]) a
+ dooms () (Ba[X7] — Ea[X7]) - e)ef - dBY

+ dodm2(E?)dt.

For any & > 0, let us introduce ¥ : [0, +0] € r — (r 4 ¢)/2. Since this function is twice continuously

differentiable, we can write

av. ([ [X]] - EA[R7]1) = 20L(E]D)E] - (Ea[G X5>] ~Ei[G(X])]) dt
+ 2L (|BJP)E] - (Ba[F(XF = Ea[XD)] - Ea[P(R] — Ba[R0)]) dt
+ dooyL(|E |2)7r5(E5)( -ed)el - dBY (3.60)
+ o3yl BB at
+ 8agwl (|7 17| 7 s () dt.

We now want to take the limit ¢ — 0. Using dominated convergence theorem and stochastic dominated
convergence theorem as stated in [RY99, Theorem 2.12], combined with the bound 47 (T2) < 1, we
can deal with the first two lines and get that for all ¢ > 0,

t

&) (B [G(xD)] - Bi[G(XD)]) ds,
(3.61)

tiy | 208 EL - (RG] - EBA[G(RD]) ds = |
lim we(uﬁr ES - (Ed[F(X] — E[X]))] - Ea[F(X] — Ea[X]])]) ds
(3.62)

- i - (B[P (X}~ Ba[X[))] ~ E1[F(X] — B [X]])]) ds,
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and
t

t
lim f ooy (| E*)ms(E9)(ES - €3)el - dB] = f 200m5(EQ)ed - dBY, (3.63)
—vYJo 0

almost surely. For the last two terms in Equation (3.60), let us remark that for all » > 0,

1 r

2r +¢e)l2  2%r + )32 =0 (3.64)

VL) + 20 (1) =

when ¢ tends to 0. In order to we need to properly take the limit ¢ — 0 in Equation (3.60), we need to

take advantage of the presence of the function 75 for § > 0. In Indeed, we have
[4o3 (1B P)m3(BY) + 8ogul (| B 2)| ] s ()|
< |m3(EDa] (L) + syl B P)IELR)|
Moreover, we know that ¥ (r?) + 2¢”(r?)r? < r=3, for all * > 0 and ¢ < 1. Using the presence of

ms, we have that the integrand is null near 0. Then, we can once again apply dominated convergence

theorem and obtain

t
1if%f 4 {Ugwé(!Eg\Q)Wa(Eg)z + 803¢§(!E§!2)!E§\2%(E§)} ds = 0. (3.65)
e—> 0
Finally, combining Equations (3.61), (3.62) (3.63) and (3.65), we get the expected result. O

5.2 Proof of Equation (3.55)
Proof. To prove Equation, let us introduce the following technical Lemma:

Lemma 3.17. For any positive and differentiable function u : [0, +00) — [0, +00) such that

d

au(t) < 2k(t)A/u(t),

for some function k : [0, 4+00) — R, we have

d

V() < k().

Proof of Lemma 3.17. We consider for any ¢ > 0 the function . : [0, +) 3 7 > (r + ¢)"2. The

function 1. being differentiable with positive derivative, we get

%wa (u(t)) < 2k(8)y/u(t)yl (u(t)).

Using the fact that 27/ (r2) = r(r? + &)~/ < 1, we use dominated convergence theorem to conclude
the proof. O

Such a lemma is classical and applying it to Equation (3.54) concludes the proof of Equation (3.55).
O]
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Chapter

Invariant density estimation from noisy data

Abstract

We introduce a new approach for estimating the invariant density of a multidimensional
diffusion when dealing with high-frequency observations blurred by independent noises.
We consider the intermediate regime, where observations occur at discrete time instances
kA, for k = 0,...,n, under the conditions A,, — 0 and nA,, — 0. Our methodology
involves the construction of a kernel density estimator that uses a pre-averaging technique
to proficiently remove noise from the data while preserving the analytical characteristics
of the underlying signal and its asymptotic properties. The rate of convergence of our
estimator depends on both the anisotropic regularity of the density and the intensity of
the noise. We establish conditions on the intensity of the noise that ensure the recovery of
convergence rates similar to those achievable without any noise. Furthermore, we prove
a Bernstein concentration inequality for our estimator, from which we derive an adaptive
procedure for the kernel bandwidth selection.
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1. Introduction

1 Introduction

1.1 Setting

In this paper, we revisit the classical problem of estimating the distribution of a signal blurred by addi-

tive noise. We focus on a d-dimensional deconvolution model
Yvi,n = Xi,n + Tn&i,na 1=0,...,n, (4.1)

where the variables (X ,,); are stationary with common distribution ¢ and (§; )i » is an ii.d sequence
independent of X. The sequence (7,) represents the noise intensity and is assumed known. When
the (X 5 ); are independent, the noise is Gaussian and the target density is a-Holder regular, the best
achievable pointwise quadratic rate of estimation is log(n) =27, see [Fan91, CL13] for more details.
When 7, is of order 1, the resulting convergence rate becomes logarithmic, and the estimators cannot
be used in practice. In this work, we show the situation improves when the process (X 5 ); exhibits
Markovian properties. Such structure can significantly enhance the efficiency of denoising the obser-

vations.

Throughout this paper, we consider a d-dimensional stochastic process X, defined on an appropri-

ate probability space (2, A, P), governed by the following dynamics
dXt = b(Xt) dt + O'(Xt) th (42)

Here, W represents a d-dimensional Brownian motion, and the functions b : RY > R?and o : RY —
R? @ R? are the transport and diffusion coefficients of X, respectively. We specifically consider the
case where o is a known constant diagonal matrix. Under mild conditions on b and o, the process X
is ergodic and admits a unique stationary distribution, denoted by 7i®. Furthermore, 72’ is absolutely

continuous with respect to the Lebesgue measure on R? and has a density also denoted by 7i’.

We aim at estimating 7i° from the (Yi)i=1,....n defined in Equation (4.1), with
X@n = iAns 7= 0, ey Ny (4.3)

for some positive sequence (A;,),. If A, is of order 1 or larger, the variables (X ;) are exponentially
B-mixing and we would retrieve results similar to the i.i.d case. When A,, — 0 and nA,, — 0, we can
use the Markovian and ergodic structure of (4.2) to build an estimator of 7z? with polynomial rate even

when 7,, = 1.

1.2 Motivation

Historically, diffusion models were first introduced as approximations of discrete Markov chains. Over
time, their relevance has significantly expanded across various domains of applied mathematics [Pap95,
Ber93, Hul03, Bai57, Ric77]. Statistical inference for diffusion processes has attracted extensive study

due to the model’s significance in many applied fields. This research first included both parametric and
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non-parametric estimation of the parameters b and ¢. The estimation of the invariant measure 7° is
also studied [NZ79, Del80, Bos98], pushed by its association with various numerical methods, such as
Markov Chain Monte Carlo [LP02, Pan08]. Note also that the non-parametric estimation of 7i® and the

estimation of the transport b are intertwined [Sch13].

Initiated by [Ros56, Par62], non-parametric density estimation has been extensively studied in the
context of i.i.d observations [Tsy09]. A natural estimator of the common density 7z of i.i.d. observations

(Xin)i is given by

fin(z) =

S

n—1
> Kn(z — Xp)
k=0

where we write K, (y) = [[; h; 'K (y;h; *) forany h = (hq, ..., hg) € (0, +00)%andy = (y1,...,yq) €
R? and where K : R — R is a bounded kernel. Oracle inequalities show that this estimator can

achieve the convergence rate n~®/(2a+d)

where « is the Holder regularity of . This rate is opti-
mal, see e.g. [Tsy09] for details. The tuning parameter h needs to be chosen in an adaptive way
to achieve this rate, see [GL08, GL09, GL11]. The extension to ergodic processes is not trivial and
earlier statistical studies focus on two different asymptotic regimes: continuous observations of the
process (X¢)i<r with T — o0, or low frequency observations given by (X;a); with 0 < i < n.
Since X is exponentially 5-mixing under mild assumptions on b, low frequency observations naturally
relate to the i.i.d. case and present similar convergence rate. On the other hand, continuous observa-
tions are can be studied using fine probabilistic tools for ergodic continuous-time Markovian dynamics
[BCGO8, CGO08, Lez01, Paul5] and precise estimates on the transition densities [CW97, QRZ03, QZ04].
The seminal works of [DR06, DR07] first established convergence rates of kernel estimators under con-
tinuous observations of X over a time interval [0,7]. In these works, the invariant density is still
estimated through a kernel based estimator as in the i.i.d. case. [DR06, DR07] also obtain the conver-

gence rate
T—a/(2a+d—2)

when 72° is a-Holder and d > 3. When considering an anisotropic framework, the convergence rate

depends on the effective average smoothness [Str18] and minimax rates are derived in [AG21].

Two significant limitations still need to be addressed in this setup: First, what happens if we access
discrete high-frequency observations of X, i.e. we observe (X;a,, ); for 0 < ¢ < n when A,, — 0 and

nA,, — 0. Secondly, can these methods be applied if these observations are polluted with a noise.

The question of discrete observations naturally arise with the advent of high-frequency data col-
lection, and in particular in finance [ASJ14]. Hence, understanding the estimation rates under different
asymptotic conditions becomes crucial. This includes specifying conditions on A,, that determine when
continuous or low-frequency observations are more analytically pertinent. While this topic has only
recently received substantial attention, pioneering works like [GHR04] and [CT16], which explore ran-
dom sampling times, stand out. However, this question has recently been addressed in full generalities

in [AG23] where the breakeven point between the high frequency observations similar to continuous
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observations and low frequency observations similar to the i.i.d. case is identified and studied. The
continuous rate is known to be optimal [AG21] in all dimensions, but the question of the optimality of
the low frequency rate is still an open question, with the exception of the one dimensional case, solved
in [AG22].

The second limitation in previous studies is to effectively incorporate noise into these analyses.
Noise is an often unavoidable element in practical applications, such as financial modeling, biological
experiments, and sensor data analysis due to measurement errors or external noise. Underestimat-
ing noise can lead to biased and unreliable estimations. This question was extensively studied in the
context of noisy observations of i.i.d random variables. When noise is assumed to have an additive
structure, existing literature uses Fourier inversion and kernel-based methods to recover the distribu-
tion of interest [Dev89, LT89, SC90]. Later works [CH88, Fan91, Fan93] establish minimax optimality
of this procedure under the assumptions that the noise distribution is known and has a non-vanishing
Fourier transform. It is important to note that in this setup, the convergence rates are slow. For in-
stance, when the distribution of interest is a-Hoélder regular and the noises are independent standard
Gaussian variables, the optimal rate of convergence for any estimator is only log(n)~®/2. The rates
of convergences in such framework has been studied under different set of assumptions depending on
both regularities of the noise and the density of interest in [CL13]. However, literature on noisy ergodic
setups remains sparse, with a few notable contributions including [Sch11, Sch12]. Unlike the i.i.d. case,
the structure of (4.2) and (4.3) allows better extraction of the information hidden by the noise, leading
to improved estimation rates. Indeed, using the H6lder regularity of X, we can denoise high-frequency
data while preserving the analytical properties of the signal. We achieve this through a pre-averaging
technique, as in [JLM™09]. This approach has been widely studies and could be generalized to other
noises, as demonstrated in [JPV10, HP13, JM15] for high-frequency statistics and [Sch11, Sch12] within
an ergodic framework. In this paper, we show that when the noise is relatively small (see Section 4.1
for details) we can estimate the invariant density rates to the non-noisy case studied in [AG23]. When
the noise 7, is relatively large, we can still estimate the invariant density with convergence rate given
by

(T2A,) 7%

This rate is polynomial in A,, even for 7, constant, which is a great improvement compared to the i.i.d.

case. Note also that this rate does not depend on the dimension, see Section 4.1 for insights.

1.3 Organization of the paper

In Section 2, we present the statistical model, including the underlying assumptions and the probabilis-
tic framework of our analysis. We provide clear definitions for our observation scheme and outline the
requirements for the noise source. In Section 3, we systematically construct the kernel estimator for
the invariant density /iy, p, ,. This estimator differs from the standard kernel estimator due to the need
to preprocess the data, which arises from the presence of noise. To reduce the impact of noise, we use
a preaveraging strategy. Specifically, for some integer p > 1, we divide our number of observations by

p by averaging them over a range of size p. Section 4 presents the upper bounds for the quadratic risk
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E[|fin.np(z) — 1°(z)|?], providing insights into the optimal hyperparameters selection. Although the
obtained rates may not achieve minimax optimality, they align with the expected non-parametric esti-
mation rates in similar contexts. Furthermore, it enables us to precisely understand the noise intensity
threshold above which averaging is required to achieve a better convergence rate, given by A:/ “ when-
ever i¥ is assumed to be a-Holder. Section 5 includes the derivation of a Bernstein-type concentration
inequality allowing adaptive selection of the bandwidth h. We then proceed to a numerical analysis
section (Section 6), which encompasses experiments and discussions on the estimation procedure. This
is followed by a section consolidating essential probabilistic results instrumental in variance control of

our estimator, see Section 7. Lastly, all proofs are gathered in the Appendix.

2 Statistical and Probabilistic framework

2.1 Notation

For all € R%, we denote by |x|? := z - 2 the Euclidian norm. Throughout the paper, we denote by
P(RY) the space of probability measures on R%. Moreover, for any differentiable function, f : R — R,
V f stands for the gradient of f. Similarly, if f admits £ derivative in the ¢-th component, we denote
this derivative by ﬁf‘ f. Finally, for any g : R? — R%, V - g denotes the divergence of g.

For any o-finite measure v on RY, for any ¢ > 1, we say that f : R? — R belongs to L?(v)

whenever

o= [ 7@ we) < o0

When v is the Lesbegue measure on R? we only denote L? and the associated norm | - |,. Finally,

when ¢ = +00 and v is the Lebesgue measure, we define

[flloo == sup [ f ()]

zeR4

2.2 The statistical diffusion model

We consider a stochastic process X defined on a rich enough probability space (€2, A, P). For a given
Lipschitz continuous function b and probability measure 1 on R?, we can define a probability IP’Z under

which X is solution of the following stochastic differential equation
dX; = b(Xy)dt + dWy, L(Xo) = p, (4.4)

where W is a d-dimensional IP’Z-Brownian motion. We denote by F = (), the filtration generated
by W. We write EZ for the expectation with respect to IP’Z. We also use P’ and EY instead of ng and
Egz. In the paper, for any probability measure v € P(R?), for any ¢ > 1, we say that f : R — R

belongs to L?(v) whenever

o= [ 7@ wn) < o
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When v is the Lesbegue measure on RY, we only denote L9 and the associated norm | - |,. In the

following, we always assume the following conditions on b.

Assumption 7. The function b is differentiable and satisfies
1b(0)| < by and Vie{l,...,d}, |0ible <b1/d,

where by and by are positive constants. This ensures in particular that |V - b| o < b;.

Assumption 8. There exists a function V : R? — R differentiable and bounded below by a constant V;
such thatb = —VV and V(0) = 0.

Assumption 9. There exists C, > 0 and p, > 0 such that (z,b(z)) < —Cp|z|, Yz : |z| = P

By definition, X solution of (4.2) is a Markov process. Assumption 7 shows that the drift force
exhibits at most linear growth, which implies that there exists a constant Cy > 0 such that the transition

density p?(z,y) for all t > 0 and for all (z,y) € R? x R? with |z — y|? < ¢ is satisfies
pi(w,y) < Co(t™"? + £%2), (45)

see for example [CW97]. This inequality is crucial to obtain robust upper bounds when estimating the
invariant measure of a stochastic process, as demonstrated, for instance in [DR07, Str18]. Assumption
8 is also usual when studying the asymptotic behaviour of a diffusion process. However, it is not a nec-
essary condition [Bha78, DR06], since the existence and uniqueness of the invariant measure primarily
depend on the asymptotic behaviour of the drift force b and its growth at infinity. In the present paper,
Assumption 8 is needed at a later stage in order to derive upper bounds similar to (4.5) for the transition

density of the pre-averaged process, see Section 14.1.

Under Assumptions 8 and 9, the process X defined by (4.4) admits a unique stationary distribution
denoted by 7i°, absolutely continuous with respect to the Lebesgue measure on R? whose density, also

denoted by 7%, is explicitly given for all z € R?? by

@(z) = Zy;  exp(—2V (x)) where Zy = de exp(—2V (y)) dy.

Assumption 9 is common to guarantee an exponentially fast convergence towards equilibrium. In
the case where the drift force is derived from a potential V, a direct link exists between the classical
Poincare inequality and Equation 4.6, and Assumption 9 implies that X satisfies a Poincaré inequality
as shown in [BGL14]. More precisely, there exists Cp; > 0, depending only on Cj, such that for any
f € L?(®) satisfying E%b [f(Xo)] = 0 and any t > 0, we have

Varl, [P} f(Xo)] < e 2CPIEL, [£(Xo0)?], (4.6)

where (P});>0 is the semi-group associated to the process X, acting on any measurable functions
f:R? - Rby
Vi=0,VzeRY P f(z) = BL[f(X1)]. (4.7)
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It is well known that the accuracy of the estimation of the invariant density 7i° strongly depends on
the regularity of 7i’ [DR07, Str18, AG21, AG23]. Therefore, we assume that 7° belongs to the anisotropic
Holder class H (o, £), which is defined below.

Definition 4.1. Let o = (a1,...,aq) € (0,0)% and £ = (L4,...,L4) € (0,00)% A function g :
R? — R is said to belong to the anisotropic Holder class Hq(cx, £) of functions if, forall1 < i < d, g is
|cvi |-differentiable in the i-th variable and the partial derivatives satisfy for 0 < k < | o]

089l < £; and ¥t e R, [l*g(- +te;) — Al lg()], < Lifefetod

where (e1, ..., eq) is the canonical basis of RY.

Definition 4.2. Leta = (a1, ..., aq) € (0,0)%, L = (Lq,...,L4) € (0,00)% and by, by > 0. We write
b = (a, L, b, b1, Vo) and X(b) the set of functions b : R — R satisfying Assumption 7 with constants
bo and by, Assumption 8 with constant Vyy, Assumption 9 and such that i’ belongs to the anisotropic Holder
class Hq(a, L).

In this paper, we always assume that b belongs to X(b), for some b = (o, £, b, b1, Vp), with
a1 < -+ < ag. Moreover, X is assumed to be observed at discrete times i{A,,, for 0 < 7 < n, and

blurred by a noise composed of independent standard Gaussian variables. We observe
}/7§,n = XA, T Tnfi,na

where ; ,, are ii.d Gaussian variables, A,, — 0 and nA,, — o0.

3 Estimation procedure

In this section, we plan to use a kernel type estimation procedure. We consider a bounded kernel with
compact support K : R — R, that is a measurable function such that {; K (y) dy = 1. We assume that
itisof order [ > 1, i.e. thatforall1 < k <! — 1, we have

jR ykK(y) dy = 0. (4.8)
Now for any b = (hi,...,hq) € (0,+0)? andy = (y1,...,yq) € R we define

d
Kn(y) = [ [ b 'Ky ). (4.9)
=1

In the case where the density of interest 7i® belongs to the anisotropic Holder class Hy(cx, £), we al-

ways assume that | > [ay].

First, note that the natural kernel based estimator of the invariant density in absence of noise does
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not work in our context. Indeed, since (Y}, ,,) is a stationary process, the estimator

~ 1 n—1
HKBnhp(T) = — Z Kp(r — Yin) (4.10)
n k=0

estimates the density of Y7 ,,, which is given by

i pr, () = J i (z = y)er, (y) dy = f B (z — Tny) 1 (tay) dy
Rd ]R‘i

where ¢, (z) = (2n72)~%2 exp(—|z|?/(272)). Therefore, the presence of noise in (4.10) creates an
additional bias satisfying

i+ @) = (@] < [ =) =7 @1 () 1)

which is of order 7,,. This bias is dominating the usual bias of kernel based estimators when 7,, is large.
In particular, when 7,, is of order 1, the estimator is not consistent. Therefore, we need to reduce the

influence of the noise in the observation.

To that extent, we implement in this paper a preaveraging approach and we compute local av-
erage the observations over batches of size p. This yields to the following modified observations
(p~! Z@:& Yip+emn)i1<k<|n/p|- Intuitively, this approach should work because of the regularity of X.

Indeed, we have

—1 —1
p 1 p

Z Yipren = Xipa, + =
=0 p

1 - p—1
D (X(kp""e)An - kaAn) + - Z gk:p-‘r&n- (412)
P - p £=0

£=0

This expression can be seen as Xy, + noise and the effective sampling frequency becomes (pA,,) ™.
Moreover, the noise now comes from two sources: in addition to the noise (; )i n, we now have
a preaveraging error p~! Zé:é (X(kp+0)a, — Xkpa,, ) Using the pathwise regularity of X, this error
should remain small when p is not too large. Moreover, since the random variable (&; 5, )i, are indepen-
dent standard Gaussian variables, we can rewrite p—! Z@:& Ekprtn = Tnp_l/ 2&’” where Em is also a
standard Gaussian variable. We next define a kernel estimator based on the preaveraged observations.

For any non negative integer p and any x € R?, we define

0= S e S i)
Unhp(T) = —— Kplz—p~ Yipten |- (4.13)

Remark that when p = 1, this estimator is the usual estimator used for estimating the invariant density
from discrete observations, see [Str18, AG23]. From what precedes, it first seems natural that ﬁn,h,p es-

timates ﬁb * P p-1/2 which is the invariant density of Xy,A,, + Tnp_l/ 25 k,n- However, the preaveraging
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error p~ Z?;é (X(kp+0)A,, — Xkpa,, ) induces an additional term. Indeed, we have

1221 1221 (kp+0)Ar, 1221
= (Xproyan — Xrpa,) = = D, (J b(X,) ds> + = (Woproa, — Wipa,)- (4.14)
P = P =5 \JkpAn Pz

The first sum is negligible compared to the second one. Moreover, p~! Zf;é Wikprna, —Wipa,,) isa
centered Gaussian variable with variance (12p) ! (p—1)(2p—1)A,,, independent of Xy, . Therefore,
this term has an effect on the estimation comparable to that of Tnpfl/ 25 k,n- Combining these two terms,

we deduce that D, , ,, estimates 7i° * 3 , Where

2
~ ™ (p—1)(2p— I)An>1/2
=|— . 4.15
Fop ( ; + 125 (4.15)
This analysis is formalised in the following proposition.
Proposition 4.3. Under Assumptions 7, 8 and 9, there exists Cp > 0 such that foranyp € {1, ..., [AEI/Q]}
and any x € R, we have
~ _ > h ifp =1,
E%b Prhp(@)] — 1 * 5, (2)| < Cp{ " " (4.16)

D hit+/pA,  ifp=2.

Although bounding the bias of kernel based estimators is usually an easy task, this is not the
case here. The proof of Proposition 4.3 is indeed quite delicate and can be found in Section 9. In-
deed, we cannot use Itd’s formula because, from Equation 4.9, we see that for any i € {1,...,d},
0 Kp(z) = h; '] j h;lK (h;la:j) which would interfere and create a contribution of order [ [, h; .
Instead, using crucially Assumption 8, we use Girsanov’s theorem to remove the contribution of the
drift term in (4.14). We then control the likelihood introduced via the change of measure which intro-
duce the additional term 1/pA,, in (4.16) when p > 2.

Proceeding as in (4.11), we see that (4.16) implies

B [y ()] = ()| < Ca( B + 7o) (4.17)

for some Cg > Cp. This can be improved by a deconvolution procedure. To do so, note that

iz, (1) = B[ (@ = 7 p0)]

where ( is a standard d-dimensional Gaussian variable. Using the regularity of 7i, we can proceed to
a Taylor expansion of i’(x + 7, (v — ¢)) around x for all 4 = (1, ...,74) € {0, .. .,1}¢. Computing
explicitly the moments of (v — ¢) appearing in this expression, we get a explicit expansion of 7’ *

¢z, (@ + Tppy) around i’ (). We can isolate fi°(z) from this expression. Specifically, we introduce
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the matrix A = (ay;)o<k i<i> With coefficients given for any k,i € {0,..., [} by

k
Ak = 2 <k> (—1)jmjik_j (4.18)

i=o N

where m; stands for the the j-th moment of a standard Gaussian variable. The matrix A is invertible, as
shown in Appendix 8. We denote its inverse by A~!, and u = (uq, ..., ;) stands for its first column.
Then, for all k € {0,...,1},

1 ifk=0

Z_l: (Zﬁ: sz ): _’ (4.19)

0 otherwise.

For any multi-index v = (v1,...,74) € {0,...,1}¢, we define u, = H?:l u~,;, and the following

point-wise estimator

in h7p Z u'yyn h p(m + YT p) (4.20)

where the sum holds over all ¥ = (71, ...,74) € {0,...,{}% The bias of fi, »,(z) is precised in the

following proposition, proved in Section 10

Proposition 4.4. Suppose that b € ¥(b), with a such that a; < - -+ < a. Then there exists a constant
Cy depending only in b so that for any x € R%, anyp e {1,..., [Aglﬂ]} and any h € RY, we have

- _ T+ M R ifp =1,
[BL [fin,np(2)] — B ()] < C ! o (4.21)
VpA + 01/2—"_22 lhzz lfp>2

We now turn to the variance of fi,, p, ,(x). Before stating the upper bound of the variance let us

now define ko := ko(a) such that g = ag = -+ = a, < agg+1 < -+ < og. Let us also define

Dy = {(a, ko), ko =1or kg =2and ay < as};
Dy = {(e, ko), ko = 3}; (4.22)
D3 = {(a,ko), ko = 1and Qo = 043} .

The upper bound is stated in the following proposition.

Proposition 4.5. Suppose that b € X(b). Suppose that @ = (v, ..., aq) satisfles vy = g = -+ =
Qpy < Qot1 < -+ < ag, for some ko € {1,...,d}. If fin, np is the estimator proposed in (4.20), then
there exist Cyy > 0 uniform over ¥(b) and ng > 0 such that, for n = ng, the following holds true for all
x e R and allh € (0,1]%.

o Ifd =1, then

Varl, (i np(2)) < <pA R+ | 1og<h1)y) (4.23)

H‘Q
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Chapter 4. Invariant density estimation from noisy data

« Ifd = 2, then
Cv 1
Var, (An.hp(z)) < T—(pA hithyt + [log(pAy)| + \log(hlhg)\) (4.24)
« Ifd = 3 and (ko, @) € D1, then
C d
Varl, (finnp()) < T—(pA Hh + Z | log(h |Hh;1). (4.25)
i=1 i=1 1=3

« Ifd = 3 and (ko, @) € Do, then

Vard, (fip, (@ ))<CT:((H (2—ko)/ko H ht 4+ pA, Hh +Zylogh\) (4.26)

i=1 i=ko+1

« Ifd > 3 and (ko, &) € D3, then

@\Q

Varl, (jin b p(7)) <

d
(leogh|+pA Hh + (hahs) WHh;l). (4.27)
1=4

i=1 =1

The proof of Proposition 4.5 is delayed to Appendix 11. It is important to point out that our results
yield the same upper bounds for the variance term similar to those found in Proposition 1 of [AG23].
The only difference is the presence of a factor p in front of A, (T, ]—L 1 hi)~ 1. This change is natural
as this term directly comes from the discretisation of the process. Here, the preaveraging induces a
sub-sampling of the data, grouping the observations on windows of length p. The discretisation step
A,, therefore becomes pA,,. As seen in [AG23], this term does not contribute, except when A, is large.
Here, the break-even point also depends on the noise intensity and is detailed in Section 4.1. Note that
our proof and the proof Proposition 1 of [AG23] follows the same paths. However, the introduction
of additive noise structure requires new bounds on transition densities of the preaveraged process, see
Section 7. Note also that although Proposition 4.5 is stated on the final estimator fi,, ;, ,(x), the same
result holds for 7, p, ,,(x). Indeed, in Appendix 11, we prove it for U, , , () and the proof for fi,, p p(z)

follows from

Varl, (B (@ (Z us]) sup Vg, (% () (4.28)
yE

and the fact that (3, |uy])?? is a constant independent of .

4 Upper bounds and hyper-parameter choice

We quantify the quality of this estimation procedure by deriving an upper bound for the quadratic error

R(f, by x) = B [|(z) — 7°(2) ).
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4. Upper bounds and hyper-parameter choice

Using the classical Bias-Variance decomposition of the quadratic error
R(fin,hps b ) = Bh p, (2)% + VD 1 (@), (4.29)
where for all z € R?, we have
By hp(®) = [Eps[finhp(@)] = 7°(2)| and V7, (2) = Varg, [finnp(@)].

Upper bounds for both B () and ve () are given by Propositions 4.4 and 4.5 respectively. The
variance obtained in Proposition 4.5 depends on many case and the choice of the hyper-parameters p
and h naturally depends on these cases. In this section, we detail each case and the convergence rate

that can be obtained using the best choices p* and h*. For future use, we write

_ Lo _ 1
a:( ;ai) and agz(m

4.1 General results

D a;l) - (4.30)

=3

SHN

d

Before studying the quadratic risk in this model, we first recall the results from [AG23] where the
estimation of 7i® is studied from discrete non-noisy observations. In [AG23], the authors distinguish

two regimes depending on A,,. The breaking point w ' between these two regimes is defined by

log(T;,)T,; ifd=1,2,
(T - (LJFL)
log(T},) (%) Gagramaler e ifd > 3 and (o, ko) € Dy,
HF n
w,, = < 2a. 1

ifd = 3 and (o, ko) € D2,

_—3 L_;'_L
LT7§2°‘3+”’_2’ (3r+as) if d > 3 and (a, ko) € Ds3.

They show that, when A,, < wf F the estimator of the invariant measure behaves as in the continuous

observation case and therefore exhibits the convergence rate (v7)/2 defined as

p
log(Tn)Tﬁl ifd = 1727
72@3
HF (%) i d > 3and (o, ko) € Dy,
Up = 2@y
7,5 s 3and (@) < Do
_
T, >392 ifd > 3 and (v, ko) € Ds.

In order to get this convergence rate, when d > 3 [AG23] identifies the optimal bandwidth choice given
by

ag
log(T ) a; (2a3+d—2) . o
h*’HF— ( Tn” ¢ 1fO¢2—Oé3,
7 - a
T o @ard—2) )
T,, “it"std=2) if g < ag.
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Chapter 4. Invariant density estimation from noisy data

When d = 1, 2, the choice of the bandwidth in the high frequency framework is given by h:"HF =

T{l/Q, fori e {1,...,d}. When A,, > w!¥, the estimator of the invariant measure behaves as in the

ii.d. case and exhibits a convergence rate n2s+d. Here, we want to reproduce this behaviour while also

incorporating noise. In order to get this convergence rate, [AG23] also identifies the optimal bandwidth

choice h*'*F in that case, given by B
peLE _ o aard
; .

More over, the convergence rate of the low frequency estimator is (vEF)/2 where

20
ﬁF =n  2a+d,

(%

In our case, the effective discretization step is pA,, and therefore, we expect that the switch between
the two regimes of [AG23] appear when pA,, ~ wX . However, p also needs to be chosen to minimize

the quadratic error bound. Applying the same analysis as in [AG23], we then define h** for each p by

- h;-k’HF if pA, < wit
= (o)
<%> e if pAp, = w{z{F'
Then we get for each p > 1,
2 .
. R e R if pA, < wfl’, ia1
(/’Ln7h*’p7p7 7'%') ~ TQoq D 225 y . HF ( . )
PARTpzs + T + (B) 5050 if pA, > wlIF.

We then want to simplify the case pA,, = w! by removing one of the dependence in p. To do so, we

2a
use that the condition pA,, = wF implies that pA,, = (£)za+d. This statement is formalised in the

following Lemma, proved in Section 12.1.

Lemma 4.6. For all ¢; > 0, there exists co > 0 such that if pA,, = cywF, then pA,, > 02(%)2E+d

Using Lemma 4.6, we simplify (4.31). If p = 1, we have

201 HF - HF
TS+ if A, < wi*,
Ry per b)) <40 " e (4.32)
o T2 nTmerd  if A, > wiE
and for p > 2, we have
2
. pA, + o— + o ifpA, < wiF
R(Fi, ptor s b5 ) < Doy e (4.33)
A, + T if pA, = w,' .
From these, we see that the optimal choice of p is given by
x _ | (201 A—1)1/(1+a1)
p* = (At vl (4.34)

and from this choice, we take h* = h*P* Note that this choice ensure that p*A,ll/ 2 is bounded so that
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4. Upper bounds and hyper-parameter choice

Proposition 4.4 applies. Four asymptotic regimes can be observed.

Proposition 4.7 (Small noise intensity, high sampling frequency). Suppose that p*A,, < wit and that

729 < A,,. In that case, we have
p* =1 and h* = h*HE

and we get

n . HF o
R(fy, g e, b3 0) S v 0 v T

Proposition 4.8 (Large noise intensity, high sampling frequency). Suppose thatp*A,, < wl* and that

TTQLO‘I > A,,. In that case, we have
p* = [(TnzalAﬁl)l/(Hal)] and h* = B*HF

and we get

231

R(ﬁmh*,p*,b; x) < va v (T?%An) e

Remark 4.9. In the previous proposition, note that since 7> > A, the condition p*A, < wiF is
l1+aq

equivalent to A,, < 7, 2(wHF) "o

Proposition 4.10 (Small noise intensity, Low sampling frequency). Suppose that p*A,, > w

that Tgal < A,,. In that case, we have
p* =1 and h* = h*!

and we get

. _ _2a
R(Hpy e e, 03 0) S M- 23+ v T2,

HF

" and

Proposition 4.11 (Large noise intensity, Low sampling frequency). Suppose that p*A, > w

that Tgal > A,,. In that case, we have
pt = | (A ] and B = pt

and we get

1

Ry ¢ e b3 ) < (T ) TFo1.

4.2 Analysis of the convergence rate

In this section, we study the convergence rates found previously in the setup A, = n~% and 7, = n™".

Of course, since A,, — 0 and T,, = nA,, — o0, we must impose 0 < 6 < 1. We also require x > 0 for
convenience, although a deeper analysis shows that we can still estimate the invariant measure when
x > —0/(2a1). For conciseness, we also ignore the logarithmic factors in the rates w!*" and v2/¥". We
also introduce the following notations

2t
2a+d

203

d Bg= -3
and G 2a3 +d — 2

B8 =
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Chapter 4. Invariant density estimation from noisy data

Rewriting the conditions for each proposition shows that
« Proposition 4.7 applies when & > 0/(2a1) and 0 > B(a;* + a5 ')/2,
« Proposition 4.8 applies when x < 0/(2a1) and k = (1 — 0)B5(1 + a1) (a7 + a5 1)/2 — bay,
« Proposition 4.10 applies when £ = 0/(201) and 6 < B(a;* + a5 ')/2,
« Proposition 4.11 applies when £ < 0/(2c1) and < (1 — 0)B5(1 + a1)(a7! + a5 )/2 — fay.

We can then identify the domains where each convergence rates operate and we refer to Figure ?? for

an illustration of the different regimes

|
K |
__2& [
n 2a+d HF |
_ v'ﬂ |
o B |
A 2a |
I
|
21 1
Tn |
|
I
|
I
I
I
|
%) 2 lal I
K= 347 (t5AR) toy :
I
|
I
I
I
1 1 3. t 0
=y Qg 0 ‘;, ]
0 =73 5 gz+1 @ =1

Figure 4.1: Rates of convergence of fi,, p, ().

by
1+aq

6 as(p)
h aq(2az+d—2)

Figure 4.2: Evolution of the rate of convergence as a function of x with fixed 6 in a logarithmic scale.
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5. Bernstein inequality and adaptive choice of the hyperparameters

4.3 Comments

HF
n

holds for /¥ and in these two cases, the convergence rate of the estimator is therefore the same. We

The rate w;'* is the same in the cases d > 3, kg = 3and d > 3, kg = 1 and as = 3. The same remark

still distinguish these cases here because the proofs differ slightly. As noted in [AG23], it is not clear
HF

that the high-frequency and the low-frequency rates meet when A,, ~ w; .

5 Bernstein inequality and adaptive choice of the hyperparameters

In this section, we introduce a concentration inequality of Bernstein’s type for the kernel estimator built
in Section 3. This inequality provides a robust framework for analyzing the estimator’s performance
and variance. Leveraging this concentration inequality, we develop an adaptive approach for hyper-

parameter selection in a data-driven way.

5.1 Bernstein inequality

Recalling that Dy, D3 and D3 are defined in Equation (4.22), we get the following result,

Theorem 4.12 (Bernstein inequality). Suppose that b € X(b). Then there exists C, T positive and uni-
formly bounded over 3(b) such that for all n, h, p satisfying pA,, < 1, we have

2.2 02
n,ep )

Pﬁ(/\n _Elz An )gK (—
,LLb |/"L ,h,P(aj) 'ub [/’L ,h,p(m)“ > € €xp 32np’l}2(05, n, h,p) + TBg”Kh”wnp log np

wheren,, = |n/p|, B = 1/Vdl|u|a, |u|3 = pI |uy[* and
p—1
v*(a,n, h, p) =Var%b (Kh(af —p ! Z Yén))
£=0
o0 p—1 p—1
+2 Z Cov%b (Kh(x —p! Z Yin), Kp(x — p ! 2 Yk:p+e,n))-

k=1 =0 =0

Moreover, we have the following estimates for v?(a, n, h, p):

(hahg)t + Lo8@An . [losGuha) ifd = 1,2,
d -1, X&, |log(hs)l .
[T kit + ﬁ ifd > 3 and (a, ko) € Dy,
1)2(06,71, h’ap) < C <
ko \2/k d )
d ;- 21 (hi)*/Fo ¢ 1 |logh; .
[Ty o+ hod =2 o 2ot ifd > 3 and (cv, ko) € Do,
d p-1 3¢ | log byl 1 ifd > 3 and 1 D
k1_[72:1 i + A, + pAn(hth)l/QH;izzlhl lf =2 o an (OC, O) € 3.

for some constant C' > 0 uniform over ¥(b) and independent of n, h and p.
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Chapter 4. Invariant density estimation from noisy data

The Bernstein Inequality presented in Theorem 4.12 is standard and based on [Lem21]. Our proof
requires the derivation of an exponential rate of convergence toward the invariant measure for the
Markov process embedding the preaveraged process (p~* Zzg;& Yip+en)k. We refer to Section 13 for

details.

5.2 Choice of the hyperparameters

Bernstein inequality can be used to tune adaptively the parameter h, following the ideas of [GL0S,
GL09, GL11]. Fix p > 1. As previously discussed, for dimensions d = 1 and d = 2, the variance’s
upper bound does not rely on the smoothness. Consequently, there is no advantage to adopting a
data-oriented adaptive strategy for d < 3.

For d > 3, the strategy is to consider a range of possible bandwidths and to select the one that
minimizes the error. For this aim, we introduce a heuristic representation of the bias and a penalty term
proportional to the variance bound of Proposition ... The optimal bandwidths are those minimizing the
sum of these two latter. Let us begin by introducing the grid

log(n,)3\
HPc{he(0,1]%:, hy<...,<hg ¥l=1,...,d <np> <h <1},
P

where we recall that n, stands for |n/p| for the sake of clarity. We also assume that #H, < T,,.

According to the set of candidate bandwidths, we can introduce the set of candidate estimators:
F(3HE) = {ﬂn,h,p(:r) . zeRY he J—Cﬁ}.

The goal of this section is to choose an estimator in the family F (%), in a completely data-driven
way. Following the idea in [GL08, GL09, GL11], our selection procedure relies on the introduction
of auxiliary convolution estimators, fi,, (), for (h,n) € (#%)? which is the same estimator as the
one introduced in Section 3 but with kernel K, #+ K. The first important remark is that when the
regularity of the function of interest is unknown, the upper bound on the variance for p fixed can be

rewritten for any h € 3},

d d d d
1 -1 . -1 —-1/2 —1
vﬁ(h):ﬂL(pAnEhi +m1n(;|log(hi)|i=1_[3hi , (hahs) llh ,
ko 2—kqg d
min hi}CO H hi_1>).
ko=3; 7 i—ko+1
Moreover, one can write:
d d 3 ., d
O Nog(ma) [ [t <[ Tn® []A!
=1 =3 =1 1=4
d
—  hi=Mhg ) |log(hs)|
i=1
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6. Numerical Analysis

Using the fact that h; < --- < hg, we obtain

d d d d
1 . _ _ _
oh(h) = = (pAn [[hi" +min (Z [log(hi)| | [R; ", (hahs) ™2 [ h; 1)) .
n i=1 i=1 3

i= i=4

With this purpose in mind, we introduce the following penalty function

VP(h) = wlog(ny)vkh (h),

n

for some positive constant w which has to be taken large. Now, following once again the procedure of
[GL08, GL09, GL11], we define for any h € 3},

~ ~ 2
A (h) = 1o { [ (2) = B () = VEG)} (435)

Finally, we define the choice procedure
h* e argmingeqer { AL (h) + VP(h)}.

Remark 4.13. The choice of the penalty A}, (h) and the threshold V! (h) are standard in the Goldenshulger-
Lepski methodology: A}, (h) is a kind of proxy for the estimation of the squared bias of [i,, b, () while
V() is the exact penalty needed to balance the size of the variance of the estimator in h, inflated by a
logarithmic term and tuned with io > 0. This enables one to control all the stochastic deviation terms. See

section 13 for details.

Setting this methodology up, we obtain for any pre-averaging level p, the following Orcale inequal-
ity
Proposition 4.14 (Oracle inequality). Assume that Assumptions 7, 8 and 9 hold and that d > 3, then

there exists ng € N, such that for any n = ny,

~ 2 . . T2a1
E { Ho h* p — /jb(x)‘ } < chlrfllfp {B,Z7h7p(x)2 + Vl')”(h)} +en,” + pAplyzs + ;a ,
EHn 1

for some ¢ > 0 and v > 1, and where we recall that Bzh’p(fc) is defined in Equation (4.29).

The proof of Proposition 4.14 is postponed to Section 13.

6 Numerical Analysis

In this section, we study the estimators derived in Section 3. We first focus on the case d = 1. Following
the results of Section 4 bandwidth £ is given by h = T)7!. The main challenge is thus to choose the
preaveraging parameter p. Theoretically, the best approach would be to consider the bias-corrected es-
timator iy, hp(2) defined in (4.20). However, this estimator is unstable, due to the constant (3, |1 |)2d

appearing in (4.28). Indeed, consider for instance the case
V(r) =2%/4 and b(z) = —2/2.

135



Chapter 4. Invariant density estimation from noisy data

Taking n = 24, A, = n™%2 = 277 and 7, = 1, we can compute the bias and the variance of both
Dn.hp(7) and fip p (7). The results are presented in Table 4.1 with p = |(72A;1)Y2| v 1. In this
example, we can see clearly that the variance increases by a non-negligible factor when doing the bias-

correction procedure and consequently the mean squared error is higher, even if the bias is substantially

smaller.
Without bias correction | With bias correction
Error 1.61e-3 8.2e-3
Bias 1.21e-3 3.48e-4
Variance 1.67 e-3 9.77e-3

Table 4.1: Impact of the bias correction.

Therefore, in most practical applications, the use of the initial estimator 7, , ,(x) leads to better
results compared to [i,, b, , (). Therefore, in the following, we focus on 7, p, ,(2) in our simulations. In
that case, we can choose p with easy asymptotics: indeed, the optimal choice for p minimises the bias
in (4.17), and thus we take p* = [(12A;1)Y?] v 1.

We now illustrate the effectiveness of the pre-averaging strategy and stack it up against the straight-

forward method where p = 1. We still consider the case
V(z)=2%/4 and b(z) = —2/2.

with n = 214 A, = n~1/2 = 2-7 and Tn = 1. The results are presented in Table 4.2 where the

pointwise quadratic error is presented for different values of p and at different points x.

P r=0 x=025 =05 =z=1 =z=0.75

1 1.29e-1 1.20e-1 9.75e-2  6.80e-2 4.12e-2

16 6.31e-2 5.62e-2 4.36e-2  2.57e-2 1.08e-2

p* 1.04e-2 1.08e-2 6.49e-3 2.83e-3 1.70e-3
1024 | 7.07e-2 5.05e-2 4.06e-2  1.67e-2 2.02e-2
4096 | 7.4%e-1 5.3%e-1 3.25e-1  7.27e-2 5.22e-2

Table 4.2: Pointwise quadratic error.

We also illustrate the effectiveness of this method in dimension 2, with the potential V (z) = |z|?/4.
In that case 7i” is the density of a standard Gaussian distribution. The following plots provides a visual
comparison between the desired distribution and the outcomes of two estimation techniques in dimen-
sion d = 2, with the same parameters as in the unidimensional case. The first plot is the target density.
The bottom left plot shows the estimated distribution using no preaveraging method while the bottom
right plot shows the results with preaveraging. As expected, the second method exhibits better results,

confirming that pre-averaging refines the estimation process when the noise intensity is constant.
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7. Probabilistic tools: the Markovian structure of the preaveraged process

Density of 20 Normal Distribution

2 0 2 4

Estimated Density of Simulation Results in R*2 Estimated Density of PA Simulation Results in R"2

Remark 4.15 (Non-Gaussian noise). In this paper, we assume for simplicity that the noise is composed
of independent d-dimensional standard Gaussian variables, also independent of the underlying process X .
However, this assumption could be softened. Indeed, we only need that the noise is centered, independent
from the diffusion X, identically distributed and that it has finite moment of order l. In the case that its
distribution is that of a variable £, we should replace estimate (4.16) of Proposition 4.3 by

~ — — -~ ~ Z’L hlal lf‘p = 17
E%b [l/n,hm(x)] - E[Mb(x -Dp 1/27_n£p - Tn,pg)] <Cp o
2ihit +VpAn  ifp=2

where ¢ is a standard Gaussian variable, 7, , = (p — 1)(2p — 1)A,,/12p and Ep = p AN G

with &1, ..., &, Li.d with common distribution €. In that case, the bias correction procedure should be
changed accordingly and should be split into two parts. First, we repeat the same procedure with ?34, =
(p—1)(2p — 1)A,,/12p to ensure the first bias corrected estimator centres around B[’ (x — p_1/27'n§~p)].

Then we repeat the same procedure with p~/2

order j ofgp.

Tn instead ofﬁap and where m; stands for the moment of

7 Probabilistic tools: the Markovian structure of the preaveraged pro-

cess

In this section, we gather some estimates about transition probabilities that will be very useful in the

following proofs. Indeed, the proof of Proposition 4.5 is based on an in-depth study of the Markov chain

p—1

(p_l Z Yip+en, X(k—i—l)pAn) : (4.36)
=0 keN
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Chapter 4. Invariant density estimation from noisy data

First, note that the stationarity of X ensures that this Markov chain is also stationary under }P’Zb. We

write 7r° for its stationary distribution on R??. We now summarize the notations used in the following.
Notation 4.16. For anyt > 0, z,y € R%,

« pY(x;-) stands for the transition density of X, that is density of X, conditionally on Xo = ;
. pf),n’t(:n; ) stands for the density of p~* Z?;é Xy, +t conditionally on Xy = x;

. pg’n(:p; ) = ppmo(x; -) stands for the density of p~* 2:3 Xy, conditionally on Xy = x;

pg’n (z; -, -) stands for the joint density of (p™* f;é Xea,, Xpa,,) conditionally on Xo = x;

o @(-, -) is an invariant density of the Markov process (p~" Z‘E;é X (kp+0)An> X (k41)pAn ) keN-

We now derive some bounds for these densities. The proofs of these results are relegated to Ap-

pendix 14. We start with a short time control of the transition density for the pre-averaged process.
Lemma 4.17. Suppose that Assumptions 7 and 8 hold. Then there exists positive constants k1, A1 and 1y,
such that if pAA,, < 11, we have for any z,y € R,

2
K -z
ﬁ exp < - >\1|ypA| + V(:E)) (4.37)

Poon (3 y) < e

This lemma is arguably the most technical result in this section. Its proof, postponed to Appendix
14.1, is strongly inspired by Theorem 4 in [GG08] where a similar result is shown for a unidimensional
diffusion. As noted in [GGO08], their approach cannot readily apply in a multidimensional setting be-
cause of a non-trivial time change. In our case the diffusion coefficient is assumed to be a real constant,
and the outcomes can be extended. Our motivation for undertaking this proof also lies in the require-
ment to ensure uniformity of the bounds with respect to p, n. Moreover, here we want to get rid of
the uniform boundedness of the drift term b. Its proof is based on the Girsanov theorem to remove the
drift contribution. Then we condition at each time i/n so that on each interval [i/n, (i + 1)/n], the
Brownian Motion is a Brownian bridge. Then sharp estimates can be obtained using the properties of
the Brownian Bridge.

We now study the transition density of X in short time.

Lemma 4.18. Under Assumptions 7, 8 and 9, there exists a positive constant k3, such that foranyt € (0, 1),
be X(b), and z € RY:

2
K r—z
pl(z; 2) < #1—/32 exp ( - |2t| +V(x)— V(z)). (4.38)

This Lemma is particularly useful when ¢ « 1. In that case, it is usually stated in the weaker
form (4.5). The sharper bound depending explicitly in the potential V' allow for better estimates in

Proposition 4.5. Combining Lemmas 4.17 and 4.18, we easily get the following corollary.
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8. Invertibility of A

Corollary 4.19. Under Assumption 7 and 8, let us assume that pA,, < 11, wheren; > 0 is defined in
Lemma 4.17. Then, for each x,y € R?, and anyt € (0, 1)

A
b —d/2_b1/2 —d/2 1 2
Ppni(T,y) < K1(27) 2eb2(pA,, + 2tA) " exp ( - m\x .l )

We finish this section with a result concerning the invariant density of (4.36).

Lemma 4.20. Forall (z,y) € R24, there exists a constant ko independent of p, n and b such that

- z|2>.

In the following sections, we assume that Assumptions 7, 8 and 9 hold and that pA,, < 1. Fur-

7_rb(y7 2) < (pAF;Q)d/Z exp ( —V(z) -

thermore a < b stands for a < Cb where C can change from line to line and depending only on

b.

8 Invertibility of A

We show that the matrix A defined in Section 3 is invertible. To that extent, we compute explicitly

det(A) and we show that it does not vanish. First, we write ay;; = (];) (=1)Pmi*J for 0 < j < k

so that the (k, )-th coefficient of A defined in Equation (4.18) is given by aj, ; = Z?:o ak,;,j- By multi-
linearity of the determinant, we have then

0 1 L

det(4) = > > - Z

Jjo=071=0 1=0

0 1 L

ak ER k z)

@ [1((f) 0o,

Note now that det((i*~9%). ;) = 0 when two lines are the same. This happens when k — j = k' — j/
for some k # k’. Thus det((i*77¥); ;) = 0 except when the k — ji, 0 < k < £ are all distinct. Since
0 < jg < k, we show by induction that the only possibility is jo = j; = --- = j; = 0 so that

PPN

det(A) = det((#)e) [ | ((ﬁ)(—l)omo) - 1] G-#

k=0 0<k<i<t

where the last equality is obtained using the expression of the Vandermonde determinant and using
mg = 1 (by definition).
9 Proof of Proposition 4.3

In this Section, we aim at studying the expectation E%b [Un.hp(x)]. Let us assume in all the proof that
there exists L > 0 such that
p’A, < L, (4.39)
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Chapter 4. Invariant density estimation from noisy data

for all n > 1. By definition of U, , , in Equation (4.13) and by stationarity of X under }P’%b, we have

Tn

BhulFnn(o)] = | i) K (o~ 8 LS s )] dw.
g Lo p Rd Yy pl/2 HLn p n
£=0

Recall that IP’Z is the probability measure under which Xy = y almost surely. When p = 1, we

observe that p~! é’;& Xy, = y holds almost surely under Pg. This is not the case when p > 1.

Instead, we have

1 p—1 p—1
- Z Xen, =y + Z (Xkproya, — Xipa,,)-
P = =0

"=

The second part of the right hand side can be seen as a noise term that we decompose as
1 p—1 1 p—1 (kp+0) Ay 1 p—1
= (Xpproa, — Xipa,) = = Z <J b(Xs) d8> + = Z (Wkpro)a, — Wipa,,)-
Pz P =0 \JkpAn Pz

We remove the effects of the drift b through the Girsanov Theorem. For all admissible drift b, we define

t
Nf:f b(X,) - dW,.
0

The following technical lemma is needed to apply the Girsanov Theorem.

Lemma 4.21. There exists 5o > 0 such that for any T > 0 and x € R,

ot g B[ exp (G(Nes — (D) | < 01,

for every 0 < § < g and some C'; that depends on b.

Proof. Using Assumption 7, we get that for any ¢ € [0, T],

t
|Xt\<]X0+b0T+\blipf X,|ds + sup |Byl.
0 S

te[0,T

Therefore, from Gronwall Lemma, we have forallp > landall0 <t < T
E[| X |?P] < 3%~ Le2tblin (| 2P + TP + (boT)?P). (4.40)

Moreover, for any 6 > 0 and ¢ € [0,T — ¢], using Jensen inequality,

£} exp (% f+§|b(Xs)|2ds>] < ;faEg[exp (g\b(XS)P)]ds.
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9. Proof of Proposition 4.3

Using Assumption 7, we get the following bound

e (3

T exoras)] < [ B e (S0P + i x. ) Jas

- 65|b0‘2 t+9
X
o K

Eg[exp (g]bllip\XsP)]ds.

Now, for s € [t,t + J], we have

Eg[exp (g\b!zip|Xs!2)] “1e Y (5!52|1z'p>pEg[|;(!s!2p]'
k=1

From Equation (4.40), we get that E? [ exp (%\b(XS)|2>] < 40, for all § > 0, which proves Lemma
4.21. =

By Novikov’s criterion - in its version developed in the classical textbook [KS91], Lemma 5.14,
p.198 - Lemma 4.21 shows that the local martingale £?(N) = exp(—N? — 1/2(N");) is indeed a (non-
local) martingale under P%, so we can apply Girsanov theorem. Let QV. be the probability defined by its

restriction to F; by

dQ?
dPb

xT

= EY(N).

t

Note that under Q%, the process W definied for t = 0 by
. t
Wt@ =W+ J b(Xs)ds = Xy — Xo (4.41)
0

is a d-dimensional Brownian motion. Then we have, using the Markov property
Bl unol@)] = | 0B Bunale)] dy
p—1 de
N (R’ Qb[ (_LLN. 1 > y‘ ]
= Es |[K X dy.
J]Rd )Ry | Kl p/? S p ;} o dQ} lpas Y
Moreover, we have p~! i:é X, = Xo + pt Z]Z;é Wgﬂ and thus forallt > 0

b
dP,

t 1t b
il ] by + W@ .dW@b—f b(y + W) [2ds).
10 exp ([ oy + W) -awd - ] by + WEs)

0

t

and

p—1 d]P)b
wl? = o [Kneu e - SR ) gt ]
B} [P p()] = fRdu ES [ (v~ v~ T p 2 V) G la ]

. . . . dpb . . . .1
Note that in the expectation on the right hand side, ﬁ is entirely determined by W2 whichis a
vIpA,

pA
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standard Brownian motion under QP. Therefore, we have
~ 1 p—1 b d]Pb
B [ (o =y = i = 5 X WE) Tt
Y pY2"p ;0 t8n) AQ} lpan
Tn ~ 1524
:E[Kh (93 —y- Tn/Qéo,n -=> WéAn>M£An (’y)]
p P

where W is a standard Brownian motion, &, is a standard Gaussian variable and where M} (y) is

defined by

M (y) = exp (Jotb(y + W) - dW, — if; by + W,)[? dS)-

Note that (M?(y)); can be seen as the solution of the stochastic differential equation
t
M) = Lt [ MEby -+ W)W
0
Using Assumption 8 and Ito’s formula, we have
b 1 2
ME(y) = exp (V(y) = Viy+ i) - fo by + W) 2+ V by + Wy)ds).  (442)

This expression ensures that y ~— M} (y) is continuous, and therefore M (Y") is measurable for any

random variable Y. Then we have

~ _ Tn o 1 -
B2, [Pr,hp(2)] = fRd PR Kn (e v~ Tl ) Wea, ) My, ()] dy
=0

= By(z) + Ba(z)

where
Bi() :=f u"(y)E[Kh(wfymEOnlleWm )| dy (4.43)
Rd pt2amt p e ’
Ba(x) := JRd ﬁb(y)E[Kh (96 -y - ]%So,n — ]1? Z Wmn> (M)a, (y) — 1)] dy (4.44)
=0

and we study each term separately. More precisely, we will prove the bounds
d
|Bi(z) = E[@"(z — TupQ)]l < D h{* and |Baf < 4/pA,

i=1

which prove Proposition 4.3.

142



9. Proof of Proposition 4.3

Control of B;(x).

Note thatp™ >/~ Wg A, is a centred Gaussian variable with covariance matrix (p—1)(2p—1)/(12p) A 14,

independent from §o,n. Therefore, we get:

By (z) = fRd ﬁb(y)E[Kh (fc —y— 7~—n,p<>] dy,

where 7*7%’]) =72/p+(p—1)(2p—1)A,/12p is defined in Equation (4.15), and ( is a standard Gaussian

random variable on R%. Moreover, we have

Bi(@) ~ B[P (e ~ 7up0))| = [E| | K (2~ h02 = F,0) =B = 7yl

where h © z = (hi121,...,hqzq). We then use a Taylor expansion and the Holder regularity of the
density 7i® and the level of the kernel K, we get

B[ [ K @ ho:—F,0 - ﬂ%m%”<2“% '“w$iwa
Rd

i=1
Control of By (x).

First, when p = 1, we have
—b . _
Lﬂwmkdx ~ Tgbon) (M, () = 1) | dy =0

since (M?(y)); is a martingale independent of 50 n- For p > 2, the situation becomes more intricate.

We first state the following lemma.

Lemma 4.22. Under Assumptions 7, 8 and 9, there exists a constant M > 0 which is uniform over ¥(b),
such that for all x € R¢

lb(z)e™V®)| < M.

Proof. First, note that the function z — b(m)e*V(z) is continuous and hence bounded on any compact
set. Precisely, this function is bounded on the ball centered to 0 and of radius 2p;, where py, is defined
in Assumption 9. We now consider z, such that |z| > 2p,. With a classical Taylor expansion argument,
we get that V(z) > Vo + Cy|z|/2.

Moreover, Assumption 7 ensures that
b(z)| < C1(1 + |z]),
for some constant C; > 0 so we get
b(a)eV @] < Oy (1 + [a])eColel+Vo,
which is bounded, concluding the proof. O
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We can now come back to the control of By(x), we write WZ =p! b Wk A,, for conciseness.
Note that since gm and Wz are independent, we have
T ~
Bo(@) = | A WE|Kn (v —y— Téom =W, ) (Mha, (v) = )] dy
R¢ pt
— Tn
~E[ | @)K, (x ~y— o - ) - 1)dy]
R¢ /

(4.45)

5[ Kalemu e ) (o )
: JWE[Kh@—y—ﬂzWJ o 7) (. (o 77) 1)

| 1@ = [ K@) de,

the proof of Proposition 4.3 is down to proving that

Since

[E[E(y = W) My, (y = W) = DI < v/pAs
uniformly for y € R%.

Step 1. The main idea of the proof is to perform a Taylor expansion of our quantity of interest

around y. To do so, let us introduce for any y € R%, s > 0 and j € {1,...,d},

v R — R?
s 9 . .
s u»—»(y1+W51,...,yj,1+Ws] ,U-i—Ws],ijrl—l-WsJJr,..‘,yd—FWSd).

We also define forall s > 0, j € {1,...,d} and y € R the function ¢} , for u € R by

%,s(u) = Mf(yh s Y1, U Yjt1y - 'ayd)~

The purpose of this first step is to show that for any s > 0, j € {1,...,d} and y € R, the function
#7.s is continuously differentiable. Since 7i° is continuously differentiable and for any »z € R% MP(z) is
positive, it is equivalent to prove that log( %7 s) is continuously differentiable. In fact for any y € RY,

we write
t .
log (M (y ZJ bi(y + W) dW! + f 0% (y + Wy)|? ds,
0

where W and b’ stand for the i-th component of W and b respectively. Moreover, using the fact that

b is continuously differentiable in any direction, we obtain

f 036 (Y (w)) du + (Y] (0)).
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9. Proof of Proposition 4.3

Then we can rewrite the previous equation
d .
log(M?(y Z J J 036 (Y], (w)) du + b (Y] (0 ))) dwg}

;i “J O3 (Y7 () du + b'(Y7 (0 ))fds}.

It is clear that the second double integral is continuously differentiable with respect to y;. The situation
is less straightforward for the first one due to the stochastic integral. We plan to use the following

Fubini’s Theorem for stochastic integrals.

Theorem 4.23 (Theorem 2.2 in [Ver12]). Let (X, X, i) be a o-finite measure space. Let S = M + A be

a continuous semimartingale. Let 1) : X x [0, T] — R be progressively measurable and such that almost

L (JOT |¢(:B,t)|2d<M>t>édM($) — o
L JOT [ (x,t)|dAedp(z) < oo.

Then, for all t € [0, T, one has that almost surely

JJIbrmdeu ffwrxdu

Using the boundedness of the partial derivatives, we can easily see that this result applies in our

surely, we have,

case. Therefore, we get

t

f f 05" (Y] s (u ))dWJ) dquLbi(Yy{s(O))de}

d
%
;i{f [} avionans vagof o}

log(M? (y

Note also that Y;i s(u) and ij, s(0) do not depend on y; by definition. Therefore, for all 1 < j < d, and

forally € R4, the function qﬁg/, s 1s differentiable. Moreover, we have
1og(M) = = 2, { [ oty + woaw. v [ o wodsh o)
=1

asy+Ws = Yj‘, s(y;). We now want to prove that these partial derivatives are continuous. To do so, we

plan to apply component by component the following Kolmogorov—-Chentsov theorem, due to [AL14]

Theorem 4.24 (Theorem 3.1. of [AL14]). Let D — R? be a bounded domain of cone type and let X :
Q2 x D — R be a random field on D. Assume that there existm > 1,p > 1, € € (0, p], and C > 0 such
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that the weak derivatives 0° X are in LP(Q x D) and
E OﬁﬁX(:v) - aﬁX(y)’p) < Clz — y|dte

forall x,y € D and any multi-index f € N" with |3| < d. Then X has a modification that is locally of
class C* for allt < d + min{e/p, 1 — d/p}.

Forall u,v € R, p > 1,and ¢t > 0, we obtain

G A R U (50(Y7 () — 0;b(V] 4 (v)))
* ‘J )) = b(Yy (u )))3jb(3@{s(u))ds‘p
* \ f (950(, — bV (v )))b(Y;s@»ds\p.

Now, taking the expectation, we get

B || (¢} (0) - 41 low(@] )] | ST+ T4

where

I-F “ Jt (0;0(Y] o(w)) — 0;b(Y (v)))dW p] ;

m= 2| [ (07,0 - o070, ]|
m =& | (@007, 7,0t s |

We first control the term I using the Burkholder-Davis-Gundy’s inequality and we get
‘p/2

I< U E [10;b(Yy] s (u)) — 0;0(Y; (v))]*] ds
0

Moreover, we know that d;bis (a; — 1) A 1-Holder in the j-th variable. Using that o; > 2, we know
that 0;b is Lipschitz continuous. Then,

I< P2y —olP.
For the second term, we use the boundedness of the partial derivatives to get
IO < Plu—olP.

Moreover, for the last term, using the fact that b is at most linear and the control of moments of order
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9. Proof of Proposition 4.3

p of the Brownian motion, we get

I < |u—olP,

where the constant here may depend on (y1,...,¥j—1,¥j+1,- - -, ¥q) and ¢. Finally, as a; > 2, we have
that p > 1/¢, for some ¢ € (0, p]. Applying Theorem 4.24, we get that (j)?t is continuously differentiable
on R.

Step 2. For any t > 0, we define 1 : R? 5 3y +— 1°(y)(MP(y) — 1). Moreover, recall that we write
WZ =p! ?;é Wya, . From the previous step, we write for any y € R,

d
Uy =TTy = vly) = 3 B,

where

EJ = 1/1((2/ _WZ)I’ ) (y_WZ)jvyj+17-~'7yd)
_¢((y_WZ)17"‘7(y_WZ)jflaij"')yd)a

forany j € {2,...,d — 1}, and

n

Elzﬂ)((yf p)layQa"'ayd)>7¢(y17""yd)a

I

Then, using Step 1, we have for any j € {1,...,d}

1

Then, we have

(pAn) VAE[Y(y — W) — 9 (y)]]

2] 1/2

d ! T T T
< 2 [ T ) o ATt ) 0
j=1

We now introduce the following notation for any A € (0, 1),

Ygf,n,p()\) = ((y - WZ)D ceey (y - W;)jflv (y - )‘WZ)jaijrl? ey yd)

Moreover, we have the following decomposition

E [UOI 0 (Y] p(A)dA

2
] <SI+IL
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where
1
- = [\aj (V) (M, (Vi (V) — D] A
= [ (1070, 085 0, 07, O0) ~ D] 0

In order to control the term I, we write

1=2;" f Ubﬂ Vi, ,(\) exp(—2Y7, (V) (MpAn(ijnp(A))—l)ﬂ dA.

Moreover, using Lemma 4.22, we get that

1
T 1+ | B[I0s, 07,0 Fl] ax

Finally, using Equation (4.42) we obtain for any A € (0, 1),

Mpa, (Vp) = exp (VY] (0) = V(Y0 + W)

y,n,p y,n,p y,n,p

—f DY (0) + W) 4V bV, (N) + W) ds).

Finally, leveraging on the fact that V is bounded from below, and both i’ and V - b are bounded, we
get
I<L

Step 3. We now move on to the control of term II. First, for any j € {1,...,d} we have

0 MPA (Yy"P )) _ d b 7 7 % Pan 7 7 g
N ——Z(L ;b (Y, (A)+Ws)dws+f0 b o;b (Y, (/\)+Ws)ds>

M, (Y e o

Then we have I < IT4 + II g, where

1
HAZQJ
0

1
Iy = 2 f B2 (V] 0 OIMEA, (Y Z f (b'0;6) (Y, (N) + W) Pl

pAn .
WV DM (¥, ZJ oY ynp()+WS)dW§|2]d>\

Moreover using consecutively Jensen and Cauchy-Schwarz inequalities, we obtain

s ZJ Vg )My, (V] np (V) JOPA 050" (Y p(A) + W) AW, 2] dA

4 ! b 1/2 i 7:4 1/2
ZJ (Y s O MEA, (Y, (V)] IE U 056" (Y p(N) + W) AW, ] .
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9. Proof of Proposition 4.3

Moreover, from Equation (4.42) and the boundedness of ji?, we get once again

411/2
[ =[P odomigs, o0 <t
Then, we only need to deal for each i € {1, ..., d} with

Let §p A, = c(Wga,, 0 < k < p), the o-field generated by the discrete observation of IV at times

pAn ‘
f 0j bl(Y;np(/\) + W) dW,,
0

kA, for k € {0, ..., p}, so that conditionally on G, ,,,

AW, = I du + dW:*,
(4.47)

AW = B du + dBE,

in distribution, where for each k € {0,...,p — 1}

Wikrna, — Wia,
JANS ’

I =

W** is a Brownian Bridge on [kA,; (k + 1)A,], and B* is a d-dimensional Brownian motion inde-

pendent of §, A,,. Then, we write

PAn 4 PAn
| U o (Vi) + W) aw| | = B[ U 6 (Y] (V)

(£+1)A

B/[s] ‘ZJ O (Y, () Nl
(+1)A -
< (=] Z LA O (Vi) + Wi du] [9,4]
L[ \2 f”l O (V) + W, >(£+‘f;1“du\4|9p,A]]

5]

Using both boundedness of the partial derivatives and Jensen inequality, we get

p=1l ~(e+1)A, .
B[ Z{]} LAn OB (Y, () + W) dBL

Eb[EbH 3 L(:m 056 (Vi np (V) + W) du‘4’9p7A]] < p3AfLE[§I§] < ptA2.

For the second term, let us remark that by definition of the Brownian Bridge, for any i € {1,...,d},
0e{0,...,p—1}and u € [(A,, (I + 1)A,], we have Wi is gaussian variable with E[WZ“] =0
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and Var[WZ’e’i] = u, as WZ"AZ it Waill) = (. This allows us to obtain

E[|Wz,€,i|4] _ ((f + 1)An — u)4(u — EATL)4

AR
Using once again the boundedness of i’, we obtain
- p—1 1A, Wb 4 Ao
E[E| j O (Vi p ) + W) o ———du |95 || < o2,
;) A, ( ynp( )+ )(€+1)An—u U 9P7A p n

Lastly, we use the Burkholder-Davis-Gundy Inequality to handle the final term. Every previous step
has paved the way for this one. Conditionally to G, a,,, we have that for each i € {1,...,d}

(J 01 (Y (N) + W) dBL)

)
t=0

is a martingale. This would not have been true without the conditioning. Then, we get

RIS [ o 00+ was 5] = ([ 0000 < wian)’
< pPAL.
We obtain
EY|| jo " B ) + W)W <z,

Combining this to (4.47) gives IL4 < p?A,, which is bounded, thanks to Equation (4.39).

Step 4. Control of I 5. Using Cauchy-Schwarz inequality, we get

s < ZJ E HPA PV np(\) (B 056°) (Vi (M) +Wu)du’4]1/2d)\. (4.48)
Moreover for i € {1,...,d} and A € (0, 1),
PAn 4
|| VOO0 (¥ (A) + W) du |
S (pAn)SLp B[ (Y p(N) (6'0,6) (Y], (V) + Wa)*] du

y,n,p

PAn .
s(mmf B[ (Y7, (N) 2 (Y3, (A) + W) '] du

where, at the last line we used a similar argument as the one of the proof of Lemma 4.22 to bound
Eb[ﬁb(Yy{nyp(A)fbi(Yy];mp()\) + W,)*] uniformly in n, p,y, u,i and \. Therefore IIp < (pA,)?% and
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10. Proof of Proposition 4.4

I<i.

Conclusion. Combining the previous four steps, we have

B[R (y — W) (MIa, (y = W) — D] < /pAn
and therefore, for all z € RY,
Ba(z) < /pAn, (4.49)

which concludes the proof.

10 Proof of Proposition 4.4

We now plan to use Proposition 4.3 to prove the estimate (4.21). Recall that for all 2 € R, fin,hp(2) is
defined in Equation (4.20) by

[in,hp(@ Z Uy Vp hp(T + YT p)

where the sum holds over all ¥ = (71,...,74) € {0,..., £} Thus Proposition 4.3 ensures that (4.21)

is proved once we control the following quantity

| D usElE (@ + Fap(y — ()] — B(2)) (4.50)
We first provide a technical Lemma in dimension d = 1.

Lemma 4.25. Let f : R — R be a a-Holder function and { be a standard real Gaussian variable. Then

we have

C [
‘Z“v (@ +7(y = )] - TE [y —¢1]

Proof. By Taylor formula and using the a-Holder property of f, we get the existence of € € [0, 1] such
that

where
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Then, from Equation (4.19), we get that Zly:o Uy leﬁa:]gl FE(@)E[(y — ¢)*]/k! = f(z). Moreover as

f is a-Holder, we conclude that

L l
Roc,l T Z |’7 <|

v=0
O

We now extend Lemma 4.25 to our setup using an appropriate induction. We first introduce 6 =

O(z,v,n,p) = x+~yThp € R?. We prove by induction on 0 < I < d thatforany 0 < v741,...,74 <[,

z L
> 2 [ Jun — FupOl = B[’ (21, - w1, 0001 = TapCres - -5 0a — TupCa)ll;
= 1=014i=1

vr=0

is bounded up to some constant by Z For I = 0, this is trivial and for I = d, the second expec-

1= 1 n p
tation does not contain any random variable any-more and thus equals 7i?(x), which proves Equation

(4.50). Let I < d at which this property is proved. We fix 0 < yr42,...,7¢ < [. We have

I+1

Z Z Hu% TnPC Z Uyriq Z Z Hu% %n,pC)]

Yr+1=0 71=01i=1 Yr+1=0 =0  m=0:=1

Recall also that by Assumption, 72’ is oy 1-Holder regular in the (I + 1)-th variable. Therefore, by

induction and using Lemma 4.25 we get

‘ Z Uy A E[E (21, 21, 0141 — TapCrets -« -5 0a — Tapla)|Crgas - - - G
Y1+1=0
—b ~ ~ ~
— QK (mla"'ax1+170[+2 _Tn7pCI+27"'70d _Tn,pCd) TT?,;?+1~

Note that Lemma 4.25 ensures that the last inequality holds up to a constant uniformly in n, p, b.

11 Proof of Proposition 4.5

11.1 Structure and completion of the proof

First note that by (4.28), it enough to prove Proposition 4.5 with 7y, p, , () instead of i, p, (). We now

introduce the main notations used in this proof. Let n,, = |n/p|. For each j, we write
~ 1
§=——= &t
Pz

so that (§ ;); is a sequence of i.i.d standard d-dimensional Gaussian variables. Then we write

p—1

¢y (ks z) = Covy, <K w(@ =" ) Xaproa, +

P \ffk , Knp(z—p™ Z Xoa, + \f&)) (4.51)
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for each k and z, and

p—1 p—1

C;(k:; T, U, V) = Cov%b (Kh(x — p_1 Z Xkp+0)A, + u), Kp(x — p_1 Z X, + v)) (4.52)
£=0 £=0
, 1p—1 p—l
D, (k;w,u,v) = E%b [Kp(z— ; ;) Xep+oya, + ) Kp(r — - ;) Xya, + )] (4.53)

for each k, x, u and v. Note that for k& > 0, the noises Eo and gk are independent and therefore
Shtkia) < [ [ ez, xpnld) () (459

where X, ,, stands for the law of TapY/2€) so that Xpn(du) = @, —1/2(u) du. Moreover, we also have

Shikia) < [ | Dbk 1.0) () () (4.55)

By definition of 7, p, (), we have

np—1
b oo b
Varﬁb(uﬂ,h,p(‘r)) = Varﬁ (np kZO Kp(x — - Z Ykp—Mn )
s Tn ~ 15, Tn ~
COV7b<Kh x—* XZJrg +7n€i),Kh(x—* X‘+5An+7n§‘)).
n2 1,320 Z (ip P D ;) (7p+0) N
Since X and £ are both ergodic and mutually independent, we deduce that
Np— 1 Np—
Var% ( Z e Z Yipttn) ) Z k)€ (k; ). (4.56)
™ o =

We now present several bounds on the coefficients Cg(k‘; x).

Lemma 4.26 (Instantaneous correlations). For each k > 0, we have

d
lemg]_[
i=1

Lemma 4.27 (Short-term correlations). Forany 1 < ky < d and any k > 2, we have

b/1.. —k1/2 1
ek z) < (kpAn) ™™/ H hy
i=k1+1

Lemma 4.28 (Mid-term correlations). For any k > 1 such that (k — 1)pA,, > 1, we have

(k) <1
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Lemma 4.29 (Long-term correlations). For any k > 1, we have

eh(k;z) < e—CE}(k—l)PAn(ﬁhilf.
i=1

Following [AG23], the rest of the proof consists in identifying the best way to combine these lemmas
with (4.56), depending on d and kg. Recall that kg is such that oy = -+ = ag, < ag,+1 < -+ < aqg.
We now introduce 0 < j; < j2 < j3 < j4 such that j3 = [(pA,)~!] and

. . —2Cpy log H?:l hi .
j4 = max | min oA | g3 ] -

Then we have

np—1
HZZ —kgbkx:%<2 Z Z Z 3 ) k)€h (k; ).
P k=0 P k=0 k=j1+1 k=j2+1 k=js+1 k=ja+1

For the first sum, we use Lemma 4.26 so that we have
LSty — W s2) € ——— (1 + 1)
— ), (np — 7)) S ———— (U :
2 P p\) d
b k=0 np | [izy hi

For the second and third sums, we use Lemma 4.27 for some 1 < k1 < dand 1 < k9 < d to be chosen

later. In that case, we get

-

J2 J2 d
n;z Z (np — k:)@g(k;:c) < n;l Z (k:pAn)*kl/2 H h;l,
k=j1+1 k=j1+1 i=k1+1
) ; J
n,? jZ (np — k)€ (k;x) < ny?t ]2 (kpAy) k2l hi!
P p p\"rt) ~ Thp P2n H (2
k=j2+1 k=j2+1 i=ko+1

Since jskA,, > 1, we use Lemma 4.28 for the fourth sum and we get

Ja

1 T . .
2 Z k)& (ks x) < @(94—33)-
P

Using the definition of j4, we have

5 —2Cps1
Z bekx)<m1n< CPIOgH’ 1h,>.
=Js

nppAy,

1
n2
™k

Using also that n,pA,, 2 T},, we get

LS ; o (Zhalog ]
2 k_%ﬂ(np — k)€ (k; r) < min (Tn’ 1]. (4.57)
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For the last sum, we use Lemma 4.29 and we have

1 np— np—1
—~ Z keh(ka) s — > &k
p k=ja4+ P = Ja+1
1 np—1 d 9
<= Z 6—C;}(k—1)pAn(Hh;1)
"kl i=1
1 d
< P[]4pAn( h 1)
S e I
1=1
Using the definition of j4, we have
! pZ k)b (ki x) < L1 cain (ﬁh_1>2 (4.58)
— X)) S e TRT ; . .
1% n Tn i=1 '

Cased = 1, 2. Taking j; = 0, jo = j3 and k1 = d, we obtain

2 i , 2 & 1
— C(kix) < — > (ny,—k)
2 AT 2 P
P k=j1+1 " k=1 kpQAn
_ log(j2) _ [log(pAn)|
= nppA, T,

and therefore

2
b oo i \1og |1og L or, (170
Varﬁb(yn’h,p(a:)) H h + Z —e H h; .

=1

Cased = 3, ko =1 and as < ag orky = 2. We take k1 = 2 and ko = d and

- hiho and i — (Hz>3h)r
J1 oA, J2 7}?An .

Therefore we have

1 & 1 hihy 1 2
=Y (n, — k)& (k;z) < +—[nt
I VAT |
d
1 1
il hl
y [ 17
TnHz'::a Mp i3
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and
j j d
AN — k)€ (k;z) <nt Y kpA) " ] Rt
n, Z (np — k)& (k;x) < n, Z (kpA;,) Hz
k=gj1+1 k=j1+1 i=3
d
< ny Hlog(ja/dn) (pAn) T [ [ i
d d
ST Y Nog(ha) [ [ Ay
i=1 i=3
and
-9 % _ k €b k < —1 O k A 7d/2
np Z (np )p(ﬂx)f»np Z (p n)
k=j2+1 k=j2+1
135 P (pA,) 9
(I
=3

Combining these three bounds with (4.57) and (4.58), we get
1 d d
Var, Dpnp() S ————+ — | [ h;t+ = [log(hi)| | [ 27
g . T Hz 3 TLp zl_! Z ZH3:

which proves (4.25).

Cased = 3, kg = 3. We take k1 = kg and ks = d and

2/ko
o (Hfilhz) L]
J1= A, and  j2 = oA, |

Therefore, we have

2/ko
& b 1 (rﬁzlho 1 ~1
1 ko d
S 7H(hi)(2_k0)/k0 H h;l—’- Hh 1
Thi:1 i=ko+1 Mp i3
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and
J2 J2
ngQ Z (np—k)cg(k;a:)gn;I Z (kpA,)~Ho/? H hit
k=j1+1 k=j1+1 i—ko+1
d
1]11 ko/2 An)—ko/Q 1—[ hi_l
'i—k‘o-i-l
ko
ngln (2—ko)/ko H hl
=1 i=ko+1
and using that j3 < jo + 1
-2 S k b kL < =10 —d/2 A —d/2 ~ 1
) Z (np_ )Qp( ’m) =Ny (]2+1) (p n) ~
p

k=ja+1
Combining these three bounds with (4.57) and (4.58), we get
Varly, (Un,hp () <1v1II )(2—ko) ko II Wy IIh_ Aigﬂggji
i=ko+1 np i=1 n

which proves (4.26).

Cased > 3, kg =1 andas = ag We take k1 = 1 and ko = 3,

hohs
pA, |

j1=0 and jQZ{

Therefore, we have

J1 , 1
(np — k)€ (k; 2)
12’ k=0 P Ny Hf_l
and
72 J2
n;Z Z (np_k’)efg(k;:v) Sn;l Z (kpA,,) I/QHh 1
k=j1+1 i1

<n 11/2pA 1/21—[h—

< T,rjl (h2h3)71/2 H h;l

1=4
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and

J3
n;Q Z (np*k?)QZ(k;x)gn;l Z (kpAy) 3/2Hh 1

k=ja+1 k=ja+1

<n- 21/2 pA 3/21_[h—

~ P

< T7 (hghs) ™2 ]_[ !

i=4
Combining these three bounds with (4.57) and (4.58), we get
d d
~ 1| log h;| 1 1 _
Var?. Uy, z)) < i1 | L + hit
ub( 7h7p( )) Tn ’]’Lp 1—1?21 hz Tn /h2h3 E 7

which proves (4.27).

11.2 Proof of Lemma 4.26

Since X and ¢ are both ergodic and mutually independent we have by Cauchy-Schwarz inequality

p—1
_ Tn >
@g(kz; x) < Var%b(Kh(x —p! Z Xkpro)a, + %fk))
£=0
b 1p_1 Tn 2 \2
<Efb[Kh(iU—p_ Xproa, + —=Ek) ]
m ;0 (kp+£) \/f)

Using the notations of Section 7, we know that p~! Z?;Ol Xkpro)a, + Top~ Y ng has a density under
P%b given by

Foae) = || B8 00y = w) dydu

Moreover, for all z € RY,

()] < 1L | ( R dy> or ua(z — u) du
R4 R4
< Il

Then, performing a change of variable gives

d d
¢h (ks x) = JRd 7 (2) K (2 — 2)2 dz = (H h;l) fRd (2 + h2)K(2)*dz < H =

since K € L2
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11.3 Proof of Lemma 4.27
First recall from Section 7 that the process

p—1
(pil Z X(kar@)An? X(k+1)pAn)k€N
=0
is stationary with law denoted 7* on R??. Using also that X is a Markov process, we get that for all
(u,v) € R? x RY, we have

b(1.
D, (k;x,u,v)
~1

JRd L{d Eb [Kp(x—p~ Z Xproa, +0)|[Xpa, = 2] Kp(r — @ + v)ﬁb(&?; z)dz d@
(=0

_J f Kh(ac—i—v—w)Kh(ac—i—u—(D)pbn(kfl) A (2 )T (@ 2) AT dw d.
Rd JR? JRE P pSn

where pg no(k—1)pAn is also defined in Section 7. Moreover, we know from Lemma 4.20 that there exists
A1 > 0 such that

1 _ My 2 1 My 2
=b/~. V(= |&o—z |o—z|
™ (UJ, Z) < —— e PAn < e pA
(pA,) 42 (pAy )42
From Corollary 4.19, we also have
1 A1

b < . 2
Pont-tpan (T 9) = G0 T R YR A,y P ( 02k —1))A, " Y )

Then, we combine these two estimates using Lemma 4.34. For all w, @ € RY, we have

f b (2 w)7b<w 2)dz < L e ( v — & )
X — .
ga PP (k= )pn (2 TR 2082 S G pan @2 ST (T (k= DA)pA,
Then,
~|2
b(1.. < _ AN o—df2 _|W—W| ~
D, (k;z,u,v) < JRd JRd |Kn(x+v—w)Kp(z+u—o)|s” ¥ exp ( Y )dwdw
2
< f |Kp(z+ v+ w)| f |Kp(z+u—a)s % exp ( — u)d&)dw.
RA Rd S

where s = (1 + (k — 1)A\1)pA,,. We first focus on the inner integral. We recall that for any z =
(21, oo ,Zd) € Rd,

d
= [ni'K(hi'a
i=1
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Chapter 4. Invariant density estimation from noisy data

and using that K is integrable, we obtain for any i € {1,...,d},

_ +ui w1 |lwi — @2\ |~ _
h1’K<u)‘7 (_#M ,gf h,l‘
fR ’ h; N 5 Il

=

(xﬁ—ui —I—sz)‘i

hi NG

d@;

1 J ‘ ~ ~
< — K W; dwi (4.59)
5 Ja | K&
1
< —.
T /s
Using that K is bounded, we also have
. Ly L2 L2
f hfl‘K(Mﬂiexp(_M) da,z.gf 1 exp<_M) 4,
R hi NG s R V5hi s (4.60)
1
hi

Combining the bounds given by Equations (4.59) and (4.59), we obtain that for any 1 < k1 < d,

jw — &

f |Kp(z+u—&)s™ ¥ exp ( -
R4

)

- 1
7)dw < =
$ sPU2 T, g h

and therefore we have

1

ki/2 779 A
S v/ Hi:lirl hl

By definition of s, we obtain

1

ki/2 719 .
S v/ Hi:lirl hz

”Dg(k:; z,u,v) < JR |Khp(z+v+w)|dw <

1
(kpAn )2 TTE L hi

O (k2 u,v) <

The results on Qf,(k; x) follows by integrating (4.55).

11.4 Proof of Lemma 4.28

We begin by extending the bound on p%n’t(-, -) given by Corollary 4.19 for ¢ > 1. In fact, for z,y € R?
and t > 1, we get using Markov property

Phnales ) = | phas bl ) e

Moreover, using the fact that X is a Markov process, we have that

pb (s y) = f

(] phatamd o, 20w )il ) s

From Lemma 4.18, we know that
b < — |z —w + V(z) - V(w))
Pijp(@,w) Sexp (— |z —wl? + V(z) - V(w)
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and therefore using that V' is bounded below, we have

pg,n,t(x; y) < eV(I)J <f pf,l/g(w;z)dw)p;n(z;y)dz < eV(m)'
Rd Rd

Moreover, we know from Lemma 4.20 that there exists \; > 0 such that

~ 1 _ M~ 2
ﬁb(w; Z) < V(z) oA 02| ‘

(A"

Proceeding as for Lemma 4.27, we have

b1..
Qp(k:’ ':L” u7 U)
= J J f Kp(z+v—w)Kp(r+u— &)p27n7(k_1)pAn(z; W) (@5 2) dD dw dz
Rd JRd JRA
S K R Sa A& dw d
— — pAan
NJRdJRded r(@+v—w)Kp(z+u w)(pAn)d/Qe @ dw dz.
Using that
1 M 2\ o (Amyde
(pA,)d2 j P ( - pAn|Z_w| )dz - <AT) ’
we obtain

@g(k; T, u,0) < JRd y Kpz+v—w)Kp(r+u—o)dodw
and using the usual change of variable and the fact that | K| is integrable, we get
b1.
D, (ks 2, u,v) S 1.

The result on (’:g(k; x) follows by integrating (4.55).

11.5 Proof of Lemma 4.29
For h = (h1,...,hq) € (0,1)¢ and y € R?, we define
Kiw) = [ Knle =+ 0 (do)

and

p—1
K (y) = Kn(y) — Ep [th(Zlj 2, Xea)]
£=0
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Then we have by defnition
Skia) < || @tk o) (@)@
o5 (1 5 (S| ma (S )
<B % (; g Xproa, ) K, (; ;O X,

Moreover, we write {Aj, k > 0} for the natural filtration induced by the lifted Markov chain
p—1
p! Z Yip+ems X (k+1)pAn JkeN-
=0

Then using Cauchy-Schwarz inequality, we have

For the first one, we use that X is a stationary Markov process to get

p—1 p—1

E%,,[ b[:KC C)ZX(ka) ) ]]:EZb[Eb[scg<;§X(W)An) pAn]Q]
- [®l ;ZX(W 21X, = o]
=0
J 1p X(kp+€) ) ]‘ pAR = ]2ﬁb(d$>

l

Defining ¢ : y — E° [fK ( Z Xkpro)a ) y], we get that for any = € R?,

E* [ (Xapa, )| Xpa, = 7] = EX[@(X (—1)pa,)] = Ple1)pn, @ (@),
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12. Proof of the results of Section 4.1

where (P) is defined in Equation (4.7). Moreover, from the definition of K., we get E%b [¢(Xo)] = 0.
Then, using Equation (4.6), we have

p—1

L[B!, (; 3 Xipena, )

=0

2
v | | = V[Pl _1ypa, #(X0)]

-1
< 672Cp1(k71)pAn]E%b [¢(X0)%]-

@(x)] < 2|K$ |0 < 2| K p| o Then, we have @] < []4, kL. Combin-

ing all previous inequalities, we get

b (k;x) < e Crrb—DpAn (ﬁh 1)

=1
12 Proof of the results of Section 4.1

12.1 Preliminary results

In this section, we aim at proving Lemma 4.6 and other results used in the proof of the results of Section
4.1. We start by introducing a concise notation. We say that A(f) < B(6) implies C(6) < D(6), if for
all ¢; > 0, there exists co > 0 such that A(f) < ¢;B(0) implies C'(0) < coD(6). We define similarly
the equivalence between A(f) < B(#) and C(6) < D(#). We can now state the main Lemma of this

section.
HF ; ~HF . ..
Lemma 4.30. Forp > 1, the condition pA,, < wy, " is equivalent to pA,, < Wy, with
s 1 %
(2)*10g (2) ifd =1,2
N
L log (5) ifd > 3 and (a, ko) € Dy,

,J)HF

(
-4

ifd = 3 and (a,kg) € Do,

ra <L+i>
(2)“‘“ o ifd >3 andd > 3 and (c, ko) € D3

, the condition

Proof. First note that since T}, = ™2 pA”

pA, < T, " log(T),)"

for some w, v > 0, is equivalent to

_ a3 1 1
Ifu= 2a3+d—2(a1 + ) we have

Q2
" I agt+ay 1 ap+ag alag + ag)
o d—2 B d 1 1 - P~ _ =
2+ 57 o 2424 L - oo araz(2a + d) — alag + ag)
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and therefore

u  alpta) @ (1 1)
l+u  ajae2a+d)  2a+d ’

o an

which proves the case d > 3and kg = 1 withay < a3 or kg = 2. The other cases are done similarly. [
A particular case is the case where p = 1, restated as follows

Lemma 4.31. The condition A, < wi¥" is equivalent to A,, < WHE with w1 = @HF

n,

Proof of Lemma 4.6. From Lemma 4.30, we know that pA,, < w/¥ is equivalent to pA,, < @5{5 . Using
that ov; > 2, we check that

2o

ZT}HF > (B) 2a+d

and therefore we have Lemma 4.6. O

12.2 Proof of Proposition 4.7

Suppose that p*A,, < wiF and that 72** < A,, and recall that in that case, we take
p* =1 and h* = h*HF

From Proposition 4.4, we see by plugging these values that

Note also that |log(h})| is of the order of log(T;,) and that by definition of h*, we have

(2 og (k)] ifd = 1,2
b g1 ) i o () T (7)™ if d > 3 and (o, ko) € D
T TR (he @Rk T, L (R)7Y ifd > 3 and (v, ko) € Do
| (h3h3)~/2 [T (hF)~1 if d > 3 and (a, ko) € Ds.

Therefore, by factorizing by v/ " the variance bound from Proposition 4.5, we have

Vo e (@) S 0T (L 70,

with
0 ifd=1,2
HE _ Ap(hih3) tlog(T,) ! ifd > 3 and (a, ko) € D1
An T2 ()72 + log(Ty) [ 152, () "2/F TIi_, by ifd > 3 and (@, ko) € D
log(Ty) (hihi) 2 TT , h¥ + Anhy H(h3h%)~12 ifd > 3and (a0, ko) € D3

and it remains to prove that in each case, the remainder can be ignored so that Vz h p(x) < vHF | First
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note that the condition A,, < wi’" and the definition of h* ensures that

hilog(T),) ifd=1

hih3log(T,) ifd=2

Ap < { hihilog(T,) ifd>3and (a, k)€ Dy
[T, (h#)?F ifd > 3 and (e, ko) € Dy
h*(h*h*)1/2 if dd > 3 and (a, ko) € D3

and therefore

0 ifd=1,20rd=>3and (a, ko) € Dy
it < S log(T) [TR0, (hF) 2R T b ifd > 3 and (v, ko) € Dy
log(T,) (hihi) 2 [T, he if d > 3 and (o, ko) € D3

Then we easily check that if d > 3 and kg > 3, we have
ko —2/k d 2 Z ko+1 1/04]
log(T, H (h)~2/ko Hh* log(T, “3+ 9=k -0
i=1 =1

Analogously, if d > 3 and kg = 1 with ap = a3, we have

d
log(T)(h3h3) ™2 | [ b = log(T,) "' T, — 0,
=4

with

so that

which concludes the proof of Proposition 4.7.

12.3 Proof of Proposition 4.8

Suppose that p*A,, < wi¥ and that 729 > A,, and recall that in that case, we take
p* = [(TzalAgl)l/(Hal)] and h* = p®HF

From Proposition 4.4, we see by plugging these values that

201 a
T 1
BY bk (T) S (p:)al + (p*A)YE 4+ 0 < (T2A,) o1 4 olfE

h*,HF

For the variance, we proceed as for Proposition 4.8: using that p*A,, < wa ad h* = , we
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have from Proposition 4.5 that

so we can conclude.

12.4 Proof of Proposition 4.10

Suppose that A,, > w T and that 72** < A,, and recall that in that case, we take
p* =1 and h* _ h*,l _ h*,LF
From Proposition 4.4, we see by plugging these values that

B? h’p(:r) < Tgal +HF

n .

Therefore, by factorizing by v2f the variance bound from Proposition 4.5 and using that | log(h¥)| is

of the order of log(n), we have
VP e o) S OEF (14 1EF),

with
0 ifd=1,2

A log(n)hihd ifd > 3and (a, ko) € Dy
AGUTTR (h2)2/k0 +log(n) AT, b ifd = 3 and (e, ko) € Do
log(n) A TTL, b + A hy(R5h5)YV2 ifd = 3 and (a, ko) € D3

Using Lemma 4.31 and the fact that A,, 2 wf F we know that A,, > ﬁf F Using also the definition
of h*, we check that

| log(h)] ifd=1
hihg|log(hihs)|  ifd =2
An 2 < hyhylog(n) if d > 3 and (e, ko) € Dy (4.61)
15, (h)?/ko if d >3 and (a, ko) € Dy
Lh’{(h;h;’;)l/Q if d > 3 and (v, ko) € Ds.
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and therefore

1 ifd=1,20rd > 3and (a, ko) € D
VD e (1) S 07 31+ log(n) A TTE  hF ifd = 3and (e, ko) € Do
1+ log(n)A, L, b ifd > 3 and (a, ko) € Ds.

We conclude the proof of Proposition 4.10 using (4.61) to get

log(n) [T52, (hy)@-ko)/ko T, h¥  ifd > 3and (a, ko) € Do

d
log(n)A, [ [hf <
=1

(hshE) Y21, he if d > 3 and (c, ko) € Ds.

so that
log(n)A;! H h¥ — 0,

asn — 0.

12.5 Proof of Proposition 4.11

Suppose that p*A,, = w'¥ and that 72 > A,,. and recall that in that case, we take
p*= [(TELO‘IA#)M(HQI)] and h* = h*P"

From Proposition 4.4, we see by plugging these values that

aq * 756
Bz,h*m* (ZU) < (ﬂ%An) el + (%) awd

For the variance, we proceed as for Proposition 4.10: using that p*A,, = w’F" (and therefore that
p*A, = WIF by Lemma 4.6) and h* = h*P* we have from Proposition 4.5 that

p* QEd
2a+
V2 e ) < (1)

n

and thus _
~ 2N \ToaT p*\ 754
R(:u’n,h*,p*ab; .Z') < (TnATL) rer + <7> .

n

1
It remains to prove that (72A,,)T°1 is always dominating here. This term is indeed of the order of

p*A,. By Lemma 4.30, we have p*A,, = wHF so it is enough to prove that

p* %< ~HF 4,62
n ~ W, p (4.62)

Moreover, since p*A,, — 0, it is clear that p*/n — 0. Using the definition of @ u) p , we see that (4.62)
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is equivalent to

2 > d ifd=1,2

il ta) Z oy ifd=dand (k) e Dy
2k > 2 2 3 and (e, ko) € Dy
i (o a5) > ¥t ifd>3and (o) € Ds

These inequalities always hold since a;; > 1 and as > 1 so we can conclude.

13 Proof of the results of Section 5

13.1 Proof of Theorem 4.12

The main idea of this proof is to use general results for Markov chains to the lifted Markov chain

(4.63)

p—1
—1
(P ;) Yiep+e,ms X(k;-‘rl)pAn) ke’

We first introduce few definitions for Markov chains and we refer to [KM12] for more details. Consider
a Markov chain T on a given space (X, X). We say that T is ¢-ireeductible and aperiodic if there exists
a o-finite measure ¢ on (X, X) such that for all A € X such that ¢)(A) > 0, any = € X and any n large
enough, we have

P"(z,A) >0

where P denotes the transition semigroup of Y. We say that T is geometrically ergodic if it admits an
invariant measure 7 and functions p : X — (0,1) and p : X — [1, o) such that for all n > 0 and for

m-almost x € X, we have
|P™(z,-) — 7 rv < C(x)p(z)"

Intuitively, geometrically ergodic converge fast to their invariant distribution starting from almost any
point. Therefore, they must satisfy concentration properties such as Bernstein inequality. In this sec-

tion, we plan to use the following result, from [Lem21].

Theorem 4.32 (Theorem 1.1 in [Lem21]). Let T be a geometrically ergodic Markov chain with state
space X, and let 7 be its unique stationary probability measure. Moreover, let f : X — R be a bounded
measurable function such that B, f = 0. Furthermore, let x € X. Then, we can find constants K, 7 > 0

depending only on x and the transition probability P(-,-) such that for allt > 0,

1 & N2
P, | = (X)) >t gKexp<— >,
"\ N ;) ! 32No3,., + 7t| foNlog N

where

o3 = Vare (f (Yo)) +2 ) Cove (f (Yo), f (Y3))
=1

denotes the asymptotic variance of the process (f (1)),

i
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13. Proof of the results of Section 5

We want to apply this Theorem to (4.63) and we need to check that this chain is geometrically
ergodic. An easy way to check for geometric ergodicity is to use Chapter 15 from [MT93]: any -
ireeductible and aperiodic Markov chain satisfying the drift condition 10 stated below is geometrically

ergodic.

Assumption 10. (V4) There exists a function W : X — [1,0), a set C' € X and constants § > 0 and
b < oo such that
PW < (1-6)W +bl¢ (4.64)

and such that there existsn > 1, ¢ > 0 and a probability measure v on (X, X) such that
P"(z,A) = elo(x)v(A) (4.65)

forallz € X and A € X. In that case, we say that W is a Lyapunov function and C' is a small set.

Thus the plan is to prove that the lifted chain (4.63) is 1-ireeductible and aperiodic and satisfies
Assumption 10.

First remark that the Markov chain (XA, )1 is clearly aperiodic and t-irreductible. In fact for any

x € R? and any Borelian A € Bya of positive Lebesgue measure, and for any k > 1, we have
P’ (Xpka, € A| Xo = z) > 0. (4.66)

We deduce that the lifted Markov chain (4.63) is also aperiodic and v-irreductible by using that the

density p;’w(m; -, -) is almost everywhere positive.

Moreover, using Assumption 9, we know that the chain is geometrically ergodic. Combined with
aperiodicity and ¢-irreductibility, this ensures that (X,;,, )i satisfies Assumption 10 and we consider
W and C' as in Assumption 10. We want to prove that the same property hold for (4.63). We consider
W (z,y) — W(y) and C' = R% x C. Then, for all (z,y) € R? x R, we have

p—1 p—1
PW(z,y) = E[W <p_1 > Yp+e,n,X2pAn) P Yorom =2, Xpa, = y]
=0 =0

p—1
—E[W (5" Y Yoram Xopa, ) [Xoa, = v
£=0

and therefore
PW (2, y) < AW (2, y) + blo(y).

We only need to check that C'is indeed a small set. We alreadu know that C'is a small set and therefore
there exists 6 > 0 and v € P(R?) such that for some k > 1,

VeeC, VYBeBri, P(zx,B)=dv(B).
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Chapter 4. Invariant density estimation from noisy data

We now define the following probability measure on R
e, dy) = | o alvi,2) dz v(do) dy.
Rd

Then, for all (z,z) € C, we get for any Borel set of R?, B, B € Bpa, conditioning with respect to
XpkA,, and using the Markov property:

P ((z,2), B x B) = f Do (@, 7) f ol (o3, 2) dy dz da?
Rd BxB

> 5J pb (@5 y, 2)v(da’) dy dz
BxB Jrd "’

> 6v(B x B),
where we used that x € C and C is a small set.

We are now ready to apply Theorem 4.32 to (4.63). We apply it with f(x1,x2) = Kp(x — 1) for
all z1, z2 € R% Thus we get

N2g2 )

P° (A —E[p ) <K (—
,ub Vn7h,p($> [Vn,h”p(x)“ > € eXp 32]\7’1)2(&, n, h,p) + TSHKhHooNIOg N

where N = |n/p|, and

v*(a,n, h,p) =Vari’_L,, <Kh (z—pt Zan )

0 p—1
+2) Covt, (Kh(w— N Yen), Kn(e —p ZYkan)
k=1 {=0

In order to control the variance term, everything works exactly as in the proof of Proposition 4.5, except

for the last term as the sum is infinite.

13.2 Proof of Proposition 4.14

In this section, we will repeatedly use estimates of the form

Q0
J exp(—2")dz < 2r W T exp (=), v, >0, v (2/r)Y. (4.67)

v

e\ azt az?’? b,z >0 (4.68)
exp T Sexp |7, +exp | — o | abez ) )

Before delving into the proof of Proposition 4.14, let us state and prove the following Lemma

and
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13. Proof of the results of Section 5

Lemma 4.33. Under Assumptions 7, 8, 9, there exists v > 1 such that for any h € J(7,

_ Tgal
EY,[A5(R)] S V' (R) + Bunp(@)® +ny7 +/pA, + s
Proof of Lemma 4.33. For any 1 € H},, we have
~ ~ 2 n, 7, 7,
{\Nn,(hm),p (%) = finmp ()] = V7 (?7)}+ ST (2) + 7 (2) + TP (). (4.69)

where

12 (@) = {nns(@) = Elfnns @) = Vi)

n ~ ~ 2
3 (@) = {1 o) = Elfo, o @] = V2|
2

IIIZ’,I;,(HC) = ’E%b [ﬁn,n,p(x)] — E%b [ﬁm(hm),p(ﬂv)]‘ .

Let us begin with the term IZ’I;,(LU) We write
b ~ b [~ 2 »
Bz fin,n.p(x) — B [Nn,'n,p(x)]‘ — Vi (n)
+

JJrOC (
_ P,
vee)

400

finin o () = Eplfinnp(@)]| > 2/2) d
nIQ)BQZ

<K exp | — dz,
Vv (m) < 32np0v2 (a,n,m, p) + 7B Ky ny IOg(np)Zl/2)

where we used at the last line the concentration inequality of Bernstein’s type given by Theorem 4.12.
Then, using Equation (4.68), we obtain

gl

2
finnp(7) = by finnp(2)]]

- Vr]{’(n)}J ST+

where

+00

n,B%z
I:=K exp (—p> dz;
V»f('n) 32U2 (Oé, n, 77,]7)

+00 1/2
I.=K exp ( np0z ) dz.

V() - log(ny) [Kyllo

The first term can be computed explicitly

[ RE(@nnp) o nB82Vid(n)
B npﬁz 32@2(047”7777]?) ‘

Moreover, by definition of v?(cr, n, 7, p) in Theorem 4.12, and considering the fact that 71 < --- < 74,
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Chapter 4. Invariant density estimation from noisy data

we obtain v?(a, n, 1, p) = nyvh(n). Then,

- 2
I <of () exp <—°“g3(;"‘)5> .

Moreover, we know that

un(n) = Inax{pA an m1n{2|log (n:) |1_[77Z (n2113) 1/21—[77 }}

i=4

Using the particular structure of the grid 3%, we obtain v, (h) < 1 + n,/T),, and
_ap? n
I<n, » (1 + p) : (4.70)

For the second term IT, using Equation (4.67) we obtain

1 < 980 KooV VEC) (_ BVt ()" )

np 7log(np) Kyl

Moreover, we know that ||Ky |l < Hf-l:l n; ' Then,

1og (1) [Kn oo/ Vit (1) < vk (h)Y? log(np)Qal/z.

~

d
p np [ Ti=1 mi

Using the definition of v}, (h), we obtain

d

1 4
—1, p(pN1/2 _ 3/2
n, vh(h)"* = —— max {«/pAn h; ,
ill v Tn n

d

min{hlhg Z|log |Hh 2 h (hahs) 5/4Hh 3/2}}
= i=4

Using once again the lower bound on the n; for i = 1,.. ., d, we obtain

Finally, we can write
np Vit (m)"/? —1/2
— 7 > w'“log(ny) (4.71)
log(np) | Kn oo g
In fact,

mpVE)2 &y [T mh(m)?
og(n)[Koloo ~  log(ny) 2
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13. Proof of the results of Section 5

and

QL

4 1/2 p 1/2

1 .
[ [mvh(m)'? = (H 77@‘) W PAn, min (Z llog(m)!mnz) A/ (n2ns)
1=1 n

i=1 i=1

This ensures that

d 1 d 1/2
Wiﬂﬁ(n)m Zz — ( 77i>
Ll N

. log(np)3/2
p

)

implying Equation (4.71). Finally, this ensures that for any h,n € H},, we have

1-w3/32 1/2—a'28)/r
Iz,p (z) < Tp I np
717 ~

T, VI,

For the term ]IZ’??(CL‘). Observe that such a term can be treated exactly as the previous one noting that

(4.72)

|Kn o« Koloo < | Kyl KIi and Ky Kol < |KI2.

In fact, following the proofs of Lemmas 4.26, 4.27, 4.28 and 4.29, we get that for alle > 0

B np€252 )
32v%(a, n,m,p) + 7| Koo log mp /-

Py ([ oy (@) = Bl i gy (@)]| > 2) < K exp (

Finally, we obtain the same bound for ]IZ’:](w)

1—-wpB/32 1/2—@'Y28/
7 (x) € "2 + 2

h,n T, /T,

Finally, we consider the term I[[Z’I:I(J;) We recall

2
mz% ($) = E%b [:u",TI,p(x)] - E%b [Mn,(h,n),p(x)]

In following, let us denote p,(z) = Egb [finnp(®)] and ppm (T) = Egb [in,(h,m),p(T)]. Moreover,
recalling that 7, ,, is defined in Equation (4.15) and denoting by p,, , the law of the preaveregaed process
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Chapter 4. Invariant density estimation from noisy data

defined in Equation (4.12) under IP’%Z,, we write
Fi(hm) (T Z uyE (@ + YTy
- Z Uy o Khp = Ky(z +YTnp — Y)Pnp(dy)

= Z Uy (Kn * Kn) * Prp) (T + YTnp) (4.73)
-

=Ky (Z Uy Kp % prp(- + 77~'n,p)> (2)

vy
= K, # pp(x).

Now, let us perform the same decomposition as in Section 9 (see more precisely Equations (4.43) and
(4.44)), and write

Zuv o[Vnnp (@ + YTnp)]

= Z Uy Bi(z +YThyp) + Z Uy Bo (T + YT p)-
¥ 2t

For the second term on the right hand side, we obtain thanks to Equation (4.49) that
Zu7B2 T+ YTnp) < VPAR. (4.74)
v

Moreover,

S Ba( +vhp) = Dy Koy 5 (8 03, ) (& + 7)
v ¥

= K, * (Z Uy (1 % 05, ,) (- + ’ﬁn,p)> ().

p
Moreover, it is easy to see using the definition of (u)-, that for any 2 € R,

201
Tn

per

D uqy (i 5 0z, ) (2 + ¥Fp) — A(2)] S

~

Then, we can write
pn(7) = K # 1(x) + enp(@), (4.75)

»(@)] < VpA, + 729 /p*t. Then, combining
Equations (4.73) and (4.75), we obtain that for all 2 € RY,

for some function €, such that for all x € R4,

TQal

J. 2
0,7 () < Brpp(®)” + pAy + ;Oél

174



14. Proof of the results of Section 7

Finally, using #HE < T, we obtain that

~ ~ 2 —&
D {7 (honyp (2) = i (@) = VI | S Bl + =7/

neHh
1/2-wY28)7r T
+ «/Tnnp + pA, + el

Finally, using the fact that T}, < n, and taking @ > 272/% v 64/, we get the expected result. O
We are now ready to move on to the proof of Proposition 4.14.

Proof of Proposition 4.14. Let us consider h € 3}, then one can write

EL, “gn’h*,p(x) = gb(m)f] <EL, [ Fin,hp () — ﬂb(w)ﬂ

R ~ 2
+ 8 1A &) = Funo@)]

We know that the first term on the right-hand side can be controlled in the following way

E%b {

For the second term, we obtain

2
) = 1 | < Buy(o)? + V2R

~ ~ 2 ~ ~ 2
E%b [‘Mn,h*,p(x) — finnp()] ] S E%b [ Fn (%) = Mn,(h*yh)m(x)]‘ }

+Ezb [

2
sl = B )|

This finally gives

Egb {

Moreover, using the result of Lemma 4.33, we obtain

o ) — ab(:c)ﬂ < EL[AD(R)] + VP (R) + EL, [

fnsl) - 1| .

2
b [ [ o) — @ | £ 08 By (o)? + VER) + 070 4 pids 200,
ESln

for some v > 1.

14 Proof of the results of Section 7

First recall the following technical lemma which extensively used in the following.
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Chapter 4. Invariant density estimation from noisy data

Lemma 4.34. Foraj,as € R?, v1,v9 = 0, such that v1 + v9 > 0, we have

vivy 2
f 671/1|:E7a1|271/2|zfa2|2 do = K1 e Tt la1—az
42 g
Rd (1/1 + V2)

for some constant k1 > 0 depending only on the dimension d.

14.1 Proof of Lemma 4.17

o Xk:Ana Xpa,,) conditional on X = z, denotedpg’n(x; ).

We first consider the joint density of (p~!
We claim that under the assumptions of Lemma 4.17, there exists constants C'1, A1, ¢; and 1 > 0 such
that if pA,, < 11, we have for any z, vy, 2

C ly — z? + |z — z|?
b . 1 . Yy .
Ppn(T; Y, z) < A exp < A1 oA, + V(z) V(z)) (4.76)

Using Lemma 4.34, (4.37) is a mere consequence of (4.76): since V' (z) is bounded below, it suffices

to integrate (4.76) with respect to z to get (4.37). The rest of this proof is devoted to showing (4.76).

Note fist that p(z: :2) = (20)“ahu(a VAN = ). VB, )(z — 2)) where
q;n(x; ,-) is the joint density of (p~!(pA,)~1/? Zk:o(Xk:An — ), (pA,) V23X pA, — &)) under
the condition that Xg = x. Therefore, it is enough to prove that

qgm(m; Y, 2) < 02—16—(:2(yQ+z:2)+V(:r:)—V(:L~+(pAn)1/2z)7 (4.77)

for some c; > 0. The methodology we use to prove (4.77) closely resembles the one of Theorem

4 in [GGO8]; we refer to the comments of Lemma 4.17 for more details. We introduce the process
XD = (pA,)Y?3(Xypa, — =) which satisfies

AXD™ = by (XP™) At + AWP™,

where WP*" is a d-dimensional Brownian motion and by, ,, (w) = (pA,)"2b(x+(pA,)"/?w). Moreover,

1 1
X NP and (——)YA(Xpa, — ) = XP".
Z kA p Z 2/p an (pAn) ( PAn LL’) 1
Let us now define the stochastic process

t t
(€P™),0 = (exp(—f by (N AW =172 [ 1oy (2 ds>)
0

0 t=0

Under Assumption 7, we get that Novikov criterion holds following the steps of the proof of Lemma
4.21. This ensures that (€7");>( is a martingale with constant expectation equal to 1. Then it defines
a change of measure and we can consider a probability measure Q, under which we get rid of the

influence of the drift for the dynamic of X™P. More precisely, we define the probability measure Q. on
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14. Proof of the results of Section 7

o({Wy",t < 1}) by

b 1
(31% :exp<—f bpn(xpn)dwpn—f by (2™ ).
x 0

Using the It6 formula, we obtain
b

1 PN N 1 ! p,mY |2
ng :exp(L bp,n(xt )dxt - QJO |bp»n(xt )| dt)

= e (B (X07) = 5 [ 05 + V(07 )

where for all w € R?, B, ,,(w) := V(z) =V (x+ (pA,)"?w). Now let f and g be two bounded positive

functions. Then we have

. (12%) o™
:E@”[ ( er/p) (0™ exp( By (X0 —f by (XP™)|2 4 V7 - by (X )dt)]

Moreover, we have V - b, ,,(w) < CpA,,. Since Girsanov Theorem ensures that X7 is a Brownian

motion under Q°, we get the bound

(G Samatn] < s S wp)sornn)

for some Brownian motion W and some constant C'1, which does not depends on p nor n. Therefore,

it is enough to prove that

[( ZWM> (Wh)e B”(Wl <01 f f )g(v)e=Calul’ o)+ Bon(0) qudy  (4.79)
R2 JR4

holds for some positive constants C] and C’. Again, this is closely related to Lemma 4 of [GG08].
Recall that W} = W} — tW; defines a Brownian bridge on [0, 1], independent of W;. Thus, if h(v) =
g(v)ePrn(V) we get:

153 s ¢
o [f (5 D We/p)h(Wl)] &7 (5 STwp, + foWl)h(Wl)] (4.80)
=0 £=0

)|

_ o |gef (L N
_ [f (5 R
¢=0

= B, (W1))
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Chapter 4. Invariant density estimation from noisy data

where for all w € RY,

—1
0h o (w) = B [f(;ZWZ/p + ﬁw)h(w)].
We know that the Brownian Bridge W* itself admits the following decomposition, see e.g [GGO8]:
Wi = & + Wi
where £ is a standard random variable, 7 is the deterministic function

t if t € [0,1/2],
1-t) ifte[1/2,1],

m =

and W** is the process on [0, 1] constructed as the concatenation of two independent Brownian bridges,
on [0,1/2] and [1/2, 1] respectively. Moreover in this decomposition the random variable 7 and the

process W** are independent. Then,

¢2,n(w) = [ < Z Nefp + — Z Wg/p + w)] . (4.81)

Letc, =p~! Z?;é N¢/p> Which is bounded uniformly in p. Using the independence between £ and W**,

we have:

-1 1 71}
[( Zw/p—i_ Zwﬁ/p J}Rdf CpU + — sz/p p2p w) (27r)d/26 lof?/2 dv]

P

u—3 X ~wl?
f /9 Cp) e 2c]% Z/p 2p du].
Rd

We then use the fact that for ¢ € (0,1), |z — y|2 = ¢/(1 + ¢)|z|? — €|y|?, to get

2 Ze(p—1)%|w|?
1 - ‘gu‘ < ) —2 Hk (2
Eb[ bW ] <J —— f(u)e 20+e) depp E [ecp € supyefo, 1) [Wi™| ] 4.82
wp,n( 1) Rd ( /727TCp)df< ) ( )

Using that W** is a concatenation of two Brownian bridges, we know that there exists ey > 0 and C;

such that for all e < e,
E I:ngQ;ESUPtE[O,l] \Wf*|2] <C..

Moreover, thanks to the boundedness of ¢, with respect to p, we get that C. does not depend on p.
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14. Proof of the results of Section 7

Then, plugging (4.82) into Equation (4.80), we get that fore < e,

Zule  cZe(p-1)%|v|?

p—1
S Sson] < o [
P 2770 Rrd Jrd

__uPe -1l )
Bpn( V) 2c3(1+e) acgp? o= 1U1%/2 Qo do.

(v 27rcp f]Rd JRd
Then, we get Equation (4.79) as soon as ¢ < min(2¢,p?/(p — 1), e ), which concludes the proof.

14.2 Proof of Lemma 4.18

We consider ¢ : R? — R non-negative bounded with compact support. From Girsanov Theorem, we

can show that for any z € R,

b d/2,bit/2€ " eV (@) ST
Elp(Xe)] < (2m) %7€ ply)e” 2~ Wdy
td/Q Rd

and we conclude using ¢t < 1, and the boundedness of ﬂb.

14.3 Proof of Corollary 4.19

First note that since X is a Markov process, we have

pb (s y) = fRd (5 2)ph (25 y) de.

Using the bounds given by Lemmas 4.17 and 4.18, combined with Lemma 4.34, we get

A1
b Ca) < —d/2 2
Pl 9) < (A 2000) 2 exp (o — g2+ V(@)).

14.4 Proof of Lemma 4.20

Note that since the distribution of X is ,ab which is the invariant measure of X, the distribution of

(p~t 30 Xm , Xpa,,) is 7. Thus for any non negative function ¢ : RY x R? — R, we have

o4 5 )] = [ 5 i o

Z 0

f J f oy, 2)pb (@5 y, 2) i’ (x)dz dz dy.
Rd JR4 JR4
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From Equation (4.76), we get

JRd JRd de Py, 2)py (@3 y, 2) B (2)da dz dy
e ly — 2" + |z — 2] e VEHV@E T e 2V (@)
< (nA_\d J—
L JRd fRd fRd Pl zew ( . PAp VAY drdzdy

Cl“:u H J j —V(2) f )\1 9 )
1/2 i J oy, 2 (RdeXp( pAn(|y z? + |z — z| ))dx)dydz.

Use Lemma 4.34 to control the integral in the variable x, and get

JRdJRdJRd y’ pp”x Y,z ) ( )dﬁ?dzdy

Crr ]2 J f (2) A1
< — dy dz.
1/2 (pA,)42 Jrd Rd eXp( 2pA, A, Y ) yez

We can conclude that for all (y, z) € R??, we have

_ Cur| )L A
b < Gimlli]lo B 2
T (y,2) < Z‘l//z(pAn)d/Q exp ( A, ly — 2| V(z)).
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Appendix

Reflection coupling and convergence toward

equilibrium

1 Probabilistic context

We consider a differentiable function V' with Lipschitz-continuous gradient and the diffusion process
dXt = —VV(Xt)dt + O'dBt (Al)

It is well known that when the potential V' is uniformly convex, it is possible to obtain convergence
rates with synchronized couplings. Indeed, for two solutions X and Y of the equation (A.1), with the

same Brownian motion B but different initial conditions pg, 9, we can write:

dIX; — Vi = —2(X, = Y3) - (VV(Xy) — VV(Xy))dt

(A.2)
< _2/8‘Xt - Y;ﬁ‘z?
where 3 > 0 is such that V2V > 3. Thus, it directly follows that
a5 (e, v1) < E[1X = Vi1 < a5 (o, vo)e ™", (a3)

When V is not assumed to be uniformly convex, we need somewhat finer arguments since the calcu-
lations of equation (A.2) no longer hold. In [Ebe16], the author proves similar results as in Equation
(A.3) but in a Wasserstein-1 distance. More precisely, the idea of [Ebe16] is to consider the distance dH}d
defined on R? by d¢(x,y) = f(|z — y|), and then the associated distance on P; (R%),

d .
d¥ (n,v) = it JRd dy (@, y)m(dz, dy).
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Appendix A. Coupling by Reflection

2 The coupling method

The idea of the coupling is the following: A coupling by reflection of two solutions of (A.1) with initial
distributions z and v is a diffusion process (X, Y;) with values in R?? defined by L (X, Yy) = 1 where
7 is a coupling of i and v,and with dynamic

dX; = —-VV (Xy)dt + odB; fort >0,

(A.4)
dYy; = —VV(Y})dt—l—a(Id—QetetT) dB; fort<T, Y;=X;fort=>T.

where

e = (Xe —Y3) /| Xy — Y3,

and T := inf {t > 0: X; = Y}} is the coupling time. As previously mentioned, this type of coupling
was introduced by [LR86]. The reflection coupling can be realized as a diffusion process in R??, and

the marginal processes (X),( and (Y;),- are solutions of with Brownian motions B; and

t
B, = f (Id - 2]I{S<T}esesT) dBs,
0

respectively. By Lévy’s characterization, B is indeed a Brownian motion. The difference vector
Et = Xt - }/t

solves the one-dimensional SDE.

dE; = — (VV(Xy) — VV(Yy))dt + 20dW;  fort < T
E,=0 fort=T
with .
Wy = J el dB;.

0

Coupling of two diffusion processes

—— Diffusion X

10 i Reflected Diffusion Y
% a&ﬁ ‘ﬂ ---- Difference
Lo -
1!

)
~N
S

40 60 80 100
Time

Figure A.1: Realisation of a couling by reflection in dimension d = 1.

The main point of this coupling method is to preserve the noise whenever the particles are not close.
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2. The coupling method

Thinking once again of a double-well potential V : x — |z|*/4 — |z|?/2, we typically want to avoid the
situation where X, is around -1 and Y} is around 1, for the same time ¢ > 0. To prevent an occurrence
of this situation we keep track of the noise whenever this happens. Once the particles touch each other,
they stay together. The first observation here is that considering the fact that particles does not touch
before the coupling time 7', we can prove (see [Ebel6]) that for allt > T,

d|Xe — Y| = 20dW; + e - (b(Xe) — b(Yy))de

This coupling allows for the presence of noise when the particles are far apart, enabling contraction
properties to be achieved. Unlike the convex case, these properties cannot be obtained in dIQRd('7 ).
Specifically, the idea developped in [Ebe16] is to consider a slight deformation of the Wasserstein-1
distance that offers contraction properties. In order to do so, we look for a function f such that there
exists ¢ > (0 which makes (e f(|E¢|))¢>0 is a super-martingale. In [Ebe16], the author construct a

function f satisfying

f"(r) — irﬁ(r)f’(r) < —T;f(r) fora.e. r > 0. (A.5)
From this, we obtain that
SE[£(X, — Yil)] < —cBLf (X — Yil)] (16

d¢

and conclude using Gronwall Lemma.
Remark A.1. On the choice of the function f:

1. Choosing f(x) = x yields the standard L'-Wasserstein distance dB}d = d]{%d. In this case it is well
known that the transition kernels p;(x, dy) of the diffusion process (X;) satisfies

A (upr, vpe) < e P2AY (u,v)  foranyp,v and  t>0,

provided V2V > 81, holds globally.

2. On the other hand, choosing f(x) = Lo x)(z) yields the total variation distance dﬂfd = d%i,. In
this case,

dﬂﬁd (upe,vpy) < P[T >t] foranypu,v andt = 0,

where T stands for the coupling time between two realisations of X with initial conditions p and v
d
respectively. There is no strict contractivity of p; w.r.t. dﬂfiv in general. Indeed, in many applications

d . .
d%{iv (upt, vpy) only decreases after a certain amount of time.

3. The idea of [Ebel6] is then to find a modification of the previous cases which allows to get contrac-
tivity.
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Appendix

Goldenshulger-Lepski adaptive procedure

1 Framework and Kernel estimator

We consider X!, ..., X™ random variables in R? admitting a common density with respect to the
Lebesgue measure, denoted by f. We wish to estimate f(z) for x € R? based on the observations.

A natural initial intuition can be formulated as follows: the more irregular the function to be es-
timated, the more observations are needed to estimate it accurately. A single observation is sufficient
to estimate a constant function, whereas a function with discontinuities requires many more observa-
tions. The appropriate way to measure the regularity of a function in this context is as follows (see also

Section ...):

Definition B.1. Let o = (a1,...,0q) € (0,00)% and £ = (L1,...,L4q) € (0,00)% A function g :
R? — R is said to belong to the anisotropic Holder class Hq(cx, £) of functions if, forall1 < i < d, g is
|ov; |-differentiable in the i-th variable and the partial derivatives satisfy for 0 < k < |ay|

|05gle < £i and Wt e R, [olg(- +te;) — d*Ig ()], < £ifejoiled

1

where (ey, . .., eq) is the canonical basis of R%.

A natural estimator in this kind of situation is called a kernel estimator [?, ?, ?]. We consider a
function K : R — R with certain properties that will be detailed later. We consider a bandwith
h = (hi,...,hq) € (0, +00)? and define

~ 1 & 5
F(@) = = 3 Kn (2= x*), (B.1)
k=1
where for any y € R,
d
Kn(y) = | [ b "K (yi/ha)- (B.2)
i=1
For any i € {1,...,d}, h; gives the precision with which we look in the i-th direction. The following

graphic represents the impact of the choice of the bandwith in dimension 1.

187



Appendix B. Adaptive methods

Effect of Bandwidth on KDE
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Figure B.1: Role of the bandwith in dimension d = 1.

The choice of bandwidth, h, is crucial in non-parametric estimation because it directly affects the
bias-variance trade-off in the estimator f If the bandwidth is too small, the estimator captures too much
noise, leading to high variance and an overfitting problem where the estimate is too sensitive to the
random fluctuations in the data. On the other hand, if the bandwidth is too large, the estimator smooths
out important features of the underlying function, resulting in high bias and an underfitting problem
where the estimate fails to capture the true structure of the data. Therefore, selecting an appropriate
bandwidth is essential to achieve a good balance between bias and variance, ensuring that the estimator
is both accurate and reliable.

In this section, we provide an explicit procedure to control the pointwise quadratic loss for the

kernel estimator:
R = E[|fu(@) — f(2)]?]. (B3)

Of course, this control will depend on h and o.In a first time, let us assume that o is known to make

things clear.

1.1 Case of a known regularity

Let us assume in this Section that f € H(a, £) and that &« = (v, . . ., ag) is known. Then, we perform

the following decomposition

Ju@) = f(@) = fu() — ELfn(@)] + Elfu()] — f().

centred stochastic term bias
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1. Framework and Kernel estimator

Then, we mainly have to control the bias and variance of the estimator. This is called bias-variance

decomposition of the loss. Let us begin with the variance

Bl| () ~ B (@)]) = Var[ K (¢~ X")]

< %E[\Kh (z — XY ]

_ 1 f K (2 — ) PFy)dy
Rd

n
HfHooHKH%d_
”H?:l hi

Now, for the bias term, let us begin by noting that

N

E[fn(x)] = y K (z—vy) f(y)dy

— | K@)f@+hy)y
R4

d

(&%)

< h
=1

Finally, we obtain

f h2% 4 (B.4)
[| h( 121 nl_[z 1

To find the optimal bandwidth, we need to balance the trade-off between bias and variance.

The optimal bandwidth is given by A} = oo
a ptimum

n «i(a+d) where the effective smoothness @ is de-
fined by

13 1
Talia

This formula makes sense because it matches our Variance

Bias?

intuition: the more irregular the function f is in di-

rection ¢, the smaller A} needs to be to estimate f

accurately.

Finally, plugging the optimal bandwith into (B.4), we obtain

E[|fpr (2) — f(2)|?] < n”ata (B.5)

Remark B.2. Some remarks are in order: (1) The constant hidden under the sign’ <' is uniform over all
the Holder class H(c, £). (2) The rate of estimation is very common in non—parametrlc estimation [?].

We also see what is often called the curse of dimensionality because the presence of d makes the estimation
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Appendix B. Adaptive methods

procedure very slow in high dimensions. Some new techniques use the geometric distribution of the data
to reduce the effective dimension and improve the speed [?, ?] to name just a few. (3) The main difficulty
here is that the optimal bandwidth depends on the regularity of the function f that is unknown a priori.

The next section is dedicated to an effective procedure to choose a good bandwidth.

1.2 Case of an unknown regularity

Before delving into the section, let us make a quick recap of concentration inequalities

Proposition B.3 (Bernstein inequality). For any sequence Z1, ..., Zn of real-valued independent ran-

dom variables bounded by some constant M > 0 and such that E [Z;] = 0, we have

N t2
P<22i2y><e><p — ,
i=1 2 <

N
Yl E[Z7] + %)
foranyt > 0.

Our goal is to define a choice h of parameter such that the estimator fﬁ satisfies an oracle inequality:

B[l - f@P] < ¢ it E|[fnto) - 1) | + R ®0)

he(0,1)d
There are several ways ..., let us present the one developed by GL [?] Let us now move on to explain

the Glodenshulger-Lepski procedure. (Un petit point historique)

1.3 The Goldenshulger-Lepski procedure

Let us introduce some notation:

« 3, < (0,1]% is a mesh of possible bandwith;

For any h,n € H,,, we define By (n) := {‘fn(az) — fhn(:p)‘ — V(n)}+;
« For any h € H,,, we define By, = maxyes(, Br(n);
- For any h € J(,,, we set Vi, = @log(n)n' [}, h; ', for some constant & > 0.
What do we have to do to make this procedure work?

1. Find a mesh J{,, with some theorical guarantees.

2. Find @ in the definition of the penalization V.

1.3.1 Heuristic idea

The difficulty here is that we cannot access the bias of the estimator: | f(z) — Kp, * f (x)|. This definition

is as follows: to approximate the bias |f(z) — f * Kp(z)|, we replace f with an estimator with a fixed

window, fn. This leads to ‘fn(sn) — Kp * fn(:v)‘ = ‘fn(w) - fhn(x)‘ But, unlike the bias, this quantity
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1. Framework and Kernel estimator

"contains" randomness and thus variability: to correct this, it is necessary to subtract the corresponding
"part of variance" V,,. Finally, since there is no reason to choose one window 7} over another, we
sweep through the entire collection. Of course, this is only a "hand-waving" justification, and it can be

rigorously demonstrated that By, has the same order of magnitude as the bias,
n< C|f(x) = f* Kn(2)].

1.4 The procedure

Now that we have defined an estimator of the squared bias, and a proxy of the variance, we consider

the following bandwith choice procedure:

h:= argmln {Bn + Vn},

n

and we define the Goldenshulger-Lepski estimator f(; (z) = Aﬁ( ). This procedure offers the follow-
ing technical guarantee:
Proposition B.4. There exists w > 0 such that for allio > w,
. 2
B [liew) - @P] <€ int B |iuto) - @) |+ a7t ®7

for some C > 1
Proof of Proposition B.4. Step 1. Let us begin this proof with the following decomposition which stands
for any h € (0,1]7,
for(@) = F@)P < {l@ - fa@ - Vi) +V;
H{Fua@) — Jn@) Vi) + Vi

+fu(z) — f(2)]?
< Bp + Vi + By + Vi + | fu(z) — f(@)]?
< Bn+ Vi + [falx) — f(2)2,

(B.8)

where the last line is straightforward as h minimizes h — B n + Vi. Now, we are really happy the the

last term because as done in the case with known regularity, we obtain

1
f h2% 4
E[| f () 21 AT h

The term V}, is deterministic, so we essentially need to control E[ By, |. Recalling that By, = maxyes, Br(n),
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Appendix B. Adaptive methods

we consider 1) € J(,, and write

Bi(n) < {|Fa(@) = fa@) = Vi} |
+ {1Fan@) = Fan@)* = Va}

+ | fn(@) = fan(@)?,

where [, 1,(2) = E[fy 1 (2)] and fi () = E[Jy ()]
Step 2. Difference of the bias. Let us notice that

| fan(@) = fan(@)]? = Ky f(z) — Ky * Ky« f(2)]”
<|K[Tf = Kn * floo-

Exactly as in the first section where the intensity of the noise was assumed to be known, we get

d
|f = Knox flloo < ) 0
=1

Finally we obtain

max | fn(2) — fon(@)? <> 07 (B.9)
neHn i=1

Step 3. Now, we will use the concentration in order to control the remaining terms. We write:

e s {lunte) — anto? =} | < 33 w[{lfanto) st 14}, |

neH,

Now, for any n and i € {1, ..., n}, let us define
nn = Kpx Ky(z— X;) — E[Ky « Kp(z — X;)]. (B.10)
First, let us remark that

|Sn.nl <[ Kh* Kylo
d
<3K1 Hni_l‘
i=1

where the previous inequalities hold in the almost sure sense for some x; > 0. Then, thanks to Bern-

stein inequality, we know that

2t2

1 G,
P(nZSﬂh%) < exp —2< _ (B.11)
=1

n d -
21 IS, p 2]+ ma [ Loy mg lm)
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1. Framework and Kernel estimator

Forie {1,...,n},
BlIShAPT < ||| 1Kn + Koyl = 9) ()
< ol B = By

Finally, using Young’s inequality we obtain

d

B[S 2] < ro | [ (B.12)
=1

for some k2 > 0. Now for any n € H,, and using Bernstein inequality given in Proposition ...,
~ ) +o0 ~
B [{1fan@) = an@P = o} | = [P (ante) ~ fanl] > 04 Vi)
0
+00 27174 )
< J exp _m dt.

Vi 2 (k2 + K1Vt)

Moreover, we know from Proposition ..., that this imples

| {ifaate) ~ ol Vo | 1o

with

d d
I:= J‘FOO exp —M de; o:= J+OO exp _m dt.
Vn 4’%2 ’ Vi 4/{1

The term I is easy to compute and we obtain

4%2 nVn d
I=—"—exp —4—1_[7% . (B.13)
n ] lizy i F2 0
To compute the term II, we use Proposition ... and get
/2 d
4 Vi
T<— "V exp (—"" Hm) . (B.14)
n ] izy i 2R

Moreover, as previously mentioned,
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for some @w > 0. Then, we obtain

1 w
I<—Fexp|—=—1log(n) |;
nII,m p( 2# 8l )>

1 1/2 1/251/2) 1/2 _d
< —Og(z) 372 XP (—n - 5 o5(n) Hm
n32 [Ty m; e 1

It is now time to define properly the mesh J(,,. We want to define it in a way that allows to control
both I and II. Let us consider

1=

H, © {h = (h1,..., ha) € (0,1]% h; = n~1/d 1og(n)2/d} .
Then, we obtain that for w large enough,
I+I<n >

With the exact same reasoning, we obtain that for w large enough,

E[{If) - P - v} | <0

Now imposing that §3,, < n, we get

d

1
E[Bn] £ Y hi™ + e
=1

Finally, plugging this into (B.8), we conclude the proof of Proposition B.4. O
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RESUME

Cette these traite du comportement en temps long des équations stochastiques de Fokker-Planck en présence d’'un
bruit commun additif et présente des méthodes statistiques pour estimer la mesure invariante des processus de diffusion
ergodiques multidimensionnels a partir de données bruitées. Dans la premiere partie, nous analysons les équations
différentielles partielles stochastiques de type Fokker-Planck non linéaires, obtenues comme la limite du champ moyen
de systemes de particules en interaction dirigés par des bruits browniens idiosyncrasiques et en présence de bruit
commun. Nous établissons des conditions sous lesquelles I'ajout d’'un bruit commun premet de restaurer I'unicité de la
mesure invariante. La principale difficulté provient de la dimension finie du bruit commun, alors que la variable d’état
- interprétée comme la loi marginale conditionnelle du systéme compte tenu du bruit commun - opére dans un espace
de dimension infinie. Nous démontrons que l'unicité est rétablie dés lors que le terme d’interaction du champ moyen
attire le systéme vers sa moyenne conditionnelle (par rapport au bruit commun), en particulier lorsque l'intensité du bruit
idiosyncrasique est faible, qui sont des cas typiques de perte d’unicité en I'absence de bruit commun.

Dans la deuxieme partie, nous développons une méthodologie statistique afin d’approximer la mesure invariante d’un
processus de diffusion a partir d’'observations bruitées et discrétes de ce méme processys. Cette méthode implique une
technique de pré-moyennage des données qui réduit I'intensité du bruit tout en conservant les caractéristiques analy-
tiques et les propriétés asymptotiques du signal sous-jacent. Nous étudions le taux de convergence de cet estimateur,
qui dépend de la régularité anisotrope de la densité et de l'intensité du bruit. Nous établissons ensuite des conditions sur
l'intensité du bruit qui permettent d’obtenir des taux de convergence comparables a ceux des cas sans bruit. Enfin, nous
démontrons une inégalité de concentration de type Bernstein pour notre estimateur, ce qui premet de mettre en place

une procédure adaptative pour la sélection de la fenétre du noyau.

MOTS CLES

Equations de Fokker-Planck Stochastiques, Bruit Commun, Mesure Invariante, Estimation de Densité par
Noyau, Processus de Diffusion Ergodique, Réduction du Bruit, Estimation Non-paramétrique

ABSTRACT

This thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive common noise and
presents statistical methods for estimating the invariant measure of multidimensional ergodic diffusion processes from
noisy data. In the first part, we analyze stochastic Fokker-Planck Partial Differential Equations (SPDEs), obtained as
the mean-field limit of interacting particle systems influenced by both idiosyncratic and common Brownian noises. We
establish conditions under which the addition of common noise restores uniqueness if the invariant measure. The main
challenge arises from the finite-dimensional nature of the common noise, while the state variable — interpreted as the
conditional marginal law of the system given the common noise — operates within an infinite-dimensional space. We
demonstrate that uniqueness is restored if the mean field interaction term attracts the system towards its conditional mean
given the common noise, particularly when the intensity of the idiosyncratic noise is small. In the second part, we develop
a new statistical methodology using kernel density estimation to effectively approximate the invariant measure from noisy
observations, highlighting the crucial role of the underlying Markov structure in the denoising process. This method
involves a pre-averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical
characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate of our estimator,
which depends on the anisotropic regularity of the density and the intensity of the noise. We establish noise intensity
conditions that allow for convergence rates comparable to those in noise-free environments. Additionally, we demonstrate
a Bernstein concentration inequality for our estimator, leading to an adaptive procedure for selecting the kernel bandwidth.

KEYWORDS

Stochastic Fokker-Planck, Common Noise, Invariant Measure, Kernel Density Estimation, Ergodic Diffusi
Processe, Noise Reduction, Non-parametric Estimation
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