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Abstract

Motor skill acquisition is the process by which someone is able to per-
form a movement more accurately. In this context, practice plays a
crucial role. However, practice is not always adapted to each learner’s
needs and learning journey. Generating personalized instructions man-
ually is time-consuming and therefore impractical. Creating personal-
ized practice sessions automatically is one way to alleviate this problem.
Adaptive strategies that structure training, i.e., the sequence of tasks
executed, according to task difficulty and skill level have the potential
to facilitate motor skill acquisition. This dual process of a machine
learning the sequence of tasks adapted to a human learner is what we
call Co-learning. In this thesis, we study human-machine Co-learning
in the context of motor learning. In this process, learning sequences are
generated at the same time as the human learns to perform the motor
task.

Machine learning algorithms can analyze the learning tendencies of
individual learners and adapt training instructions accordingly. They
can be used to create adaptive training tools, for example in the context
of rehabilitation, to help humans adapt their movements. In this the-
sis, we leverage Machine Learning to facilitate the acquisition of motor
skills. However, the use of Machine Learning to achieve this goal in-
volves challenges : (i) few data is available to train the algorithms, (ii)
the interactive nature of the system requires rapid training of machine
learning algorithms (iii) the effectiveness of the algorithms depends on
a precise assessment of the learner’s skill level, which is difficult to mea-
sure in practice and (iv) the degree of control provided to humans when
training the machine learning model can impact learning.

The aims of this thesis are twofold: (i) to develop a strategy for
structuring the learning of motor tasks (ii) to study interactive systems
that can adapt to and be adapted by the learner, to provide guidance
during practice. Through two studies, we explore different strategies to
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sequence motor learning tasks. In the first study, we evaluate the ac-
curacy and smoothness of movement execution during the performance
of a visuo-motor task. The second study explores how to train a ma-
chine learning algorithm in a prosthesis control task. We evaluate both
the recognition accuracy of gestures provided by participants as well as
participants’ understanding of the system.

Our results contribute to the field of adaptive learning of motor
skills and Human-Computer Interaction. They demonstrate that adapt-
ing motor tasks to the learner has advantages in terms of participants’
performance and understanding of the task. These results provide in-
sights for creating training protocols and facilitating their transition to
applied contexts.

Keywords: Motor skills learning · Adaptive learning · Curriculum-
based learning · Interactive Machine Learning



Resumé

L’acquisition de compétences motrices est le processus par lequel une
personne est capable d’exécuter un mouvement avec plus de préci-
sion. Dans ce contexte, la pratique joue un rôle déterminant; elle
contribue à améliorer les performances de l’apprenant, mais n’y est
pas toujours adapté. Un moyen de personnaliser l’apprentissage est
de créer des séquences d’apprentissage qui conviennent à l’apprenant.
Cependant, créer ces séquences manuellement demande du temps, ce
qui rend cette démarche peu pratique. La génération automatique de
séquences d’apprentissage peut remédier à ce problème. Les stratégies
adaptatives qui structurent l’entraînement, c’est-à-dire la séquence de
tâches à effectuer, en tenant compte de la difficulté de la tâche et du
niveau de compétence de l’individu ont ainsi le potentiel d’améliorer
l’apprentissage moteur. Ce double processus d’apprentissage par une
machine de la séquence adaptée à un apprenant humain est ce que nous
appelons le Co-apprentissage. Dans cette thèse, nous abordons le Co-
apprentissage humain-machine dans le cas de l’apprentissage moteur.
Dans cette approche, les séquences d’apprentissage sont apprises en
même temps que l’humain apprend à faire la tâche motrice.

Les algorithmes de Machine Learning sont capables d’analyser les
tendances d’apprentissage de chaque apprenant et ainsi adapter les con-
signes d’entraînement en fonction de ses besoins. Ils peuvent donc être
utilisés afin de créer des outils d’entraînement adaptatifs, par exem-
ple dans un contexte de réhabilitation où l’humain apprend à adapter
ses mouvements. Dans cette thèse, nous utilisons le Machine Learn-
ing afin de faciliter l’acquisition d’habiletés motrices. Cependant, une
approche fondée sur le Machine Learning se heurte à de nombreuses
exigences : (i) peu de données sont disponibles pour entraîner les algo-
rithmes, (ii) la nature interactive du système implique un entraînement
de courte durée (iii) l’efficacité des algorithmes dépend d’une évalua-
tion précise du niveau de compétence de l’apprenant, qui est difficile à
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mesurer en pratique et (iv) le degré de contrôle que l’humain exerce sur
l’entraînement du modèle de Machine Learning peut impacter comment
l’humain apprend la tâche.

Les objectifs de cette thèse s’articulent autour de deux axes princi-
paux:(i) élaborer une stratégie pour structurer l’apprentissage de tâches
motrices (ii)) étudier les systèmes interactifs capables de s’adapter à,
mais aussi d’être instruits par l’apprenant, pour optimiser les perfor-
mances motrices. À travers deux études, nous explorons différentes
stratégies d’élaboration de programmes d’apprentissage pour effectuer
des tâches motrices. Dans la première étude, nous évaluons la préci-
sion et la fluidité du mouvement lors de l’exécution d’une tâche visuo-
motrice. La seconde étude explore le contrôle de prothèse fondé sur la
technique de reconnaissance de formes. Elle évalue à la fois la précision
de reconnaissance des gestes par un algorithme de Machine Learning
et la compréhension du système par les participants.

Nos résultats contribuent aux travaux dans le domaine de l’apprentissage
adaptatif des habiletés motrices ainsi qu’à l’interaction humain-machine.
Ils démontrent qu’adapter les tâches motrices à l’apprenant présente des
avantages en termes de performance des participants et de leur com-
préhension du système. Ces résultats offrent des perspectives pour créer
des protocoles d’entraînement et faciliter leur implémentation dans un
contexte appliqué.

Keywords: Apprentissage d’habiletés motrices · Apprentissage adap-
tatif · Apprentissage de curriculum · Machine Learning interactif
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Chapter 1

Introduction

Motor learning and development have long fascinated scientists, likely
due to their biological, psychological, social, cultural, and evolution-
ary significance to humans [46]. Understanding how motor skills are
acquired and developed is of great importance in a number of fields
such as sports, rehabilitation or music. When acquiring a motor skill,
individuals learn and refine coordinated patterns of movement that are
necessary to achieve a specific goal, e.g. to develop timing skills in
music. A pertinent question which arises is how to train motor skills,
given that there is considerable inter-individual variation in people’s
abilities to learn new motor skills [197].

Recently, the use of Machine Learning to solve real-world problems,
such as identification of spam or image recognition, has gained much
interest. Machine Learning (ML) is a branch of Computer Science
that focuses on creating systems or algorithms which learn from data.
ML has also been embedded in intelligent tutoring systems to provide
feedback that is tailored to individuals’ skills and learning goals. In
a motor learning context, ML has been used to provide personalized,
adaptive, and data-driven approaches to training, rehabilitation, and
performance analysis. Research in ML applied to motor learning has
the potential to create more effective methods for acquiring motor skills,
leading to better outcomes [35].

In this thesis, we study how humans can learn motor skills with
the help of adaptive algorithms which schedule tasks. In particular, we
are interested in Co-learning, the mechanism whereby both human and
machine learn through and with each other.

1



1.1 Context 2

1.1 Context

Learning is a fundamental aspect of human cognition and behavior,
which influences how individuals acquire knowledge, develop skills, and
modify their attitudes and beliefs. Humans have a remarkable abil-
ity to learn from and adapt to their environment through interaction.
Learning occurs through various modalities, including visual, auditory,
kinesthetic, and tactile experiences. Research on the specificity of learn-
ing has shown that we do not acquire motor skills in the same way that
we learn language or mathematics [55]. For example, compared to cog-
nitive tasks like solving an algebra question, mastering a tennis serve
may require less explicit knowledge, and more understanding of how to
coordinate thought and action.

The acquisition of human motor skills involves intricate processes
that engage higher cognitive functions. Motor skill learning is predom-
inantly associated with procedural memory, implying that movement-
related knowledge is largely implicit (e.g. riding a bike or rollerblading).
In contrast, cognitive skills are linked to declarative memory, which re-
lies on the conscious recall of factual information [208]. Thus, theories
of learning applicable to general cognitive skills might not be relevant
to the acquisition of movement skills.

Practice and repetition are essential for the consolidation of motor
learning, facilitating the building of neural connections and enhancing
skill retention. In fact, practice is often considered as the single most
important factor in motor learning. The act of repeatedly practicing
movements, even without purposeful training, can lead to adaptation
and improvement. However, deliberate practice is known to be more
effective [62]. Consider a person who aspires to play the piano fluently
and in the shortest time possible. Simply practicing various pieces of
music daily may make the learner better at playing them, but will
not make the latter a better musician. To train a large array of skills
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optimally, it would be more effective for the learner to engage in effort-
ful, performance focused practice, commonly referred to as deliberate
practice.

Fig. 1.1: Motor skills, e.g. playing the piano, can be improved through practice
and repetition. Source: [1]

One way to practice purposefully is for the learner to make deci-
sions him/herself, for example, by deciding how frequently they want
feedback from the teacher or when they need a demonstration of finger
movements on the instrument. Learner control of training aspects is
known as self-controlled practice. Other terms, such as self-regulated or
self-directed practice have been used in the literature. Self-controlled
practice has been associated with improved motor learning, even in
scenarios where the factors controlled by the learner were not directly
related to the task at hand, such as the order and repetition of prac-
tice sequences [106, 158]. However, the freedom of choice over these
factors can add cognitive load that may counteract the benefits of self-
controlled practice in certain conditions [48].

To engage in deliberate practice, the learner can seek the help of
a music teacher, as has been traditionally done. The teacher can plan
training sessions which are tailored to them, while considering their
strengths and weaknesses. For example, the teacher may identify a
subset of skills to improve over a period of time. However, designing
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individualized practice and monitoring each learner presents significant
challenges for teaching. This complexity arises from the diverse learning
styles and paces exhibited by learners. The repetitive nature of learning
tasks and the impracticality of supervising every learning trial further
exacerbate these difficulties.

Online learning tools for training cognitive skills have effectively
supplemented traditional classroom instruction to address these issues.
Using computational approaches to automatically provide learning tasks
and assess learners may free up the time of the teacher to concentrate
on higher level goals or specific weaknesses. In other words, it can
lead to a change in the role of the teacher from instructor to media-
tor. Nowadays, online learning is gaining relevance in education, and
there is a high likelihood that it will endure even beyond the COVID-
19 pandemic. In light of these technologies, learners may benefit from
similar tools, which plan motor learning practice based on appropriate
measures of learning. How can learner-adapted practice be enhanced
with the help of machine learning?

Suggesting tasks which are appropriate to the learner is a problem
which has been thoroughly studied in the development of intelligent
tutoring systems. Clancey et al. [43] characterized an Intelligent
Tutoring System (ITS) as being adaptive to the learner, being able to
interact with the learner and having domain-specific knowledge. ITS
research has studied how to recommend learning activities based on
difficulty level, by predicting performance on certain tasks.

To teach cognitive skills, an ITS typically consists of modules, ded-
icated to personalizing the learning experience. For example, the stu-
dent module evaluates the learners’ knowledge. It supposes that a
model of the learner can be created to assess the latter. Teaching mo-
tor skills through ITSs poses many challenges which are not straight-
forward to solve. For example, an ITS has to account for physiological
factors, both in terms of interaction and assessment of skill. Identifying
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the skill level of a learner and generalizing the transfer of learned skills
to different environments or more complex scenarios, are among the
issues that complicate motor learning through ITSs.

In this specific context, we consider a human learner whose goal is
to acquire motor skills through computational approaches. Engaging
the learner and an adaptive system in a closed-loop mutual learning en-
vironment can improve the learning speed as well as outcomes. We call
this concept of mutual learning, Co-learning. Co-learning refers to the
interaction between the human learner and the tutor in an ITS. How-
ever, our goal is not so much to create an intelligent tutoring system
which can be readily used for acquiring knowledge, but rather to ex-
plore Co-learning through learning interventions which may favor skill
acquisition.

Closely linked to Co-learning is Co-adaptation which is described by
Mackay as phenomena in which the environment influences human be-
havior in a closed-loop: the environment is itself simultaneously being
influenced by the human [134]. This two-sided adaptation is partic-
ularly important in the context of learning to control a body-machine
interface, e.g. to optimize the translation of the user’s commands into
the machine’s actions. We consider that Co-learning encompasses Co-
adaptation, with the more specific goal of learning a new skill (as op-
posed to adapting a behaviour). We can also make a parallel to motor
adaptation compared to motor learning. In the Motor Learning liter-
ature, learning is generally discussed as acquiring new movement pat-
terns over time, while adaptation is referred to as making adjustments
to an already acquired movement pattern [185]. Thus, the term Co-
learning can be distinguished from Co-adaptation by focusing on the
aspect of learning, rather than adaptation. In the context of this thesis,
the objective of Co-learning is to enhance the user’s motor skills, by
improving the interaction between learner and machine.
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1.2 Problem Statement

To ensure that Co-learning occurs, it is important to consider both
parties in the learning loop. Engaging humans with machine learning
systems necessitates that they acquire a fundamental understanding
of how machine learning operates, enabling them to effectively train
and debug the system. The system should be designed to enhance
the human’s ability to accurately predict its behavior, ensuring that
the human’s expectations align with the system’s actual functionality.
This raises a number of questions, such as how to design the interaction
between the two parties and how to enhance the human’s understanding
of the system.

Figure 1.2 displays an illustration of the movement task setup used
in this research. The human receives instructions on a screen and per-
forms a movement task. A sensor records movement data, which is
sent to the system. The role of the system is to run an adaptive algo-
rithm which selects tasks, i.e. generates a curriculum for the human.
To select (finite) learning tasks, the algorithm relies on estimates of
performance derived from the movement data. In this setting, machine
learning can be leveraged to achieve different goals. For example, ML
can be used to propose the next task or learn to classify human move-
ment. Besides learning to execute movement tasks and observing the
feedback, the human also builds a mental model of the system. This
mental model helps the human reason and predict the behavior of the
system. Building a mental model of ML not straightforward, especially
if the system is difficult to understand (e.g. a black box).

1.3 Research Questions

To investigate how learning tasks can be scheduled in the context of
motor skill acquisition, we turn to the literature on motor learning,
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Fig. 1.2: Illustration of the general movement setup used in this research. We
investigate how to schedule motor tasks for a human learner in an interactive setting
and how to enhance people’s mental models of Machine Learning systems.

which can provide insights into the factors responsible for achieving a
high degree of proficiency. Since the focus of this thesis is on generating
curricula, we seek to understand how motor skills can be developed as
a result of manipulating practice conditions. Research has emphasized
the importance of supplementing training with learning theories, e.g.
Schmidt’s schema theory 1, to plan practice [127, 128, 164]. If we
consider the piano learner again, this means that appropriate practice
can improve autonomy and may help the learner reach proficiency in
a shorter timeframe. This can reduce frustration and increase engage-
ment in learning, which is an important factor in motor learning. We
ask the following research questions:

RQ 1 How can adaptive scheduling help a learner develop motor
skills? To answer this question, we must first understand how to design
algorithms which adapt to the learners’ skill level.

1The schema theory supposes the existence of a motor program or schema, which
can be built or refined for each new movement, thus reducing the storage problem.
Variable practice is thought to be more effective for schema development
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We then explore a second use-case, which is independent of the
first researchquestion. In this use-case, the human learns to control a
prosthetic arm by conveying movement concepts to a machine-learning
algorithm. To better explain the context, consider a rehabilitation pa-
tient who lost an arm. The patient is fitted with a prosthesic arm
which relies on pattern recognition to classify movement. However,
given the learning curve involved with these kinds of prostheses, the
patient would benefit from techniques which make learning to control
the prosthetic arm more seamless. In addition, the prosthetic arm re-
quires retraining when movement patterns of the remaining limb change
over time. Thus, the patient should also be able to train the machine
learning system and diagnose any classification errors which might oc-
cur. This requires the patient to build an accurate mental model of the
Machine Learning system.

In this second research work, we ask the following question: RQ 2
How do people build mental models of these adaptive systems?

1.4 Research Methods

This section reports our general research methodology. To assess the
state of works in the domain and motivate the research questions pre-
sented, we conducted literature reviews. To answer the first research
question, we reviewed previous works to explore existing assistive motor
learning systems and challenges in their implementation, as well as ma-
chine learning algorithms which have been successfully used to propose
learning tasks. To answer the second question, we explored how train-
ing protocols have been designed and which user- training approaches
of a pattern recognition-based prosthesis were most promising. The
goal was to find solutions adapted to each problem and uncover gaps
in each research field.
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Our first research questions relates more to motor learning perfor-
mance, but we also studied people’s perception of the learning algo-
rithm. The second research investigates human factors more explicitly,
such as human agency in learning with the system and how humans un-
derstand the system. To address each research question, we conducted
experiments to study the relation between relevant variables. For both
experiments we conducted, we adopted a mixed method approach, con-
sisting of qualitative and quantitative methods. We employed pre-test
and post-tests to measure learning after practice. Our approach to
design adaptive algorithms consisted of either identifying main met-
rics which were relevant to the task being used or suitable algorithms
which meet the criteria of the scenario being investigated.We then im-
plemented the algorithms and adjusted them based on a pilot study
with participants. For instance, in the study presented in Chapter 4,
one way to measure human learning for upper-limb rehabilitation tasks
is to assess the quality of electromyography (EMG) patterns. Among
the metrics used in the literature, the separability of patterns has been
thoroughly used. We thus made the choice to use this metric to select
the next task to schedule.

1.5 Contributions

This thesis explores Co-learning of humans and adaptive systems and
users’ mental models of these systems. The domains of interest are
(1) Human-Computer Interaction (HCI), (2) Motor Learning and (3)
Machine Learning (see figure 1.3). We contribute to knowledge in the
fields of HCI and Motor Learning. In particular, we make contributions
to the field of adaptive systems for Motor Learning and to Interactive
Machine Learning.
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We conducted two studies that highlighted the effect of: (1) adap-
tive learning on lowering the performance variability of movement smooth-
ness among participants and (2) different interactive machine learning
strategies to create a curriculum on learning rate, gain in accuracy and
mental model soundness. This thesis motivates future research in adap-
tive algorithms and mental model evaluation, with the aim of making
learners more autonomous and help them better understand the system
though training.

Fig. 1.3: Domains of interest of this thesis: Human Computer Interaction, Motor
Learning and Machine Learning.

1.6 Thesis Overview

In this chapter, we presented the motivation, context and contributions
of this research. The remainder of this thesis is organized as follows.

Chapter 2 provides background knowledge on the main concepts
employed in this research. It presents concepts and advances in learning
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systems grouping the three main fields of interest: Human Computer
Interaction, Motor Learning and Machine Learning.

Chapter 3 presents a study to understand how an adaptive algo-
rithm which uses an exploitation-exploration strategy to select move-
ment tasks to practice, can impact motor performance at post-test and
24 hours after training.

Chapter 4 presents a user study to investigate the impact of differ-
ent interactive Machine Learning strategies on the Machine Learning
accuracy and users’ mental model. We study a more complex task,
which involves classifying gestures to control a prosthetic arm.

In Chapter 5, we discuss some lessons learnt and the limitations of
the research conducted.

Chapter 6 concludes this thesis, with implications of this research
and perspectives for future work.

1.7 Publications and collaborations

Chapters 3 and 4 include papers that were published in a journal and
presented at an international conference, respectively. The citations
are provided below.

Sungeelee, V., Loriette, A., Sigaud, O., & Caramiaux, B. (2023). Co-
Apprentissage Humain-Machine: Cas d’Étude en Acquisition de
Compétences Motrices [191].

Sungeelee, V., Loriette, A., Sigaud, O., & Caramiaux, B. (2024). In-
teractive curriculum learning increases and homogenizes motor
smoothness. Scientific Reports, 14(1), 2843 [192].
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Sungeelee, V., Jarrassé, N., Sanchez, T., & Caramiaux, B. (2024,
March). Comparing Teaching Strategies of a Machine Learning-
based Prosthetic Arm. In Proceedings of the 29th International
Conference on Intelligent User Interfaces (pp. 715-730) [190].



Chapter 2

Background and related work

In this section, we present the purpose and scope of this thesis. We
begin with an introduction to Motor Learning and how practice condi-
tions affect Motor Learning. We then present research on how to build
a curriculum to adapt tasks to the learner in real-time. We close this
chapter by presenting works which have investigated how to transfer
knowledge between humans and machines, for skill acquisition.

2.1 Towards adaptive Motor Learning approaches

First, we turn to the Motor Learning literature to better understand
how to develop adaptive learning approaches for motor skill learning.

2.1.1 Mechanisms of motor learning

Motor Learning, the learning and performance of motor skills such as
riding a bicycle, walking, or running, encompasses processes such as
motor adaptation, skill acquisition, and decision-making [112]. Motor
Learning is a set of mechanisms through which we can incrementally
improve our ability to perform movements faster, better, and more ac-
curately [59, 113]. It is a result of complex processes in the central
nervous system and leads to relatively permanent changes in our move-
ments.

At a more profound level, researchers have investigated how dif-
ferent mechanisms impact the development and improvement of motor

13
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skills. Our motor learning capabilities are dependent on learning mech-
anisms which can proceed simultaneously or individually. These mech-
anisms include sensorimotor adaptation and trial-and-error learning for
motor skill acquisition [109, 133, 126].

On the one hand, sensorimotor adaptation is an error-reduction pro-
cess in which the nervous system learns to predict and cancel the effects
of a novel environment on movements we already know, e.g. when you
switch to a new tennis racket , you also adjust your swing accordingly.
On the other hand, trial-and-error learning benefits motor skill acquisi-
tion, which concerns the practice and appropriation of new movement
patterns. Feedback about the task is leveraged to improve the move-
ment. This feedback encourages us to explore different movements and
select the ones that are likely to be most successful [193].

At the level of the motor system, performance improvements in mo-
tor learning are characterized as a reduction in motor variability [114].
It was initially believed that motor exploration was an implicit pro-
cess, which happened due to inherent variability in movement. Recent
research suggest that exploration is intentional, to search for actions
which are necessary for successful movements [58, 126]. Part of the
motor system attempts to reduce execution noise to increase movement
accuracy while another mechanism is responsible for motor exploration,
which is conducive to learning.

Other research used these findings to investigate how variability
affects learning in a reinforcement learning-based setting [210, 58]. For
example, Wu et al. [210] studied how trial-to-trial variability affects
learning. They showed that variability along relevant dimensions of the
task helps the learner discover how to perform the task faster.

We will now look at how practice has been organized in previous
studies on motor skill acquisition.
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2.1.2 Practice organisation

In the Motor Learning literature, practice has been designed in many
ways, e.g. by changing the type of skill practiced, exploring move-
ment variations and changing task parameters. The most straightfor-
ward way to practice is for the learner to control practice parameters
him/herself. This is called self-controlled practice. For example, the
learner can decide which task to practice or when to increase the dif-
ficulty of the task. Compared to imposing the task difficulty, giving
control to learners has been shown to improve acquisition, foster long
term retention of skill [11] and improve the rate of learning [130].
Self-controlled practice is also requires active participation in the task,
which can benefit learning. The benefits of controlling practice oneself,
have been partially attributed to heightened motivation to achieve the
motor task goals [175].

While self-controlled practice brings many advantages, it may re-
quire more cognitive load from the learner, compared to externally con-
trolling certain aspects of practice. It might also not suit all learners,
especially if the task is complex. There could be more efficient ways
to learn, which learners may not be aware of. For these reasons, other
ways of designing efficient practice have been investigated.

Variability during practice

Motor learning research has studied the effect of varying motor tasks in
learning schedules. Varying the tasks during practice can be beneficial,
as it promotes the exploration of a larger space of motor commands.
This requires balancing variability and repetitions in the sequence of
tasks involved in practicing new movements. To achieve this balance,
practice can be planned to introduce variability. One way of introducing
variability during practice is through Contextual Interference [186].
Contextual interference occurs when skills or variations of a skill are
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interleaved within a practice session.

To induce different levels of contextual interference, studies have
manipulated the order of practice tasks (see [89] for a more detailed
review). The highest level of contextual interference typically occurs
with random practice, in which the sequence of tasks is scheduled
pseudo-randomly. The lowest level of contextual interference occurs
with blocked practice, where all trials of one task are completed before
moving to a different task. A third strategy is serial practice, which
induces intermediate levels of contextual interference: the task changes
after each trial but in an order which repeats throughout practice. Fig-
ure 2.1 illustrates the differences between random, blocked and serial
practice.

Fig. 2.1: Varying the level of contextual interference. The boxes represent task
scheduling in blocked, serial and random strategies.

A general finding is that high levels of contextual interference in-
crease learning retention and improve transfer to other tasks, i.e., pro-
mote a relatively permanent change in behaviour. This is known as
the contextual interference (CI) effect. However, high levels of con-
textual interference are detrimental to acquisition performance, when
performance is assessed shortly after practice. If we consider a skill
as consisting of distinct tasks which need to be mastered, the implica-
tion of CI is that practicing several tasks or variations of a task in one
practice session can be beneficial for motor learning. This phenomenon
has, for instance, been established for simple tasks with movement time
constraints, as well as aiming and tracking tasks [102, 125, 211, 216].
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Schmidt’s theory of a Generalized Motor Program (GMP) [180]
attempts to explain this phenomena. The GMP refers to a set of mo-
tor commands that is planned before executing an action. Schmidt’s
theory posits that these motor commands are retrieved and adapted to
a particular situation. This way, alternating tasks with different motor
programs, i.e. requiring a different set of parameters, such as in the
case of tennis, when one changes from a backhand to a serve, causes
interference which slows down skill acquisition. On the other hand this
interference seems to favor retention of skills. Two theories have been
put forward to explain this effect: (1) the elaboration hypothesis [186]
and (2) the action plan reconstruction hypothesis [124]. The elabo-
ration hypothesis supposes that random practice allows a learner to
develop more distinct motor programs, which leads to a better under-
standing of each skill. On the other hand, the action plan reconstruc-
tion hypothesis supposes that each new trial of a different task requires
the forgetting of its motor program and the reconstruction of a new
one. This encourages a greater memory agility, speeding up retrieval
of information.

Other studies varied the level of contextual interference during prac-
tice e.g. by mixing random and blocked practice or gradually increas-
ing the level of contextual interference. Some of these studies reported
superior retention performance with the mixed strategy, compared to
either blocked or random practice [122, 157], while others found no
significant differences [75, 56]. These mixed findings make it difficult
to determine the impact of changing the level of contextual interference
throughout practice.

The contextual interference effect has also been shown for some
complex tasks such as executing a volleyball serve [198] or practicing
music [15]. Other studies have contested the applicability of the Con-
textual Interference effect to complex skills [6, 213] or different levels
of expertise [93]. Based on evidence of mixed results in several stud-
ies [83, 22, 199], Wulf et al. [213] argued that high levels of contextual
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interference in random practice could be advantageous for simple tasks
when tested for retention and transfer, but not for complex skills such
as sports, where a higher cognitive load would be required. Another
study showed that learners’ skill level may play a role in how vari-
ability affects performance. Learners with poor skills performed better
in a blocked practice than highly-skilled learners in a high contextual
interference schedule [93]. Thus, the effectiveness of contextual inter-
ference could depend on task complexity and skill level. The type of
skill targeted in a complex task should also be considered. For example,
Caramiaux et al. [34] showed that random practice improved transfer
of motor skills but not timing skills in a piano task.

Adapting task difficulty

One factor which distinguishes novices from experts is their information
processing abilities. An experienced performer has a greater capacity
to process information regarding the task than a beginner. Thus, they
should not be challenged at the same level of task difficulty. The more
difficult the task, the larger the gain in information from the task. How-
ever, skill level determines the capacity of the performer to interpret the
information. A hard task provides a lot of information to a beginner,
but they can only process part of that information.

Predictions of how information gain changes with task difficulty
have been made by the challenge point framework. The challenge
point framework suggests that task difficulty should be adapted to each
learner with respect to his/her level of skill [86]. Figure 2.2a shows the
relationship between information gain and task difficulty. The challenge
point framework distinguishes between two types of difficulty : nomi-
nal and functional task difficulty. Nominal difficulty is independent of
skill level and denotes the inherent complexity of the task. Of interest
here is the functional task difficulty, which considers the impact of skill
level and environmental factors on the overall challenge. Changing the
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task parameters can make a task more difficult, e.g. varying the timing
between actions. Contextual interference can also be manipulated to
influence task difficulty. High CI, respectively low CI, can make a task
more difficult or easy. According to this framework, there exists an
optimal challenge point (functional difficulty level) which is conducive
to learning. In other words, the task should not be too simple or too
complex. It should be noted that this optimal challenge point does
not coincide with maximal practice performance, since this is likely to
happen at low levels of functional difficulty. Figure 2.2a illustrates
this.

The challenge point framework can be leveraged to develop ap-
proaches to motor skill learning by manipulating task difficulty, e.g.
through contextual interference [106, 104] or feedback, to match the
learner’s current abilities. For example, the challenge point framework
has been employed in adaptive learning approaches for motor learning
[41, 203], in rehabilitation research [149, 57] and in sports training
[85].

(a) (b)

Fig. 2.2: Optimal challenge points based on functional task difficulty (a) Relation-
ship between challenge point and task difficulty for different skill levels: beginners
are more easily challenged at lower functional difficulty than experts. (b) Perfor-
mance versus learning (retention) curves for different functional task difficulty levels.
High performance in practice is likely to occur at low levels of functional task diffi-
culty but the highest potential for retaining the skill occurs when the task difficulty
is neither too low nor too high. Figure adapted from Guadagnoli et al. [86].

In the field of psychology, the level of challenge has been linked to
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motivation, a key factor for successful learning. Flow is the experience
of being completely engaged in a task, so that it is given full attention.
The flow model was first introduced by Csikszentmihalhi [49]. Fac-
ing different levels of challenge can result in different emotional states,
which influences motivation. For example, a task which is not challeng-
ing can give rise to boredom. Conversely, a task which is too complex
for the individual can result in anxiety. Figure 2.3 illustrates the flow
model.

Fig. 2.3: Flow model. Figure adapted from [49]

Adaptive motor learning strategies

More recently, approaches have been developed to optimize practice for
the learner, using rules or algorithms. For example, Choi et al. [41]
adapted visuo-motor task difficulty to the learner based on an error
reduction rule which considered performance in the last trial. They
showed that adapting practice led to superior performance compared
to a random practice. Wadden et al. used individualized challenge
points to adapt the amount of contextual interference [203]. They
concluded that adaptive practice, when coupled with high levels of con-
textual interference improves motor learning compared to low levels of
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contextual interference. Simon et al. proposed an approach called win-
shift-lose-stay, which involved switching to another task only when it
was successful [189]. The results showed that win-shift-lose-stay strate-
gies were comparable to either random or blocked practice in terms of
acquisition and retention in a key-press timing task. Another approach
involved excluding tasks with good performances further along train-
ing, based on the premise that time should not be spent on easy tasks,
but on tasks with high error rates, to reduce uncertainty of practice
outcomes [97]. This work showed that excluding easier tasks led to
poorer retention. Thus, research suggests that adapting the challenge
to the learner yields better retention results than a random strategy.
In addition, maintaining a range of difficulties rather than practicing
only the most difficult tasks seems to be beneficial for learning. We will
now see how motor learning can be evaluated.

Measuring motor learning

Evaluation techniques have been devised to measure the progress or ef-
fectiveness of practice over time, based on performance indicators such
as time, distance and frequency. For example, performance curves can
be plotted by logging a performance variable which characterizes skill
across time. They are indicative of (1) consistency across trials and
(2) improvement by inspecting the direction of the curve [45]. Perfor-
mance curves follow patterns, the most common one being a negatively
accelerating curve (see figure 2.4b). This shape can be explained by
the Power Law of Practice, which states that learners improve fast ini-
tially, slowing down with time. The shape of the Power Law curve is
a negatively decelerating curve, with practice time on the x-axis and
number of trials on the y-axis (see Figure 2.4a).

The general form of the Power Law of Practice is as follows [146]:

T = A + B(N + E)−α
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where:

T is the time to perform a task. A is the asymptotic value of
performance. B and E are prior experiences before the start of practice.
and α is the learning rate.

The Power Law can be transformed into a linear function by plotting
the logarithm of time taken to perform the task against the logarithm
of the number of trials. This can be practical to compute performance
measures, such as the learning rate, in human experiments.

A simpler version of the Power Law can be written as follows.

T = B ∗N−α

log(T ) = log(B ∗N−α)

log(T ) = log(B)− α ∗ log(N)

log(T ) = b− α ∗ log(N)

The linear function of the Power Law has intercept b = log(B) and
slope α.

While it is a popular method to track progress, performance curves
have some limtations. First, the measures of performance are computed
during practice and do not represent permanent changes in skill, but
rather temporary effects of skill acquisition. Second, the power law may
not hold for all tasks, e.g. its use has been questioned in the context of
training complex perceptual-motor skills [168].

A better indicator of learning is a retention or a transfer test, which
evaluates an individual’s ability to consistently perform a specific task
over time (retention) or in various contexts (transfer). To assess learn-
ing, most studies use a delayed retention test, which measures long-term
changes in skill or performance on the practiced tasks. The learner
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(a) (b)

Fig. 2.4: (a) Power law characterized by sharp improvements in time taken to
complete a trial at the start of practice, followed by a decelerating improvement.
(b) Performance curve showing decreasing rates of improvement in performance
with time.

withholds practice for some time before performing the retention test.
For laboratory studies, this period of no practice usually lasts 24 hours
or more. Generalisation to another task or skill can be tested by chang-
ing the task parameter that was varied during practice or by changing
the skill. For example, in tennis, if the racket width was manipulated
during practice, a novel width not seen during practice can be tested.

Motor Learning models

To provide more concrete knowledge and tools for coaches and clinicians
to design practice, researchers have developed motor learning models
which describe the different phases of motor skill acquisition. These
models are based on theories of cognitive and motor learning. The two
main motor learning models were proposed first by by Fitt and Posner
and later by Gentile.

Fitt and Posner were the first to develop a model of motor skill
acquisition with three stages [71]. When learners start out, they are in
the cognitive stage. This stage involves understanding and memoriz-
ing instructions. As they progress, learners start to refine skills, with
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less dependence on external instructions. This is called the associative
stage. Finally they are able to perform skills autonomously, with less
reliance on conscious cognitive processes. They are in the autonomous
stage of learning. Task variables and practice structure play a key
role in determining whether learners will reach the autonomous stage.
Coaches and clinicians often rely on these three stages to know when
to switch to other exercises or to another difficulty level.

Gentile proposed a model with two stages, which consider different
goals [78]. The first stage involves understanding the task and explor-
ing strategies to perform it. The goal is to acquire a movement pattern
by also adapting to the environmental context. For instance, when a
rehabilitation patient is learning to pick up an object, they concentrate
on recruiting the appropriate muscles necessary for lifting the object.
The size and weight of the object are also considered. The outcome
of this stage is a concept of movement which is neither consistent nor
efficient. In the second stage, the goal is to enhance the ability to adapt
movements and execute the task with greater consistency and efficiency.
The clinician identifies practice variables to improve the learner’s con-
sistency in solving the motor problem.

In the next section, we will explore the role of machine learning
in developing learning interventions. The section is structured into
two parts: Curriculum Learning strategies to teach artificial learners
(e.g. RL agents) and curriculum-based approaches to schedule learning
activities for humans.

2.2 Curriculum-based learning

As seen in the previous section, insights in motor learning suggest that
adapting practice to the learner could be essential for enhancing skill
acquisition efficiency. As humans, we learn by means of curricula as
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early as infants, e.g. we learn to crawl before learning to walk. We
continue to do so as we acquire a formal education. Curriculum-based
learning consists of structuring learning by starting with an easier prob-
lem and incrementally increasing its difficulty. It has been shown to
be important in many human learning domains. Its implication for
practice is that the order in which tasks are presented to the learner is
important.

The predominant way to create curricula in education is to seek
an expert to manually design schedules for learning tasks. However,
this process is time-consuming and does not scale well; catering to the
learning pace and preferences of each learner is difficult. When it comes
to designing curricula for motor learning, in addition to the latter chal-
lenges, one also has to consider the effect of various practice conditions
on learning. To design adaptive practice automatically, Machine Learn-
ing can be useful.

Machine Learning is a branch of Computer Science that focuses on
creating systems or algorithms which learn from data. The three main
types of machine learning algorithms are Supervised Machine Learning,
Unsupervised Machine Learning and Reinforcement Learning.

Supervised lLearning algorithms are used to identify concepts by
learning from available data. A supervised learning setting consists
of a dataset, with features which characterize the data, and correct
labels (usually labeled by a human). This allows a machine learning
algorithm to learn a mapping between features and labels. The trained
model can then be used to make predictions on unseen data. Examples
of supervised learning algorithms include linear and logistic regression,
multi-label classification and support vector machines.

Unsupervised Learning on the other hand relies less on human guid-
ance. It learns to identify complex patterns in un labelled data. Exam-
ples of unsupervised learning include k-means clustering and principal
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component analysis (PCA).

Reinforcement Learning (RL) is a framework for sequential decision-
making, in which an agent learns by interacting with an environment
through trial and error. The goal of RL is for the agent to learn an
optimal behavioral strategy, called a policy, based on rewards obtained
from the environment. The agent starts in a given state and by taking
actions, moves to other states in the environment. The dynamics of
the environment is defined by a transition function, which computes
the probabilities of starting from one state and ending in another state.
The agent receives a reward, which allows it to evaluate the degree of
success of the chosen action. This reward is computed from a function
called the reward function. Figure 2.5 illustrates the RL-framework.

Fig. 2.5: RL framework: At each time step, the RL agent takes an action in an
unknown environment. The agent reaches a new state (s) and the environment
produces a reward (r) for the agent based on the optimality of the action (a) taken.

The goal of RL is to maximize the long term reward by attempt-
ing to balance between exploration of new actions to discover which
ones yield the most reward and exploitation of known actions currently
yielding high rewards.

Below, we describe a technique, called Curriculum Learning, which
is used to order training examples or experiences in machine learning,
with the goal of solving complex tasks and/or speeding up training.
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2.2.1 Curriculum Learning for artificial agents

Just as structuring learning tasks for humans leads to better and more
efficient skill acquisition, similar techniques have successfully been ap-
plied to train a machine in supervised learning settings. Previous works
have trained machines to learn skills by incrementally adapting the dif-
ficulty of training examples [19, 84]. Bengio et al. [19] ordered the
training examples from easy to hard, in a shape recognition task before
presenting them to the model. The model learnt from the easier fea-
tures first and then learnt the harder features. To increase difficulty,
they added variability to the shapes, considering the standard shapes
as easy samples and the variants as hard ones. This approach is known
as Curriculum Learning.

In Bengio et al.’s work, the order of difficulty of samples was decided
by the authors. However, in many real-world problems, this ordering
is not straightforward. Thus, in other research, different ways of mea-
suring difficulty or the usefulness of a sample have been proposed. For
example, instead of assuming that some ordering of samples exist, one
strategy is to consider the learning progress of the model to decide how
to choose the next samples [121].

Reinforcement Learning (RL) agents have also benefitted from this
technique to solve more complex tasks. Curriculum Learning for Re-
inforcement Learning is an active area of research, aiming to speed up
the training of RL agents on a goal task by first training them through
progressively more challenging tasks. It involves sequencing tasks or
training data to optimize knowledge transfer between tasks which would
otherwise be too complex to solve or too sample inefficient. Curriculum
Learning approaches leverage transfer of knowledge between tasks. In-
stead of directly learning on a target task, the agent can learn on one or
more simpler tasks and progressively transfer the knowledge required to
solve the more complex target task. Transfer Learning in Curriculum
Learning implementations explore how to transfer relevant information
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from each task and how to group information from several tasks [143].

Manual curricula have been successfully employed in RL to achieve
expert performance in games with sparse rewards, such as Go [188] or
Dota 2 [2]. However, designing curricula manually is time consuming
and requires domain knowledge. This has led researchers to explore au-
tomatic Curriculum Learning, where a teacher algorithm automatically
generates a curriculum for the learning agent - the student. One such
work [138] proposed a Teacher-Student Curriculum Learning approach
(TSCL). TSCL considers two separate tasks in which both a teacher
model and a student model are trained. In the Teacher-Student inter-
action, the teacher selects tasks for the student to practice, based on
the premise that students should practice more tasks on which they
progress rapidly. The teacher’s goal is to minimize training time for
the student to succeed on a target task. To select tasks for the stu-
dent, they used an online algorithm, with different ways of computing
the learning progress. The learning progress is used here as a proxy to
measure the current challenge offered by a task.

The notion of learning progress as intrinsic motivation for artificial
agents was inspired from past research on learning robots [179, 150].
The authors postulate that keeping the learning progress high pushes
the robot to become curious and learn new things. The idea of learning
progress has been reused in several works using teacher algorithms for
Curriculum Learning [156, 44, 73, 4].

In the Motor Learning domain, research in the control of articu-
lated robots has investigated Curriculum Learning for skill acquisition
[105]. The articulated robot learnt acrobatic skills incrementally, start-
ing from the simplest skills and combining skills. The manual cur-
riculum was decomposed into high-level and low-level curricula. The
high-level curriculum specified the order of acquisition of skills, while
the low-level curriculum favored exploration and gathered experiences
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to perform a specific skill, with different parameter settings. The au-
thors showed that the task sequences were learnt efficiently and that
the curriculum generalized to different types of robot morphologies.

As mentioned earlier, organising practice of movement skills in an
optimal way can enhance motor learning. Ordering tasks automatically
could enhance the motor skill learning process for humans, while rely-
ing less on coaches or teachers. One way to do this could be to replace
a general task by a target motor task and use RL to optimise perfor-
mance on a subset of tasks before learning the target task. Figure 2.6
illustrates this idea. However, this raises a number of challenges, as
we’ll see below.

Recent research has suggested a Reinforcement Learning frame-
work, as a first step towards the long-term goal of automatically gener-
ating curricula for human motor skill acquisition. Ghonasgi et al., [79]
extended a framework designed for autonomous Reinforcement Learn-
ing agents to human learning.

Drawing on this framework for RL agents, the authors proposed a
model, where the teacher is an artificial agent that trains a human agent
to perform a task. In this setting, the goal of Curriculum Learning is
to maximize performance on a final task. The RL teacher selects the
next task from a set of simpler versions of the final task for the learner
to train on. This model was developed with the intent of building
a complete curriculum in advance (policy) to ensure efficient learning
progress on a motor task. An optimal policy is learnt by considering
future goals, for instance, maximizing performance on the final task.
The authors defined a Curriculum Learning model to select the task
which will maximally challenge the learner. Figure 2.6 illustrates the
differences between Curriculum Learning for RL agent compared to
Curriculum Learning for a human.



2.2 Curriculum-based learning 30

Fig. 2.6: Curriculum Learning to select motor tasks. To do so, the RL agent selects
sub-tasks which will help the agent optimize scores on a target motor task. Adapted
from Ghonasgi et al. [80]

.

Formalizing a motor learning task as an RL problem makes it pos-
sible to consider RL algorithms to create curricula. However, the chal-
lenges of replacing the student agent by a human learner are such that
the framework remains theoretical for the moment. Given a policy in
RL, it is possible to predict the agent’s behavior in each state. Replac-
ing the RL agent with a human means that the state of knowledge of
the human needs to be modeled. Accurately measuring skill level is
not straightforward, since learning or changes in motor learning mech-
anisms are not directly observable. Thus, there is no optimal way to
parameterize this model. Second, Curriculum Learning applied to hu-
mans presents a challenge in terms of the amount of training. While RL
agents can be trained for extremely long periods of time, humans are
subject to fatigue and cannot focus for extensive periods of time[80].
Other difficulties include computing transition functions for selecting
actions from given states. This requires prior insights and experiments
on the task and learners.

Below, we describe another line of research in Intelligent Tutoring
Systems, which leverages Machine Learning in computational tools to
tutor humans.
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2.2.2 Intelligent Tutoring Systems

The development of systems designed for tutoring is a thoroughly stud-
ied research field. These systems are called Intelligent Tutoring Sys-
tems (ITS). ITSs have successfully been used to personalize and scaffold
learning, resulting in rapid progress and improved performance. They
have been defined as computer-based instructional systems which adapt
to the learner, integrate teaching strategies and use domain knowledge
[12].

An ITS typically consists of four components: (1) the domain mod-
ule, (2) the student module, (3) the tutoring module and (4) the user
interface module. Figure 2.7 shows the related modules. The domain
module models the knowledge base, consisting of concepts, rules, facts,
and other elements required to analyse how well a learner has under-
stood the domain. In other words, it is a cognitive model of expert
knowledge. The student module models learner’s cognitive and affec-
tive states as they learn. It is usually implemented as a subset of the
domain model. It keeps track of how knowledge and skills are learned
through practice. For example, when the learner’s solution deviates
from predefined steps to solve a problem, this may trigger an error to
alert on a potential misunderstanding of a concept. The tutoring mod-
ule consists of a model representing a teaching strategy, which uses
information from the domain and the student model to select pedagog-
ical actions. It tracks the learner’s progress to provide suitable feedback
and instructions. Lastly, the user interface allows interaction between
the learner and the ITS. It can be multi-modal, to allow different types
of interaction and is usually designed to increase personalization.

Tutoring strategies involve varying the difficulty and ordering learn-
ing material to help the learner reach proficiency. Various techniques
have been used to propose pedagogical tasks to the learner. Reinforce-
ment Learning (RL) can be used to discover the best learning strategies,
given a reward function [100, 163, 18]. However, its usage has been
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Fig. 2.7: The 4 modules in a typical Intelligent Tutoring System: the student
module, the tutoring module, the domain module and the user interface module.

restricted because of challenges involved in training the model. For
example, in online RL, where a policy is generated as a result of agent
interacting with the environment, the algorithm requires a large number
of interactions to update the policy. Thus, training can be inefficient
and not suitable for use in real-time. On the other hand, offline RL
requires historical data to train on, which might not always be available
[40, 136]. Other RL approaches are based on deep learning to deal with
high dimensional states [14, 18]. Neural networks have also been used
in other settings to learn student characteristics, which can be used
to predict the right level of difficulty for a learner [205]. Other tech-
niques include collaborative filtering, where data of multiple learners
influence the content which is proposed [147, 103] and Multi-Armed
Bandits, which leverage a simpler Reinforcement Learning paradigm to
select actions [44, 182, 76, 181, 24], We discuss Multi-Armed Bandits
in more detail later.

Advances in human motion sensors and Machine Learning have
helped develop similar tools to support users in learning motor skills.
A few studies implemented ITSs for teaching psychomotor skills. Psy-
chomotor skills encompass both cognitive and physiological skills. For
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example, golf putting involves both judgement and physical actions,
like hitting a ball. Kim et al. implemented a physio-cognitive model
based on ACT-R in an ITS to predict how breathing rate affects move-
ment in a golf putting task [108]. ACT-R is an extension of the ACT
model of cognition, developed by John Anderson. ACT is a computa-
tional model of human intelligence, emcompassing perception, memory
and reasoning. ACT-R made it possible to understand and predict how
cognition can be decomposed into units at the level of the brain. It has
been used to simulate cognitive learning and predict the difficulties that
learners may face [9].

Another example of ITSs in learning psychomotor skills is Neagu et
al.’s strength training system, called Selfit [145]. The authors imple-
mented a movement ontology called OntoStrength to describe exercise
characteristics. The student module used this knowledge to update
the individual’s training components when performing workouts. This
required identifying parameters which influence training individualiza-
tion and mapping exercises to movement types and to difficulty levels.
However, the richness of the field made it impossible to map all param-
eters and they reported that this limitation could impact the system’s
reliability.

Most existing tools to teach motor skills do not follow the typical
ITS architecture described in figure 2.7. For example, one research
studied motor skill acquisition by changing the shape of training tools-
in this case, the diameter of a basketball hoop [200]. They configured
sensors and actuators to monitor a user’s performance and adapted the
difficulty accordingly. Other effective strategies include adapting the
motor task to the mental states of the learner, e.g. stress level [171] or
using real-time tactile feedback to supplement feedback from a teacher
[129].

Another way to train motor skills is game-based training. It can
provide feedback that is tailored to individuals’ skills, learning goals
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or preferences and can be done at home. Dynamic Difficulty Adjust-
ment (DDA) is a method in serious gaming which aims to optimize
the adaptation of task difficulty. This technique automatically adjusts
game parameters, scenarios, and behaviors in real-time based on the
learner’s ability. In rehabilitation, this approach involves sequentially
selecting the difficulty of tasks presented to the patient, ensuring they
are optimally challenged. Several approaches have been studied, for
example Reinforcement Learning to change game parameters [183],
heuristic search to determine the sequence of tasks which satisfy sev-
eral constraints [96], Bayesian approaches to adapt to the patient’s
capabilities [155] or Evolutionary algorithms to adapt the game’s dif-
ficulty [10].

Other works have attempted to model the movement being learned
to evaluate performance. Different approaches have been used, includ-
ing gesture recognition using machine learning [5, 221] or use of vir-
tual environments [52, 224] (see [176] for a more complete overview
of movement modeling in learning systems). To assess the learner and
provide feedback, the learner’s movement is usually compared to an
expert’s [140, 166]. Some systems have also modeled users’ bodies to
assess performance or have employed user profiles to adjust the feed-
back modality [129, 166].

2.2.3 Multi-Armed Bandits for human learning

To solve some of the problems listed in section 2.2.1 and 2.2.2 regarding
the challenges of using an RL framework to select tasks for human
learning, some works have used simplified RL frameworks. For example,
the Multi-Armed Bandit (MAB) framework supposes that there is only
one state in the environment. Thus, the transition function (or the
policy) need not be computed. In addition, online algorithms used to
solve the MAB can be fast to train compared to RL algorithms, if the
number of options to explore are not too large. MABs are based on
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an analogy for a slot machine with many arms, where each arm has
an unknown reward distribution (see figure 2.8. How can the highest
long-term rewards be obtained when the rewards are not known in
advance? Strategies to solve this problem involve different ways of
selecting an arm through exploration - learning which arms provide
the most rewards and exploitation - playing arms with high rewards
obtained so far, to maximize cumulative rewards. A naive approach is
to pull the same arm for a large number of trials to accurately estimate
its reward probability. However, this is not an optimal strategy and
does not guarantee the highest long-term rewards.

Fig. 2.8: Illustration of the Multi-Armed Bandit problem with 3 arms. The reward
distribution of each arm is unknown. The probability (y-axis) that each arm yields
an mean reward µ (x-axis) is estimated at each step. The problem consists of
determining how much each arm should be explored and exploited to maximize
long-term rewards.

Examples of bandit strategies include the ϵ-greedy algorithm and
the SoftMax algorithm. The ϵ -greedy algorithm selects the arm which
currently provides the highest reward and randomly selects an arm
the rest of the time. The expected future rewards are estimated by
computing an action value function, denoted as Q(a), which is the
expected return obtained for taking action a. To estimate the action
value Q of pulling an arm a, the past rewards for arm a are averaged
until time t as follows:
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Qt(a) = Sum of rewards when action (a) taken before time(t)
Number of times action (a) taken before time (t)

The Softmax algorithm is a more strategic way to assign proba-
bilities to each arm. It uses a softmax distribution of the Q values.
Compared to ϵ -greedy, which selects arms with a fixed probability de-
termined by ϵ, the SoftMax selects arms based on softmax probabilities,
which change based on the Q function. The Q function estimates the
value of an action. Based on these probabilities, arms with a higher
average reward are more likely to be selected (exploited).

P (a) =
exp(Q(a)

τ )∑|A|
i exp(Q(i)

τ )

where τ specifies the randomness of exploration, with higher values
tending towards uniform exploration and lower values tending towards
exploitation. The higher the Q-value of one arm, the higher its proba-
bility.

When applied to pedagogical action selection, each arm in the MAB
framework is analogous to a task, the reward is defined to maximize
the learning gains or other performance metrics for learners. Previous
work have framed adaptive learning as a MAB problem. The main idea
behind these works is that the learner should be challenged to his/her
skill level i.e., provided with tasks which are neither too easy nor too
difficult. This idea has several names, for example Scaffolding or Zone
of Proximal Development [202].

Clement et al. [44] used the MAB framework to select actions in
an intelligent tutoring system teaching kids how to count money. Using
the MAB allowed them to not rely too strongly on a cognitive model
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of learning - the algorithm computes estimates of the learner’s knowl-
edge directly through performance. The proposed algorithm, called
Zone of Proximal Development and the Empirical Success (ZPDES),
recommends tasks which the learner can do when provided with guid-
ance. ZPDES incorporates a Multi-Armed Bandit problem to select
tasks currently providing high learning gains. The algorithm computes
the reward as the learning progress on a given task. Thus, when a
task is already mastered or the learner is stuck on a task, the learning
progress and reward is very small. To reduce the number of activities
which need to be explored by the multi-armed bandit, the algorithm
is steered using a prerequisites graph, which defines the order in which
activities need to be visited.

Exploration is an important aspect of the algorithm- it enables the
estimation of the learning progress on tasks whose rewards are not
known or which have not been scheduled in a long time. The algo-
rithm has potential to schedule a range of task difficulties, whose im-
portance has been highlighted in the Intelligent Tutoring Systems and
the Motor Learning literature. For example, Neagu et al. [145] found
that allowing the bandit to explore a larger variety of exercises was
more motivating (more users were likely to complete the practice ses-
sions). Multi-armed bandits have also been used to help people practice
non-technical skills, such as simulated driving [169, 24] or to provide
adaptive feedback on gesture quality in a Calligraphy task [76].

After exploring how algorithms have been implemented for skill ac-
quisition, one question which remains is how to design effective learning
interaction with Machine Learning systems. In particular, we review
how knowledge can be transferred between humans and machines and
look at the human factors which should be considered during the inter-
action.
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2.3 Knowledge transfer between humans and
machines

Movement interactions are not always easy to design, since they can
be tacit and difficult to represent. Nowadays, a great deal of human
behavior is augmented by technology. Advances in Human Computer
Interaction allow gestural interactions and more intuitive interfaces,
which are personalized to conform to people’s needs. Machine Learn-
ing can be leveraged to avoid explicitly programming rules which define
the interactions. Building adaptive learning systems based on Machine
Learning may also allow greater interactivity, feedback and personal-
ization.

However, to ensure the effectiveness and long-term success of such
systems, human factors such as motivation, degree of user control and
users’ understanding of the system need to be considered. For example,
rehabilitation patients using a support system to move should have
the freedom to navigate, interact and make choices within the system
according to their capabilities and preferences.

We begin by exploring how to transfer knowledge between humans
and machines. In particular, we look at how humans have taught robots
to become more autonomous.

2.3.1 Teaching human skills to robots

In an attempt to understand how to transfer knowledge between hu-
mans and machines, we look at ways humans have taught robots to
become more autonomous. Recently, the human robot interaction field
(HRI) has shown increased interest in transferring skills of a human
teacher to a robot using Machine Learning techniques such as learning
from demonstration (LfD). Robot learning from demonstration (also



2.3 Knowledge transfer between humans and machines 39

known as imitation learning) is a method to make robots more au-
tonomous. Rather than requiring the user to program a desired behav-
ior, the user shows the robot how to perform the task. LfD makes use
of several observations of a human’s performance to teach a new be-
havior, with the goal of generalizing performance to new settings. For
example, Cakmak et al. [30] taught a robot the act of pouring through
an Active Learning framework, where the robot asked questions related
to the task and the human provided demonstrations through a haptic
device.

There are three main types of queries that the robot can use: la-
bel queries, demonstration queries and feature queries. Label queries
involve executing a motion and asking the human whether it was cor-
rect or not. Demonstration queries involve requesting a type of motion,
which the human then demonstrates. One way to request demonstra-
tion queries is through Active Class Selection, which involves requesting
an instance of a particular class [132]. Active Class Selection (ACS)
bears some resemblance to Active Learning (AL) in that both involve
collecting training data iteratively, based on some criteria. However,
they are fundamentally different in that ACS selects classes for which
new instances will be created, while AL directly selects instances to
label.

Another technique to transfer knowledge to a robot is Interactive
Reinforcement Learning (IRL). IRL settings require the human teacher
to provide feedback during training, which is used to speed up the train-
ing of the RL algorithm and generate an optimal policy. For example,
Koert et al. [110] conducted an experiment in which humans could
provide advice to teach a Reinforcement Learning agent to combine
skills for sequential robotic tasks.

When it comes to designing robots which learn from demonstra-
tion, Chernova et al. [39] provided some guidelines which could be
helpful to design adaptive learning systems. Among these guidelines,
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we explore some of these aspects in this thesis. For example, scaffold-
ing, i.e. organizing skills and building on simpler skills, can be more
efficient for learning. However, scaffolding is not straightforward, since
it first requires a ranking of tasks to be made if the task difficulty is
not clear. Scaffolding without ranking thus requires an exploration of
tasks and their performances before scheduling the most appropriate
tasks. The second aspect to be considered is transparency, i.e. the
system should being able to maintain an accurate mental model of the
learner’s knowledge. This is important to select suitable interventions.
Here the learner is a robot, but this also holds true for humans [44]. As
mentioned earlier, obtaining an accurate student model is a difficult en-
deavor. Another aspect to consider when designing the learning system
is whether to acquire training data in batch or online. Batch learning
uses the whole data to train a model periodically. Online learning trains
a model incrementally, with mini-batches of the data. This affects the
interaction with the system. For example, batch learning is a good
option for image classification, where data patterns remain constant.
Online learning is more adapted to cater for changes in patterns over
time, known as concept drifts.

We have seen that humans have acted as oracles and demonstrators
to teach robots. The reverse, i.e., the use of robots to teach humans
has been investigated in rehabilitation settings [88, 137, 66, 131] but
is less common in data-driven applications. An example is the design
of a robot to teach fine motor skills using Imitation Learning. [142].
However, the direct impact of this work cannot be measured since they
used simulations, which do not fully encompass the complexities of
real-world teaching scenarios.

We now look at the different roles that humans can play when in-
teracting with a machine learning system.
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2.3.2 Human-Machine Co-learning

Co-learning can be useful to improve both the human’s skills and ma-
chine learning. Co-learning is the simultaneous learning of human and
machine. In this framework, the human learns to perform a task, which
also involves a learning system. Both parties simultaneously adapt dur-
ing the task. Co-learning has been studied in the context of improving
human-AI team interactions, to build mutual understanding and adapt
mental models [99, 23]. The idea behind Co-learning in human-AI
teams is that human and machine should exploit their complementary
strengths to benefit each other. In such scenarios, sharing mental mod-
els, which can include the human’s emotional state, allows both parties
to effectively communicate their intentions and actions [23].

In the field of body-machine interfaces, the term Co-adaptation is
used to refer to the mutual evolution of human and machine to maxi-
mize performance and usability. In particular, Co-adaptation has been
explored in the context of prosthesis control and makes it possible for
machines to adapt according to human skill level or style [195]. For
example, Co-adaptative mechanisms for body-machine interfaces have
sought to provide consistent and stable control strategies by adjust-
ing the speed of adaptation of the algorithm to match the human’s
progress [91] or optimizing the machine’s actions to match the user’s
actions [53, 195]. Finally, in the context of learning motor skills, for
example teleoperation, Co-adaptation frameworks have been devised to
assist humans based on skill-level [77].

2.3.3 Human and Machine Initiative in Human-ML in-
teractions

While Machine Learning has great potential to design novel movement
interactions, using standard Machine Learning techniques involves chal-
lenges which can halt their use. Learning movement with the help of
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Machine Learning systems implies that the system should learn from
few data provided by humans. Training should be relatively short to
accommodate humans’ limited attention and physical abilities. To in-
crease user adoption of the system, movement interaction should also
be designed to balance control between the user and the machine.

Many machine learning models depend on data prepared by hu-
mans, but the interaction goes beyond data annotation. Some systems
allow for ongoing interaction between humans and machines through
a process called "Human in the Loop" (HITL). This process may in-
volve varying degrees of human and machine initiative in selecting or
crafting training instances. We describe the main HITL techniques be-
low, ranging from minimal control for humans through Active Learning
to more human initiative, through Interactive Machine Learning and
Interactive Machine Teaching.

Active Learning

Active Learning (AL) has been used to enhance performance of a ma-
chine learning model with a limited amount of training data. AL is a
paradigm which assumes the availability of unlabeled instances, which
a human will annotate. The instances to be annotated are queried
by a ML algorithm - the initiative comes from the learning algorithm.
The human is an annotator and does not correct the model’s output.
The machine learner selects training instances based on specific crite-
ria, such as uncertainty or diversity [184]. Given a budget for labeling
samples, AL can improve the accuracy compared to choosing samples
randomly.

Research in the context of human-robot interactions investigated
how to query the human to optimize learning or how to balance queries
and human initiative. Cakmak et al. studied how to teach robots
through different types of queries issued by the machine learner e.g.,
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selecting examples to demonstrate from a certain class vs labeling an ex-
ample from a certain class [32]. They also studied how sharing initiative
between the human and the machine learner impacts the interaction in
terms of preferences and learning outcomes [30]. The main finding is
that human-controlled Active Learning — where humans decide when
to receive queries from the system, was the most preferred interaction
method when training a robot to understand complex concepts. The
task involved recognizing objects, such as house or ice-cream, through
conjunctions of attributes such as color and shape of paper cutouts.
This strategy maintained user engagement while providing some de-
gree of control.

Interactive Machine Learning

Contrary to Active Learning, where the machine learning algorithm
takes the initiative, Interactive Machine Learning (IML) is a field of
research where the human selects or crafts data in each iteration of
the learning loop to update the machine-learning model. IML is the
result of joint research in HCI and ML, which aims to incorporate ML
workflows in user practices [172]. It allows both human and machine to
continuously learn in a tight loop and is a way to achieve Co-learning.

The aim of IML is to involve users in the model building process by
enabling them to iteratively tune training parameters, inspect model
outputs and provide feedback [63, 7]. IML is usually described in the
context of Supervised Learning, but can also involve other Machine
Learning techniques. IML systems typically make use of algorithms
which do not require large amounts of data or long training times [67].
The process of building Machine Learning models this way can be very
fast, enabling rapid iterations and adjustments to the system’s behavior
in real time.

Interactive Machine Learning has been used in various domains,
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including music [68], health [201, 98], and education [209, 222], to
alleviate standard Machine Learning problems. In the movement do-
main, IML has been used to design movement interactions by allowing
users to take actions through movement [81]. For example, Fiebrink
et al. [68] enabled users to control a given input (sensor glove) to pro-
duce sound. The user created a small number of training examples of
controller-sound mappings on the fly, to construct a training set. The
learning algorithm learned the mappings in a short time-span (a few
seconds) and the user could test the system using the new mapping
or keep adding new mappings. This enabled the user to interact with
the learning process of the Machine Learning algorithm and shape the
learning outcome through rapid exploration of controller-sound map-
pings.

Fiebrink et al. [69] highlighted that users were non-experts in
Machine Learning and they came up with their own ways to assess
the system based on their needs. For example, users can ask what
types of gestures can cause misclassifications instead of reasoning in
terms of accuracy. Thus, studying user interaction with IML systems
can provide new insights on users’ preferences and processes to design
or assess these systems. Other uses of IML techniques for designing
movement interaction include enabling users to train machine learning
models on real-time gesture demonstrations [95] or to interact with
virtual characters through movement [82].

Interactive Machine Teaching

Interactive Machine Teaching (IMT) is a subset of IML that focuses on
the teaching capabilities of the human. This research domain considers
humans as machine teachers who possess domain knowledge and can
provide feedback to steer the Machine Learning model during training.
The human teacher plans the curriculum and is responsible for convey-
ing knowledge to the learner. Any updates to the model are reviewed
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by the teacher. The teacher may update the curriculum based on feed-
back from the machine learner. This requires building a good mental
model of the machine learner. Figure 2.9 shows the actions taken by
the teacher in what is called the IMT loop.

Studies in IMT investigated human-machine interactions during
teaching. For example, Cakmak et al. studied teaching strategies which
result in near-optimal teaching [31] or how teaching guidance affects
the intuitiveness of the teaching task, the machine learning accuracy
and the teaching time [33].

Fig. 2.9: IMT loop. The human teacher plans the curriculum, explains knowledge
and reviews the machine learner’s state and model’s predictions. Adapted from
[165].

When teaching machines, humans are also impacted since the pro-
cess can shape the perception and reasoning of the human. They build
representations of how the system works, known as mental models of
Machine Learning, enabling them to predict the future actions of the
system. Understanding people’s perception and expectations of adap-
tive learning systems can lead to better designs and adoption of these
systems. The evolution of the user’s mental models when training Ma-
chine Learning systems has been studied in the context of recommen-
dation systems, [119], where it was shown that training users to un-
derstand the system’s reasoning helped them build a better system,
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fostering successful human-AI partnerships [16, 90, 107].

2.4 Summary

In this chapter, we discussed challenges of designing computational
tools and learning interventions for motor skill learning. They con-
cern difficulties in technical implementations as well as in designing the
interaction with the learner.

The vast literature on Motor Learning highlights which principles
can be used to design practice and the multiple factors which influ-
ence learning, such as skill level and motivation. This makes designing
interventions for each learner difficult.

The algorithms used should adapt to an individual in real-time,
preferably without requiring much historical data. While intelligent
tutoring systems have been vastly studied, they remain scarce for the
Motor Learning domain, since accounting for physiological processes
adds another layer of complexity. In particular, assessing the learner’s
movement and skill level to adapt learning tasks is not straightforward.

Studying Motor Learning principles may help design approaches
which speed up or improve motor skill acquisition for a specific learner.
In addition, to achieve this goal using computational approaches, we
study Interactive Machine Learning in the context of designing move-
ment tasks. Letting users interact with machine learning systems cre-
ates new challenges, such as the need to enhance the user’s mental
model, i.e. their ability to accurately predict the system’s behavior,
ensuring that their expectations align with the system’s actual func-
tionality. This can be especially important to improve the performance
of these systems and the chances that users will successfully adopt
them.
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In the next chapter, we present a study which investigates how
curricula can be designed automatically for motor skill acquisition.



Chapter 3

Interactive Curriculum-based
Learning to structure Motor
Learning

In this chapter, we study how theories and principles of learning can
be leveraged to adapt practice to the learner through computational
learning of a curriculum. This is a first attempt to study Co-learning,
where both the human learner and the system learn jointly through
interaction.

3.1 Introduction

Motor learning is a set of mechanisms through which one is able to
perform movements faster, better, and more accurately [59]. When
learning any motor skill, whether it is riding a bike, playing a musical
instrument, or perfecting a tennis serve, practice is essential for skill
development. Practice involves repeating a movement or skill multiple
times. Repetition enables the brain to encode and solidify the neu-
ral pathways linked to the intended action, known as muscle memory.
Beyond repetition, deliberate practice, which involves focused and pur-
poseful efforts to improve performance, is known to enhance Motor
Learning and skill acquisition. Nonetheless, the way practice should be
structured, i.e. setting goals tailored to the needs and skill level of each
learner, remains unclear [62].

In this research, the general problem that we attempt to address is
how to structure practice in real-time, i.e. select tasks for a learner with
the goal of improving or speeding up learning. Other factors, such as

48



3.1 Introduction 49

variability in practice and the environment (e.g. practicing indoors or
outdoors), can affect learning. Varying practice tasks has been shown
to improve long term performance, also known as retention [180]. Much
research has been conducted to understand the effects of varying the
task during practice on motor skill acquisition. The Contextual In-
terference (CI) hypothesis predicts the effects of varying the task on
performance and learning [186]. According to the CI hypothesis, in-
ducing variability in task order in ways that create interference (random
practice) can unintuitively facilitate learning and transfer skills [135]
compared to practicing the same task repeatedly before switching to
another task (blocked practice). Thus, while blocked practice yields
better performance during or immediately after practice, random prac-
tice yields better performance at retention tests.

This theory has been tested in implicit learning contexts [212],
applied to sports, such as executing a volleyball serve [198], practic-
ing music (the left-hand interval leap on the piano) [15] and learning
piano sequences following a tempo change during practice [34]. How-
ever, randomly varying motor tasks induces high levels of CI, alter-
ing the difficulty of the tasks without considering the skill level of the
learner. Moreover, some research has demonstrated the negated effects
of random practice in certain conditions - when the motor skill is com-
plex [26, 8] and when the skill level is poor [93]. Thus, the conditions
under which CI is beneficial to learning are not obvious. In this chap-
ter, we focus on how to select the next task to practice, based on the
interaction between task difficulty and the learner’s skill level.

Our objectives in this work are twofold: (1) develop an approach
to select tasks which are adapted to skill level and (2) propose tasks
interactively and incrementally, based on previous performance. To
this effect, we conducted a study which explores an approach we call
Curriculum-based learning. Our goal is to automatically create curric-
ula by letting the algorithm make a sequence of decisions.
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We evaluate the benefits of such an approach on learners’ acquisition
and retention performance. In particular, our research aims to answer
the following questions: (i) How can we design algorithms which adapt
to the learners’ skill level?

(ii) How can adaptive scheduling help a learner develop motor skills?

Previous work in adaptive learning has shown that proposing tasks
which provide high learning progress can improve performance [44].
Furthermore, previous research in Motor Learning [41, 203] suggest
that measuring the skill level of the learner to propose tasks may im-
prove performance compared to a random practice. We hypothesized
that by selecting tasks which provide high progress rates to the learner,
curriculum-based learning would help learners achieve better perfor-
mance than a random practice when tested immediately after training
and that it could have better or comparable performance at reten-
tion. Then, since curriculum-based learning considers the performance
of learners over time, we conjectured that it could outperform other
state-of-the-art adaptive practices which only consider performances
from a previous practice session to schedule tasks.

This chapter is structured as follows: section 3.2 reports previous
work on adaptive learning and curriculum-based learning. Section 3.3
presents the data collection process of the study. Then we report the
results in section 3.5. We discuss these results in the remaining section.

3.2 Related work

To motivate the lines of inquiry presented in the next section, we first
highlight findings from the current literature on learner-adaptive ap-
proaches for structuring motor learning sessions.
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3.2.1 Learner-Adaptive approaches

Theoretical research in Motor Learning has investigated the role of task
order on motor skill acquisition. For example, one common finding is
that increasing the amount of task switching leads to better learning.
At the same time, models have been developed to explain and predict
the relationship between task difficulty, skill level and performance.
Recent research on adaptive learning has leveraged these results to
design practice schedules.

Adjusting the level of task difficulty appears to be a crucial factor
to meet the learner’s requirements during practice [64, 6, 214]. As
underlined by many researchers [149, 42, 139], learners should face op-
timal levels of difficulty or challenge to enhance retention of skills. In
particular, many adaptive algorithms follow the recommendations of
the challenge point framework [87]. According to this framework, the
optimal challenge is expected to evolve throughout the learning process,
as learners become more proficient at processing information. Conse-
quently, this framework suggests that the drawbacks associated with
random practice i.e, decreased skill acquisition rate, can be overcome
by tailoring practice schedules to the learner.

Learner-adaptive algorithms leverage data and feedback from the
learner to tailor educational activities and interactions, thus optimizing
the learning process. These algorithms use metrics such as performance
scores or errors to assess learning. For example, the win-switch, lose-
repeat paradigm is a performance adaptive schedule where the learner
switches tasks based on their performance [189]. When a learner in this
schedule achieves success, they switch to a different task. On the other
hand, a failure results in repetition of the task. The results showed that
the win-shift-lose-stay strategy was comparable to random and blocked
practice in terms of acquisition and retention in a key-press timing task.

Another study introduced an algorithm capable of assessing the
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difficulty of tasks by analyzing the average performance errors made
by learners in a preceding training session. In the work of Choi et al.
[42], the number of practice trials per task was adjusted accordingly,
assigning more trials to tasks exhibiting lower performance in a previous
session. Thus, scheduling was based on heuristics and was determined
after performance on a retention test was available. This study found
that adjusting the number of trials based on previous retention data,
results in superior learning compared to random practice. In particular,
the number of trials for a task i is computed as follows:

ti = min(max(n× ei, n× a), n× b)

where n is the total number of trials for all tasks, ei is the normalized
performance error (between 0 et 1) for task i, and a and b are the
maximum and minimum number of trials per task. The trials were
then allocated randomly across blocks to create a sequence of tasks
with the least number of repetitions.

In a more recent study, personalized challenge points were computed
to adapt practice of a shape pairing task [203]. The challenge points
corresponded to the mean reaction time values in each phase of motor
learning (cognitive, associative and autonomous [71]) for an individual
and were extracted in a prior study. These challenge points were then
used to adapt task difficulty in a computer-controlled schedule. In
particular, three difficulty levels were created, based on the challenge
points extracted during each motor learning phase, in particular a high,
medium and low difficulty. They hypothesized that practicing with a
high difficulty condition (as expected during the cognitive stage) would
provide the best retention results. The challenge points were used as
a threshold to switch to a new sequence. The authors found that the
high difficulty condition, which also results in more switching, resulted
in significantly faster reaction times than the low difficulty condition.
They concluded that adaptive practice, when coupled with high levels
of contextual interference improves motor learning compared to low
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levels of contextual interference, and does not deteriorate acquisition
performance.

3.2.2 Generating learning curricula

Research in cognitive science has investigated the interest of using
a curriculum-based learning approach to structure practice sessions.
Curriculum-based learning involves organizing the learning process based
on the learner’s skills, e.g. by proposing simple tasks before introduc-
ing more complex ones. Generating a sequence of tasks which will
maximize a humans’ performance has been explored in Intelligent Tu-
toring Systems. To select pedagogical actions based on unknown learn-
ing gains some works have framed the problem either as Multi-Armed
Bandits (MAB) [44, 182] or as Reinforcement Learning [100, 163, 18].
Multi-Armed Bandit problems uses a simple Reinforcement Learning
setting. Only one state of the environment is available. MABs are com-
monly used in decision-making processes where the rewards of compet-
ing choices are not known in advance. They allow learning task-specific
reward distributions in a discrete task space. No domain knowledge of
the problem is required to use MABs and training time can be fast
compared to approaches based on Markov Decision Processes which
train on data from student populations [163]. This makes it suitable
for interactive Pedagogical Action Selection (PAS) scenarios.

One notable work in automatic curriculum-based learning involves
the implementation of an intelligent tutoring system to teach kids how
to count money [44]. The algorithm in this work was inspired from
a pedagogical theory called the zone of proximal development (ZPD).
It recommends tasks which the learner can do when provided with
guidance. The algorithm computes learning gains by assessing learning
progress on a given task. The goal was to propose an activity currently
providing high learning progress. A task which is already mastered or
not possible to solve results in a low learning progress, and thus has
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a low probability of being selected. The Multi-Armed Bandit strategy
used was Exp4 [13], which accounts for the non-stationarity of learning.
This means that the reward distribution changes over time, since the
learning gains of a task change over time.

3.3 Method

In this study, we investigate the potential benefits of using a curriculum-
based learning approach to create variable, but learner-adapted prac-
tice.

We conducted a between-subject experiment which lasted two days,
where participants had to execute a visuo-motor task (originally de-
signed by Shmuleof et al. [187]). It involved performing wrist move-
ments to move a cursor in a channel.

All experimental procedures were approved by the Ethical Research
Committee of Sorbonne university. All participants gave informed con-
sent prior to participating in the study. The experiment was performed
in accordance with relevant guidelines and regulations.

3.3.1 Task

The chosen motor task involved performing wrist movements with a
cursor while keeping the projected 2D trajectory of the cursor inside
a channel of a certain width, which appeared on screen. Figure 3.1
depicts the experimental task. Wrist movements controlled a cursor
visualized on a screen placed in front of the participant. At the start of
each trial, the participant placed the cursor inside the left circle of the
arc-channel (Figure 3.1). Once inside the small circle, an audio as well
as a visual signal (the circle turns green) indicated to the participant
that they could start to perform the movement. The participant drove
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the cursor inside the right circle through a wrist movement, and there
was no visual feedback on the trajectory prior to reaching the right
circle. Once the right circle is reached, the participant received visual
feedback on the quality of the trajectory: the trace of the trajectory was
black if it was inside the channel and red otherwise. Performance scores
were not displayed during the experiment. Movement time, designated
as MT in this paper, was constant; the start and end times of the
movement were indicated by an audio signal. To change the difficulty
of the task, we varied the channel width (Figure 3.2), while the length
of the channel remained constant. There is a theoretical foundation
for this task, called the Steering law, discovered by HCI researchers
Johnny Accot and Shumin Zhai [3]. This law is a corollary of Fitts’s
Law and used in the particular case of steering tasks. It predicts the
instantaneous speed for navigating a channel and the total time to
complete the task. The Steering Law has been used to model the time
taken to complete tasks, such as how to navigate hierarchies of menus
on a desktop applications or manipulations in Virtual Reality [219].

The Steering Law is expressed as:

T = a + b
L

W

where T is the time taken to navigate the channel, L is the length of
the channel, W is the width of the channel and a and b are empirically
determined constants.

3.3.2 Performance metrics

• Accuracy In the Motor Learning literature, movement execution
is usually assessed through two distinct variables: speed - move-
ment time (MT) and accuracy [187]. Skill acquisition is usually
characterized as an increase in accuracy and/or smaller movement
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Fig. 3.1: The steps involved in a trial of the experiment. After the leftmost circle
turned green, the participant could start tracing the trajectory using the cursor.
The participant’s goal was to try to keep the trajectory within the channel and stop
in the rightmost circle. The visual feedback of the trajectory was represented by a
red trace if the trajectory was outside the channel and black otherwise.

Fig. 3.2: Two examples of the task seen during training. The width of the channel
was modulated to change the difficulty.

time. We defined the measure of accuracy of the movement as the
proportion of trajectories which were within the channel (called
the In-Channel fraction (ICF)), bounded between zero and one.

• Movement Smoothness We evaluated the movement jerk as a
secondary metric. This metric has been used to evaluate motor
learning before [187, 34]. According to the minimum-jerk model
hypothesis [72], the motor system aims for maximum smoothness
of end point movements. The jerk, defined as the quantity of
acceleration variation, is a kinematic parameter used to assess
the smoothness of movement [170]. It should be minimal when
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a motor skill is acquired. Following this model, we expect the
movement smoothness to increase after training.

3.3.3 Participants

We recruited 36 participants, among which 21 identified as male, 14
as female and 1 as a non-binary. We counted 3 left-handed and 33
right-handed participants. The participants were aged between 18–24.
They reported not having any motor or cognitive disabilities. They
were recruited either on the campus of Sorbonne University or through
a mailing list. Prior to participation, the participants signed a consent
form and could request to stop the experiment any time.

3.3.4 Apparatus and setup

Figure 3.3 illustrates the experimental setup. The participants were
seated at a table equipped with a motion capture system and a screen.
Participants placed their non-dominant hand through a splint which
was adapted to the size of their wrist for comfort. The splint was used
to limit the movements of the forearm to supination, so that the x and
y coordinates on the screen were mapped to wrist flexion–extension
and radial–ulnar deviation respectively. The participants were also
equipped with a cursor in the form of a marker pen, on which was
placed a reflective marker. With the marker in the hand, the partici-
pant had to trace a path on screen while trying to maintain the path
inside the channel. The participant’s movement was captured by an
infrared camera (Optitrack v120) and was drawn on screen to provide
visual feedback after each trial. Finally, an audio signal indicated that
the allocated movement time was over. We implemented the applica-
tion using the Marcelle library [74],a modular open source toolkit for
programming interactive machine learning.
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Fig. 3.3: Setup and apparatus used in the study. The participant’s forearm was
placed in a splint. The participant traced a path using a marker, which was captured
by an infrared camera. The marker controlled a cursor displayed on screen.

3.3.5 Conditions

In this section, we present the three scheduling conditions tested in
this study. In the next sections, these conditions will be referred to as
Condition, to connote the type of training.

Curriculum-based Learning (CL) This condition implements
the scheduling algorithm described below.

Given 7 tasks (of various difficulty levels), the problem consists
of selecting a task in real-time, with a suitable level of difficulty for
the learner given his/her learning progress. We implemented a Multi-
Armed Bandit (with K = 7 arms) to both explore tasks and select tasks
which are currently providing the best learning progress. We computed
the reward as the absolute difference between the performance score of
the previous and current (consecutive) blocks of the same task. Hence,
the reward is a measure of the learning progress of the learner on each
task. It is computed in the same way as Clement et al. [44] except that
the binary variable to denote success or failure on a task is replaced
by the performance Perf on that task. In particular, the measure of
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performance used to compute the reward is the In-Channel fraction
(ICF).

Using a SoftMax strategy, we favor the selection of tasks currently
providing high learning progress. The steps for selecting one task are
described below. In particular, in step 3, a minimum of 2 x d trials
of all tasks were completed by learners before the weight for that task
was first updated. The update in step 4 tracks the estimated reward
of the scheduled task. The parameters β and η balance the impor-
tance given to the previous estimate and the actual reward (learning
progress) obtained for the scheduled task. After a pilot test, we found
that an exploration parameter value γ = 2 provided suitable proba-
bility distributions. The values of β and η were set to 0.5, to weigh
estimated rewards and actual rewards equally. The weights of the Soft-
max function are set to 0.1 for all actions, to ensure small updates of
the estimated rewards. Formally, we can write the algorithm as follows,
where t is the current task being considered, n is the number of trials
completed, K is the number of tasks, wt is the estimated reward for
each task and γ, β, η are the weights.

• Step 1. The vector wt is initialized.

• Step 2. The probability distribution of estimated rewards for task
t, is computed as follows :

P (t) = exp(wγ
t )∑K

1 exp(wγ
t )

• Step 3. Select task t proportionally to P(t)

• Step 5. The reward r is the absolute difference between the last
d trials and the previous d trials of the same task. Perfi is the
performance on a task at time i.

r =
n∑

i=n−d

Perfi

d
−

n−d∑
i=n−2d

Perfi

d
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• Step 6. The vector wt is updated:

wt = βwt + ηr

• Go back to step 2

Error adaptation (EA) This condition is an adapted version of
the algorithm [42] described in section 3.2.1, which schedules tasks
with the worst performances by adapting the number of trials. The
algorithm does not consider how learner performances evolve during
practice.

In the original protocol, the tasks were scheduled by estimating per-
formance based on a long-term retention test as well as a more recent
test preceding practice. Since we do not have retention data from pre-
vious sessions, we estimated performance in the first few trials during
practice. Thus, we determined the number of practice trials after the
pre-test, according to the performance error (Error = 1 - performance).
To avoid allocating too many trials to one task, a minimum and max-
imum proportion of trials was fixed. We adapted these limits to the
number of tasks in our experiment by multiplying the proposed pro-
portions of Choi et al.[42] by a factor of 4/7, where 4 is the number of
tasks in Choi et al.’s experiment. Hence, we came up with these num-
bers: minimum proportion of trials = 7.15% and maximum number of
trials = 36.3%. The number of trials was adjusted according to the
performance error while satisfying the above proportions:

Ni = min(max(N × Ei, N × 0.0715), N × 0.363)

where Ni is the number of trials for the task i, and N is the total
number of trials for all tasks, Ei is the normalized performance error
for the task i.
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Random This condition is a baseline strategy commonly used in
the literature [135] to illustrate the advantages of contextual interfer-
ence for scheduling tasks. All blocks (each block consisting of 4 trials
each) were pseudorandomly shuffled for each participant.

3.3.6 Procedure

The participants took part in two separate sessions on two consecutive
days: training (day 1) and retention-transfer (day 2). The two sessions
were separated by 24 hours. We adopted a between-subject design with
three conditions. We assigned the participants randomly to one of the
three condition, so that there were 3 groups of 12 participants.

The first session (day 1) lasted 45 minutes on average and consisted
of 5 phases: familiarization, pre-test, calibration, training and post-test.
All blocks of the first session had 4 trials. The second session lasted
15 minutes on average and had 2 phases: retention tests and transfer
tests. All the blocks of day 2 had 12 trials. Figure 3.4 illustrates the
procedure. We describe the different phases below.

• Familiarization: This single block task was designed to help
participants get familiar with the task. It involved tracing a tra-
jectory in a channel which was 75 pixels wide and had a diameter
of 800 pixels, within 1 second (MT=1sec).

• Pre-test: A pre-test measured the baseline performance of par-
ticipants before training. It comprised 3 blocks of 4 trials and
participants had to trace a trajectory in a channel which was 18
pixels wide and had a diameter of 800 pixels, MT=1sec.

• Calibration This phase had 7 blocks and was included to ensure
that participants trained on all the 7 widths of the channel, irre-
spective of the scheduling algorithm. This was necessary for the
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Error adaptation condition, where the tasks to be scheduled de-
pends on the performance on each task during the pre-test phase.

• Training The training phase consisted of 84 blocks of 4 trials
each. The arc channels had the following widths: 25, 30, 35,
40, 45, 50 and 55 pixels. The length (diameter) of the channel
was fixed to 800 pixels during this phase, and MT = 1sec. The
practice schedule depended on the condition assigned to the par-
ticipant.

• Post-test The post-test consisted of 3 blocks of the same task
seen during the pre-test. The goal of this phase was to verify the
effect of each condition on performance.

• Retention Retention tests consisted of 2 blocks of 12 trials each,
conducted 24 hours after training. The task parameters were the
same as those of the pre-test and post-test, i.e. a 18 pixels wide
channel with diameter 800 pixels and MT= 1 sec.

• Transfer The Structural Learning theory [27] posits that induc-
ing variations randomly during training of a motor task facilitates
learning of other motor tasks sharing the same structure as the
original. The goal of this phase was to test how variations in-
duced by the training condition affect the generalization of skills
to similar tasks. This phase consisted of 5 blocks of 12 trials. We
changed the length (diameter) of the channel and the movement
time indicated to participants to complete a trial. The width
remained constant. Each block is a combination of a unique
diameter (D) and movement time (MT) as follows : Block 1 :
D = 600px, MT = 1s; Block 2 : D=400px, MT=1s; Block 3 :
D=800px, MT=0.7s; Block 4 : D=600px, MT=0.7s; Block 5 :
D=400px, MT=0.7s.
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Fig. 3.4: Experimental procedure. The first session (day 1) lasted 45 minutes on
average and consisted of 5 phases : familiarization, pre-test, calibration, training
and post-test. All blocks of day 1 comprised 4 trials. The second session (day 2)
lasted 15 minutes and comprised 2 phases: retention and transfer.
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3.4 Data Collection and Analysis

In order to analyze the movement data, we chose two metrics: the por-
tion of the trajectory which is inside the channel (In-Channel Fraction
(ICF)) and the smoothness of the movement Movement jerk (Jerk)).
Participants were told that these two measures were equally important:
they were instructed to perform smooth movements and try to remain
within the channel for all trials of the experiment.

• Accuracy analysis (ICF) The performance measure is the In-
Channel fraction (ICF), defined as the proportion of movements
in the channel, bounded between 0 and 1. Hence, ICF values close
to 0 indicate that the movement was poor, while values close to 1
indicate good performance. Performance error is computed as the
complement of the ICF (1-ICF). To compare the effect of practice
on trajectory, the block mean and variance were computed (over
all trials in a given block) per participant before and after prac-
tice. This allows comparison of mean trajectory and trajectory
variability at pre-test and post-test.

• Movement analysis (JERK) We began by filtering the raw
data. We applied a third order Savitzky-Golay filter of degree 3
polynomial, taken from the Scipy signal library 1 to each of the x
and y position data respectively. The jerk was then computed as
the sum of the squares of the filtered data along each dimension
to obtain a single value.

The datasets used in this study are available on Zenodo 2.
1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.savgol_filter.html
2https://doi.org/10.5281/zenodo.7824331
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3.5 Results

In this section, we present results obtained for each phase of the ex-
periment. In order to designate each phase of the experiment, we will
use the following terms : Phase, which was either Pre-test, Post-test,
Retention or Transfer-x, where x is between 1 and 5 to designate dif-
ferent channel diameter and movement time. The specificities of each
task are listed in Table 3.1.

Phase Movement Time Channel Diameter
Pre-test 1.0 s 800px
Post-test 1.0 s 800px
Retention 1.0 s 800px
Transfer-1 1.0 s 600px
Transfer-2 1.0 s 400px
Transfer-3 0.7 s 800px
Transfer-4 0.7 s 600px
Transfer-5 0.7 s 400px

Table 3.1: Phases of the experiment and the corresponding task specifications:
movement time and channel diameter.

The movement onset and end were indicated by an audio signal. In
order to rule out the possibility that larger movement times yielded bet-
ter performance, we began by analyzing whether movement time was
comparable between participant’s performances per phase. We con-
ducted a one-way ANOVA with Condition and relative Movement
Time taken by participants assigned to each condition. There were no
significant differences between conditions for the Post-test (F (2, 105) =
0.190, p = 0.826), Retention (F (2, 69) = 0.572, p = 0.567), or transfer
tests (Transfer-1 (F (2, 33) = 0.084, p = 0.920), Transfer-2 (F (2, 33) =
0.340, p = 0.714), Transfer-3 (F (2, 33) = 0.475, p = 0.626),Transfer-4
(F (2, 33) = 0.034, p = 0.967),Transfer-5 (F (2, 33) = 2.165, p = 0.131)).
Thus, the conditions were comparable in terms of time taken to perform
the movement.
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3.5.1 Assessment of the impact of practice schedule on
movement accuracy

We began by assessing their In-Channel Fraction (ICF) performance,
i.e. the portion of the executed trajectory that is traced within the
channel at pre-test. To analyze whether the initial performance be-
tween conditions is comparable, we conducted a two-way ANOVA with
practice Condition and Phase (pre-test and post-test) as indepen-
dent variables and ICF as dependent variable. We found no significant
difference in the mean ICF between the three conditions considered in
the study (p=0.60), but a significant effect of phase (pre-test, post-test)
(F (1, 210) = 83.2, p < 0.0001, η2 = 0.28) and no interaction (p = 0.08).
In other words, the type of training does not seem to have an influ-
ence on the performance of the participants measured via the ICF. A
T-test between the aggregated means for these two phases(pre-test and
post-test) shows a significant difference (p < 0.001), where the means
are µICF = 0.42 at pre-test and µICF = 0.55 at post-test. Therefore,
performance increased between these two phases, confirming a motor
learning mechanism in participants.

We then analyzed whether retention performance differs across con-
ditions. An ANOVA with Condition as the independent factor and
ICF as the dependent variable shows no significant difference. In other
words, the type of condition has no influence on ICF performance at
retention. If we study the difference in performance between the pre-
test, post-test, and retention phases with a one-way ANOVA, we ob-
serve that the phase has a significant impact on ICF (F (1, 105) = 46.2,
p < 0.0001, η2 = 0.25). Tukey’s test shows that ICF values are higher
at post-test than pre-test (p < 0.001) and retention (p < 0.001) but
there is no difference in ICF between retention and pre-test (p = 0.16).
, see Figure 3.5.

For the transfer tasks, we analyzed whether performance in terms
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of ICF depends on the conditions and the type of transfer. A two-
way ANOVA with Condition and Transfer (Transfer tasks 1-5) as
factors and ICF as the dependent variable shows a significant effect of
the type of Transfer on ICF (F (1, 105) = 14.9, p < 0.0001, η2 = 0.24)
but not the Condition (p = 0.07). Tukey’s test shows that ICF does
not significantly vary when the movement time decreases from 1.0 to
0.7, but significantly varies between transfer tasks where the diameter
changes from 800px to 400px (p < 0.001 for each pairwise comparison)
and from 800px to 600px (p < 0.01 for each pairwise comparison), but
does not vary when diameter changes from 600px to 400px.

Fig. 3.5: ICF at pre-test, post-test and retention. The error bars show the confi-
dence intervals.

3.5.2 Assessment of the impact of practice schedule on
movement smoothness

We also evaluated the movement smoothness by computing the jerk; the
third derivative of the movement, integrated along the trajectory [187,
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72]. A two-way ANOVA with Condition and Phase (pre-test, post-
test) as independent variable and Jerk as dependent variable shows
an effect of condition (F (2, 105) = 4.60, p = 0.01, η2 = 0.04) and
phase (F (1, 105) = 226.7, p < 0.0001, η2 = 0.52) and no interaction
(p = 0.42). A post-hoc analysis with Tukey’s test (with 95% confidence
level) at pre-test shows that there is no significant difference in mean
movement jerk between practice conditions. A similar test performed
at post-test shows that the mean JERK for curriculum-based learning
is significantly lower than the random condition ( p = 0.03). On the
other hand, there is no significant difference between the random and
error-adaptation condition (p = 0.71).

In the retention test, the task parameters were the same as those
of the pre-test and post-test (i.e. a channel of width 18 pixels, diam-
eter 800 pixels, and movement time 1s). A similar analysis taking the
Jerk of the movement as the dependent variable shows no significant
difference between the conditions on the value of the average JERK
at retention (p = 0.24) . Moreover, if we compare the average JERK
values of the pre-test, post-test and retention phases using a one-way
ANOVA, we observe that phase has a significant effect on the JERK
value (F (1, 105) = 108.1, p < 0.0001, η2 = 0.44) (see Figure 3.6). A
Tukey’s test shows that the JERK value is significantly lower at post-
test than pre-test (p < 0.001) and retention (p < 0.001). The JERK is
also smaller at retention than at pre-test (p = 0.037).

In the transfer tests, the diameter of the channel and movement
times were modulated while the channel width remained constant. In
particular, each transfer test was a combination of a unique diame-
ter (D) and movement time (MT) as follows: (D=600px , MT=1s),
(D=400px, MT=1s), (D=800px, MT=0.7s),(D=600px, MT=0.7s), (D=400px,
MT=0.7s).

For the transfer tasks, a two-way ANOVA with Condition and
Phase (Transfer tasks 1-5) as factors and Jerk as the dependent
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Fig. 3.6: JERK at pre-test, post-test and retention. The error bars show the
confidence intervals.

variable shows that these two factors also have a significant impact
on the Jerk ( F (1, 105) = 28.7, p < 0.0001, η2 = 0.38 for phase,
F (1, 105) = 7.1, p < 0.01, η2 = 0.06 for Condition) and no inter-
action ( p = 0.99). A post-hoc analysis using Tukey’s test shows that
there is no difference in terms of movement smoothness between the
random condition and error adaptation condition (p = 0.89) but move-
ment smoothness is significantly lower for curriculum-based learning
condition (p = 0.014 for the comparative test with the error- adapta-
tion condition and p = 0.047 with the random condition). In addi-
tion, movement smoothness also significantly varies when the diameter
varies (p < 0.01 for changes between 800px to 600px or 400px and
p < 0.05 for changes between 600px to 400px, independently of move-
ment time). Thus, we obtain smoother movements for curriculum-
based learning than the random condition and the error-adaptation
condition at transfer and a decrease in movement smoothness for longer
trajectories. These results are shown in Figure 3.7.
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Fig. 3.7: JERK performance at transfer. The error bars show the confidence
intervals.

Finally, in Figure 3.7 we observe a difference in jerk variance be-
tween conditions for the test phases. Thus, we plot the standard de-
viation of JERK performance across participants for each condition.
Specifically, we compute standard deviations of trials for each condition
and phase (post-test, retention and transfer). A one-way ANOVA with
Condition as the independent variable and Standard deviation as
the dependent variable shows that the condition has a significant impact
on the standard deviation of the JERK (F (2, 18) = 4.97, p < 0.019).
Tukey’s post-hoc test shows that the curriculum-based learning condi-
tion leads to a lower JERK standard deviation than the error adapta-
tion condition (p = 0.029) and, and the random condition (p = 0.035)
see Figure 3.8. Thus, curriculum-based learning has the smallest jerk
variability (M = 121.22, SD = 49.55) compared to the error-adaptation
(M = 216.34, SD = 82.79) and random conditions (M = 202.91, SD =
43.46).
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Fig. 3.8: Variability of the JERK for each practice condition. The error bars show
the standard deviation of the JERK standard deviation.

3.5.3 Investigating learning schedules and rates

To study the task schedules for each condition on learning, we counted
the number of blocks of each width (25px to 55px) allocated in the
two conditions: error adaptation and curriculum-based learning (the
random condition leading, by design, to an equal number of task tri-
als per width). Figure 3.9 depicts the results, with the count of the
number of blocks on the y-axis and the task width on the x-axis. We
analyzed whether the number of task blocks differed between width
for each condition. We conducted a two-way ANOVA with Chan-
nel Width and Condition as independent variable and Count as
dependent variable. We found a significant effect of width on count
(F (1, 164) = 27.6, p < 0.001, η2 = 0.14) and a significant interaction
between width and condition F (1, 164) = 29.1, p < 0.001, η2 = 0.15.
Therefore, we applied pairwise t-test between condition for each width
(with Bonnferoni correction) and found that there were significantly
more blocks with width 25px in the EA condition compared to CL con-
dition (p = 0.0013) and there were significantly more blocks with width
40px in curriculum-based learning compared to the error-adaptation
condition (p = 0.0019). This means that on average, compared to
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the participants assigned to the error-adaptation condition, curriculum-
based learning participants practiced a larger number of low and inter-
mediate difficulty tasks. However, a similar analysis at the start of
practice (first 10 blocks) shows no difference between the two condi-
tions either in terms of Channel Width (p = 0.39) or Condition
(p = 0.94).

Fig. 3.9: Count of tasks during practice for curriculum-based learning and error-
adaptation conditions. The error bars show the standard deviation of task count.

To investigate how movement smoothness evolved during training,
we computed JERK over the training blocks (blocks 4 - 94). Figure
3.10 shows the average movement jerk over training blocks. Perform-
ing an ANOVA yields a significant difference between conditions (p
< 0.001) in the final 10 training blocks. Tukey’s post-hoc tests show
that curriculum-based learning has lower JERK values over the last
10 blocks of training compared to the error adaptation (p = 0.013) or
random condition (p < 0.0001).

To investigate the level of contextual interference for each condition,
we computed the number of task switches for each participant of each
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Fig. 3.10: Average JERK over training blocks. The error bars show the standard
deviation of the JERK.

condition. An ANOVA with Condition and Number of switches
shows a significant influence of Condition. A post-hoc analysis using
Tukey’s test shows that the curriculum-based learning condition has a
lower number of switches than the random condition ( p < 0.01) as well
as the error adaptation condition ( p < 0.01). There were no significant
differences between the other two conditions.

We also inspected the learning rates for each condition. To measure
the learning rate of each task during practice, we performed a linear
regression of the log-transformed ICF and Jerk values. An ANOVA
with Condition as factor and ICF learning rate as the depen-
dent variable shows no significant difference. Thus, neither the type
of task nor the practice condition had an impact on the rate of learn-
ing when measured in terms of ICF. We then conducted a similar test
with JERK learning rate as the dependent variable and it shows
that there is a significant impact of Condition ( F (2, 231) = 6.55, p =
0.0017, η2 = 0.05). A post-hoc analysis using Tukey’s test shows that
learning rates for curriculum-based learning is significantly higher than
both the random condition (p = 0.003) and the error adaptation con-
dition (p = 0.009). Figure 3.11 reports the mean learning rates per
condition together with their confidence intervals.
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Fig. 3.11: Learning rates for the JERK across conditions. The error bars show the
standard deviation of JERK learning rate.

3.6 Summary

The main aim of the present study was to investigate the effects of
adapting the task difficulty based on a strategy which adapts the learn-
ing schedule in real-time using machine learning techniques. We com-
pared three strategies, as follows (i) error adaptation, which sched-
uled a larger number of tasks with the worst performances and (ii)
curriculum-based learning, which scheduled tasks currently providing
a larger increase in movement accuracy and (iii) random practice. Our
results show that the adaptive practice conditions yield comparable
performances to the random practice in terms of movement accuracy
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when evaluated immediately after practice and when tested for trans-
fer tasks. On the other hand, participants assigned to the curriculum-
based learning condition demonstrated smoother movements immedi-
ately after practice and when tested for generalization, than those as-
signed to the random condition. Finally, we did not find any difference
between conditions when tested on day 2, for retention.

3.7 Discussion

In this section, we discuss the results reported earlier in terms of ac-
quisition performance, retention and transfer performance. We also
discuss the limitations of this study.

3.7.1 Impact of practice schedule on acquisition perfor-
mance

The lower JERK performance of the adaptive conditions compared to
the random condition suggests that adaptation of the difficulty based on
skill level could be an important factor for decreasing movement effort
and improving movement efficiency. In general, these results are in line
with findings of other studies on learner-adaptive practice [42, 189],
i.e. performance is better when practice is adapted to the learner than
when tasks are scheduled randomly.

Executing smoother movements after practice can be seen as a result
of trajectory optimization, which leads to skill acquisition [161, 187].
This definition of skill acquisition also suggests that smoother move-
ments are a result of reduced effort to perform the movement. A lower
jerk value suggests that participants assigned to the curriculum-based
learning condition were closer to reaching a proficient skill level than
participants assigned to the random condition.
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While the adaptive schedules were created based on the movement
accuracy metric (ICF), we found differences between conditions only
when we assessed the movement smoothness (JERK). One interpre-
tation is that because participants assigned to the Curriculum-based
learning condition were provided with tasks of larger widths on aver-
age, this could have made tracing smoother paths easier. To better
understand the implications of these results, future work should inves-
tigate the movement smoothness as a metric for motor learning. In
particular, it would be interesting to investigate what strategy partic-
ipants used to improve movement smoothness, e.g. did they learn to
trace the arc shape and then increase the smoothness or the other way
round?

3.7.2 Impact of practice schedule on retention and trans-
fer

Results for retention, on day 2, showed that the type of practice did
not have an effect on either the ICF or the JERK. Our interpretation is
that this effect could be due to our choice of test task, which was more
complex than those presented during the practice phase. Retention
tests in other studies usually involve tasks which have already been
practiced. However, in this study, the adaptive conditions scheduled
some tasks more than others. Testing a task which has been practiced
would mean that some participants would have practiced this task more
often than others. A longer delay between training and testing could
resolve this problem.

In addition, benefits of adaptive practice compared to random prac-
tice in terms of retention have not been observed in this study. However,
since the advantages of random practice are less unanimous in applied
tasks [26, 8], this calls for more investigations on adaptive learning in
these settings.
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We tested transfer capabilities on the next day by modulating either
the diameter of the channel or the movement time, or both. While dif-
ferences between conditions were not observed in terms of movement
accuracy, there were differences in movement smoothness. In partic-
ular, curriculum-based learning outperformed the other conditions in
terms of movement smoothness. There were no differences between
the other two conditions. According to the Structural Learning the-
ory [28], inducing variations randomly during training of a motor task
facilitates learning of other motor tasks sharing the same structure as
the original [27]. Our results suggest that an adaptive strategy could
also have the potential to improve the transfer capabilities of learners.

3.7.3 Learning schedules and usage implications

The results showed that with curriculum-based learning, participants
learned to increase the movement smoothness faster than the other
participants. Past research in the cognitive domain [44] showed that
skill acquisition was faster when the learning progress was optimized.
Our findings suggest that this effect could extend to a motor learning
context.

Remarkably, the JERK standard deviation for participants assigned
to the curriculum-based learning condition was significantly lower than
the error adaptation and random condition. This suggests that curriculum-
based learning leads to more consistent or homogeneous performances
across participants in terms of movement smoothness.

We also found that on average, participants assigned to the er-
ror adaptation condition trained on tasks of higher difficulty than the
curriculum-based learning condition and switched exercises more often
(higher CI). However, curriculum-based learning yielded comparable
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performances (ICF at post-test, retention, transfer) or better perfor-
mances (JERK at post-test, transfer) than the error-adaptation ap-
proach. If practicing tasks of lower difficulty level do not penalize mo-
tor learning, this type of practice could also be more motivating to
learners, making curriculum-based learning an attractive strategy for
customizing learning tasks in interactive motor learning systems.

3.7.4 Modeling performance

In this study, the movement data was rather noisy and participant
variability was high. This could have contributed to the lack of clear
differences between conditions at post-test and retention. One way of
improving the analysis is to model the movement accuracy or movement
smoothness. Given our experimental data, we can deduce a relationship
between accuracy and the width and length of the channel. This would
allow us to compute accuracy values using the model and reduce the
noise in the data. From the Steering law, the time taken to trace a
path in a channel of width w and diameter D is expressed as:

T = a + b
D

W

. Given this relationship, we can indirectly relate the accuracy to the
Steering Law parameters. A wider channel (larger W ) increases the
probability of staying within the channel, while a longer channel (larger
L) makes it harder to maintain precision. The accuracy is thus pro-
portional to the width of the channel and inversely proportional to the
diameter:

ICF ∝ W

D

We can thus model the accuracy based on the Steering Law as
follows. ICF = mW

D + c where m and c are parameters which must
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be determined based using the actual ICF values obtained during the
experiment. For example, they can be fitted using linear regression.
The model can then be validated or modified based on the model fit.

3.7.5 Limitations

We used an adaptive algorithm to schedule tasks among a set of 7
tasks. Clement et al. [44] reported benefits of a curriculum approach
based on MAB with a large number of cognitive tasks, 100 in their case.
We speculate that more benefits of curriculum-based learning may be
seen with a larger number of tasks, e.g., continuous changes in width
(this would require a different choice of algorithm than what we used).
Having a larger number of tasks means that the random strategy has
higher chances of picking inappropriate tasks (too easy or too hard).
Indeed, Clement et al. did not compare their curriculum approach to
a random strategy because frequent task switching could be disturbing
for learners. Thus, the number of tasks considered could be a factor in
the success of the curriculum-based learning approach.

3.8 Conclusion

Our results suggest that Curriculum-based learning could be promis-
ing to increase movement smoothness as well as to take into account
inter-individual differences to standardize performances. Nonetheless,
this effect was not seen at retention. In addition, there was no clear
distinction between the three strategies regarding the movement accu-
racy. Our data were also noisy and there was high variability among
participants. Thus, recommendations on the use of a specific adaptive
algorithm for real-world problems may not be easy to infer.

This first study thus served as a proof of concept, where we used
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theoretical grounding in Motor Learning to design a Co-learning ex-
periment. In the next chapter, we change gears and explore a different
algorithm and use-case, to look at the human/machine agency and
learning strategies in Co-learning.



Chapter 4

Using Interactive Machine
Learning to design adaptive
systems for prosthesis control

In the previous chapter, we explored an approach to schedule practice
tasks in real-time for individuals learning to perform a visuo-motor
task. To extract more concrete insights on adaptive algorithms for
motor learning, this chapter explores a more realistic motor task, which
involves a human learning to control a prosthesis. We focus both on
improving performance and the user interaction.

4.1 Introduction

In recent years, advances in body-machine interactions has led to im-
provements in myoelectric control strategies. In particular, using Ma-
chine Learning (ML) for prosthesis control is considered to be intuitive.
Most commercial prosthesis systems make use of a technique called di-
rect control (DC). It works by using the amplitude of EMG signals
from one muscle to control one movement. Thus, a pair of antagonist
muscles is required to control one degree of freedom e.g open and close
the hand. Co-contraction, e.g., simultaneous flexion and extension is
required to switch hand grasp. This can induce a cognitive burden
as the number of hand grasp increases [54]. ML-based control allows
more degrees of freedom and has the potential to control a greater set of
gestures compared to existing control strategies such as direct control.
ML-based prostheses work by attempting to extract the user’s intent
to control a prosthesis, using multiple electromyography (EMG) signals
and classifying those signals into output gestures of the prosthesis ,i.e.,

81
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a finite number of movements.

One challenge of ML-based prosthesis control is robustness, classifi-
cation accuracy remains low in ecological settings. This lack of robust-
ness is mainly caused by concept drift, which makes the model initially
trained on to become irrelevant for usage since the old samples are
likely to be outdated. This can happen for several reasons, e.g., due to
physiological factors (muscle fatigue and changes in skin conditions) or
external factors, such as electrode shifts when removing and wearing
the device again. In addition, EMG signals vary over time and are
likely to be different between training and time of use.

Some studies [153, 37, 220, 206] suggested that using training data
collected over a long time can enhance recognition accuracy. Others
have studied how using ML-based prostheses over a long time can
improve control [92] or how improving the sample efficiency during
training can enhance accuracy [194]. Equally important to make pros-
thesis control more reliable, is the human’s ability to adapt and learn
[160, 141].

In this chapter, we investigate the question of how to organize train-
ing examples on the fly by using different strategies to train the machine
learning algorithm. We study how these strategies affect the system’s
recognition accuracy and the user’s understanding of the system’s be-
haviour. To do so, we take a complementary view of a human teaching
a machine to classify gestures through continuous interaction.

In particular, the study aims to answer the following research ques-
tions: How does the teaching strategy affect recognition accuracy
and user’s understanding of an ML-based prosthesis when the train-
ing strategy is either random, directed by the user, or directed by the
system according to an optimization criterion? Our hypotheses are as
follows:
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• Allowing the user to take an active role (“teacher”) by structur-
ing their training session can help them test and improve their
understanding of the system. This assumption is guided by (a)
the learning by design (LBD) approach [111], which argues that
being engaged in the process of design enhances skill acquisition,
and (b) the interactive machine teaching approach [165], suggest-
ing that users engaged in the role of a machine “teacher”, rather
than annotator, develop investigative and self-reflecting behav-
iors [172]. We call this a teacher-led approach.

• Guiding users to select examples that maximize a given metric-
(the separability of the gesture, might lead to better model ac-
curacy. This assumption is led by the fact that in the context
of prosthesis control, increasing the separability of EMG pat-
terns in the feature space of the classifier is conceptually linked
to higher accuracy [141]. Since the machine learner queries the
human teacher, we call it a learner-led approach.

This chapter is structured as follows: section 4.2 presents previous
work on supervised learning for prosthesis control, reports on machine
teaching methods to improve training efficiency and performance and
on mental model evaluation techniques. Section 4.3 then presents the
study, followed by a discussion of the implications of this work.

4.2 Related work

Given a movement goal, there are many ways for a human to reach
that goal. Humans have inherent variability in their motor control sys-
tems. Even when attempting to repeat the same movement, subtle
differences in muscle activation, joint angles, and force application can
occur. One of the requirements of pattern recognition is to produce con-
sistent movements, i.e. repeat movements with little variability [160].
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For this reason, it is often necessary to retrain gestures to improve
recognition accuracy. However, the underlying mechanisms of the ma-
chine learning algorithm used for pattern recognition are not intuitive
to users. Without proper training, it may be difficult for users to know
how to retrain their prostheses. Aligning the user’s understanding of
the ML algorithm with their actions has the potential to overcome these
limitations.

In the next sections, we discuss how these challenges have been
addressed in recent research. We start by presenting research on su-
pervised learning to control upper limb prostheses, with a focus on
user training approaches to improve performance. We then present
the literature on interactive machine learning, which has been used to
convey concepts to a machine. Lastly, we report findings on how past
research have probed users’ comprehension of machine learning models,
also known as mental models.

4.2.1 Pattern Recognition for Upper-Limb Myoelectric
control

Myoelectric prostheses work by leveraging the electrical signals gener-
ated by muscles to power the movement of these devices. Electromyog-
raphy (EMG) involves recording these electrical signals. EMG record-
ing can be invasive (needles are inserted under the skin, close to relevant
muscles) or non-invasive, such as surface EMG (acquisition of signals
using electrodes placed on the skin), depending on availability of useful
muscle sites in amputees. Surface EMG signals are most commonly
used to acquire data in experiments. These signals are processed to
extract features in the time or frequency domain, which are then used
by the machine learning algorithm.

Many EMG features and different ways of extracting them have
been investigated, including time-domain [217, 17], autoregressive [60,
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151] and time-frequency methods [61, 144]. Using the features, the
goal of machine learning is to minimize the penalty for bad prediction
while learning from input data. The machine learning algorithm can
be used for classification or regression. Model training can be offline
- prerecorded signals are used for learning or online - learning is real
time. Offline training can be less cumbersome to the user, since signals
are recorded prior to usage, but online learning has the advantage of
being more ecological and accurate. In offline learning, the resulting
model is evaluated on data generated by the user, after a previous
training session. In online learning, the model can tested on the fly,
if it is trained in an incremental way. Researchers have thoroughly
investigated and compared all types of classifiers for myoelectric control
[218, 177]. Feedback is usually provided to the user in closed-loop
protocols, usually in a visual form, e.g. prosthesis movement. The
importance of proper feedback has been demonstrated [160, 65, 141].
Figure 4.1 shows the pipeline for online training.

While the focus of past research was mostly on machine adapta-
tion, more recent research has shown interest in human learning and
adaptation and has demonstrated its importance in the effectiveness
of myoelectric control. Humans have the capacity to learn from the
machine’s output and adapt movements or develop new muscle con-
tractions strategies to improve the machine’s behaviour.

User Training

One of the reasons that ML-based prostheses have not been employed in
commercial systems is that they are not robust, i.e. accuracy remains
low in real-life applications. Training the user to adapt movements
based on feedback from the machine learning algorithm has been shown
to be effective.



4.2 Related work 86

Fig. 4.1: Illustration of closed-loop prosthesis control adapted from Igual et
al. [101]. First, EMG data is acquired from multiple electrodes placed on upper
limb muscles. Second, the data is processed and the extracted features are learned
with machine learning (classification or regression). Third, a model is created and
updated to predict the prosthesis output. Finally, feedback is provided to the user
from the prosthesis or another interface.

The importance of user training in the ecological context of ML-
based prosthesis control was highlighted by Powell et al. [159]. In a
ten-day experiment, they showed that amputees improved their con-
trol performance with the help of visual feedback, which showed the
movement of a virtual prosthesis. Subjects were coached by the exper-
imenter to produce more separable and consistent gestures. However,
another study with able-bodied subjects [117] showed that subjects can
improve with training alone, independently of feedback on how to per-
form the movement or on performance during training.

Recently, research has shown that biofeedback in the form of visu-
alization of EMG data points in a Linear Discriminant Analysis clas-
sifier’s (LDA) feature space can improve user training [65, 141]. De
Montivalet et al. [141] showed that allowing users to explore new ways
of performing a movement using continuous visual feedback of the mean
EMG data for each class improved the accuracy of the retrained class
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without affecting overall accuracy. They used three metrics to com-
pare two different feedback methods; classification scores, separability
index (a measure of overlap of class clusters), and plots showing varia-
tions in muscle contraction strategies before and after training. When
compared to using predicted labels of the classifier as feedback, the
biofeedback yielded a larger variation in classification performance after
training, fewer false positives of the retrained class and more variation
in the contraction strategies. Human feedback has also been exploited
to facilitate online learning. Pilarski et al. [154] proposed a reinforce-
ment learning approach which leveraged binary reward signals to train
and adapt a myoelectric controller. However, data was collected for
only one participant and the number of movements was limited to two.

As mentioned before, compared to online training, offline model
training can be suboptimal; users only get a chance to test the classifier
at the testing phase (after a data collection phase to train the gesture
classifier) and can only make adjustments to the classifier in the next
training phase. This restrains human learning [29] and limits the
user’s capacity to adapt. Other research has employed online learning
e.g. incremental training to explore different feedback [65] or serious
games to adapt muscle contractions and create more separable EMG
patterns [118].

Since training alone has the power to improve EMG patterns [117],
it remains to be seen whether other training approaches can facilitate
implicit learning and lead to further improvements. Only a few stud-
ies [207, 25] explored the effects of training curricula in a prosthesis
context. These studies applied principles derived from motor learn-
ing research [186, 123, 162] to determine effective training methods.
For example, Bouwsema et al. [25] studied the order of practice tasks
(based on functional uses of prosthesis) and their effect on movement
time (time to start movement and time to perform task) with a my-
oelectric simulator. Their findings suggest that performance in daily
life is independent of training structure, but a blocked practice leads
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to faster learning than a random practice. However, this remains to be
explored for ML-based prostheses, where interaction with a machine
learner provides an opportunity to explore different ways of teaching
it.

In prosthesis control, both the user and the machine should adapt
to address performance decline over time [178]. A few works have ex-
plored co-adaptation, the mutual adaptation of human and machine.
Hahne et al. [91] investigated co-adaptation for regression-based my-
oelectric control with able-bodied and limb deficient participants. The
user is fitted with EMG electrodes, with the goal of controlling a cursor
on a screen. The regression model predicted the position of the cursor
on the screen. The user (and the machine) learns to follow a target
on a screen. They compared a baseline condition where users learnt
the task without any machine adaptation, against conditions where the
user adapted to different learning speeds of the machine learning algo-
rithm. Compared to the baseline condition, the co-adaptive approach
with appropriate adaptation rates produced better results. Other works
leveraged models of human learning to simulate various co-adaptation
levels [47, 53].

4.2.2 Guiding humans to teach machines

Research in interactive machine learning (IML) and human-robot inter-
action (HRI) investigated how guidance can help human teachers con-
vey concepts to a machine learner. Teaching guidance mainly takes two
forms: delegation of initiative and instructional teaching. The first ap-
proach: Delegation of initiative mainly explored Active Learning (AL),
a strategy where the machine learner can query examples based on spe-
cific criteria e.g. informativeness or diversity [184]. An example is the
work of Cakmak et al. [30], who investigated how humans teach a robot
in a finite concept space. Their study compared self-directed teaching
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(supervised learning with no queries from the machine) to three ac-
tive learning variants: full AL, mixed-initiative AL (queries are made
when certain conditions are met) or human-controlled AL (queries are
only made when requested by the human teacher). They found that
active learning conditions, including human-controlled AL, resulted in
significantly higher F1 scores than self-directed teaching.

Instructional teaching guidance was explored by the same author,
Cakmak et al. [33], across more complex and realistic tasks, includ-
ing binary classification of drawings. Participants were primed with
different teaching heuristics, e.g. an efficient teaching strategy must
sample examples close to the decision boundary. They found that in-
structional guidance influenced human teaching to be more beneficial
for the machine learner’s accuracy. Without guidance, participants had
a tendency to provide typical rather than borderline examples (a nega-
tive example which is close to being positive or vice versa). In addition,
they found that participants were more successful at providing positive
rather than negative examples.

4.2.3 Humans’ mental models in interactive ML

The research literature involving a human teacher and a machine learner
focuses primarily on model performance. However, an essential aspect
in ML-based myoelectric control is users’ comprehension of the model,
also referred to as the user’s mental model.

Mental models about a machine learner can be functional- the com-
prehension of the model’s learning or final behavior or structural- the
understanding of the machine learner’s underlying mechanisms (e.g.,
neural network, k-NN, etc.). In our case, we are interested in assessing
participants’ functional mental model, since the comprehension of the
learner’s behavior, its strengths and weaknesses can help users adapt
their muscular contractions and avoid errors in real-life scenarios.
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Probing and evaluating users’ mental model of a system is challeng-
ing [20]. The approaches employed to assess users’ mental model of
a ML system in the interactive ML literature often triangulate quanti-
tative (objective understanding) and qualitative (self-reported under-
standing), including: assessments of users’ ability to predict the sys-
tem’s predictions [174, 38], verbalization analysis from interviews [174,
120], think-aloud protocols [174, 173], or written responses to open-
ended questions as well as analysis of responses from close-ended ques-
tions during post-hoc surveys [30, 119, 120, 115, 94].

Several studies have designed variants of tasks which assessed the
user’s ability to predict system output. Users’ ability to accurately
and consistently anticipate system outputs suggests that their mental
models are well aligned with how the system works. Conversely, incon-
sistencies between expectations and actual system behavior suggest a
limited understanding on the part of the user. Sanchez et al. [174] sam-
pled input data to be shown to participants, who had to guess if their
model would correctly or incorrectly recognize the selected input. They
also introduced an exploration phase after the teaching session for par-
ticipants to familiarize with the final model’s behavior. Cheng et al. [38]
introduced variants of tests that assess participants’ predictive ability
concerning the model. These variants, called unnamed attributes, alter-
native prediction, and decision prediction, are based on attributes that
the user considers as having an impact on the algorithm’s output and
whether they can predict the output. Querying positive and negative
samples for participants to predict or asking them to identify attributes
as in Cheng et al. [38], are not feasible in the context of myoelectric
prosthesis control; showing a muscular contraction pattern would not
be evocative to the user.

On the influence of the machine learner’s performance on users’
comprehension, Hedlund et al. [94] found that the machine learner’s
(a reinforcement algorithm) performance can affect a teacher’s mental
model about the learner e.g., its capacity and reliability and their own
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teaching capacity. Sanchez et al. [174] investigated how people use and
understand two types of uncertainty feedback while teaching an image
classifier. Both types of uncertainty feedback yielded similar predictive
accuracy, but they found a strong correlation between users’ predictive
accuracy (e.g., objective understanding) and the machine learner’s final
accuracy.

On the influence of the training curriculum on users’ comprehen-
sion, Cakmak et al. [30] conducted subjective ratings from a post-hoc
survey, which revealed that people had a better mental model of the
system’s performance in the 3 active learning (AL) conditions rather
than self-directed teaching. On the other hand, participants, reported
less engagement in the full AL condition. Using a think-aloud protocol,
Sanchez et al. [173] explored humans’ understanding when incremen-
tally teaching a deep neural network to recognize sketches. Their results
underscore the importance of the training sequence, both for classifier
performance and user understanding of the model behavior. In par-
ticular, curating examples which are imbalanced across classes at the
beginning of the teaching was detrimental to learners’ performances and
users’ comprehension. Researchers [30, 173, 204] converge on the use-
fulness of guidance prior or early in the teaching phase. Letting users
interact with data triggers investigative behaviors [173] but requires
engagement and time [38], suggesting a trade-off between efficiency
and understanding.

In the present study, we combine methods to assess users’ functional
mental model to investigate both objective (users’ predictive abilities)
and self-reported understanding (think-aloud protocol and survey).
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4.3 Method

We want to evaluate users’ ability to build accurate classification mod-
els based on different ways of teaching the machine learning model to
recognize gestures, and to investigate to what extent they foster the
development of accurate mental models of the classifiers.

To allow users to convey movement concepts to a machine by gener-
ating movement data, we use Interactive Machine Teaching techniques.
Research in Interactive Machine Teaching (IMT) focuses on improving
human’s teaching capabilities when interacting with a machine learner.
Previous research in IMT has shown that people adapt their teaching
strategy as they develop a mental model of how the machine learns[196].
A better mental model of the learner has in turn been linked to better
behaviour [119]. Thus, allowing the human to develop intuitions and
investigative behaviors by teaching can lead to better human mental
models and more robust machine learning models.

To answer our research questions, we compare three model-training
conditions under which participants incrementally train the gesture
classifier: (1) Random-Condition (RC), which cued gesture classes ran-
domly; (2) Teacher-led Condition (TLC), in which the user could choose
the gesture classes for which to give examples; and (3) Learner-led Con-
dition (LLC), which cued gesture classes based on their separability in
the feature space.

To assess the effects of the training condition on participants’ func-
tional mental models, we combined objective and self-reported insights.
In this section, we provide the details of the experimental protocol.
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4.3.1 Participants

51 people participated in this study (25 males,25 females, and 1 non-
binary, aged between 18 and 36, M = 24.8, SD = 4.2). We recruited
able-bodied participants to ensure comparable prior knowledge and sen-
sorimotor expertise with myoelectric control technology. They were
required to have no neurological or upper-extremity musculoskeletal
problems that might influence performance. They received 15 euros
as compensation. Participants’ experience in Machine Learning and
Robotics in Healthcare varied from novice (no knowledge) to advanced
(experienced in Machine Learning / Robotics in Healthcare) (see ta-
ble 4.1). The University’s Ethical Research Committee approved all
experimental procedures.

Knowledge in Healthcare Robotics Knowledge in Machine Learning
(Expert) 0 0

1 3
↓ 3 7

14 12
(No knowledge) 33 29

Table 4.1: Number of participants having knowledge in (1) Robotics and (2) Ma-
chine Learning. Ratings were provided on a likert scale of 0 (expert) to 5(no knowl-
edge).

4.3.2 Task

We asked participants to teach the machine learning model to create the
best possible recognition system for the following 8 gestures: (1) Palm
Down, (2) Palm Up (3) Close Hand (4) Open Hand, (5) Close Pinch,
(6) Open Pinch, (7) Rest Hand, (8) Point Index. These eight gestures
are depicted as pictograms in Figure 4.2 and were specifically chosen
because they are common actions performed by upper-limb amputated
users fitted with current commercial myoelectric prostheses. They de-
fine the typical gesture set used in studies in rehabilitation engineering
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focusing on myoelectric prostheses [141].

Fig. 4.2: The ML algorithm had to learn a set of gestures from examples provided
by participants. We considered 8 gestures, from left to right: Palm Down, Palm Up,
Close Hand, Open Hand, Close Pinch, Open Pinch, Rest Hand, and Point Index.

Training the best gesture recognition system implies that partic-
ipants must consistently produce precise muscle contractions for the
eight gesture categories, ensuring that the resulting model achieves op-
timal recognition. We implement an incremental training protocol,
where the model is retrained for each new example demonstrated by
participants.

As further detailed below, the interface shows gesture icons that
indicate to the participants which gesture to perform at each trial.
The icon represents the gesture class used as a ground truth label (see
Figure 4.2).

4.3.3 Apparatus and Setup

The experiment consists of four components: a muscle contraction sen-
sor, a web-based interface, a Python-based software module, and a
prosthetic arm. Figure 4.3 illustrates the setup with the various com-
ponents we explain in this section. The surface myoelectric activity
of the forearm is measured with a dedicated device, a Myo armband
from Thalmic Labs. The Myo armband comprises 8 channels to record
electro-physiological signals with an 8-bit resolution. No specific skin
preparation was used before placing the armband on the participant’s
forearm, approximately 5 centimeters from the elbow joint.

EMG data are sent to the Python-based software module. Features
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are extracted from the Root Mean Square (RMS) of the raw EMG sig-
nal. It was computed from the surface EMG (sEMG) over a 128-ms
sliding window, with a 32-ms overlap between successive windows. The
dataset is available on Zenodo 1. Among the wide variety of features
that have been investigated in the literature, RMS features are known
to be the most efficient and robust processing for classification of sEMG
with LDA [153]. In addition, they are standard features in the literature
on myoelectric prostheses, allowing the community to compare our re-
sults with other research such as Roche et al. [167] or De Montalivet et
al. [141]. However, since we use a different protocol to these works, we
do not make direct comparisons to them. We recorded about 2 seconds
of data and averaged the features to obtain a vector of 8 RMS values
for the 8 channels of the Myo Armband. For classification, we used a
Linear Discriminant Analysis (LDA) classifier (taken from the Scikit-
learn python library 2). We chose the LDA since it is the most used
algorithm in to classify EMG signals [215, 141]. The Python-based
software module sends classification predictions to the web-based in-
terface through a web socket. The Python-based software module also
sends the classification prediction to the prosthetic arm through WiFi
to provide feedback on model performance to the participant.

The web-based interface was created using the Marcelle toolkit3,
a modular open-source toolkit for programming interactive machine
learning applications. The interface shows the icons described above,
and a capture button used by participants to record muscle contrac-
tion associated with gesture classes. Participants are told to hold the
gesture and click on the ’Capture’ button, which records EMG data for
approximately 2 seconds.

To provide motion feedback, a TASKA, NZ prosthetic hand 4 along
with a conventional electric wrist rotator is used. The prosthetic hand

1https://doi.org/10.5281/zenodo.10528482
2https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
3https://marcelle.dev [74]
4https://www.taskaprosthetics.com/

https://marcelle.dev
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was programmed to enact the 8 gesture classes. This motion feedback is
not essential in this scenario, and could be replaced by feedback on the
interface. However, it creates a more ecological scenario; an amputee
would normally test an actual prosthetic arm.

Gesture cue

Gesture execution EMG data

Feature 
extraction

Gesture 
commands

Motion feedback

Instructions
Interface

Training SetLDA

Python module

Web module

Gesture-class 
sampling

Fig. 4.3: The participant wears the Myo armband on the forearm and performs
a gesture. A screen in front of the participant displays the interface for capturing
data. The interface for the random condition (RC) is shown here. The interfaces
for the other conditions can be found in the appendix (see Section .2). On the left,
a prosthetic forearm (composed of a wrist rotator and a prosthetic hand) provides
feedback during the training phase.

The training pipeline is as follows: a gesture class is selected (by
the system or the participant, depending on the condition), and the
participant provides an example of that gesture class through muscle
contractions. After data windowing, the RMS is computed from the
acquired EMG data. RMS features are used for classification with
LDA. The predicted class is sent to the prosthetic hand to trigger the
appropriate motor command.
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4.3.4 Conditions and experimental design

We used a between-participant experimental design, where we com-
pared three conditions, each with different ways of selecting gestures
for training.

• random condition (RC): at each trial during training, the sys-
tem queries a gesture to be executed by the participant. This
gesture is picked pseudo-randomly by shuffling the set of 8 ges-
ture classes. Consequently, the number of gestures executed by a
participant is balanced among gesture classes. There is no con-
secutive repetition of a gesture class, i.e., gesture classes always
change from one trial to another.

• teacher-led condition (TLC): at each trial during training,
the participant selects the gesture class for which they wish to
produce an example. The number of gestures per class executed
by a participant depends on the sequence created, which can lead
to an imbalanced dataset across classes. Participants (i.e. teach-
ers) can also choose to provide several consecutive examples for
a gesture class.

• learner-led condition (LLC): the system (i.e. the learner)
sorts gesture classes based on a separability index and queries
the least separable gesture class at each trial during training. We
compute the gesture class separability index as a ratio of the
inter-class variance to the intra-class variance computed on the
captured data (EMG features; see more details below). The intra-
class variance for a class c is computed as the mean-variance of
EMG data within c. The inter-class variance is computed as the
mean of the variance of EMG data from class c and every other
class c′ different from c. A pilot study showed that, in practice,
this strategy can create a highly imbalanced dataset depending
on the initial data points. Therefore, to mitigate the curation
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of imbalanced training datasets, the gesture separability index is
weighted by the inverse number of instances for this gesture. This
is depicted by the following lgorithm 1 .

Algorithm 1: Gesture Class Separability Index
Input: A training dataset: (Xtrain, ytrain)
Output: Per-class separability index: SI
for class c do

SI(c)← V arinter-class(c)
V arintra-class(c) ;

SI(c)← SI(c) ∗ nc∑m

i=1 nm
;

end

where m is the number of classes,

n is the number of samples per class,

V arci,cj = 1
nci +ncj

∑
x∈ci∩cj

(x− µci∩cj )2,

V arinter-class(c) = ∑c
j=1,j ̸=i V arci,cj , and

V arintra-class(c) = 1
nc

∑nc
i=1(xc

i − µc)2

Two of the conditions, namely teacher-led and learner-led, can cre-
ate training datasets which are not balanced. A common assumption in
supervised machine learning is that training data points are indepen-
dent and identically distributed (i.d.d) regarding the problem under
scrutiny. This assumption is rarely met in simulated or human teach-
ing, as well-explained in [223]. Teaching sets are often non-independent
and identically distributed (non-i.i.d.) as they might be designed, for
instance, to mitigate the inherent ambiguity between two classes. For
this reason, we do not enforce balanced training sets in the teacher-led
and learner-led conditions in our experiment. Strictly forcing an equal
number of instances per class, besides the random condition, might
undermine a crucial characteristic of teaching: planning and learner
adaptivity.
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4.3.5 Procedure

We welcomed participants and explained the task, the different phases,
and the interface. Participants were fitted with a Myo armband. They
were asked to place the elbow of the dominant arm on a ball of wool for
comfort and to maintain this position throughout the experiment. To
familiarize participants with the gestures, they were shown icons of each
gesture and an image showing the corresponding gesture. Participants
in all groups performed four phases (the procedure is also depicted in
Figure 4.4).

Fig. 4.4: The 5-phase experimental design. It involved a between-subject com-
parison of three conditions. Participants received feedback only during the training
phase.

(1) Initialization. This phase aims to provide an initial dataset to
train the gesture classification model before starting the training
phase. Participants are asked to record two gesture examples per
class (16 trials in total). Each gesture is selected according to a
pseudo-random strategy. There is no repetition of gestures.

(2) Training. During the training phase, participants are asked to
give an example of a gesture (RC and LLC) or to choose a gesture
for which to provide an example (TLC). Participants are briefed
about the conditions: in the teacher-led condition (TLC), they
are told to choose which gesture they want to train, and in the
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random condition (RC), they are told that the gesture classes are
proposed in a random order. Finally, in the learner-led condition
(LLC), participants are told that the most inconsistent gesture
classes are prompted. In the RC and LLC conditions, gestures
are presented as icons, and in the TLC condition, participants
select gesture classes by clicking on the corresponding button il-
lustrated by the icon. After each example, the classifier is trained
on the entire dataset collected until this point, and the partic-
ipant receives gesture feedback from the prosthetic hand. For
instance, if a participant performs the “close hand” gesture, and
if the classifier correctly recognizes this example as “close hand”,
the prosthetic hand closes. Participants are told to pay attention
to the feedback, which could be leveraged to reflect on future
gestures. This phase includes 104 trials. The number of trials
was decided based on a pilot study, which showed that the learn-
ing curve of the classification model plateaued after around 100
trials. In total, the aggregation of the examples from both the
initialization and training phases add up to 120 gesture examples
in the training set.

(3) Post-test. To assess the model’s final accuracy after training,
the participant completes a post-test. This post-test served as a
data collection phase, comprising 48 trials to create a test set of 6
trials per gesture class. This phase was similar to the initialization
phase in that the gestures were collected randomly and without
any feedback.

(4) Positives-Negatives. To assess participants’ mental model of
the system, they were asked to complete a task that involved
providing gestures while explaining their reasoning. In this task,
participants were prompted to give three gesture examples that
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would be correctly recognized, called positives, and three exam-
ples that would incorrectly be recognized, called negatives. Ask-
ing participants to curate positive examples is a way to under-
stand whether they were aware of the technique that was produc-
ing success and could repeat it. Conversely, negative examples
can provide insights into participants’ awareness of borderline ex-
amples.

They were told that they could give different examples or repeat
their examples. The examples could be drawn from observation
during training or from their own understanding and interpre-
tation. Participants were asked to verbalize (think aloud) their
strategies to produce positive and negative examples. Therefore,
this phase comprised 48 trials. Each participant, across condi-
tions, experienced the same gesture order. The 3 positives were
queried in a row, followed by the 3 negatives.

(5) Questionnaire. Finally, participants were asked to answer a
questionnaire where they rated the perceived accuracy of gestures
of the trained model. Perceived accuracy is measured on a scale
of 0 to 100, where 0 means never correctly recognized and 100
means always correctly recognized.

4.3.6 Data Collection and analysis

We logged each example recorded by participants and the classifier
trained by users after each trial to compute the model accuracy along
trials. During the ’Positives-Negatives’ phase, we collected additional
EMG data and participants’ verbalizations with audio recordings. Fi-
nally, we collected answers to the post-study questionnaire (See. Ap-
pendix .2 6) to assess the participant’s mental model. Using different
evaluation methods could help provide a fuller picture of the user’s
mental model (which is difficult to capture) than we would have been
able to get from only questionnaires and subjective responses. Based
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on these collected data, we computed the following measures:

Model Accuracy. We compute the model accuracy by selecting a
trained model at a given trial, from trial 16 (after initialization) to trial
120 (at the end of training), and use data collected during the post-
test phase as test set. The test set is balanced and contains 6 instances
of each gesture. Accuracy (Accc) is computed per gesture class (from
confusion matrices) to take into account the variation between classes
when calculating statistics between conditions.

Accc = T Pc
T Pc+F Pc

Gesture separability. To understand how the separability of the
EMG data evolves over time, we compute a measure of participants’
ability to produce consistent and separable gestures over 3 phases: the
start of training (16 gestures), end of training (120 gestures) and the
post-test set (48 gestures). In the next section, these 3 phases will be
designated as the variable Phase. Gesture separability is computed
similarly to the separability index used in condition LLC: we compute
the gesture class separability as a ratio of the inter-class variance to the
intra-class variance computed on the captured data. This computation
is done pairwise to ensure a comparable metric between the beginning
of training (where only 2 instances per class are available) and the end
of training.

True Positive and True Negative rates. To quantify differ-
ences in participants’ understanding of two types of tasks, i.e., their
capacity to identify positive and negative examples of gestures, we cal-
culate the true positive rate(TPR), which is the quantity of correctly
classified gestures among the set of per-class positives. We then cal-
culate the true negative rate(TNR) for the negative examples, which
is the quantity of incorrectly classified gestures in the per-class nega-
tive examples. For both rates, high values mean an accurate model for
positives and, respectively, a model that handles negatives correctly.
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TPR = T P
T P +F N

TNR = T N
T N+F P

Participants’ perception of class accuracy. We asked partic-
ipants to complete a post-study questionnaire to assess their ability to
keep track of training (see Appendix .2). We compute the correlation
between the perceived accuracy for each class and the actual accuracy
provided by the model at the end of the training phase, using data
collected during the post-test set as test set.

To compare each participant’s answers in relation to all the other
participants, we transform the raw accuracy values to standard scores
(z-score).

4.4 Results

In this section, we present the findings of the user study, starting with
the analysis of the performance of the models built by participants,
followed by the analysis of the mental models of the participants after
having trained their gesture classifiers.

4.4.1 Machine learner’s performance

In this section, we analyze the machine learner’s performance and the
extent to which the created training sets include separable gesture
classes according to the training condition.
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Model accuracy

We first analyzed whether the initial models built by participants (model
comprising the initial 16 trials) are different between conditions, i.e.
they result in significantly different accuracy values if tested on the
post-test data. The mean accuracies for the initial models are as fol-
lows: 30.14 %(RC), 37.62 %(TLC) and 30.27 %(LLC). A Shapiro-Wilk
test shows that the per-class accuracy values do not follow a normal dis-
tribution (p < 0.05). We conduct a non-parametric Kruskal-Wallis test,
which shows no significant differences between initial models trained for
each condition (χ2 = 3.30, df = 2, p = 0.19).

We then examined how the accuracy of the models changed based
on the training conditions. We assessed model accuracy after each new
gesture was demonstrated and added to the training set. Since the
model is updated after each new gesture, the number of user trials
equals the size of the training set, ranging from 1 to 104. We com-
puted the model accuracy for each trial using post-test data as test set.
The average learning curves for each condition and the 95% confidence
intervals are shown in Figure 4.5.

We evaluated the final model from the training phase, which is
trained on all the examples demonstrated by users, using the post-test
data as test set. The mean model accuracies for each training condi-
tion are as follows: 70.83% for RC, 65.81% for TLC, and 68.38% for
LLC. To verify whether these means are significantly different, we con-
ducted a Kruskal-Wallis test, taking Accuracy as dependent variable
and Condition as independent variable. We found no significant dif-
ferences between training conditions on the per-class model accuracy
(χ2 = 0.74, df = 2, p = 0.69). Therefore, the three conditions lead to
equivalent model performance after the training phase.

Even though there were no statistical differences between the mean
accuracies of the model at the beginning of training, we observed a
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variability between the initial mean values, which could suggest het-
erogeneity between groups. Therefore, we carried out a complemen-
tary analysis in which we considered the average delta accuracy (dif-
ference between the final and initial accuracy). Figure 4.6 reports the
results. A Kruskal-Wallis test, taking Delta accuracy as depen-
dent variable and Condition as independent variable, shows a signif-
icant difference between conditions (χ2 = 19.48, df = 2, p < 0.001). A
posthoc analysis with Dunn’s test showed that LLC leads to a signif-
icantly higher improvement in accuracy compared to RC (p < 0.05)
and TLC (p < 0.001), and there is a borderline difference between RC
and TLC (p = 0.053). Consequently, although there is no difference
between model accuracy created between the conditions, the perfor-
mance improvement is larger when gestures are queried based on their
separability and smaller when users choose the gestures to be trained.

Finally, we measured the learning rate to assess the evolution of
skill development during training. We fit a linear regression model
to the training set size (i.e., number of trials) and task performance.
The logarithm of task performance plotted against the logarithm of
the number of trials gives a straight line. To compare learning rates
across conditions, we conducted a one-way ANOVA, taking Learning
Rate as dependent variable and Condition as independent variable (a
Shapiro-Wilk normality test shows that data are normally distributed
(p = 0.62)). The ANOVA shows a significant effect of Condition
(p<0.001). A post-hoc analysis shows that the learning rate is higher
for TLC than LLC (t = −4.655, df = 31.369, p < 0.001). Further-
more, the learning rate is higher for RC than LLC (t = 2.3891, df =
30.757, p = 0.023).
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Fig. 4.5: Model accuracy evolution during training.
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Fig. 4.6: The difference in model accuracy between the beginning and the end of
the training phase for each condition.
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Fig. 4.7: Mean learning rates of model error reduction for each condition.

• Finding 1. Performance improvements of the ML-based
myoelectric prosthesis are higher when gesture classes are
queried to optimize gesture separability than in the random
or Teacher-led curriculum.

• Finding 2. Performance improvements of the ML-based
myoelectric prosthesis are fastest when gesture classes are
queried to optimize gesture separability.

Gesture Class Separability

Incrementally training the gesture recognition model led to datasets
that may differ across conditions. In this subsection, we analyze these
demonstration datasets regarding gesture class separability. High ges-
ture class separability implies concentrated gesture class clusters (low
intra-class variance) far from the other (high inter-class variance). This
index of gesture class separability is computed similarly to condition
LLC (cf Section 4.3.6). Therefore, this measure indicates the consis-
tency of the executed gestures, where more consistent gesture classes
will lead to higher separability. Figure 4.8 depicts the mean separability
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values per condition at three different phases: at the beginning of the
training session (after the first training trial), at the end of the training
phase (after the last training trial) and at the post-test phase. First, we
performed a Kruskal-Wallis test at each phase, considering Condition
as independent variable and Separability as dependent variable. We
found a significant effect of Condition only at the end of the training
(χ2 = 18.3, df = 2, p < .001) where gesture class separability is higher
for LLC than in the other conditions. We also inspected how the val-
ues of separability vary according to the phase. We performed Kruskal-
Wallis non-parametric tests with Phase as an independent variable and
Separability as dependent variable, for each Condition. We found
that Phase has a significant effect on Separability for each condi-
tion (χ2 = 13.5, df = 2, p < .01 for RC, χ2 = 30.2, df = 2, p < .001
for LLC and χ2 = 19.9, df = 2, p < .001 for TLC). For each condi-
tion, gesture class separability values are higher at the end of training
and at the post-test compared to the separability at the beginning of
training. In addition, for LLC, separability is higher at the end of the
training phase than post-test, as shown by Dunn’s test , p = 0.02. It
shows that overall, the gesture class separability increases, which can
be related to the improvement in performing gestures during training,
with a higher increase for LLC. However, at post-test, gesture class
separability values are comparable across conditions.

• Finding 3. The separability of gesture demonstrations
increases during training, irrespective of the condition.

• Finding 4. Increase of gesture separability is significantly
higher when gesture classes are queried to optimize gesture
separability than in the Random or Teacher-led condition.
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Fig. 4.8: Separability of gestures along different phases: at the start of training
(after the first training trial) at the end of training (after the last training trial) and
at post-test.

4.4.2 Human teachers’ mental model

In this section, we assess the mental models of participants after they
built their gesture classifier.

We assessed participants’ mental model following two methods.
First, we assessed participants’ ability to predict where the machine
learning model will make correct or incorrect predictions. We present
results regarding participants’ ability to execute correctly classified
(positives) or incorrectly classified (negatives) examples for each ges-
ture class. Second, we assess self-reported understanding through par-
ticipants’ answers to a post-training questionnaire on their perceived
accuracy for each gesture class.
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Participants’ predictive abilities about the model

We want to test participants’ ability to produce gestures of each class,
which will be correctly recognized by the system (positives), and ges-
tures that will not be correctly recognized (negatives). We evaluate
the true positive and true negative rates of examples collected for both
types (positive and negative), as well as participants’ interpretation of
these two types of examples. To compare the rates of true positive and
true negative for each class and between conditions, we first conduct
a Kruskal-Wallis test with True Positive Rate as dependent vari-
able and Condition as independent variable. This yields a significant
difference between conditions (χ2 = 7.31, df = 2, p = 0.026). Pairwise
comparisons using Dunn’s test show that the mean true positive rate
is higher for condition LLC than condition TLC (z = 2.49, p = 0.039,
see Figure 4.9). There is a borderline effect between RC and TLC
(z = 2.16, p = 0.061) and no difference between RC and TLC (z =
0.32, p = 0.75). A similar test considering True Negative Rate
as dependent variable and Condition as independent variable shows
no differences between conditions for the negative examples. Finally, a
Kruskal-Wallis test considering the type of test (True Positive Rate and
True Negative Rate) as independent variable and the rate as dependent
variable shows that True Negative Rates are significantly higher than
True Positive Rates (χ2 = 25.26, df = 1, p < 0.001). Overall, partici-
pants’ understanding of positive examples is worst for condition TLC,
while participants’ understanding of negative examples does not differ
across conditions.

During the think-aloud phase, a number of participants (P4, P8,
P19, P20, P41) explained that to create a positive, they exaggerated
the gesture. For example, while giving a positive example of the gesture
‘Palm Down’, P41 said : “[..]rotate the hand until I hurt myself”. Some
participants considered positive examples of gestures to be clear, slow,
and precise : “high up and poised, like this” [P19], or “I’m going to
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Fig. 4.9: True positive and negative rates from examples provided by participants
after training. Participants have a less good mental model of what it means to
produce positive examples of gestures when trained under condition TLC.

make a slow, detailed movement” [P4]. On the other hand, negative
examples were considered as fast, incomplete, and casual: “A negative
would be a bit of a jerky movement, like this. Maybe it’s too fast for
it” [P19], or “a lighter rotation” [P1].

A few participants mentioned that it was difficult to imagine neg-
ative examples. P21 pointed out: “In general, the robot recognizes the
‘Close Hand’ at all times, it’ll be hard to create a negative for that”.
Some participants who encountered errors during training easily iden-
tified examples that could confuse the system. While giving a nega-
tive example of ‘Close Hand’, P31 said: “Earlier, it interpreted [Close
Hand] as a downward rotational movement. I’m actually going to make
a tiny downward movement too”. Besides recalling training errors, an-
other strategy employed by participants to create negative examples
was to combine gestures. For instance, while creating a negative exam-
ple of ‘Palm Down,’ P23 said: “It’s a mixture of Close Hand and Palm
Down”, which may have contributed in deceiving the model.
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• Finding 5. Participants’ predictive abilities about the
trained model are above random. Surprisingly, partici-
pants can better reproduce negative than positive exam-
ples.

• Finding 6. Participants’ ability to reproduce correctly
identified examples is significantly lower when the user
chooses gesture classes to demonstrate rather than queried
to optimize gesture-separability or at random.

Participants’ perception of class accuracy

As a second evaluation of mental models, participants were required to
answer a questionnaire about their perception of how well the system
learned to recognize each gesture. Participants’ answers about their
perceived accuracy of each gesture class had to be chosen among 11
discrete percentage values ranging from 0 (bad recognition) to 100 (ex-
cellent recognition). Since participants’ answers depend on their rating
style and the scale provided (e.g., a participant’s perception of a good
recognition can be 80% while another’s perception can be 100%), we
transform all values to z-scores. This allows us to consider participants’
answers relative to each other. Then, we computed a Pearson corre-
lation coefficient to assess the linear relationship between perceived
accuracy for each gesture class at the end of training and the actual
accuracy computed on the post-test data at the end of training. The re-
sults indicate a positive relationship for LLC (Pearson’s r score is 0.30,
with p < 0.001, see Figure 4.11) while there is no significant correlation
for the other two conditions TLC and RC (see Figures 4.10 and 4.12).
This suggests that condition LLC allowed participants to better keep
track of classification errors during training.
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Fig. 4.10: Random condition: correlation of z-scores of actual accuracy values (y
axis) and the corresponding z-scores of participants’ perceived accuracy values (x
axis) for each gesture class.
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Fig. 4.11: Correlation of actual accuracy values and participants’ perceived accu-
racy values for the Learner-Led condition.
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Fig. 4.12: Correlation of actual accuracy values and participants’ perceived accu-
racy values for the Teacher-Led condition.
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Finding 7. Participants better perceive the ML-based myo-
electric prosthesis accuracy when gesture classes are queried to
optimize separability during training than for the Random or
Teacher-led conditions.

4.5 Summary

In the presented study, we investigated user-driven teaching strategies
for ML-based myoelectric prostheses and their influence on the machine
learner’s accuracy and the human teacher’s mental model. From the
machine learner perspective, we found that the model’s performance
maximally increases when gesture classes are queried to optimize ges-
ture separability, outperforming both random and teacher-led strate-
gies. That said, we also showed that training is faster when users
select the gesture class to be demonstrated. The three training strate-
gies similarly led participants to increase the separability of examples
across gesture classes, with a greater increase when gesture classes were
queried to optimize gesture separability. From the human teacher per-
spective, participants’ ability to predict the model’s behaviors was more
accurate, particularly in reproducing negative examples over positive
ones. Participants’ predictive abilities, though, diminish when they are
left to select gesture classes during training, a discrepancy that is not
observed with negative examples. Lastly, participants’ perception of
the model accuracy is better when gesture classes are queried to opti-
mize separability during training.

This chapter illustrated the potential of IML techniques to develop
strategies which can help users effectively retrain their ML-based pros-
thesis during daily life activities. In addition, it demonstrates the need
for further research in mental model development of humans interacting
with a learning system to perform movement tasks.
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4.6 Discussion

4.6.1 Influence of training strategy on model accuracy

Several aspects of a training strategy can contribute to its efficiency.
We tested whether giving users the choice to select the gesture class
to train (teacher-led condition) results in better recognition accuracy
than imposing gesture classes to train (random condition and learner-
led condition based on a gesture separability index). We found that
the teacher-led strategy did not yield better accuracy than the other
training strategies. This is in line with findings in the interactive ma-
chine teaching literature, where Cakmak et al. [30, 31] showed that self-
directed human teaching is rarely optimal, including for tasks where the
human teacher generates training data [33]. We found that querying
the least separable gesture class led to faster training, accompanied by
a larger overall increase in accuracy. Previous research showed that
both instructional guidance [33, 31] and sharing initiative with an ac-
tive learner [30] yield better accuracy than self-directed teaching. The
authors also showed that teaching an active learner, even with partial
initiative, is faster than self-directed teaching, i.e., active learners con-
verge towards the maximal accuracy with fewer examples. Thus, pre-
vious works corroborate our results, despite differences in implementa-
tion. Unlike previous work, our study does not employ an active learner
that queries labels but rather demonstrations. Such a scenario affords
greater human control and engagement than label queries. Thus, our
results demonstrate its potential to support ML-based prosthesis con-
trol.

Learner-led strategy yielded faster resp. greater performance in-
crease. Looking at the problem solely from the point of view of learner
performance, a direct implication would be to use this strategy in prac-
tice. Alternatively, Powell et al. [159] highlighted the importance of
coaching to incrementally incorporate gestures in a subject’s training
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session based on the subject’s capacity to create more separable EMG
patterns. Looking at human-centered aspects, Dakpa et al. [51] showed
that faster improvement of a classifier’s performance can motivate users
to pursue the training, hence leaning toward the use of teacher-led
training in our use case. Furthermore, it is likely that such results
change with a different machine learner [152], or sensor device. Instead
of scrutinizing averaged curricula performances, a promising research
follow-up would be to investigate outliers, i.e., participants’ curricula
that led to extreme performances—either good or bad, compared to
others. Second, we argue that human-oriented assessments, e.g., fo-
cused on engagement and comprehension, are more important than
model performances to involve users in the role of teacher. A valuable
avenue for research would be to explore methods for users to effectively
retrain their ML-based prosthesis during daily life activities.

4.6.2 Users’ understanding of gesture classification for
prosthesis control

This study also investigated users’ mental model of an ML-based pros-
thesis control. An accurate functional mental model, i.e., users’ com-
prehension of the model’s behavior, its strengths and weaknesses can
help users adapt their muscular contractions and avoid errors in real-
life scenarios. Our evaluation method combined assessment of users’
ability to create and predict the classification of training examples
with users’ self-reported perception of the system’s accuracy (obtained
through answers to a questionnaire). Both methods indicate the benefit
of the learner-led strategy (based on gesture separability) on partici-
pants’ mental model. On one hand, participants’ ability to reproduce
correctly identified (positive) examples is significantly higher in both
the learner-led and the random condition than in the case where partic-
ipants decided which gesture to train. No differences in demonstrating
negative examples were found between conditions. On the other hand,
users’ perception of the system’s accuracy was more accurate in the
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learner-led condition than in the teacher-led condition.

Two explanations can support these findings. First, the learner-led
condition creates a curriculum that focuses on ambiguous classes, hence
developing users’ understanding of the most unstable gesture classes
throughout training. The learner-led condition reflects the learner’s
progress; the user receives information about which gestures the learner
finds difficult. Thus, a better mental model in this mode might be at-
tributed to the additional information provided to the participant re-
garding the classifier. This explanation corroborates with Cakmak et
al. [30], who found that human teachers had a more accurate per-
formance estimate of the learner in active learning modes, including
human-controlled active learning, compared to self-directed teaching.
The second explanation links with our previous results on the model’s
final accuracy: model behavior of an accurate model is easier to under-
stand. Such an explanation would align with other empirical findings
in earlier works in [94, 174].

Our study yielded one unexpected result: during the mental model
assessment phase, participants were more capable of producing nega-
tive than positive examples. This finding contradicts the verbalizations
reported in section 4.4.2, where participants described demonstrating
negative examples as more challenging. Participants’ verbalizations
also suggest that they approached positive examples differently than in
earlier phases. Challenges in creating negative examples are reported in
prior research [33]. This observation may be due to an experimental de-
sign artifact in the mental model assessment session. The think-aloud
protocol, which required participants to demonstrate gestures while ex-
plaining their decisions aloud, might have imposed a higher cognitive
load, resulting in changes in the execution of positive examples.

Asking participants to perform positive and negative examples is
not a standard approach to assess participants’ mental model, more
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precisely, their predictive abilities about the model’s behavior. To as-
sess participants’ predictive accuracy, Sanchez et al. [174] sampled in-
put data to be shown to participants, who had to guess if their model
would correctly or incorrectly recognize the selected input. They also
introduced an exploration phase after the teaching session in order for
participants to familiarize with the final model’s behavior. Cheng et
al. [38] introduced variants of tests that assess participants’ predictive
ability about the model. These variants, called unnamed attributes,
alternative prediction, and decision prediction, are also based on ac-
tual data points and suggested modifications. Querying positive and
negative labels to participants from actual input data, as well as the
variants introduced in Cheng et al. [38], are not feasible in the context
of myoelectric prosthesis control as there is no way to cue a muscular
contraction pattern: a signal visualization would not be evocative.

We also gained some insights into participants’ interpretation of
a correct gesture example, which could explain the disparity between
scores for positive and negative examples (the True Positive Rates(TPR)
were lower than the True Negative Rates(TNR)). Some participants re-
ported that they exaggerated positive examples by turning the hand a
lot or putting more effort into the gesture so that it would be recog-
nized. However, exerting more pressure on muscles may cause the EMG
patterns to change and may be more prone to misclassifications. Thus
it is important to align users’ actions with the algorithm’s behavior,
calling for further research on accurate evaluation of mental models in
the context of ML-based myoelectric control.

4.6.3 Impact of training strategy on (human) skill acqui-
sition

The gesture separability measure is used to assess the consistency of the
demonstrations, i.e., to what extent gesture examples in the same class
are close to each other, but far from examples in other classes. All
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conditions showed a trend towards higher separability across phases,
with a larger increase from start to end when the least separable gesture
is queried. Practice and repetition are necessary to build consistency
in any motor movement [148, 160]. The first finding might indicate
that participants learned how to perform gestures more consistently
throughout the training session, i.e., participants improved their motor
skills in the execution of gestures. In our case, the learner-led condition
favored repetition between gestures of identical classes, suggesting that
participants improved their motor skills better in this condition.

Conversely, increasing the variability of practice has been shown
to improve the acquisition of motor skills [28]. This means that it is
preferable to switch from one task to another rather than repeat the
same task until it has been learned. This improvement in learning has
been demonstrated in terms of retention and transfer. In particular,
it has been shown that creating motor interference by switching task
from one trial (or block of trials) to another decreases the rate of mo-
tor learning but increases retention [186]. An analogous observation in
our case is that the randomized training curriculum prevented gesture
class repetition by design. It is also likely that the teacher-led condition
involved fewer repetitions than the learner-led strategy. Hence, inves-
tigating the learning effect, measured by gesture consistency, during
the retention phase (typically after several days) presents a significant
research opportunity. The insights gained could profoundly influence
the application of such training protocols in real-world scenarios.

4.6.4 Limitations

Our study had some limitations. First, results from this study are from
able-bodied participants. Past research [177] suggests that the rela-
tive performance of machine-learning algorithms is consistent between
amputees and able-bodied participants. Further investigations with an
amputee population are necessary to understand whether this finding
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also applies to different training strategies.

Second, we assessed the participants on the basis of a signal which
was the average EMG signal over two seconds of data collection. In
doing so, we discarded the gestural strategies used by the participants
to arrive at the final postures. Keeping all the EMG data would have
allowed us to extend our assessment of users’ ability to control a pros-
thesis by inspecting the extent to which they could achieve a given
gesture. In particular, it would be interesting to examine the model
predictions temporally during these two seconds of gesture stabilisa-
tion. Taking into account all the classification decisions made from the
beginning to the end of the two seconds would have made it possible
to measure the regularity with which a user was able to maintain the
desired position once it had been reached and to devise more refined
guidance strategies.

4.7 Conclusion

In this chapter, we looked at how to design an adaptive algorithm
to build a machine learning model which can be used to control a
prosthetic arm. We took a multi-disciplinary approach, encompassing
findings and guidelines in myoelectric control, motor learning and in-
teractive machine teaching. Our results highlight the potential of these
teaching strategies in the context of prosthesis control and suggest the
benefits of using demonstration queries to organize the curriculum.

In the next chapter, we discuss findings and implications of this
research on Co-learning and user interactions in adaptive learning sys-
tems.



Chapter 5

General discussion

This thesis investigated two use-cases and algorithms to schedule motor
tasks. The two studies are distinct, and thus do not permit a common
reflection on the type of algorithm used and the learning strategies.
However, we will, where possible try to find common points regarding
the idea of curriculum generation. In the following sections, we reflect
on our findings and discuss insights on designing more effective learn-
ing systems, enhancing the performance of both human and machine
learners, and assisting learners in constructing more accurate mental
models of machine learning, particularly in the context of developing
adaptive control systems for prosthetic limbs.

5.1 Challenges in Human-Machine Co-learning

A key aspect of this research was the concept of Co-learning, which
is the simultaneous learning processes of both human and machine.
This mutual adaptation process requires both parties to modify their
behavior to achieve learning goals in the interest of the human. We
examined Co-learning in two distinct scenarios, each characterized by
varying degrees of human-machine adaptation. In the first study, the
machine learned to schedule tasks for the human, who received per-
formance feedback but did not explicitly adapt movements based on
the algorithm’s recommendations. The interaction in the second study
involved a dual-learner problem. Here, the goal of Machine Learning
was to enhance the decoding of human intentions, facilitating improved
control of prosthetic limbs. The goal was for the human participant to
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create a more effective classifier by performing more consistent and dis-
tinguishable gestures. Consequently, the model’s performance is con-
tingent on the human’s ability to produce stable muscle contractions.

One of the challenges of Co-learning is to calibrate the learning al-
gorithm to the human learner. The first study necessitated the explo-
ration and exploitation of tasks to assess their contribution to learning.
As with other machine learning algorithms, bandit algorithms have one
or more hyper-parameters, such as the degree of exploration. We re-
alized that it was not straightforward to select the exploration rate
for the participant. Previous studies simulated this parameter. We
adjusted this parameter during a pilot study, but this remains imprac-
tical because we still use a group average. We maintained a constant
exploration parameter, although it could potentially be decreased over
time. The impact of this exploration parameter on human learning
remains to be determined. In interactive machine learning, model per-
formance is intrinsically linked to human interaction. Thus, works in
Human-Machine interaction have explored the consequences of user in-
teraction to make algorithm choices through the interface, with the goal
of providing better user experiences and more effective learning systems
[196, 70, 7]. These works encouraged the inclusion of end users in all
stages of design, to explore and refine the behavior of the system. One
way of doing this is to provide interfaces which allow to users to di-
rectly manipulate the machine’s parameters. For example, Thomaz
and Breazeal provided an interface which allowed participants to guide
a learning agent to take certain actions through a reinforcement learn-
ing framework [196]. Their results provided insights on how humans
want to teach agents through feedback. In light of these implementa-
tions, it could be interesting to investigate how to use these principles
in this work. For example, exposing an exploration parameter (e.g,
through a slider on screen) for the user to tune in real-time could pro-
vide insights on learners’ recommendation preferences, in addition to
providing more agency to the user.
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Another significant calibration challenge is how to balance adapta-
tion and stability, i.e. how to reconcile the acquisition of new behaviors
with the retention of previously learned ones. In the second study, we
chose to update the model by retraining it after each teaching example
provided by the human participant. This design choice impacts the
rate of human learning in a complex manner. Kristoffersen et al. [116]
mentioned this dilemma in their work on myoelectric control, noting
that a model frequently retrained can lead users to focus excessively
on adapting to system changes without enhancing their EMG pattern
quality. Conversely, the performance is contingent upon the model’s
quality, and inadequate robustness can hinder the user’s ability to ef-
fectively operate the prosthesis.

Another factor which should be considered to decide on the fre-
quency of retraining is concept-drift. In our Co-learning setting, both
the machine learning algorithm and the users operating the prosthetic
arm are learners, engaged in a closed-loop mutual learning environ-
ment. In this environment, users are also discovering their capabilities,
adjusting their movements based on feedback. Concept drift, which
refers to changes in data over time due to learning, or other factors
like fatigue, can influence the system’s performance. Participants may
introduce concept drift intentionally or unintentionally. Usually, re-
training the model with the most recent data helps the model adapt.
However, as mentioned above, this can impact human adaptation. The
interplay between human learning and frequency of retraining should
be further investigated, e.g. by comparing the effects of maintaining a
constant ML algorithm versus frequent retraining on human learning.
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5.2 Curriculum-based learning for motor skill
acquisition

An analysis of the task counts reveals that the adaptive strategy sam-
pled certain tasks more often than others, providing insights into the
relative ease or difficulty participants experienced with these tasks. For
instance, in the first study (3), the algorithm selected tasks of interme-
diate difficulty more frequently. In the second study (4), the adaptive
algorithm scheduled more instances of confusing classes (e.g., close hand
and open hand) and fewer instances of stable classes (e.g., rest hand).

Further research is necessary to examine the effects of curriculum
designs on various aspects of skill acquisition. The adaptive learning ap-
proach in our first study demonstrated benefits in enhancing movement
smoothness. However, it remains to be seen how different curriculum
designs can improve other aspects of motor skills. Curricula could be
developed by sampling subsets of tasks based on skill level. In pros-
thesis control training, a manual strategy involves gradually expanding
the set of gestures the user can practice until the full set is mastered,
a method known as scaffolding, which has proven effective in training
users to control their prostheses with machine learning [160]. Combin-
ing this technique with adaptive algorithms could potentially further
enhance learning outcomes, but this would require strategic decisions
about when to expand the task set, such as when accuracy with the
current classes reaches a specific threshold. Pairing this technique with
adaptive algorithms could further improve learning results, but would
require making decisions regarding when to expand the set, e.g., when
accuracy of the current classes reaches a certain threshold.

Additionally, the tasks examined in this thesis were independent and
discrete. We did not investigate how the scheduling of one task might
affect subsequent tasks. This consideration is important for rehabili-
tation tasks, which often require retraining sequences of movements to
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perform goal-directed activities [197].

5.3 Understanding how people perceive algo-
rithms and build mental models of adap-
tive systems

Another key aspect of this thesis was to understand and address how
people perceive adaptive learning systems and what they expect from.
It helped gain insights on how to design these systems to enhance learn-
ing outcomes and increase their chances of adoption. Aligning the user’s
comprehension of how the learning system works, with how the system
actually works, is important to reduce frustration, confusion and er-
rors. To achieve this, it is first necessary to evaluate people’s mental
models of these systems. Mental models are internal representations or
explanations that people build of how things work. They help people
understand the world around them and solve problems.

We consider that it is just as important to test to what extent people
understand how to take actions using the system and how they perceive
the system’s weaknesses and strengths as it is to help people perform
well. In both studies, we employed research methods in HCI, such as
asking participants to fill a questionnaire after using the system regard-
ing their perception of how the system or algorithm works or asking
them to articulate their thought process as they work through the task
and video-taping their actions. Through these elicitation methods, we
gained insights on how people recall their experiences during training
and to what extent they understand certain concepts.

In this research, we focused on the teaching strategies rather than
how to help the human improve their teaching abilities. To offer pre-
scriptive strategies for fostering more accurate mental models beyond
the curriculum, it could be important to provide guidance on how to
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rectify actions in cases of failure. Without appropriate intuitions about
the sources of misclassification errors, users may struggle to correct
their actions, such as by providing better training examples in subse-
quent trials. Research has demonstrated that assisting human teachers
in understanding how machine learning systems work can enhance the
accuracy of mental models [119, 33]. In the context of prosthesis con-
trol, guidance in the form of feedback about movement (biofeedback)
or the curriculum itself should be studied. Guidance can also take the
form of interactive explanations of what went wrong [38]. Nonetheless,
prior research on the effects of explanations on mental models has high-
lighted that excessive information can detract from user experience by
demanding considerable time and attention [120].

These challenges illustrate the difficulty of assessing and building ac-
curate mental models. Combining several methods to evaluate mental
models and using more rigorous approaches can contribute to acquiring
a more accurate picture of users’ mental models. Much work remains
to be done in this direction, but recent research have shown an interest
in developing frameworks to model people’s perceptions of AI systems
[107, 21] as well as in identifying approaches to provide appropriate
explanations tailored to specific domains, use cases and users [36].

5.4 Human initiative in Co-learning interactions

Educational tools employing machine learning to adapt learning tasks
often impose specific learning items or paths on users. Nonetheless,
learners may have personal goals and preferences for achieving them,
emphasizing the importance of allowing learners to take ownership of
their learning process. This includes decisions on how active or passive
they wish to be in acquiring knowledge and skills, as well as whether
they agree with the system’s proposed actions. Active participation of
humans in motor learning is associated with increased motivation and
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improved performance [11]. A pertinent question arises: Is it desir-
able to use a Machine Learning system which results in better learning
outcomes, even if its recommendations are unpredictable and its un-
derlying approach is unknown to the learner? It is crucial that both
learners and educators can confidently rely on the system and influence
the algorithm in desirable directions. For instance, an educator might
choose an alternative approach for a specific learner.

Research in Human-AI interaction aims to design systems that are
more interactive, personalized, and provide greater control to users dur-
ing task performance. This has led to a body of works called mixed-
initiative interaction, which considers the human and intelligent agent
as working in a team to yield more effective interactions. Horvitz de-
fines mixed-initiative interaction as methods that explicitly facilitate an
efficient and natural integration of contributions from users and auto-
mated services. In the second study presented in Chapter 4, we exam-
ined a scenario where the human assumes the role of a teacher with the
objective of training a machine to recognize gestures. The interaction
mode itself allowed users to decide how to adapt their movements, with
these physical adaptations being considered by the updated model after
retraining. This teaching scenario provided users with greater control
over the system compared to an offline training protocol, offering op-
portunities to test the system while training the ML algorithm.

We investigated various strategies for selecting training examples for
the teachers to demonstrate, each involving different human-machine
initiative. In the Teacher-led strategy, the human had the initiative
to design the teaching curriculum. Allowing users to design their cur-
riculum led a more balanced dataset at the beginning of the training,
compared to the Learner-Led strategy (Appendix B). Participants may
have been selecting gesture classes to both achieve balance and pro-
vide instances of classes which were not well recognized. Although this
trend did not persist throughout the entire training period, it under-
scores the value of allowing human input in machine training. Humans
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may possess intuitions or strategies that enhance the accuracy of certain
gestures.

Cakmak et al., [30] demonstrated that human-controlled active
learning — where humans decide when to receive queries from the sys-
tem was the most preferred interaction method when training a robot
to understand complex concepts. This strategy maintained user en-
gagement while providing some degree of control. The fact that human
initiative may improve other aspects of learning besides performance
(e.g. motivation), should be taken in consideration when designing
adaptive control systems using machine learning.

5.5 (Not) modeling the learner in adaptive sys-
tems for motor learning

Tutoring usually involves providing learning interventions for an indi-
vidual. Knowing how to guide the learner requires an understanding
of how people learn (or teach). When designing adaptive systems to
facilitate motor learning, one question to consider is how to model
the learner, i.e., identify and analyze relevant information to track the
learning evolution.

In this research, we investigated performance outcomes following
training for tasks outcomes following training for tasks that lack stan-
dardized procedures for solving them. In the work presented in Chapter
3, we aligned with the positioning of previous work in the field of cog-
nitive and movement learning and consider that contraints in creating
an elaborate model of the learner can be relaxed due to limited under-
standing of the learner’s cognitive and motor processes [44, 169]. Con-
sequently, rather than identifying parameters that characterize learners’
knowledge of the task, we rely on estimations of learners’ competence
levels by computing their learning progress. Similarly, in Chapter 4,
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we did not measure learners’ knowledge against that of experts, given
the user-specific nature of controlling a prosthetic arm. Instead, we
estimated the learner’s proficiency in controlling a prosthetic arm by
evaluating the performance of the machine learner.

A growing body of works in complex domains have relied on online
estimations of learners’ characteristics to avoid depending too strongly
on a cognitive model [44, 145, 169, 24]. This trend may indicate the
efficacy of such an approach, or at the very least, suggest its potential
to simplify the design process of adaptive systems in the context of
movement learning.

However, it might be argued that there are some cases where mod-
eling provides some advantages. For example, attempts at modeling
cognition have led to improvements in our understanding of our brains
[9]. Similarly, even if they do not show the full picture of learning,
attempts at modeling aspects of learning motor skills may illuminate
our understanding of how we acquire these skills.



Chapter 6

Conclusion

In this thesis, we aimed to design adaptive algorithms to propose tasks
for motor learning and to understand how individuals perceive and de-
velop mental models of these algorithms after training machine learn-
ing (ML) models. Our first study concluded that using ML to sched-
ule tasks offers notable benefits. Compared to an alternative adaptive
practice that scheduled poorly performed tasks, the ML-based adap-
tive strategy provided more uniform training and improved a specific
dimension of motor learning, namely movement smoothness.

The second study explored how humans comprehend and interpret
the behavior of ML algorithms used to develop adaptive control sys-
tems. It involved investigating various interaction strategies for se-
lecting which class to train in a prosthesis control task. Our findings
indicated that employing a strategy where the system actively selects
training examples had benefits. Specifically, using an adaptive algo-
rithm enhanced individuals’ mental models and overall performance
gains.

Our research contributes to both HCI and cognitive science. We
explored some challenges of designing Co-learning interactions, namely
calibrating the system for the human and balancing adaptation and sta-
bility of the machine learning model. Recent machine learning paradigms
such as interactive machine learning, which include users in the develop-
ment of user-facing applications, create opportunities to provide more
agency to users, leading the way to exciting research directions.

As a direct extension of this work, it would be interesting to explore
adaptive learning over an extended time period within a more ecological
context. As emphasized by research in motor skill learning, moving
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beyond the desktop environment is likely to be beneficial as laboratory
settings cannot replace actual training. When designing curricula for
motor learning, it is imperative to work with users over several weeks or
months. This approach allows for a deeper understanding of user needs
and the lasting effects of various interventions. For instance, conducting
a long-term study in the home of a rehabilitation patient offers a more
realistic setting, potentially revealing the benefits of certain strategies
over others. Although this approach presents greater challenges, both
in terms of tools and methodologies used, it ensures that subsequent
learning system designs target the most relevant learning metrics.

Lastly, other motor learning factors which may benefit from curriculum-
based learning should be investigated. In this thesis, we studied the
impact of curriculum-based learning on human performance and Ma-
chine Learning model performance. Previous works have shown that
adapting learning tasks to provide optimal challenge is conducive to
greater motivation and confidence [50]. Motivation and confidence be-
ing crucial elements of learning, it would be interesting to investigate
how they are impacted by the adaptive systems implemented in this
research.

This thesis paves the way to Human-Machine Co-learning. It pro-
vides insights which may enhance the design of personalized learning
interventions for motor skills, balance control in human-AI interactions
and foster sounder mental models of users.
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.1 Appendix A

.1.1 Frequency of tasks in each practice schedule

Figure 1 shows the histograms of task widths (25 to 55 pixels) which
were scheduled during the practice phase, for each participant and con-
dition, denoted by Px-CL|EA|RD for Curriculum-based learning, Error
adaptation and Random. In general, the shapes of the histograms are
more variable for the Curriculum-based Learning condition than the
others. Based on the taller bars at the beginning of the histograms, the
Error Adaptation condition seems to schedule harder tasks than easier
ones.

Fig. 1: Histograms of task widths for each learning schedule : Curriculum-based
learning - CL, Error Adaptation - EA, and Random - RD.

.1.2 Questionnaires

In the context of the study presented in Chapter 3, we carried out a
subjective analysis of learners’ perception of the schedules. First, we
asked them whether they found the schedule to be random or having a
certain discernible structure. Then, we asked them to rate how appro-
priate they found the practice schedule to perform the post-test task.
Figures 2 and 3 shows the questionnaires we employed.
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Fig. 2: Day 1 questionnaire.

11/07/2024 13:14 Questionnaire 1

https://docs.google.com/forms/d/1fkIzyuEbwQ9H0HJ7j2X6n0mrXYVuqxpYrKOrJivkU_k/edit 1/3
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Fig. 3: Day 2 questionnaire.

1.

2.

Une seule réponse possible.

Very bad

1 2 3 4 5

Very good

3.

Une seule réponse possible.

Not appropriate

1 2 3 4 5

Appropriate

4.

Une seule réponse possible.

Not at all

1 2 3 4 5

Very well

Questionnaire 2

PID

How much do you think you were good at this activity before training?

Do you feel that the training schedule was appropriate for the task you had to
learn?

How much do you think you’ve learnt the movement?

11/07/2024 13:13 Questionnaire 2

https://docs.google.com/forms/d/13m8bBz9M4PLAMHWfGxtI-OXYpkyTeP57xLIGobdJvWg/edit 1/3



Appendix A iv

We analyzed how they perceived the structure of the practice sched-
ules. Individual T-tests showed that the participants of the error-
adaptation and curriculum-based learning who correctly perceived that
the schedules were structured did not answer randomly (p < 0.05).
The, we inspected participants answers regarding the appropriateness
of the schedules. Our results showed that participants considered the
schedules of curriculum-based learning to be appropriate for learning
(F (2, 36) = 3.300, p < 0.05) compared to the other two schedules.
Figure 4 shows these results.

Fig. 4: Appropriateness of practice. Perception of how appropriate each type of
practice was for learning the test task, on a 5 point Likert scale.

0
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4

5

Error Adaptation Curriculum Learning Random

Perception of appropriateness of practice
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.2 Appendix B

.2.1 Interface for the Learner -Led and Teacher -Led con-
ditions

(a) Interface for the Learner-Led condition. Clicking on the "Get Gesture" button queries
the next gesture.

(b) Interface for the Teacher-Led Condition. Participants select gestures by clicking on
icon buttons. The button border turns red to indicate that a gesture has been selected.

Fig. 5

.2.2 Post-Training Questionnaire

According to your experience, after having taught the system to recog-
nize the 8 gestures, how accurately will the system recognize each one?
(0% - the system never recognizes the gesture to 100% - the system
always recognizes the gesture)



Appendix B vi

Palm Up

Palm Down

Close Hand

Open Hand

Close Pinch

Rest Hand

Point Index

Open Pinch

Fig. 6: Post test questionnaire: participants’ perception of the machine’s accuracy
for each gesture.

.2.3 Histograms of tasks for each strategy

The plots below are the histograms of the gesture instances generated
by participants for each each condition. The first three plots show the
histograms for the full training period (120 trials). The next three
plots show the histograms for the first 60 trials. Compared to the
Learner-Led condition, the count of gestures is more balanced in the
Teacher-Led condition (see figures 7 and 8). For some participants,
the Learner-Led condition scheduled fewer than 5 gestures for the Rest
hand gesture and more than 20 gestures for Open hand (see figure 8).
This trend is also seen before 60 training trials, which also corresponds
to the phase where the TLC condition and the random condition show
faster accuracy increase than the LLC condition (see Chapter 4, figure
4.5. Extreme class imbalance may be responsible for the slower increase
in accuracy for the LLC condition.
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Fig. 7: Count of gestures performed by participants assigned to the Teacher-Led
condition.

Fig. 8: Count of gestures performed by the participants assigned to the Learner-Led
condition.
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Fig. 9: Count of gestures performed by participants assigned to the Random con-
dition.
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.2.4 Histograms of tasks for Learner-Led and Teacher-
Led strategies until trial 60

Fig. 10: Count of gestures performed by participants assigned to the LLC condition
until trial 60.
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Fig. 11: Count of gestures performed by participants assigned to the TLC condition
until trial 60.
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