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Abstract

This thesis explores the ethical considerations of generative modeling. Specif-
ically, we investigate the issues of privacy, diversity, and fairness in the
context of image generation. We propose and evaluate several methods
for enhancing image diversity, including Diverse Diffusion, which encour-
ages the generator to produce diverse images that span beyond gender and
ethnicity, including color diversity. We also introduce PrivacyGAN, a ro-
bust generative image privacy method that protects sensitive information
in generated facial images. Additionally, we design unsupervised fairness
algorithms that address fairness issues and mode collapse in generative
modeling.

i



Résumé

Cette thèse explore les considérations éthiques de la modélisation générative.
Plus spécifiquement, nous étudions les problèmes de confidentialité, de
diversité et d’équité dans le contexte de la génération d’images. Nous
proposons et évaluons plusieurs méthodes pour améliorer la diversité des
images, y compris la Diffusion Diversifiée, qui encourage le générateur à
produire des images diverses qui vont au-delà du genre et de l’ethnicité,
incluant la diversité des couleurs. Nous introduisons également Privacy-
GAN, une méthode robuste de protection de la vie privée pour les images
génératives, qui protège les informations sensibles dans les images faciales
générées. De plus, nous concevons des algorithmes d’équité non super-
visés qui abordent les problèmes d’équité et de collapsus de mode dans la
modélisation générative.
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1
Introduction and Literature Review

1.1 Research Questions and Objectives
In an era where artificial intelligence is reshaping our interaction with dig-
ital media, this thesis is dedicated to unraveling the complex ethical di-
mensions intertwined with generative image synthesis.

Central to our investigation is the exploration of using generative models
as tools for enhancing privacy, alongside examining possibilities in promot-
ing diversity and fairness. Through research and comprehensive analysis,
we aim not only to deepen our understanding of these applications and
ethical concerns but also to contribute significantly to the development of
responsible generative modeling practices.

The primary objectives of this research are to:

• Investigate and articulate the potential of generative image synthesis
in enhancing privacy, while also considering the concerns of diversity,
and fairness.

• Design and evaluate novel algorithms and methodologies that utilize
generative modeling as a means to safeguard privacy and mitigate
ethical concerns within the domain of generative modeling.

1.2 Plan of the chapter
This chapter is structured as follows:

• Generative Modeling and its Applications (Section 1.3):

1



An introduction to the fundamental concepts and applications of gen-
erative modeling is provided, emphasizing the definitions that we fur-
ther use in this thesis.

• Ethical Concerns of Generative Modeling (Section 1.4):
Exploration of the ethical challenges, including bias, diversity, in gen-
erative modeling and of the possibility to use generative modeling for
protecting privacy.

• Fairness in Generative Modeling (Section 1.5):
Analysis on addressing fairness issues in generative models, including
examining Mode Collapse and exploring solutions.

• Diversity in Generative Modeling (Section 1.6):
Discussing the critical role of diversity in generative models, address-
ing class imbalances, color variations, and conceptual diversity.

• Generative Modeling for Privacy Preservation (Section 1.7):
Elaborating on the use of generative modeling techniques to enhance
online privacy , and evaluating various methods and their implications.

• Thesis Structure (Section 1.9):
Outlining the complete structure of the thesis, this section details the
focus and contributions of each chapter.

1.3 Generative Modeling and its Applications
This section delves into the expansive landscape of generative modeling,
elucidating its core principles and exploring a spectrum of applications.
Within this realm, we discuss prominent techniques, including Generative
Adversarial Networks (GANs), Variational Autoencoders (VAEs), and La-
tent Diffusion Models (LDMs).

In recent years, the field of generative modeling, particularly in image
synthesis, has undergone transformative advancements.

However, this newfound power comes with the problems such as halluci-
nations and poor commonsense reasoning [OHP+23] and ethical challenges
related to fairness, diversity, and privacy. The papers exploring fairness,
diversity, and privacy in generative modeling are critical in navigating this
intricate terrain. They showcase the potential biases embedded in mod-
els, underscore the significance of diverse representation, and highlight the
importance of preserving individual privacy.

2



Figure 1.1: Generative Adversarial Networks structure. It comprises of gen-
erator that aims to generate images resembling dataset instances and dis-
crimnator that identifies whether an image is real or fake. Image credit:
[CG23]

Generative Adversarial Networks (GANs), introduced by Goodfellow et
al. in 2014 [GPAM+14], operate through an adversarial training mecha-
nism. In this setup, a generator crafts data instances, and a discriminator
distinguishes between genuine and generated samples. This interplay re-
fines the generator’s ability to create data, resulting in the synthesis of
realistic data instances. The GAN structure is presented in Figure 1.1.

The impact of GANs extends to image synthesis, exemplified by Style-
GAN [KLA19a], renowned for generating realistic high-resolution images
with diverse styles. Beyond traditional domains, GANs have found applica-
tions in the creative realm, contributing to the generation of art [ELEM17]
and music [YCY17].

Variational Autoencoders (VAEs) represent another facet of generative
modeling. Comprising an encoder and a decoder, autoencoders offer the
ability to reconstruct images. VAEs extend this framework with prob-
abilistic components, enabling the generation of diverse and meaningful
samples from a learned latent space. In the case of VAEs latent space
is represented by the mixture of the distributions. The VAE structure is
presented in Figure 1.2.

3



Figure 1.2: Variational Autoencoder structure. The model recieves data
instance x, compresses it to the latent space and from there decodes
x’ that is similar to the original data instance x. Image credit:
https://en.wikipedia.org/wiki/Variational autoencoder

Latent Diffusion Models (LDMs) mark an advancement in artificial in-
telligence, particularly in the generation of detailed images from textual
descriptions. Notable examples include DALL-E [RPG+21] and Stable
Diffusion [RBL+22]. In diffusion models, the forward diffusion process
consists of multiple steps, each of which is adding Gaussian noise to the
data sample. The reverse diffusion process aims to recreate the true sample
from the noise. In the case of LDMs, the diffusion process is done not in
the pixel space of an image but in the latent space. The LDM structure is
presented in Figure 1.3.

Further, we use the following definitions.
Fairness in Generative Modeling: In the realm of generative mod-

eling, fairness pertains to the unbiased generation of data, ensuring that
the model does not perpetuate or amplify existing biases present in the
training data.

Mode collapse is an effect in generative modeling, where the model
generates data lacking the representation of different groups or character-
istics encoded in the training dataset.

Diversity in Generative Modeling: Diversity in generative modeling
refers to the ability of a model to produce a wide range of outputs, avoiding
over-representation of certain classes or features and promoting inclusivity
in the generated data.

4



Figure 1.3: Latent diffusion model structure. It consists of an encoder, that
encodes the text into the latent space, a diffusion model that is run in
this latent space and a decoder, that recreates the image. Image credit:
https://keras.io/examples/generative/random walks with stable diffusion/

Image anonymization refers to the class of techniques that fully re-
move any identity information from the facial images [WSZZ23].

Privacy preservation: In contrast to anonymization, by privacy preser-
vation in this thesis we mean image privacy against unknown recognition
systems [WSZZ23, SNN23].

1.4 Ethical concerns of generative modeling
Generative models, like the ones we discussed above, bring up important
ethical questions. One primary concern is bias within these models. Sec-
tion 1.5 explores the research related to bias, highlighting challenges and
suggesting ways to mitigate these problems.

Beyond bias, ethical issues with generative models extend to diversity.
Section 1.6 delves into potential issues where generative models might not
adequately capture different colors or a variety of ideas in their outputs.
This section aims to understand challenges in ensuring that generative
models create outputs that are rich and inclusive.

Generative models bring up more ethical questions besides bias and
diversity. Section 1.7 looks into an interesting aspect: using generative
models as tools to solve ethical problems. This section explores how we
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can use generative models for privacy protection online, giving us a two-
sided view of their role in ethical discussions.

Collectively, these chapters contribute to the ethical foundations of re-
sponsible generative modeling, ensuring that AI technologies align with
principles of fairness, diversity, and privacy.

Ongoing research is essential to stay abreast of new challenges and
ideas in the field of image generation. The subsequent sections provide
an overview of research focusing on different ethical aspects of generative
modeling.

1.5 Fairness in generative modeling
The intersection of ethics and artificial intelligence places a spotlight on
fairness in generative modeling. Issues such as Mode Collapse (MC) [RW18],
where certain classes become exceedingly rare, underscore the importance
of addressing fairness concerns. Chapter 2 explores fairness in an unsuper-
vised fashion in the context of generative modeling.
1.5.1 Fairness
Fairness has become prevalent at the intersection of ethics and artificial in-
telligence. Various forms of fairness are critical in online media [HAM+19].
In our work, we consider fairness for generative modeling. More precisely,
when modeling the probability distribution of faces, we typically observe
that classes already rare in the dataset become even rarer in the model.
This phenomenon is called Mode Collapse (MC) [RW18], and for sensitive
variables, it is one of the fairness issues.

There are many facets to fairness. An algorithm may be considered
to be fair if its results are independent of some variables, particularly for
sensitive variables.

Fairness [PS20] can be measured in terms of separation, i.e., whether
the probability of a given prediction, given the actual value, is the same for
all values of a sensitive variable. The measurement can also be rephrased
in terms of equivalent false negative and true negative rates for all classes.

A distinct point of view is sufficiency: sufficiency holds if the probability
of actually belonging to a given group is the same for individuals from that
group and with different sensitive variables.

Another point of view is independence, i.e., when the prediction is sta-
tistically independent of sensitive variables.

Because it is known that the many criteria for fairness are contradictory,
it is necessary to design criteria depending on the application. In the
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present chapter, we consider the case in which the goal is to preserve some
frequencies.

Here, we consider the context of generative modeling. There is a model
trained on data, and we want this model to satisfy some requirements
on frequencies: for every class, we would like the frequency to match some
target frequency. Typically, for simplicity in the present chapter, the target
frequency is the frequency in the original dataset: however, the methods
that we propose can be adapted to other settings.
1.5.2 Generative modeling: fairness and mode collapse
There are many measures of fairness, even in the specific case of generative
modeling [TC21]. The main criterion is whether all classes are correctly
represented. It is known that modeling frequently decreases the frequency
of rare classes (i.e., mode collapse). In addition, improving the image qual-
ity (for each image independently) aggravates the diversity loss [SJJ19]. For
a conditional generative model, there is sometimes a ground truth. For ex-
ample, in super-resolution, we want the reconstructed image to match the
sensitive variables of the ground truth as closely as possible. This case be-
came particularly critical since, e.g., [Tru20]: a pixelized version of Barak
Obama can be “depixelized” to be that of a white man. [XYZW18] points
out the importance of fairness in the design of Generative Adversarial Net-
works (GANs) before applying them, for example as an early stage before
supervised training. For addressing fairness issues, a possibility is to in-
crease editability: [HPK+20] disentangles latent variables for separating
editable and sensitive parts. Some works focus on measuring fairness, for
example, [KLRS17] uses causal methodologies for measuring fairness in a
counterfactual manner. Fairness can be integrated directly into the train-
ing: [SHCV18] focuses on training a GAN while protecting some variables.

There are multiple works related to fairness in generative modeling.
[CGS+20] increases fairness in GANs in a supervised manner, i.e., given
the sensitive attributes. [SHCV19] targets and improves the fairness of
generated datasets. More similar to our work, [JKH+21] focuses on uncer-
tain sensitive variables, and [KAH+21] adds a bias in a GAN for mitigating
fairness issues. In the same fashion as the present work, [TSZ20] considers
biasing a GAN without any retraining. In chapter 2 we focus on generi-
cally (i.e., independently of the application, data, and model) correcting
for potential bias present in a generative model, without knowing the sen-
sitive variables. The critical point is that sensitive variables seem to often
come up as a surprise: typically, people do not decide to create an unfair
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algorithm actively. For example, in [Ple21], the designers of the faulty
soap dispenser had just not imagined that it might fail on black skins.
Also, there may be relevant sensitive variables that have not been initially
considered: ethnicity or gender are obvious sensitive variables, but aes-
thetics, body mass index, social origin, or even the quality of the camera,
geographical origin, also matter.

1.6 Diversity in generative modeling
While mitigating bias in generative modeling remains a priority, there is
an equally crucial need to foster diversity within this realm. The diversity
challenge extends beyond addressing class imbalances (such as gender or
ethnicity imbalance) and has other aspects such as color variation (e.g.,
ensuring the model generates not only red roses but also roses of other
colors) and conceptual diversity (considering different contexts like roses
in vases, held in hands, or featured in art pieces). This section delves into
methodologies aimed at enhancing diversity in latent diffusion models.

While facial images in the training datasets can often be imbalanced,
they typically consist of images depicting people of different genders. In
contrast, for the generated images it is not always the case. Here, we
provide an example of a mode collapse in MidJourney
(https://www.midjourney.com).

Latent diffusion models have gained significant attention for text-to-
image generation, with DALL-E [RPG+21] and Stable Diffusion [RBL+22]
being some of the most prominent examples. While they have shown im-
pressive results in generating high-quality images from textual descriptions,
there have been concerns regarding potential causes of their usage for var-
ious sensitive applications.

To prevent the potential misuse of these models, a few recent efforts
have been made. For instance, [CBLC22] investigated the efficacy of Sta-
ble Diffusion for the medical imaging. Additionally, [SSG+22] explored
image-retrieval frameworks to detect content replication in generated im-
ages. [SLYZ22] developed a classifier to trace back generated images to
their source models, ensuring accountability for creators. Furthermore,
[KRMA23] created faithful diffusion that selects images corresponding to
a prompt.

Bias can arise from various sources, such as the training data or the
algorithmic biases inherent in the model architecture. [SHK22] shows that
text-to-image models pick up cultural biases linked to various Unicode
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Figure 1.4: Images generated by Midjourney for the prompt ’Person entire
face crop’. Here we can see that the vast majority of the images represents
white or Asian females, while it was not originally specified in the prompt.
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scripts. While increasing training data quality remains a significant con-
cern and solutions such as [SFH+23] have been proposed to tackle dataset
level bias, it is also important to ensure that the diffusion-based methods
do not amplify any biases present in the training data.

The lack of diversity problem was addressed in [Ho23], [BKD+23] and
[FKN23]. There, the authors notice that images generated by Stable Dif-
fusion lack diverse cultural representation and are prone to gender stereo-
types. [Ber22] highlights the need for algorithmic adjustments in gener-
ative models to increase the diversity of their output for multi-solution
tasks. It also proposes a framework that integrates automated machine
learning with computational creativity to automate key tasks in artistic
pipelines and increase the creative autonomy of computational agents. Fur-
ther, [The23] argues that Stable Diffusion v1-4 violates demographic par-
ity in generating images of a doctor given a gender- and skin-tone-neutral
prompt. The author observed that the model is biased towards generating
images of perceived male figures with lighter skin, with a significant bias
against figures with darker skin, as well as a notable bias against perceived
female figures. According to [Bar22], AI image generators often display
gender and cultural biases. Stable Diffusion as other models has inherent
biases from the training datasets. It was found, for instance, that Stable
Diffusion depicts all engineers as male despite women making up around
20% of people in engineering professions. According to [CLG+23] Stable
Diffusion bears the nontrivial biases due to learned relations between not
necessarily related concepts like “millennials” and “drinking”.

There are recent methods focusing on diversity for Stable Diffusion gen-
erated images as well. Most of them focus on specific domains to broaden
the image variability. For instance, [SWT+23] and [BYMC22] report that
adding supporting context to text-to-image models prompts increases di-
versity in both general and human-specific fashion. In [SBAD+23] the
authors report increase in generation of rare-concept images following the
seed manipulation. [KKSY23] trains prompt embeddings that would guide
to generate images fairly according to the set of sensitive attributes such
as gender and ethnicity.

Promoting novelty and diversity is a challenge that exists both for image
and text generation. In [XRLS18] the authors emphasize the importance
of producing novel and diverse textual outputs. By leveraging a language-
model-based discriminator, their model DP-GAN assigns high rewards to
text that exhibits both novelty and fluency. Our approach for image gen-
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eration also goes beyond addressing sensitive fairness concerns and opens
new avenues for creative expression, as we focus not only on representation
of people with different ethnicities and genders, but also, as our approach
is unsupervised, on diversity of color and other dissimilarities of images in
a batch.

It is common to generate multiple image versions using latent diffusion
models. Even in non-sensitive scenarios, having diverse outputs is essen-
tial. A collection of similar images holds little advantage over a single im-
age. Therefore, we propose a method that encompasses various domains,
including faces, cars, animals and more to enhance diversity in text-to-
image generation. By increasing diversity within batches, we can reduce
the number of required generation iterations. For instance, by increasing
the probability of obtaining satisfactory images from 1% with a vanilla Sta-
ble Diffusion to 5% using our method, the expected number of generated
batches before satisfaction decreases by a factor 5.

1.7 Generative Modeling for Privacy Preservation
While ethical concerns related to generative modeling have been discussed
in the preceding sections, there exists an intriguing prospect to leverage
generative modeling for ethical purposes. This section, in particular, delves
into the application of generative modeling for preserving user privacy on-
line.

Individuals often share personal photos on various social media plat-
forms, which facilitates communication and connection with family, friends,
colleagues, and customers. Unfortunately, a significant drawback of this
practice is that it can sometimes be possible to identify individuals social
media accounts by taking their picture in public [Sam19] or by compar-
ing their dating app photos to their business-related social media profiles.
This is often made possible by the existence of datasets collected by scrap-
ing social media platforms. While face detection systems can be used by
the government for criminal identification purposes, they also present op-
portunities for both internal and external misuse [WLVGP09], including
enabling stalkers to track their victims [Har22]. Consequently, sharing real
facial images publicly over the internet may compromise users privacy.

Multiple initiatives are dedicated to enhancing image and video pri-
vacy on the internet. One of the prominent groups is centered around
anonymization methods, which involve altering users pictures to re-
semble those of other individuals. For instance, [KY19] proposed a privacy-
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preserving adversarial protector network (PPAPNet) as an image anonymiza-
tion tool. PPAPNet transforms an image into another synthetic yet realis-
tic image while remaining immune to model inversion attacks [WFL+21].
Anonymization techniques may also preserve key characteristics such as
background, emotions, and facial feature movements [HMB+23, HML19,
BTPS23, HL23]. These techniques are valuable when the objective is to
maintain realistic appearances without the need to recognize individuals
in photos or videos. Such approaches are particularly useful, for exam-
ple, for maintaining anonymity while expressing opinions on video-sharing
platforms. For instance, [GWT19] achieves the objective of decorrelating
the identity while retaining the perception (pose, illumination, expression).
Some of these methods change only parts of the face. As an example, in
their work [QNS+22], the authors suggest utilizing generative techniques
to enhance images that have been intentionally blurred or have had the
subject’s eyes obscured beforehand.

In the overview [WSZZ23], the authors tackle a challenge in the de-
sign of Anti-Facial Recognition (AFR) systems: finding a balance between
privacy, utility, and usability. They categorize AFR systems based on
their target components, ranging from data collection and model training
to run-time inference, all with the shared objective of thwarting success-
ful recognition by unauthorized or unwanted models. Moreover, the au-
thors stress the user preference for privacy tools with minimal overhead, a
concept underscored by studies such as [SBBR16] and [DSDN19]. These
findings highlight the significance of delivering protection against image
recognition systems while mitigating any adverse effects on the user ex-
perience, a goal that many present anonymization methods struggle to
attain. While certain attributes of images, such as gender, ethnicity, and
facial expressions, can be retained through specific anonymization tech-
niques, the resulting modified images frequently lack practicality for users.
As a result, even though these images maintain crucial visual character-
istics, the individual’s identity within them may undergo substantial al-
terations, ultimately rendering them unidentifiable to acquaintances and
family members.

In an effort to achieve a balance between utility and privacy protection,
another area of research focuses on obscuring facial images to main-
tain human recognizability while creating difficulties for neural
networks to decipher. Generally, these methods involve introducing pre-
cisely crafted pixel noise, causing the neural network to misclassify the im-

12



age. These pixel-level perturbations have effectively challenged diverse im-
age recognition neural networks. The dilemma of balancing privacy main-
tenance with recognition assurance of data-poisoning methods like Fawkes
[SWZ+20a] and Lowkey [CGF+21] is discussed in detail in [RDT21].

As an alternative approach to safeguarding images against unauthorized
identification while preserving their utility for the users, one can consider
adversarial examples. [QNS+22] demonstrated that makeup transfer
can be an effective means of countering various face recognition systems.
However, this method has limitations, as the model’s performance may be
inconsistent between male and female images due to an imbalance in the
makeup transfer training dataset. This method is also ineffective in cases
where the face cannot be found on an image, as it is not possible to transfer
makeup in this case. Additionally, some individuals may find the use of
makeup transfer images unacceptable.

1.8 Ethics Statement
Our research is conducted with a commitment to ethical principles.

The facial images that we use either contain individuals who consented
to participate in the study (i.e., authors of the papers), are taken from
publicly available datasets, or consist of AI-generated art that does not
represent real humans.

The code for generating images and the evaluation methods are either
made openly available or described in detail, enhancing transparency and
facilitating reproducibility.

This thesis contributes not only to the technological aspects of gener-
ative modeling but also to the ethical discourse surrounding AI. By ad-
dressing topics such as fairness, diversity, and privacy, we aim to foster the
responsible development and application of AI technologies.

1.9 Thesis structure and contributions
1.9.1 Chapter 1: this chapter

Chapter 1 provides introduction to the current thesis and a review of the
existing literature surrounding generative modeling, with a particular em-
phasis on the ethical concerns raised in recent research.

1.9.2 Chapter 2: fairness in GANs

Chapter 2 identifies fairness challenges at the intersection of ethics and
artificial intelligence, specifically focusing on generative modeling.
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The work concentrates on the phenomenon of Mode Collapse, where
rare classes in the dataset become even rarer in the generative model. This
is particularly observed in the context of image generation, specifically for
faces.

To sum up our contributions,

• We provide a novel solution for generic correction of biases in the con-
text of generative modeling, independent of sensitive variables (unsu-
pervised).

• We also evaluate how techniques for improving image quality might
degrade fairness, and introduces methods to mitigate such issues.

These contributions collectively form a foundation for addressing fair-
ness challenges in generative modeling, providing both theoretical insights
and practical tools for improving diversity and mitigating biases. We pub-
lished our findings in [ZTT+22].

1.9.3 Chapter 3: diversity in latent diffusion models

Chapter 3 presents a Diverse Diffusion, a modification to the Stable Dif-
fusion algorithm for diverse image generation.

To sum up our contributions,

• We introduce a novel and general unsupervised technique based on
re-weighting applicable to existing text-to-image models to increase
image diversity;

• We conducted experiments demonstrating the diversity advantages of
the proposed approach applied to stable diffusion.

– We demonstrated notable improvements in the representation of
underrepresented categories across different ethnicity/gender pairs
and colors, promoting diversity and inclusion in image generation.

– We also observed the improvement for general metrics such as
LPIPS and demonstrated that our method is more effective than
state-of-the-art prompt manipulation techniques.

We published our findings in [ZTN23].
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1.9.4 Chapter 4: privacy using generative models
Chapter 4 presents a facial privacy preserving method, PrivacyGAN.

Summary for Chapter 4 contributions:

• Proposing an innovative approach for facial image privacy using gen-
erative methods and a distant target image idea introduced by Fawkes
[SWZ+20a].

• Introducing a novel privacy evaluation method based on the proxim-
ity of dataset images in an embedding space to a modified ”private”
image.

• Creating a new facial image dataset extracted from Casual Conversa-
tions’ dataset videos.

• Evaluating privacy against various embedding methods, including trans-
fers to embeddings not used in our privacy method.

• Conducting human evaluations to assess image quality for both state-
of-the-art and newly proposed privacy methods.

We published our findings in [ZCTN23]
1.9.5 Chapter 5: conclusions
Chapter 5 is focused on the conclusions from the obtained results, summa-
rizing Chapters 2, 3 and 4, and provides future research plans.
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2
Fairness in generative modeling

2.1 Introduction
Fairness has become prevalent at the intersection of ethics and artificial
intelligence. In the present work, we consider fairness in the context of
generative modeling.

More precisely, when modeling the probability distribution of faces, we
typically observe that classes already rare in the dataset become even rarer
in the model. This phenomenon is called Mode Collapse (MC) [RW18], and
for sensitive variables, it is one of the fairness issues.

The contributions of this chapter include

• proposing tools based on statistical reweighting (Sections 2.3.1 and 2.3.2)
and on user feedback (Section 2.3.3) for mitigating fairness issues (such
as Mode Collapse) in generative modeling;

• evaluating how quality improvement techniques for image generation
degrade fairness and how our proposed methods can mitigate such
issues.

It is known that the many criteria for fairness are contradictory, that is
why it is necessary to design criteria depending on the application. In the
present chapter, we consider the case in which the goal is to preserve some
frequencies.

Here, we consider the context of generative modeling. There is a model
trained on data, and we want this model to satisfy some requirements on
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frequencies: for every class, we would like the frequency to match some
target frequency. Typically, for simplicity in the present work, the target
frequency is the frequency in the original dataset: however, the methods
that we propose can be adapted to other settings.

Our goal in this chapter is to have a generic correction of biases (in the
context of generative modeling) independent of the sensitive variables.

The first proposed method (Sections 2.3.1 and 2.3.2):

• is not only for the fairness issues regarding sensitive variables: we
also preserve diversity for more classical diversity issues such as Mode
Collapse.

• does not need any retraining.

• is more or less effective depending on cases but is designed for (almost)
never being detrimental (Section 2.4.2).

The second proposed method, which can be combined with the previous
one,

• proposes several image generations and then

• lets the user choose one of the images among all the images generated
during the previous stage.

Therefore, the user experience is modified: we expect the user to assist
the method by actively selecting relevant outputs. Contrary to the generic
method proposed above, which we will implement thanks to reweighting,
the new approach is not a drop-in replacement. Moreover, this also does
not need retraining.
2.1.1 Outline
Section 2.2 presents tools useful for the present work:

• Use of Image Quality Assessment (IQA) to improve image generation
(Section 2.2.1): we connect this method to our research by investi-
gating how much this quality improvement degrades fairness and how
our proposed methods can mitigate such issues.

• Reweighting via simple rejection sampling to improve fairness and
reduce Mode Collapse when the variables used for computing the
reweighting values are correlated to the target sensitive variables (Sec-
tion 2.3.1).

17



Section 2.3 presents our proposed algorithms:

• Reweighting as above, but with reweighed variables unrelated to tar-
get classes (Section 2.3.2). This second context is therefore applicable
when we do not know the target classes. We propose a method which
is a drop-in improvement of an arbitrary generative model: as soon as
we have features and a generative model, we can apply Alg. 1.

• Multi-objective optimization, through computation of several solu-
tions (typically Pareto fronts), to mitigate diversity loss by providing
more frequently at least one output of the category desired/expected
by the user.

Section 2.4 is a mathematical analysis. Section 2.5 presents experimental
results.

2.2 Preliminaries
2.2.1 Correlations image quality / sensitive variables
We investigate the known correlation between the estimated quality of an
image and its membership to a frequent class [SJJ19, MDH+20].

In order to demonstrate that this is easily observable, Table 2.1 presents
the rank correlation between the aesthetic quality of an image and the logit
of that image for each of four classes of individuals. We note that the most
positively correlated class is the most frequent.

Our interpretation is that the technical quality of generated images is
higher for the most frequent classes, influencing the aesthetics score.
2.2.2 Image generation: GAN, PGAN, and EvolGan
Our work specializes in image generation, and in particular on faces. We
use the following image generation tools.

• Our baseline GAN is Pytorch GAN Zoo ([Riv19], based on progressive
GANs (PGANs) [KALL18a]).

• We also use EvolGan [RTH+20], which improves Pytorch GAN Zoo by
biasing the random choice of latent variables z using K512 [HLSS20].

• We use three configurations of EvolGan, as it uses as a budget the
number of calls to the original GAN; the three configurations then
correspond to budgets 10, 20, and 40 (named EG10, EG20, and EG40
respectively).
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Class A B C D
Frequency 17.8% 52.2% 17.5% 12.4%

Rank-correlation AvA -0.07 0.22 -0.11 0.06
Rank-correlation K512 -0.02 0.16 -0.08 0.02

Table 2.1: For four distinct classes of individuals A, B, C and D (obtained
using R), we present the rank-correlation of the frequency of that class
with AvA and K512 scores respectively.
AvA and K512 are visual quality estimators, dealing with aesthetics and
technical quality respectively. Visual quality assessment is a task fairly
independent of semantics and therefore should exhibit little if any ethnicity-
related biases.
Dataset: faces generated by StyleGan2 (see thispersondoesnotexist.
com).
Classes: ethnicity evaluated by R (see R in Table 2.2).
Observation: the biggest class has the strongest, positive correlation.

Besides the one based on a random search, EvolGan has an option
for CMA search [HO03] and PortfolioDiscrete-(1 + 1) (i.e. the variant
of the Discrete (1 + 1)-ES as in [DL16]): we also employ these vari-
ants, with notation respectively EG-CMA-10 and EG-D(1+1)- 10 for
budget 10, and similar variants for budget 20 and 40.
Therefore, we have nine flavors of EvolGan, corresponding to different
algorithms and budgets.

Human raters
Human raters, chosen through a snowball principle, were utilized for evalu-
ating the two applications in Tables 2.8 and 2.9. A double-blind graphical
user interface was employed for presenting images. The evaluation involved
the use of a binary question for ethnicity labeling. To maintain objectivity,
a double-blind approach was applied throughout the process. The selected
raters participated voluntarily, and their motivation ensured stable results.
Additionally, the graphical user interface prevented potential biases in the
evaluation.
2.2.3 Diversity loss in generative modeling
Usually, modeling decreases the frequency of rare classes.

With StyleGan2, we get 71.55% white people and 4.64% black, according
to R (close to [SJJ19]). EvolGan, which is built on top of StyleGan2 with a

19

thispersondoesnotexist.com
thispersondoesnotexist.com


Name Notation Domain Note
Variables to be protected

R R {A, B, C, D} Ethnicity [Ana19]
AvA AvA {F, E} Aesthetics[HGS19]

Related auxiliary variables
R′ R4 Logits of R

Koncept512 K512 R IQA
Unrelated auxiliary variables

Emotions E {1, 2, 3, 4, 5, 6, 7} facial expression in [Ana19]
E ′ R100 final layer of E

VGG-Face V F {0, 1}128 Binarized
final layer VGG-face

Table 2.2: Feature extractors used in the present work. All data are faces,
typically generated by StyleGAN2 or other methods in Section 2.2.2.

budget of 40 decreases the percentage of black people to 0% while increasing
the frequency of white to 81.25%.

2.2.4 Measuring the diversity loss

We assume that there exist target frequencies for each sensitive class. In the
present work, we focus on preserving the diversity in the sense of “having
the same frequencies as the frequencies in the original data used for creating
the model”, so the target frequencies are the frequencies in the original
dataset. If we consider the diversity loss associated with optimizing a
model, such as EvolGan, we assume that target frequencies are those of
the original model.

Given classes {1, . . . , n} with target frequencies fi (∑n
i=1 fi = 1), and

real frequencies f ′1, . . . , f ′n: the diversity loss ∆ is defined as ∆ := 1 −
inffi>0 f ′i/fi. ∆ = 0 if the target frequencies are reached, and ∆ = 1 if one
of the classes has disappeared.

Throughout our work, we consider diversity loss for classes, and not
inside each class: this other important case is left as further work.

2.2.5 Feature extractors

We use various feature extractors (Table 2.2). E and R use VGG-Face [PVZ15].
The goal of these feature extractors is to have auxiliary classes for reweight-
ing: these values, after discretization, provide classes. These classes, termed
strata, are used in Section 2.3.2.
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2.3 Methods
Section 2.3.1 presents a simple rejection method for ensuring target prob-
abilities in generative modeling.

Section 2.3.2 shows how to build classes in order to apply that method
without knowing what the sensitive variables are. Section 2.3.3 then presents
a methodology based on multi-objective optimization for improving fair-
ness.
2.3.1 Reweighting: stratified rejection
Consider a generative model on some domain D. Consider a partition
D1, . . . , Dm of D into m disjoint strata. Assume that some unknown ran-
dom variable ω has probability pi = P (ω ∈ Di) and ∑

pi = 1. We have
another random variable g also living with probability one in the union
of the Di. Assuming that P (g ∈ Di) = p′i, a simple tool for building g′

such that P (g′ ∈ Di) = pi is rejection (see Alg. 1). This simple algorithm
generates g′ ∈ Di with probability pi.

Algorithm 1: Given a generative model g, bins D1, . . . , Dm and their
target probabilities p1, . . . , pm. This algorithm assumes that none
of the Di has probability 0 for the original generative model g.

Generate x a (new, independent) output of g // random gen
Find i such that x ∈ Di.
With probability 1− 1

maxj
pj

p′j

pi

p′i
, go back to random gen.

return g′ = x

2.3.2 Creating strata: reweighting without knowing the target
classes

We have classes corresponding to sensitive classes. We consider four sen-
sitive classes of faces (A, B, C, D) using R [Ana19] and two classes using
AvA [HGS19] (class F = bottom 20% of the aesthetics variable). However,
we also want (possibly non-sensitive) classes used as auxiliary classes for
reweighting: our goal is for our method to work for unknown target classes,
so we need auxiliary classes. The idea is to investigate how much we can
improve fairness for variables A, B, C, D without using those classes in our
algorithm. Our auxiliary classes (Section 2.2.5), unrelated to our sensitive
classes, will be called strata in the present work: the strata are the Di used
in our reweighting algorithms.
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The key point in our experiments “preserving the diversity of unknown
target variables” is that we do not use the target variables in our algo-
rithms: our method is unsupervised in this sense.

When we try to maintain diversity for class F, we can use auxiliary
variables which are unrelated to F: so, we can use A, B, C and D. And
when we try to maintain diversity for classes A, B, C and D, we can use F
as an auxiliary variable.

Some attributes (final layer of an emotion classifier, or technical quality
of the photo) can be used for all classes as they are not directly related
to any of our sensitive variables. We will use two parameters d and M in
our experiments. Given a possibly large number of auxiliary variables (not
the target variables), we select d variables. Each of these d variables is
discretized in M values, where M is called the arity: thresholds are chosen
so that the M values are equally frequent.
2.3.3 The user-assisted context: generating multiple solutions
Whereas in Section 2.3.2 we have considered a drop-in replacement of the
baseline, which generates one image per instance, we now consider the case
in which we generated several instances, and the user can select one of them
(see Alg. 2). There are two parts:

• how to generate multiple contexts, and,

• for some methods which generate way too many solutions for being
manually searched by a human user, how to sample the obtained
Pareto front.

2.3.3.1 How to Generate Multiple Solutions
We consider a fixed limit on the number of generated images allowed so
that the tool remains manageable for the user. Several approaches can
generate a targeted number of outputs; we consider

• multi-objective optimization (MOO: splitting the original criterion
into several and optimizing them jointly) and

• multiple runs.

Doing multiple runs is a simple and intuitive solution for generating mul-
tiple images. Regarding MOO, our solution is not compatible with all
generative models: we consider that images are obtained by numerical
optimization of a linear combination of criteria [RTR+19]. Instead of ag-
gregating them, [CRRN+21] proposed to preserve diversity by optimizing
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Algorithm 2: Image generation
No context,
no user assistance
Repeatedly, generate
one individual per
request.

Check that their
frequencies match the
expectation: compute
a DL.

Context,
no user assistance
Repeatedly, generate
one individual per
request. Requests
have a context (e.g.,
low-resolution image).

Check that their
frequencies match the
frequencies of the
context (e.g., same
ethnicity as low-res
image): compute a
DL.

Context,
user assistance
Repeatedly, generate k
individuals per
request (e.g., by
Pareto-based MOO,
or by diversity-based
MOO, or by MSR):
the user chooses one
of them.

Check that their
frequencies match the
contextual
expectations:
compute DL.

Different contexts for image generation, without or with human
assistance.

Left: unassisted context, generative model.
Middle: generative model with target class (case in which there is an
expected class, e.g., super-resolution in which the ethnicity is
supposed to be preserved statistically).

Right: user-assisted method.
Not all unsupervised fairness methods can be applied in all cases.
The reweighting method in Sections 2.3.1 and 2.3.2 can be applied
to the two first columns. In contrast, the multiple generation such
as the one in Section 2.3.3 can be applied to the third column only.
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several numerical criteria by MOO, and we include this technique (as well
as the previously mentioned reweighting techniques) in our fairness con-
text. MOO naturally generates several solutions instead of one so that we
are (presumably) more likely to have at least one satisfactory solution.
2.3.3.2 How to sample the obtained solutions
When we do multiple runs, we can choose their number to control the
number of generated images. However, in MOO, we typically get a Pareto
front. This Pareto front might be huge. Therefore, we have to sample this
Pareto front. There are many tools for this:

• Optimizing this sampling for some representativeness criterion in the
fitness space (hypervolume and others).

• Or maximizing some diversity criterion in the original domain, regard-
less of fitness values.

2.4 Methods analysis
2.4.1 Multi-objective diversification
Generating several solutions and letting the user choose among those pro-
posals is a simple workaround for partially mitigating diversity loss.

However, not all methods are equal: we would like to have as much
diversity as possible for a given fixed number of proposals. Also, Fig. 2.1
shows that it is not obvious that this will work: though this might not
be intuitive, one can design counter-examples in which focusing on the
Pareto-front and even more on a few key elements representing the Pareto
front can actually decrease the diversity, compared to generating just one
image at a time, because the Pareto frontier might be entirely covered by
a single class (in particular the biggest class, for which values are usually
greater in machine learning models, as explained in Section 2.2.1).

The simplest, and maybe most robust solution is to run multiple inde-
pendent (randomized) runs: if the probability P (g ∈ C) of generating a
point in C is low, then the probability 1 − (1 − P (g ∈ C))k of having at
least one of k generated image inside C is greater:

1− (1− P (g ∈ C))k ≥ P (g ∈ C)(strict ifP (g ∈ C) ̸∈ {0, 1}).

If the user needs an image of class C, generating k images is more likely
to have at least one in C unless the original probability is 0 or 1.

The question is now how to do better than this baseline. We consider
the following ideas:
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• the k runs are not using the same weights: e.g., we use random weights
in the optimization runs, and they are randomly drawn at each run.

• we run a MOO algorithm which tries to maximize some quantity, e.g.,
the hypervolume of the obtained solutions, or their diversity in the
loss space, or the coverage in the domain space.

Consistent with the credo of the present work (not using target classes
in the algorithm), these algorithms are independent of the target classes.
2.4.2 Stratification by rejection is rarely detrimental
The reweighting method in Section 2.3.1 works in the sense that, by design,
when we use it, we switch back to the exact probabilities for each stratum,
i.e., p′ = p. This implies that, unless a target class has entirely disappeared
in the model, reweighting using strata based on the target classes recovers
the frequencies of all target classes. However, the point of the present work
is to fix frequencies of unknown target classes.

So, now, consider a target class C, which is not necessarily one of the
strata. If C is one of the Di (or a union of them) then, as discussed above,
the stratification leads to p(g ∈ C) = p(ω ∈ C): let us see if we can find a
more general case in which P (g ∈ C) = P (ω ∈ C).

The Diversity Loss (DL) measure we are using (Section 2.2.4) for esti-
mating the DL of a model g compared to a random variable w is based on
aggregating measures of DL for several classes: the global diversity loss is
∆ := 1− inffi>0 f ′i/fi where fi is the target frequency for class i and f ′i is
the observed frequency.

∆ = max
C;P (w∈C)>0

1− P (g ∈ C)
P (w ∈ C)


= max

C;P (w∈C)>0

1
P (w ∈ C) (P (w ∈ C)− P (g ∈ C))

= max
C;P (w∈C)>0

1
P (w ∈ C) (pq − pq′)

where:

• qj is the probability of class C in stratum Dj for the original random
variable w i.e. qj = P (w ∈ C|w ∈ Dj);

• q′j is the counterpart for the model g i.e. q′j = P (g ∈ C|g ∈ Dj).
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Figure 2.1: Bi-objective minimization, cases in which Pareto-dominance will
be detrimental to diversity.
Left: artificial counter-example showing that maximizing a numerical di-
versity criterion (the hypervolume) over the Pareto front might not provide
diverse solutions. Here, we see a Pareto-front and the hypervolume-best
approximation by 3 points.
Dots: the 3 individuals maximizing the hypervolume.
Gray areas: examples of classes that completely disappear if we consider
those dots (as they maximize the hypervolume) rather than a random sam-
pling of the Pareto front.
Right: other counter-example. Class A is assumed to be much bigger than
class B, and to have, therefore, better scores for both criteria: this is be-
cause, as discussed in the text, bigger classes typically have better scores
(see Section 1.5.2).
While local optimization from points in B will provide points in B, a global
optimization based on Pareto fronts will provide only points in A: class B
is not represented.
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The reweighting increases the DL for class C if pq − pq′ > pq − p′q′

(where pq is short for ∑
j pjqj). This is equivalent to q′(p′ − p) > 0 and

p(q− q′) > 0. This means that reweighting is detrimental for this measure
if two conditions occur simultaneously:

1. p(q − q′) > 0

2. q′(p′ − p) > 0,

where the condition (1.) means that q−q′ is overall positive on average for
the frequencies p (i.e., g tends to underestimate class C), which is precisely
the case of interest: this means that g is not doing well on C. And the
condition (2.) q′(p′−p) > 0 implies that we tend to overestimate classes in
which C has a low probability, which contradicts the general assumption
“diversity loss usually occurs for rarer classes” in Section 2.2.3. Therefore,
it seems unlikely that reweighting can worsen diversity loss, at least for
this measure.

2.5 Experimental results
2.5.1 Framework
We compare our methods in different contexts. Each context (g, b) is de-
fined by a generative model g to be compared to a baseline b (dataset or
model). We check if g has a diversity loss, comparatively to b. We have 18
contexts, as described below.

The baseline b is either a dataset or a PGAN [KALL18b] trained on
it (i.e., two possibilities here), and we try to fix the diversity loss when
applying EvolGan [RTH+20] with budget 10, 20, 40 (3 possibilities) and
algorithm DOPO [RTR+19], CMA [HO03] or random search (3 possibili-
ties): g can be any of these 9 combinations, and we consider the diversity
loss compared to one of the two different possible b, hence 18 contexts
(Table 2.3).

Different contexts have different diversity losses: typically, CMA or Ran-
domSearch lead to more diversity loss than DOPO.

We have checked that (naively) optimizing technical quality is detri-
mental to fairness (Section 2.5.2).

We show (Section 2.5.3) that applying reweighting according to target
classes is unsurprisingly more effective than reweighting according to unre-
lated strata, but the latter methodology still does mitigate fairness issues.

Then Section 2.5.4 compares various forms of user-assisted optimization
for tackling fairness issues.
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EG Diversity Remaining
variant loss diversity loss (%)

EG-CMA-10 0.675 97.587
EG-CMA-20 0.778 96.505
EG-CMA-40 0.872 90.098

EG-D(1+1)-10 0.108 70.592
EG-D(1+1)-20 0.204 94.112
EG-D(1+1)-40 0.333 88.999

EG-RandomSearch-10 0.675 87.333
EG-RandomSearch-20 0.785 88.270
EG-RandomSearch-40 0.876 96.438

Table 2.3: Diversity loss for class F (i.e., low aesthetics value according
to AvA) for EG compared to PytorchGanZoo (EG is an improvement of
PytorchGanZoo using K512 as an IQA for biasing the latent vaariables).
The diversity loss depends on how strongly we improve the GAN using
EvolGan (more budget = more improvement in terms of quality measured
by K512).
We also show (third column) how much the diversity loss is preserved in
spite of reweighting w.r.t. E: numbers < 100% show that a part of the
diversity loss is repaired. No number is greater than 100%: our method is
never detrimental.

2.5.2 (Naively) optimizing → less diversity

We train a PGAN [KALL18b] and then improve it using IQA as in [RTH+20]:
PGAN → EG10 → EG20 → EG40 (each “→” being an improvement in
terms of image quality by refining the latent variables using the image
quality assessment tool as a criterion[RTH+20]).

As noted in [RTH+20], the quality improvement in EvolGAN is related
to some diversity losses: for horses, we get rid of bugs such as horses with
3 heads, which is in some sense a sort of diversity loss. Unfortunately, this
also reduces diversity in the sense that relevant rare classes become rarer
(Table 2.3): there is a diversity loss from the dataset to the PGAN, and
this diversity loss is increased when we increase the budget of the GAN
improvement by EvolGan.
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Baseline Model M Diversity Percentage Percentage
loss of DL of DL

before remaining remaining
reweight with d = 2 with d = 4

PGAN EG-CMA-10 3 0.442 53.266 42.257
PGAN EG-CMA-20 3 0.513 49.901 32.176
PGAN EG-CMA-40 3 0.663 83.654 40.683
PGAN EG-D(1+1)-10 3 0.080 74.254 16.168
PGAN EG-D(1+1)-20 3 0.070 72.913 30.008
PGAN EG-D(1+1)-40 3 0.115 25.079 33.147
dataset EG-RandomSearch-0 3 0.314 31.699 25.398
dataset EG-RandomSearch-10 3 0.563 28.083 33.860
dataset EG-RandomSearch-20 3 0.644 33.280 40.709
dataset EG-RandomSearch-40 3 0.738 65.564 63.747
dataset EG-CMA-0 3 0.343 40.314 16.914
dataset EG-CMA-10 3 0.561 32.505 6.927
dataset EG-CMA-20 3 0.617 27.205 29.584
dataset EG-CMA-40 3 0.735 47.673 33.604
dataset EG-D(1+1)-0 3 0.312 40.628 10.630
dataset EG-D(1+1)-10 3 0.339 32.440 28.977
dataset EG-D(1+1)-20 3 0.347 95.618 11.370
dataset EG-D(1+1)-40 3 0.350 32.822 16.938

Table 2.4: Impact of reweighting with related variables on the diversity loss
for classes A, B, C, D: we see that the original diversity loss is significant
(4th column) and reduced a lot if we use 4 variables for reweighting (6th
column). Even 2 variables contribute quite well to a significant reduction
of diversity loss (5th column). Dataset: faces generated by StyleGAN2.
Strata used for reweighting: logits of the output layer of R discretized with
M = 3 and d = 2 (5th column) or d = 4 (6th column).
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2.5.3 Reweighting mitigates fairness issues
2.5.3.1 Classes A, B, C, D
Table 2.4 presents the diversity loss and the fixed diversity loss when using
reweighting. We use 2 or 4 variables correlated (though not equal) to the
target attribute, namely the discretized predicted probabilities of the 4
modalities of the target class. As variables are correlated to the target
problem, results are excellent.

We now switch to a more challenging case. Table 2.5 compares various
discretizations in the difficult context of reweighting variables unrelated
to the target variables. For example, (80,8) means that we use d = 80
variables and split each of them in M = 8 bins. We got the best results
with 10 variables discretized in 3.

There are four target classes for faces unrelated to emotions. The vari-
ables are the final layer of an emotion recognition network.

Still, in that difficult case, Fig. 2.2 shows how diversity losses are moved
in the right direction by the reweighting – not much, but beneficial, and
most importantly, not detrimental.
2.5.3.2 Class E: confirming results for reweighting with unrelated

variables
Table 2.6 and Table 2.7 present the impact of reweighting using the proba-
bilities of class A, B, C and D (discretized) on the diversity loss of class E.
(ABCD) and E are unrelated, so this is unsupervised fairness improvement.
2.5.4 Multi-objective optimization: only some forms of MOO

mitigate fairness issues
MOO typically has two phases:

• optimization run, building a possibly large Pareto front;

• selection of a reduced Pareto front for presentation to the user.

This does not cover all MOO methods. The second stage is not always
present, as some tools are equipped with a mechanism for navigating the
Pareto front. Also, sometimes the first stage includes inputs from the
human. We will nonetheless consider the framework above in the present
work.

As mentioned before, a simple solution for MOO is to do multiple simple
runs (MSR): just run the algorithm several times, and consider the several
outputs. We consider other methods, namely maximizing the hypervolume
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Number of Discretization DL before DL after
vars d M reweighting reweighting

1 2 0.431 0.421
1 3 0.431 0.428
1 5 0.431 0.435
1 8 0.431 0.430
2 3 0.431 0.403
2 5 0.431 0.431
2 8 0.431 0.433
4 2 0.431 0.414
4 3 0.431 0.403
4 5 0.431 0.428
4 8 0.431 0.427
10 3 0.431 0.395
10 5 0.431 0.423
20 2 0.431 0.419
20 3 0.431 0.401
20 5 0.431 0.432
20 8 0.431 0.428
80 2 0.431 0.419
80 8 0.431 0.428

Table 2.5: Diversity loss for (A, B, C, D) after reweighting, in our hardest
context (variables very uncorrelated to the target variable, namely E’). We
observe that in most cases, the reweighting is still beneficial compared to
0.431 originally, though this difficult case does not lead to drastic improve-
ments.
Dataset: faces generated by StyleGan2.
Strata: discretization of E’ with d ∈ {1, 2, 4, 10, 20, 80} and M ∈
{2, 3, 5, 8}.
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Figure 2.2: Hard case with unrelated reweighting variables: histogram of
diversity losses for (A,B,C,D) using reweighting based on strata of R’, over
each of 18 contexts (see text). The method is slightly beneficial; the average
moves from 0.431 to 0.395. We use the best method in Table 2.5, rerun
from scratch for mitigating the hyperparameter selection bias, getting the
same 0.395 value.
Dataset, strata, as in Table 2.5.
X-axis: DL.
Y-axis: number of contexts (out of 18) with DL falling in the given DL
bin.

32



Source Target d M DL Remaining DL(%)
PGAN EG-CMA 10 1 8 0.675 99.832
PGAN EG-CMA 20 1 8 0.778 100.444
PGAN EG-CMA 40 1 8 0.872 100.923
PGAN EG-D(1+1) 10 1 8 0.108 103.808
PGAN EG-D(1+1) 20 1 8 0.204 76.961
PGAN EG-D(1+1) 40 1 8 0.333 92.000
PGAN EG-RandomSearch 10 1 8 0.675 88.797
PGAN EG-RandomSearch 20 1 8 0.785 100.171
PGAN EG-RandomSearch 40 1 8 0.876 98.348
PGAN EG-CMA-10 2 8 0.675 96.660
PGAN EG-CMA-20 2 8 0.778 95.140
PGAN EG-CMA-40 2 8 0.872 89.906
PGAN EG-D(1+1)-10 2 8 0.108 103.808
PGAN EG-D(1+1)-20 2 8 0.204 89.274
PGAN EG-D(1+1)-40 2 8 0.333 98.751
PGAN EG-RandomSearch-10 2 8 0.675 87.870
PGAN EG-RandomSearch-20 2 8 0.785 91.072
PGAN EG-RandomSearch-40 2 8 0.876 97.075

Table 2.6: Impact of reweighting on diversity loss for class E when using
classes R as auxiliary variable. Part 1. We see that adding variables almost
always improves results, and cases in which reweighting is detrimental are
rare. Dataset: faces generated by StyleGan2. Sensitive variables for which
DL is computed: emotions. Strata: IQA values provided by R’, i.e., logits
of R, with discretization with d ∈ {1, 2, 3, 4} variables and M = 8 equally
likely bins per variable.
Observation: increasing d reduces the DL after reweighting.
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Source Target d M DL Remaining DL(%)
PGAN EG-CMA-10 3 8 0.675 95.538
PGAN EG-CMA-20 3 8 0.778 95.218
PGAN EG-CMA-40 3 8 0.872 89.552
PGAN EG-D(1+1)-10 3 8 0.108 90.259
PGAN EG-D(1+1)-20 3 8 0.204 81.139
PGAN EG-D(1+1)-40 3 8 0.333 84.623
PGAN EG-RandomSearch-10 3 8 0.675 86.845
PGAN EG-RandomSearch-20 3 8 0.785 87.502
PGAN EG-RandomSearch-40 3 8 0.876 95.705
PGAN EG-CMA-10 4 8 0.675 97.587
PGAN EG-CMA-20 4 8 0.778 96.505
PGAN EG-CMA-40 4 8 0.872 90.098
PGAN EG-D(1+1)-10 4 8 0.108 70.592
PGAN EG-D(1+1)-20 4 8 0.204 94.112
PGAN EG-D(1+1)-40 4 8 0.333 88.999
PGAN EG-RandomSearch-10 4 8 0.675 87.333
PGAN EG-RandomSearch-20 4 8 0.785 88.270
PGAN EG-RandomSearch-40 4 8 0.876 96.438

Table 2.7: Impact of reweighting on diversity loss for class E when using
classes R as auxiliary variable. Part 2. We see that adding variables almost
always improves results, and cases in which reweighting is detrimental are
rare. Dataset: faces generated by StyleGan2. Sensitive variables for which
DL is computed: emotions. Strata: IQA values provided by R’, i.e., logits
of R, with discretization with d ∈ {1, 2, 3, 4} variables and M = 8 equally
likely bins per variable.
Observation: increasing d reduces the DL after reweighting.
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for phase 1 and using various techniques such as IGD, EPS, RANDOM for
constructing a subset.

In particular, to extract 1 ≤ m ≤ n points from an approximate Pareto
set {x1, . . . , xn}, a range of approaches can be used:

• Random subset:
just pick up m of the xi, uniformly at random and without replace-
ment.

• HV:
pick up {xj1, . . . , xjm

} such that their Hypervolume Ch is maximal.

• Loss-covering, also known as IGD (inverted generational distance, [SAT04]):
pick up {xj1, . . . , xjm

} such that

Cl =
n∑

i=1
inf
j≤m
||F (xi)− F (xij

)||2

is minimal, where F (x) = (f1(x), . . . , fN(x)).

• COV (covering the Pareto-front):
pick up {xj1, . . . , xjm

} such that

Cd =
n∑

i=1
inf
j≤m
||xi − xij

||2

is minimal.

• Additive epsilon approximation (EPS, [PY00]):
pick up {xj1, . . . , xjm

} such that

Ce = nmax
i=1

inf
j≤m
||F (xi)− F (xij

)||∞

is minimal, where

F (x) = (f1(x), . . . , fN(x))

.

In domain-covering, we do the same as covering the Pareto-front (COV),
but over all generated points and not only the Pareto-front.

Tables 2.8 (target class is black) and 2.9 (target class is female Asian)
show that the best results concerning maximum diversity are obtained by
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Algorithm Selector Percentage
9 single-objective runs

NGOpt 9 domain-covering 33
NGOpt 9 eps 33
NGOpt 9 loss-covering 33
NGOpt 9 msr 33

CMA
CMA domain-covering 33
CMA eps 33
CMA loss-covering 44
CMA msr 66

Portfolio Discrete-(1 + 1)
PortfolioDiscrete(1 + 1) msr 16
PortfolioDiscrete(1 + 1) eps 33
PortfolioDiscrete(1 + 1) loss-covering 33
PortfolioDiscrete(1 + 1) domain-covering 83

Differential Evolution
DE loss-covering 16
DE eps 16
DE domain-covering 33
DE msr 55

Random Search
RandomSearch loss-covering 0
RandomSearch msr 33
RandomSearch eps 50
RandomSearch domain-covering 66

Table 2.8: Multi-objective inspirational generation: the target is the face of
a black person, originally very pixelized; the goal is to approximate it with
PytorchGanZoo. We consider with which probability PytorchGanZoo gen-
erates at least one face of the correct ethnicity. Each algorithm generates
nine faces.
The best selector consists of picking up the nine outcomes of nine single
runs (MSR: multiple single runs) or using domain covering, i.e., never us-
ing a Pareto-based measure.
In conclusion, multi-objective optimization does work for generating diver-
sity. However, we should not use Pareto-dominance and focus on multi-
ple outcomes of random single-objective runs or diversity in the domain
(“domain-covering” method), because fitness-based measures are too bi-
ased for being used for diversity.
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Algorithm Selector Percentage
9 single-objective runs

NGOpt 9 domain-covering 22
NGOpt 9 eps 0
NGOpt 9 loss-covering 5
NGOpt 9 msr 11

CMA
CMA domain-covering 27
CMA eps 11
CMA loss-covering 22
CMA msr 0

Portfolio Discrete-(1 + 1)
PortfolioDiscrete(1 + 1) msr 0
PortfolioDiscrete(1 + 1) eps 38
PortfolioDiscrete(1 + 1) loss-covering 16
PortfolioDiscrete(1 + 1) domain-covering 38

Differential Evolution
DE loss-covering 16
DE eps 22
DE domain-covering 5
DE msr 11

Random Search
RandomSearch loss-covering 5
RandomSearch msr 0
RandomSearch eps 11
RandomSearch domain-covering 33

Table 2.9: Counterpart of Table 2.8 for female Asian target. As in Table 2.8,
domain-covering performs best.
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domain-covering or by MSR, and not by MOO approaches focusing on
diversity over the Pareto front. The effective diversity measures are not
based on Pareto-dominance. The best results are obtained either by pure
MSR, using multiple runs and keeping all results, or by domain-covering,
i.e., creating a subset using diversity in the image domain.

This result is not so intuitive, so we ran additional experiments to check
if Pareto-dominance can be detrimental to diversity.

We conclude that Pareto-based MOO can be detrimental to
diversity even with a large budget and 16 generations instead of
1.

This is shown by Table 2.10: we do an additional experiment based on
Pytorch-Gan-ZOO and variants. We use both single-objective optimization
(EvolGan with budget 10000) and our MOO counterpart. We get a single
image per run for single-objective optimization, and we can estimate DL as
usual. We use MOO, with three objectives linearly combined in the single-
objective case: minimizing the squared of the injected latent variables,
maximizing the IQA score, and maximizing the discriminator score. We
use a large budget and many generated individuals so that problems can
not be attributed to the parametrization. We consider that the “frequency”
of a class is the frequency at which at least one of the outputs contains
that class (see Alg. 2).

We see that MOO by classical Pareto-dominance is not always solving
diversity issues. It works only when the method has over-optimized and
completely destroyed diversity (Table 2.10: results are < 100% in the last
column only if the diversity loss is > 95%). Whereas diversity in the
domain (domain-covering) or simple multiplication of runs (as in MSR)
works in many cases, optimization with Pareto-dominance can fail.

We conclude that counter-examples as in Fig. 2.1 are not an exception
but the standard behavior of Pareto-dominance: due to different scales
of quality depending on the frequency of classes, we can not reliably use
Pareto-dominance for selecting samples. MSR is the only method that did
not have counter-examples. MOO methods based on Pareto fronts were ok
only when the method for extracting representative images was based on
domain-covering, i.e., unsupervised correction.

2.6 Conclusion
Here is the list of the key findings of this chapter:

• Quality improvement degrades diversity:
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Original EG40 PF Subset d, M Diversity Uncancelled
model variant size loss loss (%)
PGAN EG-RandomSearch 16 COV 5,2 0.726 111.333
PGAN EG-CMA 16 COV 5,2 0.977 89.285
PGAN EG-D(1+1) 16 COV 5,2 0.707 116.297
PGAN EG-RandomSearch 16 IGD 5,2 0.72 112.165
PGAN EG-CMA 16 IGD 5,2 0.973 90.008
PGAN EG-D(1+1) 16 IGD 5,2 0.730 112.409
PGAN EG-RandomSearch 16 Random 5,2 0.697 118.724
PGAN EG-CMA 16 Random 5,2 0.969 89.622
PGAN EG-D(1+1) 16 Random 5,2 0.726 115.778
PGAN EG-RandomSearch 16 EPS 5,2 0.738 107.916
PGAN EG-CMA 16 EPS 5,2 0.977 88.095
PGAN EG-D(1+1) 16 EPS 5,2 0.709 116.377

Table 2.10: Column 6 shows the DL when moving from the original (column
1) to the improved version (column 2), and column 7 presents the part of
this DL which is not solved by applying MOO for generating 16 points.
There is a strong computational budget (10000) and a large generated set
(16 points) in the present context.
We consider that the result is ok if at least one of those 16 generations is
of the expected class.
Column 7 is frequently above 100%, i.e., results are worse than in the
single-objective case generating only one image: this shows that even with
favorable conditions, MOO based on Pareto-dominance can be detrimen-
tal.
Only MSR (running several times and gathering the results) or domain-
covering (i.e., good diversity for a side measure in the domain) provide
stable improvements in the user-assisted context (Tables 2.8 & 2.9).
Dataset: CelebaHQ (see https://github.com/tkarras/progressive_
growing_of_gans).
Model: PytorchGanZoo.
Method: described in Section 2.3.3.
Sensitive variables on which DL is measured: ethnicity.
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We checked that improving the visual quality degrades diversity when
biasing latent variables through IQA methods. The biasing effect is
consistent with known facts.
To mitigate this issue, we propose two methods.

– The first (Alg. 1) is a drop-in improvement of a generative model:
it can be applied as soon as we have some auxiliary features that
we can use for defining strata.

– The second one is user-assisted (Alg. 2) and can use MOO (either
with Pareto-dominance for selecting a subset or with diversity
preservation for some features in the domain) or MSR.

• Reweighting by related auxiliary variables:
Unsurprisingly, reweighting by auxiliary variables close to the target
classes is very effective at reducing the diversity loss. We cancel the
diversity loss when reweighting using the same target class. This
incurs a computational cost and does not solve quality inside each
class, but we recover target frequencies.

• Reweighting by unrelated auxiliary variables:
A good finding is that we never degrade performance by applying
reweighting, even when using unrelated variables. There are good
reasons for this (Section 2.4.2). We recommend reweighting by as
many variables as possible (at least as long as there is data enough for
computing statistics with enough precision). However, we acknowl-
edge that this has a computational cost.

• Using MOO, also without knowing categories:
The idea of using MOO for generating diversity is intuitively appeal-
ing. The only multi-objective method which was never detrimental to
diversity loss is MSR, i.e. simply running several times (with randomly
drawn linear combination coefficients) the single-objective method and
proposing the obtained solutions.
Domain-covering, which is an unsupervised selection as it uses auxil-
iary variables only (and not the target variables), was also satisfactory
and sometimes the best.
MOO with Pareto-dominance for selecting a final subset presented to
the user is risky: in spite of the intuition “MOO increases diversity”,
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we did increase the diversity loss when using Pareto-dominance be-
cause the quality measures have different ranges for different classes.
Effects as in Fig. 2.1 turn out to be a real issue when using MOO for
diversity.

Side remarks & caveats
• Combination with supervised fairness:

we considered purely unsupervised fairness, but we could do the same
in combination with given sensitive variables: after a first correction
for given sensitive variables, we can add a correction with respect to
some unrelated generic strata.

• Impact of the optimization method:
Tables 2.3, 2.4 and 2.10 show that CMA leads to more diversity loss
compared to random search or PortfolioDiscrete(1+1). This is reason-
able as the prior distribution is ignored by CMA, whereas it impacts
every other tested methods:

– Random search uses the prior distribution at each step for choos-
ing a point;

– Discrete (1 + 1) algorithms use the marginal of the probability
distribution for each modified variable.

We presented results for reweighting with statistics based on large datasets,
so that there was no problem for precisely estimating pi/pj as needed: with
small datasets, precision might be an issue.
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3
Enhancing Image Diversity in

Text-to-Image Generation

3.1 Introduction

Figure 3.1: Images generated with standard Stable Diffusion and our method
for the prompt “rose”, batch size = 5. Here, our method is shown to select
images not only diverse in colors, but also in ideas, compared to Stable
Diffusion.

In this chapter, we present Diverse Diffusion, i.e., modifications to the
Stable Diffusion algorithm that facilitate the generation of diverse images
and thereby help to create more inclusive art within a limited number of
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Stable Diffusion generations (and therefore less computational power) in
unsupervised fashion. Images generated with and without our approach
are illustrated in Figure 3.1.

We highlight the following contributions:

• A general unsupervised technique that can be applied to existing text-
to-image models to increase image diversity, which is essential for
generating realistic and varied images.

• Experiments that demonstrate the diversity advantages of our pro-
posed approach.

3.2 Diversity algorithms
There are different approaches to generating diverse point sets in an unsu-
pervised manner. For example, Latin Hypercube Sampling [MBC79], low
discrepancy methods [Nie92, Ham60, Ata04] and low dispersion. Here, we
focus on low dispersion, optimized by a very limited random search for
staying in the domain of validity of our latent variables. We aim to find
vectors in the latent space of Stable Diffusion that are distant from one
another. To accomplish this, we generate multiple vectors in the latent
space until we obtain a set that contains the required number of vectors
(determined by the batch size) and satisfies a specific distance requirement.

In the “baseline” setting, we generate images using the standard, un-
modified version of Stable Diffusion without imposing any distance require-
ments on the latent space.

In the “cap” setting, we enforce a minimum requirement of dmin on the
vectors corresponding to all pairs of images within a batch. We illustrate
the procedure of choosing a set of latent vectors V for batch size B and
minimum distance requirement dmin in algorithm 3.

In the “max” setting, we impose a maximum number of iterations on
searching for a new vector that would have a maximal minimal distance to
all the already selected vectors in the batch. We illustrate the procedure of
choosing a set of latent vectors V for batch size B and a maximum number
of iterations requirement Nmax in algorithm 4.

In setting “pooling cap” and “pooling max” we apply the same ex-
act methods as in “cap” and “max” but the distance is calculated differ-
ently. Specifically, the distance is computed between the vectors that were
initially processed by average pooling 8×8 which down-samples the vector
size to 4× 8× 8.
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Algorithm 3: Generating diverse vectors in the “cap” setting
Require: batch size B, minimum distance dmin
Ensure: Set of diverse vectors V

V ← ∅ {Initialize an empty set of vectors}
while |V | < B do

vnew ← GenerateNewVector() {Generate a new vector in the latent
space of stable diffusion}
if MinDistance(vnew, V ) ≥ dmin then

V ← V ∪ {vnew} {Add the new vector to the set}
end if

end while
return V {Return the set of diverse vectors}

We use two different settings for generating diverse image batches: stan-
dard experiment and long experiment.

The parameters of a standard experiment are the following:

• In the setting “cap” the minimal distance between latent vectors
should be at least 182

• In the setting “pooling cap” the minimal distance between latent vec-
tors (after pooling operation) should be at least 3.1

• In the setting “max” and “pooling max” the number of iterations after
which the farthest vector is found is 100.

The parameters of a long experiment are the following:

• In the setting “cap” the minimal distance between latent vectors
should be at least 183.

• In the setting “pooling cap” the minimal distance between latent vec-
tors (after pooling operation) should be at least 3.1.

• In the setting “max” and “pooling max” the number of iterations after
which the farthest vector is found is 10000.

The choice of settings provides variable diversity levels and variable
computational complexity. In the current chapter for small batch sizes
(3, 5, 10), we create both standard and long experiments, and for the big
batch sizes (50) we create only standard experiments. In the cap and pool-
ing cap setting, due to the distance limitations and no limit on a number
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Algorithm 4: Generating diverse vectors in the “max” setting
Require: batch size B, maximum iterations number Nmax
Ensure: Set of diverse vectors V

V ← ∅ {Initialize an empty set of vectors}
for b = 1 to B do

vfarthest ← GenerateNewVector()
for N = 1 to Nmax − 1 do

vnew ← GenerateNewVector() {Generate a new vector in the latent
space of stable diffusion}
if MinDistance(vnew, V ) > MinDistance(vfarthest, V ) then

vfarthest ← vnew
end if{Find the vector with the maximum minimum distance to
the existing set}
V ← V ∪ {vfarthest} {Add the farthest vector}

end for
end for
return V {Return the set of diverse vectors}

of iterations, the experiment for big batches becomes increasingly slower.
That is why, for purposes of limiting computational cost, we recommend
the “pooling max” method for batch sizes more than 50.

3.3 Evaluation Methods
In order to evaluate diversity of generated images, we use both quantita-
tive and human evaluation methods. For quantitative methods, we focus
primarily on color diversity image similarity metric LPIPS [ZIE18a]. In-
creasing image color diversity is an important aspect of ensuring general
diversity of the images: we would like to get representation for people,
animals, and objects of all colors.

3.3.1 Color diversity

To assess the color diversity in an image batch b, we employ a method
that involves extracting color information from each image in the batch
using the RGB color model, which represents colors as a combination of
red, green, and blue channels. Specifically, we compute the mean value for
each channel (Ri, Bi, Gi) in the given image i, and identify whether one of
these colors is predominantly present in the image i.

To determine the dominant color in image i with respect to a coefficient
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K, we define the image as having a dominant color of

• Red if Ri > K ×max(Gi, Bi),

• Green if Gi > K ×max(Ri, Bi),

• Blue if Bi > K ×max(Gi, Ri), and

• None if none of these inequalities are true.

We denote the dominant color of image i with respect to the coefficient
K as DK(i).

To evaluate color diversity of an image batch b, we compute a number
of dominant colors in that batch with respect to a coefficient K, NK(b).

NK(b) = 3−
∏
i∈b

(1− I(DK(i) == Red))

−
∏
i∈b

(1− I(DK(i) == Green))

−
∏
i∈b

(1− I(DK(i) == Blue)), (3.1)

where I is an indicator function and DK(i) is a dominant color of an image
i with respect to the coefficient K.

The first color diversity metric across the batches set B is an average
number of dominant colors present in the batches of that set with respect
to a coefficient K.

AvgK(B) =
∑

b∈B NK(b)
||B||

, (3.2)

where ||B|| is the total number of batches in the set B.
The second color diversity metric aims to compute proportion of batches

that contain at least one image predominantly exhibiting red, blue or green
color, considering RGB image encoding. This allows for the quantification
of color variability within a batch.

Specifically, for various values of a coefficient K and batch set B we
compute the proportion

C3K(B) =
∑

b∈B I(NK(b)) == 3
||B||

, (3.3)

where ||B|| is the total number of batches in the set B and I is an indicator
function.
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Another color diversity metric is the proportion of batches containing
images with different dominant colors (not all the images in a batch are
predominantly red, blue or green).

Specifically, for various values of a coefficient K and batch b we compute
the proportion

C2K(B) =
∑

b∈B I(NK(b)) >= 2
||B||

, (3.4)

where ||B|| is the total number of batches in the set B and I is an indicator
function.

3.3.2 LPIPS metric

Similarly to [HHL+23] and [HTDX22], we use LPIPS (Learned Perceptual
Image Patch Similarity) [ZIE18a] to evaluate the diversity of the images
generated by Stable Diffusion.

We measure the pairwise similarity between images in a batch and com-
pare the obtained values for different modifications of Stable Diffusion gen-
eration algorithm.

3.3.3 Ethnicity and gender classification for images portraying
humans

As mentioned in [The23], Stable Diffusion may lack diversity in ethnicity
representation. That is why, for the prompts that we use for the human face
generation, we compare ethnic diversity in between our methods and basic
version of Stable Diffusion. In order to identify the ethnicity of a person
present on an image, we use DeepFace ethnicity recognition [TYRW14]. In
particular, we identify the following groups of ethnicities:

• Black,

• Asian,

• Hispanic,

• White or Middle Eastern.

For gender classification (male/female), we also use DeepFace.We compute
the percentage of batches where all pairs of genders and ethnicities are
present or at least 3 out of 4 ethnicities are present (similarly to colors).
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3.3.4 Multiplicative improvement
Our method aims to increase representation of underrepresented groups.
That is why for all the metrics mentioned above we compute percent-
age versus multiplicative improvement score. Here percentage stands for
the percentage of batches that follow some characteristic C (for exam-
ple, contain images of Asian men) and multiplicative improvement stands
for multiplicative increase in this percentage for our preferred method
(“pooling cap”) compared to the baseline method (standard Stable
Diffusion). By using this metric, we can evaluate our efforts in promoting
the inclusivity of underrepresented classes.

3.4 Experiment setting
As a baseline, we use Stable Diffusion v-5 with PNDM Scheduler.

We measure diversity using LPIPS or artificial classes (image hue) or
human-centered criteria (gender/ethnicity) and check various batch sizes.
We use machines with 8 Tesla V100-SXM2-32GB GPUs and 80 x86 64
CPUs.
The full code is provided in https://anonymous.4open.science/r/DiverseDiffusion-
1012.
3.4.1 Experiments on small batches
For our small batch experiment setup, we choose the following list of
prompts:

• “face”, ‘

• ‘rose”,

• “butterfly”,

• “cat”,

• “horse”,

• “car”,

• “ornament”,

• “bird”,

• “color”,

• “a professional photograph of an adult person face”,
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• “photo of an animal in the grass” and

• “octane, hyperrealistic, backlit”.

In each experiment, we consider batches of 3, 5 and 10 images in order
to compute diversity metrics in each of these batches, and to compare our
modifications with original Stable Diffusion. For each batch size and each
modification, we create at least 2500 batches.
3.4.2 Experiments on big batches
For our big batch experiment setup, we choose the following list of prompts:

• “a professional photograph of a man face”,

• “a photograph of a person with different colored eyes”,

• “a passport-style photograph of a person’s face”,

• “a professional photograph of an adult person face”,

• “a close-up photograph of an elderly person’s face” and

• “a beauty shot of a model’s face”.

These prompts are all centered on human photos and thus allow us to
evaluate not only LPIPS and color diversity but also gender and ethnicity
variation, which are crucial to ensure in any human-centered applications
of diffusion models. In each experiment, we consider batches of 50 images
in order to compute diversity metrics in each of these batches and compare
our modifications with the baseline: original Stable Diffusion. For each
modification, we create at least 900 batches.

3.5 Experiments and results
An example of image batches generated with our method “pooling cap” and
original Stable Diffusion is presented in Figure 3.2. In two randomly chosen
examples among all batches generated by the baseline and “pooling cap”
for the prompt “a photograph of a person with different colored eyes” and
batch size 50, we can see that while getting images corresponding to the
prompt remains difficult for our chosen method, we still get improvement
both in number of images corresponding to the prompt and ethnic diversity.

Further, we present the experimental evaluation of our proposed meth-
ods for promoting diversity in generated image batches. We assess the color
diversity, gender and ethnicity representation, and image diversity using

49



Figure 3.2: Examples of images generated with the prompt “a photograph of
a person with different colored eyes”: pooling cap against baseline Stable
Diffusion, batch size=50. Images corresponding to the “expected output”
of the prompt are highlighted in red.

the LPIPS metric. The experiments are conducted on various prompts and
compared against the baseline Stable Diffusion method.

3.5.1 Color evaluation

In this subsection, we evaluate the color diversity of the generated im-
age batches. We present multiplicative improvement results, summariz-
ing the color diversity improvement for various values of the coefficient
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K across different prompts specified in Section “Experiments on small
batches”. Other experiment results are provided in the Appendix B.

Figure 3.3: Multiplicative improvement of percentage of batches contain-
ing images with all 3 dominant colors: pooling cap against baseline Stable
Diffusion, depending on K as specified in the text and batch size bs. Im-
provements are greater on the left, i.e. more difficult cases.

51



In Figure 3.3, we can see that in majority of the cases using pooling cap
method does not decrease the representation of batches with all 3 colors
dominance. We also can see that we get very high (> 2.5) improvement
coefficient numbers in cases where color dominance is defined using coeffi-
cient k = 1.1, which significantly increases the number of batches featuring
this rare characteristic.

Figure 3.4: Multiplicative improvement for the percentage of batches con-
taining images of at least 2 of the 3 categories: the improvement is greater
for more difficult cases, which are on the left (pooling cap against baseline
Stable Diffusion method).

In Figure 3.4, we can see that in majority of the cases using pooling cap
method does not decrease the representation of batches featuring at least
2 dominant colors. Similar to figure 3.3, we observe very high (> 2.5)
improvement coefficient numbers only in cases where color dominance is
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defined using coefficient K > 1, which significantly increases the number of
batches featuring this rare characteristic. We also can see that for modes
where having at least 2 dominant colors per batch is a rare characteristic
(less than 50% of batches feature it), we always have improvement coeffi-
cient > 1, thus increasing the color diversity.
3.5.2 Gender and ethnicity evaluation
Here, we evaluate the impact of our proposed method on the diversity of
gender and ethnicity representation in the generated image batches.

Figure 3.5: Multiplicative improvement (increase) of percentage of batches
containing various ethnicity + gender pairs: we get a greater improve-
ment for more difficult cases (pooling cap against baseline Stable Diffusion
method).

Our results, as illustrated in Figure 3.5, demonstrate a remarkable en-
hancement in the representation of underrepresented categories. This im-
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provement is consistently observed across all ethnicity/gender pairs that
initially appeared in less than 60% of the batches. Notably, our cap pooling
technique has led to a substantial increase in their presence, with certain
categories being up to 2.4 times more prevalent than in the standard Stable
Diffusion version.

While we see some detrimental results for Hispanics representation, it
is important to note that ethnicity identification based solely on a per-
son’s image is not always accurate for artificial intelligence methods. In
this research, we primarily focus on the diversity between white and black
individuals, as they can be visually distinguished with minimal ambiguity
[MTB+22]. In Figure 3.5, we observe a positive improvement in the rep-
resentation of black individuals, both male and female, compared to the
baseline results for Stable Diffusion.

Overall, these findings highlight the effectiveness of our approach in pro-
moting diversity and addressing underrepresentation in gender and ethnic-
ity across various image batches.
3.5.3 LPIPS evaluation
In this subsection, we evaluate the generated image diversity using the
LPIPS metric. LPIPS measures the perceptual similarity between images
based on deep neural network representations. A lower pairwise LPIPS
score indicates greater diversity among the generated images.

Here we compare the performance of different methods, including the
baseline and our proposed “pooling cap” method, across different batch
sizes.

Figure 3.6 presents the average batch pairwise LPIPS distance for a
batch size of 3. We can see that for most of the experiments “pooling cap”
method proves to be more diverse than the baseline, while for certain cases
such as “face”, baseline outperforms “pooling cap” . We also notice that
“pooling cap” is not the single method that performs well. Others, such
as “cap”, prove to be the best for various prompts as well. For example:
“rose”, “ornament” and “car”.

Figure 3.7 illustrates the average batch pairwise LPIPS distance for a
batch size of 5. We can see that for most of the experiments “pooling max”
method proves to be most diverse among all the methods outperforming
“pooling cap”, while “pooling cap” is still better than the baseline for most
of the cases. Similarly to Figure 3.6, we can also notice that for the cases
where baseline had a small average LPIPS distance (for instance “octane”
and “photo of an animal”), all the proposed methods significantly outper-
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Figure 3.6: Average batch pairwise LPIPS, batch size=3 : no clear conclusion
overall, due to the small batch size.

form the baseline. This fact shows that even for small batches, our methods
provide diversity benefits in cases when it was really lacking.

Figure 3.8 showcases the average batch pairwise LPIPS distance for a
batch size of 10. Here, we can see that for most of the experiments “pool-
ing max” is the most diverse among all the methods, while “pooling cap”
is still better than the baseline for most of the cases. We again notice
that in cases where the baseline had a small average LPIPS distance (for
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Figure 3.7: Average batch pairwise LPIPS, batch size=5: the two Pooling
methods are often better than the baseline, though results are clearer for
batch size 50.

instance “octane”), all of the proposed methods significantly outperform
the baseline. This fact shows that even for small batches, our methods
provide diversity benefits in cases when it was really lacking.

In contrast to the results presented in Figure 3.6, in Figure 3.8 “pool-
ing max” method shows to always outperform the baseline. This observa-
tion indicates that our methods provide better diversity guaranties for the
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Figure 3.8: Average batch pairwise LPIPS, batch size=10. The two Pooling
methods are often better than the baseline, though results are clearer for
batch size 50.

bigger batch sizes.
In contrast to the results shown in Figures 3.6, 3.7 and 3.8, in Figure 3.9

we can see that the “pooling cap” method is consistently highlighted as the
most diverse across all experiments. This emphasizes that larger batch sizes
lead to better diversity due to the increased availability of reference points
for each new image. This experiment strengthens our earlier observations
on color diversity and solidifies the superiority of the “pooling cap” variant
over the standard Stable Diffusion approach in terms of diversity.

For the experiment presented in Table 3.1, we compute LPIPS distance
between several image pairs for the same prompt (not necessarily in the
same batch) and then average it between different prompts.
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Figure 3.9: Average batch pairwise LPIPS, batch size=50. For this batch
size,in all cases pooling methods (both max and cap) are beneficial to
diversity as measured by LPIPS.

Method average LPIPS
Baseline 0.354 ± 0.004

ENTIGEN 0.325 ± 0.004
Pooling cap 0.294 ± 0.005

Table 3.1: Average pairwise LPIPS value across different batches with the
same prompt.

We do this experiment across standard Stable Diffusion, our preferred
method “pooling cap” and another diversity method and ENTIGEN [BYMC22]
diversity method applied to the same prompts as in subsection “Experi-
ments on big batches”. More precisely, to each prompt, we add either
“irrespective of their gender” or “irrespective of their color”. We can see
that even though our generation is focused mainly on batch setting, our
method achieves better diversity both than Stable Diffusion and ENTI-
GEN, that was specifically designed to eliminate human-centered biases
such as gender and ethnicity.

3.6 Conclusions
In conclusion, our contributions in this chapter include

1. a general technique that can be applied to existing text-to-image mod-
els to increase image diversity, which works in an unsupervised manner
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with a negligible overhead and

2. experiments that showcase the diversity advantages of our proposed
approach applied to Stable Diffusion, through classification (both im-
age hue and gender/ethnicity) and LPIPS measurements.

Experimental results highlight the impact of our proposed method on
color diversity. By analyzing the multiplicative improvement in the batches
containing images with dominant colors, we observe that the “pooling cap”
method consistently maintains or increases the representation of batches
with all three dominant colors. Additionally, we notice significant enhance-
ment when using the color dominance coefficient K > 1 (i.e., cases in
which success is rarer, hence the problem is more difficult). These find-
ings validate the effectiveness of our approach in promoting diverse color
compositions in generated images.

Our experimental results consistently demonstrate the superiority of our
“pooling max” and “pooling cap” methods over the baseline (standard Sta-
ble Diffusion) in terms of average pairwise LPIPS distance within batches.
This evaluation metric serves as a reliable measure of image diversity, and
our methods consistently outperform the baseline, showcasing their ability
to generate more diverse images. These findings highlight the effectiveness
of our approach in expanding the range of image variations and improving
overall diversity.

Furthermore, the results show a notable improvement in the representa-
tion of underrepresented categories across different ethnicity/gender pairs.
The “pooling cap” method led to a substantial increase in the presence
of these categories, with some categories being up to 2.4 times more fre-
quent, compared to the baseline. It is important to acknowledge the inher-
ent limitations of ethnicity identification based solely on visual cues, but
our focus on improving the representation of underrepresented categories,
particularly between white and black individuals, aligns with the goal of
promoting diversity and inclusion in image generation.
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4
Generative Image Privacy

4.1 Privacy in the age of expansive data

Figure 4.1: Schema for both data poisoning and generative privacy methods.
We take the original image (OI) and create an image that is recognisable by
human observers while being unlikely to be identified by image recognition
methods using
(i) classic pixel-based approach:
adding pixel noise such that it makes the modified image in the embedding
space closer to the target image than to the original image,
(ii) (our approach, PrivacyGAN):
generation of visually similar but distant images in the embedding space.
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In this chapter, we propose a general approach to the use of
generative methods for privacy. We train our methods to be effective
for embedding methods, on which pixel-based methods such as Fawkes used
to fail. Our goal is to create images that resemble original photographs and
are suitable for sharing on social media platforms, while also preventing
identification by modern image recognition neural networks without us-
ing anonymization. To achieve this, we explore the effectiveness of two
generative methods: a generative adversarial neural network StyleGAN
[KLA19b], and the autoencoder VQGAN [ERO21]. These generative meth-
ods are known for their realistic image generation capabilities, which adds
an added layer of difficulty for neural network recognition.

By modifying facial images using generative methods, we aim to pre-
serve their recognizability to human observers while rendering them un-
recognisable to many existing image recognition neural networks. Inspired
by pixel-based methods like Fawkes [SWZ+20a], we propose modifying the
generated “private” images towards a different target image in the embed-
ding space and evaluate the robustness of our approach against unknown
image recognition neural networks.

We validate our privacy methods on the Labeled Faces in the Wild
(LFW) dataset [HMBLM08], as well as introduce a new dataset of face
crops extracted from Casual Conversations [HBD+21] to ensure their ef-
fectiveness in various environments. In Fig. 4.1 we present the schema of
image modification using both pixel-based and generative methods.

Our proposed generative tools make subtle modifications to user images
without adding pixel noise, so the resulting photos look natural and pro-
tect user privacy. Our algorithms operate within a black-box framework
and demonstrate their efficacy against image recognition techniques they
were not specifically trained on. We offer flexibility in selecting methods
and privacy settings and conduct a comparison between our approach and
existing state-of-the-art privacy protection methods, such as Fawkes.

To sum up the contributions of this chapter, we

• propose a novel approach to facial image privacy based on generative
methods;

• create a new privacy evaluation approach based on the percentage of
dataset images that are closer in an embedding space to a modified
“private” image than to an original image;

• propose a new facial image dataset extracted from the Casual Con-
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versations dataset [HBD+21] videos;

• evaluate the privacy of the modified images against various embedding
methods (including transfer to embeddings not used in our privacy
method) and provide human evaluation of image quality for state-of-
the-art and novel privacy methods.

4.2 Privacy Algorithms
4.2.1 A well-known pixel-based method: Fawkes.
Fawkes [SWZ+20a] is a data poisoning method that presents subtle image
perturbations to the images. One of its main features is the concept of tar-
get image: by suggesting elements from a side target image, Fawkes ensures
that the modified image will be recognised as another person by neural net-
works, thus ensuring privacy. Unlike just maximising the distance between
the embedding of the original image and the modified image, this method

• helps to keep the embedding of modified images within a valid range
for a given dataset and

• ensures that the embedding of the modified image does not stay close
to its original version in the given dataset.

The idea of Fawkes is to pair each original image (OI) with a target
image (TI). Then Fawkes associates to each original image a ‘cloak image’
(CI) which consists of noise obtained by optimising the following loss:

LFawkes = ||emb(TI)− emb(OI ⊕ CI)||,

where:

• OI is an original image;

• ⊕ is capped addition;

• emb is an embedding method used for cloak optimisation in order to
obtain a modified “private” version of an original image;

• TI is a target image; the private version of OI should be labelled the
same as TI by the chosen image recognition system;

• ρ is a parameter that caps the noise strength;

• CI < ρ is a cloak or a noise that should be added to OI in order for
it ensure its’ privacy;
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• OI ⊕ CI is the published rendition of OI.

In our experiments, by default, we use the “high” mode of Fawkes (as
mentioned in [SWZ+20b] and [SWZ+20a]), since it provides a decent level
of protection, and it is possible to compare this setting of Fawkes with our
methods.

4.3 Privacy algorithms: generative makeup transfer
method AMT-GAN

In this chapter, we compare the results of our method PrivacyGAN based
on generative techniques such as StyleGAN [KLA19b] and VQGAN[ERO21]
to a method for generative makeup transfer known as AMT-GAN [HLZ+22].

The objective of AMT-GAN is to produce adversarial images that in-
corporate the makeup style of reference images. Although AMT-GAN
introduces more alterations to the original image, it confines these modifi-
cations to the makeup application areas, thus resulting in visually natural
images, as demonstrated by the FID results. The authors of the method
employ LPIPS [ZIE+18b] loss to retain image similarity to the original,
which we also utilise in our work.

In the main part of the chapter, we mention that while photographs
of individuals wearing makeup may look appropriate and natural to some
people, there are certain drawbacks to this approach. Firstly, publishing
photos with makeup may be deemed unsuitable for certain groups of indi-
viduals. Secondly, if the face in the photograph is not clearly discernible,
AMT-GAN may not recognise it and may not generate a private version
of the image, unlike Fawkes [SWZ+20a] and our method.
4.3.1 Our proposed generative methods based on VQGAN and

StyleGAN
Our proposal involves utilising generative models for privacy protection,
with a focus on generating an image that closely resembles the original
in visual appearance while safeguarding users against image recognition
attacks. Our objective is not to anonymize the image. In this work, we
expand on the idea of target images introduced in Fawkes. We use target
images to ensure that the modified version of an image is closer to the
target image than the original image in the chosen embedding space.

To select target images, we choose from images in the dataset that
have not been used in experiments. For each specific image, we select a
target image based on its distance from the original image in the chosen
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embedding method used for optimization. The chosen target image should
be far enough from the original image to ensure effective privacy protection.

We select the loss function L based on the goal of preserving the identity
of the original image (OI) for humans while ensuring that the generated
image (GI) embedding is as close as possible to the distant target image
embedding. For this purpose, we use the Learned Perceptual Image Patch
Similarity (LPIPS) distance for the preservation of OI identity and optimise
the embedding distance between the generated image (GI) and the target
image (TI) to achieve the closest possible embedding.

The loss for any generated image always consists of the sum of the
following parts:

• LPIPS distance between generated and original image

• For each of the embeddings used for optimisation, coefficient K mul-
tiplied by the mean squared distance between the modified “private”
image embedding and target image embedding.

Lgenerative

privacy
= LPIPS(OI, GI) + K ×

∑
emb∈

embeddings

|| emb(GI)− emb(TI)||.

The hyperparameters of the loss described are

• the coefficient K (i.e., weight compared to LPIPS) for the embedding
distance,

• the learning rate,

• the batch size, and

• the number of iterations.

4.3.2 Generative Privacy Algorithm: PrivacyGAN
Here, we describe PrivacyGAN, an algorithm that we propose for creating
private versions of facial images.

As input to the algorithm, we use an original image OI and a target
image TI. The algorithm aims to produce an image GI which would be a
“private” version of OI, unrecognisable by many image recognition neural
networks. In order to do that, we are using generative methods such as
StyleGAN and VQGAN. TI is chosen randomly among the images furthest
in embedding space from OI.
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Algorithm 5: PrivacyGAN: Private image generation
Require: OI: Original Image
Ensure: GI: Generated Image

TI ← Target Image {(distant from OI in the embedding space)}
z ← random
G← image generation method
K ← optimisation coefficient
chosen emb← list of embedding methods for optimisation (we distance
GI from OI in these embedding spaces)
for i in range(0, num iterations) do

GI ← G(z)
emb dist← 0
for emb in chosen emb do

emb dist += ||emb(GI)− emb(TI)||
end for
lpips dist←LPIPS(GI, OI)
loss← lpips dist + K · emb dist
z ← update(z, loss,∇loss)

end for
return GI

The algorithm consists of an iterative optimisation process, where
num iterations represents the number of iterations and G is the image
generation method. In the latent space of G, we find a latent variable
z and generate an image G(z), which we refer to as GI. For each of the
embedding methods in the set chosen emb, in each iteration of the al-
gorithm, we compute the embedding distance between GI and TI, as well
as the LPIPS distance [ZIE+18b] between images GI and OI. We use the
computed distances to calculate the Lgenerative

privacy
that we mention as ’loss’ in

the algorithm.

4.4 Evaluation Methods
4.4.1 Metrics for Privacy

In order to evaluate the privacy of generated images, it is important to
determine how far the generated image is from the original in the dataset.
After applying an image recognition neural network, attackers may choose
to verify if the person on the image matches the top few possible results.
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That is why the method would work better for privacy protection if:

1. the modified image would not be recognised as its original version;
and

2. the original image would be far away from the modified one in the
embedding space.

We ensure 2. not only by using existing evaluation methods such as
Recall@k that help us to make sure that the modified “private” image is
far from the original in absolute values but also by introducing a novel
evaluation method that verifies the original and modified image being far
in embedding space relative to the dataset size.

To measure the distance from the original image to its modified private
version, we use the following privacy metrics: Recall@k and Percentage.

Recall@k for the set of query images L (which can either be original or
modified images) and test images M , is defined as

Recall(L, M, k) = 100

∑
q∈L

1Id(q)∈Id(N(q,k,M))

||L||
,

where
• function Id maps the set of people’s images to the set of (unique)

identities of the individuals present on these images;

• function N(q, k, M) returns a set of k images from M that have the
closest embedding to the one of the query image q.

We propose the use of a new metric, called the “Percentage”, in addition
to the Recall metric, to evaluate the effectiveness of our privacy methods.
The reason for introducing this new metric is to ensure that the modi-
fied image is not only far from the original image in absolute terms, as
ensured by Recall@k, but also in terms of the percentage of dataset size.
This provides a common privacy metric that can be used to compare the
effectiveness of our methods across different dataset sizes.

Percentage is the proportion of images for each query image from the
dataset L in between the query image and the closest image with the same
identity from the dataset M :

Percentage(L, M, k) = 100
∑
q∈L

Between(q, N(q, 1, M))
||L|| × ||M ||

,

where
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• function Between(q1, q2) returns the number of images in the dataset
M that have a smaller distance to the embedding of q1 than the dis-
tance in-between the embeddings of q1 and q2.

4.4.2 The problem of transfer

In practical scenarios, it is crucial that privacy methods are effective against
various image recognition neural networks. We optimise our privacy meth-
ods to be effective for specific embeddings, and transferring to a different
embedding method can be challenging as new methods are continually
emerging. It is impossible to guarantee that privacy methods will be effec-
tive against future attacks, as some methods have been broken by newer
recognition neural networks [RDT21]. To evaluate the effectiveness of our
proposed methods, we conducted two sets of optimisation experiments.

The first experiment involves optimising StyleGAN and VQGAN image
generation to be effective against the FaceNet embedding method. We aim
to make the FaceNet embedding of the generated image distant from that
of the original image during the optimisation process. We compare our
proposed methods to Fawkes, which uses the same embedding method for
optimisation, in Table 4.1. Additionally, we aim to test the transferability
of our methods to embedding methods introduced after FaceNet, which
Fawkes does not prove to be effective against [RDT21].

The second experiment involves optimising StyleGAN and VQGAN im-
age generation using MagFace and MobileFaceNet embedding methods,
which have been shown to increase the robustness of generated images. We
also compare them to the makeup transfer method AMT-GAN [HLZ+22]

4.5 Datasets and embeddings
4.5.1 The Labelled Faces in the Wild

The dataset [HMBLM08] contains multiple images for each person, with
the number of images per person varying between 1 and 530. To ensure
fairness, we extract a sub-dataset from the original dataset, which includes
5 randomly chosen images per person. We exclude images of people who
have less than 5 photos present in the dataset. This sub-dataset is referred
to as LFW in the following sections of this work.

4.5.2 The Casual Conversations dataset

The Casual Conversations dataset (CC) [HBD+21] comprises 45186 videos,
each of which features one person.
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We select 997 videos and extract 5 face crops of size 456×456 per person
present in the dataset (in case the video contains face crops of a required
size).

The process of selecting these face crops is as follows:

• We select all the time frames from the video featuring a specific person.

• We check if, among these time frames, there are at least 5 non-
consecutive (±10) time frames that satisfy the following conditions:

– they contain a face crop of a size at least 456×456 with a margin
of size 100;

– average brightness of a time frame is at least 70. This condi-
tion is required since, among the videos in the CC dataset, there
are many that were recorded in complete darkness, and it is not
realistic to have such face crops as profile pictures.

• If there are more than 5 time frames selected, we randomly choose 5
of them and add them to the dataset.

We make sure that we don’t select successive frames of the video since
they could contain identical face crops. For the confounders set, we ran-
domly choose different people’s face crops that also satisfy conditions 1 and
2 and do not feature a person who was already selected for our primary
dataset before.

The key difference between our novel dataset and LFW is that faces
in our proposed dataset have similar backgrounds and are taken within a
short timeframe, creating an additional challenge for privacy protection.
That lack of variety makes this particular dataset very interesting for our
research. By testing our methods on it, we are able to ensure that, even if
there are many very similar photos of the same person in the dataset, the
proposed privacy tools can still be effective. It is particularly important in
cases where people publish their images from similar locations on different
platforms over the internet.
4.5.3 Our proposed methods for transfer to unknown embed-

dings: optimising on multiple embeddings
The embedding methods that we are using in this work are the following:

• FaceNet [SKP15];

• ArcFace [DGXZ19];
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• SphereFace [LWY+17];

• MagFace [MZHZ21];

• MobileFaceNet [CLGH18] with implementation from the FaceX-Zoo
library [WLH+21] and

• ResNet 152 [HZRS16] with implementation from the FaceX-Zoo li-
brary [WLH+21].

We evaluate the effectiveness of our proposed privacy methods in a
black-box setting (i.e., robustness to unknown image recognition methods
not used in the privacy method). We optimise the generated image for
one or two embeddings from the list and then check the generated image
against all the other embeddings. Thus, we make sure that our privacy
methods transfer well to unknown embeddings and can be used for the
privacy protection of real photos published online.

4.6 Experiments and Results
Here we define the settings and notations that we use in our experiments.

We set the hyperparameters of the generative privacy loss (Lgenerative

privacy
) for

our experiments in the following way: the learning rate to 0.01 and the
batch size to 32. The only parameters that we modify from experiment to
experiment are the coefficient K and the number of iterations.

We have introduced the notations “o.i” and “m.i” to represent the orig-
inal image and the modified image generated by any privacy-preserving
algorithm, respectively. For our recall evaluation, we select either

• the original image (o.i. context) or

• the modified image (m.i. context)

as the query image, where the dataset used for recognition includes
modified images and confounders for the former and includes the original
images and confounders for the latter.

In all metric calculations, we also use a set of confounders, which are not
used as queries in our experiments and are sourced from the same dataset
as the original images. The number of confounders is always less than or
equal to 1

5 of the number of original images. To compare privacy protection
methods, we use the average value of the transfer recall (i.e., Recall@10) for
all embeddings for which the algorithm was not optimized. Incorporating
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confounders in our experiments brings us closer to real-world scenarios,
where datasets may contain unrelated images that can potentially affect
the experiment results.

Moreover, in order to compare VQGAN, StyleGAN, and Fawkes to one
another, we use different sets of parameters chosen to match the transfer
recall results. Thus, we are able to compare the generated image quality
and see which of the methods generates the best images in terms of image
quality for a given privacy performance (measured by recall).

Later in this section, we use the following notations:

• By standard version of StyleGAN
we mean PrivacyGAN equipped with StyleGAN optimized with a coef-
ficient K = 0.03 for embedding distance in the loss and 128 iterations;

• By standard version of VQGAN
we mean PrivacyGAN equipped with VQGAN optimized a coefficient
K = 0.03 for embedding distance in the loss and 1000 iterations;

• By StyleGAN x y / VQGAN x y

we mean PrivacyGAN equipped with StyleGAN/VQGAN optimized a
coefficient K = x for embedding distance in the loss and y iterations.

4.6.1 Experiment 1: Comparing Pixel-Based and Generative
Methods Optimised for One Embedding on the LFW Dataset

In Table 4.1, we compare standard versions of VQGAN and StyleGAN
and their versions StyleGAN 0.003 500 and VQGAN 0.005 128 that we
prepare specifically to match the privacy results of Fawkes. With this
parametrization, they have the same transfer recall score, which allows us
to compare fairly the image quality of our proposed generative methods
and the state-of-the-art pixel-based method Fawkes.

The transfer recall values (average values of Recall@10 for other methods
from the list) are

• 62.16% for StyleGAN,

• 89.28% for StyleGAN 0.003 500,

• 65.49% for VQGAN,

• 90.07% for VQGAN 0.005 128,
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Figure 4.2: Experiment 1: Examples of original images from the LFW
dataset and their counterparts modified by different privacy meth-
ods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimization), and Fawkes. Here we
can see that, while generative methods in general add more modification
to an image than Fawkes, generative methods produce realistic images and
do not add pixel noise. Study based on human ratings in Table 4.8.

• 90.90% for Fawkes.

In order to make sure that image privacy is robust against various facial
recognition systems, we study a transfer to different embedding methods
(ArcFace, MagFace, SphereFace, MobileFaceNet, ResNet 152). Some re-
sults are in Table 4.2 (SphereFace) and in Table 4.3 (MagFace).

More results can be found in the Appendix C.
Examples of original images from the LFW dataset and their modifica-

tions obtained by our methods and by Fawkes are presented in Fig. 4.2.
More examples are in the Appendix C.

Overall, from Tables 4.1, 4.2 and 4.3, we note that with a standard
set of parameters, VQGAN and StyleGAN are much better for privacy
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than Fawkes. In order to match Fawkes privacy results, we need to change
the VQGAN and StyleGAN parameters tenfold. While these parameter
changes decrease privacy significantly, generative methods still have a dis-
ruptive effect on image quality.

It is worth noting that optimising generative methods using a single em-
bedding method is insufficient for adequate facial image privacy protection.
In the case of transferring images to MagFace (Table 4.3), the correct iden-
tity for the modified image is often among the top 5 possibilities. Thus,
in the next subsection, we use two different embedding methods in the
optimisation process to generate private image versions.

Furthermore, we have observed that combining Fawkes poisoning with
our proposed methods can be advantageous for facial image privacy pro-
tection. We expand on that in Appendix C.
4.6.2 Experiment 2: Comparing StyleGAN and VQGAN Opti-

mised with 2 Embedding Methods on the LFW Dataset
We now compare standard versions of VQGAN and StyleGAN together
with other specific versions: StyleGAN 0.02 500 and VQGAN 0.04 128,
StyleGAN 0.02 1000 and VQGAN 0.03 512.

These versions are proposed so that they have similar transfer recall
scores in each pair. Specifically, average transfer recall scores for different
methods are:

• 20.12% for StyleGAN,

• 32.33% for StyleGAN 0.02 500,

• 36.23% for StyleGAN 0.02 1000,

• 42.41% for VQGAN,

• 36.99% for VQGAN 0.03 512 and

• 33.07% for VQGAN 0.04 128.

We create these specific versions of VQGAN and StyleGAN so that we
can fairly compare the quality of the generated private images produced
by the generative methods. We want to know which method produces the
best image quality for a given threshold of our privacy metric.

An example of an evaluation result without transfer is presented in Table
4.4 for MagFace and in 4.5 for MobileFaceNet.
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We also study the transfer to different embedding methods. One of the
results of this study (for the embedding method SphereFace) is presented
in Table 4.6. Transfer results for other embedding methods can be found
in the Appendix C.

Figure 4.3: Experiment 2: Examples of images from the LFW dataset
modified by different privacy methods: StyleGAN, StyleGAN 0.02 500,
StyleGAN 0.02 1000, VQGAN, VQGAN 0.03 512, VQGAN 0.04 128 with
embedding methods MagFace and MobileFaceNet. Original and modified
Fawkes image versions can be seen in Fig. 4.2. These images have dif-
ferent privacy levels and different qualities: the human rating experiment
performs comparisons between images produced by methods with similar
recall, i.e., similar privacy results.

From the table 4.6 compared to 4.2 we can see that, in general, genera-
tive methods optimised with two embeddings transfer better to other em-
bedding methods than generative methods optimised with only one embed-
ding. For instance, for the unused in an optimisation process embedding
SphereFace, the percentage score for StyleGAN with standard parameters
optimised with 2 different embedding methods is more than 15 while it was
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just around 5 for one embedding method. Examples of images produced
by the methods of experiment 2 are presented in Fig. 4.3. More of the
examples can be found in the Appendix C.
4.6.3 Experiment 3: Comparing StyleGAN, VQGAN, and Fawkes

on the CC dataset
Here we choose the specific versions of VQGAN, StyleGAN, and Fawkes
that have similar transfer recall scores in each group for the dataset CC:

• VQGAN 0.003 128 and Fawkes;

• StyleGAN 0.02 1000 and VQGAN 0.04 4096.

In addition, we have compared our results to those obtained with AMT-
GAN. However, it is important to note that a direct comparison between
our proposed methods and AMT-GAN is not possible, as AMT-GAN is
unable to transfer makeup to faces that were not detected. Therefore,
in cases where faces were not detected, we had to replace them with the
original images, which may affect the comparability of the results. Transfer
recalls for the proposed methods are the following:

• AMT-GAN: 49.57%,

• Fawkes: 79.21%,

• StyleGAN 0.02 1000: 24.71%,

• VQGAN 0.003 128: 74.76%,

• VQGAN 0.04 4096: 26.09%,

• VQGAN: 40.45%.

We compare how well proposed generative and pixel-based approaches pro-
tect privacy against different embedding methods. One of the results of
this study (for the embedding method SphereFace) is presented in Table
4.7. Transfer results for other embedding methods can be found in the
Appendix C. Examples of images produced by the methods of experiment
3 are presented in Fig. 4.4. More examples can be found in the Appendix
C.

Using table 4.7, we can conclude that, despite using the CC dataset in-
stead of LFW, generative methods prove to be effective for privacy preser-
vation and tend to outperform both the pixel-based method Fawkes and
the generative makeup transfer method AMT-GAN.
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Figure 4.4: Experiment 3: Examples of images of volunteers modified
by various privacy methods, including AMT-GAN, Fawkes and Style-
GAN 0.02 1000, VQGAN 0.003 128, VQGAN 0.04 4096 optimised with
embedding methods MagFace and MobileFaceNet. The different meth-
ods and parametrizations lead to different image quality/privacy results;
the human rating experiments will compare the quality for methods with
similar recall. 75



4.6.4 Human preferences for similar transfer recall
In Figs 4.4 and 4.3, we can see that, in some cases, modifying the number
of iterations in optimisation and the coefficient K affects the quality of
an image and its privacy protection. Therefore, to evaluate the modified
image quality for different privacy methods with similar transfer recall, we
conducted a human preference study. Three human raters were presented
with 40 pairs of images generated by the methods discussed in section
4.6.3. Given two images generated by two different methods, the human
rater could choose

• “I prefer the left one as an avatar,”

• “I prefer the right one as an avatar,” or

• “No preference.”

To provide context, the human raters involved in the experiment were
not paid and were not authors of the experiment. They were selected using
the snowball principle, and their task was to assess the quality and similar-
ity of the modified image to its original version. Without this assessment,
we could end up with a black square instead of a privacy-protected image.

The human raters did not have a degree in computer science and were
not informed that the experiment related to privacy. However, the instruc-
tions provided to them, which included presenting the original image at the
centre and emphasising that all images were reasonably close to it, as well
as providing examples of potential use cases such as social networks, news
articles, and dating websites, made it clear that assessing image similarity
was an integral part of the task.

The human-assessment results are presented in Table 4.8.
We compared 5 different pairs of privacy-preserving methods with simi-

lar target recall values. In the low privacy (high transfer recall) setting for
both LFW and CC datasets, we were able to compare, in terms of quality,
the Fawkes method with generative methods specifically modified to match
Fawkes transfer recall values.

When we choose FaceNet as an embedding for generative methods (Style-
GAN) optimisation, the quality of the images generated by StyleGAN ap-
pears to be worse than that of Fawkes. However, when we use MagFace and
MobileFaceNet as embeddings for generative methods optimisation, we ob-
tain similar image quality results for VQGAN and Fawkes (51.5%±3.06%),
while VQGAN has a better transfer recall (74.76% compared to 79.21%).
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In the high privacy (low transfer recall) setting for both the LFW and
CC datasets, we were able to compare different modifications of the gen-
erative methods (VQGAN and StyleGAN) with similar transfer recall. In
every case, it appears that human raters preferred VQGAN-generated im-
ages over StyleGAN-generated images.
4.6.5 Human Identification of Same-Person Images
In this section, our objective is to evaluate the effectiveness of various pri-
vacy preservation methods for their applicability on social media platforms
and to determine the extent to which people can identify the person after
privacy-preservation modifications by different methods, namely:

• VQGAN 0.005 128,

• AMT-GAN, and

• Fawkes, and

• the anonymization method Deep Privacy 2 [HL23].
The experiment is structured as follows: we begin with the original

image, referred to as the “original” in the filename. We then examine
privacy-preserved versions of different images of the same individual, fol-
lowed by random images of different people. The central question for each
image in a given set is, “Is this the same person as in the original?”.

To execute this experiment, we established a setup illustrated in Fig-
ure 4.5. This schema visually represents the process, illustrating the dif-
ferent image types involved in the human identification experiment.

We recruited 5 human evaluators, aged from 15 to 43 years, to as-
sess pairs of images, comprising the original image and constructed us-
ing privacy-preserving methods for the same individual, as outlined in the
schema in Figure 4.5. The results of the human study are presented in
Table 4.9.

From the findings presented in Table 4.9, we deduce that VQGAN 0.005 128,
AMT-GAN, and Fawkes generate images that are similarly identifiable by
human evaluators, with approximately 80% of images generated by these
methods being successfully recognised as the same as the original.

Conversely, the anonymization method Deep Privacy 2 frequently pro-
duces images that cannot be identified as those of the same individual. This
further substantiates that while anonymization methods such as Deep Pri-
vacy 2 preserve certain attributes of images, they may fail to preserve their
utility.
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Figure 4.5: Schema of the human identification experiment setup. The ex-
periment involves comparing the original image with privacy-preserved ver-
sions of images of the same person and random images of different people to
determine whether privacy-preservation methods could preserve the utility
of the images modified by them: we expect human raters to recognize the
original face for privacy-preserving methods, and not for anonymization
methods.

In contrast, our method, along with other utility-focused methods, while
not providing absolute protection against facial recognition, effectively safe-
guards human facial images against prevalent face recognition techniques
and maintains image utility for social media use.

This experiment was designed specifically to showcase that the recognis-
ability of our method, along with AMT-GAN and Fawkes, is higher than
that of anonymisation methods such as Deep Privacy 2. This explains our
focus on testing just one version of PrivacyGAN.

In future experiments, we intend to incorporate multiple versions of
PrivacyGAN, and to involve a larger pool of human raters. This approach
aims to determine which versions of PrivacyGAN perform best in terms
of privacy/recall balance, allowing us to construct a more comprehensive
Pareto front for evaluation and comparison.

4.7 Limitations and Future Work
While generative methods are effective in safeguarding image privacy against
various embedding methods, they cannot be compared to anonymization
techniques. As [RDT21] argues, it is always possible for new recognition
attacks to be effective against provided data poisoning methods. How-
ever, our approach is different from anonymization, as we do not aim to
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provide a privacy guarantee against future attacks. Instead, our objective
is to protect users against stalkers and unauthorized identification using
current state-of-the-art recognition methods, while still enabling them to
share their photos online, and be recognised by their family and friends.

In the future, we would also like to use face enhancement as a tool
for or against privacy methods, and check how much PrivacyGAN can be
combined with AMT-GAN.

4.8 Conclusions
In conclusion, our contributions in this chapter are

• A new approach to privacy based on inspirational generation, namely
PrivacyGAN, using generative models for generating faces close to a
given target. This method is orthogonal to the principles of AMT-
GAN, so that our method could be used as a first step before AMT-
GAN;

• A comparison between our proposed method PrivacyGAN and tra-
ditional pixel-based methods, including transfer to unknown embed-
dings (a.k.a. robustness to unknown embeddings used for identifying
people) and human raters for validating image quality;

• A new privacy evaluation method based on the percentage of dataset
images that are closer in an embedding space to a modified “private”
image than to an original image;

• A new dataset that includes facial images extracted from the Casual
Conversations videos.

At the end, we recommend generative methods (Alg. 5), with several
embeddings so that robustness and transfer to new methods are properly
tested.

According to the human ratings study, Fawkes might be better than
StyleGAN for generating high-quality images in the category “low privacy”
(recall rate of 90%) on LFW. However, VQGAN and Fawkes have similar
results in a low-privacy (74.76-79.21% as a transfer recall) setting, while
VQGAN provides better privacy protection.

Among the proposed generative methods, VQGAN is better than Style-
GAN overall in terms of quality for a given privacy threshold (see Table
4.8). By the human identification study (section 4.6.5) we further show
that, in contrast to anonymization methods, our method, along with other
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utility-focused methods, effectively safeguards facial image privacy against
prevalent face recognition techniques while maintaining image utility for
social media use.

In comparison to AMT-GAN, our method demonstrates superior pri-
vacy outcomes depending on the parameter settings, although it doesn’t
necessarily enhance human recognizability. While AMT-GAN excels in sce-
narios where recognizability is high and privacy is low, PrivacyGAN offers
a broader spectrum of applications, particularly in cases where definitive
facial detection is challenging, or where makeup contradicts the user’s per-
sonal beliefs.
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PrivacyGAN Pixel-based
StyleGAN StyleGAN VQGAN VQGAN Fawkes

0.003 500 0.005 128
Percentage 8.110 0.654 14.696 0.861 0.782
Recall@1:
m.i. 1.754 22.085 0.047 19.242 20.521
Recall@1:
o.i. 2.180 22.133 0.332 22.180 23.886
Recall@3:
m.i. 6.114 61.564 0.758 54.597 56.398
Recall@3:
o.i. 5.308 60.142 0.900 53.981 58.246
Recall@5:
m.i. 8.815 77.678 1.374 70.711 74.502
Recall@5:
o.i. 7.109 75.782 1.327 67.820 72.796
Recall@10:
m.i. 13.365 86.256 2.986 79.668 83.412
Recall@10:
o.i. 11.422 85.355 2.512 77.773 82.938
Recall@50:
m.i. 32.417 94.408 11.280 92.227 92.986
Recall@50:
o.i. 28.768 94.028 10 92.464 93.981
Recall@100:
m.i. 43.697 96.303 19.336 95.166 95.592
Recall@100:
o.i. 40.806 96.019 17.062 95.071 96.303

Table 4.1: Test on the LFW dataset. Evaluation for the same embedding
that was used for training (no transfer): PrivacyGAN (based on VQGAN
or StyleGAN) is optimised with FaceNet, tested with FaceNet, and com-
pared to Fawkes in “high” mode (meaning: high privacy). We see that
PrivacyGAN equipped with standard versions of StyleGAN and VQGAN
obtains better privacy results compared to Fawkes.
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PrivacyGAN Pixel-based
StyleGAN StyleGAN VQGAN VQGAN Fawkes

0.003 500 0.005 128
Percentage 5.181 1.388 5.104 1.271 1.213
Recall@1:
m.i. 9.526 21.896 8.768 21.043 21.611
Recall@1:
o.i. 9.431 22.891 8.578 23.223 23.791
Recall@3:
m.i. 21.422 53.744 20.142 54.929 55.877
Recall@3:
o.i. 19.621 53.744 17.678 54.360 56.588
Recall@5:
m.i. 27.915 67.109 26.066 68.294 69.668
Recall@5:
o.i. 24.834 66.682 23.128 66.777 69.100
Recall@10:
m.i. 35.261 74.739 33.175 76.161 77.014
Recall@10:
o.i. 32.322 75.308 30.521 74.455 77.393
Recall@50:
m.i. 55.592 86.493 53.602 87.867 87.536
Recall@50:
o.i. 53.507 87.773 51.422 86.967 88.673
Recall@100:
m.i. 65.308 91.232 63.697 91.469 91.754
Recall@100:
o.i. 63.744 91.896 61.327 91.611 91.943

Table 4.2: Evaluation in the case of transfer to another embedding on the
LFW dataset: PrivacyGAN (with VQGAN or StyleGAN) are optimised
with FaceNet and tested with SphereFace. Generative methods do obtain
better privacy results than Fawkes, except for the versions specifically cre-
ated (weakened) to have privacy results similar to Fawkes (these versions
are created for comparing image quality in Table 4.8 in a context with
equal privacy performance).
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PrivacyGAN Pixel-based
StyleGAN StyleGAN VQGAN VQGAN Fawkes

0.003 500 0.005 128
Percentage 0.767 0.361 0.627 0.422 0.408
Recall@1:
m.i. 20.758 24.028 24.028 24.265 24.882
Recall@1:
o.i. 21.611 25.972 22.701 25.545 25.403
Recall@3:
m.i. 60.237 71.848 66.493 73.744 75.403
Recall@3:
o.i. 60.142 73.602 65.261 73.507 73.507
Recall@5:
m.i. 78.294 96.967 86.209 98.389 98.768
Recall@5:
o.i. 76.777 97.156 83.744 98.436 98.863
Recall@10:
m.i. 85.687 97.962 91.043 98.863 99.194
Recall@10:
o.i. 84.313 98.152 89.431 98.910 99.005
Recall@50:
m.i. 93.223 99.005 95.545 99.005 99.194
Recall@50:
o.i. 92.512 98.957 95.450 99.052 99.194
Recall@100:
m.i. 95.308 99.052 97.062 99.100 99.194
Recall@100:
o.i. 94.976 99.052 96.825 99.147 99.194

Table 4.3: Evaluation on the LFW dataset in the case of transfer to another
embedding: PrivacyGAN (with VQGAN or StyleGAN) is optimised with
FaceNet and tested with MagFace. Generative methods do obtain better
privacy results than Fawkes, except for the versions specifically created
(weakened) to have privacy results similar to Fawkes (these versions are
created for comparing image quality in Table 4.8 in a context with equal
privacy performance). However, both Fawkes and generative methods op-
timised with one embedding do not transfer well to the novel embedding
methods such as MagFace, while they transfer better to some other em-
bedding methods such as SphereFace, as in Table 4.2.
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StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage 15.049 7.909 7.264 4.910 7.472 8.307
Recall@1:

m.i. 0.095 0.806 0.900 0.521 0.284 0.095
Recall@1:

o.i. 3.555 8.768 10.521 11.185 6.588 6.919
Recall@3:

m.i. 3.270 10.711 11.327 15.071 9.147 8.057
Recall@3:

o.i. 6.493 17.583 20.332 23.981 14.360 14.218
Recall@5:

m.i. 5.118 16.919 19.479 26.682 17.583 14.834
Recall@5:

o.i. 8.863 21.943 25.071 30.664 19.147 17.867
Recall@10:

m.i. 9.242 25.261 28.057 37.488 24.787 22.180
Recall@10:

o.i. 12.275 28.626 32.133 40 25.972 24.929
Recall@50:

m.i. 23.649 44.550 46.919 57.678 44.692 42.085
Recall@50:

o.i. 26.114 48.436 50.521 60.806 46.967 44.028
Recall@100:

m.i. 31.706 53.555 57.204 66.730 54.597 51.991
Recall@100:

o.i. 33.649 57.393 60.332 69.052 55.450 54.028

Table 4.4: Evaluation of various PrivacyGAN variants on the LFW dataset,
case without transfer: PrivacyGAN (equipped with VQGAN and Style-
GAN, including variants) are optimised with MagFace and MobileFaceNet
and tested with MagFace. Lower recall means better privacy. Compared
to Fawkes, results in Table 4.3: generative methods do get better privacy
results. However, we did use MagFace in the algorithm, whereas Fawkes
does not, hence the need for further validation (i.e., testing in the case of
transfer to embeddings not used in the privacy algorithm), which is done,
for example, in Table 4.6.
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StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage 6.925 3.290 3.079 2.583 3.555 4.461
Recall@1:
m.i. 0.569 2.986 2.749 2.227 0.900 0.664
Recall@1:
o.i. 6.635 14.739 14.976 15.782 12.654 10.379
Recall@3:
m.i. 11.090 22.417 24.408 26.066 20.190 17.062
Recall@3:
o.i. 13.365 30.095 32.180 34.834 26.351 22.085
Recall@5:
m.i. 18.531 36.635 38.152 42.607 31.517 28.246
Recall@5:
o.i. 18.009 38.578 40.379 45.308 34.550 29.289
Recall@10:
m.i. 26.682 48.389 49.953 55.735 43.223 39.052
Recall@10:
o.i. 24.739 48.720 49.100 54.739 44.645 38.720
Recall@50:
m.i. 47.014 69.384 71.611 74.171 65.687 59.668
Recall@50:
o.i. 46.872 69.716 71.991 74.597 66.919 60.427
Recall@100:
m.i. 56.682 77.583 78.957 80.237 73.981 68.578
Recall@100:
o.i. 56.967 76.588 79.336 80.948 75.308 69.431

Table 4.5: Evaluation on LFW dataset: VQGAN and StyleGAN (and their
variants) are optimised with MagFace and MobileFaceNet, and recognition
is tested with MobileFaceNet. Generative methods do obtain better privacy
than Fawkes (Table C.2).
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StyleGAN StyleGAN StyleGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512

Percentage 12.273 8.157 7.715 6.211 7.387
Recall@1:
m.i. 2.749 5.118 5.735 6.682 4.787
Recall@1:
o.i. 5.261 7.536 9.431 10.047 7.204
Recall@3:
m.i. 6.256 11.801 12.701 14.408 12.512
Recall@3:
o.i. 9.573 14.218 18.199 17.630 14.408
Recall@5:
m.i. 8.578 15.924 17.109 19.289 17.536
Recall@5:
o.i. 11.848 17.725 22.227 22.464 19.005
Recall@10:
m.i. 13.033 20.711 22.891 26.398 24.360
Recall@10:
o.i. 15.877 24.218 27.441 29.858 26.303
Recall@50:
m.i. 26.209 39.858 41.943 47.441 42.749
Recall@50:
o.i. 30.379 43.554 45.403 51.659 46.161
Recall@100:
m.i. 35.024 49.336 50.995 57.820 52.749
Recall@100:
o.i. 39.716 52.654 55.024 61.754 56.256

Table 4.6: Evaluation of various PrivacyGAN variants in the case of transfer
to another embedding on the LFW dataset: PrivacyGAN equipped with
VQGAN or StyleGAN is optimised with MagFace and MobileFaceNet and
tested with SphereFace. In this case, generative methods optimised with
two embeddings obtain better results than generative methods optimised
with only one embedding method in Table 4.2.
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PrivacyGAN Pixel- PrivacyGAN Adversarial
VQGAN VQGAN VQGAN based StyleGAN AMT-GAN
0.003 128 0.04 4096 Fawkes 0.02 1000

Percen-
tage 9.424 13.399 16.379 7.519 17.024 14.067

Recall
@1: m.i. 17.854 9.529 5.998 23.952 5.416 9.328
Recall

@1: o.i. 18.034 11.214 6.800 24.092 6.841 8.445
Recall

@3: m.i. 40.702 21.364 13.561 52.979 12.197 19.980
Recall

@3: o.i. 41.765 23.149 14.483 53.420 14.443 17.593
Recall

@5: m.i. 48.245 26.439 17.051 61.244 15.727 24.293
Recall

@5: o.i. 49.629 27.924 17.994 61.224 18.134 21.344
Recall

@10: m.i. 53.220 31.515 21.143 65.055 20.100 29.228
Recall

@10: o.i. 54.945 33.621 22.768 65.135 23.531 25.436
Recall

@50: m.i. 64.253 44.835 34.343 72.979 32.618 42.086
Recall

@50: o.i. 65.537 47.442 36.068 72.738 36.911 36.409
Recall

@100: m.i. 68.726 51.675 41.484 76.108 39.478 49.509
Recall

@100: o.i. 70.030 54.363 44.152 75.928 45.176 42.467

Table 4.7: Evaluation in the case of a transfer to another embedding on
the CC dataset: VQGAN and StyleGAN are optimised with MagFace
and MobileFaceNet and tested with SphereFace. PrivacyGAN basically
outperforms Fawkes while the comparison with AMT-GAN (which could
be used on top of our method) depends on criteria and parameters.
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Human
preference:

Transfer recall Avatar Avatar success rate
method 1 method 2 of 1 vs 2

High privacy (low recall),
LFW dataset

32.6% (StyleGAN (VQGAN 43.75
0.02 500, ( 128 0.04,

MagFace + MagFace + ±5%
MobileFaceNet) MobileFaceNet)

36.7% (StyleGAN (VQGAN 35.37%
0.02 1000, 0.03 512,

MagFace + MagFace + ± 5%
MobileFaceNet) MobileFaceNet)

Low privacy (high recall),
LFW dataset

90% (StyleGAN Fawkes 87.2%
0.003 500
FaceNet) ± 2%

High privacy, (low recall),
CC dataset

26.09% - (VQGAN (StyleGAN 55.2 %
0.04 4096, 0.02 1000,

24.71% MagFace + MagFace + ± 3.59
MobileFaceNet) MobileFaceNet)

Low privacy (high recall),
CC dataset

74.76% - (VQGAN Fawkes 51.5 % %
0.003 128) % %

79.21% MagFace + ± 3.06
MobileFaceNet)

Table 4.8: We modify the strength of different privacy-protection-algorithm
perturbations until we get to similar target recall levels. We compare the
quality of images, for each recall level. Text in bold font refers to human
preference, for each recall level (see rightmost column).
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Model Accuracy 99% confidence interval
for humans

PrivacyGAN using VQGAN 0.005 128 0.796 ± 0.04
AMT-GAN 0.829 ± 0.038
Fawkes 0.842 ± 0.037
Deep Privacy 2 0.187 ± 0.039

Table 4.9: Human face identification for various privacy preservation mod-
els. The table demonstrates that, while our method VQGAN 0.005 128,
together with AMT-GAN and Fawkes, generate recognisable images, the
anonymization method Deep Privacy 2 often produces images that cannot
be recognised as the same person. The purpose and limitations of this
experiment are further discussed in the text.
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5
Conclusions and Future Work

5.1 Summary of Key Findings
In summary, our research has brought forth the insights into ethical con-
siderations for generative modeling and innovative methodologies. The
following detailed conclusions encapsulate the contributions and advance-
ments made in each aspect.
5.1.1 Chapter 2: Fairness in Generative Modeling

• Algorithmic Bias Correction:
We proposed an algorithm that utilizes unsupervised reweighting, im-
proving fairness even when the sensitive variables are unknown.

• Strategies for Addressing Bias Introduced by Image Quality
Improvement Techniques:
We evaluated image generation techniques like EvolGAN, which uti-
lize image quality estimators to enhance the realism of the produced
images. Our findings revealed that such techniques, while improving
image quality, also tend to magnify biases present in the training data.
Our proposed bias mitigation methods demonstrated heightened ef-
fectiveness compared to existing approaches, addressing image quality
and fairness simultaneously.

5.1.2 Chapter 3: Enhancing Image Diversity
• Unsupervised Diversity Technique:
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We introduced the Diverse Diffusion algorithm that enhances image
diversity in text-to-image models by expanding the distances between
points in a latent space. Our method works in an unsupervised fash-
ion and outperforms state-of-the-art meta-prompt methods, ensuring
increased diversity and richness in generated images.

• Experimental Validation for Underrepresented Categories:
We provided experimental validation of our proposed techniques ap-
plied to Stable Diffusion on a variety of prompts and multiple metrics
such as LPIPS, color diversity evaluation, and gender/ethnicity eval-
uation. We demonstrated superior performance in representing un-
derrepresented categories, addressing diversity gaps evident in Stable
Diffusion.

5.1.3 Chapter 4: Privacy-Preserving Generative Models
• Privacy Preservation with Generative Methods:

We proposed the PrivacyGAN algorithm, based on the proximity of
dataset images to a modified ”private” image in an embedding space.
We applied our method to VQGAN and StyleGAN and demonstrated
that our method outperforms existing privacy methods like FAWKES
by effectively preserving privacy while maintaining image utility.

• Novel Privacy Evaluation Methodology:
We introduced a novel privacy evaluation method, based on the image
proximity in an embedding space relative to the percentage of the
dataset size. It redefines privacy evaluation criteria, helping to ensure
stronger privacy protection guarantees.

• Creation of a New Public Dataset for Privacy:
We created a new, public facial image dataset for privacy evalua-
tion, extracted from Casual Conversations’ videos. Unlike others, this
dataset presents additional challenges for privacy protection as images
may have a similar background and pose, which can be the case with
real photos of a person published on different platforms.

5.2 Ethical Considerations
Throughout our work, ethical considerations are woven into the fabric of
methodologies and model development.
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Our research presents cutting-edge methods, leverages diverse datasets,
and consistently outperforms existing benchmarks, contributing to ad-
vancements in generative modeling, fairness, diversity enhancement, and
privacy preservation within the framework of ethical AI development. The
detailed methodologies and datasets introduced pave the way for respon-
sible, impactful, and ethically sound AI advancements.

5.3 Future work

In the dynamic field of Artificial Intelligence, our long-term research agenda
is anchored in the pursuit of ethical AI, specifically addressing fairness,
diversity, and privacy in generative modeling.

5.3.1 Well-distributed Point Configurations for Generative Mod-
eling Diversity Enhancement

One of our ongoing projects aims to explore optimal point configurations
to enhance image diversity for generative models such as stable diffusion
[RBL+22] and BigGAN [BDS18].

The proposed research aligns with the findings of one of our papers
[ZTN23], where an increase in the distance between latent vectors in Sta-
ble Diffusion was explored to enhance diversity in generated images. This
work provides a foundation for considering diversity within the latent space
of generative models. In future work, we would like to explore a novel
direction to this problem: the integration of well-distributed point config-
urations.

The research endeavors to reshape generative modeling by establishing
a novel correlation between well-distributed point configurations and im-
age diversity. This involves exploring supporting mathematics, formulating
metrics for point configuration distribution, assessing image diversity for
various image generation methods (such as stable diffusion and BigGAN),
conducting real-world testing, and integrating the methodology into exist-
ing AI frameworks.

Anticipated outcomes include the introduction of new metrics and prac-
tical applications, particularly in latent diffusion models.

When implemented, we would like to add our findings to stable diffusion
and other text-to-image models, in order to ensure that users have an access
to diverse image outputs.
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5.3.2 Privacy-Preserving Facial Image Generation
We aim to build on our past work and exploit ideas from PrivacyGAN and
the generative makeup method AMT-GAN [HLZ+22] in a new privacy-
preservation method. Particularly, we would like to apply a similar op-
timization strategy (to one in PrivacyGAN) in the latent space of stable
diffusion to create realistic and usable images protected from recognition
by current neural networks.

This approach will provide another level of control for users, enabling
them to set specific modification attributes to their images. While with
AMT-GAN, users have to create images with adversarial makeup and with
PrivacyGAN, they have to modify the full image, in our proposed method,
users will have full control over the features they want to modify for cre-
ating privacy-protected versions of their images.

For example, they will be able to specify that they would like to have
a particular style of makeup as in VQGAN or adversarial moustache or
adversarial glasses on their image.

When implemented, we would like to add privacy feature to majour
platforms such as Facebook and Tinder in order to make our research
more accessible for the users.
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This part lists all the publications / preprints prepared during the PhD.

• 2023: Zameshina, M., et al., ”Diverse Diffusion: Enhancing Image
Diversity in Text-to-Image Generation,” preprint, [ZTN23].

• 2023: Zameshina, M., et al., ”PrivacyGAN: Robust Generative Image
Privacy,” preprint, [ZCTN23].

• 2022: Zameshina, M., et al., ”Fairness in Generative Modeling: Do
It Unsupervised!,” GECCO 2022, [ZTT+22].

• 2020: Roziere, B., et al., ”EvolGAN: Evolutionary Generative Ad-
versarial Networks,” ACCV 2020, [RTH+20].

94



Bibliography

[Ana19] H. Anadon. Face expression and ethnic recog-
nition. https://github.com/HectorAnadon/
Face-expression-and-ethnic-recognition, 2019.

[Ata04] Emanouil I Atanassov. On the discrepancy of the halton
sequences. Math. Balkanica (NS), 18(1-2):15–32, 2004.

[Bar22] Kyle Barr. Ai image generators routinely display gender and
cultural bias. In gizmodo.com, 2022.

[BDS18] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
Arxiv preprint, 1809.11096, 2018.

[Ber22] Sebastian Berns. Increasing the diversity of deep generative
models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 12870–12871, 2022.

[BKD+23] Federico Bianchi, Pratyusha Kalluri, Esin Durmus, Faisal
Ladhak, Myra Cheng, Debora Nozza, Tatsunori Hashimoto,
Dan Jurafsky, James Zou, and Aylin Caliskan. Easily acces-
sible text-to-image generation amplifies demographic stereo-
types at large scale. In Proceedings of the 2023 ACM Con-
ference on Fairness, Accountability, and Transparency, pages
1493–1504, 2023.

[BTPS23] Simone Barattin, Christos Tzelepis, Ioannis Patras, and Nicu
Sebe. Attribute-preserving face dataset anonymization via
latent code optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8001–8010, 2023.

[BYMC22] Hritik Bansal, Da Yin, Masoud Monajatipoor, and Kai-Wei
Chang. How well can text-to-image generative models under-

95

https://github.com/HectorAnadon/Face-expression-and-ethnic-recognition
https://github.com/HectorAnadon/Face-expression-and-ethnic-recognition


stand ethical natural language interventions? arXiv preprint
arXiv:2210.15230, 2022.

[CBLC22] Pierre Chambon, Christian Bluethgen, Curtis P Langlotz,
and Akshay Chaudhari. Adapting pretrained vision-language
foundational models to medical imaging domains. arXiv
preprint arXiv:2210.04133, 2022.

[CG23] Gilad Cohen and Raja Giryes. Generative adversarial net-
works. In Machine Learning for Data Science Handbook:
Data Mining and Knowledge Discovery Handbook, pages 375–
400. Springer, 2023.

[CGF+21] Valeriia Cherepanova, Micah Goldblum, Harrison Foley,
Shiyuan Duan, John Dickerson, Gavin Taylor, and Tom
Goldstein. Lowkey: Leveraging adversarial attacks to pro-
tect social media users from facial recognition. arXiv preprint
arXiv:2101.07922, 2021.

[CGS+20] Kristy Choi, Aditya Grover, Trisha Singh, Rui Shu, and Ste-
fano Ermon. Fair generative modeling via weak supervision.
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A
Fairness in generative modeling

Reweighting with respect to four V F binarized variables for a
specific target
Table A.1 presents results of different methods in terms of the frequency of
black people. In most cases, the frequency of black people decreased from
the original 4.8% when applying EvolGan, but increased when applying
reweighting. We note exceptions: whereas randomly chosen variables were
always beneficial, very correlated variables failed in the most difficult cases.

A.1 Gallery: K512 strata
We check how much K512 succeeds in finding good/bad face generations.
We present in Fig. A.1 examples of failed generations, as detected by K512,
i.e., the worst 5% generations by StyleGan2: we observe a higher frequency
of failed generations with artifacts. This confirms, i.e., that generating with
StyleGan2 while biasing by K512 (even by simple filtering) significantly
improves the quality of generated images. We present in Fig. A.2 images
reaching the top 0.5% of K512 values. Artifacts are rare.
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Figure A.1: Failed generations from StyleGan2, according to K512 values.
We correctly detect failed generations. See the difference with Fig. A.2.
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Figure A.2: Successful generations from StyleGan2, according to K512 (top
5%). Results are good: consistently with [RTH+20], we see that results
are ok.

110



StyleGan2 EG Reweigh -
EG

Selection rate in EG: 5.1%
100/1979 corr. .0480 .0297 .0258
100/1979 random .0480 .0297 .0309

Selection rate in EG: 7.6%

150/1979 corr. .0480 .0271 .0219
150/1979 random .0480 .0271 .0292

Selection rate in EG: 10.1%
200/1979 corr. .0480 .0247 .0207
200/1979 random .0480 .0247 .0269

Selection rate in EG: 12.6%
250/1979 corr. .0480 .0273 .0279
250/1979 random .0480 .0273 .0277

Selection rate in EG: 15.2%
300/1979 corr. .0480 .0239 .0245
300/1979 random .0480 .0239 .0234

Selection rate in EG: 17.7%
350/1979 corr. .0480 .0285 .0333
350/1979 random .0480 .0285 .0300

Selection rate in EG: 20.2%
400/1979 corr. .0480 .0353 .0350
400/1979 random .0480 .0353 .0374

Selection rate in EG: 22.8%
450/1979 corr. .0480 .0358 .0370
450/1979 random .0480 .0358 .0390

Selection rate in EG: 25.3%
500/1979 corr. .0480 .0344 .0354
500/1979 random .0480 .0344 .0360

Selection rate in EG: 27.8%
550/1979 corr. .0480 .0344 .0364
550/1979 random .0480 .0344 .0363

Selection rate in EG: 25.3%
600/1979 corr. .0480 .0331 .0340
600/1979 random .0480 .0331 .0356

Table A.1: Dataset: faces generated by StyleGan2. The frequency of black
people in the different versions, depending on which strata are used for
applying the reweighting method of Section 2.3.2. Random: four variables
randomly picked up among the 128 binary variables built from VGG-Faces.
Correlated: same VGG-Faces, but we use the most correlated ones.
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B
Diverse Diffusion: Enhancing Image

Diversity in Text-to-Image
Generation

B.1 Additional results for color diversity
Here, we provide additional experimental results to further illustrate the
color diversity improvement achieved by our proposed approach. The re-
sults are organized based on different coefficient values (K) and batch
sizes. The figures presented below showcase the multiplicative improve-
ment of batches featuring certain color dominance characteristics using
the “pooling cap” and “pooling max” methods compared to the baseline
Stable Diffusion.
B.1.1 K=1
Batch size = 3

Figures B.1 and B.2 display the results for the K = 1 coefficient and a
batch size of 3 in both long and standard experiments.

Batch size = 5
Figures B.1 and B.4 present the results for the K = 1 coefficient and a

batch size of 5 in both long and standard experiments.
Batch size = 10
Figures B.5 and B.6 illustrate the results for the K = 1 coefficient and

a batch size of 10 in both long and standard experiments.
Batch size = 50
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Figure B.7 illustrates the results for the K = 1 coefficient and a batch
size of 50 in the standard experiment.
B.1.2 K=1.1
Batch size = 3

Figures B.8 and B.9 display the results for the K = 1.1 coefficient and
a batch size of 3 in both long and standard experiments.

Batch size = 5
Figures B.10 and B.11 present the results for the K = 1.1 coefficient

and a batch size of 5 in both long and standard experiments.
Batch size = 10
Figures B.12 and B.14 showcase the results for the K = 1.1 coefficient

and a batch size of 10 in both long and standard experiments.
Batch size = 50
Figure B.15 illustrates the results for the K = 1 coefficient and a batch

size of 50 in the standard experiment.
B.1.3 K=1.2
Batch size = 3

Figures B.16 and B.17 display the results for the K = 1.2 coefficient
and a batch size of 3 in both long and standard experiments.

Batch size = 5
Figures B.18 and B.19 present the results for the K = 1.2 coefficient

and a batch size of 5 in both long and standard experiments.
Batch size = 10
Figures B.13 and B.20 illustrate the results for the K = 1.2 coefficient

and a batch size of 10 in both long and standard experiments.
Batch size = 50
Figure B.21 illustrates the results for the K = 1 coefficient and a batch

size of 50 in the standard experiment.
These supplementary results provide an evaluation of the color diversity

improvement achieved by our proposed approach across various coefficient
values and batch sizes. The figures demonstrate the effectiveness of the
“pooling cap” method in enhancing color diversity compared to the base-
line Stable Diffusion method.

B.2 Additional results for LPIPS evaluation
In the main chapter for the small batch sizes, we provide the LPIPS eval-
uation results only for the “long experiment”. Here, we provide missing
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Figure B.1: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1, batch size = 3, long experiment
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Figure B.2: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1, batch size = 3, standard experiment
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Figure B.3: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1, batch size = 5, long experiment
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Figure B.4: Multiplicative improvement of batches containing all 3 dominant
colors with K = 1, batch size = 5, standard experiment
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results for the “standard experiment” setting.
Figure B.22 presents the average batch pairwise LPIPS distance for a

batch size of 3 for the “standard experiment” setting. Here, same as in
Figure 3.6 it is hard to see what method is the best for diversity due to
the small batch size

Figure B.23 illustrates the average batch pairwise LPIPS distance for
a batch size of 5 in the “standard experiment” setting. We can see that
the results presented in Figure B.23 are less conclusive than the results
in Figure 3.7, which demonstrates that the “long experiment” setting is
better suited for the small batch sizes.

Figure B.24 illustrates the average batch pairwise LPIPS distance for
a batch size of 10 in the “standard experiment” setting. We can see that
similarly to the results for batch size 5, the results presented in Figure B.24
are less conclusive than the results in Figure 3.8, which again demonstrates
that the “long experiment” setting is better suited for the small batch sizes.
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Figure B.5: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1, batch size = 10, long experiment
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Figure B.6: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1, batch size = 10, standard experiment
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Figure B.7: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1, batch size = 50, standard experiment
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Figure B.8: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1.1, batch size = 3, long experiment
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Figure B.9: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1.1, batch size = 3, standard experiment
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Figure B.10: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1.1, batch size = 5, long experiment
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Figure B.11: Comparison of different modes for various prompts in regard
to the percentage of batches containing images with different dominant
colors for the following parameters: K = 1.1, batch size = 5, standard
experiment
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Figure B.12: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1.1, batch size = 10, long experiment.
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Figure B.13: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1.2, batch size = 10, long experiment.
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Figure B.14: Comparison of different modes for various prompts in regard
to the percentage of batches containing images with different dominant
colors for the following parameters: K = 1.1, batch size = 10, standard
experiment.
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Figure B.15: Comparison of different modes for various prompts in regard
to the percentage of batches containing images with different dominant
colors for the following parameters: K = 1.1, batch size = 50, standard
experiment.
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Figure B.16: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1.2, batch size = 3, long experiment.
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Figure B.17: Comparison of different modes for various prompts in regard
to the percentage of batches containing images with different dominant
colors for the following parameters: K = 1.2, batch size = 3, standard
experiment.
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Figure B.18: Comparison of different modes for various prompts in regard to
the percentage of batches containing images with different dominant colors
for the following parameters: K = 1.2, batch size = 5, long experiment.
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Figure B.19: Comparison of different modes for various prompts in regard
to the percentage of batches containing images with different dominant
colors for the following parameters: K = 1.2, batch size = 5, standard
experiment.
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Figure B.20: Comparison of different modes for various prompts in regard
to the percentage of batches containing images with different dominant
colors for the following parameters: K = 1.2, batch size = 10, standard
experiment.
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Figure B.21: Comparison of different modes for various prompts in regard
to the percentage of batches containing images with different dominant
colors for the following parameters: K = 1.2, batch size = 50, standard
experiment.
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Figure B.22: Average batch pairwise LPIPS, batch size=3, standard experi-
ment : no clear conclusion overall,

due to the small batch size.
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Figure B.23: Average batch pairwise LPIPS, batch size=5, standard experi-
ment
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Figure B.24: Average batch pairwise LPIPS, batch size=10
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C
Generative Image Privacy

C.1 Overview
Facial image privacy protection is a multi-objective problem combining
image quality preservation and privacy robustness against various image
recognition systems:

• In Sections C.1.1-C.1.3, we present quantitative results (table of re-
call/percentage, showing privacy performance).

• Then, in Sections C.1.4.1-C.1.4.3, we present images, showing the im-
age quality.

C.1.1 Experiment 1: additional and extended tables of results

In this subsection, we present transfer results for Experiment 1. All the
tables here are similar to the Table 4.2 except for the different choice of
transfer embeddings used in recognition.

To be precise, we evaluate the transfer results of PrivacyGAN equipped
with generative methods VQGAN and StyleGAN optimised with FaceNet[SKP15]
embedding and compare them to the transfer results of Fawkes. The crite-
rion is the transfer to other embeddings than FaceNet, namely ArcFace[DGXZ19],
MobileFaceNet[CLGH18], and Resnet 152[HZRS16].

We also present the results of Fawkes combination with generative meth-
ods. We note that combining Fawkes poisoning with our methods can be
beneficial for facial image privacy protection.
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Table C.1 presents results of the transfer to ArcFace embedding; Table
C.2 presents results of the transfer to MobileFaceNet embedding; and Table
C.3 presents the results of transfer to Resnet 152 embedding method.

From the results of this experiment, we conclude that generative meth-
ods optimised with one single embedding do not provide strong privacy
protection, but their results are still better than the results of Fawkes.

C.1.2 Experiment 2 (comparing PrivacyGAN equipped with Style-
GAN and PrivacyGAN equipped with VQGAN optimised
with 2 embedding methods on the LFW dataset): addi-
tional tables of results

In the main part of the chapter, we presented the results of Experiment
2 without transfer for embedding method MagFace in Table 4.4 and for
embedding method MobileFaceNet in Table 4.5 and with transfer for em-
bedding method SphereFace[LWY+17] in Table 4.6. Here we present other
examples with transfer for embedding methods FaceNet, ArcFace, and
ResNet 152 in Tables C.4, C.5 and C.6.

From the results of the experiment 2, we conclude that generative meth-
ods optimised with two different embeddings provide stronger privacy pro-
tection than those optimised with a single embedding method (as in ex-
periment 1).

C.1.3 Experiment 3 (comparing PrivacyGAN, AMT-GAN, and
Fawkes on CC dataset): additional tables of results

In this section, we present the results of experiment 3. All the tables here
are similar to Table 4.7 of the main part, except for the differences in choice
of transfer embeddings.

We present results for generative methods with a criterion based on
transfer from MobileFaceNet and MagFace (used in our privacy algorithm)
to embeddings FaceNet, ArcFace and ResNet 152 (used in the recogni-
tion) in Tables C.7, C.9 and C.11 as well as results without transfer for
embeddings MagFace and MobileFaceNet in Tables C.8 and C.10.

Overall, results for the CC dataset are similar to those for LFW , and
generative methods remain preferable for privacy protection.

C.1.4 Image examples for original and modified images using
both pixel-based and generative methods

The examples in this section show that generative methods modify image
features more than the pixel-based methods. Nonetheless, they have less
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artificial pixel noise, which is common for images protected by Fawkes.
Pixel noise can be more detrimental in terms of visual quality.
C.1.4.1 Modified image examples: experiment 1

In this section, we present original images and their private versions that
were obtained in the course of experiment 1 (similarly to Fig. 4.2). In
addition, we also provide image examples for combinations of Fawkes and
generative methods, namely Fawkes + StyleGAN (F+S), Fawkes + VQ-
GAN (F+V), StyleGAN + Fawkes (S+F) and VQGAN + Fawkes (V+F).
We see that adding Fawkes on top of generative methods improves image
privacy, as in methods StyleGAN + Fawkes (S+F) and VQGAN + Fawkes
(V+F). Tthe mentioned image examples can be found in Figs C.1, C.2,
C.3 and C.4.
C.1.4.2 Modified image examples: experiment 2

In this section, we present the original images and their private versions
that were obtained during experiment 2, in addition to the images that
were presented in the main chapter in Fig 4.3. These images can be found
in Figs C.5, C.6, C.7 and C.8.
C.1.4.3 Modified image examples: experiment 3

Here, we present more image examples obtained by the procedure described
in experiment 3. They are obtained the same way as images in Fig. 4.4.
These examples are presented in Figs C.9, C.10 and C.11.
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Figure C.1: Experiment 1: Examples of original images from the
LFW dataset and their counterparts modified by different privacy meth-
ods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimisation), Fawkes, and combi-
nations of Fawkes with generative methods. Here we can see that while
generative methods in general add more modification to an image than
Fawkes, generative methods produce realistic images and do not add pixel
noise.
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Figure C.2: Experiment 1: Examples of original images from the
LFW dataset and their counterparts modified by different privacy meth-
ods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimisation), Fawkes, and combi-
nations of Fawkes with generative methods. Here we can see that while
generative methods in general add more modification to an image than
Fawkes, generative methods produce realistic images and do not add pixel
noise.
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Figure C.3: Experiment 1: Examples of original images from the
LFW dataset and their counterparts modified by different privacy meth-
ods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimisation), Fawkes, and combi-
nations of Fawkes with generative methods. Here we can see that while
generative methods in general add more modification to an image than
Fawkes, generative methods produce realistic images and do not add pixel
noise.
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Figure C.4: Experiment 1: Examples of original images from the
LFW dataset and their counterparts modified by different privacy meth-
ods: StyleGAN 0.003 500, VQGAN 0.005 128, StyleGAN, VQGAN (using
FaceNet as an embedding method for optimisation), Fawkes, and combi-
nations of Fawkes with generative methods. Here we can see that while
generative methods in general add more modification to an image than
Fawkes, generative methods produce realistic images and do not add pixel
noise.
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Figure C.5: Experiment 2: Examples of images from the LFW dataset:
the original image and the image modified by different privacy meth-
ods: StyleGAN, StyleGAN 0.02 500, StyleGAN 0.02 1000, VQGAN, VQ-
GAN 0.03 512, VQGAN 0.04 128 with embedding methods MagFace and
MobileFaceNet. Here, we can see that in some cases, increasing the num-
ber of iterations in optimisation and modifying the coefficient K of the
embedding method can affect the quality of an image while improving its
privacy protection.
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Figure C.6: Experiment 2: Examples of images from the LFW dataset:
the original image and the image modified by different privacy meth-
ods: StyleGAN, StyleGAN 0.02 500, StyleGAN 0.02 1000, VQGAN, VQ-
GAN 0.03 512, VQGAN 0.04 128 with embedding methods MagFace and
MobileFaceNet. Here, we can see that in some cases, increasing the num-
ber of iterations in optimisation and modifying the coefficient K of the
embedding method can affect the quality of an image while improving its
privacy protection.
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Figure C.7: Experiment 2: Examples of images from the LFW dataset:
the original image and the image modified by different privacy meth-
ods: StyleGAN, StyleGAN 0.02 500, StyleGAN 0.02 1000, VQGAN, VQ-
GAN 0.03 512, VQGAN 0.04 128 with embedding methods MagFace and
MobileFaceNet. Here, we can see that in some cases, increasing the num-
ber of iterations in optimisation and modifying the coefficient K of the
embedding method can affect the quality of an image while improving its
privacy protection.
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Figure C.8: Experiment 2: Examples of images from the LFW dataset:
the original image and the image modified by different privacy meth-
ods: StyleGAN, StyleGAN 0.02 500, StyleGAN 0.02 1000, VQGAN, VQ-
GAN 0.03 512, VQGAN 0.04 128 with embedding methods MagFace and
MobileFaceNet. Here, we can see that in some cases, increasing the num-
ber of iterations in optimisation and modifying the coefficient K of the
embedding method can affect the quality of an image while improving its
privacy protection.
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Figure C.9: Experiment 3: Examples of images of volunteers modi-
fied by various privacy methods, including AMT-GAN, Fawkes, Style-
GAN 0.02 1000, VQGAN 0.003 128, VQGAN 0.04 4096 with embedding
methods MagFace and MobileFaceNet. Here, we can see that in some
cases, increasing the number of iterations in optimisation and modifying
the coefficient K of the embedding method can affect the quality of an
image while improving its privacy protection. We can also see that some
images are modified more than others after applying privacy-protection
methods.
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Figure C.10: Experiment 3: Examples of images of volunteers modi-
fied by various privacy methods, including AMT-GAN, Fawkes, Style-
GAN 0.02 1000, VQGAN 0.003 128, VQGAN 0.04 4096 with embedding
methods MagFace and MobileFaceNet. Here, we can see that in some
cases, increasing the number of iterations in optimisation and modifying
the coefficient K of the embedding method can affect the quality of an
image while improving its privacy protection. We can also see that some
images are modified more than others after applying privacy-protection
methods.
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Figure C.11: Experiment 3: Examples of images of volunteers modi-
fied by various privacy methods, including AMT-GAN, Fawkes, Style-
GAN 0.02 1000, VQGAN 0.003 128, VQGAN 0.04 4096 with embedding
methods MagFace and MobileFaceNet. Here, we can see that in some
cases, increasing the number of iterations in optimisation and modifying
the coefficient K of the embedding method can affect the quality of an
image while improving its privacy protection. We can also see that some
images are modified more than others after applying privacy-protection
methods.
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PrivacyGAN Pixel-based Combinations
StyleGAN StyleGAN VQGAN VQGAN Fawkes F + S F + V S + F V + F

0.003 500 0.005 128
Percentage 5.052 0.917 4.931 0.984 0.936 7.612 7.855 12.456 10.397
Recall@1: m.i. 7.962 23.981 8.531 22.464 23.602 5.782 5.118 2.464 3.791
Recall@1: o.i. 8.246 24.976 10.095 24.692 24.313 6.445 7.062 2.749 4.408
Recall@3: m.i. 18.152 56.019 18.720 57.062 59.953 12.749 11.848 7.346 10.095
Recall@3: o.i. 17.536 56.730 19.858 58.578 59.431 11.991 13.175 6.019 8.768
Recall@5: m.i. 24.076 69.905 24.265 72.986 76.209 16.919 16.114 10 13.081
Recall@5: o.i. 22.038 70.379 24.929 72.559 75.877 15.782 16.445 8.199 11.611
Recall@10: m.i. 32.227 79.052 33.365 79.953 83.175 23.649 23.791 13.886 19.194
Recall@10: o.i. 30.190 78.389 33.318 79.905 83.033 21.754 22.607 12.038 16.635
Recall@50: m.i. 53.791 90.379 55.829 90.995 92.464 42.559 43.223 28.436 34.882
Recall@50: o.i. 52.701 91.185 55.924 91.469 92.227 41.706 42.607 26.398 31.848
Recall@100: m.i. 63.934 93.602 64.882 93.697 94.929 51.991 52.938 37.488 44.313
Recall@100: o.i. 63.318 94.076 65.877 94.123 94.692 51.754 53.602 35.782 42.607

Table C.1: Evaluation on LFW dataset in the case of transfer to another
embedding: VQGAN and StyleGAN are optimised with FaceNet, and all
tests are performed with ArcFace. Lower recall and a higher percentage
mean better privacy. As shown in Table C.6 methods that are optimised for
two embeddings have a better transfer recall. We see that adding Fawkes
on top of generative methods improves image privacy, as in the methods
StyleGAN + Fawkes (S+F) and VQGAN + Fawkes (V+F).

PrivacyGAN Pixel-based Combinations
StyleGAN StyleGAN VQGAN VQGAN Fawkes F + S F + V S + F V + F

0.003 500 0.005 128
Percentage 1.226 0.446 0.947 0.454 0.454 1.875 4.359 8.645 5.586
Recall@1: m.i. 19.479 26.872 21.991 26.588 25.592 17.773 1.185 7.062 10.332
Recall@1: o.i. 19.100 26.303 21.943 26.493 26.351 19.147 12.938 5.071 8.910
Recall@3: m.i. 55.166 72.275 58.815 73.981 72.986 43.033 18.436 16.825 23.555
Recall@3: o.i. 51.090 74.692 56.682 72.701 73.697 41.517 26.161 11.232 19.005
Recall@5: m.i. 70.616 94.360 74.265 96.209 94.408 55.261 30.853 22.275 30.444
Recall@5: o.i. 64.882 93.934 71.896 95.498 93.934 51.896 31.801 14.929 24.550
Recall@10: m.i. 77.678 96.303 82.227 97.536 96.351 65.118 42.227 29.052 38.341
Recall@10: o.i. 75.024 96.066 80.379 97.156 96.019 61.848 41.185 21.801 33.033
Recall@50: m.i. 88.626 98.436 91.517 98.626 97.962 79.763 62.370 48.483 58.104
Recall@50: o.i. 87.867 98.389 90.284 98.389 97.725 79.242 61.943 41.280 53.460
Recall@100: m.i. 91.659 98.815 94.313 98.815 98.436 84.929 71.090 55.735 66.446
Recall@100: o.i. 91.754 98.673 93.223 98.768 98.152 84.408 69.716 51.043 62.844

Table C.2: Evaluation on LFW dataset in the case of transfer to another em-
bedding: VQGAN and StyleGAN are optimised with FaceNet, and recog-
nition (for all methods) is tested with MobileFaceNet. Lower recall and
a higher percentage mean better privacy. Generative methods do obtain
better results than Fawkes. We can also see that adding Fawkes on top of
generative methods improves image privacy, as in the methods StyleGAN
+ Fawkes (S+F) and VQGAN + Fawkes (V+F).
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PrivacyGAN Pixel-based Combinations
StyleGAN StyleGAN VQGAN VQGAN Fawkes F + S F + V S + F V + F

0.003 500 0.005 128
Percentage 0.670 0.342 0.564 0.395 0.408 1.273 2.573 6.823 3.309
Recall@1: m.i. 20.900 25.071 23.270 26.019 25.403 17.488 8.436 7.536 11.896
Recall@1: o.i. 20.616 26.398 22.607 25.972 27.488 22.938 17.204 8.957 15.071
Recall@3: m.i. 59.526 73.128 65.592 75.545 76.351 49.573 30.000 18.957 34.597
Recall@3: o.i. 58.199 73.886 63.886 72.559 75.498 49.431 38.009 17.251 31.706
Recall@5: m.i. 78.673 97.773 87.583 98.626 98.578 66.303 45.498 27.299 45.924
Recall@5: o.i. 73.791 97.441 83.081 98.531 98.389 62.512 48.720 21.706 40.758
Recall@10: m.i. 85.972 98.483 91.801 98.863 99.005 74.976 58.483 35.545 56.493
Recall@10: o.i. 82.891 98.389 89.668 98.863 98.815 72.370 59.479 30.332 51.754
Recall@50: m.i. 94.028 99.005 97.014 99.052 99.194 87.915 78.152 55.735 74.123
Recall@50: o.i. 93.128 99.147 95.924 99.194 99.147 87.583 77.393 51.469 72.464
Recall@100: m.i. 95.877 99.100 97.867 99.100 99.194 91.659 83.744 63.934 80.095
Recall@100: o.i. 95.308 99.194 97.299 99.194 99.147 91.422 82.938 60.900 78.531

Table C.3: Evaluation on LFW dataset in the case of transfer to another em-
bedding: VQGAN and StyleGAN are optimised with FaceNet and tested
with ResNet 152. Lower recall and a higher percentage mean better pri-
vacy. The generative methods with two embeddings (see Table C.5) do
obtain better results, showing that using multiple embeddings increases
robustness and transfer. We can also see that adding Fawkes on top of
generative methods improves image privacy, as in the methods StyleGAN
+ Fawkes (S+F) and VQGAN + Fawkes (V+F).
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StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage 7.849 4.494 4.107 2.626 3.470 3.807
Recall@1: m.i. 2.844 6.066 6.730 8.152 6.919 6.019
Recall@1: o.i. 4.597 8.294 10.047 11.706 9.479 9.431
Recall@3: m.i. 9.242 15.640 18.009 22.701 19.242 17.536
Recall@3: o.i. 9.668 17.156 19.479 25.545 20.995 19.431
Recall@5: m.i. 13.175 22.322 25.166 32.275 27.062 24.787
Recall@5: o.i. 13.081 22.701 25.118 32.749 27.109 25.592
Recall@10: m.i. 18.578 31.564 35.118 43.175 37.725 34.408
Recall@10: o.i. 17.725 30.758 34.360 43.412 36.019 33.460
Recall@50: m.i. 37.441 54.028 57.062 67.725 60.142 57.441
Recall@50: o.i. 35.213 52.464 55.118 66.019 58.910 55.592
Recall@100: m.i. 48.531 64.882 68.436 77.109 71.137 68.104
Recall@100: o.i. 46.351 63.934 65.735 75.640 69.147 67.014

Table C.4: Evaluation on LFW dataset in the case of transfer to another
embedding: VQGAN and StyleGAN are optimised with MagFace and Mo-
bileFaceNet, and recognition is tested with FaceNet. Lower recall and a
higher percentage mean better privacy. In this case, generative methods op-
timised with two embeddings obtain worse results than generative methods
optimised with only one embedding method in Table 4.1: this is, however,
not a fair comparison because we do not use FaceNet for optimisation in
this experiment, while we do in Table 4.1.
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StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage: 5.656 2.671 2.296 1.549 2.097 2.605
Recall@1: m.i. 4.976 8.294 11.422 12.322 9.526 7.630
Recall@1: o.i. 9.289 15.450 18.152 18.957 16.635 15.403
Recall@3: m.i. 15.829 28.578 32.986 37.488 31.043 28.057
Recall@3: o.i. 19.763 34.597 39.100 44.455 38.863 35.545
Recall@5: m.i. 23.507 41.327 46.445 55.687 46.161 41.469
Recall@5: o.i. 26.114 43.175 49.858 56.303 48.246 43.981
Recall@10: m.i. 34.218 52.796 58.957 68.673 59.716 54.929
Recall@10: o.i. 34.313 52.796 60.616 68.531 60.284 55.071
Recall@50: m.i. 56.398 74.123 78.104 84.692 79.763 76.540
Recall@50: o.i. 54.929 73.507 79.005 84.218 79.242 77.109
Recall@100: m.i. 64.882 81.611 84.360 89.242 85.118 82.986
Recall@100: o.i. 63.839 80.853 84.550 88.863 85.118 83.081

Table C.5: Evaluation on LFW dataset in the case of transfer to another
embedding: VQGAN and StyleGAN are optimised with MagFace and Mo-
bileFaceNet and recognition is tested with ResNet 152. Lower recall and
a higher percentage mean better privacy. In this case, generative meth-
ods optimised with two embeddings obtain better results than generative
methods optimised with only one embedding method, as in Table C.2.
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StyleGAN StyleGAN StyleGAN VQGAN VQGAN VQGAN
0.02 500 0.02 1000 0.03 512 0.04 128

Percentage 11.993 8.305 7.534 6.067 7.164 8.181
Recall@1: m.i. 2.038 4.123 4.550 6.967 4.882 4.739
Recall@1: o.i. 3.555 5.687 7.488 7.867 6.540 6.351
Recall@3: m.i. 6.588 11.754 12.370 15.640 13.270 11.232
Recall@3: o.i. 6.919 12.417 14.787 16.398 13.791 12.038
Recall@5: m.i. 9.005 16.209 17.109 20.758 19.052 16.588
Recall@5: o.i. 9.526 16.493 18.673 21.611 18.578 16.066
Recall@10: m.i. 13.081 22.844 24.976 29.384 26.066 22.417
Recall@10: o.i. 14.171 22.938 25.450 29.810 25.450 22.322
Recall@50: m.i. 27.299 41.374 43.270 51.280 44.455 41.611
Recall@50: o.i. 28.863 41.991 45.024 51.754 46.730 42.464
Recall@100: m.i. 36.445 50.806 52.986 61.137 54.360 51.232
Recall@100: o.i. 38.910 53.128 56.161 62.796 57.867 52.796

Table C.6: Evaluation on LFW dataset, in the case of transfer to another
embedding: VQGAN and StyleGAN are optimised with MagFace and Mo-
bileFaceNet, and recognition is tested with ArcFace. Lower recall and a
higher percentage mean better privacy. In this case, generative meth-
ods optimised with two embeddings obtain better results than generative
methods optimised with only one embedding method, as in Table C.1.
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VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 0.697 3.975 8.312 0.715 12.268 1.633
Recall@1: m.i. 23.571 10.712 5.055 23.831 3.450 15.868
Recall@1: o.i. 24.012 15.125 8.064 24.534 6.239 16.429
Recall@3: m.i. 70.271 26.359 12.778 66.680 8.947 45.256
Recall@3: o.i. 71.274 32.177 15.527 66.800 12.237 46.319
Recall@5: m.i. 91.775 36.169 17.934 87.964 13.340 60.522
Recall@5: o.i. 91.555 39.860 20.040 84.875 15.787 60.923

Recall@10: m.i. 94.965 45.537 24.835 91.575 18.495 68.867
Recall@10: o.i. 94.905 48.265 26.239 89.950 20.963 69.829
Recall@50: m.i. 97.733 65.597 42.508 96.309 34.483 83.470
Recall@50: o.i. 97.553 66.941 45.436 95.125 36.349 84.554

Recall@100: m.i. 98.235 72.457 51.775 97.151 42.989 88.465
Recall@100: o.i. 98.195 75.125 55.486 96.670 46.098 89.749

Table C.7: Evaluation on CC dataset in the case of a transfer to another
embedding: VQGAN and StyleGAN are optimised with MagFace and Mo-
bileFaceNet, and recognition is tested with FaceNet. Lower recall and a
higher percentage mean better privacy. We can see that generative meth-
ods’ evaluation results for the CC dataset are very similar to the ones for
the LFW dataset.
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VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 2.880 14.337 27.089 2.507 22.651 4.201
Recall@1: m.i. 23.390 2.086 0.562 24.674 0.301 19.097
Recall@1: o.i. 21.926 5.918 1.043 24.995 1.886 17.031
Recall@3: m.i. 62.708 5.998 1.143 67.462 1.484 52.277
Recall@3: o.i. 63.129 10.973 2.187 67.683 3.992 49.107
Recall@5: m.i. 78.335 9.468 1.805 84.393 2.768 64.654
Recall@5: o.i. 78.154 13.561 2.949 83.952 5.296 63.149

Recall@10: m.i. 81.846 14.845 3.230 86.399 4.975 70.351
Recall@10: o.i. 82.046 17.553 4.794 86.219 7.763 68.706
Recall@50: m.i. 87.182 30.211 9.007 89.709 14.624 80.100
Recall@50: o.i. 87.603 31.033 11.013 89.749 16.309 78.495

Recall@100: m.i. 89.087 38.736 14.203 90.853 20.702 84.092
Recall@100: o.i. 89.348 39.238 15.226 90.913 22.287 82.247

Table C.8: Evaluation on CC dataset, in the case without transfer to an-
other embedding: VQGAN and StyleGAN are optimised with MagFace
and MobileFaceNet, and recognition is tested with MagFace. We can see
that generative methods’ evaluation results for the CC dataset are very
similar to the ones for the LFW dataset.

VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 2.339 7.232 12.125 1.739 14.657 4.074
Recall@1: m.i. 21.184 9.188 5.115 24.453 4.173 15.266
Recall@1: o.i. 21.966 12.217 6.640 24.955 7.442 10.532
Recall@3: m.i. 55.426 22.628 11.635 63.71 9.910 37.733
Recall@3: o.i. 57.392 25.436 13.260 64.975 14.002 28.706
Recall@5: m.i. 69.468 28.445 15.165 78.034 12.839 48.004
Recall@5: o.i. 70.973 32.016 16.830 78.656 17.212 37.813

Recall@10: m.i. 75.165 35.426 19.960 81.825 17.854 55.366
Recall@10: o.i. 76.209 39.699 22.487 82.648 23.049 44.433
Recall@50: m.i. 84.072 52.879 35.807 88.104 30.993 70.090
Recall@50: o.i. 85.035 58.295 40.040 88.546 38.716 61.765

Recall@100: m.i. 87.442 61.204 44.714 90.913 38.837 76.670
Recall@100: o.i. 88.185 66.419 48.967 90.973 46.620 69.087

Table C.9: Evaluation on CC dataset in the case of a transfer to an-
other embedding: VQGAN and StyleGAN are optimised with MagFace
and MobileFaceNet, and recognition is tested with ArcFace. We can see
that generative methods’ evaluation results for the CC dataset are very
similar to the ones for the LFW dataset.
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VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 6.513 12.668 20.632 5.200 15.798 7.708
Recall@1: m.i. 20.542 7.763 1.224 24.313 3.972 14.664
Recall@1: o.i. 19.719 12.638 5.155 24.875 8.004 12.919
Recall@3: m.i. 53.440 17.673 3.852 60.100 9.850 36.871
Recall@3: o.i. 53.902 24.433 10.251 59.880 16.108 27.663
Recall@5: m.i. 63.952 22.648 5.436 70.812 13.159 44.835
Recall@5: o.i. 64.614 30.451 12.417 70.933 20.662 32.397

Recall@10: m.i. 67.643 29.027 8.666 74.022 18.415 50.973
Recall@10: o.i. 68.826 37.051 16.510 74.223 27.061 36.429
Recall@50: m.i. 74.564 43.771 19.278 79.539 33.280 64.092
Recall@50: o.i. 75.206 53.039 29.027 79.819 43.290 45.456

Recall@100: m.i. 77.733 51.013 26.820 82.006 41.204 69.649
Recall@100: o.i. 78.134 59.980 37.131 82.247 51.715 50.291

Table C.10: Evaluation on CC dataset without transfer to another embed-
ding: VQGAN and StyleGAN are optimised with MagFace and Mobile-
FaceNet, and recognition is tested with MobileFaceNet. Lower recall and
a higher percentage mean better privacy. We can see that generative meth-
ods evaluation results for the CC dataset are very similar to the ones for
the LFW dataset.
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VQGAN VQGAN VQGAN Fawkes StyleGAN AMT-GAN
0.003 128 0.04 4096 0.02 1000

Percentage 3.025 4.970 6.915 2.652 7.650 4.518
Recall@1: m.i. 20.582 12.758 7.783 24.012 8.345 16.790
Recall@1: o.i. 20.602 14.584 11.033 24.754 10.732 15.908
Recall@3: m.i. 56.951 32.217 20.361 61.685 21.846 39.398
Recall@3: o.i. 56.971 33.079 22.949 62.347 24.092 34.303
Recall@5: m.i. 69.930 40.943 27.021 75.165 28.646 49.328
Recall@5: o.i. 69.629 41.083 28.686 74.905 30.150 41.805

Recall@10: m.i. 74.463 49.328 35.065 78.816 36.489 56.289
Recall@10: o.i. 74.183 49.589 36.189 78.696 37.232 47.141
Recall@50: m.i. 82.608 66.379 53.521 85.496 54.644 71.414
Recall@50: o.i. 82.508 67.041 54.664 85.216 56.851 59.920

Recall@100: m.i. 85.657 73.561 62.628 87.823 62.327 77.553
Recall@100: o.i. 85.537 73.400 63.591 87.803 64.754 65.236

Table C.11: Evaluation on CC dataset in the case of a transfer to another
embedding: VQGAN and StyleGAN are optimised with MagFace + Mo-
bileFaceNet, and recognition is tested with ResNet 152. Lower recall and a
higher percentage mean better privacy. We can see that generative meth-
ods’ evaluation results for the CC dataset are very similar to the ones for
the LFW dataset.
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