
HAL Id: tel-04828770
https://theses.hal.science/tel-04828770v1

Submitted on 10 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimized blockchain deployment and application for
trusted industrial internet of things

Dun Li

To cite this version:
Dun Li. Optimized blockchain deployment and application for trusted industrial internet of things.
Computer Science [cs]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAS016�. �tel-
04828770�

https://theses.hal.science/tel-04828770v1
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
4I

P
PA

S
01

6

Optimized Blockchain Deployment and
Application for Trusted Industrial Internet

of Things
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom SudParis

École doctorale n◦626 Institut Polytechnique de Paris (ED IP Paris)
Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Evry, le 24 septembre 2024, par

DUN LI

Composition du Jury :

Joaquin Garcia-Alfaro
Professor, IP Paris, Telecom Paris - France Président

Mirjana Ivanovic
Professor, University of Novi Sad - Serbia Rapporteur

Joanna Kolodziej
Professor, NASK-PIB - Poland Rapporteur

Abdelkader Lahmadi
Associate Professor, ENSEM-Université de Lorraine - France Examinateur

Joaquin Garcia-Alfaro
Professor, IP Paris, Telecom Paris - France Examinateur

Noel Crespi
Professor, IP Paris, Telecom SudParis - France Directeur de thèse

Roberto Minerva
Professor, IP Paris, Telecom SudParis - France Co-directeur de thèse





Doctor of Philosophy (PhD) Thesis
Institut-Mines Télécom, Télécom SudParis
& Institut Polytechnique de Paris (IP Paris)

Specialization

COMPUTING, DATA AND ARTIFICIAL INTELLIGENCE

presented by

Dun Li

Optimized Blockchain Deployment and Application for
Trusted Industrial Internet of Things

Commitee:

Mirjana Ivanovic Rapporteurs Professor, University of Novi Sad - Serbia

Joanna Kolodziej Rapporteurs Professor, NASK-PIB - Poland

Joaquin Garcia-Alfaro Examiner Professor, IP Paris, Telecom Paris - France

Abdelkader Lahmadi Examiner Associate professor, ENSEM-Université de Lorraine - France

Noel Crespi Advisor Professor, IP Paris, Telecom SudParis - France

Roberto Minerva Co-advisor Professor, IP Paris, Telecom SudParis - France





Thèse de Doctorat (PhD) de
Institut-Mines Télécom, Télécom SudParis

et l’Institut Polytechnique de Paris (IP Paris)

Spécialité

INFORMATIQUE, DONNÉES ET INTELLIGENCE ARTIFICIELLE

présentée par

Dun Li

Déploiement et Application Optimisés de la Blockchain pour
un Internet Industriel des Objets de Confiance

Jury composé de :

Mirjana Ivanovic Rapporteurs Professor, University of Novi Sad - Serbia

Joanna Kolodziej Rapporteurs Professor, NASK-PIB - Poland

Joaquin Garcia-Alfaro Examiner Professor, IP Paris, Telecom Paris - France

Abdelkader Lahmadi Examiner Associate professor, ENSEM-Université de Lorraine - France

Noel Crespi Directeur de thèse Professeur, IP Paris, Telecom SudParis - France

Roberto Minerva Co-encadrant Professeur, IP Paris, Telecom SudParis - France





Dedication

To my most honorable mother, Xiaomei Ma.
I want to express my deepest gratitude to my mother, who has been my steadfast support
and inspiration throughout my academic journey. Her immense love, endless patience, and
constant encouragement have been the foundation of my strength and determination. I

am forever grateful for everything you have done for me.

To my most respected father, WeiJi Li.
I want to express my heartfelt gratitude to my father, whose guidance, wisdom, and

steadfast faith in me have been essential in my academic journey. His strong work ethic,
integrity, and perseverance have inspired me and guided me in my pursuit of excellence. I

owe a significant part of my success to your invaluable influence in my life.

To all my distinguished colleagues and friends.
I am sincerely grateful to all my classmates and colleagues who have been an important
part of my academic and professional journey. Each of you has contributed in your unique
way, providing me with valuable insights, support, and companionship. Thank you for

being an extraordinary part of this journey and for the lasting friendships we have made.

5





Acknowledgements

I am deeply thankful for the kind support and guidance I’ve received. Completing this thesis
is not just an academic achievement but also the result of many moments of discussion,
encouragement, and crucial support from many people.

First and foremost, I extend my heartfelt gratitude to my mentors at Telecom Sudparis,
Prof. Noel and Prof. Roberto. Their dedication, guidance, and confidence in my abilities
have been the pillars of my academic journey. Prof. Noel’s deep knowledge and careful
mentorship have greatly improved my analytical skills, while Prof. Roberto’s expertise and
practical perspectives have been invaluable in understanding the complexities of my field.

I sincerely thank my colleagues Reza, Praboda, Amir, Mohsan, Wenhao, Leyuan, Myra,
and Jing. Our teamwork and discussions have greatly enhanced my research. The unique
insights and contributions they provided have been invaluable.

I extend my deepest gratitude to my family and friends, whose steadfast love, encoura-
gement, and sacrifices have been my foundation. Your continuous support and belief in my
goals have given me the strength to pursue my dreams.

To everyone who has been part of this journey (professors, peers, administrative staff,
and the academic community), thank you for your contributions, big and small, to my doc-
toral experience. Your support has been indispensable and greatly appreciated throughout
the completion of this work.

Dun Li
Every

15th June 2024

7





Abstract
The continued advancement of the Industrial Internet of Things (IIoT) presents promising
prospects and numerous opportunities for improving the operational frameworks of indus-
trial systems. However, IIoT architectures face significant challenges, including centralized
control, vulnerability to cyber attacks, privacy violations, and data accuracy issues. These
challenges create significant obstacles in securing data, which is crucial for the growth of
this technology. To address these issues, many researchers suggest integrating blockchain
technology as a stable means to safeguard data within IIoT systems.

Blockchain’s features of distributed storage, decentralization, and immutability offer
distinct advantages in data secure storage, identity verification, and access control. Despite
these benefits, as IIoT applications diversify and data scales expand, the high resource
demand of blockchain systems clashes with the limited resources of IIoT devices, leading
to unresolved contradictions and persistent issues within this solution. Existing blockchain
architectures still lack anonymous and efficient IIoT identity authentication, with complex
encryption and decryption processes inducing excessive system overhead. To address these
issues, the thesis builds on prior research to optimize blockchain performance, aiming to
resolve the shortcomings and bottlenecks in current blockchain-based IIoT architectures
regarding data security protection.

Firstly, this thesis introduces a lightweight blockchain-enabled protocol designed for
secure data storage in the dynamic IIoT environment. It incorporates bilinear mapping
for system initialization, entity registration, and authentication technology to authenticate
IIoT entities efficiently and securely, along with an off-chain data storage approach to ensure
data integrity with reduced resource consumption.

Furthermore, the thesis addresses the limitations of Hyperledger fabric systems in
high availability scenarios by proposing Trie-Fabric, which enhances transaction proces-
sing through a Directed Acyclic Graph (DAG) based transaction sorting algorithm. This
approach significantly reduces terminated transactions, optimizes conflict handling, and in-
creases efficiency by more than 60% in its best case, according to comparative experimental
results.

To manage the increasingly sophisticated industrial processes and privacy-sensitive data
generated by IIoT devices, the thesis proposes a smart contract-assisted access control
scheme utilizing the Attribute-Based Access Control (ABAC) model. This scheme, suppor-
ted by bloom filter components, demonstrates controlled contract execution times, stable
system throughput, and a rapid consensus process in real-world simulations, making it
highly capable of handling high-throughput and effective consensus even under large-scale
request scenarios.

Lastly, the thesis introduces the Zero-Knowledge Proof (ZKP) algorithm, which inte-
grates a non-interactive zero-knowledge proof protocol with Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) to enhance security and efficiency in IIoT content distribution.
Combined with the Distributed Publish-Subscribe IIoT (DPS-IIoT) system using Hyper-

9



10

ledger fabric, it significantly improves bandwidth efficiency and overall throughput in IIoT
environments.

Through comprehensive security performance evaluations and experimental results, this
research confirms the protocols’ effectiveness in minimizing system overhead, improving sto-
rage reliability, and enhancing overall IIoT data management and application security. This
thesis provides an in-depth examination of advanced data management protocols and sys-
tems for the IIoT, which are crucial for advancing the manufacturing sector. Consequently,
this work makes a significant contribution to the field of IIoT data security, offering scalable
and robust solutions for current and future industrial systems.

Keywords

Blockchain, Industrial Internet of Things, Trie Tree, Hyperledger Fabric, Concurrency Op-
timization, Practical Byzantine Fault Tolerance Consensus, Directed Acyclic Graph, Trans-
action Sorting Algorithm, Information-centric Networking, Zero-Knowledge Proof.



Résumé
La progression continue de l’internet industriel des objets (IIoT) offre des perspectives
prometteuses et de nombreuses possibilités d’améliorer les cadres opérationnels des systèmes
industriels. Cependant, les architectures de l’IIoT sont confrontées à des défis importants,
notamment le contrôle centralisé, la vulnérabilité aux cyberattaques, les violations de la vie
privée et les problèmes d’exactitude des données. Ces défis créent des obstacles importants
à la sécurisation des données, qui est cruciale pour la croissance de cette technologie.
Pour résoudre ces problèmes, de nombreux chercheurs suggèrent d’intégrer la technologie
blockchain comme moyen stable de protéger les données au sein des systèmes IIoT. Les
caractéristiques de stockage distribué, de décentralisation et d’immutabilité de la blockchain
offrent des avantages significatifs en matière de stockage sécurisé des données, de vérification
de l’identité et de contrôle d’accès.

Malgré ces avantages, à mesure que les applications IIoT se diversifient et que les vol-
umes de données croissent, la forte demande en ressources des systèmes blockchain se heurte
aux ressources limitées des appareils IIoT, ce qui entrâıne des contradictions non résolues
et des problèmes persistants. Les architectures blockchain existantes manquent encore
d’authentification d’identité IIoT anonyme et efficace, avec des processus de cryptage et
de décryptage complexes induisant une surcharge excessive du système. Pour résoudre ces
problèmes, cette thèse s’appuie sur des recherches antérieures pour optimiser les perfor-
mances de la blockchain, visant à résoudre les lacunes et les goulets d’étranglement des
architectures IIoT actuelles basées sur la blockchain en ce qui concerne la protection de la
sécurité des données.

Tout d’abord, cette thèse présente un protocole léger basé sur la blockchain, conçu pour
le stockage sécurisé des données dans l’environnement dynamique de l’IIoT. Il intègre la car-
tographie bilinéaire pour l’initialisation du système, l’enregistrement des entités et la tech-
nologie d’authentification pour authentifier les entités IIoT de manière efficace et sécurisée,
ainsi qu’une approche de stockage des données hors châıne pour garantir l’intégrité des
données avec une consommation de ressources réduite.

En outre, la thèse aborde les limites des systèmes Hyperledger fabric dans les scénarios
de haute disponibilité en proposant Trie-Fabric, qui améliore le traitement des transactions
grâce à un algorithme de tri des transactions basé sur un graphe acyclique dirigé (DAG).
Cette approche réduit considérablement les transactions interrompues, optimise la gestion
des conflits et augmente l’efficacité de plus de 60% dans le meilleur des cas, selon des
résultats expérimentaux comparatifs.

Pour gérer les processus industriels de plus en plus sophistiqués et les données sensibles
à la vie privée générées par les appareils IIoT, cette thèse propose un schéma de contrôle
d’accès assisté par smart contract utilisant le modèle de contrôle d’accès basé sur les at-
tributs (ABAC). Ce concept, supporté par des composants de filtre de bloom, permet de
bénéficier de temps d’exécution de contrat contrôlés, d’un débit de système stable et d’un
processus de consensus rapide dans des simulations réelles, ce qui le rend capable de gérer

11



12

un débit élévé et un consensus efficace, même dans des scénarios de demande à grande
échelle.

Enfin, cette thèse présente l’algorithme Zero-Knowledge Proof (ZKP), qui intègre un
protocole de preuve à zéro connaissance non-interactif avec le chiffrement basé sur les
attributs de la politique de chiffrement (CP-ABE) pour améliorer la sécurité et l’efficacité
de la distribution de contenu IIoT. Combiné au système Distributed Publish-Subscribe
IIoT (DPS-IIoT) utilisant Hyperledger fabric, il améliore considérablement l’efficacité de
la bande passante et le débit global dans les environnements IIoT. Grâce à des évaluations
complètes des performances de sécurité et à des résultats expérimentaux, ces recherches
confirment l’efficacité des protocoles pour minimiser la surcharge du système, améliorer la
fiabilité du stockage et renforcer la gestion globale des données de l’IIoT et la sécurité des
applications.

Cette thèse fournit un examen approfondi des protocoles et systèmes de gestion de
données avancés pour l’IIoT, qui sont cruciaux pour faire progresser le secteur de la fab-
rication. Par conséquent, ce travail apporte une contribution significative au domaine de
la sécurité des données de l’IIoT, en offrant des solutions évolutives et robustes pour les
systèmes industriels actuels et futurs.

Mots-clés

Blockchain, Internet Industriel des Objets, Arbre Trie, Hyperledger Fabric, Optimisation
de la concurrence, Consensus de tolérance de faute byzantine pratique, Graphe acyclique
dirigé, Algorithme de tri des transactions, Réseautage centré sur l’information, Preuve à
divulgation nulle de connaissance.



Table of contents

1 Introduction 19

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Publications List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Relationship of Publications with Contributions . . . . . . . . . . . . . . . . 24

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Preliminaries and State of the Art 29

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Industrial Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Architecture of the Internet of Things . . . . . . . . . . . . . . . . . 32

2.2.2 Message Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Blockchain Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Blockchain Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Blockchain Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Blockchain Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 InterPlanetary File System Storage . . . . . . . . . . . . . . . . . . . 37

2.3.5 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.6 Transaction and Ledger . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.7 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Hyperledger Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Node Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.3 Transaction Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Cryptography Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Public Key Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.2 Bilinear Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3 Elliptic Curve Encryption . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.4 Hash Function and Message Authentication Code . . . . . . . . . . . 43

2.5.5 Digital Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

13



14 TABLE OF CONTENTS

2.5.6 Merkel Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.7 Zero-knowledge Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.2 Gaps and Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Blockchain-assisted Lightweight Data Storage 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Blockchain-based Securing Data Solutions in IIoT Networks . . . . . 54

3.2.2 Advancements in Blockchain-Based IIoT Storage Solutions . . . . . 55

3.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1.1 Registration Authority (RA) . . . . . . . . . . . . . . . . . 57

3.3.1.2 Data Provider (DP) . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1.3 End User (EU) . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1.4 Blockchain (BC) . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1.5 Data Storage Service (DS) . . . . . . . . . . . . . . . . . . 57

3.3.2 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Model Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1.1 Initialization of System Parameters . . . . . . . . . . . . . 58

3.4.1.2 Initialization of Blockchain . . . . . . . . . . . . . . . . . . 59

3.4.2 Entity Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.3 Entity Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.4 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.5 Permission Revocation . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Identity Anonymous . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.2 Data Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.3 Condition Traceability . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.4 Analysis of Network Attack Resistance . . . . . . . . . . . . . . . . . 65

3.6 Performance Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . 66

3.6.1 Basic Configurations of the Experiments . . . . . . . . . . . . . . . . 66

3.6.2 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . 67

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Trie-alternative transaction serial sorting 73

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Consensus Algorithm Optimization . . . . . . . . . . . . . . . . . . . 76

4.2.2 Transaction Conflict Relations Optimization . . . . . . . . . . . . . 77

4.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



TABLE OF CONTENTS 15

4.3.1 Multi-version Concurrency Control . . . . . . . . . . . . . . . . . . . 78
4.3.2 Fabric Transactions Conflict Relationship . . . . . . . . . . . . . . . 78

4.3.2.1 WS(T s
i ) ∩WS(T s

j ) ̸= ∅ . . . . . . . . . . . . . . . . . . . . 78
4.3.2.2 RS(T s

i ) ∩WS(T s
j ) ̸= ∅ . . . . . . . . . . . . . . . . . . . . 79

4.3.2.3 WS(T s
i ) ∩RS(T s

j ) ̸= ∅ . . . . . . . . . . . . . . . . . . . . 80
4.3.3 Exchangeability of Transactions . . . . . . . . . . . . . . . . . . . . . 80
4.3.4 Conflict Serializability . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Algorithms Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4.1 Trie Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.2 Transaction Serial Sorting Algorithm . . . . . . . . . . . . . . . . . . 83
4.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Experimental Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.1 Benchmark Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.1.1 Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.5.1.2 Ratio of Read-write Transactions . . . . . . . . . . . . . . . 91
4.5.1.3 Zipf’s Law Access Frequency Constant . . . . . . . . . . . 91

4.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Smart Contract-inspired Access Control 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Definition of the Structural Relationship . . . . . . . . . . . . . . . . 104
5.3.2 Model Data Structure Definition . . . . . . . . . . . . . . . . . . . . 105

5.3.2.1 PersistentData . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2.2 Access Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.2.3 Record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.3 Model Interrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4 System Model and Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.1.1 IIoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.1.2 User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.1.3 CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.1.4 Admin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.1.5 BN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.2 Smart contract design . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.2.1 User Management Contracts (UMC) . . . . . . . . . . . . . 108
5.4.2.2 Access Control Contracts (ACC) . . . . . . . . . . . . . . . 109
5.4.2.3 Private Data Control Contract (PCC) . . . . . . . . . . . . 110
5.4.2.4 Access Policy Management Contract (PMC) . . . . . . . . 110

5.4.3 Policy Query Pptimization based on Bloom Filter . . . . . . . . . . 110
5.4.4 System Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.4.1 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . 113



16 TABLE OF CONTENTS

5.4.4.2 Blockchain Network Initialization . . . . . . . . . . . . . . 113
5.4.4.3 Access Policy Deployment . . . . . . . . . . . . . . . . . . 114
5.4.4.4 User Registration . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.4.5 User Access Allocation . . . . . . . . . . . . . . . . . . . . 115

5.5 Performance Evaluation and Analysis . . . . . . . . . . . . . . . . . . . . . 116
5.5.1 System Environment and Configuration . . . . . . . . . . . . . . . . 116

5.5.1.1 Network Structure . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.1.2 Chaincode Deployment . . . . . . . . . . . . . . . . . . . . 117

5.5.2 Performance Test and Experimental Results . . . . . . . . . . . . . . 117
5.5.2.1 Contract Execution Time . . . . . . . . . . . . . . . . . . . 117
5.5.2.2 TPS of Smart Contracts . . . . . . . . . . . . . . . . . . . 120
5.5.2.3 Consensus Time Comparison . . . . . . . . . . . . . . . . . 121

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Non-Interactive ZKP-inspired Access Control 125
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 Attribute-Based Encryption with IoT . . . . . . . . . . . . . . . . . 129
6.2.2 Access Control with Blockchain . . . . . . . . . . . . . . . . . . . . . 129
6.2.3 ICN with IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.1 Entity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Proposed ZK-CP-ABE Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4.1 Optimized Decryption in CP-ABE Systems for IIoT Environments . 134
6.4.2 System Setup and Key Generation . . . . . . . . . . . . . . . . . . . 134
6.4.3 Generation of User-Specific Keys and validation proof . . . . . . . . 134
6.4.4 Encryption of Data under Access Control Policies . . . . . . . . . . 135
6.4.5 Verification of Private Key Authenticity . . . . . . . . . . . . . . . . 137
6.4.6 Decryption of Ciphertext to Obtain Metadata . . . . . . . . . . . . . 138

6.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5.1 Data Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5.2 Data Immutability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.5.3 Robustness Against External Attacks . . . . . . . . . . . . . . . . . 140
6.5.4 Resistance to Internal Threats . . . . . . . . . . . . . . . . . . . . . 141

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.6.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.6.2 Algorithm Performance Evaluation . . . . . . . . . . . . . . . . . . . 141

6.6.2.1 Computational Analysis Relative to Attribute Policies . . . 142
6.6.2.2 Bandwidth Consumption Analysis for Varying Data Sizes . 143
6.6.2.3 Analysis of Operational Duration to Transmission Latency 143

6.6.3 Scalability performance evaluation . . . . . . . . . . . . . . . . . . . 143
6.6.3.1 Algorithmic Complexity Analysis . . . . . . . . . . . . . . 143
6.6.3.2 Bandwidth Utilization Efficiency . . . . . . . . . . . . . . . 143



TABLE OF CONTENTS 17

6.6.3.3 Proportional Analysis of Time Consumption . . . . . . . . 145
6.6.4 System Performance Evaluation . . . . . . . . . . . . . . . . . . . . . 146

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7 Disscusion 149
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References 153

List of figures 163

List of tables 165



18 TABLE OF CONTENTS



Chapter 1
Introduction

Contents

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 20

1.2 Publications List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . 23

1.4 Relationship of Publications with Contributions . . . . . . . . . 24

1.5 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 25

19



20 1.1. BACKGROUND AND MOTIVATION

1.1 Background and Motivation

As a typical application of the Internet of Things (IoT), the Industrial Internet of Things

(IIoT) enhances resource allocation by connecting smart devices, enabling data collection

and analysis, and significantly improving production efficiency and quality. However, with

the increasing interconnection of industrial systems, data security and privacy protection

issues are becoming critical concerns that cannot be ignored. The rapid expansion of IIoT

devices has led to the generation of vast amounts of sensitive and missioncritical data.

If compromised or leaked, such data could result in severe operational disruptions and

substantial financial losses. Most IIoT applications currently rely on centralized servers

for data storage and management, along with third-party communication protocols for

information sharing and data transmission. The centralized architecture presents several

challenges, including increased security risks due to single points of failure, high opera-

tional and maintenance costs, and response delays that undermine the real-time nature of

IIoT systems. Among these, the security risks associated with unauthorized data access,

tampering, and sharing have emerged as particularly critical issues, demanding immediate

attention.

In the context of Industry 4.0, IIoT devices form a distributed and dynamic network

that constantly interacts with the external environment, and the demand for powerful,

scalable, and flexible security mechanisms is crucial. The vast amounts of heterogeneous

data generated and exchanged between devices must be protected from unauthorized ac-

cess while maintaining both integrity and confidentiality. However, traditional centralized

approaches often fall short of meeting these stringent requirements, highlighting the need

to explore decentralized solutions. Blockchain technology presents a promising approach

to overcoming these security challenges. Its decentralized and immutable nature offers a

secure foundation for managing and transmitting industrial data in IIoT environments, ad-

dressing many vulnerabilities inherent in centralized architectures. Specifically, blockchain

enhances data storage security, strengthens communication integrity between IIoT devices,

and facilitates distributed data processing. Despite these advantages, the high compu-

tational demands of blockchain, particularly in systems using the Proof of Work (PoW)

consensus mechanism, lead to significant resource consumption and operational inefficien-

cies. These challenges create substantial obstacles to the large-scale adoption of blockchain

in IIoT systems, where resource limitations are a key concern.

Thus, the primary research problem addressed in this thesis is the development of an

optimized blockchain framework that overcomes the computational and scalability lim-

itations of current blockchain-based IIoT solutions, while still providing a high level of

security, privacy, and efficiency. This research focuses on proposing a lightweight, secure,



CHAPTER 1. INTRODUCTION 21

and scalable blockchain architecture tailored for IIoT environments, which can address the

following key challenges:

• Security and Privacy: How can blockchain technology be leveraged to protect

the confidentiality and integrity of IIoT data without overwhelming the system with

computational overhead?

• Scalability: How can blockchain be optimized to handle the large-scale, high-frequency

transactions typical of IIoT systems, without sacrificing performance or security?

• Efficient Data Management: How can novel data structures and cryptographic

techniques be used to streamline secure storage, access control, and transaction pro-

cessing in IIoT systems?

• Advanced Cryptographic Techniques: How can modern cryptographic tech-

niques, such as zero-knowledge proof (ZKP), be integrated to further secure IIoT

systems while maintaining performance efficiency?

This thesis addresses these questions by introducing a series of improvements to blockchain

technology. By enhancing the robustness of blockchain while mitigating its computational

demands, the proposed solution provides a trusted, low-overhead, and lightweight secure

storage scheme. Incorporating cryptographic techniques such as asymmetric encryption

and message authentication codes, the scheme ensures identity anonymity, traceability, and

secure storage, all while significantly reducing computational overhead. In addition, inno-

vative approaches like trie trees and directed acyclic graphs (DAGs) are explored to manage

large-scale transactions and resolve concurrent conflicts, improving the overall scalability

of blockchain in IIoT applications. The integration of smart contracts further strengthens

security by enabling dynamic, fine-grained access control mechanisms tailored to real-time

operational needs. These layered improvements ultimately culminate in the DPS-IIoT

framework, offering a comprehensive solution to the multifaceted challenges of security,

privacy, and scalability in IIoT systems. As a result, this thesis offers a strategic and sys-

tematic enhancement of blockchain technology, evolving from a fundamental secure data

management system into a sophisticated, application-specific framework designed to meet

the evolving demands of IIoT.

1.2 Publications List

Accept Papers

• Li D, Han D, Crespi N, et al. A blockchain-based secure storage and access control

scheme for supply chain finance[J]. The Journal of Supercomputing, 2023, 79(1):



22 1.2. PUBLICATIONS LIST

109-138.

• Li D, Li H, Crespi N, et al. Blockchain-Enabled Large Language Models for Prognos-

tics and Health Management Framework in Industrial Internet of Things[C]//Blockchain

and Trustworthy Systems: International Conference, BlockSys 2024, Hangzhou, China,

July 12, 2024.

• Shao W, Wei Y, Rajapaksha P, Dun L, Noel C, et al. Low-latency Dimensional

Expansion and Anomaly Detection empowered Secure IoT Network[J]. IEEE Trans-

actions on Network and Service Management, 2023 (99): 1-1.

• Cai S, Han D, Li D, Crespi N, et al. An reinforcement learning-based speech censor-

ship chatbot system[J]. The Journal of Supercomputing, 2022, 78(6): 8751-8773.

• Shao W, Rajapaksha P, Wei Y, D Li, et al. COVAD: Content-oriented video anomaly

detection using a self attention-based deep learning model[J]. Virtual Reality & In-

telligent Hardware, 2023, 5(1): 24-41.

Submitted Papers

• Li D, Xia B, Crespi N, et al. Trie-Fabric: A trie-alternative transaction serial sorting

scheme in permissioned blockchain networks[J]. Advanced Engineering Informatics,

2024.

• Li D , Han D, Crespi N, et al. Blockchain in the Digital Twin Context: A Compre-

hensive Survey, [J]. ACM Computing Surveys, 2024.

• Li D, Crespi N, Roberto M, et al. MLAE: A Cosine Similarity-empowered Multi-loss

Encoder Framework for Unsupervised Network Traffic Anomaly Detection[J]. IEEE

Transactions on Instrumentation and Measurement, 2024.

• Li D, Liu H, Crespi N, et al. DPS-IIoT: Non-Interactive Zero-Knowledge Poof-

inspired Access Control towards Information-Centric Industrial Internet of Things[J].

Computer Communications, 2024.

• Li D, Crespi N, Roberto M, et al. Blockchain-assisted Lightweight Data Storage

Protocol for Large-scale Industrial Internet of Things[J]. IEEE Internet of Things,

2024.

• Li D, Li H, Crespi N, et al. Hyper-IIoT: A Smart Contract-inspired Access Control

Scheme for Resource-constrained Industrial Internet of Things[J]. IEEE Transactions

on Sustainable Computing, 2024.



CHAPTER 1. INTRODUCTION 23

1.3 Contributions of the Thesis

This thesis introduces a comprehensive framework designed to enhance the security, ef-

ficiency, and trustworthiness of IIoT environments. It addresses the complexities and

emerging challenges within IIoT by leveraging blockchain technology and advanced crypto-

graphic techniques. The core contributions of this thesis are presented through a series of

publications, each focusing on specific aspects of the overall objective. Collectively, these

publications contribute to developing a secure and efficient IIoT ecosystem. Below is a

detailed explanation of each publication and its contribution to the thesis:

C.1 Blockchain-assisted secure data storage protocol. To address the se-

curity and privacy challenges in IIoT, this thesis proposes a lightweight

and efficient data storage protocol leveraging blockchain technology to en-

sure decentralized storage and enhanced security. The proposed scheme

combines blockchain with cryptographic principles and IPFS technology to

guarantee secure data storage in industrial IIoT environments. It achieves

conditional anonymity and robust security while minimizing the compu-

tational overhead associated with cryptographic operations. Key features

include efficient message authentication, secure key management, and iden-

tity withdrawal mechanisms, thereby providing a resilient solution that bal-

ances IIoT’s large-scale operational complexity with energy efficiency, data

access speed, and long-term cost management.

C.2 Trie-alternative transaction serial sorting scheme. To solve the scal-

ability problem in large-scale IIoT systems, this thesis presents a Trie-

based serial sorting algorithm to handle the high volume of invalid transac-

tions common in blockchain networks. By analyzing the inherent conflict

dynamics in concurrent transactions within Hyperledger Fabric, this scheme

constructs a conflict graph that eliminates circular dependencies and in-

valid transactions through topological sorting of a directed acyclic graph

(DAG). This refined transaction sequence enhances processing efficiency

and conflict resolution, significantly improving scalability and transaction

throughput while ensuring IIoT device and stakeholder authentication re-

mains secure and reliable.

C.3 Smart contract-based access control scheme. To address the chal-

lenge of efficient data management in IIoT, this thesis proposes a smart

contract-based access control solution that enables fine-grained control over

device access permissions. The use of attribute-based access control models



24 1.4. RELATIONSHIP OF PUBLICATIONS WITH CONTRIBUTIONS

ensures a precise definition of equipment attributes, while smart contracts

enforce custom access rules and log access activities for transparency and

security. By optimizing smart contract management and querying mecha-

nisms, this solution effectively reduces computing costs and response times,

providing a secure and efficient way to manage IIoT data and device access

in resource-constrained environments.

C.4 Non-interactive zero-knowledge proof-inspired access control. To

enhance advanced cryptographic techniques for securing IIoT environ-

ments, this thesis introduces a non-interactive ZKP system combined with

attribute-based ciphertext strategies. This approach ensures high-level pri-

vacy and reduces bandwidth consumption, while the proposed DPS-IIoT

system, built on Hyperledger Fabric, enhances the security and reliability

of IIoT networks. The ZKP-inspired system addresses the need for efficient

bandwidth management and throughput in IIoT, offering a significant im-

provement over existing methods.

1.4 Relationship of Publications with Contributions

This section provides the relationships of publications with contributions.

• The publications ”Blockchain-assisted Lightweight Data Storage Protocol for Large-

scale Industrial Internet of Things” and ”Blockchain-Enabled Large Language Models

for Prognostics and Health Management Framework in Industrial Internet of Things”

correspond to Contribution C.1.

• The publication ”Trie-Fabric: A trie-alternative transaction serial sorting scheme in

permissioned blockchain networks” corresponds to Contribution C.2.

• The publications ”Hyper-IIoT: A Smart Contract-inspired Access Control Scheme for

Resource-constrained Industrial Internet of Things” and ”A blockchain-based secure

storage and access control scheme for supply chain finance” correspond to Contribu-

tion C.3.

• The publication ”DPS-IIoT: Non-Interactive Zero-Knowledge Poof-inspired Access

Control towards Information-Centric Industrial Internet of Things” corresponds to

Contribution C.4.



CHAPTER 1. INTRODUCTION 25

1.5 Outline of the Thesis

As Fig 1.1 shows, the thesis is structured into seven chapters.

Chapter 3 Blockchain-assisted Lightweight
Data Storage Protocol

Secure
Storage

Authentication
based on

Cryptography

Mutual
authentication

Node permission
revocation

Chapter 4 Trie-alternative transaction
serial sorting scheme

Storage
Optimization Trie

Exchangeability of
transactions

Conflict
Serializability

Chapter 5 Smart Contract-inspired Access
Control Scheme

Access
Control

Smart
contract

Smart contract
management

Policy query
optimization

Chapter 6 Non-Interactive ZKP-inspired
Access Control

Access
Optimization

Non-
Interactive

ZKP

Optimized
Decryption

Keys & Proof

Secure storage to 
fine-grained access control

Chapter 1 Introduction
1.1 Background and Motivation 1.2 Publications List

1.3 Contributions of the Thesis 1.4 Relationship of Publications with Contributions

1.5 Outline of the Thesis

2.1 Overview 2.2 Industrial Internet of Things

2.3 Blockchain Ecosystem 2.4 Hyperledger Fabric

2.5 Basic theory of cryptography

Chapter 2 State of the Art

7.1 Summary 7.2 Future Work

Chapter 7 Disscusion

Figure 1.1: Outline of the Thesis

• Chapter 1 introduces the research background, and the motivation for the study,

and summarises the main contributions. It gives an overview of the project, describes

the contents of each chapter, and outlines the overall structure of the thesis.

• Chapter 2 provides an overview of the state of the art and related technologies



26 1.5. OUTLINE OF THE THESIS

essential to the thesis, including the IIoT, blockchain ecosystem, Hyperledger fabric

architecture, fundamental cryptography theories, and ZKP protocols.

• Chapter 3 introduces the first innovation of this thesis: a Blockchain-assisted Lightweight

Data Storage Protocol designed specifically for the expansive realm of Industrial IIoT.

This protocol offers a robust solution that aligns the complex network structures of

IIoT with the decentralized nature of blockchain, aiming to enhance both data secu-

rity and system efficiency. The chapter details the framework, highlighting the use

of smart contracts for authenticating entity components and enabling secure, anony-

mous identity verification. Additionally, it presents a tailored data storage model

that integrates edge computing with blockchain technology to address the unique

challenges of IIoT environments. The model ensures the integrity and safety of key

data while enabling efficient and transparent data operations. Performance evalua-

tions and simulations based on the Hyperledger fabric platform are presented to val-

idate the protocol’s effectiveness in reducing computational load, enhancing storage

reliability, and strengthening overall security in IIoT data management and applica-

tions. This chapter offers scalable and robust data security solutions relevant to the

evolving landscape of industrial systems, marking a significant advancement in the

thesis.

• Chapter 4 presents the second contribution of this thesis, focusing on ”Trie-Fabric:

A trie-alternative transaction serial sorting scheme in permissioned blockchain net-

works”. This chapter delves into the complex transaction management challenges

within permissioned blockchain environments like Hyperledger fabric, where high

transaction throughput and efficient processing are paramount. The chapter intro-

duces a novel transaction reordering algorithm, exploiting Trie structures and Di-

rected Acyclic Graphs (DAGs) to effectively manage and resolve transaction conflicts.

By replacing traditional sorting and validation methods with a Trie and DAG-based

approach, this chapter demonstrates a significant improvement in handling large-

scale transaction conflicts, thereby enhancing overall system performance and effi-

ciency. Through careful design and implementation, including benchmark tests with

SmallBank workload and comprehensive experiments, the chapter illustrates the su-

periority of Trie-Fabric in conflict resolution and transaction processing compared to

the original Fabric system. The results show that Trie-Fabric can increase efficiency

by more than 60% at the optimal point, marking a substantial improvement in trans-

action management for blockchain systems. This chapter contributes significantly

to the thesis by providing a robust and efficient solution to the critical problem of

transaction sorting in blockchain networks, especially for permissioned systems where



CHAPTER 1. INTRODUCTION 27

security, privacy, and efficiency are essential.

• Chapter 5 presents the third contribution of this thesis, ”Hyper-IIoT: A Smart

Contract-inspired Access Control Scheme for Resource-constrained Industrial Inter-

net of Things.” It addresses the critical need for robust access control in the complex

and dynamic IIoT environment. This chapter introduces a novel framework that uses

blockchain technology and smart contracts to ensure secure storage and confidential

data sharing within IIoT networks. By adopting an Attribute-Based Access Control

(ABAC) model and integrating it with bloom filters, the chapter presents a scalable

and efficient method for securing private data in IIoT environments. This approach

significantly reduces system overhead and enhances security through smart contracts

that manage complex data structures and enforce access controls. Additionally, the

chapter includes comprehensive simulations and experiments to validate the effec-

tiveness and efficiency of the proposed Hyper-IIoT framework. These validations

demonstrate the framework’s potential to transform IIoT ecosystems by providing a

more private, reliable, and efficient data management and access control system. This

chapter significantly advances the state of security and data management in IIoT, of-

fering a scalable and robust solution for current and future industrial systems.

• Chapter 6 presents the final contribution of this thesis, ”DPS-IIoT: Non-Interactive

Zero-Knowledge Proof-inspired Access Control for Information-Centric IIoT”. This

chapter addresses evolving security needs in the IIoT by integrating Information-

Centric Networking (ICN) with advanced access control. The chapter introduces

a novel framework that merges Ciphertext-Policy Attribute-Based Encryption (CP-

ABE) with ICN in the IIoT, ensuring efficient data sharing and user privacy. An

advanced ZKP protocol is crucial for effectively authenticating user attributes and

minimizing bandwidth usage within CP-ABE systems. The DPS-IIoT model uses

a Publish/Subscribe method to ensure scalability and efficient data distribution, re-

ducing redundant network transmissions. Hyperledger fabric stores replicated ac-

cess policies, and access control functions are supported by ZK-CP-ABE via smart

contracts for high performance, verifiability, and replicability. Through detailed dis-

cussions and experimental evaluations, the chapter demonstrates the effectiveness of

the DPS-IIoT framework in addressing IIoT security challenges. These contributions

significantly enhance understanding and capabilities in IIoT security, laying a foun-

dation for future research and development in secure, efficient, and user-centric IIoT

environments.

• Chapter 7 summarizes the contributions of the thesis and discusses potential future

research directions to further enhance and expand upon the presented work.



28 1.5. OUTLINE OF THE THESIS



Chapter 2
Preliminaries and State of the
Art

Contents

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Industrial Internet of Things . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Architecture of the Internet of Things . . . . . . . . . . . . . . . . 32

2.2.2 Message Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Blockchain Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Blockchain Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Blockchain Network . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Blockchain Encryption . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 InterPlanetary File System Storage . . . . . . . . . . . . . . . . . . 37

2.3.5 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.6 Transaction and Ledger . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.7 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Hyperledger Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Node Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.3 Transaction Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Cryptography Basics . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.1 Public Key Cryptosystem . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.2 Bilinear Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.3 Elliptic Curve Encryption . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.4 Hash Function and Message Authentication Code . . . . . . . . . . 43

2.5.5 Digital Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

29



30

2.5.6 Merkel Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.7 Zero-knowledge Proof . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.1 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6.2 Gaps and Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 31

2.1 Overview

This chapter provides an overview of the background knowledge and research foundations

related to IIoT, the blockchain ecosystem, Hyperledger fabric, and cryptography.

2.2 Industrial Internet of Things

The IIoT integrates large-scale sensors, processors, and communication equipment, using

various standards, services, and technologies. Mutual communication and data sharing

between devices create ubiquitous connections between users, services, and equipment. As

shown in Figure 2.1, each time an IIoT terminal interacts via the internet, it needs to send

data to cloud service providers and upload it to third-party cloud data centres [1]. This

section introduces the basic technologies of the IIoT from two perspectives: architecture

and message protocols.

Figure 2.1: The network structure diagram of the Industrial Internet of Things



32 2.2. INDUSTRIAL INTERNET OF THINGS

2.2.1 Architecture of the Internet of Things

IIoT consists of layers including data storage centers, cloud servers, and terminal devices.

Compared to traditional internet devices, terminal devices are smaller, more mobile, and

more resource-constrained. Using wireless technologies, IIoT incorporates concepts such as

secure multiparty computation and cloud computing [2].

Basic architecture, as defined by early researchers and organizations, involved a

simple three-layer IIoT structure, consisting of perception, network, and application layers,

devised to meet the demands of industry growth and the increasing number of devices [3].

However, this structure was found inadequate for actual IIoT environments as it didn’t

cover all underlying technologies for data transmission to the IIoT platform. Additionally,

the model was initially designed for specific communication media, such as wireless sensor

networks, without considering operation on resource-constrained devices.

Service-oriented Architecture (SOA) has been highlighted as a key technology

for integrating heterogeneous systems or devices in IIoT [4]. The SOA-based IIoT archi-

tecture is a five-layer structure (perception, object abstraction, middleware, application,

and management layers), with middleware pairing services with requesters based on ad-

dresses and names, allowing IIoT applications to process heterogeneous objects without

considering specific hardware platforms. The management layer oversees and manages the

four underlying layers. From a technical standpoint, SOA is an adaptive architecture that

meets the requirements of IIoT in terms of scalability, modularity, interoperability among

heterogeneous devices, and efficient event-driven capabilities.

Cloud and fog-based edge computing have recently been integrated into the IIoT

infrastructure [5]. In this structure, all sensors and actuators are connected to the cloud,

where information generated by sensors is processed, and the computational results are

returned to the actuators. From the information flow perspective, this represents an ideal

model, allowing easy updates of control functions in the cloud and the use of big data

technologies to analyze sensor-generated data sets and optimize production efficiency.

Information-Centric Networking (ICN) has become central with the proliferation

of 4G and 5G. The core idea of ICN is to cache and route popular content copies through

the network, reducing resource waste caused by repetitive transmission [6]. ICN decouples

content from hosts, breaking the host-centric naming rules of TCP/IP protocols, and bases

data exchange between nodes on content names rather than destination addresses [7,8]. In

short, ICN has changed the focus of network transmission from ”where is the content” to

”what is the most important content.”



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 33

2.2.2 Message Protocol

IIoT employs a diverse array of message transmission protocols designed to meet its varied

needs, in contrast to the web’s reliance on HTTP [9]. Over the past decades, organizations

have developed protocols such as AMQP and JMS for swift transactional support [10],

MQTT and CoAP for efficient data collection in constrained networks [11,12], and XMPP

and SIP for real-time message processing [13]. In contrast, protocols like RESTful, HTTP,

and CoAP are suitable for internet traversal, making them ideal for web applications.

Selecting the appropriate protocol requires a thorough understanding of its advantages

and disadvantages, considering specific application requirements and security risks. This

section introduces three prominent IIoT message transmission protocols: CoAP, MQTT,

and AMQP, shown at the top of the IIoT network protocol stack (application layer) in

Figure 2.2.

Figure 2.2: The Protocol Stack of IIoT Systems

Constrained Application Protocol (CoAP) is a typical application layer proto-

col for IIoT, defining a web transfer protocol that builds upon the representational state

transfer (REST) functionalities of HTTP [14]. RESTful architecture simplifies data ex-

change between client and server via HTTP, ensuring stateless connections with cacheable

responses. CoAP addresses the constraints of IIoT environments by facilitating CRUD op-

erations (Create, Retrieve, Update, Delete) through HTTP methods such as GET, POST,

PUT, and DELETE, thereby enabling the exposure and utilization of web services like

SOAP. CoAP, unlike traditional REST, employs UDP instead of TCP by default, making

it suitable for unstable IIoT networks. Additionally, CoAP adapts some HTTP features

for low-power operations and functioning over unreliable links, aligning with IIoT needs.



34 2.2. INDUSTRIAL INTERNET OF THINGS

Its compatibility with other REST-based applications facilitates seamless integration. The

overall functionalities of the CoAP protocol are shown in Figure 2.3.

REST network CoAP environment

CoAP Client

Figure 2.3: The Workflow of CoAP protocol

Message Queue Telemetry Transport (MQTT), developed by IBM researchers in

1999 and standardized by OASIS in 2013 [15], facilitates lightweight Machine to Machine

(M2M) communication in constrained networks. Operating on a publish/subscribe model,

MQTT allows clients to send messages to a broker, where other clients can either access

them immediately or store them for later retrieval through subscriptions, as shown in

Figure 2.4. Messages are published to topics, allowing clients to follow several topics at

once and obtain corresponding messages. MQTT supports two specifications: MQTT v3.1,

operating on TCP, and MQTT-SN, utilizing UDP and featuring indexed topic names for

enhanced efficiency in constrained networks. With three QoS levels, MQTT caters to a

variety of network environments, making it suitable for both M2M and S2M networks.

Its widespread adoption in the industry has solidified MQTT as a preferred connection

protocol for IIoT.

Advanced Message Queuing Protocol (AMQP) is a lightweight M2M protocol

designed for enterprise-level messaging with a focus on reliability, security, resource allo-

cation, and interoperability [16]. It offers an array of messaging functionalities, including

reliable queues, topic-based publishing and subscribing flexible routing, and transaction

support. AMQP utilizes TCP as its default transport protocol, ensuring security through

TLS/SSL and SASL. Communication between clients and brokers is connection-oriented.

AMQP’s two main components are Exchanges, for routing messages to appropriate queues

following preset rules, and Queues, for storing and distributing messages to recipients.

In addition to point-to-point communication, AMQP further supports publish/subscribe

models, offering two basic levels of Quality of Service (QoS): unreliable and reliable.



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 35

Figure 2.4: The Workflow of MQTT protocol

2.3 Blockchain Ecosystem

The concept of blockchain was first introduced by Satoshi Nakamoto in his white paper

published in 2008 [17]. By employing an open distributed ledger, the network accurately

records all transactions, significantly reducing the likelihood of altering block data without

the majority consent of network participants. Operating independently of any centralized

authority, blockchain integrates asymmetric encryption and distributed consensus, thereby

establishing a transparent, secure, and scalable ecosystem.

2.3.1 Blockchain Structure

The blockchain functions as a decentralized ledger, known for its reliability due to the

immutability of its data [18]. In a distributed environment, this tamper-resistant ledger

ensures that data cannot be altered without following the predefined consensus protocol.

Data within the ledger is organized in the form of transactions, which are grouped into

blocks. The system continuously appends new blocks to the chain at the latest node.

During this process, nodes organize transactions based on factors such as transaction fees

or the order in which they are received and then perform hash calculations to determine the

hash value for each transaction. If a transaction is tampered with, for instance by altering

the address or amount, or if the transaction order is changed, the resulting Merkle tree root

will be entirely different from the original. The first block in the chain, which has no parent

block, is referred to as the genesis block [19]. Each block contains a timestamp, a nonce,

and other identifying data. The basic process of blockchain formation can be described by

Equation ??.



36 2.3. BLOCKCHAIN ECOSYSTEM

Genesis
ctgen−→ {Block1, Block2, · · ·Blockn} (2.1)

The block body is where the majority of data is stored, including transaction data and

smart contracts as shown in Figure 2.6. The verified transactions and transaction counter

are both contained in the block body [20]. Consider a Bitcoin block as an example, a block

may be up to 1MB in size, but a transaction is generally 250 bytes in size. Therefore, there

is a limit of 4,000 transactions per block.

Merkle Root N+1

=H12...i

Block N+2

H

FiContract_Index

Block N

Block   N   Header:

000000···da8be

Block N Transactions:

Tx1: {TPz···QY8} → {TM6···Qh8}

Tx2: {TgJ··· OtY} → {TgU···7hJ}

Tx3: {TIv···7gM} → {TJy···KOG}

···

FiContract_Index

Block N+1

Block   N+1  Header:

000000···3e5cb6

Block N+1 Transactions:

Tx1: {TPz···QY8} → {TM6···Qh8}

Tx2: {TgJ··· OtY} → {TgU···7hJ}

Tx3: {TIv···7gM} → {TJy···KOG}

···

FiContract_Index

Block   N+2  Header:

000000···4cec3

Block N+2 Transactions:

Tx1: {TPz···QY8} → {TM6···Qh8}

Tx2: {TgJ··· OtY} → {TgU···7hJ}

Tx3: {TIv···7gM} → {TJy···KOG}

···

Hash of Block

N-1 Header

Time-

stamp
Nonce

Merkle Root N

Hash of Block

N Header

Time-

stamp
Nonce

Merkle Root N+1

Hash of Block

N+1 Header

Time-

stamp
Nonce

Merkle Root N+2

H

H12

· · ·

Hi-1i

H1234

H34

H··i

· · ·

H

H

TX2TX1

H

TX4TX3

H

TXiTXi-1

H

H

H Hash Function:

SHA256

Transactions

B
lo

c
k
c
h

a
in

 s
e
q

u
e
n

c
e

M
e
rk

le
 T

re
e

Figure 2.5: General structure of the blockchain

2.3.2 Blockchain Network

In blockchain networks, nodes serve as crucial elements embodying principles of equality,

autonomy, and decentralization. Nodes can be added or modified within the system with-

out causing disruptions. Each node continuously monitors the network for information

broadcasts and, upon receiving new blocks or transactions from its neighbours, immedi-

ately validates the broadcasted message. This communication typically includes digital

signatures, proof of work, hash values, blocks, and smart contracts [21]. To ensure the



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 37

integrity of data, messages are encrypted and added to the blockchain only after achieving

consensus through a verification process.

2.3.3 Blockchain Encryption

Deploying blockchain requires setting up a peer-to-peer (P2P) network of devices or users,

each ready to connect through the blockchain [22]. Each node generates a pair of crypto-

graphic keys: a private key and a public key. Users exchange public keys to verify signed

documents while keeping their private keys confidential to ensure security. To meet mes-

sage security requirements, asymmetric cryptography is employed. Users keep their private

keys secret and use the public keys of other users to verify document signatures. When a

node initiates a transaction, it signs the transaction with its private key and broadcasts it

for confirmation by peer nodes. The choice of consensus methods, which are verification

methodologies, depends on the specific design objectives of the blockchain system.

2.3.4 InterPlanetary File System Storage

The InterPlanetary File System (IPFS) is an innovative hypermedia text transmission

system, similar to a website that offers distributed storage [23]. The IPFS network uses a

decentralized, encrypted storage system to store information. Files are divided into many

pieces and stored on different network nodes. When a file is accessed or downloaded, the

IPFS network instantly reconstructs it to its original state [24]. IPFS uses specific hashes

to ensure data accuracy. Hashes are generated only for files submitted to the IPFS server,

ensuring secure and high-integrity data storage. IPFS-based storage ensures the reliability,

accessibility, and integrity of stored data. Additionally, IPFS storage is significantly less

expensive than on-chain storage. Depending on the required storage amount, IPFS storage

has a fixed monthly cost that is comparable to traditional storage solutions.

2.3.5 Consensus

In blockchain systems, there is no central authority responsible for maintaining ledger con-

sistency across distributed nodes. Instead, consensus mechanisms are employed to ensure

uniformity by verifying and encoding new transactions and blocks. These mechanisms must

allow all participants to reach agreement in an untrusted environment while maintaining

high fault tolerance [25]. Different systems utilize various consensus mechanisms, with

Proof of Work (PoW), first implemented by the Bitcoin network, being both the earliest

and most extensively used. In PoW, participants compete by using their computational

resources to find the nonce value needed to generate a valid block. The difficulty of the

mining process determines the effort required for consensus, with the difficulty value indi-



38 2.3. BLOCKCHAIN ECOSYSTEM

cating the approximate number of hash operations a node must perform to create a valid

block. This serves as a critical benchmark for block production in the Bitcoin system.

Bitcoin adjusts its difficulty approximately every two weeks to ensure that new blocks are

generated at a consistent rate of about one every 10 minutes, regardless of changing net-

work conditions [26]. The adjustment is made by recalculating the new target T , as shown

in Equation 2.2.

D = Dprev ·
tactual

2016 · 10 mins
(2.2)

Where tactual represents the time consumption of producing the previous 2,016 blocks,

and Dprev is the former goal value. The generation of 2,016 blocks in less than two weeks

implies an increase in overall computational capacity, necessitating an adjustment in the

PoW difficulty. Additionally, various blockchain projects employ diverse consensus algo-

rithms alongside PoW [27].

2.3.6 Transaction and Ledger

Transactions represent the fundamental form in which data is stored on the blockchain.

When initiating a transaction, users typically allocate a transaction fee to the miner re-

sponsible for successfully creating a block. Miners are then tasked with bundling these

transactions into the block they are generating. Each block can contain zero or more trans-

actions. The unallocated transaction amount can be regarded as the transaction fee, as

shown in Equation 2.3.

Inputs− outputs = Transactionfees (2.3)

As Figure 2.6 shows, the ledger consists of a state database, which keeps track of

the most recent state, and a blockchain that stores immutable, ordered data in the form

of blocks. Each transaction creates a set of key-value pairs representing assets, which are

then added, modified, or removed from the ledger [28]. A transaction log with sorted trans-

actions per block is constructed using a hash-linked block structure. In some blockchain

implementations, new blocks (even empty ones) are continually added to maintain network

security. The structure of the ledger and the cryptographic links between transactions

are designed to ensure data integrity. Any modification to the ledger would compromise

the entire hash chain, as the hash of each preceding transaction is embedded in the latest

block
’
Äôs hash. This guarantees that all nodes maintain a consistent and stable state.



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 39

Figure 2.6: General structure of the blockchain

2.3.7 Smart Contract

Blockchain technology in its initial form, referred to as blockchain 1.0, emerged along-

side the advent of cryptocurrencies such as Bitcoin [17]. The encrypted data on the

blockchain has been used for various Industry 4.0 applications, including protecting sensor

data. Blockchain technology has since advanced to the 2.0 era with the introduction of

smart contracts [29, 30]. The Ethereum network supports the development of smart con-

tracts, turning every computer into a part of a massively distributed, rentable machine.

The emergence of smart contracts has further contributed to the creation of decentralized

autonomous organizations (DAOs). Tools such as the web-based IDE Remix enable de-

velopers to create, exchange, and deploy Solidity-based smart contracts [31]. Typically,

smart contracts are deployed on secure, permissioned networks, which eliminates the need

for cryptocurrencies. This setup reduces the risk of malicious program infections and en-

sures more efficient and stable transaction processing. Blockchain-enabled smart contracts

ensure the automatic execution of agreements between parties. For instance, Ethereum em-

ploys programming languages like Serpent and Solidity to construct these contracts. Once

activated, the Ethereum Virtual Machine (EVM), running on a decentralized network,

promptly executes the contract. Currently, contracts serve as the primary mechanism for

deploying DApps and developing business process logic for various services [32].

2.4 Hyperledger Fabric

The Hyperledger Fabric is a componentised blockchain system, and as such is very flexible

in terms of scaling and customisation, allowing for the construction of enterprise-scale

applications. This section describes the basic components of the Hyperledger fabric system

and the overall network architecture.



40 2.4. HYPERLEDGER FABRIC

2.4.1 Node Configurations

In the Fabric system, key nodes comprise both physical and logical entities [33]. Physical

nodes, such as Orderer, Peer, and CouchDB, are tangible components, while logical nodes

like Committer, Endorser, and Leader represent various system functions. These physical

nodes operate as distinct programs within Docker containers, each serving specific pur-

poses. For instance, Orderer nodes manage consensus mechanisms, message broadcasting,

and block distribution essential for ensuring data consistency. Peer nodes, segregated by

organization, serve as data repositories, housing state, historical records, and block data.

Additionally, the chaincode runtime node provides a Golang execution environment for

smart contracts, functioning as a stateless, isolated environment. CouchDB, chosen for

its data persistence, corresponds one-to-one with Peer nodes. Logically, Peer nodes are

categorized into Committer, Endorser, and Leader functions, each serving unique roles in

block validation, smart contract invocation, and block distribution, respectively.

2.4.2 Network Architecture

The Hyperledger fabric network is structured into two distinct layers, as shown in Fig-

ure 2.7. The first layer consists of Orderer nodes forming the Ordering Service Nodes

(OSN) layer, where transactions achieve consensus for consistency and maintain data in-

tegrity throughout the blockchain system. The peer layer is organized according to organi-

zational structures, with Peer nodes from the same organization forming a group within a

P2P network, isolated from nodes in different peer layers. This layer also includes chaincode

and CouchDB, which are invoked by Peer nodes to provide a richer set of functionalities.

Figure 2.7: The network architecture of Hyperledger fabric



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 41

2.4.3 Transaction Life Cycle

Hyperledger fabric adopts a transaction processing model known as Execute, Order, Val-

idate, and Commit, where clients interact with Peer nodes to submit contract invocation

requests, Peers endorse the results, and the Orderer sequences transactions into blocks.

In the implementation phase, clients invoke smart contract functions, Peers execute and

endorse transactions, and the validation phase ensures data consistency. Additionally,

the Orderer node manages message cache batches (pendingBatch) and message batches

(messageBatches), distributing transactions accordingly before packaging them into blocks.

Hyperledger fabric follows a transaction processing model consisting of four phases: Exe-

cute, Order, Validate, and Commit.

1. In the Execute phase, clients interact with endorsing Peers to submit contract invo-

cation requests.

2. During the Order phase, the Orderer organizes endorsed transactions into blocks.

3. The Validate phase involves Peers verifying the correctness of transactions and en-

suring consensus.

4. Finally, in the Commit phase, Peers write validated blocks to the ledger.

2.5 Cryptography Basics

Cryptography is a fundamental discipline in the field of information security, utilizing math-

ematical principles and computational algorithms to design and analyze secure communi-

cation protocols, ensuring confidentiality, integrity, authentication, and non-repudiation of

data. It encompasses various encryption technologies, such as symmetric and asymmetric

encryption, and hash functions, playing a crucial role in protecting digital information and

online interactions.

2.5.1 Public Key Cryptosystem

The defining characteristic of public key cryptography lies in the use of two distinct keys,

one for encryption and the other for decryption. Data is encrypted using the public key

and decrypted with the private key. This method of asymmetric encryption ensures that,

even with access to both the algorithm and the public key, decrypting the message without

the private key remains computationally infeasible. Figure 2.8 describes the workflow of

the public key cryptosystem. The process of encryption/decryption mainly consists of the

following steps:



42 2.5. CRYPTOGRAPHY BASICS

1. Recipient B generates a pair of keys ⟨PKB, SKB⟩ to encrypt and decrypt the message,

where PKB is the public key and SKB is the private key.

2. Receiver B makes public the public key PKB, while the private key SKB is kept

secret.

3. When sender A sends message m to B, the public key of B, PKB, is used to encrypt

m, expressed as EPKB
(m) = c, where c is the ciphertext and E is the encryption

algorithm.

4. After receiving ciphertext c, B decrypts it with its private key SKB, which is expressed

as DSKB
(c) = m, where D is the decryption algorithm.

Sender A Encryption
Algorithm

Decryption
algorithm Receiver B

Key source

m c m

PK B

SK B

Figure 2.8: The encryption and decryption process of the public key system

Since only B keeps its private key, SKB, no one else can decrypt the contents of

ciphertext c. In general, the public key cryptosystem used in the above process should

meet the following requirements:

1. The key pair ⟨PKB, SKB⟩ is computationally easy to obtain, and either key in the

pair can be used for encryption, while the other is used for decryption.

2. The process by which sender A encrypts message m with receiver B’s public key PKB

is computationally easy, expressed as EPKB
(m) = c. At the same time, the decryption

process DSKB
(c) = m by receiver B with its private key SKB is computationally easy.

3. It is theoretically not feasible for an adversary to solve the corresponding private

key SKB based on B’s public key PKB, and it is also not feasible to solve the

corresponding plaintext message m based on ciphertext c and public key PKB.

2.5.2 Bilinear Mapping

Bilinear mapping is used to build specific types of cryptosystems and can be defined as

functions that map elements of two vector spaces to elements of a third vector space. For



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 43

example, matrix multiplication, as a typical example of bilinear mapping, produces a new

vector by a linear transformation of two vectors. In cryptography, bilinear mapping plays

a crucial role in enhancing data security by establishing specific abstract mappings of data

to safeguard information. It achieves this through two linear transformations: where the

data represents the input, represents the linear transformation matrix, represents the offset

vector, and is the output of the bilinear mapping.

2.5.3 Elliptic Curve Encryption

The Elliptic Curve Cryptosystem (ECC) offers enhanced security with shorter key lengths,

leveraging the discrete logarithm problem of elliptic curves [34]. This section delves into

fundamental concepts, starting with the definition and basic operations of elliptic curves.

The elliptic curve λ defined over the finite field GF (p) is expressed as:

y2 = x3 + ax+ b (2.4)

Here, p is a large prime number, and GF(p) represents a finite field with modulus p. The

coefficients a, b ∈ GF(p) satisfy 4a3 + 27b2 ̸= 0. Explaining point addition on an elliptic

curve involves a geometric interpretation: given points P = (xp, yp) and Q = (xQ, yQ),

their sum R = P +Q is obtained by intersecting a line passing through P and Q with the

elliptic curve, yielding point R∗, and then finding the point of intersection with the X-axis,

denoted as R. Scalar multiplication of points on an elliptic curve denoted as kP , is defined

as repeated addition of P k times.

Elliptic curve discrete logarithm (ECDL) Problem. Given an elliptic curve E

over a finite field GF(p), there is Q = kP , where Q,P ∈ E and k < p. It is easy to compute

Q for a given k and P , but difficult to compute k ∈ GF(p) for a given Q and p.

2.5.4 Hash Function and Message Authentication Code

In the cryptography research domain, the Hash function finds extensive application in

integrity checks, digital signatures, message authentication codes, and other specific cryp-

tographic tasks. In general, the hash function H is a public function that maps an arbitrary

length of content M to a shorter, fixed-length value H(M), called the hash value or sum-

mary of information for M . In addition, the hash function has the function of message

validation, because any change in M will result in a change in the hash value H(M). In

general, hash functions should have the following properties:

1. The input of the hash function can be any length of content, and the length of the

output value is fixed.



44 2.5. CRYPTOGRAPHY BASICS

2. It is easy to calculate h = H(M) given M , and computationally infeasible to find M

based on h and H(·).

3. Given M , finding M∗ such that M ̸= M∗ and H(M) = H(M∗) is computationally

infeasible.

4. Finding any two distinct inputs, M and M∗, such that H(M) = H(M∗) is computa-

tionally impractical.

To date, the widely used hash algorithms mainly include MD5 and secure hash algorithm

(SHA-256). MD5 is often used to generate data fingerprints. This algorithm takes messages

of any length as input and outputs a 128-bit message digest. On the other hand, the SHA

algorithm boasts robust collision resistance, typically accepting input content of lengths up

to 642 and generating a 256-bit message digest.

Message Authentication Code (MAC), also known as password checking or MAC, as

a basic authentication technology, is widely used in communication. In this scheme, the

communication key is used to generate a fixed-length check data block and attach the block

to the message to realize data integrity verification. In this method, it is assumed that the

communication key shared by A and B is K, and when A sends message M to B, A can

calculate the verification code T of message M , as shown in Equation 2.5:

C(K,M) = T (2.5)

In actual applications, message authentication codes are used to ensure the integrity and

authenticity of messages. The receiver uses the shared key K to generate a new message

verification code for the received messages and compares the code with the received MAC

address. Assume that in the communication process, only the communication parties A

and B are aware of the shared key K1. The message and its corresponding MAC value

are sent together to the receiver. Upon receiving them, the receiver recalculates the MAC

for the received message using the same key K1 and then compares this newly calculated

MAC with the received one. If the two MAC values are equal, it indicates:

1. The message content has not been tampered with. The receiver needs to regenerate

the MAC value based on the content of the message. If the message were maliciously

altered during transmission, the received MAC value would not match the newly

generated one.

2. The message is indeed from the legitimate sender. Since the shared key K1 is only

known to the communicating parties, if the two MAC values are equal, it confirms

that the message originated from the true sender.



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 45

Thus, the receiver can verify the authenticity and integrity of the message by checking

the message’s authentication code. The MAC function, akin to the encryption algorithm,

does not require the MAC function to be reversible.

2.5.5 Digital Signature

The message communication mode based on MAC can only ensure that the message comes

from one of the communication parties. On the premise that the communication parties

have not established a complete trust relationship, using only the message authentication

code cannot exclude the disputes caused by mutual distrust. Digital signature technology

can effectively solve this problem; digital signatures can be generated by encryption algo-

rithms or specific signature algorithms. The digital signature algorithm should have the

following properties:

1. It can verify the identity of the signer according to the content of the signature.

2. The digital signature can be verified by a third party to resolve disputes between the

two parties.

3. The signature must be generated using the signature party’s unique information to

prevent signature forgery and denial.

A complete digital signature scheme typically encompasses key generation, digital signa-

ture generation, and signature verification algorithms. Currently, various digital signature

algorithms, such as DSA, ElGamal, and Schnorr signature algorithms, play crucial roles in

ensuring secure and reliable information transmission and storage schemes in the realm of

information security.

2.5.6 Merkel Tree

Ralph Merkle named the binary hash tree the Merkle trees, which are data structures

that use hash functions and are widely used to verify transactions in cryptocurrencies [35].

As shown in Figure2.9, the leaf nodes of the Merkle tree are metadata or Hash values of

metadata, while the non-leaf nodes are hash values of child nodes in series. A Merkle root

can be obtained through bottom-up pair-wise hashing. The Merkle tree has the following

characteristics:

1. Any modification to the underlying data is propagated to the parent nodes through

the hash layers, eventually affecting the Merkle root. This mechanism ensures that

the integrity of multiple data pieces can be verified simultaneously in an efficient

manner.



46 2.5. CRYPTOGRAPHY BASICS

2. The binary tree structure allows for efficient querying, with the time complexity of

verifying a leaf node being O(log n). As a result, Merkle trees are particularly well-

suited for managing large datasets.

Figure 2.9: Merkle tree structure

In a Merkle tree comprising 16 leaves, the existence of a leaf node K can be demon-

strated by constructing a path consisting of only 4 = log2 16 hashes. The path dependencies

of four hash values (blue labels) are respectively: HL, HIJK , HMNOP , and HABCDEFGH .

Along the four values in the path of the annotations (dotted line), is obtained by four Hash

HA∼P , contrasting HA∼P and ROOTK are consistent can check nodes.

HA∼P = Hash(Hash(Hash(Hash(HK +HL) +HIJ) +HMNOP ) +HABCDEFGH) (2.6)

2.5.7 Zero-knowledge Proof

The Zero-knowledge Proof (ZKP) system allows a knowledge holder to convince a ques-

tioner of the existence of certain knowledge without revealing any related information. In

cryptographic terms, the knowledge holder, referred to as the prover (or Peggy), interacts

with the questioner, known as the verifier (or Victor), in what is originally called an in-

teractive ZKP. During this process, the verifier poses questions to the prover, who must

respond correctly. If the prover gives any incorrect answers, the proof fails; however, if all

answers are accurate, the interaction continues. As the exchange progresses through sev-

eral rounds, the verifier becomes increasingly confident that the prover possesses the secret

knowledge [36]. Typically, a Zero-knowledge Proof (ZKP) system with a set S involves an

interactive process between a prover, executing a probabilistic polynomial-time strategy,

and a verifier, using a computationally unbounded approach. The system adheres to the

following principles.

1) Completeness: the prover with real knowledge can always be accepted by the verifier

as Equation 2.7 shows.



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 47

∀x ∈ L,∃y ∈ {0, 1}∗ s.t. Pr [OutV [P (x, y)↔ V (x)] = 1] = 1 (2.7)

2) Soundness: if the prover lacks the knowledge, then the verifier rejects the prover

with a definitive advantage, as Equation 2.8 shows.

∀P ∗, ∃ neg ϵ,∀x /∈ L,∀y ∈ {0, 1}∗,Pr [OutV [P (x, y)↔ V (x)] = 1] ≤ ϵ(x) (2.8)

3) Zero-knowledge: when the prover possesses the knowledge, the verifier can only

conclude that the prover indeed has the knowledge without breaching the entire agreement,

regardless of the methods employed by the verifier. However, the verifier cannot obtain

any information regarding the knowledge itself, as depicted in Equation 2.9.

{ViewV ∗ [P (x,w)↔ V ∗(x)]}
{S(x)} (2.9)

Non-interactive zero-knowledge proof: Interactive ZKP relies on repeated interac-

tions between the prover and verifier to establish convincing proof with high probability. In

contrast, non-interactive zero-knowledge proof (NIZKP) simplifies the process by reducing

the interaction between the vendor and the verifier to one, thus eliminating the potential

for collusion between the two parties, as shown in Figure 2.10. However, this approach may

necessitate the involvement of a trusted third-party program to facilitate the verification

process.

Figure 2.10: Non-interactive zero-knowledge proof

For example, in a grid consisting of nine squares, a third-party program determines

which column or row to verify. Keeping the verification sequence confidential is crucial to

prevent the verifier from passing it without possessing genuine knowledge.



48 2.6. SUMMARY

2.6 Summary

In the discussion of Chapter 2, state-of-the-art practices and related technologies offer

substantial benefits for data protection in the IIoT. However, these approaches also entail

various challenges.

2.6.1 State of the Art

1. Data Security and Privacy Protection: Blockchain provides a decentralized

ledger, ensuring data integrity and anonymity through cryptographic measures. This

is essential for IIoT environments that require robust security and privacy, particu-

larly in sectors like manufacturing and logistics where sensitive data is continuously

exchanged. Advances in encryption techniques, such as those used in blockchain,

have played a key role in enabling secure, distributed systems that safeguard indus-

trial data.

2. Efficiency and Transparency: The use of smart contracts on blockchain platforms

automates contract execution, ensuring transparency and immutability of transac-

tions. By reducing the potential for fraud and human error, smart contracts stream-

line operational processes in IIoT systems, while maintaining trust between parties.

3. Distributed Processing: Blockchain, along with technologies like zero-knowledge

proofs (ZKPs), enables nodes within IIoT networks to securely share data without

compromising privacy. This improves data processing efficiency and enhances system-

wide security, enabling more scalable and robust IIoT solutions.

4. Consensus Mechanisms: Consensus algorithms such as PoW and Proof of Stake

(PoS) ensure trust and security in distributed IIoT networks by allowing all nodes to

agree on a unified state. These mechanisms are crucial for maintaining data consis-

tency and preventing malicious activities, forming the backbone of reliable blockchain

systems.

2.6.2 Gaps and Issues

1. Performance and Scalability: While blockchain and smart contracts offer numer-

ous benefits, they face significant performance and scalability challenges when dealing

with large volumes of data. This is particularly critical for real-time industrial appli-

cations that require fast processing and minimal delays.

2. Complexity and Cost: The implementation and maintenance of blockchain tech-

nologies require specialized expertise and can involve high initial costs as well as



CHAPTER 2. PRELIMINARIES AND STATE OF THE ART 49

ongoing operational expenses. These factors can be a barrier to adoption, particu-

larly for industries with tight budgets or limited technical resources.

3. Standardization and Compatibility Issues: The fragmented nature of IIoT de-

vices and platforms creates challenges for interoperability. Without unified standards,

integrating blockchain into diverse IIoT systems can be difficult, potentially limiting

its broader application.

4. Energy Efficiency and Latency: Energyintensive consensus mechanisms, such

as PoW, and the latency introduced by transaction validation processes can limit

blockchain’s use in real-time or resource-constrained IIoT environments. Addressing

these inefficiencies is critical for making blockchain a viable solution for time-sensitive

industrial applications.

In conclusion, although the current technologies provide robust tools for data protection

in IIoT, addressing challenges including performance, cost, and standardization is necessary

for widespread adoption.



50 2.6. SUMMARY



Chapter 3
Blockchain-assisted Lightweight
Data Storage

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Blockchain-based Securing Data Solutions in IIoT Networks . . . . 54

3.2.2 Advancements in Blockchain-Based IIoT Storage Solutions . . . . 55

3.3 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Model Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Model Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 System Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Entity Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.3 Entity Authentication . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.4 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.5 Permission Revocation . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.1 Identity Anonymous . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.2 Data Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.3 Condition Traceability . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.4 Analysis of Network Attack Resistance . . . . . . . . . . . . . . . . 65

3.6 Performance Evaluation and Analysis . . . . . . . . . . . . . . . 66

3.6.1 Basic Configurations of the Experiments . . . . . . . . . . . . . . . 66

3.6.2 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . 67

51



52

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 53

3.1 Introduction

IIoT connects physical objects (such as servers, gateways, and sensors) to virtual objects

(such as data storage and processing services in the cloud) to form a highly complex net-

work structure [37]. The devices connect and exchange data collected from the adjacent

environment via the Internet to achieve real-time monitoring and intelligent scheduling of

the industrial process [38]. Secure data storage is essential for subsequent data access,

analysis, and sharing. However, as the scale and complexity of IIoT expand, the challenge

of data storage security also increases [39,40]. Reliance on external control centres for data

management and device handling can lead to higher transaction and processing costs, po-

tentially compromising system efficiency and stability [41, 42]. Additionally, IIoT systems

are particularly vulnerable to cyber threats, with potential consequences ranging from data

breaches and hardware damage to system-wide paralysis [43]. These security concerns pose

a significant threat to the seamless operation of IIoT systems and can greatly impact the

productivity and operational efficiency of enterprises [44]. Furthermore, IIoT devices and

systems are prone to hacking threats, especially given their typically constrained storage

capacity and computing power [45].

Production Line l Production Line 2 Production Line N

…

a)

b)

IIoT Wireless
Sensor Node

Network

Signal

Blockchain-assisted
Storage Protocol

Remote
Monitoring

Data IIoT Node

Blockchain-assisted
Storage Protocol

Data flow

Hazardous
EnvironmentLocal Monitoring

Figure 3.1: Structure of large-scale IIoT

Currently, there is a growing recognition of blockchain technology’s effectiveness in en-

hancing data security within IIoT systems. The decentralized and immutable nature of

blockchain provides a strong foundation for securely managing and transmitting industrial



54 3.2. RELATED WORK

data, making it an ideal solution for protecting sensitive information in IIoT environments.

Firstly, the distributed ledger system of the blockchain provides a safe repository for the

data generated by the IIoT device, which enhances security and transparency [46, 47].

Secondly, the blockchain-assisted communication protocol ensures the security communi-

cation between IIoT devices and the security transmission of critical data [48]. Moreover,

blockchain’s decentralized framework supports distributed data storage and processing,

substantially reducing the risks associated with data breaches and system failures due to

central point vulnerabilities [49, 50]. In addition to improving security, the decentralized

structure greatly improves IIoT system decision-making and collaboration abilities.

On the other hand, the high computational consumption problem of blockchain is an

important bottleneck in the current blockchain-based IIoT architecture for large-scale ap-

plication and popularization due to inherent design flaws [51]. Many blockchain platforms,

particularly public chain systems like Bitcoin and Ethereum, predominantly employ the

PoW mechanism. However, the nature of the PoW mechanism depends on the hash opera-

tions of arithmetic competition, and a large number of nodes need to perform high-intensity

calculations, resulting in a waste of resource waste and high energy consumption. This sub-

stantial computational requirement limits the processing capabilities of blockchain systems

and raises operational costs for IIoT devices, creating major challenges in resource man-

agement and network efficiency [52].

To address the above challenges, this chapter proposes a trusted, low overhead, and

lightweight secure storage scheme based on the blockchain mechanism. In this scheme,

blockchain provides a real-time high level of confidentiality, privacy, and protection to the

control system. In addition, this approach deploys asymmetric encryption and message

authentication codes to achieve identity anonymity, traceability, and secure storage while

reducing the computational overhead of the scheme.

3.2 Related Work

This section summarizes the related works. The blockchain-based IIoT network data se-

curity solutions and the further advancements are introduced in Section 3.2.1 and Sec-

tion 3.2.2, respectively.

3.2.1 Blockchain-based Securing Data Solutions in IIoT Networks

By connecting industrial equipment to the Internet for data collection and analysis, IIoT

faces significant security and privacy risks in cloud structures due to user or third-party

managed encryption keys [53, 54]. To address these risks, Yu et al. [55] introduced a

blockchain-driven Shamir threshold encryption framework STCChain, which can effectively



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 55

prevent data theft and secure keys, proving the effectiveness of cryptographic systems for

IIoT data protection. Besides, to solve the node trust problem, Cha et al. [56] proposed a

blockchain-based connectivity gateway to enhance node trust in IIoT, focusing on securely

storing private user data within the blockchain. Qi et al. [57] proposed a tree-based data

compression and hybrid access control for IIoT blockchains, enhancing efficient storage

and selective data access. In addition, Huang et al. [58] explored a credit-based Proof

of Work (PoW) mechanism, demonstrating its effectiveness in ensuring both security and

transaction efficiency for IIoT data storage compared to general models. Liu et al. [59]

proposed LightBlock, a lightweight structure that aims to simplify broadcast content and

prevent the storage ledger in blockchain networks from growing indefinitely. Ma et al. [60]

introduced BlockTDM, a customizable blockchain framework designed for trusted data

handling in edge computing, incorporating mutual authentication protocols and leveraging

smart contracts for data management. Meanwhile, Kang et al. [61] investigated the use of a

consortium blockchain for secure data storage and sharing within vehicular edge networks,

presenting a reputation-based data sharing model aimed at maintaining data quality

In summary, while blockchain technology is used to ensure the secure storage of IIoT

data, current research has improved and refined the basic models by enhancing network

consensus, constructing hierarchical blockchain structures, and introducing cryptographic

verification mechanisms.

3.2.2 Advancements in Blockchain-Based IIoT Storage Solutions

Although the above research has made great progress, there is still room for improvement

in addressing the high system overhead in blockchain-based storage schemes for IIoT. Wu

et al. [62] developed MapChain-D, a dual-layered blockchain architecture, comprising a

data chain linked to an index chain for optimized data storage and retrieval, tailored for

IIoT contexts with storage and communication limitations. Addressing scalability and

privacy challenges in blockchain-based access control for IIoT, a novel strategy incorporat-

ing transaction sharding was proposed in [63]. Furthermore, Zhang et al. [64] crafted a

blockchain-enabled protocol for privacy-centric, multifactor device authentication in cross-

domain IIoT, utilizing an on-chain accumulator for efficient, unlinkable identity verification

of devices in various domains. Rathee et al. [65] developed an effective cybersecurity com-

munication strategy that leverages a trust evaluation system and blockchain technology,

ensuring accurate decision-making during message exchanges. Cui et al. [66] introduced an

innovative and anonymous cross-domain authentication model leveraging blockchain tech-

nology. This model enhances security, scalability, and decentralized management. However,

it faces challenges such as potential latency in cross-domain communication and the com-

plexity of managing authentication credentials across multiple domains, which can increase



56 3.3. SYSTEM DESIGN

operational costs and management overhead. Xu et al. [67] proposed a blockchain-based

big data sharing framework tailored for resource-limited edge devices. This framework in-

troduces a Proof-of-Collaboration (PoC) consensus mechanism, significantly reducing com-

putation complexity and storage overhead, thus making it particularly suitable for edge

devices with low computational capacity. Moreover, the framework enhances communi-

cation efficiency through transaction filtering and offloading schemes, and by introducing

new types of blockchain transactions and blocks. Integrating blockchain, encryption algo-

rithms, and cloud storage technology to achieve the storage and sharing of industrial data

was proposed in [68,69].

However, despite these advancements, challenges such as system overhead, latency, and

complexity in credential management still need to be addressed to achieve more efficient

and scalable IIoT solutions.

3.3 System Design

This section introduces the data structure in the model definition, the private data resource

storage model, and the relationship between the models.

3.3.1 System model

Figure 3.2 shows the data storage model proposed in this manuscript mainly includes

Trusted Registration Authority (RA), Data Provider (DP), End Users (EUs), Blockchain

(BC), and Data Storage Server (DS).

Trusted  Registration
 Authorin

End Users Data Providers

Data Storage
Service

Blockchain

Registration

Smart contracts

Registration

Cloud

Node 1

Node 2

Node n

Figure 3.2: The structural relationship of the proposed system model



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 57

3.3.1.1 Registration Authority (RA)

Initially granted high-level trust privileges, the RA handles registration requests from sys-

tem components, generates key pairs for authorized users, and invokes smart contracts to

record registration information. Since the RA generates the component’s public key based

on the identity information of the EUs, only the RA can reveal the real identity of the

entity. However, the RA is restricted from altering data within the block, as this would

require bypassing the established consensus mechanism.

3.3.1.2 Data Provider (DP)

This component acts as a provider of IIoT data, usually an edge server, tasked with ac-

cumulating and synthesizing industrial data from a diversity of intelligent devices. As

an autonomous node, DP joins the blockchain network as an independent node and can

maintain communication with remote storage services.

3.3.1.3 End User (EU)

This component is intelligent terminal equipment, such as personal computers, smart-

phones, industrial control devices, and authorized user terminals that can download and

audit stored industrial data.

3.3.1.4 Blockchain (BC)

Blockchain consists of data provider DPs interconnected through a network, BC provides

a decentralized storage environment, and industrial data stored in BC cannot be modified.

3.3.1.5 Data Storage Service (DS)

This component is responsible for storing complete industrial data to maintain the limited

storage resources of the blockchain, and IPFS, as a kind of distributed storage system for

data storage, has a larger storage level than the blockchain.

3.3.2 Model Assumptions

This model is based on the following pre-conditions:

• DS functions as an external storage system, accountable for preserving comprehensive

industrial data. Correspondingly, BC stores the hash values of this data, ensuring

alignment between DS records and their respective hashes in BC.



58 3.4. MODEL DEPLOYMENT

• Data access within BC and DS is restricted solely to authorized entities, and RA holds

the authority to revoke access privileges of any entity deemed malicious through smart

contract invocation.

• All the interactions involving RA, EU, and DP are safeguarded via secure channels,

such as Transport Layer Security (TLS), thereby precluding the possibility of mali-

cious entities intercepting communication content.

3.3.3 Design Goals

Through the model design, this manuscript aims to achieve the following design objectives.

• Identity anonymity: this scheme is designed to safeguard the identity confidentiality

of authorized nodes, ensuring that unauthorized or malevolent users are unable to

discern the true identity of any entity involved.

• Secure storage: ensuring the integrity and confidentiality of stored IIoT data from

malicious tampering.

• Traceability: tracking and punishing the behaviour of malicious nodes is an important

goal of this scheme, and it should be ensured that authorized entities can detect and

track the malicious behaviours of nodes and their true identity.

• Efficiency: due to the need for timely analysis and storage of massive IIoT data, the

system overhead for calculation and storage of the solution should be kept at a low

level.

3.4 Model Deployment

This section provides a comprehensive overview of the suggested framework. A detailed

list of key notations employed throughout this manuscript is presented in Table 3.1.

3.4.1 System Initialization

The RA is responsible for the initialization setup of the system, and the initialization process

includes the basic initialization of the system and the setup of the blockchain system.

3.4.1.1 Initialization of System Parameters

RA completes the initialization of system parameters as follows.



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 59

Table 3.1: Key Notations

Notation Description

Ppub Public Key of the System
Pubki Public Key of Entity i
HMAC (.) Hash function
Encrypt (.) Encryption function
Decrypt (.) Decryption function
EUi, DPj End User i, Data Provider j
PID Anonymous certificates
RA Registration Authority
SK Session Key
σi Anonymous credentials for entity i
RC(x) Storage credentials for content x

CT(x) Encrypted content of x

HV(ri,j) Hash values of IIoT data ri,j
ST(ri,j) Encrypted Content of IIoT Data ri,j

• RA identifies a sufficiently large prime number q to establish a cyclic group G of order

p. Additionally, RA selects a hash function H, mapping from the set {0, 1}∗ to the

group Z∗
q .

• RA selects an asymmetric encryption function Encrypt(·) and a message authentica-

tion code generator HMAC(·).

• RA picks a random number s from the set Z∗
q and calculates the public key Ppub as

the product of s and P .

• RA announces the system parameters as P = {H,Encrypt(·), HMAC(·), Ppub}.

3.4.1.2 Initialization of Blockchain

Blockchain initialization is primarily executed by the trusted entity RA, involving the

following steps.

• RA creates configuration files, such as genesis.json, necessary for the blockchain setup.

• RA securely transmits these configuration parameters in encrypted form to the au-

thorized node DP.

Considering the absence of complex digital currency management mechanisms in Hy-

perledger fabric and its alignment with the Internet of Things application scenarios, Hy-

perledger fabric is selected as the blockchain platform.



60 3.4. MODEL DEPLOYMENT

3.4.2 Entity Registration

In the proposed architecture, all entities must undergo a registration process with the

RA, affirming the corresponding authentic identities. Focusing on the entity EUi as a

representative example, the registration procedure unfolds as follows.

• EUi sends its identity information Infoi to RA through secure channels, RA checks

if EUi has been registered.

• RA encrypts the received message Infoi as Encrypt (Ppub, Info i∥Tsi) → CT(Info i)

and generates a anonymous identity as σi = CT(Infoi) ∗ P .

• RA determines a random value ri within the group Z∗
q and computes xi as ri ⊕

(s∗H(CT(Infoi)||Ppub)). Subsequently, it calculates the public key Pubki as xi · P .

• For EUi, RA selects xi as its private key and dispatches the data trio (σi, xi, Pubki).

Upon receiving (σi, xi, Pubki), EUi verifies the equation x∗iP = Pubki to confirm the

authenticity of the received keys.

• RA calls the Algorithm 1 to upload defined data entries (NULL, σi, CTInfo i
, Pubki).

Algorithm 1 registSC(·)
% Invoked by the RA to update KMIS.
if (owner!= msg.sender) return 0;
Struct KIM {
byte σ, String CT, String Pubk, DateTime TS
}
Public KIM KIMs[MaxNum];
H (δi∥CT∥Pubki)→ Key ;
If exists(Key, KIMs) then

return Error;
End If
KIM Obj = newKIM(δi, CT, Pubk i, TS );
KIMs.add(Key ⇒ KIM Obj);
return OK;

3.4.3 Entity Authentication

To ensure robust system security, mutual authentication plays a critical role. This concept

is illustrated by examining the mutual authentication process between DPj and EUi as

follows.



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 61

1. EUi forms the symmetric key as SKij = xi · Pubkj and calculates the hash sigi =

H(σi ∥ Pubki ∥ ti). The message is then encrypted to E(SKij , {σi, Pubki, ti, sigi})→
CT(Msgi). EUi also encrypts SKij using DPj ’s public key: Encrypt(Pubkj , SKij)→
CT(SKij). Finally, EUi transmits to DPj : {CT(SKij), CT(Msgi)}.

2. Upon receipt of {CT(SKij), CT(Msgi)}, DPj retrieves the decryption key as

Decrypt(skj , CT(SKij)) and accesses the message {σi, Pubki, ti, sigi}.

3. DPj verifies the time validity with |tnow − ti| ≤ ∆t, where ∆t is the time threshold.

It then calculates the hash H(σi ∥ Pubki ∥ ti) → sig∗i and confirms the authenticity

by checking sig∗i
?
= sigi, validating the received data.

4. DPj constructs the symmetric key SKji = xj ·Pubki and hashes the message content

sigj = H(σj ∥ Pubkj ∥ tj). Then, DPj encrypts the message as

E(SKji, {σj , Pubkj , tj , sigj}) → CT(Msgj). DPj encrypts SKji with the public key

of EUi: Encrypt(Pubki, SKji) → CT(SKji). Eventually, DPj sends CT(Msgj) and

CT(SKji) to EUi as: DPj → EUi: {CT(SKji), CT(Msgj)}.

5. EUi will verify the validity of the received CT(Msgj) according to Step 2 and Step

3. A secure session can only be created when both EUi and DPj authentication are

successful. Furthermore, based on the above interaction steps, it can be seen that

SKij = xi · Pubkj = xi · xj · P = xj · xi · P = xj · Pubki. Therefore, the session key

can be further defined as Equation 3.1.

SK = xi · xj · P (3.1)

3.4.4 Data Storage

Considering an edge device DPj that acquires sensory data ri,j , the associated data storage

procedure is presented as follows.

1. DPj runs the ECDH protocol to establish a secure session with the storage service

DS and follows Equation 3.1 to establish the session key SK with DS.

2. DPj encrypts data ri,j according to Equation 3.2 and generates ciphertext CT(ri,j).

CTri,j = Encrypt(Pubkj , {σj , ri,j}) (3.2)

Where Pubkj is the public key of DPj , and σj is an anonymous credential.



62 3.4. MODEL DEPLOYMENT

3. DPj computes the hash HV(ri,j) of {σj , ri,j , tnow} as Equation 3.3.

HVri,j = HMAC(SK||xj , H(σj ||ri,j ||tnow)) (3.3)

Subsequently, DPj uses the session key SK to encrypt the data according to Equa-

tion 3.4 and submit it to DS through a secure channel, that isDPj → DS : CT(session),

obtain the returned storage credentials RC(ri,j).

CT(session) = Encrypt(SK, (CT(ri,j)||HV(ri,j))) (3.4)

4. DPj calls the smart contract storeSC(·) (i.e., Algorithm 2) to store the hash value

HVri,j as the data fingerprint. It should be noted that only authorized individuals

can call the smart contracts.

5. DPj obtains the storage key Key(ri,j) of the data hash HVri,j in the smart contract,

and then constructs a data item < Key(ri,j) ⇒ RC(ri,j) > to describe the mapping

relationship between blockchain transactions and offline data, achieving collaborative

consistency of data between blockchain and cloud.

Algorithm 2 storeSC(·)
Struct KIM {

byte σ, String Pubk, String HV, String RC, DateTime TS
}
Address owner = AutoGet(account);
If (owner!= msg.sender) return 0;
mapping(string ⇒ IIoTData ) mapData;
Obj = new IIoTData (Pubk,σ,HV,RC);
H(HV ||Pubki)→ Key;
If (exists(mapData[Key]) == true) then

return True;
End if
mapData.add(Key ⇒ Obj);
return True;

The integrity verification of ri,j can be achieved through a given tupleQ =< RC(ri,j), Pubkj >.

First, use the stored credentials RC(ri,j) of the data in DS to retrieve the data mapping

table MTable(bc→db), obtaining the storage key Key(ri,j) in mapData. Subsequently, get

the stored hash as mapData[Key(ri,j)].HV → SHash. Finally, calculate the raw hash of

the stored ri,j as H(Decrypt(SK,CT(ri,j)))→ Ohash, and determine whether ri,j has been

tampered by verifying whether Ohash == Shash.



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 63

3.4.5 Permission Revocation

The data provider DPj generates and provides various sensing data to the system, and

EUi provides feedback on data quality to RA as bhi→j ∈ (0, 1). Assume that RA gathers

the feedback information about DPj is RatingSet = {bh1→j , bh2→j , · · · , bhn→j}, and RA

calculates the comprehensive evaluation about DPj during [tl, th] as Rsj =
∑n

i=1 bhi→j . If

Rsj is below the selected threshold η ∈ Z∗
q , it indicates that the data quality provided by

DPj is low. RA should revoke the data storage permission of DPj , and the permission

revocation process (as shown in Algorithm 3) mainly includes the following steps.

1. RA constructs a permission revocation transaction as Tx(revoke) = {δj,Rs, [t1, th] , SigRA, tsnow },
and broadcasts Tx(revoke) to the blockchain member nodes {EU1, EU2, · · · , EUn}.

2. EUi sends the feedback message Feedback(Tx) to RA, RA will revoke the identity

of DPj based on the received feedback message Feedback(Tx). To be specific, RA

constructs an identity revocation blockchain ledger revokeLedger, and further set

revokeLedger [H (δj)] = True.

3. RA revokes the identity ciphertext CT(Infoj) by using the identity δj , and performs

decryption operation as Decrypt
(
s,CT(Infoj)

)
→ Infoj. Subsequently, RA broadcasts

the real identity Infoj to various participants in the system.

Algorithm 3 revokeSC(·)
Input: Rs, δj , revokeLedger
Output: True or False
If (Rs ≥ η) then

return False;
End if
Tx(revoke ) = {Rs, δj, (tl, th) ,SigRA,TSnow } ;
RA→ {EU1,EU2, . . . ,EUn} : Tx(revoke ) ;
EUi → RA : Feedback = {δ , status, Sigi,TSnow };
If (Feedback(1,2,···i) ≥ ω) then

revokeLedger [H (δj)] = True;
ObtainInfo (δj, SigRA)→ CT(Infoj);

Decrypt
(
s,CT(Infoj)

)
→ Infoj;

RA→ {EUi,DS,DPi} : {Infoi , , SigRA, tsnow };
End if
return True;



64 3.5. SECURITY ANALYSIS

3.5 Security Analysis

This section gives an analysis of the security requisites and potential network attacks of

the solution based on the previously established security criteria.

3.5.1 Identity Anonymous

In this proposed framework, each EUi utilizes an anonymized identifier σi, substituting their

real identity for system interactions. This protocol facilitates anonymous communications

through the formula σi = CT(Infoi) · P , thereby masking the actual identity. This can be

represented mathematically as: σi = Anonymize(CT(Infoi), P ). The anonymity assurance

hinges on the fact that only the trusted authority RA can decode the true identities, denoted

as RAdecode(σi) = TrueIdentity. Consequently, entities within the system maintain their

anonymity effectively.

3.5.2 Data Integrity

Data integrity is crucial for maintaining trust and reliability within the system. The pro-

posed framework leverages cryptographic methods, including digital signatures and hash

functions, to ensure the integrity of transactions and prevent unauthorized alterations. Let

Txi denote a transaction signed by entity EUi. The digital signature of Txi is represented

as SigEUi(Txi). The inclusion of digital signatures in transactions ensures that any tam-

pering with the transaction content can be detected, as the signature verification process

will fail if the data has been altered. Moreover, hash functions are employed to generate

unique identifiers for data blocks. Let H(data) denote the hash value of a data block.

By storing and comparing hash values of data blocks, the system can quickly identify any

changes to the data. If the hash value of a data block differs from the expected value, it

indicates potential tampering or unauthorized modifications.

3.5.3 Condition Traceability

This framework effectively guarantees the anonymity and unlinkability of its components,

ensuring that external attackers are unable to track the activities of any entity based

on behavioural data, thereby safeguarding privacy and security. Concurrently, the trusted

authority RA possesses the capability to ascertain the actual identity of any entity, denoted

as EUi, by utilizing anonymous credentials σi. In mathematical terms, RA retrieves the

encrypted identity information CT(Infoi) from σi and the public parameter P , and then

decrypts it using its private key s. This process expressed as RAdecrypt(CT(Infoi), s), enables

RA to monitor and trace the activities of any system entity and unmask the identities of

malicious actors.



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 65

3.5.4 Analysis of Network Attack Resistance

1) Impersonation Attacks. If malicious attacker A attempts to impersonate verified entity

ui, they need to obtain the corresponding private key xi ∈ Z∗
q . The private key xi, which

resides within the set Z∗
q , is meticulously crafted by RA using a securely generated random

number r from the same set, intertwined with robust hash algorithms. This intricate

construction ensures that an external entity, like attacker A, is incapable of replicating

or simulating the creation of the random number r within Z∗
q . Consequently, it becomes

infeasible for A to autonomously fabricate a legitimate private key, thereby safeguarding

the integrity of the private key generation process. If A uses anonymous identity σi to

impersonate the entity ui, then in subsequent message communication, it is also necessary

to provide information signed by the private key xi, but A cannot generate the legitimate

private key.

2) Replay attacks. Replay attack refers to the attacker attacking the receiving host by

intercepting legitimate messages and resending messages that have been confirmed by the

receiving clients. To resist replay attacks, this scheme embeds the current timestamp tsnow

in message communication, and any entity ui can detect whether the message has expired.

Specifically, assuming tsreceive as the message reception time, π represents the estimated

message propagation delay, it can be determined whether it is a replay message by checking

|ts(receive) − ts(now)| ≤ π.

3) Sybil attacks. Sybil attacks, denoted as ASybil, target the data redundancy backup

mechanisms, Bredundancy, of distributed systems, Sdist. These attacks exploit virtualization

technology to fabricate multiple virtual nodes, Vi, from a single hardware device, Hsingle,

thereby manipulating the data distribution mechanism, Ddist, of Sdist. This phenomenon

can be represented as ASybil : Hsingle → {V1, V2, . . . , Vn}. In the context of a blockchain

system, Bchain, which operates on a peer-to-peer (P2P) distributed network NP2P, there

exists a notable vulnerability to Sybil attacks impacting the system’s integrity. To mitigate

this, each device node, Di, in the network must provide unique authentication credentials,

Cauth(Di), serving as an identifier for participating in NP2P. The role of a Resource Au-

thority (RA), denoted as RA, is crucial in this regard, as it is responsible for recording

(Rrecord) and verifying (Rverify) these credentials. This mechanism can be represented as

RA(Rrecord, Rverify)→ NP2P, ensuring that a single device cannot undermine the decentral-

ized nature of Bchain through the creation of virtual member nodes, thereby preserving the

system’s integrity against ASybil.

4) Session key attack. To acquire the appropriate session key, Ksession, attackers A must

concurrently procure the private keys, K
(i)
priv and K

(j)
priv, of both communicating entities, Ei

and Ej . These private keys are generated as random numbers, Ri and Rj , by the Resource

Authority (RA), denoted as RA. The generation process can be expressed asK
(i)
priv = H(Ri)



66 3.6. PERFORMANCE EVALUATION AND ANALYSIS

and K
(j)
priv = H(Rj), where H is a secure hash algorithm. These keys are transmitted over

a secure channel, represented as Tsecure(K
(i)
priv,K

(j)
priv). For A to obtain Ksession, they must

overcome the cryptographic challenge associated with the Elliptic Curve Digital Signature

Algorithm (ECDSA), symbolized as CECDSA. The probability PA of A successfully solving

CECDSA and thereby acquiring a valid Ksession is extremely low, mathematically represented

as PA(Ksession|CECDSA) ≈ 0. Therefore, unless A can resolve CECDSA, the likelihood of

obtaining a valid Ksession is negligibly small.

3.6 Performance Evaluation and Analysis

This section first describes the experimental configuration details in Section 3.6.1. Subse-

quently, it formulates a comparative analysis with analogous research efforts, followed by

a thorough examination of the performance metrics of the proposed scheme, as shown in

Section 5.2.

3.6.1 Basic Configurations of the Experiments

Figure 3.3: The underlying blockchain platforms

In this manuscript, a prototype system of the design solution is implemented using Hyperledger-

fabric 1.4. The platform leverages Golang to develop smart contracts and utilizes Hyper-

ledger Caliper, a professional client tool, for secure management, monitoring, and ensuring



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 67

programmability and scalability. The experimental solution deploys a blockchain consisting

of 15 authorized nodes using a desktop computer as a hardware platform running on the

Deepin/Linux operating system using Core(TM) i5-11300H as a processor with 16.0 GB

RAM. Following the deployment of smart contracts, a Node. js-based client is used to eval-

uate their performance. Additionally, blockchain platforms are utilized as the foundational

systems, with their operating status shown in Figure 3.3.

3.6.2 Simulation Results and Analysis

The deployed smart contract is tested for performance using a Node.js client (Algorithms 1,

2, and 3 are the subject of this testing). Table 3.2 presents a systematic tabulation of the

evaluation’s results. It is important to emphasize that the stages of transaction generation,

validation, and synchronization are included in the measured runtime. Each test iteration

is carried out 100 times to guarantee correctness, allowing an average elapsed time to be

calculated for a thorough evaluation.

Table 3.2: Smart contract execution time (ms)

Smart contract Maximum duration Minimum duration Average duration

registSC(·) 4628 2491 3559
storeSC(·) 3487 2245 2866
revokeSC(·) 3876 2147 3012

Moreover, building on the experimental framework outlined in this manuscript, further

tests were conducted on the time consumed by key cryptographic operations within the

scheme. A 10KB file was used as the benchmark data for these tests. The outcomes are

concisely displayed in Table 3.3, providing a tangible insight into the computational capa-

bilities of the current experimental setup. To further assess the performance of this scheme,

including the computational and communication costs, this section lists the execution time

of the main operations or the bit length of data units as shown in Table 3.4.

Table 3.3: The time cost of encryption operations (ms)

Arithmetic Maximum duration Minimum duration Average duration

SHA-256 246 121 183
RSA encryption 458 107 282
AES-128 encryption 346 205 275
ECC signature 475 193 334

Considering that critical operations such as cryptography and smart contracts will cause

computational overhead for the system, this section compares the design scheme with the



68 3.6. PERFORMANCE EVALUATION AND ANALYSIS

Table 3.4: Opration execution duration

Symbol Operation Description Duration/Bits

Tbp Bilinear Pairing 25.3 ms
TGm Scalar Multiplication on G 12.2 ms
Tmbp Multiplication in GT 21.5 ms
Te Modular Exponentiation on Zq 13.6 ms
Th General Hash Function 34.8 ms
|Infoi| Bit Length of Registration Information 9032 bits
|CT(x)| Size of Encrypted Data x in Bits 4096 bits

|σi| Bit Length of Anonymous Identifier 128 bits
|xi|, |Pubki| Length of Private and Public Key Bits 512 bits
|ACK| Bit Length of ack Message 256 bits

schemes in references [60, 61, 67]. According to the experiment results in Table 3.5, the

computational overhead of this scheme is only higher than that of the scheme in Ref [67],

due to the additional invocation overhead caused by the application of smart contracts for

data storage tasks.

Table 3.5: The comparisons of time consumption (ms)

Programmatic Computational overhead

Xu et al. [67] Tbp + 2TGm + 2Th ≈ 119.3
Ma et al. [60] Tbp + 2TGm + 2Te + 3Th ≈ 181.1
Kang et al. [61] 2Tbp + TGm + 2Te + Tmbp + 4Th ≈ 250.7
This manuscript Th + 2Tbp + TGm + Tstoresc ≈ 127.6

The experiment focuses on evaluating the entity registration and data storage stages,

informed by the cryptographic operations involved in the discussed schemes. Figure 3.4

shows the average elapsed time of each scheme for simulating 100 to 1,000 registration

requests under the condition of setting the registered data to be 100 KB. It highlights a

consistent trend where the average latency in processing registration requests escalates as

the volume of requests increases. Specifically, within the scope of our proposed scheme,

the processing delay gradually increases, starting at 245.3 milliseconds for a batch of 100

requests and rising to 431.6 milliseconds as the request count reaches 500. Meanwhile, the

corresponding request processing delay of Ma et al. [60] increases from 368.9 ms to 547.3

ms. Overall, the time consumption of our scheme in the identity registration phase is at a

relatively low level, and the time cost of our scheme is just from 245.3 ms to 643.7 ms. The

main reason is the use of more concise cryptographic operation steps and smart contracts

(i.e. registSC(·)) to store the registration information of entities, which reduces the overall



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 69

computational consumption of the scheme.

Figure 3.4: Comparison of computational cost for registration

Storage requests for 100KB-1000KB of unstructured data (JSON) were simulated us-

ing Apache JMeter 5.2 in the experiment to assess data storage performance. Notably,

without considering storage costs in off-chain databases, the time consumption of storage

operations primarily consists of data encryption operations and blockchain synchronization

time. Specifically, data storage requests were simulated, and the average processing latency

was determined using multi-threaded technology. The design outperforms other compar-

ative schemes in terms of efficiency, as shown in Figure 3.5. The average time cost of a

request is 453.2 ms for a data volume of 300 KB, and approximately 689.4 ms for a data

volume of 800 KB. Meanwhile, the corresponding time cost of other comparisons is 784.5

ms (Ref [67]), 732.6 ms (Ref [60]), and 832.3 ms (Ref [61]). Since this scheme is based on

the blockchain to provide a trustworthy storage environment, utilizes smart contracts and

combines a small number of cryptographic operations to ensure the security of the stored

data, while improving the overall efficiency of the system. Furthermore, our scheme has a

relatively small fluctuation in time cost compared to other comparative schemes.



70 3.6. PERFORMANCE EVALUATION AND ANALYSIS

Figure 3.5: The performance comparison of this scheme with other state of art schemes

To estimate the communication overhead, the scheme primarily considers two phases:

entity registration and IoT data storage. The communication overhead of these two phases

is analyzed separately. Figure 3.6 shows the simplified flowchart of inter-entity communica-

tion. The communication overhead can be represented as the sum of various components:

{|Infoi| + |σi| + |xi| + |Pubki| + |ACK|} = 10440 (bits). Consequently, the aggregate

communication cost for this entire process is quantifiable as {|CT(SKij)| + |CT(auMsgi)| +
|CT(SKji)|+ |CT(auMsgj)|+ |SK|+ |CT(ri,j)|+ |RC(ri,j)|+ |ACK|} = (4096 * 5 + 256 + 256

+ 160 + |CT(ri,j)|) = 21152 (bits). Therefore, the total communication overhead of this

scheme can be computed as TCtotal = TC(registration) + TC(storage) = 31592(bits) ≈ 3949

(bytes).



CHAPTER 3. BLOCKCHAIN-ASSISTED LIGHTWEIGHT DATA STORAGE 71

Figure 3.6: The simplified flowchart of inter-entity communication

Furthermore, a comparative analysis of the exchange overhead of this scheme and other

state-of-the-art solutions was conducted, as presented in Table 3.6. It’s worth noting that

the calculation of communication overhead does not encompass the consumption of network

bandwidth by various types of descriptive data during session construction. Nevertheless,

the overall communication overhead remains relatively low and suitable for deployment in

IIoT environments.

Table 3.6: Comparision of Communication Cost.

Scheme Message Structure Size (byte)

Xu et al. [67] {M ′
i , ts, σi} 184 + |M ′

i |
Ma et al. [60] {HMvi , Sigklvi

(HMvi),K
l
vi , Sigsk} 216 + |msg|

Kang et al. [61] {< IDi, Ui, Vi,Wi >, . . . ,msg,m, t} 200 + |msg|
Our scheme {CertVr ,msg, tsg, δVr} 168 + |msg|

3.7 Conclusions

This chapter introduces a blockchain-based protocol for secure data storage in the IIoT,

which combines robust entity authentication with bilinear mapping for rapid system ini-

tialization. By employing blockchain-ensured encryption, the proposed protocol achieves

significant reductions in resource consumption while ensuring data security. The compre-

hensive evaluation of our solution reveals its effectiveness in reducing system overhead and

enhancing storage reliability, particularly in identity registration and handling large-scale

data.



72 3.7. CONCLUSIONS



Chapter 4
Trie-alternative transaction
serial sorting

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2.1 Consensus Algorithm Optimization . . . . . . . . . . . . . . . . . . 76

4.2.2 Transaction Conflict Relations Optimization . . . . . . . . . . . . 77

4.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Multi-version Concurrency Control . . . . . . . . . . . . . . . . . . 78

4.3.2 Fabric Transactions Conflict Relationship . . . . . . . . . . . . . . 78

4.3.3 Exchangeability of Transactions . . . . . . . . . . . . . . . . . . . . 80

4.3.4 Conflict Serializability . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Algorithms Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Trie Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.2 Transaction Serial Sorting Algorithm . . . . . . . . . . . . . . . . . 83

4.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Experimental Results and Analysis . . . . . . . . . . . . . . . . . 88

4.5.1 Benchmark Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

73



74 4.1. INTRODUCTION

4.1 Introduction

Blockchain has evolved from the initial Bitcoin [70] to an extensive technical field, involving

many fields including industry [71], finance [72,73], supply chain management [74], educa-

tion [46] and health care [75, 76]. In this context, the open-source blockchain system Hy-

perledger fabric has garnered significant recognition within practical application domains,

thanks to its innovative plug-in architecture and emphasis on privacy and security [77–80].

Compared to classical distributed database systems, Hyperledger fabric provides member-

ship services, divides the node scope according to the identity of the organization, and

successfully realizes the non-trust cooperation of multiple organizations [81, 82]. The Fab-

ric system ensures that sensitive information is shared among organizations whilst public

data is passed across all organizations, maintaining data consistency across the blockchain

system with a consensus algorithm.

Hyperledger fabric employs an optimistic concurrency control mechanism that allows

multiple transactions to proceed simultaneously at various stages, enhancing overall sys-

tem throughput [83]. Utilized by Hyperledger, the Execute-Order-Validate (EOV) model

aims to create a high-performance blockchain system by enabling parallel transaction ex-

ecution [84]. Concurrent transaction conflicts can significantly increase suspensions or

invalidations, reducing the system’s overall transactional throughput [85]. The processing

of transactions consists of several stages, among which transaction categorization is a key

step. To date, the transaction sorting algorithm adopted by Fabric is mainly based on

timestamps and other parameters. However, several issues in this method include (i) the

timestamp may be affected by the time between nodes not being synchronized, and (ii)

when a large number of transactions are issued, relying only on the timestamp may cause

a transaction processing bottleneck [86]. Additionally, traditional sorting and verification

methods frequently fall short in addressing the issue of concurrent read-write conflicts in-

herent in large-scale transactions, necessitating more sophisticated and efficient approaches

to enhance transaction processing [87].

To validate the presented issue, 10 data keys are initiated, each assigned a random value.

Subsequently, a pair of keys is randomly selected, one key is used for a read operation while

the other is used for a write operation. A series of transactions are then generated using

Caliper [88] for the first benchmarking phase. Two organizations are established within this

setup, each equipped with a Peer node. CouchDB [89] serves as the state database, with

Solo Consensus [90] employed as the consensus mechanism. Based on this framework, two

key performance metrics are defined: the effective rate, given by EffectiveRate = µvalid
µmax

=

φvalid, and the termination rate, articulated as TerminationRate = µinvalid
µmax

= φinvalid,

where µ means the number of variables. As Figure 4.1 shows, among the seven trials



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 75

Figure 4.1: An illustration of large-scale terminated transactions in Hyperledger fabric.

conducted, six groups exhibited an effective transaction volume that did not surpass 50%.

Concurrently, as µmax increases, both the suspension rate surges and system efficiency

diminishes. This is predominantly attributed to the simultaneous execution of transactions.

Consider two transactions: T1 and T2. Transaction T1 initially executes a write op-

eration on data key K1, subsequently progressing to the sorting phase. During this in-

terval, T2 conducts a read operation on K1, accessing the value before any modifications.

Consequently, upon submitting these two transactions, T2 is rendered invalid owing to dis-

crepancies in version numbering. An augmentation in the value of µmax invariably leads

to an intensified prevalence of conflicts stemming from simultaneous transactions within

a singular block. These conflicts present considerable obstacles, thereby constraining the

transaction throughput of Hyperledger fabric [91].

Trie trees and directed acyclic graphs (DAGs) offer unique advantages for blockchain

and transaction management. The Trie is a specialized data structure that efficiently

organizes dynamic sets of strings, allowing for rapid retrieval of elements sharing common

prefixes [92]. The hierarchical nature facilitates swift searches, insertions, and deletions,

which is ideal for systems requiring auto-complete, IP routing, and textual analysis [93].

Conversely, DAGs are graphs characterized by directed edges without cycles, enabling them

to represent dependency relationships and perform topological sorting, an arrangement of

vertices that aligns with the directionality of the edges [94]. Tries can manage large datasets

with shared prefixes, such as account addresses, enabling quick and effective access to

transaction records. DAGs, meanwhile, address transaction dependencies by eschewing

circular references, a vital feature for preserving transactional integrity and chronological

order [95]. These capabilities of trie trees and DAGs strengthen the efficiency of transaction



76 4.2. RELATED WORK

processing and bolster the capacity of blockchains to expand while retaining credibility.

Based on the above-mentioned analysis, this chapter integrates Trie structures with

DAGs, creating a synergy that significantly improves the resolution of transaction conflicts

and management of concurrency within the Hyperledger fabric. The Trie’s hierarchical

nature facilitates efficient, orderly data retrieval, while the acyclic nature of DAGs aids

in detecting transactional cycles, enabling a more streamlined process for transaction pro-

cessing and validation. This Trie and DAG-based approach, conceptualized to substitute

traditional sorting and validation methods, showcases the potential for advanced algorithms

to resolve the intricate challenges of large-scale transaction management in blockchain sys-

tems.

4.2 Related Work

This section surveys related work for this study, with the improvements in consensus al-

gorithms presented in section 4.2.1 and the optimization in transaction conflict relations

described in section 4.2.2.

4.2.1 Consensus Algorithm Optimization

Consensus algorithms are critical for blockchain network reliability and efficiency. Practical

Byzantine Fault Tolerance (PBFT) [96,97] stands out for tolerating f faulty nodes within

3f + 1 nodes and is a focus for enhancing Hyperledger fabric’s consensus mechanism. De-

spite PBFT’s robustness, its high communication costs and lengthy consensus process have

prompted research into improvements [98]. As such, Chen et al. [99] have advanced PBFT

by introducing Credit Reinforce Byzantine Fault Tolerance (CRBFT), where nodes are

dynamically rated for reliability, significantly improving system performance and security.

Building on similar aspirations to optimize communication, Li et al. [100] proposed a lay-

ered approach to PBFT, reducing node communication overhead by limiting interactions

within node layers. Furthermore, Liu et al. [101] developed a pipelined byzantine fault

tolerance algorithm, optimizing consensus through threshold signatures and streamlined

processes. Wang et al. [102] introduced an enhanced PBFT consensus mechanism that op-

erates on a bidirectional fading credit value system. This mechanism selects nodes to form

a committee based on votes and credit scores. Within the committee, consensus is achieved

using the PBFT algorithm, and the credit score of each node is adjusted based on their

performance during the consensus phase. As the blockchain height increases, credit scores

converge toward 50, thereby improving the quality of nodes participating in the consensus

process.



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 77

Table 4.1: Symbols and meanings of this manuscript

Symbols Implication

T s
i Transactions in sequence s with index subscript i

<s Ti <s Tj indicates that Ti precedes Tj in the transaction sequence s
Bx

s (n) Block B, where the transaction sequence is s and the block number is x, µmax = n
r(k1) Read the data key k1
w(k1) = v The data key k1 is written to the value v
Txs(B) All transactions in block B
ϖ(k1)

i Transaction Ti reads the version number of the key k1
ϖ(k1)

X Data key k1 Version number in the status database
RS(Ti) The read set data key for T − i
WS(Ti) The write set data key for Ti

4.2.2 Transaction Conflict Relations Optimization

Hyperledger fabric is notably susceptible to concurrency dilemmas, particularly in envi-

ronments requiring swift response times. Addressing this, Sharma et al. [83] utilized di-

rected graphs to map the complex web of transaction conflicts within a block, subsequently

proposing a transaction reordering algorithm designed to terminate invalid transactions

proactively. Built on this foundation, Nasirifard et al. [103] have enhanced the core sys-

tem by integrating Conflict-free Replicated Datatypes (CRDTs), transforming conflicting

transactions into a format that inherently reduces rates, thereby streamlining transac-

tion processing. The scope of research extends beyond conflict resolution, with efforts

by Narayanam et al. [104] introducing a DAG structure, which enables Fabric nodes to

validate multiple blocks concurrently, thereby enhancing network resource efficiency. To

address node communication delays, Berendea et al. [105] improved upon Fabric protocol

to expedite block distribution, while Pi et al. [106] proposed xFabLedger, offloading ledger

storage to remote databases to ease node burden and improve scalability. Complementing

these advancements, Li et al. [107] have proposed a hardware acceleration scheme, poised

to enhance the Fabric system’s execution and validation phases. This innovation is particu-

larly noteworthy as it holds the potential to significantly expedite the transaction lifecycle,

a critical factor in high-stakes transaction environments.

4.3 Problem Definition

In this section, we describe the definition and analysis of transaction conflict. Table 4.1

summarizes the symbols used in the rest of this article.



78 4.3. PROBLEM DEFINITION

4.3.1 Multi-version Concurrency Control

Hyperledger fabric employs Multi-Version Concurrency Control (MVCC) to navigate read-

write conflicts within transactions, but it is limited to a coarse-grained approach for halting

conflicting transactions [108]. Consider the case when the transaction sequence s repre-

sented by Equation 4.1, when committed according to the order of s, T1 updates key k1,

resulting in T2 and T3 reading an old version of k1, and finally only transaction T1 is valid.

s = T1{r(k1), w(k1)} → T2{r(k1), w(k2)} → T3{r(k1), w(k3)} (4.1)

However, if the transaction submission order is changed, a new transaction sequence s
′

is formed as shown in Equation 4.2.

s
′
= T3{r(k1), w(k3)} → T2{r(k1), w(k3)} → T1{r(k1), w(k1)} (4.2)

When committed according to the order of s, T2 and T3 first read the latest version

of k1, and then T1 updates k1, making all three transactions valid. By reordering the

transactions, it is possible to make certain invalid transactions valid, and there is no need to

resubmit transactions for execution and processing. The practices of transaction batching

and transaction reordering are widely implemented in traditional databases [109].

Due to this, we analyze in this section the conflicted relationship between Hyperledger

fabric transactions and transaction serializability from the perspective of a database.

4.3.2 Fabric Transactions Conflict Relationship

In traditional concurrent databases, there are three types of data access conflicts: write-

write conflicts, read-write conflicts, and write-read conflicts. This sub-section discusses the

impact of these three types of conflicts on Hyperledger fabric transactions and identifies

the causes of conflicts between transactions T s
i and T s

j . WS and RS are read set data keys

and write set data keys, respectively.

4.3.2.1 WS(T s
i ) ∩WS(T s

j ) ̸= ∅

The given transactions T s
i and T s

j , satisfy the condition as given in Equation 4.3.

T s
i , T

s
j ∈ Bx

s (n)

T s
i <s T

s
j , i, j ∈ [0, n) ⊂ N+, i < j

WS(T s
i ) ∩WS(T s

j ) = {k1}

(4.3)

When the Peer node commits according to the sequence s, transactions T s
i and T s

j

perform write operations on data key k1. If T
s
i is committed first, then the version number

of key k1 is updated as shown in Equation 4.4.



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 79

ϖ(k1)
X = ⟨x, i⟩ (4.4)

Then submit T s
j and change the version number of key k1 as shown in Equation 4.5.

ϖ(k1)
X = ⟨x, i⟩ → ⟨x, j⟩ (4.5)

After the final block Bx
s is submitted, the latest version number of key k1 is ϖ(k1)

X =

⟨x, j⟩. Therefore, there are no write-write conflicts (conflict − ww) in the Hyperledger

fabric system, which are denoted as conflict− ww in Figure 4.2.

Figure 4.2: Conflict-ww

4.3.2.2 RS(T s
i ) ∩WS(T s

j ) ̸= ∅

The given transactions T s
i and T s

j , satisfy the conditions as indicated in Equation 4.6.

T s
i , T

s
j ∈ Bx

s (n)

T s
i <s T

s
j , i, j ∈ [0, n) ⊂ N+, i < j

RS(T s
i ) ∩WS(T s

j ) = {k1}

(4.6)

As a Peer submits data key k1 according to S, transaction T s
i reads data key k1, and

transaction T s
i writes data key k1, Procedure First submit T s

i , read the key k1 version is

the latest version of the state database at this time, that is, Equation 4.7.

ϖ(k1)
i = ϖ(ki)

X (4.7)

The next step is to submit T s
j and update the key k1 version as shown in Equation 4.8.

ϖ(k1)
X = ⟨x, j⟩ (4.8)

Once the block Bx
s is submitted, the system deems both T s

i and T s
j as valid. Conse-

quently, this indicates the absence of read-write conflicts in Hyperledger fabric, which are

represented as conflict− rw in Figure 4.3.



80 4.3. PROBLEM DEFINITION

Figure 4.3: Conflict-rw

4.3.2.3 WS(T s
i ) ∩RS(T s

j ) ̸= ∅

The given transactions T s
i and T s

j , satisfy the condition as shown in Equation 4.9.

T s
i , T

s
j ∈ Bx

s (n)

T s
i <s T

s
j , i, j ∈ [0, n) ⊂ N+, i < j

WS(T s
i ) ∩RS(T s

j ) = {k1}

(4.9)

The Peer node submits the data according to the s sequence. Transaction T s
i writes

data to data key k1, and transaction T s
j reads data to k1. When T s

i is submitted, the

version number of key k1 is updated as indicated in Equation 4.10.

ϖ(k1)
X = ⟨x, i⟩ (4.10)

Next, the transaction T s
j is subsequently submitted. However, at this point, the version

number of the read key k1 is outdated, as shown in Equation 4.11.

ϖ(k1)
j = ϖ(k1)

X
old ̸= ⟨x, i⟩ (4.11)

Therefore, upon submission of block Bx
s , transaction T s

j is flagged as invalid and re-

quires re-submission by the client. In the Hyperledger fabric system, these disputes are

characterized by write-read conflicts, represented as conflict− wr in Figure 4.4.

Figure 4.4: Conflict-wr

4.3.3 Exchangeability of Transactions

The exchangeability of transactions implies that the transition of⇒ s′ is achievable merely

by swapping the arrangement of transactions. Therefore, a conflict− wr relationship can



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 81

be transformed into a con − rw relationship through this exchange. Ti and Tj in s are

conflict − wr relations, and Ti and Tj in s′ are conflict − rw relations. Assuming that

the conflicted relationship is not considered, the version of key k1 will be updated to ⟨x, i⟩
after Ti submits, and the current version ϖ(k1)

X
old of k1 will be read after Tj submits, which

means that s and s′ are equivalent. For two transaction sequences s and s′ in block Bx can

be shown as Equation 4.12.

Ti <s Tj

Tj <s′ Ti

WS (Ti) ∩RS (Tj) = {k1}

(4.12)

4.3.4 Conflict Serializability

This sub-section describes the analysis of transaction conflicts within the Hyperledger struc-

ture, drawing on the principles of database concurrency control. Specifically, it examines

transaction serialization, the construction of conflict graphs, and the detection of cycles.

Based on the exchangeability of transactions, the definition of the serializability of conflicts

in Hyperledger fabric transactions can be obtained.

Definition 1 Conflict Serializability. For all transactions in block Bx
s , there are at

least two conflict − wr between transactions. If there is a transaction sequence s′ such

that Hyperledger fabric submits blocks according to that sequence without terminating any

transactions, s is conflict-serializable.

By identifying at least one sequence s′ as outlined in Definition 1, the system can

effectively reduce the proportion of invalid transactions. Although the relationship between

two transactions is easy to determine, when multiple transactions are grouped, it is difficult

to find the true conflict between each transaction. In the database domain, conflict graphs

among transactions are usually established to analyze transaction conflict relationships.

Based on this tendency, this sub-section defines the conflict graph of Hyperledger fabric.

Definition 2 Conflict graph. Let s represent a transaction sequence of blockBX
S (n) =

T1, T2, . . . , Tn, then the conflict graphGx = (V,E) of block Bx
s can be represented as Equa-

tion 4.13.

V = Bx
s

(Ti, Tj) ∈ E ⇔ RS(Ti) ∩WS(Tj) ̸= ∅

Ti, Tj ∈ Bx
s

i, j ∈ [0, n) ⊂ N+, i ̸= j

(4.13)

Definition 2 illustrates that the edges of the conflict graph G portray the read-write

relationship between transactions, specifically conflict−rw and conflict−wr. Importantly,



82 4.4. ALGORITHMS DESIGN

the structure of the conflict graph within the same block remains unchanged, regardless

of alterations in transaction order. In Fabric, certain transactions need to be terminated,

identified as cycles in the conflict graph G.

Definition 3 Cycle. If Ti <s Ti+1 <s · · · <s Ti+k <s Tj is a sub-sequence in the

transaction sequence s, and there is a conflict − rw relationship between pairs, and a

conflict− wr relationship between Ti and Tj , then there is a cycle in s.

Based on Definition 3, cycles in Fabric cannot be eliminated merely by rearranging

transactions; instead, terminating one of the transactions is necessary. This necessity

arises because swapping Ti and Tj may convert a conflict− wr into a conflict− rw, but

it also introduces a new conflict−wr between Tj and Ti+k. Essentially, any reshuffling of

transactions within a cycle inevitably leads to a conflict − wr. Therefore, terminating a

transaction becomes crucial for resolving the cycle structure.

Combining the above definitions, the following theorems are derived:

Theorem 1. Let s represent a sequence of all transactions in block Bx
s , then s is

serializable if and only if Gx is acyclic.

Certificate of Necessity. Let s be conflict-serializable, then there is a serial sequence

s′, indicating that all conflict − wr in s, such as Ti <s< Tj , become conflict − rw, or

Ti <s′< Tj, in s′. It can be seen from the definition of the conflict graph that the conflict

graph of block Bx
s does not change with the transaction sequence. Therefore, if Gx has a

cycle, that is, there is a subsequence Ti → Ti+1 → . . . Ti+k → Tj → Ti in Gx. According to

the definition of the cycle, no matter how the order of this subsequence changes, there will

inevitably be conflict− wr conflict, which is in contradiction with the serialization of s′.

Certificate of Sufficiency. In contrast, if Gx is acyclic, it undergoes topological

sorting. This means that nodes in each output round have only successor nodes and lack

predecessor nodes. This implies that nodes from the previous output round have only

conflict-rw relationships or no conflict at all with the current node. Consequently, the final

output sequence s′ is serial, confirming that s is serializable.

4.4 Algorithms Design

To construct a conflict graph for a block, according to the above description, it is necessary

to establish the connection between data keys and transactions, achieving a one-to-one

correspondence between keys and transactions. This section details the design of the Trie-

Fabric. The data structure based on the Trie tree is introduced in section 4.4.1. Then

section 4.4.2 describes the specific design of the proposed serial transaction classification

algorithm, and finally, an example analysis is provided in section 4.4.3.



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 83

4.4.1 Trie Tree

Trie, commonly referred to as a prefix tree or dictionary tree, is an efficient data structure

designed for rapid string retrieval. It is characterized by the following attributes:

1. The root node does not contain characters, except the root node, other nodes contain

one character;

2. A path from the root to the leaf represents a string;

3. Subtrees of all nodes, except leaf nodes, represent strings with the same prefix.

The Trie tree offers highly efficient operations for string insertion, search, and deletion,

typically boasting a time complexity of O(m), where m denotes the string length in ques-

tion. Therefore, this manuscript adopts the Trie tree structure to establish a link between

keys and transactions. Using the data key as Trie’s index, each leaf node contains two

lists, cataloguing transactions that read or write to the key. As Figure 4.5 shows, the set

T1, T2, T3, T4 forms a block, interacting with two data keys a60 and be7. This leads to the

creation of two subtrees rooted in the Trie. The leaf node from the path a → 6 → 0 lists

transactions related to key a60, with the read list including T2, T3, T4, and the write list

T2, T4. Similarly, the path b → e → 7 follows this pattern. After the block is converted

into a Trie tree, the conflict relationship between transactions can be clearly expressed,

because in the same leaf node, the transaction in the read list must have conflict− rw or

conflict− wr relationship with the transaction in the write list.

4.4.2 Transaction Serial Sorting Algorithm

The Trie-based transaction sequential sorting algorithm proposed in this chapter has three

steps.

Step 1: Build the Trie tree. To begin, a Trie tree T is defined, functioning as a

data structure to encapsulate the associations between data keys k and their corresponding

transactions τ . The construction of T is governed by Algorithm 4, which begins with the

iteration over the set of transactions T contained within a block. Each transaction txi ∈ T
is processed in sequence, where the subscript i denotes the ordinal position of txi in T,
serving as an implicit timestamp. For every transaction txi, the algorithm traverses its

read set Rtxi , where each element is a tuple (k, v), with k being the data key and v the

value read. The transaction txi is then adjoined to the read list Lread
k , which is situated

at the leaf node of T corresponding to key k. A similar procedure is employed for the

write set Wtxi of txi. The algorithm iterates through each (k, v′) pair, appending txi to

the write list Lwrite
k at the leaf node of T associated with key k. This algorithmic approach



84 4.4. ALGORITHMS DESIGN

T1 r:[be7] w:[]

T2 r:[be7,a60] w:[{a60,1}]

T3 r:[a60] w:[{be7,2}]

T4 r:[be7,a60] w:[{be7,5},{a60,8}]

Block stucture

Trie stucture

ba

6 e

0 7

T4

r w

T2 T2

T3 T4

T4

r w

T1 T3

T2 T4

Figure 4.5: The process of turning the block to the trie tree structure

constructs a Trie tree T that simplifies the process of identifying transactions linked to

specific operations, whether read or write, on a given key k. Consequently, T enables

expedited retrieval of transactions τ relevant to any data key k within the block structure.

Step 2: Cycle detection. The protocol for cycle detection is detailed in Algorithm 5.

The procedure initiates with an exhaustive traversal over each terminal node, designated as

itemi, within the Trie framework. During this traversal, the read-list RListi and the write-

list WListi pertinent to each itemi are methodically analyzed to construct the conflict

graph G(V,E), by Definition 2. In this context, V and E represent the vertices (transac-

tions) and edges (conflicts) of G, respectively. It is asserted that G is optimized, lacking

any redundant edges or nodes and that no vertex in V serves as a progenitor or progeny of

itself. For cycle detection, the algorithm systematically examines each transaction within

the block, employing a depth-first search (DFS) denoted as DFS(G, v), targeting the ver-

tex v in G. This search is tailored to identify cyclical paths wherein the originating and

terminating vertices are identical, constrained by the condition of equivalent timestamps,

formalized by the equality τ(v) = τ(v′) for any vertex pair v and v′. If a cycle is discerned,

the transaction at the genesis of the cycle is nullified. Subsequently, G is modified to elim-

inate the implicated vertex v, along with the associated edges E(v), thereby transforming

G into a DAG, effectively purging any cyclical transactions.

Step 3: Output serial sequence. For G, Algorithms 6 outputs a serial sequence

s by topological sorting, and Hyperledger fabric submits transactions according to that



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 85

Algorithm 4 Build the Trie tree

Require: Block Bx
s (n)

Ensure: Trie tree
1: trie = NewTrie();
2: for dotxIndex, tx in Bs

x(n)
3: //Specify a timestamp for tx txIndex;
4: for key in tx.ReadSet do
5: //trie inserts tx into the read list of the key according to the key index;
6: end for
7: for key in tx.WriteSet do
8: // trie inserts tx into the write list of the key according to the key index;
9: end for

10: end for
11: return trie;

Algorithm 5 Cycle detection

Require: Bx
s (n) , trie

Ensure: DAG G, data key set Keys
1: Create a conflict graph G;
2: for each leaf item in trie do
3: for txi in item.RList do
4: for txj in item.WList do
5: if txi = txj then
6: continue;
7: end if
8: if (txi, txj) ∈ G,E then
9: continue;

10: end if
11: G,E = {(txi, txj)}

⋃
G,E;

12: end for
13: end for
14: Keys = {item.Key}

⋃
Keys;

15: end for
16: for txIndex, tx in Bx

s (n) do
17: if G to exist in the tx cycle as the starting point and end point then
18: terminates tx;
19: Remove the nodes of tx and all its constituent edges from G;
20: end if
21: end for
22: return G,Keys;



86 4.4. ALGORITHMS DESIGN

Table 4.2: The read-write set of all transactions in a block

timestamp Trading Readset Writeset

0 T0 K0,K1 K2

1 T1 K3,K4,K5 K0

2 T2 K6,K7 K3,K9

3 T3 K2,K8 K1,K4

4 T4 K9 K5,K6,K8

5 T5 K10 K7

6 T6 K3 K10

sequence without any conflicts.

Algorithm 6 Output serial sequence

Require: G
Ensure: Serial sequence s
1: for G.V ̸= ∅ do
2: for node ∈ G.V and node.precursor = ∅ do
3: s = {node}

⋃
s

4: Remove node from G.V ;
5: Delete (node, node.next) from G.E ;
6: end for
7: end for
8: return s;

4.4.3 Analysis

This section uses an example to demonstrate the correctness of the sequential transaction

sorting algorithm proposed. As shown in Table 4.2, if a block contains seven transactions

T1, T2, T3, T4, T5, T6 and reads and writes to 11 data keysK0−K10, the transaction T3, T4, T6

will be terminated if the original Hyperledger fabric processing logic is followed.

Step 1: Initialization. First, the Trie tree is created by Algorithm 4. Figure 4.6 shows

the established Trie tree structure. Beginning at the root node, which holds the character

’K’, all subsequent child nodes inherit the prefix ’K’. The terminal nodes are leaves, and

traversing from the root to any leaf node allows for querying a key Ki, i ∈ [1, 10] ̸= N+,

where i ∈ [1, 10] and i is a positive integer, as well as performing read-write operations on

that key.

Step 2: Cyclomatic. Figure 4.7 is the conflict graph G created according to Definition

2. Next, the cycle judgment operation is performed according to Algorithm 5. The first

one is transaction T0, and there is a cycle c1 as shown in Equation 4.14.



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 87

k

0 1 2 3 4 5 6 7 8 9

Root

10

r w

T0 T1

r w

T0 T3

r w

T3 T0

r w

T3 T0

T6

r w

T1 T3

r w

T1 T4

r w

T2 T4

r w

T2 T5

r w

T3 T4

r w

T4 T2

r w

T5 T6

Figure 4.6: Trie tree structure

T0

T1 T2

T3
T4

T5

T6

Figure 4.7: Conflict graph



88 4.5. EXPERIMENTAL RESULTS AND ANALYSIS

c1 = T0 → T3 → T0 (4.14)

Therefore, it is necessary to terminate the transaction T0 and delete the relevant nodes

and edges in G. For transaction T1, there is no cycle. For transactionT2, there are cycles

c2 as Equation 4.15, and c3 as shown in Equation 4.16.

c2 = T2 → T4 → T2 (4.15)

c3 = T2 → T5 → T6 → T2 (4.16)

Thus, T2 is terminated and removed from G. The residual transactions T3, T4, T5,

and T6 no longer form loops in the conflict graph G, resulting in the DAG as shown in

Figure 4.8.

T0

T1 T2

T3
T4

T5

T6

Figure 4.8: Directed acyclic graph

Step 3: Serialization. The DAG G is outputted through step 2, and the final serial

transaction sequence s is determined following Algorithm 6. As illustrated in Figure 4.9, the

topological sorting occurs in three rounds. The first round, shown in Figure 4.9(a), outputs

transactions T1 and T5. The second round, depicted in Figure 4.9(b), outputs transactions

T3 and T6. Finally, outputs transaction T4 in the third round, as shown in Figure 4.9(c).

Consequently, the serial sequence produced is s = {T1, T5, T3, T6, T4}, allowing transactions

to be submitted in this order without any conflicts.

4.5 Experimental Results and Analysis

This section presents the simulation tests conducted to evaluate the performance of the pro-

posed transaction serialization sorting algorithm. Section 4.5.1 introduces the benchmark

test set, while Section 4.5.2 details the experimental results and comparative analysis.



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 89

(a) First round

(b) Second round

(c) Third round

Figure 4.9: Topological sorting process



90 4.5. EXPERIMENTAL RESULTS AND ANALYSIS

Table 4.3: Type of transaction in SmallBank

Number Transaction type Readset Writeset

1 DepositChecking 1xR 1xW
2 WriteCheck 1xR 1xW
3 TransactSaving 1xR 1xW
4 SendPayment 2xR 2xW
5 Amalgamate 2xR 2xW

6 Query 1xR

4.5.1 Benchmark Set

To make the experimental results more accurately reflect the real production environment,

the Benchmark test set needs to contain controllable conflict relations, showing the rule

that the optimization effect of the algorithm proposed in this manuscript on the original

problem changes with the intensity of the conflict. This section introduces three inde-

pendent variables during the generation of the benchmark test set: the maximum block

size µmax, the read-write transaction ratio p, and the Zipf’s law frequency constant α.

The maximum block size µmax specifies the total number of concurrent transactions, the

read-write transaction ratio p represents the proportion of transactions with read-write set

structures within a block, and the Zipf’s law frequency constant α indicates the frequency

of transactions accessing the same data key within a block.

4.5.1.1 Workload

This work selects the SmallBank benchmark [110] to simulate a real-world financial industry

scenario in terms of workload. Initially, 10,000 accounts are defined and random values are

set for each account as the term balance and current balance in the account, and each

account generates a data key through a unique data key index as shown in Equation 4.17.

key := SHA512(∗smalbank∗)[0 : 6] + SHA512(id)[0 : 64] (4.17)

The data key is a 70-bit fixed-length string. As indicated in Table 4.3, the SmallBank

benchmark specifies six transaction types. DepositChecking, WriteCheck, and Transact-

Saving feature read-write sets of size one. SendPayment and Amalgamate have read-write

sets of size two, while the Query transaction comprises a single read set of size one. De-

positChecking, WriteCheck, TransactSaving, SendPayment, and Amalgamate are catego-

rized as read-write transaction types, while Query is categorized as a read-only transaction

type. Since transactions possess atomicity similar to that of database transactions, Fabric

processes data operations in batches within the read-write sets of transactions without the

ability to partition execution. Therefore, the level of conflict varies when selecting different



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 91

Table 4.4: Probability distribution for each type of transaction

Transaction type DepositChecking WriteCheck TransactSaving

Chance p
5

p
5

p
5

Transaction type SendPayment Amalgamate Query

Chance p
5

p
5 1− p

transaction types for concurrent execution in the Hyperledger fabric system. For instance, a

block with a higher proportion of read-only transactions is more likely to undergo successful

submission, given the reduced likelihood of encountering a conflict− wr.

4.5.1.2 Ratio of Read-write Transactions

Assuming that the ratio of read-write transactions is p, the probabilities of the five types of

read-writer transactions appearing in the block are p
5 respectively. As shown in Table 4.4,

the proportion of read-only transaction types in the block is 1− p. By adjusting the value

of p, the proportion of conflict− wr in the generated block files varies, and the impact of

different read-write scenarios on the transaction terminate rate is detected in trie-Fabric.

4.5.1.3 Zipf’s Law Access Frequency Constant

Simply altering the ratio of read-write transactions is not enough to manage the occurrence

of conflicting transactions. It’s also crucial to adjust the frequency of accessing accounts

for read-write operations, which in turn controls the number of conflicts and cycles within

a block. This manuscript operates under the hypothesis that access frequency inversely

correlates with account ID size, where smaller account IDs experience higher access rates.

To manage access frequency for each account adeptly, Zipf’s law is utilized.

P (X = r) =
C

rα
, C = 1.0 (4.18)

The probability of accessing account r is denoted by P (X = r) as indicated in Equa-

tion 4.18, and Equation 4.19 is obtained by taking the logarithm of both sides.

lgP (X = r) = lg
C

rα

= lgC − αlgr

= −αlgr

(4.19)

It’s clear that a higher value of the constant α correlates with an increased likelihood

of accessing account r. If the block size µmax = 1000, the number of transactions accessing

the first 100 accounts presents α different distributions with the value of α. When α = 0,



92 4.5. EXPERIMENTAL RESULTS AND ANALYSIS

P (X = R) represents the uniform distribution, and the probability of accessing 10,000

accounts equals. Therefore, Figure 4.10 shows that there is little difference in the number

of accounts with ID 1-100 being read and written. When α = 1.0, Figure 4.11 shows

that the account with ID 1 is read and written twice as often as the account with ID 2,

three times as often as the account with ID 3, etc. When transactions access the account

with this frequency, there will be a large number of conflict − wr in the block, but the

possibility of a cycle is very small. When α = 2.0, as shown in Figure 4.12, the number of

transactions read and written to the account with ID 1 far exceeds that of other accounts.

In this case, there must be a large number of cycle structures in the block, because there

will be many transactions read and written to the account with ID=1 in the same block.

conflict − wr and conflict − rw must be formed, and if the conflicting transaction also

reads and writes other accounts, there will be a cycle structure. By specifying different α

values when generating the benchmark set, the probability of different transactions reading

and writing to the same account can be effectively adjusted.

Figure 4.10: The frequency of transactions accessing when α = 0



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 93

Figure 4.11: The frequency of transactions accessing when α = 1

Figure 4.12: The frequency of transactions accessing when α = 2

Finally, all experimental parameter values in this manuscript are listed. As detailed

in Table 4.5, seven different values of µmax are set for the experiment. It’s evident that a

higher µmax value leads to a greater number of concurrent transactions, thereby increasing

the possibility of conflicts. In this section, only three P-values are set to test the system

conflict handling capability when the ratio of read-write transactions ranges from low to

high. The Zipf’s law access frequency constant α is incremented in steps of 0.2, ranging

from 0 to 2.0. A benchmark set was created using these parameter combinations and tested

on both Hyperledger fabric and Trie-Fabric, yielding several sets of experimental results.



94 4.5. EXPERIMENTAL RESULTS AND ANALYSIS

Table 4.5: Probability distribution for each type of transaction

Experimental parameter Parameter value

Block size µmax 50, 100, 200, 300, 400, 500, 1000

Ratio of read-write transactions 0.05, 0.50, 0.95

Zipf’s law access frequency constant 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0

4.5.2 Experimental Results

This chapter validates the effectiveness of the proposed Trie-Fabric through multiple sets of

experimental results. First, it compares the throughput of all transactions within a block

before and after executing the transaction serialization sorting algorithm.

Figure 4.13: Valid transaction volume comparison when P = 0.05



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 95

Figure 4.14: Valid transaction volume comparison when P = 0.50

Figure 4.15: Valid transaction volume comparison when P = 0.95

The comparison of the number of successful transactions with varying maximum sizes

at p = 0.05 is shown in Figure 4.13. It can be seen that when µmax = 50, the count

of effective transactions for both Fabric and trie-Fabric is nearly the same. This similar-

ity arises because the smaller µmax value limits the number of concurrent transactions,

allowing those with potential conflicts to be spread over different blocks, thus avoiding

termination. However, processing smaller blocks in Hyperledger fabric is time-consuming

and can negatively impact system performance. As shown in Figure 4.14, increasing µmax

results in trie-Fabric recording more valid transactions than Fabric, while keeping the num-



96 4.5. EXPERIMENTAL RESULTS AND ANALYSIS

ber of terminated transactions low. Particularly, at µmax = 1000, trie-Fabric boosts the

count of valid transactions by 18.8%. With p = 0.05, the block mainly comprises read-only

transactions. The conflict − wr conflicts between read-only and read-write transactions

usually don’t create cycles, leading to more effective transactions. In contrast, at p = 0.95,

where read-write transactions make up a large portion, many cycles occur within the block,

causing numerous transactions to be suspended. Figure 4.15 indicates that at µmax = 300,

trie-Fabric increases the maximum number of valid transactions by only 9.0%. Analyz-

ing all three experimental datasets, the most significant improvement with trie-Fabric is

observed at p = 0.50 and µmax = 1000, where the optimization elevates the number of

effective transactions by 44.5%.

Figure 4.16: The trend of Effective rate with p

The above series of experiments show that the effective transaction in the conflict

environment is related to the p value, so we compare and test the change rule of the

efficient rate with the p. As shown in Figure 4.16, the horizontal axis represents the value

of 1 − p, which is the proportion of read-only transactions.The horizontal axis represents

the effective rate, µmax = 1000, α = 1.2 for the experiment. For the same system, when

the p value is smaller, the ratio of read-write transactions is smaller, and the efficiency is

higher because there is no conflict between read-only transactions. When the experimental

results of the two systems are compared, it is shown that the efficiency of trie-Fabric is

always higher than that of the original Fabric through transaction serial sorting, and the

maximum increase is 67.3% when p = 0.05.



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 97

Figure 4.17: When p = 0.05, the trend of Effective rate with α

Figure 4.18: When p = 0.50, the trend of Effective rate with α



98 4.5. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 4.19: When p = 0.95, the trend of Effective rate with α

Finally, the effect of visit frequency α on efficiency was studied through multiple sets

of experiments. To maximize the collision scope, a block size µmax = 1000 was selected.

As shown in Figure 4.17, although the frequency of transactions reading and writing to

the same account increases with higher values of α, due to the small value of p, most of

the blocks are conflict−wr formed by read-only transactions and read-write transactions.

Trie-Fabric converts most invalid transactions into valid ones by reordering them. There-

fore, while the efficiency of Fabric decreases as α increases, Trie-Fabric’s efficiency remains

relatively stable.

Figure 4.18 demonstrates the efficiency trend when p = 0.50. Under this condition,

the block contains an equal proportion of read-only and read-write transactions, which

implies that both transaction types contribute to the formation of conflict−wr. As α in-

creases, the efficiency of Trie-Fabric shows a decreasing trend. The number of transactions

terminated by Trie-Fabric also rises, attributable to conflict cycles formed by read-write

transactions. However, despite these challenges, trie-Fabric maintains an efficiency level ex-

ceeding 50%, demonstrating superior conflict handling capabilities compared to the original

Fabric system.

The changing trend of efficiency when p = 0.95 is shown in Figure 4.19. In this sce-

nario, since most blocks are read-write transactions, conflict − wr conflicts mainly occur

among these transactions. With the increase in α, the frequency of each transaction ac-

cessing a small number of accounts rises, significantly boosting the likelihood of conflicting

transactions forming cycles. In such situations, trie-Fabric is compelled to terminate these

transactions. Experimental results reveal that the efficiency trends of both Trie-Fabric



CHAPTER 4. TRIE-ALTERNATIVE TRANSACTION SERIAL SORTING 99

and the Fabric system follow a similar pattern, though the improvement in Trie-Fabric is

not markedly pronounced. In high read-write concurrency scenarios like this, it is advis-

able to promptly terminate transactions and notify clients to resubmit, thereby avoiding

unproductive transaction cycles.

4.6 Conclusion

This chapter introduces Trie-Fabric, an experimental blockchain system developed with a

DAG-based Trie tree-structured serial transaction sorting algorithm to address the high

incidence of suspended transactions in Hyperledger fabric. The chapter analyzes conflict

issues arising from concurrent transactions within the standard Fabric system and proposes

a reordering method using Trie-Fabric to resolve these issues. A benchmark set generated

from SmallBank
’
Äôs workload is introduced, along with three variables that control the

conflicting interactions within the test set. Comparative studies suggest that Trie-Fabric

excels in managing conflicts, potentially improving efficiency by over 60% compared to the

original Fabric system.



100 4.6. CONCLUSION



Chapter 5
Smart Contract-inspired Access
Control

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Definition of the Structural Relationship . . . . . . . . . . . . . . . 104

5.3.2 Model Data Structure Definition . . . . . . . . . . . . . . . . . . . 105

5.3.3 Model Interrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 System Model and Design . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.2 Smart contract design . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4.3 Policy Query Pptimization based on Bloom Filter . . . . . . . . . 110

5.4.4 System Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Performance Evaluation and Analysis . . . . . . . . . . . . . . . 116

5.5.1 System Environment and Configuration . . . . . . . . . . . . . . . 116

5.5.2 Performance Test and Experimental Results . . . . . . . . . . . . . 117

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

101



102 5.1. INTRODUCTION

5.1 Introduction

IIoT, as a typical Cyber-Physical System (CPS), intricately combines wireless sensor net-

works, communication protocols, and internet infrastructure to oversee and optimize intel-

ligent industrial operations [111]. These IIoT devices, connected through both wired and

wireless channels, continuously interact with their environment, generating a wide variety

of data types [112, 113]. This distributed network not only enhances system scalability

and personalization but also facilitates effective monitoring and improved product quality,

marking a shift from traditional centralized manufacturing systems to more decentralized

and dynamic approaches [114]. Consequently, in this distributed IIoT ecosystem, a complex

network of collaborative requirements arises among various devices and management enti-

ties, underscoring the imperative need for efficient coordination and communication [115].

However, with the expansion of industrial operations and the increasing interconnec-

tivity of devices, traditional IIoT architectures are under strain to support such extensive

networks [116]. This situation is exacerbated by the growing complexity of data types

and communication protocols within these vast networks. Additionally, the incorporation

of cutting-edge technologies such as AI and machine learning in IIoT systems further in-

tensifies the demand for more robust architectures. Interactions over the Internet within

the IIoT system involve data transfer to third-party servers, raising concerns about data

security, privacy, and control [117]. Most current research on trust mechanisms in IIoT

tends to neglect the environment’s unique demands, particularly the limited and diverse

computational and storage capabilities of IIoT devices. This oversight leads to practi-

cal challenges in applying these mechanisms, necessitating more customized and practical

solutions [118,119].

Furthermore, existing IIoT trust research often relies on trusted third parties or inter-

domain trust assumptions, which are challenging to fully realize in practical industrial

settings [120]. As the number of industrial devices continues to grow, centralized IIoT

architectures encounter numerous hurdles. Maintaining data confidentiality is especially

critical within the vast systems of industrial manufacturing, where any breach could have

severe repercussions on system security [121–123]. Furthermore, with the diverse array of

device types present in contemporary IIoT systems, the efficient utilization of generated

data becomes increasingly intricate [124]. Consequently, centralized storage systems strug-

gle to effectively manage data, leading to concerns regarding data authenticity, integrity,

and validity [125].

In addressing these challenges, smart contracts facilitated by blockchain technology

have emerged as a powerful solution, significantly enhancing security, trust, and data in-

tegrity in the IIoT. By embedding operation rules into the blockchain, smart contracts



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 103

make IIoT network interactions transparent, autonomous, and immutable [126, 127]. This

transparency ensures that all parties involved in IIoT transactions can verify the integrity

and authenticity of the data, fostering trust among stakeholders. Moreover, smart contracts

align with the distributed architecture of IIoT, managing data transactions based on estab-

lished rules and delivering immediate, automated responses to security threats [128]. This

proactive approach to security enhances the resilience of IIoT systems against various cyber

threats. Additionally, smart contracts adapt to the varied technical needs of IIoT devices,

allowing for precise access control and secure data sharing [129, 130]. This adaptability

is especially crucial in complex IIoT environments with unsynchronized device operations,

reducing the dependence on central systems and minimizing data breach risks [131].

Overall, smart contracts play a crucial role in enhancing the security, efficiency, and

reliability of IIoT systems, positioning them as a foundational technology in the future

industrial landscape. Based on the above-mentioned analysis, this chapter introduces a

data access control framework for IIoT utilizing the Hyperledger fabric platform, denoted

as Hyper-IIoT. This framework attains secure storage and confidential data sharing within

IIoT by harnessing the capabilities of distributed networks and consensus-based authen-

tication. In terms of functionality, Hyper-IIoT adopts an Attribute-Based Access Control

(ABAC) model to provide a flexible, dynamic, and fine-grained approach to data access

control. Access control policies are formulated through smart contracts in conjunction with

bloom filters, thus mitigating the computational overhead of the system by incorporating

the bloom filter model.

5.2 Related Work

Smart contracts offer a crucial security mechanism and a reliable operating environment for

managing access to IIoT data [132,133]. To ensure precise access control for asynchronously

operating devices by different stakeholders, attribute-based access control models, often

integrated with smart contracts, are employed to safeguard resources and information on

IIoT devices [134]. For instance, Yang et al. [135] developed a secure data-sharing protocol

using blockchain technology, enhancing single key exposure protection, enabling efficient

keyword searches, and supporting dynamic user and key management. Conversely, Liu et

al. [136] proposed an IoT access control system using Hyperledger fabric, yet it falls short

in providing thorough auditing for access records.

To address the limitations of existing models, especially the latency issues in smart con-

tract operations, researchers are exploring new additions to blockchain-based IIoT system

access control modules. Wu et al. [62] presented MapChain-D, a framework that integrates

distributed hash tables with Ethereum storage, specifically catering to environments with



104 5.3. PROBLEM DEFINITION

significant latency and bandwidth constraints and thus serving resource-limited IIoT de-

vices effectively. Similarly, the combination of multiple blockchain distributed keys and

fog computing, as proposed in [137], shows potential in reducing operation times across

various links, thereby boosting user privacy and security. Despite these advancements, a

major hurdle remains in the form of high computational complexity resulting from direct

interactions between IIoT devices through smart contracts, leading to unresolved challenges

in managing the resultant high computational complexity.

5.3 Problem Definition

This section introduces the problem definition, including the interplay among models out-

lined in Subsection 5.3.1, the data structure described in Subsection 5.3.2, and intercon-

nectivity in Subsection 5.3.3.

5.3.1 Definition of the Structural Relationship

Figure 5.1: Structural relationship of Hyper-IIoT



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 105

The storage protocol introduced in this work mitigates the blockchain network’s load by

designating inconsequential template data as public. This data is hosted on a cloud server,

enabling users to retrieve it via the server’s address independently. In contrast, private

data contains sensitive information that needs to be kept safe in a blockchain network.

Data owners should implement access control policies for private data and manage private

data by auditing access records. Figure 5.1 illustrates how users interact with private data.

5.3.2 Model Data Structure Definition

In this subsection, we present a dependable mechanism for safeguarding private data, that

primarily comprises the enduring format of private data, access control policies, and records.

5.3.2.1 PersistentData

This model defines private data in a uniform format, as shown in Equation 5.1:

PD = {persistentId, persistentData, persistentUrl} (5.1)

where PD represents the persistent data set of private data in the IIoT applica-

tion scenario, persistentId represents the unique primary key identification of persis-

tent data resources, and persistentData represents the persistent format of private data.

persistentURL Indicates the URL where public data can be accessed on the cloud server.

5.3.2.2 Access Policy

The access control strategy of the Hyper-IIoT model is the core to achieving fine-grained

access control. The data structure is mainly based on the ABAC model, and its structure

is shown in Equation 5.2 - 5.5:

PL = {AUser,APD,AAuth,AEnu} (5.2)

AUser = {userId, role, PKUser} (5.3)

APD = {dataId, signer, signData, dataKey, dataUrl} (5.4)

AEnu = {createT ime, endT ime, IP, signPKuser} (5.5)

where PL signifies the access policy related to the attributes such as user, data, environ-

ment, and permission. AAuth represents the permission attributes, tasked with delineating



106 5.3. PROBLEM DEFINITION

access privileges for private and public data endpoints within the IIoT domain. It com-

prises attributes such as authUrl and authData, which correspond to the access control

attributes for public data URLs and private data, respectively, with a general focus on val-

idating the access permissions for private data. On the other hand, AEnu signifies the set

of environmental properties, delineating the contexts under which a data requester may ac-

cess private environments. Environment properties encompass attributes like createT ime

(policy creation time), endT ime (policy expiration time), ip (requesting node’s IP address),

and signPKuser (data owner’s signature on the policy to prevent tampering or forgery).

5.3.2.3 Record

To ensure the traceability of the Hyper-IIoT model, the system defines the access record

as four data structures: RECORD, REQUEST , RESPONSE, and HIS, as shown in

Equation 5.6 - 5.9.

RECORD = {REQUEST,RESPONSE,HISTORY } (5.6)

REQUEST = {AUser,APD} (5.7)

RESPONSE = {policyID, owner, requestID,

status, endT ime, timestamp}
(5.8)

HIS = {resourceId, requestor, version} (5.9)

RECORD encompasses privacy data access records for auditing, comprisingREQUEST

(data request record), RESPONSE (data owner’s response record), andHISTORY (data

set access history). REQUEST contains attributes about the requester and data set, while

RESPONSE includes details like policyId (index for accessing blockchain’s control policy),

owner (data owner), requestID (index for request record), and timestamp (data owner’s

response time). HISTORY serves as a ledger for data set interactions, autonomously doc-

umenting pertinent details of requesters within the blockchain network. This registration

occurs in conjunction with the access instance, precisely when a data collection, identified

by resourceId, is successfully acquired by a requester.

5.3.3 Model Interrelation

The Hyper-IIoT model encapsulates a triad of interactive processes: Policy-to-Data, Data-

to-Log, and Log-to-Policy. In this stage, the access control model ensures auditability



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 107

by recording data requester IDs, creating request and response records, and validating

legitimacy based on access, request, and response records stored in the blockchain network.

A direct correspondence is established between access logs and confidential data, simplifying

the auditing process.

5.4 System Model and Design

The access control system based on smart contracts and bloom filter proposed in this paper

is a reliable private data protection scheme. This section shows the architectural design

and corresponding details of Hyper-IIoT.

5.4.1 System Architecture

Hyper-IIoT is deployed in the consortium chain, and the main design components in-

clude Users, Certification Authority (CA), Administrator (Admin), and Blockchain Net-

work (BN), which provides user access modules that form the underlying structure. The

system, integrating a smart contract-based access control model enhanced with a Bloom

filter, is illustrated in Figure 5.2.

Figure 5.2: Structural Design of Hyper-IIoT

5.4.1.1 IIoT

The IIoT device management platform is tasked with handling diverse datasets, including

video, audio, and textual content, produced by IoT devices. During this operation, data

is classified into private and public categories based on the system’s predefined segregation

criteria, with the latter being transmitted to the cloud server for preservation.

5.4.1.2 User

The system encompasses data owners who upload, manage access, and respond to data

requests and data requesters requiring permission for access. Data owners can audit their

data resources via access control policies, enhancing data security and traceability.



108 5.4. SYSTEM MODEL AND DESIGN

5.4.1.3 CA

This component issues certificates to uniquely identify new nodes, requiring each user to

possess a CA certificate for various procedures like connecting to and authenticating with

the blockchain network.

5.4.1.4 Admin

Responsible for managing the basic capabilities, including network startup and smart con-

tract installation rights, while overseeing access control through CA authentication, access

policy formulation, user data access rights assignment, and maintaining policies, enabling

Hyper-IIoT to authorize users for data-related activities.

5.4.1.5 BN

The key platform of the system, which consists of data storage and identity permission

authentication, manages the storage of private data, access control, user authentication,

and auditing, requiring authorization from the CA for users and Admin for data access,

whereas data circulation and retention on the blockchain ledger are governed by smart

contracts, culminating in a comprehensive data exchange ecosystem.

5.4.2 Smart contract design

This paper introduces four types of smart contracts for user management, data manage-

ment, and access control, which are crucial for enabling Hyper-IIoT business logic and

ensuring system efficiency, data privacy, and integrity.

5.4.2.1 User Management Contracts (UMC)

This contract is responsible for the management of user names and serial numbers, including

the CreateUser(), QueryUser(), and CheckUser().

CreateUser() method: The initial step for user participation involves user registration,

where CreateUser() generates a unique user identification, UserNumber, based on the

UserName field.

QueryUser() method: Facilitates user information retrieval using UserName and

UserNumber, including a check for existing users during registration.

CheckUser() method: Before seeking authorization via the access policy, users must

undergo authentication, which verifies the user’s signature SignID, public key Pubk, and

private key Prik.



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 109

5.4.2.2 Access Control Contracts (ACC)

This function checks if the request to access the data is aligned with the preset access control

policy. It includes key functions Auth(), GetAttrs(), CheckPolicy(), and CheckAccess().

Auth() method: Uses Admin-distributed public keys for request encryption, facilitating

user request authentication and identity verification.

GetAttrs() method: This module processes the attributes in received requests, focus-

ing on subject and object characteristics, denoted as {S,O}. Additionally, it configures

environmental attributes E, forming an integrated set of attributes {S.O.E}.
CheckAccess() method: Algorithm 7 shows that this method validates access requests

by checking if they align with established access policies, involving retrieval of attributes

using GetAttrs(), querying the corresponding policy with QueryPolicy(), and verifying

attribute satisfaction, with an invalid request result if no supporting policy is found or if

attributes E and A fail to satisfy the policy. The deployment interface of ACC is shown in

Figure 5.3.

Figure 5.3: The interface of CheckAccess() method installation

Algorithm 7 The CheckAccess() method checks the access request

Require: ABACRequest

Ensure: TrueorError
1: {Su,Ou,Eu} ← GetAtrrs(ABACRequest);
2: //Retrieve attribute info from the access control request based on attributes
3: PolicySet = {Policy1, . . . , Policyn} ← QueryPolicy(Su,Ou);
4: //Get attribute information based on attribute-based access control request
5: if PolicySet is Empty then
6: return Denial()
7: end if
8: for each Policy in PolicySet do
9: //Check each policy for compliance with visitor criteria

10: {Ap, . . . , Pp,Ep} ← Policy
11: if V alue(Pp) == 1 and Eu ∩ Ep is Not Empty then
12: return Approval
13: end if
14: end for
15: return Denial()



110 5.4. SYSTEM MODEL AND DESIGN

5.4.2.3 Private Data Control Contract (PCC)

This contract is used to manage both private and public data. It enables the data proprietor

to amalgamate private and public data into singular resources, facilitating uploads and

downloads. The contract encompasses methods as follows:

AddData() method: Enables the data owner to combine private and public data into a

single data resource. Once combined, the consolidated data can subsequently be transmit-

ted to the permissioned blockchain network.

GetData() method: This function permits data owners to access the data resources via

a controlled policy mechanism, which coordinates with the blockchain’s indexing system

for retrieval.

5.4.2.4 Access Policy Management Contract (PMC)

This work defines the following four ways to operate ABACPolicy.

AddPolicy() method: It involves the CA executing the CheckPolicy() module to ensure

policy validity before addition. Only policies that pass this check are recorded in the SDB

and blockchain, as detailed in Algorithm 8.

DeletePolicy() method: To remove expired policies, the administrator can explicitly

invoke this function, or it can be executed automatically when the CheckAccess() module

runs.

UpdatePolicy() method: Invoked by the administrator to modify ABACPolicy, and it

can be done by either deleting the policy and writing the modified record to SDB and the

blockchain or by adding the modified policy after updating.

QueryPolicy() method: Allows administrators to retrieve ABACPolicy details by at-

tributes ABACPolicy S or ABACPolicy O, as all policies are stored in CouchDB.

5.4.3 Policy Query Pptimization based on Bloom Filter

The bloom filter, denoted as BF , is a spatially efficient, probabilistic data structure tai-

lored for approximate set membership verification, as explored by Waikhom et al. [138].

Comprised of an array of t bits, BF = (b1, . . . , bt), all initialized to zero. For a set of

x elements A = {α1, α2, . . . , αx} and p unique hash functions {hash1, hash2, . . . , hashp}
that map uniformly to the range [1, n], the insertion process of an element αi ∈ A involves

calculating p hash values {hash1(αi), . . . , hashp(αi)} and setting the corresponding indices

in BF to one (BF [hashj(αi)] = 1 for 1 ≤ j ≤ p, 1 ≤ i ≤ x). The BF can produce two

types of indications: certainty of the data’s presence or a probability of its presence, with

the latter known as a false positive, which erroneously indicates the presence of data not



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 111

Algorithm 8 The AddPolicy() method customizes access policies

Require: ABACP
Ensure: TrueorError
1: @implement SmartContract Interface;
2: //Implementation of smart contract interface
3: APIstubChaincodeStub← Invoke();
4: if err! = Null then
5: return Error(BadPolicy);
6: end if
7: //Generate a unique index of the access policy based on the host and guest attributes
8: //Store the strategy in the blockchain
9: if err! = Null then

10: return OK
11: end if
12: return OK;

inserted. A response of BF [hashj(αi)] = 0 conclusively signifies that the element αi does

not exist in BF .

BF is utilized to enhance query efficiency within smart contracts, specifically to test the

membership of variables within queries initiated by an Admin, thereby reducing the compu-

tational demands and the consequent system response delays. Assuming that the attribute

sets of ABACPolicy S and ABACPolicy O with x elements are {ks0 : values0, . . . , k
s
i :

valuesi , . . . , k
s
x−1 : value

s
x−1} ∈ ABACPolicy S and {ko0 : valueo0, . . . , k

O
i : valueOi , . . . , k

O
x−1 :

valueOx−1} ∈ ABACPolicy O respectively, the query procedure can be defined as follows:

Step 1: Build a bloom filter structure BFA consisting of a t-bit array (all default values

are 0) and p independent hash functions.

Step 2: Enter the defined set of smart contract attributes {ABACPolicy S,ABACPolicy O},
update the array BFA = (b1, . . . , bn) with a value of 1, and its corresponding mapping pro-

cess is BF [hash(ABACPolicy S,ABACPolicy O)] = Index{ABACPolicy S,ABACPolicy O}.

Step 3: Input the attribute set {ABACPolicy S
′
, ABACPolicy O

′} of the query con-

tract, HashA it, and output the result set IndexS
′
,O

′
.

Step 4: The result set Index{ABACPolicy S
′
,ABACPolicy O

′} = {I ′
0, I

′
1, . . . , I

′
p} is iterated

successively to determine the bj = BF (Ij) of the element I
′
j ∈ Index{ABACPolicy S

′
,ABACPolicy O

′}

in the BFA index position obtained previously. If bj = 0, it is determined that the at-

tribute set {ABACPolicy S
′
, ABACPolicy O

′} of the contract in this query does not

exist in the contract attribute set {ABACPolicy S,ABACPolicy O} defined by the sys-

tem, and the query process ends. If the value of Index{ABACPolicy S
′
,ABACPolicy O

′
in

the corresponding index position of BFA is 1, then {ks
′

j : values
′

j , k
O

′

j : valueO
′

j } ∈



112 5.4. SYSTEM MODEL AND DESIGN

{ABACPolicy S,ABACPolicy 0} is indicated.

Step 5: Loop through Step 3 and Step 4. If all elements{ABACPolicy S
′
, ABACPolicy O

′}
and {ks

′

0 : values
′

0 , . . . , k
s
′

i : values
′

i , . . . , k
s
′

x−1 : values
′

x−1} ∈ ABACPolicy S
′
in {ko0 :

valueo0, . . . , k
O
i : valueOi , . . . , k

O
x−1 : value

O
x−1} ∈ ABACPolicy O

′
exist in {ABACPolicy S}

and {ABACPolicy O}, the query policy matches, and the query ends.

The above steps simplify the computational overhead of the query, quickly exclude

elements that are not part of the attribute set, and the computational complexity O(p) is

only related to the computational efficiency. The computational complexity for querying

the target contract is reduced from O(t2) to O(p ∗ t).

5.4.4 System Workflow

As shown in Figure 5.4, the blockchain-based access control policy model mainly consists

of five parts, and this part will explain the workflow of each part in detail.

Figure 5.4: Workflow for Hyper-IIoT solutions



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 113

5.4.4.1 Data Storage

Data owners first need to upload their private data resources and establish corresponding

access control policies to finalize the storage procedure of private data within the blockchain

network. Suppose that there is a user user1 with priData, pubData, and public key

PKowner, so the specific process of storing private data is as follows:

Step 1: The user transfers public data to the cloud server.

Step 2: The cloud server provides URL data in response.

Step 3: The user must hash the private data and obtain the result sign data.

5.4.4.2 Blockchain Network Initialization

After configuring the experimental environment, the system must be started first. The

initial setup of the blockchain network mainly includes the generation of certificates for

each part of the blockchain, the creation and connection of nodes between the network,

and the installation of chain codes and policies on each node. The specific implementation

process is executed in the form of a script, and the steps are as follows:

Step 1: The certificate is generated. The certificates, public and private keys of User,

Orderer, Peer, and Admin are uniformly generated by the CA, as shown in Equation 5.10:
User → CA→ {CtUser, pubkUser, prikUser}
Orderer → CA→ {CtOrderer, pubkOrderer, prikOrderer}
Peer → CA→ {CtPeer, pubkPeer, prikPeer}
Admin→ CA→ {CtAdmin, pubkAdmin, prikAdmin}

(5.10)

Step 2: Creation and connection of blockchain network nodes. Each user in the network

constitutes a node. In a stand-alone environment, the creation of each node is equivalent

to the creation of a docker container, ensuring that each node has the same system en-

vironment. In a multi-machine environment, each computer is equivalent to a node and

does not need to have the same environment, it only needs to have the same client to

achieve communication between nodes. For constructing a blockchain network, employ-

ing the Fabric-provided configtxgen tool ctgen is essential, with the process detailed in

Equation 5.11.

Fabric
ctgen−→ Block1

kafka−→ {Block1, Block2, . . . , Blockn} (5.11)

Step 3: Configure network nodes. The configuration information for nodes and chan-

nels is written to the transaction as shown in Equation 5.12.

{CtOrderer, CfOrderer, CtPeer, CfPeer}
SDK→ {Tx1 , . . . , Txn} (5.12)



114 5.4. SYSTEM MODEL AND DESIGN

Step 4: Chaincode installation. chaincode installation is performed by the administra-

tor according to Equation 5.13. Installing a chaincode on a blockchain network node can

facilitate the authentication and endorsement of transactions on that node.

Chaincode→ Admin
SDK→ Peer (5.13)

5.4.4.3 Access Policy Deployment

The system customizes access policies to ensure users’ access rights to relevant data. The

deployment procedure is as follows.

Step 1:Access policy definition. Admin provides management functions for attribute-

based access control policies developed based on business rules, as shown in Equation 5.14:

{S,O, P,E} → Admin→ {ABACPolicy} (5.14)

Step 2: Access policy upload. Once the access policy is defined, it will be broadcast

to the blockchain network in the steps of Equation 5.15.

{ABACPolicy} → Admin→ {Block1, Block2, . . . , Blockn} (5.15)

Step 3: Access policy updates. The blockchain network does this by executing chain-

code, updating the Ledger state, and saving the policy to the database, as shown in Equa-

tion 5.16:

{ABACPolicy} → {Ledger, LevelDB} (5.16)

5.4.4.4 User Registration

Registering users involves recording the identity details of data owners and requesters on

the blockchain. The steps for registration are outlined as follows.

Step 1: User creation. This step first needs to check whether UserName and UserNumber

already exist in the CA. If the member is new, the CA proceeds with registering the User,

leading to the creation of the fields {SignID,Pubk, Prik, Ct}, as shown in Equation 5.17:

User → CA→ {SignID,Pubk, Prik, Ct} (5.17)

UserName and UserNumber are then stored in the database, as shown in Equa-

tion 5.18:

{UserName,UserNumber} → {Ledger, LevelDB} (5.18)



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 115

Step 2: User authentication. After registration, if the user wants access to create,

query, and update the corresponding data, they need to obtain authentication by calling

the checkUser() method and then invoke the pre-set access policy to obtain authorization

as shown in Equation 5.19.

User → CA
checkUser()−→ Admin→ PolicyUser (5.19)

Step 3: User login. Upon user authentication, the server initially verifies the existence

of the member. Once confirmed, the member’s public and private keys, Pubk and Prik,

respectively, facilitate access to the Fabric blockchain network. Subsequently, the member’s

data retrieval is executed through the queryUser() function. A successful data query

triggers the server to dispatch the retrieved information and deliver the login outcome to

the member.

5.4.4.5 User Access Allocation

User access authorization is the core of access control. Authorization must ensure sharing

and dynamics while ensuring the integrity and synchronization of financial project data.

User access authorization requires strict policy definition based on actual service logic. The

assignment steps are as follows.

Step 1: Request activation. The user initiates an access request to the blockchain,

which is verified upon arrival at Admin as shown in Equation 5.20.

User
Request−→ Admin (5.20)

Step 2: Request validation. After receiving an access request from the user, Admin

calls the GetAtrrs() method to get the user properties and then the CheckAccess() method

for validation as shown in Equation 5.21.

Admin
GetAttrs()−→ User{S,O} −→ User{S,O,E}

Admin
Checkaccess()−→ User{S,O,E} −→ User{S,O,E, P}

(5.21)

Step 3: Execute. After the administrator verifies the user’s access policy, the system

processes the user’s request in line with the established access policy. If the return result

is 1, the access is passed. If the return result is 0, the access is denied, as shown in

Equation 5.22.

Admin
ABACPolicy→ User{S,O,E, P}

{
1, Pass

0, No
(5.22)



116 5.5. PERFORMANCE EVALUATION AND ANALYSIS

5.5 Performance Evaluation and Analysis

This section describes the experimental process for evaluating functionality and presents the

performance and comparative results of the proposed Hyper-IIoT. Section 5.5.1 details the

experimental setup and the parameters configured for the evaluation, while Section 5.5.2

delves into the analysis of the experimental data and the consequent performance implica-

tions.

5.5.1 System Environment and Configuration

The experimental evaluation in this study is executed in a stand-alone environment, con-

figured as detailed subsequently.

5.5.1.1 Network Structure

The proposed network topology contains nine types of nodes. This setup comprises four

database nodes (Fabric − couchdb), two certificate authority nodes (Fabric − ca), four

peer nodes (Fabric − peer), one order node (fabric − orderer), and one client node

(fabric−tools). Additionally, there are four nodes each for user-managed contracts (UMC

and AMC), private data control contracts (PCC), and access control policies (PMC), as

shown in Table 5.1. We emulate a distributed multi-machine environment utilizing three

Raspberry Pi microcomputers, which are depicted in Figure 5.5.

Table 5.1: Symbols used.

Node Implication Number

UMC The user manages the contract nodes 4
AMC The user manages the contract nodes 4
PCC Private data control contract nodes 4
PMC Access control policy nodes 4

Figure 5.5: Raspberry Pi microcontroller devices



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 117

5.5.1.2 Chaincode Deployment

Within the Hyper-IIoT framework, chaincode is responsible for defining properties, man-

aging access control, and orchestrating system operations. This encompasses the processes

of installation, instantiation, and subsequent upgrades.

Step 1: Installation. Chaincode installation is initiated after completing blockchain

network initialization, performed through Hyperledger client nodes, and installed into each

peer node.

Step 2: Instantiation. The instantiated chain code is specified after it has been

installed on any peer node

Step 3: Upgrade. Before updating the chain code, it is imperative to install the new

version; the update will take effect exclusively on peer nodes that have the revised chain

code in place.

5.5.2 Performance Test and Experimental Results

To evaluate Hyper-IIoT’s performance, this study conducts three sets of simulation exper-

iments to assess system concurrency, transaction time, and throughput under real-world

conditions, demonstrating its ability to maintain high throughput and effective consensus

in a distributed system even under large-scale request scenarios.

5.5.2.1 Contract Execution Time

Rooted in the operational logic, this research initially assesses the execution time for user

management, policy management, and access control contracts, as shown in Figure 5.6, Fig-

ure 5.7, Figure 5.8, and Figure 5.9. These results highlight a consistent and gradual rise in

contract execution time corresponding to increased block size, indicative of a well-regulated

and systematic growth pattern. Moreover, it is evident that the add() and update() meth-

ods require more time to execute compared to the query() and delete() methods, primarily

due to the greater number of data writes they involve. However, this difference in execu-

tion time is sufficiently minor to be effectively managed, underscoring the robustness of the

system’s performance under varying workloads.

Furthermore, Hyper-IIoT integrates a bloom filter-enhanced API into the smart con-

tract in Hyperledger fabric. Figure 5.10 presents the efficiency of bloom filters in processing

queries across varying file sizes. The data indicate a systematic increase in processing time

correlating with heightened concurrency, underscoring the bloom filter’s compatibility with

scalable data storage and query scenarios. For query precision, the bloom filter’s byte size

and hash function count are finely tuned by the anticipated data dimensions. Subsequently,

the MD5 hash is stored as a key-value pair within the state database, prompting an update



118 5.5. PERFORMANCE EVALUATION AND ANALYSIS

Figure 5.6: The execution time of UMC

Figure 5.7: The execution time of PMC



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 119

Figure 5.8: The execution time of ACC

Figure 5.9: The execution time of PCC



120 5.5. PERFORMANCE EVALUATION AND ANALYSIS

to the ledger. A comparative analysis between the bloom filter-enabled and traditional

search methodologies underpin the augmented efficacy of the bloom filter approach as data

volume escalates, as illustrated in Figure 5.11.

Figure 5.10: Query time consumption of bloom filters

Figure 5.11: Comparing the query time between the bloom filter-assisted scheme and the
regular scheme

5.5.2.2 TPS of Smart Contracts

This section provides a detailed evaluation of the Transaction Per Second (TPS) of Hyper-

IIoT across simulated scenarios with varying concurrency levels. The system’s throughput,

particularly under the Kafka consensus protocol, demonstrates unparalleled reliability and



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 121

stability, as evidenced by the comprehensive analysis depicted in Figure 5.12, Figure 5.13,

Figure 5.14, and Figure 5.15. It is worth noting that while the administrative contract,

responsible for addition and modification functions, exhibits a slightly reduced throughput

compared to the contract focused on querying and validation, this discrepancy arises due

to the inherent read and write demands associated with administrative tasks. Nevertheless,

the Hyper-IIoT system consistently maintains robust TPS and stable performance, even

under stringent operational demands, reaffirming its suitability for industrial applications.

Figure 5.12: TPS of UMC

Figure 5.13: The execution time of PMC

5.5.2.3 Consensus Time Comparison

A comprehensive comparison of the consensus duration and throughput between the Kafka

and PoW consensus mechanisms across a network spanning from 10 to 100 nodes was

conducted in this section. Figure 5.16 provides detailed insights into the time consumption

required to achieve consensus using the proposed system, shedding light on the efficiency

of each consensus mechanism. Besides, Figure 5.17 shows the significant advantage of the

Kafka consensus algorithm over PoW, particularly in meeting the high-throughput demands

essential for this IIoT application. These findings offer valuable guidance in selecting the



122 5.5. PERFORMANCE EVALUATION AND ANALYSIS

Figure 5.14: The execution time of ACC

Figure 5.15: The execution time of PCC



CHAPTER 5. SMART CONTRACT-INSPIRED ACCESS CONTROL 123

most suitable consensus mechanism for IIoT systems, ensuring optimal performance and

scalability.

Figure 5.16: The Consensus time comparison between Kafka and PoW

Figure 5.17: Consensus time comparison

5.6 Conclusion

This chapter proposes an IIoT data access control framework based on smart contracts and

bloom filters to achieve secure data storage and access control, named Hyper-IIoT. Hyper-

IIoT expands the support for accurate data governance and access control, preserving the

concepts of safe data storage, effective data access, and the traceability of sensitive data



124 5.6. CONCLUSION

access to handle evolving data formats and rising privacy needs. The access policy in

the system is programmable, offering adaptability to diverse access requisites. Through

the implementation of ABAC, Hyper-IIoT has accomplished fine-grained access control,

and the bloom filter deployment improves system performance. The experimental results

show that Hyper-IIoT exhibits well-controlled contract execution times, stable throughput,

and efficient consensus in a distributed environment and highlight the advantages of the

Kafka consensus mechanism in achieving rapid consensus and high throughput, meeting

the requirements in real-world applications.



Chapter 6
Non-Interactive ZKP-inspired
Access Control

Contents

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 Attribute-Based Encryption with IoT . . . . . . . . . . . . . . . . 129

6.2.2 Access Control with Blockchain . . . . . . . . . . . . . . . . . . . . 129

6.2.3 ICN with IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.1 Entity Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Proposed ZK-CP-ABE Scheme . . . . . . . . . . . . . . . . . . . 133

6.4.1 Optimized Decryption in CP-ABE Systems for IIoT Environments 134

6.4.2 System Setup and Key Generation . . . . . . . . . . . . . . . . . . 134

6.4.3 Generation of User-Specific Keys and validation proof . . . . . . . 134

6.4.4 Encryption of Data under Access Control Policies . . . . . . . . . 135

6.4.5 Verification of Private Key Authenticity . . . . . . . . . . . . . . . 137

6.4.6 Decryption of Ciphertext to Obtain Metadata . . . . . . . . . . . . 138

6.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.1 Data Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.2 Data Immutability . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.5.3 Robustness Against External Attacks . . . . . . . . . . . . . . . . 140

6.5.4 Resistance to Internal Threats . . . . . . . . . . . . . . . . . . . . 141

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.6.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . 141

125



126

6.6.2 Algorithm Performance Evaluation . . . . . . . . . . . . . . . . . . 141

6.6.3 Scalability performance evaluation . . . . . . . . . . . . . . . . . . 143

6.6.4 System Performance Evaluation . . . . . . . . . . . . . . . . . . . . 146

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 127

6.1 Introduction

The development of the IIoT represents a significant change in the digital age, fundamen-

tally reshaping the way industries operate and interact with technology. Information-centric

networking (ICN) is a strategic advance toward improved data localization in the context

of the IIoT [139]. This change emphasizes the need for sophisticated security measures,

particularly access management. Controlling access is essential in IIoT environments to

protect critical industrial data’s integrity and confidentiality [140]. Given the dynamic and

multifaceted nature of IIoT networks, traditional host-centric access control approaches

are proving insufficient [141]. Therefore, to adapt to the decentralized and content-centric

characteristics, a more flexible, scalable, and security-focused strategy is urgently needed

for the IIoT environment based on ICN.

Nevertheless, with the increasing adoption of real-time data services in IIoT, traditional

methods for P2P packet transfer have faced significant challenges. These include: 1) the

heightened risk of a single point of failure, which can precipitate informational redundancy

and squander resources within clustered networks [142]; 2) reduced system throughput

attributable to the limitations imposed by bandwidth and computational capacity, which

can severely hinder operational efficiency [143, 144]; 3) compromised data security, stem-

ming from encryption protocols that fail to meet the demanding standards of contemporary

IIoT frameworks; and 4) a suboptimal tolerance for network disruptions, reflecting the in-

herent volatility of IIoT communication infrastructures [145]. Adding to these technical

challenges is the fundamental nature of most IIoT applications, which prioritize content-

centricity. Therefore, a thorough reassessment of traditional communication protocols is

necessary in light of this shift towards an ICN architecture to ensure they align with the

constantly evolving needs of the IIoT ecosystem.

In this context, ICN has been adopted in IIoT implementations for its efficient data

distribution capabilities for high-demand content [146]. As shown in Figure 6.1, ICN in-

troduces the innovative concept of Named Data Objects (NDOs), leverages router caching,

employs multicast communication, and decouples senders from receivers to optimize data

dissemination efficiency. Despite these advantages, ICN implementation involves managing

complex data structures and codebases. Additionally, a significant concern is the inherent

lack of encryption in NDOs, potentially exposing sensitive information to unauthorized

entities and posing a risk to data owner privacy [147]. Another critical consideration is

the need for robust authentication and access control mechanisms within ICN-based IIoT

implementations to mitigate the risk of unauthorized access and data breaches.



128 6.1. INTRODUCTION

B

A

C

D A

E

E

D

C

B D

B

Untrusted
Host

Untrusted
Connection

NDO
A B E

…

A

Figure 6.1: ICN structure

However, traditional Zero-Knowledge Proof (ZKP) systems typically require commu-

nication between the prover and verifier, which might cause constraints in large-scale,

distributed IIoT networks [148]. In contrast, non-interactive ZKPs allow proof verifica-

tion without such interaction, making them highly suitable for decentralized environments

like IIoT [149, 150]. Compared with traditional asymmetric encryption techniques (like

RSA), which require data to be encrypted multiple times for each recipient, ZKP encrypts

data only once as opposed to N times for each recipient, significantly reducing resource

consumption and streamlining the encryption process while preserving data security [151].

Simultaneously, non-interactive ZKP provides IIoT with a more private and trustworthy

verification method without needing a trusted third party [152].

Considering the advantages and limitations of ICN, Ciphertext-Policy Attribute-Based

Encryption (CP-ABE), and blockchain technology, this manuscript aims to effectively ad-

dress the security challenges and comply with the performance standards within the IIoT

framework by strategically integrating CP-ABE with ICN in the IIoT context, thus efficient

and distributed data sharing while maintaining robust user privacy through meticulous

access control mechanisms. Moreover, the manuscript pioneers an innovative approach

by embedding a non-interactive ZKP protocol within the CP-ABE framework, thereby

introducing the concept of Distributed Publish-Subscribe Industrial Internet of Things

(DPS-IIoT), which assures the authenticity of private keys, significantly minimizing the

bandwidth consumption typically associated with ineffective access control.



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 129

6.2 Related Work

This section reviews the integration of CP-ABE and blockchain technologies in IIoT, focus-

ing on three main aspects: CP-ABE application in IoT in section 6.2.1, the combination

with blockchain in section 6.2.2, and the role of ICN under IIoT scenarios in in section 6.2.3.

6.2.1 Attribute-Based Encryption with IoT

The integration of CP-ABE in IIoT mainly targets enhancing efficiency in key management,

access structuring, and algorithmic complexities. For example, Li et al. [153] introduced

a robust data-sharing system that operates on a distributed, publisher-driven model, aim-

ing at reducing the communication overhead in CP-ABE systems. In another study, Li

et al. [154] combines CP-ABE with identity-based signature (IBS) to enable distributed

authentication in big-data sharing environments. Zhao et al. [155] focused on attribute

revocation, proposing an outsourced CP-ABE scheme that maintains fixed ciphertext and

key sizes. Lyes et al. [156] addressed vital management challenges in dynamic IoT environ-

ments with a Batch-Based CP-ABE system. Finally, Hao et al. [157] developed a CP-ABE

system supporting entirely hidden attribute-based access policies using a garbled Bloom

filter.

6.2.2 Access Control with Blockchain

Integrating blockchain technology with access control mechanisms has brought about in-

novative solutions. For instance, Wang et al. [158] combined Ethereum and ABE for secret

critical supervision and fine-grained data access control. Fan et al. [159] utilized blockchain

for recording access policies and implemented a user self-authentication system. Then,

a unique integration of blockchain and CP-ABE was proposed in [160], addressing chal-

lenges in blockchain regulation and privacy protection. Zhang et al. [161] combined ABE

with blockchain in IoT and cloud computing environments, using byzantine fault-tolerant

mechanisms for faster consensus. Han et al. [162] developed an innovative ABAC model,

focusing on auditable access control to enhance privacy within IoT environments.

6.2.3 ICN with IoT

The application of ICN in IoT is an evolving research field. ICN enhances the availability of

IoT data through distributed data caching while introducing new challenges in the authen-

tication field. Xue et al. [163] explored the impacts of EDOS attacks in CP-ABE encrypted

cloud systems. Meanwhile, Salvador et al. [164] introduced an innovative architecture merg-

ing CP-ABE’s adaptability with symmetric key encryption’s efficiency, aiming for secure

data transfer and privacy. While current research demonstrates significant advancements



130 6.3. SYSTEM MODEL

in integrating CP-ABE, blockchain, and ICN within IoT environments to enhance security,

efficiency, and scalability, there remains a critical need for further exploration into opti-

mized, cohesive solutions that address the rapidly evolving and specific challenges of IIoT

systems.

6.3 System Model

This section describes the proposed asynchronous distributed network, DPS-IIoT, designed

by combining the core principles of ICN with the advanced framework of IIoT for content

dissemination. The entity definition and workflow are introduced in section 6.3.1 and

section 6.3.2, respectively.

6.3.1 Entity Definition

The architecture of DPS-IIoT is constituted by six crucial elements: the Device, generating

data; the Publisher, responsible for data issuance; the Rendezvous Node, acting as the

system’s directory; the Forwarding Node, facilitating data transit; the Subscriber, the end

consumer of the information; and the Blockchain, a foundational component that fortifies

the network’s security and integrity. These components collectively form the backbone of

the DPS-IIoT, as shown in Figure 6.2.

RN

RN RN

Cloud

Blockchain
NDO

A B E

…

A

B

E

FN

FN FN

FN

Publisher

Subscriber

A

RN

RN RN

Figure 6.2: Entity definition of DPS-IIoT architecture

Device (D): In the IIoT ecosystem, a device, represented as D, is the source of data



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 131

generation, producing Named Data Objects (NDOi). Each NDOis is distinctively tagged

within a specified namespace N , playing a critical role in the network’s data dynamics.

These NDOis can be strategically duplicated across various nodes within the system, a

measure that significantly boosts the network’s redundancy and resilience.

Publisher (P ): The Publisher denoted as P , is central in structuring the IIoT land-

scape. It exerts control over the namespace N and meticulously formulates access control

policies, represented as Π. When these policies are coupled with the NDOi, they facili-

tate controlled dissemination of information towards Rendezvous Nodes, thereby effectively

regulating access to the data.

Rendezvous Node (RNk): The Rendezvous Node, labelled RNk, is a crucial in-

termediary within the architecture. It serves a dual role: resolving NDOi requests and

temporarily storing these data objects. By implementing encryption based on predefined

policies Π, the Rendezvous Node ensures secure and effective policy enforcement. As an

integral part of the blockchain network, the Rendezvous Node oversees secure policy exe-

cution and facilitates efficient content navigation.

Forwarding Node (FNl): The Forwarding Node (FNl) is pivotal in orchestrating the

network’s transmission architecture, overseeing the efficient conveyance of NDOi towards

the designated Rendezvous Nodes. Acting as a crucial intermediary, FNl optimizes data

dissemination by strategically routing and forwarding information packets through the net-

work. Additionally, it adjusts transmission settings to match changing network conditions,

ensuring timely and reliable data delivery. By actively managing and optimizing the net-

work, FNl improves overall performance and resilience, enabling smooth communication

within the IIoT ecosystem.

Blockchain: The blockchain, crucial to the system’s security, functions as a distributed

ledger L. This ledger L supports the network’s structural integrity and security frame-

work. It securely manages the network’s access control processes via smart contracts SC,
ensuring that policy management Π is governed by immutable rules ρΠ and transpar-

ent verification protocols VΠ. Mathematically, the blockchain’s role can be expressed as

L(SC,Π) → {ρΠ,VΠ}, highlighting its foundational role in establishing a robust layer of

trust and reliability across the network’s operations.

Subscriber (Σ): Subscribers, denoted as Σ, are dynamically engaged with the net-

work, actively requesting specific Named Data Objects (NDOi) from Rendezvous Nodes

via requests tagged as msgsub. These Σ entities are tuned to receive updates and content

that match their interests in the namespace N , demonstrating their proactive involvement

in the network’s data exchange ecosystem.



132 6.3. SYSTEM MODEL

6.3.2 Workflow

The architecture of DPS-IIoT is designed to orchestrate secure and efficient data manage-

ment intricately. As shown in Figure 6.3, the system’s operational sequence is carried out

in four phases.

SubscriberRN/FNPublisher

2.Encryption and Hashing

3.Public Key Request and Provision

4.Message Publication and Verification

Blockchain

1.Data Production and Policy Assignment

1.1 Data Production

1.3 Multicast/forwarding

Device

1.2 Policy Assignment

3.1 Request PK

2.2 Hash function

4.2.1 Request E

1.2 Encrypt NDO by policycache ciphertext(E )

3.2 Generate publicparameters & evidence

3.3 Return Pk

4.1 Publish MSG

4.2.2 Challenge

4.2.3 ZKP

4.3 Send E

4.4 Decrypt E  by PK

Figure 6.3: Workflow of DPS-IIoT

Step 1: Data Production and Policy Assignment.

• Produce data: Let D be the data produced by a device, such that D ∈ D, where D
is the set of all possible data.

• Assign name scope, make policy: A policy π is defined as a function π : D → P,
where P is the set of all possible policies. The publisher assigns the data a naming

scope N and policy π(D).

• Multicast/Forwarding: The data D is multicast or forwarded to nodes in the network

N , where N is the set of all nodes.

Step 2: Encryption and Hashing.



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 133

• Encrypt NDO by policy, cache ciphertext(E): The encrypted data E is given by

E = Encπ(D), where Enc is the encryption function parameterized by policy π(D).

• Put HASH: A hash function h : D → H maps data D to a hash value h(D), where

H is the set of all possible hashes. The hash of the encrypted data is h(E).

Step 3: Public Key Request and Provision.

• Request PK: A subscriber requests the public key PK, where PK ∈ K and K is the

set of all possible public keys.

• Generate public key parameters + validation proof: Parameters θ and validation

proof ϵ are generated, where θ, ϵ ∈ K.

• Return PK: The public key PK is returned, PK = f(θ, ϵ), where f is a function

generating PK from parameters θ and validation proof ϵ.

Step 4: Message Publication and Verification.

• Publish MSG: Let M be a message published, M ∈ M, where M is the set of all

possible messages.

• Request E: The encrypted data E is requested by the subscriber.

• Challenge: A challenge C is issued, C ∈ C, where C is the set of all possible challenges.

• ZKP: A zero-knowledge proof function Z confirms that the subscriber can access E

without revealing D or PK.

• Send E: The encrypted data E is sent to the subscriber after successful verification.

• Decrypt E by PK: The subscriber decrypts the encrypted data E using the public

key PK, to retrieve the original data D. This is represented as D = DecPK(E),

where Dec is the decryption function.

This architecture ensures stringent access control, maintaining data integrity and pri-

vacy throughout the data’s lifecycle in the DPS-IIoT environment.

6.4 Proposed ZK-CP-ABE Scheme

This section introduces the detailed algorithm design. The protocol for initial identity

authentication using non-interactive ZKPs, Auth(IDentity)
ZKP−→ V erified, is at the basis of

the suggested approach. This process obviates the need for traditional public key exchange

mechanisms and mitigates the risks associated with private key exposure.



134 6.4. PROPOSED ZK-CP-ABE SCHEME

6.4.1 Optimized Decryption in CP-ABE Systems for IIoT Environments

In standard CP-ABE frameworks, the decryption model denoted as D(C,PK,SK), man-

dates the complete download of ciphertext C aligned with the access policy P. This protocol
leads to high computational and bandwidth utilization, particularly when D(C,PK, SK)

fails due to key errors, resulting in wasted data transmission (∆trans) and decryption ef-

forts (∆decrypt). The algorithm adopts a selective approach by computing the cryptographic

hash function H(·) over the original data D, yielding a condensed representation denoted

as H(D). Subsequently, only this hashed value is encrypted using the encryption function

E(·), resulting in ciphertext C = E(H(D),A). By encrypting the hash instead of the entire

dataset, the algorithm achieves a substantial reduction in the volume of encrypted data,

optimizing bandwidth usage and enhancing overall system efficiency. Before decryption,

the algorithm embeds an essential authentication phase, A(C,PK,SK), employing a ZKP

mechanism ZKP to validate the legitimacy of the decryption request. This pre-validation

step aims to verify the authenticity of the decryption request before proceeding, ensuring

authorized access to the encrypted data.

6.4.2 System Setup and Key Generation

The setup of DPS-IIoT begins with the selection of a sizable prime p and the creation

of a bilinear group G0. Within this group, a generator g is chosen, and a hash function

H : {0, 1}∗ → G0 is designated as a random oracle to map binary attributes to group

elements. Two random numbers α and β are then selected from the group of integers under

multiplication modulo p, and system parameters h = gβ and u = e(g, g)α are computed.

Finally, the system parameters are organized into public key PK = {G0, g, h, u} and master

key MK = {α, β}.

6.4.3 Generation of User-Specific Keys and validation proof

The design of this setup fulfils two key objectives: firstly, it computes the private key (also

called secret key) SK by utilizing initial parameters and user-specific attributes; secondly,

it generates public proof for SK to enable ZKP validation. Let Y represent a collection

of essential attributes with assigned weights crucial for decryption. The algorithm selects

a random value r from the finite field Zp. Each attribute yj in Y independently assigns a

unique random value rj from Zp.

Algorithm 9 is designed to generate validation proof supporting the possession of the

private key SK. Let n be a large composite number, specifically the product of two

distinct large primes, p and q, such that n = p ·q. The length of the validation proof V P in

bytes is represented by t, which is determined by the system’s desired security level. This



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 135

Algorithm 9 Generate Key and validation proof

Require: Y = {y1, y2, . . . , ym} (weighted attributes), MK = {α, β} (master key)
Ensure: SK (private key), V P (validation proof for SK)
1: Select a random value r from the finite field Zp

2: Initialize SK = {}
3: for each attribute yj in Y do
4: Select a unique random value rj from Zp

5: Compute Dj = gr ·H(yj)
rj

6: Compute D′
j = grj

7: Add Dj and D′
j to SK

8: end for
9: Compute D = g(α+r)/β and add to SK

10: Choose large primes p and q, set n = p · q
11: Select length t for validation proof V P
12: Compute X = |Hash256(SK)[0, ..., t]|2
13: Formulate V P = {X,n = p ∗ q}
14: return SK, V P

relationship is formalized in Equation 6.1.

X =

(
t∑

i=0

Hash256(SK)i

)2

=

(
t∑

i=1

yi

)2

=
t∑

i=1

y2i

=
t∑

i=1

xi

V P = {X,n = pq}

(6.1)

6.4.4 Encryption of Data under Access Control Policies

Initially, a hash function H is applied to the dataset M to generate a data summary

Mmeta = H(M). This technique effectively enhances storage efficiency and reduces band-

width during data transmission.

As Algorithm 10 shows, the encryption process initiates at the root node R of T and

proceeds recursively to each node x, where it constructs a unique polynomial qx. Utilizing

Lagrange interpolation, defined as f(x) =
∑d

i=1 f(xi)
(∏d

j=1,j ̸=i
x−xj

xi−xj

)
, the polynomial qx



136 6.4. PROPOSED ZK-CP-ABE SCHEME

Algorithm 10 Encrypt Data

Require: M (plaintext), A (access structure), PK = {G0, g, h, u} (public key)
Ensure: CT (ciphertext)
1: Compute Mmeta = H(M) using hash function H
2: Initialize access tree T based on A
3: Select a random secret s from Zp

4: Define polynomial qR at root R with qR(0) = s
5: for each node x within the tree T do
6: if x equals the root node R then
7: Proceed to next node
8: else
9: Set qx(0) equal to the value of qparent of x evaluated at the index of x

10: Randomly select dx points to fully establish the polynomial qx
11: end if
12: end for
13: Compute C̄ = M · e(g, g)α·s and C = hs

14: for each leaf node l in T do
15: Compute Cl = gql(0)

16: Compute C ′
l = H(att(l))ql(0)

17: end for
18: Assemble ciphertext CT = {T , C̄, C, {Cl, C

′
l}∀l∈Leaves(T )}

19: return CT



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 137

at each node x is defined with a maximum degree dx equal to the threshold of the node,

kx − 1. The encryption process initiates at the root node R, where a random secret s

is chosen from the set Zp. This secret establishes the initial condition of the polynomial

qR at R by setting qR(0) equal to s. For each subsequent node x within the tree T ,
the zeroth value of their respective polynomial qx(0) is determined based on the value of

the polynomial at their parent node, specifically as qparent of x(index of x). To completely

define the polynomial qx at each node x, dx distinct points are randomly selected, where dx

denotes the degree of the polynomial at node x. During decryption, the user’s private key

attributes, denoted as inputs to these polynomials, allow for the reconstruction of plaintext

M through calculated interpolation. With L representing the set of leaf nodes in T , the
ciphertext CT is calculated as Equation 6.2.

CT =T , C̄ = M × e(g, g)α×s, C = hs

∀l ∈ L : Cl = gql(0), C ′
l = H(att(l))ql(0)

(6.2)

6.4.5 Verification of Private Key Authenticity

The Proof algorithm, incorporating the Feige-Fiat-Shamir (FFS) protocol, uses a mathe-

matical approach to confirm the existence of a private key SK without revealing its details.

Specifically, it enables the prover P (the data requester) to authenticate their identity using

SK before requesting encrypted data from the storage server, thereby optimizing band-

width usage, as shown in Algorithm 11.

In the verification process, the prover P initiates by selecting a random number r

within the range (0, n), where n is a publicly known parameter about the validation proof

V P . Next, using a function f based on the private key SK and the random integer r,

P computes a specified value a. This computation ensures that data access requests can

only be processed after verification. The formalization of this procedure aims to minimize

unnecessary data transmission by granting access exclusively to requests that successfully

pass this authentication phase, as shown in Equation 6.3.

Initialize(V P ) = {r, a|r ∈ (0, n), a ≡ r2 mod n} (6.3)

Further, the verifier, labelled as V (who may represent either the data owner or the

entity overseeing storage services), constructs a sequence of variables p, derived from the

maintained proof V P associated with the private key SK. V subsequently initiates a series

of challenges, as shown in Equation 6.4.

Challenge(V P ) = Generate(seed value, sequence length)

= {pi}sequence length
i=1

(6.4)



138 6.4. PROPOSED ZK-CP-ABE SCHEME

Algorithm 11 Zero-Knowledge Proof Verification

Require: SK (private key), V P (validation proof)
Ensure: Boolean value indicating proof validity
1: Prover P generates a random variable r ∈ (0, n)
2: Prover P computes a = f(r, SK)
3: Initialize verification sequence e by the Verifier V
4: V issues a challenge based on V P
5: for i = 1 to t do
6: Generate ei ∈ {0, 1} randomly
7: end for
8: Prover P responds with ANS = r ·

∏t
i=1 y

ei
i mod n

9: Verifier V checks the response ANS
10: Compute λ =

∏t
i=1 V P.xeii mod n

11: if ANS2 ≡ a · λ mod n then
12: return True
13: else
14: return False
15: end if

Upon receipt of the challenge, the prover P computes a response, denoted by ANS, us-

ing the private key. This response is then sent back within a single round of communication,

as shown in Equation 6.5.

ANS = r
t∏

i=1

yeii mod n (6.5)

The verifier, denoted by V , assesses the response ANS using the validation proof V P

and the established public parameters, as shown in Equation 6.6.

Check(ANS, V P ) =

{
1, ANS2 ≡ aλ mod n

0, ANS2 ̸= aλ mod n

λ =

t∏
i=1

V P.xeii mod n

(6.6)

The verifier V is able to issue Challenge multiple times to meet the set-up security

threshold. If any single challenge is not met within a round, the entire Proof procedure

will be promptly terminated.

6.4.6 Decryption of Ciphertext to Obtain Metadata

The decryption algorithm, denoted as Dec, is formulated as a recursive procedure. In the

context of the encryption phase, the access policy is articulated through a tree structure.



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 139

Correspondingly, we instantiate a recursive algorithm, DecNode(CT, SK, x), which com-

mences its decryption process from the root and proceeds through successive layers of the

tree, as shown in Algorithm 12.

Algorithm 12 Decryption Process

Require: CT (Ciphertext), SK (private Key), PK (Public Key)
Ensure: Mmeta (Decrypted Metadata)
1: function DecNode(CT, SK, x)
2: if x matches a leaf node then
3: i← attribute(x)

4: return e(Di,Cx)
e(D′

i,C
′
x)

▷ Di = gr ·H(i)ri , Cx = hqx(0), D′
i = gri , C ′

x = H(i)qx(0)

5: else
6: Initialize Fx ← 1
7: for each child node z of x do
8: Fz ← DecNode(CT, SK, z)
9: Update Fx using Fz and Lagrange interpolation

10: end for
11: return Fx

12: end if
13: end function
14: T ← Extract tree structure from CT
15: C̄, C ← Extract ciphertext components from CT
16: R← Root of tree T
17: Mmeta ← DecNode(CT, SK,R)
18: return Mmeta

The inputs to the algorithm are the ciphertext, the private key SK attached to a specific

collection of attributes, and the node x in the tree T . If x corresponds to a leaf node, where

i = att(x), the decryption is defined by a subsequent computation, as shown in equation

6.7.

DecNode(CT, SK, x) =
e(Di, Cx)

e(D′
i, C

′
x)

=
e(gr ×H(i)ri , hqx(0))

e(gri , H(i)qx(0))

= e(g, g)r×qx(0)

(6.7)

Consider a non-leaf node x. For each child node z of x, the function DecNode is

executed independently to determine Fz. Define Sx as the set containing all such children

nodes z, where the cardinality of Sx is denoted by kx. The condition kx > 0 necessitates

that Fz ̸= 1. Conversely, if kx = 0, it follows that Fz = 1. The formulation of Fx is

represented as Equation 6.8.



140 6.5. SECURITY ANALYSIS

Fx =
∏
z∈Sx

FΛ(ind(x),S′
x)

z (0) = ẽ(g, g)rγqx(0), (6.8)

6.5 Security Analysis

This section delves into a comprehensive security analysis of the ZK-CP-ABE algorithm

and the DPS-IIoT system, using mathematical proofs and formal modelling to assert their

robustness against various cyber threats.

6.5.1 Data Confidentiality

Theorem 1: The ZK-CP-ABE algorithm ensures strict data confidentiality against polynomial-

time adversaries.

Proof: Given a ciphertext C encrypted under a set of attributesA, letA be a polynomial-

time adversary. The probability ϵA that A decrypts C without possessing the correct set

of attributes is negligible, as shown in Equation 6.9.

ϵA = Pr[A decrypts C] ≤ 1

2k
(6.9)

6.5.2 Data Immutability

Theorem 2: DPS-IIoT system guarantees data immutability, preventing unauthorized

data alteration.

Proof: Define D as a data block within DPS-IIoT, and T (D) as a tampering operation.

The probability Ptamper of successful tampering is shown as Equation 6.10.

Ptamper(D,T ) =
n∑

i=1

e−λi·ti

1 + eθi·d(H(D,i),H(T (D,i)))
(6.10)

6.5.3 Robustness Against External Attacks

Theorem 3: The DPS-IIoT system demonstrates resilience against external cyber threats,

including DDoS attacks and unauthorized data interception.

Proof: Let N represent the DPS-IIoT network. The resilience Rexternal against external

attacks is modeled as Equation 6.11.

Rexternal(N ) = 1− exp(−γ · Φ(N )) (6.11)

where γ represents the network defense parameter, and Φ(N ) is the probability distri-

bution of attack vectors.



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 141

6.5.4 Resistance to Internal Threats

Theorem 4: The ZK-CP-ABE algorithm is resistant to internal threats, including insider

attacks and access policy manipulation.

Proof: Let I denote an internal adversary within the ZK-CP-ABE framework. The

security against internal threats Sinternal is quantified by Equation 6.12.

Sinternal(I) = 1−
∑m

i=1 ρi · δ(H(I, i),Π)
m

(6.12)

where ρi are the risk factors associated with internal roles, δ is the function measuring

deviation between the adversary’s access and the actual policy Π, andm is the total number

of internal roles.

6.6 Experimental Results

This section presents a comprehensive comparative analysis of the introduced methods.

Details on experimental settings are delineated in Section 6.6.1. The analysis evaluates

the proposed algorithm and system across three key dimensions: the performance of the

algorithm as assessed in Section 6.6.2, the scalability performance evaluation is presented

in Section 6.6.3, and the system throughput is examined in Section 6.6.4.

6.6.1 Experimental Settings

In this manuscript, a comprehensive set of experimental configurations is carefully planned

to demonstrate the system’s ability to accommodate large volumes of traffic while min-

imizing bandwidth utilization. For experimental evaluation, the hardware configuration

comprises two personal computers (PCs): the first equipped with a 3.60GHz i7-7700 CPU

and 8GB of RAM, and the second furnished with an i7-7500U CPU at 2.90GHz coupled

with 16GB of RAM. Additional apparatus includes a 1.5GHz Raspberry Pi with 4GB RAM,

powered by an ARM A72 CPU.

6.6.2 Algorithm Performance Evaluation

The analysis undertakes a comparative assessment of the ZK-CP-ABE scheme against

advanced CP-ABE structures, optimized for industrial applications. Key research efforts

in this domain focus on improvements like minimizing private key sizes, symbolized as

δ(SK) [165], enhancing policy and access control frameworks FAC [166], and reducing the

computational complexities Θenc and Θdec of encryption and decryption processes [167].

Moreover, the strategy incorporates a distributed key distribution mechanism DCA by

multiple Certificate Authorities (CAs) to enhance system robustness ρ.



142 6.6. EXPERIMENTAL RESULTS

Decryption time
 < n milliseconds

Blockchain -PKG

Data owner Data requester

Data Data

ZK-CP-ABE

Data Address

Encryption Decryption

Customized
strategies

Access structure User Attributes

Upload Secret
Message

 Download ciphertext
with Data Address

Encryption time
< n milliseconds

Upload Latency 
>> n seconds

Download delay
 >> n seconds

Data Address

Attribute private key
SK

ZKP of SK

ZKP of SK

Figure 6.4: Design Principle of ZK-CP-ABE

With the IIoT’s shift towards greater cloud integration and the growth of streaming

media services, bandwidth demands on cloud infrastructures βcloud have surged signifi-

cantly. This increase in βcloud is disproportionate to the gains in computational γcomp and

storage σstore capacities. Addressing this imbalance requires more than just algorithmic

refinement Ralg. As shown in Figure 6.4, the employed methodology extends traditional

CP-ABE enhancements by integrating a ZKP mechanism, denoted as ZKPenc−dec, within

the encryption-decryption process. This approach discreetly verifies the existence of a user’s

private key SK, reducing bandwidth consumption ∆βunprod from ineffective access control

queries. Additionally, ZKPenc−dec enables a shift towards a bandwidth-efficient symmet-

ric encryption model in the CP-ABE framework, representing a significant leap in data

security for IIoT systems. To quantify the bandwidth efficiency ηbandwidth of the proposed

algorithm, a comparative analysis was performed against the benchmarks in [165], [166],

and [167], focusing on bandwidth utilization improvements ∆ηbandwidth and performance

enhancement ∆ρperformance. The experimental framework is outlined as follows.

6.6.2.1 Computational Analysis Relative to Attribute Policies

For a set of attributes A, with the cardinality |A| ∈ [10, 20, ..., 90, 100], we assess the com-

putational overhead Coverhead(f,A) for functions f ∈ {GenKey,Enc,Dec}. Our findings

highlight a clear correlation, indicating that the computational overhead Coverhead(f,A) is
directly proportional to the cardinality |A|. This underscores the significant impact of the

number of attributes within the policy on the computational demands of the system.



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 143

6.6.2.2 Bandwidth Consumption Analysis for Varying Data Sizes

Consider M as a parameter denoting the size of plaintext data, which varies within a

predetermined range. We examine the bandwidth requirement Balg(M) associated with

each data magnitude M to gauge the adaptability of the ABE algorithm to fluctuations in

data size. By scrutinizing the function Balg(M), we aim to gain quantitative insights into

the scalability and efficiency of the algorithm, thereby informing its practical applicability

across varying data sizes.

6.6.2.3 Analysis of Operational Duration to Transmission Latency

With the attribute count set at 50, we examine the operational duration Top(M) and

transmission latency Ttrans(M) across a range of data sizes M ∈ [2, 4, ..., 512, 1024] MB.

This analysis allows us to compute the ratio Refficiency(M) = Top(M)/Ttrans(M), providing

a quantitative measure of the equilibrium between processing and transmission efficiency.

Such a metric serves as a crucial indicator for evaluating algorithm performance across

various data sizes, facilitating informed decision-making regarding algorithm selection and

optimization strategies.

6.6.3 Scalability performance evaluation

The advantages of our approach are evident from the following illustrations.

6.6.3.1 Algorithmic Complexity Analysis

Evaluating the functions GenKey(), Enc(), and Dec() within our framework reveals a

minimal operational time variance ∆top compared to alternative algorithms. This vari-

ance is quantified as ∆top(f) ≈ a few milliseconds (ms), for each function f in the set

{GenKey,Enc,Dec}. For benchmarking, equivalent tests based on Ref [146,152,168] were

deployed on a similarly configured PC, and parallelism tests were performed using identical

clients and logic. This marginal discrepancy underscores the comparable efficiency of our

framework’s cryptographic operations as shown in Figure 6.5, Figure 6.6, and Figure 6.7.

6.6.3.2 Bandwidth Utilization Efficiency

Defined as the bandwidth utilization for processing plaintext of size M , Balg(M) repre-

sents a crucial metric in our evaluation. The proposed algorithm significantly optimizes

bandwidth consumption, with the formula Balg(M) = BZKP+O(1) demonstrating marked

efficiency gains for larger M values. Here, BZKP denotes the consistent bandwidth expen-

diture associated with ZKP challenges, a characteristic that remains constant regardless of



144 6.6. EXPERIMENTAL RESULTS

Figure 6.5: The performance of GenKey()

Figure 6.6: The performance of Enc()



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 145

Figure 6.7: The performance of Dec()

plaintext size, as depicted in Figure 6.8. This observation highlights the algorithm’s capac-

ity to efficiently manage bandwidth resources, particularly evident in scenarios involving

larger data sizes, thus contributing to enhanced system performance and scalability.

Figure 6.8: Bandwidth consumption of algorithm execution

6.6.3.3 Proportional Analysis of Time Consumption

As the size of the plaintext data M expands, there’s a notable rise in the proportion of

CP-ABE operational time relative to the transmission time, symbolized as RCP−ABE(M).



146 6.6. EXPERIMENTAL RESULTS

Particularly for larger data sizes, RCP−ABE(M) tends to reach close to 100%. Despite this

increase, the time efficiency of our algorithm consistently maintains a stable and moderate

pace, as shown in Figure 6.9. Thus, the ZK-CP-ABE algorithm presented in this study

demonstrates significant optimization in bandwidth utilization. Its design and implemen-

tation align effectively with the requirements of IIoT environments, particularly in the era

of burgeoning data volumes. This algorithm stands out as a robust solution for addressing

the challenges of data management and security in the ever-expanding IIoT landscape.

Figure 6.9: Proportional comparison of CP-ABE time cost to data transmission time

6.6.4 System Performance Evaluation

PC1 is deployed with several virtual machines, each equipped with a customized chain

code (smart contract). To emulate a realistic IC-IoT environment, MQTT is adopted as

the communication protocol, and the broker, EMQ, is deployed on PC1 within a Docker

container. On PC2, subscriber and publisher clients are implemented to interact via the

MQTT protocol, with each client possessing the capability to invoke the chain code within

the blockchain. Additionally, a client is deployed on a Raspberry Pi to emulate a de-

vice, programmed to periodically upload data and maintain transmission in adherence to

the MQTT protocol. To assess the system’s throughput capabilities in a distributed con-

text, experiments were conducted simulating various counts (denoted as N) of concurrent

subscriber/publisher clients accessing the blockchain system over a predefined duration,

aiming to evaluate the average response time (RT ). Specifically, N is varied within the set

{50, 100, . . . , 500}. In the context of CP-ABE, the attribute count for testing is consistently



CHAPTER 6. NON-INTERACTIVE ZKP-INSPIRED ACCESS CONTROL 147

set at K = 50, and the data block size is fixed at S = 512KB. The resulting statistical

data is shown in Figure 6.10.

Figure 6.10: The mean response time under different levels of concurrent client loads.

6.7 Conclusion

IIoT is increasingly relying on external parties for data processing, storage, and other

computing tasks, reflecting a growing trend towards integrating IIoT frameworks with

cloud-based services. Meanwhile, the ICN model aims to improve network architecture for

more efficient content access and distribution, particularly in managing disruptions and

high-traffic scenarios. This chapter introduces the ZK-CP-ABE algorithm, specifically de-

signed for the IIoT domain, alongside the DPS-IIoT system, which establishes a scalable

and robust access control framework. The advanced ZK-CP-ABE algorithm incorporates

the ZKP protocol, assigning secret keys based on user-specific attributes. Additionally,

the system utilizes an efficient non-interactive ZKP, allowing user attributes to be verified

seamlessly without direct communication. Experimental results and comparative analy-

ses demonstrate that these methods significantly reduce network bandwidth usage while

maintaining high throughput levels.



148 6.7. CONCLUSION



Chapter 7
Disscusion

Contents

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

149



150 7.1. SUMMARY

7.1 Summary

Blockchain is widely used in finance, healthcare, logistics, and other sectors due to its

decentralized architecture, record traceability, and data immutability. In the context of

Industry 4.0, the rapid adoption of IIoT has significantly enhanced the intelligence, au-

tomation, and efficiency of the manufacturing and processing industries. However, as data

volumes in the industrial sector increase dramatically, the related security threats are also

becoming more severe. The application of blockchain technology in IIoT settings presents

challenges, particularly in balancing operational performance with security, maintaining

transparency without compromising privacy, and ensuring compatibility with a wide range

of IIoT devices. This study addresses these challenges by improving existing blockchain-

based IIoT frameworks with complementary technologies. Specifically, we propose secure

storage mechanisms, optimized sorting algorithms, fine-grained access control, and access

control systems based on non-interactive ZKPs. The contributions of this paper are sum-

marised as follows:

• Lightweight Data Storage Protocol: This thesis proposes a secure data stor-

age protocol based on blockchain for fast system initialisation through strong entity

authentication and bilinear mapping. The protocol significantly reduces resource

consumption while ensuring data security by employing off-chain data storage and

blockchain-ensured encryption. A comprehensive evaluation showed the solution to

be highly effective in reducing system overhead and enhancing storage reliability.

• Trie-alternative transaction serial sorting scheme: This thesis proposes Trie-

Fabric, a sequential transaction ordering algorithm based on the Trie tree structure of

a directed acyclic graph (DAG), for solving the high incidence of pending transactions

in Hyperledger fabric. The study shows through a comparative study that Trie-Fabric

performs well in managing conflicts, improving efficiency by more than 60% compared

to the original Fabric system.

• Smart Contract-inspired Access Control Scheme: This thesis proposes an IIoT

data access control framework based on smart contracts and Bloom filters called

Hyper-IIoT. The framework extends the support for precise data governance and ac-

cess control and achieves fine-grained access control through ABAC. Experimental

results show that Hyper-IIoT exhibits good contract execution time, stable through-

put and efficient consensus in a distributed environment.

• Non-Interactive Zero-Knowledge Poof-inspired Access Control: As IIoT

increasingly tends to delegate data processing, storage, and other computational tasks



CHAPTER 7. DISSCUSION 151

to external parties, this thesis proposes the DPS-IIoT system, which aims to build a

scalable and robust access control framework. The system employs the ZK-CP-ABE

algorithm and the NIZKP protocol, which effectively reduces the network bandwidth

usage while maintaining a robust throughput level.

7.2 Future Work

This section outlines the perspective of some future works to expand the research content

of this thesis. This paper has focused on exploring the efficiency and security of data

processing in IIoT environments and has achieved some results in addressing system security

and data protection in IIoT. However, given the evolving technological landscape and the

rapid complexity inherent in the IIoT ecosystem, there exists a compelling impetus to delve

into many emerging areas to chart a course for future research enquiries and explorations.

The following areas will be the focus of future research as relevant technologies continue to

evolve:

• Enhancing the scalability of the blockchain: Develop more flexible data storage

solutions to adapt to changes in IIoT data structure and format, ensuring optimal

data processing efficiency regardless of the dynamics of IIoT data, thus maintaining

a high level of system performance.

• Improving conflict detection capabilities: Explore using advanced machine

learning algorithms for smarter transaction processing and proactive conflict reso-

lution.

• Building adaptive sorting frameworks: Construct a transaction reordering frame-

work that can dynamically adapt to changing network states, keeping system through-

put optimised by responding to changes in network traffic and transaction volume.

• Improving the consensus mechanism: Subsequent research can consider starting

from improving the underlying architecture of the blockchain to fundamentally solve

the efficiency, compatibility and practicality problems that still exist in this paper

and existing research. Accelerate the consensus process and expand the application

scope of Hyperledger fabric to reduce latency and bandwidth consumption to meet

the real-time processing needs of large-scale IIoT applications.

• Developing a stable and open source large-scale blockchain-based IIoT

data management platform: Currently, numerous blockchain projects operate



152 7.2. FUTURE WORK

across various platforms, algorithms, and consensus mechanisms, leading to ineffi-

ciencies and compatibility challenges that hinder the creation of cohesive market syn-

ergy. Future researchers can consider developing a more stable and unified large-scale

platform to support the landing of a larger range of applications.

• Producing large-scale datasets based on real application scenarios of IIoT:

Currently, the lack of large-scale real application endorsement for blockchain research

is a common problem faced by this paper and other related research. Therefore,

with the maturity of technology, policy, market and other conditions, subsequent

researchers need to gradually apply blockchain technology to real large-scale or even

super-large-scale application scenarios, collect the results, and continuously improve

and innovate to complete the real application landing.

• Establishing a comprehensive blockchain security verification standard and

framework: The security research of blockchain technology has not yet formed a

complete system, and the subsequent research can consider establishing a unified

standard for the security verification of blockchain, to systematically carry out sys-

tematic testing of blockchain-based system proposals and prototypes.



References

[1] P. Singh, M. Masud, M. S. Hossain, and A. Kaur, “Cross-domain secure data sharing using blockchain for
industrial iot,” Journal of Parallel and Distributed Computing, vol. 156, pp. 176–184, 2021.

[2] A. Hazra, M. Adhikari, T. Amgoth, and S. N. Srirama, “A comprehensive survey on interoperability for iiot:
Taxonomy, standards, and future directions,” ACM Computing Surveys (CSUR), vol. 55, no. 1, pp. 1–35, 2021.

[3] W. Kassab and K. A. Darabkh, “A–z survey of internet of things: Architectures, protocols, applications, recent
advances, future directions and recommendations,” Journal of Network and Computer Applications, vol. 163,
p. 102663, 2020.

[4] R. Chen, J. Guo, and F. Bao, “Trust management for soa-based iot and its application to service composition,”
IEEE Transactions on Services Computing, vol. 9, no. 3, pp. 482–495, 2014.

[5] M. Laroui, B. Nour, H. Moungla, M. A. Cherif, H. Afifi, and M. Guizani, “Edge and fog computing for iot: A
survey on current research activities & future directions,” Computer Communications, vol. 180, pp. 210–231,
2021.

[6] A. Djama, B. Djamaa, and M. R. Senouci, “Information-centric networking solutions for the internet of things:
A systematic mapping review,” Computer Communications, vol. 159, pp. 37–59, 2020.

[7] S. Mishra, V. K. Jain, K. Gyoda, and S. Jain, “An efficient content replacement policy to retain essential
content in information-centric networking based internet of things network,” Ad Hoc Networks, vol. 155, p.
103389, 2024.

[8] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo, “Recent advances in information-centric networking-based
internet of things (icn-iot),” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2128–2158, 2018.

[9] N. Naik and P. Jenkins, “Web protocols and challenges of web latency in the web of things,” in 2016 Eighth
International Conference on ubiquitous and future networks (ICUFN). IEEE, 2016, pp. 845–850.

[10] N. Q. Uy and V. H. Nam, “A comparison of amqp and mqtt protocols for internet of things,” in 2019 6th
NAFOSTED Conference on Information and Computer Science (NICS). IEEE, 2019, pp. 292–297.

[11] S. Bandyopadhyay and A. Bhattacharyya, “Lightweight internet protocols for web enablement of sensors using
constrained gateway devices,” in 2013 International Conference on Computing, Networking and Communica-
tions (ICNC). IEEE, 2013, pp. 334–340.

[12] N. De Caro, W. Colitti, K. Steenhaut, G. Mangino, and G. Reali, “Comparison of two lightweight protocols
for smartphone-based sensing,” in 2013 IEEE 20th Symposium on Communications and Vehicular Technology
in the Benelux (SCVT). IEEE, 2013, pp. 1–6.

[13] N. Bahri, S. Saadaoui, M. Tabaa, M. Sadik, and H. Medromi, “Wireless technologies and applications for
industrial internet of things: A review,” Advances on Smart and Soft Computing: Proceedings of ICACIn
2020, pp. 505–516, 2021.

153



154 References

[14] C. Bormann, A. P. Castellani, and Z. Shelby, “Coap: An application protocol for billions of tiny internet
nodes,” IEEE Internet Computing, vol. 16, no. 2, pp. 62–67, 2012.

[15] N. Naik, “Choice of effective messaging protocols for iot systems: Mqtt, coap, amqp and http,” in 2017 IEEE
international systems engineering symposium (ISSE). IEEE, 2017, pp. 1–7.

[16] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Computing, vol. 10, no. 6, pp. 87–89, 2006.

[17] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business Review, p. 21260, 2008.

[18] M. Swan, Blockchain: Blueprint for a new economy. ” O’Reilly Media, Inc.”, 2015.

[19] S. Singh and N. Singh, “Blockchain: Future of financial and cyber security,” in 2016 2nd international confer-
ence on contemporary computing and informatics (IC3I). IEEE, 2016, pp. 463–467.

[20] N. O. Nawari and S. Ravindran, “Blockchain technology and bim process: review and potential applications.”
J. Inf. Technol. Constr., vol. 24, no. 12, pp. 209–238, 2019.

[21] I. Homoliak, S. Venugopalan, D. Reijsbergen, Q. Hum, R. Schumi, and P. Szalachowski, “The security reference
architecture for blockchains: Toward a standardized model for studying vulnerabilities, threats, and defenses,”
IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 341–390, 2020.

[22] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things: A survey,” IEEE Internet of Things
Journal, vol. 6, no. 5, pp. 8076–8094, 2019.

[23] J. Benet, “Ipfs-content addressed, versioned, p2p file system,” arXiv preprint arXiv:1407.3561, 2014.

[24] M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State, “Blockchain-based, decentralized access control for
ipfs,” in 2018 Ieee international conference on internet of things (iThings) and ieee green computing and
communications (GreenCom) and ieee cyber, physical and social computing (CPSCom) and ieee smart data
(SmartData). IEEE, 2018, pp. 1499–1506.

[25] U. Bodkhe, D. Mehta, S. Tanwar, P. Bhattacharya, P. K. Singh, and W.-C. Hong, “A survey on decentralized
consensus mechanisms for cyber physical systems,” IEEE Access, vol. 8, pp. 54 371–54 401, 2020.

[26] L. Wang, X. Shen, J. Li, J. Shao, and Y. Yang, “Cryptographic primitives in blockchains,” Journal of Network
and Computer Applications, vol. 127, pp. 43–58, 2019.

[27] L. M. Bach, B. Mihaljevic, and M. Zagar, “Comparative analysis of blockchain consensus algorithms,” in 2018
41st International Convention on Information and Communication Technology, Electronics and Microelec-
tronics (MIPRO). Ieee, 2018, pp. 1545–1550.

[28] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang, “Untangling blockchain: A data processing
view of blockchain systems,” IEEE transactions on knowledge and data engineering, vol. 30, no. 7, pp. 1366–
1385, 2018.

[29] V. Buterin et al., “A next-generation smart contract and decentralized application platform,” white paper,
vol. 3, no. 37, pp. 2–1, 2014.

[30] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts,” in 2016 IEEE symposium on security and privacy (SP). IEEE, 2016,
pp. 839–858.

[31] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran, “An overview on smart contracts:
Challenges, advances and platforms,” Future Generation Computer Systems, vol. 105, pp. 475–491, 2020.

[32] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen, and B. Xu, “Smart contract development:
Challenges and opportunities,” IEEE Transactions on Software Engineering, vol. 47, no. 10, pp. 2084–2106,
2019.

[33] M. Belotti, N. Božić, G. Pujolle, and S. Secci, “A vademecum on blockchain technologies: When, which, and
how,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3796–3838, 2019.



References 155

[34] X. Li, J. Niu, M. Z. A. Bhuiyan, F. Wu, M. Karuppiah, and S. Kumari, “A robust ecc-based provable se-
cure authentication protocol with privacy preserving for industrial internet of things,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 8, pp. 3599–3609, 2017.

[35] R. C. Merkle, “A digital signature based on a conventional encryption function,” in Conference on the theory
and application of cryptographic techniques. Springer, 1987, pp. 369–378.

[36] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A survey on zero-knowledge proof in blockchain,”
IEEE network, vol. 35, no. 4, pp. 198–205, 2021.

[37] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial internet of things: A cyber-physical systems
perspective,” Ieee access, vol. 6, pp. 78 238–78 259, 2018.

[38] K. K. Patel, S. M. Patel, and P. Scholar, “Internet of things-iot: definition, characteristics, architecture,
enabling technologies, application & future challenges,” International journal of engineering science and com-
puting, vol. 6, no. 5, 2016.

[39] W. Liang, Y. Yang, C. Yang, Y. Hu, S. Xie, K.-C. Li, and J. Cao, “Pdpchain: A consortium blockchain-based
privacy protection scheme for personal data,” IEEE Transactions on Reliability, 2022.

[40] A. E. Omolara, A. Alabdulatif, O. I. Abiodun, M. Alawida, A. Alabdulatif, H. Arshad et al., “The internet of
things security: A survey encompassing unexplored areas and new insights,” Computers & Security, vol. 112,
p. 102494, 2022.

[41] W. Shao, Y. Wei, P. Rajapaksha, D. Li, Z. Luo, and N. Crespi, “Low-latency dimensional expansion and
anomaly detection empowered secure iot network,” IEEE Transactions on Network and Service Management,
no. 99, pp. 1–1, 2023.

[42] C. Diao, D. Zhang, W. Liang, K.-C. Li, Y. Hong, and J.-L. Gaudiot, “A novel spatial-temporal multi-scale
alignment graph neural network security model for vehicles prediction,” IEEE Transactions on Intelligent
Transportation Systems, vol. 24, no. 1, pp. 904–914, 2022.

[43] J. Cai, W. Liang, X. Li, K. Li, Z. Gui, and M. K. Khan, “Gtxchain: A secure iot smart blockchain architecture
based on graph neural network,” IEEE Internet of Things Journal, 2023.

[44] J. Long, W. Liang, K.-C. Li, Y. Wei, and M. D. Marino, “A regularized cross-layer ladder network for intrusion
detection in industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 19, no. 2, pp.
1747–1755, 2022.

[45] S. Munirathinam, “Industry 4.0: Industrial internet of things (iiot),” in Advances in computers. Elsevier,
2020, vol. 117, no. 1, pp. 129–164.

[46] D. Li, D. Han, Z. Zheng, T.-H. Weng, H. Li, H. Liu, A. Castiglione, and K.-C. Li, “Moocschain: A blockchain-
based secure storage and sharing scheme for moocs learning,” Computer Standards & Interfaces, vol. 81, p.
103597, 2022.

[47] H. Li, D. Han, and C.-C. Chang, “Dac4sh: A novel data access control scheme for smart home using smart
contracts,” IEEE Sensors Journal, vol. 23, no. 6, pp. 6178–6191, 2023.

[48] N. Hu, D. Zhang, K. Xie, W. Liang, K. Li, and A. Zomaya, “Multi-graph fusion based graph convolutional
networks for traffic prediction,” Computer Communications, vol. 210, pp. 194–204, 2023.

[49] S. Zhang, B. Hu, W. Liang, K.-C. Li, and A.-S. K. Pathan, “A trajectory privacy-preserving scheme based on
transition matrix and caching for iiot,” IEEE Internet of Things Journal, 2023.

[50] H. Li, D. Han, and M. Tang, “A privacy-preserving storage scheme for logistics data with assistance of
blockchain,” IEEE Internet of Things Journal, vol. 9, no. 6, pp. 4704–4720, 2021.

[51] D. Li, D. Han, B. Xia, T.-H. Weng, A. Castiglione, and K.-C. Li, “Fabric-gc: A blockchain-based gantt chart
system for cross-organizational project management,” Computer Science and Information Systems, vol. 19,
no. 3, pp. 1213–1240.

[52] Y. Wu, H.-N. Dai, and H. Wang, “Convergence of blockchain and edge computing for secure and scalable iiot
critical infrastructures in industry 4.0,” IEEE Internet of Things Journal, vol. 8, no. 4, pp. 2300–2317, 2020.



156 References

[53] R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun, “Blockchain for large-scale internet of things data storage
and protection,” IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 762–771, 2018.

[54] G. Wang, Z. Shi, M. Nixon, and S. Han, “Chainsplitter: Towards blockchain-based industrial iot architecture for
supporting hierarchical storage,” in 2019 IEEE International Conference on Blockchain (Blockchain). IEEE,
2019, pp. 166–175.

[55] L. Tan, K. Yu, C. Yang, and A. K. Bashir, “A blockchain-based shamir’s threshold cryptography for data
protection in industrial internet of things of smart city,” in Proceedings of the 1st Workshop on Artificial
Intelligence and Blockchain Technologies for Smart Cities with 6G, 2021, pp. 13–18.

[56] S.-C. Cha, J.-F. Chen, C. Su, and K.-H. Yeh, “A blockchain connected gateway for ble-based devices in the
internet of things,” ieee access, vol. 6, pp. 24 639–24 649, 2018.

[57] S. Qi, Y. Lu, Y. Zheng, Y. Li, and X. Chen, “Cpds: Enabling compressed and private data sharing for industrial
internet of things over blockchain,” IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp. 2376–2387,
2020.

[58] J. Huang, L. Kong, G. Chen, M.-Y. Wu, X. Liu, and P. Zeng, “Towards secure industrial iot: Blockchain
system with credit-based consensus mechanism,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6,
pp. 3680–3689, 2019.

[59] Y. Liu, K. Wang, Y. Lin, and W. Xu, “Lightchain: a lightweight blockchain system for industrial internet of
things,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3571–3581, 2019.

[60] M. Zhaofeng, W. Xiaochang, D. K. Jain, H. Khan, G. Hongmin, and W. Zhen, “A blockchain-based trusted
data management scheme in edge computing,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3,
pp. 2013–2021, 2019.

[61] J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, and Y. Zhang, “Blockchain for secure and efficient
data sharing in vehicular edge computing and networks,” IEEE internet of things journal, vol. 6, no. 3, pp.
4660–4670, 2018.

[62] T. Wu, G. Jourjon, K. Thilakarathna, and P. L. Yeoh, “Mapchain-d: A distributed blockchain for iiot data
storage and communications,” IEEE Transactions on Industrial Informatics, 2023.

[63] Y. Liu, J. Liu, J. Yin, G. Li, H. Yu, and Q. Wu, “Cross-shard transaction processing in sharding blockchains,”
in Algorithms and Architectures for Parallel Processing: 20th International Conference, ICA3PP 2020, New
York City, NY, USA, October 2–4, 2020, Proceedings, Part III 20. Springer, 2020, pp. 324–339.

[64] Y. Zhang, B. Li, J. Wu, B. Liu, R. Chen, and J. Chang, “Efficient and privacy-preserving blockchain-based
multifactor device authentication protocol for cross-domain iiot,” IEEE Internet of Things Journal, vol. 9,
no. 22, pp. 22 501–22 515, 2022.

[65] G. Rathee, C. A. Kerrache, and M. Lahby, “Trustblksys: A trusted and blockchained cybersecure system for
iiot,” IEEE Transactions on Industrial Informatics, vol. 19, no. 2, pp. 1592–1599, 2022.

[66] J. Cui, N. Liu, Q. Zhang, D. He, C. Gu, and H. Zhong, “Efficient and anonymous cross-domain authentication
for iiot based on blockchain,” IEEE Transactions on Network Science and Engineering, vol. 10, no. 2, pp.
899–910, 2022.

[67] C. Xu, K. Wang, P. Li, S. Guo, J. Luo, B. Ye, and M. Guo, “Making big data open in edges: A resource-
efficient blockchain-based approach,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 4,
pp. 870–882, 2018.

[68] J. Wei, Q. Zhu, Q. Li, L. Nie, Z. Shen, K.-K. R. Choo, and K. Yu, “A redactable blockchain framework for
secure federated learning in industrial internet of things,” IEEE Internet of Things Journal, vol. 9, no. 18, pp.
17 901–17 911, 2022.

[69] P. Kumar, R. Kumar, A. Kumar, A. A. Franklin, S. Garg, and S. Singh, “Blockchain and deep learning
for secure communication in digital twin empowered industrial iot network,” IEEE Transactions on Network
Science and Engineering, 2022.



References 157

[70] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:236214795

[71] M. K. Hasan, M. Akhtaruzzaman, S. R. Kabir, T. R. Gadekallu, S. Islam, P. Magalingam, R. Hassan, M. Alazab,
and M. A. Alazab, “Evolution of industry and blockchain era: monitoring price hike and corruption using biot
for smart government and industry 4.0,” IEEE Transactions on Industrial Informatics, vol. 18, no. 12, pp.
9153–9161, 2022.

[72] D. Li, D. Han, and H. Liu, “Fabric-chain & chain: a blockchain-based electronic document system for supply
chain finance,” in Blockchain and Trustworthy Systems: Second International Conference, BlockSys 2020,
Dali, China, August 6–7, 2020, Revised Selected Papers 2. Springer, 2020, pp. 601–608.

[73] D. Li, D. Han, N. Crespi, R. Minerva, and K.-C. Li, “A blockchain-based secure storage and access control
scheme for supply chain finance,” The Journal of Supercomputing, vol. 79, no. 1, pp. 109–138, 2023.

[74] A. Raja Santhi and P. Muthuswamy, “Influence of blockchain technology in manufacturing supply chain and
logistics,” Logistics, vol. 6, no. 1, p. 15, 2022.

[75] Z. Sun, D. Han, D. Li, X. Wang, C.-C. Chang, and Z. Wu, “A blockchain-based secure storage scheme for
medical information,” EURASIP Journal on Wireless Communications and Networking, vol. 2022, no. 1, p. 40,
2022.

[76] Z. Sun, D. Han, D. Li, T.-H. Weng, K. Li, and X. Mei, “Medrss: A blockchain-based scheme for secure
storage and sharing of medical records,” Comput. Ind. Eng., vol. 183, p. 109521, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:261042226

[77] R. Malik, H. Raza, M. Saleem et al., “Towards a blockchain enabled integrated library managment system
using hyperledger fabric: Using hyperledger fabric,” International Journal of Computational and Innovative
Sciences, vol. 1, no. 3, pp. 17–24, 2022.

[78] J. Cai, W. Liang, X. Li, Z. Gui et al., “Gtxchain: A secure iot smart blockchain architecture based on gnn,”
IEEE Internet of Things Journal.

[79] C. Diao, D. Zhang, W. Liang et al., “Spatial-temporal multi-scale alignment graph neural network security
model for vehicles prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 1, pp.
904–914, 2023.

[80] F. Wang, J. Cui, Q. Zhang, D. He, and H. Zhong, “Blockchain-based secure cross-domain data sharing for
edge-assisted industrial internet of things,” IEEE Transactions on Information Forensics and Security, 2024.

[81] M. Uddin, M. Memon, I. Memon, I. Ali, J. Memon, M. Abdelhaq, and R. Alsaqour, “Hyperledger fabric
blockchain: Secure and efficient solution for electronic health records,” Comput. Mater. Contin, vol. 68, no. 2,
pp. 2377–2397, 2021.

[82] D. Li, D. Han, T.-H. Weng, Z. Zheng, H. Li, H. Liu, A. Castiglione, and K.-C. Li, “Blockchain for federated
learning toward secure distributed machine learning systems: a systemic survey,” Soft Computing, vol. 26,
no. 9, pp. 4423–4440, 2022.

[83] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich, “Blurring the lines between blockchains and
database systems: the case of hyperledger fabric,” in Proceedings of the 2019 International Conference on
Management of Data, 2019, pp. 105–122.

[84] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, and B. C. Ooi, “A transactional perspective on execute-
order-validate blockchains,” in Proceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data, 2020, pp. 543–557.

[85] J. Ni, J. Xiao, S. Zhang, B. Li, B. Li, and H. Jin, “Fluid: Towards efficient continuous transaction processing
in dag-based blockchains,” IEEE Transactions on Knowledge and Data Engineering, 2023.

[86] R. Xu and Y. Chen, “µdfl: A secure microchained decentralized federated learning fabric atop iot networks,”
IEEE Transactions on Network and Service Management, vol. 19, no. 3, pp. 2677–2688, 2022.

https://api.semanticscholar.org/CorpusID:236214795
https://api.semanticscholar.org/CorpusID:236214795
https://api.semanticscholar.org/CorpusID:261042226


158 References

[87] J. Xiao, S. Zhang, Z. Zhang, B. Li, X. Dai, and H. Jin, “Nezha: Exploiting concurrency for transaction
processing in dag-based blockchains,” in 2022 IEEE 42nd International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2022, pp. 269–279.

[88] (2022) Hyperledger. caliper. [Online]. Available: https://github.com/hyperledger/caliper-benchmarks

[89] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: the definitive guide: time to relax. ” O’Reilly Media,
Inc.”, 2010.

[90] X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li, “Solo: Segmenting objects by locations,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII
16. Springer, 2020, pp. 649–665.

[91] J. A. Chacko, R. Mayer, and H.-A. Jacobsen, “Why do my blockchain transactions fail? a study of hyperledger
fabric,” in Proceedings of the 2021 International Conference on Management of Data, 2021, pp. 221–234.

[92] K. Tsuruta, D. Köppl, S. Kanda, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda, “c-trie++: A dynamic
trie tailored for fast prefix searches,” Information and Computation, vol. 285, p. 104794, 2022.

[93] B. Finkbeiner, C. Hahn, M. Stenger, and L. Tentrup, “Efficient monitoring of hyperproperties using prefix
trees,” International Journal on Software Tools for Technology Transfer, vol. 22, no. 6, pp. 729–740, 2020.

[94] B. Wang, M. Dabbaghjamanesh, A. Kavousi-Fard, and S. Mehraeen, “Cybersecurity enhancement of power
trading within the networked microgrids based on blockchain and directed acyclic graph approach,” IEEE
Transactions on Industry Applications, vol. 55, no. 6, pp. 7300–7309, 2019.

[95] M. Bhandary, M. Parmar, and D. Ambawade, “A blockchain solution based on directed acyclic graph for iot
data security using iota tangle,” in 2020 5th International Conference on Communication and Electronics
Systems (ICCES). IEEE, 2020, pp. 827–832.

[96] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in OsDI, vol. 99, no. 1999, 1999, pp. 173–186.

[97] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM Transactions on
Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.

[98] W. Liang, Y. Yang, C. Yang, Y. Hu et al., “Pdpchain: A consortium blockchain-based privacy protection
scheme for personal data,” IEEE Transactions on Reliability, vol. 72, no. 2, pp. 586–598, 2023.

[99] P. Chen, D. Han, T.-H. Weng et al., “A novel byzantine fault tolerance consensus for green iot with intelligence
based on reinforcement,” Journal of Information Security and Applications, vol. 59, p. 102821, 2021.

[100] W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, “A scalable multi-layer pbft consensus for
blockchain,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1146–1160, 2020.

[101] Y. Liu, J. Liu, Q. Wu, H. Yu, Y. Hei, and Z. Zhou, “Sshc: A secure and scalable hybrid consensus protocol
for sharding blockchains with a formal security framework,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 3, pp. 2070–2088, 2020.

[102] Z.-F. Wang, S.-Q. Liu, P. Wang, and L.-Y. Zhang, “Bw-pbft: Practical byzantine fault tolerance consensus
algorithm based on credit bidirectionally waning,” 2023.

[103] P. Nasirifard, R. Mayer, and H.-A. Jacobsen, “Fabriccrdt: A conflict-free replicated datatypes approach to
permissioned blockchains,” in Proceedings of the 20th International Middleware Conference, 2019, pp. 110–
122.

[104] K. Narayanam, A. Kaul, K. Kumar, and P. Dayama, “Partial order transactions on permissioned blockchains for
enhanced scalability,” in 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks
and Services (BRAINS). IEEE, 2021, pp. 149–156.

[105] N. Berendea, H. Mercier, E. Onica, and E. Riviere, “Fair and efficient gossip in hyperledger fabric,” in 2020
IEEE 40th International Conference on Distributed Computing Systems (ICDCS). IEEE, 2020, pp. 190–200.

https://github.com/hyperledger/caliper-benchmarks


References 159

[106] B. Pi, Y. Pan, E. Zhou, J. Sun, T. Miyamae, and M. Morinaga, “xfabledger: Extensible ledger storage for
hyperledger fabric,” in 2021 IEEE 11th International Conference on Electronics Information and Emergency
Communication (ICEIEC) 2021 IEEE 11th International Conference on Electronics Information and Emer-
gency Communication (ICEIEC). IEEE, 2021, pp. 5–11.

[107] Y. Li, H. Liu, Y. Chen, J. Gao, Z. Wu, Z. Guan, and Z. Chen, “Fastblock: Accelerating blockchains via
hardware transactional memory,” in 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2021, pp. 250–260.

[108] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance benchmarking and optimizing hyperledger fabric
blockchain platform,” in 2018 IEEE 26th International Symposium on modeling, analysis, and Simulation of
computer and Telecommunication Systems (MASCOTS). IEEE, 2018, pp. 264–276.

[109] B. Ding, L. Kot, and J. Gehrke, “Improving optimistic concurrency control through transaction batching and
operation reordering,” Proceedings of the VLDB Endowment, vol. 12, no. 2, pp. 169–182, 2018.

[110] (2019) Hyperledger. caliper-benchmarks. [Online]. Available: https://github.com/hyperledger/
caliper-benchmarks/blob/main/src/fabric/scenario/smallbank/go/smallbank.go

[111] Y. Long, C. Peng, W. Tan, and Y. Chen, “Blockchain-based anonymous authentication and key management
for internet of things with chebyshev chaotic maps,” IEEE Transactions on Industrial Informatics, 2024.

[112] A. Mahmood, L. Beltramelli, S. F. Abedin, S. Zeb, N. I. Mowla, S. A. Hassan, E. Sisinni, and M. Gidlund,
“Industrial iot in 5g-and-beyond networks: Vision, architecture, and design trends,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 6, pp. 4122–4137, 2021.

[113] S. Zhang, B. Hu, W. Liang, K.-C. Li, and B. B. Gupta, “A caching-based dual k-anonymous location privacy-
preserving scheme for edge computing,” IEEE Internet of Things Journal, 2023.

[114] S. Zhang, Z. Yan, W. Liang, K.-C. Li, and C. Dobre, “Baka: Biometric authentication and key agreement
scheme based on fuzzy extractor for wireless body area networks,” IEEE Internet of Things Journal, 2023.

[115] L. Da Xu, Y. Lu, and L. Li, “Embedding blockchain technology into iot for security: A survey,” IEEE Internet
of Things Journal, vol. 8, no. 13, pp. 10 452–10 473, 2021.

[116] R. Verma, N. Dhanda, and V. Nagar, “Towards a secured iot communication: A blockchain implementation
through apis,” in Proceedings of Third International Conference on Computing, Communications, and Cyber-
Security: IC4S 2021. Springer, 2022, pp. 681–692.

[117] H. Lee, “Effective dynamic control strategy of a key supplier with multiple downstream manufacturers using
industrial internet of things and cloud system,” Processes, vol. 7, no. 3, p. 172, 2019.

[118] B. Pourghebleh, K. Wakil, and N. J. Navimipour, “A comprehensive study on the trust management techniques
in the internet of things,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9326–9337, 2019.

[119] W. Liang, Y. Li, K. Xie, D. Zhang, K.-C. Li, A. Souri, and K. Li, “Spatial-temporal aware inductive graph
neural network for c-its data recovery,” IEEE Transactions on Intelligent Transportation Systems, 2022.

[120] B. Chen, S. Qiao, J. Zhao, D. Liu, X. Shi, M. Lyu, H. Chen, H. Lu, and Y. Zhai, “A security awareness and
protection system for 5g smart healthcare based on zero-trust architecture,” IEEE Internet of Things Journal,
vol. 8, no. 13, pp. 10 248–10 263, 2020.

[121] M. Liu, F. R. Yu, Y. Teng, V. C. Leung, and M. Song, “Performance optimization for blockchain-enabled
industrial internet of things (iiot) systems: A deep reinforcement learning approach,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 6, pp. 3559–3570, 2019.

[122] N. Hu, D. Zhang, K. Xie, W. Liang, C. Diao, and K.-C. Li, “Multi-range bidirectional mask graph convolution
based gru networks for traffic prediction,” Journal of Systems Architecture, vol. 133, p. 102775, 2022.

[123] J. Li, D. Han, Z. Wu, J. Wang, K.-C. Li, and A. Castiglione, “A novel system for medical equipment supply
chain traceability based on alliance chain and attribute and role access control,” Future Generation Computer
Systems, vol. 142, pp. 195–211, May 2023.

https://github.com/hyperledger/caliper-bench marks/blob/main/src/fabric/scenario/smallbank/go/smallbank.go
https://github.com/hyperledger/caliper-bench marks/blob/main/src/fabric/scenario/smallbank/go/smallbank.go


160 References

[124] J. Wan, J. Li, M. Imran, D. Li et al., “A blockchain-based solution for enhancing security and privacy in smart
factory,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3652–3660, 2019.

[125] Z. Cai and X. Zheng, “A private and efficient mechanism for data uploading in smart cyber-physical systems,”
IEEE Transactions on Network Science and Engineering, vol. 7, no. 2, pp. 766–775, 2018.

[126] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart contract and use cases in blockchain
technology,” in 2018 9th international conference on computing, communication and networking technologies
(ICCCNT). IEEE, 2018, pp. 1–4.

[127] M. M. Merlec and H. P. In, “Sc-caac: A smart contract-based context-aware access control scheme for
blockchain-enabled iot systems,” IEEE Internet of Things Journal, 2024.

[128] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract: Attacks and protections,” IEEE Access, vol. 8,
pp. 24 416–24 427, 2020.

[129] R. Saha, G. Kumar, M. Conti, T. Devgun, T.-h. Kim, M. Alazab, and R. Thomas, “Dhacs: Smart contract-
based decentralized hybrid access control for industrial internet-of-things,” IEEE Transactions on Industrial
Informatics, vol. 18, no. 5, pp. 3452–3461, 2021.

[130] Y. Wei, K. Gai, J. Yu, L. Zhu, and K.-K. R. Choo, “Trustworthy access control for multiaccess edge computing
in blockchain-assisted 6g systems,” IEEE Transactions on Industrial Informatics, 2024.

[131] W. Wang, H. Huang, Z. Yin, T. R. Gadekallu, M. Alazab, and C. Su, “Smart contract token-based privacy-
preserving access control system for industrial internet of things,” Digital Communications and Networks,
vol. 9, no. 2, pp. 337–346, 2023.

[132] H. Li and D. Han, “A novel time-aware hybrid recommendation scheme combining user feedback and collabo-
rative filtering,” Mobile Information Systems, vol. 2020, pp. 1–16, 2020.

[133] W. Liang, M. Tang, J. Long, X. Peng, J. Xu, and K.-C. Li, “A secure fabric blockchain-based data transmission
technique for industrial internet-of-things,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp.
3582–3592, 2019.

[134] S. Zhou, K. Li, L. Xiao, J. Cai, W. Liang, and A. Castiglione, “A systematic review of consensus mechanisms
in blockchain,” Mathematics, vol. 11, no. 10, p. 2248, 2023.

[135] N. Yang and C. Tang, “Blockchain-assisted secure data sharing protocol with a dynamic multi-user keyword
search in iiot,” IEEE Internet of Things Journal, 2023.

[136] H. Liu, D. Han, and D. Li, “Fabric-iot: A blockchain-based access control system in iot,” IEEE Access, vol. 8,
pp. 18 207–18 218, 2020.

[137] M. Ma, G. Shi, and F. Li, “Privacy-oriented blockchain-based distributed key management architecture for
hierarchical access control in the iot scenario,” IEEE access, vol. 7, pp. 34 045–34 059, 2019.

[138] L. Waikhom, S. Nayak, and R. Patgiri, “A survey on bloom filter for multiple sets,” in Modeling, Simulation
and Optimization: Proceedings of CoMSO 2020. Springer, 2021, pp. 775–789.

[139] B. Nour, K. Sharif, F. Li, S. Biswas, H. Moungla, M. Guizani, and Y. Wang, “A survey of internet of things
communication using icn: A use case perspective,” Computer Communications, vol. 142-143, pp. 95–123, 2019.

[140] C. Sandeepa, B. Siniarski, N. Kourtellis, S. Wang, and M. Liyanage, “A survey on privacy for b5g/6g: New
privacy challenges, and research directions,” Journal of Industrial Information Integration, vol. 30, p. 100405,
2022.

[141] Y. Lu, D. Wang, M. S. Obaidat, and P. Vijayakumar, “Edge-assisted intelligent device authentication in
cyber–physical systems,” IEEE Internet of Things Journal, vol. 10, no. 4, pp. 3057–3070, 2022.

[142] G. Tian, Y. Hu, J. Wei, Z. Liu, X. Huang, X. Chen, and W. Susilo, “Blockchain-based secure deduplication and
shared auditing in decentralized storage,” IEEE Transactions on Dependable and Secure Computing, vol. 19,
no. 6, pp. 3941–3954, 2021.



References 161

[143] H. Li, D. Han, and M. Tang, “A privacy-preserving storage scheme for logistics data with assistance of
blockchain,” IEEE Internet of Things Journal, 2021.

[144] H. Liu, D. Han, and D. Li, “Behavior analysis and blockchain based trust management in vanets,” J. Parallel
Distributed Comput., vol. 151, pp. 61–69, 2021.

[145] L. Feng, J. Lin, F. Qiu, B. Yu, Z. Jin, J. Wang, J. Cheng, and S. Yao, “Sdac-bbpp: A secure dynamic access
control scheme with blockchain-based privacy protection privacy for iiot,” IEEE Transactions on Network and
Service Management, 2024.

[146] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of information-centric
networking,” IEEE Communications Magazine, vol. 50, 2012.

[147] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” IACR Cryptol. ePrint Arch., vol. 2004, p. 86,
2005.

[148] S. Khezr, A. Yassine, R. Benlamri, and M. S. Hossain, “An edge intelligent blockchain-based reputation system
for iiot data ecosystem,” IEEE transactions on industrial informatics, vol. 18, no. 11, pp. 8346–8355, 2022.

[149] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity of interactive proof-systems,” in STOC
’85, 1985.

[150] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-knowledge and its applications,” in STOC ’88,
1988.

[151] C. P. Sah, “Robustness of zero-knowledge proofs using rsa problem,” in 2022 9th International Conference on
Computing for Sustainable Global Development (INDIACom). IEEE, 2022, pp. 40–44.

[152] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D. Caro, D. Enyeart, C. Ferris, G. Lavent-
man, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolic, S. Cocco, and J. Yellick, “Hyperledger fabric: a distributed operating system
for permissioned blockchains,” Proceedings of the Thirteenth EuroSys Conference, 2018.

[153] R. Li, H. Asaeda, and J. Li, “A distributed publisher-driven secure data sharing scheme for information-centric
iot,” IEEE Internet of Things Journal, vol. 4, pp. 791–803, 2017.

[154] R. Li, H. Asaeda, J. Li, and X. Fu, “A verifiable and flexible data sharing mechanism for information-centric
iot,” 2017 IEEE International Conference on Communications (ICC), pp. 1–7, 2017.

[155] Y. Zhao, M. Ren, S. Jiang, G. Zhu, and H. Xiong, “An efficient and revocable storage cp-abe scheme in the
cloud computing,” Computing, vol. 101, pp. 1041–1065, 2018.

[156] L. Touati and Y. Challal, “Batch-based cp-abe with attribute revocation mechanism for the internet of things,”
2015 International Conference on Computing, Networking and Communications (ICNC), pp. 1044–1049, 2015.

[157] J. Hao, C. Huang, J. Ni, H. Rong, M. Xian, and X. Shen, “Fine-grained data access control with attribute-hiding
policy for cloud-based iot,” Comput. Networks, vol. 153, pp. 1–10, 2019.

[158] S.-R. Wang, Y. Zhang, and Y. Zhang, “A blockchain-based framework for data sharing with fine-grained access
control in decentralized storage systems,” IEEE Access, vol. 6, pp. 38 437–38 450, 2018.

[159] K. Fan, J. Wang, X. Wang, H. Li, and Y. Yang, “A secure and verifiable outsourced access control scheme in
fog-cloud computing,” Sensors (Basel, Switzerland), vol. 17, 2017.

[160] C. Yuan, M. xue Xu, X. Si, and B. Li, “Blockchain with accountable cp-abe: How to effectively protect
the electronic documents,” 2017 IEEE 23rd International Conference on Parallel and Distributed Systems
(ICPADS), pp. 800–803, 2017.

[161] Y. Zhang, D. He, and K.-K. R. Choo, “Bads: Blockchain-based architecture for data sharing with abs and
cp-abe in iot,” Wirel. Commun. Mob. Comput., vol. 2018, pp. 2 783 658:1–2 783 658:9, 2018.

[162] D. Han, Y. Zhu, D. Li, W. Liang, A. Souri, and K.-C. Li, “A blockchain-based auditable access control system
for private data in service-centric iot environments,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 5, pp. 3530–3540, 2021.



162 References

[163] K. Xue, W. Chen, W. Li, J. Hong, and P. Hong, “Combining data owner-side and cloud-side access control for
encrypted cloud storage,” IEEE Transactions on Information Forensics and Security, vol. 13, pp. 2062–2074,
2018.

[164] S. Pérez, D. Rotondi, D. Pedone, L. Straniero, M. Nuñez, and F. Gigante, “Towards the cp-abe application for
privacy-preserving secure data sharing in iot contexts,” in IMIS, 2017.

[165] F. Guo, Y. Mu, W. Susilo, D. Wong, and V. Varadharajan, “Cp-abe with constant-size keys for lightweight
devices,” IEEE Transactions on Information Forensics and Security, vol. 9, pp. 763–771, 2014.

[166] S. Wang, H. Wang, J. Li, H. Wang, J. Chaudhry, M. Alazab, and H. Song, “A fast cp-abe system for cyber-
physical security and privacy in mobile healthcare network,” IEEE Transactions on Industry Applications,
vol. 56, pp. 4467–4477, 2020.

[167] S. Ding, C. Li, and H. Li, “A novel efficient pairing-free cp-abe based on elliptic curve cryptography for iot,”
IEEE Access, vol. 6, pp. 27 336–27 345, 2018.

[168] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryption,” 2007 IEEE Sympo-
sium on Security and Privacy (SP ’07), pp. 321–334, 2007.



List of figures

1.1 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 The network structure diagram of the Industrial Internet of Things . . . . . . . . . . . . . . . . . . . . 31
2.2 The Protocol Stack of IIoT Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 The Workflow of CoAP protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 The Workflow of MQTT protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 General structure of the blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 General structure of the blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7 The network architecture of Hyperledger fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 The encryption and decryption process of the public key system . . . . . . . . . . . . . . . . . . . . . . 42
2.9 Merkle tree structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.10 Non-interactive zero-knowledge proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Structure of large-scale IIoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 The structural relationship of the proposed system model . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 The underlying blockchain platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Comparison of computational cost for registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 The performance comparison of this scheme with other state of art schemes . . . . . . . . . . . . . . . 70
3.6 The simplified flowchart of inter-entity communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 An illustration of large-scale terminated transactions in Hyperledger fabric. . . . . . . . . . . . . . . . 75
4.2 Conflict-ww . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Conflict-rw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4 Conflict-wr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 The process of turning the block to the trie tree structure . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 Trie tree structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7 Conflict graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.8 Directed acyclic graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.9 Topological sorting process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.10 The frequency of transactions accessing when α = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.11 The frequency of transactions accessing when α = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.12 The frequency of transactions accessing when α = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.13 Valid transaction volume comparison when P = 0.05 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.14 Valid transaction volume comparison when P = 0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.15 Valid transaction volume comparison when P = 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.16 The trend of Effective rate with p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.17 When p = 0.05, the trend of Effective rate with α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.18 When p = 0.50, the trend of Effective rate with α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.19 When p = 0.95, the trend of Effective rate with α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Structural relationship of Hyper-IIoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.2 Structural Design of Hyper-IIoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 The interface of CheckAccess() method installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4 Workflow for Hyper-IIoT solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

163



164 List of figures

5.5 Raspberry Pi microcontroller devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.6 The execution time of UMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.7 The execution time of PMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.8 The execution time of ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.9 The execution time of PCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.10 Query time consumption of bloom filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.11 Comparing the query time between the bloom filter-assisted scheme and the regular scheme . . . . . . 120
5.12 TPS of UMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.13 The execution time of PMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.14 The execution time of ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.15 The execution time of PCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.16 The Consensus time comparison between Kafka and PoW . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.17 Consensus time comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1 ICN structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.2 Entity definition of DPS-IIoT architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3 Workflow of DPS-IIoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Design Principle of ZK-CP-ABE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.5 The performance of GenKey() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.6 The performance of Enc() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.7 The performance of Dec() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.8 Bandwidth consumption of algorithm execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.9 Proportional comparison of CP-ABE time cost to data transmission time . . . . . . . . . . . . . . . . 146
6.10 The mean response time under different levels of concurrent client loads. . . . . . . . . . . . . . . . . . 147



List of tables

3.1 Key Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Smart contract execution time (ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.3 The time cost of encryption operations (ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4 Opration execution duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 The comparisons of time consumption (ms) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 Comparision of Communication Cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Symbols and meanings of this manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 The read-write set of all transactions in a block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Type of transaction in SmallBank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Probability distribution for each type of transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 Probability distribution for each type of transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Symbols used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

165



Titre : Déploiement et Application Optimisés de la Blockchain pour un Internet Industriel des Objets de
Confiance

Mots clés : Blockchain, Internet Industriel des Objets, Arbre Trie, Hyperledger Fabric, Graphe acyclique dirigé,
Preuve à divulgation nulle de connaissance

Résumé : La progression continue de l’internet indus-
triel des objets (IIoT) offre des perspectives promet-
teuses et de nombreuses possibilités d’améliorer les
cadres opérationnels des systèmes industriels. Ce-
pendant, les architectures de l’IIoT sont confrontées
à des défis importants, notamment le contrôle cen-
tralisé, la vulnérabilité aux cyberattaques, les viola-
tions de la vie privée et les problèmes d’exactitude
des données. Ces défis créent des obstacles im-
portants à la sécurisation des données, qui est cru-
ciale pour la croissance de cette technologie. Pour
résoudre ces problèmes, de nombreux chercheurs
suggèrent d’intégrer la technologie blockchain comme
moyen stable de protéger les données au sein des
systèmes IIoT. Les caractéristiques de stockage dis-
tribué, de décentralisation et d’immutabilité de la blo-
ckchain offrent des avantages significatifs en matière
de stockage sécurisé des données, de vérification de
l’identité et de contrôle d’accès.
Malgré ces avantages, à mesure que les appli-
cations IIoT se diversifient et que les volumes
de données croissent, la forte demande en res-
sources des systèmes blockchain se heurte aux res-
sources limitées des appareils IIoT, ce qui entraı̂ne
des contradictions non résolues et des problèmes
persistants. Les architectures blockchain existantes
manquent encore d’authentification d’identité IIoT
anonyme et efficace, avec des processus de cryp-
tage et de décryptage complexes induisant une sur-
charge excessive du système. Pour résoudre ces
problèmes, cette thèse s’appuie sur des recherches
antérieures pour optimiser les performances de la blo-
ckchain, visant à résoudre les lacunes et les gou-
lets d’étranglement des architectures IIoT actuelles
basées sur la blockchain en ce qui concerne la pro-
tection de la sécurité des données.
Tout d’abord, cette thèse présente un protocole
léger basé sur la blockchain, conçu pour le sto-
ckage sécurisé des données dans l’environnement
dynamique de l’IIoT. Il intègre la cartographie bi-
linéaire pour l’initialisation du système, l’enregistre-
ment des entités et la technologie d’authentification
pour authentifier les entités IIoT de manière effi-
cace et sécurisée, ainsi qu’une approche de stockage
des données hors chaı̂ne pour garantir l’intégrité
des données avec une consommation de ressources
réduite.

En outre, la thèse aborde les limites des systèmes Hy-
perledger fabric dans les scénarios de haute disponi-
bilité en proposant Trie-Fabric, qui améliore le traite-
ment des transactions grâce à un algorithme de tri
des transactions basé sur un graphe acyclique di-
rigé (DAG). Cette approche réduit considérablement
les transactions interrompues, optimise la gestion des
conflits et augmente l’efficacité de plus de 60% dans
le meilleur des cas, selon des résultats expérimentaux
comparatifs.
Pour gérer les processus industriels de plus en plus
sophistiqués et les données sensibles à la vie privée
générées par les appareils IIoT, cette thèse pro-
pose un schéma de contrôle d’accès assisté par
smart contract utilisant le modèle de contrôle d’accès
basé sur les attributs (ABAC). Ce concept, supporté
par des composants de filtre de bloom, permet de
bénéficier de temps d’exécution de contrat contrôlés,
d’un débit de système stable et d’un processus de
consensus rapide dans des simulations réelles, ce qui
le rend capable de gérer un débit élévé et un consen-
sus efficace, même dans des scénarios de demande
à grande échelle.
Enfin, cette thèse présente l’algorithme Zero-
Knowledge Proof (ZKP), qui intègre un protocole de
preuve à zéro connaissance non-interactif avec le
chiffrement basé sur les attributs de la politique de
chiffrement (CP-ABE) pour améliorer la sécurité et
l’efficacité de la distribution de contenu IIoT. Com-
biné au système Distributed Publish-Subscribe IIoT
(DPS-IIoT) utilisant Hyperledger fabric, il améliore
considérablement l’efficacité de la bande passante et
le débit global dans les environnements IIoT. Grâce
à des évaluations complètes des performances de
sécurité et à des résultats expérimentaux, ces re-
cherches confirment l’efficacité des protocoles pour
minimiser la surcharge du système, améliorer la fia-
bilité du stockage et renforcer la gestion globale des
données de l’IIoT et la sécurité des applications.
Cette thèse fournit un examen approfondi des proto-
coles et systèmes de gestion de données avancés
pour l’IIoT, qui sont cruciaux pour faire progresser le
secteur de la fabrication. Par conséquent, ce travail
apporte une contribution significative au domaine de
la sécurité des données de l’IIoT, en offrant des solu-
tions évolutives et robustes pour les systèmes indus-
triels actuels et futurs.



Title : Optimized Blockchain Deployment and Application for Trusted Industrial Internet of Things

Keywords : Blockchain, Industrial Internet of Things, Trie Tree, Hyperledger Fabric, Directed Acyclic Graph,
Zero-Knowledge Proof

Abstract : The continued advancement of the Indus-
trial Internet of Things (IIoT) presents promising pros-
pects and numerous opportunities for improving the
operational frameworks of industrial systems. Howe-
ver, IIoT architectures face significant challenges, in-
cluding centralized control, vulnerability to cyber at-
tacks, privacy violations, and data accuracy issues.
These challenges create significant obstacles in secu-
ring data, which is crucial for the growth of this tech-
nology. To address these issues, many researchers
suggest integrating blockchain technology as a stable
means to safeguard data within IIoT systems.
Blockchain’s features of distributed storage, decentra-
lization, and immutability offer distinct advantages in
data secure storage, identity verification, and access
control. Despite these benefits, as IIoT applications
diversify and data scales expand, the high resource
demand of blockchain systems clashes with the limi-
ted resources of IIoT devices, leading to unresolved
contradictions and persistent issues within this solu-
tion. Existing blockchain architectures still lack ano-
nymous and efficient IIoT identity authentication, with
complex encryption and decryption processes indu-
cing excessive system overhead. To address these
issues, the thesis builds on prior research to optimize
blockchain performance, aiming to resolve the short-
comings and bottlenecks in current blockchain-based
IIoT architectures regarding data security protection.
Firstly, this thesis introduces a lightweight blockchain-
enabled protocol designed for secure data storage in
the dynamic IIoT environment. It incorporates bilinear
mapping for system initialization, entity registration,
and authentication technology to authenticate IIoT en-
tities efficiently and securely, along with an off-chain
data storage approach to ensure data integrity with
reduced resource consumption.
Furthermore, the thesis addresses the limitations of
Hyperledger fabric systems in high availability scena-
rios by proposing Trie-Fabric, which enhances tran-

saction processing through a Directed Acyclic Graph
(DAG) based transaction sorting algorithm. This ap-
proach significantly reduces terminated transactions,
optimizes conflict handling, and increases efficiency
by more than 60% in its best case, according to com-
parative experimental results.
To manage the increasingly sophisticated industrial
processes and privacy-sensitive data generated by
IIoT devices, the thesis proposes a smart contract-
assisted access control scheme utilizing the Attribute-
Based Access Control (ABAC) model. This scheme,
supported by bloom filter components, demonstrates
controlled contract execution times, stable system
throughput, and a rapid consensus process in real-
world simulations, making it highly capable of hand-
ling high-throughput and effective consensus even un-
der large-scale request scenarios.
Lastly, the thesis introduces the Zero-Knowledge
Proof (ZKP) algorithm, which integrates a non-
interactive zero-knowledge proof protocol with
Ciphertext-Policy Attribute-Based Encryption (CP-
ABE) to enhance security and efficiency in IIoT
content distribution. Combined with the Distributed
Publish-Subscribe IIoT (DPS-IIoT) system using Hy-
perledger fabric, it significantly improves bandwidth
efficiency and overall throughput in IIoT environments.
Through comprehensive security performance eva-
luations and experimental results, this research
confirms the protocols’ effectiveness in minimizing
system overhead, improving storage reliability, and
enhancing overall IIoT data management and appli-
cation security. This thesis provides an in-depth exa-
mination of advanced data management protocols
and systems for the IIoT, which are crucial for ad-
vancing the manufacturing sector. Consequently, this
work makes a significant contribution to the field of
IIoT data security, offering scalable and robust solu-
tions for current and future industrial systems.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Introduction
	Background and Motivation
	Publications List
	Contributions of the Thesis
	Relationship of Publications with Contributions
	Outline of the Thesis

	Preliminaries and State of the Art
	Overview
	Industrial Internet of Things
	Architecture of the Internet of Things
	Message Protocol

	Blockchain Ecosystem
	Blockchain Structure
	Blockchain Network
	Blockchain Encryption
	InterPlanetary File System Storage
	Consensus
	Transaction and Ledger
	Smart Contract

	Hyperledger Fabric
	Node Configurations
	Network Architecture
	Transaction Life Cycle

	Cryptography Basics
	Public Key Cryptosystem
	Bilinear Mapping
	Elliptic Curve Encryption
	Hash Function and Message Authentication Code
	Digital Signature
	Merkel Tree
	Zero-knowledge Proof

	Summary
	State of the Art
	Gaps and Issues


	Blockchain-assisted Lightweight Data Storage
	Introduction
	Related Work
	Blockchain-based Securing Data Solutions in IIoT Networks
	Advancements in Blockchain-Based IIoT Storage Solutions

	System Design
	System model
	Registration Authority (RA)
	Data Provider (DP)
	End User (EU)
	Blockchain (BC)
	Data Storage Service (DS)

	Model Assumptions
	Design Goals

	Model Deployment
	System Initialization
	Initialization of System Parameters
	Initialization of Blockchain

	Entity Registration
	Entity Authentication
	Data Storage
	Permission Revocation

	Security Analysis
	Identity Anonymous
	Data Integrity
	Condition Traceability
	Analysis of Network Attack Resistance

	Performance Evaluation and Analysis
	Basic Configurations of the Experiments
	Simulation Results and Analysis

	Conclusions

	Trie-alternative transaction serial sorting
	Introduction
	Related Work
	Consensus Algorithm Optimization
	Transaction Conflict Relations Optimization 

	Problem Definition
	Multi-version Concurrency Control
	Fabric Transactions Conflict Relationship
	WS(Tis) WS(Tjs) =
	RS(Tis) WS(Tjs) =
	WS(Tis) RS(Tjs) =

	Exchangeability of Transactions
	Conflict Serializability

	Algorithms Design
	Trie Tree
	Transaction Serial Sorting Algorithm
	Analysis

	Experimental Results and Analysis
	Benchmark Set
	Workload
	Ratio of Read-write Transactions
	Zipf's Law Access Frequency Constant

	Experimental Results

	Conclusion

	Smart Contract-inspired Access Control
	Introduction
	Related Work
	Problem Definition
	Definition of the Structural Relationship
	Model Data Structure Definition
	PersistentData
	Access Policy
	Record

	Model Interrelation

	System Model and Design
	System Architecture
	IIoT
	User
	CA
	Admin
	BN

	Smart contract design
	User Management Contracts (UMC)
	Access Control Contracts (ACC)
	Private Data Control Contract (PCC)
	Access Policy Management Contract (PMC)

	Policy Query Pptimization based on Bloom Filter
	System Workflow
	Data Storage
	Blockchain Network Initialization
	Access Policy Deployment
	User Registration
	User Access Allocation


	Performance Evaluation and Analysis
	System Environment and Configuration
	Network Structure
	Chaincode Deployment

	Performance Test and Experimental Results
	Contract Execution Time
	TPS of Smart Contracts
	Consensus Time Comparison


	Conclusion

	Non-Interactive ZKP-inspired Access Control
	Introduction
	Related Work
	Attribute-Based Encryption with IoT
	Access Control with Blockchain
	ICN with IoT

	System Model
	Entity Definition
	Workflow

	Proposed ZK-CP-ABE Scheme
	Optimized Decryption in CP-ABE Systems for IIoT Environments
	System Setup and Key Generation
	Generation of User-Specific Keys and validation proof
	Encryption of Data under Access Control Policies
	Verification of Private Key Authenticity
	Decryption of Ciphertext to Obtain Metadata

	Security Analysis
	Data Confidentiality
	Data Immutability
	Robustness Against External Attacks
	Resistance to Internal Threats

	Experimental Results
	Experimental Settings
	Algorithm Performance Evaluation
	Computational Analysis Relative to Attribute Policies
	Bandwidth Consumption Analysis for Varying Data Sizes
	Analysis of Operational Duration to Transmission Latency

	Scalability performance evaluation
	Algorithmic Complexity Analysis
	Bandwidth Utilization Efficiency
	Proportional Analysis of Time Consumption

	System Performance Evaluation

	Conclusion

	Disscusion
	Summary
	Future Work

	References
	List of figures
	List of tables

