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Résumé

Cette thèse traite du comportement en temps long des équations stochastiques de Fokker-Planck en

présence d’un bruit commun additif et présente des méthodes statistiques pour estimer la mesure in-

variante des processus de diffusion ergodiques multidimensionnels à partir de données bruitées. Dans

la première partie, nous analysons les équations différentielles partielles stochastiques de type Fokker-

Planck non linéaires, obtenues comme la limite du champ moyen de systèmes de particules en in-

teraction dirigés par des bruits browniens idiosyncrasiques et en présence de bruit commun. Nous

établissons des conditions sous lesquelles l’ajout d’un bruit commun premet de restaurer l’unicité de

la mesure invariante. La principale difficulté provient de la dimension finie du bruit commun, alors

que la variable d’état - interprétée comme la loi marginale conditionnelle du système compte tenu du bruit
commun - opère dans un espace de dimension infinie. Nous démontrons que l’unicité est rétablie dès

lors que le terme d’interaction du champ moyen attire le système vers sa moyenne conditionnelle (par

rapport au bruit commun), en particulier lorsque l’intensité du bruit idiosyncrasique est faible, qui sont

des cas typiques de perte d’unicité en l’absence de bruit commun.

Dans la deuxième partie, nous développons une méthodologie statistique afin d’approximer la

mesure invariante d’un processus de diffusion à partir d’observations bruitées et discrètes de ce même

processys. Cette méthode implique une technique de pré-moyennage des données qui réduit l’intensité

du bruit tout en conservant les caractéristiques analytiques et les propriétés asymptotiques du sig-

nal sous-jacent. Nous étudions le taux de convergence de cet estimateur, qui dépend de la régularité

anisotrope de la densité et de l’intensité du bruit. Nous établissons ensuite des conditions sur l’intensité

du bruit qui permettent d’obtenir des taux de convergence comparables à ceux des cas sans bruit. Enfin,

nous démontrons une inégalité de concentration de type Bernstein pour notre estimateur, ce qui premet

de mettre en place une procédure adaptative pour la sélection de la fenêtre du noyau.

Mots clés : Équations de Fokker-Planck Stochastiques, Bruit Commun, Mesure Invariante, Estima-

tion de Densité par Noyau, Processus de Diffusion Ergodique, Réduction du Bruit, Estimation Non-

paramétrique

v





Abstract

This thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive com-

mon noise and presents statistical methods for estimating the invariant measure of multidimensional

ergodic diffusion processes from noisy data. In the first part, we analyze stochastic Fokker-Planck

Partial Differential Equations (SPDEs), obtained as the mean-field limit of interacting particle systems

influenced by both idiosyncratic and common Brownian noises. We establish conditions under which

the addition of common noise restores uniqueness if the invariant measure. The main challenge arises

from the finite-dimensional nature of the common noise, while the state variable — interpreted as the
conditional marginal law of the system given the common noise—operates within an infinite-dimensional

space. We demonstrate that uniqueness is restored if the mean field interaction term attracts the system

towards its conditional mean given the common noise, particularly when the intensity of the idiosyn-

cratic noise is small. In the second part, we develop a new statistical methodology using kernel density

estimation to effectively approximate the invariant measure from noisy observations, highlighting the

crucial role of the underlying Markov structure in the denoising process. This method involves a pre-

averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical

characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate

of our estimator, which depends on the anisotropic regularity of the density and the intensity of the

noise. We establish noise intensity conditions that allow for convergence rates comparable to those in

noise-free environments. Additionally, we demonstrate a Bernstein concentration inequality for our

estimator, leading to an adaptive procedure for selecting the kernel bandwidth.

Keywords : Stochastic Fokker-Planck, Common Noise, Invariant Measure, Kernel Density Estimation,

Ergodic Diffusion Processe, Noise Reduction, Non-parametric Estimation
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Résumé succint en français

This is the only chapter in French

Cette thèse est composée de deux parties :

• la première aborde les questions probabilistes en relation avec des systèmes de particules en

intéraction soumis à un bruit commun. Plus précisément, nous examinons dans cette première

partie l’influence du bruit commun sur le comportement en temps long de la limite champmoyen

de ces systèmes.

• Dans la seconde partie, nous nous penchons sur des questions d’ordre statistique liées à des mod-

èles de diffusion ergodique. En particulier, on cherche à comprendre l’impact d’un bruit venant

polluer les observations d’un processus de diffusionmultidimensionnel sur la vitesse d’estimation

de la mesure invariante du processus sous-jacent.

Partie 1 : Comportement en temps long des équations Fokker-Planck non linéaires
stochastiques

La première partie est composée de deux papiers de recherche. L’un d’entre eux a été réalisé en collabo-

ration avec François Delarue et Étienne Tanré. Ces deux travaux s’inscrivent dans une démarche visant

à comprendre l’impact potentiel d’une corrélation entre les diffusions de différentes particules d’un

système sur le comportement en temps long de celui-ci. Plus précisément, l’objectif est de répondre à

la question suivante :

Comment un bruit commun affecte-t-il le comportement en temps long des systèmes en
interaction avec un grand nombre de particules ?

Ainsi, dans la première partie de ce manuscrit, on considère un système de la forme

#

dXi
t “ bpXi

t ,m
N
t qdt` σdBi

t ` σ0dB
0
t

LpX1
0 , . . . , X

N
0 q “ µbN

0 ,

avec

mN
t “

1

N

N
ÿ

i“1

δXi
t
.

1
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Les pBiqi sont des mouvements browniens indépendants en dimension d, ce sont les bruits indiosyn-
cratiques, et B0

est un mouvement brownien standard indépendant des Bi
, appelé bruit commun. σ et

σ0 sont des coefficients positifs.

Chaque particule est représentée par une quantité Xi P Rd
, qui correspond généralement à sa

position (Xi
t indique alors la position de la particule i au temps t). La fonction b : Rd ˆ PpRdq Ñ Rd

est appelée drift ou transport. Il est courant (et c’est ce que nous ferons dans la première partie de ce

manuscrit), lorsque l’on considère le comportement en temps long de ce type de systèmes, de supposer

que b s’écrit de la manière suivante :

bpx, νq “ Gpxq ` F px, νq.

Dans ce cas, G est appelé force de confinement, c’est une force extérieure qui dirige le mouvement des

particules. La fonction F est dite force d’interaction et définit la manière dont chaque particule interagit

avec les autres.

À ce stade, il est important de noter que dans la suite, nous ne considérerons que des cas où

l’interaction entre les particules du système est de type champ moyen, c’est-à-dire qu’elle intervient

à travers la mesure empirique du système. Cela empêche deux particules d’interagir entre elles sans

prendre en compte le comportement des autres: l’interaction ne peut intervenir qu’à travers le com-

portement moyen du système au temps donné. Ce type d’interaction est usuel et confère de bonnes

propriétés asymptotiques (propagation du chaos), que nous détaillerons dans la suite. Lorsque le nom-

bre de particules devient très grand, on peut essayer de caractériser le comportement du système en

étudiant sa mesure empirique. On obtient alors par des arguments de compacité [CD18a, CD18b] que

pmN
t qtě0 admet une limite lorsque N Ñ `8, cette limite, notée pmtqtě0, est solution (en un certain

sens) de

dmt “
σ2 ` σ20

2
∆mtdt´ ∇ ¨ pmtbp¨,mtqqdt´ σ0∇mt ¨ dB0

t . (1)

Le flot pmtqtě0 est ainsi un processus stochastique à valeur dans l’espace des mesures de probabilité,

processus dont nous étudierons le comportement en temps long. Il est important de bien noter que

pour étudier le comportement en temps long de ce processus, nous allons en réalité nous élever d’un

espace et étudier le flot de mesure généré par sa loi. En particulier, nous allons nous intéresser au

comportement en temps long de pPtqtě0 :“ pLpmtqqtě0. La difficulté et l’originalité de cette question

résident alors dans le fait que ce flot de mesures évolue dans PpPpRdqq.

Ñ Résumé du chapitre 2.

Le chapitre 2 corresponf au papier [Mai23]. Dans ce chapitre on considère le cas où le terme de transport

b s’écrit de la manière suivante:

bpx, µq “ ´∇V pxq ´ ∇W ˚ µpxq,

2
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pour deux fonctions différentiables V etW et où ˚ désigne l’opérateur de convolution. L’équation (1)

se réécrit alors

dmt “
σ2 ` σ20

2
∆mtdt` ∇ ¨ pmtp∇V ` ∇W ˚mtqqdt´ σ0∇mt ¨ dB0

t . (2)

Dans le cas σ0 “ 0, le processus pmtqt est simplement un flot de mesures déterministe et son com-

portement en temps long a été très étudié, aussi bien avec des approches EDP [CMV03, CMV06] que

des approches probabilistes [Mal01, CGM08]. En particulier, il est bien connu (voir par exemple [Mal01])

que lorsque le potentiel V est strictement convexe etW est convexe, avec σ0 “ 0, l’équation (1) admet

une unique solution stationnaire. L’idée sous jacente est que pmtqtě0 peut-alors être vu comme le flot

associé à la loi de X solution de

dXt “ ´∇V pXtqdt´ ∇W ˚ LpXtqdt` σdβt, (3)

pour un mouvement brownien d-dimensionnel β. Lorsque le potentiel V est uniformément convexe,

le processus X est fortement attiré vers l’unique minimiseur de V assurant ainsi un comportement

asymptotique unique. La première question traitée dans ce chapitre est alors de montrer que de tels

résultats d’unicités sont préservés lorsqu’on ajoute du bruit commun dans le système. Plus précisément

on montre dans [Mai23] que sous des hypothèses de convexité fortes, le flot de mesure pPtqt converge

toujours vers la même limite (en un certain sens), cette limite notée
sP est alors l’unique mesure invari-

ante associée au processus pmtqtě0 avec dynamique (1). Plus précisément, on obtient

d
PpRdq

2 pPt, P̄ q ď e´ctd
PpRdq

2 pP0, P̄ q,

pour toute condition initiale P0 P P2pP2pRdqq et où d
PpRdq

2 est la distance deWasserstein-2 sur P2pRdq.

Ces résultats, assez naturels, sont les premiers concernant le comporement en temps long de l’équation

(1) pour laquelle la source de bruit est fini-dimensionnelle. D’autres résultats, récents, existent dans le

cas où le bruit commun est un mouvement Brownien cylindrique [ABKO23, ACKO24], et donc de di-

mension infinie.

La suite du chapitre traite d’un cas particulier : l’absence de bruit idiosyncratique, σ “ 0. Dans ce

cas, l’équation d’intérêt se réécrit

dmt “
σ20
2
∆mtdt` ∇ ¨ pmtp∇V ` ∇W ˚mtqqdt´ σ0∇mt ¨ dB0

t .

Nous portons notre attention sur ce cas car il est alors clair que quand σ0 “ 0, le flot de mesures

(déterministe) est solution de l’équation suivante

Btmt “ ∇ ¨ pmtp∇V ` ∇W ˚mtqq. (4)

3
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Lorsque V n’est pas supposé convexe, pensons par

exemple à un double puit, il est facile de voir que

l’équation (4) admet plusieurs solutions station-

naires. Par exemple, pour V : x ÞÑ |x|4{4 ´ |x|2{2,

on voit bien que δ´1 et δ1 sont des solutions station-

naires.

Se pose alors naturellement la question suivante :

L’ajout de bruit commun peut-il permettre de récupérer l’unicité de la mesure invariante ? Si
oui, dans quel(s) modèle(s) ?

La réponse à cette question peut sembler évidente au premier abord. En effet, il existe de nombreux

exemples pour lesquels l’ajout de bruit restaure l’unicité du comportement asymptotique de particules

en interaction. Cependant, la difficulté ici réside dans le fait que le bruit commun possède une structure

particulière et vient modifier subtilement la dynamique : le bruit commun est un mouvement brownien

dans Rd
agissant sur la dynamique d’un processus à valeurs dans PpRdq. Cette asymétrie entre la

dimension du processus d’intérêt et de la source de bruit est à l’origine de notre question.

Dans la suite du chapitre 2, nous démontrons l’existence et l’unicité de la mesure invariante lorsque

σ0 ą 0, de plus on donne explicitement cette unique mesure invariante:

sP “

ż

Rd

δδam
˚pdaq, (5)

où m˚
est la solution stationnaire de l’équation de Fokker-Planck linéaire avec terme de transport

´∇V et coefficient de diffusion σ0. On montre également que la vitesse de convergence vers le régime

stationnaire est exponentielle en temps pour la distance d
PpRdq

1 p¨, ¨q.

Ñ Résumé du chapitre 3.

Le chapitre 3 est issue d’une collaboration avec François Delarue et Etienne Tanré. L’idée provient

d’une volonté de mieux comprendre le phénomène sous-jacent qui a mené au résultat de récupération

d’unicité du chapitre 2. On considèrera néanmoins un cas un peu plus général. Plus précisément, nous

nous intéressons au comportement en temps long du flot de mesure généré par l’équation

dmt “
σ20 ` σ2

2
∆mtdt´ ∇ ¨ pmtpG` F p¨ ´ µ1pmtqqqqdt´ σ0∇mt ¨ dB0

t , (6)

avec

µ1pmq “

ż

Rd

xmpdxq P Rd,

pour toutm P P1pRdq. Ce modèle est une généralisation de celui du chapitre précédent à de nombreux

égards. La modification la plus importante est la prise en compte de modèles pour lesquels σ ą 0. Ce

cas est d’un intérêt primordial au regard des travaux [Daw83, HT10] qui exhibent des cas pour lesquels,

même avec σ ą 0, il existe plusieurs solutions invariantes pour pmtq solution de (6) avec σ0 “ 0. On

4
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se pose alors exactement la même question que dans le chapitre précédent, l’ajout de bruit commun

peut-il permettre de récupérer l’unicité du comportement asymptotique ? Ce cas présente une difficulté

supplémentaire par rapport au cas du chapitre 2. En effet, la présence de bruit idiosyncratique (σ ą 0)

nous empêche complètement d’identifier la mesure invariante de la même manière que dans (5).

Dans ce chapitre nous montrons que dans des régimes où σ est supposé assez petit, la dynamique

du processus pmtqtě0 est fortement dirigée par la dynamique de sa moyenne pµ1pmtqqtě0. Le point

positif découlant de cette observation est que le processus pµ1pmtqqtě0 évolue dans un espace de di-

mension finie. On montrera alors que l’ajout de bruit commun permet de récupérer de l’ergodicité pour

pµ1pmtqqtě0, ergodicité se propageant alors à tout le flot de mesures pmtqtě0.

Une restriction importante néanmoins est que le modèle considéré dans ce chapitre est assez parti-

culier car la non linéarité n’intervient qu’à travers la moyenne. Même s’il est clair que l’ajout de bruit

commun ne peut pas permettre de restaurer l’unicité de la mesure invariante dans tous les modèles, il

serait intéressant d’étudier des modèles plus généraux où la dynamique dépend de plusieurs moments.

Par exemple, on pourrait envisager d’ajouter un bruit commun de dimension finie dans des dynamiques

du type [Sch85a, Sch85b, Sch93], présentant des propriétés de périodicité.

Partie 2: Analyse statistique pour des modèles diffusifs ergodiques

Ñ Résumé du chapitre 4

Le dernier travail de cette thèse s’inscrit dans une volonté de bien appréhender le comportement en

temps long des processus de diffusions. Il est tiré d’un article co-écrit avec Grégoire Szymanski. Dans

ce papier on considère le processus de Markov suivant

dXt “ ´∇V pXtqdt` σdBt. (7)

Sous des conditions de croissance pour le potentiel V , et dès lors que σ ą 0, il est bien connu que le

processusX est ergodique et admet une unique mesure invariante, absolument continue par rapport à

la mesure de Lebesgue de densité

sµpxq9 exp

ˆ

´
2

σ2
V pxq

˙

.

Les questions de l’estimation du potentiel V et de la mesure invariante ont été le sujet de nombreuses

recherches en statistique des processus ces dernières années [AG21, AG22, AG23, Str18, DR06, DR07].

Le chapitre 4 s’appuie pleinement sur ces nombreuses références en essayant d’étendre encore le cadre

statistique. A l’image des papiers [Sch11, Sch12], le but de ce chapitre est de mettre en place des méth-

odes statistiques permettant de prendre en compte la présence d’un éventuel bruit dans les observa-

tions. Il est naturel que les données observées soient bruitées, c’est un phénomène courant dans de

nombreuses applications pratiques telles que la finance, la biologie ou encore l’analyse de données de

capteurs. Ce bruit peut provenir d’erreurs de mesure ou de perturbations extérieures, et peut avoir un

impact significatif sur les résultats obtenus. Il est donc important de prendre en compte le bruit dans

l’analyse et la modélisation de ces systèmes diffusifs. On répondra à la question suivante:

5
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Comment la présence de bruit dans les données observées affecte-t-elle la vitesse d’estimation
de la mesure invariante ?

Pour répondre à cette question nous considérerons le schéma d’observation suivant:

• observations discrètes à des temps fixés k∆n pour k P t0, . . . , nu;

• observations haute fréquence : ∆n Ñ 0, et en temps long : n∆n Ñ `8;

• observations bruitées.

En définitive, notre but est d’estimer la mesure invariant du processus X solution de l’équation (7) à

partir de l’observation des pYiq
n
i“1 avec

Yi “ Xi∆n ` τnξi, i P t1, . . . , nu.

Nous sommes donc confrontés à un problème de déconvolution, bien connu et traité dans la littérature.

Les modèles de déconvolution sont réputés pour être difficiles à résoudre en pratique et les taux de

convergence sont souvent lents (logarithmiques) [CL13]. L’intérêt de ce travail est de montrer que

dans ce cas, la structure markovienne du problème permet une meilleure extraction de l’information

et donc d’obtenir des vitesses de convergence polynomiales, et ce même lorsque l’intensité du bruit est

grande.

Pour obtenir ces vitesses, la stratégie adoptée dans ce chapitre est de procéder à un pré-traitement

des données visant à réduire l’impact du bruit dans les observations, plus précisément, l’idée est de

moyenner les observations par paquets de taille p, afin d’obtenir les observations suivantes:

˜

1

p

p´1
ÿ

i“0

Ykp`i

¸tn{pu´1

k“0

. (8)

À partir de ces données modifiées, nous mettons en place une procédure d’estimation par noyau clas-

sique combinée à une méthode de réduction du biais. Plus précisément, en considérant un noyau K ,

on définit pour toute fenêtre h “ ph1, . . . , hdq P p0,`8qd, for any x P Rd
,

νn,h,ppxq “
1

tn{pu

tn{pu´1
ÿ

k“0

Kh

˜

x´
1

p

p´1
ÿ

i“0

Ykp`i

¸

,

avec la structure suivante : @y P Rd
and h P p0,`8qd,

Khpyq “

d
ź

i“1

h´1
i Kph´1

i yiq.

La mise en place d’un tel estimateur génère un terme non usuel dans l’étude du biais. Pour se défaire

de ce terme supplémentaire, on met en place une procédure de débiaisage qui sera détaillée dans le

chapitre 4. Finalement, on obtient l’estimateur suivant

pµn,h,ppxq :“
ÿ

γ

uγνn,h,ppxq,

6
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pour une suite puγqγ construite dans le but de diminuer l’influence du bruit et du pré-averaging des

données. On étudie ensuite la qualité d’estimation en démontrant des bornes supérieures pour le risque

quadratique ponctuel. Les résultats obtenus sont cohérents avec les résultats minimax dans le cas où

l’intensité du bruit est supposée faible. Dans les cas où l’intensité du bruit est trop importante, on voit

apparaitre de nouvelles vitesses d’estimation, polynomiales en l’intensité du bruit.
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Chapter 1
Introduction

This introductory chapter begins by outlining the primary objectives and key focus areas

of this thesis. It provides context and background information to set the stage for the

subsequent discussions. Following this, the chapter presents a summary of the main results

achieved throughout the manuscript.
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Chapter 1. Introduction

The structure of this thesis is mainly divided into two parts. The first part is dedicated to the analysis

of the behaviour of solutions to some Stochastic Partial Differential Equations. The second part shifts

its focus towards statistical methods, specifically dealing with estimation in diffusion models in the

presence of noise.

• The focus of the first part is the long-time behaviour of the solutions to the non-linear stochastic

Fokker-Planck equation. This equation can be thought of within an ecosystem consisting of a

stochastic partial differential equation, a partial differential equation that is equivalent to it in

some way, and a system of stochastic differential equations composed ofN interacting diffusion

processes with common noise that serve as a mean-field approximation in a large population

limit.

• The second part deals with statistical estimation for multidimensional ergodic diffusion pro-

cesses. More precisely, it consists of a new methodology based on Kernel density estimation

to be able to approximate in a non-parametric way the invariant measure of an ergodic Markov

process from noisy observations over time.

We begin this introduction chapter with reminders on the space of measures, which is a central

space in the whole manuscript.

1 The space of probability measures

1.1 Wasserstein metrics

Throughout the manuscript, for any separable metric space pE, dq, we use PpEq to denote the space

of Borel probability measures on E. There are multiple methods to define a metric on the space

PpEq, such as the Lévy-Prokhorov metric, the bounded-Lipschitz metric, or the Wasserstein metric,

see [Zol76, Bog07, Dud02] for references on the subject. In this manuscript, we will focus solely on the

latter. The definition of the Wasserstein metric is based on the idea of coupling. For µ, ν P PpEq, let

Πpµ, νq stands for the transport plan between µ and ν. Precisely, Πpµ, νq is the set of Borel probability

measures on E ˆ E with first marginal µ and second marginal ν.

For p ě 1, define PppEq to be the set of probability measures µ P PpEq satisfying

ż

E
d px, x0q

p µpdxq ă 8,

for some point x0 P E, the choice of which does not influence the definition of the space. The p-

Wasserstein metric on PppEq is defined by

dEp pµ, νq :“

ˆ

inf
πPΠpµ,νq

ż

EˆE
dpx, yqpπpdx,dyq

˙1{p

.

Given a non-atomic probability space pΩ,F,Pq, an equivalent definition reads

dEp pµ, νq “ inf E rdpX,Y qps
1{p ,

10



1. The space of probability measures

where the infimum runs over the set of random variables pX,Y q on pΩ,F,Pq, such that LpXq “ µ

and LpY q “ ν. It is well known, see for example [Vil09, AGS08], that dEp is a distance on PppEq which

is compatible with weak convergence so that we can view PppEq itself as a metric space. Moreover,

as soon as pE, dq is a complete and separable space, so is pPppEq,dEp q. Finally, we say that dEp is

compatible with weak convergence in the sense that for a given a sequence pmnq P PppEqN,

lim
nÑ`8

dEp pmn,mq “ 0 ðñ

#

mn weakly converges tom,

pmnq has uniformly integrable p-moments.

Also, for any probability measurem P PpEq and any measurable φ : E Ñ R (so that the following
quantity makes sense), we define the duality product x¨ ; ¨yE as

xm;φyE “

ż

E
φpxqmpdxq.

1.2 Differential calculus on P2pRdq.

In this manuscript, we often work with a stochastic flow of probability measures. To study the be-

haviour of this stochastic process, we want to derive some properties from its law. To do so, we will

repeatedly use the notion of derivative in the space of measures, mainly in the space of probability

measures that admit a second moment of order 2. See however [LSZ23, Lac18] for a careful definition

on the whole space of probability measures PpRdq. Let us begin with two notions of differentiability in

the space of measures.

Definition 1.1. We say that Φ : P2pRdq Ñ R admits a L-derivative, whenever there exists a unique
jointly continuous function δmΦ : pm,xq P P2pRdq ˆ Rd Ñ δmΦpm,xq P Rd, at most of quadratic
growth in x for anym, such that

lim
hÑ0

Φpm` hpm1 ´mqq ´ Φpmq

h
“

ż

Rd

δmΦpm, vqpm1 ´mqpdvq,

for allm,m1 P PpRdq and

ż

Rd

δmΦpm, vqmpdvq “ 0, m P P2pRdq.

This definition is also called linear functional derivative, see for example [JT21] for a nice introduc-

tion. One can also think of it as a derivative in the direction of δx more precisely, for anym P P2pRdq,

δmΦpm,xq “ lim
ρÑ0`

Φpp1 ´ ρqm` ρδxq ´ Φpmq

ρ
,

and for anym, rm P P2pRdq,

Φpmq “ Φprmq `

ż 1

0

ż

Rd

δmΦpp1 ´ tqm` trm, yqpm´ rmqpdyq. (1.1)

A way to consider this derivative is that it is the natural notion of derivative whenever the space

11



Chapter 1. Introduction

of probability measures is equipped with the geometry of the straight paths, i.e the paths of the form

pp1 ´ tqm` p1 ´ tqrmqtPr0,1s.

Let us now introduce another notion of differentiability called the intrinsic differentiability:

Definition 1.2. We say thatΦ : P2pRdq Ñ Rd is C1pP2pRdqq in the intrinsic sense whenever it admits an
L-derivative and for any m P P2pRdq, the mapping x ÞÑ δmΦpm,xq is differentiable, with the gradient
being denoted DmΦpm,xq :“ ∇δmΦpxq; the mapping pm,xq ÞÑ DmΦpm,xq is jointly continuous in
pm,xq and at most of linear growth in x uniformly inm in bounded subsets of P2pRdq.

The natural way to understand this definition and to compare it with the one of Definition 1.1 is

via displacement of measure. More precisely, the following proposition stands

Proposition 1.3. Let φ : Rd Ñ R be Borel measurable and bounded assume that Φ admits an intrinsic
derivative. Then

lim
hÑ0`

Φppid` hφq7mq ´ Upmq

h
“

ż

Rd

DmΦpm,xq ¨ φpxqmpdxq @m P P2pRdq,

where for any Borel set A of Rd,
ϕ7mpAq “ mpϕ´1pAqq.

The previous proposition enables us to interpret the notion of intrinsic derivative as being associ-

ated with a particular geometry on the space of measures, similar to what we did for the L-derivative.

However, in this case, we are not limited to the straight paths into the space of measures, but rather

we can move along all paths of the form ppId ` tϕqmqtPr0,1s for some Borelian and bounded function

φ. This is just another point of view that appears as naturally as the one of Definition 1.1.

Another way to understand the intrinsic derivative is through the lifting of the map to a space

of random variables: let us fix a generic probability space pΩ,F,Pq and define L2pΩq as the set of

random variables with a finite moment of order 2. Given a map Φ : P2pRdq Ñ R, we define its lifting
rΦ : L2pΩq Ñ R by

rΦpXq :“ ΦpLpXqq @X P L2pΩq.

Then we have the following proposition,

Proposition 1.4 ([CD18a, GT19]). Assume that Φ P C1pP2pRdqq (in the intrinsic sense). Then rΦ is
Fréchet differentiable with a continuous Fréchet derivative in L2pΩq with

∇rΦpXq “ DmΦpLpXq, Xq @X P L2pΩq.

In this manuscript, we will always use this notion, and will no longer be precise on the underlying

sense of differentiability. We finally give the following definition which will be referred to in the whole

chapter:

Definition 1.5. We say that Φ P C2
b pPpRdqq if Φ : PpRdq Ñ R and such that:

12



2. Non-linear stochastic Fokker-Planck equation

• The function Φ belongs to C1pPpRdqq;

• For every fixed x P Rd, each component of the Rd-valued function m ÞÑ DmΦ pm,xq satisfies the
properties described in definition 1.1, resulting in some D2

mΦ pm,x, yq P Rdˆd. The function D2
mΦ

is bounded and continuous.

• For m P PpRdq, we write DxDmΦpm,xq for the Jacobian of the function x ÞÑ DmΦpm,xq and
assume it to be continuous and bounded in pm,xq.

Remark 1.6. One may develop a similar theory of differentiation for functions on PppRdq, for any p ě 1,
as long as one is careful to require that the derivative δmΦ, satisfies some growth conditions to ensure that
the integral on the right-hand side of Equation (1.1) is well-defined.

The reader unfamiliar with this notion can refer to the following illuminating references for a de-

tailed treatment of the subject [Car10], [CD18a, Chap. 5].

Example 1.7. In the sequel, we will frequently use the notion of derivative for functions with the following
structure:

Φ : m ÞÑ

ż

Rd

ϕpxqmpdxq, (1.2)

for some differentiable function ϕ : Rd Ñ R that smooth and bounded (or has controlled asymptotic
growth, depending on the integrability assumptions ofm so that this object makes sense). In this case, for
all x P Rd,

DmΦpm,xq “ ∇xφpxq.

2 Non-linear stochastic Fokker-Planck equation

In the first part of the manuscript, we are interested in the solutions of the non-linear stochastic Fokker-

Planck Equation

dtmt “ ∇ ¨

ˆ

σ2 ` σ20
2

∇mt ´mtbp¨,mtq

˙

dt´ σ0∇mt ¨ dB0
t , on r0,`8q ˆ Rd, (1.3)

where B0 “ pB0
t qtě0 is a d-dimensional Brownian motion, called common noise. Above, the unknown

pmtqtě0 is regarded as a stochastic process with values in the space of probability measures PpRdq on

Rd
. Accordingly, the coefficient b is a function from Rd ˆ PpRdq to Rd

depending on both space and

measure arguments. The two parameters σ and σ0 are non-negative scalars: the former is the intensity

of the so-called idiosyncratic noise and the latter is the intensity of the common noise. In the whole

manuscript, Equation (1.3) is understood in the weak sense, i.e., the process pmtqtě0 satisfies for all

t ě 0 and φ P C8
c pRdq, the space of infinitely differentiable functions with compact support,

dxmt, φy “ xmt,Lmtφy dt` σ0xmt, p∇φqJy dB0
t ,
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Chapter 1. Introduction

where for any probability measure m P PpRdq, the operator Lm acts on a smooth function φ with

compact support in the following manner:

Lmφ “ ´bp¨,mq ¨ ∇φ`
σ20 ` σ2

2
∆φ.

To study the time evolution of this stochastic flow of measures, it is natural to study the flow of

measures on the space of probability measure pPtqtě0 “ pLpmtqqtě0. Using Itô formula for stochastic

flow of measures, [CD18a, Chap. 5] and [CD18b, Chap. 4] , we obtain the following result

Proposition 1.8. For any function Φ P C2
bpP2pRdqq, for any t ě 0,

xPt ´ P0; Φy “

ż t

0
xPs,MΦyds, (1.4)

where for anym P P2pRdq,

MΦpmq :“

ż

Rd

„

DmΦpm,xq ¨ pGpxq ` F px´ µ1pmqq `
σ2 ` σ20

2
D2

xmΦpm,xq

ȷ

mpdxq

`
σ20
2

ż

R2d

Tr
“

D2
mmΦ pm,x, yq

‰

mpdxqmpdyq.

(1.5)

Proposition 1.8 gives a way to understand the flow of measures generated by the stochastic process

pmtqtě0. However, the equation for pPtqtě0 is posed on PpPpRdqq and then difficult to study because

we lack some classical analysis tools. However, as previously mentioned, Equation (3.7) (and conse-

quently Equation (1.3)) are part of a complete ecosystem of equations. This means that we can leverage

probabilistic techniques to study the behaviour of the flows of measures pmtqtě0 and pPtqtě0. The next

section is a step in this direction.

2.1 Between macroscopic and microscopic scales: interacting particle systems, the
origin of the model

The solution to Equation (1.3) can be approximated in the mean-field limit by an interacting particle

system as the number N of particles goes to infinity. It is important to clarify upfront that, in this

manuscript, the term "particle" is used in a broad sense to mean an individual. Interacting individual

systems of considerable scale is of paramount importance in a multitude of scientific fields, with the

individuals ranging from biology (collective dynamics of animals), physics (elementary particles, ions,

atoms, molecules, celestial bodies, galaxies), social science (crowd movements, interactions of financial

agents, propagation of ideas) or financial markets (systemic risks). Let us do a quick historical recap on

the introduction of interacting particle systems and mean field limits.

Let us consider a state space E, and a system of particles ZN “ pZ1,N , . . . ,ZN,N q where each

particle is completly described by its state variable. The state variable can be anything, typically the

position or speed of a particle, or the value of an asset ...). The concept of describing such systems

can be traced back to the early works of Statistical Physics and Kinetic Theory of dilute gases [Bol70].

As in the Boltzmann example, when modelling particles in a gas the number of particles in ZN “

pZ1,N , . . . ,ZN,N q must be very large. It is known that there are approximately NA « 6.02 ¨ 1023
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2. Non-linear stochastic Fokker-Planck equation

particles per mole [DHB
`
74]. Considering systems with such many particles imposes the following

question:

Question 1.9. Is there a limit, in some sense, when N Ñ `8?

Answering Question 1.9 is central in several domains [LL63, Spo80, GKM
`
96, LL06a, LL06b, HJ15].

However, the answer really is a matter of scale. In order to describe such a system, three scales are

possible (generating three differents types of limit): (1) The microscopic scale. One possibility is

to stay at the particle level, this is for example interesting when working with interacting particles

systems on a graph or network. We follow the trajectory of each particle Zi,N
over time. (2) The

macroscopic scale. We only have access to measurable quantities of the system, for example, the

mean of the particles at each time. (3) The mesoscopic scale. In between the two previous scales is

the mesoscopic or statistical scale. This corresponds to the scale where we are only interested in a

statistical description of the system studying the density of particles in a region of the space.

The last point of view will be the only one studied in this manuscript. The concept of describ-

ing such systems in this manner is due to the so-called hypothesis of molecular chaos, presented by

Boltzmann in [Bol70], giving birth to the equation bearing his name. This hypothesis posits that the

particles in the system are uncorrelated. The molecular chaos introduced by Boltzmann mainly state

that there exists a probability measure µ sur that for any i ‰ j, LpZi,N ,Zj,N q “ µ b µ. The rigorous

formulation and proof of these is still an important subject of research in many cases. The ideas of

Boltzmann quickly have been adopted for practical models: Currie-Weiss model for ferromagnetism

[Wei07], Stellar-dynamic systems [Jea15, Jea19], Vlasov models [Vla45]. The underlying idea is that in

the system, all the particles have the same role:

Definition 1.10. We say that a system ZN “ pZ1,N , . . . , ZN,N q is exchangeable (or that theN particles
are indistinguishable), if for any permutation τ : t1, . . . , Nu Ñ t1, . . . , Nu,

LpZ1,N , . . . , ZN,N q “ LpZτp1q,N , . . . , ZτpNq,N q.

In 1956, Kac published his seminal paper [Kac56] in which he derives the space homogeneous Boltz-

mann equation as the limit as the number of particlesN goes to infinity of a system ofN indistinguish-

able particles. The underlying idea is that when the number of particlesN goes to infinity, two particles

become statistically independent. This is the birth of Propagation of chaos:

Definition 1.11 (Kac’s chaos, Propagation of chaos). For a sequence

ZN “
`

ZN
1 , . . . ,Z

N
N

˘

ofN -indistinguishable (in the sense of Definition 1.10) particle systems withN Ñ 8, the stochastic chaos
according to Kac means that there exists a probability measure µ such that

L
`

ZN
i ,Z

N
j

˘

Ñ µb µ as N Ñ 8, @i ‰ j fixed.

Finally, McKean developed a stochastic version of the Vlasov equation, creating the McKean-Vlasov

model, and proved propagation of chaos properties [McK66] linked to the latter. This is the origin of
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the model of this manuscript.

Remark 1.12. It is important to note that the definition of chaos propagation relies on a crucial assump-
tion: indistinguishability. This assumption is essential because chaos propagation fundamentally implies
that finally, we end up with a system composed of various versions of a typical particle.

2.1.1 Introduction of the interacting particle system with common noise

Let us now introduce carefully the underlying interacting particle system of this manuscript. We con-

sider another complete probability spaces pΩ1,F1,P1q endowed with a right-continuous and complete

filtration F1 “
`

F1
t

˘

tě0
. We shall also assume that

`

Ω0,F0,P0
˘

is rich enough to support a Brown-

ian motion B0
playing the role of the common noise. Similarly,

`

Ω1,F1,P1
˘

is assumed to support

a sequence of independent Brownian motions

`

Bi
˘

iě1
. By convention, in the whole manuscript, the

index 0 always refers to the common noise and the index 1 to the idiosyncratic ones. We then define

the product structure

Ω “ Ω0 ˆ Ω1, F, F “ pFtqtě0 , P,

where pF,Pq is the completion of

`

F0 b F1,P0 b P1
˘

and F is the complete and right continuous

augmentation of

`

F0
t b F1

t

˘

tě0
. Generic elements of Ω are denoted ω “

`

ω0, ω1
˘

with ω0 P Ω0
and

ω1 P Ω1
. Given such a setup, let us introduce the following definition:

Definition 1.13. Let us consider a random variableX defined on the filtered probability space pΩ,F,F,Pq,
and P P PpPpRdqq. According to Lemma 2.4 in [CD18b], for P0 ´ a.e. ω0 P Ω0, Xpω0, ¨q is a random
variable on pΩ1,F1,P1q. Then, L1pXq : Ω0 Q ω0 ÞÑ LpXpω0, ¨qq, we get a random variable from
pΩ0,F0,P0q into PpRdq, providing a conditional law of X given F0. Finally, we say that LpXq “ P

whenever L1pXq is distributed with respect to P .

The previous definition is a slight abuse of notation that allows us to consider random initial con-
ditions. In the whole manuscript we denote by E0, E1 and E the expectations on pΩ0,F

0,F0,P0q,

pΩ1,F
1,F1,P1q and pΩ,F,F,Pq respectively. Analogously, for any random variable X defined on

pΩ,F,F,Pq, we denote by L0pXq and L1pXq the conditional laws of the random variableX given F1

and F0
respectively. Of course, LpXq stands for the law of X on the whole product space.

We now consider the interacting particle systemXN “ pX1, ¨ ¨ ¨ , XN q on the space pΩ,F,Pq, with

dynamic
#

dXi
t “ b

`

Xi
t ,m

N
t

˘

dt` σdBi
t ` σ0dB

0
t ,

LpXN
0 q “ PbN

0 ,
(1.6)

for some initial condition P0 P PpPpRdqq, and where

mN
t :“ mN pXN

t q : CN
d Q ω “ pω1, . . . , ωN q ÞÑ N´1

N
ÿ

i“1

δωi
t

is the empirical measure of the particles. In the following of this section, let us consider the following

set of assumptions.
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2. Non-linear stochastic Fokker-Planck equation

Assumptions - Conditional propagation of chaos (CPoC)

1. The initial conditions pXi
0qi are i.i.d and Er|Xi

0|2s ă `8;

2. The map b : Rd ˆ P2pRdq Ñ Rd
is globally Lipschitz continuous, in the sense that there

exists L ą 0 such that

|bpx, µq ´ bpy, νq| ď L
´

|x´ y| ` dR
d

2 pµ, νq

¯

,

for all x, y P Rd
, and pµ, νq P P2pRdq.

Lemma 1.14 (Thm. 2.12 [CD18b]). Under the set of Assumptions (CPoC), the interacting particle system
(1.6) admits a unique solution for any N ě 1.

The unfamiliar reader may wonder at this point: why do we consider the mesoscopic scale? One

could, in fact, consider themicroscopic point of view and proceed as in Equation (1.12) to prove that the

law of XN
, denoted pmN,N

t qt, is the solution of

#

Btm
N,N
t “

σ2`σ2
0

2 ∆mN,N
t ´ ∇ ¨

`

bNmN,N
˘

,

mN,N
0 “ mbN

0 ,

where bN : RNd Q x “ px1, . . . , xN q ÞÑ
`

bpxi,mN px1, . . . , xN qq
˘N

i“1
P RN

. The flow of measures

mN,N
is the solution of a linear equation, but in high dimension. Such an equation (called the Liouville

equation [Dar70, Ves42]) becomes increasingly difficult to manage as the numberN grows. Given that

this number is likely to be very large, such a description of the system proves challenging to use, thus

justifying that the microscopic scale is not the most suitable for studying these types of interacting

systems. One main objective here is to consider an object that "remains of order one" in N .

Models similar to (1.6) are very well known and studied in the case without common noise, see for

example [Lac18] for a very nice course on the subject. Before going into more detail on the question

of asymptotic behaviour of (1.6) inN , let us present a few examples that motivate the technical efforts

made here to integrate common noise into the model.

2.1.2 On the importance of common noise

The system (1.6) has been extensively studied in the literature [Mél96, Szn91, CD18a, CD18b, CGM08,

Mal01, JT21, CDL16]. In this section, we give some examples of systems that are similar to (1.6) in

which the necessity of modelling interacting particle system is clear.

• Inter-bank transactions

We consider a simple model of inter-bank borrowing and lending where the evolution of the

log-monetary reserves of N banks is described by a system of diffusion processes. The model is:

#

dXi
t “ α

N

řN
j“1pXj

t ´Xi
tqdt` σdW i

t ` σ0dW
0
t ,

LpX1
0 , . . . , X

N
0 q “ δ bN

0 .
(1.7)
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This model, proposed in [CFS15], highlights the importance of common noise in such systems.

Here, each particle Xi
represents the log-monetary reserve of bank i. We study the probability

of default for the system, introducing a default levelD ă 0where bank i defaults by time T if its

log-monetary reserve hitsD before T . The figures below show simulations of the log-monetary

level forN “ 100 banks, with one system including common noise and the other not. The dotted

line indicates the default level.

Figure 1.1: Without common noise, σ0 “ 0,
N “ 100.

Figure 1.2: With common noise, σ0 ą 0,
N “ 100.

We can observe (see [CFS15] for a formal proof) that adding correlation between the Brownian

makes the whole system more sensitive and allows for a non-vanishing probability of default.

• Mean-Field Game

Mean field game (MFG) theory is a mathematical framework for analyzing complex systems of

many interacting agents. Initially proposed by Lasry and Lions [LL06a, LL06b, LL07] and by

Huang, Malhamé, and Caines [HCM07, HMC06], MFG theory examines the actions of a repre-

sentative agent assuming all other agents behave similarly, see [Car10] for a nice course on the

subject. This leads to a set of partial differential equations describing the system’s temporal devel-

opment. Since its development, MFG theory has grown rapidly, with applications in economics,

finance, engineering, and social sciences, including traffic flow, energy management, and crowd

dynamics. Many MFG models now include common noise, particularly in economic models with

aggregate shocks [BB92]. For a specific example, see [Tch18a].

• Climat risk integration

The impact of climate change on financial markets is a growing concern for insurers, financial

institutions, and investors. They recognize the need to assess and manage this risk to ensure fi-

nancial stability and sustainable practices. According to [Fra24], insurers could integrate climate

risk into financial sector models by introducing a common noise, called carbon risk, affecting sec-

tors like chemicals, electricity, gas, and real estate. The Black & Scholes model describes sector

dynamics as:

dSi
t “ σitS

i
tdB

i
t ` σ0S

i
tdZt, (1.8)
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2. Non-linear stochastic Fokker-Planck equation

where Z is the carbon risk martingale, and Bi
are Brownian motions. Recently [Yag20] report

that climate-related natural disasters and economic losses almost doubled from 1980-1999 to 2000-

2019. These risks affect company valuations and share prices, and stringent policies under the

Paris Agreements are expected to achieve carbon neutrality by 2050. This necessitates incorpo-

rating common noise into models of large systems.

2.1.3 Conditional propagation of chaos

As mentioned in the beginning of Section 2.1, it is important to understand the asymptotic behaviour

(in N ) of the particle system (1.6). Let us first note that for our system, the following Lemma stands

Lemma 1.15. Let assumptions (CPoC) be in force. Then, the interacting particle system (1.6) is exchange-
able in the sense of Definition 1.10.

The previous lemma is the reason why we are going to study the system at a mesoscopic scale. To

that extent, let us study the behaviour of the empirical measure pmN
t qt of the system. Indeed, thanks

to Lemma 1.15, we know that pmN
t qt contains all the necessary information to establish the asymptotic

behaviour of the system when the number of particles tends to infinity, see [Szn91] for more details.

As we are in the framework of an exchangeable model, we can use De Finetti’s results (see e.g

[Kin78]):

Theorem 1.16 (Conditionnal law of large numbers). For any exchangeable sequence of random variables
pXiqiě1 define on pΩ,F,Pq with a finite moment of order one, we have,

lim
NÑ8

1

N

N
ÿ

i“1

Xi “ E rX1 | F8s ,

where
F8 :“

č

ně1

σ tXk, k ě nu ,

and the convergence holds in the almost sure sense.

Intuitively, this form of law of large numbers says that, when exchangeability holds, the empirical

measure of the random variables pXiqiě1 behaves asymptotically as if they were conditionally inde-

pendent and identically distributed given the tail σ-algebra F8. In our setting, individuals are always

linked through the common noise so there is no way to expect full independence in the limit. However,

in the light of the previous paragraphs we expect conditional independence, given the common noise.

That is why we need a conditional version of Kac’s chaos. We can revisit the Definition 1.10

Definition 1.17 (Conditional Kac’s chaos, Conditional Propagation of chaos). For a sequence

ZN “ pZN
1 , . . . ,Z

N
N q

of N -indistinguishable particle systems with N Ñ 8, the conditional stochastic chaos with respect to a
σ-algebra G,means that there exists a random probability measure µ, adapted to G, such that

L
`

pZN
i ,Z

N
j q|G

˘

Ñ µb µ as N Ñ 8, @i ‰ j fixed,
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where the previous limit holds in the almost sure sense.

Due to the particular form of the interaction and the presence of common noise, models as (1.6)

exhibit conditional propagation of chaos properties under some reasonable set of conditions. These

ideas are the cornerstone of the MFG theory. Mainly, the more general result on the subject is stated

as follows:

Theorem 1.18 ([CD18b] Theorem 2.12). Within the above framework and under the set of Assumptions
(CPoC), the system of particles (1.6) has a unique solution for every N ě 1. Moreover for any T ą 0,

max
1ďiďN

E
„

sup
0ďtďT

ˇ

ˇXi
t ´ sXi

t

ˇ

ˇ

2
ȷ

` sup
0ďtďT

E

«

dR
d

2

˜

1

N

N
ÿ

i“1

δXNi
t
,L1p sX1

t q

¸ff

Ñ 0, (1.9)

where p sX1, . . . , sXN q is called the mean-field limit system of (1.6) and is given by

#

d sXi
t “ b

`

Xi
t ,L1p sXi

tq
˘

dt` σdBi
t ` σ0dB

0
t ,

LpXN
0 q “ PbN

0 .
(1.10)

Historically, one of the first tools used to prove propagation of chaos (in the case without common

noise) is probabilistic as used by McKean in [McK66], and then popularised by Sznitman [Szn91], it is

a coupling method. In the cases with common noise, the proofs can be done in the same manner using

tools of DeFinetti’s theory as Theorem 1.16, see [CDL16, CD18b].

Of course, the rate of convergence to 0 in Theorem 1.18 has been the subject of many studies. This

is not a central question in our framework and we refer the interested reader to [CD22a, CD22b]. A

question of huge interest however in our context is the following

Question 1.19. How does (conditional) propagation of chaos behave in time? Can we prove uniform in
time (conditional) propagation of chaos for the system (1.6)?

Uniform in-time (Conditional) Propagation of Chaos is shown easily with coupling methods when-

ever strict space monotony assumptions are in force for the drift b (along with (CPoC)), see for example

[Mal01] in the case without common noise or [Mai23] (Chapter 3 of this manuscript) in the case with

common noise. When we lose the strict monotony assumptions, things become more complicated.

It would be interesting to obtain uniform in-time propagation of chaos particularly because it would

enable us to understand in a better way the long-time behaviour of the limit process.

In [DEGZ20] the authors demonstrate uniform in-time propagation of chaos (without common

noise), without relying on strict monotonicity assumptions for b, using specific coupling methods that

will be discussed in detail later in this manuscript. Additionally, they establish exponentially fast con-

vergence to the stationary regime for the solutions of Equation (1.16). These methods can be extended

to scenarios involving common noise, provided the intensity of the idiosyncratic noise σ ą 0 is suf-

ficiently large. More details on this phenomenon are given in Section ... If this condition is not met,

achieving uniformity in time becomes challenging, opening a significant area for further research.
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2. Non-linear stochastic Fokker-Planck equation

2.2 McKean-Vlasov/Fokker-Planck ecosystem

Let us consider ameasureP0 P PpPpRdqq, a randomvariablem0 constructed on the space pΩ0,F
0,F0,P0q

such that L0pm0q “ P0, and a random variableX0 constructed on the product space pΩ,F,F,Pq such

that L1pX0q “ m0 almost surely. Now, we can construct the process X with dynamics given by the

stochastic differential equation

#

dXt “ bpXt,L1pXtqqdt` σdBt ` σ0dBt,

Xt|t“0 “ X0 a.s
(1.11)

for some Brownian motion B adapted to F1
, and thus independent of B0

. The particularity of the SDE

(1.11) is that the process X is interacting with its own conditional law given the common noise B0
.

Such type of interaction is called McKean non-linearity.

The connection between the processX and Equation (1.3) is quite straightforward and was already

mentioned in the paper of McKean [McK66] (in the case σ0 “ 0). Considering a function ϕ P C8
c pRdq,

we write for any 0 ď s ď t,

ϕpXtq “ ϕpXsq `

ż t

s
∇ϕpXrqbpXr,mrqdr ` σ

ż t

s
∇ϕpXrqdBr

`σ0

ż t

s
∇ϕpXrqdB0

r `
σ2 ` σ20

2

ż t

s
∆ϕpXrqdr.

(1.12)

Taking the conditional expectation with respect to the common noise B0
, we obtain for all 0 ď s ď t,

xmt;ϕy “ xms;ϕy `
σ2 ` σ20

2

ż t

s
xmr; ∆ϕydr

`

ż t

s
xmr;ϕbp¨,mrqydr ` σ0

ż t

s
xmr; p∇ϕqT y dB0

r .

This being true for any 0 ď s ď t and ϕ P C8
c pRdq, we deduce that pmtqtě0 satisfies Equation

(1.3). Under various assumptions, existence and uniqueness results are known for Equation (1.11) (see

[KX99, HvS21, CD18b]) and for the SPDE (1.3) (see [DV95, KX99, CG19, CDLL19]). For example, the

following result stands

Proposition 1.20 (Prop. 2.8, [CD18b]). Let the Assumption on the drift b in (CPoC) be in force. Assuming
furthermore that Er|X0|2s ă `8, there exists a unique solution to (1.11) on the filtred probability space
pΩ,F,F,Pq.

It is quite straightforward to observe that the existence of a solution to (1.11) implies the existence

of a solution to (1.3) with the initial condition L0pm0q “ P0. This result further implies the existence

of a solution for the Fokker-Planck equation on PpRdq as given by (3.7). In [LSZ23], the authors even

demonstrate that the converse implications are true, which allows for the verification of uniqueness

results directly. These findings also lay the groundwork for characterising an invariant measure in

Chapters 3 and 4. Ultimately, it becomes clear that our equation of interest is part of a broader ecosystem

of equations that originates from the system of interacting particles described in (1.6).
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X “ pX1, . . . , XN q,

RdˆN
valued process

mN
¨ “ N´1

řN
i“1 δXi

¨
,

PpRdq valued process

dXi
t “ bpXi

t , m
N
t qdt ` σdBi

t ` σdB0
t

Rd
- valued process.

LpXi
t|B

0q

m “ pmtqtě0

PpRdq valued process,

solution of (1.3)

dX
i
t “ bpX

i
t,Lp sXi

t |B
0qqdt` σdBi

t ` σdB0
t

Rd
- valued process

N Ñ `8

meso micro

Lpmtq P “ pPtqtě0,

PpPpRdqq valued process,

solution to (1.4)

Figure 1.3: McKean-Vlasov/Fokker-Planck ecosystem of equations with common noise.

Let us now provide a concrete and simple example of McKean-Vlasov/Fokker-Planck ecosystem.

Example 1.21. Let us now consider a particular case to make the things clear:

#

dXt “ ´pXt ´ E1rXtsqdt` σdBt ` σ0dB
0
t

Xt|t“0 “ 0 a.s.

This process is uniquely determined and can be approximated in the mean-field limit by an interacting
particle with

bpx,mq “ ´

ˆ

x´

ż

Rd

xmpdxq

˙

,

which satisfies (CPoC). This process can be treated exactly as an Orstein-Uhlenbeck process in Rd. Then,
we get an explicit solution

Xt “ σ0B
0
t ` σ

ż t

0
e´pt´sqdBs. (1.13)

Then we obtain that for any t ě 0,

mtpxq “
1

σ
a

πp1 ´ e´tq
exp

ˆ

´
1

σ2p1 ´ e´tq
|x´ σ0B

0
t |2

˙

. (1.14)

In this example, we see explicitly the fact that the flow of measures pmtqtě0 is random and adapted to the
common noise. In this example, we can also explicitly write the deterministic flow of measures associated
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2. Non-linear stochastic Fokker-Planck equation

to pmtqtě0, for all t ą 0,

Ptpdmq “

ż

Rd

δNpσ0

?
tx,σ2πp1´e´tqqpdmqγpdxq,

where γ stands for the standard Gaussian density.

2.3 Long time behaviour: reminders on the case without common noise

Let us comment on the previously introduced system in the case σ0 “ 0. In this case, the particle

dynamics are only dictated by independent Brownian motions, then the system reads

#

dXi
t “ b

`

Xi
t ,m

N
t

˘

dt` σdBi
t,

LpXN
0 q “ mbN

0 ,
(1.15)

for some probability measurem0 P PpRdq. The particles would be i.i.d if not for the interaction coming

through the empirical measure. In this case, under the same conditions on b (see (CPoC)), all the propa-

gation of chaos results are true, see [Szn91, Mél96, CD18a, CD22a, CD22b]. Taking σ0 “ 0 in Equation

(1.3), we obtain the following Fokker-Planck equation

Btmt “
σ2

2
∆mt ´ ∇ ¨ pmtbp¨,mtqq. (1.16)

This changes the nature of the objects considered, but all the probabilistic tools are still valid in

both cases. The formalism used to describe these equations with common noise can be used to deal

with problems without common noise. Indeed, Figure 1.3 remains true and it is then sufficient to note

that pmtqtě0 is a deterministic flow of measure. The flow of measure pPtqtě0 then becomes trivial:

@t ě 0, Pt “ δmt . (1.17)

where for any measure m P PpRdq, δm stands for the Dirac measure centered at m. Moreover, the

McKean-Vlasov process X , with dynamic

dXt “ bpXt,LpXtqqdt` σdBt (1.18)

generates the flow of measures pmtqtě0 solution of (1.16). Let us begin by presenting some classical

existence and uniqueness results for the solutions of these equations. The aim of the following section

is not to provide an exhaustive state-of-the-art, but rather to present a reading grid that will help to

understand the fundamental results concerning notably the long-time behaviour of solutions of (1.3) in

the rest of the manuscript. Naturally, as in the case with common noise, Equation (1.16) is understood

in the weak sense. We say that pmtq is a solution of (1.16) if for any smooth and bounded function ϕ,

we have

xϕ;mty “ xϕ;msy `

ż t

s
xϕbp¨,mrq;mrydr `

σ2

2

ż t

s
x∆ϕ;mrydr.
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2.3.1 Long time behaviour

The question of the long-time behaviour of the solutions of (1.16) has been an important subject of

interest for a long time. When discussing the long-time behaviour of solutions of (1.16), it is usual

[CGM08, DEGZ20, BRV98, HT10, HIP08] to assume the following structure for the drift b:

bpx, µq “ ´∇V pxq ´ ∇W ˚ µpxq. (1.19)

The function V is then called the confinement potential and defines the landscape in which the associ-

ated processX evolves. The functionW is called the interaction potential and defines how the process

X interacts with its law. This is the source of nonlinearity in equation (1.16).

It is well known in the case where W “ 0, that there exists a unique stationary solution to the

equation (1.16), provided that V has good asymptotic properties (such as, coercivity) and σ ą 0. More-

over, this unique invariant measure admits a density with respect to the Lebesgue measure, this density

denoted sm is written as

smpxq 9 e´ 2
σ2 V pxq. (1.20)

WhenW ‰ 0, the equation of interest becomes non-linear, and the situation becomes more intri-

cate. Similar results on the existence and uniqueness of the stationary solution have been shown under

strict convexity assumptions on V , both with PDE [CMV03, CMV06] and probabilistic [CGM08, Mal01]

techniques.

However, this is not the case anymore if we relax the convexity assumption as highlighted by

[DV95] or [HT10]. In the latter, the authors show that any stationary solution of (1.16) is a solution to

the following fixed-point problem:

smpxq “
1

Z
sm
exp

ˆ

´
2

σ2
pV pxq `W ˚ smpxq ´W ˚ smp0qq

˙

, (1.21)

for some normalising constantZ
sm. Let us consider an example to clarify the previous equation. Through-

out this manuscript, a central case of study is given by: V pxq “ x4{4 ´ x2{2 andW pxq “ αx2{2, for

α ą 0. This example is one-dimensional. In this case, the equation (1.21) satisfied by the stationary

solutions rewrites:

smpxq “
1

Z
sm
exp

ˆ

´
2

σ2
`

x4{4 ´ x2{2 ` αx2{2 ´ αxµ1psmq
˘

˙

, (1.22)

where for any probability measurem P P1pRdq, µ1pmq “
ş

Rd xmpdxq. In particular, it follows thatm

is a solution of

µ1pmq “ Ψpµ1pmqq,

where, for all y P R,

Ψpyq “

ş

R x exp
`

´ 2
σ2

`

x4{4 ´ x2{2 ` αx2{2 ´ αxy
˘˘

dx
ş

R exp
`

´ 2
σ2 px4{4 ´ x2{2 ` αx2{2 ´ αxyq

˘

dx
.

Let us first notice that µ1pmq “ 0 is always a solution. Moreover, it has been shown in [Daw83]
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2. Non-linear stochastic Fokker-Planck equation

that there exists a critical value σc ą 0 such that, if σ ě σc, µ1pmq “ 0 is the only solution. However,

when σ ă σc, there exist two other solutions. In other words, when σ is too small, there are three

stationary solutions to Equation (1.16).

A good way to understand this phenomenon, at least intuitively, is to go back to the study of a

system with many particles:

dXi
t “ ´∇V pXi

tqdt´ α

˜

Xi
t ´

1

N

N
ÿ

j“1

Xj
t

¸

dt` σdBi
t. (1.23)

At this stage, it is natural that most particles are attracted by the minimizers of the potential V : x ÞÑ

x4{4 ´ x2{2. When σ is large enough, it dominates the interaction term, allowing particles to move

from one minimizer to another, resulting in a distribution of particles between the two minimizers. On

the other hand, when σ is too small, the interaction term dominates, and the particles will all gather

near a minimum.

Figure 1.4: N “ 100, σ{α “ 600, V : x ÞÑ x4{4 ´ x2{2.

Figure 1.5: N “ 100, σ{α “ 6, V : x ÞÑ x4{4 ´ x2{2.

In theN -particle system for σ small, it is expected that particles will move around one of the points.

If one of theN noises takes an extreme value and pushes the corresponding particle to the other stable

state, then the dominant attractive force in the drift should quickly pull this particle back to the average

particle location.
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Chapter 1. Introduction

Figure 1.6: Particle attracted by the mean behaviour of the system - N “ 100, σ{α “ 6,
V : x ÞÑ x4{4 ´ x2{2

Studying the probability that many particles, say n " 1, escape from the minimiser they are located

in, within a time interval∆ ą 0 is of the order of

PpDI “ ti1, . . . , inu, @i P I,Bi
∆ ą 1q,

which is exponentially small in n. This roughly says that the probability that a large number of par-

ticles go from one minimiser to the other vanishes, creating multiplicity of the equilibria for pmtqtě0.

This result concerning the existence of several stationary solutions is extended to much more general

contexts (however in dimension d “ 1) in [HT10].

2.4 Contibutions of the first part

The addition of common changes the asymptotic behaviour of the empirical measure of the system

in N . As explained in Section 2.1, the limit when the number of particles N Ñ `8 is random. The

long-time behaviour of this process has not been the subject of many studies. Indeed, apart from two

papers [ABKO23, ACKO24] in the case where the common noise added to the system is a cylindrical

Brownian motion, little is known. In the first part of this manuscript, we focus exclusively on studying

the long-time behaviour of the solutions of this equation. We will address the following questions:

Question 1.22. What is an invariant measure for the process pmtqtě0? How can it be characterised?

Question 1.23. In the frameworks where uniqueness of the invariant measure holds without common
noise, do we preserve uniqueness for the case without common noise, σ0 “ 0?

Naturally, since the process pmtqtě0 is a stochastic process taking values in the space of measures,

we seek to understand its asymptotic behaviour in law. In the following, we then study the existence

and uniqueness of invariant measures
sP P PpPpRdqq. Let us state the following definition:

Definition 1.24. We say that sP P P2pP1pRdqq is an invariant measure for the process pmtqtě0 when the
latter is regarded as taking values in PpRdq, if the law of mt is independent of t, when m0 is distributed
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2. Non-linear stochastic Fokker-Planck equation

according to sP , i.e., for all continuous and bounded function ϕ P CbpPpRdqq

E0rϕpmtqs “ E0rϕpm0qs “

ż

PpRdq

ϕpmq sP pdmq, @t ą 0.

This answers the first part of Question 1.22. In chapter 2, we show the following characterisation

of an invariant measure, which is an adaptation of the previously mentioned result of Proposition1.8:

Proposition 1.25 ([LSZ20, Mai23]). sP is an invariant measure for the process pmtq if and only if

@

sP ,MF
D

“ 0, @F P C2
bpP2pRdqq, (1.24)

where the generator M is defined in Equation (1.5).

Let us now consider a concrete example of what constitutes an invariant measure in our context.

To illustrate this, we will examine a linear process, making all the computations explicit.

Example 1.26. In this example, we consider an Ornstein-Uhlenbeck process with common noise, that is
taking V : x ÞÑ |x|2{2 andW “ 0. Let X be a real-valued stochastic process evolving in Rd, driven by
the following stochastic differential equation:

dXt “ ´Xtdt` σdBt ` σ0dB
0
t . (1.25)

Then, the process associated process pmtqtě0 is solution of

dtmt “ ∇ ¨

„

σ2 ` σ20
2

∇mt `mtx

ȷ

dt´ σ0∇mt ¨ dB0
t , (1.26)

Moreover, we consider the following initial condition L pX0q “ P0 (in the sense of Definition 1.24), for
some P0 P P2pP2pRdqq. In this particular setting, we are able to explicitly describe the invariant measure.
The unique invariant measure sP of the process on the space PpRdq is the image, by the function x P

Rd ÞÑ Ndp´x, σ2Idq P PpRdq of the measure γσ0 ; where γσ0pdxq “ p2σ20q´1{2e´|x|2{2σ2
0dx, where for

all µ P Rd,Σ P MdpRq, Nd pµ,Σq denotes a gaussian distribution in dimension d centered in µ and with
variance-covariance matrix Σ. We can rewrite

sP pdmq “

ż

Rd

δNdp´x,σ2Idqpdmqγσ0pdxq. (1.27)

Thanks to Proposition 1.25, we can characterise an invariant measure. However, we can already

notice that the equation satisfied by the invariant measure is difficult to study since we need the classic

tools of differential calculus in the space of measures. This difficulty is the reason for the need to

develop probabilistic approaches that we will not detail for the moment. Let us start by stating some

assumptions under which we will work throughout the first part of this manuscript.
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Assumptions - Long Time Behaviour (LTBa)

1. There exists a continuous function κ : r0,`8q Ñ R, such that

lim inf
rÑ`8

κprq ą 0,

and

p∇V pxq ´ ∇V pyqq ¨ px´ yq ě κp|x´ y|q|x´ y|2;

2. ∇V is LV -Lipschitz continuous.

3. W is symmetric, i.e.,W pxq “ W p´xq for all x P Rd
;

4. ∇W is LW -Lipschitz continuous.

The first result of this thesis states that under the set of assumptions (LTBa), there always exists at

least one invariant measure for the process pmtqtě0 solution of (1.3). This provides a first element of the

answer to the Question 1.23. To complete the answer to this question, it is interesting to consider the

classical cases of uniqueness in the case σ0 “ 0. For example, when the potential V is uniformly convex,

which corresponds to the case κ ě β ą 0 in (LTBa). In Chapter 2, we show that this uniqueness result

is preserved in the case with common noise. We prove this result by developing probabilistic methods.

More specifically, we prove uniform in time propagation of chaos results that allow us to conclude the

desired result. Ultimately, we obtain the following result,

Theorem 1.27. Let us consider P,Q P P2pP2pRdqq, and two particle systems X “ pX1, . . . , XN q and
XN “ pX1,N , . . . , XN,N q with dynamics,

dXi
t “ ´∇V pXi

tqdt´ ∇W ˚mtpX
i
tqdt` σdBi

t ` σ0dB
0
t , @i P t1, . . . , Nu , (1.28)

and

dXi,N
t “ ´∇V pXi,N

t qdt´
1

N

N
ÿ

j“1

∇W pXi,N
t ´Xj,N

t qdt`σdBi
t `σ0dB

0
t , @i P t1, . . . , Nu , (1.29)

where pXi
0qiPt1,...,Nu are independent and identically distributed such that Lp sX1

0 q “ P in the sense of
Definition 1.13, and where the same holds for the second system with LpX1,N

0 q “ Q. Under Assumptions
(LTBa), and assuming that κ ě β ą 0, we get

E
”

dR
d

2 pmP,N
Xt

,mQ,N

XN
t

q

ı

ď C
´

e´βt `
1

2β
?
N ´ 1

¯

,

wheremP,N
Xt

“ 1
N

řN
i“1 δXi

t
andmQ,N

XN
t

“ 1
N

řN
i“1 δXi,N

t
.

The following corollary provides an answer to the Question 1.23:

Corollary 1.28. Under the set of Assumptions (LTBa), the stochastic process pmtq admits a unique invari-
ant measure sP P P2pP2pRdqq. Moreover, for each P0 P P2pP2pRdqq, there is an exponential convergence
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2. Non-linear stochastic Fokker-Planck equation

to the invariant measure in Wasserstein-2 distance

d
PpRdq

2 pPt, sP q ď e´βtd
PpRdq

2 pP0, sP q.

This consists in a restoration of uniqueness result, at least in P2pP2pRdqq. Moreover, the following

Lemma allows us to recover uniqueness among all the invariant measures (as defined in Definition

1.24):

Proposition 1.29. Let Assumptions (LTBa) be in force. For any invariant measure sP in the sense of
Definition 1.24, we get that sP P P2pP2pRdqq.

In Section 2.1, we saw that there are examples of loss of uniqueness in the case without common

noise when the diffusion coefficient σ is too small. As the addition of common noise completely changes

the structure of the problem, it is natural to ask the following question:

Question 1.30. Are there any cases where the common noise allows for uniqueness recovery?

Question 1.30 is the focus of Chapters 2 and 3. It is quite common that the addition of noise allows

for uniqueness recovery of the asymptotic behaviour for stochastic processes or the uniqueness of the

Nash equilibria in MFG [Del19, DFT20]. However, two points should be emphasised here, justifying

the difficulty of the question:

1. For processes with nonlinear dynamics, there are examples where the introduction of noise cre-

ates periodic asymptotic behaviours [Sch93, Sch85b, Sch85a];

2. In this specific case, the commonnoise has a very particular structure since this finite-dimensional

noise is the only source of randomness in the dynamics of the infinite-dimensional process

pmtqtě0.

The second point highlights the subtlety of the problem. It is clear that there is no chance to get

the uniqueness of the invariant measure for a generic class of stochastic Fokker-Planck SPDEs forced

by a simple noise like B0
. For example, it is quite easy to find similar models for which the common

noise does not allow at all to recover the uniqueness of the asymptotic behaviour. The thrust of the

works [Mai23, DMT24] is more to identify one class of mean field dynamics for which the common

noise helps in this matter.

Example 1.31 (A simple case without restoration of uniqueness). A counter-example in dimension d “

1 is

dtmt “
σpvpmtqq2 ` σ20

2
B2
xxmtdt` Bxpxmtqdt´ σ0BxmtdB

0
t ,

for some function σ : r0,`8q Ñ p0,`8q. Whenever σ0 “ 0 and the function σ2p¨q{4 admits several
fixed points, the stationary solutions to the above equation cannot be unique. In this case, pmtqtě0 is indeed
solution of

Btmt “
σpvpmtqq2

2
B2
xx pmtq ` Bxpxmtq, t ě 0. (1.30)
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Then, similar to the stationary solutions found in the previous example, the stationary solutions (equiva-
lently, the invariant measures of (3.5)) are here solutions of

dm

dx
pxq “ exp

ˆ

´2
x2

σ2pvpmqq

˙

, x P R.

Then, one can show that, if the function x ÞÑ σ2pxq{4 admits several fixed points, then there are several
stationary solutions to (3.20).

When adding common noise, the situation does not get better. For instance, assuming thatX0 “ 0 a.s.,
one can show that for all t ą 0, P0-almost surely, mt is a (random) Gaussian probability measure with
parameters

$

’

’

&

’

’

%

µ1pmtq “ σ0

ż t

0
es´tdB0

s ,

vpmtq “

ż t

0
e2ps´tqσ2pvpmsqqds.

Then, it is not difficult to see that pµ1pmtqqtě0 is an ergodic process (it is in fact an Ornstein-Uhlenbeck
process with a negative mean-reverting parameter). As for the dynamics of the variance pvpmtqqtě0, we
get

Btvpmtq “ ´2vpmtq `
1

2
σ2pvpmtqq, t ě 0.

Obviously, the above equation has several stationary solutions (say σ˚) if the function x ÞÑ σ2pxq{4 admits
several fixed points. In the latter case, pmtqtě0 has several invariant measures, whose form is similar to
(3.18) except that σ therein is now replaced by any σ˚. In this specific example, it is noteworthy that the
common noise has no influence on the mean field term pvpmtqqtě0 (which is completely deterministic).
Clearly, this is a consequence of the additive structure of the noise, the effect of which is just to shift (or to
translate) the measures pmtqtě0.

Chapter 2 takes a first step in the direction of identifying the classes of mean field dynamics for

which the common noise allows for uniqueness recovery by studying the case of a non-convex potential

V , a linear interaction force and no idiosyncratic noise, i.e σ “ 0. This case is not covered by [Daw83,

HT10], however, it is quite easy to see that when V is not convex and σ “ σ0 “ 0, the equation

Btmt “ ∇ ¨ p∇V mt ` αpx´ µ1pmtqqmtq, (1.31)

admits several stationary solutions located on the minimisers of V .

When we add common noise to the system, the mean-field limit gives the following equation

dtmt “
σ20
2
∆mtdt` ∇ ¨ p∇V mt ` αpx´ µ1pmtqqmtqdt´ σ0∇mt ¨ dB0

t . (1.32)

We show in Chapter 2 that under assumption (LTBa) and assuming that W pxq “ α|x|2{2, for some

α ą 0, which allows us to consider double-well potentials and therefore non-convex, we may recover

uniqueness of the invariant measure in the sense of the Definition 1.24. More precisely, we have

Theorem 1.32. Under the set of Assumptions (LTBa) and assuming thatW pxq “ α|x|2{2, for some α ą

0, there exists sα ą 0, such that for any α ě sα, there exists a unique invariant measure sP P P2pP2pRdqq
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2. Non-linear stochastic Fokker-Planck equation

for the solutions of (1.32). Moreover,

sP pdmq “

ż

Rd

δδxpdmqm˚pdxq, (1.33)

wherem˚ admits a density with respect to the Lesbegue measure, also denotedm˚ and satisfying for any
x P Rd,

m˚pxq9 exp

ˆ

´
2

σ20
V pxq

˙

(1.34)

Also, we show exponentially fast convergence to the invariant regime in Wasserstein distance.

Unfortunately, in this case, we are no longer able to prove uniform in time propagation of chaos

results. In chapter 3, we prove similar results extended to a more general framework. The major

difference being that we are now able to consider models with idiosyncratic noise, i.e. when σ ą 0.

More precisely, we consider classes of models of the form

dtmt “
σ20
2
∆mtdt´ ∇ ¨ pGmt ` F px´ µ1pmtqqmtqdt´ σ0∇mt ¨ dB0

t . (1.35)

We then make the following assumptions on G and F , which are similar to the ones on ´∇V and the

interaction:

Assumptions - Long Time Behaviour (LTBb)

1. There exists a continuous function κ : r0,`8q Ñ R, such that

lim inf
rÑ`8

κprq ą 0,

and

pGpxq ´Gpyqq ¨ px´ yq ď ´κp|x´ y|q|x´ y|2;

2. G is LG-Lipschitz continuous.

3. F is LF -Lipschitz continuous and there exists α ą 0 such that

pF pxq ´ F pyqq ¨ px´ yq ď ´α|x´ y|2;

These assumptions are generalisations of the case treated in Chapter 2 as we only get ride of the

gradient structure for the confinement and interaction forces. Nevertheless, the underlying intuition

remains quite similar: (1) the confinement term G brings the particles back into a compact set thanks

to its strict asymptotic monotonicity properties. However, we can consider forcesG that are not mono-

tonic near the origin, such as x ÞÑ x3 ´ x. (2) The interaction term F still involves the first moment.

We do indeed separate from the linearity assumption, but we keep in mind the idea that F must help

attract the processm towards its first moment.

In this case, we can still exhibit cases of uniqueness recovery thanks to common noise. More pre-
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cisely, we have the following result:

Theorem 1.33. There exists sσ ą 0, sα ą 0, such that for all σ ď sσ, and α ě sα in Assumption (LTBb),
there is a unique invariant measure sP P P2pP2pRdqq for the process pmtqtě0, solution of Equation (3.4).

The study of this kind of models and the impact of a finite-dimensional common noise on the

long-time behavior is far from being covered by the two papers [Mai23, DMT24] mentioned in this

introductory chapter.

There are of course still many questions to be addressed on this topic, a few are listed here:

1. Can we extend the results obtained in this thesis to more general models? In particular, we would

like to get rid of the assumption that interaction only occurs via the first-order moment.

2. Can we study the impact of the common noise on the propagation of chaos property?

3. Can we develop numerical schemes to approximate the invariant measure of the process and

study their convergence properties?

3 Statistical Analysis of diffusion models

The second section of this thesis deals with non-parametric estimation for diffusion processes. The

general framework is the following: we consider a stochastic process X solution of the Stochastic

Differential Equation (SDE)

#

dXν
t “ ´∇V pXν

t q ` σpt,Xν
t qdBt

LpXν
0 q “ ν,

(1.36)

for some initial condition ν P P2pRdq. We want to recover information on the dynamic of X from

observations of this process. Under some mild conditions on V and σ, there exists a unique solution

to (1.36). For decades, the study of this type of dynamics has attracted much attention in order to an-

swer the following questions: What can be estimated in this model? From what observations? What are
the optimal estimation rates? These natural questions have been the origin of the publication of many

research papers, see [GC16] for a very nice introduction. We refrain here from presenting an extensive

literature review on the subject. However, the following table contains a summary of the main refer-

ences on the subject in different contexts.

Est. of σ Est. of∇V Est. of the invariant measure

Continuous obs.

[CGC20] [Bos97]

[CM05] [Leb97]

[DR06] [DR07] [Str18]

Discrete obs.

[Hof97] [CGCR07]

[GCJ94] [JLM
`
09]

[GCLP92]

[Hof99][CGCR07]

[Sch13] [BP03]

[GHR04]

[AG21] [AG22]

[AG23] [Sch12]

Noisy obs. [Sch12] [Sch11] [MS24]
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3. Statistical Analysis of diffusion models

This type of process appears in many fields [Pap95, Ber93, Hul03, Bai57, Ric77]. With the devel-

opment of data collection methods, it seems necessary to implement statistical methods to (1) develop
predictive models adapted to real-life data; (2) ensure the validity of the probabilistic models used based

on observed data, see for example [ASJ10].

In Chapter 4, we focus on the case where the diffusion matrix is diagonal and constant. More

precisely, there exists σ ą 0 such that for all x P Rd
, σpxq “ σId. In this case, the model (1.36) can be

rewritten as

dXt “ ´∇V pXtq ` σdBt, (1.37)

where B is a standard Brownian motion in Rd
. It is easy to prove that we can characterise the flow of

laws of the solutions of (1.37), pµtqtě0 “ pLpXtqqtě0 by

Btµt “
σ2

2
∆µt ` ∇ ¨ pµt∇V q. (1.38)

This linear equation has been widely studied in the literature, see [Ris89] and the references therein.

Under fairly mild assumptions on V (linear behaviour at infinity), we know that there exists a unique

invariant measure for (1.37) denoted by sµ. This invariant measure is absolutely continuous with respect

to the Lebesgue measure. This density is also denoted by sµ, and is given by

sµpxq “
1

ZV
exp

ˆ

´
2

σ2
V pxq

˙

, (1.39)

for some normalization constant ZV .

3.0.1 Ergodicity for diffusion models with constant volatility

In this section, we make some quick reminders on the notion of ergodicity for diffusion models of the

form (1.37). Let us introduce the following set of assumptions

Assumptions - Ergodicity (Ergo)

1. The function b is differentiable and satisfies

|bp0q| ď b0 and @i P t1, . . . , du, ||Bib||8 ď b1{d,

where b0 and b1 are positive constants.

2. There exists a function V : Rd Ñ R differentiable and bounded below by a constant V0

such that b “ ´∇V and V p0q “ 0.

3. There exists
rCb ą 0 and rρb ą 0 such that xx, bpxqy ď ´ rCb|x|, @x : |x| ě rρb.

Moreover, when considering this kind of process, it is possible to show results of exponential con-

vergence towards the invariant measure. This has been a very vast field of research in the past decades.

Such convergence results can be shown using functional inequalities see for example [ABC
`
00] or

the very nice course [CL17]. More recently, the use of coupling techniques developed by [LR86] allowed
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to prove with purely probabilistic approach some contraction properties resulting in exponentially fast

convergence to the stationary regime under (Ergo).

Theorem 1.34. Under Assumptions (Ergo), there exists a constant c ą 0, such that for any initial condi-
tions µ, ν P P2pRdq,

dR
d

1 pLpXµ
t q,LpXν

t qq ď dR
d

1 pµ, νqe´ct. (1.40)

This approach has since been widely use in various domain, particularly in control [Con23] or

interacting particle system theory [DEGZ20]. The unfamiliar reader shall find details on coupling by

reflection and the proof of Theorem 1.34 in the Appendix A.

3.1 Presentation of the model and literature review

In Chapter 4, we consider a large range of potential V . Mainly, we work under the set of Assumptions

(Ergo). In this case, we know that X is ergodic and admits a unique invariant density denoted by

sµ. The topic of estimating the invariant measure for ergodic processes has been addressed in many

contexts [DR06, DR07, Str18, AG21, AG22, AG23]. Several works have considered various structures of

processes, including jump processes [AN22].

It is well-known and natural that the estimation rate of a function strongly depends on its regularity.

The adapted notion of regularity in such a context is Hölder regularity:

Definition 1.35. Let α “ pα1, . . . , αdq P p0,8qd and L “ pL1, . . . ,Ldq P p0,8qd. A function
g : Rd Ñ R is said to belong to the anisotropic Hölder classHdpα,Lq of functions if, for all 1 ď i ď d, g
is tαiu-differentiable in the i-th variable and the partial derivatives satisfy for 0 ď k ď tαiu

}Bk
i g}8 ď Li and @t P R,

›

›B
tαiu

i gp¨ ` teiq ´ B
tαiu

i gp¨q
›

›

8
ď Li|t|

αi´tαiu

where pe1, . . . , edq is the canonical basis of Rd.

We now provide a more detailed review of the literature on our topic of interest: the estimation of

the invariant measure for ergodic diffusion processes. Statistical studies on this subject focused on two

different asymptotic regimes: continuous observations of the process pXtqtďT with T Ñ 8, or low

frequency observations given by pXi∆qi with 0 ď i ď n. Since X is exponentially β-mixing under

mild assumptions on b, low-frequency observations naturally relate to the i.i.d. case and present similar

convergence rates.

On the other hand, continuous observations can be studied using fine probabilistic tools for er-

godic continuous-time Markovian dynamics [BCG08, CG08, Lez01, Pau15] and precise estimates on

the transition densities [CW97, QRZ03, QZ04]. The seminal works of [DR06, DR07] first established

convergence rates of kernel estimators under continuous observations ofX over a time interval r0, T s.

In these works, the invariant density is still estimated through a kernel based estimator as in the i.i.d.

case. [DR06, DR07] also obtain the convergence rate

T´α{p2α`d´2q
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3. Statistical Analysis of diffusion models

when d ě 3 and µb is α-Hölder in the sense of Definition 1.35, with α “ pα, . . . , αq, for some α ě 2.

When considering an anisotropic framework, the convergence rate depends on the effective average

smoothness [Str18] and minimax rates are derived in [AG21]. Two natural questions remain:

Question 1.36. What happens if we access discrete high-frequency observations of X , i.e. we observe
pXi∆nqi for 0 ď i ď n when ∆n Ñ 0 and n∆n Ñ 8?

Question 1.37. Can we still estimate the invariant measure when the observations are blurred by some
noise?

The Question 1.36 naturally arises with the advent of high-frequency data collection in particular

in finance [ASJ14]. Hence, understanding the estimation rates under different asymptotic conditions

becomes crucial. This includes specifying conditions on ∆n that determine when continuous or low-

frequency observations aremore analytically pertinent. While this topic has only recently received sub-

stantial attention, pioneering works like [GHR04] and [CT16], which explore random sampling times,

stand out. However, this question has recently been addressed in full generalities in [AG23] where

the breakeven point between the high-frequency observations similar to continuous observations and

low-frequency observations similar to the i.i.d. case is identified and studied. The continuous rate is

known to be optimal [AG21] in any dimension, but the question of the optimality of the low frequency

rate is still an open question, with the exception of the one dimensional case, solved in [AG22].

Answering Question 1.37 is crucial in statistical analyses for several compelling reasons. The pres-

ence of noise in observations is often unavoidable, especially in practical applications such as finan-

cial modelling, biological experiments, or sensor data analysis. Addressing the impact of noise in the

analysis can help develop models and methodologies that are more applicable to real-world scenarios,

increasing the external validity. This is the purpose of Chapter 4.

3.2 Contributions

As in [Sch11, Sch12], the aim of chapter 4 is to develop a statistical method that can take into account

the presence of noise in the observations, this time to estimate the invariant measure. When noise

is assumed to have an additive structure, existing literature uses Fourier inversion and kernel-based

methods to recover the distribution of interest [Dev89, LT89, SC90]. Later works [CH88, Fan91, Fan93]

establish minimax optimality of this procedure under the assumptions that the noise distribution is

known and has a non-vanishing Fourier transform. It is important to note that in this setup, the con-

vergence rates are slow. For instance, when the distribution of interest is α-Hölder regular and the

noises are independent standard Gaussian variables, the optimal rate of convergence for any estimator

is only logpnq´α{2
. This leads us to the following questions in our context:

Question 1.38. What is the impact of noise on the estimation rates?

Question 1.39. Can we use the Markovian structure of the underlying process to obtain better convergence
rates than for the classical deconvolution problems?

In Chapter 4, we answer both questions 1.38 and 1.39. More precisely, we obtain that unlike the

i.i.d. case, the structure of (4.2) and (4.3) allows better extraction of the information hidden by the noise.

The estimation procedure is composed of three steps
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• Step 1: Pre-averaging. To reduce noise effects, data is split into groups of equal size p and em-

pirical means are built into the batches. These techniques are usual in the literature of statistical

estimation for diffusion processes [JLM
`
09, JPV10, HP13, JM15, Sch11, Sch12].

We obtain the following process

˜

1

p

p´1
ÿ

l“0

Ykp`l

¸tn{pu´1

k“0

.

Even though we lose some information, this pre-processing of the data allows us to significantly

reduce the intensity of the noise. Indeed, for any k P t0, . . . , tn{pu ´ 1u,

1

p

p´1
ÿ

l“0

Ykp`l “
1

p

p´1
ÿ

l“0

Xpkp`lq∆n
`
τn
p

p´1
ÿ

l“0

ξkp`l. (1.41)

Of course, since pξiqi are standard Gaussian random variables, we have

τn
p

p´1
ÿ

l“0

ξkp`l
d
“

τn
?
p
ξ1, (1.42)

where equality holds in distribution.

Figure 1.7: Pre-averaging of noisy observations of an Ornstein-Uhlenbeck process

• Step 2: Construction of a classical Kernel estimator. From the previously constructed process,

pνn,h,ppxq “
1

tn{pu

tn{pu´1
ÿ

k“0

Kh

´

x´ p´1
p´1
ÿ

ℓ“0

Ykp`ℓ

¯

,

where for any y P Rd
, Khpyq “

śd
i“1 h

´1
i Kph´1

i yiq, for some Kernel function K : R Ñ R.
This estimation procedure is classical see [Tsy09] or Appendix B.

• Step 3: Debiaising procedure. Intuitively, the approach of Step 2 works because of the regularity
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of X . Indeed, we have

1

p

p´1
ÿ

ℓ“0

Ykp`ℓ,n “ Xkp∆n `
1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

`
τn
p

p´1
ÿ

ℓ“0

ξkp`ℓ,n. (1.43)

This expression can be seen as Xkp∆n ` noise and the effective sampling frequency becomes

pp∆nq´1
. Moreover, the noise now comes from two sources: in addition to the noise pξi,nqi,n, we

now have a preaveraging error p´1
řp´1

ℓ“0 pXpkp`ℓq∆n
´ Xkp∆nq. Using the pathwise regularity

of X , this error should remain small when p is not too large. Moreover, since the random vari-

able pξi,nqi,n are independent standard Gaussian variables, we can rewrite p´1
řp´1

ℓ“0 ξkp`ℓ,n “

τnp
´1{2

rξk,n where
rξk,n is also a standard Gaussian variable. Using finally the fact that

1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

«
1

p

p´1
ÿ

ℓ“0

`

Bpkp`ℓq∆n
´Bkp∆n

˘

,

where the precise sense of the previous Equation is detailed in Chapter 4, we obtain that the

effective noise intensity in the observation is now

rτn,p “

´τ2n
p

`
pp´ 1qp2p´ 1q∆n

12p

¯1{2
.

Then we define,

pµn,h,ppxq “
ÿ

uγpνn,h,ppx` γrτn,pq, (1.44)

for some sequence uγ and where the sum holds over all γ “ pγ1, . . . , γdq. Note that the choice

of the sequence uγ is explicit in Chapter 4 and made in order to reduce the bias. Moreover, it is

important to notice that such a combination of estimators does not change the variance (up to

some constant independent of n, p,h).

To study the rate of estimation for the estimator, we control the pointwise quadratic loss:

Er|pµn,h,ppxq ´ µpxq|2s.

Then we separately control the bias and the variance of pµn,h,ppxq:

Proposition 1.40 (Control of the Bias). Under (Ergo), assuming moreover that sµ is α-Hölder with α1 ď

¨ ¨ ¨ ď αd, there exists a constantC ą 0 so that for any x P Rd, any p P t1, . . . , r∆
´1{2
n su and anyh P Rd,

we have

ˇ

ˇEµrpµn,h,ppxqs ´ µbpxq
ˇ

ˇ ď C

$

&

%

τα1
n `

řd
i“1 h

αi
i if p “ 1,

?
p∆n `

τ
α1
n

pα1{2 `
řd

i“1 h
αi
i if p ě 2.

The control of the bias term is somehow the main contribution of Chapter 4. In fact the presence

of the residual terms coming from the noise are identified in the paper [MS24] for the first time. The

upper bound for the variance term on the contrary is similar to the one of [AG23] even if the presence

of noise makes the derivation more technical. The previous proposition allows to answer Question 1.38.
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Proposition 1.41. The best choice of pre-averaging is given by

p˚ :“
Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

_ 1,

and the impact of the noise on the estimation speed is then of order

a

p˚∆n `
τα1
n

p˚α1{2
.

The optimal choice of the hyperparameters h and p depends on the regularity of the quantity of

interest. Of course, this regularity has no reason to be known. In Chapter 4, we set up an adaptive choice

for the bandwidth h inspired by the works [GL08, GL09, GL11], allowing to obtain Oracle inequalities,

see [Cha13] for a nice introduction to these topics. The non-familiar reader shall also have a look to

the appendix B where an example of an adaptive method is detailed. Finally, the choice of p is much

more intricate and is an interesting research direction, more details are given in Chapter 4.
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Chapter 2
An introduction to long time behavior of

non-linear stochastic Fokker-Planck

equation

This paper presents an investigation into the long-term behaviour of solutions to a nonlin-

ear stochastic McKean-Vlasov equation with common noise. The equation arises naturally

in themean-field limit of systems composed of interacting particles subject to both idiosyn-

cratic and common noise. Initially, we demonstrate that the addition of common diffusion

in each particle’s dynamics does not disrupt the established stability results observed in the

absence of common noise. However, our main objective is to understand how the presence

of common noise can restore the uniqueness of equilibria. Specifically, in a non-convex

landscape, we establish uniqueness and convergence towards equilibria when there is no

idiosyncratic noise in the system.
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1 Introduction

We consider the following non-linear Stochastic Partial Differential Equation on r0,`8q ˆ Rd
,

dtmt “ ∇ ¨

ˆ

σ2 ` σ20
2

∇mt `mtbpt, ¨,mtq

˙

dt´ σ0∇mt ¨ dB0
t . (2.1)

This SPDE is posed on a filtered probability space

`

Ω0,F
0,F0,P0

˘

,B0
is a d-dimensional F0

-Brownian

motion, the drift b : r0,`8q ˆ Rd ˆ P
`

Rd
˘

Ñ Rd
depends in time, space and measure, σ and σ0 are

two non-negative constants. This paper aims to study the long-time behavior of solutions of Equation

(3.1), and more precisely, to understand the effect of the common noise on the asymptotic stability. We

assume that the drift term b has a specific linear structure with respect to themeasure variable, with two

continuously differentiable functions V andW such that bpt, x, µq “ ´∇V pxq ´ ∇W ˚ µpxq, where

˚ stands for the convolution operator. This assumption is typical when studying long-time behavior

in McKean-Vlasov type equations, see e.g [Bas20, BGG13, DMT19, HT10, Tug13]. In the following, we

are interested in getting existence and uniqueness results for the invariant measure of the probability

measure valued process pmtq. As the problem under consideration falls within the realm of McKean-

Vlasov type, one may expect existence of an invariant measure and uniqueness at least in some specific

cases. In this paper, we verify whether, in the case whereW is convex and V is uniformly convex, the

introduction of common noise does not compromise the classical uniqueness results of [BRV98]. When

V is not convex, the matter becomes considerably more intricate, studied so far without the presence

of common noise, only partial results are known. There exist cases in which the uniqueness of the

invariant measure is not satisfied. Unlike linear elliptic equations, the presence of nonlinearity leads to

the existence of multiple invariant measures. Specifically, it has been proven in [HT10] that when the

confinement potential uniformly convex outside of a ball centred in the origine, admits a double-well

and the diffusion coefficient σ is sufficiently small, there exist exactly three invariant solutions of the

following equation:

Btmt “
σ2

2
∆mt ` ∇ ¨ pmtp∇V ` ∇W ˚mtqq.

Since 2019, several papers [Del19], [DFT20] or [DV21] investigate the restoration of uniqueness in

mean-field games derived from deterministic differential games with a large number of players by in-

troducing an external noise. In a similar manner, this paper explores the restoration of uniqueness of

the invariant measure by introducing common noise to the system. More precisely, we prove existence

and uniqueness of the invariant measure for process pmtq in the following cases: (1) when the confine-

ment potential V is uniformly convex and the interaction potential is convex; (2) when the potential

V is not convex and there is no idiosyncratic noise in the system, i.e σ “ 0. More precisely, in the

previously mention case, we get uniqueness of the invariant measure for solutions of

dtmt “ ∇ ¨

ˆ

σ20
2
∇mt `mtbpt, ¨,mtq

˙

dt´ σ0∇mt ¨ dB0
t . (2.2)
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

In this case, we also get exponential rates of convergence to the invariant measure. More precisely, we

show the existence of
sP P PpPpRdqq, and a constant η ą 0, such that for all initial condition P0, we

get the existence of a constant C ą 0, such that for each time t ą 0,

d
PpRdq
1

`

Pt, sP
˘

ď Ce´ηt,

where Pt “ Lpmtq, and d
PpRdq
1 p¨, ¨q stands for the Wasserstein distance.

Obtaining uniqueness of the invariant measure in the general case of Equation (3.1) without strong

convexity assumptions on the confinement potential appears to be a challenging problem that is not

completely solved in this paper. The results obtained in the present paper are a step towards under-

standing the long-time behavior of the solutions to Equation (3.1), but are far from providing a complete

understanding of the asymptotic stability for that kind of Stochastic Fokker-Planck Equations with ad-

ditive common noise.

Probabilistic setting & Motivation. Let us consider a filtered probability space pΩ1,F1,F1,P1q.

Then, we define the following product structure

Ω “ Ω0 ˆ Ω1, F, F, P,

where pF,Pq is the completion of the set pF0 b F1,P0 b P1q and F is the right continuous aug-

mentation of pF0
t b F1

t qtě0. We also consider a d-dimensional Brownian motion B0
supported by

pΩ0,F0,P0q, adapted to F0
and another Brownian motion B supported by pΩ1,F1,P1q, adapted to F1

and independent of F0
. Let us now consider a probability measure on the space of probability measures

P0 P PpPpRdqq, we are able to definem0, a F
0
0-measurable random variable with value in the space of

probability measure PpRdq and such that Lpm0q “ P0, in the sense that for any bounded measurable

function F : PpRdq Ñ R, EP0rF pm0qs “ xP0;F y. We can now define on the whole probability space

pΩ,F,F,Pq a random variableX0 such thatLpX0|F0
0q “ m0 almost surely. Let us define the stochastic

process X evolving in Rd
, supported by pΩ,F,F,Pq, which dynamic is given by

#

dXt “ ´∇V pXtqdt´ ∇W ˚mtpXtqdt` σdBt ` σ0dB
0
t

X|t“0 “ X0,
(2.3)

where mt stands for the conditional law of the random variable Xt, with respect to the σ-algebra F0
t .

Precisely,mt “ L
`

Xt|F
0
t

˘

almost surely, and B is a d-dimensional F1
-Brownian motion independent

of F0
. The dynamic of the process pmtqtě0 is well known and given by the following Lemma (see for

example [CD18b] among other references).

Lemma 2.1. The measure valued process pmtqtě0 is solution in the weak sense of the following Stochastic
Partial Differential Equation:

dtmt “ ∇ ¨

ˆ

σ2 ` σ20
2

∇mt `mtbpt, ¨,mtq

˙

dt´ σ0∇mt ¨ dB0
t ,
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with initial condition L pm0q “ P0.

Equation (3.1) connects closely to the McKean-Vlasov Equation with common noise. It shows how

large systems of interacting particles evolve. In mathematical finance, this model is particularly useful

for situations like inter-bank borrowing and lending systems (see [CFS15] or [GSSS15]). Studying the

long-term behavior of solutions to Equation (3.1) is important because it gives us insight of the behavior

of the solution to Equation (3.5).

Literature. Stochastic Partial Differential Equations in the more general form,

dtmt “

”

ÿ

i,j

∇2
ijpaijpt, ¨,mtqmtq ` div pmtbpt, ¨,mtqq

ı

dt´ σ0pt, ¨,mtq∇mt ¨ dB0
t , (2.4)

have been extensively studied in recent decades as it naturally arises in several applications. Equation

(2.4) is linked to the stochastic scalar conservations law of the form

dtmt ` ∇ ¨ pσ0p¨, utqutq ˝ dWt “ 0, (2.5)

where ˝ stands for the Stratonovich stochastic integral. In the case where σ0px, µq “ σ0pµpxqq, mean-

ing that the diffusion coefficient depends in the measure in a local way, this class of equations has been

introduced in [LPS13] paving the way to several papers dealing with well-posedness of solutions of

(2.5) in various frameworks [LPS14, GS15, FG16, GS17, FG19]. Uniqueness of the solutions to (3.1) is a

well known result in the class of solutions admitting a square integrale density with respect to the Les-

begue measure, see [KX99], and has been shown recently without any further moments assumptions

in [CG19].

In a slightly different context, a series of papers demonstrated the well-posedness for a large class of

Stochastic Differential Equations similar to (3.1), calledMean Reflected Stochastic Differential Equations,
see [BEH18], [BH21] and [BCCdRH20]. More precisely, [BH21] and [BCCdRH20] state conditional

propagation of chaos under regularity conditions on the drift and diffusion terms. This equations natu-

rally appears when considering interacting particle systemswith constraint on the empirical measure of

the systems and then the study of such equations is particularly important for example for applications

to Mean Field Games.

In this paper, we focus on the following specific Stochastic McKean-Vlasov Equation with common

noise:

dtmt “ ∇ ¨

ˆ

σ20
2
∇mt `mtbpt, ¨,mtq

˙

dt´ σ0∇mt ¨ dB0
t . (2.6)

Asmentioned before, extensive research has been conducted on the equation in question, and recent

studies have made notable contributions to understanding its properties. For example [HvS21] explores

the existence and uniqueness of solutions for McKean-Vlasov Stochastic Differential Equations (SDEs)

with common noise. Similarly, [Mar21] proposes a regularization approach in an infinite-dimensional

setting for the McKean-Vlasov equation with Wasserstein diffusion, enhancing the understanding of

solutions’ regularity properties. Additionally, [KNRS22] investigate the well-posedness and numerical
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

methods for McKean-Vlasov equations with common noise, providing valuable insights on the stability

and convergence of computational approaches for solving these equations.

However, to the best of our knowledge, little is known about the asymptotic behavior of the solu-

tions of equations of the form (2.6). In the case without common noise, σ0 “ 0, wherem is a determin-

istic flow of measures, past research has focused on various aspects of the solutions of (3.5), including

existence, uniqueness ([McK66], [Fun84], [GKM
`
96]), and stability. Over the past two decades, signif-

icant advancements have been made in understanding the convergence to equilibrium for solutions of

the deterministic McKean-Vlasov equation. For example, see [CMV03] or [CMV06] for proofs of an ex-

ponential convergence rate to equilibrium under strict convexity conditions on the potentials V andW .

The case without strict convexity assumptions is more intricate. Nevertheless, through a thorough ex-

amination of the dissipation of the Wasserstein distance, [BGG13] showed an exponential convergence

to equilibrium in a weakly-convex case. Recently, involving a coupling method issued from [LR86], it

has been shown using nice concentration properties from [Ebe16] that the convergence to equilibrium

holds with an exponential speed in the case of a confinement potential that is only convex far from

the origin, as seen in [DEGZ20]. The latter shows uniform in time propagation of chaos property, as

introduced in [Kac56] and [Szn91], allowing one to conclude the uniqueness of the invariant measure

and provide a rate of convergence to equilibrium.

Organisation of the paper. This paper has three main parts in which we adopt a probabilistic

approach. In Section 2, we study the existence of an invariant measure for the process pmtqtě0, with

dynamic given by Equation (3.1), and provide conditions on the potentials V andW for the existence

of such an invariant measure. We also give moment estimates for the invariant measures. In section

3, we study the uniqueness of invariant measures with a uniformly convex confinement potential V ,

adapting known results without common noise. We also discuss the Ornstein-Uhlenbeck process with

common noise, where the invariant measure can be explicitly described. Moreover, we demonstrate

uniform-in-time propagation of chaos and convergence to equilibrium. Section 4 explores the same

topic for non-convex potential V when σ “ 0 and we prove that common noise can help to restore

uniqueness of the invariant measure. Technical proofs are provided in Appendix 5.

Definition and notation. Throughout the paper, for a Polish space E we write PpEq for the

space of Borel probability measures on E equipped with the topology of weak convergence and the

corresponding Borel σ-algebra. We also denote by x¨ ; ¨y the duality product on PpEq. In this paper,

we consider a stochastic process pmtqtě0 with value in the space of probability measures P
`

Rd
˘

. We

denote by Pt the law L pmtq of mt, for t ě 0, which is a probability measure on the space of prob-

ability measure. Then pmtqtě0 is a continuous P
`

Rd
˘

-valued process, and P “ pPtqtě0 belongs to

C
`

r0,`8r;P
`

P
`

Rd
˘˘˘

, the space of continuous functions from r0,`8r to P
`

P
`

Rd
˘˘

.

Whenever there exists a distance d so that pE, dq is a metric space, we call PppEq, for any p ą 0,

the collection of elements µ P PppEq such that

Dx0 P E :

ż

E
dpx0, xqpµpdxq ă `8.
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In fact, the integral above is finite or not, whatever the choice of x0. We then define for any p ě 1, the

p-Wasserstein distance on PppEq as

dEp pµ, νq :“ inf
πPΠpµ,νq

ˆ
ż

EˆE
dpx, yqp πpdx,dyq

˙1{p

, µ, ν P PppEq,

where Πpµ, νq stands for the set of all couplings of µ and ν (i.e., all the joint probability measures on

E ˆ E with µ and ν as first and second marginals).

In this paper, we mainly use a probability-based approach, often switching between the measure-

valued stochastic process m and its probabilistic counterpart X , which solves Equation (3.5). At this

point, it is worth noting that we are concerned with a stochastic process pmtqtě0 that takes values in

the space of probability measures PpRdq. This means that at each time t ą 0, we are dealing with

measures on the space of probability, rather than on the underlying space Rd
. To study this process,

we use a probability-based approach and introduce several definitions that are specific to this setting.

For instance, we define the notion of an invariant measure in PpPpRdqq, which is a probability measure

that remains invariant under the evolution of the stochastic process. These definitions are essential for

our analysis and detailed below.

Definition 2.2. Let us consider a random variableX defined on the filtered probability space pΩ,F,F,Pq,
and P P PpPpRdqq. According to Lemma 2.4 in [CD18b], for P0 ´ a.e. ω0 P Ω0, Xpω0, ¨q is a random
variable on pΩ1,F1,P1q. By defining L1pXq : Ω0 Q ω0 ÞÑ LpXpω0, ¨qq, we get a random variable from
pΩ0,F0,P0q into PpRdq, providing a conditional law of X given F0. Finally, we say that LpXq “ P

whenever L1pXq is distributed with respect to P .

Definition 2.3 (Invariant measure). • We say that sP P P2pP2pRdqq, is an invariant measure for
the process pmtqtě0, if wheneverm0 is distributed according to sP , then at each time, the law ofmt

is independent of t. More precisely, we say that sP is an invariant measure if and only if

Lpm0q “ sP ñ Lpmtq “ sP , @t ą 0.

• We say that a stochastic processX on the probability space
`

Ω,F,F “ pFtqtě0 ,P
˘

admits an invari-
ant measure in P2pP2pRdqq if and only if, the measure valued stochastic processmt “ L

`

Xt|F
0
t

˘

admits an invariant measure.

Definition 2.4. For any function f , with at most linear growth, such that px, yq ÞÑ fp|x´ y|q defines a
distance on Rd, we define the following distance on P1pRdq

dR
d

f pµ, νq :“ inf
πPΠpµ,νq

ˆ
ż

RdˆRd

fp|x´ y|qq πpdx, dyq

˙

. (2.7)

Moreover, we define on P1pP1pRdqq,

d
PpRq

f pP,Qq “ inf
ΓPΠpP,Qq

ż

P2pRdq

dR
d

f pµ, νqΓpdµ,dνq,
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

for any P,Q P P1pP1pRdqq.

1.1 The processm as a mean field limit

Thanks to the definition of the previous subsection, we are now ready to give an interpretation of

the process pmtq in terms of mean field limit for interacting particle system. Let us consider P0 P

P2pP2pRdqq, let also N ě 1 be an integer, and pX1,N
0 , . . . , XN,N

0 q, N random variables which are

conditionally independent and identically distributed with respect to F0
0 , such that LpXi,N

0 q “ P0 for

all i P t1, . . . , Nu. We now define the following interacting particle system

#

dXi,N
t “ ´∇V pXi,N

t q ´N´1
řN

j“1∇W pXi,N
t ´Xj,N

t qdt` σdBi
t ` σ0dB

0
t ,

Xi,N
|t“0 “ Xi,N

0 , @i P t1, . . . , Nu ,

where theBi
are independent d-dimensional F1

-Brownian motion which are independent of F0
. Then,

we consider the mean-field limit system p sX1, . . . , sXN q driven by

#

d sXi
t “ ´∇V p sXi

tq ´ ∇W ˚mt

`

sXi
t

˘

dt` σdBi
t ` σ0dB

0
t ,

sXi
|t“0 “ sXi

0, @i P t1, . . . , Nu ,

where

`

sXi
0

˘

i
are conditionally iid random variables with respect to F0

0 , such that L
`

sXi
0

˘

“ P0, for all

i P t1, . . . , Nu. Our framework is exactly the same as the classical one for mean field games system

with common noise. However here, the law of the initial conditions is random. Then, conditioning

with respect to the σ-algebra F0
0 , we get back to a more classical framework where the initial condition

is a deterministic measure. More precisely, as stated in [CD18b], under sufficient regularity conditions

on the transport part bmainly Lipschitz continuity with respect to the space and measure variables, we

get that for any fixed t ě 0,

lim
NÑ`8

Er| sXi
t ´Xi,N

t |2s ` ErdR
d

2 pmN
t ,mtqs “ 0,

where dR
d

2 p¨, ¨q stands for the classical Wasserstein distance on Rd
, andmN

t :“ N´1
řN

i“1 δXi,N
t

is the

empirical measure of the interacting particle system.

2 Existence of an invariant measure for the stochastic flow of mea-
sures.

Let us consider a stochastic process pmtqtě0 with value in the space of probability measures P
`

Rd
˘

,

and with dynamic given by (3.1). Then,m is a weak solution of

dtmt “ ∇ ¨

´σ2 ` σ20
2

∇mt `mtp∇V ` ∇W ˚mtq

¯

dt´ σ0∇mt ¨ dB0
t . (2.8)
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2. Existence of an invariant measure for the stochastic flow of measures.

More precisely, for all t ě 0 and φ P C8
c pRdq,

dxmt, φy “ xmt, Lmtφy dt` σ0xmt, p∇φqJy dB0
t ,

where for any probability measurem P PpRdq, the operatorLm acts on a smooth functionφ of compact

support by

Lmφ “ ´p∇V ` ∇W ˚mq ¨ ∇φ`
σ20 ` σ2

2
∆φ,

where∇,∆ respectively stands for the gradient and laplacian operator, while ¨ denotes the usual inner

product in Rd
, and for any φ P C8

c pRdq and any probability measurem,

xm;φy “

ż

Rd

φ dm.

In this section, we aim at giving conditions on the potentials V and W to ensure existence of an in-

variant measure for the process pmtq. Let us now consider the following assumptions:

Assumption 1. 1. There exists a continuous function κ : r0,`8q Ñ R, such that

lim inf
rÑ`8

κprq ą 0,

and
p∇V pxq ´ ∇V pyqq ¨ px´ yq ě κp|x´ y|q|x´ y|2.

2. ∇V is LV -Lipschitz continuous.

Assumption 2. 1. W is symmetric, i.e.,W pxq “ W p´xq for all x P Rd.

2. ∇W is LW -Lipschitz continuous.

In the following, wework under the set of assumptions 1&2. The assumption regarding confinement

potential V primarily ensures convexity at infinity, which helps keep the process within a compact set

with a high probability. We can moreover note that this implies the existence ofmV ą 0 andMV ě 0,

such that

p∇V pxq ´ ∇V pyqq ¨ px´ yq ě mV |x´ y|2 ´MV .

The two following propositions stand.

Proposition 2.5. Under Assumptions 1 and 2 and for an initial condition X0 satisfying Er|X0|2s ă 8,
the conditional McKean-Vlasov equation (3.5) has a unique F-progressively measurable solution pXtqtě0,
with continuous trajectories, such that, for all T ą 0, Ersup0ďtďT |Xt|

2s ă 8.

Proof. The proof consists in a straightforward fixed point argument, using the Lipschitz properties of

the two coefficients ∇V and∇W . We refer to [CD18b, Chap. 2].

By the superposition principle for conditional McKean-Vlasov equations, see [LSZ20], we deduce

that existence and uniqueness also hold true for the stochastic Fokker-Planck equation:
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

Proposition 2.6. Let Assumptions 1 and 2 be in force. For an initial conditionm0 such that

EP0

ż

Rd

|x|m0pdxq ă 8,

the stochastic Fokker-Planck equation (2.8) has a unique solution pmtqtě0 in the space of F0-progressively
measurable processes with values in P2pRdq. Moroever, this solution satisfies

EP0r sup
0ďtďT

ż

Rd

|x|2mtpdxqs ă 8.

In this section, we start with a result regarding uniform-in-time control of the process pXtqtě0 with

initial condition in P2pP2pRdqq dynamic given by (3.5). To prove the existence of an invariant measure

for pmtqtě0 solution of (3.1), we will use the concept of intrinsic derivative for a functional defined on

a space of measure, as seen in [CDLL19].

Definition 2.7. Let us define C2
bpPpRdqq as the collection of continuous, bounded functions F : PpRdq Ñ

R with the following properties:

• There exists a unique continuous and bounded function BmF : PpRdq ˆ Rd Ñ R such that

lim
hÑ0

F pm` hpm1 ´mqq ´ F pmq

h
“

ż

Rd

BmF pm, vqpm1 ´mqpdvq,

for allm,m1 P PpRdq and

ż

Rd

BmF pm, vqmp dvq “ 0, m P PpRdq;

• The mapping x ÞÑ BmF pm,xq is continuously differentiable with uniformly bounded gradient
DmF pm,xq in pm,xq;

• For any fixed x P Rd, every component of the Rd-valued function m ÞÑ DmF pm,xq satisfies the
same conditions as the first two bullet points, resulting in a continuous and boundedD2

mF pm,x, yq P

Rdˆd;

• For m P PpRdq, we use DxDmF pm, vq to denote the Jacobian of the function x ÞÑ DmF pm,xq,
which is assumed to be continuous and bounded in pm,xq.

Proposition 2.8. Considering a measure valued process pmtq, which dynamic is given by (3.1), and defin-
ing Pt “ L pmtq, we have that for any bounded and twice differentiable function F P C2

bpPpRdq,Rq:

xPt ´ P0, F y “

ż t

0
xPs,MF yds, @t ą 0, (2.9)
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where we define, form P PpRdq,

MF pmq :“

ż

Rd

”

DmF pm,xq ¨ bpx,mq `
σ2 ` σ20

2
∇ ¨ pDmF pm,xqq

ı

mpdxq

`
σ20
2

ż

R2d

Tr
“

D2
mmF pm,x, yq

‰

mpdxqmpdyq,

and where for all measurable and bounded function Φ : PpRdq Ñ R, and all P P PpPpRdqq,

xP ; Φy “

ż

PpRdq

ΦpmqP pdmq.

Moreover, sP is an invariant measure if and only if

@

sP ,MF
D

“ 0, @F P C2
bpPpRdq,Rq. (2.10)

The proof of Proposition 2.8 is based on [LSZ20, Section 1.2] and postponed to the Appendix 5.1.

2.1 The existence result

We now present a result about the existence of an invariant measure for the equation of interest, adapt-

ing classical results for McKean-Vlasov equation without common noise where the flow of probability

measures, represented as pmtqtě0 is deterministic. We begin this section with the following Lemma,

the proof of which is classical and postponed to Appendix 5.2.

Lemma 2.9. Under Assumptions 1 & 2, let us consider P0 P P2pP2pRdqq. Then, denoting by pXtqt the
associated stochastic process with initial conditionL pX0q “ P0 in the sense of Definition 3.1, and dynamic
given by (3.5), we have the following uniform in time moment control:

sup
tą0

E
“

|Xt|
2
‰

ă `8.

Now, we are ready to state the following Proposition:

Proposition 2.10. Under Assumptions 1 & 2, the dynamical system given by (3.1) admits at least an
invariant measure sP P P2pP2pRdqq, i.e such that

ż

PpRdq

ż

Rd

|x|2mpdxq sP pdmq ă `8.

Proof of Proposition 2.10. Let us fix P0 P P2pP2pRdqq, i.e such that:

ż

PpRdq

ż

Rd

|x|2mpdxqP0pdmq ă `8.

Step 1. Let us now consider a random flow of probability measures pmtqtě0 with dynamic given

by (3.1) and initial condition P0 P P2pP2pRdqq. At each time t ě 0, we denote by Pt the law of this
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measure valued process. For T ą 0, we define the process pQT qTą0 with value in P2pP2pRdqq by

QT “ T´1

ż T

0
Ptdt.

This defines a sequence of probability measures on PpRdq. Let us show that pQT qTą0 admits at least

a convergent subsequence. Thanks to Prohorov theorem, we only need to show that this sequence is

tight. For R ą 0, let us consider the set

KR “

!

m P PpRdq,

ż

Rd

|x|2mpdxq ď R
)

.

This set is compact for the topology of weak convergence in PpRdq. Now, for T ą 0,

QT pKRq “ T´1

ż T

0
PtpKRqdt

“ T´1

ż T

0

ż

PpRdq

1tmPKRuPtpdmqdt

“ T´1

ż T

0
E
“

1tmtPKRu

‰

dt

ě 1 ´
c

R
,

where c “ suptą0 E
“

|Xt|
2
‰

ă `8, thanks to Lemma 2.9. Hence, for any ε ą 0, there exists Rε ą 0

such that QT pKRεq ą 1 ´ ε, for all T ą 0. This gives tightness of the sequence and then existence of

a converging subsequence that we keep denoting by pQT qTą0 in the following.

Step 2. Let us denote byQ the limit of this converging subsequence, and show thatQ is an invariant

measure. Let T ą 0, and F P C2
b pPpRdq,Rq, thanks to Proposition 2.8, we get that

xQT ,MF y “

ż

PpRdq

´

ż

Rd

rDmF pm,xq ¨ bpx,mq `
σ2 ` σ20

2
∇ ¨ pDmF pm,xqqsmpdxq

`
σ20
2

ż

R2d

TrrD2
mmF pm,x, yqsmpdxqmpdyq

¯

QT pdmq

“ T´1

ż T

0

ż

PpRdq

´

ż

Rd

rDmF pm,xq ¨ bpx,mq `
σ2 ` σ20

2
∇ ¨ pDmF pm,xqqsmpdxq

`
σ20
2

ż

R2d

TrrD2
mmF pm,x, yqsmpdxqmpdyq

¯

Ptpdmq

“ T´1xPT ´ P0, F y.

Hence, for all F P C2
b pPpRdqq, xQ,MF y “ 0. This ensures that Q is an invariant measure.

Step 3. Finally we move on to the moment estimate. We know that there exists a subsequence of
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QT which converges weakly to
sP . Moreover,

ż

PpRdq

ż

Rd

|x|2mpdxqQT pdmq “
1

T

ż T

0

ż

PpRdq

ż

Rd

|x|2mpdxqPtpdmqdt,

and

sup
Tą0

1

T

ż T

0

ż

PpRdq

ż

Rd

|x|2mpdxqPtpdmqdt ă `8,

as suptą0 E
“

|Xt|
2
‰

ă `8. Moreover, the function m P P2

`

Rd
˘

ÞÑ
ş

Rd |x|2mpdxq is lower semi

continuous, and then,

ż

PpRdq

ż

Rd

|x|2mpdxq sP pdmq ď lim inf
TÑ`8

1

T

ż T

0

ż

PpRdq

ż

Rd

|x|2mpdxqPtpdmqdt ă `8.

From the previous result we get the following Corollary

Corollary 2.11. For P P P2pP2pRdqq, we have that dPpRdq

2 pP, sP q ă `8.

3 The case of a uniformly convex confinement potential

In this section, we show that the process pmtqtě0, driven by equation (2.8), has a unique invariant

measure under strong convexity assumptions on the confinement potential. Moreover, our method

allows us to find exponential rates of convergence toward the invariant measure for a specific set of

initial conditions. We again consider P0 P P2pP2pRdqq and a random variable X0 such that L pX0q “

P0, following Definition 3.1. Next, we study the stochastic process pXtq driven by equation (3.5) with

the initial condition X0. In this part of the paper, we consider strict convexity assumptions on the

confinement potential V . To be specific, we adopt the following assumptions throughout this section:

Assumption 3. • V is uniformly convex, more precisely, there exists β ą 0 such that:

∇2V ě β Id.

• ∇V is Lipschitz continuous.

• W is even, convex, and∇W is globally Lipschitz continuous, with Lipschitz constant LW .

Thanks to the previous section, under Assumption 3, a process X driven by equation (3.5) has an

invariant measure. Specifically, there exists
sP P P2pP2pRdqq such that the process pmtqtě0, governed

by the dynamic in Equation (3.1) and with an initial condition of Lpm0q “ sP , is invariant. This section

starts with a key result that states uniform propagation of chaos uniformly in time. This result will

then help us establish the uniqueness of the invariant measure and to give a rate of convergence to

equilibrium.
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3.1 Uniform in time propagation of chaos

In the case without common noise, the uniqueness of the invariant measure for the process X has

been already been established see e.g [CGM08], [Mal01], and [BGG13]. In this section, our aim is to

adapt this result to the case with common noise and obtain the uniqueness of the invariant measure

for the probability measure valued stochastic process pmtq, and exponentially fast convergence to the

equilibria.

Theorem 2.12. Let us consider P,Q P P2pP2pRdqq, and two particle systems X “ pX1, . . . , XN q and
XN “ pX1,N , . . . , XN,N q with dynamics,

dXi
t “ ´∇V pXi

tqdt´ ∇W ˚mtpX
i
tqdt` σdBi

t ` σ0dB
0
t , @i P t1, . . . , Nu , (2.11)

and

dXi,N
t “ ´∇V pXi,N

t qdt´
1

N

N
ÿ

j“1

∇W pXi,N
t ´Xj,N

t qdt`σdBi
t `σ0dB

0
t , @i P t1, . . . , Nu . (2.12)

where pXi
0qiPt1,...,Nu are independent and identically distributed such that Lp sX1

0 q “ P in the sense of
Definition 3.1, and where the same holds for the second system with LpX1,N

0 q “ Q. Then, under assump-
tions 3, there exists a constant C ą 0 depending only on the dimension d and the probability measures P
and Q, such that

E
”

dR
d

2 pmP,N
Xt

,mQ,N

XN
t

q

ı

ď C
´

e´βt `
1

2β
?
N ´ 1

¯

,

wheremP,N
Xt

“ 1
N

řN
i“1 δXi

t
andmQ,N

XN
t

“ 1
N

řN
i“1 δXi,N

t
.

The proof of this result closely follows the approach presented in [BRV98] and [Mal01], which

shows the propagation of chaos for particle systems in cases without common noise. However, in our

situation, we need to be careful with the interaction term and its dependency on the common noise.

Proof. We only sketch the proof, as it follows closely the proof of [Mal01, Thm 3.3]. Let i P t1, . . . , Nu,

using Itô formula, we get

d

dt
|Xi,N

t ´Xi
t |
2 “ ´2pXi,N

t ´Xi
tq ¨ p∇V pXi,N

t q ´ ∇V pXi
tqq

´
2

N

N
ÿ

j“1

pXi,N
t ´Xi

tq ¨ p∇W pXi,N
t ´Xj,N

t q ´ ∇W ˚mtpX
i
tqq.
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In order to control the second term, we make the following decomposition:

´2pXi,N
t ´Xi

tq

´

N´1
N
ÿ

j“1

∇W pXi,N
t ´Xj,N

t q ´ ∇W ˚mtpX
i
tq

¯

“ ´2pXi,N
t ´Xi

tq

´

N´1
N
ÿ

j“1

∇W pXi,N
t ´Xj,N

t q ´N´1
N
ÿ

j“1

∇W pXi
t ´Xj

t q

¯

´ 2pXi,N
t ´Xi

tq

´

N´1
N
ÿ

j“1

∇W pXi
t ´Xj

t q ´ ∇W ˚mtpX
i
tq

¯

“ Ξi,N
t ` Υi,N

t .

Summing the first term over i shows and using the convexity of the interaction potential, we get

1

N

N
ÿ

i“1

Ξi,N
t “ ´2N´2

N
ÿ

i,j“1

pXi,N
t ´Xj,N

t ´Xi
t `Xj

t qp∇W pXi
t ´Xj

t q ´ ∇W pXi
t ´Xj

t qq ď 0.

Moreover, the second term can be decomposed into two terms

Υi,N
t “ ´ 2pXi,N

t ´Xi
tq ¨

´

pN ´ 1q´1
N
ÿ

j“1

∇W pXi
t ´Xj

t q ´ ∇W ˚mtpX
i
tq

¯

´ 2pXi,N
t ´Xi

tq ¨

´´ 1

N
´

1

N ´ 1

¯

N
ÿ

j“1

∇W pXi
t ´Xj

t q

¯

For the first one

Er|∇W ˚mtpX
i
tq ´

1

N ´ 1

N
ÿ

j“1

∇W pXi
t ´Xj

t q|2s

“ E
”

E
”ˇ

ˇ

ˇ
∇W ˚mtpX

i
tq ´

1

N ´ 1

N
ÿ

j“1

∇W pXi
t ´Xj

t q

ˇ

ˇ

ˇ

2ˇ
ˇ

ˇ
Xi

t ,F
0
t

ıı

“ E
”

Var
” 1

N ´ 1

N
ÿ

j“1

∇W pXi
t ´Xj

t q

ˇ

ˇ

ˇ
Xi

t ,F
0
t

ıı

ď
1

N ´ 1
ErEr|∇W pXi

t ´Xj
t q|2|Xi

t ,F
0
t ss, for some j ‰ i

ď
L2
W

N ´ 1
ErEr|Xi

t ´Xj
t |2|Xi

t ,F
0
t ss

ď
2L2

W

N ´ 1
Er|X1

t |2s,

where the first inequality comes from the fact that Er∇W pXi
t ´Xj

t q|Xi
t ,F

0
t s “ ∇W ˚mtpX

i
tq. Then,
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

thanks to Lemma 2.9, there exists a constant C ą 0, such that

E
”

pXi,N
t ´Xi

tq ¨

´

pN ´ 1q´1
N
ÿ

j“1

∇W pXi
t ´Xj

t q ´ ∇W ˚mtpX
i
tq

¯ı

ď Er|Xi,N
t ´Xi

t |
2s1{2E

”ˇ

ˇ

ˇ
∇W ˚mtpX

i
tq ´

1

N ´ 1

N
ÿ

j“1

∇W pXi
t ´Xj

t q

ˇ

ˇ

ˇ

2ı1{2

ď
C

?
N ´ 1

Er|Xi,N
t ´Xi

t |
2s1{2.

Now,

E
”ˇ

ˇ

ˇ

1

N ´ 1
¨
1

N

N
ÿ

j“1

∇W pXi
t ´Xj

t q

ˇ

ˇ

ˇ

2ı

ď
2L2

W

pN ´ 1q2
Er|X1

t |2s.

Finally, using once again Lemma 2.9 we get the existence of a constant C , such that:

Er|Υi,N
t |s ď C

´ 1

N ´ 1
`

1
?
N ´ 1

¯

Er|Xi,N
t ´Xi

t |
2s1{2.

Finally, we get that

1

N

N
ÿ

i“1

d

dt
Er|Xi

t ´Xi,N
t |2s ď ´

2β

N

N
ÿ

i“1

Er|Xi
t ´Xi,N

t |2s `
C

?
N ´ 1

´

N´1
N
ÿ

i“1

Er|Xi,N
t ´Xi

t |
2s

¯1{2
,

for some constant C ą 0. Let us now denote vN ptq “ N´1
řN

i“1 Er|Xi
t ´Xi,N

t |2s, then we have

v1
N ptq ď ´2βvN ptq `

C
?
N ´ 1

vN ptq1{2.

This gives, using Grönwall Lemma:

vN ptq1{2 ď e´βtvN p0q `
C

2β
?
N ´ 1

. (2.13)

Moreover, vN p0q “ N´1
řN

i“1 Er|Xi
0 ´Xi,N

0 |2s ď Er|Xi
0|2 ` |Xi,N

0 |2s is bounded uniformly inN , and

as ErdR
d

2 pmN
Xt
,mN

XN
t

qs ď vN ptq1{2, we conclude the proof of Theorem 2.12.

3.2 Uniqueness of the invariant measure

The main consequence of the previous result is the uniqueness of the invariant measure for the process

pmtqtě0 driven by (3.1). As recalled at the beginning of the section, we have already shown that under

Assumptions 1 and 2, there exists an invariant measure
sP . From Theorem 2.12, we get the following

Corollary

Corollary 2.13. Under Assumptions 3, the stochastic process pmtq admits a unique invariant measure
sP P P2

`

P
`

Rd
˘˘

. Moreover, for each P0 P P2pP2pRdqq, there is an exponential convergence to the
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3. The case of a uniformly convex confinement potential

invariant measure:
d
PpRdq

2 pPt, sP q ď e´βtd
PpRdq

2 pP0, sP q2.

This implies uniqueness of the invariant measure and the convergence to this equilibria for a large

class of initial conditions P0. In order to prove the previous result, we begin with a technical Lemma:

Lemma2.14. Letm and ρ be two probabilitymeasures valued random variables which areF0
0-measurable.

Then, there exists a random variable ξ defined on the space pΩ,F,Pq and with value in PpRdq, such that
almost surely:

ξ P argmin
πPΠpm,ρq

ż

Rd

|x´ y|2πpdx,dyq.

The proof of this Lemma is postponed to Appendix 5.3 and relies on mesurability arguments for set

valued functions issued from [SV79].

Proof of Corollary 2.13. The proof of this result relies on the result and the proof of Theorem 2.12, but

the important difference is the choice of the initial conditions. More precisely, for P0 P P2pP2pRdqq, we

pick Γ P Π
`

P0, sP
˘

which is not empty. Let us consider a couple of probability measure valued random

variables pm0, sm0q, and such that L ppm0, sm0qq “ Γ. It means that Lpm0q “ P0 and Lpm̄0q “ P̄0.

Thanks to Lemma 2.14, we know that there exists ξ random variable such that almost surely,

ξ P argmin
πPΠpm0, sm0q

ż

Rd

|x´ y|2πpdx,dyq.

We consider once again the particle system:

dXi
t “ ´∇pXi

tqdt´ ∇W ˚mtpX
i
tqdt` σdBi

t ` σ0dB
0
t , @i P t1, . . . , Nu,

and

dXi,N
t “ ´∇pXi,N

t qdt´
1

N

N
ÿ

j“1

∇W pXi,N
t ´Xj,N

t qdt` σdBi
t ` σ0dB

0
t , @i P t1, . . . , Nu,

where the pXi
0, X

i,N
0 q for i P t1, . . . , Nu are independent and such that LppXi

0, X
i,N
0 q|F0

0q “ ξ. From

Theorem 2.12, and more precisely Equation (2.13), we know that there exists a constant C ą 0, such

that:

ErdR
d

2 pmN
Xt
,mN

XN
t

q2s ď e´βtEr|X1
0 ´X1,N

0 |2s ` CN´1{2. (2.14)

Moreover, with the particular choice we made for the initial conditions, we get that

Er|X1
0 ´X1,N

0 |2s “ ErEr|X1
0 ´X1,N

0 |2|F0
0ss

“ E
„
ż

Rd

|x´ y|2ξpdx,dyq

ȷ

“

ż

PpRdq

dR
d

2 pµ, νqΓpdµ, dνq.
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

Taking the infimum over all the transport plan Γ between P0 and
sP in (2.14), we get that

E
”

dR
d

2 pmN
Xt
,mN

XN
t

q2
ı

ď e´βtd
PpRdq

2 pP0, sP q `
C

?
N
. (2.15)

Moreover,

d
PpRdq

2 pPt, sP q ď E
”

dR
d

2 psmt,mtq
2
ı

, (2.16)

where psmtq is the stochastic flow of measure driven by (3.1) with initial condition
sP and pmtq has the

same dynamic with initial condition P0. Now combining (2.15) and (2.16), taking the limitN to infinity,

we get

d
PpRdq

2 pPt, sP q ď e´βtd
PpRdq

2 pP0, sP q.

Remark 2.15. Some remarks are in order: (1) We recall that thanks to Proposition 2.11, the distance
d
PpRdq

2 pP0, sP q is finite because P0 P P2pP2pRdqq; (2) Common noise does not ruin the usual convergence
results. It makes sense because the common noise mainly acts like a drift term in Equation (3.1) and should
not make the usual convergence results go haywire.

3.3 Example

In this section, we consider an Ornstein-Uhlenbeck process with common noise, that is taking V : x ÞÑ

|x|2{2 andW “ 0. Let X be a real valued stochastic process evolving in Rd
, driven by the following

stochastic differential equation:

dXt “ ´Xtdt` σdBt ` σ0dB
0
t . (2.17)

Then, the process associated process pmtqtě0 is solution of

dtmt “ ∇ ¨

„

σ2 ` σ20
2

∇mt `mtx

ȷ

dt´ σ0∇mt ¨ dB0
t , (2.18)

Moreover, we consider the following initial condition L pX0q “ P0 (in the sense of Definition 3.1),

for some P0 P P2pP2pRdqq. In this particular setting, we are able to explicitly describe the invariant

measure.

Proposition 2.16. The unique invariant measure sP of the process on the space PpRdq is the image, by the
function x P Rd ÞÑ Ndp´x, σ2Idq P PpRdq of themeasure γσ0 ; where γσ0pdxq “ p2σ20q´1{2e´|x|2{2σ2

0dx,
where for all µ P Rd,Σ P MdpRq, Nd pµ,Σq denotes a gaussian distribution in dimension d centered in µ
and with variance-covariance matrix Σ.

The fact that in this case we are able to exhibit the invariant measure comes from the linearity of

the equation and the linearity of the confinement forces which derives from a quadratic potential, as

shown in the proof. The convergence to the equilibria holds at an exponential thanks to Theorem 2.12.
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4. Non-convex potential without idiosyncratic noise

Proof of Proposition 2.16. Let be the process X0
defined dynamic given by:

#

dX0
t “ ´X0

t dt´ σ0dB
0
t

L
`

X0
0

˘

“ N
`

0, σ20
˘

.

The initial condition is such that the process X0
is stationary. We now define the process psmtqt with

sm0, such that Lpm̄0q “ P as initial condition and staying

dt smt “ ∇ ¨

”σ2 ` σ20
2

∇smt ` smtx
ı

dt´ σ0∇smt ¨ dB0
t . (2.19)

Let us define rmt :“ pId ´ σ0B0
t q7smt, where 7 stands for the pushforward operator. Then, applying

Itô-Wentzell formula, we get that rmt satisfies

#

Bt rmt “ ∇ ¨ rσ
2

2 ∇rmt ` rmtpx`B0
t qs,

rm0 “ sm0.
(2.20)

Moreover, we get thatmt :“ Np´pX0
t ` σ0B

0
t q, σ2Idq satisfies,

dtmtpxq “ ´σ´2px`X0
t `σ0B0

t qmtpxqdpX0
t `σ0B

0
t q “ σ´2px`X0

t `σ0B
0
t q ¨X0

tmtpxqdt. (2.21)

Then, as

1

2
σ20∆mt ` div

`

mt

`

x`B0
t

˘˘

“ ´σ´2X0
t ∇mt “ σ´2X0

t ¨
`

x`X0
t ` σ0B

0
t

˘

mtpxq,

it shows that pmtqt satisfies (2.20) withm0 “ sm0 and then ppId`σ0B0
t q7mtqt is solution of (2.19) with

the same initial condition. Finally,

smtpdxq “ pId ` σ0B0
t q7mtpdxq “ c expt´|x`X0

t |2{2σ2udx.

As pX0
t qt is stationary in Rd

, psmtqt is also in PpRdq, which shows the first part of the Proposition. The

uniqueness of this invariant measure is then given by Corollary 2.13.

4 Non-convex potential without idiosyncratic noise

In this section, we consider the case of a non-convex potential V in the particular setting σ “ 0. It turns

out that in some specific situations, we can use the presence of interaction to achieve an exponential

rate of convergence to the unique invariant measure. More precisely, let us consider m with dynamic

given by

dtmt “ ∇ ¨

´σ20
2
∇mt `mtp∇V ` ∇W ˚mtq

¯

dt´ σ0∇mt ¨ dB0
t . (2.22)

In the following of the section, let us consider that the potential V satisfies Assumption 1:
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

1. There exists a continuous function κ : r0,`8q Ñ R, such that

lim inf
rÑ`8

κprq ą 0,

and

p∇V pxq ´ ∇V pyqq ¨ px´ yq ě κp|x´ y|q|x´ y|2.

2. ∇V is LV -Lipschitz continuous.

Moreover, in the sequel, we only consider the particular setting where W is quadratic in order to be

able to control the long time dynamic of pmtqt with respect to its first moment.

Assumption 4. There exists α ą 0, such thatW pxq “ α|x|2{2.

4.1 Existence of an invariant measure

This section begins with a discussion on the existence of an invariant measure, which in this case can be

described explicitly. This comes from the absence of idiosyncratic noise within our system coupled with

the strong convexity of the interaction, which allows the measure process driven by Equation (2.22), to

get close to its first moment on a large time scale, a concept further detailed in Lemma 2.19. Then, we

see that the variance within the stochastic flow of measure decays to zero. It is then natural that the

invariant measure finds its support in Dirac masses, as detailed in the following Proposition.

Proposition 2.17. Under Assumptions 1 and 4, forα large enough, there exists a unique invariantmeasure
sP in the sense of Definition 3.1, and this measure is supported by Dirac masses. More precisely,

sP pdmq “

ż

Rd

δδam0pdaq

wherem0 is the probability measure on Rd solution of ´
σ2
0
2 ∆m0 ´ ∇ ¨ p∇V m0q “ 0.

Proof of Proposition 2.17. If sP pdmq “
ş

Rd δδam0pdaq, then for all twice differentiable function in the

sense of Lions derivarives F P C2pPpRdq,Rq

IpF q :“

ż

P2pRdq

„
ż

Rd

ˆ

DmF pm,xq ¨ p´∇V pxq ´ ∇W ˚mpxqq `
σ20
2
divxDmF pm,xq

˙

qmpdxq

`
σ20
2

ż

R2d

Tr
“

D2
mmF pm,x, yqq

‰

mpdxqmpdyq

ȷ

sP pdmq

“

ż

Rd

„

DmF pδa, aq ¨ p´∇V paqq `
σ20
2
divxDmF pδa, aq `

σ20
2
Tr

“

D2
mmF pδa, a, aq

‰

ȷ

m0pdaq,

(2.23)

where, if we define φpaq “ F pδaq, then

∇φpaq “ DmF pδa, aq, ∆φpaq “ Tr
“

D2
mmF pδa, a, aq `D2

xmF pδa, aq
‰

.

Then,

IpF q “

ż

Rd

„

´∇φpaq ¨ ∇V paq `
σ20
2
∆φpaq

ȷ

m0pdaq “ 0, (2.24)
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4. Non-convex potential without idiosyncratic noise

asm0 is solution of
σ2
0
2 ∆m0 ` ∇ ¨ p∇V m0q “ 0.

4.2 Uniqueness of the invariant measure and exponential decay

The previous section shows that for σ “ 0, we can explicitly identify an invariant measure, though

its uniqueness is uncertain due to the non-convex nature of the confinement potential. This section

establishes that, in the absence of idiosyncratic noise, the invariant measure is indeed unique. More

precisely, let us state the following result:

Theorem2.18. Wheneverσ “ 0 and under Assumptions 3, for any initial conditionsP0, Q0 P P2pP2pRdqq,
there exists a constant C that does not depend on t such that

d
PpRdq

1 pPt, Qtq ď C
´

e´ℓσ2
0t ` e´pα´2LV qt

¯

,

for some positive constant ℓ. Moreover, P̄ defined in Proposition 2.17 is the unique invariant measure in
the sense of Defintion 3.4.

This is the main result of this paper, showing is that when σ “ 0, there is only one invariant mea-

sure, which contrasts with scenarios lacking common noise where multiple invariant solutions exist

as we are in a context with non-convex confinement potential. This theorem reveals that introduc-

ing finite dimensional noise to the system uniquely determines the invariant measure, a result that is

stronger than previous one in the literature. Earlier studies (see e.g [ABKO23]) showed that adding

cylindrical noise could achieve invariant measure uniqueness, but our results go further by showing

that even finite dimensional noise is enough for this purpose.

Proposition 2.17 shows that when σ “ 0, we are able to identify the unique invariant measure.

Moreover, in Theorem 2.18, we can see that the string interaction structure helps in order to get ex-

ponentially fast convergence to this invariant measure. This may seem surprising initially, but the ex-

planation lies in how the interaction term affects convergence rates. Specifically, in contexts of strong

interaction, the process pmtq is significantly drawn towards its first moment on a large time scale.

This observation plays a crucial role in proving Theorem 2.18, showing that the law of the infinite-

dimensional random measure processm can be equated with the law of its first moment, as detailed in

the following lemma.

Lemma 2.19. Let us consider a probability measure P0 P P2pP2pRdqq. If pmtqt defines the stochastic
flow of measure solution of (2.22) with initial condition P0, we define for all t ą 0, p̄t P P2pRdq the law
of the first moment of mt, smt “

ş

Rd xmtpdxq. Then, we have for some constant C that depends only on
P0

d
PpRdq

1 pPt, δp̄tq ď Ce´pα´2CV qt.

Remark 2.20. The specific form of the invariant measure, as detailed in Proposition 2.17, showcases a
scenario unique to quadratic interactions. However, the insights from Lemma 2.19 holds true even when
we tweak the interaction term to something like

px, µq ÞÑ ∇ ´W

ˆ

x´

ż

y µpdyq

˙

,
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

provided W is a uniformly convex potential. The critical aspect we are looking at here is not the specific
form of the interaction but how it allows us to identify the process with its mean on a large time scale.
Then, uniqueness of the invariant measure holds for more general interaction potential.

Proof of Lemma 2.19. The proof of this result is quite straightforward and due to the strong interaction
regime. Let us now consider the process X evolving in Rd

with dynamic

dXt “ ´∇V pXtqdt´ αpXt ´ EP1rXtsqdt` σ0dB
0
t .

Now, by definition of the Wasserstein distance, we know that

d
PpRdq

1 pPt, δp̄tq ď ErdR
d

1 pmt, p̄tqs.

It is also known that the conditional law of the process X at time t ą 0 is given bymt. Then

ErdR
d

1 pmt, p̄tqs ď Er|Xt ´ EP1rXts|s.

We are now left with the study of a stochastic process evolving into a finite dimensional space. Writing

the dynamic of the process and using the fact that∇V is Lipschitz continuous, we get

d

dt
E
“

|Xt ´ EP1rXts|
2
‰

ď ´2pα ´ 2CV qE
“

|Xt ´ EP1rXts|
2
‰

.

This gives the result applying Grönwall Lemma, we get

E
“

|Xt ´ EP1rXts|
2
‰

ď E
“

|X0 ´ EP1rX0s|2
‰

exp p´2pα ´ 2CV qtq

Moreover, we can write

E
“

|X0 ´ EP1rX0s|2
‰

ď 2Er|X0|2s.

This term is finite as P0 is assumed to admit a finit moment of order 2, which concludes the proof.

The aforementioned result shows that over large time scales, the conditional law of the process

X can be identified with its first moment. Consequently, to understand the long-term behavior of the

solution pmtq to Equation (2.22), it is enough to study the long-term behavior of

ˆ
ż

Rd

x mtpdxq

˙

tě0

.

In particular, we would like to show that it admits a unique equilibrium. We are then left with the study

of the following dynamic:

dEP1rXts “ ´EP1r∇V pXtqsdt` σ0dB
0
t .

The dynamic here looks like the one of a classical diffusion process. This similarity is explicited in

64



4. Non-convex potential without idiosyncratic noise

the following expression:

dEP1rXts “ ´∇V pEP1rXtsqdt` εVt dt` σ0dB
0
t ,

where εVt :“ ´EP1r∇V pXtqs ` ∇V pEP1rXtsq. Further, using the Lipschitz continuity of V and with

a similar approach as in the proof of Lemma 2.19, we can show that εV¨ decays exponentially fast to

0 over time. Then, the dynamics of pEP1rXtsqt ě 0 closely look like the one of a diffusion process

with confining potential. Following the methodology of [Ebe16], we show that such process exhibits a

contraction property in the Wasserstein distance. More precisely, we have the following result:

Proposition 2.21. Let us consider two probability measures P0, Q0 P P2pP2pRdqq. Moreover, if pmP
t qt

and pmQ
t qt define the stochastic flows of measure solution of (2.22) with initial condition P0 and Q0

respectively, we define for all t ą 0, p̄t, and q̄t the law of the first moment of mP
t , and m

Q
t respectively.

Then, we have for some constant C that depends only on P0 and Q0

dR
d

1 pp̄t, q̄tq ď Cpe´pα´2CV qt ` e´ℓσ2
0tq.

In order to prove Proposition 2.21, let us proceed as in [DEGZ20], and introduce the following

quantity:

R0 “ inf ts ě 0, κprq ě 0, @r ě su ,

R1 “ inf
␣

s ě R0, sps´R0qκprq ě 4σ20, @r ě s
(

.

Moreover, we consider φ, Φ, g : r0,`8q Ñ r0,`8q defined by

φprq “ exp

ˆ

´
1

2σ20

ż r

0
sκ´psqds

˙

,

Φprq “

ż r

0
φpsqds,

gprq “ 1 ´
ℓ

2

ż r^R1

0
Φpsq{φpsqds,

where κ´ “ maxp0,´κq and ℓ “

´

şR1

0 Φpsqφpsq´1ds
¯´1

. We now define an increasing function

f : r0,`8q Ñ r0,`8q by:

fprq “

ż r

0
φpsqgpsqds.

The function f that has been constructed is clearly positive, non-decreasing and concave. Moreover, it

satisfies

φpR0qr{2 ď fprq ď r. (2.25)

This ensures that px, yq ÞÑ fp|x ´ y|q defines a distance which is equivalent to the Euclidean one.

Below, we will use contraction properties in Wasserstein-1 distance based on the underlying distance

fp|x´ y|q. These contraction property is a consequence of Proposition 2.22.
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

Proposition 2.22. The following inequalities holds for all r ą 0:

f 11prq ´
1

2σ20
rκprqf 1prq ď ´ℓfprq{2.

The proof of this Proposition is found in Appendix 5.4 for sake of clarity but is exactly the same

as in [Ebe16]. However, it is essential to emphasize that the function f was constructed to achieve

a contraction inequality, ensuring uniform propagation of chaos over time. These techniques were

greatly inspired by [LR86] and further developed in [Ebe16]. Let us now consider Let us also consider

δ ą 0, and define Xδ
and Y δ

with common dynamic given by:

dXδ
t “ ´∇V pXδ

t qdt´ αpXδ
t ´ EP1rXδ

t sqdt` σ0tπδpEδ
t qdB0

t ` λδpEδ
t qdB̃0

t u

and

dY δ
t “ ´∇V pY δ

t qdt´ αpY δ
t ´ EP1Y δ

t qdt` σ0tpId ´ 2eδte
δ
t
T

qπδpEδ
t qdB0

t ` λδpEδ
t qdB̃0

t u.

where

• B0
and B̃0

are independent Brownian motions adapted to F0

• For all t ě 0 and δ ą 0, we denote

Eδ
t “ EP1rXδ

t ´ Y δ
t s;

• For all t ě 0 and δ ą 0,

eδt “

$

&

%

Eδ
t {|Eδ

t | if |Eδ
t | ‰ 0,

0 else.

• We define a non-decreasing and continuous function π, such that for x P RN
,

πpxq “

$

&

%

1 if |x| ě 1

0 if |x| ď 1{2,

and, consider a non negative function λ such that

πpxq2 ` λpxq2 “ 1, @x P RN .

Moreover, we extend π on the whole space, with the constraint that this remains a non decreasing

and Lipschitz continuous function. Finally, we define πδ : x ÞÑ π px{δq.

The coupling just introduced is known as coupling by reflection. However, its application in this

context is not immediately intuitive. Particularly intriguing is the reflection performed on the common

noise component. However, the forthcoming Lemma proves that such a reflection on the common noise

does not affect the properties of the conditional law.
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4. Non-convex potential without idiosyncratic noise

Lemma 2.23. There exist two d-dimensional Brownian motions pβ0t q and pβ̃0t q adapted to the filtration
F0 such that if we define for all t ě 0,mX,δ

t “ L1pXδ
t q andmY,δ

t “ L1pY δ
t q, we have

dtm
X,δ
t “ ∇ ¨

´σ20
2
∇mX,δ

t `mX,δ
t

`

∇V ` α
`

mX,δ
t ´

ż

Rd

xmX,δ
t pdxq

˘˘

¯

dt´ σ0∇mt ¨ dβ0t ,

and

dtm
Y,δ
t “ ∇ ¨

´σ20
2
∇mY,δ

t `mY,δ
t

`

∇V ` α
`

mY,δ
t ´

ż

Rd

xmY,δ
t pdxq

˘˘

¯

dt´ σ0∇mt ¨ dβ̃0t .

The proof of this lemma is quite straightforward and then postponed to the Appendix 5.5. This is

quite natural because we only reflect with respect to something that is measurable with respect to the

common noise, see [CD18b, Thm 4.14] for further details.

Now that we defined the coupling and that Lemma 2.23 ensures that this coupling gives the expected

Equation, for any δ ą 0, we can show the following proposition:

Proposition 2.24. For any δ ą 0 and t ą 0,

d|EP1rXδ
t s ´ EP1rY δ

t s| “ ´eδt ¨

´

EP1r∇V pXδ
t qs ´ EP1r∇V pY δ

t qs

¯

dt (2.26)

` 2σ0πδpEδ
t qpeδt qTdB0

t .

Proof. Using Itô’s formula, we get that for any δ ą 0,

d|EP1rXδ
t s ´ EP1rY δ

t s|2 “ ´ 2pEP1rXδ
t s ´ EP1rY δ

t sq ¨ pEP1r∇V pXδ
t qs ´ EP1r∇V pY δ

t qsqdt

` 4σ0pEP1rXδ
t s ´ EP1rY δ

t sqπδpEδ
t qeδt peδt qTdB0

t

` 4σ20πδpEδ
t q2peδt qTdt.

For any ε ą 0, let us introduce ψε : r0,`8s P r ÞÑ pr ` εq1{2
. This function is continuously twice

differentiable, then we can write

dψεp|EP1rXδ
t s ´ EP1rY δ

t s|2q “ ´ 2ψ1
εp|Eδ

t |2qEδ
t ¨ pEP1r∇V pXδ

t qs ´ EP1r∇V pY δ
t qsqdt

` 4σ0ψ
1
εp|Eδ

t |2qEδ
t πδpEδ

t qeδt peδt qTdB0
t

` 4σ20ψ
1
εp|Eδ

t |2qπδpEδ
t q2peδt qTdt

` 8σ20ψ
2
εp|Eδ

t |2q|Eδ
t |2ψδpEδ

t qpeδt qTdt.

We nowwant to take the limit ε Ñ 0. Using dominated convergence theorem and stochastic dominated

convergence theorem as stated in [RY99], combined to the fact that 4rψ1
εpr2q ď 1, we can deal with

the first two lines and get that for all t ě 0

lim
εÑ0

ż t

0
2ψ1

εp|Eδ
s |2qEδ

s ¨ pEP1r∇V pXδ
s qs ´ EP1r∇V pY δ

s qsqds

“

ż t

0
eδs ¨ pEP1r∇V pXδ

s qs ´ EP1r∇V pY δ
s qsqds

(2.27)
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

and

lim
εÑ0

ż t

0
4σ0ψ

1
εp|Eδ

s |2qEδ
sπδpEδ

sqeδspeδsqTdB0
s “

ż t

0
4σ0πδpEδ

sqpeδsqTdB0
s (2.28)

For the two last, we need to take advantage of the presence of the function πδ for δ ą 0. In fact, we

have

ˇ

ˇ

ˇ
4σ20ψ

1
εp|Eδ

t |2qπδpEδ
t q2peδt qT ` 8σ20ψ

2
εp|Eδ

t |2q|Eδ
t |2ψδpEδ

t qpeδt qT
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
πδpEδ

t q2σ20

´

4ψ1
εp|Eδ

t |2q ` 8ψ2
εp|Eδ

t |2q|Eδ
t |2

¯ˇ

ˇ

ˇ
.

Moreover, we know that ψ1
εpr2q ` 2ψ2

εpr2qr2 ď r´3
, for all r ą 0 and ε ď 1. Using the presence of

πδ , we have that the integrand is null near 0. Then, we can once again apply dominated convergence

theorem and obtain

lim
εÑ0

ż t

0
4
!

σ20ψ
1
εp|Eδ

s |2qπδpEδ
sq2peδsqT ` 8σ20ψ

2
εp|Eδ

s |2q|Eδ
s |2ψδpEδ

sqpeδsqT
)

ds “ 0. (2.29)

Finally, combining Equations (3.61), (3.63) and (3.65), we get the expected result.

Using the results of Proposition 2.24, we are ready for the proof of Proposition 2.21:

Proof of Proposition 2.21. From Proposition 2.21 and using Itô formula to the function f , we obtain

dfp|Eδ
t |q “ ´f 1p|Eδ

t |qeδt ¨

´

EP1r∇V pXδ
t qs ´ EP1r∇V pY δ

t qs

¯

dt

` 2σ0f
1p|Eδ

t |qπδpEδ
t qpeδt qtdB0

t

` 2σ20f
2p|Eδ

t |qπδpEδ
t q2dt.

To control the first term, we carry out the following decomposition

´f 1p|Eδ
t |qeδt ¨

`

EP1r∇V pXδ
t qs ´ EP1r∇V pY δ

t qs
˘

“ ´f 1p|Eδ
t |qeδt ¨

`

EP1r∇V pXδ
t qs ´ ∇V pEP1rXδ

t sq
˘

´ f 1p|Eδ
t |qeδt ¨

`

∇V pEP1rXδ
t sq ´ ∇V pEP1rY δ

t sq
˘

´ f 1p|Eδ
t |qeδt ¨

`

EP1r∇V pXδ
t qs ´ ∇V pEP1rXδ

t sq
˘

.

Taking the expectation and leveraging on the fact that f 1
is globally bounded, the existence of C1 ą 0,

independent of t and δ, such that

$

’

&

’

%

´f 1p|Eδ
t |qeδt ¨

`

EP1r∇V pXδ
t qs ´ ∇V pEP1rXδ

t sq
˘

ď C1E
“

|Xδ
t ´ EP1rXδ

t s|
‰

´f 1p|Eδ
t |qeδt ¨

`

EP1r∇V pXδ
t qs ´ ∇V pEP1rXδ

t sq
˘

ď C1E
“

|Xδ
t ´ EP1rXδ

t s|
‰

Moreover, using Proposition 2.19, we obtain

´ E
“

f 1p|Eδ
t |qeδt ¨

`

EP1r∇V pXδ
t qs ´ EP1r∇V pY δ

t qs
˘‰

ď C2e
´pα´2LV qt ´ E

“

f 1p|Eδ
t |qeδt ¨ p∇V pEP1rXδ

t sq ´ ∇V pEP1rY δ
t sqq

‰

.
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4. Non-convex potential without idiosyncratic noise

Now, using the contraction property of f stated in Proposition 2.22, we get

d

dt
Erfp|Eδ

t |qs ď C1e
´pα´2LV qt ´ ℓσ20fp|Eδ

t |q ` ℓσ20δ ` |κ´|8δ. (2.30)

Now, letting δ Ñ 0, we obtain:

d

dt
Erfp|Et|qs ď C2e

´pα´2LV qt ´ ℓσ20fp|Et|q.

Using Grönwall Lemma in Equation (2.30), we get

Erfp|EP1rXts ´ EP1rYts|qs ď C3pe´pα´2LV qt ` e´ℓσ2
0tq,

for some C3 that only depends on P0 and Q0. Finally,

dR
d

f pp̄t, q̄tq ď Er|EP1rXts ´ EP1rYts|s ď C4pe´pα´2LV qt ` e´ℓσ2
0tq.

Thanks to Equation (2.25), we know that dR
d

f and dR
d

1 are equivalent, and we have the expected result:

dR
d

1 pp̄t, q̄tq ď Cpe´pα´2LV qt ` e´ℓσ2
0tq,

for some C ą 0. Moreover, C ă `8 as soon as

dR
d

1 pp̄0, q̄0q ă `8,

which is the case since P0 and Q0 admit a finite moment of order 2.

The proof of Theorem 2.18 is now quite straightforward. In fact, we have shown in Lemma 2.19

that we can identify on a large time scale the process of interest pmtqt solution of Equation (2.22) with

its first moment. Then, in Proposition 2.21, we proved that the dynamic of the latter admits a unique

equilibrium, which shows the expected result.

Proof of Theorem 2.18. Taking advantage of the previous sections, we can perform the following de-

composition:

d
PpRdq

1 pPt, Qtq ď d
PpRdq

1 pPt, δp̄tq ` d
PpRdq

1 pδp̄t , δq̄tq ` d
PpRdq

1 pδq̄t , Qtq.

From Lemma 2.19, we immediately get

d
PpRdq

1 pPt, δp̄tq ` d
PpRdq

1 pδq̄t , Qtq ď Ce´pα`2LV qt.

Moreover, for the remaining term, one can write that d
PpRdq

1 pδp̄t , δq̄tq ď dR
d

1 pp̄t, q̄tq. Then, one can

conclude to the expected result using the result of Proposition 2.21, we can conclude the proof.
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5 Appendix

5.1 Proof of Proposition 2.8

Equation (2.9) comes from Section 1.5 in [LSZ20] (Equation (1.15)). Hence, if pmtq is an invariant

measure in the sense of Definition 3.4, then P̄ straightforwardly is a solution of Equation (2.10). Con-

versly, let us consider a probability measure P̄ , solution of Equation (2.10). More precisely, for all

F P C2
bpPpRdqq

@

sP ,MF
D

“ 0.

Let us consider T ą 0, then

ż

PpRdq

}∇V ` ∇W ˚m}2L2pmqP̄ pdmq

ď C
´

1 `

ż

PpRdq

ż

Rd

|∇V pxq|2mpdxqP̄ pdmq `

ż

PpRdq

ż

Rd

|∇W ˚mpxq|2mpdxqP̄ pdmq

¯

ď C
´

1 `

ż

PpRdq

ż

Rd

|x|2mpdxqP̄ pdmq `

ż

PpRdq

|∇W ˚mp0q|2P̄ pdmq

¯

ď C
´

1 `

ż

PpRdq

ż

Rd

|x|2mpdxqP̄ pdmq

¯

,

for some constant C that may change from line to line and depends only on the Lipschitz constant of

∇V and ∇W . Then using Proposition 2.10, we get that

ż

PpRdq

}∇V ` ∇W ˚m}2L2pmqP̄ pdmq ă `8.

Applying Theorem 1.5 in [LSZ20], we get the existence of a process pµtq P Cpr0, T s,PpRdqq such that µ

has dynamic given by (3.1) and for all t P r0, T s, Lpµtq “ P̄ . Then by weak uniqueness of the solutions

of (3.1), we get that P̄ is an invariant measure form in the sense of Definition 3.4.

5.2 Proof of Lemma 2.9

We consider the process pXtq, driven by the dynamic (3.5) and with initial condition X0 such that

LpX0q “ P0, in the sense of Definition 3.1. Let us denote in the following m2ptq “ E
“

|Xt|
2
‰

. Then

expanding using Ito formula and taking the time derivative, gives:

m1
2ptq “ ´2E rXt ¨ p∇V pXtq ` ∇W ˚mtpXtqqs ` pσ2 ` σ20qd

“ ´2E r Xt ¨ p∇V pXtq ´ ∇V p0qqs ´ 2∇V p0qE rXts ´ 2E rXt ¨ ∇W ˚mtpXtqs ` pσ20 ` σ2qd.

Moreover, if
rXt an independent copy of Xt, then:

∇W ˚mtpXtq “

ż

Rd

∇W pXt ´ yqmtpdyq

“ Er∇W pXt ´ rXtq|Xt,F
0
0s.
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Now, the fact thatW is even gives 2ErXt∇W ˚ mtpXtqs “ ErpXt ´ rXtq ¨ ∇W pXt ´ rXtqs. This de-

composition is the key, the end of the proof is straightforward using Assumption made on the potential

W (see Assumption 2).

5.3 A measurable selection result

In this part, we will mainly prove Lemma 2.14:

Lemma 2.25. Letm and ρ be two probability measure valued random variables which areF0
0-measurable.

Assuming that both randommeasuresm and ρ admit amoment of order two almost surely, then there exists
a random variable ξ, such that almost surely:

ξ P argmin
πPΠpm,ρq

ż

Rd

|x´ y|2πpdx,dyq.

Proof. The purpose of the proof is to show that there exists a measurable function ϕ : PpRdqˆPpRdq Ñ

PpRdq, such that for all pm, ρq P PpRdqˆPpRdq Ñ PpRdq, ϕpm, ρq P Πoptpm, ρq, the set of minimizers

for the transport problem. First of all, it is straightforward that Πopt is never empty. Then, we need to

show that the set valued function

Φ :
PpRdq ˆ PpRdq Ñ 2PpRdq

pm, ρq ÞÑ Πpm, ρq,

is measurable, where 2A stands for the set of subsets of A. Considering the graph ΓΦ, of Φ:

ΓΦ “ tppm, ρq, ξq , ξ P Φpm, ρqu ,

it is clear that it is a closed set, and thenmeasurable. In particular, themulti-applicationΦ is measurable.

Moreover, Lemma 12.1.7 in [SV79], the application Ψ which associate to any compact set K P PpRq2

the set

ΨpKq “ arg inf
πPK

ż

R2

|x´ y|πpdx, dyq

is measurable. Then the function

Λ :
PpRdq ˆ PpRdq Ñ EnspPpRdqq

pm, ρq ÞÑ Πoptpm, ρq,

is a compound of two mesurables functions. Finally by the measurable selection theorem, there exists

a measurable function ϕ such that for all pm, ρq P PpRdq ˆ PpRdq, ϕpm, ρq P Πoptpm, ρq.
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Chapter 2. Long time behavior of non-linear stochastic Fokker-Planck Equation

5.4 Proof of Proposition 2.22

This proof is given in [Ebe16], we repeat it here for the reader convenience. We begin with the easy

case, which is whenever r ă R1. In fact in this case we have:

f 11prq “ φ1prqgprq ` φprqg1prq

“ ´
1

2pσ2 ` σ20q
rκ´prqfprq ´

ℓ

2
Φprq

ď ´
1

2pσ2 ` σ20q
rκ´prqfprq ´

ℓ

2
fprq.

This gives:

f 11prq ´
1

2
`

σ2 ` σ20
˘rκprqf 1prq ď ´

1

2pσ2 ` σ20q
rfprq pκ´prq ` κprqq ´

ℓ

2
fprq

ď ´
ℓ

2
fprq,

because κ´prq ´κprq ě 0. The case where r ě R1 is more intricate. We can easily see that f 11prq “ 0,

and

´
1

2pσ2 ` σ20q
rκprqf 1prq ď ´

1

4pσ2 ` σ20q
rκprqφpR0q

ď ´rφpR0q pR1pR1 ´R0qq
´1 .

(2.31)

We easily show that the function r ÞÑ r{Φprq is non-decreasing on rR1,`8r. Then, it comes that

rR´1
1 ď ΦprqΦpR1q´1

, which gives:

´
1

2pσ2 ` σ20q
rκprqf 1prq ď ´φpR0qΦprq pΦpR1q pR1 ´R0qq

´1 .

Moreover,

Φprq “

ż r

0
φpsqds “ pr ´R0qφpR0q ` ΦpR0q,

and
ż R1

R0

Φpsqφpsq´1ds “ ΦpR0qφ´1pR0qpR1 ´R0q `
1

2
pR1 ´R0q2

“ pR1 ´R0qφpR0q´1

ˆ

ΦpR0q `
1

2
pR1 ´R0qφpR0q

˙

ě pR1 ´R0qΦpR1qφpR0q´1{2.

Finally,

´φpR0qΦprqpΦpR1qpR1 ´R0qq´1 ď ´
1

2
Φprq

´

ż R1

R0

Φpsqφpsq´1ds
¯´1

ď ´
ℓ

2
fprq,

because Φprq ě fprq for all r ě 0;
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5.5 Proof of Lemma 2.23

Let us consider a bounded and twice differentiable function ϕ : Rd Ñ R, using Itô’s Lemma

dϕpXtq “ ∇ϕpXtqdXt `
1

2
∆ϕpXtqdxX¨yt

“ ´∇ϕpXtq∇V pXtqdt´ ∇ϕpXtq∇W pXt ´ E1rXtsqdt

` σ0∇ϕpXtqtπδpEtqdB
0
t ` λδpEtqd rB

0
t u

`
σ20
2
∆ϕpXtqdt.

Now, taking the expectation under P1
, we have

dEP1rϕpXtqs “ ´EP1r∇ϕpXtq∇V pXtqsdt´ EP1r∇ϕpXtq∇W pXt ´ E1rXtsqsdt

` σ0EP1r∇ϕpXtqstπδpEtqdB
0
t ` λδpEtqd rB

0
t u

`
σ20
2
EP1r∆ϕpXtqsdt.

This is quite important here to notice that everything comes from the fact that we perform the reflection

with a term that is measurable with respect to the common noise part. Then, performing integration by

part we get the expected result.
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Chapter 3
Ergodicity of some stochastic Fokker-Planck

equations with additive common noise

In this paper we consider stochastic Fokker-Planck Partial Differential Equations (PDEs),

obtained as the mean-field limit (i.e., as the number of particles tends to 8) of weakly in-

teracting particle systems subjected to both independent (or idiosyncratic) and common

Brownian noises. We provide sufficient conditions under which the deterministic coun-

terpart of the Fokker-Planck equation, which corresponds to particle systems that are just

subjected to independent noises, has several invariant measures, but for which the stochas-

tic version admits a unique invariant measure under the presence of the additive common

noise. The very difficulty comes from the fact that the common noise is just of finite dimen-

sion while the state variable, which should be seen as the conditional marginal law of the

system given the common noise, lives in a space of infinite dimension. In this context, our

result holds true if, in addition to standard confining properties, the mean field interaction

term forces the system to be attracted by its conditional mean given the common noise and

the intensity of the idiosyncratic noise is small.
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1. Introduction

1 Introduction

This paper addresses the long-term behavior of solutions to a class of non-linear Stochastic Partial

Differential Equations (SPDEs) of the form

dtmt “ ∇ ¨

ˆ

σ2 ` σ20
2

∇mt ´mtbp¨,mtq

˙

dt´ σ0∇mt ¨ dB0
t , on r0,`8q ˆ Rd, (3.1)

where B0 “ pB0
t qtě0 is a d-dimensional Brownian motion, called common noise. Above, the unknown

pmtqtě0 is regarded as a stochastic process with values in the space PpRdq of probability measures on

Rd
. Accordingly, the coefficient b is a function from Rd ˆ P

`

Rd
˘

to Rd
depending on both space and

measure arguments. The two parameters σ and σ0 are non-negative scalars: the former is the intensity

of the so-called idiosyncratic noise and the latter is the intensity of the common noise.

Equation (3.1) is in fact intended to describe the flow of conditional marginal laws of the solution

to the conditional McKean-Vlasov equation:

dXt “ b
`

Xt,LpXt|B
0q
˘

dt` σdBt ` σ0dB
0
t , t ě 0, (3.2)

where B is another Brownian motion, independent of B0
, and Lp¨|B0q stands for the conditional law

given the realization of the common noise. Formally,mt in (3.1) is expected to coincide with LpXt|B
0q

in (3.2). The rigorous connection between (3.1) and (3.2) is addressed more carefully in the core of the

paper.

1.1 Deterministic Fokker-Planck equations

When σ0 “ 0, i.e., in absence of common noise, Equation (3.1) boils down to a standard Fokker-Planck

equation describing the evolution of the marginal laws of the solutions to the standard McKean-Vlasov

equation (3.2) obtained by replacingLpXt|B
0q by the law ofXt. In this setting, the long-time analysis of

the solutions has been a notoriously challenging problem for over twenty years, giving rise to numerous

contributions, many of them still recent. While the problem is of mathematical interest in its own right,

it also finds some application to calculus of variation since certain equations like (3.1) can be interpreted

as gradient flows on the space of probability measures, see the seminal works [AGS08, CMV03, JKO98,

Ott99, Ott01]. For instance, such a gradient structure occurs when bpx, µq “ ´∇V pxq ´ ∇W ˚ µpxq,

for two differentiable real-valued functions V andW on Rd
, W being symmetric, where ˚ stands for

the convolution operator. In this case, the potential lying above the dynamics writes

µ P PpRdq ÞÑ

ż

Rd

V pxqµpdxq `
1

2

ż

Rd

ż

Rd

W px´ yqµpdxqµpdyq `
σ2

2

ż

Rd

ln
`dµ

dx
pxq

˘

µpdxq. (3.3)

In fact, due to the mean field interaction (whether it derives from a potential or not), the sole pres-

ence of the noise B in the dynamics (3.2) (with σ0 “ 0) does not suffice to guarantee the uniqueness

of an invariant measure (or equivalently of a stationary solution to (3.1)) under quite general condi-

tions on b. This is in contrast with the long run behavior of Stochastic Differential Equations (SDEs) (or

equivalently linear Fokker-Planck equations), for which mere confining properties of the drift suffice to
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produce ergodicity (provided σ ą 0). In the mean field setting, some further structural conditions are

necessary. In the potential example (3.3), a standard condition is to demand V andW to be (strongly)

convex, which forces in fact a form of convexity of the potential (3.3) on the space of probability mea-

sures. We refer for instance to the earlier works [BRV98, CMV03, Mal01, Mal03], which also include

additional convergence results to the stationary regime. For a tiny list of variants, in which perturba-
tions of the convex potential case are addressed, we refer to [Bas20, BGG13, But14, DMT19, DEGZ20].

We refrain from detailing all the possible extensions of the previous cases under which the invariant

measure remains unique. Let us just say, for our purposes, that the above list of references includes

cases where the lack of convexity is compensated for by the presence of a strong enough diffusion co-

efficient. This large noise regime is compared with our own setting in Remark 3.9 below. At this point,

we would especially like to stress that there are known explicit simple cases in which uniqueness does

not hold, which observation supports our previous claim: the presence of a nonlinear mean field term

may easily lead to the existence of multiple invariant measures, even in situations where the mass stays

confined under the dynamics (3.1). Specifically, it has been proven in [HT10] (see also [Daw83]) that,

when V is only uniformly convex outside of a ball but admits a double-well,W is quadratic (but non-

zero) and the diffusion coefficient σ is sufficiently small, there exist several stationary solutions to (3.1)

when it derives from the potential (3.3) (and σ0 “ 0).

1.2 Common noise

Very basically, our primary objective in this article is to revisit the class of examples addressed in

[HT10] , but in presence of a common noise, i.e., σ0 ą 0. In this regard, it is worth noting that, when

bpx, µq “ ´∇V pxq ´ ∇W ˚ µpxq, with V being uniformly convex andW being convex, the common

noise does not change the picture recalled in the previous paragraph. Indeed, the second author has

shown in [Mai23] that (3.1) has a unique invariantmeasure, which is consistentwith the results obtained

earlier without common noise with the slight subtlety that the invariant measure is then understood

as a probability measure on PpRdq.

Of course, our goal is to go one step beyond and prove that the common noise can change the picture

positively, meaning that it can force uniqueness of the invariant measure even though the deterministic

analogue of (3.1) (i.e., with σ0 “ 0) has several stationary solutions. Actually, this type of result, if

it holds true, must be part of the very broad theory of ergodic Markov processes, with the specific

feature that the state space here is PpRdq. It is worth observing that, from the same point of view, the

deterministic and linear analogue of (3.2) (i.e., b only depends on x and σ0 “ 0) should be regarded as

a Fokker-Planck equation obtained by forcing a standard ordinary differential equation by a Brownian

motion of intensity σ. This is just to say that, in the Euclidean setting, the same program is very

well-understood and just consists in addressing the ergodic properties of a non-degenerate SDE. For

sure, the very difficulty in our setting comes from the fact that the unknown in (3.1) lives in a space

of infinite dimension (once again, the space of probability measures) while the noise (i.e., B0
) is just

finite-dimensional and thus completely degenerate. This says that, at best, noise can be expected to

restore uniqueness of the invariant measure only in specific cases. And, precisely, this is our objective

to identify a class of cases that would become ergodic under the action of the common noise and that

would include some of the examples addressed in [HT10].
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In fact, this question was already addressed by the second author in [Mai23] when σ “ 0, leaving

open setting with σ ą 0. Apart from this, the idea of using the averaging properties of the common

noise has been used in several contexts, for instance in the analysis of existence and uniqueness of

equilibria to mean field games (see for instance [DFT20, Tch18b] for games with a finite dimensional

common noise and [Del19] for games with an infinite dimensional common noise). More recently,

the first author has just released an article, [DH24], in which the ergodic properties of (3.1) (or, more

precisely, (3.2)) are studied when b is general but the common noise is infinite dimensional and the

dimension d is 1. Part of the challenge then precisely lies in the construction of the noise, which is

a question different from the one addressed here. A similar problem was addressed in the prior work

[ABKO23], for another type of infinite dimensional common noise that may not preserve the space of

probability measures.

1.3 Our contribution

We here focus on drifts of the type

bpx, µq “ Gpxq ` F

ˆ

x´

ż

Rd

x µpdxq

˙

, x P Rd, µ P PpRdq,

where F and G are functions from Rd
into itself. The function F is assumed to be strictly decreasing,

which occurs for instance if F “ ´∇W for a strictly convex function. More interestingly, G is just

assumed to be confining in a mild sense that is detailed in Assumption 5 below. In particular, G is

not required to be strictly decreasing and, when it derives from a potential V , V may not be convex.

Therefore, this framework allows us to choose G “ ´∇V for a non-convex potential V and F “

´∇W , for W pxq “ αx2 for some α ą 0, and thus contains the case treated by [HT10] (up to an

additional common noise), since bpx, µq rewrites ´∇V pxq ´ ∇W ˚ µpxq.

Our main contribution is to establish that, for a small diffusion coefficient σ and for an interaction

force F that is sufficiently decreasing, the system has a unique invariant measure, which attracts ex-

ponentially fast any other initial condition (with appropriate integrability properties). Our strategy of

proof is based on the key idea that the long run behavior of (3.2) should be dictated by the long time

dynamics of the conditional mean ErXt|B
0s given the common noise. However, this intuition is not

completely correct, as the distance between Xt and its conditional mean ErXt|B
0s does not tend to 0

in long time, at least when σ ą 0. In fact, some residual fluctuation persists due to the presence of the

idiosyncratic noise and this is one of our main achievement here to explain how to handle this residual

fluctuation in long time. This is precisely the point where we need σ to be small and the interaction

force F to be sufficiently decreasing. As for the functionG, it mainly plays a role in the long time anal-

ysis of the conditional mean ErXt|B
0s itself, which is shown to share many similarities with the long

time analysis of the (standard) SDE driven by the drift G and the noise σ0B
0
. In particular, we draw

heavily on previous works on coupling methods for long time analysis of SDEs, especially the approach

developed in [Ebe16] on couplings by reflection (inspired from [LR86]), which plays a key role in our

study. Notice that our result complements the earlier one [Mai23] dedicated to the case σ “ 0.
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1.4 Further connections with the literature on mean field models

Stochastic PDEs like (3.1) and related conditional McKean-Vlasov equations of type (3.2) were intro-

duced in [DV95, KX99]. Further, they were studied in a series of works [LPS13, LPS14, GS15, FG16,

GS17, FG19] in connection with stochastic scalar conservations laws, in which case σ0 is typically

required to depend on the local value at point x of dmt{dx. The more recent contribution [CG19]

addresses uniqueness to (3.1) under weaker conditions than in [KX99]. Equation (3.1) has also become

very popular in mean field game theory, see for instance the book [CDLL19]. A variant, including a

reflection term, has been studied recently in [BCCdRH20]. As for (3.2), we refer to [HvS21] for a general

existence and uniqueness result of weak solutions.

Last but not least, it is worth recalling that the connection between nonlinear Fokker-Planck equa-

tions and McKean-Vlasov equations (without common noise) goes back to the pioneering works of

[Kac56, McK66, Fun84]. In this context, a key question concerns the particular approximation of the

solutions, usually referred to as propagation of chaos, see for instance [Szn91, Mél96]. In connection

with the existence of stationary solutions to the Fokker-Planck equation (3.1), it is in general a difficult

question to wonder whether propagation of chaos holds uniformly in time or not. We feel better not

to give a list of references in this direction but we quote that the question appears for instance in the

earlier contribution [CGM08]. Obviously, this would be very interesting to address the same problem

but in presence of a common noise for the model studied here.

1.5 Organisation of the paper

In Section 2, we list the assumptions and give the main statements of the paper. We also address some

examples and compare in particular our results with those from [HT10] (when σ0 “ 0 and uniqueness

does not hold). The proof of the main theorem (Theorem 3.8) is split in two parts. A first step is to

derive Theorem 3.8 from a key auxiliary estimate (Proposition 3.7) on the contraction properties of the

semigroup induced by the solution of (3.1). This is done in Section 3. A second step, which is in fact

the core of the paper, is to prove this key estimate. We do so in Section 4, using coupling arguments.

Auxiliary results are proven in Appendix.

1.6 Notation

Throughout the paper, for a Polish space E, PpEq stands for the space of Borel probability measures

on E equipped with the topology of weak convergence and the corresponding Borel σ-algebra (which

is induced by the mappings m P PpEq ÞÑ mpAq for any Borel subset A of E). Whenever there exists

a distance d so that pE, dq is a metric space, we call PppEq, for any p ą 0, the collection of elements

µ P PppEq such that

Dx0 P E :

ż

E
dpx0, xqpµpdxq ă `8.

In fact, the integral above is finite or not, whatever the choice of x0. We then define for any p ě 1, the

p-Wasserstein distance on PppEq as

dEp pµ, νq :“ inf
πPΠpµ,νq

ˆ
ż

EˆE
dpx, yqp πpdx, dyq

˙1{p

, µ, ν P P1pEq,
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where Πpµ, νq stands for the set of all couplings of µ and ν (i.e., all the joint probability measures on

E ˆ E with µ and ν as first and second marginals).

Also, for any measurable φ : E Ñ R and any probability measurem P PpEq, we define the duality

product x¨ ; ¨yE as

xm;φyE “

ż

E
φpxqmpdxq,

whenever the integral in the right-hand side does exit (for instance so is the case if φ is bounded or φ

is at most of linear growth andm P P1pEq and so forth...). When E “ Rd
, we define

µ1pmq :“

ż

Rd

x mpdxq, m P P1pRdq;

µ2pmq :“

ż

Rd

|x|2 mpdxq, m P P2pRdq;

vpmq :“

ż

Rd

|x´ µ1pmq|
2 mpdxq, m P P2pRdq;

which stand respectively for the expectation, the moment of order two and the variance of m. It is

important to pay attention to the fact that despite the similarities in the notation, the objects µ1pmq P

Rd
and µ2pmq P R are of different dimensions.

When m is random, say is a measurable mapping from pΩ0,F
0,P0q into PpEq (or P1pEq), its law

P is an element of PpPpEqq (or PpP1pEqq), in the sense that, for any bounded measurable function

ϕ : PpEq Ñ R, E0rϕpmqs “ xP ;ϕyPpEq (and similarly, when working on P1pEq), where E0 is

the expectation associated with P0. Repeatedly in this paper, we also consider continuous stochastic

processes pmtqtě0, typically constructed on pΩ0,F
0,F0,P0q, with values in the spaceP1

`

Rd
˘

equipped

with dR
d

1 (and thus also in PpRdq, equipped with the weak convergence topology). When pmtqtě0 is

Markovian, we define its semigroup pPtqtě0 by letting, for any function ϕ : PpRdq Ñ R and any t ě 0,

Ptϕ :
PpRdq Ñ R
m ÞÑ E0rϕpmtq|m0 “ ms.

Moreover, for any twice differentiable function f : Rd Ñ R, ∇f , ∆f and ∇2f respectively stand

for the gradient, Laplacian and Hessian matrix of f . For any differentiable function F : Rd Ñ Rd
, we

denote by DF : Rd Ñ MdpRq its Jacobian matrix.

For any real squared matrix A P MdpRq, we denote the Euclidian norm of A by

|||A||| “

b

TrpAJAq,

with AJ
and Tr respectively standing for the transpose matrix of A and the Trace operator onMdpRq.

Lastly, the Euclidean norm on Rd
is denoted | ¨ | and the inner product ¨.
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2 Main result: uniqueness recovery thanks to common noise

2.1 Stochastic Fokker-Planck PDE and Conditional McKean-Vlasov SDE

In this paper, we focus on a mean field model with common noise in which the nonlinearity in the

dynamics occurs through the mean (i.e., the expectation). To make it clear, on a filtered probability

space

`

Ω0,F
0,F0,P0

˘

(satisfying the usual conditions) equipped with a d-dimensional F0
-Brownian

motion B0
and for F,G : Rd Ñ Rd

two interaction and confinement forces, we are interested in the

solutions of the following Stochastic Partial Differential Equation (SPDE):

dtmt “ ∇ ¨

ˆ

σ2 ` σ20
2

∇mt ´mt pG` F p¨ ´ µ1pmtqqq

˙

dt´ σ0∇mt ¨ dB0
t , t ě 0, (3.4)

which is understood the weak sense, i.e., the process pmtqtě0 satisfies for all t ě 0 and φ P C8
c pRdq,

dxmt, φy “ xmt,Lmtφy dt` σ0xmt, p∇φqJy dB0
t ,

where for any probability measure m P P1pRdq, the operator Lm acts on a smooth function φ with

compact support in the following manner:

Lmφ “ ´ pG` F p¨ ´ µ1pmqq ¨ ∇φ`
σ20 ` σ2

2
∆φ.

Equation (3.4) admits a Lagrangian representation in the form of conditional McKean-Vlasov equation.

Throughout the article, this McKean-Vlasov equation is constructed on a product probability space, ob-

tained by tensorizing the filtered probability space pΩ0,F
0,F0,P0q (on which Equation (3.4) is defined)

with another filtered probability space pΩ1,F
1,F1,P1q. The product structure is denoted

pΩ :“ Ω0 ˆ Ω1, F, F, Pq,

where pF,Pq is the completion of pF0 b F1,P0 b P1q and F is the right continuous augmentation

of pF0
t b F1

t qtě0. In this paper we denote by E0, E1 and E the expectations on pΩ0,F
0,F0,P0q,

pΩ1,F
1,F1,P1q and pΩ,F,F,Pq respectively. Analogously, for any random variable X defined on

pΩ,F,F,Pq, we denote by L0pXq and L1pXq the conditional laws of the random variableX given F1

and F0
respectively. Of course, LpXq stands for the law of X on the whole product space.

Next, the initial law of (3.4) may be random and then distributed according to a probability measure

P0 P PpP1pRdqq. The initial condition m0 is then defined as an F0
0-measurable random variable with

values inP1pRdq such thatLpm0q “ P0. We can now define on the whole probability space pΩ,F,F,Pq

a random variable X0 such that L1pX0q “ m0 almost surely. Precisely, by Lemma 2.4 in [CD18b], for

P0
-a.e. ω0 P Ω0, X0pω0, ¨q is a random variable on pΩ1,F

1,P1q and the conditional law of X0 given

F0
, L1 : Ω0 Q ω0 ÞÑ LpXpω0, ¨qq, defines a random variable from pΩ0,F

0,P0q into PpRdq, which can

be taken equal tom0 almost surely.

In addition to B0
, we consider a d-dimensional F1

-Brownian motion B supported by the space

pΩ1,F
1,P1q. The Lagrangian formulation of (3.4) then reads in the form of the following conditional
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McKean-Vlasov equation, set on pΩ,F,F,Pq:

dXt “ GpXtqdt` F pXt ´ E1rXtsqdt` σdBt ` σ0dB
0
t , t ě 0, (3.5)

with X0 as initial condition.

2.2 Assumptions, existence and uniqueness of solutions

In the sequel, we make the following assumptions on the coefficients F and G. We start with G:

Assumption 5. The drift G : Rd Ñ Rd is differentiable in Rd. Moreover,

• G is confining in the sense that there exists a function κ : r0;`8q Ñ R such that

@x, y P Rd, pGpxq ´Gpyqq ¨ px´ yq ď ´
σ20
2
κp|x´ y|q|x´ y|2,

with

lim sup
rÑ`8

κprq ą 0 and

ż 1

0
rκprq´dr ă 8,

where κ´ “ maxp0,´κq.

• G is Lipschitz-continuous on Rd, meaning that there exists a constant LG ą 0 such that

@x, y P Rd, |Gpxq ´Gpyq| ď LG|x´ y|.

• G is differentiable and its Jacobian matrix DG is Lipschitz-continuous on Rd, meaning that there
exists a constant CG ą 0 such that for any x, y P Rd,

|||DGpxq ´DGpyq||| ď CG|x´ y|.

In order to state properly the assumption on F , we introduce the following definition:

Definition 3.1. For a pair pα,Cq P R ˆ r0,`8q, we call Spα,C, Lq the collection of L-Lipschitz-
continuous and differentiable functions H from Rd into itself that are α-decreasing and whose derivative
is C Lipschitz-continuous, i.e., for all px, yq P R2d,

(i) px´ yq ¨ pHpxq ´Hpyqq ď ´α|x´ y|2;

(ii) |||DHpxq ´DHpyq||| ď C|x´ y|.

Given Definition 3.1, we make the following assumption on F :

Assumption 6. F : Rd Ñ Rd satisfies F p0q “ 0. Moreover, there exist αF ą 0 and CF ě 0 such that
F P SpαF , CF , CF q.
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About Assumption 5

The following remarks about Assumption 5 are in order:

• Assumption 5 is quite intuitive and consistent with the ideas presented in [HT10]. Essentially,

this assumption guarantees that G is confining and behaves linearly at infinity. Also, it is worth

noting that our approach can accommodate a force that derives from a non-convex potential,

which, around the origin, behaves for example like x ÞÑ |x|4 ´ |x|2.

• When σ0 ą 0, there exists a canonical choice of κ, given by

κprq:“ inf

"

´
2

σ20

px´ yq ¨ pGpxq ´Gpyqq

|x´ y|2
; x, y P Rd

s.t. |x´ y| “ r

*

, r ą 0.

Assumption 5 says that κ is necessarily positive outside of a ball. This implies in particular that

σ20κ
´{2 is bounded from below by some constantmG P R, which gives

px´ yq ¨ pGpxq ´Gpyqq ď ´mG|x´ y|2, x, y P Rd. (3.6)

This implies in particular that G P SpmG, CG, LGq.

When mG ą 0 we say that the drift is (strictly) decreasing. This case is easier to study under

similar conditions on F because the monotone structure of G ensures that two solutions of the

SDE (3.5) (with different initial conditions) get closer in large time. In this context, uniqueness

of the invariant measure of the solutions of Equation (3.4) is covered in [Mai23, Section 2], but

it is fair to say that the common noise then plays little role because the invariant measure is

also unique when σ0 “ 0. Notice that in the specific case when G derives from a potential, this

potential is strictly convex under the conditionmG ą 0.

About Assumption 6

Assumption 6 is somewhat surprising, especially as we are asking below the coefficient αF to be large

(see the statement of Theorem 3.8). Intuitively, onemight indeed expect that uniqueness of the invariant

measure becomes less likely if the interaction is strong. At least, this is exactly what happens in absence

of common noise, the extreme case being F ” 0 in which the dynamics become a mere diffusion

equation (the long time analysis of which is much easier to study). However, the situation is different

here, thanks to the peculiar structure of the dynamics and to the presence of the common noise (σ0 ą

0). In brief, F has a contracting effect, which forces the process to be attracted by its conditional

expectation (given the common noise), with the latter being a nearly solution of an ergodic SDE. Even

though this picture is not exactly correct due to some minor errors caused by the idiosyncratic noise,

this is indeed a key step in our analysis to quantify the accuracy of this approximation and to derive

from it uniqueness of the invariant measure. We refer to Section 3.1.

Throughout, we work under Assumptions 5 and 6. In this context, we claim

Proposition 3.2. Under Assumptions 5 and 6 and for an initial conditionX0 satisfying Er|X0|s ă 8 (or
equivalently E0

ş

Rd |x|m0pdxq ă 8 for m0 :“ L0pX0q), the conditional McKean-Vlasov equation (3.5)
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has a unique F-progressively measurable solution pXtqtě0, with continuous trajectories, such that, for all
T ą 0, Ersup0ďtďT |Xt|s ă 8.

Proof. The proof consists in a straightforward fixed point argument, using the Lipschitz properties of

the two coefficients F and G. We refer to [CD18b, Chap. 2].

By the superposition principle for conditional McKean-Vlasov equations (see [LSZ23]), we deduce

that existence and uniqueness also hold true for the stochastic Fokker-Planck equation:

Proposition 3.3. Under Assumptions 5 and 6 and for an initial conditionm0 satisfyingE0

ş

Rd |x|m0pdxq ă

8, the stochastic Fokker-Planck equation (3.4) has a unique solution pmtqtě0 in the space ofF0-progressively
measurable processes with values in P1pRdq satisfying E0rsup0ďtďT

ş

Rd |x|mtpdxqs ă 8.

Proof. Existence of a solution is a straightforward consequence of the existence part in the statement

of Proposition 3.2. This is Proposition 1.2 in [LSZ23]. Uniqueness is more difficult to obtain. We invoke

Theorem 1.3 in [LSZ23]. In brief, any solution prmtqtě0 (in the weak sense) to (3.4) induces a weak

solution to the McKean-Vlasov equation
rX “ p rXtqtě0 to (3.5), weak in the sense that the private (or

idiosyncratic) noise, say
rB, becomes part of the solution. It holds rmt “ Lp rXt|F

0
T q. In fact, by strong

uniqueness to (3.5), a relevant form of Yamada-Watanabe theorem applies to the current setting and

implies that Lp rXt|F
0
T q is necessarily equal to L0pXtq, with X “ pXtqtě0 being the solution given by

Proposition 3.2.

2.3 Restoration of uniqueness

We now collect our main results about the long time behaviour of the process pmtqtě0, solution of

Equation (3.4). Before we do so, we first state the precise definition of an invariant measure for such a

stochastic process, when seen as a process with values in the space of probability measures:

Definition 3.4 (Invariant measure). We say that sP P P2pP1pRdqq is an invariant measure for the process
pmtqtě0 when the latter is regarded as taking values in P1pRdq, if the law ofmt is independent of t, when
m0 is distributed according to sP , i.e., for all continuous and bounded function ϕ P CbpP1pRdqq

E0rϕpmtqs “ E0rϕpm0qs “

ż

P1pRdq

ϕpmq sP pdmq, @t ą 0.

Of course, if P̄ is an invariant probability distribution, then the process pmtqtě0 with initial con-

dition P̄ , has the same law as the process pmt`T qtě0 for any T ą 0. This follows directly from the

fact that m0 and mT have the same law combined with the weak Markov property. Moreover, it is

worth observing that, under the condition P̄ P P2pP1pRdqq imposed in the statement, the function

m ÞÑ dR
d

1 pδ0,mq “
ş

Rd |x|mpdxq is square integrable. This constraint may seem rather artificial. In

fact, given the form of the dynamics in Equation (3.4), it is natural to require the invariantmeasures to be

supported by P1pRdq. Then, the aforementioned integrability condition provides an additional growth

property that makes easier the identification of those invariant measures, see the proof of Proposition

3.5 right below.

Let us begin with the existence of an invariant measure P̄ :
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Proposition 3.5. Under Assumptions 5 and 6, there exists at least one invariant measure P̄ for the process
defined by Equation (3.4). Moreover, under the condition α ą LG, any invariant measure belongs to
P2pP2pRdqq.

The proof of Proposition 3.5 makes use of the notion of derivatives on the space of measures. Fol-

lowing [Car10] (see also [CD18a, Chap. 5] and [CD18b, Chap. 4]), we recall the following definition:

Definition 3.6. Let us define C2
bpP2pRdqq as the collection of continuous and bounded functions Φ :

P2pRdq Ñ R with the following properties (throughout the definition, P2pRdq is equipped with dR
d

2 ):

• There exists a unique jointly continuous function BmΦ : pm,xq P PpRdqˆRd Ñ BmΦpm,xq P Rd,
at most of quadratic growth in x for anym, such that

lim
hÑ0

Φpm` hpm1 ´mqq ´ Φpmq

h
“

ż

Rd

BmΦpm, vqpm1 ´mqpdvq,

for allm,m1 P PpRdq and

ż

Rd

BmΦpm, vqmpdvq “ 0, m P PpRdq;

• For any m P P2pRdq, the mapping x ÞÑ BmΦpm,xq is differentiable, with the gradient being
denoted DmΦpm,xq; the mapping pm,xq ÞÑ DmΦpm,xq is jointly continuous in pm,xq and at
most of linear growth in x uniformly inm in bounded subsets of P2pRdq;

• For any x P Rd, every component of the Rd-valued function m ÞÑ DmΦ pm,xq satisfies the same
conditions as in the first bullet point, resulting in a mapping pm,x, yq P P2pRdq ˆ Rd ˆ Rd ÞÑ

D2
mΦpm,x, yq P Rdˆd, which is jointly continuous (in the three arguments) and atmost of quadratic

growth in px, yq, uniformly inm in bounded subsets of P2pRdq;

• For any m P P2pRdq, the function x P Rd ÞÑ DmΦpm,xq is differentiable; the Jacobian, denoted
pm,xq ÞÑ D2

xmΦpm,xq, is jointly continuous in pm,xq and at most of linear growth in x, uniformly
inm in bounded subsets of P2pRdq.

Proof of Proposition 3.5. Step 1. The proof of the existence of an invariant measure closely follows the

approach taken in Proposition 2 of [Mai23], using the results of Section 1.2 of [LSZ23]. The key step

therein is to control, uniformly in time, the second-order moments of the solutions to Equation (3.4),

which can be achieved with relative ease in our context. Details are left to the reader.

Step 2. We now address the second part of the statement (any invariant measure in P2pP1pRdqq

is in fact in P2pP2pRdqq). Let us thus consider an invariant measure P̄ P P2pP1pRdqq and call m0 an

F0-valued random variable with values in P1pRdq such that L0pm0q “ P̄ . We denote by pmtqtě0 the

solution to Equation (3.4) with m0 as initial condition. We also introduce for any R ą 0, a smooth

function χd
R : Rd Ñ Rd

that coincides with the identity on the ball BRdp0, Rq and that is equal to 0

outside BRdp0, 2Rq. We can assume the Lipschitz constant of χd
R to be bounded by 1. For any R ą 0,

we denote by PR
0 the law of χd

R7m0 (where 7 is the pushforward operator) and construct pmR
t qtě0,

the solution to Equation (3.4) with χd
R7m0 as initial condition. Letting pPR

t qtě0 :“ pL0pmR
t qqtě0,
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we deduce from the truncation performed on the initial condition and from Equation (3.4) that, for

any R ą 0 and any t ě 0, PR
t pP2pRdqq “ 1. We obtain from the chain rule proven in [CD18a,

Chap. 5] and [CD18b, Chap. 4] (see [LSZ23] for the form that is retained below) that for any function

Φ P C2
bpP2pRdqq, for any t ě 0,

xPR
t ´ PR

0 ; Φy “

ż t

0
xPR

s ;MΦyds, (3.7)

where for anym P P2pRdq,

MΦpmq :“

ż

Rd

„

DmΦpm,xq ¨ pGpxq ` F px´ µ1pmqq `
σ2 ` σ20

2
Tr

“

D2
xmΦpm,xq

‰

ȷ

mpdxq

`
σ20
2

ż

R2d

Tr
“

D2
mmΦ pm,x, yq

‰

mpdxqmpdyq.

Let us now considerΦpmq :“
ş

Rd ϕpx´µ1pmqqmpdxq, for a functionϕ : Rd Ñ Rwhichwe assume

to be bounded and smooth, with bounded derivatives of order 1 and 2. In particular,Φ is bounded. Now,

m ÞÑ Φpmq P C2
bpP2pRdqq and we can write, for anym P P2pRdq and x, y P Rd

,

DmΦpm,xq “ ∇ϕpx´ µ1pmqq ´

ż

Rd

∇ϕpy ´ µ1pmqqmpdyq,

D2
xmΦpm,xq “ ∇2ϕpx´ µ1pmqq,

D2
mmΦpm,x, yq “ ´∇2ϕpx´ µ1pmqq ´ ∇2ϕpy ´ µ1pmqq `

ż

Rd

∇2ϕpz ´ µ1pmqqmpdzq.

Plugging this into Equation (3.7), we obtain

ż

P2pRdq

ΦpmqpPR
t ´ PR

0 qpdmq

“

ż t

0

„
ż

P2pRdq

ż

Rd

∇ϕpx´ µ1pmqq ¨ pGpxq ` F px´ µ1pmqqqmpdxqPR
s pdmq

´

ż

P2pRdq

ˆ
ż

Rd

∇ϕpy ´ µ1pmqqmpdyq

˙

¨

ˆ
ż

Rd

pGpxq ` F px´ µ1pmqqqmpdxq

˙

PR
s pdmq

`
1

2

`

σ2 ` σ20
˘

ż

Rd

Tr
“

∇2ϕpz ´ µ1pmqq
‰

mpdzq ´
1

2
σ20

ż

Rd

Tr
“

∇2ϕpz ´ µ1pmqq
‰

mpdzq

ȷ

ds,
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which gives (by simplifying the last line)

ż

P2pRdq

ΦpmqpPR
t ´ PR

0 qpdmq

“

ż t

0

„
ż

P2pRdq

ż

Rd

∇ϕpx´ µ1pmqq ¨ pGpxq ` F px´ µ1pmqqqmpdxqPR
s pdmq

´

ż

P2pRdq

ˆ
ż

Rd

∇ϕpy ´ µ1pmqqmpdyq

˙

¨

ˆ
ż

Rd

pGpxq ` F px´ µ1pmqqqmpdxq

˙

PR
s pdmq

`
1

2
σ2

ż

Rd

Tr
“

∇2ϕpz ´ µ1pmqq
‰

mpdzq

ȷ

ds.

(3.8)

Step 3. We now want to let R Ñ 8. Let us begin with the term on the left-hand side

ż

PpRdq

ΦpmqpPR
t ´ PR

0 qpdmq “

ż

PpRdq

ΦpmqpPR
t ´ P̄ qpdmq `

ż

PpRdq

ΦpmqpP̄ ´ PR
0 qpdmq.

Using the Lipschitz-continuity of F and G, we can show that, for any T ě 0, there exists a constant

CT ě 0, such that, for any t P r0, T s,

d
P1pRdq

2 pPR
t , P̄ q ď CT d

P1pRdq

2 pPR
0 , P̄ q. (3.9)

Moreover, we can write

d
P1pRdq

2 pPR
0 , P̄ q2 ď

ż

PpRdq

ˆ
ż

Rd

|χd
Rpxq ´ x|mpdxq

˙2

P̄ pdmq.

Since χd
R is equal to 0 in 0 and is 1-Lipschitz continuous and since P̄ P P2pP1pRdqq, the above right-

hand side tends to 0 as R tends to 8, that is

lim
RÑ`8

d
P1pRdq

2 pPR
0 , P̄ q “ 0. (3.10)

Equations (3.9) and (3.10) say that for all T ě 0,

lim
RÑ`8

sup
0ďtďT

d
P1pRdq

2 pPR
t , P̄ q “ 0. (3.11)

Back to (3.8), we observe that all the functions of m that are integrated with respect to P̄ therein are

continuous in m with respect to dR
d

1 . Moreover, they are all at most of linear growth with respect to

ş

Rd |x|mpdxq. This makes it possible to let R tend to `8. We get

ż

P1pRdq

ż

Rd

∇ϕpx´ µ1pmqq ¨ pGpxq ` F px´ µ1pmqqqmpdxqP̄ pdmq

´

ż

P1pRdq

ˆ
ż

Rd

∇ϕpy ´ µ1pmqqmpdyq

˙

¨

ˆ
ż

Rd

pGpxq ` F px´ µ1pmqqqmpdxq

˙

P̄ pdmq

`
1

2
σ2

ż

P1pRdq

ż

Rd

Tr
“

∇2ϕpz ´ µ1pmqq
‰

mpdzqP̄ pdmq “ 0.
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Step 4. Now, we take ϕpxq in the form ϑp|x|q where ϑ is a smooth function from r0,`8q into itself,

that is equal to the identity on r0, As and that is equal to 3A{2 on r2A,`8q, for some A ą 0. We

assume ϑ1
to be non-negative and bounded by the identity and ϑ11

to take values in r0, 2s. Under this

choice,∇ϕpxq rewrites rϑ1p|x|q{|x|sx and Trr∇2ϕpxqs is bounded by a constant cd only depending on

the dimension d. Then, we can find a constant C , only depending onG (and whose value is allowed to

change from line to line) such that, for anym P P2pRdq,

ˇ

ˇ

ˇ

ˇ

ż

Rd

∇ϕpx´ µ1pmqq ¨Gpxqmpdxq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ż

Rd

∇ϕpx´ µ1pmqq ¨
“

Gpxq ´Gpµ1pmqq
‰

mpdxq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ż

Rd

∇ϕpx´ µ1pmqq ¨Gpµ1pmqqmpdxq

ˇ

ˇ

ˇ

ˇ

ď LG

ż

Rd

ϑ1p|x´ µ1pmq|q|x´ µ1pmq|mpdxq ` C

ż

Rd

ϑ1p|x´ µ1pmq|q
`

1 ` |µ1pmq|
˘

mpdxq

ď LG

ż

Rd

ϑ1p|x´ µ1pmq|q|x´ µ1pmq|mpdxq ` C
`

1 ` dR
d

1 pδ0,mq2
˘

.

We insist on the fact that C is independent of ϑ. Now using the assumption on F (see Assumption 6),

we obtain

ż

Rd

∇ϕpx´ µ1pmqq ¨ F px´ µ1pmqqmpdxq ď ´α

ż

Rd

ϑ1p|x´ µ1pmq|q|x´ µ1pmq|mpdxq.

Rewriting the conclusion of the third step gives

pα ´ LGq

ż

P1pRdq

ż

Rd

ϑ1p|x´ µ1pmq|q|x´ µ1pmq|mpdxqP̄ pdmq

ď cdσ
2 ` C

ˆ

1 `

ż

P1pRdq

dR
d

1 pδ0,mq2P̄ pdmq

˙

.

(3.12)

Now, we can choose ϑ1
along a non-decreasing sequence converging pointwise to the identity function

on r0,`8q. By monotone convergence, we obtain

pα ´ LGq

ż

P1pRdq

ż

Rd

|x´ µ1pmq|2mpdxqP̄ pdmq ď cdσ
2 ` C

ˆ

1 `

ż

P1pRdq

dR
d

1 pδ0,mq2P̄ pdmq

˙

,

which completes the proof.

Uniqueness is much more challenging to establish. When the intensity of the idiosyncratic noise

σ is positive, this question has not been addressed yet. The following proposition is one key step in

this regard and demonstrates that, under certain assumptions, the initial condition is forgotten in long

time.

Proposition 3.7. For any αF ą maxpLG,mGq in Assumption 6, for any σ0 ą 0, there exists sσ ą

0, depending on F,G, σ0 and d, such that for all σ ď sσ, for any 1-Lipschitz continuous function ϕ :

P1pRdq Ñ R (with P1pRdq being equipped with dR
d

1 ) and anym, rm P P2pRdq,

|Ptϕpmq ´ Ptϕprmq| ď Kpm, rmqe´ct, t ě 0,
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for some c :“ cpG,F, σ, σ0q ą 0 and some Kpm, rmq, which is described next.
Indeed, given the choice of αF , there exist a constant c

αF
1 ą 0, depending on G and F , and a constant

Cd, depending on d (and thus independent of ϕ,m and rm), such that

Kpm, rmq :“ Cdpµ2pmq1{2 ` µ2prmq1{2q exp

ˆ

cαF
1

cαF

´

vpmq1{2 ` vprmq1{2
¯

˙

,

where cαF :“ αF ´ LG. We recall that µ1, µ2 and v are defined in Section 1.6.

Proposition 3.7 shows that we forget the initial condition at an exponential rate for any sufficiently

integrable initial conditionsm and rm. This is a key result of the paper, the proof of which is postponed

to Section 4.

As a consequence of Proposition 3.7, we get uniqueness of the invariant measure and deduce that

the system converges exponentially fast toward the stationary regime, both facts being stated in the

main statement below.

Theorem 3.8. For any αF ą maxpLG,mGq in Assumption 6, for any σ0 ą 0, there exists sσ ą 0,
depending onF,G, σ0 and d, such that for all σ ď sσ, there is a unique invariant measure sP P P2pP2pRdqq

for the process pmtqtě0, solution of Equation (3.4). More precisely, there exists a constant C ą 0, such that
for any probability measurem P PpRdq and any 1-Lipschitz continuous function ϕ : P1pRdq Ñ R, (with
P1pRdq being equipped with dR

d

1 ), we have

ˇ

ˇ

ˇ

ˇ

ˇ

Ptϕpmq ´

ż

PpRdq

Ptϕprmq sP pdrmq

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
`

1 ` µ2pmq1{2
˘

exppλvpmq1{2qe´ct, t ě 0,

with λ :“ cαF
1 {cαF ą 0, and for c, cαF and cαF

1 as in the statement of Proposition 3.7.

Remark 3.9. Let us comment here on the choice of parameters in the above statement. First, it is important
to note that the type and strength of the interaction play a central role in our framework. The interaction,
in both its form and intensity (αF ě sα), forces the long-time behaviour of the entire process pmtqtě0 to be
dictated by its mean pµ1pmtqqtě0, which is the cornerstone of the proof. Asking the interaction to be strong,
as we require in the condition αF ě sα, may seem surprising at first sight. Indeed, this is fundamentally
different from the standard picture that exists for models without common noise, where strong interactions
are typically expected to give rise to several invariant measures. In our case, the presence of the common
noise, even of a possibly small intensity, induces a phase transition. For any positive value of σ0 and for
a sufficiently large interaction (independently of the value of σ0), we can indeed find σ ą 0 such that
uniqueness of the invariant measure is ensured in presence of a common noise of intensity σ0 but is lost
when the common noise is disabled. This makes a conceptual difference with the previous results obtained
on the subject in [JJ24], where uniqueness is restored when the global contribution of the two noises is large
enough with respect to the strength of the interaction. In comparison, σ and σ0 have opposite roles to each
other in our approach.
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2.4 Discussions and examples

In this section, we present two explicit examples in which common noise forces uniqueness of the

invariant measure. The first example fits explicitly the framework of this work and the second one may

be seen as a variant of (3.4). At last, we also provide a counter-example where uniqueness does not

hold despite the presence of the common noise.

A prototype: dynamics driven by a confining potential and a linear interaction.

Let us consider the case Gpxq “ ´∇V pxq, x P Rd
, for a differentiable function V : Rd Ñ R, and

F pxq “ ´αx, x P Rd
, for a certain α ą 0. Then, (3.4) becomes

dtmt “
σ2`σ20

2
∆mtdt` ∇ ¨

”

mt

´

∇V ` α p¨ ´ µ1pmtqq

¯ı

dt´ σ0∇mt ¨ dB0
t , t ě 0. (3.13)

When σ0 “ 0, this equation reduces to

Btmt “
σ2

2
∆mt ` ∇ ¨

”

mt

´

∇V ` α p¨ ´ µ1pmtqq

¯ı

. (3.14)

When V is a double well potential, the latter equation may have several stationary solutions. For

instance, if σ “ 0 (in addition to the assumption σ0 “ 0), any critical point x0 of V induces a stationary

solution, concentrated at x0. In the standard example where d “ 1 and V pxq “ |x|4{4 ´ |x|2{2 (see

for instance [Daw83, HT10]), those stationary solutions are the Dirac masses δ1, δ0 and δ´1. Non-

uniqueness persists when σ is strictly positive but small: with the same potential V and for σ less than

a certain threshold σ̄, there are three invariant measures, respectively centered around 1, 0 and ´1, to

the McKean-Vlasov SDE

dXt “ ´V 1pXtqdt´ αpXt ´ E1rXtsqdt` σdBt, t ě 0.

Lack of uniqueness can be explained as follows. There is a competition between the noiseB (weighted

by the intensity factor σ) and the interaction term function px,mq ÞÑ ´αpx ´ µ1pmqq. On the one

hand, the processX is attracted by the minimizers of V and by its expectation. On the other hand, it is

subjected to the diffusive effect of the noise. Whenever the coefficientσ is too small, the interaction term

dominates. Any invariant measure has a small variance and must be concentrated around a minimizer

of V , hence forcing the multiplicity of the stationary solutions to (3.14).

When σ0 ą 0 but σ “ 0 (and under conditions similar to Assumption 5), whenever α is assumed

large enough, the second author has shown in [Mai23] that the process pmtqtě0 admits a unique in-

variant measure P0 P PpPpRdqq, and thus established restoration of uniqueness in this situation. In

this particular case, the invariant measure is supported by Dirac masses:

sP0pdmq “

ż

Rd

δδapdmqm˚pdaq,
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wherem˚
is solution of the stationary Fokker-Planck equation pσ20{2q∆m˚`∇ ¨ pm˚∇V q “ 0. More-

over, as consequence of the contracting properties of F , it can be shown that

vpmtq Ñ 0,

when t Ñ `8, which implies that, asymptotically (in time), the solution X to (3.5) coincides with its

conditional expectation given the common noise, hence justifying the shape of the measure
sP0.

In the case σ0 ą 0 and σ small but (strictly) positive, our result extends the analysis carried out

in [Mai23]. However, the long-time behaviour of pvpmtqqtě0 is different and the latter does not tend

to 0 as t tends to 8. This difference is substantial and makes the proof significantly more challenging

in our analysis. The argument is explained in the next two sections. In short, one shows that the

long-time behavior of the conditional mean pµ1pmtqqtě0 coincides with that one of the standard SDE

dYt “ ´∇V pYtqdt`σ0dB
0
t , t ě 0 up to an error that is small with σ and 1{α. Although the fluctuation

pXt ´ E1pXtq “ Xt ´ µ1pmtqqtě0 does not vanish in long time, which is the main mathematical

difficulty here, the regime 0 ă σ ! 1 shares many conceptual similarities with the case σ “ 0. In

particular, the long-time behavior of pmtqtě0 is mostly dictated by the ergodic properties of the standard

SDE obtained by putting F ” 0 and σ “ 0 in (3.5). This example is typical of our study. When the value

of σ is significantly large and α is relatively small, it is straightforward to establish the uniqueness of

the invariant measure using coupling arguments on the idiosyncratic noise, as in [DEGZ20]. Still, it

is fair to say that we do not have, at this stage, a good understanding of the behaviour of the model

between these two regimes.

A variant: dynamics driven by a quadratic potential and a nonlinear first order mean field
term

In this paragraph, we cook up a variant of the model covered by Theorem 3.8 that does not exactly fit

the form postulated in (3.4) but that can be studied in a similar manner. This example is built up as

a perturbation of an Ornstein-Uhlenbeck process. Precisely, we consider the stochastic Fokker-Planck

equation

dtmt “
σ2 ` σ20

2
∆mtdt` ∇ ¨

“

mt

`

ax´ fpµ1pmtq
˘‰

dt´ σ0∇mt ¨ dB0
t , t ě 0, (3.15)

whose probabilistic counterpart writes

dXt “ ´aXtdt` fpE1rXtsqdt` σdBt ` σ0dB
0
t , t ě 0,

for some a ą 0 and f : Rd Ñ Rd
. Equivalently, the conditional law pL1pXtqqtě0 of X given the

common noise pL1pXtqqt is a solution to (3.15).

Obviously, the mean field term fpE1rXtsq cannot be put in the form F pXt ´ E1rXtsq, from which

we see that this example is outside the scope of Theorem 3.8. That said, it is in fact not that far from

the framework addressed in this article and, in particular, it obeys phenomena similar to those under-

pinning the proof of Theorem 3.8.
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Actually, the long-time analysis of equation (3.15) is rather straightforward. When σ0 “ 0, any

invariant measurem is solution to

σ2

2
∆m´ ∇ ¨

“

m
`

fpµ1pmqq ´ ax
˘‰

“ 0, x P Rd.

By integrating with respect to x, the previous equation leads to the condition

fpµ1pmqq “ aµ1pmq, (3.16)

which is in fact sufficient in the following sense: once µ1pmq has been found, the entire measurem can

be defined as the invariant measure of the Ornstein-Uhlenbeck dynamics dXt “ ´apXt ´µ1pmqqdt`

σdBt, t ě 0. Therefore, Equation (3.16) says that there exist several invariant measures as soon as f{a

admits several fixed points in Rd
.

In presence of a common noise (i.e., σ0 ą 0), the conditional mean pµ1pmtqqtě0 solves the SDE

dµ1pmtq “ ´aµ1pmtqdt` fpµ1pmtqqdt` σ0dB
0
t , t ě 0, (3.17)

and under appropriate confining conditions on the effective drift x ÞÑ ´ax`fpxq (which may be com-

patible with the fact that (3.16) has several fixed points), (3.17) admits a unique invariant measure, say

m˚
(on Rd

), which implies that any two invariant measures on P1pRdq (in the sense of Definition 3.4)

must have the same marginal law by the projection m ÞÑ µ1pmq. As above, the entire invariant mea-

sure (on P1pRdq) can be recovered by observing that dpXt ´ E1pXtqq “ ´apXt ´ E1pXtqqdt` σdBt,

t ě 0. This shows that the invariant measure is

sP pdmq “

ż

Rd

δNdpθ,rσ2{p2aqsIdqpdmqm˚pdθq, (3.18)

where Ndpθ, rσ2{p2aqsIdq is the d-dimensional Gaussian law with θ as mean and σ2{p2aqId as co-

variance (Id standing for the d-dimensional identity matrix). In particular, there is a unique invariant

measure even though (3.16) has several fixed points.

The spirit of this new example is clear: similar to the prototype addressed in the previous paragraph,

its long-time analysis is in fact governed by the simpler Fokker-Planck equation (3.17) for the sole

conditional mean. Here the situation is even simpler because the residual fluctuation pXt´E1pXtqqtě0

has a trivial behavior (whilst the analysis of the residual is non-trivial in the prototype example).

Combining the two examples

For sure, the reader may wonder about a global framework that would cover both the prototype and the

variant examples. While this would be indeed possible to extend in such a way the current setting, we

have decided not to go up to this level of generality in order to keep the presentation and the notation

at a reasonable level. In order to guess what the more general form of (3.4) should be, one first needs to

understand which of the two coefficients F and G (in (3.4)) correspond respectively to x ÞÑ ´ax and

m ÞÑ fpµ1pmqq in (3.15). At first sight, one may be tempted to regard x ÞÑ ´ax as a specific example

ofG, but this is the wrong choice. In fact, the correct answer is to write ´ax as ´apx´µ1pmqq, which
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prompts us to associate the coefficient a in this model with the coefficient α in the prototype example.

Next, we should see the remaining coefficientm ÞÑ ´aµ1pmq`fpµ1pmqq as a new G, with the subtlety
that, in our global framework, G must be allowed to depend on both x and µ1pmq. In clear, the new

version of (3.4) should be

dtmt “ ∇ ¨

ˆ

σ2 ` σ20
2

∇mt ´mt

“

G
`

µ1pmtq, ¨
˘

` F p¨ ´ µ1pmtqq
‰

˙

dt´ σ0∇mt ¨ dB0
t , (3.19)

for a functionG : Rd ˆRd Ñ Rd
. Back to the prototype example addressed in the previous paragraph,

this says that the long-time behavior of pmtqtě0 should now be compared with those of the standard

SDE dYt “ GpYt, Ytqdt`σ0dB
0
t , up to some fluctuation terms that one may expect to control properly

if F is sufficiently decreasing. In this context, what truly matters are the confining properties of the

doubled mapping px, xq ÞÑ Gpx, xq.

We strongly believe that Theorem 3.8 could be extended to this setting, with a similar analysis.

From a technical point of view, the gain would be limited: the difficulty would not come from the

variable µ1pmq in G but from the variable x (precisely because the strategy is to replace in the end the

argument Xt by its conditional expectation E1pXtq in (3.5)). This difficulty is already present in the

prototype example (3.13) and, in contrast, it is clear from the example (3.15) that the presence of the

variable µ1pmq inG does not raise any substantial difficulty. This explains how choice to work on (3.4)

(and not on (3.19)).

An example without restoration of uniqueness

As highlighted earlier, the finite-dimensional nature of the common noise constitutes a significant lim-

itation to obtain ergodic properties on the process pmtqtě0 (see in contrast the recent work [DH24]

by the first author for a 1d case with an infinite dimensional noise). In particular, this is the thrust of

our work to identify one class of mean field dynamics for which the common noise really helps in this

matter. However, it is clear that there is no chance to get uniqueness of the invariant measure for a

generic class of stochastic Fokker-Planck SPDEs forced by a simple noise like B0
.

A counter-example in dimension d “ 1 is

dtmt “
σpvpmtqq2 ` σ20

2
B2
xxmtdt` Bxpxmtqdt´ σ0BxmtdB

0
t ,

for some function σ : r0,`8q Ñ p0,`8q. Whenever σ0 “ 0 and the function σ2p¨q{4 admits several

fixed points, the stationary solutions to the above equation cannot be unique. In this case, pmtqtě0 is

indeed solution of

Btmt “
σpvpmtqq2

2
B2
xx pmtq ` Bxpxmtq, t ě 0. (3.20)

Then, similar to the stationary solutions found in the previous example, the stationary solutions (equiv-

alently, the invariant measures of (3.5)) are here solutions of

dm

dx
pxq “ exp

ˆ

´2
x2

σ2pvpmqq

˙

, x P R.
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3. Proof of Theorem 3.8

Then, one can show that, if the function x ÞÑ σ2pxq{4 admits several fixed points, then there are several

stationary solutions to (3.20).

When adding common noise, the situation does not get better. For instance, assuming that the

initial condition P0 “ δδ0 , one can show that for all t ą 0, P0-almost surely,mt is a (random) Gaussian

probability measure with parameters

$

’

’

&

’

’

%

µ1pmtq “ σ0

ż t

0
es´tdB0

s ,

vpmtq “

ż t

0
e2ps´tqσ2pvpmsqqds.

Then, it is not difficult to see that pµ1pmtqqtě0 is an ergodic process (it is in fact an Ornstein-Uhlenbeck

process with a negative mean-reverting parameter). As for the dynamics of the variance pvpmtqqtě0,

we get

Btvpmtq “ ´2vpmtq `
1

2
σ2pvpmtqq, t ě 0.

Obviously, the above equation has several stationary solutions (say σ˚
) if the function x ÞÑ σ2pxq{4

admits several fixed points. In the latter case, pmtqtě0 has several invariant measures, whose form

is similar to (3.18) except that σ therein is now replaced by any σ˚
. In this specific example, it is

noteworthy that the common noise has no influence on the mean field term pvpmtqqtě0 (which is

completely deterministic). Clearly, this is a consequence of the additive structure of the noise, the

effect of which is just to shift (or to translate) the measures pmtqtě0.

Conclusion

All these examples illustrate that the form of the mean field interaction in (3.4), based on the sole

(conditional) mean state is key in the derivation of Theorem 3.8. In particular, this structure makes it

possible to transmit the noise from the dynamics of the state variable pXtqtě0 in (3.5) to its conditional

mean pE1pXtqqtě0. As suggested in the discussion on the prototype example, the next step is to prove

that the long run behavior of pE1pXtqqtě0 is dictated by the ergodic properties of the SDE dYt “

GpYtqdt`σ0dB
0
t , at least if α is large and σ is small. This is the main line of the proof that is presented

in the next two sections.

3 Proof of Theorem 3.8

In this section, we explain how to deduce Theorem 3.8 from Proposition 3.7, but the proof of the latter

is postponed to Section 4.

Before moving on to the proof of Theorem 3.8, we need two preliminary estimates: the first one ad-

dresses the conditional variance of the solution to (3.4), and the second one the conditional exponential

moments of the solution.

3.1 First preliminary estimate: conditional variance

Given a solution X to Equation (3.5), we first focus on the conditional expectation given the common
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noise pE1rXtsqtě0:

Proposition 3.10. Let us consider a d-dimensional Brownian motion β0 defined on pΩ0,F
0,P0q and

adapted to the filtration F0. Let Assumptions 5 and 6 be in force with the additional constraint cαF :“

αF ´ LG ą 0. Let us consider P0 P PpP1pRdqq and X0 such that L1pX0q “ m0 a.s, for some random
measurem0 satisfying L0pm0q “ P0. Then, for X with dynamic given by

#

dXt “ GpXtqdt` F pXt ´ E1rXtsqdt` σdBt ` σ0dβ
0
t

Xt|t“0 “ X0,

we have for all t ě 0,

E1

“

|Xt ´ E1rXts|
2
‰

ď E1

“

|X0 ´ E1rX0s|2
‰

e´2cαF
t `

dσ2

cαF

, (3.21)

where the previous inequality holds P0 ´ a.s.

Remark 3.11. p1q Inequality (3.21) does not depend on the choice of the Brownian motion pβ0t qtě0 in the
dynamics of X . Accordingly, it can be recast in terms of the solution (3.4) in the form

vpmtq ď vpm0qe´2cαF
t `

dσ2

cαF

, t ě 0. (3.22)

p2q The result can be interpreted as follows. When σ “ 0, the result is consistent with [Mai23] and
says that the process pXtqtě0 is attracted by its conditional expectation in the long run. When σ ą 0, the
result provides a sharp estimate of the residual conditional variance.

p3q Back to Theorem 3.8, the challenge is precisely to prove that the long-time behaviour ofX is dictated
by the long-time behaviour of E1rXs even though the residual term is not zero.

Proof of Proposition 3.10. Using the dynamics of the process X , one can write

dpXt ´ E1rXtsq “ pGpXtq ´ E1rGpXtqsqdt` pF pXt ´ E1rXtsq ´ E1rF pXt ´ E1rXtsqsqdt` σdBt

Then, applying Itô’s formula, it comes

d|Xt ´ E1rXts|
2 “ 2pXt ´ E1rXtsq ¨ pGpXtq ´ E1rGpXtqsqdt

` 2pXt ´ E1rXtsq ¨ pF pXt ´ E1rXtsq ´ E1rF pXt ´ E1rXtsqsqdt

` 2σpXt ´ E1rXtsq ¨ dBt

` dσ2dt

Using the fact that G is Lipschitz continuous and taking expectation, we get that

d

dt
E1

“

|Xt ´ E1rXts|
2
‰

ď 2LGE1

“

|Xt ´ E1rXts|
2
‰

` 2E1rpXt ´ E1rXtsq ¨ F pXt ´ E1rXtsqs ` dσ2.
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3. Proof of Theorem 3.8

Moreover, we can write

E1 rpXt ´ E1rXtsq ¨ F pXt ´ E1rXtsqs “ E1 rpXt ´ E1rXtsq ¨ pF pXt ´ E1rXtsq ´ F p0qqs

ď ´αF E1

“

|Xt ´ E1rXts|
2
‰

,

where we recall that αF ą 0 is defined in Assumption 6. Then,

d

dt
E1r|Xt ´ E1rXts|

2s ď ´2pαF ´ LGqE1r|Xt ´ E1rXts|
2s ` dσ2.

Finally, we get the result using Grönwall’s Lemma, as soon as αF ą LG.

3.2 Second preliminary estimate: conditional exponential moments

Let us state the following lemma which allows us to control the exponential moments of the process

pmtqtě0 under one invariant measure
sP (which will be in the end ‘the’ invariant measure):

Lemma 3.12. Under Assumptions 5 and 6, assuming that αF ą LG, there exists an invariant measure
sP P P2pP2pRdqq for the process pmtqtě0, such that

ż

PpRdq

exp
´

2c2vprmq1{2
¯

sP pdrmq ă `8, (3.23)

where c2 :“ cαF
1 {cαF .

Remark 3.13. The result presented in Lemma 3.12 aligns with the global picture we gave for the behavior
of the model. In particular, it is natural (and in fact well-expected) in the regime σ ! 1 (which corresponds
to the framework of Proposition 3.7). Indeed, we already know from [Mai23] (see also Section 2.4) that, if
σ “ 0, the invariant measure sP 0 is supported by Dirac masses; therefore, the conclusion of Lemma 3.12
becomes straightforward when replacing sP by sP 0 in the statement. The thrust of Lemma 3.12 is thus to
extend the result to positive values of σ. Although our proof relies on a direct computation, it is worth
noticing that any invariant measure sP (for σ ą 0) should satisfy

d
PpRdq

1 p sP , sP 0q ď Cσ2,

for some constant C independent of σ. In particular, any invariant sP is close to sP 0 when σ is small, hence
justifying our intuition that Lemma 3.12 is a perturbation of the regime σ “ 0.

Proof of Lemma 3.12. Consider a probability measure P0 P PpPpRdqq with P0pP2pRdqq “ 1 and the

measure valued stochastic process pmtqtě0 solving (3.4) with L0pm0q “ P0 as initial condition. Then,

letting Pt “ L0pmtq, @t ě 0, we can easily show with arguments similar to those used in the proof of

Proposition 2 in [Mai23] that the sequence pQT qTě0 defined by

QT :“
1

T

ż T

0
Ptdt

admits a converging subsequence, still denoted by pQT qTě0, that converges to an invariant measure
sP .

97



Chapter 3. Ergodicity of some stochastic Fokker-Planck equations with additive common noise

For any T ą 0,

ż

PpRdq

exp
´

2c2vprmq1{2
¯

QT pdrmq “
1

T

ż T

0

ż

PpRdq

exp
´

2c2vprmq1{2
¯

Ptpdrmq

“
1

T

ż T

0
E0

”

exp
´

2c2vpmtq
1{2

¯ı

dt.

Moreover, (3.22) gives

ż

PpRdq

exp
´

2c2vprmq1{2
¯

QT pdrmq ď
1

T

ż T

0
E0

„

exp

ˆ

2c2vpm0q1{2 `
2c2σ
?
cαF

˙ȷ

dt

ď E0

„

exp

ˆ

2c2vpm0q1{2 `
2c2σ
?
cαF

˙ȷ

,

which can be assumed to be finite by choosing an appropriate initial condition. Recall indeed that the

choice of P0 in the construction of the sequence pQT qTě0 is free. Therefore, assuming that

ż

PpRdq

exp
`

2c2vprmq1{2
˘

P0pdrmq ă `8, (3.24)

and using lower-semi-continuity of the function P ÞÑ xexpp2c2vp¨q1{2q ; P yPpRdq, we get that

ż

PpRdq

exp
´

2c2vprmq1{2
¯

sP pdrmq ď lim inf
TÑ`8

ż

PpRdq

exp
´

2c2vprmq1{2
¯

QT pdrmq ă `8, (3.25)

which is (3.23). In order to prove that
sP P P2pP2pRdqq, we use the same approach and get for any

T ą 0,

ż

PpRdq

µ2prmqQT pdrmq “
1

T

ż T

0

ż

PpRdq

µ2prmqPtpdrmqdt

“
1

T

ż T

0
E0rµ2pmtqsdt.

(3.26)

Now, we claim that, under (3.24) and Assumptions 5 and 6,

sup
tě0

E0r µ2pmtqs ă `8.

Indeed, there exist two positive constants b1, b2 ą 0, such that for all px, yq P Rd
,

px´ yq ¨ pGpxq ´Gpyqq ď ´b1|x´ y|2 ` b2.

Then, we get

d

dt
E0rµ2pmtqs ď ´ 2b1E0rµ2pmtqs ` 2b2 ` pσ2 ` σ20q

` 2|Gp0q|E0rµ2pmtqs1{2 ` 2CFE0

”

µ2pmtq
1{2vpmtq

1{2
ı

.
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Using once again (3.22) and Jensen’s inequality to control the last term, we obtain

d

dt
E0rµ2pmtqs ď ´2b1E0rµ2pmtqs ` 2

ˆ

|Gp0q| ` CF vpm0q1{2 `
CFσ
?
cαF

˙

E0 rµ2pmtqs
1{2

` 2b2 ` dpσ2 ` σ20q

ď ´b1E0rµ2pmtqs ` b´1
1

ˆ

|Gp0q| ` CF vpm0q1{2 `
CFσ
?
cαF

˙2

` 2b2 ` dpσ2 ` σ20q,

and conclude using Grönwall’s Lemma that suptě0 E0rµ2pmtqs ă `8. Finally, using the same lower-

semi-continuity argument as in (3.25) and returning to (3.26), we get

ż

PpRdq

µ2prmq sP pdrmq ď lim
TÑ`8

ż

PpRdq

µ2prmqQT pdrmq ă `8. (3.27)

The latter implies that
sP P P2pP2pRdqq.

3.3 Completion of the proof of Theorem 3.8

We are now ready for the proof of Theorem 3.8 which is a straightforward combination of Proposi-

tion 3.7 and Lemma 3.12.

Proof of Theorem 3.8. We know from Proposition 3.7 that for any αF ě maxpLG,mGq and any σ0 ą 0,

there exist sσ ą 0 (depending on F,G, σ0 and d) such that for all σ ď sσ and for any 1-Lipschitz

continuous function ϕ : P1pRdq Ñ R and allm, rm P P2pRdq,

|Ptϕpmq ´ Ptϕprmq| ď Kpm, rmqe´ct, t ě 0,

for some c ą 0 independent ofm and rm. Let us now consider an invariant measure
sP P P2pP2pRdqq,

with a finite conditional exponential moments, whose existence is ensured by Lemma 3.12. Then,

ˇ

ˇ

ˇ

ˇ

ˇ

Ptϕpmq ´

ż

PpRdq

Ptϕprmq sP pdrmq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż

PpRdq

|Ptϕpmq ´ Ptϕprmq| sP pdrmq

ď e´ct

ż

PpRdq

Kpm, rmq sP pdrmq.

(3.28)

Now, coming back to Proposition 3.7 for the shape of Kpm, rmq, we obtain that

ż

PpRdq

Kpm, rmq sP pdrmq ď Cdµ2pmq1{2 exp
´

c2vpmq1{2
¯

ż

PpRdq

exp
´

c2vpmq1{2
¯

sP pdrmq

` Cd exp
´

c2vprmq1{2
¯

ż

PpRdq

µ2prmq1{2 exp
´

c2vprmq1{2
¯

sP pdrmq,

with c2 :“ cαF
1 {cαF .

Using Hölder inequality and leveraging on Lemma 3.12 we have

ż

PpRdq

Kpm, rmq sP pdrmq ď Cd

`

1 ` µ2pmq1{2
˘

exp
´

c2vpmq1{2
¯

.
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Substituting in (3.28), we complete the proof.

4 Proof of Proposition 3.7

This section is dedicated to the proof of Proposition 3.7.

4.1 Ansatz

The strategy of proof of Proposition 3.7 relies on the auxiliary Proposition 3.10. This latter result says

that the residual conditional variance of X (solution to Equation (3.5)) is small with σ. In turn, it

prompts us to focus on the process E1rXs “ pE1rXtsqtě0. The latter has the following dynamics:

dE1rXts “ E1rGpXtqsdt` E1rF pXt ´ E1rXtsqsdt` σ0dB
0
t , t ě 0.

Whilst this is not a closed equation (in E1rXts), our approach is to write it as a perturbation of a finite-

dimensional stochastic differential equation. Heuristically, we have (thanks to Proposition 3.10) that

on a large time scale

E1rF pXt ´ E1rXtsqs « σ2{cαF , (3.29)

E1rGpXtqs “ GpE1rXtsq ` rE1rGpXtqs ´GpE1rXtsqs « GpE1rXtsq ` σ2{cαF . (3.30)

Equations (3.29) and (3.30) are rather informal, and we refrain from giving here a rigorous meaning to

the symbol« in both of them. However, these two expansions suggest that the dynamics of pE1rXtsqtě0

indeed resembles to the one of the diffusion process Y , constructed on pΩ0,F0,P0q as the solution of

dYt “ GpYtq dt` σ0dB
0
t , t ě 0 ; Y0 “ E1pX0q. (3.31)

Here, it is worth emphasizing that, even obvious, (3.31) is not a McKean-Vlasov but a mere diffusion

equation. In particular, the long time analysis of (3.31) falls within a much wider literature, since the

study of the long time behaviour of diffusion processes has been an important topic of interest, see

[ABC
`
00, BBCG08, BE85] to name just a few. Below, we make use of coupling arguments, in the spirit

of Eberle [Ebe16], who stated contraction properties for the law of the solution of (3.31) by building

on ideas developed earlier in [LR86]. The next section gives some details on this approach and the

contraction results available in this framework.

4.2 Contraction for classical diffusion processes

Following [Ebe16], we introduce the following quantities :

R0 :“ inftR ě 0 : κprq ě 0, @r ě Ru,

R1 :“ inf tR ě R0 : κprqR pR ´R0q ě 8, @r ě Ru ,
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so that R0 ď R1. Thanks to Assumption 5, R0 and R1 are finite. Moreover, let

φprq :“ exp

ˆ

´
1

4

ż r

0
sκpsq´ds

˙

, Φprq:“

ż r

0
φpsqds,

gprq :“ 1 ´

ˆ
ż r^R1

0
Φpsqφpsq´1ds

˙ˆ

2

ż R1

0
Φpsqφpsq´1ds

˙´1

,

and

fprq :“

ż r

0
φpsqgpsqds. (3.32)

Then, we have that

• φ is non-increasing, φp0q “ 1, and φprq “ φ pR0q for any r ě R0;

• g is non-increasing, gp0q “ 1, and gprq “ 1{2 for any r ě R1;

• f 1
is bounded on r0,`8q;

• f is concave, fp0q “ 0, f 1p0q “ 1, and

Φprq{2 ď fprq ď Φprq for any r ě 0.

The last display combined with the fact that for all r ě 0, Φprq{2 ě φpR0qr{2 and Φprq ď r, implies

κ1r ď fprq ď r, (3.33)

with κ1 :“ φpR0q{2. This allows us to define the equivalent deformation of 1-Wasserstein distance

dR
d

f pµ, νq:“ inf
πPΠpµ,νq

ż

fp|x´ y|qπp dx, dyq,

for any two probability measures µ, ν on Rd
, where the infimum is taken over all couplings π of µ and

ν. Last but not least, the function f we constructed satisfies

f2prq ´
1

4
rκprqf 1prq ď ´

c

2σ20
fprq for all r ą 0, (3.34)

and for some c ą 0. Such concentration property for the function f is classical, and the proof of

inequality (3.34) can be found in [Con23, DEGZ20, Ebe16]. Leveraging on the contraction property of

f given by Equation (3.34), we get the following result (as a direct consequence of [Ebe16]):

Theorem 3.14 (Corollary 2 in [Ebe16]). Under Assumption 5 and with σ0 ą 0, there exists a constant
c :“ cσ0 ą 0, such that for any pair pY, rY q of solutions to Equation (3.31) with different initial conditions,
we have

dR
d

f

´

L1pYtq,L1prYtq
¯

ď dR
d

f

´

L1pY0q,L1prY0q

¯

e´ct, t ě 0. (3.35)
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Remark 3.15. Thanks to (3.33), we get that inequality (3.35) holds (up to some constant) when replacing
dR

d

f by the classical dR
d

1 Wasserstein distance.

The idea of the proof of Theorem 3.14 is to use the reflection coupling introduced in [LR86] and

widely used in the literature [Con23, DEGZ20, Ebe16, EZ19]. The classical reflection coupling is con-

structed by multiplying the noise by a symmetry matrix mapping instantaneously Yt ´ rYt on its oppo-

site, see [LR86, Section 3] for details. In this framework, the distance between the two processes Y and

rY evolves according to an Itô process with constant noise intensity. The hope is thus to benefit from

the presence of the noise to obtain further recurrent properties that prevent the processes from staying

away from one another. For sure, one cannot expect this intuition to hold true for any type of drift; in

order to guarantee a relevant form of recurrence, some further confining properties are necessary.

When dealing with the stochastic differential equation (3.31), the condition lim suprÑ`8 κprq ą 0

required in Assumption 5 is key in the verification of the latter confining properties. In itself, this is

not an obvious result: one must indeed keep in mind that G is not strictly decreasing, meaning that

κ may be negative on some part of the space. Clearly, things become even more subtle in presence

of the conditional McKean-Vlasov interaction. Still, one would like to settle down a similar reflection

argument for Equation (3.5), which raises preliminary questions of measurability. Briefly, in order to

preserve the form of the common noise, one must consider a reflection matrix that is measurable with

respect to the latter (and not to the idiosyncratic noise). The idea developed in the next subsection is to

introduce a coupling pX, rXq of solutions to (3.5) in which the reflection is achieved by reflecting with

respect to E1rXts ´ E1r rXts. However, while reflecting with respect to the conditional expectations

may seem appropriate to our objective, it cannot suffice on its own to get a proof of Proposition 3.7 that

would be amere copy and paste of the argument of [Ebe16]. The difficulty that onemeetswhen adapting

[Ebe16] to (3.5) is clear: the processes that solve (3.5) are not those that are used in the reflection. This

is where Proposition 3.10 comes in and this is one of the main innovation of our work: we use the fact

that the distance between the solutions to (3.5) and their conditional expectations (which are also the

processes entering the reflection) is small with σ. Mathematically, the difficulty is to revisit the whole

machinery of [Ebe16] by using the fact that, although it is not zero, the latter distance is small.

4.3 Proof of Proposition 3.7

To ease the reading of this subsection, we briefly outline the strategy of proof:

Proof Outline.

• Step 1. We construct a coupling pX, rXq inspired by the reflection coupling introduced in [LR86]

(as explained in subsection 4.2) and adapted to the presence of a common noise.

• Steps 2, 3 & 4. We prove that this coupling allows the conditional expectations E1rXs and E1r rXs

to get closer in time, up to some residual error that depends on the distance between the centred

processesX ´E1rXs and rX ´E1r rXs. This is established thanks to the confining property ofG

guaranteed by Assumption 5.
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• Step 5. In parallel (the key point is to run the two arguments at the same time), we prove the

mirror result, namely we show that the centred processesX ´E1rXs and rX ´E1r rXs get closer

in time, up to some residual error that depends on the distance between the conditional expec-

tations E1rXs and E1r rXs. This is established thanks to the strictly contracting properties of the

interaction term F guaranteed by Assumption 6.

• Step 6. We combine together the results of Step 4 and Step 5 to conclude.

Proof. Step 1. Let us consider a bounded and dR
d

1 -Lipschitz continuous function ϕ : P1pRdq Ñ R. In
particular there exists }ϕ}lip ą 0 such that for anym, rm P P1pRdq,

|ϕpmq ´ ϕprmq| ď }ϕ}lipd
Rd

1 pm, rmq.

Let us then fix m, rm P P2pRdq together with two independent random variables X0, rX0, defined on

pΩ1,F1,P1q such that L1pX0q “ m and L1p rX0q “ rm. Then, we extend X0 and
rX0 to the product

space pΩ,F,Pq in a natural manner.

Remark 3.16. It is important to notice here that, even if the initial conditions X0, rX0 are defined on the
product space pΩ,F,Pq, they are independent of F0.

For a given δ ą 0, let us now introduce the following coupling of two solutions of the SDE (3.5)

with initial conditions X0 and
rX0:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dXδ
t “ GpXδ

t qdt`F
´

Xδ
t ´ E1rXδ

t s

¯

dt` σdBt ` σ0

!

πδpEδ
t qdB0

t ` λδpEδ
t qd rB0

t

)

,

d rXδ
t “ Gp rXδ

t qdt`F
´

rXδ
t ´ E1r rXδ

t s

¯

dt` σdBt

` σ0

"

πδpEδ
t q

ˆ

Id ´ 2eδt

´

eδt

¯J
˙

dB0
t ` λδpEδ

t qd rB0
t

*

,

(3.36)

where

• the initial conditions are given by Xδ
0 “ X0 and

rXδ
0 “ rX0;

•
rB0

is a d-dimensional Brownian motion defined on pΩ0,F
0,P0q adapted to the filtration F0

and

independent of B0
;

• for all t ě 0, Eδ
t :“ E1rXδ

t s ´ E1r rXδ
t s, and

eδt :“

$

&

%

Eδ
t {|Eδ

t | if |Eδ
t | ‰ 0

0 otherwise;

• the function πδ is Lipschitz continuous on Rd
with value in r0, 1s, such that for any x P Rd

,

πδpxq “

$

&

%

0 if |x| ď δ{2

1 if |x| ě δ.
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• the function λδ is Lipschitz-continuous and satisfies λ2δpxq “ 1 ´ π2δ pxq, for all x P Rd
.

The first thing to notice is that under the Lipschitz continuity assumptions on G and F , and the inte-

grability properties of the initial conditions, we have existence and uniqueness of a weak solution of

(3.36). Moreover, thanks to the choice of πδ and λδ , the pair pXδ, rXδq is a coupling of pZ, rZq where for

Z and
rZ admits the same dynamic,

dZt “ GpZtqdt` F pZt ´ E1rZtsqdt` σdBt ` σ0dB
0
t , (3.37)

with initial condition Z0 “ X0 and
rZ0 “ rX0. This is mainly due to Levy’s characterisation of the

Brownian motion which is applicable here as for all x P Rd
, λ2δpxq ` π2δ pxq “ 1. Details on the

coupling method are given in subsection 4.2. Below, we focus on the long-time behavior of

E0

“

E1

“

|Xδ
t ´ rXδ

t |
‰‰

,

for a given δ ą 0.

Step 2. Letting Aδ
t :“ Xδ

t ´ E1rXδ
t s and rAδ

t :“
rXδ
t ´ E1r rXδ

t s, we get that for all t ě 0,

|Xδ
t ´ rXδ

t | ď |E1rXδ
t s ´ E1r rXδ

t s| ` |Aδ
t ´ rAδ

t |.

The idea of the proof is to control both |E1rXδ
t s ´ E1r rXδ

t s| and |Aδ
t ´ rAδ

t | simultaneously. This will

allow us to prove that both terms converge in fact to 0 (in some sense). Let us begin with the difference

of the conditional expectations:

d
´

E1rXδ
t s ´ E1r rXδ

t s

¯

“E1rGpXδ
t q ´Gp rXδ

t qsdt` E1rF pAδ
t q ´ F p rAδ

t qsdt

`2σ0πδpEδ
t qeδte

δ
t ¨ dB0

t .

Using Itô’s formula and recalling that Eδ
t “ E1rXδ

t s ´ E1r rXδ
t s and eδt ¨ Eδ

t “ |Eδ
t |, we obtain

d
ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

2
“ 2

´

E1rXδ
t s ´ E1r rXδ

t s

¯

¨

´

E1rGpXδ
t qs ´ E1rGp rXδ

t qs

¯

dt

` 2
´

E1rXδ
t s ´ E1r rXδ

t s

¯

¨

´

E1rF pAδ
t qs ´ E1rF p rAδ

t qs

¯

dt

` 4σ0

ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ
πδpEδ

t qeδt ¨ dB0
t

` 2σ20π
2
δ pEδ

t qdt.

This combinedwith the particular shape of the reflection, and noting that p
şt
0 e

δ
s¨dB0

s qt is a 1-dimensional

Brownian motion tank’s to Levy’s characterisation allows us to write

d
ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ
“ eδt ¨

´

E1rGpXδ
t qs ´ E1rGp rXδ

t qs

¯

dt

` eδt ¨

´

E1rF pAδ
t qs ´ E1rF p rAδ

t qs

¯

dt

` 2σ0πδpEδ
t qeδt ¨ dB0

t , t ě 0.

(3.38)
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Deriving Equation (3.38) is not straightforward and can be done using similar techniques as in [DEGZ20].

The underlying concept is that the presence of πδ keeps the process E
δ
from lingering near zero. The

complete proof of (3.38) can be found in Appendix 5. We now recall (see Assumption 5) that κ is a

continuous function on p0,8q satisfying

lim inf
rÑ8

κprq ą 0 and

ż 1

0
rκprq´dr ă 8. (3.39)

Then, using Itô’s formula once again, we obtain

df
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

“ f 1
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

eδt ¨

´

E1rGpXδ
t qs ´ E1rGp rXδ

t qs

¯

dt

` f 1
´
ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

eδt ¨

´

E1rF pAδ
t qs ´ E1rF p rAδ

t qs

¯

dt

` 2σ0f
1
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

πδpEδ
t qeδt ¨ dB0

t

` 2σ20f
2
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

π2δ pEδ
t qdt.

Then, we rewrite

df
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

“ f 1
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

eδt ¨

´

GpE1rXδ
t sq ´GpE1r rXδ

t sq

¯

dt

` 2σ20f
2
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

π2δ pEδ
t qdt

` 2σ0f
1
´
ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

πδpEδ
t qeδt ¨ dB0

t ` r1t dt,

(3.40)

where for all t ě 0, r1t :“ I1ptq ` II1ptq ` III1ptq, with

I1ptq “ f 1
´ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

eδt ¨ E1

”

ż 1

0
tDGpρXδ

t ` p1 ´ ρq rXδ
t q ´DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t squ dρ

pE1rXδ
t s ´ E1r rXδ

t sq

ı

;

II1ptq “ f 1
´ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

eδt ¨ E1

”

ż 1

0
tDGpρXδ

t ` p1 ´ ρq rXδ
t q ´DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t squ dρ

pAδ
t ´ rAδ

t q

ı

;

III1ptq “ f 1
´ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

eδt ¨ E1

”

ż 1

0
DF pρAδ

t ` p1 ´ ρq rAδ
t q dρ pAδ

t ´ rAδ
t q

ı

,

(3.41)

where we used the following two identities: E1rXδ
t s ´ E1r rXδ

t s `Aδ
t ´ rAδ

t “ Xδ
t ´ rXδ

t and E1rAδ
t s ´

E1r rAδ
t s “ 0.

Step 3. Recall (3.34):

f2prq ´
1

4
rκprqf 1prq ď ´

c

2σ20
fprq for all r ą 0.
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Combining the above equation with the fact that, from Assumption 5,

px´ yq ¨ pGpxq ´Gpyqq ď ´
2

σ20
κp|x´ y|q|x´ y|2, x, y P Rd,

we obtain

f 1
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

eδt ¨

´

GpE1rXδ
t sq ´GpE1r rXδ

t sq

¯

` 2σ20f
2
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

π2δ pEδ
t q

ď ´
σ20
2
f 1
´ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

|Eδ
t |κ

´ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

` 2σ20f
2
´ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

π2δ pEδ
t q

ď 2σ20

ˆ

´
1

4
f 1
´
ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

|Eδ
t |κ

´
ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

` f2
´ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

˙

π2δ pEδ
t q ´

σ20
2
f 1
´
ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

|Eδ
t |κ

´
ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

λ2δpEδ
t q

ď ´cf
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

` hpδq,

(3.42)

where

hpδq :“
σ20
2
f 1
´
ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

|Eδ
t |κ

´
ˇ

ˇ

ˇ
Eδ

t

ˇ

ˇ

ˇ

¯

λ2δpEδ
t q.

Now, recalling that λδpxq “ 0 as soon as |x| ě δ, we obtain for δ P r0, 1s,

|hpδq| ď
σ20
2

}f 1}8δκ2, (3.43)

where κ2 “ sup0ďrď1 κprq, from which we deduce that hpδq Ñ 0 with δ. Then, back to (3.40), we can

write

df
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

ď ´ cf
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

dt` |r1t |dt` hpδqdt

` 2σ0f
1
´
ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯

πδpEδ
t qeδt ¨ dB0

t ,

and

d

dt
E0

”

f
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯ı

ď ´c E0

”

f
´ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯ı

` E0r|r1t |s ` E0r|hpδq|s.

Using Grönwall’s Lemma, we obtain

E0

”

f
´
ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

¯ı

ď E0

”

f
´
ˇ

ˇ

ˇ
E1rXδ

0 s ´ E1r rXδ
0 s

ˇ

ˇ

ˇ

¯ı

e´ct `

ż t

0
e´cpt´sqE0r|r1s |sds

`
hpδq

c
.

(3.44)

Step 4. It remains to control the three parts in the expansion of the residual term r1¨ , see (3.41). For
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the two first ones, we use the Lipschitz continuity of DG with respect to the norm ||| ¨ ||| and write

|I1ptq| ď CGE1

”

|Xδ
t ´ E1rXδ

t s|2 ` | rXδ
t ´ E1r rXδ

t s|2
ı1{2 ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ
;

|II1ptq| ď CGE1

”

|Xδ
t ´ E1rXδ

t s|2 ` | rXδ
t ´ E1r rXδ

t s|2
ı1{2

E1

”

|Aδ
t ´ rAδ

t |2
ı1{2

.

Letting ηδt “ E1

”

|Xδ
t ´ E1rXδ

t s|2 ` | rXδ
t ´ E1r rXδ

t s|2
ı1{2

, for all t ě 0, and recalling from Proposi-

tion 3.10 that

ηδt ď ηδ0e
´cαF

t ` 2σc´1{2
αF

?
d,

we obtain

|I1ptq| ` |II1ptq|

ď CG

´

ηδ0e
´cαF

t ` 2σc´1{2
αF

?
d
¯

ˆ

E1

”

|Aδ
t ´ rAδ

t |2
ı1{2

`

ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

˙

.
(3.45)

For the term III1ptq, we use the fact that E1rAδ
t s “ E1r rAδ

t s “ 0 and write

|III1ptq| “

ˇ

ˇ

ˇ

ˇ

E1

„
ż 1

0
tDF pρAδ

t ` p1 ´ ρq rAδ
t q ´DF p0qudρ ¨ pAδ

t ´ rAδ
t q

ȷ
ˇ

ˇ

ˇ

ˇ

ďCF

´

ηδ0e
´cαF

t ` 2σc´1{2
αF

?
d
¯

E1

”

|Aδ
t ´ rAδ

t |2
ı1{2

,

(3.46)

where we used once again Proposition 3.10 together with the Lipschitz continuity of F to get the last

line. Then, combining (3.40), (3.45) and (3.46), we have

E0r|r1t |s ď E0 r|I1ptq| ` |II1ptq| ` |III1ptq|s

ď pCG ` CF q

´

ηδ0e
´cαF

t ` 2σc´1{2
αF

?
d
¯

E0

„

E1

”

|Aδ
t ´ rAδ

t |2
ı1{2

`

ˇ

ˇ

ˇ
E1rXδ

t s ´ E1r rXδ
t s

ˇ

ˇ

ˇ

ȷ

.

Here, we recall that ηδ0 is deterministic because m and rm are deterministic, see Remark 3.16. Finally,

using inequalities (3.33) and (3.44), we obtain

κ1E0

“

|E1rXδ
t s ´ E1r rXδ

t s|
‰

ď e´ct
ˇ

ˇ

ˇ
E1rXδ

0 s ´ E1r rXδ
0 s

ˇ

ˇ

ˇ
`
hpδq

c

` Cb

ż t

0
e´cpt´sq

´

ηδ0e
´cαF

s ` 2σc´1{2
αF

?
d
¯

E0

„

E1

”

|Aδ
s ´ rAδ

s|2
ı1{2

` |E1rXδ
s s ´ E1r rXδ

s s|

ȷ

ds,

(3.47)

where Cb :“ CG ` CF .

Step 5. We now focus on the (normed) difference process p|Aδ
t ´ rAδ

t |qtě0. Thanks to the properties

of F , as stated in Assumption 6, we are here able to show that it decreases exponentially fast to zero.

Recalling from Step 2 that Aδ
t “ Xδ

t ´ E1rXδ
t s for t ě 0, we have

dAδ
t “

´

GpXδ
t q ´ E1rGpXδ

t qs

¯

dt`

´

F pXδ
t ´ E1rXδ

t sqdt´ E1rF pXδ
t ´ E1rXδ

t ss

¯

dt` σdBt,
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from which we obtain

d

dt
pAδ

t ´ rAδ
t q “

”

GpXδ
t q ´Gp rXδ

t q

ı

`

”

F pAδ
t q ´ F p rAδ

t q

ı

´

”

E1rGpXδ
t qs ´ E1rGp rXδ

t qs

ı

´

”

E1rF pAδ
t qs ´ E1rF p rAδ

t qs

ı

.

Then,

d

dt
|Aδ

t ´ rAδ
t |2 “ 2pAδ

t ´ rAδ
t q ¨ pGpXδ

t q ´Gp rXδ
t qq

` 2pAδ
t ´ rAδ

t q ¨ pF pAδ
t q ´ F p rAδ

t qq

´ 2pAδ
t ´ rAδ

t q ¨ pE1rGpXδ
t qs ´ E1rGp rXδ

t qsq

´ 2pAδ
t ´ rAδ

t q ¨ pE1rF pAδ
t qs ´ E1rF p rAδ

t qsq

(3.48)

We can immediately leverage on Assumption 6 to control the second term on the right hand side:

2pAδ
t ´ rAδ

t q ¨ pF pAδ
t q ´ F p rAδ

t qq ď ´2αF |Aδ
t ´ rAδ

t |2. (3.49)

Let us now focus on the terms involving G. We have

pAδ
t ´ rAδ

t q ¨

´

GpXδ
t q ´Gp rXδ

t q ´ E1rGpXδ
t qs ` E1rGp rXδ

t qs

¯

“ pAδ
t ´ rAδ

t q ¨

„ˆ
ż 1

0

!

DGpρXδ
t ` p1 ´ ρq rXδ

t q ´DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sq

)

dρ

˙

pXδ
t ´ rXδ

t q

ȷ

` pAδ
t ´ rAδ

t q ¨

„ˆ
ż 1

0
DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t sqdρ

˙

pXδ
t ´ rXδ

t q

ȷ

´ pAδ
t ´ rAδ

t q ¨ E1

„ˆ
ż 1

0

!

DGpρXδ
t ` p1 ´ ρq rXδ

t q ´DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sq

)

dρ

˙

pXδ
t ´ rXδ

t q

ȷ

´ pAδ
t ´ rAδ

t q ¨

„ˆ
ż 1

0
DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t sqdρ

˙

pE1rXδ
t s ´ E1r rXδ

t sq

ȷ

.

By combining the second and fourth term in the right hand side, we obtain

pAδ
t ´ rAδ

t q ¨

´

GpXδ
t q ´Gp rXδ

t qq ´ E1rGpXδ
t qs ` E1rGp rXδ

t qs

¯

“pAδ
t ´ rAδ

t q ¨

„ˆ
ż 1

0

!

DGpρXδ
t ` p1 ´ ρq rXδ

t q ´DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sq

)

dρ

˙

pXδ
t ´ rXδ

t q

ȷ

`pAδ
t ´ rAδ

t q ¨

ˆ
ż 1

0
DGpρE1rXδ

t s ` p1 ´ ρqE1r rXδ
t sqdρ

˙

pAδ
t ´ rAδ

t q

´pAδ
t ´ rAδ

t q ¨ E1

„ˆ
ż 1

0

!

DGpρXδ
t ` p1 ´ ρq rXδ

t q ´DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sq

)

dρ

˙

pXδ
t ´ rXδ

t q

ȷ

“:A1ptq ` A2ptq ` A3ptq.

Then, if we perform the following decomposition of the first term on the right-hand side, we obtain

A1ptq “ AA1ptq ` AA2ptq, (3.50)
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with

AA1ptq :“ pAδ
t ´ rAδ

t q ¨

„ˆ
ż 1

0

!

DGpρXδ
t ` p1 ´ ρq rXδ

t q ´DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sq

)

dρ

˙

pE1rXδ
t s ´ E1r rXδ

t sq

ȷ

AA2ptq :“ pAδ
t ´ rAδ

t q ¨

´

ż 1

0

!

DGpρXδ
t ` p1 ´ ρq rXδ

t q

´DGpρE1rXδ
t s ` p1 ´ ρqE1r rXδ

t sq

)

dρ
¯

pAδ
t ´ rAδ

t q.

Then, combining the terms A2ptq and AA2ptq, we get

pAδ
t ´ rAδ

t q ¨

´

GpXδ
t q ´Gp rXδ

t q ´ E1rGpXδ
t qs ` E1rGp rXδ

t qs

¯

“ AA1ptq ` rA2ptq ` AA2ptqs ` A3ptq

“: AA1ptq ` II2ptq ` A3ptq,

(3.51)

where AA1ptq and A3ptq have been already defined and II2ptq is defined by

II2ptq :“ pAδ
t ´ rAδ

t q ¨

ˆ
ż 1

0
DGpρXδ

t ` p1 ´ ρq rXδ
t qdρ

˙

pAδ
t ´ rAδ

t q.

We now control II2ptq as we handled Equation (3.49). We get

II2ptq ď mG|Aδ
t ´ rAδ

t |2, (3.52)

where we recall from (3.6) thatmG P R stands for the upper bound of the function r ÞÑ r´σ20κprq{2s

introduced in Assumption 5. Indeed, as a consequence of 5, one can show that for any x, y P Rd
,

y ¨
`

DGpxqy
˘

ď mG|y|2.

Then, inserting (3.49), (3.51) and (3.52) into (3.48), we obtain

d

dt
|Aδ

t ´ rAδ
t |2

ď ´2pαF ´mGq|Aδ
t ´ rAδ

t |2 ` AA1ptq ` A3ptq ` 2pAδ
t ´ rAδ

t q ¨ pE1rF pAδ
t qs ´ E1rF p rAδ

t qsq.

By taking expectation under P1 and by using the fact that E1rAδ
t s “ E1r rAδ

t s “ 0, we get rid the last

two terms in the above right-hand side. We obtain

d

dt
E1

”

|Aδ
t ´ rAδ

t |2
ı

ď ´2pαF ´mGqE1

”

|Aδ
t ´ rAδ

t |2
ı

` 2E1 rAA1ptqs . (3.53)

In order to control AA1ptq, we come back to (3.50) and use the fact that E1rXδ
t s´E1r rXδ

t s is measurable

with respect to the common noise. By Cauchy-Schwarz’ inequality, we obtain

E1 rAA1ptqs ď CGE1r|Aδ
t ´ rAδ

t |2s1{2ηδt |E1rXδ
t s ´ E1r rXδ

t s|,
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where we recall that ηδt “ E1r|Aδ
t |2 ` | rAδ

t |2s1{2
. Then, from Proposition 3.10, we get

E1 rAA1ptqs ď E1r|Aδ
t ´ rAδ

t |2s1{2
´

ηδ0e
´cαF

t ` σc´1{2
αF

?
d
¯

|E1rXδ
t s ´ E1r rXδ

t s|,

and (3.53) rewrites

d

dt
E1

”

|Aδ
t ´ rAδ

t |2
ı

ď ´ 2pαF ´mGqE1

”

|Aδ
t ´ rAδ

t |2
ı

` 2E1r|Aδ
t ´ rAδ

t |2s1{2
´

ηδ0e
´cαF

t ` σc´1{2
αF

?
d
¯

|E1rXδ
t s ´ E1r rXδ

t s|.
(3.54)

Then, we get

d

dt
E1

”

|Aδ
t ´ rAδ

t |2
ı1{2

ď ´ pαF ´mGqE1

”

|Aδ
t ´ rAδ

t |2
ı1{2

` CGpηδ0e
´cαF

t ` σc´1{2
αF

?
dq|E1rXδ

t s ´ E1r rXδ
t s|,

(3.55)

see Appendix 5.2 for details. Using Grönwall’s Lemma, we obtain

E1r|Aδ
t ´ rAδ

t |2s1{2 ď E1r|Aδ
0 ´ rAδ

0|2s1{2 exp p´pαF ´mGqtq

` CG

ż t

0
e´pαF ´mGqpt´sqpηδ0e

´cαF
s ` σc´1{2

αF

?
dq|E1rXδ

s s ´ E1r rXδ
s s|ds.

Finally, taking again expectation E0,

E0

”

E1r|Aδ
t ´ rAδ

t |2s1{2
ı

ď expp´pαF ´mGqtqE1r|Aδ
0 ´ rAδ

0|2s1{2

` CG

ż t

0
e´pαF ´mGqpt´sqpηδ0e

´cαF
s ` σc´1{2

αF

?
dqE0

”

|E1rXδ
s s ´ E1r rXδ

s s|

ı

ds.
(3.56)

Step 6. Now, as (3.47) remains true replacing the rate c by rc ď c, we can assume without loss of

generality that αF ą mG ` c. We can then combine Equations (3.47) and (3.56) to obtain, for all t ě 0,

E0

„

E1

”

|Aδ
t ´ rAδ

t |2
ı1{2

` |E1rXδ
t s ´ E1r rXδ

t s|

ȷ

ď

ˆ

E1

”

|Aδ
0 ´ rAδ

0|2
ı1{2

` |E1rXδ
0 s ´ E1r rXδ

0 s|

˙

e´ct `
hpδq

c

` cb3

ż t

0
e´cpt´sq

´

ηδ0e
´cαF

s ` 2σc´1{2
αF

?
d
¯

E0

„

E1

”

|Aδ
s ´ rAδ

s|2
ı1{2

` |E1rXδ
s s ´ E1r rXδ

s s|

ȷ

ds,

(3.57)

for some constant cb3 ą 0 that depends on F and G.

With the notation Θδ
t :“ E1

”

|Aδ
t ´ rAδ

t |2
ı1{2

` |E1rXδ
t s ´ E1r rXδ

t s|, Equation (3.57) reads

E0rΘδ
t s ď Θδ

0e
´ct `

hpδq

c
` cb3

ż t

0
e´cpt´sq

´

ηδ0e
´cαF

s ` 2σc´1{2
αF

?
d
¯

E0

”

Θδ
s

ı

ds.
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Then, using Grönwall Lemma, we obtain

ectE0

”

Θδ
t

ı

ď

ˆ

Θ0 `
hpδq

c

˙

exp

˜

cb3
cαF

η0 `
cb3σ

?
d

?
cαF

t

¸

` hpδq

ż t

0
ecs exp

˜

cb3
cαF

η0 `
cb3σ

?
d

?
cαF

pt´ sq

¸

ds.

(3.58)

We emphasize here that we writeΘ0 and η0 without reference to δ because these quantities are prede-

termined and independent of δ. Now, let us notice that creating the couplage we defined two Brownian

motions adapted to the filtration F0:

βδt “

ż t

0
πδpEδ

sqpId ´ 2eδspeδsqJqdB0
s `

ż t

0
λδpEδ

sqd rB0
s

rβδt “

ż t

0
πδpEδ

sqdB0
s `

ż t

0
λδpEδ

sqd rB0
s .

Settingmδ
t “ L1pXδ

t q et rmδ
t “ L1p rXδ

t q, we get

dtm
δ
t “ ∇ ¨

ˆ

σ2 ` σ20
2

∇mδ
t ´mδ

t

´

G` F p¨ ´ µ1pmδ
t qq

¯

˙

dt´ σ0∇mδ
t ¨ dβδt ,

dt rm
δ
t “ ∇ ¨

ˆ

σ2 ` σ20
2

∇rmδ
t ´ rmδ

t

´

G` F p¨ ´ µ1prmδ
t qq

¯

˙

dt´ σ0∇rmδ
t ¨ drβδt .

Then, one hasPtϕpmq “ E0

“

ϕpmδ
t q|mδ

0 “ m
‰

andPtϕprmq “ E0

“

ϕprmδ
t q|rmδ

0 “ rm
‰

. Then, we obtain

that for any δ ą 0,

|Ptϕpmq ´ Ptϕprmq| ď }ϕ}lipE0

”

E1

”ˇ

ˇ

ˇ
Xδ

t ´ rXδ
t

ˇ

ˇ

ˇ

ıı

ď }ϕ}lipE0rΘδ
t s

(3.59)

Plugging the estimate given by Equation (3.58) into Equation (3.59) gives

|Ptϕpmq ´ Ptϕprmq| ď}ϕ}lip

ˆ

Θ0 `
hpδq

c

˙

exp

˜

cb3
cαF

η0 `

˜

cb3σ
?
d

?
cαF

´ c

¸

t

¸

` }ϕ}liphpδq

ż t

0
e´cpt´sq exp

˜

cb3
cαF

η0 `
cb3σ

?
d

?
cαF

pt´ sq

¸

ds.

The latter being true for all δ ą 0, we can consider the limit δ Ñ 0 to finally obtain

|Ptϕpmq ´ Ptϕprmq| ď }ϕ}lipΘ0 exp

˜

cb3
cαF

η0 `
cb3σ

?
d

?
cαF

t´ ct

¸

.

Then, for σ andα satisfying c :“ σcb3c
´1{2
αF ´c ă 0, we get the expected exponential rate of convergence.

111



Chapter 3. Ergodicity of some stochastic Fokker-Planck equations with additive common noise

Moreover, writing

Θ0 exp

ˆ

cb3
cαF

η0

˙

“

ˆ

E1

”

|A0 ´ rA0|2
ı1{2

` |E1rX0s ´ E1r rX0s|

˙

exp

ˆ

cb3
cαF

η0

˙

ďC2

´

µ2pmq1{2 ` µ2prmq1{2
¯

exp

ˆ

cb3
cαF

pvpmq1{2 ` vprmq1{2q

˙

,

for a new constant positive C2, we complete the proof of Proposition 3.7.

5 Appendix

5.1 Proof of Equation (3.38)

Proof. Using Itô’s formula, and recalling that Eδ “ Xδ ´ rXδ
, we get that for any δ ą 0,

d|E1rXδ
t s ´ E1r rXδ

t s|2

“ 2pE1rXδ
t s ´ E1r rXδ

t sq ¨

´

E1rGpXδ
t qs ´ E1rGp rXδ

t qs

¯

dt

` 2pE1rXδ
t s ´ E1r rXδ

t sq ¨

´

E1rF pXδ
t ´ E1rXδ

t sqs ´ E1rGpF p rXδ
t ´ E1r rXδ

t sqqs

¯

dt

` 4σ0πδpEδ
t qppE1rXδ

t s ´ E1r rXδ
t sq ¨ eδt qeδt ¨ dB0

t

` 4σ20π
2
δ pEδ

t qdt.

For any ε ą 0, let us introduce ψε : r0,`8s P r ÞÑ pr`εq1{2
. Since this function is twice continuously

differentiable, we can write

dψε

´

|E1rXδ
t s ´ E1r rXδ

t s|2
¯

“ 2ψ1
εp|Eδ

t |2qEδ
t ¨

´

E1rGpXδ
t qs ´ E1rGp rXδ

t qs

¯

dt

` 2ψ1
εp|Eδ

t |2qEδ
t ¨

´

E1rF pXδ
t ´ E1rXδ

t qs ´ E1rF p rXδ
t ´ E1r rXδ

t qs

¯

dt

` 4σ0ψ
1
εp|Eδ

t |2qπδpEδ
t qpEδ

t ¨ eδt qeδt ¨ dB0
t (3.60)

` 4σ20ψ
1
εp|Eδ

t |2qπ2δ pEδ
t qdt

` 8σ20ψ
2
εp|Eδ

t |2q|Eδ
t |2πδpEδ

t qdt.

We nowwant to take the limit ε Ñ 0. Using dominated convergence theorem and stochastic dominated

convergence theorem as stated in [RY99, Theorem 2.12], combined with the bound 4rψ1
εpr2q ď 1, we

can deal with the first two lines and get that for all t ě 0,

lim
εÑ0

ż t

0
2ψ1

εp|Eδ
s |2qEδ

s ¨

´

E1rGpXδ
s qs ´ E1rGp rXδ

s qs

¯

ds “

ż t

0
eδs ¨

´

E1rGpXδ
s qs ´ E1rGp rXδ

s qs

¯

ds,

(3.61)

lim
εÑ0

ż t

0
2ψ1

εp|Eδ
s |2qEδ

s ¨

´

E1rF pXδ
t ´ E1rXδ

t sqs ´ E1rF p rXδ
t ´ E1r rXδ

t sqs

¯

ds

“

ż t

0
eδs ¨

´

E1rF pXδ
t ´ E1rXδ

t sqs ´ E1rF p rXδ
t ´ E1r rXδ

t sqs

¯

ds,

(3.62)
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and

lim
εÑ0

ż t

0
4σ0ψ

1
εp|Eδ

s |2qπδpEδ
sqpEδ

s ¨ eδsqeδs ¨ dB0
s “

ż t

0
2σ0πδpEδ

sqeδs ¨ dB0
s , (3.63)

almost surely. For the last two terms in Equation (3.60), let us remark that for all r ě 0,

ψ1
εprq ` 2ψ2prq “

1

2pr ` εq1{2
´

r

2pr ` εq3{2
Ñ 0, (3.64)

when ε tends to 0. In order to we need to properly take the limit ε Ñ 0 in Equation (3.60), we need to

take advantage of the presence of the function πδ for δ ą 0. In Indeed, we have

ˇ

ˇ

ˇ
4σ20ψ

1
εp|Eδ

t |2qπ2δ pEδ
t q ` 8σ20ψ

2
εp|Eδ

t |2q|Eδ
t |2πδpEδ

t q

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
π2δ pEδ

t qσ20

´

4ψ1
εp|Eδ

t |2q ` 8ψ2
εp|Eδ

t |2q|Eδ
t |2

¯ˇ

ˇ

ˇ
.

Moreover, we know that ψ1
εpr2q ` 2ψ2

εpr2qr2 ď r´3
, for all r ą 0 and ε ď 1. Using the presence of

πδ , we have that the integrand is null near 0. Then, we can once again apply dominated convergence

theorem and obtain

lim
εÑ0

ż t

0
4
!

σ20ψ
1
εp|Eδ

s |2qπδpEδ
sq2 ` 8σ20ψ

2
εp|Eδ

s |2q|Eδ
s |2ψδpEδ

sq

)

ds “ 0. (3.65)

Finally, combining Equations (3.61), (3.62) (3.63) and (3.65), we get the expected result.

5.2 Proof of Equation (3.55)

Proof. To prove Equation, let us introduce the following technical Lemma:

Lemma 3.17. For any positive and differentiable function u : r0,`8q Ñ r0,`8q such that

d

dt
uptq ď 2kptq

a

uptq,

for some function k : r0,`8q Ñ R, we have

d

dt

a

uptq ď kptq.

Proof of Lemma 3.17. We consider for any ε ą 0 the function ψε : r0,`8q Q r ÞÑ pr ` εq1{2
. The

function ψε being differentiable with positive derivative, we get

d

dt
ψε puptqq ď 2kptq

a

uptqψ1
ε puptqq .

Using the fact that 2rψ1
εpr2q “ rpr2 `εq´1{2 ď 1, we use dominated convergence theorem to conclude

the proof.

Such a lemma is classical and applying it to Equation (3.54) concludes the proof of Equation (3.55).
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Part II

Statistical analysis of diffusion models
in presence of noise
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Chapter 4
Invariant density estimation from noisy data

We introduce a new approach for estimating the invariant density of a multidimensional

diffusion when dealing with high-frequency observations blurred by independent noises.

We consider the intermediate regime, where observations occur at discrete time instances

k∆n for k “ 0, . . . , n, under the conditions ∆n Ñ 0 and n∆n Ñ 8. Our methodology

involves the construction of a kernel density estimator that uses a pre-averaging technique

to proficiently remove noise from the data while preserving the analytical characteristics

of the underlying signal and its asymptotic properties. The rate of convergence of our

estimator depends on both the anisotropic regularity of the density and the intensity of

the noise. We establish conditions on the intensity of the noise that ensure the recovery of

convergence rates similar to those achievable without any noise. Furthermore, we prove

a Bernstein concentration inequality for our estimator, from which we derive an adaptive

procedure for the kernel bandwidth selection.
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1. Introduction

1 Introduction

1.1 Setting

In this paper, we revisit the classical problem of estimating the distribution of a signal blurred by addi-

tive noise. We focus on a d-dimensional deconvolution model

Yi,n “ Xi,n ` τnξi,n, i “ 0, . . . , n, (4.1)

where the variables pXi,nqi are stationary with common distribution µ and pξi,nqi,n is an i.i.d sequence

independent of X . The sequence pτnq represents the noise intensity and is assumed known. When

the pXi,nqi are independent, the noise is Gaussian and the target density is α-Hölder regular, the best

achievable pointwise quadratic rate of estimation is logpnq´α{2ταn , see [Fan91, CL13] for more details.

When τn is of order 1, the resulting convergence rate becomes logarithmic, and the estimators cannot

be used in practice. In this work, we show the situation improves when the process pXi,nqi exhibits

Markovian properties. Such structure can significantly enhance the efficiency of denoising the obser-

vations.

Throughout this paper, we consider a d-dimensional stochastic processX , defined on an appropri-

ate probability space pΩ,A,Pq, governed by the following dynamics

dXt “ bpXtq dt` σpXtq dWt. (4.2)

Here,W represents a d-dimensional Brownian motion, and the functions b : Rd Ñ Rd
and σ : Rd Ñ

Rd b Rd
are the transport and diffusion coefficients of X , respectively. We specifically consider the

case where σ is a known constant diagonal matrix. Under mild conditions on b and σ, the process X

is ergodic and admits a unique stationary distribution, denoted by µb. Furthermore, µb is absolutely

continuous with respect to the Lebesgue measure on Rd
and has a density also denoted by µb.

We aim at estimating µb from the pYiqi“1,...,n defined in Equation (4.1), with

Xi,n “ Xi∆n , i “ 0, . . . , n, (4.3)

for some positive sequence p∆nqn. If ∆n is of order 1 or larger, the variables pXi,nq are exponentially

β-mixing and we would retrieve results similar to the i.i.d case. When∆n Ñ 0 and n∆n Ñ 8, we can

use the Markovian and ergodic structure of (4.2) to build an estimator of µb with polynomial rate even

when τn “ 1.

1.2 Motivation

Historically, diffusion models were first introduced as approximations of discrete Markov chains. Over

time, their relevance has significantly expanded across various domains of applied mathematics [Pap95,

Ber93, Hul03, Bai57, Ric77]. Statistical inference for diffusion processes has attracted extensive study

due to the model’s significance in many applied fields. This research first included both parametric and
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non-parametric estimation of the parameters b and σ. The estimation of the invariant measure µb is

also studied [NZ79, Del80, Bos98], pushed by its association with various numerical methods, such as

Markov Chain Monte Carlo [LP02, Pan08]. Note also that the non-parametric estimation of µb and the

estimation of the transport b are intertwined [Sch13].

Initiated by [Ros56, Par62], non-parametric density estimation has been extensively studied in the

context of i.i.d observations [Tsy09]. A natural estimator of the common density µ of i.i.d. observations

pXi,nqi is given by

pµnpxq “
1

n

n´1
ÿ

k“0

Khpx´Xkq

wherewewriteKhpyq “
ś

i h
´1
i Kpyih

´1
i q for anyh “ ph1, . . . , hdq P p0,`8qd and y “ py1, . . . , ydq P

Rd
, and where K : R Ñ R is a bounded kernel. Oracle inequalities show that this estimator can

achieve the convergence rate n´α{p2α`dq
where α is the Hölder regularity of µ. This rate is opti-

mal, see e.g. [Tsy09] for details. The tuning parameter h needs to be chosen in an adaptive way

to achieve this rate, see [GL08, GL09, GL11]. The extension to ergodic processes is not trivial and

earlier statistical studies focus on two different asymptotic regimes: continuous observations of the

process pXtqtďT with T Ñ 8, or low frequency observations given by pXi∆qi with 0 ď i ď n.

SinceX is exponentially β-mixing under mild assumptions on b, low frequency observations naturally

relate to the i.i.d. case and present similar convergence rate. On the other hand, continuous observa-

tions are can be studied using fine probabilistic tools for ergodic continuous-time Markovian dynamics

[BCG08, CG08, Lez01, Pau15] and precise estimates on the transition densities [CW97, QRZ03, QZ04].

The seminal works of [DR06, DR07] first established convergence rates of kernel estimators under con-

tinuous observations of X over a time interval r0, T s. In these works, the invariant density is still

estimated through a kernel based estimator as in the i.i.d. case. [DR06, DR07] also obtain the conver-

gence rate

T´α{p2α`d´2q

when µb is α-Hölder and d ě 3. When considering an anisotropic framework, the convergence rate

depends on the effective average smoothness [Str18] and minimax rates are derived in [AG21].

Two significant limitations still need to be addressed in this setup: First, what happens if we access

discrete high-frequency observations of X , i.e. we observe pXi∆nqi for 0 ď i ď n when ∆n Ñ 0 and

n∆n Ñ 8. Secondly, can these methods be applied if these observations are polluted with a noise.

The question of discrete observations naturally arise with the advent of high-frequency data col-

lection, and in particular in finance [ASJ14]. Hence, understanding the estimation rates under different

asymptotic conditions becomes crucial. This includes specifying conditions on∆n that determinewhen

continuous or low-frequency observations are more analytically pertinent. While this topic has only

recently received substantial attention, pioneering works like [GHR04] and [CT16], which explore ran-

dom sampling times, stand out. However, this question has recently been addressed in full generalities

in [AG23] where the breakeven point between the high frequency observations similar to continuous
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observations and low frequency observations similar to the i.i.d. case is identified and studied. The

continuous rate is known to be optimal [AG21] in all dimensions, but the question of the optimality of

the low frequency rate is still an open question, with the exception of the one dimensional case, solved

in [AG22].

The second limitation in previous studies is to effectively incorporate noise into these analyses.

Noise is an often unavoidable element in practical applications, such as financial modeling, biological

experiments, and sensor data analysis due to measurement errors or external noise. Underestimat-

ing noise can lead to biased and unreliable estimations. This question was extensively studied in the

context of noisy observations of i.i.d random variables. When noise is assumed to have an additive

structure, existing literature uses Fourier inversion and kernel-based methods to recover the distribu-

tion of interest [Dev89, LT89, SC90]. Later works [CH88, Fan91, Fan93] establish minimax optimality

of this procedure under the assumptions that the noise distribution is known and has a non-vanishing

Fourier transform. It is important to note that in this setup, the convergence rates are slow. For in-

stance, when the distribution of interest is α-Hölder regular and the noises are independent standard

Gaussian variables, the optimal rate of convergence for any estimator is only logpnq´α{2
. The rates

of convergences in such framework has been studied under different set of assumptions depending on

both regularities of the noise and the density of interest in [CL13]. However, literature on noisy ergodic

setups remains sparse, with a few notable contributions including [Sch11, Sch12]. Unlike the i.i.d. case,

the structure of (4.2) and (4.3) allows better extraction of the information hidden by the noise, leading

to improved estimation rates. Indeed, using the Hölder regularity ofX , we can denoise high-frequency

data while preserving the analytical properties of the signal. We achieve this through a pre-averaging

technique, as in [JLM
`
09]. This approach has been widely studies and could be generalized to other

noises, as demonstrated in [JPV10, HP13, JM15] for high-frequency statistics and [Sch11, Sch12] within

an ergodic framework. In this paper, we show that when the noise is relatively small (see Section 4.1

for details) we can estimate the invariant density rates to the non-noisy case studied in [AG23]. When

the noise τn is relatively large, we can still estimate the invariant density with convergence rate given

by

pτ2n∆nq
α

2`2α .

This rate is polynomial in∆n even for τn constant, which is a great improvement compared to the i.i.d.

case. Note also that this rate does not depend on the dimension, see Section 4.1 for insights.

1.3 Organization of the paper

In Section 2, we present the statistical model, including the underlying assumptions and the probabilis-

tic framework of our analysis. We provide clear definitions for our observation scheme and outline the

requirements for the noise source. In Section 3, we systematically construct the kernel estimator for

the invariant density pµn,h,p. This estimator differs from the standard kernel estimator due to the need

to preprocess the data, which arises from the presence of noise. To reduce the impact of noise, we use

a preaveraging strategy. Specifically, for some integer p ě 1, we divide our number of observations by

p by averaging them over a range of size p. Section 4 presents the upper bounds for the quadratic risk
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Er|pµn,h,ppxq ´ sµbpxq|2s, providing insights into the optimal hyperparameters selection. Although the

obtained rates may not achieve minimax optimality, they align with the expected non-parametric esti-

mation rates in similar contexts. Furthermore, it enables us to precisely understand the noise intensity

threshold above which averaging is required to achieve a better convergence rate, given by∆
1{α
n , when-

ever sµb is assumed to be α-Hölder. Section 5 includes the derivation of a Bernstein-type concentration

inequality allowing adaptive selection of the bandwidth h. We then proceed to a numerical analysis

section (Section 6), which encompasses experiments and discussions on the estimation procedure. This

is followed by a section consolidating essential probabilistic results instrumental in variance control of

our estimator, see Section 7. Lastly, all proofs are gathered in the Appendix.

2 Statistical and Probabilistic framework

2.1 Notation

For all x P Rd
, we denote by |x|2 :“ x ¨ x the Euclidian norm. Throughout the paper, we denote by

PpRdq the space of probability measures on Rd
. Moreover, for any differentiable function, f : Rd Ñ R,

∇f stands for the gradient of f . Similarly, if f admits k derivative in the i-th component, we denote

this derivative by Bk
i f . Finally, for any g : Rd Ñ Rd

, ∇ ¨ g denotes the divergence of g.

For any σ-finite measure ν on Rd
, for any q ě 1, we say that f : Rd Ñ R belongs to Lqpνq

whenever

}f}
q
Lqpνq

:“

ż

Rd

|fpxq|q νpdxq ă `8.

When ν is the Lesbegue measure on Rd
, we only denote Lq

and the associated norm } ¨ }q . Finally,

when q “ `8 and ν is the Lebesgue measure, we define

}f}8 :“ sup
xPRd

|fpxq|.

2.2 The statistical diffusion model

We consider a stochastic process X defined on a rich enough probability space pΩ,A,Pq. For a given

Lipschitz continuous function b and probability measure µ onRd
, we can define a probability Pb

µ under

which X is solution of the following stochastic differential equation

dXt “ bpXtq dt` dWt, LpX0q “ µ, (4.4)

whereW is a d-dimensional Pb
µ-Brownian motion. We denote by F “ pFtqtě0 the filtration generated

byW . We write Eb
µ for the expectation with respect to Pb

µ. We also use Pb
x and Eb

x instead of Pb
δx

and

Eb
δx
. In the paper, for any probability measure ν P PpRdq, for any q ą 1, we say that f : Rd Ñ R

belongs to Lqpνq whenever

}f}
q
Lqpνq

:“

ż

Rd

|fpxq|q νpdxq ă `8.
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When ν is the Lesbegue measure on Rd
, we only denote Lq

and the associated norm } ¨ }q . In the

following, we always assume the following conditions on b.

Assumption 7. The function b is differentiable and satisfies

|bp0q| ď b0 and @i P t1, . . . , du, ||Bib||8 ď b1{d,

where b0 and b1 are positive constants. This ensures in particular that }∇ ¨ b}8 ď b1.

Assumption 8. There exists a function V : Rd Ñ R differentiable and bounded below by a constant V0
such that b “ ´∇V and V p0q “ 0.

Assumption 9. There exists rCb ą 0 and rρb ą 0 such that xx, bpxqy ď ´ rCb|x|, @x : |x| ě rρb.

By definition, X solution of (4.2) is a Markov process. Assumption 7 shows that the drift force

exhibits at most linear growth, which implies that there exists a constantC0 ą 0 such that the transition

density pbtpx, yq for all t ą 0 and for all px, yq P Rd ˆ Rd
with |x´ y|2 ă t is satisfies

pbtpx, yq ď C0pt´d{2 ` t3d{2q, (4.5)

see for example [CW97]. This inequality is crucial to obtain robust upper bounds when estimating the

invariant measure of a stochastic process, as demonstrated, for instance in [DR07, Str18]. Assumption

8 is also usual when studying the asymptotic behaviour of a diffusion process. However, it is not a nec-

essary condition [Bha78, DR06], since the existence and uniqueness of the invariant measure primarily

depend on the asymptotic behaviour of the drift force b and its growth at infinity. In the present paper,

Assumption 8 is needed at a later stage in order to derive upper bounds similar to (4.5) for the transition

density of the pre-averaged process, see Section 14.1.

Under Assumptions 8 and 9, the processX defined by (4.4) admits a unique stationary distribution

denoted by µb, absolutely continuous with respect to the Lebesgue measure on Rd
whose density, also

denoted by µb, is explicitly given for all x P R2d
by

µbpxq “ Z´1
V expp´2V pxqq where ZV “

ż

Rd

expp´2V pyqqdy.

Assumption 9 is common to guarantee an exponentially fast convergence towards equilibrium. In

the case where the drift force is derived from a potential V , a direct link exists between the classical

Poincare inequality and Equation 4.6, and Assumption 9 implies that X satisfies a Poincaré inequality

as shown in [BGL14]. More precisely, there exists CPI ą 0, depending only on
rCb, such that for any

f P L2pµbq satisfying Eb
µbrfpX0qs “ 0 and any t ě 0, we have

Varb
µbrP b

t fpX0qs ď e´2tC´1
PIEb

µbrfpX0q2s, (4.6)

where pP b
t qtě0 is the semi-group associated to the process X , acting on any measurable functions

f : Rd Ñ R by

@ t ě 0, @x P Rd, P b
t fpxq “ Eb

xrfpXtqs. (4.7)
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It is well known that the accuracy of the estimation of the invariant density µb strongly depends on

the regularity of µb [DR07, Str18, AG21, AG23]. Therefore, we assume that µb belongs to the anisotropic

Hölder classHdpα,Lq, which is defined below.

Definition 4.1. Let α “ pα1, . . . , αdq P p0,8qd and L “ pL1, . . . ,Ldq P p0,8qd. A function g :

Rd Ñ R is said to belong to the anisotropic Hölder class Hdpα,Lq of functions if, for all 1 ď i ď d, g is
tαiu-differentiable in the i-th variable and the partial derivatives satisfy for 0 ď k ď tαiu

}Bk
i g}8 ď Li and @t P R,

›

›B
tαiu

i gp¨ ` teiq ´ B
tαiu

i gp¨q
›

›

8
ď Li|t|

αi´tαiu

where pe1, . . . , edq is the canonical basis of Rd.

Definition 4.2. Letα “ pα1, . . . , αdq P p0,8qd,L “ pL1, . . . ,Ldq P p0,8qd and b0, b1 ą 0. We write
b “ pα,L, b0, b1, V0q and Σpbq the set of functions b : Rd Ñ Rd satisfying Assumption 7 with constants
b0 and b1, Assumption 8 with constant V0, Assumption 9 and such that µb belongs to the anisotropic Hölder
classHdpα,Lq.

In this paper, we always assume that b belongs to Σpbq, for some b “ pα,L, b0, b1, V0q, with

α1 ď ¨ ¨ ¨ ď αd. Moreover, X is assumed to be observed at discrete times i∆n, for 0 ď i ď n, and

blurred by a noise composed of independent standard Gaussian variables. We observe

Yi,n “ Xi∆n ` τnξi,n,

where ξi,n are i.i.d Gaussian variables,∆n Ñ 0 and n∆n Ñ 8.

3 Estimation procedure

In this section, we plan to use a kernel type estimation procedure. We consider a bounded kernel with

compact supportK : R Ñ R, that is a measurable function such that

ş

RKpyqdy “ 1. We assume that

it is of order l ě 1, i.e. that for all 1 ď k ď l ´ 1, we have

ż

R
ykKpyq dy “ 0. (4.8)

Now for any h “ ph1, . . . , hdq P p0,`8qd and y “ py1, . . . , ydq P Rd
, we define

Khpyq “

d
ź

i“1

h´1
i Kpyih

´1
i q. (4.9)

In the case where the density of interest µb belongs to the anisotropic Hölder class Hdpα,Lq, we al-

ways assume that l ě rαds.

First, note that the natural kernel based estimator of the invariant density in absence of noise does
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not work in our context. Indeed, since pYk,nq is a stationary process, the estimator

pµKB,n,h,ppxq “
1

n

n´1
ÿ

k“0

Khpx´ Yk,nq (4.10)

estimates the density of Y1,n, which is given by

µb ˚ φτnpxq “

ż

Rd

µbpx´ yqφτnpyq dy “

ż

Rd

µbpx´ τnyqφ1pτnyq dy

where φτ pxq “ p2πτ2q´d{2 expp´|x|2{p2τ2qq. Therefore, the presence of noise in (4.10) creates an

additional bias satisfying

|µb ˚ φτnpxq ´ µpxq| ď

ż

Rd

|µbpx´ τnyq ´ µbpxq|φ1pτnyq dy (4.11)

which is of order τn. This bias is dominating the usual bias of kernel based estimators when τn is large.

In particular, when τn is of order 1, the estimator is not consistent. Therefore, we need to reduce the

influence of the noise in the observation.

To that extent, we implement in this paper a preaveraging approach and we compute local av-

erage the observations over batches of size p. This yields to the following modified observations

pp´1
řp´1

ℓ“0 Ykp`ℓ,nq1ďkďtn{pu. Intuitively, this approach should work because of the regularity of X .

Indeed, we have

1

p

p´1
ÿ

ℓ“0

Ykp`ℓ,n “ Xkp∆n `
1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

`
τn
p

p´1
ÿ

ℓ“0

ξkp`ℓ,n. (4.12)

This expression can be seen asXkp∆n ` noise and the effective sampling frequency becomes pp∆nq´1
.

Moreover, the noise now comes from two sources: in addition to the noise pξi,nqi,n, we now have

a preaveraging error p´1
řp´1

ℓ“0 pXpkp`ℓq∆n
´ Xkp∆nq. Using the pathwise regularity of X , this error

should remain small when p is not too large. Moreover, since the random variable pξi,nqi,n are indepen-

dent standard Gaussian variables, we can rewrite p´1
řp´1

ℓ“0 ξkp`ℓ,n “ τnp
´1{2

rξk,n where
rξk,n is also a

standard Gaussian variable. We next define a kernel estimator based on the preaveraged observations.

For any non negative integer p and any x P Rd
, we define

pνn,h,ppxq “
1

tn{pu

tn{pu´1
ÿ

k“0

Kh

´

x´ p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,n

¯

. (4.13)

Remark that when p “ 1, this estimator is the usual estimator used for estimating the invariant density

from discrete observations, see [Str18, AG23]. From what precedes, it first seems natural that pνn,h,p es-

timates µb˚φτnp´1{2 which is the invariant density ofXkp∆n `τnp
´1{2

rξk,n. However, the preaveraging
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error p´1
řp´1

ℓ“0 pXpkp`ℓq∆n
´Xkp∆nq induces an additional term. Indeed, we have

1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

“
1

p

p´1
ÿ

ℓ“0

ˆ
ż pkp`ℓq∆n

kp∆n

bpXsq ds

˙

`
1

p

p´1
ÿ

ℓ“0

`

Wpkp`ℓq∆n
´Wkp∆n

˘

. (4.14)

The first sum is negligible compared to the second one. Moreover, p´1
řp´1

ℓ“0 pWpkp`ℓq∆n
´Wkp∆nq is a

centered Gaussian variable with variance p12pq´1pp´1qp2p´1q∆n, independent ofXkp∆n . Therefore,

this term has an effect on the estimation comparable to that of τnp
´1{2

rξk,n. Combining these two terms,

we deduce that pνn,h,p estimates µb ˚ φ
rτn,p

where

rτn,p “

´τ2n
p

`
pp´ 1qp2p´ 1q∆n

12p

¯1{2
. (4.15)

This analysis is formalised in the following proposition.

Proposition 4.3. Under Assumptions 7, 8 and 9, there existsCB ą 0 such that for any p P t1, . . . , r∆
´1{2
n su

and any x P Rd, we have

ˇ

ˇ

ˇ
Eb
µbrpνn,h,ppxqs ´ µb ˚ φ

rτn,p
pxq

ˇ

ˇ

ˇ
ď CB

$

&

%

ř

i h
αi
i if p “ 1,

ř

i h
αi
i `

?
p∆n if p ě 2.

(4.16)

Although bounding the bias of kernel based estimators is usually an easy task, this is not the

case here. The proof of Proposition 4.3 is indeed quite delicate and can be found in Section 9. In-

deed, we cannot use Itô’s formula because, from Equation 4.9, we see that for any i P t1, . . . , du,

BiKhpxq “ h´1
i

ś

j h
´1
j Kph´1

j xjq which would interfere and create a contribution of order

ś

i h
´1
i .

Instead, using crucially Assumption 8, we use Girsanov’s theorem to remove the contribution of the

drift term in (4.14). We then control the likelihood introduced via the change of measure which intro-

duce the additional term

?
p∆n in (4.16) when p ě 2.

Proceeding as in (4.11), we see that (4.16) implies

ˇ

ˇ

ˇ
Eb
µbrpνn,h,ppxqs ´ µbpxq

ˇ

ˇ

ˇ
ď rCBp

ÿ

i

hαi
i ` rτn,pq (4.17)

for some
rCB ě CB. This can be improved by a deconvolution procedure. To do so, note that

µb ˚ φ
rτn,p

pxq “ Erµbpx´ rτn,pζqs

where ζ is a standard d-dimensional Gaussian variable. Using the regularity of µb, we can proceed to

a Taylor expansion of µbpx` rτn,ppγ ´ ζqq around x for all γ “ pγ1, . . . , γdq P t0, . . . , lud. Computing

explicitly the moments of pγ ´ ζq appearing in this expression, we get a explicit expansion of µb ˚

φ
rτn,p

px ` rτn,pγq around µbpxq. We can isolate µbpxq from this expression. Specifically, we introduce
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3. Estimation procedure

the matrix A “ pak,iq0ďk,iďl, with coefficients given for any k, i P t0, . . . , lu by

ak,i “

k
ÿ

j“0

ˆ

k

j

˙

p´1qjmji
k´j

(4.18)

wheremj stands for the the j-th moment of a standard Gaussian variable. The matrixA is invertible, as

shown in Appendix 8. We denote its inverse by A´1
, and u “ pu0, . . . , ulq stands for its first column.

Then, for all k P t0, . . . , lu,

l
ÿ

i“0

ui

´

k
ÿ

j“0

p´1qjmji
k´j

j!pk ´ jq!

¯

“

$

&

%

1 if k “ 0,

0 otherwise.

(4.19)

For any multi-index γ “ pγ1, . . . , γdq P t0, . . . , lud, we define uγ “
śd

i“1 uγi , and the following

point-wise estimator

pµn,h,ppxq “
ÿ

uγpνn,h,ppx` γrτn,pq (4.20)

where the sum holds over all γ “ pγ1, . . . , γdq P t0, . . . , lud. The bias of pµn,h,ppxq is precised in the

following proposition, proved in Section 10

Proposition 4.4. Suppose that b P Σpbq, with α such that α1 ď ¨ ¨ ¨ ď αd. Then there exists a constant
rCB depending only in b so that for any x P Rd, any p P t1, . . . , r∆

´1{2
n su and any h P Rd, we have

ˇ

ˇEb
µbrpµn,h,ppxqs ´ µbpxq

ˇ

ˇ ď CB

$

&

%

τα1
n `

řd
i“1 h

αi
i if p “ 1,

?
p∆n `

τ
α1
n

pα1{2 `
řd

i“1 h
αi
i if p ě 2.

(4.21)

We now turn to the variance of pµn,h,ppxq. Before stating the upper bound of the variance let us

now define k0 :“ k0pαq such that α1 “ α2 “ ¨ ¨ ¨ “ αk0 ă αk0`1 ď ¨ ¨ ¨ ď αd. Let us also define

D1 “ tpα, k0q, k0 “ 1 or k0 “ 2 and α2 ă α3u ;

D2 “ tpα, k0q, k0 ě 3u ;

D3 “ tpα, k0q, k0 “ 1 and α2 “ α3u .

(4.22)

The upper bound is stated in the following proposition.

Proposition 4.5. Suppose that b P Σpbq. Suppose that α “ pα1, . . . , αdq satisfies α1 “ α2 “ ¨ ¨ ¨ “

αk0 ă αk0`1 ď ¨ ¨ ¨ ď αd, for some k0 P t1, . . . , du. If µ̂n,h,p is the estimator proposed in (4.20), then
there exist CV ą 0 uniform over Σpbq and n0 ą 0 such that, for n ě n0, the following holds true for all
x P Rd and all h P p0, 1sd.

• If d “ 1, then

Varb
µbppµn,h,ppxqq ď

CV

Tn

´

p∆nh
´1
1 ` | logph1q|

¯

. (4.23)
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Chapter 4. Invariant density estimation from noisy data

• If d “ 2, then

Varb
µbppµn,h,ppxqq ď

CV

Tn

´

p∆nh
´1
1 h´1

2 ` | logpp∆nq| ` | logph1h2q|

¯

. (4.24)

• If d ě 3 and pk0,αq P D1, then

Varb
µbppµn,h,ppxqq ď

CV

Tn

´

p∆n

d
ź

i“1

h´1
i `

d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i

¯

. (4.25)

• If d ě 3 and pk0,αq P D2, then

Varb
µbppµn,h,ppxqq ď

CV

Tn

´

p

k0
ź

i“1

phiq
p2´k0q{k0

d
ź

i“k0`1

h´1
i ` p∆n

d
ź

i“1

h´1
i `

d
ÿ

i“1

| log hi|
¯

. (4.26)

• If d ě 3 and pk0,αq P D3, then

Varb
µbppµn,h,ppxqq ď

CV

Tn

´

d
ÿ

i“1

| log hi| ` p∆n

d
ź

i“1

h´1
i ` ph2h3q´1{2

d
ź

i“4

h´1
i

¯

. (4.27)

The proof of Proposition 4.5 is delayed to Appendix 11. It is important to point out that our results

yield the same upper bounds for the variance term similar to those found in Proposition 1 of [AG23].

The only difference is the presence of a factor p in front of ∆npTn
śd

i“1 hiq
´1

. This change is natural

as this term directly comes from the discretisation of the process. Here, the preaveraging induces a

sub-sampling of the data, grouping the observations on windows of length p. The discretisation step

∆n therefore becomes p∆n. As seen in [AG23], this term does not contribute, except when∆n is large.

Here, the break-even point also depends on the noise intensity and is detailed in Section 4.1. Note that

our proof and the proof Proposition 1 of [AG23] follows the same paths. However, the introduction

of additive noise structure requires new bounds on transition densities of the preaveraged process, see

Section 7. Note also that although Proposition 4.5 is stated on the final estimator pµn,h,ppxq, the same

result holds for pνn,h,ppxq. Indeed, in Appendix 11, we prove it for pνn,h,ppxq and the proof for pµn,h,ppxq

follows from

Varb
µbppµn,h,ppxqq ď

´

ÿ

γ

|uγ |

¯2d
sup
yPRd

Varb
µbppνn,h,ppyqq (4.28)

and the fact that p
ř

γ |uγ |q2d is a constant independent of n.

4 Upper bounds and hyper-parameter choice

We quantify the quality of this estimation procedure by deriving an upper bound for the quadratic error

Rppµ, b;xq “ Eb
µbr|pµpxq ´ µbpxq|2s.
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4. Upper bounds and hyper-parameter choice

Using the classical Bias-Variance decomposition of the quadratic error

Rppµn,h,p, b; xq “ Bb
n,h,ppxq2 ` Vb

n,h,ppxq, (4.29)

where for all x P Rd
, we have

Bb
n,h,ppxq “

ˇ

ˇEb
µbrpµn,h,ppxqs ´ µbpxq

ˇ

ˇ

and Vb
n,h,ppxq “ Varb

µbrpµn,h,ppxqs.

Upper bounds for both Bb
n,h,ppxq and Vb

n,h,ppxq are given by Propositions 4.4 and 4.5 respectively. The

variance obtained in Proposition 4.5 depends on many case and the choice of the hyper-parameters p

and h naturally depends on these cases. In this section, we detail each case and the convergence rate

that can be obtained using the best choices p˚
and h˚

. For future use, we write

α “

´1

d

d
ÿ

i“1

α´1
i

¯´1
and α3 “

´ 1

d´ 2

d
ÿ

i“3

α´1
i

¯´1
. (4.30)

4.1 General results

Before studying the quadratic risk in this model, we first recall the results from [AG23] where the

estimation of µb is studied from discrete non-noisy observations. In [AG23], the authors distinguish

two regimes depending on ∆n. The breaking point w
HF
n between these two regimes is defined by

wHF
n “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

logpTnqT´1
n if d “ 1, 2,

logpTnq

´

logpTnq

Tn

¯

α3
p2α3`d´2q

`

1
α1

` 1
α2

˘

if d ě 3 and pα, k0q P D1,

T
´

2α3
2α3`d´2

α´1
1

n if d ě 3 and pα, k0q P D2,

T
´α3

p2α3`d´2q

`

1
α1

` 1
α2

˘

n if d ě 3 and pα, k0q P D3.

They show that, when∆n ď wHF
n , the estimator of the invariant measure behaves as in the continuous

observation case and therefore exhibits the convergence rate pvHF
n q1{2

defined as

vHF
n “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

logpTnqT´1
n if d “ 1, 2,

´

logpTnq

Tn

¯

2α3
2α3`d´2

if d ě 3 and pα, k0q P D1,

T
´

2α3
2α3`d´2

n if d ě 3 and pα, k0q P D2,

T
´

2α3
2α3`d´2

n if d ě 3 and pα, k0q P D3.

In order to get this convergence rate, when d ě 3 [AG23] identifies the optimal bandwidth choice given

by

h˚,HF
i “

$

’

&

’

%

´

logpTnq

Tn

¯

α3
αip2α3`d´2q

if α2 “ α3,

T
´

α3
αipα3`d´2q

n if α2 ă α3.
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Chapter 4. Invariant density estimation from noisy data

When d “ 1, 2, the choice of the bandwidth in the high frequency framework is given by h˚,HF
i “

T
´1{2
n , for i P t1, . . . , du. When ∆n ě wHF

n , the estimator of the invariant measure behaves as in the

i.i.d. case and exhibits a convergence rate n
α

2α`d . Here, we want to reproduce this behaviour while also

incorporating noise. In order to get this convergence rate, [AG23] also identifies the optimal bandwidth

choice h˚,LF
in that case, given by

h˚,LF
i “ n

´α
αip2α`dq .

More over, the convergence rate of the low frequency estimator is pvLFn q1{2
where

vLFn “ n´ 2α
2α`d .

In our case, the effective discretization step is p∆n and therefore, we expect that the switch between

the two regimes of [AG23] appear when p∆n « wHF
n . However, p also needs to be chosen to minimize

the quadratic error bound. Applying the same analysis as in [AG23], we then define h˚,p
for each p by

h˚,p
i “

$

&

%

h˚,HF
i if p∆n ď wHF

n ,
´

p
n

¯
α

αip2α`dq
if p∆n ě wHF

n .

Then we get for each p ě 1,

Rppµn,h˚,p,p, b;xq À

$

&

%

p∆n1pě2 `
τ
2α1
n
pα1 ` vHF

n if p∆n ď wHF
n ,

p∆n1pě2 `
τ
2α1
n
pα1 ` p

p
nq

2α
αip2α`dq

if p∆n ě wHF
n .

(4.31)

We then want to simplify the case p∆n ě wHF
n by removing one of the dependence in p. To do so, we

use that the condition p∆n Á wHF
n implies that p∆n Á p

p
nq

2α
2α`d . This statement is formalised in the

following Lemma, proved in Section 12.1.

Lemma 4.6. For all c1 ą 0, there exists c2 ą 0 such that if p∆n ě c1w
HF
n , then p∆n ě c2p

p
nq

2α
2α`d

Using Lemma 4.6, we simplify (4.31). If p “ 1, we have

Rppµn,h˚,1,1, b;xq À

$

&

%

τ2α1
n ` vHF

n if∆n ď wHF
n ,

τ2α1
n ` n´ 2α

2α`d if∆n ě wHF
n .

(4.32)

and for p ě 2, we have

Rppµn,h˚,p,p, b;xq À

$

&

%

p∆n `
τ
2α1
n
pα1 ` vHF

n if p∆n ď wHF
n ,

p∆n `
τ
2α1
n
pα1 if p∆n ě wHF

n .
(4.33)

From these, we see that the optimal choice of p is given by

p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

_ 1 (4.34)

and from this choice, we take h˚ “ h˚,p˚

. Note that this choice ensure that p˚∆
1{2
n is bounded so that
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4. Upper bounds and hyper-parameter choice

Proposition 4.4 applies. Four asymptotic regimes can be observed.

Proposition 4.7 (Small noise intensity, high sampling frequency). Suppose that p˚∆n ď wHF
n and that

τ2α1
n ď ∆n. In that case, we have

p˚ “ 1 and h˚ “ h˚,HF

and we get
Rppµn,h˚,p˚ , b;xq À vHF

n _ τα1
n .

Proposition 4.8 (Large noise intensity, high sampling frequency). Suppose that p˚∆n ď wHF
n and that

τ2α1
n ě ∆n. In that case, we have

p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

and h˚ “ h˚,HF

and we get
Rppµn,h˚,p˚ , b;xq À vHF

n _
`

τ2n∆n

˘

α1
1`α1 .

Remark 4.9. In the previous proposition, note that since τ2α1
n ě ∆n, the condition p˚∆n À wHF

n is

equivalent to∆n À τ´2
n pwHF

n q
1`α1
α1 .

Proposition 4.10 (Small noise intensity, Low sampling frequency). Suppose that p˚∆n ě wHF
n and

that τ2α1
n ď ∆n. In that case, we have

p˚ “ 1 and h˚ “ h˚,1

and we get
Rppµn,h˚,p˚ , b;xq À n´ 2α

2α`d _ τ2α1
n .

Proposition 4.11 (Large noise intensity, Low sampling frequency). Suppose that p˚∆n ě wHF
n and

that τ2α1
n ě ∆n. In that case, we have

p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

and h˚ “ h˚,p˚

and we get
Rppµn,h˚,p˚ , b;xq À

`

τ2n∆n

˘

α1
1`α1 .

4.2 Analysis of the convergence rate

In this section, we study the convergence rates found previously in the setup∆n “ n´θ
and τn “ n´κ

.

Of course, since ∆n Ñ 0 and Tn “ n∆n Ñ 8, we must impose 0 ă θ ă 1. We also require κ ě 0 for

convenience, although a deeper analysis shows that we can still estimate the invariant measure when

κ ą ´θ{p2α1q. For conciseness, we also ignore the logarithmic factors in the rates wHF
n and vHF

n . We

also introduce the following notations

β “
2α

2α ` d
and β3 “

2α3

2α3 ` d´ 2
.
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Chapter 4. Invariant density estimation from noisy data

Rewriting the conditions for each proposition shows that

• Proposition 4.7 applies when κ ě θ{p2α1q and θ ě βpα´1
1 ` α´1

2 q{2,

• Proposition 4.8 applies when κ ď θ{p2α1q and κ ě p1 ´ θqβ3p1 ` α1qpα´1
1 ` α´1

2 q{2 ´ θα1,

• Proposition 4.10 applies when κ ě θ{p2α1q and θ ď βpα´1
1 ` α´1

2 q{2,

• Proposition 4.11 applies when κ ď θ{p2α1q and κ ď p1 ´ θqβ3p1 ` α1qpα´1
1 ` α´1

2 q{2 ´ θα1.

We can then identify the domains where each convergence rates operate and we refer to Figure ?? for
an illustration of the different regimes

κ “ θ
2α1

κ

θ
θ “ β

α
´1
1 `α

´1
2

2

κ “
β̄

2α1

θ “
sβ3

sβ3`1

n´ 2ᾱ
2ᾱ`d

vHF
n

pτ2
n∆nq

α1
1`α1

τ2α1
n

θ “ 1

Figure 4.1: Rates of convergence of sµn,h,ppxq.

´ θα1
1`α1

κ
κ “ θ

2α1
κ “

ᾱ3p1θq

α1p2ᾱ3`d´2q

•

•

Figure 4.2: Evolution of the rate of convergence as a function of κ with fixed θ in a logarithmic scale.

132



5. Bernstein inequality and adaptive choice of the hyperparameters

4.3 Comments

The rate wHF
n is the same in the cases d ě 3, k0 ě 3 and d ě 3, k0 “ 1 and α2 “ α3. The same remark

holds for vHF
n and in these two cases, the convergence rate of the estimator is therefore the same. We

still distinguish these cases here because the proofs differ slightly. As noted in [AG23], it is not clear

that the high-frequency and the low-frequency rates meet when∆n « wHF
n .

5 Bernstein inequality and adaptive choice of the hyperparameters

In this section, we introduce a concentration inequality of Bernstein’s type for the kernel estimator built

in Section 3. This inequality provides a robust framework for analyzing the estimator’s performance

and variance. Leveraging this concentration inequality, we develop an adaptive approach for hyper-

parameter selection in a data-driven way.

5.1 Bernstein inequality

Recalling that D1, D2 and D3 are defined in Equation (4.22), we get the following result,

Theorem 4.12 (Bernstein inequality). Suppose that b P Σpbq. Then there exists C, τ positive and uni-
formly bounded over Σpbq such that for all n,h, p satisfying p∆n ď 1, we have

Pb
µb

´

|pµn,h,ppxq ´ Eb
µ̄brpµn,h,ppxqs| ą ε

¯

ď K exp
´

´
n2pε

2β2

32npv2pα, n,h, pq ` τβε}Kh}8np log np

¯

where np “ tn{pu, β “ 1{
?
dℓ}u}2, }u}22 “

ř

γ |uγ |2 and

v2pα, n,h, pq “Varbµ̄b

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Yℓ,nq

¯

` 2
8
ÿ

k“1

Covbµ̄b

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Yℓ,nq,Khpx´ p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,nq

¯

.

Moreover, we have the following estimates for v2pα, n,h, pq:

v2pα, n,h, pq ď C

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ph1h2q´1 `
| logpp∆nq|

p∆n
`

| logph1h2q|

p∆n
if d “ 1, 2,

śd
i“1 h

´1
i `

řd
i“1 | logphiq|

p∆n
śd

i“3 hi
if d ě 3 and pα, k0q P D1,

śd
i“1 h

´1
i `

śk0
i“1phiq

2{k0

p∆n
śd

i“1 hi
`

řd
i“1 | log hi|

p∆n
if d ě 3 and pα, k0q P D2,

śd
i“1 h

´1
i `

řd
i“1 | log hi|

p∆n
` 1

p∆nph2h3q1{2
śd

i“4 h
1
i

if d ě 3 and pα, k0q P D3.

for some constant C ą 0 uniform over Σpbq and independent of n,h and p.
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The Bernstein Inequality presented in Theorem 4.12 is standard and based on [Lem21]. Our proof

requires the derivation of an exponential rate of convergence toward the invariant measure for the

Markov process embedding the preaveraged process pp´1
řp´1

ℓ“0 Ykp`ℓ,nqk. We refer to Section 13 for

details.

5.2 Choice of the hyperparameters

Bernstein inequality can be used to tune adaptively the parameter h, following the ideas of [GL08,

GL09, GL11]. Fix p ě 1. As previously discussed, for dimensions d “ 1 and d “ 2, the variance’s

upper bound does not rely on the smoothness. Consequently, there is no advantage to adopting a

data-oriented adaptive strategy for d ă 3.

For d ě 3, the strategy is to consider a range of possible bandwidths and to select the one that

minimizes the error. For this aim, we introduce a heuristic representation of the bias and a penalty term

proportional to the variance bound of Proposition ... The optimal bandwidths are those minimizing the

sum of these two latter. Let us begin by introducing the grid

Hp
n Ă

#

h P p0, 1sd :, h1 ď . . . ,ď hd, @l “ 1, . . . , d

ˆ

logpnpq3

np

˙1{d

ď hl ď 1

+

,

where we recall that np stands for tn{pu for the sake of clarity. We also assume that #H
p
n ď Tn.

According to the set of candidate bandwidths, we can introduce the set of candidate estimators:

F pHp
nq :“

!

µ̂n,h,ppxq : x P Rd, h P Hp
n

)

.

The goal of this section is to choose an estimator in the family F pH
p
nq, in a completely data-driven

way. Following the idea in [GL08, GL09, GL11], our selection procedure relies on the introduction

of auxiliary convolution estimators, pµn,ph,ηq,p for ph,ηq P pH
p
nq

2
which is the same estimator as the

one introduced in Section 3 but with kernel Kh ˚ Kη . The first important remark is that when the

regularity of the function of interest is unknown, the upper bound on the variance for p fixed can be

rewritten for any h P H
p
n,

vpnphq “
1

Tn

´

p∆n

d
ź

i“1

h´1
i ` min

´

d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i , ph2h3q´1{2

d
ź

i“4

h´1
i ,

min
k0ě3

k0
ź

i“1

h
2´k0
k0

i

d
ź

i“k0`1

h´1
i

¯¯

.

Moreover, one can write:

d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i ď

3
ź

i“1

h
´1
3

i

d
ź

i“4

h´1
i

ðñ h23 ě h1h2

d
ÿ

i“1

| logphiq|.
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6. Numerical Analysis

Using the fact that h1 ď ¨ ¨ ¨ ď hd, we obtain

vpnphq “
1

Tn

˜

p∆n

d
ź

i“1

h´1
i ` min

˜

d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i , ph2h3q´1{2

d
ź

i“4

h´1
i

¸¸

.

With this purpose in mind, we introduce the following penalty function

V p
n phq “ sω logpnpqvpnphq,

for some positive constant sω which has to be taken large. Now, following once again the procedure of

[GL08, GL09, GL11], we define for any h P H
p
n,

Ap
nphq “ max

ηPH
p
n

!

ˇ

ˇ

pµn,ph,ηq,p pxq ´ pµn,η,p pxq
ˇ

ˇ

2
´ V p

n pηq

)

`
. (4.35)

Finally, we define the choice procedure

h˚ P argminhPH
p
n

tAp
nphq ` V p

n phqu .

Remark 4.13. The choice of the penaltyAp
nphq and the thresholdV p

n phq are standard in the Goldenshulger-
Lepski methodology: Ap

nphq is a kind of proxy for the estimation of the squared bias of pµn,h,ppxq while
V p
n phq is the exact penalty needed to balance the size of the variance of the estimator in h, inflated by a

logarithmic term and tuned with sω ą 0. This enables one to control all the stochastic deviation terms. See
section 13 for details.

Setting this methodology up, we obtain for any pre-averaging level p, the following Orcale inequal-

ity

Proposition 4.14 (Oracle inequality). Assume that Assumptions 7, 8 and 9 hold and that d ě 3, then
there exists n0 P N, such that for any n ě n0,

E
„

ˇ

ˇ

ˇ
pµn,h˚,p ´ sµbpxq

ˇ

ˇ

ˇ

2
ȷ

ď c inf
hPH

p
n

!

Bb
n,h,ppxq2 ` V n

p phq

)

` c n´γ
p ` p∆n1pě2 `

τ2α1
n

pα1
,

for some c ą 0 and γ ą 1, and where we recall that Bb
n,h,ppxq is defined in Equation (4.29).

The proof of Proposition 4.14 is postponed to Section 13.

6 Numerical Analysis

In this section, we study the estimators derived in Section 3. We first focus on the case d “ 1. Following

the results of Section 4 bandwidth h is given by h “ T´1
n . The main challenge is thus to choose the

preaveraging parameter p. Theoretically, the best approach would be to consider the bias-corrected es-

timator pµn,h,ppxq defined in (4.20). However, this estimator is unstable, due to the constant p
ř

γ |uγ |q2d

appearing in (4.28). Indeed, consider for instance the case

V pxq “ x2{4 and bpxq “ ´x{2.
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Taking n “ 214, ∆n “ n´1{2 “ 2´7
and τn “ 1, we can compute the bias and the variance of both

pνn,h,ppxq and pµn,h,ppxq. The results are presented in Table 4.1 with p “ tpτ2n∆
´1
n q1{2u _ 1. In this

example, we can see clearly that the variance increases by a non-negligible factor when doing the bias-

correction procedure and consequently themean squared error is higher, even if the bias is substantially

smaller.

Without bias correction With bias correction

Error 1.61e-3 8.2e-3

Bias 1.21e-3 3.48e-4
Variance 1.67 e-3 9.77e-3

Table 4.1: Impact of the bias correction.

Therefore, in most practical applications, the use of the initial estimator pνn,h,ppxq leads to better

results compared to pµn,h,ppxq. Therefore, in the following, we focus on pνn,h,ppxq in our simulations. In

that case, we can choose p with easy asymptotics: indeed, the optimal choice for p minimises the bias

in (4.17), and thus we take p˚ “ tpτ2n∆
´1
n q1{2u _ 1.

We now illustrate the effectiveness of the pre-averaging strategy and stack it up against the straight-

forward method where p “ 1. We still consider the case

V pxq “ x2{4 and bpxq “ ´x{2.

with n “ 214, ∆n “ n´1{2 “ 2´7
and τn “ 1. The results are presented in Table 4.2 where the

pointwise quadratic error is presented for different values of p and at different points x.

p x “ 0 x “ 0.25 x “ 0.5 x “ 1 x “ 0.75

1 1.29e-1 1.20e-1 9.75e-2 6.80e-2 4.12e-2

16 6.31e-2 5.62e-2 4.36e-2 2.57e-2 1.08e-2

p˚ 1.04e-2 1.08e-2 6.49e-3 2.83e-3 1.70e-3
1024 7.07e-2 5.05e-2 4.06e-2 1.67e-2 2.02e-2

4096 7.49e-1 5.39e-1 3.25e-1 7.27e-2 5.22e-2

Table 4.2: Pointwise quadratic error.

We also illustrate the effectiveness of this method in dimension 2, with the potential V pxq “ |x|2{4.

In that case µb is the density of a standard Gaussian distribution. The following plots provides a visual

comparison between the desired distribution and the outcomes of two estimation techniques in dimen-

sion d “ 2, with the same parameters as in the unidimensional case. The first plot is the target density.

The bottom left plot shows the estimated distribution using no preaveraging method while the bottom

right plot shows the results with preaveraging. As expected, the second method exhibits better results,

confirming that pre-averaging refines the estimation process when the noise intensity is constant.
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7. Probabilistic tools: the Markovian structure of the preaveraged process

Remark 4.15 (Non-Gaussian noise). In this paper, we assume for simplicity that the noise is composed
of independent d-dimensional standard Gaussian variables, also independent of the underlying processX .
However, this assumption could be softened. Indeed, we only need that the noise is centered, independent
from the diffusion X , identically distributed and that it has finite moment of order l. In the case that its
distribution is that of a variable ξ, we should replace estimate (4.16) of Proposition 4.3 by

ˇ

ˇ

ˇ
Eb
µbrpνn,h,ppxqs ´ Erµbpx´ p´1{2τnrξp ´ rτn,pζqs

ˇ

ˇ

ˇ
ď CB

$

&

%

ř

i h
αi
i if p “ 1,

ř

i h
αi
i `

?
p∆n if p ě 2

where ζ is a standard Gaussian variable, rτ2n,p “ pp ´ 1qp2p ´ 1q∆n{12p and rξp “ p´1{2
řp

k“1 ξk

with ξ1, . . . , ξn i.i.d with common distribution ξ. In that case, the bias correction procedure should be
changed accordingly and should be split into two parts. First, we repeat the same procedure with rτ2n,p “

pp´ 1qp2p´ 1q∆n{12p to ensure the first bias corrected estimator centres around Erµbpx´ p´1{2τnrξpqs.
Then we repeat the same procedure with p´1{2τn instead of rτ2n,p and where mj stands for the moment of
order j of rξp.

7 Probabilistic tools: theMarkovian structure of the preaveraged pro-
cess

In this section, we gather some estimates about transition probabilities that will be very useful in the

following proofs. Indeed, the proof of Proposition 4.5 is based on an in-depth study of the Markov chain

´

p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,n, Xpk`1qp∆n

¯

kPN
. (4.36)
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Chapter 4. Invariant density estimation from noisy data

First, note that the stationarity of X ensures that this Markov chain is also stationary under Pb
µ̄b . We

write sπb for its stationary distribution on R2d
. We now summarize the notations used in the following.

Notation 4.16. For any t ą 0, x, y P Rd,

• pbtpx; ¨q stands for the transition density of X , that is density of Xt conditionally on X0 “ x;

• pbp,n,tpx; ¨q stands for the density of p´1
řp´1

ℓ“0 Xℓ∆n`t conditionally on X0 “ x;

• pbp,npx; ¨q “ pp,n,0px; ¨q stands for the density of p´1
řp´1

ℓ“0 Xℓ∆n conditionally on X0 “ x;

• pbp,npx; ¨, ¨q stands for the joint density of pp´1
řp´1

ℓ“0 Xℓ∆n , Xp∆nq conditionally on X0 “ x;

• sπbp¨, ¨q is an invariant density of the Markov process pp´1
řp´1

ℓ“0 Xpkp`ℓq∆n
, Xpk`1qp∆n

qkPN.

We now derive some bounds for these densities. The proofs of these results are relegated to Ap-

pendix 14. We start with a short time control of the transition density for the pre-averaged process.

Lemma 4.17. Suppose that Assumptions 7 and 8 hold. Then there exists positive constants κ1, λ1 and η1,
such that if p∆n ď η1, we have for any x, y P Rd,

pbp,npx; yq ď
κ1

pp∆nqd{2
exp

´

´ λ1
|y ´ x|2

p∆n
` V pxq

¯

. (4.37)

This lemma is arguably the most technical result in this section. Its proof, postponed to Appendix

14.1, is strongly inspired by Theorem 4 in [GG08] where a similar result is shown for a unidimensional

diffusion. As noted in [GG08], their approach cannot readily apply in a multidimensional setting be-

cause of a non-trivial time change. In our case the diffusion coefficient is assumed to be a real constant,

and the outcomes can be extended. Our motivation for undertaking this proof also lies in the require-

ment to ensure uniformity of the bounds with respect to p, n. Moreover, here we want to get rid of

the uniform boundedness of the drift term b. Its proof is based on the Girsanov theorem to remove the

drift contribution. Then we condition at each time i{n so that on each interval ri{n, pi ` 1q{ns, the

Brownian Motion is a Brownian bridge. Then sharp estimates can be obtained using the properties of

the Brownian Bridge.

We now study the transition density of X in short time.

Lemma4.18. Under Assumptions 7, 8 and 9, there exists a positive constantκ3, such that for any t P p0, 1q,
b P Σpbq, and z P Rd:

pbtpx; zq ď
κ3

td{2
exp

´

´
|x´ z|2

2t
` V pxq ´ V pzq

¯

. (4.38)

This Lemma is particularly useful when t ! 1. In that case, it is usually stated in the weaker

form (4.5). The sharper bound depending explicitly in the potential V allow for better estimates in

Proposition 4.5. Combining Lemmas 4.17 and 4.18, we easily get the following corollary.
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8. Invertibility of A

Corollary 4.19. Under Assumption 7 and 8, let us assume that p∆n ď η1, where η1 ą 0 is defined in
Lemma 4.17. Then, for each x, y P Rd, and any t P p0, 1q

pbp,n,tpx, yq ď κ1p2πq´d{2eb1{2pp∆n ` 2tλ1q´d{2 exp
´

´
λ1

2t` p∆n
|x´ y|2

¯

.

We finish this section with a result concerning the invariant density of (4.36).

Lemma 4.20. For all px, yq P R2d, there exists a constant κ2 independent of p, n and b such that

sπbpy, zq ď
κ2

pp∆nqd{2
exp

´

´ V pzq ´
λ1
p∆n

|y ´ z|2
¯

.

In the following sections, we assume that Assumptions 7, 8 and 9 hold and that p∆n ď 1. Fur-

thermore a À b stands for a ď Cb where C can change from line to line and depending only on

b.

8 Invertibility of A

We show that the matrix A defined in Section 3 is invertible. To that extent, we compute explicitly

detpAq and we show that it does not vanish. First, we write ak,i,j “
`

k
j

˘

p´1qjmji
k´j

for 0 ď j ď k

so that the pk, iq-th coefficient of A defined in Equation (4.18) is given by ak,i “
řk

j“0 ak,i,j . By multi-

linearity of the determinant, we have then

detpAq “

0
ÿ

j0“0

1
ÿ

j1“0

¨ ¨ ¨

ℓ
ÿ

jl“0

detppak,i,jkqk,iq

“

0
ÿ

j0“0

1
ÿ

j1“0

¨ ¨ ¨

ℓ
ÿ

jl“0

detppik´jkqk,iq

l
ź

k“0

´

ˆ

k

jk

˙

p´1qjkmjk

¯

.

Note now that detppik´jkqk,iq “ 0 when two lines are the same. This happens when k ´ jk “ k1 ´ jk1

for some k ‰ k1
. Thus detppik´jkqk,iq “ 0 except when the k ´ jk, 0 ď k ď ℓ are all distinct. Since

0 ď jk ď k, we show by induction that the only possibility is j0 “ j1 “ ¨ ¨ ¨ “ jl “ 0 so that

detpAq “ detppikqk,iq

ℓ
ź

k“0

´

ˆ

k

0

˙

p´1q0m0

¯

“
ź

0ďkăiďℓ

pi´ kq

where the last equality is obtained using the expression of the Vandermonde determinant and using

m0 “ 1 (by definition).

9 Proof of Proposition 4.3

In this Section, we aim at studying the expectation Eb
µbrpνn,h,ppxqs. Let us assume in all the proof that

there exists L ą 0 such that

p2∆n ď L, (4.39)
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for all n ě 1. By definition of pνn,h,p in Equation (4.13) and by stationarity of X under Pb
µb , we have

Eb
µbrpνn,h,ppxqs “

ż

Rd

µbpyqEb
y

”

Kh

´

x´
τn

p1{2
rξi,n ´

1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ı

dy.

Recall that Pb
y is the probability measure under which X0 “ y almost surely. When p “ 1, we

observe that p´1
řp´1

ℓ“0 Xℓ∆n “ y holds almost surely under Pb
y . This is not the case when p ą 1.

Instead, we have

1

p

p´1
ÿ

ℓ“0

Xℓ∆n “ y `
1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

.

The second part of the right hand side can be seen as a noise term that we decompose as

1

p

p´1
ÿ

ℓ“0

`

Xpkp`ℓq∆n
´Xkp∆n

˘

“
1

p

p´1
ÿ

ℓ“0

ˆ
ż pkp`ℓq∆n

kp∆n

bpXsqds

˙

`
1

p

p´1
ÿ

ℓ“0

`

Wpkp`ℓq∆n
´Wkp∆n

˘

.

We remove the effects of the drift b through the Girsanov Theorem. For all admissible drift b, we define

N b
t “

ż t

0
bpXsq ¨ dWs.

The following technical lemma is needed to apply the Girsanov Theorem.

Lemma 4.21. There exists δ0 ą 0 such that for any T ą 0 and x P Rd,

sup
tPr0,T´δs

Eb
x

”

exp
´1

2
pxN byt`δ ´ xN b

t ytq

¯ı

ď C1,

for every 0 ď δ ď δ0 and some C1 that depends on b.

Proof. Using Assumption 7, we get that for any t P r0, T s,

|Xt| ď |X0| ` b0T ` |b|lip

ż t

0
|Xs|ds` sup

tPr0,T s

|Bt|.

Therefore, from Gronwall Lemma, we have for all p ě 1 and all 0 ď t ď T

Er|Xt|
2ps ď 32p´1e2pt|b|lipp|x|2p ` T p ` pb0T q2pq. (4.40)

Moreover, for any δ ą 0 and t P r0, T ´ δs, using Jensen inequality,

Eb
x

”

exp
´1

2

ż t`δ

t
|bpXsq|2ds

¯ı

ď
1

δ

ż t`δ

t
Eb
x

”

exp
´δ

2
|bpXsq|2

¯ı

ds.
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9. Proof of Proposition 4.3

Using Assumption 7, we get the following bound

Eb
x

”

exp
´1

2

ż t`δ

t
|bpXsq|2ds

¯ı

ď
1

δ

ż t`δ

t
Eb
x

”

exp
´δ

2
p|b0|2 ` |b|2lip|Xs|2q

¯ı

ds

ď
eδ|b0|2

δ

ż t`δ

t
Eb
x

”

exp
´δ

2
|b|lip|Xs|2

¯ı

ds.

Now, for s P rt, t` δs, we have

Eb
x

”

exp
´δ

2
|b|lip|Xs|2

¯ı

“ 1 `
ÿ

kě1

´δ|b|lip
2

¯pEb
xr|Xs|2ps

p!
.

From Equation (4.40), we get that Eb
x

”

exp
´

δ
2 |bpXsq|2

¯ı

ă `8, for all δ ą 0, which proves Lemma

4.21.

By Novikov’s criterion – in its version developed in the classical textbook [KS91], Lemma 5.14,

p.198 – Lemma 4.21 shows that the local martingale Eb
tpNq “ expp´N b

t ´ 1{2xN bytq is indeed a (non-

local) martingale under Pb
x so we can apply Girsanov theorem. Let Qb

x be the probability defined by its

restriction to Ft by

dQb
x

dPb
x

ˇ

ˇ

ˇ

ˇ

t

“ Eb
tpNq.

Note that under Qb
x, the processW

Qb
definied for t ě 0 by

WQb

t “ Wt `

ż t

0
bpXsqds “ Xt ´X0 (4.41)

is a d-dimensional Brownian motion. Then we have, using the Markov property

Eb
µbrpνn,h,ppxqs “

ż

Rd

µbpyqEb
yrpνn,h,ppxqs dy

“

ż

Rd

µbpyqEQb

y

”

Kh

´

x´
τn

p1{2
rξi,n ´

1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ dPb
y

dQb
y

ˇ

ˇ

ˇ

p∆n

ı

dy.

Moreover, we have p´1
řp´1

ℓ“0 Xℓ∆n “ X0 ` p´1
řp´1

ℓ“0 W
Qb

ℓ∆n
and thus for all t ě 0

dPb
y

dQb
y

ˇ

ˇ

ˇ

ˇ

ˇ

t

“ exp
´

ż t

0
bpy `WQb

s q ¨ dWQb

s ´
1

2

ż t

0
|bpy `WQb

s q|2ds
¯

.

and

Eb
µbrpνn,h,ppxqs “

ż

Rd

µbpyqEQb

y

”

Kh

´

x´ y ´
τn

p1{2
rξi,n ´

1

p

p´1
ÿ

ℓ“0

WQb

ℓ∆n

¯ dPb
y

dQb
y

ˇ

ˇ

ˇ

p∆n

ı

dy.

Note that in the expectation on the right hand side,

dPb
y

dQb
y

ˇ

ˇ

ˇ

p∆n

is entirely determined byWQb
which is a
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standard Brownian motion under Qb
. Therefore, we have

EQb

y

”

Kh

´

x´ y ´
τn

p1{2
rξi,n ´

1

p

p´1
ÿ

ℓ“0

WQb

ℓ∆n

¯ dPb
y

dQb
y

ˇ

ˇ

ˇ

p∆n

ı

“E
”

Kh

´

x´ y ´
τn

p1{2
rξ0,n ´

1

p

p´1
ÿ

ℓ“0

Wℓ∆n

¯

M b
p∆n

pyq

ı

where W is a standard Brownian motion,
rξ0,n is a standard Gaussian variable and where M b

t pyq is

defined by

M b
t pyq “ exp

´

ż t

0
bpy `Wsq ¨ dWs ´

1

2

ż t

0
|bpy `Wsq|

2 ds
¯

.

Note that pM b
t pyqqt can be seen as the solution of the stochastic differential equation

M b
t pyq “ 1 `

ż t

0
M b

s pyqbpy `Wsq ¨ dWs.

Using Assumption 8 and Ito’s formula, we have

M b
t pyq “ exp

´

V pyq ´ V py `Wtq ´
1

2

ż t

0
|bpy `Wsq|2 ` ∇ ¨ bpy `Wsq ds

¯

. (4.42)

This expression ensures that y ÞÑ M b
t pyq is continuous, and therefore M b

t pY q is measurable for any

random variable Y . Then we have

Eb
µbrpνn,h,ppxqs “

ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn

p1{2
rξ0,n ´

1

p

p´1
ÿ

ℓ“0

Wℓ∆n

¯

M b
p∆n

pyq

ı

dy

“ B1pxq `B2pxq

where

B1pxq :“

ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn

p1{2
rξ0,n ´

1

p

p´1
ÿ

ℓ“0

Wℓ∆n

¯ı

dy, (4.43)

B2pxq :“

ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn

p1{2
rξ0,n ´

1

p

p´1
ÿ

ℓ“0

Wℓ∆n

¯

pM b
p∆n

pyq ´ 1q

ı

dy (4.44)

and we study each term separately. More precisely, we will prove the bounds

|B1pxq ´ Erµbpx´ rτn,pζqs| À

d
ÿ

i“1

hαi
i and |B2| À

a

p∆n

which prove Proposition 4.3.
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9. Proof of Proposition 4.3

Control of B1pxq.

Note that p´1
řp´1

ℓ“0 Wℓ∆n is a centredGaussian variablewith covariancematrix pp´1qp2p´1q{p12pq∆nId,

independent from
rξ0,n. Therefore, we get:

B1pxq “

ż

Rd

µbpyqE
”

Kh

´

x´ y ´ rτn,pζ
¯ı

dy,

where rτ2n,p “ τ2n{p` pp´1qp2p´1q∆n{12p is defined in Equation (4.15), and ζ is a standard Gaussian

random variable on Rd
. Moreover, we have

ˇ

ˇ

ˇ
B1pxq ´ Erµbpx´ rτn,pζqs

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
E
”

ż

Rd

Kpzqrµb px´ hd z ´ rτn,pζq ´ µbpx´ rτn,pζqs

ıˇ

ˇ

ˇ
,

where h d z “ ph1z1, . . . , hdzdq. We then use a Taylor expansion and the Hölder regularity of the

density µb and the level of the kernelK , we get

ˇ

ˇ

ˇ
E
”

ż

Rd

Kpzqrµb px´ hd z ´ rτn,pζq ´ µbpx´ rτn,pζqs

ıˇ

ˇ

ˇ
À

d
ÿ

i“1

ş

|zj |
αj |Kpzq|dz

tαiu!
hαi
i À

d
ÿ

i“1

hαi
i .

Control of B2pxq.

First, when p “ 1, we have

ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn

p1{2
rξ0,n

¯

pM b
p∆n

pyq ´ 1q

ı

dy “ 0

since pM b
t pyqqt is a martingale independent of

rξ0,n. For p ě 2, the situation becomes more intricate.

We first state the following lemma.

Lemma 4.22. Under Assumptions 7, 8 and 9, there exists a constantM ą 0 which is uniform over Σpbq,
such that for all x P Rd

|bpxqe´V pxq| ď M.

Proof. First, note that the function x ÞÑ bpxqe´V pxq
is continuous and hence bounded on any compact

set. Precisely, this function is bounded on the ball centered to 0 and of radius 2rρb, where rρb is defined

in Assumption 9. We now consider x, such that |x| ě 2rρb. With a classical Taylor expansion argument,

we get that V pxq ě V0 ` rCb|x|{2.

Moreover, Assumption 7 ensures that

|bpxq| ď C1p1 ` |x|q,

for some constant C1 ą 0 so we get

|bpxqe´V pxq| ď C1p1 ` |x|qe´ rCb|x|`V0 ,

which is bounded, concluding the proof.
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We can now come back to the control of B2pxq, we writeW
n
p “ p´1

řp´1
k“0Wk∆n for conciseness.

Note that since
rξi,n andW

n
p are independent, we have

B2pxq “

ż

Rd

µbpyqE
”

Kh

´

x´ y ´
τn

p1{2
rξ0,n ´W

n
p

¯

pM b
p∆n

pyq ´ 1q

ı

dy

“ E
”

ż

Rd

µbpyqKh

´

x´ y ´
τn

p1{2
rξ0,n ´W

n
p

¯

pM b
p∆n

pyq ´ 1qdy
ı

“ E
”

ż

Rd

Kh

´

x´ y ´
τn

p1{2
rξ0,n

¯

µb
´

y ´W
n
p

¯´

M b
p∆n

´

y ´W
n
p

¯

´ 1
¯

dy
ı

“

ż

Rd

E
”

Kh

´

x´ y ´
τn

p1{2
rξ0,n

¯ı

E
”

µb
´

y ´W
n
p

¯´

M b
p∆n

´

y ´W
n
p

¯

´ 1
¯ı

dy.

(4.45)

Since
ż

Rd

|Khpxq| dx “

ż

Rd

|Kpxq| dx,

the proof of Proposition 4.3 is down to proving that

|Erµbpy ´W
n
p qpM b

p∆n
py ´W

n
p q ´ 1qs| À

a

p∆n

uniformly for y P Rd
.

Step 1. The main idea of the proof is to perform a Taylor expansion of our quantity of interest

around y. To do so, let us introduce for any y P Rd
, s ě 0 and j P t1, . . . , du,

Y j
y,s :

R Ñ Rd

u ÞÑ py1 `W 1
s , . . . , yj´1 `W j´1

s , u`W j
s , yj`1 `W j`1

s , . . . , yd `W d
s q.

We also define for all s ě 0, j P t1, . . . , du and y P Rd
the function ϕjy,s for u P R by

ϕjy,spuq “ M b
s py1, . . . , yj´1, u, yj`1, . . . , ydq.

The purpose of this first step is to show that for any s ě 0, j P t1, . . . , du and y P Rd
, the function

ϕjy,s is continuously differentiable. Since µb is continuously differentiable and for any z P Rd M b
t pzq is

positive, it is equivalent to prove that logpϕjy,sq is continuously differentiable. In fact for any y P Rd
,

we write

logpM b
t pyqq “ ´

d
ÿ

i“1

ż t

0
bipy `WsqdW i

s `
1

2

ż t

0
|bipy `Wsq|2 ds,

whereW i
and bi stand for the i-th component ofW and b respectively. Moreover, using the fact that

b is continuously differentiable in any direction, we obtain

bipY j
y,spyjqq “

ż yj

0
Bjb

ipY j
y,spuqqdu` bipY j

y,sp0qq.
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9. Proof of Proposition 4.3

Then we can rewrite the previous equation

logpM b
t pyqq “ ´

d
ÿ

i“1

!

ż t

0

´

ż yj

0
Bjb

ipY j
y,spuqqdu` bipY j

y,sp0qq

¯

dW i
s

)

´
1

2

d
ÿ

i“1

!

ż t

0

ˇ

ˇ

ˇ

ż yj

0
Bjb

ipY j
y,spuqqdu` bipY j

y,sp0qq

ˇ

ˇ

ˇ

2
ds
)

.

It is clear that the second double integral is continuously differentiable with respect to yj . The situation

is less straightforward for the first one due to the stochastic integral. We plan to use the following

Fubini’s Theorem for stochastic integrals.

Theorem 4.23 (Theorem 2.2 in [Ver12]). Let pX,Σ, µq be a σ-finite measure space. Let S “ M `A be
a continuous semimartingale. Let ψ : Xˆ r0, T s Ñ R be progressively measurable and such that almost
surely, we have,

ż

X

ˆ
ż T

0
|ψpx, tq|2dxMyt

˙

1
2

dµpxq ă 8,

ż

X

ż T

0
|ψpx, tq|dAtdµpxq ă 8.

Then, for all t P r0, T s, one has that almost surely

ż

X

ż t

0
ψpr, xq dSr dµpxq “

ż t

0

ż

X
ψpr, xq dµpxq dSr.

Using the boundedness of the partial derivatives, we can easily see that this result applies in our

case. Therefore, we get

logpM b
t pyqq “ ´

d
ÿ

i“1

!

ż yj

0

´

ż t

0
Bjb

ipY j
y,spuqqdW i

s

¯

du`

ż t

0
bipY j

y,sp0qqdW i
s

)

´
1

2

d
ÿ

i“1

!

ż t

0

ˇ

ˇ

ˇ

ż yj

0
Bjb

ipY j
y,spuqqdu` bipY j

y,sp0qq

ˇ

ˇ

ˇ

2
ds
)

.

Note also that Y j
y,spuq and Y j

y,sp0q do not depend on yj by definition. Therefore, for all 1 ď j ď d, and

for all y P Rd
, the function ϕjy,s is differentiable. Moreover, we have

Bj logpM b
t pyqq “ ´

d
ÿ

i“1

!

ż t

0
Bjb

ipy `Wsq dWs `

ż t

0
pbiBjb

iqpy `Wsq ds
)

, (4.46)

as y`Ws “ Y j
y,spyjq. We now want to prove that these partial derivatives are continuous. To do so, we

plan to apply component by component the following Kolmogorov–Chentsov theorem, due to [AL14]

Theorem 4.24 (Theorem 3.1. of [AL14]). Let D Ă Rd be a bounded domain of cone type and let X :

Ω ˆ D Ñ R be a random field on D. Assume that there existm ě 1, p ą 1, ϵ P p0, ps, and C ą 0 such
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that the weak derivatives BβX are in LppΩ ˆDq and

E
´ˇ

ˇ

ˇ
BβXpxq ´ BβXpyq

ˇ

ˇ

ˇ

p¯

ď C|x´ y|d`ϵ

for all x, y P D and any multi-index β P Nn with |β| ď d. Then X has a modification that is locally of
class C̄t for all t ă d` mintϵ{p, 1 ´ d{pu.

For all u, v P R, p ą 1, and t ě 0, we obtain

ˇ

ˇ

ˇ

d

du
logpϕy,tpuqq ´

d

du
logpϕy,tpvqq

ˇ

ˇ

ˇ

p
À

ˇ

ˇ

ˇ

ż t

0

`

BjbpY
j
y,spuqq ´ BjbpY

j
y,spvqq

˘

dWs

ˇ

ˇ

ˇ

p

`

ˇ

ˇ

ˇ

ż t

0

`

bpY j
y,spuqq ´ bpY j

y,spuqq
˘

BjbpY
j
y,spuqqds

ˇ

ˇ

ˇ

p

`

ˇ

ˇ

ˇ

ż t

0

`

BjbpY
j
y,spuqq ´ BjbpY

j
y,spvqq

˘

bpY j
y,spvqqds

ˇ

ˇ

ˇ

p
.

Now, taking the expectation, we get

E
„

ˇ

ˇ

ˇ

d

du
logpϕjy,spuqq ´

d

du
logpϕjy,spvqq

ˇ

ˇ

ˇ

p
ȷ

À I ` II ` III,

where

I “ E
„

ˇ

ˇ

ˇ

ż t

0

`

BjbpY
j
y,spuqq ´ BjbpY

j
y,spvqq

˘

dWs

ˇ

ˇ

ˇ

p
ȷ

;

II “ E
„

ˇ

ˇ

ˇ

ż t

0

`

bpY j
y,spuqq ´ bpY j

y,spvqq
˘

BjbpY
j
y,spuqds

ˇ

ˇ

ˇ

p
ȷ

;

III “ E
„

ˇ

ˇ

ˇ

ż t

0

`

BjbpY
j
y,spuq ´ BjbpY

j
y,spvqq

˘

bpY j
y,spvqqds

ˇ

ˇ

ˇ

p
ȷ

.

We first control the term I using the Burkholder-Davis-Gundy’s inequality and we get

I ď

ˇ

ˇ

ˇ

ż t

0
E
“

|BjbpY
j
y,spuqq ´ BjbpY

j
y,spvqq|2

‰

ds
ˇ

ˇ

ˇ

p{2
.

Moreover, we know that Bjb is pαj ´ 1q ^ 1-Hölder in the j-th variable. Using that αj ě 2, we know

that Bjb is Lipschitz continuous. Then,

I À tp{2|u´ v|p.

For the second term, we use the boundedness of the partial derivatives to get

II À tp|u´ v|p.

Moreover, for the last term, using the fact that b is at most linear and the control of moments of order
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9. Proof of Proposition 4.3

p of the Brownian motion, we get

III À |u´ v|p,

where the constant here may depend on py1, . . . , yj´1, yj`1, . . . , ydq and t. Finally, as αj ě 2, we have

that p ě 1{ε, for some ε P p0, ps. Applying Theorem 4.24, we get that ϕjy,t is continuously differentiable

on R.

Step 2. For any t ě 0, we define ψ : Rd Q y ÞÑ µbpyqpM b
t pyq ´ 1q. Moreover, recall that we write

W
n
p “ p´1

řp´1
ℓ“0 Wℓ∆n . From the previous step, we write for any y P Rd

,

ψ
`

y ´W
n
p q ´ ψpyq “

d
ÿ

j“1

Ej ,

where

Ej “ ψ
``

y ´W
n
p

˘

1
, . . . ,

`

y ´W
n
p

˘

j
, yj`1, . . . , yd

˘

´ ψ
``

y ´W
n
p

˘

1
, . . . ,

`

y ´W
n
p

˘

j´1
, yj , . . . , yd

˘

,

for any j P t2, . . . , d´ 1u, and

E1 “ ψ
``

y ´W
n
p

˘

1
, y2, . . . , ydq

˘

´ ψpy1, . . . , ydq,

Ed “ ψ
``

y ´W
n
p

˘

1
, . . . ,

`

y ´W
n
p

˘

d

˘

´ ψ
``

y ´W
n
p

˘

1
, . . . ,

`

y ´W
n
p

˘

d´1
, yd

˘

.

Then, using Step 1, we have for any j P t1, . . . , du

Ej “

ż 1

0
pBjψq

``

y ´W
n
p

˘

1
, . . . ,

`

y ´W
n
p

˘

j´1
,
`

y ´ λW
n
p

˘

j
, yj`1, . . . , yd

˘

pW
n
p qj dλ.

Then, we have

pp∆nq´1{2|Erψpy ´W
n
p q ´ ψpyqs|

ď

d
ÿ

j“1

E

«

ˇ

ˇ

ˇ

ˇ

ż 1

0
Bjψ

``

y ´W
n
p

˘

1
, . . . ,

`

y ´W
n
p

˘

j´1
,
`

y ´ λW
n
p

˘

j
, yj`1, . . . , yd

˘

pW
n
p qj dλ

ˇ

ˇ

ˇ

ˇ

2
ff1{2

.

We now introduce the following notation for any λ P p0, 1q,

Y j
y,n,ppλq “

`

py ´W
n
p q1, . . . , py ´W

n
p qj´1, py ´ λW

n
p qj , yj`1, . . . , yd

˘

Moreover, we have the following decomposition

E

«

ˇ

ˇ

ˇ

ˇ

ż 1

0
BjψpY j

y,n,ppλqqdλ

ˇ

ˇ

ˇ

ˇ

2
ff

À I ` II,
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where

I “

ż 1

0
E
”

|Bjµ̄
bpY j

y,n,ppλqqpM b
p∆n

pY j
y,n,ppλqq ´ 1q|2

ı

dλ

II “

ż 1

0
E
”

|µbpY j
y,n,ppλqqBjpM

b
p∆n

pY j
y,n,ppλqq ´ 1q|2

ı

dλ.

In order to control the term I, we write

I “ Z´1
V

ż 1

0
E
„

ˇ

ˇ

ˇ
bjpY j

y,n,ppλqq expp´2Y j
y,n,ppλqq

´

M b
p∆n

pY j
y,n,ppλqq ´ 1

¯ˇ

ˇ

ˇ

2
ȷ

dλ.

Moreover, using Lemma 4.22, we get that

I À 1 `

ż 1

0
E
”

|M b
p∆n

pY j
y,n,ppλqq|2|

ı

dλ.

Finally, using Equation (4.42) we obtain for any λ P p0, 1q,

M b
p∆n

pY j
y,n,ppλqq “ exp

´

V pY j
y,n,ppλqq ´ V pY j

y,n,ppλq `Wtq

´
1

2

ż t

0
|bpY j

y,n,ppλq `Wsq|2 ` ∇ ¨ bpY j
y,n,ppλq `Wsq ds

¯

.

Finally, leveraging on the fact that V is bounded from below, and both sµb and ∇ ¨ b are bounded, we

get

I À 1.

Step 3. We now move on to the control of term II. First, for any j P t1, . . . , du we have

BjM
b
p∆n

pY j
y,n,ppλqq

M b
p∆n

pY j
y,n,ppλqq

“ ´

d
ÿ

i“1

˜

ż p∆n

0

Bjb
ipY j

y,n,ppλq `WsqdW i
s `

ż p∆n

0

biBjb
ipY j

y,n,ppλq `Wsqds

¸

Then we have II ď IIA ` IIB , where

IIA “ 2

ż 1

0
E

«

|µbpY j
y,n,ppλqqM b

p∆n
pY j

y,n,ppλqq

d
ÿ

i“1

ż p∆n

0
Bjb

ipY j
y,n,ppλq `Wsq dW i

s |2

ff

dλ

IIB “ 2

ż 1

0
Er|µ̄bpY j

y,n,ppλqqM b
p∆n

pY j
y,n,ppλqq

d
ÿ

i“1

ż p∆n

0
pbiBjb

iqpY j
y,n,ppλq `Wsq|2sdλ

Moreover using consecutively Jensen and Cauchy-Schwarz inequalities, we obtain

IIA À

d
ÿ

i“1

ż 1

0
E
”ˇ

ˇ

ˇ
µbpY j

y,n,ppλqqM b
p∆n

pY j
y,n,ppλqq

ż p∆n

0
Bjb

ipY j
y,n,ppλq `WuqdW i

u

ˇ

ˇ

ˇ

2ı

dλ

À

d
ÿ

i“1

ż 1

0
Er|µbpY j

y,n,ppλqqM b
p∆n

pY j
y,n,ppλqq|4s1{2E

”
ˇ

ˇ

ˇ

ż p∆n

0
Bjb

ipY j
y,n,ppλq `WuqdW i

u

ˇ

ˇ

ˇ

4ı1{2
dλ.
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Moreover, from Equation (4.42) and the boundedness of µ̄b, we get once again

ż 1

0
E
„

ˇ

ˇ

ˇ
µbpY j

y,n,ppλqqM b
p∆n

pY j
y,n,ppλqq

ˇ

ˇ

ˇ

4
ȷ1{2

À 1.

Then, we only need to deal for each i P t1, . . . , du with

E

«

ˇ

ˇ

ˇ

ˇ

ż p∆n

0
Bjb

ipY j
y,n,ppλq `Wuq dW i

u

ˇ

ˇ

ˇ

ˇ

4
ff

.

Let Gp,∆n “ σpWk∆n , 0 ď k ď pq, the σ-field generated by the discrete observation of W at times

k∆n for k P t0, . . . , pu, so that conditionally on Gp,∆n ,

$

’

’

&

’

’

%

dWu “ Ik du` dW˚,k
u ,

dW˚,k
u “

´W
˚,k
u

pk`1q∆n´u du` dBk
u,

(4.47)

in distribution, where for each k P t0, . . . , p´ 1u

Ik :“
Wpk`1q∆n

´Wk∆n

∆n
,

W˚,k
is a Brownian Bridge on rk∆n; pk ` 1q∆ns, and Bk

is a d-dimensional Brownian motion inde-

pendent of Gp,∆n . Then, we write

Eb
”ˇ

ˇ

ˇ

ż p∆n

0
Bjb

ipY j
y,n,ppλq `Wuq dW i

u

ˇ

ˇ

ˇ

4ı

“ Eb
”

Eb
”ˇ

ˇ

ˇ

ż p∆n

0
Bjb

ipY j
y,n,ppλq `WuqdW i

u

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

“Eb
”

Eb
”ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `Wuq dW i
u

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

À

´

Eb
”

Eb
”ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `WuqIiℓ du
ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

` Eb
”

Eb
”ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `Wuq
W

˚,ℓ,i
u

pℓ` 1q∆n ´ u
du

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

` Eb
”

Eb
”
ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `Wuq dBℓ,i
u

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı¯

.

Using both boundedness of the partial derivatives and Jensen inequality, we get

Eb
”

Eb
”ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `WuqIiℓ du
ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

À p3∆4
nE

”

p´1
ÿ

ℓ“0

I4ℓ

ı

À p4∆2
n.

For the second term, let us remark that by definition of the Brownian Bridge, for any i P t1, . . . , du,

ℓ P t0, . . . , p ´ 1u and u P rℓ∆n, pl ` 1q∆ns, we have W
˚,ℓ,i
u is gaussian variable with ErW

˚,ℓ,i
u s “ 0
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and VarrW˚,ℓ,i
u s “ u, asW˚,ℓ,i

ℓ∆n
“ W

˚,ℓ,i
pℓ`1q∆n

“ 0. This allows us to obtain

Er|W˚,ℓ,i
u |4s “

ppℓ` 1q∆n ´ uq4pu´ ℓ∆nq4

∆4
n

.

Using once again the boundedness of sµb, we obtain

Eb
”

Eb
”ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `Wuq
W

˚,ℓ,i
u

pℓ` 1q∆n ´ u
du

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

À p4∆2
n.

Lastly, we use the Burkholder-Davis-Gundy Inequality to handle the final term. Every previous step

has paved the way for this one. Conditionally to Gp,∆n , we have that for each i P t1, . . . , du

´

ż t

0
Bjb

ipY j
y,n,ppλq `Wuq dBℓ,i

u

¯

tě0
,

is a martingale. This would not have been true without the conditioning. Then, we get

Eb
”

Eb
”ˇ

ˇ

ˇ

p´1
ÿ

ℓ“0

ż pℓ`1q∆n

ℓ∆n

Bjb
ipY j

y,n,ppλq `WuqdBℓ,i
u

ˇ

ˇ

ˇ

4ˇ
ˇ

ˇ
Gp,∆

ıı

À

´

ż p∆n

0
Bjb

ipY j
y,n,ppλq `Wuq2du

¯2

À p2∆2
n.

We obtain

Eb
”ˇ

ˇ

ˇ

ż p∆n

0
Bjb

ipY j
y,n,ppλq `WuqdW i

u

ˇ

ˇ

ˇ

4ı

À p4∆2
n.

Combining this to (4.47) gives IIA À p2∆n which is bounded, thanks to Equation (4.39).

Step 4. Control of IIB . Using Cauchy-Schwarz inequality, we get

IIB À

d
ÿ

i“1

ż 1

0
Eb
”ˇ

ˇ

ˇ

ż p∆n

0

b

µbpY j
y,n,ppλqqpbiBjb

iqpY j
y,n,ppλq `Wuqdu

ˇ

ˇ

ˇ

4ı1{2
dλ. (4.48)

Moreover for i P t1, . . . , du and λ P p0, 1q,

E
”ˇ

ˇ

ˇ

ż p∆n

0

b

µbpY j
y,n,ppλqqpbiBjb

iqpY j
y,n,ppλq `Wuqdu

ˇ

ˇ

ˇ

4ı

À pp∆nq3
ż p∆n

0
ErµbpY j

y,n,ppλqq
2
pbiBjb

iqpY j
y,n,ppλq `Wuq4sdu

À pp∆nq3
ż p∆n

0
ErµbpY j

y,n,ppλqq
2
bipY j

y,n,ppλq `Wuq4sdu

À pp∆nq4,

where, at the last line we used a similar argument as the one of the proof of Lemma 4.22 to bound

EbrµbpY j
y,n,ppλqq

2
bipY j

y,n,ppλq ` Wuq4s uniformly in n, p, y, u, i and λ. Therefore IIB À pp∆nq2, and
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II À 1.

Conclusion. Combining the previous four steps, we have

|Erµbpy ´W
n
p qpM b

p∆n
py ´W

n
p q ´ 1qs| À

a

p∆n

and therefore, for all x P Rd
,

B2pxq À
a

p∆n, (4.49)

which concludes the proof.

10 Proof of Proposition 4.4

We now plan to use Proposition 4.3 to prove the estimate (4.21). Recall that for all x P Rd
, pµn,h,ppxq is

defined in Equation (4.20) by

pµn,h,ppxq “
ÿ

uγpνn,h,ppx` γrτn,pq

where the sum holds over all γ “ pγ1, . . . , γdq P t0, . . . , ℓud. Thus Proposition 4.3 ensures that (4.21)

is proved once we control the following quantity

ˇ

ˇ

ÿ

uγErµbpx` rτn,ppγ ´ ζqqs ´ µbpxq
ˇ

ˇ

(4.50)

We first provide a technical Lemma in dimension d “ 1.

Lemma 4.25. Let f : R Ñ R be a α-Hölder function and ζ be a standard real Gaussian variable. Then
we have

ˇ

ˇ

l
ÿ

γ“0

uγErfpx` τpγ ´ ζqqs ´ fpxq
ˇ

ˇ ď τα
L

tαu

l
ÿ

γ“0

Er|γ ´ ζ|αs.

Proof. By Taylor formula and using the α-Hölder property of f , we get the existence of ε P r0, 1s such

that

l
ÿ

γ“0

uγErfpx` τpγ ´ ζqqs “

l
ÿ

γ“0

uγ

tαu´1
ÿ

k“0

f pkqpxq

k!
Erpγ ´ ζqks `Rα,lpεq

“

tαu´1
ÿ

k“0

f pkqpxq

k!

l
ÿ

γ“0

uγ

k
ÿ

β“0

k!

β!pk ´ βq!
p´1qβmβγ

k´β `Rα,lpεq,

where

Rα,lpεq “ E
”

l
ÿ

γ“0

f ptαuqpx` ετpγ ´ ζqq

ptαuq!
pτεqtαupγ ´ ξqtαu

ı

.
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Then, from Equation (4.19), we get that

řl
γ“0 uγ

řtαu´1
k“0 f pkqpxqErpγ ´ ζqks{k! “ fpxq. Moreover as

f is α-Hölder, we conclude that

Rα,lpεq ď τα
L

tαu

l
ÿ

γ“0

Er|γ ´ ζ|αs.

We now extend Lemma 4.25 to our setup using an appropriate induction. We first introduce θ “

θpx,γ, n, pq “ x`γrτn,p P Rd
. We prove by induction on 0 ď I ď d that for any 0 ď γI`1, . . . , γd ď l,

ˇ

ˇ

l
ÿ

γI“0

. . .
l
ÿ

γ1“0

I
ź

i“1

uγiErµbpθ ´ rτn,pζqs ´ Erµbpx1, . . . , xI , θI`1 ´ rτn,pζI`1, . . . , θd ´ rτn,pζdqs|,

is bounded up to some constant by

řI
i“1 rτ

αi
n,p. For I “ 0, this is trivial and for I “ d, the second expec-

tation does not contain any random variable any-more and thus equals µbpxq, which proves Equation

(4.50). Let I ă d at which this property is proved. We fix 0 ď γI`2, . . . , γd ď l. We have

l
ÿ

γI`1“0

. . .
l
ÿ

γ1“0

I`1
ź

i“1

uγiErµbpθ ´ rτn,pζqs “

l
ÿ

γI`1“0

uγI`1

l
ÿ

γI“0

. . .
l
ÿ

γ1“0

I
ź

i“1

uγiErµbpθ ´ rτn,pζqs

Recall also that by Assumption, µb is αI`1-Hölder regular in the pI ` 1q-th variable. Therefore, by

induction and using Lemma 4.25 we get

ˇ

ˇ

ˇ

l
ÿ

γI`1“0

uγI`1Erµbpx1, . . . , xI , θI`1 ´ rτn,pζI`1, . . . , θd ´ rτn,pζdq|ζI`2, . . . , ζds

´ µbpx1, . . . , xI`1, θI`2 ´ rτn,pζI`2, . . . , θd ´ rτn,pζdq

ˇ

ˇ

ˇ
À rτ

αI`1
n,p .

Note that Lemma 4.25 ensures that the last inequality holds up to a constant uniformly in n, p, b.

11 Proof of Proposition 4.5

11.1 Structure and completion of the proof

First note that by (4.28), it enough to prove Proposition 4.5 with pνn,h,ppxq instead of pµn,h,ppxq. We now

introduce the main notations used in this proof. Let np “ tn{pu. For each j, we write

rξj “
1

?
p

p´1
ÿ

ℓ“0

ξj`ℓ

so that prξjqj is a sequence of i.i.d standard d-dimensional Gaussian variables. Then we write

Cb
ppk;xq “ Covb

µb

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
`
τn
?
p
rξk , Khpx´ p´1

p´1
ÿ

ℓ“0

Xℓ∆n `
τn
?
p
rξ0

¯

. (4.51)
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for each k and x, and

Cb
ppk;x, u, vq “ Covb

µb

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
` uq ,Khpx´ p´1

p´1
ÿ

ℓ“0

Xℓ∆n ` vq

¯

(4.52)

Db
ppk;x, u, vq “ Eb

µbrKhpx´
1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
` uqKhpx´

1

p

p´1
ÿ

ℓ“0

Xℓ∆n ` vqs (4.53)

for each k, x, u and v. Note that for k ą 0, the noises rξ0 and rξk are independent and therefore

Cb
ppk;xq ď

ż

Rd

ż

Rd

Cb
ppk;x, u, vqχp,npduqχp,npdvq (4.54)

where χp,n stands for the law of τnp
´1{2

rξ0 so that χp,npduq “ φτnp´1{2puqdu. Moreover, we also have

Cb
ppk;xq ď

ż

Rd

ż

Rd

Db
ppk;x, u, vqχp,npduqχp,npdvq (4.55)

By definition of pνn,h,ppxq, we have

Varb
µbppνn,h,ppxqq “ Varb

µb

´ 1

np

np´1
ÿ

k“0

Khpx´
1

p

p´1
ÿ

ℓ“0

Ykp`ℓ,nq

¯

“
1

n2p

np´1
ÿ

i,j“0

Covb
µb

´

Khpx´
1

p

p´1
ÿ

ℓ“0

Xpip`ℓq∆n
`
τn
?
p
rξiq ,Khpx´

1

p

p´1
ÿ

ℓ“0

Xpjp`ℓq∆n
`
τn
?
p
rξjq

¯

.

Since X and ξ are both ergodic and mutually independent, we deduce that

Varb
µb

´ 1

np

np´1
ÿ

k“0

Khpx´
1

p

p´1
ÿ

ℓ“0

Ykp`ℓ,nq

¯

“
2

n2p

np´1
ÿ

k“0

pnp ´ kqCb
ppk;xq. (4.56)

We now present several bounds on the coefficients Cb
ppk;xq.

Lemma 4.26 (Instantaneous correlations). For each k ě 0, we have

Cb
ppk;xq À

d
ź

i“1

h´1
i .

Lemma 4.27 (Short-term correlations). For any 1 ď k1 ď d and any k ě 2, we have

Cb
ppk;xq À pkp∆nq´k1{2

d
ź

i“k1`1

h´1
i .

Lemma 4.28 (Mid-term correlations). For any k ě 1 such that pk ´ 1qp∆n ě 1, we have

Cb
ppk;xq À 1.
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Lemma 4.29 (Long-term correlations). For any k ě 1, we have

Cb
ppk;xq À e´C´1

PI pk´1qp∆n

´

d
ź

i“1

h´1
i

¯2
.

Following [AG23], the rest of the proof consists in identifying the best way to combine these lemmas

with (4.56), depending on d and k0. Recall that k0 is such that α1 “ ¨ ¨ ¨ “ αk0 ă αk0`1 ď ¨ ¨ ¨ ď αd.

We now introduce 0 ď j1 ď j2 ď j3 ď j4 such that j3 “ rpp∆nq´1s and

j4 “ max

˜

min

˜[

´2CPI log
śd

i“1 hi
p∆n

_

, np

¸

, j3

¸

.

Then we have

1

n2p

np´1
ÿ

k“0

pnp ´ kqCb
ppk;xq “

1

n2p

´

j1
ÿ

k“0

`

j2
ÿ

k“j1`1

`

j3
ÿ

k“j2`1

`

j4
ÿ

k“j3`1

`

np´1
ÿ

k“j4`1

¯

pnp ´ kqCb
ppk;xq.

For the first sum, we use Lemma 4.26 so that we have

1

n2p

j1
ÿ

k“0

pnp ´ kqCb
ppk;xq À

1

np
śd

i“1 hi
pj1 ` 1q.

For the second and third sums, we use Lemma 4.27 for some 1 ď k1 ď d and 1 ď k2 ď d to be chosen

later. In that case, we get

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

n´2
p

j2
ÿ

k“j1`1

pnp ´ kqCb
ppk;xq À n´1

p

j2
ÿ

k“j1`1

pkp∆nq´k1{2
d
ź

i“k1`1

h´1
i ,

n´2
p

j3
ÿ

k“j2`1

pnp ´ kqCb
ppk;xq À n´1

p

j3
ÿ

k“j2`1

pkp∆nq´k2{2
d
ź

i“k2`1

h´1
i . .

Since j3k∆n ě 1, we use Lemma 4.28 for the fourth sum and we get

1

n2p

j4
ÿ

k“j3`1

pnp ´ kqCb
ppk;xq À

1

np
pj4 ´ j3q.

Using the definition of j4, we have

1

n2p

j4
ÿ

k“j3`1

pnp ´ kqCb
ppk;xq À min

˜

´2CPI log
śd

i“1 hi
npp∆n

, 1

¸

.

Using also that npp∆n Á Tn, we get

1

n2p

j4
ÿ

k“j3`1

pnp ´ kqCb
ppk;xq À min

˜

řd
i“1 | log hi|

Tn
, 1

¸

. (4.57)
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For the last sum, we use Lemma 4.29 and we have

1

n2p

np´1
ÿ

k“j4`1

pnp ´ kqCb
ppk;xq À

1

np

np´1
ÿ

k“j4`1

Cb
ppk;xq

À
1

np

np´1
ÿ

k“j4`1

e´C´1
PI pk´1qp∆n

´

d
ź

i“1

h´1
i

¯2

À
1

Tn
e´C´1

PI j4p∆n

´

d
ź

i“1

h´1
i

¯2
.

Using the definition of j4, we have

1

n2p

np´1
ÿ

k“j4`1

pnp ´ kqCb
ppk;xq À

1

Tn
`

1

Tn
e´C´1

PITn

´

d
ź

i“1

h´1
i

¯2
. (4.58)

Case d “ 1, 2. Taking j1 “ 0, j2 “ j3 and k1 “ d, we obtain

2

n2p

j2
ÿ

k“j1`1

Cb
ppk;xq À

2

n2p

j2
ÿ

k“1

pnp ´ kq
1

kp∆n

À
logpj2q

npp∆n
“

| logpp∆nq|

Tn
.

and therefore

Varb
µbppνn,h,ppxqq À

p∆n

Tn

d
ź

i“1

h´1
i `

| logpp∆nq|

Tn
`

d
ÿ

i“1

| logphiq|

Tn
`

1

Tn
e´CTn

˜

d
ź

i“1

h´1
i

¸2

.

Case d ě 3, k0 “ 1 and α2 ă α3 or k0 “ 2. We take k1 “ 2 and k2 “ d and

j1 “

Z

h1h2
p∆n

^

and j2 “

[

p
ś

iě3 hiq
2

d´2

p∆n

_

.

Therefore we have

1

n2p

j1
ÿ

k“0

pnp ´ kqCb
ppk;xq À

1

np
śd

i“1 hi

h1h2
p∆n

`
1

np

d
ź

i“1

h´1
i

À
1

Tn
śd

i“3 hi
`

1

np

d
ź

i“1

h´1
i
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and

n´2
p

j2
ÿ

k“j1`1

pnp ´ kqCb
ppk;xq À n´1

p

j2
ÿ

k“j1`1

pkp∆nq´1
d
ź

i“3

h´1
i

À n´1
p logpj2{j1qpp∆nq´1

d
ź

i“3

h´1
i

À T´1
n

d
ÿ

i“1

| logphiq
d
ź

i“3

h´1
i

and

n´2
p

j3
ÿ

k“j2`1

pnp ´ kqCb
ppk;xq À n´1

p

j3
ÿ

k“j2`1

pkp∆nq´d{2

À n´1
p j

1´d{2
2 pp∆nq´d{2

À T´1
n p

ź

iě3

hiq
´1.

Combining these three bounds with (4.57) and (4.58), we get

Varb
µbppνn,h,ppxqq À

1

Tn
śd

i“3 hi
`

1

np

d
ź

i“1

h´1
i `

1

Tn

d
ÿ

i“1

| logphiq|

d
ź

i“3

h´1
i

which proves (4.25).

Case d ě 3, k0 ě 3. We take k1 “ k0 and k2 “ d and

j1 “

—

—

—

—

–

´

śk0
i“1 hi

¯2{k0

p∆n

ffi

ffi

ffi

ffi

fl

and j2 “

Z

1

p∆n

^

.

Therefore, we have

1

n2p

j1
ÿ

k“0

pnp ´ kqCb
ppk;xq À

1

np
śd

i“1 hi

´

śk0
i“1 hi

¯2{k0

p∆n
`

1

np

d
ź

i“1

h´1
i

À
1

Tn

k0
ź

i“1

phiq
p2´k0q{k0

d
ź

i“k0`1

h´1
i `

1

np

d
ź

i“1

h´1
i ,
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and

n´2
p

j2
ÿ

k“j1`1

pnp ´ kqCb
ppk;xq À n´1

p

j2
ÿ

k“j1`1

pkp∆nq´k0{2
d
ź

i“k0`1

h´1
i

À n´1
p j

1´k0{2
1 pp∆nq´k0{2

d
ź

i“k0`1

h´1
i

À T´1
n

k0
ź

i“1

phiq
p2´k0q{k0

d
ź

i“k0`1

h´1
i ,

and using that j3 ď j2 ` 1

n´2
p

j3
ÿ

k“j2`1

pnp ´ kqCb
ppk;xq À n´1

p pj2 ` 1q´d{2pp∆nq´d{2 À
1

np
.

Combining these three bounds with (4.57) and (4.58), we get

Varb
µbppνn,h,ppxqq À T´1

n

k0
ź

i“1

phiq
p2´k0q{k0

d
ź

i“k0`1

h´1
i `

1

np

d
ź

i“1

h´1
i `

řd
i“1 | log hi|

Tn

which proves (4.26).

Case d ě 3, k0 “ 1 and α2 “ α3 We take k1 “ 1 and k2 “ 3,

j1 “ 0 and j2 “

Z

h2h3
p∆n

^

.

Therefore, we have

1

n2p

j1
ÿ

k“0

pnp ´ kqCb
ppk;xq À

1

np
śd

i“1 hi

and

n´2
p

j2
ÿ

k“j1`1

pnp ´ kqCb
ppk;xq À n´1

p

j2
ÿ

k“j1`1

pkp∆nq´1{2
d
ź

2

h´1
i

À n´1
p j

1{2
2 pp∆nq´1{2

d
ź

i“2

h´1
i

À T´1
n ph2h3q´1{2

d
ź

i“4

h´1
i
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and

n´2
p

j3
ÿ

k“j2`1

pnp ´ kqCb
ppk;xq À n´1

p

j3
ÿ

k“j2`1

pkp∆nq´3{2
d
ź

i“4

h´1
i

À n´1
p j

´1{2
2 pp∆nq´3{2

d
ź

i“4

h´1
i

À T´1
n ph2h3q´1{2

d
ź

i“4

h´1
i

Combining these three bounds with (4.57) and (4.58), we get

Varb
µbppνn,h,ppxqq À

řd
i“1 | log hi|

Tn
`

1

np
śd

i“1 hi
`

1

Tn
?
h2h3

d
ź

i“4

h´1
i

which proves (4.27).

11.2 Proof of Lemma 4.26

Since X and ξ are both ergodic and mutually independent we have by Cauchy-Schwarz inequality

Cb
ppk;xq ď Varb

µbpKhpx´ p´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
`
τn
?
p
rξkqq

ď Eb
µb

”

Khpx´ p´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
`
τn
?
p
rξkq2

ı

.

Using the notations of Section 7, we know that p´1
řp´1

ℓ“0 Xpkp`ℓq∆n
` τnp

´1{2
rξk has a density under

Pp

µb given by

µbp,npzq :“

ż

Rd

ż

Rd

µbpyqpbp,npy; uqφτnp´1{2pz ´ uq dy du

Moreover, for all z P Rd
,

|µbp,npzq| ď }sµb}8

ż

Rd

ˆ
ż

Rd

pbp,npy; uq dy

˙

φτnp´1{2pz ´ uq du

ď }sµb}8.

Then, performing a change of variable gives

Cb
ppk;xq “

ż

Rd

µbp,npzqKhpx´ zq2 dz “

´

d
ź

i“1

h´1
i

¯

ż

Rd

µbp,npx` hzqKpzq2 dz À

d
ź

i“1

h´1
i

sinceK P L2
.
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11.3 Proof of Lemma 4.27

First recall from Section 7 that the process

pp´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
, Xpk`1qp∆n

qkPN

is stationary with law denoted sπb on R2d
. Using also that X is a Markov process, we get that for all

pu, vq P Rd ˆ Rd
, we have

Db
ppk;x, u, vq

“

ż

Rd

ż

Rd

EbrKhpx´ p´1
p´1
ÿ

ℓ“0

Xpkp`ℓq∆n
` vq|Xp∆n “ zsKhpx´ rω ` vqπ̄bprω; zqdz drω

“

ż

Rd

ż

Rd

ż

Rd

Khpx` v ´ ωqKhpx` u´ rωqpbp,n,pk´1qp∆n
pz; ωqsπbprω; zq drω dω dz.

where pbp,n,pk´1qp∆n
is also defined in Section 7. Moreover, we know from Lemma 4.20 that there exists

λ1 ą 0 such that

sπbprω; zq À
1

pp∆nqd{2
e

´V pzq´
λ1

p∆n
|rω´z|2

À
1

pp∆nqd{2
e

´
λ1

p∆n
|rω´z|2

.

From Corollary 4.19, we also have

pbp,n,pk´1qp∆n
px, yq À

1

p2pk ´ 1qpλ1qd{2pp∆nqd{2
exp

´

´
λ1

p1 ` 2pk ´ 1qq∆n
|x´ y|2

¯

.

Then, we combine these two estimates using Lemma 4.34. For all ω, rω P Rd
, we have

ż

Rd

pbp,n,pk´1qp∆n
pz, rωqsπbpω, zqdz À

1

pp1 ` pk ´ 1qλ1qp∆nqd{2
exp

´

´
|ω ´ rω|2

p1 ` pk ´ 1qλ1qp∆n

¯

.

Then,

Db
ppk;x, u, vq À

ż

Rd

ż

Rd

|Khpx` v ´ ωqKhpx` u´ rωq|s´d{2 exp
´

´
|ω ´ rω|2

s

¯

drωdω

ď

ż

Rd

|Khpx` v ` ωq|

ż

Rd

|Khpx` u´ rωq|s´d{2 exp
´

´
|ω ´ rω|2

s

¯

drωdω.

where s “ p1 ` pk ´ 1qλ1qp∆n. We first focus on the inner integral. We recall that for any z “

pz1, . . . , zdq P Rd
,

Khpzq “

d
ź

i“1

h´1
i Kph´1

i ziq,
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and using thatK is integrable, we obtain for any i P t1, . . . , du,

ż

R
h´1
i

ˇ

ˇ

ˇ
K
´xi ` ui ` rωi

hi

¯ˇ

ˇ

ˇ

1
?
s
exp

´

´
|ωi ´ rωi|

2

s

¯

drωi À

ż

R
h´1
i

ˇ

ˇ

ˇ
K
´xi ` ui ` rωi

hi

¯ˇ

ˇ

ˇ

1
?
s
drωi

À
1

?
s

ż

R

ˇ

ˇ

ˇ
Kppωiq

ˇ

ˇ

ˇ
dpωi

À
1

?
s
.

(4.59)

Using thatK is bounded, we also have

ż

R
h´1
i

ˇ

ˇ

ˇ
K
´xi ` ui ` rωi

hi

¯
ˇ

ˇ

ˇ

1
?
s
exp

´

´
|ωi ´ rωi|

2

s

¯

drωi À

ż

R

1
?
shi

exp
´

´
|ωi ´ rωi|

2

s

¯

drωi

À
1

hi
.

(4.60)

Combining the bounds given by Equations (4.59) and (4.59), we obtain that for any 1 ď k1 ď d,

ż

Rd

|Khpx` u´ rωq|s´d{2 exp
´

´
|ω ´ rω|2

s

¯

drω À
1

sk1{2
śd

i“k1`1 hi
,

and therefore we have

Db
ppk;x, u, vq À

1

sk1{2
śd

i“k1`1 hi

ż

Rd

|Khpx` v ` ωq|dω À
1

sk1{2
śd

i“k1`1 hi
.

By definition of s, we obtain

Db
ppk;x, u, vq À

1

pkp∆nqk1{2
śd

i“k1`1 hi
.

The results on Cb
ppk;xq follows by integrating (4.55).

11.4 Proof of Lemma 4.28

We begin by extending the bound on pbp,n,tp¨, ¨q given by Corollary 4.19 for t ą 1. In fact, for x, y P Rd

and t ą 1, we get using Markov property

pbp,n,tpx; yq “

ż

Rd

pbtpx; zqpbp,npz; yqdz.

Moreover, using the fact that X is a Markov process, we have that

pbp,n,tpx; yq “

ż

Rd

´

ż

Rd

pb1{2px, ωqpbt´1{2pω, zqdω
¯

pbp,npz; yq dz

From Lemma 4.18, we know that

pb1{2px, ωq À exp
`

´ |x´ ω|2 ` V pxq ´ V pωq
˘
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and therefore using that V is bounded below, we have

pbp,n,tpx; yq À eV pxq

ż

Rd

´

ż

Rd

pbt´1{2pω; zqdω
¯

pbp,npz; yqdz À eV pxq.

Moreover, we know from Lemma 4.20 that there exists λ1 ą 0 such that

sπbprω; zq À
1

pp∆nqd{2
e

´V pzq´
λ1

p∆n
|rω´z|2

.

Proceeding as for Lemma 4.27, we have

Db
ppk;x, u, vq

“

ż

Rd

ż

Rd

ż

Rd

Khpx` v ´ ωqKhpx` u´ rωqpbp,n,pk´1qp∆n
pz; ωqsπbprω; zq drω dω dz

À

ż

Rd

ż

Rd

ż

Rd

Khpx` v ´ ωqKhpx` u´ rωq
1

pp∆nqd{2
e

´
λ1

p∆n
|rω´z|2

drω dω dz.

Using that

1

pp∆nqd{2

ż

Rd

exp
´

´
λ1
p∆n

|z ´ ω|2
¯

dz “

´4π

λ1

¯d{2
,

we obtain

Db
ppk;x, u, vq À

ż

Rd

ż

Rd

Khpx` v ´ ωqKhpx` u´ rωq drω dω

and using the usual change of variable and the fact that |K| is integrable, we get

Db
ppk;x, u, vq À 1.

The result on Cb
ppk;xq follows by integrating (4.55).

11.5 Proof of Lemma 4.29

For h “ ph1, . . . , hdq P p0, 1qd and y P Rd
, we define

Khpyq “

ż

Rd

Khpx´ y ` uqχp,npduq,

and

Kc
hpyq “ Khpyq ´ EµbrKhp

1

p

p´1
ÿ

ℓ“0

Xℓ∆nqs.
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Then we have by definition

Cb
ppk;xq ď

ż

Rd

ż

Rd

Cb
ppk;x, u, vqχp,npduqχp,npdvq

ď Eb
µb

”

Kh

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯

Kh

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ı

´ Eb
µb

”

Kh

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ı2
,

ď Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ı

.

Moreover, we write tAk, k ě 0u for the natural filtration induced by the lifted Markov chain

pp´1
p´1
ÿ

ℓ“0

Ykp`ℓ,n, Xpk`1qp∆n
qkPN.

Then using Cauchy-Schwarz inequality, we have

ˇ

ˇ

ˇ
Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ıˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
Eb
µb

”

Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯ˇ

ˇ

ˇ
A0

ı

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯ıˇ

ˇ

ˇ

ď Eb
µb

”

Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
A0

ı2ı1{2
Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯2ı1{2
.

The second expectation is treated as in Lemma 4.26 and we have

Eb
µb

”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xℓ∆n

¯2ı1{2
À

d
ź

i“1

h´1
i .

For the first one, we use that X is a stationary Markov process to get

Eb
µb

”

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
A0

ı2ı

“ Eb
µb

”

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯
ˇ

ˇ

ˇ
Fp∆n

ı2ı

“

ż

Rd

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯

|Xp∆n “ x
ı2
µbpdxq

“

ż

Rd

Eb
”

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯ˇ

ˇ

ˇ
Xkp∆n

ı

|Xp∆n “ x
ı2
µbpdxq

Defining φ : y ÞÑ Eb
”

Kc
h

´

1
p

řp´1
ℓ“0 Xpkp`ℓq∆n

¯ˇ

ˇ

ˇ
Xkp∆n “ y

ı

, we get that for any x P Rd
,

EbrφpXkp∆nq|Xp∆n “ xs “ Eb
xrφpXpk´1qp∆n

qs “ P b
pk´1qp∆n

φpxq,
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where pP b
t q is defined in Equation (4.7). Moreover, from the definition ofKc, we get Eb

µbrφpX0qs “ 0.

Then, using Equation (4.6), we have

Eb
µb

”

Eb
”

Kc
h

´1

p

p´1
ÿ

ℓ“0

Xpkp`ℓq∆n

¯ˇ

ˇ

ˇ
Fp∆n

ı2ı

“ Varb
µbrP b

pk´1qp∆n
φpX0qs

ď e´2C´1
PI pk´1qp∆nEb

µbrφpX0q2s.

Moreover, for all x P Rd
, |φpxq| ď 2}Kc

h}8 ď 2}Kh}8. Then, we have }φ}8 À
śd

i“1 h
´1
i . Combin-

ing all previous inequalities, we get

Cb
ppk;xq À e´C´1

PI pk´1qp∆n

´

d
ź

i“1

h´1
i

¯2
.

12 Proof of the results of Section 4.1

12.1 Preliminary results

In this section, we aim at proving Lemma 4.6 and other results used in the proof of the results of Section

4.1. We start by introducing a concise notation. We say that Apθq À Bpθq implies Cpθq À Dpθq, if for

all c1 ą 0, there exists c2 ą 0 such that Apθq ď c1Bpθq implies Cpθq ď c2Dpθq. We define similarly

the equivalence between Apθq À Bpθq and Cpθq À Dpθq. We can now state the main Lemma of this

section.

Lemma 4.30. For p ě 1, the condition p∆n À wHF
n is equivalent to p∆n À rwHF

n,p with

rwHF
n,p “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

`

p
n

˘
1
2 log

´

n
p

¯
1
2 if d “ 1, 2

´

p
n

¯
α

2α`d
p 1
α1

` 1
α2

q

log
´

n
p

¯

if d ě 3 and pα, k0q P D1,
´

p
n

¯
2α

2α`d
1
α1 if d ě 3 and pα, k0q P D2,

´

p
n

¯
α

p2α`dq

´

1
α1

` 1
α2

¯

if d ě 3 and d ě 3 and pα, k0q P D3.

Proof. First note that since Tn “
np∆n

p , the condition

p∆n À T´u
n logpTnqv

for some u, v ě 0, is equivalent to

p∆n À

´ p

n

¯
u

1`u
log

´n

p

¯
v

1`u
.

If u “ α3
2α3`d´2

´

1
α1

` 1
α2

¯

, we have

u “
1

2 ` d´2
α3

α1 ` α2

α1α2
“

1

2 ` d
α ´ 1

α1
´ 1

α2

α1 ` α2

α1α2
“

αpα1 ` α2q

α1α2p2α ` dq ´ αpα1 ` α2q
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and therefore

u

1 ` u
“

αpα1 ` α2q

α1α2p2α ` dq
“

α

2α ` d

´ 1

α1
`

1

α2

¯

,

which proves the case d ě 3 and k0 “ 1withα2 ă α3 or k0 “ 2. The other cases are done similarly.

A particular case is the case where p “ 1, restated as follows

Lemma 4.31. The condition∆n À wHF
n is equivalent to∆n À rwHF

n with rwHF
n “ rwHF

n,1

Proof of Lemma 4.6. From Lemma 4.30, we know that p∆n À wHF
n is equivalent to p∆n À rwHF

n,p . Using

that α1 ą 2, we check that

rwHF
n,p ě

´ p

n

¯
2α

2α`d

and therefore we have Lemma 4.6.

12.2 Proof of Proposition 4.7

Suppose that p˚∆n ď wHF
n and that τ2α1

n ď ∆n and recall that in that case, we take

p˚ “ 1 and h˚ “ h˚,HF

From Proposition 4.4, we see by plugging these values that

Bb
n,h,ppxq À τ2α1

n ` vHF
n .

Note also that | logph˚
i q| is of the order of logpTnq and that by definition of h˚

, we have

vHF
n À T´1

n

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

řd
i“1 | logph˚

i q| if d “ 1, 2
řd

i“1 | logph˚
i q|

śd
i“3ph˚

i q´1
if d ě 3 and pα, k0q P D1

p
śk0

i“1ph˚
i qp2´k0q{k0

śd
i“k0`1ph˚

i q´1
if d ě 3 and pα, k0q P D2

ph˚
2h

˚
3q´1{2

śd
i“4ph˚

i q´1
if d ě 3 and pα, k0q P D3.

Therefore, by factorizing by vHF
n the variance bound from Proposition 4.5, we have

Vb
n,h˚,p˚pxq À vHF

n p1 ` rHF
n q,

with

rHF
n “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if d “ 1, 2

∆nph˚
1h

˚
2q´1 logpTnq´1

if d ě 3 and pα, k0q P D1

∆n
śk0

i“1ph˚
i q´2{k0 ` logpTnq

śk0
i“1ph˚

i q´2{k0
śd

i“1 h
˚
i if d ě 3 and pα, k0q P D2

logpTnqph˚
2h

˚
3q1{2

śd
i“4 h

˚
i ` ∆nh

´1
1 ph˚

2h
˚
3q´1{2

if d ě 3 and pα, k0q P D3

and it remains to prove that in each case, the remainder can be ignored so that Vb
n,h,ppxq À vHF

n . First
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note that the condition∆n À wHF
n and the definition of h˚

ensures that

∆n À

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

h˚
1 logpTnq if d “ 1

h˚
1h

˚
2 logpTnq if d “ 2

h˚
1h

˚
2 logpTnq if d ě 3 and pα, k0q P D1

śk0
i“1ph˚

i q2{k0
if d ě 3 and pα, k0q P D2

h˚
1ph˚

2h
˚
3q1{2

if dd ě 3 and pα, k0q P D3

and therefore

rHF
n À

$

’

’

’

&

’

’

’

%

0 if d “ 1, 2 or d ě 3 and pα, k0q P D1

logpTnq
śk0

i“1ph˚
i q´2{k0

śd
i“1 h

˚
i if d ě 3 and pα, k0q P D2

logpTnqph˚
2h

˚
3q1{2

śd
i“4 h

˚
i if d ě 3 and pα, k0q P D3

Then we easily check that if d ě 3 and k0 ě 3, we have

logpTnq

k0
ź

i“1

ph˚
i q´2{k0

d
ź

i“1

h˚
i “ logpTnqT

´
ᾱ2

ᾱ3`d´2

řd
j“k0`1 1{αj

n Ñ 0.

Analogously, if d ě 3 and k0 “ 1 with α2 “ α3, we have

logpTnqph˚
2h

˚
3q´1{2

d
ź

i“4

h˚
i “ logpTnqc`1T´c

n Ñ 0,

with

c “
ᾱ3

2ᾱ3 ` d´ 2

˜

1

2α2
`

1

2α3
`

d
ÿ

i“4

1

αi

¸

ą 0

so that

Vb
n,h˚,p˚pxq À vHF

n

which concludes the proof of Proposition 4.7.

12.3 Proof of Proposition 4.8

Suppose that p˚∆n ď wHF
n and that τ2α1

n ě ∆n and recall that in that case, we take

p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

and h˚ “ h˚,HF

From Proposition 4.4, we see by plugging these values that

Bb
n,h˚,p˚pxq À

τ2α1
n

pp˚qα1
` pp˚∆nq1{2 ` vHF

n À
`

τ2n∆n

˘

α1
1`α1 ` vHF

n .

For the variance, we proceed as for Proposition 4.8: using that p˚∆n À wHF
n ad h˚ “ h˚,HF

, we
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have from Proposition 4.5 that

Vb
n,h˚,p˚pxq À vHF

n .

so we can conclude.

12.4 Proof of Proposition 4.10

Suppose that∆n ě wHF
n and that τ2α1

n ď ∆n and recall that in that case, we take

p˚ “ 1 and h˚ “ h˚,1 “ h˚,LF

From Proposition 4.4, we see by plugging these values that

Bb
n,h,ppxq À τ2α1

n ` vHF
n .

We now study the variance. First, note that

T´1
n ∆n

d
ź

i“1

ph˚
i q´1 “ n

´2α
2α`d “ vLFn .

Therefore, by factorizing by vLFn the variance bound from Proposition 4.5 and using that | logph˚
i q| is

of the order of logpnq, we have

Vb
n,h˚,p˚pxq À vLFn p1 ` rLFn q,

with

rLFn “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if d “ 1, 2

∆´1
n logpnqh˚

1h
˚
2 if d ě 3 and pα, k0q P D1

∆´1
n

śk0
i“1ph˚

i q2{k0 ` logpnq∆´1
n

śd
i“1 h

˚
i if d ě 3 and pα, k0q P D2

logpnq∆´1
n

śd
i“1 h

˚
i ` ∆´1

n h1ph˚
2h

˚
3q1{2

if d ě 3 and pα, k0q P D3

Using Lemma 4.31 and the fact that ∆n Á wHF
n , we know that ∆n Á rwHF

n . Using also the definition

of h˚
, we check that

∆n Á

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

h˚
1 | logph˚

1q| if d “ 1

h˚
1h

˚
2 | logph˚

1h
˚
2q| if d “ 2

h1h2 logpnq if d ě 3 and pα, k0q P D1
śk0

i“1ph˚
i q2{k0

if d ě 3 and pα, k0q P D2

h˚
1ph˚

2h
˚
3q1{2

if d ě 3 and pα, k0q P D3.

(4.61)
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and therefore

Vb
n,h˚,p˚pxq À vLFn

$

’

’

’

&

’

’

’

%

1 if d “ 1, 2 or d ě 3 and pα, k0q P D1

1 ` logpnq∆´1
n

śd
i“1 h

˚
i if d ě 3 and pα, k0q P D2

1 ` logpnq∆´1
n

śd
i“1 h

˚
i if d ě 3 and pα, k0q P D3.

We conclude the proof of Proposition 4.10 using (4.61) to get

logpnq∆´1
n

d
ź

i“1

h˚
i À

$

’

’

’

&

’

’

’

%

logpnq
śk0

i“1ph˚
i qp2´k0q{k0

śd
i“k0`1 h

˚
i if d ě 3 and pα, k0q P D2

ph˚
2h

˚
3q1{2

śd
i“4 h

˚
i if d ě 3 and pα, k0q P D3.

so that

logpnq∆´1
n

d
ź

i“1

h˚
i Ñ 0,

as n Ñ 8.

12.5 Proof of Proposition 4.11

Suppose that p˚∆n ě wHF
n and that τ2α1

n ě ∆n. and recall that in that case, we take

p˚ “

Q

`

τ2α1
n ∆´1

n

˘1{p1`α1q
U

and h˚ “ h˚,p˚

From Proposition 4.4, we see by plugging these values that

Bb
n,h˚,p˚pxq À

`

τ2n∆n

˘

α1
1`α1 `

´p˚

n

¯
2α

2α`d

For the variance, we proceed as for Proposition 4.10: using that p˚∆n Á wHF
n (and therefore that

p˚∆n Á rwHF
n by Lemma 4.6) and h˚ “ h˚,p˚

, we have from Proposition 4.5 that

Vb
n,h˚,p˚pxq À

´p˚

n

¯
2α

2α`d

and thus

Rppµn,h˚,p˚ , b; xq À pτ2n∆nq
α1

1`α1 `

´p˚

n

¯
2α

2α`d
.

It remains to prove that pτ2n∆nq
α1

1`α1 is always dominating here. This term is indeed of the order of

p˚∆n. By Lemma 4.30, we have p˚∆n Á rwHF
n,p˚ so it is enough to prove that

´p˚

n

¯
2α

2α`d
À rwHF

n,p˚ (4.62)

Moreover, since p˚∆n Ñ 0, it is clear that p˚{n Ñ 0. Using the definition of rwHF
n,p˚ , we see that (4.62)
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is equivalent to
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2ᾱ ě d if d “ 1, 2

α
2α`dp 1

α1
` 1

α2
q ě 2α

2α`d if d ě 3 and pα, k0q P D1

2α
2α`d

1
α1

ě 2α
2α`d if d ě 3 and pα, k0q P D2

α
p2α`dq

´

1
α1

` 1
α2

¯

ě 2α
2α`d if d ě 3 and pα, k0q P D3.

These inequalities always hold since α1 ą 1 and α2 ą 1 so we can conclude.

13 Proof of the results of Section 5

13.1 Proof of Theorem 4.12

The main idea of this proof is to use general results for Markov chains to the lifted Markov chain

´

p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,n, Xpk`1qp∆n

¯

kPN
. (4.63)

We first introduce few definitions for Markov chains and we refer to [KM12] for more details. Consider

a Markov chainΥ on a given space pX,Xq. We say thatΥ is ψ-ireeductible and aperiodic if there exists

a σ-finite measure ψ on pX,Xq such that for all A P X such that ψpAq ą 0, any x P X and any n large

enough, we have

Pnpx,Aq ą 0

where P denotes the transition semigroup of Υ. We say that Υ is geometrically ergodic if it admits an

invariant measure π and functions ρ : X Ñ p0, 1q and ρ : X Ñ r1,8q such that for all n ě 0 and for

π-almost x P X, we have

}Pnpx, ¨q ´ π}TV ď Cpxqρpxqn.

Intuitively, geometrically ergodic converge fast to their invariant distribution starting from almost any

point. Therefore, they must satisfy concentration properties such as Bernstein inequality. In this sec-

tion, we plan to use the following result, from [Lem21].

Theorem 4.32 (Theorem 1.1 in [Lem21]). Let Υ be a geometrically ergodic Markov chain with state
space X, and let π be its unique stationary probability measure. Moreover, let f : X Ñ R be a bounded
measurable function such that Eπf “ 0. Furthermore, let x P X. Then, we can find constants K, τ ą 0

depending only on x and the transition probability P p¨, ¨q such that for all t ą 0,

Px

˜

1

N

N´1
ÿ

i“0

f pΥiq ą t

¸

ď K exp

ˆ

´
N2t2

32Nσ2Mrv ` τt}f}8N logN

˙

,

where

σ2Mrv “ Varπ pf pΥ0qq ` 2
8
ÿ

i“1

Covπ pf pΥ0q , f pΥiqq

denotes the asymptotic variance of the process pf pΥiqqi.

168



13. Proof of the results of Section 5

We want to apply this Theorem to (4.63) and we need to check that this chain is geometrically

ergodic. An easy way to check for geometric ergodicity is to use Chapter 15 from [MT93]: any ψ-

ireeductible and aperiodic Markov chain satisfying the drift condition 10 stated below is geometrically

ergodic.

Assumption 10. (V4) There exists a functionW : X Ñ r1,8q, a set C P X and constants δ ą 0 and
b ă 8 such that

PW ď p1 ´ δqW ` b1C (4.64)

and such that there exists n ě 1, ε ą 0 and a probability measure ν on pX,Xq such that

Pnpx,Aq ě ε1CpxqνpAq (4.65)

for all x P X and A P X. In that case, we say thatW is a Lyapunov function and C is a small set.

Thus the plan is to prove that the lifted chain (4.63) is ψ-ireeductible and aperiodic and satisfies

Assumption 10.

First remark that the Markov chain pXpk∆nqk is clearly aperiodic and ψ-irreductible. In fact for any

x P Rd
and any Borelian A P BRd of positive Lebesgue measure, and for any k ě 1, we have

Pb
`

Xpk∆n P A
ˇ

ˇX0 “ x
˘

ą 0. (4.66)

We deduce that the lifted Markov chain (4.63) is also aperiodic and ψ-irreductible by using that the

density pbp,npx; ¨, ¨q is almost everywhere positive.

Moreover, using Assumption 9, we know that the chain is geometrically ergodic. Combined with

aperiodicity and ψ-irreductibility, this ensures that pXpk∆nqk satisfies Assumption 10 and we consider

W and C as in Assumption 10. We want to prove that the same property hold for (4.63). We consider

ĂW : px, yq ÞÑ W pyq and rC “ Rd ˆ C . Then, for all px, yq P Rd ˆ Rd
, we have

PĂW px, yq “ E
”

ĂW
´

p´1
p´1
ÿ

ℓ“0

Yp`ℓ,n, X2p∆n

¯ˇ

ˇ

ˇ
p´1

p´1
ÿ

ℓ“0

Yp`ℓ,n “ x,Xp∆n “ y
ı

“ E
”

ĂW
´

p´1
p´1
ÿ

ℓ“0

Yp`ℓ,n, X2p∆n

¯ˇ

ˇ

ˇ
Xp∆n “ y

ı

.

and therefore

PĂW px, yq ď λĂW px, yq ` b1Cpyq.

We only need to check that
rC is indeed a small set. We alreadu know thatC is a small set and therefore

there exists δ ą 0 and ν P PpRdq such that for some k ě 1,

@x P C, @B P BRd , P kpx,Bq ě δνpBq.
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We now define the following probability measure on R2d

rνpdx, dyq “

ż

Rd

pbp,npy;x, zq dz νpdxq dy.

Then, for all px̄, xq P rC , we get for any Borel set of Rd
, B̄, B P BRd , conditioning with respect to

Xpk∆n and using the Markov property:

Pk`1ppx̄, xq, B̄ ˆBq “

ż

Rd

pkp∆npx, x1q

ż

B̄ˆB
pbp,npx1; y, zq dy dz dx1

ě δ

ż

B̄ˆB

ż

Rd

pbp,npx1; y, zqνpdx1q dy dz

ě δrνpB̄ ˆBq,

where we used that x P C and C is a small set.

We are now ready to apply Theorem 4.32 to (4.63). We apply it with fpx1, x2q “ Khpx ´ x1q for

all x1, x2 P Rd
. Thus we get

Pb
µb

´

|pνn,h,ppxq ´ Erpνn,h,ppxqs| ą ε
¯

ď K exp
´

´
N2ε2

32Nv2pα, n,h, pq ` τε}Kh}8N logN

¯

where N “ tn{pu, and

v2pα, n,h, pq “Varbµ̄b

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Yℓ,nq

¯

` 2
8
ÿ

k“1

Covbµ̄b

´

Khpx´ p´1
p´1
ÿ

ℓ“0

Yℓ,nq,Khpx´ p´1
p´1
ÿ

ℓ“0

Ykp`ℓ,nq

¯

.

In order to control the variance term, everything works exactly as in the proof of Proposition 4.5, except

for the last term as the sum is infinite.

13.2 Proof of Proposition 4.14

In this section, we will repeatedly use estimates of the form

ż 8

ν
exp p´zrq dz ď 2r´1ν1´r exp p´νrq , ν, r ą 0, ν ě p2{rq1{r. (4.67)

and

exp

ˆ

´
azp

b` czp{2

˙

ď exp

ˆ

´
azp

2b

˙

` exp

˜

´
azp{2

2c

¸

, a, b, c, z ą 0. (4.68)

Before delving into the proof of Proposition 4.14, let us state and prove the following Lemma
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13. Proof of the results of Section 5

Lemma 4.33. Under Assumptions 7, 8, 9, there exists γ ą 1 such that for any h P Hn
p ,

Eb
sµbrAp

nphqs À V n
p phq ` Bn,h,ppxq2 ` n´γ

p `
a

p∆n `
τ2α1
n

pα1
.

Proof of Lemma 4.33. For any η P H
p
n, we have

!

ˇ

ˇ

pµn,ph,ηq,p pxq ´ pµn,η,p pxq
ˇ

ˇ

2
´ V p

n pηq

)

`
À I

n,p
h,ηpxq ` II

n,p
h,ηpxq ` III

n,p
h,ηpxq. (4.69)

where

I
n,p
h,ηpxq “

!

|pµn,η,ppxq ´ Erpµn,η,ppxqs|
2

´ V p
n pηq

)

`
,

II
n,p
h,ηpxq “

!

ˇ

ˇ

pµn,ph,ηq,ppxq ´ Erpµn,ph,ηq,ppxqs
ˇ

ˇ

2
´ V p

n pηq

)

`
,

III
n,p
h,ηpxq “

ˇ

ˇ

ˇ
Eb
sµbrpµn,η,ppxqs ´ Eb

sµbrpµn,ph,ηq,ppxqs

ˇ

ˇ

ˇ

2
.

Let us begin with the term I
n,p
h,ηpxq. We write

Eb
sµb

„"

ˇ

ˇ

ˇ
pµn,η,ppxq ´ Eb

sµbrpµn,η,ppxqs

ˇ

ˇ

ˇ

2
´ V p

n pηq

*

`

ȷ

“

ż `8

V p
n pηq

P
sµb

´
ˇ

ˇ

ˇ
pµn,η,ppxq ´ Eb

sµbrpµn,η,ppxqs

ˇ

ˇ

ˇ
ě z1{2

¯

dz

ď K

ż `8

V p
n pηq

exp

˜

´
n2pβ

2z

32npv2pα, n,η, pq ` τβ}Kη}np logpnpqz1{2

¸

dz,

where we used at the last line the concentration inequality of Bernstein’s type given by Theorem 4.12.

Then, using Equation (4.68), we obtain

Eb
sµb

„"

ˇ

ˇ

ˇ
pµn,η,ppxq ´ Eb

sµbrpµn,η,ppxqs

ˇ

ˇ

ˇ

2
´ V p

n pηq

*

`

ȷ

À I ` II,

where

I :“ K

ż `8

V p
n pηq

exp

ˆ

´
npβ

2z

32v2pα, n,η, pq

˙

dz ;

II :“ K

ż `8

V p
n pηq

exp

˜

´
npβz

1{2

τ logpnpq}Kη}8

¸

dz.

The first term can be computed explicitly

I “
32Kv2pα, n,η, pq

npβ2
exp

ˆ

´
npβ

2V p
n pηq

32v2pα, n,η, pq

˙

.

Moreover, by definition of v2pα, n,η, pq in Theorem 4.12, and considering the fact that η1 ď ¨ ¨ ¨ ď ηd,
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we obtain v2pα, n,η, pq “ npv
p
npηq. Then,

I Àvpnpηq exp

ˆ

´
sω logpnpqβ2

32

˙

.

Moreover, we know that

vpnpηq “
1

Tn
max

#

p∆n

d
ź

i“1

η´1
i ,min

#

d
ÿ

i“1

| logpηiq|

d
ź

i“3

η´1
i , pη2η3q´1{2

d
ź

i“4

η´1
i

++

.

Using the particular structure of the gridH
p
n, we obtain v

p
nphq À 1 ` np{Tn, and

I À n
´

sωβ2

32
p

ˆ

1 `
np
Tn

˙

. (4.70)

For the second term II, using Equation (4.67) we obtain

II À
logpnpq}Kη}8

a

V p
n pηq

np
exp

˜

´
βnpV

p
n pηq1{2

τ logpnpq}Kη}8

¸

.

Moreover, we know that }Kη}8 À
śd

i“1 η
´1
i . Then,

logpnpq}Kη}8

a

V p
n pηq

np
À
vpnphq1{2 logpnpq2sω1{2

np
śd

i“1 ηi
.

Using the definition of vpnphq, we obtain

d
ź

i“1

η´1
i vpnphq1{2 “

1
?
Tn

max

#

a

p∆n

d
ź

i“1

h
´3{2
i ,

min

#

ph1h2q´1
d
ÿ

i“1

| logphiq|

d
ź

i“3

h
´3{2
i , h´1

1 ph2h3q´5{4
d
ź

i“4

h
´3{2
i

++

Using once again the lower bound on the ηi for i “ 1, . . . , d, we obtain

d
ź

i“1

η´1
i vpnphq1{2 À 1 `

?
np

?
Tn
.

Finally, we can write

npV
p
n pηq1{2

logpnpq}Kη}8

Á sω1{2 logpnpq (4.71)

In fact,

npV
p
n pηq1{2

logpnpq}Kη}8

Á
sω1{2np

śd
i“1 ηiv

p
npηq1{2

logpnpq1{2
,
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and

d
ź

i“1

ηiv
p
npηq1{2 “

˜

d
ź

i“1

ηi

¸1{2
1

?
Tn

max

$

&

%

a

p∆n, min

$

&

%

˜

d
ÿ

i“1

| logpηiq|η1η2

¸1{2

,
?
η1pη2η3q1{4

,

.

-

,

.

-

This ensures that

d
ź

i“1

ηiv
p
npηq1{2 ě

1
?
np

˜

d
ź

i“1

ηi

¸1{2

ě
logpnpq3{2

np
,

implying Equation (4.71). Finally, this ensures that for any h,η P H
p
n, we have

I
n,p
h,ηpxq À

n
1´sωβ{32
p

Tn
`
n
1{2´sω1{2β{τ
p

?
Tn

. (4.72)

For the term II
n,p
h,ηpxq. Observe that such a term can be treated exactly as the previous one noting that

}Kh ˚ Kη}8 ď }Kη}8}K}1 and }Kh ˚ Kη}1 ď }K}21.

In fact, following the proofs of Lemmas 4.26, 4.27, 4.28 and 4.29, we get that for all ε ą 0

Pb
µb

´ˇ

ˇ

ˇ
pµn,ph,ηq,ppxq ´ Eb

µ̄brpµn,ph,ηq,ppxqs

ˇ

ˇ

ˇ
ą ε

¯

ď K exp
´

´
npε

2β2

32v2pα, n,η, pq ` τβε}Kη}8 log np

¯

.

Finally, we obtain the same bound for II
n,p
h,ηpxq,

II
n,p
h,ηpxq À

n
1´sωβ{32
p

Tn
`
n
1{2´sω1{2β{τ
p

?
Tn

.

Finally, we consider the term III
n,p
h,ηpxq. We recall

III
n,p
h,ηpxq “

ˇ

ˇ

ˇ
Eb
sµbrpµn,η,ppxqs ´ Eb

sµbrpµn,ph,ηq,ppxqs

ˇ

ˇ

ˇ

2
.

In following, let us denote µηpxq “ Eb
sµbrpµn,η,ppxqs and µph,ηqpxq “ Eb

sµbrpµn,ph,ηq,ppxqs. Moreover,

recalling that rτn,p is defined in Equation (4.15) and denoting by sρn,p the law of the preaveregaed process

173



Chapter 4. Invariant density estimation from noisy data

defined in Equation (4.12) under Pb
sµb , we write

µph,ηqpxq “
ÿ

γ

uγEb
sµb

“

pνn,ph,ηq,ppx` γrτn,pq
‰

“
ÿ

γ

uγ

ż

Rd

Kh ˚ Kηpx` γrτn,p ´ yqsρn,ppdyq

“
ÿ

γ

uγ ppKh ˚ Kηq ˚ sρn,pq px` γrτn,pq

“ Kη ˚

˜

ÿ

γ

uγKh ˚ sρn,pp¨ ` γrτn,pq

¸

pxq

“ Kη ˚ µhpxq.

(4.73)

Now, let us perform the same decomposition as in Section 9 (see more precisely Equations (4.43) and

(4.44)), and write

µηpxq “
ÿ

γ

uγEb
sµbrpνn,η,ppx` γrτn,pqs

“
ÿ

γ

uγB1px` γrτn,pq `
ÿ

γ

uγB2px` γrτn,pq.

For the second term on the right hand side, we obtain thanks to Equation (4.49) that

ÿ

γ

uγB2px` γrτn,pq À
a

p∆n. (4.74)

Moreover,

ÿ

γ

uγB1px` γrτn,pq “
ÿ

γ

uγKη ˚ psµb ˚ φ
rτn,p

qpx` γrτn,pq

“ Kη ˚

˜

ÿ

γ

uγpsµb ˚ φ
rτn,p

qp¨ ` γrτn,pq

¸

pxq.

Moreover, it is easy to see using the definition of puγqγ , that for any z P Rd
,

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γ

uγpsµb ˚ φ
rτn,p

qpz ` γrτn,pq ´ µ̄bpzq

ˇ

ˇ

ˇ

ˇ

ˇ

À
τ2α1
n

pα1
.

Then, we can write

µηpxq “ Kη ˚ sµbpxq ` εn,ppxq, (4.75)

for some function εn,p such that for all x P Rd
, |εn,ppxq| À

?
p∆n ` τ2α1

n {pα1
. Then, combining

Equations (4.73) and (4.75), we obtain that for all x P Rd
,

III
n,p
h,ηpxq À Bn,h,ppxq2 ` p∆n `

τ2α1
n

pα1
.
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Finally, using #H
p
n À Tn, we obtain that

sup
ηPH

p
n

!

ˇ

ˇ

pµn,ph,ηq,p pxq ´ pµn,η,p pxq
ˇ

ˇ

2
´ V p

n pηq

)

`
À Bn,h,ppxq2 ` n1´sωβ{32

p

`
a

Tnn
1{2´sω1{2β{τ
p ` p∆n `

τ2α1
n

pα1
.

Finally, using the fact that Tn ď np and taking sω ą 2τ2{β2 _ 64{β, we get the expected result.

We are now ready to move on to the proof of Proposition 4.14.

Proof of Proposition 4.14. Let us consider h P H
p
n, then one can write

Eb
sµb

„

ˇ

ˇ

ˇ
pµn,h˚,ppxq ´ sµbpxq

ˇ

ˇ

ˇ

2
ȷ

À Eb
sµb

„

ˇ

ˇ

ˇ
pµn,h,ppxq ´ sµbpxq

ˇ

ˇ

ˇ

2
ȷ

` Eb
sµb

”

ˇ

ˇ

pµn,h˚,ppxq ´ pµn,h,ppxq
ˇ

ˇ

2
ı

.

We know that the first term on the right-hand side can be controlled in the following way

Eb
sµb

„

ˇ

ˇ

ˇ
pµn,h,ppxq ´ sµbpxq

ˇ

ˇ

ˇ

2
ȷ

ď Bn,h,ppxq2 ` V p
n phq.

For the second term, we obtain

Eb
sµb

”

ˇ

ˇ

pµn,h˚,ppxq ´ pµn,h,ppxq
ˇ

ˇ

2
ı

À Eb
sµb

„

ˇ

ˇ

ˇ
pµn,h˚,ppxq ´ pµn,ph˚,hq,ppxqs

ˇ

ˇ

ˇ

2
ȷ

`Eb
sµb

„

ˇ

ˇ

ˇ
pµn,h,ppxq ´ pµn,ph˚,hq,ppxq

ˇ

ˇ

ˇ

2
ȷ

.

This finally gives

Eb
sµb

„

ˇ

ˇ

ˇ
pµn,h˚,ppxq ´ sµbpxq

ˇ

ˇ

ˇ

2
ȷ

À Eb
sµbrAp

nphqs ` V p
n phq ` Eb

sµb

„

ˇ

ˇ

ˇ
pµn,h,ppxq ´ sµbpxq

ˇ

ˇ

ˇ

2
ȷ

.

Moreover, using the result of Lemma 4.33, we obtain

Eb
sµb

„

ˇ

ˇ

ˇ
pµn,h˚,ppxq ´ sµbpxq

ˇ

ˇ

ˇ

2
ȷ

À inf
hPH

p
n

tBn,h,ppxq2 ` V p
n phqu ` n´γ ` p∆n ` τ2α1

n {pα1 ,

for some γ ą 1.

14 Proof of the results of Section 7

First recall the following technical lemma which extensively used in the following.
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Lemma 4.34. For a1, a2 P Rd, ν1, ν2 ě 0, such that ν1 ` ν2 ą 0, we have
ż

Rd

e´ν1|x´a1|2´ν2|x´a2|2 dx “
κ1

pν1 ` ν2qd{2
e

´
ν1ν2
ν1`ν2

|a1´a2|2

,

for some constant κ1 ą 0 depending only on the dimension d.

14.1 Proof of Lemma 4.17

Wefirst consider the joint density of pp´1
řp´1

k“0Xk∆n , Xp∆nq conditional onX0 “ x, denoted pbp,npx; ¨, ¨q.

We claim that under the assumptions of Lemma 4.17, there exists constants C1, λ1, c1 and η1 ą 0 such

that if p∆n ď η1, we have for any x, y, z

pbp,npx; y, zq ď
C1

pp∆nqd
exp

´

´ λ1
|y ´ x|2 ` |z ´ x|2

p∆n
` V pxq ´ V pzq

¯

(4.76)

Using Lemma 4.34, (4.37) is a mere consequence of (4.76): since V pzq is bounded below, it suffices

to integrate (4.76) with respect to z to get (4.37). The rest of this proof is devoted to showing (4.76).

Note first that pbp,npx; y, zq “ pp∆nq´dqbp,npx;
a

1{pp∆nqpy ´ xq,
a

1{pp∆nqpz ´ xqq where

qbp,npx; ¨, ¨q is the joint density of pp´1pp∆nq´1{2
řp´1

k“0pXk∆n ´ xq, pp∆nq´1{2pXp∆n ´ xqq under

the condition that X0 “ x. Therefore, it is enough to prove that

qbp,npx; y, zq ď c´1
2 e´c2py2`z2q`V pxq´V px`pp∆nq1{2zq, (4.77)

for some c2 ą 0. The methodology we use to prove (4.77) closely resembles the one of Theorem

4 in [GG08]; we refer to the comments of Lemma 4.17 for more details. We introduce the process

X
p,n
t “ pp∆nq1{2pXtp∆n ´ xq which satisfies

dXp,n
t “ bp,npX

p,n
t q dt` dW p,n

t ,

whereW p,n
is a d-dimensional Brownianmotion and bp,npwq “ pp∆nq1{2bpx`pp∆nq1{2wq. Moreover,

1

p
p

1

p∆n
q1{2

p´1
ÿ

k“0

pXk∆n ´ xq “
1

p

p´1
ÿ

ℓ“0

X
p,n
ℓ{p and p

1

p∆n
q1{2pXp∆n ´ xq “ X

p,n
1 .

Let us now define the stochastic process

pE
p,n
t qtě0 “

ˆ

expp´

ż t

0
bp,npXp,n

s q dW p,n
s ´ 1{2

ż t

0
|bp,npXp,n

s q|2 dsq

˙

tě0

.

Under Assumption 7, we get that Novikov criterion holds following the steps of the proof of Lemma

4.21. This ensures that pE
p,n
t qtě0 is a martingale with constant expectation equal to 1. Then it defines

a change of measure and we can consider a probability measure Qb
x, under which we get rid of the

influence of the drift for the dynamic of Xn,p
. More precisely, we define the probability measureQb

x on
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σptW p,n
t , t ď 1uq by

dQb
x

dPb
x

“ exp
´

´

ż 1

0
bp,npX

p,n
t q dW p,n

t ´
1

2

ż 1

0
|bp,npX

p,n
t q|2 dt

¯

.

Using the Itô formula, we obtain

dPb
x

dQb
x

“ exp
´

ż 1

0
bp,npX

p,n
t q dXp,n

t ´
1

2

ż 1

0
|bp,npX

p,n
t q|2 dt

¯

“ exp
´

Bp,npX
p,n
t q ´

1

2

ż 1

0
|bp,npX

p,n
t q|2 ` ∇ ¨ bp,npX

p,n
t q dt

¯

,

where for allw P Rd
,Bp,npwq :“ V pxq´V px`pp∆nq1{2wq. Now let f and g be two bounded positive

functions. Then we have

Ex

”

f
´1

p

p´1
ÿ

ℓ“0

X
p,n
ℓ{p

¯

gpX
p,n
1 q

ı

“ EQb
x

”

f
´1

p

p´1
ÿ

ℓ“0

X
p,n
ℓ{p

¯

gpX
p,n
1 q exp

´

Bp,npX
p,n
t q ´

1

2

ż 1

0
|bp,npX

p,n
t q|2 ` ∇ ¨ bp,npX

p,n
t q dt

¯ı

.

Moreover, we have ∇ ¨ bp,npwq ď Cp∆n. Since Girsanov Theorem ensures that Xp,n
is a Brownian

motion under Qb
x, we get the bound

Eb
x

”

f
´1

p

p´1
ÿ

ℓ“0

X
p,n
ℓ{p

¯

gpX
p,n
1 q

ı

ď C1Eb
”

f
´1

p

p´1
ÿ

ℓ“0

Wℓ{p

¯

gpW1qeBp,npW1q
ı

, (4.78)

for some Brownian motionW and some constant C1, which does not depends on p nor n. Therefore,

it is enough to prove that

Eb
”

f
´1

p

p´1
ÿ

ℓ“0

Wℓ{p

¯

gpW1qeBp,npW1q
ı

ď C 1
1

ż

Rd

ż

Rd

fpuqgpvqe´C1
2p|u|2`|v|2q`Bp,npvq dudv (4.79)

holds for some positive constants C 1
1 and C 1

2. Again, this is closely related to Lemma 4 of [GG08].

Recall that W˚
t “ Wt ´ tW1 defines a Brownian bridge on r0, 1s, independent ofW1. Thus, if hpvq “

gpvqeBp,npvq
, we get:

Eb
”

f
´1

p

p´1
ÿ

ℓ“0

Wℓ{p

¯

hpW1q

ı

“ Eb
”

f
´1

p

p´1
ÿ

ℓ“0

W˚
ℓ{p `

ℓ

p
W1

¯

hpW1q

ı

(4.80)

“ Eb
”

Eb
”

f
´1

p

p´1
ÿ

ℓ“0

W˚
ℓ{p `

ℓ

p
W1

¯

hpW1q

ˇ

ˇ

ˇ
W1

ıı

“ Eb
”

ψb
p,npW1q

ı

,
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Chapter 4. Invariant density estimation from noisy data

where for all ω P Rd
,

ψb
p,npωq “ Eb

”

f
´1

p

p´1
ÿ

ℓ“0

W˚
ℓ{p `

ℓ

p
ω
¯

hpωq

ı

.

We know that the Brownian BridgeW˚
itself admits the following decomposition, see e.g [GG08]:

W˚
t “ ξηt ` W˚˚

t ,

where ξ is a standard random variable, η is the deterministic function

ηt “

$

&

%

t if t P r0, 1{2s,

p1 ´ tq if t P r1{2, 1s,

andW˚˚
is the process on r0, 1s constructed as the concatenation of two independent Brownian bridges,

on r0, 1{2s and r1{2, 1s respectively. Moreover in this decomposition the random variable η and the

processW˚˚
are independent. Then,

ψb
p,npωq “ hpωqE

«

f

˜

ξ

p

p´1
ÿ

ℓ“0

ηℓ{p `
1

p

p´1
ÿ

ℓ“0

W˚˚
ℓ{p `

p´ 1

2p
ω

¸ff

. (4.81)

Let cp “ p´1
řp´1

ℓ“0 ηℓ{p, which is bounded uniformly in p. Using the independence between ξ andW˚˚
,

we have:

Eb
”´ξ

p

p´1
ÿ

ℓ“0

ηℓ{p `
1

p

p´1
ÿ

ℓ“0

W˚˚
ℓ{p `

p´ 1

2p
ω
¯ı

“ Eb
”

ż

Rd

f
´

cpv `
1

p

p´1
ÿ

ℓ“0

W˚˚
ℓ{p `

p´ 1

2p
ω
¯ 1

p2πqd{2
e´|v|2{2 dv

ı

“ Eb
”

ż

Rd

fpuqp
?
2πcpq´de

´ 1

2c2p
|u´ 1

p

řp´1
ℓ“0 W˚˚

ℓ{p
´

p´1
2p

ω|2

du
ı

.

We then use the fact that for ε P p0, 1q, |x´ y|2 ě ε{p1 ` εq|x|2 ´ ε|y|2, to get

Eb
”

ψb
p,npW1q

ı

ď

ż

Rd

1

p
?
2πcpqd

fpuqe
´

|u|2ε

2c2pp1`εq
`

c2pεpp´1q2|ω|2

4c2pp
2 E

”

ec
´2
p ε suptPr0,1s |W˚˚

t |2
ı

. (4.82)

Using thatW˚˚
is a concatenation of two Brownian bridges, we know that there exists ε` ą 0 and Cε

such that for all ε ď ε`,

E
”

ec
2
pε suptPr0,1s |W˚˚

t |2
ı

ď Cε.

Moreover, thanks to the boundedness of cp with respect to p, we get that Cε does not depend on p.
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14. Proof of the results of Section 7

Then, plugging (4.82) into Equation (4.80), we get that for ε ď ε`,

Eb
”

f
´1

p

p´1
ÿ

ℓ“0

Wℓ{p

¯

hpW1q

ı

ď
Cε

p
?
2πcpqd

ż

Rd

ż

Rd

fpuqhpvqe
´

c2pu
2ε

2p1`εq
`

c2pεpp´1q2|v|2

4p2 e´|v|2{2 dudv

ď
Cε

p
?
2πcpqd

ż

Rd

ż

Rd

fpuqgpvqeBp,npvqe
´ u2ε

2c2pp1`εq
`

εpp´1q2|v|2

4c2pp
2

e´|v|2{2 dudv.

Then, we get Equation (4.79) as soon as ε ă minp2cpp
2{pp´ 1q2, ε`q, which concludes the proof.

14.2 Proof of Lemma 4.18

We consider φ : Rd Ñ R non-negative bounded with compact support. From Girsanov Theorem, we

can show that for any x P Rd
,

Eb
xrφpXtqs ď p2πq´d{2eb1t{2

eV pxq

td{2

ż

Rd

φpyqe´
|x´y|2

2t
´V pyqdy

and we conclude using t ď 1, and the boundedness of µ̄b.

14.3 Proof of Corollary 4.19

First note that since X is a Markov process, we have

pbp,n,tpx; yq “

ż

Rd

pbtpx; zqpbp,npz; yqdz.

Using the bounds given by Lemmas 4.17 and 4.18, combined with Lemma 4.34, we get

pbp,n,tpx; yq À pp∆n ` 2tλ1q´d{2 exp
´ λ1
p∆n ` 2t

|x´ y|2 ` V pxq

¯

.

14.4 Proof of Lemma 4.20

Note that since the distribution of X0 is µ̄b which is the invariant measure of X , the distribution of

pp´1
řp´1

ℓ“0 Xℓ∆n , Xp∆nq is sπb. Thus for any non negative function φ : Rd ˆ Rd Ñ R, we have

Eb
µ̄b

”

φ
´1

p

p´1
ÿ

ℓ“0

Xℓ∆n , Xp∆n

¯ı

“

ż

Rd

Eb
x

”

φ
´1

p

p´1
ÿ

ℓ“0

Xℓ∆n , Xp∆n

¯ı

µ̄bpxq dx

“

ż

Rd

ż

Rd

ż

Rd

φpy, zqpbp,npx; y, zqµ̄bpxqdx dz dy.
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Chapter 4. Invariant density estimation from noisy data

From Equation (4.76), we get

ż

Rd

ż

Rd

ż

Rd

φpy, zqpbp,npx; y, zqµ̄bpxqdx dz dy

ď
C1

pp∆nqd

ż

Rd

ż

Rd

ż

Rd

φpy, zq exp

ˆ

´λ1
|y ´ z|2 ` |z ´ x|2

p∆n

˙

e´V pzq`V pxq e
´2V pxq

ZV
dx dz dy

ď
C1}µ̄b}

1{2
8

Z
1{2
V pp∆nqd

ż

Rd

ż

Rd

φpy, zqe´V pzq
´

ż

Rd

exp
`

´
λ1
p∆n

p|y ´ x|2 ` |z ´ x|2q
˘

dx
¯

dy dz.

Use Lemma 4.34 to control the integral in the variable x, and get

ż

Rd

ż

Rd

ż

Rd

φpy, zqpp,npx; y, zqµ̄bpxqdx dz dy

ď
C1κ1}µ̄b}

1{2
8

Z
1{2
V pp∆nqd{2

ż

Rd

ż

Rd

φpy, zqe´V pzq exp
´

´
λ1

2p∆n
|y ´ z|2

¯

dy dz.

We can conclude that for all py, zq P R2d
, we have

sπbpy, zq ď
C1κ1}µ̄b}

1{2
8

Z
1{2
V pp∆nqd{2

exp
´

´
λ1

2p∆n
|y ´ z|2 ´ V pzq

¯

.
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Appendix A
Reflection coupling and convergence toward

equilibrium

1 Probabilistic context

We consider a differentiable function V with Lipschitz-continuous gradient and the diffusion process

dXt “ ´∇V pXtqdt` σdBt (A.1)

It is well known that when the potential V is uniformly convex, it is possible to obtain convergence

rates with synchronized couplings. Indeed, for two solutions X and Y of the equation (A.1), with the

same Brownian motion B but different initial conditions µ0, ν0, we can write:

d|Xt ´ Yt|
2 “ ´2pXt ´ Ytq ¨ p∇V pXtq ´ ∇V pXtqqdt

ď ´2β|Xt ´ Yt|
2,

(A.2)

where β ą 0 is such that∇2V ě β. Thus, it directly follows that

dR
d

2 pµt, νtq ď Er|Xt ´ Yt|
2s1{2 ď dR

d

2 pµ0, ν0qe´βt. (A.3)

When V is not assumed to be uniformly convex, we need somewhat finer arguments since the calcu-

lations of equation (A.2) no longer hold. In [Ebe16], the author proves similar results as in Equation

(A.3) but in a Wasserstein-1 distance. More precisely, the idea of [Ebe16] is to consider the distance dR
d

f

defined on Rd
by df px, yq “ fp|x´ y|q, and then the associated distance on P1pRdq,

dR
d

f pµ, νq “ inf
πPΠpµ,νq

ż

Rd

df px, yqπpdx,dyq.
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Appendix A. Coupling by Reflection

2 The coupling method

The idea of the coupling is the following: A coupling by reflection of two solutions of (A.1) with initial

distributions µ and ν is a diffusion process pXt, Ytq with values inR2d
defined by L pX0, Y0q “ η where

η is a coupling of µ and ν,and with dynamic

dXt “ ´∇V pXtq dt` σdBt for t ě 0,

dYt “ ´∇V pYtq dt` σ
`

Id ´ 2ete
J
t

˘

dBt for t ă T, Yt “ Xt for t ě T.
(A.4)

where

et :“ pXt ´ Ytq { |Xt ´ Yt| ,

and T :“ inf tt ě 0 : Xt “ Ytu is the coupling time. As previously mentioned, this type of coupling

was introduced by [LR86]. The reflection coupling can be realized as a diffusion process in R2d
, and

the marginal processes pXtqtě0 and pYtqtě0 are solutions of with Brownian motions Bt and

rBt “

ż t

0

`

Id ´ 2ItsăT uese
J
s

˘

dBs,

respectively. By Lévy’s characterization, B̃ is indeed a Brownian motion. The difference vector

Et :“ Xt ´ Yt

solves the one-dimensional SDE.

dEt “ ´ p∇V pXtq ´ ∇V pYtqqdt` 2σdWt for t ă T

Et “ 0 for t ě T

with

Wt “

ż t

0
eJ
s dBs.

Figure A.1: Realisation of a couling by reflection in dimension d “ 1.

The main point of this coupling method is to preserve the noise whenever the particles are not close.
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2. The coupling method

Thinking once again of a double-well potential V : x ÞÑ |x|4{4´ |x|2{2, we typically want to avoid the

situation where Xt is around -1 and Yt is around 1, for the same time t ą 0. To prevent an occurrence

of this situation we keep track of the noise whenever this happens. Once the particles touch each other,

they stay together. The first observation here is that considering the fact that particles does not touch

before the coupling time T , we can prove (see [Ebe16]) that for all t ě T ,

d |Xt ´ Yt| “ 2σdWt ` et ¨ pb pXtq ´ b pYtqqdt

This coupling allows for the presence of noise when the particles are far apart, enabling contraction

properties to be achieved. Unlike the convex case, these properties cannot be obtained in dR
d

2 p¨, ¨q.

Specifically, the idea developped in [Ebe16] is to consider a slight deformation of the Wasserstein-1

distance that offers contraction properties. In order to do so, we look for a function f such that there

exists c ą 0 which makes pectfp|Et|qqtě0 is a super-martingale. In [Ebe16], the author construct a

function f satisfying

f2prq ´
1

4
rκprqf 1prq ď ´

c

2σ2
fprq for a.e. r ą 0. (A.5)

From this, we obtain that

d

dt
Erfp|Xt ´ Yt|qs ď ´cErfp|Xt ´ Yt|qs (A.6)

and conclude using Gronwall Lemma.

Remark A.1. On the choice of the function f :

1. Choosing fpxq “ x yields the standard L1-Wasserstein distance dR
d

f “ dR
d

1 . In this case it is well
known that the transition kernels ptpx, dyq of the diffusion process pXtq satisfies

dR
d

1 pµpt, νptq ď e´βt{2dR
d

1 pµ, νq for any µ, ν and t ě 0,

provided∇2V ě βId holds globally.

2. On the other hand, choosing fpxq “ Ip0,8qpxq yields the total variation distance dR
d

f “ dR
d

TV. In
this case,

dR
d

f pµpt, vptq ď PrT ą ts for any µ, ν and t ě 0,

where T stands for the coupling time between two realisations of X with initial conditions µ and ν
respectively. There is no strict contractivity of pt w.r.t. dR

d

TV in general. Indeed, in many applications
dR

d

TV pµpt, vptq only decreases after a certain amount of time.

3. The idea of [Ebe16] is then to find a modification of the previous cases which allows to get contrac-
tivity.
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Appendix B
Goldenshulger-Lepski adaptive procedure

1 Framework and Kernel estimator

We consider X1, . . . , Xn
random variables in Rd

admitting a common density with respect to the

Lebesgue measure, denoted by f . We wish to estimate fpxq for x P Rd
based on the observations.

A natural initial intuition can be formulated as follows: the more irregular the function to be es-

timated, the more observations are needed to estimate it accurately. A single observation is sufficient

to estimate a constant function, whereas a function with discontinuities requires many more observa-

tions. The appropriate way to measure the regularity of a function in this context is as follows (see also

Section ...):

Definition B.1. Let α “ pα1, . . . , αdq P p0,8qd and L “ pL1, . . . ,Ldq P p0,8qd. A function g :

Rd Ñ R is said to belong to the anisotropic Hölder class Hdpα,Lq of functions if, for all 1 ď i ď d, g is
tαiu-differentiable in the i-th variable and the partial derivatives satisfy for 0 ď k ď tαiu

}Bk
i g}8 ď Li and @t P R,

›

›B
tαiu

i gp¨ ` teiq ´ B
tαiu

i gp¨q
›

›

8
ď Li|t|

αi´tαiu

where pe1, . . . , edq is the canonical basis of Rd.

A natural estimator in this kind of situation is called a kernel estimator [?, ?, ?]. We consider a

function K : R Ñ R with certain properties that will be detailed later. We consider a bandwith

h “ ph1, . . . , hdq P p0,`8qd and define

pfhpxq “
1

n

n
ÿ

k“1

Kh

´

x´Xk
¯

, (B.1)

where for any y P Rd
,

Khpyq “

d
ź

i“1

h´1
i Kpyi{hiq. (B.2)

For any i P t1, . . . , du, hi gives the precision with which we look in the i-th direction. The following

graphic represents the impact of the choice of the bandwith in dimension 1.
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Appendix B. Adaptive methods

Figure B.1: Role of the bandwith in dimension d “ 1.

The choice of bandwidth, h, is crucial in non-parametric estimation because it directly affects the

bias-variance trade-off in the estimator
pf . If the bandwidth is too small, the estimator captures toomuch

noise, leading to high variance and an overfitting problem where the estimate is too sensitive to the

random fluctuations in the data. On the other hand, if the bandwidth is too large, the estimator smooths

out important features of the underlying function, resulting in high bias and an underfitting problem

where the estimate fails to capture the true structure of the data. Therefore, selecting an appropriate

bandwidth is essential to achieve a good balance between bias and variance, ensuring that the estimator

is both accurate and reliable.

In this section, we provide an explicit procedure to control the pointwise quadratic loss for the

kernel estimator:

Rn,h “ Er| pfhpxq ´ fpxq|2s. (B.3)

Of course, this control will depend on h and α.In a first time, let us assume that α is known to make

things clear.

1.1 Case of a known regularity

Let us assume in this Section that f P Hpα,Lq and thatα “ pα1, . . . , αdq is known. Then, we perform

the following decomposition

pfhpxq ´ fpxq “ pfhpxq ´ Er pfhpxqs
looooooooomooooooooon

centred stochastic term

`Er pfhpxqs ´ fpxq
loooooooomoooooooon

bias

.
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1. Framework and Kernel estimator

Then, we mainly have to control the bias and variance of the estimator. This is called bias-variance

decomposition of the loss. Let us begin with the variance

Er| pfhpxq ´ Er pfhpxqs|2s “
1

n
VarrKh

`

x´X1
˘

s

ď
1

n
Er|Kh

`

x´X1
˘

|2s

“
1

n

ż

Rd

|Kh px´ yq |2fpyqdy

ď
}f}8}K}2d2

n
śd

i“1 hi
.

Now, for the bias term, let us begin by noting that

Er pfhpxqs “

ż

Rd

Kh px´ yq fpyqdy

“

ż

Rd

Kpxqfpx` hyqdy

À

d
ÿ

i“1

hαi
i .

Finally, we obtain

Er| pfhpxq ´ fpxq|2s À

d
ÿ

i“1

h2αi
i `

1

n
śd

i“1 hi
. (B.4)

To find the optimal bandwidth, we need to balance the trade-off between bias and variance.

The optimal bandwidth is given by h˚
i “

n
´ ᾱ

αip2ᾱ`dq
, where the effective smoothness sα is de-

fined by

sα´1 :“
1

d

d
ÿ

i“1

1

αi
.

This formula makes sense because it matches our

intuition: the more irregular the function f is in di-

rection i, the smaller h˚
i needs to be to estimate f

accurately.

Optimum

Bias2

Variance

Total

error

Finally, plugging the optimal bandwith into (B.4), we obtain

Er| pfh˚pxq ´ fpxq|2s À n´ 2sα
sα`d (B.5)

Remark B.2. Some remarks are in order: (1) The constant hidden under the sign 1 À1 is uniform over all
the Hölder class Hpα,Lq. (2) The rate of estimation is very common in non-parametric estimation [?].
We also see what is often called the curse of dimensionality because the presence of dmakes the estimation
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Appendix B. Adaptive methods

procedure very slow in high dimensions. Some new techniques use the geometric distribution of the data
to reduce the effective dimension and improve the speed [?, ?] to name just a few. (3) The main difficulty
here is that the optimal bandwidth depends on the regularity of the function f that is unknown a priori.
The next section is dedicated to an effective procedure to choose a good bandwidth.

1.2 Case of an unknown regularity

Before delving into the section, let us make a quick recap of concentration inequalities

Proposition B.3 (Bernstein inequality). For any sequence Z1, . . . , ZN of real-valued independent ran-
dom variables bounded by some constantM ą 0 and such that E rZis “ 0, we have

P

˜

N
ÿ

i“1

Zi ě y

¸

ď exp

¨

˝´
t2

2
´

řN
i“1 E

“

Z2
i

‰

` Mt
3

¯

˛

‚,

for any t ą 0.

Our goal is to define a choice ĥ of parameter such that the estimator f̂ĥ satisfies an oracle inequality:

E
”

|f̂ĥpxq ´ fpxq|2
ı

ď C inf
hPp0,1qd

E
„

ˇ

ˇ

ˇ
f̂hpxq ´ fpxq

ˇ

ˇ

ˇ

2
ȷ

`Rn. (B.6)

There are several ways ..., let us present the one developed by GL [?] Let us nowmove on to explain

the Glodenshulger-Lepski procedure. (Un petit point historique)

1.3 The Goldenshulger-Lepski procedure

Let us introduce some notation:

• Hn Ă p0, 1sd is a mesh of possible bandwith;

• For any h,η P Hn, we define Bhpηq :“
!ˇ

ˇ

ˇ
f̂ηpxq ´ f̂h,ηpxq

ˇ

ˇ

ˇ
´ V pηq

)

`
;

• For any h P Hn, we define Bh “ maxηPHn Bhpηq;

• For any h P Hn, we set Vh “ sω logpnqn´1
śn

i“1 h
´1
i , for some constant sω ą 0.

What do we have to do to make this procedure work?

1. Find a mesh Hn with some theorical guarantees.

2. Find sω in the definition of the penalization Vh.

1.3.1 Heuristic idea

The difficulty here is that we cannot access the bias of the estimator: |fpxq´Kh˚fpxq|. This definition

is as follows: to approximate the bias |fpxq ´ f ‹Khpxq|, we replace f with an estimator with a fixed

window, f̂η . This leads to
ˇ

ˇ

ˇ
f̂ηpxq ´Kh ‹ f̂ηpxq

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
f̂ηpxq ´ f̂h,ηpxq

ˇ

ˇ

ˇ
. But, unlike the bias, this quantity
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"contains" randomness and thus variability: to correct this, it is necessary to subtract the corresponding

"part of variance" Vη . Finally, since there is no reason to choose one window η over another, we

sweep through the entire collection. Of course, this is only a "hand-waving" justification, and it can be

rigorously demonstrated that Bh has the same order of magnitude as the bias,

Bh ď C |fpxq ´ f ‹Khpxq| .

1.4 The procedure

Now that we have defined an estimator of the squared bias, and a proxy of the variance, we consider

the following bandwith choice procedure:

ph :“ argmin
hPHn

tBh ` Vhu ,

and we define the Goldenshulger-Lepski estimator
pfGLpxq :“ pf

ph
pxq. This procedure offers the follow-

ing technical guarantee:

Proposition B.4. There exists ω ą 0 such that for all sω ą ω,

E
”

|f̂GLpxq ´ fpxq|2
ı

ď C inf
hPp0,1sd

E
„

ˇ

ˇ

ˇ
f̂hpxq ´ fpxq

ˇ

ˇ

ˇ

2
ȷ

` n´1, (B.7)

for some C ě 1.

Proof of Proposition B.4. Step 1. Let us begin this proof with the following decomposition which stands

for any h P p0, 1sd,

| pfGLpxq ´ fpxq|2 À

!

pf
ph

pxq ´ pf
h,ph

pxq ´ V
ph

)

`
` V

ph

`

!

pf
h,ph

pxq ´ pfhpxq ´ Vh

)

`
` Vh

`| pfhpxq ´ fpxq|2

ÀBh ` V
ph

`B
ph

` Vh ` | pfhpxq ´ fpxq|2

ÀBh ` Vh ` | pfhpxq ´ fpxq|2,

(B.8)

where the last line is straightforward as
ph minimizes h ÞÑ Bh ` Vh. Now, we are really happy the the

last term because as done in the case with known regularity, we obtain

Er| pfhpxq ´ fpxq|2s À

d
ÿ

i“1

h2αi
i `

1

n
śd

i“1 hi
.

The termVh is deterministic, sowe essentially need to controlErBhs. Recalling thatBh “ maxηPHn Bhpηq,
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we consider η P Hn and write

Bhpηq À

!

| pfηpxq ´ fηpxq|2 ´ Vη

)

`

`

!

| pfη,hpxq ´ fη,hpxq|2 ´ Vη

)

`

` |fη,hpxq ´ fη,hpxq|2,

where fη,hpxq “ Er pfη,hpxqs and fηpxq “ Er pfηpxqs.

Step 2. Difference of the bias. Let us notice that

|fη,hpxq ´ fη,hpxq|2 “ |Kη ˚ fpxq ´ Kη ˚ Kη ˚ fpxq|2

ď }K}21}f ´ Kh ˚ f}8.

Exactly as in the first section where the intensity of the noise was assumed to be known, we get

}f ´ Kh ˚ f}8 À

d
ÿ

i“1

h2αi
i .

Finally we obtain

max
ηPHn

|fηpxq ´ fη,hpxq|2 À

n
ÿ

i“1

h2αi
i . (B.9)

Step 3. Now, we will use the concentration in order to control the remaining terms. We write:

E
„

max
ηPHn

!

| pfη,hpxq ´ fη,hpxq|2 ´ Vη

)

`

ȷ

ď
ÿ

ηPHn

E
„

!

| pfη,hpxq ´ fη,hpxq|2 ´ Vη

)

`

ȷ

.

Now, for any η and i P t1, . . . , nu, let us define

Si
η,h :“ Kη ˚ Kηpx´Xiq ´ ErKη ˚ Kηpx´Xiqs. (B.10)

First, let us remark that

|Sη,h| ď}Kh ˚ Kη}8

ď3κ1

d
ź

i“1

η´1
i .

where the previous inequalities hold in the almost sure sense for some κ1 ą 0. Then, thanks to Bern-

stein inequality, we know that

P

˜

1

n

n
ÿ

i“1

Si
η,h ě t

¸

ď exp

¨

˝´
n2t2

2
´

řn
i“1 Er|Si

η,h|2s ` κ1
śd

i“1 η
´1
i tn

¯

˛

‚. (B.11)
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For i P t1, . . . , nu,

Er|Si
η,h|2s ď

ż

Rd

|Kh ˚ Kηpx´ yq|2fpyqdy

ď }f}8}Kh ˚ Kη}22,

Finally, using Young’s inequality we obtain

Er|Si
η,h|2s ď κ2

d
ź

i“1

η´1
i , (B.12)

for some κ2 ą 0. Now for any η P Hn and using Bernstein inequality given in Proposition ...,

E
„

!

| pfη,hpxq ´ fη,hpxq|2 ´ Vη

)

`

ȷ

“

ż `8

0
P
´

| pfη,hpxq ´ fη,hpxq| ą t` Vη

¯

dt

ď

ż `8

Vη

exp

˜

´
nt2

śd
i“1 ηi

2
`

κ2 ` κ1
?
t
˘

¸

dt.

Moreover, we know from Proposition ..., that this imples

E
„

!

| pfη,hpxq ´ fη,hpxq|2 ´ Vη

)

`

ȷ

“ I ` II,

with

I :“

ż `8

Vη

exp

˜

´
nt

śd
i“1 ηi

4κ2

¸

dt; II :“

ż `8

Vη

exp

˜

´
n

?
t
śd

i“1 ηi
4κ1

¸

dt.

The term I is easy to compute and we obtain

I “
4κ2

n
śd

i“1 ηi
exp

˜

´
nVη
4κ2

d
ź

i“1

ηi

¸

. (B.13)

To compute the term II, we use Proposition ... and get

II ď
4κ1

n
śd

i“1 ηi
V

1{2
η exp

˜

´
nV

1{2
η

2κ1

d
ź

i“1

ηi

¸

. (B.14)

Moreover, as previously mentioned,

Vη “ sω logpnqn´1
n
ź

i“1

η´1
i ,
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for some sω ą 0. Then, we obtain

I À
1

n
śd

i“1 ηi
exp

ˆ

´
sω

2κ2
logpnq

˙

;

II À
logpnq1{2

n3{2
śd

i“1 η
3{2
i

exp

˜

´
n1{2

sω1{2 logpnq1{2

2κ1

d
ź

i“1

ηi

¸

It is now time to define properly the meshHn. We want to define it in a way that allows to control

both I and II. Let us consider

Hn Ă

!

h “ ph1, . . . , hdq P p0, 1sd, hi ě n´1{d logpnq2{d
)

.

Then, we obtain that for sω large enough,

I ` II À n´2.

With the exact same reasoning, we obtain that for sω large enough,

E
„

!

| pfηpxq ´ fηpxq|2 ´ Vη

)

`

ȷ

À n´2.

Now imposing that 7Hn À n, we get

ErBhs À

d
ÿ

i“1

h2αi
i `

1

n
.

Finally, plugging this into (B.8), we conclude the proof of Proposition B.4.
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MOTS CLÉS

Équations de Fokker-Planck Stochastiques, Bruit Commun, Mesure Invariante, Estimation de Densité par

Noyau, Processus de Diffusion Ergodique, Réduction du Bruit, Estimation Non-paramétrique

RÉSUMÉ

Cette thèse traite du comportement en temps long des équations stochastiques de Fokker-Planck en présence d’un
bruit commun additif et présente des méthodes statistiques pour estimer la mesure invariante des processus de diffusion
ergodiques multidimensionnels à partir de données bruitées. Dans la première partie, nous analysons les équations
différentielles partielles stochastiques de type Fokker-Planck non linéaires, obtenues comme la limite du champ moyen
de systèmes de particules en interaction dirigés par des bruits browniens idiosyncrasiques et en présence de bruit
commun. Nous établissons des conditions sous lesquelles l’ajout d’un bruit commun premet de restaurer l’unicité de la
mesure invariante. La principale difficulté provient de la dimension finie du bruit commun, alors que la variable d’état
- interprétée comme la loi marginale conditionnelle du système compte tenu du bruit commun - opère dans un espace
de dimension infinie. Nous démontrons que l’unicité est rétablie dès lors que le terme d’interaction du champ moyen
attire le système vers sa moyenne conditionnelle (par rapport au bruit commun), en particulier lorsque l’intensité du bruit
idiosyncrasique est faible, qui sont des cas typiques de perte d’unicité en l’absence de bruit commun.

Dans la deuxième partie, nous développons une méthodologie statistique afin d’approximer la mesure invariante d’un

processus de diffusion à partir d’observations bruitées et discrètes de ce même processys. Cette méthode implique une

technique de pré-moyennage des données qui réduit l’intensité du bruit tout en conservant les caractéristiques analy-

tiques et les propriétés asymptotiques du signal sous-jacent. Nous étudions le taux de convergence de cet estimateur,

qui dépend de la régularité anisotrope de la densité et de l’intensité du bruit. Nous établissons ensuite des conditions sur

l’intensité du bruit qui permettent d’obtenir des taux de convergence comparables à ceux des cas sans bruit. Enfin, nous

démontrons une inégalité de concentration de type Bernstein pour notre estimateur, ce qui premet de mettre en place

une procédure adaptative pour la sélection de la fenêtre du noyau.

ABSTRACT

This thesis deals with the long-time behavior of stochastic Fokker-Planck equations with additive common noise and

presents statistical methods for estimating the invariant measure of multidimensional ergodic diffusion processes from

noisy data. In the first part, we analyze stochastic Fokker-Planck Partial Differential Equations (SPDEs), obtained as

the mean-field limit of interacting particle systems influenced by both idiosyncratic and common Brownian noises. We

establish conditions under which the addition of common noise restores uniqueness if the invariant measure. The main

challenge arises from the finite-dimensional nature of the common noise, while the state variable — interpreted as the

conditional marginal law of the system given the common noise — operates within an infinite-dimensional space. We

demonstrate that uniqueness is restored if the mean field interaction term attracts the system towards its conditional mean

given the common noise, particularly when the intensity of the idiosyncratic noise is small. In the second part, we develop

a new statistical methodology using kernel density estimation to effectively approximate the invariant measure from noisy

observations, highlighting the crucial role of the underlying Markov structure in the denoising process. This method

involves a pre-averaging technique that proficiently reduces the intensity of the noise while maintaining the analytical

characteristics and asymptotic properties of the underlying signal. We investigate the convergence rate of our estimator,

which depends on the anisotropic regularity of the density and the intensity of the noise. We establish noise intensity

conditions that allow for convergence rates comparable to those in noise-free environments. Additionally, we demonstrate

a Bernstein concentration inequality for our estimator, leading to an adaptive procedure for selecting the kernel bandwidth.

KEYWORDS

Stochastic Fokker-Planck, Common Noise, Invariant Measure, Kernel Density Estimation, Ergodic Diffusion

Processe, Noise Reduction, Non-parametric Estimation
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