
HAL Id: tel-04830060
https://theses.hal.science/tel-04830060v1

Submitted on 10 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identity of Proofs and Formulas using Proof-Nets in
Multiplicative-Additive Linear Logic

Rémi Di Guardia

To cite this version:
Rémi Di Guardia. Identity of Proofs and Formulas using Proof-Nets in Multiplicative-Additive Linear
Logic. Computer Science [cs]. Ecole normale supérieure de lyon - ENS LYON, 2024. English. �NNT :
2024ENSL0050�. �tel-04830060�

https://theses.hal.science/tel-04830060v1
https://hal.archives-ouvertes.fr

THÈSE
en vue de l’obtention du grade de Docteur, délivré par

l’ÉCOLE NORMALE SUPÉRIEURE DE LYON

École Doctorale N◦ 512
École Doctorale en informatique et Mathématiques de Lyon

Discipline : Informatique

Soutenue publiquement le 23/09/2024, par :

Rémi DI GUARDIA

Identity of Proofs and Formulas using Proof-Nets in
Multiplicative-Additive Linear Logic

Identité des Preuves et Formules par l’usage des Réseaux de Preuve
en Logique Linéaire Multiplicative-Additive

Devant le jury composé de :

Claudia FAGGIAN Chargée de Recherche CNRS & Université Paris Cité Examinatrice
Willem HEIJLTJES Senior Lecturer University of Bath Rapporteur
Olivier LAURENT Directeur de Recherche CNRS & ÉNS de Lyon Directeur
Damiano MAZZA Directeur de Recherche CNRS & Université Paris-Nord Rapporteur
Samuel MIMRAM Professeur des Universités École Polytechnique Examinateur

Abstract

This study is concerned with the equality of proofs and formulas in linear logic, with in particular
contributions for the multiplicative-additive fragment of this logic. In linear logic, and as in many
other logics (such as intuitionistic logic), there are two transformations on proofs: cut-elimination
and axiom-expansion. One often wishes to identify two proofs related by these transformations, as
it is the case semantically (in a categorical model for instance). This situation is similar to the one
in the λ-calculus where terms are identified up to β-reduction and η-expansion, operations that,
through the prism of the Curry-Howard correspondence, are related respectively to cut-elimination
and axiom-expansion. It is widely conjectured by the community that this identification corresponds
exactly to identifying proofs up to rule commutation, a third well-known operation on proofs which
is easier to manipulate. This result is even implicitly assumed by many papers, in particular those
about the proof-net syntax we will discuss just after. Nonetheless, this important property was
still not proved at the beginning of this thesis. We demonstrate it for multiplicative-additive linear
logic, following a method that should extend to full linear logic.

Not only proofs but also formulas can be identified up to cut-elimination and axiom-expansion.
Two formulas are isomorphic if there are proofs between them whose compositions yield identities,
still up to cut-elimination and axiom-expansion. These formulas are then really considered to be
the same, and every use of one can be replaced with one use of the other. It is expected that all
isomorphisms arise from a few well-known given ones, and such a result was proven in multiplicative
linear logic by Balat and Di Cosmo: they gave an equational theory characterizing exactly isomor-
phic formulas in this part of the logic. We extend their result to the wider multiplicative-additive
linear logic, whose characterizing equational theory is more involved. A generalization of an iso-
morphism is a retraction, which intuitively corresponds to a pair of formulas where the first can be
replaced by the second – but not necessarily the other way around, contrary to an isomorphism.
Studying retractions is more complicated and, as opposed to isomorphisms, there is no conjecture
on what retractions are expected to be. We characterize retractions to an atom in the multiplicative
fragment of linear logic.

When studying the two previous problems, the usual syntax of proofs from sequent calculus
seems ill-suited because we consider proofs up to rule commutation. Part of linear logic can be
expressed in a better adapted syntax in this case: proof-nets, which are graphs representing proofs
quotiented by rule commutation. This syntax was an instrumental tool for the characterization
of isomorphisms and retractions. Unfortunately, proof-nets are not (or badly) defined with units:
there is no known adequate definition if one wants the canonical property to represent proofs up to
all rule commutations, even if there exist some notions corresponding to quotienting by unit-free
rule commutations. Concerning our issues, this restriction leads to a study of the unit-free case by
means of proof-nets with the crux of the demonstration, preceded by a work in sequent calculus to

3

handle the units.
Besides, this thesis also develops part of the theory of proof-nets by providing a simple proof

of the sequentialization theorem, which relates the two syntaxes of proof-net and sequent calculus,
substantiating that they describe the same underlying objects. This new demonstration is obtained
as a corollary of a generalization of Yeo’s theorem. This last result is fully expressed in the theory
of edge-colored graphs, and allows to recover proofs of sequentialization for various definitions of
proof-nets. Finally, we also formalized proof-nets for the multiplicative fragment of linear logic in
the proof assistant Coq, with notably an implementation of our new sequentialization proof.

Keywords: Multiplicative-additive linear logic, Cut elimination, Rule commutation, Type Iso-
morphisms, Retraction, Sequent calculus, Proof-nets, Sequentialization, Edge-colored graph theory,
Formalization, Coq.

Résumé

Cette thèse s’intéresse à l’égalité des preuves et des formules en logique linéaire, avec des contri-
butions en particulier dans le fragment multiplicatif-additif de cette logique. En logique linéaire, et
dans de nombreuses autres logiques (telle que la logique intuitionniste), on dispose de deux trans-
formations sur les preuves : l’élimination des coupures et l’expansion des axiomes. On souhaite très
souvent identifier deux preuves reliées par ces transformations, étant donné qu’elles le sont sémanti-
quement (dans un modèle catégorique par exemple). Cette situation est similaire à celle du λ-calcul
où les termes sont identifiés à β-réduction et η-expansion près, opérations qui, par le prisme de
la correspondance de Curry-Howard, se rapportent respectivement à l’élimination des coupures et
à l’expansion des axiomes. Une conjecture largement acceptée dans la communauté est que cette
identification des preuves correspond exactement à l’identification des preuves à commutation de
règle près, qui est une troisième opération sur les preuves bien connue et plus facile à manipuler.
Ce résultat est même supposé implicitement par de nombreux articles, en particulier ceux traitant
de la syntaxe des réseaux de preuve à laquelle nous nous intéresserons juste après. Néanmoins,
cette importante propriété n’était toujours pas prouvée au commencement de cette thèse. Nous
la démontrons ici pour la logique linéaire multiplicative-additive, suivant une méthode qui devrait
permettre d’étendre la preuve à la logique linéaire dans son entièreté.

Non seulement des preuves peuvent être identifiées à élimination des coupures et expansion des
axiomes près, mais aussi des formules. Deux formules sont isomorphes si elles sont reliées par des
preuves dont les compositions donnent l’identité, toujours à élimination des coupures et expan-
sion des axiomes près. Ces formules sont alors réellement considérées comme les mêmes, et toute
utilisation de l’une peut être remplacée par une utilisation de l’autre. Il est attendu que tous les iso-
morphismes peuvent être obtenus à partir de quelques isomorphismes bien connus, ce qui a d’ailleurs
été prouvé par Balat et Di Cosmo pour la logique linéaire multiplicative : ils ont donné une théorie
équationnelle caractérisant exactement les formules isomorphes dans cette partie de la logique. Nous
étendons leur résultat dans le cadre plus large de la logique linéaire multiplicative-additive, dont
la théorie équationnelle est plus complexe. Un problème généralisant les isomorphismes est celui
des rétractions, qui intuitivement correspondent aux paires de formules où la première peut être
remplacée par la seconde – mais pas nécessairement la seconde par la première, contrairement aux
isomorphismes. Étudier les rétractions est bien plus complexe et, contrairement aux isomorphismes,
il n’y a pas de conjecture donnant les paires de formules qui devraient être des rétractions. Nous
avons caractérisé les rétractions des atomes dans le fragment multiplicatif de la logique linéaire.

Pour l’étude des deux problèmes précédents, la syntaxe usuelle des preuves du calcul des séquents
semble mal adaptée, car on considère des preuves à commutation de règle prés. Une partie de la
logique linéaire possède une meilleure syntaxe dans ce cas : les réseaux de preuve, qui sont des
graphes représentant des preuves quotientées par les commutations de règle. Cette syntaxe fut un

5

outil indispensable pour caractériser isomorphismes et rétractions. Malheureusement, les réseaux de
preuve ne sont pas (ou mal) définis en présence des unités : il n’y a pas de définition adéquate pour
des réseaux canoniques représentant les preuves à toutes les commutations de règle près, même si il
existe des notions correspondant à un quotient par les commutations de règles sans unité. Pour nos
problèmes, cette restriction conduit à une étude du cas sans unité dans les réseaux avec le cœur de
la démonstration, précédée d’un travail en calcul des séquents pour prendre en compte les unités.

Cette thèse développe par ailleurs une partie de la théorie des réseaux de preuve en fournissant
une preuve simple du théorème de séquentialisation, qui relie les deux syntaxes des réseaux de
preuve et du calcul des séquents, justifiant qu’elles décrivent les mêmes objets sous-jacents. Cette
nouvelle démonstration s’obtient comme corollaire d’une généralisation du théorème de Yeo. Ce
dernier résultat s’exprime entièrement dans la théorie des graphes aux arêtes colorées, et permet
de déduire des preuves de sequentialisation pour différentes définitions de réseaux de preuve. Enfin,
nous avons aussi formalisé les réseaux de preuve du fragment multiplicatif de la logique linéaire
dans l’assistant de preuve Coq, avec en particulier une implémentation de notre nouvelle preuve de
séquentialisation.

Mot-clefs : Logique linéaire multiplicative-additive, Élimination des coupures, Commutation de
règle, Isomorphisme de type, Rétraction, Calcul des séquents, Réseaux de preuve, Séquentialisation,
Théorie des graphes aux arêtes colorées, Formalisation, Coq.

Remerciements

Merci en premier lieu à Olivier Laurent, mon directeur de thèse, pour m’avoir non seulement pris
comme étudiant mais aussi pour m’avoir fait découvrir le domaine où j’ai effectué ma thèse. Merci
de plus pour ton attention tout au long de ces trois années, tes réponses à mes nombreuses questions
et les propres questions que tu as soulevées et auxquelles je n’aurais pas pensé. Merci finalement
pour ta relecture attentive de ce manuscrit, et tes recommandations.

Je voudrais aussi remercier Claudia Faggian, Willem Heijltjes, Damiano Mazza et Samuel Mim-
ram pour avoir accepté de participer à mon jury de thèse. Je suis particulièrement reconnaissant
à Willem et Damiano pour avoir lu et rapporté cette thèse dont je m’excuserais de la longueur si
je n’avais eu autant à dire ni des preuves parfois aussi complexes. Merci encore à Willem pour les
nombreuses corrections qui ont découlé de cette relecture, et qui devraient rendre la lecture de cette
thèse plus digeste. J’en profite pour aussi remercier Samuel une deuxième fois, cette fois pour sa
participation à mes comités de suivi durant mes trois années de thèse, aux côtés de Bora Uçar.

Merci à Lionel Vaux Auclair et Lorenzo Tortora de Falco pour avoir co-écrit avec moi et Olivier
un papier sur ce qui ne devait être qu’une simple extension d’une preuve de séquentialisation de MLL
avec mix à MALL, et qui a fini en discussions architecturales sur comment appeler une structure
avec deux arches et une pile autrement qu’un pont, en passant par des considérations sans fin sur
les boucles.

Merci aussi aux membres de Plume pour la très agréable ambiance de travail durant ma thèse,
les différentes discussions que nous avons eues, les exposés des GdTs et les Plume Beers. Je remercie
notamment Tito (Lê Thành Dũng Nguy˜̂en) pour son impact direct sur l’importance de la partie
graphe de cette thèse, qui n’aurait pas été du tout pareil sans ses connaissances précises de la
littérature dans des domaines variés. Similairement, merci à Damien Pous et Cyril Cohen pour leur
aide en Coq qui m’a fait gagner un temps considérable grâce à leur expérience et leur connaissance
de librairies que j’utilise et qu’ils ont développées. J’aimerais aussi remercier Marie Narducci pour sa
disponibilité et son aide constante pour l’administratif, y compris lors de la découverte de Nautilus.

Je remercie de plus Guy McCusker, Willem Heijltjes et James Laird pour m’avoir chaleureuse-
ment accueilli à Bath, ainsi que pour les discussions que nous y avons eues. J’aimerais remercier les
nombreuses personnes avec qui j’ai discuté durant de multiples Chocolas, à l’occasion de conférences
ou au CIRM, mais ne citerai pas de nom car j’en oublierais toujours trop.

Je remercie aussi mes amis de lycée de Rennes, pour nos chaleureuses réunions de parties bis-
annuelles, bien qu’on soit maintenant bien dispersés en France. Merci aussi à toutes celles et ceux
que j’ai croisés durant les clubs jeux de société de Centrale puis de l’ENS, qui ont bien égayé
mes semaines. Je remercie tout particulièrement le club de cartes Baston de l’ENS, pour les belles
campagnes qu’on y a jouées, et notamment Jean pour m’avoir initié à ce jeu qu’il a inventé.

Enfin, merci à toute ma famille, à qui je n’ai malheureusement jamais réussi à expliquer correc-

7

tement mon sujet de thèse. Merci tout particulièrement à mon frère Hugo pour avoir lu jusqu’au
bout cette thèse très éloignée de ses lectures habituelles !

Contents

Abstract 3

Résumé 5

Introduction 13

I Sequent Calculus 17

1 Sequent Calculus of Linear Logic 21
1.1 Sequent Calculus . 21

1.1.1 Formulas and Rules . 22
1.1.2 Sub-systems . 23
1.1.3 Sequents as sets & The exchange rule . 25

1.2 Basic concepts . 27
1.3 Transformations of proofs . 28

1.3.1 Axiom-expansion . 29
1.3.2 Cut-elimination . 29
1.3.3 Rule commutation . 30
1.3.4 Rétoré transformations . 32

2 Properties of Sequent Calculus 53
2.1 Abstract Rewriting Systems . 55

2.1.1 Standard notions of Abstract Rewriting Systems 55
2.1.2 Abstract Rewriting Systems modulo an equivalence relation 56

2.2 Axiom-expansion . 58
2.3 Cut-elimination . 63

2.3.1 No strong normalization nor confluence . 64
2.3.2 Easy proof of weak normalization in MALL 64
2.3.3 Strong normalization in MALL2 and MALL0 67
2.3.4 Strong normalization in MALL0,2 . 75
2.3.5 Strong normalization in full linear logic . 77
2.3.6 Confluence of cut-elimination . 83

2.3.6.1 Cut-elimination contains rule commutation 85

9

CONTENTS

2.3.6.2 Cut-elimination is Church-Rosser modulo rule commutation 87
2.3.6.3 Cut-elimination and mix -Rétoré is Church-Rosser 105

2.3.7 Comparison with the work of Cockett and Pastro 107
2.4 Perspectives . 108

II Proof-nets 109

3 Graph Theory 113
3.1 Graphs & Paths . 114

3.1.1 Undirected graphs . 114
3.1.2 Graphs . 114
3.1.3 Paths . 116

3.2 Edge-coloring & Bungee Jumping . 117
3.2.1 Edge-coloring, Bridge & Splitting vertex . 117
3.2.2 Bungee Jumping . 118

3.3 A generalization of Yeo’s theorem . 122
3.3.1 Order on edges . 123
3.3.2 Parameterized Local Yeo with Cycles . 124
3.3.3 Proof of Parameterized Local Yeo with Cycles 125

3.3.3.1 ↱-connectivity . 125
3.3.3.2 Finding a splitting vertex . 126

3.3.4 All hypotheses are needed . 128
3.3.5 Corollaries of the main result . 130

3.3.5.1 Yeo’s theorem and other generalizations as corollaries 130
3.3.5.2 A generalization to H-coloring as a corollary 132
3.3.5.3 A generalization to hypergraphs as a corollary 133

3.3.6 Results equivalent to Yeo’s theorem . 136
3.3.7 Inductive definitions of graphs and links with proof-nets 140

3.4 Folklore results . 141
3.5 Perspectives . 143

4 Proof-Nets 145
4.1 Proof-net for unit-free MALL . 146

4.1.1 Proof-net . 146
4.1.2 Cut-elimination in proof-nets . 149

4.2 From Sequent Calculus to Proof-nets . 153
4.2.1 Desequentialization . 153
4.2.2 Simulation of cut-elimination . 156

4.3 Sequentialization . 158
4.3.1 Key lemma . 159
4.3.2 Finding a terminal splitting node . 161
4.3.3 &-graph WΓ of a sequent Γ . 162
4.3.4 Results on proof-structures using &-graphs 164
4.3.5 Sequentialization . 165
4.3.6 Other proofs of sequentialization . 169

10

CONTENTS

4.3.7 Splitting but not maximal . 170
4.3.8 Variations . 171

4.4 General Results on Proof-Nets . 172
4.4.1 Connectivity and number of connected components 172
4.4.2 Forbidden Sub-graphs in Proof-Nets . 172

4.5 Perspectives . 173

5 Formalization of Multiplicative Proof-Nets in Coq 175
5.1 Formalization of proof-nets . 177

5.1.1 Definition of proof-nets on paper . 178
5.1.2 Formalization of graphs and pre-proof-structures 181
5.1.3 Formalization of proof-structures . 184
5.1.4 Formalization of the correctness criterion . 186

5.2 Limits of the implementation . 187
5.2.1 Graph manipulation & Desequentialization 187
5.2.2 Isomorphisms . 189
5.2.3 Computation time of Coq . 190

5.3 Organization of the code . 191
5.4 Perspectives . 192

III Isomorphisms & Retractions 193

6 Isomorphisms for Multiplicative-Additive Linear Logic 197
6.1 Linear Isomorphisms . 202
6.2 Reduction to unit-free distributed formulas . 203

6.2.1 Reduction to atomic-axiom proofs . 204
6.2.2 Conservativity . 204
6.2.3 Reduction to distributed formulas . 205
6.2.4 Patterns in distributed isomorphisms . 206

6.2.4.1 Patterns in identities up to rule commutation 207
6.2.4.2 Surgery on slices . 211
6.2.4.3 Patterns in proofs of isomorphisms 213

6.2.5 Completeness with units from unit-free completeness 215
6.3 Completeness . 218

6.3.1 Isomorphisms in proof-nets . 218
6.3.2 Remarkable shapes of proof-nets . 219
6.3.3 Properties of identity proof-nets . 221
6.3.4 Bipartite full proof-nets . 222
6.3.5 Ax -uniqueness . 223

6.3.5.1 Preliminary results . 223
6.3.5.2 Isomorphisms of distributed formulas 225

6.3.6 Non-ambiguous formulas . 228
6.3.6.1 Renaming to non-ambiguous formulas 229
6.3.6.2 Simplification with non-ambiguous formulas 234

6.3.7 Completeness for unit-free MALL . 236

11

CONTENTS

6.4 Star-autonomous categories with finite products . 239
6.4.1 MALL as a star-autonomous category with finite products 240
6.4.2 Isomorphisms of star-autonomous categories with finite products 241
6.4.3 Isomorphisms of symmetric monoidal closed categories with finite products . 243

6.5 Isomorphisms up to cut-elimination only . 247
6.6 Perspectives . 248

7 Retractions for Multiplicative Linear Logic 251
7.1 Linear Retractions . 253
7.2 Reduction to unit-free MLL and proof-nets . 254

7.2.1 Optional multiplicative rules . 254
7.2.2 Units do not matter . 257
7.2.3 Retractions in proof-nets . 258

7.3 Reduction to a non-ambiguous formula . 259
7.3.1 Retractions are half-bipartite . 259
7.3.2 Reduction to a non-ambiguous formula . 260

7.4 Cantor-Bernstein-Schröeder property . 262
7.5 General results . 263
7.6 Retractions to an atom . 269

7.6.1 Beffara generates all retractions to an atom 269
7.6.2 Subtleties on the result . 273

7.6.2.1 Beffara generates all retracts to an atom only up to isomorphism . . 273
7.6.2.2 Proof-nets of a retraction not generated by Beffara 274
7.6.2.3 Incorrect proof-structures generated by Quasi-Beffara 275
7.6.2.4 Incorrect proof-structures not generated by Quasi-Beffara 276

7.7 Retractions to an arbitrary formula . 277
7.8 Provability & Decidability . 280

7.8.1 Retractions and Provability . 280
7.8.2 Decidability of retractions . 283

7.9 Retractions up to cut-elimination only . 284
7.10 Perspectives . 284

Conclusion 287

Appendices 289

A Case studies for Sequent Calculus 291

B Basic properties of Isomorphisms and Retractions 309

C A long computation in Coq 313

Bibliography 315

12

Introduction

This thesis is encompassed within the field of proof theory, namely the study of mathematical proofs
as formal objects. This sub-field of logic allows to analyze proofs as any other mathematical objects,
permitting for instance to show that a statement is not provable. There are many logics in proof
theory, the most famous ones surely being classical and intuitionistic logics. Here is considered
another well-known one: linear logic [Gir87]. This logic is a refinement of classical logic, and
is as powerful as the latter but with a view of formulas as resources that can be consumed, or
used, exactly once – hence its denomination. Such a viewpoint is useful in plenty of settings, from
quantitative considerations to describe objects with measures instead of only yes/no questions, to
the analysis of programs through the Curry-Howard correspondence. The latter shows links between
logic and programming: formulas correspond to types while proofs are like programs, or functions.
The view of formulas as resources also corresponds more to what happens with real systems: when
buying butter, one does not expect to get the butter while keeping the money, which is kind of
what happens in classical logic.

As many other logics, linear logic can be described under the form of a sequent calculus: this
proof system is the data of formulas, that compose statements we call sequents, and of inference
rules that permit to deduce the veracity of a sequent from the veracity of some others – possibly
none in the case of an axiom. This way, a proof is a tree with the statement one wants to prove
at the bottom, above which are rules implying that this statement is true if others are, all the way
up to basic facts that are trivially true. This inductive definition has the main advantage to be
easily manipulated, and can therefore be implemented in a computer, yielding proof assistants such
as Coq [Coq] where one can code a proof that is computer-checked. Notwithstanding this great
quality, sequent calculus has one major drawback: identity of proofs is complicated.

Indeed, one does not want to identify only proofs that are syntactically equal, i.e. whose suc-
cessive rules are exactly the same. In linear logic, and in most sequent calculi, there is a cut-rule
that allows computation, called cut-elimination, and one wishes for two proofs related by such a
computation to be the same. Looking at programs, even if 2 + 2 and (1 + 2) + 1 are not the
same term, because one as two symbols + while the other has only one, it is still very sensible
to identify them, at least from a computational approach. Another notion of identity on proofs
is axiom-expansion, corresponding to the fact that a function f should be considered the same as
x 7−→ f(x), the function that takes an input x and returns f(x), which is again a very natural
identification to ask for. Hence, one wants to see proofs as equivalent up to these two relations,
which in general is either a trivial nonsense or a combinatorial nightmare. For instance of the
former, in classical logic any two proofs of a given statement are related computationally [GLT89,
Appendix B.1], which is as a matter of fact an easy characterization. Unfortunately, this means
when seeing proofs as programs that there is only one element of each type, so one integer or one

13

INTRODUCTION

boolean, which is usually not desirable. Considering the combinatorial nightmare, one simply has
to look at the numerous tables at the end of Chapter 1, which contain what is conjectured as the
core identification needed to check if two proofs should be identified – in other words the “easy”
way to get all proofs equivalent to the one under consideration. More formally, cut-elimination
is Church-Rosser modulo rule commutation. Henceforth, sequent calculus appears to be pretty
inefficient for identifying proofs.

Fortunately, linear logic has since its creation another syntax: proof-nets [Gir87]. A proof-net
is a representation of a proof not under the form previously described of sequent calculus, but as a
graph, i.e. a collection of vertices with arcs linking couples of vertices together [Die05; JU76]. This
unusual presentation is well-behaved for the identification of proofs: two proofs are computationally
equal if and only if they share the same graph, the same proof-net [HG16]. This means proof-nets
are the canonical syntax for proof-theory: we have only one object for what we want to identify,
instead of plenty of proofs related through some relations; like having only 4 instead of 2 + 2 and
(1+ 2)+ 1. Such a syntax solves our problem of identification of proofs in one go, and is wonderful
where it works. Unfortunately, a proof-net syntax does not exist for the whole of linear logic, which
thus has to bear with sequent calculus. A part of linear logic admitting proof-nets is multiplicative-
additive linear logic [HG05] (almost: only its units break proof-nets), which is the principal part
of linear logic this thesis will be concerned with. Still, we will introduce the full logic to explain
what fails outside of this sub-system, or to conjecture extensions of our results to the full logic.
A main result in the theory of proof-nets is the sequentialization theorem: it indicates that proof-
nets correspond exactly to proofs. Another major result is that two (normal) proofs correspond
to a same proof-net if and only if they are identified, i.e. are related by cut-elimination. As an
aside, proof-nets are far from the only tool to study the identity of proofs. Such a problematic is
studied at length in deep inference, see for instance [Brü04], as well as focusing [And92], coherent
spaces [Gir87] and game semantics with full abstraction (e.g. [AJM00]).

Lastly, one may not only identify proofs related by computation, but also formulas that behave
the same. As an example, one intuitively sees that the formula A∧B – “A and B” – should behave
in most ways as the formula B ∧ A – “B and A”. Another well-known example in programming is
Currying: types A → (B → C) and (A ∧ B) → C are identified in functional programming, with
an easy way to turn a function of the first type into one of the second type, and vice-versa. The
notion formalizing this intuition is the one of isomorphism that identifies formulas that cannot be
distinguished computationally. Two formulas A and B are isomorphic when there are a proof of
B when supposing A, and one of A when supposing B, whose compositions are identities up to
computation. In layman’s terms, one can encode an object of A as an object of B, and decode it
back as an object of A without loss, and vice-versa. A related notion is the one of retraction, when
this lossless encoding holds in only one direction. This corresponds to a natural form of sub-typing
in programming.

Outline of the thesis This thesis is divided into three parts: Part I is about sequent calculus,
Part II considers proof-nets, and Part III studies isomorphisms and retractions.

The first part is composed of two chapters. Chapter 1 defines the sequent calculus of linear logic,
as well as the concepts explained beforehand: the computations on proofs that are cut-elimination
and axiom-expansion, as well as rule commutation, a related concept to identify proofs equal up to
these relations in sequent calculus. This chapter sets the framework of the thesis, with nothing novel
there excepted for a clear definition of these three relations in full linear logic. Chapter 2 scrutinizes
the properties of these transformations, and proves that rule commutations identify proofs up to

14

INTRODUCTION

axiom-expansion and cut-elimination, i.e. is the “easy” way to see if two proofs are in fact one and
the same. This property is hardly a surprise for the reader familiar with linear logic, but is a blind
spot in the literature that had not been proved previously. Despite that such a result is in the end
nothing more than a “basic property” of the sequent calculus, its proof is complex and requires a
precise analysis of the rules.

We then move on to the study of proof-nets in the second part, starting with Chapter 3 on graph
theory and edge-coloring of graphs. It not only gives the background definitions needed to handle
proof-nets, but also a proof of a new generalization of Yeo’s theorem [Yeo97]. This result will be of
use in Chapter 4 that defines proof-nets and proves they correspond to proofs of sequent calculus.
This last demonstration is at its heart a corollary of our version of Yeo’s theorem. We conclude the
second part with Chapter 5 on a formalization of proof-nets in the proof assistant Coq, translating
on computer our main results of the previous chapter in the simple case of multiplicative linear
logic instead of multiplicative-additive linear logic.

Then comes the third and last part with Chapter 6 on isomorphisms. There is given an equa-
tional theory, i.e. building blocks, characterizing exactly isomorphisms of multiplicative-additive
linear logic. This implies a corresponding result in category theory, with a characterization of
⋆-autonomous categories with finite products, which is the class of categories corresponding to
multiplicative-additive linear logic. Lastly, we consider retractions of multiplicative linear logic
in Chapter 7, with a characterization of all retractions to an atom, among other results for the
general case such as proving the Cantor-Bernstein-Schröeder property, or that units do not give
more retractions than their unitality isomorphisms. Both these chapters use results from the pre-
vious parts, and proof-nets are a key ingredient to get the characterizations of isomorphisms and
retractions.

Related publications This thesis arises from results published during the corresponding PhD,
that it subsumes and extends.

• Properties of cut-elimination as a rewriting system, in relation with rule commutation, were
first given for multiplicative-additive linear logic in [DL23] (a journal paper extending this
conference paper has currently been submitted). Chapter 2 simplifies part of the proofs, and
also consider the mix -rules.

Chapter 6 extends the main contribution of [DL23], expanding the characterization of isomor-
phisms in presence of the mix 2-rule and with different intermediate lemmas that are reused
for the study of retractions in Chapter 7.

• The main contributions in Chapters 3 and 4 mostly broaden [Di+23] to incorporate graph
results needed for sequentialization of additives. It also presents the main result in the more
general framework of graph theory. A journal paper with the same authors is in preparation
with these results, as well as more details in the simpler case of multiplicative proof-nets,
where this yields to a very simple and short proof of the sequentialization theorem. This
proof of sequentialization in multiplicative linear logic is also a simpler version of some known
ones, including a previous paper of the author [DL22]. A conference paper about this new
sequentialization proof for multiplicative linear logic has been submitted.

15

Part I

Sequent Calculus

17

This part studies the Sequent Calculus of Linear Logic. The framework of sequent calculus is
often the one used to define logics, and the first definition of linear logic by Girard in [Gir87] was
no exception. We give in Chapter 1 the definition of linear logic in sequent calculus, as well as
those of the usual proof transformations: axiom-expansion, cut-elimination and rule commutation.
In a second time, we study properties of this calculus in terms of normalization and confluence. We
prove in Chapter 2 that, while the strongest properties we could wish for – strong normalization and
confluence – do not hold for cut-elimination, we still have weaker corresponding properties – weak
normalization and strong normalization of part of the system, as well as Church-Rosser modulo
rule commutation. These results are proved in the multiplicative-additive fragment of linear logic,
and conjectured for the full proof system.

19

Chapter 1

Sequent Calculus of Linear Logic

In this first chapter, we introduce linear logic with its sequent calculus syntax. The first definition
of this logic can be found in [Gir87]. Linear logic plays a key part in the framework of the Curry-
Howard correspondence, which links proofs and programs, and gave rise to many concepts thanks
to its view of formulas as resources, that must be used exactly once in a proof. This is a very
rich logic that can be seen as a refinement of classical logic, allowing to better understand the
connectives and units of the latter: the conjunction (logical “and”), the disjunction (logical “or”),
true and false. Each connective and unit has two versions in this logic: a multiplicative version and
an additive one. Moreover, two modalities are introduced to speak of unlimited resources: these
are the exponential connectives, which correspond to the structural rules, usually not associated
to any connective. This yields a fairly complex system with ten connectives and units, against the
four of classical logic.

While most of our work in the next chapters focuses only on a sub-system of it, we give here the
full logic so as to explain when possible which generalizations of our results are conjectured, or on
the contrary which rule breaks such extensions. Furthermore, considering the full logic is also an
opportunity to describe precisely some concepts which are folklore but scarcely defined precisely in
the general case – typically rule commutation.

Outline The sequent calculus of linear logic is described with its formulas and rules, as well as
sub-systems of this logic (Section 1.1). Then are given some well-known elementary concepts of this
logic (size of a formula, slice, . . .) (Section 1.2). Finally, the three transformations on proofs that
will be of interest in this thesis are defined: axiom-expansion, cut-elimination and rule commutation
(Section 1.3).

1.1 Sequent Calculus
We define here the sequent calculus of linear logic [Gir87]. As written before, this logic contains
three classes of propositional connectives: multiplicative, additive and exponential ones. The mul-
tiplicative and additive families provide two copies of each classical propositional connective: two
copies of conjunction (⊗ and &), of disjunction (` and ⊕), of true (1 and ⊤) and of false (⊥ and
0). The exponential family is constituted of two modalities ! and ?, and is used to deal with the
structural rules, and in particular to indicate formulas that can be duplicated or erased. We study

21

1.1. SEQUENT CALCULUS

a general setting with also (second order) quantifiers and possibly some additional rules: the mix 2-
and mix 0-rules – often appearing when considering proof-nets (see for instance [FR94; Ham04;
Ngu20], or the usual proof-nets for multiplicative-exponential linear logic [LL22]) – and the ∪ and
∅-rules – used in differential linear logic under the respective names + and 0 [Ehr18], and the latter
rule under the name ✠ in ludics [Gir01].

1.1.1 Formulas and Rules
Assume given a countable set X of atoms.1 Formulas are given by the following grammar, where
X is an atom:

A,B := | X+ | X− (atom)
| A`B | A⊗B | ⊥ | 1 (multiplicative)
| A&B | A⊕B | ⊤ | 0 (additive)
| ?A | !A (exponential)
| ∀XA | ∃XA (quantifier)

We call positive atoms those formulas of the shape X+, negative atoms those of the kind
X−, and signed atoms all positive or negative atoms. Some X ∈ X is called an unsigned atom
to remove any ambiguity. The connectives are the ⊗, `, ⊕, &, !, ?, ∀ and ∃ symbols, the four
first being binary and the others unary connectives. Meanwhile, the units are 1, ⊥, 0 and ⊤. The
leaves consist of the signed atoms and the units.

We define on formulas a function (·)⊥ called orthogonality, also named negation or duality,
through the following inductive definition:

(X+)⊥ = X−

(A`B)⊥ = B⊥ ⊗A⊥

⊥⊥ = 1

(A&B)⊥ = B⊥ ⊕A⊥

⊤⊥ = 0

(?A)⊥ = !A⊥

(∀XA)⊥ = ∃XA⊥

(X−)⊥ = X+

(A⊗B)⊥ = B⊥ `A⊥

1⊥ = ⊥
(A⊕B)⊥ = B⊥ &A⊥

0⊥ = ⊤
(!A)⊥ = ?A⊥

(∃XA)⊥ = ∀XA⊥

It can be easily checked that orthogonality is an involution: A⊥⊥ = A. One may recognize
the non-commutative De Morgan’s laws in the definition of the dual of a binary connective. The
non-commutative version is the good notion, as shown in the context of cyclic linear logic where this
leads to planar proof-nets [AM98]. When speaking about proof-nets, this choice will often result
in planar graphs on our illustrations, with links not crossing each others; hence to more readable
figures. Everything written in this thesis still holds when taking the commutative De Morgan’s
laws instead, up to some minor fixes when considering dual formulas.

Another often used connective in linear logic is the linear implication, denoted by⊸. It can
be defined as A⊸ B = A⊥`B. This corresponds to the definition of implication in classical logic,
with A =⇒ B = ¬A ∨B.

1One often assume X to be countable, for we need an unbounded number of variables, but can only use a finite
subset (of arbitrary size). This allows us to consider fresh atoms at any point.

22

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

Sequents are sets of occurrences of formulas written in the form ⊢ A1, . . . , An. This means that,
as is usual, we consider only one-sided sequents. Everything in this thesis should expand trivially
to two-sided sequents; however, the two-sided framework has twice the number of rules, and thus
has even more cases in our proofs when we look carefully at each rule.

Sequent calculus rules of linear logic are given on Figure 1.1. In these rules, A and B stands
for arbitrary formulas, Γ and ∆ for contexts (i.e. sets of occurrences of formulas). The notation
?Γ means that each formula of this context is a ?-formula, i.e. ?Γ = ?A1, . . . , ?An. The notation
[B/X] is the usual substitution of an atom X by a formula B: each occurrence of X+ is replaced
by B, and each occurrence of X− by B⊥ (see Section 1.2 for more details). The side condition in
the application of the ∀-rule, X not free (or X fresh) in Γ, is the usual one when handling universal
quantifiers: the atom X should not appear in formulas of Γ, whether as a positive or negative atom,
except possibly below a quantifier on X, namely ∀X or ∃X. This condition can always be satisfied
up to α-conversion.

Remark there is no rule associated to 0, there are two associated with ⊕, ⊕1 and ⊕2, and three
associated with ?, the dereliction ?d, the contraction ?c and the weakening ?w. Otherwise, there
is exactly one rule for each other unit and connective. As the ⊕1 and ⊕2-rules are really similar,
we will often talk about a ⊕i-rule, which is ⊕1 or ⊕2 according to the value of i ∈ {1; 2}. A well-
informed reader may remark the absence of an exchange rule; some explanations on this subject
are given in Section 1.1.3.

1.1.2 Sub-systems
One often does not want to consider the full sequent calculus defined previously, but only a part of
it; moreover, each of the optional rules may or may not be added to it. We call this a sub-system
of the logic. As one always want to keep the atoms as well as the ax - and cut-rules, one also has
to keep dual connectives and units, so that orthogonality (·)⊥ stays well-defined in this restriction.
Here are the sub-systems we will use in this thesis. They define not only sub-sets of rules, but also
of formulas.

Multiplicative-additive linear logic, denoted by MALL, is made of the multiplicative and additive
formulas and rules of linear logic. In more details, its formulas are given by the following grammar:

A,B := X+ | X− | A⊗B | A`B | 1 | ⊥ | A&B | A⊕B | ⊤ | 0

Its rules are ax , cut , `, ⊗, ⊥, 1, &, ⊕1, ⊕2, ⊤ and 0. Similarly, multiplicative linear logic, called
MLL, has for formulas:

A,B := X+ | X− | A⊗B | A`B | 1 | ⊥

The rules of this deduction system are: ax , cut , `, ⊗, ⊥ and 1. As other sub-systems, one can
define in a similar fashion additive linear logic ALL, exponential linear logic ELL, or multiplicative-
exponential linear logic MELL. Considering the full propositional linear logic, with all rules excepted
for the quantifiers and optional rules, we simply denote it by LL.

By a unit-free sub-system, we mean this sub-system without the units and their associated
rules. For instance, MALLuf denotes unit-free multiplicative-additive linear logic, with as formulas:

A,B := X+ | X− | A⊗B | A`B | A&B | A⊕B

Its rules are ax , cut , `, ⊗, &, ⊕1 and ⊕2. Likewise, one defines MLLuf as MLL without the units
and so on.

23

1.1. SEQUENT CALCULUS

Identity rules:

(ax)
⊢ A⊥, A

⊢ A⊥,Γ ⊢ A,∆
(cut)

⊢ Γ,∆

Multiplicative rules:
⊢ A,B,Γ

(`)
⊢ A`B,Γ

⊢ A,Γ ⊢ B,∆
(⊗)

⊢ A⊗B,Γ,∆
⊢ Γ

(⊥)
⊢ ⊥,Γ

(1)
⊢ 1

Additive rules:
⊢ A,Γ ⊢ B,Γ

(&)
⊢ A&B,Γ

⊢ A,Γ
(⊕1)

⊢ A⊕B,Γ
⊢ B,Γ

(⊕2)
⊢ A⊕B,Γ

(⊤)
⊢ ⊤,Γ

Exponential rules:
⊢ A,Γ

(?d)
⊢ ?A,Γ

⊢ ?A, ?A,Γ
(?c)

⊢ ?A,Γ

⊢ Γ
(?w)

⊢ ?A,Γ

⊢ A, ?Γ
(!)

⊢ !A, ?Γ

Quantifier rules:
⊢ A,Γ

X not free in Γ (∀)
⊢ ∀XA,Γ

⊢ A[B/X],Γ
(∃)

⊢ ∃XA,Γ

Optional multiplicative rules:
⊢ Γ ⊢ ∆

(mix2)
⊢ Γ,∆

(mix0)
⊢

Optional additive rules:
⊢ Γ ⊢ Γ

(∪)
⊢ Γ

(∅)
⊢ Γ

Figure 1.1: Rules of the Sequent Calculus of Linear Logic

24

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

When adding 2 or 0 as exponents in a sub-system, we mean this sub-system with in addition the
mix 2- or mix 0-rules. For instance, MALL2 is the sub-system MALL to which is added the mix 2-rule;
and MLL0,2

uf is MLLuf with both mix 2- and mix 0-rules. Similarly, one may add ∪ or ∅ as exponents
to indicate the associated sub-system containing these rules, or ∀ to add both quantifier rules.

1.1.3 Sequents as sets & The exchange rule

Looking at the usual definitions of the above sequent calculus in the literature (for instance [Gir11;
LL22]), there are two differences here: sequents are sets and not (ordered) lists of formulas, and
there is no exchange rule. The goal of this section is to explain and justify our unusual presentation.

In case sequents are lists, the exchange rule ex is the following, where σ is a permutation:

⊢ Γ
(ex)

⊢ σ(Γ)

In most papers, immediately after giving this definition, it is written that the ex -rule will be used
implicitly in the proofs, and this rule is usually not even named afterwards. In this thesis, we look
at some precise properties of the sequent calculus, on which the ex -rule adds plenty of complexity:
this is generally the case when defining transformations of proofs (in Section 1.3), and particularly
when studying rule commutation. As a representative example, when considering in a proof two
successive non-ex -rules s and r, with s above r, we sometimes need to commute them, putting r
above s. In the framework with an ex -rule, we would not consider two rules but a stack of them,
which is harder to manipulate. Moreover, when sequents are lists, the rules given on Figure 1.1
– which are the usual ones – need some ex -rules below and above them so as to move the main
formula to the head of the list. Everything becomes tedious and unclear very quickly when taking
this approach, and saying that ex -rules are used implicitly cannot be done here as we look closely
on successive rules, and adding and removing ex -rules can have non-trivial impacts – when defining
a decreasing measure for the transformation of a proof for instance.

Another solution could be to take all rules “up to permutation”, with an ex -rule incorporated
in the conclusion of each rule – or equivalently, considering proofs with exactly one ex -rule below
each non-ex -rule, “merging” successive ex -rules by composing the associated permutations. Still,
when following this approach one needs to put “up to permutation” everywhere, for instance in
all conclusion sequents of our tables from Section 1.3. What is more, changing a permutation in
an above rule can be done only up to admissibility, not deriviability: to permute the conclusion
sequent of a proof, one needs to modify the last rule of this proof, while one wants the proofs before
and after to be equal.

An easy solution is simply to remove the ex -rule, and to consider sequents as finite multisets
instead of lists. Still, one have to be careful: considering sequents as multisets is not possible, as
doing so forsake the Curry-Howard correspondence. It is important to be able to follow occurrences
of a formula across rules: in

⊢ A,A,A
(`)

⊢ A`A,A

we need to know which of the A above comes from which of the A below: which one is the left
sub-formula of the `? the formula occurrence not a sub-formula of the `? The problem otherwise
is the following: take π1, π2, π3 and π4 arbitrary proofs of a sequent ⊢ Γ, and consider the following
proofs:

25

1.1. SEQUENT CALCULUS

π1
⊢ Γ

(⊥)
⊢ Γ,⊥

(⊥)
⊢ Γ,⊥,⊥

π2
⊢ Γ

(⊥)
⊢ Γ,⊥

(⊥)
⊢ Γ,⊥,⊥

(&)
⊢ Γ,⊥,⊥&⊥

π3
⊢ Γ

(⊥)
⊢ Γ,⊥

(⊥)
⊢ Γ,⊥,⊥

π4
⊢ Γ

(⊥)
⊢ Γ,⊥

(⊥)
⊢ Γ,⊥,⊥

(&)
⊢ Γ,⊥,⊥&⊥

(&)
⊢ Γ,⊥&⊥,⊥&⊥

(`)
⊢ Γ, (⊥&⊥)` (⊥&⊥)

(1)
⊢ 1

(⊕1)
⊢ 1⊕ 1

(1)
⊢ 1

(⊕2)
⊢ 1⊕ 1

(⊗)
⊢ (1⊕ 1)⊗ (1⊕ 1)

When composing them by cut, and applying one cut-elimination step (a transformation defined in
Section 1.3), one obtain the following proof:

π1
⊢ Γ

(⊥)
⊢ Γ,⊥

(⊥)
⊢ Γ,⊥,⊥

π2
⊢ Γ

(⊥)
⊢ Γ,⊥

(⊥)
⊢ Γ,⊥,⊥

(&)
⊢ Γ,⊥,⊥&⊥

π3
⊢ Γ

(⊥)
⊢ Γ,⊥

(⊥)
⊢ Γ,⊥,⊥

π4
⊢ Γ

(⊥)
⊢ Γ,⊥

(⊥)
⊢ Γ,⊥,⊥

(&)
⊢ Γ,⊥,⊥&⊥

(&)
⊢ Γ,⊥&⊥,⊥&⊥

(1)
⊢ 1

(⊕1)
⊢ 1⊕ 1

(cut)
⊢ Γ,⊥&⊥

(1)
⊢ 1

(⊕2)
⊢ 1⊕ 1

(cut)
⊢ Γ

Assuming sequents are multisets, in the above proof we do not know when looking at the sequent
⊢ Γ,⊥&⊥,⊥&⊥ on which occurrences of ⊥&⊥ are applied the &-rules, thus which occurrences
of ⊥-formulas there are below the πi. Then, applying further cut-elimination steps one either gets
the proof π2 or π3. As we cannot distinguish between the two cases, this means both results can
be found. As we usually wish to identify proofs up to cut-elimination, this implies that if sequents
are multiset then π2 and π3 should be the same, meaning all proofs (of a given sequent) are equal!
In such a case, the computational aspects of the logic are utterly lost.

Henceforth, we choose to consider as sequents sets of occurrences of formulas. Formally, this can
be done in several ways. A first one is to seriously consider the notion of occurrence of a formula,
and to put identifiers on all formulas, so as to follow them in a proof. This can be done by putting
numbers on leaves, and taking care that in a sequent the same number cannot appear twice, along
with a naming convention when using a ?c-rule for the duplicated formulas. A second solution
is to associate a so-called threading function to a proof, which for sequents in the application of
a rule associates each formula below with the corresponding formula above. Nonetheless, these
solutions are not perfect: in case of a formalization on a proof assistant, tedious work awaits as one
would need to give the occurrences explicitly, as well as preserving the properties we asked for (no
duplicate identifiers, . . .). In the rest of this thesis, when we need to consider occurrences, we do
so by adding indices to formulas. For instance, ⊤3 ⊕ ⊥6 is the same formula as ⊤8 ⊕ ⊥2, but not
the same occurrence.

A last consequence of having occurrences instead of an ex -rule is about isomorphisms of proof-
nets seen as graphs, concepts that will be developed in Part II. When one quotients by permutations
of the conclusions, checking whether two proof-nets are one and the same amounts to deciding if
they are isomorphic as graphs, problem which in general is not that easy. Seeing sequents as sets of
occurrences solves this problem: the vertices considered belong to a given occurrence of a formula
in the sequent, that we do not identify with another occurrence in the same sequent, so that we only
need to check equality of edges, which can be done in quadratic time (we have to check whether

26

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

two sets are equal or not).

1.2 Basic concepts
The cut-rule allows composing proofs. Given proofs π and ϕ of respective sequents ⊢ Γ, A and
⊢ A⊥,∆, we denote by π

A

▷◁ ϕ the proof obtained by adding a cut-rule on A between these two
proofs:2

π
A

▷◁ ϕ =
π

⊢ Γ, A

ϕ

⊢ A⊥,∆
(cut)

⊢ Γ,∆

There are neutral elements for this composition, up to cut-elimination (a transformation defined
in the next section): proofs composed of a unique ax -rule. We set axA the proof of ⊢ A⊥, A
containing just an ax -rule on A:

axA =
(ax)

⊢ A⊥, A
Given a rule, its main formula is the one it acts on. For instance, with the notations from

Figure 1.1, the main formula of the ⊗-rule is (the occurrence of) the A⊗B formula, and the main
formula of the !-rule is the !A formula. Each rule has a main formula, except the optional ones.

Given a formula, its main connective is the symbol at the root of its syntactic tree. When
speaking of a positive formula, we mean a formula with main connective ⊗ or ⊕, a unit 1 or 0, or
a positive atom X+. A negative formula is one with main connective ` or &, a unit ⊥ or ⊤, or a
negated atom X−.

A formula A is a sub-formula of a formula B if the syntactic tree of the former is a sub-tree
of the syntactic tree of the latter. In case A ̸= B, we say A is a strict sub-formula of B.

Definition 1.1 (Size of a formula). The size s(A) of a formula A is defined inductively as follows:
s(X+) = s(X−) = 1
s(A`B) = s(A⊗B) = s(A) + s(B) + 1
s(⊥) = s(1) = 1
s(A&B) = s(A⊕B) = s(A) + s(B) + 1
s(⊤) = s(0) = 1
s(?A) = s(!A) = s(A) + 1
s(∀XA) = s(∃XA) = s(A) + 1

One can prove the followings by induction.

Fact 1.2. For any formula A, s(A⊥) = s(A).

Fact 1.3. Take a formula A, and set n the number of (occurrences of) atoms in A. Then s(A) ≥ n.
If A is a formula of MALLuf , then s(A) = 2× n− 1.

More generally, one can easily prove that the size s(A) of A is its number of leaves plus its
number of connectives. In particular, s(A) ∈ N∗.

When considering substitutions, we also consider the case where a unit is replaced by a formula,
which will be needed later for replacing units by atoms.

2Formally, one should consider occurrences of A and A⊥ to have π
A
▷◁ ϕ well-defined. As in our uses of this

definition, the occurrences to consider are obvious, we abuse notations here so as to not surcharge by writing π
Ai,A

⊥
j

▷◁ ϕ.

27

1.3. TRANSFORMATIONS OF PROOFS

Definition 1.4 (Substitution). A substitution σ is an application from unsigned atoms and units
to formulas. When this application is the identity except on leaves (Xi)i∈I , that have for images
(Ai)i∈I = (σ(Xi))i∈I , we denote σ by [(Ai/Xi)i∈I].

Given a formula A, σ(A) is the formula obtained from A by replacing each atom X+ by σ(X),
each X− by σ(X)⊥ and each unit X by σ(X) (up to α-renaming for bounded variables of quanti-
fiers). Here again, one can denote σ(A) by A[(Ai/Xi)i∈I].

In case a substitution acts only on atoms, it can be extended to proofs in the obvious way, up
to some α-renaming for bounded variables of quantifiers.

The extension of proofs to substitution is well-defined thanks to the following.

Fact 1.5. Given a formula A and a substitution σ acting only on atoms, σ(A⊥) = σ(A)⊥.

Proof. By induction on the formula.

The main difference between MALL and MLL is the &-rule, which introduces some sharing of
the context Γ. From this comes the notion of a slice [Gir87; Gir96] which is a partial proof missing
some additive component.

Definition 1.6 (Slice). For π a proof, consider the (non-correct) proof tree obtained by deleting
one of the two sub-trees of each &-rule of π (thus, in the new proof tree, &-rules are unary):

⊢ A,Γ
(&1)

⊢ A&B,Γ

⊢ B,Γ
(&2)

⊢ A&B,Γ

The remaining rules form a slice of π. We denote by S(π) the set of slices of π.

MALL slices satisfy a linearity property (validated by proofs of MLL as well): any connective in
the conclusion is introduced by at most one rule in a slice.

A rule has the sub-sequent property if every sequent at its premises is a sub-sequent of its
conclusion sequent. All rules of linear logic (on Figure 1.1) have this property, excepted for the
cut-, ?c- and ∃-rules. A rule has the strict sub-sequent property if every sequent at its premises
is a strict sub-sequent of its conclusion sequent.

Fact 1.7. Rules of MALL0,2 except cut have the sub-sequent property, and rules of MALL0 except
cut have the strict sub-sequent property.

Remark optional rules are the only ones that can have both premise and conclusion sequents
empty.

Fact 1.8. A proof in which all sequents are empty is a proof made exclusively of mix 2-, mix 0-, ∪-
and ∅-rules.

1.3 Transformations of proofs
We define here the usual transformations of proofs of linear logic: axiom-expansion, cut-elimination
and rule commutation. These transformations are contextual – they can be applied in a sub-proof,
i.e. they are closed by context – and most of them are local – they modify only part of a proof, rules
that are above or below stay the same. Properties of these transformations as rewriting systems
are the object of the next chapter, Chapter 2. All tables giving these transformations can be found
at the end of this chapter (from Page 33 to Page 52).

28

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

1.3.1 Axiom-expansion
As in many logics with an ax -rule, one may consider proofs with the ax -rule reduced to the case
where it is applied on an atom, i.e. with A = X+:

(ax)
⊢ X−, X+

Such proofs are called atomic-axiom, and correspond to normal forms for a rewriting procedure
named axiom-expansion.

Definition 1.9. Axiom-expansion is the rewriting system denoted η−→ and whose rules are
described on Table 1.1.

In the axiom-expansion case ∀−∃, we instantiate the ∃-rule with X+, obtaining A[X+/X] = A.
This rewriting corresponds to η-expansion in λ-calculus, hence we also call it η-expansion, and

atomic-axiom proofs will also be called η-normal proofs (and there will be no ambiguity, for we
will not speak of λ-calculus in this thesis). We use the notation =η for equality of proofs up to
axiom-expansion.

1.3.2 Cut-elimination
In most systems with a cut-rule, one shows this rule is admissible, i.e. that the same sequents can
be proved with the cut-rule than without it. The procedure turning a proof into a cut-free one is
called cut-elimination, and introduces a notion of computation in the logic.

Definition 1.10. Cut-elimination is the rewriting system denoted β−→ and whose rules are
described on Tables 1.2 to 1.4, up to commuting the two branches of any cut-rule. (This means one
should take each rule in these tables and also consider a version of this rule with the left and right
premises of any cut-rule swapped. In particular, for the cut − cut commutative case, there are in
fact 4 rewriting rules.)

In the ?c − ! and ?w − ! exponential key cases, the notation of a doubled inference rule means
we have to apply the corresponding rule a certain number of times, once on each formula of ?∆.
The order in which these rules are applied has no importance; in other words, this step is non-
deterministic according to the order in which these rules are applied.

The ∀−∃ key case is not local due to the substitution ofX by B in the proof π1. It is well-defined,
for A⊥[B/X] = (A[B/X])⊥ (Fact 1.5).

In the ∀− cut commutative case, one may need to α-rename the atom X into a new atom Y so
as to respect Y not free in Γ,∆.

Remark 1.11. Usually, when defining cut-elimination in linear logic, an additional `−⊗ key case
is given, which is the following:

π1
⊢ A,Γ

π2
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

π3
⊢ B⊥, A⊥,Σ

(cut)
⊢ Γ,∆,Σ

β−→ π2
⊢ B,∆

π1
⊢ A,Γ

π3
⊢ B⊥, A⊥,Σ

(cut)
⊢ B⊥,Γ,Σ

(cut)
⊢ Γ,∆,Σ

This case can be simulated using the given `−⊗ key case followed by a cut − cut commutative
case. Therefore, the properties we give in Chapter 2 also holds when adding this case to our
rewriting system.

29

1.3. TRANSFORMATIONS OF PROOFS

Remark that in Tables 1.2 to 1.4 defining cut-elimination, there are some absent cases. Namely
there is:

• no ⊤− 0 key case as there is no rule for 0;

• no ax − cut commutative case as the ax -rule has no context;

• no 1− cut commutative case as the 1-rule has no context;

• no 0− cut commutative case as there is no rule for 0;

• no general !− cut commutative case as the !-rule has a constraint on its context;

• no mix 0 − cut commutative case as the mix 0-rule has no context.

Following the Curry-Howard correspondence, cut-elimination corresponds to β-reduction in λ-
calculus. Thence, we call β-reduction a step of the cut-elimination procedure, and β-normal proofs
are the cut-free ones (and as for axiom-expansion, there will be no risk of confusion). As with
axiom-expansion, =β denotes equality up to cut-elimination. We also use the notation =βη for
equality of proofs up to cut-elimination and axiom-expansion.

When studying properties of cut-elimination, we will need to consider a bipartition of β−→.

Definition 1.12. We denote by β−→ a β−→ step other than a cut − cut commutation. We call ⊢⊣c

the cut − cut commutation, which is a symmetric relation.

Henceforth, β−→ =
β−→ ∪ ⊢⊣c .

Fact 1.13. As long as there exists a cut-rule, a β−→ cut-elimination step can be applied. Thus,
cut-free proofs correspond to proofs in normal form for β−→, as well as proofs in normal form for
β−→.

1.3.3 Rule commutation
A last relation on proofs is considered in this thesis, rule commutation. These commutations
associate proofs which differ only by the order in which their rules are applied. In other words, this
relation appears when one can apply two successive rules, say r and s, and both applying r then s or
s then r would do the job. That is why rule commutation can be viewed as “bureaucracy” [Gir01],
as both choices are adequate, and in fact are not really a choice as we would like to consider both
proofs to be the same. But due to the definition of a proof, we must choose an arbitrary order and
apply one of the rules first, for it is impossible to apply two rules at once in sequent calculus. As
we will see in Chapter 2, rule commutation and cut-elimination are closely related, allowing us to
make more precise the intuitions written just above.

Definition 1.14. Rule commutation is the symmetric relation denoted ⊢⊣r and whose rules are
described on Tables 1.5 to 1.20; all sub-proofs named on these tables must be cut-free.

The commutations from the given tables in Definition 1.14 are exactly those given by the
following method. Consider a cut-rule c and all couples of non cut-rules that can be the premises
of c, such that two commutative cut-elimination cases can be applied on c. Comparing the results
of applying the left commutative step then the right, against applying the right then the left, yields
the rule commutations. This is why there is no commutation with an ax -, 1-, 0- nor mix 0-rule for
there is no associated commutative cut-elimination case for these rules.

30

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

Remark 1.15. In our definition of rule commutation, there is no commutation with an !-rule, because
the commutative cut-elimination case associated to the !-rule must have the !-rule of the cut formula
on one of its premises due to the constraints on the context of a !-rule. In particular, using our
method to get the rule commutations, we cannot have two commutative cases on a same cut-rule
where one of these cases is a !−cut commutation. This is in shard contrast contrary to what usually
appears in the literature where there are the following !− ?c and !− ?w commutations:

π
⊢ A, ?B, ?B, ?Γ

(!)
⊢ !A, ?B, ?B, ?Γ

(?c)
⊢ !A, ?B, ?Γ

≡

π
⊢ A, ?B, ?B, ?Γ

(?c)
⊢ A, ?B, ?Γ

(!)
⊢ !A, ?B, ?Γ

π
⊢ A, ?Γ

(!)
⊢ !A, ?Γ

(?w)
⊢ !A, ?B, ?Γ

≡

π
⊢ A, ?Γ

(?w)
⊢ A, ?B, ?Γ

(!)
⊢ !A, ?B, ?Γ

We think these two commutations do not have the same status as the ones given in Definition 1.14,
because we conjecture them not to be included in equality up to cut-elimination. As an insight
for the knowing reader, consider the usual proof-nets for MELL0,2. Cut-elimination in this syntax
mimics the one of sequent calculus and is convergent. If the ! − ?c and ! − ?w commutations were
included in β-equality, then two MELL0,2 cut-free proofs differing by such a commutation would
have the same proof-net, which is not the case. Indeed, these two commutations from sequent
calculus have corresponding ones in proof-nets for MELL0,2, contrary to the rule commutations of
our definition.

Remark that for no rule other than optional and exponential ones can a commutation with a
!-rule be defined, because such a rule has a main formula which is not a ? one. One could imagine
commutations of the !-rule with the ?d-rule, or with the optional rules as follows.

π
⊢ A, ?B, ?Γ

(!)
⊢ !A, ?B, ?Γ

(?d)
⊢ !A, ??B, ?Γ

≡

π
⊢ A, ?B, ?Γ

(?d)
⊢ A, ??B, ?Γ

(!)
⊢ !A, ??B, ?Γ

π1
⊢ A, ?Γ

(!)
⊢ !A, ?Γ

π2
⊢ ?∆

(mix2)
⊢ !A, ?Γ, ?∆

≡

π1
⊢ A, ?Γ

π2
⊢ ?∆

(mix2)
⊢ A, ?Γ, ?∆

(!)
⊢ !A, ?Γ, ?∆

π1
⊢ A, ?Γ

(!)
⊢ !A, ?Γ

π2
⊢ A, ?Γ

(!)
⊢ !A, ?Γ

(∪)
⊢ !A, ?Γ

≡

π1
⊢ A, ?Γ

π2
⊢ A, ?Γ

(∪)
⊢ A, ?Γ

(!)
⊢ !A, ?Γ

(∅)
⊢ !A, ?Γ ≡

(∅)
⊢ A, ?Γ

(!)
⊢ !A, ?Γ

Here again, we conjecture these commutations are not included in β-equality, i.e. preserve prov-
ability but not computational content.

Also, there is no ∅ − ∅ rule commutation as it is the identity:
(∅)

⊢ Γ
C∅
∅−→

(∅)
⊢ Γ

The definition we give of rule commutation corresponds to rule commutation in cut-free linear
logic, i.e. with no cut-rules above the commutation, whereas there may be cut-rules below the
commutation, in the context. In particular, in a ⊤ − ⊗ (resp. & − ⊗) commutation we assume
the created or erased sub-proof (resp. duplicated or superimposed sub-proof) to be cut-free. This

31

1.3. TRANSFORMATIONS OF PROOFS

choice is more appropriate for our setting, as it has less cases and corresponds to the equivalence
relation between normal forms, namely cut-free proofs. A more general theory of rule commutation
exists.

Definition 1.16. Rule commutation with cuts is the symmetric relation denoted ⊢⊣rc and
whose rules are the union of those described on Tables 1.5 to 1.20 – no sub-proofs named on these
tables is supposed be cut-free – with the cut-commutations, which are the symmetric closure of the
commutative cases of cut-elimination on Tables 1.3 and 1.4.

See [HG16] for tables with the rule commutation with cuts in MALL2
uf .

1.3.4 Rétoré transformations
There are some more transformations on proofs in linear logic, that one may or may not want
to include in equality of proofs. Those concern the exponential rules, as well as the two pairs of
optional rules: one may want (or not) that ?w is neutral for ?c, mix 0 for mix 2 and ∅ for ∪.

Definition 1.17. Directed Rétoré transformation is the relation denoted ⇝o and defined as
the union of ⇝oe , ⇝om and ⇝oa whose rules are described on Table 1.21.

The first pair of rewriting rules, ⇝oe , are called the ?-Rétoré transformations. The second pair,
⇝
om, are the mix -Rétoré transformations. Finally, the last pair, ⇝oa , are the ∅-Rétoré transforma-
tions.

In the ⇝oe transformation, ?A1 and ?A2 represent different occurrences of the same formula ?A.

Definition 1.18. Rétoré transformation is the symmetric relation denoted ⊢⊣o and defined as
the symmetric closure of ⇝o , or equivalently as the union of ⊢⊣oe , ⊢⊣om and ⊢⊣oa which are respectively
the symmetric closure of ⇝oe , ⇝om and ⇝oa .

When considering ⇝o and ⊢⊣o , one can choose to take (or not) any of the ⇝oe , ⇝om and ⇝oa rules,
leading to 23 = 8 different systems. As before, =βηo denotes equality up to cut-elimination, axiom-
expansion and (one of the 8 sub-systems of) Rétoré transformations. We also use the notation =βo
for equality of proofs up to cut-elimination and Rétoré transformations.

32

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

`−⊗ (ax)
⊢ B⊥ `A⊥, A⊗B

η−→

(ax)
⊢ A,A⊥

(ax)
⊢ B,B⊥

(⊗)
⊢ B⊥, A⊥, A⊗B

(`)

⊢ B⊥ `A⊥, A⊗B

⊥− 1 (ax)
⊢ ⊥, 1

η−→
(1)

⊢ 1
(⊥)

⊢ ⊥, 1

&−⊕ (ax)
⊢ B⊥ &A⊥, A⊕B

η−→

(ax)
⊢ B,B⊥

(⊕2)

⊢ B⊥, A⊕B

(ax)
⊢ A,A⊥

(⊕1)

⊢ A⊥, A⊕B
(&)

⊢ B⊥ &A⊥, A⊕B

⊤− 0 (ax)
⊢ ⊤, 0

η−→ (⊤)
⊢ ⊤, 0

?− !
(ax)

⊢ ?A⊥, !A
η−→

(ax)
⊢ A⊥, A

(?d)

⊢ ?A⊥, A
(!)

⊢ ?A⊥, !A

∀ − ∃ (ax)
⊢ ∀XA⊥,∃XA

η−→

(ax)
⊢ A⊥, A

(∃)
⊢ A⊥,∃XA

X not free in ∃XA (∀)
⊢ ∀XA⊥,∃XA

Table 1.1: Axiom-expansion

33

1.3. TRANSFORMATIONS OF PROOFS

ax

(ax)
⊢ A⊥, A

π
⊢ A,Γ

(cut)
⊢ A,Γ

β−→ π
⊢ A,Γ

`−⊗
π

⊢ B⊥, A⊥,Γ
(`)

⊢ B⊥ `A⊥,Γ

ϕ
⊢ A,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,∆,Σ

(cut)
⊢ Γ,∆,Σ

β−→

π
⊢ B⊥, A⊥,Γ

τ
⊢ B,Σ

(cut)
⊢ A⊥,Γ,Σ

ϕ
⊢ A,∆

(cut)
⊢ Γ,∆,Σ

⊥− 1

π
⊢ Γ

(⊥)
⊢ ⊥,Γ

(1)
⊢ 1

(cut)
⊢ Γ

β−→ π
⊢ Γ

&−⊕1

π
⊢ B⊥,Γ

ϕ

⊢ A⊥,Γ
(&)

⊢ B⊥ &A⊥,Γ

τ
⊢ A,∆

(⊕1)
⊢ A⊕B,∆

(cut)
⊢ Γ,∆

β−→
ϕ

⊢ A⊥,Γ
τ

⊢ A,∆
(cut)

⊢ Γ,∆

&−⊕2

π
⊢ B⊥,Γ

ϕ

⊢ A⊥,Γ
(&)

⊢ B⊥ &A⊥,Γ

τ
⊢ B,∆

(⊕2)
⊢ A⊕B,∆

(cut)
⊢ Γ,∆

β−→
π

⊢ B⊥,Γ
τ

⊢ B,∆
(cut)

⊢ Γ,∆

?d− !

π
⊢ A⊥,Γ

(?d)

⊢ ?A⊥,Γ

ϕ
⊢ A, ?∆

(!)
⊢ !A, ?∆

(cut)
⊢ Γ, ?∆

β−→
π

⊢ A⊥,Γ
ϕ

⊢ A, ?∆
(cut)

⊢ Γ, ?∆

?c− !

π
⊢ ?A⊥, ?A⊥,Γ

(?c)

⊢ ?A⊥,Γ

ϕ
⊢ A, ?∆

(!)
⊢ !A, ?∆

(cut)
⊢ Γ, ?∆

β−→

π
⊢ ?A⊥, ?A⊥,Γ

ϕ
⊢ A, ?∆

(!)
⊢ !A, ?∆

(cut)
⊢ ?A⊥,Γ, ?∆

ϕ
⊢ A, ?∆

(!)
⊢ !A, ?∆

(cut)
⊢ Γ, ?∆, ?∆

(?c)

⊢ Γ, ?∆

?w − !

π
⊢ Γ

(?w)

⊢ ?A⊥,Γ

ϕ
⊢ A, ?∆

(!)
⊢ !A, ?∆

(cut)
⊢ Γ, ?∆

β−→
π
⊢ Γ

(?w)

⊢ Γ, ?∆

∀ − ∃

π
⊢ A⊥,Γ

X not free in Γ (∀)
⊢ ∀XA⊥,Γ

ϕ
⊢ A[B/X],∆

(∃)
⊢ ∃XA,∆

(cut)
⊢ Γ,∆

β−→
π[B/X]

⊢ A[B/X]⊥,Γ
ϕ

⊢ A[B/X],∆
(cut)

⊢ Γ,∆

Table 1.2: Cut-elimination – Key cases

34

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

cut − cut

π
⊢ A⊥, B⊥,Γ

ϕ
⊢ A,∆

(cut)
⊢ B⊥,Γ,∆

τ
⊢ B,Σ

(cut)
⊢ Γ,∆,Σ

β−→

π
⊢ A⊥, B⊥,Γ

τ
⊢ B,Σ

(cut)
⊢ A⊥,Γ,Σ

ϕ
⊢ A,∆

(cut)
⊢ Γ,∆,Σ

`− cut

π
⊢ A⊥, B,C,Γ

(`)

⊢ A⊥, B ` C,Γ
ϕ

⊢ A,∆
(cut)

⊢ B ` C,Γ,∆

β−→

π
⊢ A⊥, B,C,Γ

ϕ
⊢ A,∆

(cut)
⊢ B,C,Γ,∆

(`)
⊢ B ` C,Γ,∆

⊗− cut − 1

π
⊢ A⊥, B,Γ

ϕ
⊢ C,∆

(⊗)
⊢ A⊥, B ⊗ C,Γ,∆

τ
⊢ A,Σ

(cut)
⊢ B ⊗ C,Γ,∆,Σ

β−→

π
⊢ A⊥, B,Γ

τ
⊢ A,Σ

(cut)
⊢ B,Γ,Σ

ϕ
⊢ C,∆

(⊗)
⊢ B ⊗ C,Γ,∆,Σ

⊗− cut − 2

π
⊢ B,Γ

ϕ

⊢ A⊥, C,∆
(⊗)

⊢ A⊥, B ⊗ C,Γ,∆
τ

⊢ A,Σ
(cut)

⊢ B ⊗ C,Γ,∆,Σ

β−→ π
⊢ B,Γ

ϕ

⊢ A⊥, C,∆
τ

⊢ A,Σ
(cut)

⊢ C,∆,Σ
(⊗)

⊢ B ⊗ C,Γ,∆,Σ

⊥− cut

π
⊢ A⊥,Γ

(⊥)
⊢ A⊥,⊥,Γ

ϕ
⊢ A,∆

(cut)
⊢ ⊥,Γ,∆

β−→

π
⊢ A⊥,Γ

ϕ
⊢ A,∆

(cut)
⊢ Γ,∆

(⊥)
⊢ ⊥,Γ,∆

&− cut

π
⊢ A⊥, B,Γ

ϕ

⊢ A⊥, C,Γ
(&)

⊢ A⊥, B & C,Γ
τ

⊢ A,∆
(cut)

⊢ B & C,Γ,∆

β−→

π
⊢ A⊥, B,Γ

τ
⊢ A,∆

(cut)
⊢ B,Γ,∆

ϕ

⊢ A⊥, C,Γ
τ

⊢ A,∆
(cut)

⊢ C,Γ,∆
(&)

⊢ B & C,Γ,∆

⊕1 − cut

π
⊢ A⊥, B,Γ

(⊕1)

⊢ A⊥, B ⊕ C,Γ
ϕ

⊢ A,∆
(cut)

⊢ B ⊕ C,Γ,∆

β−→

π
⊢ A⊥, B,Γ

ϕ
⊢ A,∆

(cut)
⊢ B,Γ,∆

(⊕1)
⊢ B ⊕ C,Γ,∆

⊕2 − cut

π
⊢ A⊥, C,Γ

(⊕2)

⊢ A⊥, B ⊕ C,Γ
ϕ

⊢ A,∆
(cut)

⊢ B ⊕ C,Γ,∆

β−→

π
⊢ A⊥, C,Γ

ϕ
⊢ A,∆

(cut)
⊢ C,Γ,∆

(⊕2)
⊢ B ⊕ C,Γ,∆

⊤− cut
(⊤)

⊢ A⊥,⊤,Γ
π

⊢ A,∆
(cut)

⊢ ⊤,Γ,∆

β−→ (⊤)
⊢ ⊤,Γ,∆

Table 1.3: Cut-elimination – Commutative cases (Part 1/2)

35

1.3. TRANSFORMATIONS OF PROOFS

?d− cut

π
⊢ A⊥, B,Γ

(?d)

⊢ A⊥, ?B,Γ
ϕ

⊢ A,∆
(cut)

⊢ ?B,Γ,∆

β−→

π
⊢ A⊥, B,Γ

ϕ
⊢ A,∆

(cut)
⊢ B,Γ,∆

(?d)
⊢ ?B,Γ,∆

?c− cut

π
⊢ A⊥, ?B, ?B,Γ

(?c)

⊢ A⊥, ?B,Γ
ϕ

⊢ A,∆
(cut)

⊢ ?B,Γ,∆

β−→

π
⊢ A⊥, ?B, ?B,Γ

ϕ
⊢ A,∆

(cut)
⊢ ?B, ?B,Γ,∆

(?c)
⊢ ?B,Γ,∆

?w − cut

π
⊢ A⊥,Γ

(?w)

⊢ A⊥, ?B,Γ
ϕ

⊢ A,∆
(cut)

⊢ ?B,Γ,∆

β−→

π
⊢ A⊥,Γ

ϕ
⊢ A,∆

(cut)
⊢ Γ,∆

(?w)
⊢ ?B,Γ,∆

!− cut

π
⊢ ?A⊥, B, ?Γ

(!)

⊢ ?A⊥, !B, ?Γ

ϕ
⊢ A, ?∆

(!)
⊢ !A, ?∆

(cut)
⊢ !B, ?Γ, ?∆

β−→
π

⊢ ?A⊥, B, ?Γ

ϕ
⊢ A, ?∆

(!)
⊢ !A, ?∆

(cut)
⊢ B, ?Γ, ?∆

(!)
⊢ !B, ?Γ, ?∆

∀ − cut

π
⊢ A⊥, B,Γ

X not free in A⊥,Γ (∀)
⊢ A⊥,∀XB,Γ

ϕ
⊢ A,∆

(cut)
⊢ ∀XB,Γ,∆

β−→

π
⊢ A⊥, B,Γ

ϕ
⊢ A,∆

(cut)
⊢ B,Γ,∆

X not free in Γ,∆ (∀)
⊢ ∀XB,Γ,∆

∃ − cut

π
⊢ A⊥, B[C/X],Γ

(∃)
⊢ A⊥,∃XB,Γ

ϕ
⊢ A,∆

(cut)
⊢ ∃XB,Γ,∆

β−→

π
⊢ A⊥, B[C/X],Γ

ϕ
⊢ A,∆

(cut)
⊢ B[C/X]Γ,∆

(∃)
⊢ ∃XB,Γ,∆

mix 2 − cut − 1

π
⊢ A⊥,Γ

ϕ
⊢ ∆

(mix2)

⊢ A⊥,Γ,∆
τ

⊢ A,Σ
(cut)

⊢ Γ,∆,Σ

β−→

π
⊢ A⊥,Γ

τ
⊢ Σ

(cut)
⊢ Γ,Σ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆,Σ

mix 2 − cut − 2

π
⊢ Γ

ϕ

⊢ A⊥,∆
(mix2)

⊢ A⊥,Γ,∆
τ

⊢ A,Σ
(cut)

⊢ Γ,∆,Σ

β−→ π
⊢ Γ

ϕ

⊢ A⊥,∆
τ

⊢ A,Σ
(cut)

⊢ ∆,Σ
(mix2)

⊢ Γ,∆,Σ

∪ − cut

π
⊢ A⊥,Γ

ϕ

⊢ A⊥,Γ
(∪)

⊢ A⊥,Γ
τ

⊢ A,∆
(cut)

⊢ Γ,∆

β−→

π
⊢ A⊥,Γ

τ
⊢ A,∆

(cut)
⊢ Γ,∆

ϕ

⊢ A⊥,Γ
τ

⊢ A,∆
(cut)

⊢ Γ,∆
(∪)

⊢ Γ,∆

∅ − cut
(∅)

⊢ A⊥,Γ
π

⊢ A,∆
(cut)

⊢ Γ,∆

β−→ (∅)
⊢ Γ,∆

Table 1.4: Cut-elimination – Commutative cases (Part 2/2)

36

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

`−`
π

⊢ A,B,C,D,Γ
(`)

⊢ A`B,C,D,Γ
(`)

⊢ A`B,C `D,Γ

C`̀
−→

π
⊢ A,B,C,D,Γ

(`)
⊢ A,B,C `D,Γ

(`)
⊢ A`B,C `D,Γ

`−⊗− 1

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

ϕ
⊢ D,∆

(⊗)
⊢ A`B,C ⊗D,Γ,∆

C⊗̀−→
←−
C

⊗`

π
⊢ A,B,C,Γ

ϕ
⊢ D,∆

(⊗)
⊢ A,B,C ⊗D,Γ,∆

(`)
⊢ A`B,C ⊗D,Γ,∆

`−⊗− 2 π
⊢ C,Γ

ϕ
⊢ A,B,D,∆

(`)
⊢ A`B,D,∆

(⊗)
⊢ A`B,C ⊗D,Γ,∆

C⊗̀−→
←−
C

⊗`

π
⊢ C,Γ

ϕ
⊢ A,B,D,∆

(⊗)
⊢ A,B,C ⊗D,Γ,∆

(`)
⊢ A`B,C ⊗D,Γ,∆

`−⊥
π

⊢ A,B,Γ
(`)

⊢ A`B,Γ
(⊥)

⊢ A`B,⊥,Γ

C⊥̀−→
←−
C⊥`

π
⊢ A,B,Γ

(⊥)
⊢ A,B,⊥,Γ

(`)
⊢ A`B,⊥,Γ

`−&

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

ϕ
⊢ A,B,D,Γ

(`)
⊢ A`B,D,Γ

(&)
⊢ A`B,C &D,Γ

C&̀−→
←−
C&`

π
⊢ A,B,C,Γ

ϕ
⊢ A,B,D,Γ

(&)
⊢ A,B,C &D,Γ

(`)
⊢ A`B,C &D,Γ

`−⊕1

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

(⊕1)
⊢ A`B,C ⊕D,Γ

C⊕̀1−→
←−
C

⊕1`

π
⊢ A,B,C,Γ

(⊕1)
⊢ A,B,C ⊕D,Γ

(`)
⊢ A`B,C ⊕D,Γ

`−⊕2

π
⊢ A,B,D,Γ

(`)
⊢ A`B,D,Γ

(⊕2)
⊢ A`B,C ⊕D,Γ

C⊕̀2−→
←−
C

⊕2`

π
⊢ A,B,D,Γ

(⊕2)
⊢ A,B,C ⊕D,Γ

(`)
⊢ A`B,C ⊕D,Γ

`−⊤ (⊤)
⊢ A`B,⊤,Γ

C⊤̀−→
←−
C⊤`

(⊤)
⊢ A,B,⊤,Γ

(`)
⊢ A`B,⊤,Γ

`− ?d

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

(?d)
⊢ A`B, ?C,Γ

C?̀d−→
←−
C

?d`

π
⊢ A,B,C,Γ

(?d)
⊢ A,B, ?C,Γ

(`)
⊢ A`B, ?C,Γ

Table 1.5: Rule commutation (Part 1/16)

37

1.3. TRANSFORMATIONS OF PROOFS

`− ?c

π
⊢ A,B, ?C, ?C,Γ

(`)
⊢ A`B, ?C, ?C,Γ

(?c)
⊢ A`B, ?C,Γ

C?̀c−→
←−
C

?c`

π
⊢ A,B, ?C, ?C,Γ

(?c)
⊢ A,B, ?C,Γ

(`)
⊢ A`B, ?C,Γ

`− ?w

π
⊢ A,B,Γ

(`)
⊢ A`B,Γ

(?w)
⊢ A`B, ?C,Γ

C?̀w−→
←−
C

?w`

π
⊢ A,B,Γ

(?w)
⊢ A,B, ?C,Γ

(`)
⊢ A`B, ?C,Γ

`− ∀
π

⊢ A,B,Γ
(`)

⊢ A`B,C,Γ
X not free in A`B,Γ (∀)

⊢ A`B, ∀XC,Γ

C∀̀−→
←−
C∀`

π
⊢ A,B,Γ

X not free in A,B,Γ (∀)
⊢ A,B,∀XC,Γ

(`)
⊢ A`B, ∀XC,Γ

`− ∃
π

⊢ A,B,C[D/X],Γ
(`)

⊢ A`B,C[D/X],Γ
(∃)

⊢ A`B, ∃XC,Γ

C∃̀−→
←−
C∃`

π
⊢ A,B,C[D/X],Γ

(∃)
⊢ A,B,∃XC,Γ

(`)
⊢ A`B, ∃XC,Γ

`−mix 2 − 1

π
⊢ A,B,Γ

(`)
⊢ A`B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A`B,Γ,∆

Cm̀ix2−→
←−
C

mix2`

π
⊢ A,B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A,B,Γ,∆

(`)
⊢ A`B,Γ,∆

`−mix 2 − 2 π
⊢ Γ

ϕ
⊢ A,B,∆

(`)
⊢ A`B,∆

(mix2)
⊢ A`B,Γ,∆

Cm̀ix2−→
←−
C

mix2`

π
⊢ Γ

ϕ
⊢ A,B,∆

(mix2)
⊢ A,B,Γ,∆

(`)
⊢ A`B,Γ,∆

`− ∪
π

⊢ A,B,Γ
(`)

⊢ A`B,Γ

ϕ
⊢ A,B,Γ

(`)
⊢ A`B,Γ

(∪)
⊢ A`B,Γ

C∪̀−→
←−
C∪`

π
⊢ A,B,Γ

ϕ
⊢ A,B,Γ

(∪)
⊢ A,B,Γ

(`)
⊢ A`B,Γ

`− ∅ (∅)
⊢ A`B,Γ

C∅̀−→
←−
C∅`

(∅)
⊢ A,B,Γ

(`)
⊢ A`B,Γ

⊗−⊗− 1 π
⊢ C,Γ

ϕ
⊢ A,D,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,D,∆,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

C
⊗
⊗−→
←−
C

⊗
⊗

π
⊢ C,Γ

ϕ
⊢ A,D,∆

(⊗)
⊢ A,C ⊗D,Γ,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

Table 1.6: Rule commutation (Part 2/16)

38

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

⊗−⊗− 2

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C,Γ,∆

τ
⊢ D,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

C
⊗
⊗−→
←−
C

⊗
⊗

π
⊢ A,C,Γ

τ
⊢ D,Σ

(⊗)
⊢ A,C ⊗D,Γ,Σ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

⊗−⊗− 3 π
⊢ C,Γ

ϕ
⊢ A,∆

τ
⊢ B,D,Σ

(⊗)
⊢ A⊗B,D,Γ,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

C
⊗
⊗−→
←−
C

⊗
⊗

ϕ
⊢ A,∆

π
⊢ C,Γ

τ
⊢ B,D,Σ

(⊗)
⊢ B,C ⊗D,∆,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

⊗−⊥− 1

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

(⊥)
⊢ A⊗B,⊥,Γ,∆

C
⊗
⊥−→
←−
C⊥
⊗

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,⊥,Γ,∆

⊗−⊥− 2

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

(⊥)
⊢ A⊗B,⊥,Γ,∆

C
⊗
⊥−→
←−
C⊥
⊗

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊥)
⊢ B,⊥,∆

(⊗)
⊢ A⊗B,⊥,Γ,∆

⊗−&− 1

π
⊢ A,Γ

ϕ
⊢ B,C,∆

(⊗)
⊢ A⊗B,C,Γ,∆

π
⊢ A,Γ

τ
⊢ B,D,∆

(⊗)
⊢ A⊗B,D,Γ,∆

(&)
⊢ A⊗B,C &D,Γ,∆

C
⊗
&−→
←−
C&
⊗

π
⊢ A,Γ

ϕ
⊢ B,C,∆

τ
⊢ B,D,∆

(&)
⊢ B,C &D,∆

(⊗)
⊢ A⊗B,C &D,Γ,∆

⊗−&− 2

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C,Γ,∆

τ
⊢ A,D,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,D,Γ,∆

(&)
⊢ A⊗B,C &D,Γ,∆

C
⊗
&−→
←−
C&
⊗

π
⊢ A,C,Γ

τ
⊢ A,D,Γ

(&)
⊢ A,C &D,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C &D,Γ,∆

⊗−⊕1 − 1

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C,Γ,∆

(⊕1)
⊢ A⊗B,C ⊕D,Γ,∆

C
⊗
⊕1−→
←−
C

⊕1
⊗

π
⊢ A,C,Γ

(⊕1)
⊢ A,C ⊕D,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C ⊕D,Γ,∆

⊗−⊕1 − 2

π
⊢ A,Γ

ϕ
⊢ B,C,∆

(⊗)
⊢ A⊗B,C,Γ,∆

(⊕1)
⊢ A⊗B,C ⊕D,Γ,∆

C
⊗
⊕1−→
←−
C

⊕1
⊗

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊕1)
⊢ B,C ⊕D,∆

(⊗)
⊢ A⊗B,C ⊕D,Γ,∆

⊗−⊕2 − 1

π
⊢ A,D,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,D,Γ,∆

(⊕2)
⊢ A⊗B,C ⊕D,Γ,∆

C
⊗
⊕2−→
←−
C

⊕2
⊗

π
⊢ A,D,Γ

(⊕2)
⊢ A,C ⊕D,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C ⊕D,Γ,∆

⊗−⊕2 − 2

π
⊢ A,Γ

ϕ
⊢ B,D,∆

(⊗)
⊢ A⊗B,D,Γ,∆

(⊕2)
⊢ A⊗B,C ⊕D,Γ,∆

C
⊗
⊕2−→
←−
C

⊕2
⊗

π
⊢ A,D,Γ

ϕ
⊢ B,∆

(⊕2)
⊢ B,C ⊕D,∆

(⊗)
⊢ A⊗B,C ⊕D,Γ,∆

Table 1.7: Rule commutation (Part 3/16)

39

1.3. TRANSFORMATIONS OF PROOFS

⊗−⊤− 1 (⊤)
⊢ A⊗B,⊤,Γ,∆

C
⊗
⊤−→
←−
C⊤
⊗

(⊤)
⊢ A,⊤,Γ

π
⊢ B,∆

(⊗)
⊢ A⊗B,⊤,Γ,∆

⊗−⊤− 2 (⊤)
⊢ A⊗B,⊤,Γ,∆

C
⊗
⊤−→
←−
C⊤
⊗

π
⊢ A,Γ

(⊤)
⊢ B,⊤,∆

(⊗)
⊢ A⊗B,⊤,Γ,∆

⊗− ?d − 1

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C,Γ,∆

(?d)
⊢ A⊗B, ?C,Γ,∆

C
⊗
?d−→
←−
C

?d
⊗

π
⊢ A,C,Γ

(?d)
⊢ A, ?C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B, ?C,Γ,∆

⊗− ?d − 2

π
⊢ A,Γ

ϕ
⊢ B,C,∆

(⊗)
⊢ A⊗B,C,Γ,∆

(?d)
⊢ A⊗B, ?C,Γ,∆

C
⊗
?d−→
←−
C

?d
⊗

π
⊢ A,Γ

ϕ
⊢ B,C,∆

(?d)
⊢ B, ?C,∆

(⊗)
⊢ A⊗B, ?C,Γ,∆

⊗− ?c − 1

π
⊢ A, ?C, ?C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B, ?C, ?C,Γ,∆

(?c)
⊢ A⊗B, ?C,Γ,∆

C
⊗
?c−→
←−
C

?c
⊗

π
⊢ A, ?C, ?C,Γ

(?c)
⊢ A, ?C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B, ?C,Γ,∆

⊗− ?c − 2

π
⊢ A,Γ

ϕ
⊢ B, ?C, ?C,∆

(⊗)
⊢ A⊗B, ?C, ?C,Γ,∆

(?c)
⊢ A⊗B, ?C,Γ,∆

C
⊗
?c−→
←−
C

?c
⊗

π
⊢ A,Γ

ϕ
⊢ B, ?C, ?C,∆

(?c)
⊢ B, ?C,∆

(⊗)
⊢ A⊗B, ?C,Γ,∆

⊗− ?w − 1

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

(?w)
⊢ A⊗B, ?C,Γ,∆

C
⊗
?w−→
←−
C

?w
⊗

π
⊢ A,Γ

(?w)
⊢ A, ?C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B, ?C,Γ,∆

⊗− ?w − 2

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

(?w)
⊢ A⊗B, ?C,Γ,∆

C
⊗
?w−→
←−
C

?w
⊗

π
⊢ A,Γ

ϕ
⊢ B,∆

(?w)
⊢ B, ?C,∆

(⊗)
⊢ A⊗B, ?C,Γ,∆

⊗− ∀ − 1

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C,Γ,∆

X not free in A⊗B,Γ,∆ (∀)
⊢ A⊗B, ∀XC,Γ,∆

C
⊗
∀−→
←−
C∀
⊗

π
⊢ A,C,Γ

X not free in A,Γ (∀)
⊢ A,∀XC,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B, ∀XC,Γ,∆

⊗− ∀ − 2

π
⊢ A,Γ

ϕ
⊢ B,C,∆

(⊗)
⊢ A⊗B,C,Γ,∆

X not free in A⊗B,Γ,∆ (∀)
⊢ A⊗B, ∀XC,Γ,∆

C
⊗
∀−→
←−
C∀
⊗

π
⊢ A,Γ

ϕ
⊢ B,C,∆

X not free in B,∆ (∀)
⊢ B, ∀XC,∆

(⊗)
⊢ A⊗B, ∀XC,Γ,∆

Table 1.8: Rule commutation (Part 4/16)

40

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

⊗− ∃ − 1

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C[D/X],Γ,∆

(∃)
⊢ A⊗B, ∃XC,Γ,∆

C
⊗
∃−→
←−
C∃
⊗

π
⊢ A,C[D/X],Γ

(∃)
⊢ A,∃XC,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B, ∃XC,Γ,∆

⊗− ∃ − 2

π
⊢ A,Γ

ϕ
⊢ B,C[D/X],∆

(⊗)
⊢ A⊗B,C[D/X],Γ,∆

(∃)
⊢ A⊗B, ∃XC,Γ,∆

C
⊗
∃−→
←−
C∃
⊗

π
⊢ A,Γ

ϕ
⊢ B,C[D/X],∆

(∃)
⊢ B, ∃XC,∆

(⊗)
⊢ A⊗B, ∃XC,Γ,∆

⊗−mix 2 − 1

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

τ
⊢ Σ

(mix2)
⊢ A⊗B,Γ,∆,Σ

C
⊗
mix2−→
←−
C

mix2
⊗

π
⊢ A,Γ

τ
⊢ Σ

(mix2)
⊢ A,Γ,Σ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆,Σ

⊗−mix 2 − 2 π
⊢ Γ

ϕ
⊢ A,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,∆,Σ

(mix2)
⊢ A⊗B,Γ,∆,Σ

C
⊗
mix2−→
←−
C

mix2
⊗

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,Γ,∆,Σ

⊗−mix 2 − 3

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

τ
⊢ Σ

(mix2)
⊢ A⊗B,Γ,∆,Σ

C
⊗
mix2−→
←−
C

mix2
⊗

π
⊢ A,Γ

ϕ
⊢ B,∆

τ
⊢ Σ

(mix2)
⊢ B,∆,Σ

(⊗)
⊢ A⊗B,Γ,∆,Σ

⊗−mix 2 − 4 π
⊢ Γ

ϕ
⊢ A,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,∆,Σ

(mix2)
⊢ A⊗B,Γ,∆,Σ

C
⊗
mix2−→
←−
C

mix2
⊗

ϕ
⊢ A,∆

π
⊢ Γ

τ
⊢ B,Σ

(mix2)
⊢ B,Γ,Σ

(⊗)
⊢ A⊗B,Γ,∆,Σ

⊗− ∪− 1

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

π
⊢ A,Γ

τ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

(∪)
⊢ A⊗B,Γ,∆

C
⊗
∪−→
←−
C∪
⊗

π
⊢ A,Γ

ϕ
⊢ B,∆

τ
⊢ B,∆

(∪)
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

⊗− ∪− 2

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

τ
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

(∪)
⊢ A⊗B,Γ,∆

C
⊗
∪−→
←−
C∪
⊗

π
⊢ A,Γ

τ
⊢ A,Γ

(∪)
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

⊗− ∅ − 1 (∅)
⊢ A⊗B,Γ,∆

C
⊗
∅−→
←−
C∅
⊗

(∅)
⊢ A,Γ

π
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

Table 1.9: Rule commutation (Part 5/16)

41

1.3. TRANSFORMATIONS OF PROOFS

⊗− ∅ − 2 (∅)
⊢ A⊗B,Γ,∆

C
⊗
∅−→
←−
C∅
⊗

π
⊢ A,Γ

(∅)
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

⊥−⊥

π
⊢ Γ

(⊥1)
⊢ ⊥1,Γ

(⊥2)
⊢ ⊥1,⊥2,Γ

C⊥
⊥−→

π
⊢ Γ

(⊥2)
⊢ ⊥2,Γ

(⊥2)
⊢ ⊥1,⊥2,Γ

⊥−&

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

ϕ
⊢ B,Γ

(⊥)
⊢ B,⊥,Γ

(&)
⊢ A&B,⊥,Γ

C⊥
&−→
←−
C&
⊥

π
⊢ A,Γ

ϕ
⊢ B,Γ

(&)
⊢ A&B,Γ

(⊥)
⊢ A&B,⊥,Γ

⊥−⊕1

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

(⊕1)
⊢ A⊕B,⊥,Γ

C⊥
⊕1−→
←−
C

⊕1
⊥

π
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

(⊥)
⊢ A⊕B,⊥,Γ

⊥−⊕2

π
⊢ B,Γ

(⊥)
⊢ B,⊥,Γ

(⊕2)
⊢ A⊕B,⊥,Γ

C⊥
⊕2−→
←−
C

⊕2
⊥

π
⊢ B,Γ

(⊕2)
⊢ A⊕B,Γ

(⊥)
⊢ A⊕B,⊥,Γ

⊥−⊤ (⊤)
⊢ ⊤,⊥,Γ

C⊥
⊤−→
←−
C⊤
⊥

(⊤)
⊢ ⊤,Γ

(⊥)
⊢ ⊤,⊥,Γ

⊥− ?d

π
⊢ A,Γ

(⊥)
⊢ ⊥, A,Γ

(?d)
⊢ ⊥, ?A,Γ

C⊥
?d−→
←−
C

?d
⊥

π
⊢ A,Γ

(?d)
⊢ ?A,Γ

(⊥)
⊢ ⊥, ?A,Γ

⊥− ?c

π
⊢ ?A, ?A,Γ

(⊥)
⊢ ⊥, ?A, ?A,Γ

(?c)
⊢ ⊥, ?A,Γ

C⊥
?c−→
←−
C

?c
⊥

π
⊢ ?A, ?A,Γ

(?c)
⊢ ?A,Γ

(⊥)
⊢ ⊥, ?A,Γ

⊥− ?w

π
⊢ Γ

(⊥)
⊢ ⊥,Γ

(?w)
⊢ ⊥, ?A,Γ

C⊥
?w−→
←−
C

?w
⊥

π
⊢ Γ

(?w)
⊢ ?A,Γ

(⊥)
⊢ ⊥, ?A,Γ

Table 1.10: Rule commutation (Part 6/16)

42

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

⊥− ∀

π
⊢ Γ

(⊥)
⊢ ⊥, A,Γ

X not free in ⊥,Γ (∀)
⊢ ⊥,∀XA,Γ

C⊥
∀−→
←−
C∀
⊥

π
⊢ A,Γ

X not free in Γ (∀)
⊢ ∀XA,Γ

(⊥)
⊢ ⊥,∀XA,Γ

⊥− ∃

π
⊢ A[B/X],Γ

(⊥)
⊢ ⊥, A[B/X],Γ

(∃)
⊢ ⊥,∃XA,Γ

C⊥
∃−→
←−
C∃
⊥

π
⊢ A[B/X],Γ

(∃)
⊢ ∃XA,Γ

(⊥)
⊢ ⊥,∃XA,Γ

⊥−mix 2 − 1

π
⊢ Γ

(⊥)
⊢ ⊥,Γ

ϕ
⊢ ∆

(mix2)
⊢ ⊥,Γ,∆

C⊥
mix2−→
←−
C

mix2
⊥

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

(⊥)
⊢ ⊥,Γ,∆

⊥−mix 2 − 2 π
⊢ Γ

ϕ
⊢ ∆

(⊥)
⊢ ⊥,∆

(mix2)
⊢ ⊥,Γ,∆

C⊥
mix2−→
←−
C

mix2
⊥

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

(⊥)
⊢ ⊥,Γ,∆

⊥− ∪

π
⊢ Γ

(⊥)
⊢ ⊥,Γ

ϕ
⊢ Γ

(⊥)
⊢ ⊥,Γ

(∪)
⊢ ⊥,Γ

C⊥
∪−→
←−
C∪
⊥

π
⊢ Γ

ϕ
⊢ Γ

(∪)
⊢ Γ

(⊥)
⊢ ⊥,Γ

⊥− ∅ (∅)
⊢ ⊥,Γ

C⊥
∅−→
←−
C∅
⊥

(∅)
⊢ Γ

(⊥)
⊢ ⊥,Γ

&−&

π
⊢ A,C,Γ

ϕ
⊢ B,C,Γ

(&)
⊢ A&B,C,Γ

τ
⊢ A,D,Γ

µ
⊢ B,D,Γ

(&)
⊢ A&B,D,Γ

(&)
⊢ A&B,C &D,Γ

C&
&−→

π
⊢ A,C,Γ

τ
⊢ A,D,Γ

(&)
⊢ A,C &D,Γ

ϕ
⊢ B,C,Γ

µ
⊢ B,D,Γ

(&)
⊢ B,C &D,Γ

(&)
⊢ A&B,C &D,Γ

&−⊕1

π
⊢ A,C,Γ

ϕ
⊢ B,C,Γ

(&)
⊢ A&B,C,Γ

(⊕1)
⊢ A&B,C ⊕D,Γ

C&
⊕1−→
←−
C

⊕1
&

π
⊢ A,C,Γ

(⊕1)
⊢ A,C ⊕D,Γ

ϕ
⊢ B,C,Γ

(⊕1)
⊢ B,C ⊕D,Γ

(&)
⊢ A&B,C ⊕D,Γ

&−⊕2

π
⊢ A,D,Γ

ϕ
⊢ B,D,Γ

(&)
⊢ A&B,D,Γ

(⊕2)
⊢ A&B,C ⊕D,Γ

C&
⊕2−→
←−
C

⊕2
&

π
⊢ A,D,Γ

(⊕2)
⊢ A,C ⊕D,Γ

ϕ
⊢ B,D,Γ

(⊕2)
⊢ B,C ⊕D,Γ

(&)
⊢ A&B,C ⊕D,Γ

&−⊤ (⊤)
⊢ A&B,⊤,Γ

C&
⊤−→
←−
C⊤
&

(⊤)
⊢ A,⊤,Γ

(⊤)
⊢ B,⊤,Γ

(&)
⊢ A&B,⊤,Γ

&− ?d

π
⊢ A,C,Γ

ϕ
⊢ B,C,Γ

(&)
⊢ A&B,C,Γ

(?d)
⊢ A&B, ?C,Γ

C&
?d−→
←−
C

?d
&

π
⊢ A,C,Γ

(?d)
⊢ A, ?C,Γ

ϕ
⊢ B,C,Γ

(?d)
⊢ B, ?C,Γ

(&)
⊢ A&B,C,Γ

&− ?c

π
⊢ A, ?C, ?C,Γ

ϕ
⊢ B, ?C, ?C,Γ

(&)
⊢ A&B, ?C, ?C,Γ

(?c)
⊢ A&B, ?C,Γ

C&
?c−→
←−
C

?c
&

π
⊢ A, ?C, ?C,Γ

(?c)
⊢ A, ?C,Γ

ϕ
⊢ B, ?C, ?C,Γ

(?c)
⊢ B, ?C,Γ

(&)
⊢ A&B,C,Γ

&− ?w

π
⊢ A,Γ

ϕ
⊢ B,Γ

(&)
⊢ A&B,Γ

(?w)
⊢ A&B, ?C,Γ

C&
?w−→
←−
C

?w
&

π
⊢ A,Γ

(?w)
⊢ A, ?C,Γ

ϕ
⊢ B,Γ

(?w)
⊢ B, ?C,Γ

(&)
⊢ A&B,C,Γ

&− ∀

π
⊢ A,C,Γ

ϕ
⊢ B,C,Γ

(&)
⊢ A&B,C,Γ

X not free in A&B,Γ (∀)
⊢ A&B, ∀XC,Γ

C&
∀−→
←−
C∀
&

π
⊢ A,C,Γ

X not free in A,Γ (∀)
⊢ A,∀XC,Γ

ϕ
⊢ B,C,Γ

X not free in B,Γ (∀)
⊢ B, ∀XC,Γ

(&)
⊢ A&B, ∀XC,Γ

Table 1.11: Rule commutation (Part 7/16)

43

1.3. TRANSFORMATIONS OF PROOFS

&− ∃

π
⊢ A,C[D/X],Γ

ϕ
⊢ B,C[D/X],Γ

(&)
⊢ A&B,C[D/X],Γ

(∃)
⊢ A&B, ∃XC,Γ

C&
∃−→
←−
C∃
&

π
⊢ A,C[D/X],Γ

(∃)
⊢ A,∃XC,Γ

ϕ
⊢ B,C[D/X],Γ

(∃)
⊢ B, ∃XC,Γ

(&)
⊢ A&B, ∃XC,Γ

&−mix 2 − 1 π
⊢ Γ

ϕ
⊢ A,∆

τ
⊢ B,∆

(&)
⊢ A&B,∆

(mix2)
⊢ A&B,Γ,∆

C&
mix2−→
←−
C

mix2
&

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

π
⊢ Γ

τ
⊢ B,∆

(mix2)
⊢ B,Γ,∆

(&)
⊢ A&B,Γ,∆

&−mix 2 − 2

π
⊢ A,Γ

τ
⊢ B,Γ

(&)
⊢ A&B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A&B,Γ,∆

C&
mix2−→
←−
C

mix2
&

π
⊢ A,Γ

ϕ
⊢ ∆

(mix2)
⊢ A,Γ,∆

τ
⊢ B,Γ

ϕ
⊢ ∆

(mix2)
⊢ B,Γ,∆

(&)
⊢ A&B,Γ,∆

&− ∪

π
⊢ A,Γ

ϕ
⊢ B,Γ

(&)
⊢ A&B,Γ

τ
⊢ A,Γ

µ
⊢ B,Γ

(&)
⊢ A&B,Γ

(∪)
⊢ A&B,Γ

C&
∪−→
←−
C∪
&

π
⊢ A,Γ

τ
⊢ A,Γ

(∪)
⊢ A,Γ

ϕ
⊢ B,Γ

µ
⊢ B,Γ

(∪)
⊢ B,Γ

(&)
⊢ A&B,Γ

&− ∅ (∅)
⊢ A&B,Γ

C&
∅−→
←−
C∅
&

(∅)
⊢ A,Γ

(∅)
⊢ B,Γ

(&)
⊢ A&B,Γ

⊕1 −⊕1

π
⊢ A,C,Γ

(⊕1)
⊢ A⊕B,C,Γ

(⊕1)
⊢ A⊕B,C ⊕D,Γ

C
⊕1
⊕1−→

π
⊢ A,C,Γ

(⊕1)
⊢ A,C ⊕D,Γ

(⊕1)
⊢ A⊕B,C ⊕D,Γ

⊕1 −⊕2

π
⊢ A,D,Γ

(⊕1)
⊢ A⊕B,D,Γ

(⊕2)
⊢ A⊕B,C ⊕D,Γ

C
⊕1
⊕2−→
←−
C

⊕2
⊕1

π
⊢ A,D,Γ

(⊕2)
⊢ A,C ⊕D,Γ

(⊕1)
⊢ A⊕B,C ⊕D,Γ

⊕1 −⊤ (⊤)
⊢ A⊕B,⊤,Γ

C
⊕1
⊤−→
←−
C⊤
⊕1

(⊤)
⊢ A,⊤,Γ

(⊕1)
⊢ A⊕B,⊤,Γ

⊕1 − ?d

π
⊢ A,C,Γ

(⊕1)
⊢ A⊕B,C,Γ

(?d)
⊢ A⊕B, ?C,Γ

C
⊕1
?d−→
←−
C

?d
⊕1

π
⊢ A,C,Γ

(?d)
⊢ A, ?C,Γ

(⊕1)
⊢ A⊕B, ?C,Γ

⊕1 − ?c

π
⊢ A, ?C, ?C,Γ

(⊕1)
⊢ A⊕B, ?C, ?C,Γ

(?c)
⊢ A⊕B, ?C,Γ

C
⊕1
?c−→
←−
C

?c
⊕1

π
⊢ A, ?C, ?C,Γ

(?c)
⊢ A, ?C,Γ

(⊕1)
⊢ A⊕B, ?C,Γ

⊕1 − ?w

π
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

(?w)
⊢ A⊕B, ?C,Γ

C
⊕1
?w−→
←−
C

?w
⊕1

π
⊢ A,Γ

(?w)
⊢ A, ?C,Γ

(⊕1)
⊢ A⊕B, ?C,Γ

Table 1.12: Rule commutation (Part 8/16)

44

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

⊕1 − ∀

π
⊢ A,Γ

(⊕1)
⊢ A⊕B,C,Γ

X not free in A⊕B,Γ (∀)
⊢ A⊕B, ∀XC,Γ

C
⊕1
∀−→
←−
C∀
⊕1

π
⊢ A,Γ

X not free in A,Γ (∀)
⊢ A,∀XC,Γ

(⊕1)
⊢ A⊕B, ∀XC,Γ

⊕1 − ∃

π
⊢ A,C[D/X],Γ

(⊕1)
⊢ A⊕B,C[D/X],Γ

(∃)
⊢ A⊕B, ∃XC,Γ

C
⊕1
∃−→
←−
C∃
⊕1

π
⊢ A,C[D/X],Γ

(∃)
⊢ A,∃XC,Γ

(⊕1)
⊢ A⊕B, ∃XC,Γ

⊕1 −mix 2 − 1

π
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A⊕B,Γ,∆

C
⊕1
mix2−→
←−
C

mix2
⊕1

π
⊢ A,Γ

ϕ
⊢ ∆

(mix2)
⊢ A,Γ,∆

(⊕1)
⊢ A⊕B,Γ,∆

⊕1 −mix 2 − 2 π
⊢ Γ

ϕ
⊢ A,∆

(⊕1)
⊢ A⊕B,∆

(mix2)
⊢ A⊕B,Γ,∆

C
⊕1
mix2−→
←−
C

mix2
⊕1

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

(⊕1)
⊢ A⊕B,Γ,∆

⊕1 − ∪

π
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

ϕ
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

(∪)
⊢ A⊕B,Γ

C
⊕1
∪−→
←−
C∪
⊕1

π
⊢ A,Γ

ϕ
⊢ A,Γ

(∪)
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

⊕1 − ∅ (∅)
⊢ A⊕B,Γ

C
⊕1
∅−→
←−
C∅
⊕1

(∅)
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

⊕2 −⊕2

π
⊢ B,D,Γ

(⊕2)
⊢ A⊕B,D,Γ

(⊕2)
⊢ A⊕B,C ⊕D,Γ

C
⊕2
⊕2−→

π
⊢ B,D,Γ

(⊕2)
⊢ B,C ⊕D,Γ

(⊕2)
⊢ A⊕B,C ⊕D,Γ

⊕2 −⊤ (⊤)
⊢ A⊕B,⊤,Γ

C
⊕2
⊤−→
←−
C⊤
⊕2

(⊤)
⊢ B,⊤,Γ

(⊕2)
⊢ A⊕B,⊤,Γ

⊕2 − ?d

π
⊢ B,C,Γ

(⊕2)
⊢ A⊕B,C,Γ

(?d)
⊢ A⊕B, ?C,Γ

C
⊕2
?d−→
←−
C

?d
⊕2

π
⊢ B,C,Γ

(?d)
⊢ B, ?C,Γ

(⊕2)
⊢ A⊕B, ?C,Γ

Table 1.13: Rule commutation (Part 9/16)

45

1.3. TRANSFORMATIONS OF PROOFS

⊕2 − ?c

π
⊢ B, ?C, ?C,Γ

(⊕2)
⊢ A⊕B, ?C, ?C,Γ

(?c)
⊢ A⊕B, ?C,Γ

C
⊕2
?c−→
←−
C

?c
⊕2

π
⊢ B, ?C, ?C,Γ

(?c)
⊢ B, ?C,Γ

(⊕2)
⊢ A⊕B, ?C,Γ

⊕2 − ?w

π
⊢ B,Γ

(⊕2)
⊢ A⊕B,Γ

(?w)
⊢ A⊕B, ?C,Γ

C
⊕2
?w−→
←−
C

?w
⊕2

π
⊢ B,Γ

(?w)
⊢ B, ?C,Γ

(⊕2)
⊢ A⊕B, ?C,Γ

⊕2 − ∀

π
⊢ B,C,Γ

(⊕2)
⊢ A⊕B,C,Γ

X not free in A⊕B,Γ (∀)
⊢ A⊕B, ∀XC,Γ

C
⊕2
∀−→
←−
C∀
⊕2

π
⊢ B,C,Γ

X not free in B,Γ (∀)
⊢ B, ∀XC,Γ

(⊕2)
⊢ A⊕B, ∀XC,Γ

⊕2 − ∃

π
⊢ B,C[D/X],Γ

(⊕2)
⊢ A⊕B,C[D/X],Γ

(∃)
⊢ A⊕B, ∃XC,Γ

C
⊕2
∃−→
←−
C∃
⊕2

π
⊢ B,C[D/X],Γ

(∃)
⊢ B, ∃XC,Γ

(⊕2)
⊢ A⊕B, ∃XC,Γ

⊕2 −mix 2 − 1

π
⊢ B,Γ

(⊕2)
⊢ A⊕B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A⊕B,Γ,∆

C
⊕2
mix2−→
←−
C

mix2
⊕2

π
⊢ B,Γ

ϕ
⊢ ∆

(mix2)
⊢ B,Γ,∆

(⊕2)
⊢ A⊕B,Γ,∆

⊕2 −mix 2 − 2 π
⊢ B,Γ

ϕ
⊢ ∆

(⊕2)
⊢ A⊕B,∆

(mix2)
⊢ A⊕B,Γ,∆

C
⊕2
mix2−→
←−
C

mix2
⊕2

π
⊢ Γ

ϕ
⊢ B,∆

(mix2)
⊢ B,Γ,∆

(⊕2)
⊢ A⊕B,Γ,∆

⊕2 − ∪

π
⊢ B,Γ

(⊕2)
⊢ A⊕B,Γ

ϕ
⊢ B,Γ

(⊕2)
⊢ A⊕B,Γ

(∪)
⊢ A⊕B,Γ

C
⊕2
∪−→
←−
C∪
⊕2

π
⊢ B,Γ

ϕ
⊢ B,Γ

(∪)
⊢ B,Γ

(⊕2)
⊢ A⊕B,Γ

⊕2 − ∅ (∅)
⊢ A⊕B,Γ

C
⊕2
∅−→
←−
C∅
⊕2

(∅)
⊢ B,Γ

(⊕2)
⊢ A⊕B,Γ

⊤−⊤ (⊤1)
⊢ ⊤1,⊤2,Γ

C⊤
⊤−→ (⊤2)

⊢ ⊤1,⊤2,Γ

⊤− ?d

(⊤)
⊢ ⊤, A,Γ

(?d)
⊢ ⊤, ?A,Γ

C⊤
?d−→
←−
C

?d
⊤

(⊤)
⊢ ⊤, ?A,Γ

Table 1.14: Rule commutation (Part 10/16)

46

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

⊤− ?c

(⊤)
⊢ ⊤, ?A, ?A,Γ

(?c)
⊢ ⊤, ?A,Γ

C⊤
?c−→
←−
C

?c
⊤

(⊤)
⊢ ⊤, ?A,Γ

⊤− ?w

(⊤)
⊢ ⊤,Γ

(?w)
⊢ ⊤,Γ

C⊤
?w−→
←−
C

?w
⊤

(⊤)
⊢ ⊤, ?A,Γ

⊤− ∀
(⊤)

⊢ ⊤, A,Γ
X not free in ⊤,Γ (∀)

⊢ ⊤,∀XA,Γ

C⊤
∀−→
←−
C∀
⊤

(⊤)
⊢ ⊤,∀XA,Γ

⊤− ∃
(⊤)

⊢ ⊤, A[B/X],Γ
(∃)

⊢ ⊤,∃XA,Γ

C⊤
∃−→
←−
C∃
⊤

(⊤)
⊢ ⊤,∃XA,Γ

⊤−mix 2 − 1
(⊤)

⊢ ⊤,Γ
π
⊢ ∆

(mix2)
⊢ ⊤,Γ,∆

C⊤
mix2−→
←−
C

mix2
⊤

(⊤)
⊢ ⊤,Γ,∆

⊤−mix 2 − 2

π
⊢ Γ

(⊤)
⊢ ⊤,∆

(mix2)
⊢ ⊤,Γ,∆

C⊤
mix2−→
←−
C

mix2
⊤

(⊤)
⊢ ⊤,Γ,∆

⊤− ∪
(⊤)

⊢ ⊤,Γ
(⊤)

⊢ ⊤,Γ
(∪)

⊢ ⊤,Γ

C⊤
∪−→
←−
C∪
⊤

(⊤)
⊢ ⊤,Γ

⊤− ∅ (∅)
⊢ ⊤,Γ

C⊤
∅−→
←−
C∅
⊤

(⊤)
⊢ ⊤,Γ

?d − ?d

π
⊢ A,B,Γ

(?d)
⊢ ?A,B,Γ

(?d)
⊢ ?A, ?B,Γ

C
?d
?d−→

π
⊢ A,B,Γ

(?d)
⊢ A, ?B,Γ

(?d)
⊢ ?A, ?B,Γ

?d − ?c

π
⊢ A, ?B, ?B,Γ

(?d)
⊢ ?A, ?B, ?B,Γ

(?c)
⊢ ?A, ?B,Γ

C
?d
?c−→
←−
C

?c
?d

π
⊢ A, ?B, ?B,Γ

(?c)
⊢ A, ?B,Γ

(?d)
⊢ ?A, ?B,Γ

?d − ?w

π
⊢ A,Γ

(?d)
⊢ ?A,Γ

(?w)
⊢ ?A, ?B,Γ

C
?d
?w−→
←−
C

?w
?d

π
⊢ A,Γ

(?w)
⊢ A, ?B,Γ

(?d)
⊢ ?A, ?B,Γ

Table 1.15: Rule commutation (Part 11/16)

47

1.3. TRANSFORMATIONS OF PROOFS

?d − ∀

π
⊢ A,B,Γ

(?d)
⊢ ?A,B,Γ

X not free in ?A,Γ (∀)
⊢ ?A,∀XB,Γ

C
?d
∀−→
←−
C∀
?d

π
⊢ A,B,Γ

X not free in A,Γ (∀)
⊢ A,∀XB,Γ

(?d)
⊢ ?A,∀XB,Γ

?d − ∃

π
⊢ A,B[C/X],Γ

(?d)
⊢ A,B[C/X],Γ

(∃)
⊢ ?A,∃XB,Γ

C
?d
∃−→
←−
C∃
?d

π
⊢ A,B[C/X],Γ

(∃)
⊢ A,∃XB,Γ

(?d)
⊢ ?A,∃XB,Γ

?d −mix 2 − 1

π
⊢ A,Γ

(?d)
⊢ ?A,Γ

ϕ
⊢ ∆

(mix2)
⊢ ?A,Γ,∆

C
?d
mix2−→
←−
C

mix2
?d

π
⊢ A,Γ

ϕ
⊢ ∆

(mix2)
⊢ A,Γ,∆

(?d)
⊢ ?A,Γ,∆

?d −mix 2 − 2 π
⊢ Γ

ϕ
⊢ A,∆

(?d)
⊢ ?A,∆

(mix2)
⊢ ?A,Γ,∆

C
?d
mix2−→
←−
C

mix2
?d

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

(?d)
⊢ ?A,Γ,∆

?d − ∪

π
⊢ A,Γ

(?d)
⊢ ?A,Γ

ϕ
⊢ A,Γ

(?d)
⊢ ?A,Γ

(∪)
⊢ ?A,Γ

C
?d
∪−→
←−
C∪
?d

π
⊢ A,Γ

ϕ
⊢ A,Γ

(∪)
⊢ A,Γ

(?d)
⊢ ?A,Γ

?d − ∅ (∅)
⊢ ?A,Γ

C
?d
∅−→
←−
C∅
?d

(∅)
⊢ A,Γ

(?d)
⊢ ?A,Γ

?c − ?c

π
⊢ ?A, ?A, ?B, ?B,Γ

(?c)
⊢ ?A, ?B, ?B,Γ

(?c)
⊢ ?A, ?B,Γ

C
?c
?c−→

π
⊢ ?A, ?A, ?B, ?B,Γ

(?c)
⊢ ?A, ?A, ?B,Γ

(?c)
⊢ ?A, ?B,Γ

?c − ?w

π
⊢ ?A, ?A,Γ

(?c)
⊢ ?A,Γ

(?w)
⊢ ?A, ?B,Γ

C
?c
?w−→
←−
C

?w
?c

π
⊢ ?A, ?A,Γ

(?w)
⊢ ?A, ?A, ?B,Γ

(?c)
⊢ ?A, ?B,Γ

?c − ∀

π
⊢ ?A, ?A,B,Γ

(?c)
⊢ ?A,B,Γ

X not free in ?A,Γ (∀)
⊢ ?A,∀XB,Γ

C
?c
∀−→
←−
C∀
?c

π
⊢ ?A, ?A,B,Γ

X not free in ?A,?A,Γ (∀)
⊢ ?A, ?A,∀XB,Γ

(?c)
⊢ ?A,∀XB,Γ

Table 1.16: Rule commutation (Part 12/16)

48

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

?c − ∃

π
⊢ ?A, ?A,B[C/X],Γ

(?d)
⊢ ?A, ?A,B[C/X],Γ

(∃)
⊢ ?A,∃XB,Γ

C
?c
∃−→
←−
C∃
?c

π
⊢ ?A, ?A,B[C/X],Γ

(∃)
⊢ ?A, ?A,∃XB,Γ

(?c)
⊢ ?A,∃XB,Γ

?c −mix 2 − 1

π
⊢ ?A, ?A,Γ

(?c)
⊢ ?A,Γ

ϕ
⊢ ∆

(mix2)
⊢ ?A,Γ,∆

C
?c
mix2−→
←−
C

mix2
?c

π
⊢ ?A, ?A,Γ

ϕ
⊢ ∆

(mix2)
⊢ ?A, ?A,Γ,∆

(?c)
⊢ ?A,Γ,∆

?c −mix 2 − 2 π
⊢ Γ

ϕ
⊢ ?A, ?A,∆

(?c)
⊢ ?A,∆

(mix2)
⊢ ?A,Γ,∆

C
?c
mix2−→
←−
C

mix2
?c

π
⊢ Γ

ϕ
⊢ ?A, ?A,∆

(mix2)
⊢ ?A, ?A,Γ,∆

(?c)
⊢ ?A,Γ,∆

?c − ∪

π
⊢ ?A, ?A,Γ

(?c)
⊢ ?A,Γ

ϕ
⊢ ?A, ?A,Γ

(?c)
⊢ ?A,Γ

(∪)
⊢ ?A,Γ

C
?c
∪−→
←−
C∪
?c

π
⊢ ?A, ?A,Γ

ϕ
⊢ ?A, ?A,Γ

(∪)
⊢ ?A, ?A,Γ

(?c)
⊢ ?A,Γ

?c − ∅ (∅)
⊢ ?A,Γ

C
?c
∅−→
←−
C∅
?c

(∅)
⊢ ?A, ?A,Γ

(?c)
⊢ ?A,Γ

?w − ?w

π
⊢ Γ

(?w)
⊢ ?A,Γ

(?w)
⊢ ?A, ?B,Γ

C
?c
?c−→

π
⊢ Γ

(?w)
⊢ ?B,Γ

(?w)
⊢ ?A, ?B,Γ

?w − ∀

π
⊢ B,Γ

(?w)
⊢ ?A,B,Γ

X not free in ?A,Γ (∀)
⊢ ?A,∀XB,Γ

C
?w
∀−→
←−
C∀
?w

π
⊢ B,Γ

X not free in Γ (∀)
⊢ ∀XB,Γ

(?w)
⊢ ?A,∀XB,Γ

?w − ∃

π
⊢ B[C/X],Γ

(?w)
⊢ B[C/X],Γ

(∃)
⊢ ?A,∃XB,Γ

C
?w
∃−→
←−
C∃
?w

π
⊢ B[C/X],Γ

(∃)
⊢ ∃XB,Γ

(?w)
⊢ ?A,∃XB,Γ

?w −mix 2 − 1

π
⊢ Γ

(?w)
⊢ ?A,Γ

ϕ
⊢ ∆

(mix2)
⊢ ?A,Γ,∆

C
?w
mix2−→
←−
C

mix2
?w

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

(?w)
⊢ ?A,Γ,∆

Table 1.17: Rule commutation (Part 13/16)

49

1.3. TRANSFORMATIONS OF PROOFS

?w −mix 2 − 2 π
⊢ Γ

ϕ
⊢ ∆

(?w)
⊢ ?A,∆

(mix2)
⊢ ?A,Γ,∆

C
?w
mix2−→
←−
C

mix2
?w

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

(?w)
⊢ ?A,Γ,∆

?w − ∪

π
⊢ Γ

(?w)
⊢ ?A,Γ

ϕ
⊢ Γ

(?w)
⊢ ?A,Γ

(∪)
⊢ ?A,Γ

C
?w
∪−→
←−
C∪
?w

π
⊢ Γ

ϕ
⊢ Γ

(∪)
⊢ Γ

(?w)
⊢ ?A,Γ

?w − ∅ (∅)
⊢ ?A,Γ

C
?w
∅−→
←−
C∅
?w

(∅)
⊢ Γ

(?w)
⊢ ?A,Γ

∀ − ∀

π
⊢ A,B,Γ

X not free in B,Γ (∀)
⊢ ∀XA,B,Γ

Y not free in ∀XA,Γ (∀)
⊢ ∀XA, ∀Y B,Γ

C∀
∀−→

π
⊢ A,B,Γ

Y not free in A,Γ (∀)
⊢ A,∀Y B,Γ

X not free in ∀Y B,Γ (∀)
⊢ ∀XA, ∀Y B,Γ

∀ − ∃

π
⊢ A,B[C/Y],Γ

X not free in B[C/Y],Γ (∀)
⊢ ∀XA,B[C/Y],Γ

(∃)
⊢ ∀XA, ∃Y B,Γ

C∀
∃−→
←−
C∃
∀

π
⊢ A,B[C/Y],Γ

(∃)
⊢ A,∃Y B,Γ

X not free in ∃Y B,Γ (∀)
⊢ ∀XA, ∃Y B,Γ

∀ −mix 2 − 1

π
⊢ A,Γ

X not free in Γ (∀)
⊢ ∀XA,Γ

ϕ
⊢ ∆

(mix2)
⊢ ∀XA,Γ,∆

C∀
mix2−→
←−
C

mix2
∀

π
⊢ A,Γ

ϕ
⊢ ∆

(mix2)
⊢ A,Γ,∆

X not free in Γ,∆ (∀)
⊢ ∀XA,Γ,∆

∀ −mix 2 − 2 π
⊢ Γ

ϕ
⊢ A,∆

X not free in ∆ (∀)
⊢ ∀XA,∆

(mix2)
⊢ ∀XA,Γ,∆

C∀
mix2−→
←−
C

mix2
∀

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

X not free in Γ,∆ (∀)
⊢ ∀XA,Γ,∆

∀ − ∪

π
⊢ A,Γ

X not free in Γ (∀)
⊢ ∀XA,Γ

ϕ
⊢ A,Γ

X not free in Γ (∀)
⊢ ∀XA,Γ

(∪)
⊢ ∀XA,Γ

C∀
∪−→
←−
C∪
∀

π
⊢ A,Γ

ϕ
⊢ A,Γ

(∪)
⊢ A,Γ

X not free in Γ (∀)
⊢ ∀XA,Γ

∀ − ∅ (∅)
⊢ ∀XA,Γ

C∀
∅−→
←−
C∅
∀

(∅)
⊢ A,Γ

X not free in Γ (∀)
⊢ ∀XA,Γ

∃ − ∃

π
⊢ A[C/X], B[D/Y],Γ

(∃)
⊢ ∃XA,B[D/Y],Γ

(∃)
⊢ ∃XA, ∃Y B,Γ

C∃
∃−→

π
⊢ A[C/X], B[D/Y],Γ

(∃)
⊢ A[C/X],∃Y B,Γ

(∃)
⊢ ∃XA, ∃Y B,Γ

∃ −mix 2 − 1

π
⊢ A[B/X],Γ

(∃)
⊢ ∃XA,Γ

ϕ
⊢ ∆

(mix2)
⊢ ∃XA,Γ,∆

C∃
mix2−→
←−
C

mix2
∃

π
⊢ A[B/X],Γ

ϕ
⊢ ∆

(mix2)
⊢ A[B/X],Γ,∆

(∃)
⊢ ∃XA,Γ,∆

Table 1.18: Rule commutation (Part 14/16)

50

CHAPTER 1. SEQUENT CALCULUS OF LINEAR LOGIC

∃ −mix 2 − 2 π
⊢ Γ

ϕ
⊢ A[B/X],∆

(∃)
⊢ ∃XA,∆

(mix2)
⊢ ∃XA,Γ,∆

C∃
mix2−→
←−
C

mix2
∃

π
⊢ Γ

ϕ
⊢ A[B/X],∆

(mix2)
⊢ A[B/X],Γ,∆

(∃)
⊢ ∃XA,Γ,∆

∃ − ∪

π
⊢ A[B/X],Γ

(∃)
⊢ ∃XA,Γ

ϕ
⊢ A[B/X],Γ

(∃)
⊢ ∃XA,Γ

(∪)
⊢ ∃XA,Γ

C∃
∪−→
←−
C∪
∃

π
⊢ A[B/X],Γ

ϕ
⊢ A[B/X],Γ

(∪)
⊢ A[B/X],Γ

(∃)
⊢ ∃XA,Γ

∃ − ∅ (∅)
⊢ ∃XA,Γ

C∃
∅−→
←−
C∅
∃

(∅)
⊢ A[B/X],Γ

(∃)
⊢ ∃XA,Γ

mix 2 −mix 2 − 1 π
⊢ Γ

ϕ
⊢ ∆

τ
⊢ Σ

(mix2)
⊢ ∆,Σ

(mix2)
⊢ Γ,∆,Σ

C
mix2
mix2−→
←−
C

mix2
mix2

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

τ
⊢ Σ

(mix2)
⊢ Γ,∆,Σ

mix 2 −mix 2 − 2

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

τ
⊢ Σ

(mix2)
⊢ Γ,∆,Σ

C
mix2
mix2−→
←−
C

mix2
mix2

π
⊢ Γ

τ
⊢ Σ

(mix2)
⊢ Γ,Σ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆,Σ

mix 2 −mix 2 − 3 π
⊢ Γ

ϕ
⊢ ∆

τ
⊢ Σ

(mix2)
⊢ ∆,Σ

(mix2)
⊢ Γ,∆,Σ

C
mix2
mix2−→
←−
C

mix2
mix2

ϕ
⊢ ∆

π
⊢ Γ

τ
⊢ Σ

(mix2)
⊢ Γ,Σ

(mix2)
⊢ Γ,∆,Σ

mix 2 − ∪− 1

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

π
⊢ Γ

τ
⊢ ∆

(mix2)
⊢ Γ,∆

(∪)
⊢ Γ,∆

C
mix2
∪−→
←−
C∪
mix2

π
⊢ Γ

ϕ
⊢ ∆

τ
⊢ ∆

(∪)
⊢ ∆

(mix2)
⊢ Γ,∆

mix 2 − ∪− 2

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

τ
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

(∪)
⊢ Γ,∆

C
mix2
∪−→
←−
C∪
mix2

π
⊢ Γ

τ
⊢ Γ

(∪)
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

mix 2 − ∅ − 1 (∅)
⊢ Γ,∆

C
mix2
∅−→
←−
C∅
mix2

(∅)
⊢ Γ

π
⊢ ∆

(mix2)
⊢ Γ,∆

Table 1.19: Rule commutation (Part 15/16)

51

1.3. TRANSFORMATIONS OF PROOFS

mix 2 − ∅ − 2 (∅)
⊢ Γ,∆

C
mix2
∅−→
←−
C∅
mix2

π
⊢ Γ

(∅)
⊢ ∆

(mix2)
⊢ Γ,∆

∪ − ∪
π
⊢ Γ

ϕ
⊢ Γ

(∪)
⊢ Γ

τ
⊢ Γ

µ
⊢ Γ

(∪)
⊢ Γ

(∪)
⊢ Γ

C∪
∪−→

π
⊢ Γ

τ
⊢ Γ

(∪)
⊢ Γ

ϕ
⊢ Γ

µ
⊢ Γ

(∪)
⊢ Γ

(∪)
⊢ Γ

∪ − ∅ (∅)
⊢ Γ

C∪
∅−→
←−
C∅
∪

(∅)
⊢ Γ

(∅)
⊢ Γ

(∪)
⊢ Γ

Table 1.20: Rule commutation (Part 16/16)

?w − ?c− 1

π
⊢ ?A1,Γ

(?w)
⊢ ?A1, ?A2,Γ

(?c)
⊢ ?A1,Γ

⇝
oe π

⊢ ?A,Γ

?w − ?c− 2

π
⊢ ?A2,Γ

(?w)
⊢ ?A1, ?A2,Γ

(?c)
⊢ ?A2,Γ

⇝
oe π

⊢ ?A,Γ

mix 0 −mix 2 − 1
(mix0)

⊢
π
⊢ Γ

(mix2)
⊢ Γ

⇝
om π

⊢ Γ

mix 0 −mix 2 − 2
π
⊢ Γ

(mix0)
⊢

(mix2)
⊢ Γ

⇝
om π

⊢ Γ

∅ − ∪ − 1
(∅)

⊢ Γ
π
⊢ Γ

(∪)
⊢ Γ

⇝
oa π

⊢ Γ

∅ − ∪ − 2
π
⊢ Γ

(∅)
⊢ Γ

(∪)
⊢ Γ

⇝
oa π

⊢ Γ

Table 1.21: Directed Rétoré transformation

52

Chapter 2

Properties of Sequent Calculus

In this chapter, we study properties of our transformations of proofs, which are particular kinds of
abstract rewriting systems. In general, one loves to have two properties for this kind of systems:
strong normalization and confluence. We call convergent a rewriting system with these two proper-
ties. Here are intuitions for these properties in the framework of functional programming languages,
where a transformation is the evaluation of a function f in some argument x, i.e. replacing f(x) by
its value.

The first property, strong normalization, states that there is no infinite sequence of reductions.
In the context of functional programming, strong normalization of (well-typed) programs means
that accepted programs will stop at some point (maybe in one billion years, but will still halt). The
second property, confluence, states that if there are several reductions that can be applied on an
object o, yielding objects o1 and o2, then there are reductions of o1 and of o2 going to the same
object. In the framework of programs, this means that if one can evaluate different functions in a
program, say f(g(x)), then whichever function f or g is chosen first to be reduced, we can do other
evaluations to reach the same result in both cases.

These two properties together yield to a strong result: when reducing any object in whatever
way, one always reaches a normal form – on which no more reductions can be applied – which does
not depend on the choices of reduction done, i.e. which is unique. For programs, this means that
whatever evaluation of functions one chooses, in whatever order, the evaluated program reaches at
some point a value, which is independent of the choices of reduction. As an example, consider a
computation of (1 + 2) × (2 + 3). One can first compute the left or the right +, leading to either
3× (2+3) or (1+2)×5, then the other, yielding 3×5 in both cases, which finally reduces to 15. It
would be disastrous to have a situation where computing first the left + and then the second would
lead to different results, or to have an unending computation where the computer never gives an
answer. This is why, intuitively, these two properties matter.

In linear logic, we have two reduction systems: axiom-expansion and cut-elimination. The
fundamental intuition here is that these two relations should be seen as equivalence of proofs. In
other words, two sequent calculus proofs π and ϕ represent the “same” object if and only if they
are related by axiom-expansion and cut-elimination, i.e. π =βη ϕ. Said differently, what often
matters here, as for most applications, is less a proof and more its equivalence class by βη-equality.
Convergence, leading to a unique normal form, would yield a canonical representative of a class;
this is exactly what happens with integers and addition: 2+3 and 2+2+1 are the “same” because

53

they both belong to the class of 5, which is the canonical representative.
Convergence of directed Rétoré transformation is obvious. Regarding axiom-expansion, every-

thing works well, and one easily proves strong normalization and confluence. Even better, in a set-
ting with no quantifier rules one can prove that given two proofs π and ϕ related by cut-elimination
and axiom-expansion, posing π′ (resp. ϕ′) the unique (thanks to convergence of axiom-expansion)
result of expanding all axioms in π (resp. ϕ), the proofs π′ and ϕ′ are related by cut-elimination. In
other words, if π =βη ϕ then π′ =β ϕ′. This key observation allows us to reduce the study of proofs
equal up to cut-elimination and axiom-expansion to the one of proofs equal up to cut-elimination
only.

Unfortunately, cut-elimination is less well-behaved: it neither enjoys strong normalization nor
confluence. This is why we need weaker properties. While strong normalization fails in general, this
should only be due to the cut − cut commutative case. Thus, when doing only other cases, namely
β−→ steps, one recovers strong normalization. Meanwhile, even if cut-elimination is not confluent

(even without the cut − cut commutative case), it is confluent up to rule commutation, a property
called Church-Rosser modulo. The idea is fairly simple, and can even be explained using junior high
school notions and the usual exercise of expanding expressions. Consider arithmetical expressions
made of variables a, b, c, . . . representing numbers, with the usual addition + and multiplication
×. A standard exercise is the following: given an expression, expand it as much as possible using
the distributivity laws a × (b + c) → a × b + a × c and (a + b) × c → a × c + b × c. Looking at
these distributivity laws as rewriting rules, one can wonder if this system is confluent. The answer
is no, i.e. expanding a given term may yield different results according to the order in which the
expansions are done. For instance, here are all the possible ways to expand (a+ b)× (c+ d).

(a+ b)× (c+ d)

a× (c+ d) + b× (c+ d) (a+ b)× c+ (a+ b)× d

(a× c+ a× d) + b× (c+ d)

a× (c+ d) + (b× c+ b× d)

(a× c+ b× c) + (a+ b)× d

(a+ b)× c+ (a× d+ b× d)

(a× c+ a× d) + (b× c+ b× d) (a× c+ b× c) + (a× d+ b× d)

One sees there are two possible results: (a×c+a×d)+(b×c+b×d) and (a×c+b×c)+(a×d+b×d).
While these two expressions are indeed different, it poses no problem because they are equal up to
rearranging the terms, i.e. up to associativity and commutativity of the addition – using (x+y)+z =
x + (y + z) and x + y = y + x. One can prove this is a general phenomenon: while expanding an
expression may not lead to a unique result, all possible results are related up to associativity and
commutativity. Therefore, expanding expressions is not confluent but it is Church-Rosser modulo
associativity and commutativity. A consequence is that a teacher correcting such an exercise cannot
simply check that a student gave strictly the same answer as the one found by the teacher, but

54

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

must check for a solution equal to it up to associativity and commutativity.
Going back to cut-elimination, we will work in the framework of MALL0,2 and prove cut-

elimination is Church-Rosser modulo rule commutation, as well as strongly normalizing when not
using an infinity of cut − cut commutative cases. We will even prove the stronger result that two
proofs are equal up to cut-elimination if and only if any of their normal forms are related by rule
commutation. The main use of these properties in this thesis is to reduce the study of the equality
of proofs up to cut-elimination to the study of cut-free proofs equal up to rule commutation.

Outline The aim of this chapter is to characterize the equality of proofs up to axiom-expansion
and cut-elimination by means of rule commutation. This result is not surprising, but has not
been proved before as far as we know, and is rather tedious to settle. To reach this goal, we first
give standard definitions and results of the theory of Abstract Rewriting Systems about normal-
ization, confluence, Church-Rosser modulo, etc (Section 2.1). We then consider axiom-expansion
and easily prove strong normalization and confluence, as well as a reduction of equality up to cut-
elimination and axiom-expansion to equality up to cut-elimination only (Section 2.2). The study
of cut-elimination itself is more complex, as this system does not enjoy strong normalization and
confluence, but only weaker properties such as Church-Rosser modulo rule commutations. We
prove those weaker properties in the setting of MALL0,2, the demonstrations being more technical
compared to axiom-expansion for a more comprehensive study is needed, with in addition problems
when relaxing even slightly the setting (Section 2.3).

2.1 Abstract Rewriting Systems

We define here concepts from the theory of abstract rewriting systems (ARS), and state some
results from the literature. Most of those can be found for instance in [Ter03]. They will be
used for studying our transformations on proofs (axiom-expansion, cut-elimination and Rétoré
transformation), as well as for the corresponding ones in the syntax of proof-nets. We give some
standard notions such as strong normalization, confluence, . . . (Section 2.1.1) as well as others which
are less well-known, occurring when properties hold only up to an equivalence relation: Church-
Rosser modulo a relation, local coherence modulo a relation, . . . (Section 2.1.2).

2.1.1 Standard notions of Abstract Rewriting Systems

An abstract rewriting system is the data of a set A and a binary relation → on A. We use
standard notations from this theory: given a relation →, →∗ (resp. →+, →=) is the transitive
reflexive (resp. transitive, reflexive) closure of →, while ← is the converse relation – symmetric
relations will correspond to symmetric symbols. By →n we mean a sequence of n successive →
steps. We denote by · the composition of relations, and by ∪ their union. The inclusion of relations
is as usual denoted ⊆. In all illustrations of definitions of this section about abstract rewriting
systems, we adopt the following convention: hypotheses are in solid black whereas conclusions are
in dashed red.

Definition 2.1 (Normalization). Let → be a binary relation on the set A.

• When a→ b we say a reduces to b.

55

2.1. ABSTRACT REWRITING SYSTEMS

• An element a ∈ A is a normal form (for →) if there exists no b ∈ A such that a → b. If
a→∗ b with b a normal form, we say b is a normal form of a.

• The relation → is weakly normalizing if for all a ∈ A, there exists a normal form b ∈ A
such that a→∗ b – i.e. if there exists a normal form of any element.

• The relation → is strongly normalizing if for all a ∈ A, any rewriting sequence starting
from a is finite, i.e. of the shape a→∗ b for some b ∈ A.

Remark that strong normalization implies weak normalization.

Definition 2.2 (Confluence). Let → be a binary relation on the set A.

• The relation → is confluent, or Church-Rosser, if ∗← · →∗ ⊆ →∗ · ∗←, illustrated below.
·

· ·
∗ ∗

·

∗ ∗

• The relation → has the diamond property if ← · → ⊆ (→ · ←)∪ =, illustrated below.1

·

· ·

·

or

·

· ·=

One can prove that the diamond property implies confluence, by a simple induction on the sum
of the lengths of the two →∗ sequences.

If → is strongly normalizing and confluent, we call it convergent. In this case, each a ∈ A has
a unique normal form.

2.1.2 Abstract Rewriting Systems modulo an equivalence relation

We now extend previous definitions to the case “up to an equivalence relation”.

Definition 2.3. Let ∼ and→ be (binary) relations on a set A such that ∼ is an equivalence relation.
The relation→ is Church-Rosser modulo ∼ if (→ ∪ ← ∪ ∼)∗ ⊆ →∗ · ∼ · ∗←, illustrated below.

1Contrary to the usual definition ← · → ⊆ → · ← found in the literature, e.g. [Ter03, Definition 1.1.8], we add
∪ =, i.e. replace confluence in one step by confluence in one or zero step. This is due to the following case: if
b← a→ b with b normal form, then there is no hope to find a c such that b→ c← b; hence the diamond property
stated as ← · → ⊆ → · ← cannot hold as soon as a → b for b a normal form. While our notion is the one usually
wanted (but perhaps not the one usually stated), there is no good terminology we are aware of to distinguish it from
← · → ⊆ → · ←, both notions being called the diamond property.

56

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

·

· ·

· ·

· · . . . ·

·
∗

∼
∗

∼
∗

∼
∗

· ·∼

∗ ∗

Definition 2.4. Let ∼,→ be relations on a set A such that ∼ is an equivalence relation. The
relation → is locally confluent modulo ∼ if ← · → ⊆ →∗ · ∼ · ∗←, illustrated below.

·

· ·

· ·∼

∗ ∗
Definition 2.5. Let ⊢⊣,→ be relations on a set A such that ⊢⊣ is symmetric. The relation → is
locally coherent with ⊢⊣ if ⊢⊣ · → ⊆ →∗ · ⊢⊣∗ · ∗←, illustrated below.

· ·

·

⊢⊣

· ·⊢⊣∗

∗

∗

Other definitions can be adapted to this setting, but we will not need them here. In order to
obtain the main result of this chapter – stating that the normal forms for cut-elimination of two
MALL0,2 proofs related by =β , are related by ⊢⊣r

∗

(Theorem 2.49) – we see it as a Church-Rosser
property modulo an equivalence relation. This property can be deduced by applying the following
result from Huet.

Theorem 2.6 ([Hue80]). Let ⊢⊣ and → be relations on a set A such that ⊢⊣ is symmetric. If
→ · ⊢⊣∗ is strongly normalizing, → is locally confluent modulo ⊢⊣∗ and locally coherent with ⊢⊣, then
→ is Church-Rosser modulo ⊢⊣∗ .

While this theorem is enough for MALL2, it cannot be applied to MALL0,2 nor for the full
logic, for having → · ⊢⊣∗ strongly normalizing does not hold in the general case. The following
generalization can be applied for MALL0,2, and is conjectured to be applicable in full linear logic,
with all optional rules and Rétoré transformations.

Theorem 2.7 ([AT12, Theorem 2.2]). Let ⊢⊣, → and ⇝ be relations on a set A such that ⊢⊣ is
symmetric and ⇝ ⊆ ⊢⊣. Set ⇒ = → ∪⇝. Suppose:

(i) → ·⇝∗ is strongly normalizing;

(ii) ← · → ⊆ ⇒∗ · ⊢⊣= · ∗⇐;

(iii) ⊢⊣ · → ⊆ (⊢⊣= · ∗⇐) ∪ (→ · ⇒∗ · ⊢⊣= · ∗⇐).

57

2.2. AXIOM-EXPANSION

Then → is Church-Rosser modulo ⊢⊣∗ .

This is indeed a generalization, as when instantiating ⇝ = ⊢⊣ local confluence and local co-
herence implies respectively Items (ii) and (iii). This last theorem is surprisingly easy to prove:
it is done in around one page in [AT12, Section 2], with only standard definitions and no need of
previously known results.

There are other theorems from the literature for proving a rewriting system is Church-Rosser
modulo an equivalence relation, see for instance [Ohl98] with many of those. Unfortunately, most
of them are about non-local properties, i.e. considering ⊢⊣∗ instead of ⊢⊣. For instance, instead of
asking for local coherence with ⊢⊣ one needs it with ⊢⊣∗ (meaning ⊢⊣∗ · → ⊆ →∗ · ⊢⊣∗ · ∗←). In our
applications, we will consider ⊢⊣ = ⊢⊣r . While doing cases on a step of ⊢⊣r is as tedious as it is
boring, it still has the advantage of being a simple case study. Meanwhile, considering an arbitrary
⊢⊣r

∗

step seems complicated, as successive rule commutations can completely reshape a proof. This
prevents us from using these results from the literature asking for non-local properties.

2.2 Axiom-expansion
We prove in this section that =βη, equality up to cut-elimination and axiom-expansion, can be
reduced to =β , equality up to cut-elimination only, between atomic-axiom proofs, i.e. normal forms
for axiom-expansion. The major property is that axiom-expansion η−→ is convergent.

Proposition 2.8. In linear logic with any of the optional rules, axiom-expansion η−→ is strongly
normalizing and confluent.

Proof. Strong normalization follows from the fact that a η−→ step strictly decreases the sum of the
sizes of the formulas on which an ax -rule is applied.

Confluence can be deduced from the diamond property. Observe that there is no critical pair:
two distinct steps ϕ η←− π

η−→ τ always commute, i.e. there exists µ such that ϕ η−→ µ
η←− τ , by

doing in ϕ the rewriting corresponding to the one done in π η−→ τ , and similarly in τ the one done
in π η−→ ϕ. Hence the diamond property of η−→, and thus its confluence.

With a similar proof, one can prove that (any subset of the) Rétoré transformation (Defini-
tion 1.17) is convergent.

Remark 2.9. As long as there exists an ax -rule not on an atom, an η−→ axiom-expansion step can
be applied. Thus, atomic-axiom proofs correspond exactly to proofs in normal form for η−→.

Thanks to Proposition 2.8, we denote by η(π) the unique η-normal form of a proof π, i.e. the
proof obtained by expanding iteratively all ax -rules in π (in any order thanks to confluence). Thus,
we can define idA = η(axA), the axiom-expansion of the proof consisting of only one ax -rule. The
goal of this section is to prove the following (proof on page 62).

Proposition 2.10 (Reduction to atomic-axiom proofs). Consider the sub-system of linear logic
with all rules (including optional ones) except the quantifiers rules ∀ and ∃. Set ⊢⊣o some (possible
none, or all) of the Rétoré transformations. Let π and τ be proofs such that π =βηo τ . Then
η(π) =βo η(τ) with, in this sequence, only proofs in η-normal form.

This allows us to then consider atomic-axioms proofs only, manipulated through composition
by cut, cut-elimination and possibly Rétoré transformations, never to speak again of η rewriting.

58

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

We will need some intermediate results to reach our goal, first studying the interactions of η−→ with
β−→, then with ⊢⊣o . We set a(π β∗−→ τ) the multiset of the sizes of the formulas in the ax key cases

of these β−→ reductions.

Lemma 2.11. Let π, τ and ϕ be proofs such that τ β←− π
η−→ ϕ. Then there exists µ such

that τ η∗−→ µ
β←− ϕ or there exist µ1 and µ2 such that ϕ η∗−→ µ1

β∗−→ µ2
η∗←− τ . Furthermore,

a(ϕ
β−→ µ) = a(π

β−→ τ) in the first case and a(µ1
β∗−→ µ2) < a(π

β−→ τ) in the second one.
Diagrammatically:

π ϕ

τ

η

β

µ

β

η∗

=

π ϕ

τ

η

β

µ1

µ2

η∗

β∗

η∗

<

Proof. Call r the ax -rule that π η−→ ϕ expands, and A its formula. If the cut-elimination step is
not an ax key case using r, then the two steps commute and there exists µ such that ϕ β−→ µ and
τ

η−→ µ (or τ η−→ · η−→ µ if r belongs to a sub-proof duplicated by the β−→ step, or τ = µ if it
belongs to a sub-proof erased by the β−→ step). In particular, a(ϕ β−→ µ) = a(π

β−→ τ) for they use
the same rules.

Otherwise, the cut-elimination step is an ax key case on r, with a cut-rule we call c and a
sub-proof ρ in the other branch of c than the one leading to r; c introduces the formula A. The
reasoning we apply is depicted on Figure 2.1. Starting from ϕ, consider the rules introducing A⊥
in (all slices of) ρ. If any of them are ax -rules, then these are necessarily on the formula A; expand
those ax -rules, in both ϕ and τ (keeping the same names for proofs π, τ and ρ by abuse). Then,
in ϕ, commute the cut-rule c with rules of ρ until reaching the rules introducing A⊥ in every slice
(which are rules of the main connective of A⊥ or ⊤-rules). Applying the corresponding key cases or
⊤− cut commutative case (first commuting with a rule of the expanded axiom r if A is a positive
formula, and doing it after if A is a negative formula), then the ax key cases on strict sub-formulas
of A yields τ . During these ax key cases, we cut on sub-formulas of A, so on formulas of a strictly
smaller size. Therefore ϕ η∗−→ · β∗−→ · η∗←− τ , with a(· β∗−→ ·) < a(π

β−→ τ).

Fact 2.12. Any cut-elimination step β−→ which is not an ∀−∃ key case preserves being in η-normal
form.

Proof. A β−→ rewriting step can never create an ax -rule on a formula A, except by duplicating an
already present ax -rule on the same formula. The only exception to this is the ∀ − ∃ key case,
because it turns a proof π1 into π1[B/X], so any ax -rule on X becomes an ax -rule on B, which is
not atomic if B is not an atom.

Lemma 2.13. Consider the sub-system made of linear logic with any of the optional rules, but
without the quantifiers ∀ and ∃. Let π, τ and ϕ be proofs such that τ η∗←− π

β∗−→ ϕ, with τ an
η-normal proof. There exists an η-normal proof µ such that τ β∗−→ µ

η∗←− ϕ. Diagrammatically:

59

2.2. AXIOM-EXPANSION

π =

r
⊢ A⊥, A ρ

c
...

ϕ =

(ax) (ax)
pos

neg
⊢ A⊥, A ρ

c
...

τ =
ρ
...

(ax) (ax)
pos

neg
⊢ A⊥, A

...
A⊥

γ
c

...

...
A⊥

γ
...

(ax) (ax)
pos

neg
⊢ A⊥, A

...
A⊥

c
γ
...

η

β

expand all ax -rules on A⊥ in ρ

commute c until reaching A⊥

η∗

η∗

β∗

β∗

Figure 2.1: Schematic representation of the second case of the proof of Lemma 2.11

60

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

π

ϕ

τ η-normal

β∗

η∗

µ η-normal
η∗

β∗

Proof. Assume τ ηm←− π
βn−→ ϕ. If we find a µ respecting the diagram, then it is an η-normal form

by Fact 2.12. We reason by induction on the lexicographic order of the triple
(
a(π

β∗−→ ϕ), n,m
)
.

If n = 0 or m = 0, then the result trivially holds (µ = τ or µ = ϕ).

Consider the case n+1 and m+1. Therefore, τ ηm←− ι η←− π β−→ κ
βn−→ ϕ. We apply Lemma 2.11

on ι η←− π β−→ κ, yielding ρ such that ι β−→ ρ
η∗←− ϕ with a(ι β−→ ρ) = a(π

β−→ κ) or ρ1 and ρ2 such
that ι η∗−→ ρ1

β∗−→ ρ2
η∗←− κ with a(ρ1

β∗−→ ρ2) < a(π
β−→ κ). Both of these cases, and the reasonings

we will apply, are illustrated by diagrams preceding them, with the following color convention: in
blue are uses of Lemma 2.11, in green of confluence of η−→ and in red of the induction hypothesis.

π ι τ η-normal

κ

ϕ

η ηm

β

βn

ρ

=

η∗

β IH

ν η-normal

β∗

η∗

IH

µ η-normal

β∗

η∗

Assume to be in the first case. Applying the induction hypothesis on τ
ηm←− ι

β−→ ρ, with τ

in η-normal form, a(ι β−→ ρ) = a(π
β−→ κ) ≤ a(π

β∗−→ ϕ), 1 ≤ n + 1 and m < m + 1, there
exists an η-normal proof ν such that τ β∗−→ ν

η∗←− ρ. We now apply the induction hypothesis on
ν

η∗←− ρ η∗←− κ βn−→ ϕ, with ν in η-normal form, a(κ βn−→ ϕ) ≤ a(π β∗−→ ϕ) and n < n+ 1. We obtain
an η-normal proof µ such that ν β∗−→ µ

η∗←− ϕ. This concludes the first case.

61

2.2. AXIOM-EXPANSION

π ι τ η-normal

κ

ϕ

η ηm

β

βn

ρ1

ρ2

<

η∗

β∗

η∗

η∗

IH

ν η-normal

β∗

η∗

IH

µ η-normal

β∗

η∗

Consider the second case. Using the confluence of η−→ on τ
ηm←− ι

η∗−→ ρ1 (Proposition 2.8), with
τ in η-normal form, yields τ η∗←− ρ1. We then apply the induction hypothesis on τ

η∗←− ρ1
β∗−→ ρ2,

with τ in η-normal form and a(ρ1
β∗−→ ρ2) < a(π

β∗−→ ϕ). This yields an η-normal proof ν such that

τ
β∗−→ ν

η∗←− ρ2. We use the induction hypothesis again, this time on ν η∗←− ρ2
η∗←− κ βn−→ ϕ, with ν

in η-normal form, a(κ βn−→ ϕ) ≤ a(π
β∗−→ ϕ) and n < n + 1. We obtain an η-normal proof µ with

ν
β∗−→ µ

η∗←− ϕ, solving the second case.

Lemma 2.14. If π ⊢⊣o ϕ, the η(π) ⊢⊣o η(ϕ) using a ⊢⊣o step of the same kind (⇝om, ⇝
om, ⇝oa, . . .).

Proof. We start by proving the following. Let π, ϕ and π′ be proofs such that π′ η←− π ⊢⊣o ϕ. Then
π′ ⊢⊣o · η←− ϕ, with this ⊢⊣o step being the same kind as in π ⊢⊣o ϕ. Diagrammatically:

π ⊢⊣o

π′

ϕ

η

·

η

⊢⊣o

Indeed, in ϕ, one can apply an η−→ step on the ax -rule corresponding to the π η−→ π′ step. One
gets a proof ϕ′, and remark that π′ ⊢⊣o ϕ′ using the same rules as in π ⊢⊣o ϕ.

Now let us prove our result. We have η(π) η∗←− π ⊢⊣o ϕ
η∗−→ η(ϕ). Apply the above result on the

left sequence of η−→ steps, yielding by induction η(π) ⊢⊣o τ
η∗←− ϕ

η∗−→ η(ϕ) for some proof τ . As a
⊢⊣o step preserves being an η-normal proof, using Proposition 2.8 one gets τ = η(ϕ), concluding the
proof.

We can now prove the main result of this section, Proposition 2.10.

Proof of Proposition 2.10. We reason by induction on the length of the sequence π =βηo τ . If it is
of null length, then π = τ hence η(π) = η(τ). Otherwise, there is a proof ϕ such that π — ϕ =βηo τ

with — ∈ { β−→;
β←−; η−→;

η←−;⊢⊣o }. By induction hypothesis, η(ϕ) =βo η(τ), with only atomic-axiom
proofs in this sequence. We distinguish cases according to π — ϕ.

62

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

If π β−→ ϕ, then as η(π) η∗←− π we can apply Lemma 2.13 to obtain an η-normal proof µ such
that η(π) β∗−→ µ

η∗←− ϕ. Thus, µ = η(ϕ), so η(π) β∗−→ η(ϕ) =β η(τ) and the result holds.

Similarly, if π β←− ϕ then, as ϕ η∗−→ η(ϕ), there exists an η-normal proof µ such that π η∗−→
µ

β∗←− η(ϕ) (Lemma 2.13). Thus µ = η(π), and η(π) β∗←− η(ϕ) =β η(τ).
If π ⊢⊣o ϕ, then by Lemma 2.14 η(π) ⊢⊣o η(ϕ), allowing us to conclude η(π) =βo η(τ).
Finally, if π η−→ ϕ or π η←− ϕ, then η(π) = η(ϕ) =β η(τ) and the conclusion follows.

2.3 Cut-elimination

We now study cut-elimination. Weak normalization of cut-elimination is important in logic: it
permits to have a cut-free proof of any provable sequent, and thus to work with a restricted set of
rules, simplifying reasonings. Furthermore, the cut-rule in MALL0,2 is the only rule not having the
sub-sequent property (Fact 1.7). Not having this property makes automatic proof search complex,
due to the size of the formula space from which one can choose a cut formula. The existence of a
cut-free proof allows to remove this choice.

In linear logic, normalization and confluence of cut-elimination in proof-nets (a graphical syntax
for proofs, that we will consider in Chapter 4) have been well studied in various settings: for
MELL [Acc13; DG99], MALL [HG05; LM08], nets with additive boxes [Tor03; Tor01] and even
with all connectives and second order quantifiers [PT10], in differential nets [PT17; Tra09], etc.
Meanwhile, there are way less results about normalization and confluence in sequent calculus.
Weak normalization of cut-elimination is a folklore result, see for instance [LL22, Section 1.5].

Theorem 2.15. Cut-elimination for the sequent calculus of linear logic is weakly normalizing.

However, at the best of my knowledge there is not a lot of other results about cut-elimination
in sequent calculus. One of the reasons for this lack of results is that only weaker properties
hold, contrary to axiom-expansion. Indeed, cut-elimination neither enjoys strong normalization nor
confluence (Section 2.3.1). Nonetheless, cut-elimination still has some good properties, albeit weaker
ones; we prove those in the simpler framework of MALL0,2. If one remove the cut−cut commutation,
i.e. consider β−→ instead of β−→, then the resulting rewriting system is strongly normalizing, and we
can even add some commutations between steps while keeping strong normalization (Sections 2.3.3
and 2.3.4). We conjecture a corresponding result for the full logic (Section 2.3.5). To illustrate the
gap between weak and strong normalization, we first give a very simple proof that cut-elimination
is weakly normalizing in MALL (Section 2.3.2). Finally, even if cut-elimination is not confluent, it
is Church-Rosser modulo rule commutation (Section 2.3.6). A result which is not surprising, and
rather tedious to settle. It has the important consequence of reducing equality up to cut-elimination
to equality up to rule commutation between normal forms. When studying this problem, we thought
that this Church-Rosser property has not been proved before, leading to the study described in this
section as we needed this result for the study of isomorphisms (see Chapter 6). It has since been
brought to our attention that Cockett and Pastro had introduced in [CP05] a term language for
MALL with rewriting rules corresponding to cut-elimination and rule commutations, and for which
this Church-Rosser property was proved in the appendix of their paper. We thus end this section
with a discussion on the similarities and differences between their work and ours (Section 2.3.7).

63

2.3. CUT-ELIMINATION

2.3.1 No strong normalization nor confluence
Cut-elimination is not strongly normalizing, because of the cut − cut commutative case: in a proof
with two successive cut-rules, one can apply this rewriting step ad nauseam, alternating between
two proofs. Unfortunately, the root of the problem is not simply the cut − cut commutation, but
is more on the confluence side. Cut-elimination is not confluent, as two commutative cases may be
applied on the same cut-rule, and doing one or the other may not lead to the same normal form.
As an example, the proof

(ax)
⊢ A⊥, A

(ax)
⊢ B⊥, B

(⊗)
⊢ A⊗B,A⊥, B⊥

(ax)
⊢ A⊥, A

(ax)
⊢ C⊥, C

(⊗)
⊢ A⊥ ⊗ C⊥, A,C

(cut)
⊢ A⊗B,A⊥ ⊗ C⊥, B⊥, C

reduces to both
(ax)

⊢ A⊥, A
(ax)

⊢ C⊥, C
(⊗)

⊢ A,A⊥ ⊗ C⊥, C
(ax)

⊢ B⊥, B
(⊗)

⊢ A⊗B,A⊥ ⊗ C⊥, B⊥, C

and

(ax)
⊢ A⊥, A

(ax)
⊢ B⊥, B

(⊗)
⊢ A⊗B,A⊥, B⊥

(ax)
⊢ C⊥, C

(⊗)
⊢ A⊗B,A⊥ ⊗ C⊥, B⊥, C

according respectively to whether the cut-rule is first commuted with the ⊗-rule on its left or on its
right in the first cut-elimination step. Still, even if these two proofs are not equal, they are related
by rule commutation!

2.3.2 Easy proof of weak normalization in MALL

Here is a standalone proof that cut-elimination in MALL is weakly normalizing. The argument is
very simple: we define a quantity called the mass of a cut-rule, which depends only on the shape
of the cut-rule, and prove a cut-elimination step applied on a top-most cut-rule produces only
cut-rules of lesser masses.

Definition 2.16. The mass m(A) of a formula A is a natural number defined by induction:

• m(X+) = m(X−) = m(1) = m(⊥) = m(⊤) = m(0) = 2

• m(A⊗B) = m(A`B) = m(A&B) = m(A⊕B) = (m(A) + 1)× (m(B) + 1)

We extend this notion to sequents by defining m(⊢ A1, . . . , An) =
∏n
i=1m(Ai) (with the usual

convention that the empty product equals 1).

The mass of a cut-rule c of the shape
⊢ A⊥,Γ ⊢ A,∆

(cut)
⊢ Γ,∆

is m(c) = m(A)×m(Γ,∆).

The mass m(π) of a proof π is the sum of the masses of its cut-rules.

Fact 2.17. For any formula A, m(A) = m(A⊥) > 1.

Lemma 2.18. Consider a cut-elimination step τ β−→ ϕ and call c the (unique) cut-rule in τ involved
in this step and (ci)i∈J1;nK the n ∈ {0; 1; 2} resulting cut-rules in ϕ. Then m(c) >

∑n
i=1m(ci).

Proof. It suffices to compute the masses before and after each cut-elimination step. In the following
case study, we use implicitly Fact 2.17.

64

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

ax key case Here

τ =

(ax)
⊢ A⊥, A

π
⊢ A,Γ

(c)
⊢ A,Γ
ρ

ϕ =
π

⊢ A,Γ
ρ

We have n = 0 and m(c) = m(A)×m(A)×m(Γ) > 0 =
∑n
i=1m(ci).

`−⊗ key case Here

τ =

π1
⊢ A,Γ

π2
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

π3
⊢ B⊥, A⊥,Σ

(`)

⊢ B⊥ `A⊥,Σ
(c)

⊢ Γ,∆,Σ
ρ

ϕ =
π1
⊢ A,Γ

π2
⊢ B,∆

π3
⊢ B⊥, A⊥,Σ

(c2)

⊢ A⊥,∆,Σ
(c1)

⊢ Γ,∆,Σ
ρ

We have n = 2 and:

m(c)−
n∑
i=1

m(ci)

= m(A⊗B)×m(Γ,∆,Σ)−m(A)×m(Γ,∆,Σ)−m(B)×m(A⊥,∆,Σ)

≥ (m(A⊗B)−m(A)−m(B)×m(A))×m(Γ,∆,Σ)

= (m(B) + 1)×m(Γ,∆,Σ) > 0

&−⊕1 key case Here

τ =

π1
⊢ A,Γ

π2
⊢ B,Γ

(&)
⊢ A&B,Γ

π3
⊢ B⊥,∆

(⊕1)

⊢ B⊥ ⊕A⊥,∆
(c)

⊢ Γ,∆
ρ

ϕ =

π2
⊢ B,Γ

π3
⊢ B⊥,∆

(c1)
⊢ Γ,∆
ρ

We have n = 1 and m(c) = m(A&B)×m(Γ,∆) > m(B)×m(Γ,∆) =
∑n
i=1m(ci).

&−⊕2 key case This case is very similar to the &−⊕1 key case.

⊥− 1 key case Here

τ =
(1)

⊢ 1

π
⊢ Γ

(⊥)
⊢ Γ,⊥

(c)
⊢ Γ
ρ

ϕ =
π
⊢ Γ
ρ

We have n = 0 and m(c) = 2m(Γ) > 0 =
∑n
i=1m(ci).

`− cut commutative case Here

τ =

π1
⊢ A,B,C,Γ

(`)
⊢ A,B ` C,Γ

π2
⊢ A⊥,∆

(c)
⊢ B ` C,Γ,∆

ρ

ϕ =

π1
⊢ A,B,C,Γ

π2
⊢ A⊥,∆

(c1)
⊢ B,C,Γ,∆

(`)
⊢ B ` C,Γ,∆

ρ

65

2.3. CUT-ELIMINATION

We have n = 1 and:

m(c)−
n∑
i=1

m(ci)

= m(A)×m(B ` C)×m(Γ,∆)−m(A)×m(B)×m(C)×m(Γ,∆)

= m(A)× (m(B ` C)−m(B)m(C))×m(Γ,∆)

= m(A)× (m(B) +m(C) + 1)×m(Γ,∆) > 0

⊗− cut −1, ⊗− cut −2, ⊕i− cut and ⊥− cut commutative cases These cases are quite similar
to the `− cut commutative case.

&− cut commutative case Here

τ =

π1
⊢ A,B,Γ

π2
⊢ A,C,Γ

(&)
⊢ A,B & C,Γ

π3
⊢ A⊥,∆

(c)
⊢ B & C,Γ,∆

ρ

ϕ =

π1
⊢ A,B,Γ

π3
⊢ A⊥,∆

(c1)
⊢ B,Γ,∆

π2
⊢ A,C,Γ

π3
⊢ A⊥,∆

(c2)
⊢ C,Γ,∆

(&)
⊢ B & C,Γ,∆

ρ
We have n = 2 and:

m(c)−
n∑
i=1

m(ci)

= m(A)×m(Γ,∆)×m(B & C)−m(A)×m(Γ,∆)×m(B)−m(A)×m(Γ,∆)×m(C)

= m(A)×m(Γ,∆)× (m(B & C)−m(B)−m(C))

= m(A)×m(Γ,∆)× (m(B)m(C) + 1) > 0

⊤− cut commutative case Here

τ =

(⊤)
⊢ A,⊤,Γ

π
⊢ A⊥,∆

(c)
⊢ ⊤,Γ,∆

ρ

ϕ =
(⊤)

⊢ ⊤,Γ,∆
ρ

We have n = 0 and m(c) = 2×m(A)×m(Γ,∆) > 0 =
∑n
i=1m(ci).

Proposition 2.19. Cut-elimination is weakly normalizing in MALL. Moreover, a proof π can be
normalized in at most m(π) steps.

Proof. The mass is a norm of normalization for a strategy consisting in eliminating a top-most
cut-rule. Consider such a rule c in a given proof π, and apply any β−→ step on it, yielding a proof ϕ.
By Lemma 2.18, the sum of the masses of the resulting cut-rules ci is smaller than m(c), while the
masses of other cut-rules are unaffected – because the mass is defined locally and there is no cut-rule
above c, so no cut-rule to be duplicated or erased. Thus m(ϕ) = m(π)−m(c)+

∑n
i=1m(ci) < m(π).

We conclude by induction hypothesis.

Remark that the core of the proof is quite original as we consider only masses of formulas and
sequents, and nothing about the surrounding proof. These quantities are usually not good for cut-
elimination, and seems hard to come by without a linear point of view. It is possible to extend this
proof in presence of exponentials by considering exponential trees and adding in the mass of the
cut formula the size of its exponential tree.

Transforming this proof into one of strong normalization of β−→ · ⊢⊣r
∗

, still in MALL, is not
difficult. It suffices to keep the mass but to modify the quantity associated to a proof, so as to get

66

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

a reduction during any β−→ step and not only a top-most one. As we keep the mass, our measure
is still preserved by ⊢⊣r .

Definition 2.20. In a proof π, we define a partial order ≺ between cut-rules by c′ ≺ c when c is
in the sub-proof of π of root c′. This relation is reflexive: c ≺ c.

The density d(c) of a cut-rule c in a proof π is defined as d(c) =
∑
c′≺cm(c′).

The density d(π) of a proof π is the multiset of the density of its cut-rules.

Lemma 2.21. If τ β−→ ϕ then d(τ) > d(ϕ).

Proof. Using Lemma 2.18, each step replaces a cut-rule with cut-rules whose sum of masses is
smaller. Other masses stay the same as the only modified sequents are not the conclusion sequent
of other cut-rules than the one eliminated. The only reduction where there can be more cut-rules
below a given one, notwithstanding the replacement of the eliminated one, is when a sub-proof
containing a cut-rule is duplicated in a &−cut commutative case. In such a case, the only cut-rules
not keeping their densities are c the eliminated one – yielding two cut-rules c1 and c2 of smaller
weight – and the cut-rules above it, by definition of ≺. Any duplicated cut-rule goes from a density
α + m(c) to two cut-rules of smaller densities α + m(c1) and α + m(c2). Thus, we only replace
cut-rules by couples of smaller ones, and d(τ) > d(ϕ).

Lemma 2.22. If π ⊢⊣r π′, then d(π) = d(π′).

Proof. As rule commutations act below a cut-free proof, they cannot erase nor duplicate cut-rules.
As a rule commutation only changes the sequents between the rules it commutes, it does not change
the sequent below any cut-rule, and in particular does not modify the mass of any cut-rule. Thence,
it preserves the density of all cut-rules, which depends only on the masses of the cut-rules.

Corollary 2.23. The relation β−→ · ⊢⊣r
∗

is strongly normalizing in MALL.

Proof. By Lemmas 2.21 and 2.22, a step of β−→ decreases the density of a proof while one of ⊢⊣r

preserves it. Hence, a step of β−→ · ⊢⊣r
∗

strictly decreases the density, ensuring termination.

As we will see in the next sections, proving strong normalization of β−→ not only up to rule
commutation but also up to cut − cut commutation necessitates more work.

2.3.3 Strong normalization in MALL2 and MALL0

The goal of this section is proving the strong normalization of the relation β−→ ·(⊢⊣r ∪ ⊢⊣c)∗ in the
framework of MALL0 and MALL2, so as to apply Theorem 2.6 – we do not prove it for MALL0,2,
simply because it is false: see Section 2.3.5 for a counter-example in any sub-system containing the
⊤-, mix 0- and mix 2-rules. Nevertheless, we will place ourselves into the framework of MALL0,2 as
both cases follow the same proof scheme. Remark it is quite important here to consider the cut-free
commutations ⊢⊣r , and not the ⊢⊣rc commutations including cut: β←− ⊆ ⊢⊣rc , so obviously β−→ · ⊢⊣rc

cannot be strongly normalizing, even in the simplest sub-systems of linear logic.
We prove the wished result by giving a measure which is preserved by ⊢⊣r and ⊢⊣c but decreases

during a β−→ step. This measure is complex, and will need some intermediate definitions.

Definition 2.24. We define the weight w(A) of a formula A by induction:

67

2.3. CUT-ELIMINATION

• w(X+) = w(X−) = w(1) = w(⊥) = w(⊤) = w(0) = 1

• w(A⊗B) = w(A`B) = w(A⊕B) = w(A) + w(B) + 1

• w(A&B) = max (w(A), w(B)) + 1

We extend this notion to sequents, by defining for a sequent ⊢ Γ = ⊢ A1, . . . , An that w(⊢ Γ) =∑n
i=1 w(Ai).

Fact 2.25. For any formula A, w(A) is a positive integer.

Proof. By induction on the formula A.

Definition 2.26. We define the weight w(π) of a proof π as a natural number by induction:

• w
(

(ax)
⊢ A⊥, A

)
= w(A⊥) + w(A).

• w

 π1
⊢ A,Γ

π2
⊢ A⊥,∆

(cut)
⊢ Γ,∆

 = w(π1) + w(π2)

• w

(π1
⊢ A,Γ

π2
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

)
= w(π1) + w(π2) + 1

• w

(π1
⊢ A,B,Γ

(`)
⊢ A`B,Γ

)
= w(π1) + 1

• w
(

(1)
⊢ 1

)
= 1

• w

(π1
⊢ Γ

(⊥)
⊢ ⊥,Γ

)
= w(π1) + 1

• w

(π1
⊢ A,Γ

π2
⊢ B,Γ

(&)
⊢ A&B,Γ

)
= max (w(π1), w(π2)) + 1

• w

(π1
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

)
= w(π1) + w(B) + 1

• w

(π1
⊢ B,Γ

(⊕2)
⊢ A⊕B,Γ

)
= w(π1) + w(A) + 1

• w
(

(⊤)
⊢ ⊤,Γ

)
= 1 + w(⊢ Γ)

• w

(π1
⊢ Γ

π2
⊢ ∆

(mix2)
⊢ Γ,∆

)
= w(π1) + w(π2)

68

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

• w
(

(mix0)
⊢

)
= 0

In the above definition, be careful on the following points: the &-rule introduces a max, in a
⊕i-rule the unused formula gives its weight, and the mix 2-rule behave more like the cut-rule than
like the ⊗-rule. About this last point, it is useful to consider the following commutation:

(⊤)
⊢ ⊤, X−, X+ ⊢⊣r

(⊤)
⊢ ⊤

(ax)
⊢ X−, X+

(mix2)

⊢ ⊤, X−, X+

We want the same weight for these two proofs, so that Lemma 2.27 holds. The only possibility is
to have the mix 2-rule only summing weights.

Lemma 2.27. For a proof π of a sequent ⊢ Γ, w(π) ≥ w(⊢ Γ). Furthermore, if π is cut-free, then
w(π) = w(⊢ Γ).

Proof. This can be easily proven by induction on π. We give here the two most interesting cases,
others are easier or similar – the full case study can be found in Appendix A.

If π =

π1
⊢ A,Γ

π2
⊢ B,Γ

(&)
⊢ A&B,Γ . Remark that π is cut-free if and only if π1 and π2 are. Then

w(π) = max(w(π1), w(π2)) + 1

≥ max(w(⊢ A,Γ), w(⊢ B,Γ)) + 1 by induction, with equality if π is cut-free
= max(w(A) + w(⊢ Γ), w(B) + w(⊢ Γ)) + 1

= max(w(A), w(B)) + w(⊢ Γ) + 1

= w(A&B) + w(⊢ Γ)

= w(⊢ A&B,Γ)

If π =

π1
⊢ A1,Γ

(⊕1)
⊢ A1 ⊕A2,Γ . Remark that π is cut-free if and only if π1 is. Then

w(π) = w(π1) + w(A2) + 1

≥ w(⊢ A1,Γ) + w(A2) + 1 by induction hypothesis, with equality if π is cut-free
= w(⊢ Γ) + w(A1) + w(A2) + 1

= w(⊢ Γ) + w(A1 ⊕A2)

= w(⊢ A1 ⊕A2,Γ)

Remark 2.28. There exists a proof π using a cut-rule but whose weight is the one of its sequent. In
the following proof, the left sub-tree of the &-rule has weight 5 while its right sub-tree has weight
3, whence the weight of the full proof is 6 = w(⊢ (1⊕ (1⊕ 1)) & 1).

(1)
⊢ 1

(⊕1)
⊢ 1⊕ (1⊕ 1)

(1)
⊢ 1

(⊥)
⊢ 1,⊥

(1)
⊢ 1

(cut)
⊢ 1

(&)
⊢ (1⊕ (1⊕ 1)) & 1

69

2.3. CUT-ELIMINATION

This is due to the max when weighting a &-rule, which may “hide” some weight.

Remark 2.29. As a corollary of Lemma 2.27, η−→ preserves the weight of a proof, for it transforms
a cut-free proof into another one, and weight is defined inductively.

Lemma 2.30. For any proof π and any sequent ⊢ Γ appearing in this proof, w(π) ≥ w(⊢ Γ).

Proof. The sub-proof ϕ of π of root the sequent ⊢ Γ respects w(ϕ) ≥ w(⊢ Γ) (Lemma 2.27). One
can easily prove by induction on π that for any of its sub-proofs τ , w(π) ≥ w(τ) (i.e. that w is
monotonic). Thence, w(π) ≥ w(ϕ) ≥ w(⊢ Γ).

Corollary 2.31. Proofs of null weight are exactly those made exclusively of mix 2- and mix 0-rules.

Proof. This follows from Facts 1.8 and 2.25 and Lemma 2.30: a proof of null weight has only empty
sequents, and therefore is made entirely of mix 2- and mix 0-rules.

Definition 2.32. A block B of cut-rules in a proof π is a maximal set of consecutive cut-rules in
π.

We call measure |B| of a block B of cut-rules in a proof π the weight of its root cut-rule, i.e.
|B| =

∑
i w(πi) where the πi are the sub-proofs whose conclusions are the premises of the cut-rules

of |B|, premises which are by definition not the conclusion of a cut-rule.
The measure |c| of a cut-rule c in a proof π is the measure of the (unique) block it belongs to.
The measure |π| of a proof π is the multiset of the measures of its cut-rules.

For example, consider the following proof π:

(ax)
⊢ X−, X+

(ax)
⊢ X−, X+

(ax)
⊢ X−, X+

(cut)
⊢ X−, X+

(⊕1)

⊢ X−, X+ ⊕ 0
(cut)

⊢ X−, X+ ⊕ 0

(⊤)
⊢ ⊤, X+

(ax)
⊢ X−, X+

(&)

⊢ ⊤&X−, X+

(cut)
⊢ X−, X+

(ax)
⊢ X−, X+

(ax)
⊢ X−, X+

(cut)
⊢ X−, X+

(cut)
⊢ X−, X+

It contains two blocks: the blue one Bb with one cut-rule, and the red one Br with the other four.
The measure of the blue block is the weight of the sub-proof starting from the blue cut-rule, namely
|Bb| = 4. Meanwhile, the measure of the red block is the weight of the whole proof, |Br| = 15.
Therefore, |π| = {4; 15; 15; 15; 15}.
Remark 2.33. A block B of n cut-rules in a proof π has its measure |B| appearing n times in |π|,
once for each of its cut-rules.

Lemma 2.34. If τ and ϕ are proofs of MALL0,2 such that τ β−→ ϕ, then |τ | > |ϕ| unless this step
is a cut − mix 2 − 1 (resp. cut − mix 2 − 2) commutative step where the sub-proof above the right
(resp. left) premise of the mix 2-rule is a proof made entirely of mix 2- and mix 0-rules, in which case
|τ | = |ϕ|.

In particular, for τ and ϕ proofs in either MALL2 or MALL0, if τ β−→ ϕ then |τ | > |ϕ|.

Proof. It suffices to compute the measure before and after each cut-elimination step. To begin
with, let us consider some general arguments. Blocks “enough below” the rules involved in the β−→
step can be easily handled. These blocks are those in the external context of the reduction step,
and not containing the cut-rule involved in the β−→ step (as the bottom rule of a cut-elimination

70

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

step is always a cut-rule). It suffices to prove the weight of all sub-proofs does not increase when
applying a β−→ step, to obtain that the measures of these blocks do not increase. Remark that it is
particularly important to have a max in the inductive definition of the weight in case of a &-rule;
a & − cut commutative reduction may duplicate a sub-proof, but leaves the weight of the proof
unchanged.

Symmetrically, for blocks “enough above” the rules of the β−→ step, there is nothing to do, for
their sub-proofs remain the sames. These blocks are those above the rules involved in the reduction
step, not having a cut-rule directly above one of the rules of the β−→ step. They may be duplicated
or erased, but as their measure is less than the one of the block containing the reduced cut-rule, it
suffices to prove the measure of this last block decreases to obtain the result.

Hence, we only have to consider the block containing the cut-rule, as well as blocks just above
the other rules involved in the β−→ step. That the weight of a proof does not increase during a β−→
step can be easily checked, as it has an inductive definition.

In all cases, we will call Bτ
p the block in τ containing the cut-rule c on which the β step acts,

which is composed of n+ 1 cut-rules.

ax key case. We have τ =

(ax)
⊢ A⊥, A

π
⊢ A,Γ

(cut)
⊢ A,Γ
ρ

and ϕ =

π
⊢ A,Γ
ρ

.

Call Bϕ
p the block in ϕ corresponding to the Bτ

p , which has corresponding cut-rules excepted c
the eliminated one (it might be empty, in which case the result holds). The weight of sub-proofs
decreases during the reduction step, for we removed an ax -rule. By the preliminary remarks of our
proof, we only have to compare the measures of Bτ

p and Bϕ
p .

We have |Bτ
p | = |Bϕ

p |+ w(A⊥) + w(A), as we remove an ax -rule. Therefore, in τ we had n+ 1

cut-rules of weight |Bϕ
p |+w(A⊥)+w(A) corresponding in ϕ to n cut-rules of weight |Bϕ

p |. Whence,
|τ | > |ϕ|.

`−⊗ key case. Here τ =

π1
⊢ A,Γ

π2
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

π3
⊢ B⊥, A⊥,Σ

(`)

⊢ B⊥ `A⊥,Σ
(cut)

⊢ Γ,∆,Σ

ρ

while

ϕ =
π1
⊢ A,Γ

π2
⊢ B,∆

π3
⊢ B⊥, A⊥,Σ

(cut)
⊢ A⊥,∆,Σ

(cut)
⊢ Γ,∆,Σ

ρ

.

Call Bi the (possibly empty) block at the root of πi, containing ni cut-rules, for i ∈ {1; 2; 3},
and Bϕ

p the block in ϕ containing the two produced cut-rules. Blocks Bτ
p , B1, B2 and B3 are

merged into the same block Bϕ
p .

We compute |Bτ
p | = |B1| + |B2| + |B3| + 2 + α, with α the sum of the weight of the other

sub-proofs leading to the block Bτ
p than the two of roots the eliminated ` and ⊗-rules. Also

|Bϕ
p | = |B1| + |B2| + |B3| + α (for we remove the ` and ⊗-rules). Therefore, in τ we had n + 1

cut-rules of weight |B1|+ |B2|+ |B3|+ 2 + α, and ni cut-rules of weight |Bi|, while in ϕ we have
n+ n1 + n2 + n3 + 2 cut-rules of weight |B1|+ |B2|+ |B3|+ α. Whence, |τ | > |ϕ|.

71

2.3. CUT-ELIMINATION

&−⊕1 key case. Here τ =

π1
⊢ A1,Γ

π2
⊢ A2,Γ

(&)
⊢ A1 &A2,Γ

π3
⊢ A⊥2 ,∆

(⊕1)

⊢ A⊥2 ⊕A⊥1 ,∆
(cut)

⊢ Γ,∆

ρ

while

ϕ =

π2
⊢ A2,Γ

π3
⊢ A⊥2 ,∆

(cut)
⊢ Γ,∆

ρ

.

Call Bi the (possibly empty) block at the root of πi, containing ni cut-rules, for i ∈ {1; 2; 3},
and Bϕ

p the block in ϕ containing the produced cut-rule. Blocks Bτ
p , B2 and B3 are merged into

the same block Bϕ
p , while B1 is deleted.

We compute |Bτ
p | = max(|B1|, |B2|) + |B3|+ 2 + w(A⊥1) + α, with α the sum of the weight of

the other sub-proofs leading to the block Bτ
p than the two of roots the eliminated & and ⊕1-rules.

Also |Bϕ
p | = |B2| + |B3| + α. Therefore, in τ we had n + 1 cut-rules of weight max(|B1|, |B2|) +

|B3|+2+w(A⊥1) +α, and ni cut-rules of weight |Bi|, while in ϕ we have n+n2 +n3 +1 cut-rules
of weight |B2|+ |B3|+ α. Whence, |τ | > |ϕ|.

&−⊕2 key case. This case is very similar to the &−⊕1 key case.

⊥− 1 key case. Here τ =
(1)

⊢ 1

π
⊢ Γ

(⊥)
⊢ Γ,⊥

(cut)
⊢ Γ
ρ

and ϕ =
π
⊢ Γ
ρ

.

Call Bϕ
p the block in ϕ corresponding to the Bτ

p , which has corresponding cut-rules excepted
for the eliminated one, and maybe additional rules from a block B just above the ⊥-rule in τ .

We have |Bτ
p | = |Bϕ

p |+ 2, as we remove the ⊥ and 1-rules, and |B| ≤ |Bϕ
p |. Therefore, in τ we

had n+1 cut-rules of weight |Bϕ
p |+2 and k rules of weight |B| ≤ |Bϕ

p |, corresponding in ϕ to n+k
cut-rules of weight |Bϕ

p |. Whence, |τ | > |ϕ|.

`− cut commutative case. Here τ =

π1
⊢ A,B,C,Γ

(`)
⊢ A,B ` C,Γ

π2
⊢ A⊥,∆

(cut)
⊢ B ` C,Γ,∆

ρ

while

ϕ =

π1
⊢ A,B,C,Γ

π2
⊢ A⊥,∆

(cut)
⊢ B,C,Γ,∆

(`)
⊢ B ` C,Γ,∆

ρ

.

Call B1 the (possibly empty) block at the root of π1, containing n1 cut-rules, Ba the sub-block
in ϕ (and τ) containing c and the cut-rules directly above its right premise, and Bϕ

b the (possibly
empty) block in ϕ containing the rules corresponding to the ones of Bτ

p\Ba. The blocks Bτ
p and

B1 are mapped to the blocks Bϕ
b and Ba ∪B1.

The difference between Bτ
p and B1 in τ and Bϕ

b and Ba∪B1 in ϕ is that Ba (including c) moved
from Bτ

p to B1. We have |Bτ
p | = |B

ϕ
b | (provided Bϕ

b is not empty) and |Bτ
p | = |Ba ∪B1| + 1 >

72

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

|Ba ∪B1|, as the weight of the commuted `-rule is included in |Bτ
p | but not |Ba ∪B1|. Thence,

|τ | > |ϕ|.

⊗− cut − 1 commutative case. Here τ =

π1
⊢ A,B,Γ

π2
⊢ C,∆

(⊗)
⊢ A,B ⊗ C,Γ,∆

π3
⊢ A⊥,Σ

(cut)
⊢ B ⊗ C,Γ,∆,Σ

ρ

and

ϕ =

π1
⊢ A,B,Γ

π3
⊢ A⊥,Σ

(cut)
⊢ B,Γ,Σ

π2
⊢ C,∆

(⊗)
⊢ B ⊗ C,Γ,∆,Σ

ρ

.

Call B1 the (possibly empty) block at the root of π1, Ba the sub-block in ϕ (and τ) containing c
and the cut-rules directly above its right premise, and Bϕ

b the (possibly empty) block in ϕ containing
the rules corresponding to the ones of Bτ

p\Ba. The blocks Bτ
p and B1 are mapped to the blocks

Bϕ
b and Ba ∪B1.
The difference between Bτ

p and B1 in τ and Bϕ
b and Ba∪B1 in ϕ is that Ba (including c) moved

from Bτ
p to B1. We have |Bτ

p | = |B
ϕ
b | (provided Bϕ

b is not empty) and |Bτ
p | = |Ba∪B1|+w(π2)+1 >

|Ba ∪B1|, as the weight of the commuted ⊗-rule is included in |Bτ
p | but not |Ba ∪B1|. Thence,

|τ | > |ϕ|.
⊗− cut − 2 commutative case. This case is very similar to the ⊗− cut − 1 commutative case.

&− cut commutative case. Here τ =

π1
⊢ A,B,Γ

π2
⊢ A,C,Γ

(&)
⊢ A,B & C,Γ

π3
⊢ A⊥,∆

(cut)
⊢ B & C,Γ,∆

ρ

and

ϕ =

π1
⊢ A,B,Γ

π3
⊢ A⊥,∆

(cut)
⊢ B,Γ,∆

π2
⊢ A,C,Γ

π3
⊢ A⊥,∆

(cut)
⊢ C,Γ,∆

(&)
⊢ B & C,Γ,∆

ρ

.

Call Bi the (possibly empty) block at the root of πi, i ∈ {1; 2}, Ba the sub-block in ϕ (and τ)
containing c and the cut-rules directly above its right premise, and Bϕ

b the (possibly empty) block
in ϕ containing the rules corresponding to the ones of Bτ

p\Ba. The blocks Bτ
p , B1, B2 are mapped

to the blocks Bϕ
b , Ba ∪B1, Ba ∪B2.

As in the previous cases, some cut-rules (including at least c) strictly lose measure by going
from Bτ

p to Ba ∪B1 and Ba ∪B2 (both copies separately weight less than the original), and the
duplicated blocks (in π3) are of weight less than the weight of Bτ

p . So, again, we replace one or
several measures by strictly smaller measures, hence |τ | > |ϕ|.
⊗−cut−1, ⊗−cut−2, ⊕i−cut and ⊥−cut commutative cases. These cases are quite similar

to the `− cut commutative case.

⊤− cut commutative case. Here τ =

(⊤)
⊢ A,⊤,Γ

π
⊢ A⊥,∆

(cut)
⊢ ⊤,Γ,∆

ρ

whereas ϕ =
(⊤)

⊢ ⊤,Γ,∆
ρ

.

73

2.3. CUT-ELIMINATION

The weights of sub-proofs do not increase during the reduction step, using Lemma 2.27. As we
remove at least the cut-rule c, and the measures of all blocks do not increase, the result follows as
in the ax key case.

mix 2 − cut − 1 commutative case. Here τ =

π1
⊢ A,Γ

π2
⊢ ∆

(mix2)
⊢ A,Γ,∆

π3
⊢ A⊥,Σ

(cut)
⊢ Γ,∆,Σ

ρ

and

ϕ =

π1
⊢ A,Γ

π3
⊢ A⊥,Σ

(cut)
⊢ Γ,Σ

π2
⊢ ∆

(mix2)
⊢ Γ,∆,Σ

ρ

.

As in the ⊗− cut − 1 commutative case, call B1 the (possibly empty) block at the root of π1,
Ba the sub-block in ϕ (and τ) containing c and the cut-rules directly above its right premise, and
Bϕ
b the (possibly empty) block in ϕ containing the rules corresponding to the ones of Bτ

p\Ba. The
blocks Bτ

p and B1 are mapped to the blocks Bϕ
b and Ba ∪B1.

The difference between Bτ
p and B1 in τ and Bϕ

b and Ba∪B1 in ϕ is that Ba (including c) moved
from Bτ

p to B1. We have |Bτ
p | = |B

ϕ
b | (provided Bϕ

b is not empty) and |Bτ
p | = |Ba∪B1|+w(π2), as

the weight of the proof π2 is included in |Bτ
p | but not |Ba ∪B1|. If w(π2) > 0, which is equivalent

to π2 not being made exclusively of mix 2- and mix 0-rules by Corollary 2.31, then |Bτ
p | > |Ba∪B1|,

thence, |τ | > |ϕ|. Otherwise, |τ | = |ϕ|.
mix 2 − cut − 2 commutative case. This case is very similar to the mix 2 − cut − 1 commutative

case.

Lemma 2.35. If π ⊢⊣c π′ then |π| = |π′|.

Proof. Because a cut − cut commutation does not modify the measure of the block of cut-rules it
is done in, nor the weight of the sub-proof starting from this block.

Lemma 2.36. If π ⊢⊣r π′, then |π| = |π′|.

Proof. As rule commutations act below a cut-free proof, it is enough to prove they preserve the
weight of the minimal sub-proof containing them. This is the case by Lemma 2.27, for two cut-free
proofs on a given sequent share the same weight.

Remark 2.37. For Lemma 2.36 to hold, we need that rule commutations are applied only when there
is no cut-rule above. Otherwise, a sub-proof created (resp. destructed) by a ⊤−⊗ commutation may
increase (resp. decrease) the weight and the measure of the proof. Similarly, a sub-proof duplicated
(resp. superimposed) by a & − ⊗ commutation may increase (resp. decrease) the measure of the
proof, even if its weight remains unchanged. Other rule commutations pose no such problem.

Proposition 2.38. In MALL2 and MALL0, the relation β−→ ·(⊢⊣r ∪ ⊢⊣c)∗ is strongly normalizing.

Proof. By Lemmas 2.34, 2.35 and 2.36, a step of β−→ decreases the measure of a proof while one
of ⊢⊣r or ⊢⊣c preserves it. Hence, a step of β−→ ·(⊢⊣r ∪ ⊢⊣c)∗ strictly decreases the measure, ensuring
termination.

74

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

It is not possible to find a measure for proofs in MALL0,2 which is preserved by ⊢⊣r and ⊢⊣c and
strictly decreasing by β−→, because the generalization of Proposition 2.38 to MALL0,2 is false – see
Section 2.3.5 for a counter-example. What can still be proved (with the very same proof as we have
here) is that, in case of an infinite reduction, one has a suffix with an infinity of cut − mix 2 cut-
elimination commutative cases where one of the premise of the mix 2-rule is of null weight. Similarly,
adding the ∅-rule cannot be done here, for it allows proving the empty sequent as does the mix 0-rule
(so Lemma 2.34 fails in this generalized framework), but it can be added if the mix 2-rule has been
removed. In such a case, one poses w

(
(∅)

⊢ Γ

)
= w(⊢ Γ). The problem is harder for the ∪-rule: a

∪ − cut commutative case always preserves the measure of a proof.

2.3.4 Strong normalization in MALL0,2

As written in the previous section, β−→ ·(⊢⊣r ∪ ⊢⊣c)∗ is not strongly normalizing in MALL0,2. We set
here ⇝

r\⊤
the rule commutations excepted ⊤-commutations in the direction where they “create” &-

⊗- and mix 2- rules, i.e. without the C&
⊤ , C⊗⊤ and Cmix2

⊤ commutations (but with those in the other
direction, namely with C⊤& , C⊤⊗ and C⊤mix2

). Here, we prove that β−→ ·(⇝r\⊤ ∪ ⊢⊣c ∪⇝om)∗ is strongly
normalizing, thanks to the results of the previous section. To do so, we define a second measure on
proofs of MALL0,2.

Definition 2.39. We call mix -measure |B|mix of a block B of cut-rules in a proof π the sum for
all slices s containing B of the number of mix 0-rules above B in this slice s.

The mix -measure |c|mix of a cut-rule c in a proof π is the measure of the (unique) block it
belongs to.

The mix -measure |π|mix of a proof π is the multiset of the mix -measures of its cut-rules.

We prove here that the lexicographic order (| · |, | · |mix) is a decreasing measure for a β−→ ·(⇝r\⊤

∪ ⊢⊣c ∪⇝om)∗ step, allowing us to conclude.

Lemma 2.40. Let π and ϕ be proofs in MALL0,2.

(i) If π ⇝om ϕ then |π| = |ϕ|.

(ii) If π β−→ ϕ where this step is a cut −mix 2 − 1 (resp. cut −mix 2 − 2) commutative step where
the sub-proof above the right (resp. left) premise of the mix 2-rule is a proof made entirely of
mix 2- and mix 0-rules, then |π|mix > |ϕ|mix .

(iii) If π ⊢⊣c ϕ then |π|mix = |ϕ|mix .

(iv) If π ⇝
r\⊤

ϕ then |π|mix ≥ |ϕ|mix .

(v) If π ⇝om ϕ then |π|mix ≥ |ϕ|mix .

Proof.

(i) Simply because this operation replaces a sub-proof by another of the same weight.

(ii) We proceed as in the proof of Lemma 2.34. Such an operation does not modify the number of
slice nor the number of mix 0-rules by slice, hence the mix -measure of blocks “below or above
enough”. Set:

75

2.3. CUT-ELIMINATION

π =

τ1
⊢ A,Γ

τ2
⊢ ∆

(mix2)
⊢ A,Γ,∆

τ3
⊢ A⊥,Σ

(cut)
⊢ Γ,∆,Σ

µ

and ϕ =

τ1
⊢ A,Γ

τ3
⊢ A⊥,Σ

(cut)
⊢ Γ,Σ

τ2
⊢ ∆

(mix2)
⊢ Γ,∆,Σ

µ

Call B1 the (possibly empty) block at the root of τ1, Ba the sub-block in π (and ϕ) containing
c and the cut-rules directly above its right premise (in τ3), Bπ the block containing c in π and
Bϕ the (possibly empty) block in ϕ containing the rules corresponding to the ones of Bπ\Ba.
The blocks Bπ and B1 are mapped to the blocks Bϕ and Ba ∪B1.
The difference between Bπ and B1 in π and Bϕ and Ba ∪B1 in ϕ is that Ba (including c)
moved from Bπ to B1. Name n the number of mix 0-rules of τ2 multiplied by the number
of slices of the sub-proof of root Bπ; n > 0 as τ2 cannot be made of only mix 2-rules and
in above c in at least one slice. We have |Bπ|mix = |Bϕ|mix (provided Bϕ is not empty)
and |Bπ|mix = |Ba ∪ B1|mix + n > |Ba ∪ B1|mix , as the mix 0-rules of the proof τ2 is
included in |Bπ|mix but not |Ba∪B1|mix . Thence, the mix -measure of no cut-rule is modified
by the rewriting step, except for those in Ba (including c) which lose value n; meaning
|π|mix > |ϕ|mix .

(iii) Because we consider cut-blocks, and a cut−cut commutation does not modify the mix -measure
of the block of cut-rules it is done in, nor the number of slices or the number and place of
mix 0-rule in any slice.

(iv) The only rule commutation that increase the number of slices is a C&
⊤ commutation, which

is not considered here. The only rule commutations that may increase the number of mix 0-
rules in a slice are C⊗⊤ and Cmix2

⊤ commutations (in case the sub-proof introduced contains a
mix 0-rule), which are also not considered here. The result follows.

(v) A ⇝om step does not modify the number of slices, and can only reduce the number of mix 0-rules
above a block in a given slice.

Proposition 2.41. In MALL0,2, the relation β−→ ·(⇝r\⊤ ∪ ⊢⊣c ∪⇝om)∗ is strongly normalizing.

Proof. By Lemmas 2.34, 2.35, 2.36 and 2.40, a step of β−→ decreases the lexicographic measure
(| · |, | · |mix) of a proof while one of ⇝

r\⊤
, ⊢⊣c or ⇝om decreases or preserves it. Hence, this measure is

strictly decreasing for a step of β−→ ·(⇝r\⊤ ∪ ⊢⊣c ∪⇝om)∗, ensuring termination.

Remark 2.42. In the definition of ⇝
r\⊤

, one could allow more commutations, and remove only the
C⊗⊤ and Cmix2

⊤ commutations where there is a mix 0-rule on the premise of a mix 2-rule up to rule
commutation. One can also surely keep all C&

⊤ commutations, by considering some kind of pseudo-
slices where a &-sub-formula in the context of a ⊤ creates two such slices, and similarly for a
&-sub-formula in the non kept formula of a ⊕i-rule. We choose not to do so as this complicates the
proof of (iv) of Lemma 2.40, and our definition of ⇝

r\⊤
is enough for our goals.

As a noteworthy corollary, we get strong normalization of β−→ in MALL0,2.

Corollary 2.43. In MALL0,2, cut-elimination β−→ is weakly normalizing, and β−→ is strongly nor-
malizing.

76

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

Proof. Using Proposition 2.38, one can reach a normal form for β−→. This is also a normal form for
⊢⊣c thanks to Fact 1.13.

2.3.5 Strong normalization in full linear logic

In the full logic, β−→ ·(⊢⊣r ∪ ⊢⊣c)∗ is not strongly normalizing, so Theorem 2.6 cannot be applied.
Here are some counter-examples, showing in which cases strong normalization fails.

Counter-example with ⊤−mix 2 commutation in the presence of mix 0 While this relation
is strongly normalizing in MALL2 and MALL0, it is not in MALL0,2. Consider the following proofs:

π1 =

(⊤)
⊢ ⊤, X+

(ax)
⊢ X−, X+

(cut)
⊢ ⊤, X+

π2 =

(⊤)
⊢ ⊤, X+

(mix0)
⊢

(mix2)

⊢ ⊤, X+
(ax)

⊢ X−, X+

(cut)
⊢ ⊤, X+

π3 =

(⊤)
⊢ ⊤, X+

(ax)
⊢ X−, X+

(cut)
⊢ ⊤, X+

(mix0)
⊢

(mix2)

⊢ ⊤, X+

One can remark that π1 ⊢⊣
r
π2

β−→ π3. As π1 is a sub-proof of π3, one can go on ad nauseam. The
problem here is that the ⊤ − mix 2 commutation can introduce some “noise” with the mix 0-rule:
while we can apply an infinity of cut-elimination steps, the cut-rule is always on the same sequent.
A similar example exists by replacing the mix 0-rules with ∅-rules.

Counter-example with ⊤ − ∪ commutation In a sub-system with both ⊤- and ∪-rules, the
relation β−→ · ⊢⊣r

∗

is also not strongly normalizing. A counter-example is given with the following
proofs:

π1 =

(⊤)
⊢ ⊤, X+

(ax)
⊢ X−, X+

(cut)
⊢ ⊤, X+

π2 =

(⊤)
⊢ ⊤, X+

(⊤)
⊢ ⊤, X+

(∪)
⊢ ⊤, X+

(ax)
⊢ X−, X+

(cut)
⊢ ⊤, X+

π3 =

(⊤)
⊢ ⊤, X+

(ax)
⊢ X−, X+

(cut)
⊢ ⊤, X+

(⊤)
⊢ ⊤, X+

(ax)
⊢ X−, X+

(cut)
⊢ ⊤, X+

(∪)
⊢ ⊤, X+

77

2.3. CUT-ELIMINATION

One can remark that π1 ⊢⊣
r
π2

β−→ π3. As π1 is a sub-proof of π3 – it has even been duplicated! –
these two steps can be repeated at will.

Counter-example with ⊤−?c and ⊤−?w commutations Even with no optional rules, strong
normalization of β−→ · ⊢⊣r

∗

in the framework of exponentials is false. Set π the following proof:

(ax)
⊢ X−, X+

(`)

⊢ X− `X+

(!)

⊢ !(X− `X+)

We define the following proofs:2

ϕ1 =

π
⊢ !(X− `X+)

(⊤)
⊢ ?(X− ⊗X+),⊤

(cut)
⊢ ⊤

ϕ2 =
π

⊢ !(X− `X+)

(⊤)
⊢ ?(X− ⊗X+), ?(X− ⊗X+),⊤

(?c)

⊢ ?(X− ⊗X+),⊤
(cut)

⊢ ⊤

ϕ3 = π
⊢ !(X− `X+)

(⊤)
⊢ ?(X− ⊗X+),⊤

(?w)

⊢ ?(X− ⊗X+), ?(X− ⊗X+),⊤
(?c)

⊢ ?(X− ⊗X+),⊤
(cut)

⊢ ⊤

ϕ4 = π
⊢ !(X− `X+)

π
⊢ !(X− `X+)

(⊤)
⊢ ?(X− ⊗X+),⊤

(?w)

⊢ ?(X− ⊗X+), ?(X− ⊗X+),⊤
(cut)

⊢ ?(X− ⊗X+),⊤
(cut)

⊢ ⊤

Using one ⊤ − ?c followed by one ⊤ − ?w commutations, ϕ1 ⊢⊣
r
ϕ2 ⊢⊣

r
ϕ3. But using a ?c − ! then

a ?w − ! key cut-elimination cases, one find ϕ3
β−→ ϕ4

β−→ ϕ1. Thus, ϕ1 ⊢⊣
r∗ · β+−→ ϕ1, a counter-

example to the strong normalization of ⊢⊣r
∗

· β−→. This example is even more problematic than the
previous ones, because it allows to apply an infinity of only key cases of cut-elimination!

Remark a similar example could be given by replacing these two ⊤−?c and ⊤−?w commutations
with a ⇝oe , giving directly ϕ1 ⇝

oe
ϕ3.

2In ϕ3, it does not matter which occurrence of ?(X− ⊗X+) is weakened in the ?w-rule: both possibilities would
work.

78

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

Counter-example with ⊤ − ⊗ commutation in the presence of exponentials Simply
forbidding a ⊤ − ?c and ⊤ − ?w commutations in the direction where they introduce rules is not
enough. One can do a similar reasoning as in the previous example, using the proofs below.

π1 =

(ax)
⊢ X−, X+

(?d)

⊢ X−, ?X+

(!)

⊢ !X−, ?X+
(⊤)

⊢ ⊤, 0⊗ !X−, ?X+

(cut)
⊢ ⊤, 0⊗ !X−, ?X+

π2 =

(ax)
⊢ X−, X+

(?d)

⊢ X−, ?X+

(!)

⊢ !X−, ?X+

(⊤)
⊢ ⊤, 0

(ax)
⊢ !X−, ?X+

(?w)

⊢ !X−, ?X+, ?X+

(?c)

⊢ !X−, ?X+

(⊗)
⊢ ⊤, 0⊗ !X−, ?X+

(cut)
⊢ ⊤, 0⊗ !X−, ?X+

π3 =

(ax)
⊢ X−, X+

(?d)

⊢ X−, ?X+

(!)

⊢ !X−, ?X+

(⊤)
⊢ ⊤, 0

(ax)
⊢ !X−, ?X+

(?w)

⊢ !X−, ?X+, ?X+

(⊗)
⊢ ⊤, 0⊗ !X−, ?X+, ?X+

(?c)

⊢ ⊤, 0⊗ !X−, ?X+

(cut)
⊢ ⊤, 0⊗ !X−, ?X+

π4 =

(ax)
⊢ X−, X+

(?d)

⊢ X−, ?X+

(!)

⊢ !X−, ?X+

(⊤)
⊢ ⊤, 0

(ax)
⊢ !X−, ?X+

(⊗)
⊢ ⊤, 0⊗ !X−, ?X+

(?w)

⊢ ⊤, 0⊗ !X−, ?X+, ?X+

(?c)

⊢ ⊤, 0⊗ !X−, ?X+

(cut)
⊢ ⊤, 0⊗ !X−, ?X+

π5 =

(ax)
⊢ X−, X+

(?d)

⊢ X−, ?X+

(!)

⊢ !X−, ?X+

(ax)
⊢ X−, X+

(?d)

⊢ X−, ?X+

(!)

⊢ !X−, ?X+

(⊤)
⊢ ⊤, 0

(ax)
⊢ !X−, ?X+

(⊗)
⊢ ⊤, 0⊗ !X−, ?X+

(?w)

⊢ ⊤, 0⊗ !X−, ?X+, ?X+

(cut)
⊢ ⊤, 0⊗ !X−, ?X+, ?X+

(cut)
⊢ ⊤, 0⊗ !X−, ?X+, ?X+

(?c)

⊢ ⊤, 0⊗ !X−, ?X+

79

2.3. CUT-ELIMINATION

π6 =

(ax)
⊢ X−, X+

(?d)

⊢ X−, ?X+

(!)

⊢ !X−, ?X+

(⊤)
⊢ ⊤, 0

(ax)
⊢ !X−, ?X+

(⊗)
⊢ ⊤, 0⊗ !X−, ?X+

(cut)
⊢ ⊤, 0⊗ !X−, ?X+

(?w)

⊢ ⊤, 0⊗ !X−, ?X+, ?X+

(?c)

⊢ ⊤, 0⊗ !X−, ?X+

π7 =

(ax)
⊢ X−, X+

(?d)

⊢ X−, ?X+

(!)

⊢ !X−, ?X+
(⊤)

⊢ ⊤, 0⊗ !X−, ?X+

(cut)
⊢ ⊤, 0⊗ !X−, ?X+

(?w)

⊢ ⊤, 0⊗ !X−, ?X+, ?X+

(?c)

⊢ ⊤, 0⊗ !X−, ?X+

One can remark that π1 ⊢⊣
r
π2 ⊢⊣

r
π3 ⊢⊣

r
π4

β−→ π5
β−→ π6 ⊢⊣

r
π7. As π1 is a sub-proof of π7, one

can go on eternally, not using any ⊤− ?c nor ⊤− ?w commutation. The problem here is that the
⊤−⊗ commutation can introduce a new sub-proof containing ?c-rules.

Counter-example with ⊤− ∃ commutation Second-order quantifiers are also problematic in
this setting. Consider the following proofs:

π1 =

(⊤)
⊢ ⊤,∃XX+

(⊤)
⊢ ∀XX−,⊤

(cut)
⊢ ⊤,⊤

π2 =

(⊤)
⊢ ⊤,∃XX+

(∃)
⊢ ⊤,∃XX+

(⊤)
⊢ ∀XX−,⊤

(cut)
⊢ ⊤,⊤

π3 =

(⊤)
⊢ ⊤,∃XX+

(∃)
⊢ ⊤,∃XX+

(⊤)
⊢ X−,⊤

(∀)
⊢ ∀XX−,⊤

(cut)
⊢ ⊤,⊤

We have π1 ⊢⊣
r
π2 ⊢⊣

r
π3

β−→ π1, with this step being a ∀ − ∃ key cut-elimination step.

Optional rules Finally, in the above examples, one can replace the ⊗-rules with mix 2-rules and
⊤-rules with ∅ ones to get other counter-examples.

80

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

Conjectures Notwithstanding these examples, I think strong normalization holds.

Conjecture 2.44 (Almost strong normalization of cut-elimination). Consider the framework of full
linear logic, with all optional rules. Set⇝⊤ the rule commutations involving ⊤- and ∅-rules directed in
C⊤ and C∅ in Tables 1.5 to 1.20, and⇝

r\⊤
rule commutations such that in a C⊗⊤ or C⊗∅ commutation,

the created proof has no ?c-, mix 0- and ∪-rule nor a ∅-rule applied on an empty sequent, and without
the C?c

⊤ , C∃⊤, C∪⊤, C?c
∅ , C∃∅ and C∪∅ commutations. The relation (

β−→ ∪ ⇝⊤ ∪ ⇝o) · (⇝r\⊤ ∪ ⊢⊣c)∗ is

strongly normalizing, which in particular implies that β−→ ·(⇝o ∪ ⇝⊤ ∪ ⇝r\⊤ ∪ ⊢⊣c)∗ is strongly
normalizing.

This result would be enough to apply Theorem 2.7, and a stronger result should not hold
looking at our counter-examples. Unfortunately, proving this conjecture seems really hard, and
our tools from MALL0,2 badly adapted. Remark the difference between the counter-examples and
this conjecture is about what is to be considered a reduction and what a permutation, i.e. which
relations should be directed and which should be taken in both directions. In case the above
conjecture is false, it is possible to regard some more rule commutations as directed to get other
weaker conjectures. In particular, if one only wants to apply Theorem 2.7, then the following weaker
result would be enough, by removing all C⊤ and C∅ commutations in ⊢⊣r and by considering them
as directed instead. What is more, this new conjecture should be provable from [PT10].

Conjecture 2.45. Consider the framework of full linear logic, with all optional rules. Set ⇝⊤ the
rule commutations involving ⊤- and ∅-rules directed in C⊤ and C∅ in Tables 1.5 to 1.20, and ⊢⊣

r\⊤

rule commutations not involving a ⊤- nor ∅-rule. The relation (
β−→ ∪ ⇝⊤ ∪ ⇝o) · (⊢⊣

r\⊤ ∪ ⊢⊣c)∗

is strongly normalizing, which in particular implies that β−→ ·(⇝o ∪ ⇝⊤ ∪ ⊢⊣
r\⊤ ∪ ⊢⊣c)∗ is strongly

normalizing.

Sketch of a proof. We assume here that the reader has their copy of [PT10] at disposition, and
that they are familiar with some concepts of linear logic such as proof-nets. If it is not the case,
this sketch of proof will surely be unintelligible, and better skipped than read. The idea is to
adapt [PT10, Theorem 5.12], which is about strong normalization for (a kind of) proof-nets of the
full linear logic, to proofs of the sequent calculus. As the whole point of this long paper was proving
this theorem, checking this modification necessitates many steps. Nonetheless, it seems doable by
proceeding as follows in this extended sketch.

The authors of [PT10] consider sliced pure structures, which are basically proof-nets for full
linear logic that are only correct slice by slice, called AC correctness. A small modification in their
definition is needed in our case: a ⊤-vertex should not have any distinguished (or main) conclusion
but only auxiliary conclusions – this requires adapting the definition of a flat [PT10, Definition 2.1],
corresponding to the one of a slice. This allows to have sliced pure structures invariant by ⊤ − ⊤
commutations, as well as interpreting a ∅-rule by a ⊤-vertex, and keeping invariance by ⊤ − ∅
commutations.

This minor modification of the syntax can be easily checked as not interfering with the proofs of
the paper, mainly because its authors consider only in details the non-erasing cut-elimination step,
and a ⊤−cut commutation is erasing. Indeed, this slight modification implies some changes for the
definition of cut-elimination in sliced pure structures [PT10, Definition 2.12]. When eliminating a
cut with a ⊤-vertex above one of its premise, we apply the very same reduction as defined in [PT10].
Such a reduction may not be the image of one from the sequent calculus, in case the premise is the
only one labeled ⊤. Still, it does not matter here as strong normalization for more steps implies

81

2.3. CUT-ELIMINATION

strong normalization for the wished steps. There is also no need to consider a main conclusion of a
⊤-vertex when reducing a cut with an ax -vertex above one of its premises. Now, there might be two
possible cut-elimination cases applicable on a given cut , if it has above its premises an ax -vertex
and a ⊤-vertex, but this is quite harmless (there is still some basic verification to do, see [PT10,
Remark 2.13]).

One can then follow all results of the paper, and see its proofs still hold after our modification.
As a ⊤− cut case is a logical erasing cut [PT10, Definitions 3.1 and 4.1], it mainly suffices to check
the proof of [PT10, Theorem 4.2], and not many proofs consider erasing steps: they are [PT10,
Proposition 3.4, Lemma 4.3, 4.4, Proposition 4.5] – in fact a ⊤ − cut cut-elimination case is
sometimes not even explicitly handled as this case is trivial. We introduce at this point a key
difference: one can define the equivalents of ⇝⊤ , ⇝oa and ⇝oe on sliced pure structures. The first is a
generalization of a ⊤− cut elimination case, with a ⊤-vertex that can erase any sub-structure. The
second is that given two slices s and r that differ only by a sub-slice, sub-slice which is composed
of a sole ⊤-vertex in s, then s can be removed from the multiset of slices; or more generally (and
simply) that a slice can be erased. The last one is the usual transformation on MELL0,2

uf proof-nets:
in a slice, a ?w-vertex above a ?c one can be simplified by removal of these two vertices. There is
nothing corresponding to ⇝om for flats as they already quotient by this relation. We consider these
as new logical erasing steps, and can check that the previously mentioned results for the ⊤ − cut
case also holds for these new cases – the main difference in the proofs is for a ⇝oe transformation
in [PT10, Lemma 4.4]: to postpone such a step with respect to a non-erasing step, in the case of
a cut-elimination step between a cut below the erased ?c-vertex and the vertex above the latter,
one has to apply a non-erasing ?c − ! key case, then the considered cut-elimination case, then some
?w − ! key cases. Therefore, the adaptation of [PT10, Theorem 4.2] is true for our slightly different
sliced pure structures: a sliced pure structure satisfying AC (acyclicity by slice) which is weakly
normalizing for non-erasing steps is strongly normalizing for all steps, including the new erasing
ones we just added.

We now adapt [PT10, Section 5] by considering proofs of sequent calculus instead of proof-nets.
This is quite easy, as the authors of [PT10] consider proof-nets as the images of proofs: given a
proof-net β, the associated sliced pure structure sl(β) is defined from a proof π desequentializing to
β. We thus simply define the sliced pure structure sl(π) associated to a proof π as done in [PT10,
Section 5.3], with the obvious extension in case of the optional rules:

• a mix 2-rule is translated as the union of all couples of slices (like a ⊗-rule);

• a mix 0-rule is translated as the empty slice;

• a ∪-rule is translated as taking the union (as multisets) of the slices (like a &-rule);

• a ∅-rule is translated by a single slice consisting of a ⊤-vertex, which has no main conclusion
(like a ⊤-rule).

We have as usual that the image of a proof is correct, i.e. AC. Also, that typed AC sliced pure
structures are weakly normalizing for non-erasing steps is still true in this setting, and an adaptation
by replacing proof-nets with proofs in the proof with reducibility candidates of [PT10, Theorem 5.11]
should be enough to get that if π is a proof then sl(π) is weakly normalizing for non-erasing steps.
Another way to prove it would be to extend their notion of proof-nets with ∪- and ∅-rules, and
check the proof of [PT10, Theorem 5.11] stays valid in this framework.

82

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

Afterwards starts the core of this proof, where considering proofs instead of proof-nets makes a
difference. One has to prove lemmas equivalent to [PT10, Lemma 5.3, 5.4, 5.5] in the framework of
sequent calculus, namely:

• If π β−→ π′ or π ⇝⊤ π′ or π ⇝o π′, then sl(π)
β∗−→ sl(π′) (remember we put the steps cor-

responding to ⇝⊤ and ⇝o in sliced pure structures), with sl(π) = sl(π′) if and only if this
cut-elimination step is a ∀−∃ key step or a commutative step other than ⊤− cut , !− cut and
∅ − cut , or if the step is a ⇝om step.

• If π ⊢⊣
r\⊤

π′ then sl(π) = sl(π′).

• If π ⊢⊣c π′ then sl(π) = sl(π′).

We then conclude by contradiction. Taking an infinite sequence of (β−→ ∪ ⇝⊤ ∪ ⇝o) · (⊢⊣
r\⊤ ∪ ⊢⊣c)∗

steps in sequent calculus, its image in AC sliced pure structures cannot be an infinite sequence
of β−→ steps. Therefore, there exists an infinite suffix of this sequence where all (β−→ ∪ ⇝⊤ ∪ ⇝o)
steps are ∀ − ∃ key steps or commutative steps other than ⊤ − cut , ! − cut and ∅ − cut , or ⇝om

steps. But only a finite number of such steps can be applied, including when interleaving them
with (⊢⊣

r\⊤ ∪ ⊢⊣c)∗ steps. Indeed, a ∀ − ∃ key step decreases the number of ∀- and ∃-rules by slice,
as does a ⇝om step about mix 2- and mix 0-rules. And a commutative step which is not a ⊤ − cut ,
!−cut , ∅−cut nor a cut−cut step decreases the number of rules above blocks of cut-rules in a slice,
counting in a slice for each rule the number of cut-rules in blocks below it. Finally, a ⊢⊣

r\⊤ ∪ ⊢⊣c step
preserves the number of slices, the numbers and kinds of rules by slices and the blocks of cut-rules
per slice. We conclude that such a suffix cannot exist.

2.3.6 Confluence of cut-elimination

We show here two results in MALL0,2, and assume implicitly in all this section that proofs and rules
under consideration belong to this sub-system. The first is that rule commutations are included
in equality up to cut-elimination, proved in Section 2.3.6.1. The second is that cut-elimination is
Church-Rosser modulo rule commutation, whose demonstration is in Section 2.3.6.2; it also holds
in the presence of the mix -Rétoré transformation (Section 2.3.6.3).

Proposition 2.46 (⊢⊣rc ⊆ =β). Given proofs π and τ in MALL0,2, if π ⊢⊣rc τ then π
β∗←− · β∗−→ τ . In

particular, if π ⊢⊣r τ then π =β τ .

Theorem 2.47. In MALL0,2:

• β−→ is Church-Rosser modulo (⊢⊣r ∪ ⊢⊣c)∗.

• β−→ is Church-Rosser modulo ⊢⊣r
∗

.

Theorem 2.48. In MALL0,2:

• β−→ ∪⇝om is Church-Rosser modulo (⊢⊣r ∪ ⊢⊣c ∪ ⊢⊣om)∗.

• β−→ ∪⇝om is Church-Rosser modulo (⊢⊣r ∪ ⊢⊣om)∗.

83

2.3. CUT-ELIMINATION

The generalization of Proposition 2.46 to the full system, with all optional rules, is a matter of
checking (a lot of) cases – c.f. the 16 tables at the end of Chapter 1 with the 152 rule commutations.
The first two results together lead to a characterization of normal forms with equality up to cut-
elimination, with rule commutation being the “kernel” of cut-elimination in the following meaning:
two proofs are β-equal if and only if their normal forms are ⊢⊣r

∗

-equal. Moreover, using the third
result instead of the second one, one can add ⊢⊣om.

Theorem 2.49 (Rule commutation is the kernel of cut-elimination). Set π and τ two proofs, and
π′ and τ ′ any of their respective normal forms by β−→ (resp. by β−→ ∪ ⇝om). The proofs π and τ

are β-equal (resp. are equal up to β−→ and ⇝om) if and only if π′ and τ ′ are related by ⊢⊣r
∗

(resp. are
related by (⊢⊣r ∪ ⊢⊣om)∗).

Proof. For the direct way, by Theorem 2.47 (resp. Theorem 2.48) the normal forms, related by
=βo with o being made of no Rétoré transformations (resp. with o being made of exactly om), are
related by ⊢⊣r

∗

(resp. by (⊢⊣r ∪ ⊢⊣om)∗).
Conversely, if π′ ⊢⊣r

∗

τ ′ (resp. π′(⊢⊣r ∪ ⊢⊣om)∗τ ′) then by Proposition 2.46 one gets π1
β∗−→ π′1 =βo

π′2
β∗←− π2.

It is an important general result about sequent calculus, which we are convinced should hold
for full linear logic. Once proved for β-equality, it can be extended to βη-equality; it also implies
links between normal forms for cut-elimination.

Theorem 2.50. Set o being either no Rétoré transformation, or being exactly mix-Rétoré (i.e.
⇝
o ∈ {∅;⇝om}). Take π1 and π2 proofs, and set π′1 (resp. π′2) a result of expanding all axioms,
eliminating all cuts and applying all ⇝o in π1 (resp. π2). Then π1 =βηo π2 if and only if π′1(⊢⊣

r ∪ ⊢⊣o

)∗π′2.

Proof. By Theorem 2.49, η(π1) =βo η(π2) if and only if π′1(⊢⊣
r ∪ ⊢⊣om)∗π′2. If π1 =βηo π2, then

η(π1) =βo η(π2) by Proposition 2.10. Conversely, if η(π1) =βo η(π2) then π1
η∗−→ η(π1) =βo

η(π2)
η∗←− π2.

Corollary 2.51 (Confluence up to rule commutation). If π1 and π2 are cut-free proofs obtained by
cut-elimination from the same proof π, then π1 and π2 are equal up to rule commutation.

Proof. Consequence of Theorem 2.49, for π1 =β π2.

These lacking results in the literature of the sequent calculus of linear logic are quite meaningful.
On one side, proofs are semantically seen up to cut-elimination and axiom-expansion, namely are
considered up to =βη (and sometimes also up to ⊢⊣om). On the other hand, plenty of results deal with
proofs up to rule commutation, as the proof-net syntax that we will see later [HG16]. According
to Theorem 2.50, looking at proofs up to ⊢⊣r is indeed the right way for identifying proofs up to
=βη. This explanation is more convincing that the somewhat usual one that rule commutations are
“bureaucracy” and thus should not matter, not only because this is a “non-choice” up to β-equality
that is mandatory in the syntax, but also because it sums up exactly β-equality between normal
forms.
Remark 2.52. From Theorem 2.47, one finds that ⊢⊣om is not included in βη-equality, so that adding
it or not is truly a choice. Indeed, one can check it is not generated by rule commutation. If this
theorem generalizes to the full linear logic, as we conjecture, then it would be the case for all Rétoré

84

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

transformations. Similarly, commutations of the following kind would not in =βη, meaning that
having a ?c- or ?c-rule commuting with a !-rule is only true up to provability – i.e. it preserves
being a proof, but not pure calculability given by the cut-elimination procedure.

π
⊢ A, ?B, ?B, ?Γ

(!)
⊢ !A, ?B, ?B, ?Γ

(?c)
⊢ !A, ?B, ?Γ

≡

π
⊢ A, ?B, ?B, ?Γ

(?c)
⊢ !A, ?B, ?Γ

(!)
⊢ !A, ?B, ?Γ

2.3.6.1 Cut-elimination contains rule commutation

Proving that rule commutation is included in equality up to cut-elimination is easy, albeit tedious.

Proof of Proposition 2.46. It suffices, for each commutation, to give a proof that can be reduced
by cut-elimination to both sides of the commutation – using that both rule commutation and cut-
elimination are contextual, so that one can ignore what happens below a rule commutation. Remark
that this trivially holds for ⊢⊣c , as well as for other commutations of ⊢⊣rc involving a cut-rule: two
such proofs are related by β−→ or β←−. All cases are similar and follows the same idea, hence we give
here only a few representative cases. A proof with every one of the 55 cases is given in Appendix A
for completeness sake. In all cases here, we give a proof with a single cut-rule above two others
proofs, such that the above proof reduces to the left one or to the right one according respectively
to whether the cut-rule is first commuted with the rule on its left or on its right – once this first
commutation is done, there will always be a single result of cut-elimination, that can be reached
using only β−→ steps.

• C&
⊤ and C⊤& commutations.

(⊤)
⊢ ⊤, 0

(⊤)
⊢ A,⊤,Γ

(⊤)
⊢ B,⊤,Γ

(&)
⊢ A&B,⊤,Γ

(cut)
⊢ A&B,⊤,Γ

(⊤)
⊢ A&B,⊤,Γ

(⊤)
⊢ A,⊤,Γ

(⊤)
⊢ B,⊤,Γ

(&)
⊢ A&B,⊤,Γ

β
β

• C⊕1

⊥ and C⊥⊕1
commutations.

85

2.3. CUT-ELIMINATION

(ax)
⊢ A⊥, A

(⊕1)

⊢ A⊥, A⊕B

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

(cut)
⊢ A⊕B,⊥,Γ

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

(⊕1)
⊢ A⊕B,⊥,Γ

π
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

(⊥)
⊢ A⊕B,⊥,Γ

β β

• C⊗⊗ commutations.

π
⊢ C,Γ

ϕ
⊢ A,D,∆

(⊗)
⊢ A,C ⊗D,Γ,∆

(ax)
⊢ A⊥, A

τ
⊢ B,Σ

(⊗)
⊢ A⊥, A⊗B,Σ

(cut)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

π
⊢ C,Γ

ϕ
⊢ A,D,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,D,∆,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

π
⊢ C,Γ

ϕ
⊢ A,D,∆

(⊗)
⊢ A,C ⊗D,Γ,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

β β

Other C⊗⊗ commutations are similar.

• C&̀ and C&` commutations.

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

ϕ
⊢ A,B,D,Γ

(`)
⊢ A`B,D,Γ

(&)
⊢ A`B,C &D,Γ

(ax)
⊢ B⊥, B

(ax)
⊢ A⊥, A

(⊗)
⊢ A,B,B⊥ ⊗A⊥

(`)

⊢ A`B,B⊥ ⊗A⊥
(cut)

⊢ A`B,C &D,Γ

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

ϕ
⊢ A,B,D,Γ

(`)
⊢ A`B,D,Γ

(&)
⊢ A`B,C &D,Γ

π
⊢ A,B,C,Γ

ϕ
⊢ A,B,D,Γ

(&)
⊢ A,B,C &D,Γ

(`)
⊢ A`B,C &D,Γ

β β

• Cmix2

mix2
commutations

86

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

π
⊢ Γ

ϕ
⊢ ∆

(⊥)
⊢ ⊥,∆

(mix2)
⊢ ⊥,Γ,∆

(1)
⊢ 1

τ
⊢ Σ

(mix2)
⊢ 1,Σ

(cut)
⊢ Γ,∆,Σ

π
⊢ Γ

ϕ
⊢ ∆

τ
⊢ Σ

(mix2)
⊢ ∆,Σ

(mix2)
⊢ Γ,∆,Σ

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

τ
⊢ Σ

(mix2)
⊢ Γ,∆,Σ

β β

Other Cmix2

mix2
commutations are similar.

Remark 2.53. In the proof of Proposition 2.46 for MALL0,2, each β−→ step used for proving that
the commutation of r and s is in β-equality are cases with ax -rules, rules of kinds r and s, or
with the dual case, excepted for the mix 2 − mix 2 commutation that the author cannot manage
to prove without using 1- and ⊥-rules. This is not as surprising as it could be, for the mix 2- and
mix 0-rules are strongly related to the multiplicative units: in presence of these two rules, ⊥ and 1
are interprovable, and there is even a stronger property in presence of mix -Rétoré (c.f. Lemma 7.9).

2.3.6.2 Cut-elimination is Church-Rosser modulo rule commutation

Here is given the proof of Theorem 2.47. Our demonstration uses Theorem 2.7, on Page 57 in
Section 2.1, and as such plenty of case studies and intermediate results.

We recall a β−→ step is a β−→ step other than a cut − cut commutation, and ⊢⊣c is the cut − cut
commutation. We also recall a step of ⊢⊣r is a cut-free rule commutation, i.e. is not a commutation
involving a cut-rule nor having above the commuted rules a sub-proof with a cut-rule (but it may
have a cut-rule in its external context); for instance in the ⊤−⊗ commutation creating or deleting
a sub-proof π, π is cut-free.3 As ⊢⊣r and ⊢⊣c are symmetric, ⊢⊣r

∗

and ⊢⊣c
∗

are equivalence relations.
We will instantiate Theorem 2.7 with ⊢⊣ = (⊢⊣r ∪ ⊢⊣c),→ =

β−→ and⇝ = (⇝
r\⊤ ∪ ⊢⊣c) (⇝

r\⊤
being

defined in Section 2.3.3). We already have that β−→ ·⇝∗ is strongly normalizing (Proposition 2.41),
so we need the other hypotheses of the lemma, namely those corresponding to local confluence and
local coherence.

In this section we denote graphically some proofs with the following convention. When writing
proofs as in

ρ
(r2)

(r1)
...

⊢⊣r
ρ

(r1)

(r2)
...

we abuse notations in the cases where r1 or r2 is a & or ⊤-rule. The meaning is that, if say r2 is a
&-rule, then r1 is duplicated in the proof on the left, and even possibly a whole sub-proof if r1 is a
⊗-rule for instance. Similarly, if r1 is a ⊤-rule, then this schema means that on the left hand-side
r2 and ρ are not here, and r2 is created by the ⊤-commutation (and ρ is nothing). About ρ, we

3Actually, we only need it for the ⊤ − ⊗, & − ⊗, ⊤ − mix2 and & − mix2 commutations, but ask it for all
commutations to homogenize and simplify some proofs.

87

2.3. CUT-ELIMINATION

mean there is a same sub-proof(s) above these two rules in both cases, i.e. above all premises of r2
on the left there is a sub-proof τi which is also the sub-proof on the corresponding premise of r1
on the right. Furthermore, in case one of the rule, say r1, is a ⊗- or mix 2-rule, we also mean the
sub-proof above the premise of r1 which does not contain r2 in the proof on the left, is also the
sub-proof above the same premise in the proof on the right.

We start by some preliminary results, identifying sufficient conditions to apply a rule commu-
tation.

Definition 2.54. A contextual rule r is the data of a kind of rule which is not an ax - nor a
cut- nor a 1 nor a mix 0-rule, a main formula associated to this rule – if any, i.e. a mix 2-rule does
not come with a main formula – and, if this kind is a ⊗- or mix 2-rule, then r comes along a choice
of premise (left or right) as well as a proof. Given a rule s in a proof – s being made of a kind,
premise sequent(s) and a conclusion sequent – and a contextual rule r, s is associated to r if it
has the same kind, its main formula is the main formula of r and, in case it is a ⊗- or mix 2-rule
and r has chosen its left (resp. right) premise the sub-proof above the right (resp. left) premise of
s is the proof from r.

A contextual block B is an (ordered) set of successive contextual rules, as they could appear
in a proof. More explicitly, it is the data of a tree-like structure, with contextual rules as vertices,
and such that each of these contextual rules has at most one child, except for a & contextual rule
that has at most two distinguishable children (a left one and a right one), and a ⊤ one that has
no child. Given a set of successive rules in a proof π, it is associated to B if when looking at this
set of rules seen as a sub-tree of π it has the same tree-like structure as B, and each of its rules is
associated to the corresponding contextual rule of B. Moreover, for a ⊗- or mix 2-rule r of π, whose
corresponding contextual rule in B keeps its left (resp. right) premise and comes along a proof ϕ,
we ask that the sub-proof above the right (resp. left) premise of r is ϕ.

As an example of contextual rule r, take as kind ⊗, as main formula A ⊗ B, choose the

left premise with the proof
(ax)

⊢ A⊥, A . A rule associated to r (in a proof) is for instance
(ax)

⊢ A⊥, A ⊢ B,Γ
(⊗)

⊢ A⊗B,A⊥,Γ or

(ax)
⊢ A⊥, A ⊢ B⊥, B

(⊗)
⊢ A⊗B,A⊥, B⊥ .

About contextual blocks, consider Bex:

&, (A⊥ ⊗B) & ((A⊥ ⊗B)⊕A)

⊕1, (A
⊥ ⊗B)⊕A⊗, A⊥ ⊗B, right,

(ax)
⊢ A⊥, A

88

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

We look at the following proof πex.

(ax)
⊢ A⊥, A

(ax)
⊢ B⊥, B

(⊗)
⊢ A⊥ ⊗B,A,B⊥

(ax)
⊢ A⊥, A

(ax)
⊢ B⊥, B

(⊗)
⊢ A⊥ ⊗B,A,B⊥

(⊕1)

⊢ (A⊥ ⊗B)⊕A,A,B⊥
(&)

⊢ (A⊥ ⊗B) & ((A⊥ ⊗B)⊕A), A,B⊥

(ax)
⊢ B⊥, B

(⊕2)

⊢ A⊥ ⊕B,B⊥
(mix2)

⊢ (A⊥ ⊗B) & ((A⊥ ⊗B)⊕A), A,B⊥, B⊥, A⊥ ⊕B
(`)

⊢ (A⊥ ⊗B) & ((A⊥ ⊗B)⊕A), A,B⊥ `B⊥, A⊥ ⊕B

The contextual block Bex is associated to the following rules of πex, not representing the ax -rule
on A above the left premise of the ⊗-rule:

⊢ B⊥, B
(⊗)

⊢ A⊥ ⊗B,A,B⊥
⊢ A⊥ ⊗B,A,B⊥

(⊕1)

⊢ (A⊥ ⊗B)⊕A,A,B⊥
(&)

⊢ (A⊥ ⊗B) & ((A⊥ ⊗B)⊕A), A,B⊥

On the contrary, the following rules are not associated to any contextual block, for both premises
of a ⊗-rule are kept:

⊢ A⊥ ⊗B,A,B⊥ ⊢ (A⊥ ⊗B)⊕A,A,B⊥
(&)

⊢ (A⊥ ⊗B) & ((A⊥ ⊗B)⊕A), A,B⊥
⊢ B⊥, B

(⊕2)

⊢ A⊥ ⊕B,B⊥
(mix2)

⊢ (A⊥ ⊗B) & ((A⊥ ⊗B)⊕A), A,B⊥, B⊥, A⊥ ⊕B

Remark that given a rule in a proof, it always has one associated contextual rule (two in the
case of a ⊗- or mix 2-rule), so it is always possible to see a rule as a contextual rule. By abuse of
notations, when a rule r in a proof is associated to some contextual rule, we will often denote this
contextual rule also by r.

Definition 2.55. Given a contextual rule r and a sequent ⊢ Γ, the domain of r for ⊢ Γ is a sub-set
of Γ made of the formulas (occurrences) of Γ having for sub-formulas the main formula of r (if any)
as well as, if r is a ⊗ or mix 2, the formulas of the sequent on which the proof associated to r is.

For a contextual block B and a sequent ⊢ Γ, the domain of B for ⊢ Γ is the union of the
domains of each of its contextual rules for ⊢ Γ.

Given r and s two contextual rules and a sequent ⊢ Γ, r and s are independent for ⊢ Γ if the
domain of r for ⊢ Γ is disjoint from the domain of s for ⊢ Γ (as sub-sets of Γ).

A rule r and a contextual block B are independent for ⊢ Γ if the domain of r for ⊢ Γ is disjoint
from the domain of B for ⊢ Γ (as sub-sets of Γ). Remark this corresponds to the independence for
⊢ Γ of r with every contextual rule of B.

For instance, on the conclusion sequent of πex, the domain of the (contextual rule associated
to) ⊕1-rule is (A⊥ ⊗ B) & ((A⊥ ⊗ B) ⊕ A), the domains of the leftmost ⊗-rule are (A⊥ ⊗ B) &
((A⊥ ⊗B)⊕A), A or (A⊥ ⊗B) & ((A⊥ ⊗B)⊕A), B⊥ `B⊥ (according to which premise is kept),
the former also being the domain of Bex. The ⊕2-rule is independent with the contextual block
Bex, as well as with the mix 2-rule, whereas the rightmost ⊗-rule (for both choice of premises) is
not independent with Bex.

89

2.3. CUT-ELIMINATION

Fact 2.56. Consider a proof containing a cut-rule c which has for conclusion sequent ⊢ Γ and has
on its premises the sub-proofs π1 and π2. Take a contextual rule r1 (resp. r2) associated to some
rule s1 in π1 (resp. s2 in π2). Then r1 and r2 are independent for ⊢ Γ.

Proof. Because the cut-rule c separates Γ into two sub-sequents, and the domain of r1 for ⊢ Γ is
included in the first while the one of r2 is included in the second.

Lemma 2.57. Consider rules in a proof π of conclusion sequent ⊢ Γ, seen as contextual rules.

1. A rule commutation does not modify the domain of any non-erased contextual rule for ⊢ Γ.

2. A commutative cut-elimination case does not modify the domain of any non-erased contextual
rule for ⊢ Γ.

3. A key cut-elimination case does not modify the domain of any non-erased contextual rule for
⊢ Γ.

Proof. Each item to check consists in a tedious case analysis. We give here a few representative
ones. Remark that, for any transformation of proofs, a domain of a non-erased rule which is not
involved in the transformation is unchanged (as our transformations are local, except when erasing
rules).

Item 1. Consider the following ⊗−& commutation:
π1

⊢ A1,Γ
π2

⊢ A2, B1,∆
(⊗)

⊢ A1 ⊗A2, B1,Γ,∆

π1
⊢ A1,Γ

π3
⊢ A2, B2,∆

(⊗)
⊢ A1 ⊗A2, B2,Γ,∆

(&)
⊢ A1 ⊗A2, B1 &B2,Γ,∆

⊢⊣r
π1

⊢ A1,Γ

π2
⊢ A2, B1,∆

π3
⊢ A2, B2,∆

(&)
⊢ A2, B1 &B2,∆

(⊗)
⊢ A1 ⊗A2, B1 &B2,Γ,∆

For the &-rule, its domain is (the formulas of the conclusion sequent whose sub-formulas are)
B1 &B2 in both cases. For the ⊗-rule, its domain when keeping the right premise is A1 ⊗A2,Γ in
both occurrences on the left, as well as on the right. If it were to keep its left premise, then it is
erased as a contextual rule (the associated proof on its right premise has changed).

Item 2. We take interest in a ⊗− cut − 1 commutative case.
π1

⊢ A,B,Γ
π2
⊢ C,∆

(⊗)
⊢ A,B ⊗ C,Γ,∆

π3
⊢ A⊥,Σ

(cut)
⊢ B ⊗ C,Γ,∆,Σ

β−→

π1
⊢ A,B,Γ

π3
⊢ A⊥,Σ

(cut)
⊢ B,Γ,Σ

π2
⊢ C,∆

(⊗)
⊢ B ⊗ C,Γ,∆,Σ

The domain of the ⊗-rule, when keeping its left premise, stays (the formulas of the conclusion
sequent whose sub-formulas are) B ⊗ C,∆. While keeping its right premise, then it is erased as a
contextual rule: its left sub-proof is modified – which is important, as otherwise its domain would
become B ⊗ C,Γ,Σ from B ⊗ C,Γ.

Item 3. We study here a &−⊕1 key case:
π1

⊢ A1,Γ
π2

⊢ A2,Γ
(&)

⊢ A1 &A2,Γ

π3
⊢ A⊥2 ,∆

(⊕1)

⊢ A⊥2 ⊕A⊥1 ,∆
(cut)

⊢ Γ,∆

β−→
π2

⊢ A2,Γ

π3
⊢ A⊥2 ,∆

(cut)
⊢ Γ,∆

The initial remark is enough here: the rules involved in the transformation are erased, so there
is nothing to check.

90

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

Lemma 2.58. Take r and s two contextual rules and ⊢ Γ a sequent. Assume there is a proof of
the shape

π
r
s

⊢ Γ

(recall our convention for this notation at the beginning of this section), where:

• the r and s appearing in this proof are abuse of notations for rules associated to r and s;

• the proof(s) π is (are) cut-free – including the possible proofs associated to r or s in case of
⊗- or mix 2-rules.

The contextual rules r and s are independent for ⊢ Γ if and only if they commute in this proof:
π

r
s

⊢ Γ
⊢⊣r

π
s
r

⊢ Γ

Proof. One has to check it for every type of rule r and s can be, among ⊗, `, ⊥, &, ⊕1, ⊕2, ⊤
and mix 2-rules. A representative case is r is a ⊗-rule and s a &-rule, other cases being left at the
charge of the reader. By symmetry, say that r keeps its right premise, with a proof π1 on its left

premise. If the rules are independent, then our proof

π
r
s

⊢ Γ must be:
π1

⊢ A1,Σ
π2

⊢ A2, B1,∆
(⊗)

⊢ A1 ⊗A2, B1,Σ,∆

π1
⊢ A1,Σ

π3
⊢ A2, B2,∆

(⊗)
⊢ A1 ⊗A2, B2,Σ,∆

(&)
⊢ A1 ⊗A2, B1 &B2,Σ,∆

We recognize a ⊗−& rule commutation, from which one gets

π
s
r

⊢ Γ :

π1
⊢ A1,Σ

π2
⊢ A2, B1,∆

π3
⊢ A2, B2,∆

(&)
⊢ A2, B1 &B2,∆

(⊗)
⊢ A1 ⊗A2, B2 &B2,Σ,∆

Another representative case is s a ⊤-rule and r a mix 2-rule. By symmetry again, say that r
keeps its left premise, with a proof π1 on its right premise, of conclusion sequent ⊢ ∆. If the rules

are independent, then our proof

π
r
s

⊢ Γ must be:
(⊤)

⊢ ⊤,Σ,∆

We recognize a ⊤−mix 2 rule commutation, from which one gets

π
s
r

⊢ Γ :

(⊤)
⊢ ⊤,Σ

π1
⊢ ∆

(mix2)
⊢ ⊤,Σ,∆

91

2.3. CUT-ELIMINATION

For the reciprocal, it suffices to check for every instance of a rule commutation that the contex-
tual rules are independent for the conclusion sequent, as it is the case here for a ⊗−& commutation
and for a ⊤−mix 2 commutation.

Remark 2.59. It is important that in Lemma 2.58 the sequent considered is the conclusion sequent
of s. Otherwise, commutation does not yield independence, as in the following where r and s are
not independent for ⊢ (A`B)` (C `D),Γ even though they commute.

⊢ A,B,C,D,Γ
(` r)

⊢ A`B,C,D,Γ
(` s)

⊢ A`B,C `D,Γ
(`)

⊢ (A`B)` (C `D),Γ

Lemma 2.60. Consider a contextual rule r and a contextual block B that are independent for the
sequent ⊢ Γ. Assume there are proofs π and ϕ of respective shapes

π =

τ

B
r

⊢ Γ

ϕ =

τ
r

B
⊢ Γ

which means:

• the r and B in the proofs are rules associated to the contextual rules with the same names;

• above the sequent of each leaf rule of B (where for a ⊗- or mix 2-rule we look only at its kept
sequent), there is a rule (associated to) r – remark there can be ⊤-rules in B, with no sequent
above them;

• in case r is a ⊗- or mix 2-rule, in π the rules of B are above the premise kept by (the contextual)
r;

• the proof(s) τ is (are) cut-free – including the proof associated to a contextual rule in case it
is a ⊗ or mix 2.

Then r commutes successively with all rules of B: π ⊢⊣r
∗

ϕ.

Proof. By induction on the number of (contextual) rules of B. If it has no rule, then there is
nothing to prove: π = ϕ. Otherwise, set s the root rule of B. Either s is above r in π, or r is a
⊤-rule. In both cases, by Lemma 2.58, s and r commute in π, yielding a proof π′. In π′, r and the
contextual block(s) made of the contextual rules of B excepted s (there may be two blocks if s is
a &-rule), are independent for ⊢ Γ by Item 1 of Lemma 2.57 (we keep the same choice for premises
of ⊗-rules), and thus for the conclusion sequent of r in π′, because the latter is a sub-sequent of
the former (Fact 1.7). We conclude using the induction hypothesis on π′ and ϕ – more exactly on
their sub-proof(s) where s is removed.

Lemma 2.61. Let π, π1 and π2 be proofs such that π1
β←− π

β−→ π2. Then there exist π′1 and π′2
such that π1

β∗−→ π′1 ⊢⊣
r=
π′2

β∗←− π2. Diagrammatically:

92

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

π

π1 π2

β β

π′1 π′2

β ∗

⊢⊣r
=

β
∗

More precisely, we need a step of ⊢⊣r exactly when both β−→ steps are different commutative cases
on the same cut-rule.

Proof. If the π β−→ π1 and π β−→ π2 steps involve only distinct rules then, taking into account that
rules of one may be duplicated or erased by the other step, they commute and we have a proof π′

such that π1
β∗−→ π′

β∗←− π2, by applying one reduction after the other. With more details:

• π1
β−→ · β←− π2 if neither step duplicates nor erases the other

• π1
β←− π2 if π β−→ π1 erases a sub-proof containing the rules involved in π

β−→ π2 (and
symmetrically if we swap indices 1 and 2)

• π1
β−→ · β−→ · β←− π2 if π β−→ π1 duplicates a sub-proof containing the rules involved in

π
β−→ π2 (and symmetrically if we swap indices 1 and 2)

There is no more case, as to duplicate or erase rules, a β−→ step must be below these rules in a
proof. In particular, both steps cannot duplicate or erase the rules of the other step, because the
rules involved are distinct.

From now on, we assume both steps involve (at least) one common rule. If both reductions
share all of their rules, then the two reductions are the same, so π1 = π2 and we are done (recall
Remark 1.11 for our convention on the `−⊗ key case). Hence, we will assume them not to share
all of their rules. We distinguish cases according to the kinds of the β−→ steps.

If one step is a key case other than an ax one. Remark that on the three rules of a non-ax key
case, no other β−→ step can be applied (only a cut − cut commutation could have been applied, but
this case does not belong to β−→). Whenceforth, this case cannot happen as it would lead to the
two reductions sharing all of their rules.

If both steps are ax key cases. As the two reductions share one rule, but not all rules, the shared
rule must be the cut-rule, with as premises two ax -rules. We can check that this critical pair leads
to the same resulting proof from both reductions: π1 = π2.

If one step is an ax key case and the other a commutative case. By symmetry, assume π β−→ π2
is the ax key case. For the two reductions share a rule, and the ax-rule cannot participate in a
commutative step, the shared rule must be the cut-rule. We can still do this ax key step after the
commutation (maybe twice in case of duplication, or zero time in case of erasure), recovering π2.
Thus:

• π1
β−→ π2 (ax -key case and not a &− cut nor ⊤− cut commutative case)

• π1
β−→ · β−→ π2 (ax -key case and &− cut commutative case)

• π1 = π2 (ax -key case and ⊤− cut commutative case)

93

2.3. CUT-ELIMINATION

If both steps are commutative cases. Here again, as the two reductions share a rule, it must be
the cut-rule, because there is at most one cut-rule directly below a given rule. As the reductions
do not share both of their rules, in π

β−→ π1 we sent a rule r1 from a branch of the cut below it,
and in π

β−→ π2 we do similarly on a rule r2 in the other branch. This case, more complex than
the previous ones, is depicted schematically on Figure 2.2. We can in π1 commute the cut-rule
and r2 – maybe twice in case of a duplication, or zero in case of an erasure – obtaining π′1; and
similarly in π2 commute the cut-rule and r1, yielding π′2. The two resulting proofs differ exactly by
a commutation of r1 and r2 – even if both are ⊤-rules, they differ by a ⊤−⊤ commutation.

Indeed, r1 and r2 are independent for the conclusion sequent of the cut-rule we consider
(Fact 2.56). They are still independent for this sequent in π1 (resp. π2), and then in π′1 (resp.
π′2) – it is then the conclusion sequent of r1 (resp. r2) – by Item 2 of Lemma 2.57. For we apply
rule commutation only on cut-free sub-proofs, we first eliminate all cut-rules above these two rules,
in the same way in both sub-proofs (and in case of duplication, in the same way in all duplicates
of the sub-proofs). This can be done thanks to weak normalization of β−→ (Corollary 2.43). In the
resulting sub-proofs, r1 and r2 are still independent (or erased) as their domains do not depend on
what happen above them, and cut-elimination is a local procedure (Items 2 and 3 of Lemma 2.57).
So, they commute (Lemma 2.58).

Thus, π1
β∗−→ · ⊢⊣r · β∗←− π2 if both steps are commutative cases.

Lemma 2.62. Let π1, π2 and π3 be proofs such that π1 ⊢⊣
r
π2

β−→ π3. Then, there exist π′1 and π′2
such that π1

β+−→ π′1 ⊢⊣
r∗
π′2

β∗←− π3. Diagrammatically:

π1 π2

π3

⊢⊣r β

π′1 π′2

β
+

⊢⊣r
∗

β
∗

Moreover, this ⊢⊣r
∗

step consists in one rule commuting with a succession of other rules; in particular
it is a ⇝

r\⊤∗ step (in one direction or the other).

Proof. An easily handled case is when the π1 ⊢⊣
r
π2 and π2

β−→ π3 steps involve only distinct rules;
assume for now this is the case. A first general sub-case is when rules of one step are neither erased
nor duplicated by the other. Then these steps commute and π1

β−→ · ⊢⊣r π3, using the same steps
in the other order (because these are local transformations).

Now, consider the case where the two steps still involve distinct rules, but the π2
β−→ π3 step

duplicates a sub-proof containing the rules of π1 ⊢⊣
r
π2 (which may happen if π2

β−→ π3 is a &− cut
commutative case). We apply the corresponding β−→ step first in π1, yielding π1

β−→ π1
1 , and then

the ⊢⊣r step twice, once for each occurrence, to recover π3: we get π1
β−→ π1

1 ⊢⊣
r · ⊢⊣r π3.

Another general case is when the rules involved in the two steps are distinct, but the β−→ step
eliminates a sub-proof containing the rules of the ⊢⊣r step (this can arise when using a &−⊕i key

94

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

π1 =
ρ1

ρ2
(r2)

(cut)
(r1)

...

π =

ρ1
(r1)

ρ2
(r2)

(cut)
...

π2 =

ρ1
(r1) ρ2

(cut)
(r2)

...

π′1 =

ρ1 ρ2
(cut)

(r2)

(r1)
...

π′2 =

ρ1 ρ2
(cut)

(r1)

(r2)
...

ρcut-free
(r2)

(r1)
...

ρcut-free
(r1)

(r2)
...

β β

β
∗

β
∗

β
∗

β
∗

⊢⊣r

Figure 2.2: Schematic representation of the last case of the proof of Lemma 2.61

95

2.3. CUT-ELIMINATION

case or a ⊤ − cut commutative case). In this case, doing in π1 the β−→ step directly yields π3:
π1

β−→ π3.
Remark that, if these steps use distinct rules, the π1 ⊢⊣

r
π2 step cannot duplicate nor erase the

rules involved in π2
β−→ π3. Indeed, this may happen if the ⊢⊣r step is a &−⊗, ⊤−⊗, &−mix 2 or

⊤−mix 2 commutative case, but we assumed that a sub-proof corresponding to a rule commutation
is cut-free, and a β−→ step involves a cut-rule by definition.

From now on, we suppose both steps involve at least one common rule, which cannot be a cut
one, for there is no commutation involving a cut-rule in ⊢⊣r . In fact, there is exactly one shared rule.
Indeed, the rules commuting in ⊢⊣r are successive rules, so both rules cannot be above a cut-rule.
We distinguish cases according to the kind of π2

β−→ π3.
If π2

β−→ π3 is an ax key case. As an ax -rule never commutes, the two steps share no rule,
contradiction.

If π2
β−→ π3 is a `−⊗ key case. In this case, π2 and π3 are the following proofs:
ρ1
⊢ A,Γ

ρ2
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

ρ3
⊢ B⊥, A⊥,Σ

(`)

⊢ B⊥ `A⊥,Σ
(cut)

⊢ Γ,∆,Σ

⊢ ρ4

ρ1
⊢ A,Γ

ρ2
⊢ B,∆

ρ3
⊢ B⊥, A⊥,Σ

(cut)
⊢ A⊥,∆,Σ

(cut)
⊢ Γ,∆,Σ

⊢ ρ4
(up to symmetry of the cut-rule, the case where π2 has a `-rule on the left and a ⊗ one on the
right being symmetric and solved similarly).

By our assumption, π1 ⊢⊣
r
π2 was a step pushing down the ⊗ or `-rule, and up some non

cut-rule r. We can in π1 commute the cut-rule up and r down (as r cannot be the rule of the
main connective of the formula on which we cut, nor an ax -rule). This yields a proof π1

1 such that
π1

β−→ π1
1 with this commutative step, with π1

1 being π2 except r is below the cut-rule and not
above the ⊗ or `-rule (by abuse, for if r is a ⊤-rule then the cut-rule is not here anymore). Thus,
π1
1

β−→ π2
1 using the same step as in π2

β−→ π3; unless if r is a ⊤-rule, in which case there is nothing
to do and we set π1

1 = π2
1 ; or if r is a &-rule, where we have to apply this step in both occurrences,

obtaining π1
1

β−→ · β−→ π2
1 . In any case, π1

1
β∗−→ π2

1 . Observe that π2
1 is like π3, except that r is

above some cut-rule(s) in π3 and below in π2
1 . But, using β−→ in π3, r can commute down one or

two of the cut-rules created by the key case, yielding π2
1 (including if r is a & or ⊤-rule). Therefore,

π1
β−→ π1

1
β∗−→ π2

1
β+←− π3, concluding this case.

If π2
β−→ π3 is a & − ⊕i key case. This case is similar to the previous one, in simpler as we

create one new cut-rule and not two. We have π2 and π3 the following proofs:

ρ2
⊢ A2,Γ

ρ1
⊢ A1,Γ

(&)
⊢ A2 &A1,Γ

ρ3
⊢ A⊥i ,∆

(⊕i)
⊢ A⊥1 ⊕A⊥2 ,∆

(cut)
⊢ Γ,∆

⊢ ρ4

ρi
⊢ Ai,Γ

ρ3
⊢ A⊥i ,∆

(cut)
⊢ Γ,∆

⊢ ρ4

(as before, the symmetric case with & on the right premise of the cut is handled similarly).
The π1 ⊢⊣

r
π2 step was a commutation pushing down the & or ⊕i-rule, and another non-cut-

rule r up. We first commute, in π1, r and the cut-rule, yielding π1
β−→ π1

1 . Applying the key

96

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

case then yields π1
1

β−→ π2
1 ; unless if r is a ⊤-rule, in which case there is nothing to do and we

set π1
1 = π2

1 ; or if r is a &-rule, where we have to apply this step in both occurrences, obtaining
π1
1

β−→ · β−→ π2
1 . In π3, commuting r down the cut-rule created by the key case also yields π2

1 .
Therefore, π1

β−→ π1
1

β∗−→ π2
1

β←− π3.
If π2

β−→ π3 is a ⊥− 1 key case. This case is also similar to the `−⊗ key case, in simpler as

there are less sub-proofs. We have π2 =
(1)

⊢ 1

ρ1
⊢ Γ

(⊥)
⊢ ⊥,Γ

(cut)
⊢ Γ

⊢ ρ2

and π3 =

ρ1
⊢ Γ

⊢ ρ2
(up to symmetry

of the cut-rule).
The 1-rule cannot commute, so the π1 ⊢⊣

r
π2 step was a commutation pushing down the ⊥-rule,

and another non-cut-rule r up. We first commute, in π1, r and the cut-rule, yielding π1
β−→ π1

1 .
Applying the key case then yields π1

1
β−→ π3, unless if r is a ⊤-rule, in which case we directly

have π1
1 = π3, or if r is a &-rule, where we apply the key case on both occurrences, obtaining

π1
1

β−→ · β−→ π3. We conclude π1
β+−→ π3.

If π2
β−→ π3 is a commutative case. As π1 ⊢⊣

r
π2 and π2

β−→ π3 have exactly one rule in common,
the ⊢⊣r step involves the rule r that will be commuted down in the β−→ step, and another rule that
we call s (r and s are not cut-rules). The proof π1 has from top to bottom r, s and cut , π2 has s,
r and cut , and π3 has s, cut and r. Schematically:

π1 =

(r)

(s)

(cut) π2 =

(s)

(r)

(cut) π3 =

(s)

(cut)
(r)

Suppose first that the cut-rule commutes with s. Our reasoning for this case is depicted on
Figure 2.3. In π1, we commute s − cut then r − cut , yielding π1

β−→ π1
1

β∗−→ π2
1 (the β∗−→ being

of length one, except if s is a &-rule, in which case we apply the r − cut commutation for both
occurrences, or if s is a ⊤-rule, in which case there is no commutation to apply). The proof π2

1 has
from top to bottom cut , r and s. Meanwhile, in π3 we commute s−cut (twice if r is a &-rule, or zero
time if it is a ⊤-rule), yielding π1

3 having from top to bottom cut , s and r. Now, both π2
1 and π1

3 have
above r and s the same sub-proof(s), maybe duplicated or erased. We use weak normalization of β−→
(Corollary 2.43) to eliminate all cut-rules in this sub-proof(s), in the same way for all its occurrences
in π2

1 and π1
3 , obtaining proofs π3

1 and π2
3 equal up to the commutation of r and s (the very same

one that was used in π1 ⊢⊣
r
π2). We thus obtain π1

β−→ π1
1

β∗−→ π2
1

β∗−→ π3
1 ⊢⊣

r
π2
3

β∗←− π1
3

β∗←− π3.
To check that indeed we can apply a ⊢⊣r step, by Lemma 2.58 r and s are independent for the

conclusion sequent of s in π1, so also for the conclusion sequent of the cut-rule (as their domains
on the premise sequent of the cut-rule are their domains in the conclusion sequent, for none use
the cut formula). Using commutative cut-elimination cases does not change this, nor does then
eliminating all cut-rules above them (Items 2 and 3 of Lemma 2.57). Thus, r and s commute in π3

1

(Lemma 2.58).
Assume now s is a rule associated to the main connective of the formula on which we cut.

Remark s cannot be an ax -rule, for it commutes with r. This case is represented on Figure 2.4. We
first reduce in the same way all cut-rules in the branch of the cut-rule not containing s, yielding
π1
1 from π1 through π1

β∗−→ π1
1 and π1

3 from π3 through π3
β∗−→ π1

3 ; they share this sub-proof ρ2,

97

2.3. CUT-ELIMINATION

and we use weak normalization of β−→ (Corollary 2.43). Denote by s⊥ the rule introducing the
dual formula of s (i.e. the other formula on which we cut), and by ρ the rules between s⊥ and
the cut-rule in π1

1 (which are also those in π1
3). Commuting the cut-rule above all rules in ρ yields

π1
1

β∗−→ π2
1 with π2

1 having the cut-rule between s and s⊥. (Remark we do not need ⊢⊣c steps, as we
eliminated the cut-rules above this premise.) Doing the same commutations in π1

3 gives π1
3

β∗−→ π2
3 ,

with π2
3 differing from π2

1 by having r below ρ and not above s. Using the appropriate key case
or ⊤ − cut commutative case to eliminate the cut-rule in π2

1 , using s⊥ and maybe s, we obtain a
new proof π3

1 (as usual, if there are &-rules in ρ, we need to do so for all duplicates). In this new
proof, if cut-rules have been introduced by the key case we used, we commute them with the rule
r (which cannot introduce the formula of the cut-rule, for this is a sub-formula of the s rule, which

commutes with the r rule). The produced proof is called π4
1 , and we have π2

1
β+−→ π3

1
β∗−→ π4

1 . On
the other hand, we also eliminate the cut-rule in the same way in π2

3 , yielding a proof π3
3 such that

π2
3

β∗−→ π3
3 (again, in all duplicates if there were &-rules in ρ, or with nothing to do if r is a ⊤-rule).

Remark π3
3 is π4

1 , except the rule r is below the rules of ρ in π3
3 and above in π4

1 . Now we use again
weak normalization of β−→ (Corollary 2.43) to eliminates all cut-rules above r or the rules in ρ, in
the same way in π4

1 and π3
3 , obtaining respectively π5

1 and π4
3 . These two last proofs are equal up

to the commutation of r with all rules in ρ, so equal up to ⊢⊣r
∗

now that there is no cut-rule above
(including a ⊤ − ⊤ commutation if both r and s are ⊤-rules). In case s or s⊥ is a ⊤-rule, then
π3
1 = π4

1 = π5
1 and we commute s or s⊥ with r in this proof, “producing” the rule r that we can

then commute down with rules of ρ to recover π3
3 = π4

3 .
Indeed, in π1

1 the rule r is independent (for the sequent below the cut-rule) of every rule of ρ
(Fact 2.56), ρ being a contextual block by definition (it consists of rules commuting with a given
cut-rule, we keep for premises of ⊗- and mix 2-rules the one leading to the s⊥ rules). They are
still independent in π2

1 , π3
1 , π4

1 and π5
1 (Items 2 and 3 of Lemma 2.57). But then we remark r

independent with the contextual block ρ, so it can indeed commute down (Lemma 2.60).

Finally, π1
β∗−→ π1

1
β∗−→ π2

1
β+−→ π3

1
β∗−→ π4

1
β∗−→ π5

1 ⊢⊣
r∗
π4
3

β∗←− π3
3

β∗←− π2
3

β∗←− π1
3

β∗←− π3.

For local coherence with ⊢⊣c , we will need one intermediate result on symmetry of cut, due to
the following remark.
Remark 2.63. The symmetry of a cut-rule is the identification of the following (sub-)proofs:

π1 =

ρ1
⊢ A,Γ

ρ2
⊢ A⊥,∆

(cut)
⊢ Γ,∆

and π2 =

ρ2
⊢ A⊥,∆

ρ1
⊢ A,Γ

(cut)
⊢ Γ,∆

This relation is included in =β , using a cut − cut commutation. Indeed, define respectively π′1 and
π′2 the two following proofs, where A1 and A2 are both the formula A, with indices to follow their
occurrences:

(ax)
⊢ A⊥1 , A2

ρ1
⊢ A1,Γ

(cut)
⊢ A2,Γ

ρ2
⊢ A⊥2 ,∆

(cut)
⊢ Γ,∆

and

(ax)
⊢ A⊥1 , A2

ρ2
⊢ A⊥2 ,∆

(cut)
⊢ A⊥1 ,∆

ρ1
⊢ A1,Γ

(cut)
⊢ Γ,∆

Then π1
β←− π′1 ⊢⊣

c
π′2

β−→ π2, these β−→ steps being ax key cases.
The next lemma allows us not to add symmetry of cut in ⊢⊣c , which would complexify our proofs

where there already are a lot of cases.

98

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

Lemma 2.64. Let π1 and π2 be two proofs equal up to symmetry of cut-rules. Then π1
β∗−→ · β∗←− π2.

Proof. The idea is to eliminate any cut-rule in π1 and π2 in a symmetric way, and show the resulting
proofs are equal up to symmetry of cut-rules. The wished result follows through weak normalization,
as two cut-free proofs equal up to symmetry of cut-rules are simply equal.

We reason by induction on a sequence π1
β∗−→ ρ, with ρ some cut-free proof found by weak

normalization (Corollary 2.43). If this sequence is empty, then π1 is cut-free and so π1 = π2.
Thus, take π1

β−→ π′1 its first step. We apply the corresponding step in π2, on the corresponding
cut-rule which may be the symmetric version of c (for if a β−→ step can be applied, then the one
with switched premises can be applied on the symmetric version). We obtain a proof π′2 with the
cut-rule still permuted compared to π′1 in case of a commutative case (or the cut-rule erased when
commuting with a ⊤, or permuted and duplicated with a &) and 0, 1 or 2 symmetric cut-rules
resulting from a key case. In all cases, π′1 and π′2 are equal up to symmetry of cut-rules, allowing
us to conclude by induction hypothesis.

Lemma 2.65. Let π1, π2 and π3 be proofs such that π1 ⊢⊣
c
π2

β−→ π3. Then there exist π′1 and π′2
such that π1

β+−→ π′1 ⊢⊣
c∗
π′2

β∗←− π3. Diagrammatically:

π1 π2

π3

⊢⊣c β

π′1 π′2

β
+

⊢⊣c
∗

β
∗

Proof. Call c the (unique) cut-rule of π2 involved in π2
β−→ π3, and cd and cu the ones of π2 from

top to bottom involved in π1 ⊢⊣
c
π2 (so that in π1 we have cu above cd).

If c /∈ {cu; cd}, then there exists ρ such that π1
β−→ ρ ⊢⊣c

∗

π3. Indeed, the commutation π1 ⊢⊣
c
π2

involves no rule of the β−→ step, meaning we can do the β−→ step first. If this β−→ step does not
erase nor duplicate a sub-proof containing cu and cd, then we have the result by first doing the
β−→ step, then the cut − cut commutation: π1

β−→ · ⊢⊣c π3. If the β−→ step erases cu and cd, then
π1

β−→ π3. Finally, if β−→ duplicates the rules cu and cd, then we apply the cut − cut commutation
on each copy to recover π3, yielding π1

β−→ · ⊢⊣c · ⊢⊣c π3. Thus, if c /∈ {cu; cd} then π1
β−→ ρ ⊢⊣c

∗

π3.
Whence, we now assume c ∈ {cu; cd}. Call R the set of the non-cut-rules involved in π2

β−→ π3
(i.e. those other than c). Also call c′ the cut-rule in {cu; cd} other than c. Looking at the possible
cases for β−→, we have R of cardinal 1 or 2. If all rules of R are just above c in π1 then, as it is
also the case in π2, R must be a singleton {r} (because c′ must be just above c in π1 or in π2), and
so β−→ is a commutative step or an ax key case. Assume r is an ax -rule; we have two sub-cases,
according to (c, c′) = (cu, cd) or (c′, c) = (cu, cd). If (c, c′) = (cu, cd), then we have (up to symmetry
of cut-rules):

• π1 =

(r)

⊢ A⊥, A
ρ1

⊢ A,B⊥,Γ
(c)

⊢ A,B⊥,Γ
ρ2

⊢ B,∆
(c′)

⊢ Γ,∆

99

2.3. CUT-ELIMINATION

• π2 = (r)

⊢ A⊥, A

ρ1
⊢ A,B⊥,Γ

ρ2
⊢ B,∆

(c′)
⊢ A,Γ,∆

(c)
⊢ Γ,∆

• π3 =

ρ1
⊢ A,B⊥,Γ

ρ2
⊢ B,∆

(c′)
⊢ A,Γ,∆

We remark π1
β−→ π3. Similarly, if (c′, c) = (cu, cd) then π1

β−→ π3.
Suppose now that π2

β−→ π3 is a commutative step. Remark that r above c′ is a commutative
cut-elimination case, for we have c′ not below r in either π1 or π2. We also have two sub-cases here,
according to (c, c′) = (cu, cd) or (c′, c) = (cu, cd).

In the first sub-case, (c, c′) = (cu, cd), we have schematically:

π1 =
(r)

(c)

(c′)

π2 =
(r) (c′)

(c)
π3 =

(c′)

(c)

(r)

(with in π3 rules above r erased if r is a ⊤-rule, or duplicated if r is a &-rule). We apply in π1 the

commutative cut-elimination case between r and c, yielding π1
1 =

(c)

(r)

(c′)

, then the same

one between r and c′ to get π2
1 =

(c)

(c′)

(r)

and finally one ⊢⊣c step (or zero if r = ⊤, or two

if r = &), obtaining π3. Thence, π1
β−→ π1

1
β−→ π2

1 ⊢⊣
c∗
π3.

In the second sub-case, (c′, c) = (cu, cd), we have:

π1 =
(r) (c′)

(c)
π2 =

(r)

(c)

(c′)
π3 =

(c)

(r)

(c′)

Similarly to the previous sub-case, π1
β−→ π1

1 =
(c′)

(c)

(r)

and π3
β−→ π1

3 =
(c)

(c′)

(r)

.

Then, π1
1 ⊢⊣
c∗
π1
3 by commuting c and c′ (using one cut − cut commutation, or zero if r = ⊤, or two

if r = &). Thus, π1
β−→ π1

1 ⊢⊣
c∗
π1
3

β←− π3. This solves the case where all rules of R are above c in
π1.

We suppose now that a rule r ∈ R is above c′ in π1, and then above c in π2, thus c′ = cu and
c = cd. In this case, the possible other rule in R cannot be above c′ in π1, for only one sub-proof
may be shared between the two cut-rules. Schematically:

π1 =
(r)

(c′)

(c)

π2 =
(r)

(c)

(c′)

π3 =
(γ)

(c′)

with γ the resulting rules of applying the β−→ step, which may be a key case.
If r and c′ commute (with a commutative β−→ step), then we apply this commutation in π1,

yielding π1
1 =

(c′)

(r)

(c)

. Then we apply the β−→ step with the rules corresponding to the

ones of π2
β−→ π3, yielding π2

1 =
(c′)

(γ)
. At this point, either this step was a commutative

step with r, meaning γ is composed of c above r, and we can in π3 commute c′ and r with a β−→
step, then c′ and c with one ⊢⊣c step, in order to recover π2

1 (or no ⊢⊣c needed if r = ⊤, or two

100

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

if r = &). Otherwise, this reduction step was a key case, producing γ which consists in 0, 1 or
2 cut-rules. We commute them with c′ so as to obtain π3. Therefore, if r and c′ commute then
π1

β−→ π1
1

β−→ π2
1 ⊢⊣
c∗ · β=←− π3.

Suppose now that r and c′ do not commute. This means r is a rule corresponding to the main
connective of the formula A on which c′ cuts, a ⊤-rule or an ax -rule on A. If it is an ax -rule, then
r and c, as well as r and c′, make an ax key case. One can check that applying this key case with
c′ in π1 yields π3 (in this case γ is empty), maybe up to symmetry of the cut-rule. Thus π1

β−→ π3

or, using Lemma 2.64, π1
β−→ · β∗−→ · β∗←− π3.

Assume now r is not an ax -rule, so it is a rule corresponding to the main connective of the
formula A on which c′ cuts, or a ⊤-rule. Thus π2

β−→ π3 is not a key step, because r cannot
also correspond to the main connective of the formula on which c cuts (only the ax -rule has two
principal formulas). Hence in the schema of π3, γ consists of c followed below by r. A schematic
representation of the reasoning we will do is depicted on Figure 2.5.

Call ρ the sub-proof of π1 above c′ in the branch not leading to r. This proof ρ is also the
sub-proof of π3 above c′ in the same branch (c does not belong to this branch as it commuted with
r). We reduce all cut-rules in ρ using only β−→ steps (thanks to Corollary 2.43), in the same way
in both π1 and π3, obtaining a cut-free proof ρ′, which is a sub-proof of the resulting π1

1 and π1
3

respectively. In particular, we have π1
β∗−→ π1

1 and π3
β∗−→ π1

3 .
Call r⊥ the rule in ρ′ introducing the formula A⊥ (which is a rule of the main connective of A⊥

or an ax or ⊤-rule), and τ the sequence of rules in ρ′ between c′ and r⊥. Remark that rules in τ

cannot be ⊤ or cut-rules. We commute in π1
1 (resp. π1

3) the rules of τ with c′, yielding π1
1

β∗−→ π2
1

(resp. π1
3

β∗−→ π2
3) as τ is cut-free. In the two proofs obtained, c′ has on its premises the rules r and

r⊥ (or all duplicated c′, as τ may contain &-rules).
We now apply a key or ⊤− cut commutative case on c′, using r and r⊥ (or just r⊥ if it is an ax

or ⊤-rule), in all slices as there can be &-rules in τ , yielding π2
1

β+−→ π3
1 and π2

3
β+−→ π3

3 , producing
rules γ′ (in each slice), which are 0, 1 or 2 cut-rules, or the ⊤-rule r⊥. Observe that π3

1 and π3
3

differ only by the fact that in π3
1 the cut-rule c is below γ′ and τ , while it is above (or erased in

case of a ⊤ − cut commutative case) in π3
3 (in all slices). We can commute c up in π3

1 until going
above τ , using β−→ steps, obtaining π4

1 ; this is because rules in τ cannot introduce the formula on
which c cuts, looking at π3

3 . Then we commute c with γ′ to recover π3
3 , using 0, 1 or 2 ⊢⊣c steps or a

⊤− cut commutation β−→, in all slices as they can be &-rules in τ . Whence π1
β∗−→ π1

1
β∗−→ π2

1
β+−→

π3
1

β∗−→ π4
1(

β+−→ ∪ ⊢⊣c
∗

)π3
3

β+←− π2
3

β∗←− π1
3

β∗←− π3, and in particular π1
β+−→ · ⊢⊣c

∗

· β∗←− π3.

We can now prove the wished result.

Theorem 2.47. In MALL0,2:

• β−→ is Church-Rosser modulo (⊢⊣r ∪ ⊢⊣c)∗.

• β−→ is Church-Rosser modulo ⊢⊣r
∗

.

Proof. For the first point, apply Theorem 2.7 with ⊢⊣ = (⊢⊣r ∪ ⊢⊣c),→ =
β−→ and⇝ = (⇝

r\⊤ ∪ ⊢⊣c).
We deduce Item (i) from Proposition 2.41, Item (ii) from Lemma 2.61 and Item (iii) from Lem-
mas 2.62 and 2.65.

101

2.3. CUT-ELIMINATION

π1 =

(r)

(s)

(cut) π2 =

(s)

(r)

(cut)

π3 =

(s)

(cut)
(r)π1

1 =

(r)

(cut)
(s)

π2
1 =

(cut)
(r)

(s) π1
3 =

(cut)
(s)

(r)

π3
1 =

(r)

(s) π2
3 =

(s)

(r)

⊢⊣r

ββ
β
∗

β
∗

β
∗

β
∗

⊢⊣r

Figure 2.3: Schematic representation of the second-to-last case in the proof of Lemma 2.62

102

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

π1 =

ρ1
(r)

(s)
ρ2

(cut)
ρ3 π2 =

ρ1
(s)

(r)
ρ2

(cut)
ρ3 π3 =

ρ1
(s) ρ2

(cut)
(r)

ρ3

π1
1 =

ρ1
(r)

(s)
ρ′2

(s⊥)
ρ

(cut)
ρ3 π1

3 =

ρ1
(s)

ρ′2
(s⊥)

ρ
(cut)

(r)
ρ3

π2
1 =

ρ1
(r)

(s)
ρ′2

(s⊥)

(cut)
ρ

ρ3 π2
3 =

ρ1
(s)

ρ′2
(s⊥)

(cut)
ρ

(r)
ρ3

π3
1 =

ρ1
(r)

(cut?)
ρ

ρ3
π3
3 =

ρ1
(cut?)

ρ
(r)

ρ3

π4
1 =

ρ1
(cut?)
(r)

ρ

ρ3

π5
1 =

τ cut-free
(r)

ρ

ρ3 π4
3 =

τ cut-free

ρ
(r)

ρ3

⊢⊣r β

eliminate all cut-rules in ρ2

bring up the cut-rule until s⊥

apply a key or ⊤− cut commutative case

eliminate all cut-rules above

β
∗

β
∗

β
∗ β
∗

β
+

β
∗

β
∗

β
∗

β
∗

⊢⊣r
∗

Figure 2.4: Schematic representation of the last case in the proof of Lemma 2.62

103

2.3. CUT-ELIMINATION

π1 =

(r)
ρ

(c′)

(c) π2 =

(r)

(c)
ρ

(c′) π3 =

(c)

(r)
ρ

(c′)

π1
1 =

(r)
ρ′

(c′)

(c) π1
3 =

(c)

(r)
ρ′

(c′)

π2
1 =

(r) (r⊥)

(c′)
τ

(c) π2
3 =

(c)

(r) (r⊥)

(c′)
τ

π3
1 =

(γ′)
τ

(c) π3
3 =

(c)

(γ′)
τπ4

1 =

(γ′)

(c)
τ

⊢⊣c β

eliminate all cut-rules in ρ

bring up the cut-rule c′ until r⊥

apply a key or ⊤− cut commutative case

β
∗

β
∗

β
∗

β
∗

β
+

β
+

β
∗

β+−→ ∪ ⊢⊣c
∗

Figure 2.5: Schematic representation of the last case in the proof of Lemma 2.65

104

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

We deduce the second item from the first one. Consider two proofs π and ϕ equal up to
cut-elimination and rule commutation. Take π′ and ϕ′ respective β-normal forms for π and ϕ
(Proposition 2.41). Thus, π′ and ϕ′ are equal up to cut-elimination and rule commutation. By
the first item, π′ (⊢⊣r ∪ ⊢⊣c)∗ ϕ′. Being cut-free, they can only be related by ⊢⊣r

∗

, for these relations
cannot create cut-rules. Therefore, β−→ is Church-Rosser modulo ⊢⊣r

∗

.

Remark 2.66. Extending the results of this section to the full system, with all optional rules, is
easy. It suffices to extend the definition of a contextual rule (Definition 2.54) to the ?d-, ?c-, ?w-,
∀-, ∃-, ∪- and ∅-rules trivially, with a !-rule not considered (as it is the case for ax - and 1-rules for
instance). The first 5 rules have at most one child in a contextual block, ∪ has at most two and ∅
none.

Considering the definition of domains (Definition 2.55), there is some care to take for the ?c-

and ∃-rules. For a ?c-rule of the shape
⊢ ?A1, ?A2,∆

(?c)
⊢ ?A1,∆

, we want the contracted occurrence ?A2

to be identified with the occurrence ?A1 in the sequent ⊢ Γ for which we look at, so that a rule using
either of ?A1 and ?A2 cannot be independent with the ?c-rule. In particular, remark that another

?c-rule on ?A1 or ?A2 does not commute with the ?c-rule above. For the ∃-rule
⊢ A[B/X],∆

(∃)
⊢ ∃XA,∆

,

we need the occurrence A[B/X] to be assimilated to ∃XA, as was ?A2 to ?A1 in the ?c case.
The rest is simply a matter of checking that our proofs of Fact 2.56 and Lemmas 2.57, 2.58

and 2.60 stay valid in this extended framework. One can then prove Lemmas 2.61, 2.62 and 2.65
as we did here. Remark a ! − cut commutation poses no problem: such a commutation can only
be done if one premise of the cut-rule is a !-rule on the cut formula, in which case no commutative
case can be done using the rule on the other premise (and there is no commutation rule involving
a !-rule).

Therefore, the main difficulty when proving Theorem 2.47 is to prove strong normalization.
In particular, provided Conjecture 2.45 holds one readily deduces that cut-elimination is Church-
Rosser modulo rule commutations in the full system.

2.3.6.3 Cut-elimination and mix -Rétoré is Church-Rosser

Once Theorem 2.47 proven, it is easy to prove Theorem 2.48 by reusing lemmas from this proof.
The next lemma lists and proves all hypotheses needed to apply Theorem 2.7 in this case, including
those already proved last section.

Lemma 2.67.

(i) The relation β−→ ·(⇝r\⊤ ∪ ⊢⊣c ∪⇝om)∗ is strongly normalizing.

(ii) (a) Let π, π1 and π2 be proofs such that π1
β←− π β−→ π2. Then π1

β∗−→ · ⊢⊣r
=

· β∗←− π2.

(b) Let π, π1 and π2 be proofs such that π1 ⇝
om

π
β−→ π2. Then π1

β=−→ · ⇝
om∗

π2.

(c) The relation ⇝om has the diamond property.

(iii) (a) Let π1, π2 and π3 be proofs such that π1 ⊢⊣
r
π2

β−→ π3. Then, there exist π′1 and π′2 such

that π1
β+−→ π′1 ⊢⊣

r∗
π′2

β∗←− π3. Moreover, this ⊢⊣r
∗

step consists in one rule commuting with
a succession of other rules; in particular it is a ⇝

r\⊤∗ step (in one direction or the other).

105

2.3. CUT-ELIMINATION

(b) Let π1, π2 and π3 be proofs such that π1 ⊢⊣
c
π2

β−→ π3. Then π1
β+−→ · ⊢⊣c

∗

· β∗←− π3.

(c.1) Let π1, π2 and π3 be proofs such that π1 ⇝
om

π2
β−→ π3. Then π1

β+−→ ·⇝om
∗

π3.

(c.2) Let π1, π2 and π3 be proofs such that π1 ⇝
om

π2
β−→ π3. Then π1

β+−→ · ⇝
om∗

π2.
(d) Let π1, π2 and π3 be proofs such that π1 ⊢⊣

r
π2 ⇝

om
π3. Then π1 ⇝

r\⊤ · ⇝om π3 or
π1 ⇝

om=

· ⇝
r\⊤=

π3.
(e) Let π1, π2 and π3 be proofs such that π1 ⊢⊣

c
π2 ⇝

om
π3. Then π1 ⇝

om · ⊢⊣c π3.
(f.1) Let π1, π2 and π3 be proofs such that π1 ⇝

om
π2 ⇝

om
π3. Then π1 ⇝

om ·⇝om π3.
(f.2) The relation ⇝om has the diamond property.

Proof.

(i) This is Proposition 2.41.

(ii) (a) This is Lemma 2.61.

(b) There are two cases here. If the β−→ step is not a mix 2 − cut commutative case on

the mix 2-rule erase in the ⇝om step, then the two steps commute, and π1
β+−→ · ⇝

om∗

π2
using the very same steps (with ⇝

om done once, except if its rules are erased by the cut-
elimination step in which case it is not done, or if its rules have been duplicated then it
is done twice). Otherwise, we directly have π1 ⇝

om
π3, applying this steps on the same

rule as those of π1 ⇝
om

π.
(c) If two steps of ⇝om acts on the same mix 2-rule, then the results are equal as the two

ways of reducing

(mix0)
⊢

(mix0)
⊢

(mix2)
⊢ give

(mix0)
⊢ . Otherwise, the steps commute and

⇝
om ·⇝om = ⇝

om · ⇝
om.

(iii) (a) This is Lemma 2.62.
(b) This is Lemma 2.65.

(c.1) In π1, one can apply the cut-elimination step corresponding to π2
β−→ π3, maybe doing a

cut−mix 2 commutative case first if the mix 2-rule erased in the π1 ⇝
om

π2 step is above the
(bottom) cut-rule of π2

β−→ π3. This yields a proof π′, in which one can then apply a⇝om

step on the mix 2-rule of π1 ⇝
om

π2 – maybe twice if its rules have been duplicated by the
π1

β−→ π′ step, or with nothing to do if its rules have been erased by this cut-elimination
step.

(c.2) This is the same as (ii)(b).
(d) If the π1 ⊢⊣

r
π2 is a π1 ⇝

r\⊤
π2 step, then we are done. Otherwise, it is a ⊤ commutation

adding rules in π2, and in particular a ⇝
r\⊤

step. As it cannot add a mix 0-rule without
adding a rule below it, either both rules of the π2 ⇝

om
π3 step are rules created by the

commutation, or they were already in π1. In the latter case, one can apply the ⇝om step
first and then the ⇝

r\⊤
step: π1 ⇝

om · ⇝
r\⊤

π3. In the former case, we must have a ⊤ − ⊗

or ⊤−mix 2 commutation introducing a
⊢

(mix0)
⊢

(mix2)
⊢ in its sub-proof. We can directly

introduce the sub-proof without these two rules, leading to π1 ⇝
r\⊤

π3, or π1 = π3 in case
this was the whole sub-proof introduced.

106

CHAPTER 2. PROPERTIES OF SEQUENT CALCULUS

(e) Two such steps always commute, as doing one cannot prevent doing the other:
π1 ⇝

om · ⊢⊣c π3.

(f.1) Nothing to prove here.

(f.2) This is the same as (ii)(c).

Theorem 2.48. In MALL0,2:

• β−→ ∪⇝om is Church-Rosser modulo (⊢⊣r ∪ ⊢⊣c ∪ ⊢⊣om)∗.

• β−→ ∪⇝om is Church-Rosser modulo (⊢⊣r ∪ ⊢⊣om)∗.

Proof. For the first point, we apply Theorem 2.7 with ⊢⊣ = (⊢⊣om ∪ ⊢⊣r ∪ ⊢⊣c), → = (
β−→ ∪⇝om) and

⇝ = (⇝
om ∪⇝r\⊤ ∪ ⊢⊣c). All needed hypotheses can be deduced from Lemma 2.67.

We deduce the second item from the first one, as in the proof of Theorem 2.47. Consider
two proofs π and ϕ equal up to cut-elimination and rule commutation. Take π′ and ϕ′ respective
β-normal forms for π and ϕ (Proposition 2.41). They are equal up to cut-elimination and rule
commutation, so by the first item π′ (⊢⊣r ∪ ⊢⊣c)∗ ϕ′. Being cut-free, they can only be related by ⊢⊣r

∗

,
for these relations cannot create cut-rules.

Again, extending this result to the full system, with any of the Rétoré transformations, should
be doable (c.f. Remark 2.66).

2.3.7 Comparison with the work of Cockett and Pastro

Willem Heijltjes, one of the rapporteurs of this thesis, brought to our attention some earlier work
on MALL by Cockett and Pastro, with a term language for this logic on which has been showed the
Church-Rosser property [CP05]. While some results of this paper are really close to what has been
done in this Section 2.3, there are some key differences.

• Whereas here is considered the unilateral sequent calculus, in [CP05] everything is done
through the lens of a term calculus corresponding to a bilateral sequent calculus for MALL.
Still, this should not be a big difference as it is quite easy to check that the two transfor-
mations of the term calculus indeed correspond to cut-elimination and rule commutation in
the bilateral sequent calculus, which is “equivalent” to the unilateral one. Nonetheless, our
approach directly in the sequent calculus makes the result explicit, without the need of an
implicit result linking the term and sequent calculi. A bigger difference is that in [CP05] are
considered generalized axioms (on a list of atoms), that we do not have in this thesis.

• There seems to be a small mistake in their proof, for [CP05, Proposition B.2 (ii)] is false:
an interchange (i.e. rule commutations in the term calculus) not involving a unit does not
necessarily preserve their measure Λ on terms (i.e. proofs). Indeed, the authors took as
measure a multiset of a quantity for each cut, but what corresponds to a &−⊗ commutation
in their calculus – rule (18) – may duplicate a cut-term, and thus increase the measure of
the term. This error could be corrected as done here, by considering only rule commutations
with no cut-term inside the rewritten part of the term.

107

2.4. PERSPECTIVES

• The authors of [CP05] do not consider directly the cut − cut commutation in their cut-
elimination, using smartly that this commutation is easily seen as included in β-equality
([CP05, Lemmas C.2 and C.3]). This allows for a simpler proof, with no more considerations
about ⊢⊣c . Unfortunately, this approach can hardly be extended in presence of the exponen-
tials. This is because their demonstration goes by induction on the terms, and in MALL a
cut-elimination step reduces the size of the terms or proofs above a cut . This is false with the
?c − ! key elimination case where the proof above the !-rule is duplicated, hence the sizes of
the proofs above the lower cut-rule increase. Meanwhile, our approach should extend to full
linear logic (see Remark 2.66).

• Some of their proofs are simpler, for they do not consider a commutation with a linear block.
We could have done the same here, but as we would still need such commutations in the
presence of exponentials, where key cases may introduce many rules, we chose to keep them.

• We prove some more results that those present in [CP05], namely that ⊢⊣rc ⊆ =β (Proposi-
tion 2.46), the strong normalization in MALL of β−→ ·(⊢⊣r ∪ ⊢⊣c)∗ (using that our measure
is preserved by rule commutations, while theirs is preserved only by rule commutations not
involving a unit rule, and thanks to looking directly at cut − cut commutations) and we take
into account the possible presence of the mix 2- and mix 0-rules as well as the mix -Rétoré
transformation ⇝om whereas they do not.

2.4 Perspectives
Two results were proved in this chapter. The first is that equality up to identification, i.e. up to
axiom-expansion, cut-elimination and some Rétoré transformations, can be reduced to the same
problem without axiom-expansion – except with second order quantifiers, where one should expand
on the fly proofs after using a ∀ − ∃ key cut-elimination step.

The second, and more important, proof of this chapter is that cut-elimination is Church-Rosser
modulo rule commutation in MALL0,2, using as an intermediate lemma that composing commuta-
tions with non cut − cut cut-elimination steps is strongly normalizing. The generalization of this
result to full linear logic, with all optional rules and possibly Rétoré transformations, seems more
than doable. Indeed, the proof techniques used in Sections 2.3.6.2 and 2.3.6.3 seem to be general
enough for the full logic, so that the main difficulty when going to the general case is strong nor-
malization. For this, it suffices first to turn the comprehensive proof sketch of Conjecture 2.45 into
a proof. One could then conclude as done here, using Theorem 2.7.

108

Part II

Proof-nets

109

A usual representation of a formal proof in most logics, including classical, intuitionistic or linear
logic, is a proof from sequent calculus, i.e. a tree with as vertices rules. A major contribution from
linear logic is another syntax for proofs: proof-nets. In this syntax, proofs are no more trees but
more general graphs, allowing more flexibility and leading to simpler reasonings that focus on key
cases without having to bother with commutative cases. The keystone of the proof-net syntax is
that it quotients proofs by rule commutation, which was the source of many problems in Chapter 2.
Consequently, cut-elimination is convergent in this framework. Therefore, the proof-net syntax
is more adequate than the sequent calculus one when considering proofs up cut-elimination, or
equivalently up to rule commutation. Intuitively, this is a similar phenomenon to what happens in
intuitionistic logic with natural deduction: a natural or canonical representation is often preferable
over others. Nonetheless, proof-nets for full linear logic do not exist at the time this manuscript is
written – see Section 4.5 for more details. In this part, we will use the notion of proof-nets from
Hughes & van Glabbeek [HG05] for unit-free MALL, with and without the mix 0- and mix 2-rules.

Our main contributions here are the following two. First is a new proof of sequentialization
for proof-nets, which is the hard direction in proving that these graphs correspond to proofs from
sequent calculus: recovering a proof of sequent calculus given a proof-net. As many demonstrations
in the literature, ours is based on the search of a splitting vertex, corresponding to a last possible
rule and allowing to conclude by induction. This problem is strongly linked to more usual graph
theoretical results, with recent advances showing even equivalence between sequentialization of
MLL2

uf proof-nets and perfect matchings [Ret03; Ngu20]. Indeed, special classes of graphs for which
an inductive syntax can be given is common sight in graph theory, which is exactly the problematic
of sequentialization. Our proof continues in this spirit, for it is based on an intermediate result
purely in graph theory. We deduce the existence of a splitting vertex by means of a simple lemma
about edge-coloring in graph theory, the bungee jumping lemma, leading to a generalization of Yeo’s
theorem [Yeo97]. This approach permits to separate the pure reasonings about colored graphs
from the particularities of proof-nets. Besides, it gives a graph theoretical analog to MALL0,2

uf

sequentialization, while previous works only consider MLL0,2
uf – even if hypotheses of this analog

are quite unusual. Not only our result holds with the mix 0- and mix 2-rules, it is simpler than
previous proofs of sequentialization, even when restricted to the more known proof-nets of MLLuf .
Our second contribution is a formalization of MLLuf proof-nets in the Coq proof assistant, with a
definition of these graphs and proofs of some key results including our new proof of sequentialization.
This formalization is quite striking, for manipulating graphs on computer is notoriously hard.

This part is thus divided into three. First, Chapter 3 is purely about graph theory. It introduces
the graph notions we will need, and its major part is about a new generalization of Yeo’s theorem,
with its (quite involved) statement and its proof. We also discuss the reach of our generalization,
looking at results equivalent to Yeo’s theorem as well as another known generalization [Gal+22].
Then, in Chapter 4 are defined proof-nets from [HG05] and links between this new syntax and
sequent calculus. In particular, we give a simple proof of sequentialization based on our generaliza-
tion of Yeo’s theorem, which is as far as we know the second proof of sequentialization for MALL0,2

uf

proof-nets from [HG05]. Notably, it is the first proof of “bottom-up” sequentialization, i.e. building
an associated sequent calculus proof from the last rule towards terminal rules – the original proof
in [HG05] finds all `- and &- rules and then files in the other rules. We finish this part with
Chapter 5 on the formalization of proof-nets in Coq, explaining which part of the theory has been
ported on computer, which crucial choices were made, as well as the encountered difficulties.

111

Chapter 3

Graph Theory

In the present chapter, we define the graph theoretic notions we will need for introducing proof-nets
(paths, . . .). We also prove a graph theoretical theorem (Theorem 3.19) from which will be deduced
a key but often difficult result for proof-nets, the sequentialization theorem (Theorem 4.18): a proof-
net corresponds to a proof of sequent calculus. This result from graph theory is about edge-colored
graphs, and is a generalization of Yeo’s theorem [Yeo97]. An edge-colored graph is a graph with a
function of codomain the edges of the graph, and the elements of whose domain are called colors.
We say a cycle is alternating when all its adjacent edges have different colors. Yeo’s theorem states
that an edge-colored graph with no alternating cycle has a splitting vertex, allowing to decompose
the graph in a “nice” way with its edges to a connected component all of the same color – see
Figure 3.1 for an intuition, the precise definition is given in Section 3.2.1. This decomposition can
be carried on, so as to give an inductive representation of a graph with no alternating cycle. We
generalize it in several directions. First, we define a more general notion of edge-coloring than the
standard one, this new notion being used in all this chapter. Second, we give more control on
the splitting vertex found, thanks to a parameter (which will be a set of edges) and an order for
which the splitting vertex given by the theorem is maximal. Lastly but most importantly, instead
of outright forbidding alternating cycles we allow some of them respecting precise conditions.

One of the major advantages of having our key result directly in graph theory is to be able
to apply it in various settings. For instance, corollaries of our main result include a proof of

−→

Figure 3.1: Example of Yeo’s theorem with a filled splitting vertex

113

3.1. GRAPHS & PATHS

sequentialization for different definitions of MLL0,2
uf proof-nets (as well as for MELL0,2 proof-nets as

their sequentialization can be handled similarly), one for MALL0,2
uf proof-nets, as well as sufficient

conditions for similar syntaxes – in particular it permits to have a proof of sequentialization for a
version where we put jump arcs differently in the definition of proof-net (Section 4.1.1).

It is quite natural to look at what results on proof-nets tell us more generally about graphs,
as a proof-net is a particular kind of graph representing a proof. Links between MLL0,2

uf proof-nets
and graph theory have been explored for instance in [Ret03; Ngu18a; Ngu20; Ngu18b], showing a
correspondence between sequentialization for proof-nets and perfect matchings in graphs. The par-
allel is intuitively quite simple: sequentializing a proof-net is giving a proof, i.e. a sequence of rules,
corresponding to it. Meanwhile, some results in graph theory such as Yeo’s theorem give a grammar
generating all graphs in certain classes. Here, we explore the links between sequentialization for
MALL0,2

uf proof-nets and a new notion of edge-coloring for multigraphs.

Outline This chapter is organized as follows. First are given definitions from the theory of
graphs: graphs, paths,. . . (Section 3.1). We then define our notion of coloring, and prove a simple
but key result: the Bungee Jumping lemma (Section 3.2). The core of this chapter, with our
main contribution, is a generalization of Yeo’s theorem [Yeo97] (Section 3.3). Finally, some folklore
results that will be of use in this thesis are presented (Section 3.4).

3.1 Graphs & Paths

We define here graphs and paths. Compared to what can usually be found in the literature, our
graphs are directed partial multigraphs, on which we will consider undirected paths, i.e. paths in
the underlying undirected total multigraph. We start with a quick reminder of the usual vocabulary
on graphs (Section 3.1.1) before presenting our own version (Section 3.1.2). We then define paths
on these graphs (Section 3.1.3).

3.1.1 Undirected graphs

In the literature, e.g. [Die05], are defined what we call in this thesis undirected graphs. We
recall here quickly some of the associated terminology to differentiate afterwards with ours. These
graphs are made of vertices and arcs between them, and are total undirected multigraphs: each arc
is between a pair of vertices (possibly the same one taken twice), these pairs not being ordered;
there may be several arcs between the same pair of vertices. An arc-coloring is a function with
domain the set of arcs of the graph, and an arbitrary codomain, whose elements are called colors.
Even though such a coloring is usually called an edge-coloring, we prefer to reserve this term for
another notion of coloring that we will define later. To be particularly clear on this point, when
speaking of edge-coloring in this thesis, we exclusively mean a more general notion that the usual
one, the latter being renamed arc-coloring.

3.1.2 Graphs

We define here the notions of graphs we will use. Be careful: some notions and names given here
do not correspond exactly to those usually used in the literature.

114

CHAPTER 3. GRAPH THEORY

A (directed finite partial multi) graph is a 4-tuple (V,A, s, t) where V is a finite set whose
elements we call vertices, A one whose elements are arcs, and the source s and target t functions
are partial functions from A to V.

The endpoints of an arc a are its source s(a) and target t(a) (if defined). An arc is incident
to a vertex if this vertex is either its source or its target, in other words one of its endpoints. An
arc a is total if both s(a) and t(a) are defined. A loop arc is a total arc a such that s(a) = t(a).

A graph is total if s and t are total functions and empty if V = A = ∅. It is simple if no two
arcs have the same endpoints, in other words there is at most one arc between two given vertices.
A graph is loop-free if it has no loop arc.

Many notions lift immediately from graphs to partial graphs and moreover from any partial
graph, one can recover an underlying (directed total multi) graph by restricting A to the to-
tal arcs. As an example, one can consider isomorphism of graphs: two graphs (V,A, s, t) and
(V ′,A′, s′, t′) are isomorphic if there are bijections f and g respectively from V to V ′ and from A
to A′ such that for any arc a ∈ A, s(a) (resp. t(a)) is defined if and only if s′(g(a)) (resp. t′(g(a)))
is and in this case s′(g(a)) = f(s(a)) (resp. t′(g(a)) = f(t(a))).

An edge is an arc a together with a direction in {+,−}; we use the notations a+ and a− for
these edges, and call a the support of the edge. We note E the set of edges of the graph. The
functions source and target are extended to edges by s(a+) = s(a) = t(a−) and t(a+) = t(a) = s(a−)
– which can be defined or not. As for arcs, we call endpoints the source and target of an edge. If
ε is a direction, ε is the opposite one. If e is an edge aε then its reverse e is aε. We say e is total
when a is. Two edges e1 and e2 are composable if the target of e1 is defined and equal to the
source of e2. A loop edge is an edge supported by a loop arc; equivalently, it is an edge that is
composable with itself.

Given a graph G = (V,A, s, t), a sub-graph of G is a graph G′ = (V ′,A′, s′, t′) such that V ′ ⊆ V,
A′ ⊆ A and for any a ∈ A′, if s(a) (resp. t(a)) is defined and belongs to V ′ then s′(a) = s(a) (resp.
t′(a) = t(a)), and otherwise s′(a) (resp. t′(a)) is undefined. An induced sub-graph is a sub-graph
whose set of arcs A′ is made exactly of arcs whose both endpoints are in its set of vertices V ′. A
sub-graph is proper if it is not the graph itself, nor the empty graph. Given sub-graphs S and R,
their union S ∪R (resp. their intersection S ∩R) is the sub-graph whose sets of vertices and of
arcs are the union (resp. intersection) of those of S and R.

There are two natural notions of removing a vertex v in a graph G. The graph G \ v is obtained
by removing v from the vertices of G. As a consequence arcs stay the same but the source and
target functions become less defined: arcs incident to v lose a source or target. Meanwhile, G − v
also has for vertices those of G except v but erases all edges incident to v. Remark that if G is
total, then G− v also is, but not necessarily G \ v.

The cardinal of a set S will be denoted #|S|.

Definition 3.1 (Degree). The in-degree deg in(v) of a vertex v is the number of arcs of target v:
deg in(v) = #|{a ∈ A | t(a) = v}|. Similarly, the out-degree degout(v) of a vertex v is the number
of arcs of source v: degout(v) = #|{a ∈ A | s(a) = v}|.

We set the degree deg(v) of a vertex v as deg(v) = deg in(v) + degout(v).

The maximal degree ∆(G) of a graph G is the maximum of the degrees of its vertices:
∆(G) = maxv∈V deg(v).

115

3.1. GRAPHS & PATHS

3.1.3 Paths

A path p is a pair (v, e⃗) of a vertex v and a finite sequence e⃗ of total and consecutively composable
edges such that e⃗ is empty – in which case p is an empty path – or v is the source of the first
edge of e⃗. The vertex v is the source of p and the target of p is the target of the last edge in e⃗,
if e⃗ is not empty, and v otherwise. Since we require all edges of a path to be total, we are in fact
considering undirected paths (since arcs can be crossed in both directions) in the underlying total
graph. Again, the source and target of a path are its endpoints.

By considering v followed by the targets of the edges in e⃗, a path p induces a non-empty sequence
of vertices. A vertex u is a vertex of p if it belongs to this sequence. Since a given vertex may
occur more than once in this sequence, we may have to talk about occurrences of vertices in
a path to distinguish these equal values. An occurrence of a vertex in a path is internal if it is
neither the source nor the target occurrence. An arc of a path is the support of one of its edges.

Two paths p1 = (v1, e⃗1) and p2 = (v2, e⃗2) are composable if t(p1) = s(p2) – recall that both
are always defined – and, in that case, we define their concatenation p1 · p2 as (v1, e⃗1 · e⃗2). The
reverse p of a path p is obtained by reversing the order of edges and taking the reverse of each
edge. Moreover its source is the target of p, and conversely.

A path q is a sub-path of a path p if its edges are a contiguous sub-sequence of the edges of p,
or q is an empty path and its source is a vertex of p. Equivalently, q is a sub-path of p if there exist
two paths q1 and q2 such that p = q1 · q · q2. In the same spirit, q is a prefix of p if q1 is empty,
and a suffix of p if q2 is empty. If v1 and v2 are two occurrences of vertices of a path p, with v1
occurring before v2, there is a unique sub-path of p with source v1 and target v2, that we denote
by pv1�v2 .

A path is arc-simple if its arcs are pairwise distinct. A path is vertex-simple, that we
will simply call simple, if it is arc-simple and its vertices are pairwise distinct except possibly
its endpoints which may be equal. A path is bouncing if it contains two consecutive equal arcs;
equivalently, a path is bouncing if it contains a sub-path of the shape e · e, or e · e – in the latter
case, e must be a loop edge.

A path is closed if it has equal endpoints, otherwise it is open. A cycle is a non-empty simple
closed path. A graph is acyclic if it has no cycle.

Our notion of simple path corresponds to the one usually used in the literature. Nonetheless,
proving that the concatenation of two simple paths is simple is harder than doing the same for
arc-simple paths.

Fact 3.2 (Concatenation of arc-simple paths). If p1 and p2 are two arc-simple paths such that
t(p1) = s(p2) and the arcs of p1 are disjoint from those of p2, then p1 · p2 is arc-simple.

Lemma 3.3. A non-bouncing path with pairwise distinct vertices except possibly its endpoints is
simple.

Proof. We have to prove that we cannot have equal arcs in the path. If so they cannot be consec-
utive, but in this case their endpoints provide two disjoint pairs of occurrences of equal vertices in
the path which contradicts the fact that only the endpoints may be equal.

Lemma 3.4 (Concatenation of simple paths). If p1 and p2 are two simple open paths and their
unique common vertices are the target of p1 and the source of p2, and possibly the target of p2 and
the source of p1, and if the last arc of p1 is different from the first arc of p2, then p1 · p2 is simple.

116

CHAPTER 3. GRAPH THEORY

Proof. If two vertices of p1 · p2 are equal, they must be its endpoints: if one of them is v1 in p1 for
example (and not the source of p1), it is not equal to another vertex in p1 as p1 is simple and open,
and it is not equal to a vertex v2 in p2 as the only possibility would be the source of p2 and in this
case the occurrences v1 and v2 are the same (identified in the concatenation). Now, by Lemma 3.3,
it is enough to prove that p1 · p2 is not bouncing. As the two paths are simple, the only possibility
would be if the last arc of p1 is equal to the first arc of p2, a contradiction.

Lemma 3.5 (Concatenation of disjoint simple paths). If p1 and p2 are two simple open or empty
paths with t(p1) = s(p2) being their unique common vertex then p1 ·p2 is simple and open or empty.

Proof. If p1 or p2 is empty, the result is immediate. Otherwise one can apply Lemma 3.4 since the
source of the last edge of p1 is not in p2. Moreover p1 · p2 is open since the source of p1 does not
belong to p2.

Connectivity is not immediate to define in partial graphs because paths contain total edges only.
Two vertices v and u are connected if there exists a path with source v and target u. Two arcs
are connected if they are equal1 or incident to two connected vertices. Two edges are connected
if their supports are. A (sub-)graph is connected if all its pairs of arcs are. A connected
component is a largest sub-set of V such that for any pair of vertices inside are connected.

3.2 Edge-coloring & Bungee Jumping
We define here our notion of coloring, named (local) edge-coloring. It is a generalization of the arc-
coloring from the literature (i.e. the usual edge-coloring) that, at the best of the author’s knowledge,
is a novel concept. In this section is also proved a simple but useful result: the Bungee Jumping
lemma.

3.2.1 Edge-coloring, Bridge & Splitting vertex
An edge-coloring of a graph G is any function c with as domain the set of edges E of G. We can
see an edge-coloring equivalently as a coloring of half-arcs: by convention, we consider that c(a+)
is the color of the target half-arc of a, and c(a−) is the color of the source half-arc of a – without
presuming that a source or target vertex is defined. We recover the standard notion of arc-coloring
when c(e) = c(e) for every edge e. An example of edge-colored graph is given on Figure 3.2. On
this drawing, as for all other illustrations, we represent an edge-coloring as an “half-arc coloring”
for it is the intuitive way to understand it. Nonetheless, we will always speak of edge-coloring as
we mainly consider (undirected) paths, and edges occur naturally in those contrary to half-arcs.

A bridge of pier v is a pair of (possibly equal) edges (e, f) such that t(e) = s(f) = v, e ̸= f and
c(e) = c(f) – which is called the color of the bridge. Equivalently, (e, f) is a bridge of pier v if
and only if t(e) = t(f) = v, e ̸= f and c(e) = c(f). Note that (e, f) forms a bridge if and only if the
reverse (f, e) does, and they share the same pier and color. The only bridges of the edge-colored
graph in Figure 3.2 are (a+, b−) and its reverse (b+, a−).

Fact 3.6. Let v be a vertex and e1, e2, e3 three edges of target v with e1 ̸= e2.

• If (e1, e2) is not a bridge, then at least one of (e3, e1) and (e3, e2) is not a bridge.
1This first condition is necessary for arcs with undefined source and target.

117

3.2. EDGE-COLORING & BUNGEE JUMPING

u

v w

a b

c

Edge-coloring c:

c(a+) = solid c(a−) = solid

c(b+) = solid c(b−) = dashed

c(c+) = dashed c(c−) = solid

Figure 3.2: Example of edge-colored graph

• If both (e1, e3) and (e3, e2) are bridges, then (e1, e2) is one as well.

Proof.

• We have c(e1) ̸= c(e2), thus we cannot have both c(e3) = c(e1) and c(e3) = c(e2).

• By contrapositive, if (e1, e2) is not a bridge, then applying the previous item we would get
that either (e3, e1) or (e3, e2) is not a bridge.

An internal bridge of a path p is (an occurrence of) a length-2-sub-path e · f of p, such that
(e, f) forms a bridge. More generally, a bridge of a path p is either an internal bridge of p, or the
pair (e, f) with e the last edge of p and f the first edge of p, in case this pair forms a bridge – and
then p is a closed path, and possibly a loop when e = f . Remark that the reverse of a path contains
the same number of bridges as this path, as well as the same piers. A bridge-free path (resp.
internal-bridge-free path) is one without bridge (resp. internal bridge). Note that in the case of
a cycle reduced to a loop, say e with s(e) = t(e), this loop is bridge-free if and only if c(e) ̸= c(e),
and a loop is always internal-bridge-free since it has no length-2-sub-path.

We say that e is a bridge arch when e is not a loop edge and (e, f) is a bridge for some
non-loop edge f which has a different support than e – in other words, when e · f is a simple
internal-bridge-free path.

We call splitting a vertex v such that any cycle containing it has a bridge of pier v. We
will show in Section 3.3.5.1 that this notion of splitting vertex fits the usual notion at play in the
conclusion of Yeo’s theorem [Yeo97] (illustrated on Figure 3.1).
Remark 3.7. This notion of edge-coloring does not seem to be standard in the literature. Note that,
when used only through the notions of bridges and splitting vertices, the fact that a given color is
given for edges with different targets has no impact. This means that we could use different sets
of colors depending on each target vertex. Plus, this would be equivalent to defining equivalence
relations on the sets of edges with the same target. We keep the idea of edge-coloring for it comes
as a direct generalization of arc-coloring.

3.2.2 Bungee Jumping
We prove here our key intermediate result, and two of its corollaries we use in the proof of our main
result. The idea of this lemma is to show that some notion of backtracking cannot happen, ensuring
some kind of progress. Typically, it will be used to prove that, in a graph with no bridge-free cycle,
if one leaves a cycle with a minimal number of bridges from one of its bridge pier using a bridge-free
path, then it is impossible for this path to cross the cycle it started from. As it shows that when
leaving a bridge, it is not possible to crash back on this bridge, we call it Bungee Jumping.

118

CHAPTER 3. GRAPH THEORY

v

κ u

d

e1 f1 f2

ω

e2

p

e g

κ

c

Figure 3.3: Illustration of Lemma 3.8

Lemma 3.8 (Bungee Jumping). Fix an edge-coloring c of a graph G and v a vertex of G. Assume
ω is a cycle starting from v which contains an internal bridge (f1, f2) of pier κ and of color a =
c(f1) = c(f2). Also suppose there exists a simple open bridge-free path p starting from κ with an
edge e such that c(e) ̸= a, ending on a vertex u of ω, and whose vertices in common with ω are
exactly its endpoints κ and u. Then there exists a bridge-free cycle containing p or there exists a
cycle c with source v and strictly less bridges than ω, in which case v is a bridge pier of c only if it
is a bridge pier of ω.

Proof. Use Figure 3.3 as a reference for notations. We denote by v1 the occurrence of v at the
source of ω, by v2 its occurrence at the target of ω. We also set e1 the first edge of ω, e2 its last
edge, and g the last edge of p.

By symmetry (considering the reverse of ω if necessary), we can assume that u is in ωκ�v2 and
if u = v2 then (g, e1) is a bridge only if (e2, e1) is a bridge. Indeed, if u /∈ ωκ�v2 , we reverse ω. And
if u = v2 and (g, e1) is a bridge but (e2, e1) is not a bridge, then necessarily (g, e2) is not a bridge
(Fact 3.6) and we reverse ω.

Consider the closed path c = ωv1�κ · p · ωu�v2 (see Figure 3.3): c is non-empty (because p is
non-empty) and simple (because ωu�v2 · ωv1�κ · p is simple by Lemma 3.4), hence it is a cycle.
Moreover v is bridge pier of c only if it is a bridge pier of ω.

Let us now count the number of bridges in our two cycles. Since p is bridge-free and c(e) ̸= c(f1),
c contains bcv +n1 + bcu+n3− δv,ubcv bridges, while the number of bridges in ω is bωv +n1 +1+n2 +
bωu + n3 − δv,ubωv , where:

• bcv (resp. bcu) is 1 if v (resp. u) is a bridge pier of c and 0 otherwise;

• bωv (resp. bωu) is 1 if v (resp. u) is a bridge pier of ω and 0 otherwise;

• n1 (resp. n2, n3) is the number of bridges of ωv1�κ (resp. ωκ�u, ωu�v2);

• δv,u is 1 if v = u and 0 otherwise.

Comparing these two numbers, the number of bridges of ω minus the number of bridges of c is
(bωv − bcv)(1− δv,u) + 1 + n2 + bωu − bcu.

119

3.2. EDGE-COLORING & BUNGEE JUMPING

If c has strictly less bridges than ω, meaning the above quantity is positive, then we are done.
Otherwise, as by hypotheses 0 ≤ bcv ≤ bωv ≤ 1, we must have bcu ≥ 1+n2 + bωu . This is only possible
if bcu = 1, n2 = 0 and bωu = 0. In this case, we consider the closed path d = p ·ωκ�u. It is bridge-free
since c(e) ̸= c(f2) and u is not a bridge pier of d – by bcu = 1 and bωu = 0, using Fact 3.6. Moreover
d is simple by Lemma 3.4 and thus is a bridge-free cycle containing p.

Remark 3.9. The proof of Lemma 3.8 is obviously constructive: changing if necessary ω’s orienta-
tion, the cycles we are looking for are p · ωκ�u and ωv1�κ · p · ωu�v2 .

Definition 3.10. For a vertex v, we denote by Mv the set of cycles:

• with source (and target) v;

• whose last and first edges do not make a bridge of pier v;

• with a minimal number of bridges among all cycles respecting the previous two conditions.

The set Mv is empty if and only if v is splitting.

Corollary 3.11 (Small Bungee Jumping). Fix an edge-coloring c of a graph G, v a vertex of G,
and ω ∈ Mv. Assume ω contains a bridge (f1, f2) of pier κ and of color a = c(f1) = c(f2), and
there is a simple open bridge-free path q starting from κ with an edge e such that c(e) ̸= a, and
ending on a vertex u of ω. Then there exists a (non-loop) bridge-free cycle containing κ.

Proof. By taking a prefix of q if necessary, we can assume that q does not share any vertex with ω
other than its (distinct) endpoints κ and u. We apply Lemma 3.8 to ω and q. Since ω ∈ Mv, we
cannot find a cycle with source v, no bridge at v and strictly less bridges than ω. We thus have a
bridge-free cycle containing e, so a non-loop one containing κ.

Corollary 3.12 (Big Bungee Jumping). Let G be a graph with an edge-coloring c. Assume ω is a
cycle with source v, and x and y are two internal vertices of ω with x occurring before (or equal to)
y, and with at least one pier between x and y (possibly x or y). Let fx be the edge of ω with target
x and fy be the reverse of the edge of ω with source y. Suppose l is a vertex such that we have a
path ρ from x to l, a path χ from y to l and an edge e with source l such that:

• ρ · e and χ · e are simple paths;

• fx · ρ · e and fy · χ · e are internal-bridge-free paths;

• the only vertices of ρ or χ which may belong to ωy�v ·ωv�x are x and y (which might be equal
to l when one of these paths is empty).

If there is a path p such that:

• e · p is a simple open bridge-free path;

• its target u belongs to ωy�v · ωv�x;

• both ρ and χ have no vertex in common with p;

then there exists a bridge-free cycle containing e or there exists a cycle c with source v and strictly
less bridges than ω, in which case v is a bridge pier of c only if it is a bridge pier of ω.

120

CHAPTER 3. GRAPH THEORY

v

x y

κ

l

u
fx fy

ω

ρ
0

ρ 1

χ 0

χ
1

e p
c

q

Figure 3.4: Illustration of Corollary 3.12

121

3.3. A GENERALIZATION OF YEO’S THEOREM

Proof. Use Figure 3.4 as a reference for notations. By taking a prefix of p if necessary, we can assume
that p does not share any vertex with ωy�v · ωv�x other its target u (in case t(e) is in ωy�v · ωv�x,
p is the empty path). Consider κ the first vertex of ρ which belongs to χ. We have ρ = ρ0 · ρ1 and
χ = χ0 ·χ1 with κ as target of ρ0 and χ0. We consider the closed path c = ωv�x ·ρ0 ·χ0 ·ωy�v which
starts with v and has v as bridge pier only if it is also the case for ω. The path c is simple since
(ωy�v · ωv�x) · (ρ0 · χ0) is, by Lemmas 3.4 and 3.5, thus it is a cycle. Remark that, by hypotheses,
the only bridge of c which is not a bridge of ω, is a possible bridge of pier κ. If κ is not a bridge pier
of c then c has strictly less bridges than ω, the latter containing a pier between x and y. Otherwise
c contains a bridge of pier κ (and at most as many bridges as ω) and we apply Lemma 3.8 on this
cycle with the path q = χ1 · e · p.

We have already seen that c satisfies the hypotheses of Lemma 3.8. Now concerning χ1 · e · p:
it is a simple path by Lemma 3.5 since e · p is simple and χ has no vertex in common with p, and
it is bridge-free since e · p is bridge-free and f2 · χ · e has no internal bridge. Moreover, since κ is a
bridge pier of c and fy ·χ ·e is bridge-free, the color of the reverse of the first edge of χ1 ·e ·p cannot
be the color of the bridge at κ in c. Finally, χ1 · e · p shares only its endpoints with c. Indeed, the
only vertex of χ1 in ωy�v ·ωv�x is possibly its source2 and χ1 is disjoint from ρ0 by definition of κ;
meanwhile p has only its target u inside ωy�v ·ωv�x, and share no vertex with ρ and χ, hence with
their respective prefixes ρ0 and χ0.

Thus, Lemma 3.8 yields a wished cycle containing v, or a bridge-free cycle containing χ1 · e · p,
and in particular containing e.

3.3 A generalization of Yeo’s theorem

We give here our main contribution for this chapter: a generalization of Yeo’s theorem [Yeo97].
Yeo’s theorem states that an arc-colored graph with no bridge-free cycle has a splitting vertex.
We generalize it in the context of edge-coloring and by weakening its hypothesis through allowing
some bridge-free cycles, as well as by giving more control on which vertex is found splitting: the
found vertex will be maximal for a particular ordering. This last property will be particularly useful
because we also add to this theorem a parameter E, and the given splitting vertex will be the target
of one of these edges. When applying our theorem to the theory of proof-nets, we recover different
proofs of sequentialization from the literature (namely all proofs by splitting vertex) by adjusting
the value of this parameter.

The allowed values for this parameter depends on the order from which the found splitting
vertex will be maximal: this order is defined in Section 3.3.1. Once this relation given, we can
state our main result in Section 3.3.2, and prove it in Section 3.3.3. As the hypotheses of this
theorem are quite involved, we show using counter-examples in Section 3.3.4 that they are all
needed. Afterwards, in Section 3.3.5 are given corollaries of our result, among which Yeo’s theorem
itself as well as one of its generalization to H-coloring; this shows our notion of edge-coloring is
useful even outside the sequentialization of proof-nets. Then, we consider in Section 3.3.6 theorems
equivalent to Yeo’s theorem: we show that Yeo’s theorem on edge-colored graph is equivalent to
its original version from [Yeo97] on arc-coloring, but prove that a series of theorems known to be
equivalent to it can all be easily deduced from our edge-colored version without the need of an
encoding modifying vertices or arcs. The last section, Section 3.3.7, describes the well-known use of

2As the only vertices of χ in ωy�v · ωv�x are its source y and possibly x, if the latter is a vertex of χ then
x = κ = s(χ1).

122

CHAPTER 3. GRAPH THEORY

Yeo’s theorem to obtain an inductive definition of graphs with no bridge-free cycle, as well as links
with proof-nets, the objects of the next chapter.

3.3.1 Order on edges

Here, we fix a graph G with an edge-coloring c. We define two relations on edges, that will be of
use in all this section about Yeo’s theorem.

Definition 3.13 (↱, ◁). Given an edge e and a vertex v, we write e
p

↱ v if p is a simple, open,
bridge-free path from t(e) to v such that the reverse of its first edge is not colored c(e). We moreover

write e
p

↱ f when the last edge of p is f . We simply write e ↱ v (resp. e ↱ f) whenever such a path
exists.

We then write e
p
◁ f when e

p

↱ f and there is no vertex u of p such that f ↱ u. Again, we may
simply write e◁ f when such a path exists.

Remark 3.14. If e
p

↱ u, then the first edge e′ of p not only satisfies c(e′) ̸= c(e) (thus e ̸= e′ and
(e, e′) is not a bridge), but e′ has not the same support as e. Indeed, if it were the case we would
have e′ = e being a loop; contradiction as p is simple and open. Also remark that asking the reverse
of the first edge to not be colored c(e) is stronger than asking the first edge not to make a bridge
of pier t(e) with e, for (e, e) is not a bridge.

Lemma 3.15. Let e, f and g be edges, v a vertex and p and q paths. If e
p
◁ f and f

q

↱ v (resp.

f
q

↱ g) then e
p·q
↱ v (resp. e

p·q
↱ g).

Proof. Assume e
p
◁ f

q

↱ v, and consider the path p · q, with source t(e) and target v. The reverse
of its first edge is not colored c(e), and it is bridge-free as f and the first edge of q do not make a

bridge of pier t(f) = t(p) = s(q). To have e
p·q
↱ v, it remains only to show that p · q is open and

simple.
Let q′ be any prefix of q such that u = t(q′) occurs in p: q′ is simple and bridge-free by

construction, and the reverse of its first edge, if any, is not colored c(f). If q′ is not empty, then it is

open because q is open and simple: it follows that f
q′

↱ u, contradicting e
p
◁ f . The only occurrence

of a vertex of p in q is thus at its source, hence p · q is simple (by Lemma 3.5) and open.
If we moreover assume that the last edge of q is g, then this also holds for p · q, and we obtain

e
p·q
↱ g.

Lemma 3.16. The relation ◁ is a strict partial order on edges.

Proof. The relation ◁ is irreflexive: e
p

↱ e implies s(p) = t(e) = t(p) with p open, a contradiction.

Now assume e
p
◁ f

q
◁ g. We obtain e

p·q
↱ g by Lemma 3.15. To get e

p·q
◁ g, it only remains to show

that if g
ρ

↱ v then v does not occur in p · q. First observe that v cannot occur in q as f
q
◁ g. And,

by Lemma 3.15, f
q·ρ
↱ v, so e

p
◁ f implies that v does not occur in p either.

Remark 3.17. If e◁ f then f is total and is not a loop.

123

3.3. A GENERALIZATION OF YEO’S THEOREM

ω1

ω2

ω3

ω4

Figure 3.5: Graph with O = {Ω1; Ω2} where Ω1 = ω1 ∪ ω2 ∪ ω3 and Ω2 = ω4.

We say a set of edges F dominates a set of edges E if for all e ∈ E, one has e ∈ F or ∃f ∈ F ,
e◁ f . Notice that if E ⊆ F , then F dominates E. Moreover, if F dominates the maximal elements
of E, then it dominates E.

3.3.2 Parameterized Local Yeo with Cycles
Definition 3.18. Given a graph G with an edge-coloring c, we note O the set of non-empty
maximal (for the inclusion) connected unions of bridge-free cycles of G.

As an example, see Figure 3.5 with an edge-colored graph and the value of O in its caption.
Consider the following generalization of Yeo’s theorem, which will be the basis of our proof of

sequentialization.

Theorem 3.19 (Parameterized Local Yeo with Cycles). Take G a graph with an edge-coloring c,
and a function e which for every Ω ∈ O gives an edge e(Ω) such that:

(H0
G) for every Ω ∈ O, s(e(Ω)) ∈ Ω and t(e(Ω)) /∈ Ω;

(H1
G) for every Ω ∈ O and for all edges f such that t(f) = s(e(Ω)) and f ̸= e(Ω), we have c(f) ̸=

c(e(Ω)).

Pose E a set of edges dominating Ein = {e ∈ E | e is a bridge arch} ∪ {e(Ω) | Ω ∈ O} but disjoint
with Eout = {e(Ω) | Ω ∈ O}. The target (if it is defined) of any element of E maximal for ◁ (i.e.
for ◁ restricted to E) is a splitting vertex.

The parameter gives some control over which splitting vertex can be found, allowing in the
context of proof-nets to obtain both a proof of sequentialization by splitting negative vertex and one
by splitting terminal vertex (see Section 4.3.6). For some visual intuition, consider the illustration
on Figure 3.6: the key point is that while maximal elements of Ein are splitting, they may not be
maximal in E, and edges above them have splitting targets.

The requirements on E of Theorem 3.19 may be contradictory, in particular if for Ω ̸= Ω′ ∈ O,
it holds that e(Ω) = e(Ω′). Notwithstanding this case, the conditions can be satisfied.

Lemma 3.20. Let G be a graph respecting (H1
G) as well as:

(H2
G) for Ω ̸= Ω′ ∈ O, e(Ω) ̸= e(Ω′).

Then Ein and Eout are disjoint.

124

CHAPTER 3. GRAPH THEORY

E

non splitting target

EinEin

E

Figure 3.6: Illustration of the interest of the parameter E in Theorem 3.19; maximum elements
for ◁ are on top

Proof. By (H1
G), any e(Ω) for Ω ∈ O cannot be a bridge arch. Moreover, for any Ω ∈ O, e(Ω)

cannot be some e(Ω′) for a Ω′ ∈ O. Indeed, it is not the case for Ω′ = Ω (an edge is never equal to
its reverse), and if Ω′ ̸= Ω then by (H2

G) e(Ω) ̸= e(Ω′).

3.3.3 Proof of Parameterized Local Yeo with Cycles
The idea behind our proof of Theorem 3.19 is quite simple: an edge of target a non-splitting vertex
cannot be maximal for ◁, even when restricted to E, excepted if this edge is in Eout. To show this,
we apply the Bungee Jumping lemma through its two corollaries when the edge we consider is not
in a bridge-free cycle; otherwise, we demonstrate some e(Ω) is greater.

To this end, we first need a study on properties of connected unions of bridge-free cycles, that
are the central objects here (Section 3.3.3.1). Once this study done, finding a splitting vertex is
easy (Section 3.3.3.2).

3.3.3.1 ↱-connectivity

Definition 3.21 (↱-connectivity). A sub-graph S is said to be ↱-connected if for all v and u
distinct vertices in S, for any edge e of target v (e not necessarily in the sub-graph S), there exists

inside S a path p such that e
p

↱ u.

The goal of this section is proving Corollary 3.24: connected unions of bridge-free cycles are
↱-connected.

Lemma 3.22. A bridge-free cycle is ↱-connected.

Proof. Take a bridge-free cycle ω, v ̸= u vertices in ω and e an edge of target v. As ω is a cycle
containing v, and not a loop for v ̸= u, it contains two different edges f and g, respectively with
target v and with source v. Then (f, g) is not a bridge, for ω is bridge-free. Thus, one of f and g
does not make a bridge of pier v with e (Fact 3.6). Say (e, f) is not a bridge (up to swapping f and

g). Call p the (maybe reversed) sub-path of ω from v to u starting with f : e
p

↱ u as ω is a non-loop
bridge-free cycle and by hypothesis on f .

Lemma 3.23. Let S and R be ↱-connected sub-graphs having at least one vertex in common. Then
S ∪R is ↱-connected.

125

3.3. A GENERALIZATION OF YEO’S THEOREM

Ω

v

x

q

u
e

p

f

Figure 3.7: Illustration of the proof of Lemma 3.25

Proof. Take vertices v ̸= u ∈ S ∪R and e an edge of target v. If v, u ∈ S (resp. v, u ∈ R), then we
conclude using ↱-connectivity of S (resp. R). Without any loss of generality, assume v ∈ R\S and
u ∈ S\R.

By hypothesis, there exists a vertex x ∈ S ∩R; necessarily v ̸= x. By ↱-connectivity of R, there
is a simple, open, bridge-free path p from v to x inside R, such that the reverse of its first edge is
not colored c(e). Consider p′ a minimal prefix of p ending in S∩R, so that p′ is a simple, bridge-free
path with no vertex in S safe for its target t(p′) ∈ S ∩ R. Remark p′ is open (and not empty) for
its source v /∈ S cannot be its target. Furthermore, the first edge of p′ is the first edge of p.

Call f the last edge of p′. By ↱-connectivity of S, and as R ∋ t(p′) ̸= u /∈ R, there is a simple,
open, bridge-free path q in S from t(p′) to u, such that the reverse of its first edge is not colored
c(f). Thus, p′ · q is a simple, open, bridge-free path from v to u (Lemma 3.5). Its first edge is the

first edge of p′, so of p, thence e
p′·q
↱ u.

In other words, the previous lemma tells us that a connected (i.e. non-disjoint) finite union of
↱-connected is ↱-connected. An immediate corollary is that for union of bridge-free cycles, being
↱-connected is the same as being connected.

Corollary 3.24. A finite union of bridge-free cycles is ↱-connected if and only if it is connected.

Proof. The direct implication is trivial. The reverse one follows from Lemmas 3.22 and 3.23, with
an induction on the number of bridge-free cycles. Let Ω =

⋃n
i=1 ωi be a connected union of n ∈ N

bridge-free cycles, denoted ωi for i ∈ J1;nK. The empty case n = 0 is trivial. Otherwise, n ≥ 1

and Ω = S ∪ ωn with S =
⋃n−1
i=1 ωi a union of n − 1 bridge-free cycles. By connectivity of Ω,

each connected component Sj of S respects Sj ∩ ωn ̸= ∅, with Sj a connected union of bridge-free
cycles. By induction hypothesis, each Sj is ↱-connected, and ωn also is by Lemma 3.22. Then, Ω is
↱-connected by repeated applications of Lemma 3.23 on ωn ∪S1, ωn ∪S1 ∪S2, . . . , ωn ∪S = Ω.

3.3.3.2 Finding a splitting vertex

Lemma 3.25. Take Ω ∈ O and e an edge from some vertex v in Ω to a vertex u not inside, such
that for all edges f of target v, if f ̸= e then c(f) ̸= c(e). For all vertices x ∈ Ω, e ↱ x cannot hold.

Proof. An illustration of this proof is given on Figure 3.7. Towards a contradiction, assume e
p

↱ x
for some x ∈ Ω. Up to taking a prefix, p has for only vertex in Ω its target x, with Ω ̸∋ u ̸= x ∈ Ω.
Call f the last edge of the non-empty path p. As Ω is ↱-connected by Corollary 3.24, there exists

a path q in Ω from x to v with either q empty or f
q

↱ v.

126

CHAPTER 3. GRAPH THEORY

By Lemmas 3.4 and 3.5 and Remark 3.14, ω = e · p · q is a cycle since p cannot start with e.
Moreover, it is bridge-free using the hypotheses on the paths and the one on the coloration of e to
obtain c(e) different from the color of the last edge of p · q.3 Therefore, Ω ∪ ω ⊃ Ω is a non-empty
connected union of bridge-free cycles, contradicting the maximality of Ω ∈ O.

Using the last result and hypothesis (H1
G), we prove a maximal element for ◁ cannot belong to

a bridge-free cycle.

Lemma 3.26. Take G a graph with an edge-coloring c respecting (H0
G) and (H1

G), and Ω ∈ O. For

any edge f with a target in Ω, f = e(Ω) or f
p·e(Ω)
◁ e(Ω) with p inside Ω.

Proof. Assume f ̸= e(Ω), for otherwise we are done. Call v = t(f) ∈ Ω, u = s(e(Ω)) ∈ Ω and
x = t(e(Ω)) /∈ Ω, thanks to (H0

G). By Corollary 3.24, there exists a path p in Ω from v to u with

either p empty or f
p

↱ u. The path p · e(Ω) is simple and open as all vertices of p belong to Ω while
the target x of e(Ω) is outside (Lemma 3.4). Moreover, p · e(Ω) is bridge-free as p is bridge-free and

using (H1
G). Hence, if p is non-empty then f

p·e(Ω)

↱ e(Ω) follows as the first edge of p · e(Ω) is the

first edge of p. If p is empty, then v = u and f
e(Ω)

↱ e(Ω) using f ̸= e(Ω) and (H1
G). In both cases,

we get f
p·e(Ω)

↱ e(Ω).

Furthermore, take any vertex y and assume e(Ω)
q

↱ y. Then y /∈ Ω by Lemma 3.25 and (H1
G).

In particular, y cannot be a vertex of p, and the only other vertex of p · e(Ω) is its target x, which

cannot be the target of q as q is simple, open and of source x. Hence, f
p·e(Ω)
◁ e(Ω).

This handles edges whose targets are in bridge-free cycles. For the others, we can apply the
Small Bungee Jumping if the pier we find does not belong to a bridge-free cycle, and the Big Bungee
Jumping if it does. In this last case, we need some study of paths, making the proof of the next
result a bit long.

Proposition 3.27. Take G a graph with an edge-coloring c respecting (H0
G) and (H1

G). Let v be a
non-splitting vertex of G, and e /∈ Eout an edge of target v. There exists f ∈ Ein such that e◁ f .

Proof. If v belongs to a bridge-free cycle, then the result follows by Lemma 3.26. Therefore, we
assume it is not the case.

As v is not splitting, Mv ̸= ∅. Take some ω ∈ Mv. This cycle contains at least one bridge –
and in particular is not a loop, for v is not a pier of this cycle. Up to reversing ω, assume it starts
with an edge not of support e nor making a bridge with e. This is possible as the first and last
edges of ω do not make a bridge, applying Fact 3.6. Notice we use here that ω is not a loop, for
otherwise we could have ω being the loop edge e. Denote by κ the first pier of ω. Remark v ̸= κ as
κ is internal in ω of source v. We have two cases, according to whether κ belongs to a bridge-free
cycle or not.

If κ does not belong to a bridge-free cycle, call f the last edge of ωv�κ, which is one of the two
edges making a bridge at κ; in particular, f is a bridge arch. By Corollary 3.11, any simple open

3We need here that e is colored differently by c than all other edges of target v not only in Ω but in the whole
graph, because we may have v = x and q empty, therefore we need our hypothesis for f the last edge of p – which
cannot be e by Remark 3.14.

127

3.3. A GENERALIZATION OF YEO’S THEOREM

v

x κ

y

fx

fy
ω

Ω

l

ρ

χ

w
e

p

Figure 3.8: Illustration of named elements in the proof of Proposition 3.27: case where v is not in
a bridge-free cycle but κ is

bridge-free path, starting from κ with an edge g such that c(g) ̸= c(f), cannot end on a vertex of
ω. So e

ωv�κ
◁ f .

We suppose from now on that κ belongs to a bridge-free cycle, and set Ω the maximal connected
union of bridge-free cycles containing κ. The set Ω is non-empty by hypothesis, so Ω ∈ O. We will
now name some vertices, edges and paths; see Figure 3.8 for an illustration. We use the shorthand
notation e for e(Ω). Set l = s(e) and w = t(e); by (H0

G), l ∈ Ω ̸∋ w. Pose x (resp. y) the first (resp.
last) vertex of ω belonging to Ω. Remark v /∈ {x; y} as v is not in any bridge-free cycle thus not in
Ω, and κ ∈ ωx�y. Let fx be the last edge of ωv�x, and fy be the reverse of the first edge of ωy�v.

By Lemma 3.26, there exists a path ρ in Ω between x and l such that either ρ is empty or fx
ρ·e
◁ e.

Similarly, by Lemma 3.26, there exists a path χ in Ω between y and l such that either χ is empty
or fy

χ·e
◁ e.

If there is a path q with source w and target some vertex u ∈ ωy�v · ωv�x such that q is empty

or e
q

↱ u, we will find a contradiction. Note that no vertex of q belongs to Ω otherwise we contradict
Lemma 3.25 by (H1

G). In particular u /∈ {x; y}, q and ρ are disjoint, q and χ are disjoint, and e · q is
simple and open. We then have a contradiction by Corollary 3.12: either e belongs to a bridge-free
cycle and it contradicts the maximality of Ω, or there is a cycle starting with v, with no bridge at
v and with strictly less bridges than ω, contradicting ω ∈ Mv. We thus conclude that there is no
such path as q. It means that w does not belong to ωv�x and that e ↱ u with u ∈ ωv�x cannot hold.

Since w /∈ ωv�x, by Lemma 3.5, p = ωv�x ·ρ · e is a simple open path (see Figure 3.8). Moreover,

it is bridge-free by construction. We thus get e
p

↱ e. Finally e
p
◁ e: otherwise e ↱ u with u in p but

we have already seen that it cannot happen with u in ωv�x, and not with u in ρ as well since fx
ρ·e
◁ e

or ρ is empty.

Proof of Theorem 3.19. Take e ∈ E maximal for ◁ (restricted to E): t(e) is splitting. Indeed,
otherwise there would be some f ∈ Ein such that e◁ f by Proposition 3.27. As E dominates Ein,
we would get f ∈ E or e◁ f ◁ g for some g ∈ E, contradicting the maximality of e.

3.3.4 All hypotheses are needed

We give here examples showing all hypotheses of Theorem 3.19 are needed, even with an arc-
coloring. The hypothesis (H0

G) will not be considered, as it is more on the side of the definition of

128

CHAPTER 3. GRAPH THEORY

ω

Figure 3.9: Graph without a splitting vertex, with a sole bridge-free cycle ω, having an arc out of
it not of the color of any adjacent arc out of ω

ω

Figure 3.10: Graph without a splitting vertex, with a sole bridge-free cycle ω, having an arc out of
it not of the color of any adjacent arc in ω

the function e than a condition it should respect. On all figures of this section, colors are identified
by the coloration and the shapes of the arcs, for all edge-colorings given here are arc-coloring.

We need hypothesis (H1
G), namely that e(Ω) is colored differently by c than all other edges of the

same target in the whole graph. In particular, it is important to have this hypothesis for all other
edges f in the whole graph, not only for those in Ω. Indeed, we need it to be colored differently
than these edges in Ω looking at the graph on Figure 3.9. This graph has no splitting vertex, and
has for only bridge-free cycle ω, which has an out-going edge (both the solid and dashed edges
work), colored differently than other edges outside ω.

We also need (H1
G) for edges from a vertex out of Ω and towards v, as shown by the graph on

Figure 3.10. This graph also has no splitting vertex, has for only bridge-free cycle ω, which has an
out-going edge (both solid edges work) colored differently from all other edges in the cycle.

To have a valid E, one needs the hypothesis (H2
G). A counter-example is the graph on Fig-

ure 3.11, with exactly two disjoint bridge-free cycles ω and ω′, whose edges e({ω}) and e({ω′})
share a same support (the dash-dotted arc). This graph has no splitting vertex, but for all non-
empty maximal connected union of bridge-free cycles Ω, meaning Ω ∈ {{ω}; {ω′}}, we have e(Ω)
between a vertex in Ω and a vertex outside, with e(Ω) colored differently than all other edges with
the same target. This is not a counter-example of Theorem 3.19, for no E respecting the statement
of the lemma can be defined: a set dominating {e({ω}); e({ω′})} must contains this set as both
elements are maximal for ◁; but then it contains e({ω}) = e({ω′}).

Lastly, there is a counter-example in the case where the chosen set of edges E is not disjoint
from Eout. Consider the graph on Figure 3.12, with e the dash-dotted edge taken towards the (sole)
bridge-free cycle ω. Then this graph respects (H0

G), (H
1
G) and (H2

G), e is maximal for ◁ but its
target is not splitting.

129

3.3. A GENERALIZATION OF YEO’S THEOREM

ω ω′

Figure 3.11: Graph without a splitting vertex and respecting (H0
G) and (H1

G)

ω

Figure 3.12: Graph respecting (H0
G), (H

1
G) and (H2

G) with an edge in Eout maximal for ◁ but
whose target is not splitting

As a last remark, consider a parallel with the single switching cycle conjecture in [HG05] (Con-
jecture 4.5): when replacing “non-empty maximal connected unions of bridge-free cycles” simply by
“bridge-free cycles” (in the definition of O, Definition 3.18), does the theorem still hold? The answer
here is no: the graph depicted on Figure 3.13 is a counter-example, having no splitting vertex but
such that for every bridge-free cycle, there exists an arc going out of it, not of the color of any other
adjacent arc. Nonetheless, this example seems hard to adapt as a counter-example of the single
switching cycle conjecture in the context of proof-nets. It still shows that if this conjecture holds,
then to prove it one must use the criterion (P3-) from Conjecture 4.5 not only for the set of linkings
considered, but also for some sub-sets of it.

3.3.5 Corollaries of the main result

In this section, we give various results Theorem 3.19 implies. In particular, we prove Yeo’s the-
orem (Theorem 3.31) as well as one of its known generalizations in the framework of H-coloring
(Theorem 3.33).

3.3.5.1 Yeo’s theorem and other generalizations as corollaries

Here are given a succession of generalization of Yeo’s theorem that Theorem 3.19 implies, restricting
iteratively until reaching Yeo’s theorem itself. To begin with, one can remove the parameter E, up
to adding the hypothesis (H2

G) from Lemma 3.20: for Ω ̸= Ω′ ∈ O, e(Ω) ̸= e(Ω′).

Theorem 3.28 (Local Yeo with Cycles). Take G a graph with an edge-coloring c and at least one
vertex. If G respects (H0

G), (H
1
G) and (H2

G), then it contains a splitting vertex.

Figure 3.13: Graph without a splitting vertex but with every bridge-free cycle (all three cycles are
bridge-free) having an arc out of it not of the color of any adjacent arc

130

CHAPTER 3. GRAPH THEORY

Proof. If there is a vertex which is not the target of any edge, it is splitting. Otherwise, the set E
of edges with a defined target and not in Eout is finite and non-empty – either O is empty or there
is at least one e(Ω), not in Eout by (H2

G) – and thus contains a maximal element e with respect to
◁ (Lemma 3.16). Using Lemma 3.20 to get Ein ⊆ E, one can apply Theorem 3.19 to conclude that
the vertex t(e) is splitting.

On the other hand, one can simplify by asking for no bridge-free cycle.

Theorem 3.29 (Parameterized Local Yeo). Take G a graph with an edge-coloring c and pose E a
set of edges of G dominating Ein = {e | e is a bridge arch}. If G has no bridge-free cycle, the target
(if it is defined) of any element e of E maximal for ◁ (i.e. for ◁ restricted to E) is a splitting
vertex.

Proof. As G has no bridge-free cycle, it trivially respects (H0
G) and (H1

G), which are about non-
empty union of bridge-free cycles, and Eout = ∅. By Theorem 3.19, the result follows.

This last result can be used as the basis for sequentialization of MLL0,2
uf proof-nets, in the same

spirit Theorem 3.19 will be used for sequentialization of MALL0,2
uf proof-nets in Section 4.3.

Theorem 3.30 (Local Yeo). Take G a graph with an edge-coloring c and at least one vertex. If G
has no bridge-free cycle, then it contains a splitting vertex.

Proof. As G has no bridge-free cycle, it trivially respects (H0
G), (H

1
G) and (H2

G), which are about
non-empty unions of bridge-free cycles. We conclude by Theorem 3.28.

As an example, the graph depicted on Figure 3.2 respects the hypotheses of this last theorem,
and u is its only splitting vertex.

Let us now move to more standard terminology on undirected total graphs and show that Yeo’s
theorem is a direct consequence of our local version. The definitions of connectivity, G\v and G−v
in Section 3.1 provide an alternative characterization of splitting vertices in edge-colored graphs: a
vertex v is splitting if and only if any two edges with target v and connected in G\ v have the same
color. We recover the more standards notions for (total) undirected graphs from those we defined
for (partial) graphs:

• Connectivity as defined for (partial) graphs leads to the standard notion when restricted to
total graphs.

• In an undirected graph, there is no point in making a distinction between arcs and edges, and
the natural notion of edge-coloring is arc-coloring.

• In an arc-colored undirected graph, an alternating cycle is a cycle where all consecutive
arcs are of different colors, and its first and last arcs also respect this property; i.e. it is a
bridge-free cycle.

Theorem 3.31 (Yeo’s Theorem). Let G be a non-empty arc-colored undirected graph with no
alternating cycle. There exists a vertex v of G such that no connected component of G− v is joined
to v with arcs of more than one color.

131

3.3. A GENERALIZATION OF YEO’S THEOREM

Proof. Let c be the arc-coloring of G, we can see G as a (directed partial multi) graph by choosing
an arbitrary direction on arcs, and define an edge-coloring c′ by c′(a+) = c′(a−) = c(a). Bridge-free
cycles with respect to c′ are exactly alternating cycles with respect to c. By Theorem 3.30, we get
a splitting vertex, that is a vertex v such that any two edges with target v and connected in G \ v
have the same color given by c′. This means in particular that no connected component of G − v
is joined to v with arcs of more than one color.

There is a simple proof of Theorem 3.29, hence of Theorem 3.31, as a direct corollary from
the Small Bungee Jumping (Corollary 3.11) – following the corresponding part in the proof of
Proposition 3.27. This is not the first very simple proof of Theorem 3.31: see [Nen14; LN22].

Alternative proof of Theorem 3.29. Take e a maximal element of E, and call v = t(e). Towards a
contradiction, assume v is not splitting.

Then, Mv ̸= ∅: take some ω ∈ Mv, considered as starting from v. This cycle contains at least
one bridge – and in particular is not a loop, for v is not a pier of this cycle. Up to reversing ω,
assume it starts with an edge not of support e nor making a bridge with e. This is possible as the
first and last edges of ω do not make a bridge, applying Fact 3.6. Notice we use here that ω is
not a loop, for otherwise we could have ω being the loop-edge e. Denote by κ the first pier of ω.
Remark v ̸= κ as κ is internal in ω of source v. Call f the last edge of ωv�κ, which is one of the two
edges making a bridge at κ; in particular, f is a bridge arch. By Corollary 3.11 and the absence of

bridge-free cycles, there is no path p such that f
p

↱ u for u a vertex of ω: hence e
ωv�κ
◁ f .

By hypothesis on E, either f ∈ E or we can find g ∈ E with f ◁ g. In both cases, e is not
maximal for ◁ in E: contradiction.

3.3.5.2 A generalization to H-coloring as a corollary

Actually, Theorem 3.30 also implies another generalization of Yeo’s theorem to H-colored graphs
from [Gal+22]. Given an undirected simple graph H, an H-coloring c of an undirected graph G
is an arc-coloring with colors the vertices of H. An H-cycle in an H-colored graph is a cycle in
which the colors of consecutive arcs (including the last and first ones) are adjacent in H.4

A complete multipartite graph G is an undirected simple graph which can be decomposed
into fully connected independent sets of vertices, i.e. its vertices are V = S1 ⊔ . . . ⊔ Sk (disjoint
union) where each Si is an independent set of vertices (no arcs in G between vertices of Si) and if
v ∈ Si and u ∈ Sj with i ̸= j, then v and u are adjacent in G.

Definition 3.32. Given (G, c) an H-colored graph, and v a vertex of G, Gv is the undirected
simple graph with vertices the arcs of G incident to v, and an arc between e and f if and only if
their colors c(e) and c(f) are adjacent in H.

Note that Gv only depends on the neighborhood of v (arcs incident to v) and on the sub-graph
of H induced by the colors of these arcs.

Theorem 3.33 ([Gal+22, Theorem 2]). Take H an undirected simple graph and G a non-empty
H-colored graph. Assume:

• G has no H-cycle;
4When H is a complete graph, we recover the standard notion of arc-coloring, and H-cycles then correspond to

alternating cycles.

132

CHAPTER 3. GRAPH THEORY

• for every vertex v of G, Gv is a complete multipartite graph.

Then there exists a vertex v of G such that every connected component D of G− v satisfies that the
set of arcs of G between v and vertices of D is an independent set in Gv.

Proof. Call c the H-coloring of G. We equip G with an arbitrary direction for arcs. We define an
edge-coloring c′ of G, with codomain (i.e. colors) the sets of arcs of G: c′(aε) is the independent set
in Gt(aε) to which a belongs. The result follows by Theorem 3.30, for G (with c) having no H-cycle
implies it (with c′) has no bridge-free cycle.

What happens is that, given the assumption that Gv is a complete multipartite graph, one can
consider its independent sets of vertices as corresponding to a given color. Considered locally on the
neighborhood of v, these colors define an edge-coloring. Edge-coloring seems to be a more natural
tool to describe the situation than the complete multipartite structure of some induced sub-graphs
of H. Remark a version of the theorem with G \ v instead of G− v also holds, with the same proof.

Our version, Theorem 3.33, is a slight generalization of [Gal+22, Theorem 2] as they require
H to be loop-free, and H and G to have no isolated vertices. The presence of exactly one or of
more than one arc between two vertices of H has no impact on H-coloring, hence on the theorem.
Remark our simple proof of Theorem 3.29 yields a simple proof of Theorem 3.33. The proof of Yeo’s
theorem from [LN22] is also written as generalizable to a simple proof of [Gal+22, Theorem 2].

As a last remark, one can also generalizes Theorem 3.33 in the presence of some H-cycles using
Theorem 3.28.

Theorem 3.34. Take H an undirected simple graph and G a non-empty H-colored graph. Call O′
the set of non-empty maximal (for the inclusion) connected unions of H-cycles in G. Equip G with
a function e which for every Ω ∈ O′ gives an arc e(Ω). Assume:

(H0
G
′
) for every Ω ∈ O′, the arc e(Ω) is between a vertex sΩ in Ω and some tΩ outside;

(H1
G
′
) for every Ω ∈ O′ and for every arc f adjacent to sΩ and distinct from e(Ω), we have c(f) and

c(e(Ω)) adjacent in H;

(H2
G
′
) for Ω ̸= Ω′ ∈ O′, e(Ω) ̸= e(Ω′).

(H3
G
′
) for every vertex v of G, Gv is a complete multipartite graph.

Then there exists a vertex v of G such that every connected component D of G− v satisfies that the
set of arcs of G between v and vertices of D is an independent set in Gv.

Proof. We define the same coloring c′ as in the proof of Theorem 3.33, using (H3
G
′
), so as to apply

Theorem 3.28. This is possible as elements of O′ for c correspond to those of O for c′, which directly
implies (H0

G) and (H2
G) from (H0

G
′
) and (H2

G
′
). Furthermore, (H1

G
′
) also implies (H1

G) for if c(f)
and c(e(Ω)) are adjacent in H then c′(f) ̸= c′(e(Ω)) (assuming f directed towards sΩ and e(Ω) from
it, up to reversing these edges).

3.3.5.3 A generalization to hypergraphs as a corollary

Let G be an undirected hypergraph: it is composed of a set of vertices and a set of (hyper)arcs,
with an (hyper)arc being a set of at least two vertices.5 A local coloring c of G is a function

5Hypergraphs generalize multigraphs except we lose the notion of loop, but this does not really matter here as a
loop is a bridge-free cycle.

133

3.3. A GENERALIZATION OF YEO’S THEOREM

a u

v w

Local coloring c:

c(u)(a) = red
c(v)(a) = red
c(w)(a) = blue

Figure 3.14: Example of locally colored hypergraph

Figure 3.15: Examples of a path simple of type 1 but not of type 2 (left), of type 2 but not of type
1 (middle) and of type 3 but not of type 4 (right)

taking as arguments a vertex v, an hyperarc a incident to (i.e. containing) v and returning a color
c(v)(a). An example of locally colored hypergraph is given on Figure 3.14. On our illustrations,
hyperarcs will be represented as dotted shapes.

A path is an alternating sequence of vertices and arcs (v1, a1, v2, a2, . . . , vn) (with at least one
vertex) such that for all i ∈ J1;nK, the arc ai is incident to the vertex vi as well as to the vertex
vi+1 if i ̸= n. Its source is v1 and its target vn. A path is closed if v1 = vn and open otherwise.
As in Section 3.1.3, one can define the concatenation of paths by identifying the source and target
occurrences and concatenating the two lists.

We can define several notions of simple paths in an hypergraph, by generalizing those on graphs.

1. Simple of type 1: does not contain the same vertex twice (except possibly as its endpoints),
and is not of the shape (v, a, u, a, v) – this is the adaptation to hypergraphs of non-bouncing.

2. Simple of type 2: does not contain the same arc twice.

3. Simple of type 3: simple of type 1 and of type 2.

4. Simple of type 4: simple of type 2 such that any two non-consecutive arcs (modulo this path,
with the last and first arcs consecutive in the case of a closed path) share no vertex.

We have simple of type 4 implies simple of type 3, which implies simple of type 1 and of type 2.
There exist simple paths of type 1 which are not simple of type 2, and vice-versa; there also are
simple paths of type 3 not simple of type 4 – see Figure 3.15 for counter-examples.

A cycle (of type i) is a non-empty, closed, simple path (of type i). A bridge of pier v is a pair
of (hyper)arcs (a, b) both incident to v such that c(v)(a) = c(v)(b). The number of bridges of a

134

CHAPTER 3. GRAPH THEORY

v1 v2

u

a

b1b2

ω c

Figure 3.16: Illustration of the proof of Lemma 3.35

v1 v2

u1u2

a

ωc

Figure 3.17: Illustration of the proof of Lemma 3.36

path is the number of consecutive arcs inside, say (vi, ai, vi+1, ai+1, vi+2), such that (ai, ai+1) is a
bridge of pier vi+1. Remark that the reverse of a path contains the same bridges as this path. A
bridge-free path is one without bridge. For a cycle to be bridge-free, we further ask its first and
last arcs to not form a bridge of pier v, where v is the source (and target) of the cycle.

We prove that a weaker hypothesis among all “G contains no bridge-free cycle of type i” is the
version with i = 1.

Lemma 3.35. If a locally colored hypergraph G contains a bridge-free cycle of type 3, then it
contains a bridge-free cycle of type 4.

Proof. Take ω a bridge-free cycle of type 3. If it is of type 4 the lemma holds, so assume it is not
the case. Thus, it contains arcs a, b1, b2 and vertices v1, v2 and u such that a contains these three
vertices and ω is (v1, a, v2) ·ω1 · (b1, u, b2) ·ω2 (up to changing the endpoint of ω by rotating it), see
Figure 3.16. As ω is bridge-free, we have c(u)(b1) ̸= c(u)(b2). By symmetry (up to reversing and
rotating ω), c(u)(b1) ̸= c(u)(a). We set c = (v2) · ω1 · (b1, u, a, v2), which is a bridge-free (as we do
not create a bridge at u, and there is none at v2 which has the same incident arcs in c and ω) cycle
of type 3 whose size (i.e. number of arcs) is strictly smaller than the one of ω. By finite induction,
we obtain a bridge-free cycle of type 4.

Lemma 3.36. If a locally colored hypergraph G contains a bridge-free cycle of type 1, then it
contains a bridge-free cycle of type 3.

135

3.3. A GENERALIZATION OF YEO’S THEOREM

Figure 3.18: Simple graph with a bridge-free closed arc-simple path, but no bridge-free closed
vertex-simple path

Proof. Take ω a bridge-free cycle of type 1. If it is of type 3 the lemma holds, so assume it is not
the case. Thus, it contains an arc a and vertices v1, v2, u1 and u2 such that a contains these four
vertices and ω is (v1, a, v2) ·ω1 · (u1, a, u2) ·ω2 (up to changing the endpoint of ω by rotating it), see
Figure 3.17. We set c = (v1, a, u2) · ω2, which is a bridge-free (as we do not create a bridge at v1
nor u2 for we use the same incident arcs in c as in the bridge-free ω) cycle of type 1 whose size (i.e.
number of arcs) is strictly smaller than the one of ω. By finite induction, we obtain a bridge-free
cycle of type 3.

By Lemmas 3.35 and 3.36, a weaker hypothesis among “G contains no bridge-free cycle of type
i” is for i = 1 – which is equivalent to i = 3 and i = 4, and implied by i = 2. This hypothesis
is stronger for i = 2 than for the other values of i, with the same example as in graphs between
vertex-simple and arc-simple – see Figure 3.18. Thus, in what follows simple means simple of type
1, allowing to use Theorem 3.30 so as to obtain a similar result on hypergraphs.

Theorem 3.37. Take G a non-empty undirected hypergraph, with a local coloring c. If G has no
bridge-free cycle, then there exists a vertex v of G such that every connected component D of G− v
satisfies that all arcs containing v and a vertex of D have the same color for c(v).

Proof. Consider G′ the graph built from G with as vertices the vertices of G and an arc a{v;u}
between distinct vertices v and u for each hyperarc a of G containing v and u – choosing arbitrarily
its source and target among the two possibilities. We define a local coloring c′ of G′ thanks to the
coloring c of G, by c′(v)(aε{v;u}) = c(t(aε{v;u}))(a).

Remark that any path is simple in G if and only if it is simple in G′, and that it has the
same number of bridges in both graphs. Thus, G′ has no bridge-free cycle as G does not, and by
Theorem 3.30 there exists a vertex v such that every cycle containing v has a bridge of pier v. This
property of v, holding in G′, also holds in G by the previous remark, which proves the theorem.

3.3.6 Results equivalent to Yeo’s theorem

Since the first version of this thesis, and thanks to some discussions with Lê Thành Dũng Nguy˜̂en
and Colin Geniet, I discovered that Theorem 3.30 and Theorem 3.31 are equivalent – they can
be deduced from each other – and found some links with previously existing results, including that
the bungee jumping lemma is more a rediscovered result than a new one.

More precisely, while at first glance Theorem 3.30 seems stronger than Theorem 3.33 which
seems itself stronger than Theorem 3.31, they are in fact equivalent.

Lemma 3.38. Theorems 3.30, 3.31 and 3.33 are mutually equivalent.

136

CHAPTER 3. GRAPH THEORY

Proof. We already saw in the proof of Theorem 3.33 how to deduce Theorem 3.33 from Theorem 3.30
(simply by defining an edge-coloring), and Theorem 3.31 is a particular case of Theorem 3.33 with
H being a complete graph. Thence, the only non-trivial direction is proving Theorem 3.30 from
Theorem 3.31. A simple encoding of G with an edge-coloring c into G′ with an arc-coloring c′ does
the trick:

• for each arc a such that c(a+) =
c(a−), set c′(a) = c(a+) =
c(a−); −→

• for each arc a such that c(a+) ̸=
c(a−) and a belongs to a cycle,
replace it with two arcs a− and
a+ respectively from s(a) to va
and from va to t(a), where va is
a new vertex, and set c′(a−) =
c(a−) and c′(a+) = c(a+);

−→

• for each arc a such that c(a+) ̸=
c(a−) and a does not belong to
a cycle (i.e. a is a cut-arc), set
c′(a) to be an arbitrary color (it
could be c(a+) for instance).

−→

On Figure 3.19 is given an example of this encoding (with colors also given by the shape of the
arcs, and representing an edge-coloring by a coloring of half-arcs instead of edges). Then one can
check that:

• bridge-free cycles in the obtained graph G′ correspond to those of G, and in particular G′ has
no bridge-free cycle if and only if G has none;

• no added vertex va is splitting in G′;

• a vertex v of G is splitting in G if and only if it is splitting in G′.

Thence, Theorem 3.31 applied on G′ yields a splitting vertex of G, proving Theorem 3.30.

Remark 3.39. The encoding in the proof of Lemma 3.38 is not stable by sub-graph, e.g. after
removing the leftmost splitting vertex in the graph depicted on Figure 3.19, the leftmost solid-
dashed arc should not be encoded with a vertex in its middle anymore, because it is no more in a
cycle. An encoding stable by sub-graph seems hard to come by. In particular, a trick such as adding
a same “gadget” graph in the middle of each (bicolored) arc (graph which may simply be a single
vertex or a more complex graph), so as to duplicate each arc and color them as the corresponding
edges, cannot work. Indeed, the gadget to add must not have any bridge-free cycle so as to be able

137

3.3. A GENERALIZATION OF YEO’S THEOREM

·

··

−→

·

··

Figure 3.19: Example of encoding of local coloring as edge-coloring, where pointed vertices are
splitting ones and square vertices represent added ones

to apply Theorem 3.30, nor should have any splitting vertex as one wants to find as splitting a
vertex in the original graph. Such a graph cannot exist by Theorem 3.30 itself! This is the reason
why we need a third case in our encoding in the above proof.

Moreover, it is proved in [Sze04, Theorem 6] that Theorem 3.31 is equivalent to each of the
four following theorems – we slightly reformulated them – using smart encodings, one of these
four being Kotzig’s theorem, which has been showed to be equivalent to the sequentialization of
MLL0,2

uf in [Ngu20]. One can check that Theorem 3.29 allows to deduce each of these four theorems
without the need of any encoding, i.e. only by defining an edge-coloring on the graph and without
any modification of the vertices or arcs. Thence, Theorem 3.29 (or its unparameterized version
Theorem 3.30) is a sort of unifying formulation of these equivalent results. Furthermore, this
implies that our demonstration, with the use of the bungee jumping lemma, also proves all of these
theorems by only adapting the definition of a bridge. We give below the statement of each of these
theorems how to prove them using Theorem 3.29.

A cut-arc in a graph is an arc a such that the removal of a increases the number of connected
components of the graph. A perfect matching (or 1-factor) of a graph G is a set of arcs F such
that every vertex is incident to a unique arc in F . It is well known that a perfect matching F in
a graph G is unique if and only if G contains no F -alternating cycle, which is a cycle whose
arcs are alternatively in and out of F , including the last and first ones (it is e.g. a simple variant
of [Ber57, Theorem 1] which considers F -alternating open paths).

Theorem 3.40 (Kotzig [Kot59]). If a graph G has a unique perfect matching F , then G has a
cut-arc which belongs to F .

Proof. It suffices to define an arc-coloring c of G by c(a) =

{
1 if a ∈ F
0 otherwise

. Then F -alternating

cycles are exactly bridge-free cycles, so by Theorem 3.30 (here even Theorem 3.31 would suffice)
there is a splitting vertex v. The unique arc of F incident to v is a cut-arc as it is the only edge of
target v with color 1.

Given a map ϕ : V → A such that ϕ(v) is incident to v for all v ∈ V, a cycle ω is called
ϕ-conformal if for every vertex v in ω, ϕ(v) is in ω.

Theorem 3.41 ([Sey78]). Let G be a graph and let ϕ : V → A be a map such that ϕ(v) is incident
to v for all v ∈ V. If G has no ϕ-conformal cycle, then there exists a vertex v such that ϕ(v) is a
cut-arc.

138

CHAPTER 3. GRAPH THEORY

v

u

x y

w

ϕ(u)

e

f

ϕ(x) = ϕ(y)

ϕ(v) = ϕ(w)

Figure 3.20: No arc-coloring for Theorem 3.41

Proof. Set c(e) =

{
1 if e has for support ϕ(t(e))
0 otherwise

. Then ϕ-conformal cycles are exactly bridge-free

cycles, so by Theorem 3.30 there is a splitting vertex v. The arc ϕ(v) is a cut-arc as it supports the
only edge of target v with color 1.

Remark 3.42. Remark that an arc-coloring is not enough to prove Theorem 3.41 without an encod-
ing: consider the graph drawn on Figure 3.20. To have the equivalence between ϕ-conformal cycles
and bridge-free cycles, one would need

c(ϕ(x)) ̸= c(e) = c(e) looking at x
c(ϕ(v)) ̸= c(ϕ(u)) = c(e) looking at v
c(ϕ(u)) ̸= c(f) looking at u

thence c(f) = c(e) = c(ϕ(u)) ̸= c(f), absurd.

Theorem 3.43 ([GH83]). Let G be a 2-edge-colored graph. Then either G has a splitting vertex,
or G has a bridge-free cycle.

Proof. There is nothing to do here as this result is Theorem 3.31 restricted to the case with 2 colors,
and so is directly a particular case of Theorem 3.30.

A vertex v of a cycle ω is a turning vertex of ω if all arcs incident to v in ω are either all of
source v or all of target v.

Theorem 3.44 ([SS79]). If a nonempty set S of vertices of a graph G contains a turning vertex of
each cycle of G, then S contains a vertex which is a turning vertex of every cycle it belongs to.

Proof. Define

c(a+) = 1 if t(a) ∈ S
c(a−) = 0 if s(a) ∈ S
c(e) = e otherwise

. Then cycles with no turning vertex in S are exactly bridge-

free cycles, so by Theorem 3.29 instantiated with E being all edges whose target is in S (which
indeed contains all bridge archs as other edges have their own colors), there is a splitting vertex
v ∈ S. By definition of the coloring, v is a turning vertex of every cycle it belongs to.

139

3.3. A GENERALIZATION OF YEO’S THEOREM

v u

x

e

f
g

Figure 3.21: No arc-coloring for Theorem 3.44

Remark 3.45. We need the parameterized version here as this theorem has a parameter S itself.
Here again, an arc-coloring is not enough for proving Theorem 3.44 without an encoding: consider
the graph drawn on Figure 3.21. To have the equivalence between cycles with no turning vertex in
S and bridge-free cycles, one would need c(f) = c(g) ̸= c(e) = c(f), absurd.

An important observation is that Shoesmith and Smiley’s proof of this theorem in [SS79] is very
similar to our alternative proof of Theorem 3.29 by bungee jumping: the key idea of both proofs is
to look at cycles with a minimal number of bridges. Still, there are key differences: the absence of
an explicit order – the proof of [SS79] builds an infinite bridge-free path – as well as the parameter
being on vertices instead of edges. We did not known about [SS79] before writing our proof, so
that we rediscovered what we call the bungee jumping; it only came to our attention via Szeider’s
equivalence results [Sze04].

3.3.7 Inductive definitions of graphs and links with proof-nets

Thanks to Yeo’s theorem, one finds the following inductive definition for graphs with no bridge-free
cycle. A graph with no bridge-free cycle is (isomorphic to a graph) generated by the following
grammar:

G := ∅ | ⋉iGi

where ∅ is the empty graph, and ⋉iGi denotes taking the graphs Gi (generated by the grammar)
and adding a new vertex v with some arcs (or not) between v and these Gi, such that all edges from
Gi to v share a same color. Indeed, graphs generated by this grammar have no bridge-free cycle,
for the added vertex v cannot belong to such a cycle. Reciprocally, Yeo’s theorem gives a splitting
vertex, meaning a decomposition into ⋉iGi, and removing a vertex cannot create a bridge-free
cycle.

One can then see the link with proof-nets, which are graphs corresponding to proofs: from
a graph of a particular shape, one finds a corresponding inductive proof. These links between
(sequentialization of) proof-nets and general results in graph theory are not new: Yeo’s theorem
implies Kotzig’s theorem (Theorem 3.40), showed to be equivalent to sequentialization of MLL0,2

uf

proof-nets in [Ngu20].
This characterization also explains the slightly weird requirements in the definition of MALL0,2

uf

proof-nets next chapter, in particular for (P3): as we remove not only one vertex when sequential-
izing (i.e. splitting) a &-vertex, but separate a graph into two graphs in a non-trivial way, one has
to preserve the correctness criterion for these sub-graphs. Just asking for splitting vertices can only
create graphs with no bridge-free cycles, corresponding to MLL0,2

uf proof-nets, thence the need for a
new kind of condition.

140

CHAPTER 3. GRAPH THEORY

u v

Figure 3.22: Graph where Theorem 3.30 is applicable but not Theorem 3.31 (without an encoding)

Getting an inductive description of a graph was also the goal underlying Theorem 3.44. It is
noteworthy to remark that Theorem 3.44 from Shoesmith and Smiley [SS79] can be used to obtain
directly a splitting ` in a MLL0,2

uf proof-net, simply by taking S the set of all `-vertices. Indeed,
such vertices have only one out-going arc, so having each cycle containing a ` as a turning vertex
is equivalent to have each cycle containing two in-arcs of such a vertex; and a `-vertex is a turning
vertex of every cycle it belongs to if and only if its out-going arc is in no cycle. Nevertheless,
Theorem 3.44 seems limited to the search of a splitting ` and hardly applicable for the search of
e.g. a splitting terminal vertex in a MLL0,2

uf proof-net, while our Theorem 3.29 can do it thanks to
its parameter on edges (see Section 4.3.6).

Besides, Theorem 3.44 has been motivated and used by its authors Shoesmith and Smiley
in [SS78] to handle proofs represented as graphs, sharing notable similarities to the proof-nets of
multiplicative linear logic. Some striking considerations in [SS78], reminiscent of proof-nets, are the
interdiction of some kinds of cycles [SS78, Theorems 10.3 and 10.4] (the ones without any turning
vertices), a notion of residues reminiscing of correctness graphs [SS78, Section 10.2], with more
properties when these residues are not only acyclic but also connected [SS78, Section 10.7]. Some
parts may even point at some linearity constraints, e.g. “But any solution along these lines would
require us to take account of multiplicity of occurrence in rules of inference” [SS78, Page 164]. It
could be interesting to understand how much about the “static” ideas of MLL0,2

uf proof-nets was
already present in [SS78] – the “dynamic” aspects with the cut-elimination procedure do not appear
to be a topic of consideration (at least in this book).

As a last remark, we originally needed edge-coloring instead of arc-coloring due to the graph
depicted on Figure 3.22 and on which we wanted to apply Theorem 3.30: v is splitting but not u,
but if we color this graph with an arc-coloring (without modifying its sets of vertices and arcs) then
either both u and v are splitting or neither is. This graph appears naturally in usual definitions of
MLLuf proof-nets: it corresponds to a proof with an ax -rule above a `-rule.

3.4 Folklore results
Our main theorem, Theorem 3.19, is not the only result we need from graph theory in order to study
proof-nets. The others, given here, are well-known folklore results about the number of connected
components in a graph and about simple graphs of maximal degree two – the first result might
not be folklore, but can be easily obtained from the inductive syntax given by Yeo’s theorem, c.f.
Section 3.3.7.

Lemma 3.46. Let G be an arc-colored undirected graph without alternating cycle. The number c
of connected components of G respects c ≤ #|V| −#|C| where V is the vertices of G and #|C| the
number of colors used on its arcs.

Proof. By induction on the number of vertices of G.
An undirected graph with no vertex has no connected component and no arc, thus c = 0 =

0− 0 = #|V| −#|C|.

141

3.4. FOLKLORE RESULTS

Otherwise, by Theorem 3.31, there is a splitting vertex v. Call c′ the number of connected
components of G − v, V ′ its vertices and C′ the set of colors used on arcs in its arc-coloring. By
induction hypothesis, the removal of v preserving being without alternating cycle, c′ ≤ #|V ′|−#|C′|.
The removal of v in G − v turns 1 connected component into n components, for some n ∈ N;
i.e. c′ = c + n − 1. We trivially have #|V ′| = #|V| − 1. Lastly, as v is splitting, the number
of colors used on arcs incident to him is at most n. Thence, #|C′| ≥ #|C| − n. We conclude
c = c′ − n+ 1 ≤ #|V ′| −#|C′| − n+ 1 ≤ #|V| −#|C|.

Lemma 3.47. For any undirected graph G with vertices V, arcs A and c connected components,
c ≥ #|V| −#|A|.

Proof. By induction on the number of arcs. In a graph with no arc, c = #|V|. When adding an arc,
one either decreases c by one (if the incident vertices were not in the same connected component)
or preserves it (if both incident vertices were in a same connected component), allowing to conclude
by induction.

Corollary 3.48. Let G be an acyclic undirected graph. The number c of connected components of
G respects c = #|V| −#|A|, where V is the vertices of G and A its arcs.

Proof. Consider an arc-coloring of G where each arc has its own color. Then G seen as an arc-
colored graph has no bridge-free cycle, and we obtain c ≤ #|V|−#|A| by Lemma 3.46. We conclude
using Lemma 3.47.

Lemma 3.49. A total simple loop-free graph G of maximal degree two is a disjoint union of simple
paths – meaning cycles, simple open paths and empty paths – where:

• vertices of degree 2 are internal in a simple path (whether open or a cycle);

• vertices of degree 1 are endpoints of a simple open path;

• vertices of degree 0 are isolated, i.e. endpoints of an empty path.

Proof. We prove it by induction on the number of vertices of G.
If G has no vertex, i.e. is the empty graph, then the result trivially holds as it is the empty

(disjoint) union.
Assume the result holds for all graphs whose number of vertices is n, for n some natural number.

Consider a graph G with n+ 1 vertices, and an arbitrary vertex v inside. By induction hypothesis
G− v is a disjoint union of simple paths and cycles. We distinguish cases according to the degree
of v.

If deg(v) = 0, then G is the disjoint union of G− v and the empty path on v, hence the result.
Suppose deg(v) = 1: v is adjacent to a unique u of G− v, with an edge e from u to v. Then u

is of degree at most one in G− v, thus in this graph u is the target of a path p (if deg(u) = 1 in G,
then p is the empty path). Thus, G is the same union as G− v up to replacing p with p · e.

Assume now deg(v) = 2, so v is linked to u1 and u2, with edges e1 and e2 respectively from u1
and u2 to v. Then u1 (resp. u2) is of degree at most one in G − v, so u1 (resp. u2) must be the
target of a path p1 (resp. p2) in G−v. If p1 ̸= p2, then G is the same union as G−v up to replacing
p1 and p2 with the path p1 · e1 · e2 · p2. Otherwise, it is the same union as G− v up to replacing p1
with the cycle p1 · e1 · e2.

142

CHAPTER 3. GRAPH THEORY

Lemma 3.50. A total simple loop-free graph G containing only vertices of degree one or two is a
disjoint union of non-empty simple paths and cycles.

Proof. By Lemma 3.49, G is a disjoint union of simple paths and cycles. As G contains no vertex
of null degree, this union cannot contain an empty path.

3.5 Perspectives
We introduced in this chapter a more general notion of edge-coloring, and a generalization of Yeo’s
theorem to this setting as well as in the presence of bridge-free cycles respecting some conditions.
While these conditions on unions of bridge-free cycles do not seem usual for graph theory, they look
very much like those given on unions of switching cycles for proof-nets, allowing us to apply our
new theorem in this framework. It could be interesting to see if this novel notion of edge-coloring
is useful outside this scope, or more generally outside considerations looking like Yeo’s theorem.

More usual considerations of graph theory, such as the study of complexity, seems similar to the
standard arc-coloring case. For instance, finding a bridge-free cycle for edge-coloring can be reduced
to finding a bridge-free cycle for arc-coloring, simply by putting a vertex in the middle of each arc
– which is splitting, but that does not matter for this problem. Likewise, checking a given vertex
is splitting seems to be of the same complexity in the edge-coloring case as in the arc-coloring one,
at least when considering the naive algorithm that for a vertex check if it belongs to a cycle where
it is not a pier.

143

Chapter 4

Proof-Nets

We will at present change the syntax when considering proofs of linear logic, no longer using
sequent calculus proofs but proof-nets. A proof-net syntax is interesting to “patch up” the not so
good properties of sequent calculus from Chapter 2: as a key example cut-elimination in proof-nets
is strongly normalizing and confluent, thus leads to a unique normal form. The key feature of
proof-nets enabling these properties while still being about the proofs considered in the sequent
calculus syntax is to be a more canonical representation of proofs, by identifying proofs up to rule
commutation (i.e. by being a quotient of sequent calculus proofs up to ⊢⊣r) [HG16].1 This is what
yields better properties, while also sparing us tedious case studies on rule commutations – like
the one we will consider in the proof of Proposition 6.16, due to the need to relate the different
possible cut-free proofs obtained by cut-elimination. Therefore, an atomic-axiom cut-free proof-net
is a canonical representation of a proof up to =βη, which is an identification we wish for in most
settings – in the categorical framework, for semantics, when studying isomorphisms, . . . Such a
syntax also comes with other better properties such as dealing with cut-elimination in a parallel
manner. This is why a syntax canonical up to =βη matters, not speaking about the “bureaucracy”
aspect that the order of rules should not matter in some cases [Gir01].

Proof-nets are defined for many sub-systems, among which the first notion given for MLLuf
in [Gir87] as well as many other definitions and proofs of sequentialization for this well studied
system [DF08; DF06], proof-nets for MELL [Gir87; DR95; Di18], for ALL [Hei11b; Hei11a], for
MLLuf and ALLuf with first-order quantifiers [Gir91; Hug18; HHS19], for MLLuf with second-order
quantifiers [Str09], for polarized linear logic [Lau99], for differential linear logic [ER06; PT17], for
MLLuf with fixpoints [DPS21],. . . Proof-nets also exist for noncommutative systems [Abr95; AM19],
and there have even been some works on proof-nets for classical logic [Rob03; Str10]. Nevertheless,
the existence of proof-nets – with the canonicity properties we want, namely identifying proofs up
to ⊢⊣r – is at best doubtful for some sub-systems, such as MLL [HH16a]; see Section 4.5 for more
details. Furthermore, proofs that they indeed identify proofs exactly up to rule commutation are
scarce: it is done for instance in [HG16] and in [HHS19]. We give here the definition of proof-nets
for MALL0,2

uf from [HG05]. Other definitions of proof-nets for MALLuf or MALL0,2
uf exist, such as the

original one from Girard [Gir96], or others like [Di11; HH16b; Mai07]. Still, the definition we take
is one of the most satisfactory from the point of view of canonicity and cut-elimination (see [HG05;

1The authors of [HG16] consider as commutations ⊢⊣rc and not ⊢⊣r , but both definitions coincide on cut-free proof-
nets, which are the objects we want canonical.

145

4.1. PROOF-NET FOR UNIT-FREE MALL

HG16], or the introduction of [HH16b] for a comparison of alternative definitions).

Outline This chapter is composed as follows. First is defined the syntax of proof-nets intro-
duced by Hughes & Van Glabbeek in [HG05] (Section 4.1). After are given links between sequent
calculus and proof-nets: a proof can be seen as a proof-net and cut-elimination in proofs yields
cut-elimination in proof-nets (Section 4.2). We then prove the key result of [HG05], the sequential-
ization theorem: a proof-net is the image of a proof (Section 4.3). This is simply done thanks to
our generalization of Yeo’s theorem from Section 3.3. We end this chapter by giving some general
and easy results on proof-nets that will be of use later (Section 4.4).

4.1 Proof-net for unit-free MALL

We give here the definition of proof-nets from Hughes & Van Glabbeek for unit-free MALL, taken
from [HG05], which is defined for both MALLuf and MALL2

uf , and has a trivial extension to MALL0,2
uf

with the ⇝om transformation. We also recall composition by cut and cut-elimination for this syntax.
Please refer to [HG05] for more details, examples, as well as the intuitions behind the definition.
In all that follows, we consider only the MALL0,2

uf sub-system, unless stated otherwise.

4.1.1 Proof-net

A cut pair is A⊥ ∗A, for a given formula A; the connective ∗ is unordered, i.e. A⊥ ∗A = A ∗A⊥.
A cut sequent [Σ] Γ is composed of a set Σ of (occurrences of) cut pairs and a sequent Γ. When
Σ = ∅ is empty, [] Γ may simply be denoted by Γ. The idea is that a proof-net on [Σ] Γ corresponds
to a proof of ⊢ Γ with a cut-rule on each cut pair of Σ, which may or may not be shared across
slices. For instance, [X+

5 ∗X
−
6] X+

1 &X−2 , X
+
3 ⊕X

−
4 (where each Xi is an occurrence of the same

atom X) is a cut sequent, on which we will instantiate the concepts defined in this part.
We always identify a formula (or a cut pair) A with its syntactic tree T (A), having as internal

vertices its connectives and as leaves its atoms, with arcs directed from the leaves to the root.2 In
a syntactic tree, a vertex v is a descendant of a vertex u if there is a directed path (with edges of
sign +) from u to v. In this case, we also say u is an ancestor of v. As an example, the root is a
descendant of the leaves. For all our connective are binary, we will also talk about left-ancestor
and right-ancestor. The syntactic forest T ([Σ] Γ) of a cut sequent [Σ] Γ is the union of the
syntactic trees of the formulas in Γ and of the cut pairs in Σ.

An additive resolution of a cut sequent [Σ] Γ is any result of taking the syntactic forest
T ([Σ] Γ), then deleting zero or more cut pairs from Σ, and one argument sub-tree of each ad-
ditive connective (& or ⊕). A &-resolution of a cut sequent [Σ] Γ is any result of taking the
syntactic forest T ([Σ] Γ), then deleting one argument sub-tree of each &-connective. For example,
[] X+

1 & , ⊕X−4 is one of the eight additive resolutions of [X+
5 ∗X

−
6] X+

1 &X−2 , X
+
3 ⊕X

−
4 , while

[X+
5 ∗X

−
6] X+

1 & , X+
3 ⊕X

−
4 is one of its two &-resolutions. Notice the difference on cut pairs: they

may be deleted in an additive resolution, but never in a &-resolution.
An axiom link – or simply a link – on [Σ] Γ is an unordered pair of complementary leaves

in T ([Σ] Γ) – one being X+ and the other X− for some unsigned atom X. A linking λ on [Σ] Γ
is a set of links on [Σ] Γ such that the sets of the leaves of its links form a partition of the set of

2One may or may not add a pending arc with source the root of the tree and with undefined target. We choose
here not to.

146

CHAPTER 4. PROOF-NETS

leaves of an additive resolution of [Σ] Γ, additive resolution which is denoted [Σ] Γ ↾ λ. We extend
this notion to a set of linkings Λ by [Σ] Γ ↾ Λ =

⋃
λ∈Λ[Σ] Γ ↾ λ. We also call conclusions of the

set of linkings the cut pairs and formulas of the cut sequent it is on. For instance, on the left-most
graph of Figure 4.1, the red axiom links form a linking λ1 = {(X+

1 , X
−
6); (X−4 , X

+
5)}, whose additive

resolution is [X+
5 ∗X

−
6] X+

1 &X−2 , X
+
3 ⊕X

−
4 ↾ λ1 = [X+

5 ∗X
−
6] X+

1 & , ⊕X−4 . Note the relation
between slices in the sequent calculus and linkings in proof-nets: a slice “belongs” to an additive
resolution, and a &-resolution “selects” a slice from a proof.

Given a `, &, ⊗ or ⊕-vertex, its premises are its arguments, in other words the two vertices
with arcs towards it in the syntactic forest. The conclusion of a vertex is the arc towards its
descendant in the syntactic forest – if it is the root of a syntactic tree, then it has no conclusion. A
set of linkings Λ on [Σ] Γ toggles a &-vertex w if both premises of w are in its additive resolution
[Σ] Γ ↾ Λ. We say a link a depends on a &-vertex w in a set of linkings Λ if there exist λ, λ′ ∈ Λ
such that a ∈ λ\λ′ and w is the only &-vertex toggled by {λ;λ′}. Looking at our running example,
and taking λ1 = {(X+

1 , X
−
6); (X−4 , X

+
5)} and λ2 = {(X−2 , X

+
3)}, the &-vertex is toggled by {λ1;λ2}.

Furthermore, all links depend on this &-vertex for λ1 and λ2 are disjoint (i.e. they contain only
different links).

Given a set of linkings Λ on a cut sequent [Σ] Γ, the graph GΛ is defined as [Σ] Γ ↾ Λ with
the arcs from

⋃
Λ3 and enriched with jump arcs l → w for each leaf l and each &-vertex w such

that there exists a ∈ λ ∈ Λ, between l and some l′, with a depending on w in Λ. When Λ = {λ}
is composed of a single linking, we shall simply denote Gλ = G{λ}, which is the graph [Σ] Γ ↾ λ
with the arcs from λ and no jump arc. About our example, the graphs Gλ1

, Gλ2
and G{λ1;λ2} are

illustrated on Figure 4.1.
In the text of this paper (but not on the graphs), we write l j−→ w for a jump arc from a leaf l to

a &-vertex w. We will often not draw any jump arc on graphs of proof-nets, because they may make
the figures less readable and they can be computed from the linkings. When drawing proof-nets,
we will denote membership of a linking by means of colors, with each linking being identified by its
color. Sometimes, a link belongs to several linkings, in which case we put a multicolored edge to
signify belonging to linkings identified by these colors, or draw several edges, one by color. When
considering only two linkings, we will furthermore draw the links of one above the vertices and the
links of the other below. See Figure 4.1 for these conventions.

When we write a `\&-vertex, we mean a `- or &-vertex – a negative vertex; similarly a ⊗\⊕-
vertex is a ⊗- or ⊕-vertex – a positive vertex. A switch arc of a `\&-vertex n is an incoming
arc of n, i.e. an arc to n from one of its premises or a jump to n. A switching cycle (resp.
switching path) is a cycle (resp. a simple path) with at most one switch arc of each `\&-vertex.
A `-switching of a linking λ is any sub-graph of Gλ obtained by deleting a switch arc of each
`-vertex; denoting by ϕ this choice of edges, the sub-graph it yields is Gϕ. For example, a cycle in
a `-switching is a switching cycle, as in a graph Gϕ all `\&-vertices have one premise and there is
no jump.

Definition 4.1 (Proof-net). A MALL0,2
uf proof-net with atomic-axioms θ on a cut sequent [Σ] Γ

is a set of linkings satisfying:

(P0) Cut: Every cut pair of Σ has a leaf in θ.

(P1) Resolution: Exactly one linking of θ is on any given &-resolution of [Σ] Γ.
3To be completely coherent with our definition of graph from Chapter 3, we have to choose an orientation for

these arcs: we arbitrarily decide to direct them from positive atoms to negative atoms. Still, we will not represent
these orientations on our illustrations.

147

4.1. PROOF-NET FOR UNIT-FREE MALL

X+
1 X−4

& ⊕ ∗

X+
5 X−6 X−2 X+

3

& ⊕

X+
1 X−2 X+

3 X−4

& ⊕ ∗

X+
5 X−6

Figure 4.1: Example of a proof-net: from left to right Gλ1
, Gλ2

and G{λ1;λ2}

(P2) MLL: For every linking λ ∈ θ, Gλ has no switching cycle.

(P3) Toggling: Every set Λ ⊆ θ of two or more linkings toggles a &-vertex that is in no switching
cycle of GΛ.

These conditions are called the correctness criterion. Condition (P0) is here to prevent unused
∗-vertices. A cut-free set of linkings is one without ∗-vertices, i.e. on a cut sequent [] Γ; remark
it respects (P0) trivially. Condition (P1) is a correctness criterion for ALLuf proof-nets [HG05] and
(P2) is the Danos-Regnier criterion for MLL0,2

uf proof-nets [DR89]. However, (P1) and (P2) together
are insufficient for cut-free MALL0,2

uf proof-nets, hence the last condition (P3) taking into account
interactions between the slices (see also [Di11] for a similar condition). Sets composed of a single
linking λ are not considered in (P3), for by (P2) the graph Gλ has no switching cycle, and because
there is no toggled &-vertex. We say that θ is a proof-structure if it satisfies (P0) and (P1). One
can check that our example on Figure 4.1, {λ1;λ2}, is a proof-net.

Remark 4.2. Condition (P2) is equivalent to asking for every `-switching ϕ of every linking λ ∈ θ,
that Gϕ is acyclic. Indeed, a switching cycle in Gλ corresponds exactly to a cycle in some Gϕ.

Without the mix 0- and mix 2-rules, i.e. in MALLuf , the definition of proof-nets can be adapted
with one more condition.

Definition 4.3 (Connected Proof-net). A proof-net with atomic-axioms θ on a cut sequent [Σ] Γ
is connected if it satisfies:

(P2c) Connectivity: For every `-switching ϕ of every linking λ ∈ θ, Gϕ has exactly one connected
component.

As a warning about terminology, a connected proof-net is not a proof-net θ whose graph Gθ is
connected. The condition (P2c) can be proved equivalent to the following one: for every linking
λ ∈ θ, for any two vertices v and u in Gλ, there exists in Gλ a switching path from v to u. This
is exploited for instance in [Ret03, Theorem 2]. Similarly, a definition can be given with only the
mix 2-rule, i.e. for MALL2

uf :

(P2c2) For every `-switching ϕ of every linking λ ∈ θ, Gϕ has at least one connected component.

We can do the same with only the mix 0-rule, for MALL0
uf :

(P2c0) For every `-switching ϕ of every linking λ ∈ θ, Gϕ has at most one connected component.

Remark 4.4. Remark that an equivalent formulation of the conjunction of (P2) and (P2c), for
MALLuf , is the following: for every `-switching ϕ of every linking λ ∈ θ, Gϕ is a tree. This
definition was the one given in [HG05], among other equivalent formulations.

148

CHAPTER 4. PROOF-NETS

We thus have a hierarchy in four strata, where each level is included in the previous one:

1. set of linkings

2. proof-structure

3. proof-net

4. connected proof-net

While the correctness criterion may seem complex, the problem of checking whether a proof-
structure is correct or not is NL-complete, at least for connected proof-nets [JM11]. In [HG05], a
seemingly weaker property is conjectured equivalent to (P3).

Conjecture 4.5 (Single Switching Cycle Conjecture [HG05, Conjecture 4.22]). The toggling con-
dition (P3) is equivalent to:

(P3-) For any set Λ ⊆ θ of two or more linkings and any switching cycle ω of GΛ, Λ toggles a
&-vertex that is not in ω.

We end this section by giving some more definitions we will need. A vertex is terminal if it
is the root of a syntactic tree – it can be an ∗-vertex root of a cut pair. An additive ⊕\&-vertex
is unary (resp. binary) in a set of linkings Λ if it has exactly one (resp. two) premises in GΛ. A
node is a non-leaf vertex, and a proof-net is node-free if it contains only leaves.

When looking at a cut pair, or more generally at formulas A and A⊥ both belonging to a cut
sequent, one can define a notion of duality on leaves and connectives. For v a vertex in (the syntactic
tree T (A) of) A, we denote by v⊥ the corresponding vertex in A⊥. As expected, v⊥⊥ = v. This
also respects orthogonality for formulas on leaves: given a leaf l of A, occurrence of a signed atom
X, l⊥ is an occurrence of X⊥. We can also define a notion of duality on premises: given a premise
of a vertex v ∈ T (A), the dual premise of v⊥ is the corresponding premise in T (A⊥). In other
words, if in l→ v ← r we consider the premise l then in r⊥ → v⊥ ← l⊥ its dual premise is l⊥.

4.1.2 Cut-elimination in proof-nets

One can compose proof-nets using a cut pair, as well as eliminate a cut pair in a proof-net. Both
operations preserve correctness, and contrary to what happens in sequent calculus cut-elimination
is convergent.

Definition 4.6 (Composition). For sets of linkings θ and ψ respectively on cut sequents [Σ] Γ, A and
[Ξ] ∆, A⊥, the composition over A of θ and ψ is the set of linkings θ

A

▷◁ ψ = {λ ∪ µ | λ ∈ θ, µ ∈ ψ}
on the cut sequent [A ∗A⊥,Σ,Ξ] Γ,∆.

For example, see Figure 4.2 for a composition of two proof-nets. For a more complex example,
see Figure 6.5 with a composition of the proof-nets on Figure 6.3, on Pages 224 and 225.

Lemma 4.7. The composition of two proof-nets (resp. connected proof-nets, proof-structures) yields
a proof-net (resp. a connected proof-net, a proof-structure).

Proof. It suffices to check the correctness criterion is preserved by composition. Take θ and ψ
respectively on [Σ] Γ, A and [Ξ] ∆, A⊥.

149

4.1. PROOF-NET FOR UNIT-FREE MALL

X+ X− X+ X− X− X+

&

X+ X− X+ X− X− X+

&∗

Figure 4.2: Example of composition by cut

If both θ and ψ respect (P1), then θ
A

▷◁ ψ also respects it because a &-resolution of [A ∗
A⊥,Σ,Ξ] Γ,∆ corresponds exactly to one &-resolution of [Σ] Γ, A and one of [Ξ] ∆, A⊥.

If θ and ψ are proof-structures, then θ
A

▷◁ ψ respects (P0). Indeed, consider a cut pair in
A ∗ A⊥,Σ,Ξ. Either this cut pair is in Σ, and we conclude using (P0) of θ, or it is in Ξ and we
do similarly with (P0) of ψ, or the cut pair under consideration is A ∗ A⊥. In this last case, using
(P1) of θ (resp. ψ), a leaf of A (resp. A⊥) belongs to θ, as taking any &-resolution (there is at least
one for we have a formula in the cut sequent) we get a linking on some additive resolution, and any
additive resolution contains a leaf of A (resp. A⊥). We thus find (P0) for θ

A

▷◁ ψ, by considering the
union of the two previous linkings.

Preservation of (P2) is easy: a switching cycle in a linking λ ∪ µ of θ
A

▷◁ ψ cannot contain the
∗-vertex of A ∗ A⊥, which is the only path between the two syntactic forests – recall there is no
jump arc in this case. Thus, a cycle can only be a cycle in Gλ or in Gµ, which cannot be switching.
For the conservation of (P2c), by hypothesis one has a switching path in Gλ from a vertex v to the
root of A, and a switching path in Gµ from the root of A⊥ to any vertex u. The path given by the
concatenation of the first path with the two premises of the new ∗-vertex and then with the second
path gives a switching path in Gλ∪µ.

Finally, for (P3), consider a set of at least two linkings of Λ ⊆ θ
A

▷◁ ψ. Set Λθ those linkings
in θ taken in Λ, i.e. Λθ = {λ | µ ∈ Λ and λ ⊂ µ}. Similarly, pose Λψ those linkings in ψ taken
in Λ. By definition, Λ ⊆ {λ ∪ µ | λ ∈ Λθ, µ ∈ Λψ}, with Λθ or Λψ of size at least two (for
#|Λ| = #|Λθ|×#|Λψ|); w.l.o.g. say it is Λθ. Using (P3), one get a &-vertex w not in any switching
cycle of Λθ. Remark there cannot be a jump arc between the vertices of GΛθ and GΛψ in G

θ
A
▷◁ψ

. This
is because if {λ ∪ µ;λ′ ∪ µ′} toggles a &, say from θ, then µ and µ′ are on a same &-resolution of
the cut sequent of ψ, so by (P1) µ = µ′ – in other words no axiom link coming from ψ depends on
a &-vertex coming from θ, and symmetrically on ψ. Thus, cycles of GΛ are either cycles of GΛθ or
of GΛψ , and therefore w is not in any switching cycle of GΛ.

Remark 4.8. A proof of Lemma 4.7 can also be obtained from results not yet proven. Recognizing
composition as the translation by desequentialization of the cut-rule, this is a corollary of Theo-
rem 4.18, proven in [HG05]. Looking at the proof we give of Lemma 4.7, each part of the correctness
criterion is preserved by the composition, except (P0) and (P3) which both need (P1). This hy-
pothesis is needed for (P0): taking θ any set of linkings on Γ, A and the empty set on linkings ∅ on

150

CHAPTER 4. PROOF-NETS

A⊥, both respects (P0) trivially, but θ
A

▷◁ ψ = ∅ on [A ∗A⊥] Γ does not. It is also needed for (P3):
as an example, take on (X− `X+) ⊕ (Y − ` Y +) the set θ = {{(X−, X+)}; {(Y −, Y +)}} and on
(Y −⊗ Y +) & (X−⊗X+) the set ψ = {{(X−, X+)}; {(Y −, Y +)}}. The graph Gθ is depicted below
on the left, and Gψ on the right. Then both sets of linkings respect (P3), but their composition
does not: it contains the switching cycle &→ ∗ ← ⊕ ← `← X−

j−→ &.

X− X+ Y − Y +

` `

⊕

X+X−Y +Y −

⊗⊗

&

Definition 4.9 (Cut-elimination). Let θ be a set of linkings on a cut sequent [Σ] Γ, and A ∗A⊥ a
cut pair in Σ. Define the elimination of A ∗ A⊥ (or of the cut ∗ between A and A⊥) as the set of
linkings obtained by:

(a) If A is an atom, delete A ∗A⊥ from Σ and replace any pair of links (l, A), (A⊥,m) (l and m
being other occurrences of A⊥ and A respectively) with the link (l,m).

(b) If A = A1⊗A2 and A⊥ = A⊥2 `A⊥1 (or vice-versa), replace A∗A⊥ with two cut pairs A1 ∗A⊥1
and A2 ∗A⊥2 . Retain all original linkings.

(c) If A = A1&A2 and A⊥ = A⊥2 ⊕A⊥1 (or vice-versa), replace A∗A⊥ with two cut pairs A1 ∗A⊥1
and A2 ∗ A⊥2 . Delete all inconsistent linkings, namely those λ ∈ θ such that in [Σ] Γ ↾ λ the
children & and ⊕ of the cut do not take dual premises. Finally, “garbage collect” by deleting
any cut pair B ∗B⊥ for which no leaf of B ∗B⊥ is in any of the remaining linkings.

We use for proof-nets the same notations on cut-elimination as we did for the sequent calculus,
namely β−→ and =β . An example of the (c) step of cut-elimination is illustrated on Figure 4.3. See
Figure 6.6 for a more complex example, with a result of applying steps (b) and (c) to the proof-net
of Figure 6.5.

Proposition 4.10 ([HG05, Proposition 5.4]). Eliminating a cut in a proof-net (resp. connected
proof-net) yields a proof-net (resp. connected proof-net).

Remark 4.11. It is false that eliminating a cut in a proof-structure yields a proof-structure. As a
counter-example, consider the proof-structure illustrated below: eliminating its only cut, with a (c)
step, yields the empty set of linkings on X+, X−, which does not respect (P1).

X− X− X+ X+ X+ X−

& ⊕

∗

151

4.1. PROOF-NET FOR UNIT-FREE MALL

X−

X+ X+ X− X−

X+ X− X+ X+⊕ &

∗ ∗ ⊕y(c)

X−

X+ X−

X+ X+∗

⊕y(a)

X−

X+ X+

⊕

Figure 4.3: Example of cut-elimination steps

152

CHAPTER 4. PROOF-NETS

Theorem 4.12 ([HG05, Theorem 5.5]). Cut-elimination of proof-nets is strongly normalizing and
confluent.

Remark 4.13. Other convergence properties can be proven as is proven Theorem 4.12 in [HG05],
whose proof is basically that the only critical pair is two atom cases sharing a same link, with strong
normalization being easy as a step remove vertices. We will use the two following results:

• eliminating all cuts using only a sub-set of the rules – for example not using the atomic case
(a) – is confluent (and strongly normalizing as it is a sub-system of a strongly normalizing
one);

• eliminating a given cut (and all cuts created this way) is confluent and strongly normalizing.

A linking λ on a cut sequent [Σ] Γ matches if, for every cut pair A ∗A⊥ in Σ, any given leaf l
of A is in [Σ] Γ ↾ λ if and only if l⊥ of A⊥ is in [Σ] Γ ↾ λ. A linking matches if and only if, when
cut-elimination is carried out, the linking never becomes inconsistent, and thus is never deleted.
Given linkings λ ∈ θ and µ ∈ ψ, we say λ is matching for µ for a cut over B is λ ∪ µ matches
in the composition over B of θ and ψ. This allows defining Turbo Cut-elimination in [HG05],
eliminating a cut in a single step by removing inconsistent linkings.

Definition 4.14 (Turbo Cut-elimination). Take θ a proof-net on a cut sequent [Σ] Γ. Delete all non-
matching linkings of θ and, for a matching linking λ, replace every links (l0, l1), ((l⊥i , li+1))i∈J1;n−1K
by (l0, ln), where in these leaves only l0 and ln belong to Γ. The resulting proof-net on the cut
sequent [] Γ is the normal form of θ for cut-elimination.

Remark 4.15. It is possible to modify the definition of Turbo Cut-elimination to the case where
one eliminates only some cut pairs of Σ, which is a convergent rewriting system (Remark 4.13). It
suffices to restrict matching for a set of cut pairs, and to adapt the definition in this setting.

4.2 From Sequent Calculus to Proof-nets
Here we establish a translation from proofs of sequent calculus to proof-nets. We first define de-
sequentialization, a function from sequent calculus proofs to proof-nets (Section 4.2.1). We then
show that cut-elimination in proof-nets simulates the one from sequent calculus (Section 4.2.2).
Recall that all sequent calculus proofs we consider can be assumed atomic-axiom, thanks to Propo-
sition 2.10.

4.2.1 Desequentialization
We desequentialize a MALL0,2

uf atomic-axiom proof π of ⊢ Γ into a set of linkings by induction on π
using the steps detailed on Figure 4.4, following [HG05] with the notation θ ▷ [Σ] Γ for “θ is a set
of linkings on the cut sequent [Σ] Γ”. This is called the desequentialization P.

As identified in [HG05, Section 5.3.4], desequentializing with both cut- and &-rules is complex,
for cut pairs can be shared (or not) when translating a &-rule: one has the choice to put a cut-
formula appearing in both premises either in Σ, or in both Φ and Ψ. Therefore, the translation
is non-deterministic; in other words, a proof desequentializes not to a set of linkings, but to a set
P(π) of those objects – i.e. P(π) is a set of sets of linkings, which all are on different cut sequents,
for some cut pairs can be duplicated in the cut sequent of some and not in the cut sequent of

153

4.2. FROM SEQUENT CALCULUS TO PROOF-NETS

(ax)
⊢ {{(X+, X−}} ▷ [] X+, X−

⊢ θ ▷ [Σ] A,Γ ⊢ ϑ ▷ [Φ] A⊥,Π
(cut)

⊢ {λ ∪ µ | λ ∈ θ, µ ∈ ϑ} ▷ [A ∗A⊥,Σ,Φ] Γ,Π
⊢ θ ▷ [Σ] A,Γ ⊢ ϑ ▷ [Φ] B,Π

(⊗)
⊢ {λ ∪ µ | λ ∈ θ, µ ∈ ϑ} ▷ [Σ,Φ] A⊗B,Γ,Π

⊢ θ ▷ [Σ] A,B,Γ
(`)

⊢ θ ▷ [Σ] A`B,Γ

⊢ θ ▷ [Σ,Φ] A,Γ ⊢ ϑ ▷ [Σ,Ψ] B,Γ
(&)

⊢ θ ∪ ϑ ▷ [Σ,Φ,Ψ] A&B,Γ

⊢ θ ▷ [Σ] A,Γ
(⊕1)

⊢ θ ▷ [Σ] A⊕B,Γ
⊢ θ ▷ [Σ] B,Γ

(⊕2)
⊢ θ ▷ [Σ] A⊕B,Γ

⊢ θ ▷ [Σ] Γ ⊢ ϑ ▷ [Φ] Π
(mix2)

⊢ {λ ∪ µ | λ ∈ θ, µ ∈ ϑ} ▷ [Σ,Φ] Γ,Π
(mix0)

⊢ {∅} ▷ []

We use the implicit tracking of formula occurrences downwards through the rules.

Figure 4.4: Inductive definition of the desequentialization P of MALL0,2
uf atomic-axiom proofs to

sets of linkings

others. One can force Σ = ∅ to recover a function Pf , but then the & − cut rule commutation
yields different proof-nets (contrary to the other commutations, see [HG16]).

π1
⊢ A,B,Γ

π2
⊢ A,C,Γ

(&)
⊢ A,B & C,Γ

π3
⊢ A⊥,∆

(cut)
⊢ B & C,Γ,∆ ⊢⊣rc

π1
⊢ A,B,Γ

π3
⊢ A⊥,∆

(cut)
⊢ B,Γ,∆

π2
⊢ A,C,Γ

π3
⊢ A⊥,∆

(cut)
⊢ C,Γ,∆

(&)
⊢ B & C,Γ,∆

See Figure 4.5 illustrating the differences between the obtained sets of linkings.

Another problem, not evoked explicitly in [HG05], is that given a proof-net θ, it belongs to P(π)
for some proof π, but there may not be any proof π such that Pf (π) = θ. As a counter-example,
consider the following proof-net θ, on the cut sequent [X− ∗X+] (X− `X+) & (X− `X+):

X− X+ X− X+

` `

&

X− X+

∗

154

CHAPTER 4. PROOF-NETS

The only proof π such that θ ∈ P(π) is the following:

(ax)
⊢ X−, X+

(ax)
⊢ X−, X+

(cut)
⊢ X−, X+

(`)

⊢ X− `X+

(ax)
⊢ X−, X+

(ax)
⊢ X−, X+

(cut)
⊢ X−, X+

(`)

⊢ X− `X+

(&)

⊢ (X− `X+) & (X− `X+)

However, π ̸= Pf (π), as Pf (π) is the other proof-net in P(π), on the cut sequent [X− ∗X+, X− ∗
X+] (X− `X+) & (X− `X+):

X− X+ X− X+

` `

&

X− X+

∗

X− X+

∗

Nonetheless, given a proof π we often want any proof-net corresponding to it, as we will not
care about canonicity of proof-nets with cut. We can thus arbitrary choose to consider the set of
linkings Pf (π) with the choice Σ = ∅ in the translation of all &-rules. Obviously, given a proof π
without both &- and cut-rules, P(π) = {Pf (π)}.

As a last example, consider the proof id(X−&Y +)⊗Z+ :

(ax)
⊢ X−, X+

(⊕2)

⊢ X−, Y − ⊕X+

(ax)
⊢ Y −, Y +

(⊕1)

⊢ Y +, Y − ⊕X+

(&)

⊢ X− & Y +, Y − ⊕X+
(ax)

⊢ Z−, Z+

(⊗)
⊢ (X− & Y +)⊗ Z+, Y − ⊕X+, Z−

(`)

⊢ (X− & Y +)⊗ Z+, Z− ` (Y − ⊕X+)

Its desequentialization is unique and is the following set of two linkings:

Pf (id(X−&Y +)⊗Z+) = {{(X−, X+); (Z−, Z+)}; {(Y −, Y +); (Z−, Z+)}}

We graphically represent Pf (id(X−&Y +)⊗Z+) as follows:

Y − X+ Z−

⊕

`

Y +X−Z+

&

⊗

155

4.2. FROM SEQUENT CALCULUS TO PROOF-NETS

Remark 4.16. An alternative definition of desequentialization in [HG05] consists in building a linking
by slice. Given a cut-free proof π on a sequent Γ, each slice s ∈ S(π) of π gives a set of ax -rules
defining a linking λs on Γ. We have Pf (π) = {λs | s ∈ S(π)}. In this spirit, if a cut-free proof-net
θ is obtained by desequentializing a proof π, there is a bijection between linkings in θ and slices of
π.

In the presence of cut-rules, one has to compute first a cut sequent associated to π, with the
very same problematic in the &-rule about separating or superimposing cut pairs. Once this is
done, the sets of linkings {λs | s ∈ S(π)}, for all possible choices of cut sequents, yield P(π).

Fact 4.17. Consider a proof π and a proof-net θ such that θ ∈ P(π). Then π is cut-free if and
only if θ is.

One can easily prove that all elements of P(π) are proof-nets. The reverse, that any proof-net
belongs to P(π) for some proof π, is harder and is the theorem with the longest proof in [HG05].

Theorem 4.18 (Sequentialization, [HG05, Theorem 5.9]). A set of linkings on a cut sequent is a
translation of an atomic-axiom MALL0,2

uf proof if and only if it is a proof-net.

A simpler proof of the hard direction of this theorem will be given in Section 4.3, using results
from Chapter 3. The following theorem is a major result, proving that these proof-nets indeed
quotient proofs as wished.

Theorem 4.19 ([HG16, Theorem 1]). Two atomic-axiom cut-free MALLuf proofs desequentialize
to the same proof-net if and only if they can be converted into each other by a series of rule
commutations.

In the same paper, similar theorems are given with the commutations also involving the cut-
and mix 2-rules (i.e. for ⊢⊣rc in MALL2

uf), except for the & − cut commutation. In presence of both
mix 0- and mix 2-rules, namely in MALL0,2

uf , proof-nets quotient proofs not only by rule commutation
⊢⊣r

∗

, but also by the mix -Rétoré transformation ⇝om. Therefore, thanks to Theorems 2.50 and 4.19,
a cut-free proof-net (resp. connected proof-net) is a canonical representation up to =βη of a proof
in MALL2

uf (resp. MALLuf).

4.2.2 Simulation of cut-elimination
We show here that cut elimination in proof-nets mimics the one in sequent calculus, so that both
concepts are strongly related. As written in Section 4.2.1, proof-nets have difficulties with the
&− cut commutation, which corresponds to superimposing ∗-vertices.

Definition 4.20 (◁). Let θ and ψ be sets of linkings. We denote θ ◁ ψ if there exists a ∗-vertex c
in θ such that the syntactic forest of ψ is the syntactic forest of θ where the syntactic tree of c is
duplicated into the syntactic trees of c0 and c1 (which are different occurrences of c), θ = θ0 ⊔ θ14

and ψ = ψ0 ⊔ ψ1 with, for i ∈ {0; 1}, ψi = θi up to assimilating ci with c.

See Figure 4.5 for a graphical representation of this concept, as well as the link with the &−cut
commutative case of cut-elimination.

Lemma 4.21 (Simulation - β). Let π and π′ be MALL0,2
uf proofs such that π β−→ π′. Then either

Pf (π) = Pf (π
′), Pf (π) ◁ Pf (π

′) or Pf (π)
β−→ Pf (π

′).
4The symbol ⊔ means a union ∪ which happens to be between disjoint sets.

156

CHAPTER 4. PROOF-NETS

&

c

◁ &

c0 c1

⊢ A,B,Γ ⊢ A,D,Γ
(&)

⊢ A,B &D,Γ ⊢ A⊥,∆
c

⊢ B &D,Γ,∆

β−→
⊢ A,B,Γ ⊢ A⊥,∆

c0⊢ B,Γ,∆
⊢ A,D,Γ ⊢ A⊥,∆

c1⊢ D,Γ,∆
(&)

⊢ B &D,Γ,∆

Figure 4.5: Illustration of ◁ and parallel with the &− cut commutation

Proof. We reason by cases according to the step π β−→ π′. Recall that in Pf we desequentialize by
separating all cuts, and use the notations for steps from Definition 4.9. If π β−→ π′ is an ax (resp.
` − ⊗, & − ⊕) key case, then using a step (a) (resp. (b), (c)), we get Pf (π)

β−→ Pf (π
′). If it is

a ` − cut , ⊗ − cut − 1, ⊗ − cut − 2, ⊕1 − cut , ⊕2 − cut or mix 2 − cut commutative case, then
Pf (π) = Pf (π

′). Finally, in a &−cut commutative case, we duplicate the cut-rule: Pf (π) ◁ Pf (π
′)

(see Figure 4.5).

Nonetheless, the ◁ relation is not really problematic since two proofs differing by a & − cut
commutation yield proof-nets equal up to cut-elimination.

Lemma 4.22 (◁ ⊆ =β). Let θ and ψ be sets of linkings such that θ ◁ ψ. Then θ =β ψ.

Proof. By Definition 4.20 of ◁, there exists a ∗-vertex c in θ, with θ = θ0 ⊔ θ1, such that ψ is θ
where the syntactic tree of c is duplicated into c0 and c1, and linkings in θ0 (respectively θ1) use c0
(respectively c1) as c.

We reason by induction on the size of the formula A of c (and also c0 and c1); w.l.o.g. A is
positive. Applying a step of cut-elimination on c in θ yields a set of linkings θ′. On the other
hand, in ψ a corresponding step of cut-elimination on c0 then one on c1 (if it has not been garbage
collected by the previous cut-elimination step) yields ψ′.

If A is an atom, then we applied step (a), and we find θ′ = ψ′. Hence, θ β−→ θ′ = ψ′
β+←− ψ.

If A is a ⊗-formula, i.e. A = A0⊗A1, then we applied step (b) and produced cuts A0 ∗A⊥0 and
A1 ∗A⊥1 in θ′, and (at most) two occurrences of these cuts in ψ′. Thus, θ′ ◁ ζ ◁ ψ′ with ζ the set of
linkings θ′ where the cut on A0 is duplicated (or θ′ ◁ ψ′ in case of garbage collection). By induction
hypothesis, θ′ =β ζ =β ψ

′. It follows θ =β θ′ as θ β−→ θ′ =β ψ
′ β+←− ψ.

Finally, if A is a ⊕-formula with A = A0 ⊕ A1, then we used step (c), producing cuts A0 ∗ A⊥0
and A1 ∗ A⊥1 in θ′, and (at most) two occurrences of these cuts in ψ′. Remark that inconsistent
linkings in ψ for these steps are exactly those of θ, and therefore the same cuts are garbage collected.
Whence θ′ ◁ · ◁ ψ′, θ′ ◁ ψ′ or θ′ = ψ′, according to the number of cuts garbage collected. In all
cases, using the induction hypothesis we conclude θ =β ψ.

157

4.3. SEQUENTIALIZATION

Remark 4.23. Another proof of Lemma 4.22, using the Turbo Cut-elimination procedure and no
induction, is possible. We use the Turbo Cut-elimination procedure on c in θ, yielding a set of
linkings θ′; we also use it in ψ on c0 then on c1, yielding ψ′. Whence, θ β∗−→ θ′ and ψ′

β∗←− ψ. It
stays to prove that θ′ = ψ′. Remark that θ′ and ψ′ can only differ by their linkings, for they have
the same syntactic forest. Notice that a linking in θi, i ∈ {0; 1}, matches for c in θ if and only if it
matches for ci in ψ, because this linking uses ci as c. Thence, the same linkings stay in θ′ and ψ′,
and θ′ = ψ′ follows.

Theorem 4.24 (Simulation Theorem). Let π and π′ be MALL0,2
uf atomic-axiom proofs. If π =β π

′,
then Pf (π) =β Pf (π

′).

Proof. This is a corollary of Lemmas 4.21 and 4.22.

We call B(θ) the β-normal form of the proof-net θ, with all cuts eliminated (thanks to Proposi-
tion 4.10 and Theorem 4.12).

Lemma 4.25. Let π, τ and ρ be MALL0,2
uf atomic-axiom proofs of respective sequents ⊢ A,Γ,

⊢ A⊥,∆ and ⊢ Γ,∆. Assume π
A

▷◁ τ =β ρ. Then B(Pf (π))
A

▷◁ B(Pf (τ)) reduces, after fully
eliminating the cut on A, to B(Pf (ρ)).

Proof. By the Simulation Theorem (Theorem 4.24), Pf (π
A

▷◁ τ) =β Pf (ρ). By definition of Pf

(Section 6.3.1), Pf (π
A

▷◁ τ) = Pf (π)
A

▷◁ Pf (τ), so B(Pf (π)
A

▷◁ Pf (τ)) = B(Pf (ρ)). Moreover, by
confluence of cut-elimination (Theorem 4.12), B(Pf (π)

A

▷◁ Pf (τ)) can be obtained by taking the
β-normal forms of Pf (π) and Pf (τ), composing them over A and reducing this cut. In other words:

B(B(Pf (π))
A

▷◁ B(Pf (τ))) = B(Pf (π)
A

▷◁ Pf (τ)) = B(Pf (ρ))

The result then follows.

4.3 Sequentialization

We give here a new proof of sequentialization for the proof-nets defined in Section 4.1.1. At the best
of my knowledge, this is the only proof of sequentialization other than the original one from [HG05].
Our proof uses Theorem 3.19, as this setting is the one where some switching cycles are allowed,
corresponding to bridge-free cycles in Chapter 3. If we were to work for MLL0,2

uf proof-nets only,
then we could have applied the simpler Theorem 3.29.

For the intuition, a switching cycle can be seen as a zone of dependency where the order of
sequentialization may depend on slices. We have to find a jump arc from these cycles to a &-vertex
which causes this dependency, across all slices. The parallel in Theorem 3.19 are the e(Ω), allowing
to go out of a union of cycles Ω.

We choose to give a proof finding a terminal splitting vertex, as in [HG05] the proof proceeds
by means of splitting `\&-vertex. Remark that, thanks to Theorem 3.19, we could also have done
a proof by splitting `\& – this is detailed in Section 4.3.6.

158

CHAPTER 4. PROOF-NETS

4.3.1 Key lemma
We use a basic result from [HG05], whose proof is reproduced here with some adaptations. It is
the only use of the correctness criterion we make to prove sequentialization, and its role is to prove
the hypotheses (H0

G) and (H1
G) for applying Theorem 3.19.

A sub-set Λ of a set of linkings θ is saturated if any strictly larger sub-set of θ toggles more
&-vertices than Λ. Clearly, θ itself is saturated. For Λ a set of linkings and w a &-vertex, let Λw

denote the set of all linkings in Λ whose additive resolution does not contain the right argument of
w. Write λ w

= λ′ if linkings λ, λ′ ∈ θ are either equal or w is the only & toggled by {λ, λ′}. Saturated
sets of linkings in a proof-structure have the following properties – those are given (without a proof)
in [HG05].

Lemma 4.26. In a set of linkings θ respecting (P1), take Λ ⊆ θ.

(S1) If Λ is saturated and toggles w, then Λw is saturated.

(S2) If Λ is saturated and toggles w and λ ∈ Λ, then λ
w
= λw for some λw ∈ Λw.

(S3) If Λ is saturated, toggles w and λ x
= λ′ for λ, λ′ ∈ Λ, then for some λw, λ′w ∈ Λw we have:

λ λ′

λw λ′w

x

x
w w

Proof.

(S1) Assume Λ is saturated and toggles w. Remark Λw does not toggle w and is not empty, because
w is toggled by Λ: set λ an arbitrary linking of Λw. Take Λ′ a strictly larger subset of θ than
Λw, and assume by contradiction it toggles no more &-vertices than Λw. Consider Λ ∪ Λ′.
This is a strictly bigger subset of θ than Λ. Indeed, if we had a linking λ′ ∈ Λ′ ∩ (Λ\Λw),
then {λ;λ′} ⊆ Λ′ would toggle w, contradicting that Λ′ does not toggle more &s than Λw. By
saturation, Λ∪Λ′ toggles (at least) one more & than Λ; call x such a &. As Λ does not toggle
x, say its additive resolution does not contain the left premise of x. There exists λ′ ∈ Λ′

whose additive resolution has the left premise of x. But then {λ;λ′} ⊆ Λ′ toggles x, which is
not toggled by Λ hence by Λw. Contradiction, hence Λw is saturated.

(S2) Assume Λ is saturated and toggles w, and take λ ∈ Λ. If λ ∈ Λw, then we are done with
λw = λ. Otherwise, λ has the right premise of w in its additive resolution. Set R a &-
resolution λ is on, build from the additive resolution of λ and keeping if possible for &s not
inside a premise belonging to the additive resolution of Λ. Pose S this resolution where w
instead keeps its left argument – giving for &-vertices introduced this way choices of premises
which appear in the additive resolution of Λ if possible. By (P1), there is a linking λw on S.
One have λ w

= λw. Indeed, either {λ;λw} toggles only w by looking at &-resolutions there are
on, or one of the two does not have w in its additive resolution, so is on both R and S, so
that λ = λw thanks to (P1). It stays to prove λw ∈ Λ. By contradiction, assume Λ ∪ λw is
strictly bigger than Λ. By saturation, it must toggles a &-vertex x not toggled by Λ. Remark
x belongs to the additive resolution of Λ. This x must be w, for otherwise its premise kept
in S, so by λw, is already in the additive resolution of Λ. But w is toggled by Λ, reaching a
contradiction.

159

4.3. SEQUENTIALIZATION

(S3) Take a saturated Λ which toggles w and λ x
= λ′ for λ, λ′ ∈ Λ. If λ = λ′, then we can trivially

conclude through (S2), finding λw = λ′w ∈ Λw such that λ w
= λw. Thus, assume {λ;λ′} toggles

only x. Set R and R′ two &-resolutions such that λ (resp. λ′) is on R (resp. R′) and R and R′
differ only on x and its ancestors; this can be done by taking for R premises in the additive
resolution of λ for those &s inside, otherwise taking the same premises as those in the additive
resolution of λ′ for those inside, and finally for &s appearing in neither to keep as premise
one kept in the additive resolution of Λ if possible (and similarly for w′). Define S (resp. S′)
as R (resp. R′) by choosing the other premise for w, and taking for &s introduced this way
premises kept in the additive resolution of Λ if possible – and doing the same choices in both
S and S′. By (P1), there are linkings λw and λ′w respectively on S and S′. Mimicking the
proof of (S2), we find λw, λ′w ∈ Λ as this set is saturated. We conclude as λ w

= λw
x
= λ′w

w
= λ′,

looking at the &-resolutions there are on – proceeding as in the proof of (S2) again.

We aim to prove Corollary 4.29. As we will need a very similar result for the study of isomor-
phisms in Chapter 6, we prove a slight generalization.

Lemma 4.27. Let Λ and Λ′ be sub-sets of a set of linkings θ. Take ω a cycle such that ω ⊆ GΛ
but ω ̸⊆ GΛ′ . Then there exists an arc a ∈ ω which is either an axiom link or a jump arc, such that
a ∈ GΛ\GΛ′ .

Proof. Since ω ̸⊆ GΛ′ , some arc a of ω is in GΛ but not in GΛ′ . We prove our result without loss of
generality, by reducing step by step other possibilities to the wished one.

Without loss of generality, a is an arc from or to a leaf l. Indeed, for any other arc u→ v in ω
we have l → x1 → · · · → xn → u → v in ω for some leaf l, because arcs not using leafs are in the
syntactic forest of the cut sequent. Moreover u→ v is in GΛ′ whenever l→ x1 is in GΛ′ .

Still without loss of generality, a is not an edge in the syntactic forest. Indeed, in such a case
a /∈ GΛ′ implies l /∈ GΛ′ . As l belongs to the cycle ω, let us look at the other arc in this cycle
with endpoint l, say a′. As l /∈ GΛ′ , we also have a′ /∈ GΛ′ . Remark that a′ cannot be an arc in
a syntactic tree, for only one such arc has for endpoint the leaf l, namely a. We thus consider a′
instead of a.

Lemma 4.28. Given a proof-net θ, take a non-empty union Ω of switching cycles of Gθ. Set Λ a
minimal saturated subset of θ with GΛ containing Ω.

There exists a &-vertex w toggled by Λ that is not in Ω and a leaf l ∈ Ω, such that there is
a jump l → w in GΛ, with l being in a link of Ω depending on w or being in a jump arc of Ω.
Furthermore, Ω ̸⊆ GΛw .

Proof. By (P2), singleton sub-sets of θ are acyclic, so Λ contains at least two linkings. Let w be
a & toggled by Λ that is not in any switching cycle of GΛ, existing by (P3), so w /∈ Ω. Since Λ is
minimal, Ω ̸⊆ GΛw using (S1), hence by Lemma 4.27 some axiom link or a jump arc e of Ω is in GΛ
but not in GΛw . Call l a leaf of this arc.

If e is an axiom link, take λ ∈ Λ such that e ∈ λ. By (S2) λ w
= λw for some λw ∈ Λw. Since

e /∈ λw (for e /∈ GΛw), the jump l→ w is in GΛ.
If e is a jump to a &-vertex x, we have λ, λ′ ∈ Λ with a ∈ λ, a /∈ λ′, l a leaf of a, and λ

x
= λ′.

By (S3), λ w
= λw

x
= λ′w

w
= λ′ for λw, λ′w ∈ Λw. One has a /∈ λw or a ∈ λ′w, for otherwise e ∈ GΛw .

Either way, the jump l→ w is in GΛ.

160

CHAPTER 4. PROOF-NETS

X ` ⊗ & ⊕ ∗

Figure 4.6: Local coloring of the graph of a set of linkings

Corollary 4.29 ([HG05, Lemma 4.32]). Given a proof-net θ, every non-empty union Ω of switching
cycles of Gθ has a jump out of it: for some leaf l ∈ Ω and &-vertex w /∈ Ω, there is a jump l → w
in Gθ.

Proof. This is a corollary of Lemma 4.28.

4.3.2 Finding a terminal splitting node
We now apply Theorem 3.19 to obtain the key ingredient in a proof of sequentialization: a terminal
splitting node. We fix a local coloring c of a proof-structure as follows. All edges are colored
differently except for switch arcs of `\&-vertices which are given the same color when directed
towards the `\&-vertex – see Figure 4.6. In particular, there is no bridge of the shape (a+, b+) for
a and b two arcs. Remark a bridge-free cycle for this coloring corresponds exactly to a switching
cycle. We now consider sets of linkings endowed with such a local coloring, with as parameter of
Theorem 3.19 the arcs whose target is a node taken forward (with direction +).

First, remark a maximal element for the ordering has a terminal target.

Lemma 4.30. Let v be a non-terminal node in a proof-structure. Then v belongs to a switching
cycle, or for all a of target v, there exists b such that a+ ◁ b+.

Proof. Take v a non-terminal node and a an arc of target v. As v is not terminal, there exist an arc

b and a node u such that b is a conclusion of v and a premise of u. Then a+
b+

↱ b+ since (a+, b+) is

not a bridge and b+ is open. The only vertices of b+ (seen as a path) are v and u. If b+
p

↱ v for some
path p, then b+ · p is a switching cycle containing v (by Lemma 3.4 and because b is a conclusion

arc). Otherwise we have a+
b+

◁ b+.

Lemma 4.31 (Splitting terminal). A proof-net is node-free or contains a splitting terminal node.

Proof. Assume the proof-net has a node. Seen as a colored graph G, a proof-net respects (H0
G),

(H1
G) and (H2

G). Indeed, given a non-empty maximal connected union of bridge-free (i.e. switching)
cycles, Corollary 4.29 gives an arc e(Ω), which is a jump arc from a leaf l in Ω to a &-vertex w
outside of it. Its reverse is colored differently by c than all other edges of target l by definition of
our coloring: all edges of target l have different colors as a leaf is not a `\&-vertex. No two e(Ω)
and e(Ω′) can share a same support when Ω ̸= Ω′, for they both are between a leaf and a &-vertex,
so if e(Ω) = e(Ω′) then its source is a leaf l belonging to both Ω and Ω′, thus Ω = Ω′ as they are
maximal connected unions of bridge-free cycles.

Pose E the set of edges of the considered proof-net made of premises of `-, ⊗-, & and ⊕-vertices,
as well as jump arcs (all with direction +). In other words, E contains no edge of support an axiom

161

4.3. SEQUENTIALIZATION

Rl;−;l Rl;−;r

Rr;l;l Rr;l;r

Rr;r;l Rr;r;r

&
a &

a

&
a

&
a

&b
&
b

&c

&c

&c

Rl;−;r means we chose the left premise (l) of &a, &b is absent (−) and the right premise (r) of &c

Figure 4.7: &-graph WΓ of Γ = X+ &a (X
+ &b X

+), X− &c X
−

link, but has all other arcs taken forward.5 This set E contains all bridge arches, as they are switch
arcs of `\&-vertices taken forward, and all e(Ω), for those are jump arcs taken forward. It does
not contain some e(Ω) as this is an arc taken backward towards a leaf. Lastly, it is finite and
non-empty as the proof-net has a node, hence it has a maximal element e for ◁ (Lemma 3.16).
Using Theorem 3.19, e has a splitting target, which must be terminal by Lemma 4.30 – because a
splitting vertex is a pier in all cycles containing it, so cannot belong to a bridge-free (i.e. switching)
cycle.

4.3.3 &-graph WΓ of a sequent Γ

Contrary to MLL, in MALL, sequentialization is not an immediate consequence of Lemma 4.31. We
need some results on proof-structures, notably that a terminal splitting ⊕-vertex is unary, so that
it corresponds to a ⊕i-rule, or that a splitting ∗-vertex is present in all additive resolutions, so
that it corresponds to a final cut-rule. To obtain those, we use a tool called the &-graph of a cut
sequent. This is a graphical representation of &-resolutions, allowing easier visualization of notions
like toggling and dependency.

Definition 4.32 (WΓ). The undirected total simple loop-free graph WΓ, called the &-graph of Γ,
is defined as follows:

• WΓ has for vertices the &-resolutions of Γ.

• for R and S two &-resolutions of Γ, there is an edge R — S in WΓ if there is exactly one
&-vertex w with different choices of premise in R and S; we label this edge with w, yielding
R

w

— S.

For instance, the graph WΓ with Γ = X+ &a (X
+ &bX

+), X−&cX
− is depicted on Figure 4.7.

This graph represents the increase in complexity between MALL and MLL, because an MLL0,2
uf

proof-net is a single point on it.

Fact 4.33. Given λ0, λ1 two linkings of a proof-structure and R0, R1 &-resolutions such that λ0
(resp. λ1) is on R0 (resp. R1), the &-vertices toggled by {λ0;λ1} are included in the &-vertices with
different choice of premises in R0 and R1.

5In case one put pending arcs for the roots of the syntactic forest, we do not put such arcs in E.

162

CHAPTER 4. PROOF-NETS

Proof. Because a toggled & is in both additive resolutions Γ ↾ λ0 and Γ ↾ λ1, and Γ ↾ λi ⊆ Ri for
Ri is a &-resolution on which λi is.

Lemma 4.34. Take linkings λ and λ′ in a proof-structure, respectively on &-resolutions R and R′,
such that R

w

— R′ is an edge in WΓ. Either w is the only & toggled by {λ;λ′} or λ = λ′ (i.e. λ w
= λ′,

notation from Section 4.3.1).

Proof. A & toggled by {λ;λ′} can only be w (Fact 4.33). If w is not toggled by {λ;λ′}, then λ′ is
also on R. This yields λ = λ′ through (P1).

Useful paths to consider in WΓ are those following toggled &-vertices.

Definition 4.35. A toggling path in WΓ is a path between &-resolutions R and S such that the
labels of its edges are exactly the &-vertices present in both R and S with different choices of
premises, each taken exactly once.

Lemma 4.36. The graph WΓ is connected with respect to toggling paths: given two &-resolutions,
there exists a toggling path between them in WΓ.

Proof. Take two &-resolutions R and S, and denote by n the number of &-vertices with different
choice of premises in R and S. We reason by induction on n.

If n = 0, then R = S and the empty path is a toggling path. So assume n ≥ 1, and take w one
of those &-vertices. Consider Rw the &-resolution obtained from R by taking the other premise for
w and giving to &-vertices introduced this way the same premise they have in S (these vertices are
in S for S has not the same choice of premises for w as R). Remark that R

w

— Rw is an edge of
WΓ.

By construction of Rw, there are n − 1 &-vertices with different choice of premises in Rw and
S: they are those with different choice of premises in R and S safe for w. By induction hypothesis,
there is a toggling path µ between Rw and S. By Definition 4.35, µ has for labels on its edges
the &-vertices with different choice of premises in Rw and S, each exactly once. It follows that
(R

w

— Rw) · µ is a toggling path between R and S.

Definition 4.37. For a proof-structure θ and a &-resolution R, we set λ(R) the unique linking of
θ on R according to (P1).

The main use we will do of toggling paths is through the following lemma.

Lemma 4.38. Consider two linkings µ and ν in a proof-structure θ. Take P a predicate on linkings
of θ, and assume P (µ) is true while P (ν) is not. Then, there exist linkings µ′, ν′ ∈ θ such that
P (µ′) is true, P (ν′) is not and {µ′; ν′} toggles only one &-vertex, which is one of those toggled by
{µ; ν}.

Proof. Take R and S two &-resolutions respectively of µ and ν, chosen such that the &-vertices
toggled by {µ; ν} are exactly the &-vertices in R and S with different choice of premises. This can
be done as follows, where we explain how to build R and a symmetric construction would yield
S. For a given &-vertex, if it is in the additive resolution of µ than takes the same premise in R;
otherwise, if it is in the additive resolution of ν, then keep the corresponding premise; otherwise,
keep the left premise. Remark µ = λ(R) and ν = λ(S).

Take µ a toggling path between R and S (Lemma 4.36). As P (λ(R)) is true while P (λ(S)) is
not, there is an edge R′

w

— S′ in µ such that P (λ(R′)) is true but P (λ(S′)) is not – otherwise we

163

4.3. SEQUENTIALIZATION

could deduce P (λ(S)) is true from P (λ(R)), by following the edges of the path µ. As λ(R′) ̸= λ(S′),
w is the only & toggled by {λ(R′);λ(S′)} (Lemma 4.34). By definition of a toggling path, and by
our initial construction of R and S, w is one of the &-vertices toggled by {µ; ν}.

4.3.4 Results on proof-structures using &-graphs
Using &-graphs, one can more easily find jump arcs in a proof-net, which will entail the conditions
we need to sequentialize thanks to splitting terminal vertices. The following characterization is
the one we wish for the found vertices. A terminal node v in a proof-net θ is sequentializing if,
depending on its kind:

• `\&-vertex: a terminal `\&-vertex is always sequentializing;

• ⊗-vertex: v belongs to no cycle in Gθ – i.e. the removal of v in Gθ breaks a connected
component into two;

• ⊕-vertex: v is unary in θ;

• ∗-vertex: v belongs to the additive resolution of all linkings and is in no cycle in Gθ.
A terminal splitting `\⊗\& corresponds to a sequentializing one by definition. We prove here that
a terminal splitting ⊕\∗ is sequentializing – the reciprocal being easy.

Lemma 4.39. Take a non-negative vertex v in a proof-structure θ such that there exist a left-
ancestor l and a right-ancestor r of v in its formula tree, and a &-vertex w such that there are jump
arcs l→ w and r → w in Gθ. Then v is not splitting.

Proof. First, remark w cannot be an ancestor of v, for it belongs to both the additive resolution of
a linking containing l and to one containing r. We build a simple path pl starting with the edge
from v to its left premise and ending on w. Define ql the simple open path from v to the leaf l using
only conclusion arcs taken backward (with − signs). The jump l→ w also being a simple and open
path, and w not being inside ql, pl = ql · (l → w) is a simple open path (Lemma 3.5) going from v
to w – see Figure 4.8 for an illustration.

By applying the same reasoning on v and r, we have a simple open path pr from v to w, sharing
exactly its endpoints with pl by construction – one is in the left sub-tree of v, the other in its
right sub-tree. Wherefore, pl · pr is a cycle starting from v, illustrated on Figure 4.8. As it does
not contain v as a pier (for by our definition of coloring all edges with v as a target have different
colors), v is not splitting.

Lemma 4.40 (Jumps of a terminal ⊕-vertex). Let v be a binary terminal ⊕-vertex of a proof-
structure θ. There exist a left-ancestor l and a right-ancestor r of v in its formula tree, as well as
a &-vertex w, such that there are jump arcs l j−→ w and r j−→ w in Gθ.
Proof. As v is binary, there exist linkings λa′ , λb′ ∈ θ using respectively a leaf in the left and right
formula tree of v. For v is terminal, any linking uses a leaf in the formula tree of v, either left or
right (according to its additive resolution). Set P (λ) the predicate “λ uses a leaf in the left formula
tree of v”. By Lemma 4.38 on this predicate, one gets linkings λa, λb ∈ θ such that λa uses the left
sub-tree of v while λb uses the right one, and they toggle a unique &-vertex w. In particular, there
is a link a ∈ λa with a leaf l in the left formula tree of v, and a link b ∈ λb with a leaf r in the
right one. As a and b belong to different additive resolutions, we have more precisely a ∈ λa\λb
and b ∈ λb\λa. Thus, there are jump arcs l→ w and r → w in Gθ (see Figure 4.8).

164

CHAPTER 4. PROOF-NETS

v

l r

w

q
l q r

j j

Figure 4.8: Illustration of a cycle containing a vertex having a left-ancestor and a right-ancestor
with jump arcs to a same &-vertex

Corollary 4.41. In a proof-structure θ, any binary terminal ⊕-vertex is not splitting.

Proof. Corollary of Lemmas 4.39 and 4.40.

Lemma 4.42. Let v be a ∗-vertex not in all additive resolutions of a proof-structure θ. There exist
a left-ancestor l and a right-ancestor r of v in its formula tree, as well as a &-vertex w, such that
there are jump arcs l j−→ w and r j−→ w in Gθ.

Proof. By assumption, there exists a linking λ′out ∈ θ such that v is not in its additive resolution.
By (P0), v has a leaf in some λ′in, thus v is in the additive resolution of this linking. Set P (λ) the
predicate “v is in the additive resolution of λ”. By Lemma 4.38 on this predicate, one gets linkings
λin, λout ∈ θ such that λin has v in its additive resolution while λb does not, and they toggle a
unique &-vertex w. So there are axiom links a, b ∈ λin using respectively a leaf l in the left and r in
the right formula tree of v. Furthermore, a, b ∈ λin\λout as there are not in the additive resolution
of λout. Thus, there are jump arcs l→ w and r → w in Gθ (see Figure 4.8).

Corollary 4.43. In a proof-structure θ, a ∗-vertex not in all additive resolutions is not splitting.

Proof. Corollary of Lemmas 4.39 and 4.42.

Lemma 4.44. Let θ be a proof-structure, λ, λ′ ∈ θ and a ∈ λ\λ′ an axiom link. There exists a
&-vertex w toggled by {λ;λ′} such that a depends on w in θ.

Proof. . Define a predicate P on linkings by P (µ) = a ∈ µ. By Lemma 4.38 on this predicate,
one gets linkings µ, µ′ ∈ θ such that a ∈ µ\µ′ and {µ;µ′} toggles a unique &-vertex w, that is also
toggled by {λ;λ′}. Thus, a depends on w in θ.

4.3.5 Sequentialization

Thanks to the previous section, we now prove that terminal splitting vertices are easy to sequen-
tialize. After proving it for each kind of vertex, we deduce the sequentialization theorem.

Lemma 4.45 (Sequentializing &). Let v be a terminal &-vertex in a proof-net θ on a cut sequent
[Σ] A0 &A1,Γ, with A0 &A1 the formula associated to v. There exists θ0, θ1, ∆, Σ0, Σ1 such that
θ = θ0 ⊔ θ1, Σ = ∆,Σ0,Σ1 and θi is a proof-net on [∆,Σi] Ai,Γ for i ∈ {0; 1}.

165

4.3. SEQUENTIALIZATION

Proof. For i ∈ {0; 1}, define θi as the linkings of θ using the premise Ai of A0 & A1. Also set ∆
the subset of Σ composed of the cut pairs having a leaf in both θ0 and θ1, and Σi the subset of Σ
composed of the cut pairs having a leaf only in θi and not in θ1−i.

We have θ the disjoint union of θ0 and θ1, for the additive resolution of any linking contains
either (the root of) A0 or A1. That Σ = ∆,Σ0,Σ1 follows: either a cut pair has a leaf in θ0, or in
θ1 or in both, and it cannot be in none of them by (P0).

That θi is a set of linkings on [∆,Σi] Ai,Γ follows from the fact that it is composed of linkings
on [Σ] A0&A1,Γ with Ai in its additive resolution. To obtain that θi is a proof-net on [∆,Σi] Ai,Γ,
we have (P0), (P1), (P2) and (P3) to prove. Remark that, for all Λ ⊆ θi, GΛ in θi is GΛ in θ where
the unary vertex v is removed (∗).

The cut condition (P0) results immediately from the definition of ∆ and Σi. The resolution
condition (P1) follows directly from the one on θ, using that θi ⊆ θ. The MLL condition (P2) holds
by (∗).

For the toggling condition (P3), take Λ ⊆ θi of size at least two. Then Λ is also a set of linkings
of θ. By (P3) of θ applied to Λ, Λ toggles a &-vertex w not in any switching cycle of GΛ of θ. This
vertex w must be a vertex of [∆,Σi] Ai,Γ, for the other &-vertices are not toggled by Λ ⊆ θi. Thus,
w is in GΛ of θi and it is in no switching cycle of it by (∗).

Lemma 4.46 (Sequentializing `). Let v be a terminal `-vertex in a proof-net θ on a cut sequent
[Σ] A0 `A1,Γ, with A0 `A1 the formula associated to v. Then θ is a proof-net on [Σ] A0, A1,Γ.

Proof. The cut sequents [Σ] A0 ` A1,Γ and [Σ] A0, A1,Γ have the same leaves and (aside from
the presence/absence of v) the same &− and additive resolutions, so θ is also a set of linkings on
[Σ] A0, A1,Γ and respects (P0) and (P1) on it, for it respects them on [Σ] A0 ` A1,Γ. For any
Λ ⊆ θ, GΛ on [Σ] A0, A1,Γ is GΛ on [Σ] A0 `A1,Γ where the vertex v is removed. Therefore, (P2)
for θ on [Σ] A0, A1,Γ follows from (P2) on [Σ] A0 ` A1,Γ. Finally, any sub-set Λ ⊆ θ toggles the
same &-vertices on [Σ] A0, A1,Γ as it does on [Σ] A0`A1,Γ, and GΛ has the same switching cycles
with respect to [Σ] A0, A1,Γ as with respect to [Σ] A0 `A1,Γ, proving (P3). Therefore, θ is also a
proof-net on [Σ] A0, A1,Γ.

Lemma 4.47 (Sequentializing ⊕). Let v be a terminal splitting ⊕-vertex in a proof-net θ on a cut
sequent [Σ] A0 ⊕A1,Γ, with A0 ⊕A1 the formula associated to v. There exists i ∈ {0; 1} such that
θ is a proof-net on [Σ] Ai,Γ.

Proof. By Corollary 4.41, v is unary: set i ∈ {0; 1} such that the formula tree of A1−i has no axiom
link on any of its leaves in Gθ.

For a linking λ ∈ θ, we have by hypothesis that its additive resolution [Σ] A0 ⊕ A1,Γ ↾ λ
uses the premise of v corresponding to Ai (v belongs to it as it is terminal), thus [Σ] Ai,Γ ↾ λ is
[Σ] A0⊕A1,Γ ↾ λ where v is removed. Therefore, λ is still a partitioning of the leaves of an additive
resolution [Σ] Ai,Γ ↾ λ into links. Hence, θ is a set of linkings on [Σ] Ai,Γ. Remark that, for all
Λ ⊆ θ, GΛ on [Σ] Ai,Γ is GΛ on [Σ] A0⊕A1,Γ where we remove the unary v (∗). Let us prove that
θ is a proof-net on [Σ] Ai,Γ.

Cut (P0) A cut pair in Σ has a leaf in θ on [Σ] A0 ⊕ A1,Γ by (P0), which is a leaf in θ on
[Σ] Ai,Γ.

Resolution (P1) Let R′ be a &-resolution of [Σ] Ai,Γ. We extend it into a &-resolution R of
[Σ] A0 ⊕A1,Γ by giving arbitrary choice of premises to the &-vertices of A1−i. As all linkings of θ
use the premise Ai of v, linkings on R′ of [Σ] Ai,Γ are exactly those on R of [Σ] A0⊕A1,Γ. Hence
(P1) for θ on [Σ] Ai,Γ from (P1) for θ on [Σ] A0 ⊕A1,Γ.

166

CHAPTER 4. PROOF-NETS

MLL (P2) By (∗), (P2) for θ on [Σ] Ai,Γ follows from (P2) on [Σ] A0 ⊕A1,Γ.
Toggling (P3) Take Λ ⊆ θ of size at least 2. By (P3) applied to Λ on [Σ] A0 ⊕A1,Γ, Λ toggles

a &-vertex w that is in no switching cycle of GΛ on [Σ] A0 ⊕ A1,Γ. But w is in GΛ on [Σ] Ai,Γ
(for it is in the additive resolution of a linking, which takes Ai) and in no switching cycle of GΛ on
[Σ] Ai,Γ by (∗).

Lemma 4.48 (Sequentializing ⊗\∗). Let v be a terminal splitting ⊗-vertex (resp. ∗-vertex) in a
proof-net θ on a cut sequent [Σ] A0⊗A1,Γ (resp. [A0 ∗A1,Σ] Γ), with A0⊗A1 (resp. A0 ∗A1) the
formula associated to v. There exists θ0, θ1, Γ0, Γ1, Σ0, Σ1 such that θ = {λ ∪ µ | λ ∈ θ0, µ ∈ θ1},
Γ = Γ0,Γ1, Σ = Σ0,Σ1 and θi is a proof-net on [Σi] Ai,Γi for i ∈ {0; 1}.

Proof. Set [Σ0] Γ0 the elements of [Σ] Γ whose roots in the removal of v in Gθ are in the connected
component of the root of A0, and [Σ1] Γ1 the other elements (as v is splitting). We denote by Φ
the cut sequent [Σ] A0 ⊗A1,Γ (resp. [A0 ∗A1,Σ] Γ) and by Φi the cut sequent [Σi] Ai,Γi.

Pose, for i ∈ {0; 1}, fi(λ) = {a ∈ λ | a ∈ Φi} for λ ∈ θ, and θi = {fi(λ) | λ ∈ θ}. We have
Γ = Γ0,Γ1 and Σ = Σ0,Σ1 as we partitioned the formulas. Let us prove θ = {λ∪µ | λ ∈ θ0, µ ∈ θ1},
assuming (P1) for θi that we will prove later. By definition of the θi, θ ⊆ {λ0∪λ1 | λ0 ∈ θ0, λ1 ∈ θ1}.
Take λ0 ∈ θ0 and λ1 ∈ θ1, as well as R0 and R1 &-resolutions there are respectively on. Set R
the &-resolution of θ taking the same choices of premises as R0 and R1. By (P1) of θ, there is a
unique λ ∈ θ on it. But then for i ∈ {0; 1}, fi(λ) is on Ri. By (P1) of θi, this linking is λi, hence
λ = λ0 ∪ λ1. This proves θ = {λ0 ∪ λ1 | λ0 ∈ θ0, λ1 ∈ θ1}.

We now prove that θi is a proof-net on Φi. For λi ∈ θi, we set λ ∈ θ a linking it origins from
(i.e. such that fi(λ) = λi).

θi is a set of linkings. Take λi ∈ θi. We have λ ∈ θ a partition of the leaves of Φ ↾ λ. The
terminal vertex v is inside this additive resolution (immediate if v is a ⊗-vertex and by Corollary 4.43
if it is a ∗-vertex). Thus, Φ ↾ λ = Φ ↾ λ0 ∪ Φ ↾ λ1, and so λi is a partition of the leaves of Φi ↾ λi
for there is no axiom link between Φ ↾ λ0 and Φ ↾ λ1 by definition of [Σ0] Γ0.

Cut (P0) A cut pair in θi is one of θ, so has a link on it in θ. This link belongs to θi by definition
of θi.

Resolution (P1) Let Ri be a &-resolution of Φi. We can extend it into an arbitrary &-resolution
R of Φ. There exists a unique λ ∈ θ on R by (P1). Then λi is on Ri for there is no axiom link
between Φ0 and Φ1. For unicity, assume we have λ1i , λ2i ∈ θi both on Ri, with λ1i ̸= λ2i . There
exists w.l.o.g. a ∈ λ1i \λ2i ⊆ λ1\λ2. By Lemma 4.44, there exists a &-vertex w on which a depends
(so there are jump arcs from the leaves of a to w) and toggled by {λ1;λ2}. It follows that w is in
θi as there are no jump arcs from θi to θ1−i. But then {λ1i ;λ2i } toggles w, a contradiction as they
are on the same &-resolution Ri.

MLL (P2) For any λ ∈ θ, Gλi is a sub-graph of Gλ. Hence the preservation of (P2).
Toggling (P3) Take Λi = {λji | j ∈ J1;nK} a set of linkings of θi of size n ≥ 2. Each λji , for

j ∈ J1;nK, has a &-resolution Rji it is on in θi. We choose an arbitrary &-resolution on θ1−i and
use it to extend all Rji to &-resolutions Rj on θ. By (P1) of θ, there exists a unique linking µj

associated to each Rj .
We have for all j ∈ J1;nK, fi(µj) = λji . Indeed, the &-resolution Rj of µj coincides with Rji on

θi, and we conclude by (P1) of θi. We pose Λ = {µj | j ∈ J1;nK}, of size n ≥ 2 (they are distinct
for their projections by fi are distinct).

By (P3), there exists a &-vertex w toggled by Λ and not in any switching cycle of GΛ. This
vertex w cannot be in θ1−i, for all linkings of Λ have the same &-resolution on θ1−i by definition:
thus it belongs to θi. As there are no jump arcs from θ1−i to θi, the axiom links depending on w are

167

4.3. SEQUENTIALIZATION

in λi, and thus belong to fi(µj) = λji . Therefore Λi toggles w. Finally, a switching cycle of GΛi is a
switching cycle of GΛ, as GΛi is an induced sub-graph of GΛ (thanks to fi(µj) = λji for j ∈ J1;nK).
It follows that w is in no switching cycle of GΛi , for it is in no switching cycle of GΛ.

We have now everything needed to prove the sequentialization theorem.

Theorem 4.49 (Sequentialization). Given a proof-net θ on a cut sequent [Σ] Γ, there exists a proof
π of ⊢ Γ in MALL0,2

uf such that θ ∈ P(π).

Proof. We reason by induction on the number of nodes of Gθ. Assume first that Gθ contains a
non-leaf vertex. By Lemma 4.31, there is a terminal splitting node v in Gθ. We distinguish cases
according to the kind of this node.

If v is a `-vertex. In this case, [Σ] Γ = [Σ] A0 `A1,∆ with A0 `A1 the formula associated to
v. Using Lemma 4.46, θ is a proof-net on [Σ] A0, A1,∆. By induction hypothesis, one gets a proof
π0 of ⊢ A0, A1,∆ such that θ ∈ P(π0). We add a `-rule to π0, obtaining a proof π of ⊢ A0 `A1,∆
satisfying θ ∈ P(π).

If v is a &-vertex. In this case, [Σ] Γ = [Σ] A0 & A1,∆ with A0 & A1 the formula associated
to v. Using Lemma 4.45, Σ = Φ,Σ0,Σ1 and θ = θ0 ∪ θ1 with θi a proof-net on [Φ,Σi] Ai,∆ for
i ∈ {0; 1}. By induction hypothesis, one gets proofs πi of ⊢ Ai,∆ such that θi ∈ P(πi). We add a
&-rule to π0 and π1, obtaining a proof π of ⊢ A0 &A1,∆ satisfying θ ∈ P(π).

If v is a ⊕-vertex. In this case, [Σ] Γ = [Σ] A0 ⊕A1,∆ with A0 ⊕A1 the formula associated to
v. Using Lemma 4.47, there exits i ∈ {0; 1} such that θ is a proof-net on [Σ] Ai,∆. By induction
hypothesis, one gets a proof π0 of ⊢ Ai,∆ such that θ ∈ P(π0). We add a ⊕i-rule to π0, obtaining
a proof π of ⊢ A0 ⊕A1,∆ satisfying θ ∈ P(π).

If v is a ⊗-vertex. In this case, [Σ] Γ = [Σ] A0 ⊗A1,∆ with A0 ⊗A1 the formula associated to
v. Using Lemma 4.48, ∆ = ∆0,∆1, Σ = Σ0,Σ1 and θ = {λ∪µ | λ ∈ θ0, µ ∈ θ1} with θi a proof-net
on [Σi] Ai,∆i for i ∈ {0; 1}. By induction hypothesis, one gets proofs πi of ⊢ Ai,∆i such that
θi ∈ P(πi). We add a ⊗-rule to π0 and π1, obtaining a proof π of ⊢ A0⊗A1,∆ satisfying θ ∈ P(π).

If v is a ∗-vertex. In this case, [Σ] Γ = [A0 ∗A1,∆] Γ with A0 ∗A1 the formula associated to v.
Using Lemma 4.48, Γ = Γ0,Γ1, ∆ = ∆0,∆1 and θ = {λ∪ µ | λ ∈ θ0, µ ∈ θ1} with θi a proof-net on
[∆i] Ai,Γi for i ∈ {0; 1}. By induction hypothesis, one gets proofs πi of ⊢ Γi such that θi ∈ P(πi).
We add a cut-rule to π0 and π1, obtaining a proof π of ⊢ Γ satisfying θ ∈ P(π).

Now assume that Gθ contains no node. This implies Σ = ∅ and Γ is composed only of atoms.
In particular, θ = {λ} using (P1). We reason now by induction on the size of λ. If λ is not the
empty set, take a link a inside, between leaves X+ and X−. Define λ′ and Γ′ such that λ = λ′ ∪ a
and Γ = X−, X+,Γ′ (up to permutation). One can easily check that {λ′} is a proof-net on [] Γ′.
By induction hypothesis, one gets a proof π′ of ⊢ Γ′ such that {λ′} ∈ P(π′). We build:

π =
(ax)

⊢ X−, X+
π′

⊢ Γ′
(mix2)

⊢ X−, X+,Γ′

which satisfies {λ} ∈ P(π).
If λ = ∅, then it must be on the empty cut sequent [] . We have {∅} the sole element of

P
(

(mix0)
⊢

)
.

The proof π built here always contains a mix 0-rule and contains a mix 2-rule as soon as θ is not
empty. It is possible to optimize this by considering separately the case of a proof-net reduced to a

168

CHAPTER 4. PROOF-NETS

single link between a pair of leaves, which is the desequentialization of
(ax)

⊢ X+, X− . In this way,
we always get a ⇝om-normal form.

Remark 4.50. With this proof of sequentialization, it is easy to check that there is some freedom
in the definitions of proof-nets. For instance, one could replace axiom links with ax -vertices having
two out-going arcs instead, and put jump arcs from these ax -vertices instead of from leaves of the
links, keeping the same correctness criterion. Or one can put jump arcs not from both leaves of a
link, but only from the negative one. The proof of sequentialization in [HG05] may also allow such
modifications, for the only use of (P3) inside is to prove Corollary 4.29 too; nonetheless it is less
clear that the rest of the proof is mostly independent from the definition of a jump arc.

While at first sight this last part (Sections 4.3.3 to 4.3.5) of the proof of sequentialization is
longer than the corresponding one in [HG05], with in particular the use of the &-graphs, this is
because we prove in details arguments that were simply claimed in their proof. As an example, the
following result is used in [HG05] without an explicit proof.

Lemma 4.51 (Claim in the proof of sequentialization of [HG05]). Let v be a splitting `\&-vertex
in a proof-net θ on [Σ] Γ. For all λ ∈ θ, v ∈ [Σ] Γ ↾ λ.

Proof. Notice at least one linking contains v in its additive resolution, otherwise v is not in Gθ. We
prove the contrapositive: given a vertex v ∈ Gθ such that there exist linkings λ, λ′ ∈ θ with v in
[Σ] Γ ↾ λ but not in [Σ] Γ ↾ λ′, there exists a cycle of Gθ containing the conclusion of v. Thus, there
is an additive vertex u such that one of its premises is kept by λ while λ′ keeps the other, with v
in the syntactic tree of u.

Without any loss of generality, these linkings toggle only one &-vertex, w. Indeed, set P a
predicate on linkings by P (µ) = v ∈ [Σ] Γ ↾ µ. By Lemma 4.38 on this predicate, one gets linkings
µ, µ′ ∈ θ such that v in [Σ] Γ ↾ µ but not in [Σ] Γ ↾ µ′ and {µ;µ′} toggles a unique &-vertex w.

Set l a leaf in λ\λ′ found by going up in the sub-tree of v, following premises kept in the additive
resolution of λ. Similarly, there is a leaf l′ ∈ λ′\λ by going up in the sub-tree of u, following
premises kept in the additive resolution of λ′. The cycle v 99K u L99 l′ → w ← l 99K v, where 99K
is a path using as edges the arcs of a syntactic tree in the positive direction, is a cycle containing
the conclusion arc of v (w is not an ancestor of u for it belongs to both additive resolutions).

4.3.6 Other proofs of sequentialization

The work on graph theory factorizes several proofs of sequentialization. Using the parameter E of
Theorem 3.29, one can recover the proof by splitting `\& from [HG05], as well as by other kinds
of splitting vertices. Here are possible such sets (sorted by increasing size):

• if E is the set of all switch arcs of `\&-vertices taken with direction +, one gets a splitting
`\&-vertex;

• if E is the set of all edges of the shape a+ with a not an axiom link, one gets a terminal
splitting node (Lemma 4.31);

• if E contains all edges except jump arcs taken backward, or all edges except those of support
an axiom link and jump arcs taken backward, one gets an arbitrary splitting vertex (possibly
a leaf).

169

4.3. SEQUENTIALIZATION

X+ X−

`1 Y +

Y −⊗1

`2

Figure 4.9: Connected proof-net where `1 is a splitting ` whose two premises are not maximal
for ◁

X+ X− X+ X− X+ X− X+ X−

⊗l ⊗c ⊗r

Figure 4.10: Connected proof-net with a terminal splitting vertex ⊗c whose both premises are not
maximal for ◁

For the cases other than the one we chose, sequentialization is possible by considering some kind of
proof-nets with hypotheses (shared among all slices), meaning we cut some sub-trees of the syntactic
forest – this is needed because the splitting vertex found may not be terminal. The concept of such
proof-nets is at best complex, and does not seem that useful outside of sequentialization, hence we
will not give any more details. Another solution, which is the one chosen in [HG05], consists in
introducing a new leaf and axiom link to recover a proof-net without hypothesis.

4.3.7 Splitting but not maximal

Using Theorem 3.19 in the context in proof-nets in Sections 4.3.2 and 4.3.6, we saw that edges
maximal for ◁ lead to splitting vertices. However, the converse does not necessarily hold as some
splitting vertices may not be the target of a maximal edge, even in the simpler setting of MLLuf
proof-nets.

If one is looking at splitting `-vertices, with E made of premises of `-vertices, a counter-example
is given on Figure 4.9. This connected proof-net has two splitting vertices, `1 and `2. However,
both premises of `1 are smaller than the left premise of `2, using the path `1 → ⊗1 → `2 (dashed
on Figure 4.9).

Similarly, when searching for a terminal splitting vertex, with E made of premises of all `-
and ⊗-vertices, Figure 4.10 illustrates a counter-example. All three ⊗-vertices of this connected
proof-net are terminal and splitting, but no premise of ⊗c is maximal: the left one is smaller than
the left premise of ⊗r while the right one is lesser than the right premise of ⊗l, using respectively
the paths ⊗c ← X+ — X− → ⊗r (dashed on Figure 4.10) and ⊗c ← X− — X+ → ⊗l.

Finally, with E made of all edges except jump arcs taken backward (and possibly with no edges

170

CHAPTER 4. PROOF-NETS

X+ X−

Y +

Y −

Z+

Z−

`1

⊗1

⊗2

Figure 4.11: Connected proof-net with a splitting vertex ⊗1 whose in-edges are not maximal for ◁

of support a link), Figure 4.11 gives a counter-example. The splitting vertex ⊗1 in this connected
proof-net has none of its in-edges maximal for ◁: both of its premises are smaller than the left
premise of ⊗2, with the path ⊗1 → ⊗2, and its conclusion arc taken backwards (with −) is smaller
than the conclusion arc of `1 taken backwards, using ⊗1 ← `1.

Looking only at connected proof-nets in MLLuf , there is a notion of kingdom [BV95], where the
kingdom k(v) of v is the smallest sub-graph of the proof-net where v is a terminal vertex and which
is a connected proof-net. This implies a natural order on vertices: u is smaller than v if u ∈ k(v).
It is possible to prove the following: in a MLLuf connected proof-net, if a is an arc of k(v) then, for
any arc b with source v, a+◁ b+. In other words, our order ◁ contains the order of kingdoms. The
converse is false, as shown on Figure 4.10 where the kingdom of each ⊗-vertex is its set of premises.
We will not give any more details about this as kingdoms work badly in MLL0,2

uf and in MALLuf ,
not to speak about MALL0,2

uf .

4.3.8 Variations

Now that we have sequentialization for full MALL0,2
uf , we can consider some restrictions to spe-

cific sub-systems, and characterize sub-systems of the sequent calculus by means of properties of
their image in proof-structures. The key argument is that Lemma 4.31 holds for proof-nets, so in
particular for connected proof-nets respecting (P2c), but also for proof-nets respecting (P2c0) or
(P2c2).

Given a proof π, consider one of its slice s, and set #mix 2 (resp. #mix 0) the number of mix 2-
rules (resp. mix 0-rules) inside. Looking at the associated linking λs (recall Remark 4.16), each of
its `-switching ϕ is such that Gϕ has 1 + #mix 2 −#mix 0 connected components. In particular, a
proof without mix 2- and mix 0-rules (resp. without mix 0-rules, without mix 2-rules) desequentializes
into a proof-net respecting (P2c) (resp. (P2c2), (P2c0)).

Conversely, one can adapt the proof of Theorem 4.49 to proof-nets respecting (P2c) (resp. (P2c2),
(P2c0)) to recover a proof without mix 2- and mix 0-rules (resp. without mix 0-rules, without mix 2-
rules) – because each of these properties is preserved by removal of a sequentializing vertex. This
yields variations of Theorem 4.18 in these three cases.

171

4.4. GENERAL RESULTS ON PROOF-NETS

4.4 General Results on Proof-Nets

We give here some general results about proof-nets, that will be of use later.

4.4.1 Connectivity and number of connected components

Remember that, given a linking λ in a proof-net θ and one of its `-switchings ϕ, we defined a
graph Gϕ, which is asked to be acyclic. Also remember we may consider its number of connected
components, in particular when working without the mix 2-rule.

Lemma 4.52. Pose θ a set of linkings respecting (P2). Take a linking λ ∈ θ and a `-switching ϕ.
The number of connected components of Gϕ is equal to |V |+ |` | − |E| where |V | is the number of
vertices of Gλ, |` | its number of `-vertices and |E| its number of edges.

Proof. As Gϕ is acyclic by (P2) (recall Remark 4.2), using Corollary 3.48 its number of connected
components is equal to its number of vertices minus is number of edges. As Gϕ is obtained from Gλ
by deleting one edge by `-vertex, the conclusion follows.

Thanks to this lemma, one can define the number #cc of connected components of a
linking λ as |V | + | ` | − |E| (with the conventions of the above lemma). Then, a proof-net is
connected if and only if for any linking λ, its number of connected components is equal to 1.

In particular, for a MLL0,2
uf proof-net, made of only one linking by (P1), one can define its number

of connected components, which is not to be confound with the standard number of connected
components from graph theory of the graph associated to this proof-net.

4.4.2 Forbidden Sub-graphs in Proof-Nets

We give in this section some forbidden sub-graphs that a (connected) proof-net cannot have.

Lemma 4.53. Consider a proof-net θ on the cut sequent [A ∗ A⊥,Σ] Γ. No axiom link of θ is
between a leaf of A and one of A⊥.

Proof. Towards a contradiction, assume there is an axiom link between a leaf l of A and a leaf l′
of A⊥, in a linking λ. Then there is a switching cycle in Gλ, a contradiction with (P2). This cycle,
depicted below, uses the incriminated link l — l′, the path of the syntactic tree from l′ to the root
of A⊥, goes through the ∗-vertex, and then takes the path of the syntactic tree from the root A to
l.

A

∗

A⊥

l l′

172

CHAPTER 4. PROOF-NETS

Lemma 4.54. A connected proof-net θ does not contain a link `X⊥ — X`, where these two
`-vertices are distinct. In other words, θ has no sub-graph of the following shape:

` `

X⊥ X

Similarly, θ cannot contain a link `X⊥ — X (resp. X⊥ — X`) where X (resp. X⊥) is a
formula (occurrence) of the cut sequent of θ.

Proof. By contradiction, consider such a link a. It belongs to a linking λ ∈ θ. Consider a `-
switching ϕ of λ such that the `-vertex below the X⊥ (resp. X) in a does not keep its premise
leading to this X⊥ (resp. X). By (P2) and (P2c), Gϕ is a tree (see Remark 4.4). Contradiction, as
the sub-graph made of X⊥ — X is a connected component of Gϕ, not connected to the `-vertices
we saw.

The other cases, with less `-vertices, are similar.

Lemma 4.55. Consider a cut-free connected MLL0,2
uf proof-net θ containing a proper sub-graph of

the following shape:

`

X⊥ X

Then this sub-graph is contained in a larger sub-graph of θ of the following form:

`

X⊥ X

⊗

or `

X⊥ X

⊗

Proof. As it is a proper sub-graph, and by (P2c), there must be a connective below the `-vertex
under consideration – otherwise this sub-graph would be a connected component of the proof-net.
This connective cannot be a `-vertex, for this would yield an unconnected Gϕ with ϕ a `-switching
where we choose not to keep the premise of this ` leading to the sub-graph. So, this connective
must be a ⊗.

Remark 4.56. Lemma 4.55 does not hold in MALL0,2
uf , as below could be a ⊕-vertex for instance.

4.5 Perspectives

After recalling the definition of proof-nets for MALL0,2
uf from [HG05], we give a proof of the se-

quentialization theorem thanks to our generalization of Yeo’s theorem. This last theorem could be
instrumental in proving this theorem for other notions of proof-nets. It should be at least useful
for non-atomic-axiom proof-nets for MALL0,2

uf . To define those, it should suffice to have an axiom

173

4.5. PERSPECTIVES

link not between leaves, but generally between edges of dual labels. Then everything should work
the same, provided a linking with a &-vertex above one of its links is considered as having both
premises of this & in its additive resolution. Note however that, from a complexity point of view,
our proof herited from graph does not seem optimal. Indeed, while our method is efficient for
proving the existence of a splitting vertex, searching for such a vertex thanks to our ordering may
need many steps. A linear algorithm for sequentializing MLL proof-nets is known [Gue11], and it
could be interesting to consider this problem for MALL.

While the interactions between additive and exponential connectives of linear logic are no-
toriously complicated, we presume this in mainly due to the comonoidal structure imposed on
exponentials. In a setting where exponentials have none of these properties – ?w is not neutral for
?c, and ?c is neither associative nor commutative – a proof-net syntax looks possible. Indeed, in
such a framework one can see the ?c-rule (read from bottom to top) as taking an occurrence of ?A
and creating another occurrence of it. It is then possible to follow occurrences of ?-formulas, with
each ?c-vertex having a main parent and a secondary one; it is in particular possible to do so across
slices, just by “superimposing” exponential trees, along the main (original) occurrence! Doing the
naive proof-nets in this setting by merging MALL0,2

uf and MELL0,2 proof-nets seems to do the trick,
up to adding jump arcs from ?c-vertices to &-vertices such that toggling them makes the ?c-vertex
disappear – i.e. when there is a ?c-rule on this formula in the, say, left sub-tree of the &-rule, that
is not in its right sub-tree. Proving sequentialization for these new proof-nets should be as simple
as using Theorem 3.19 in the MALL0,2

uf case.
Nonetheless, even if such proof-nets could be defined for unit-free linear logic, with these re-

straints on properties of exponentials, an extension to units seems hardly doable. The main result
from [HH16a] rules out “simple” canonical proof-nets with multiplicative units: determining if two
MLL proofs (with units) are equal up to rule commutation is PSPACE-complete. If one forgets the
canonical requirement for the units, some nice definitions for MLL exist, e.g. [Hug13]. Still, one has
to consider in such proof-nets the analog of rule commutation for unit, called rewiring [Blu+96;
Hug12]. Considering additive units, the situation is worse as a ⊤ − ⊗ commutation can create or
erase a sub-proof. Here is a problematic example, courtesy of Willem Heijltjes. As soon as ⊢ A and
⊢ B are provable, then all the following proofs are equivalent up to rule commutations, whatever
the sub-proofs π and ϕ are.

π
⊢ A

(⊤)
⊢ ⊤,⊤⊗B

(⊗)
⊢ A⊗⊤,⊤⊗B

π
⊢ A

(⊤)
⊢ ⊤,⊤

ϕ
⊢ B

(⊗)
⊢ ⊤,⊤⊗B

(⊗)
⊢ A⊗⊤,⊤⊗B

π
⊢ A

(⊤)
⊢ ⊤,⊤

(⊗)
⊢ A⊗⊤,⊤

ϕ
⊢ B

(⊗)
⊢ A⊗⊤,⊤⊗B

(⊤)
⊢ A⊗⊤,⊤

ϕ
⊢ B

(⊗)
⊢ A⊗⊤,⊤⊗B

However, if only one of the two, say ⊢ A, is provable then we generally cannot equalize all proofs

of the form
π
⊢ A

(⊤)
⊢ ⊤,⊤⊗B

(⊗)
⊢ A⊗⊤,⊤⊗B

. It seems really hard to have a unique canonical object corre-

sponding to all of these proofs, because here what matters is exactly provability. As a complement,
other solutions than proof-nets can be considered to study canonical proofs in the sequent calculus
linear logic, see e.g. [CMS08] for an approach based on focusing.

174

Chapter 5

Formalization of Multiplicative
Proof-Nets in Coq

Proof assistants are used to formalize mathematical reasonings and thus to certify formal proofs.
One of these proof assistants is Coq [Coq], in which the Yalla [Lau17] library is developed. This
library, developed by my PhD’s advisor Olivier Laurent, focuses on linear logic and the formalization
of results in this theory. While many key results have already been proved in this library, for instance
admissibility of the cut-rule, there is nothing about proof-nets. More generally, while there have
been several implementations of (sub-systems of) linear logic in various proof assistants (e.g. in
Coq [Lau17; PW99; Xav+18; CL; PC; Sad03], Abella [CLR19; CLR17] and Isabelle [KP95; Gro95]),
this has always been done for the sequent calculus syntax, and not for the proof-net syntax. As
proof-nets are one of the most important discovery in linear logic, and their theory is well developed
on paper, this absence is quite problematic. Such a state can be explained by the main constraint
when formalizing proof-nets: while a proof of sequent calculus is an inductive object, easily defined
in most proof assistants, a proof-net is a (multi)graph, which is harder formally to define and
manipulate.

There are relatively few results about graphs in proof assistants, as compared to results on
paper. An explanation is that many reasonings involves “geometric” or “graphical” arguments, with
drawings to explain the proof, as well as silent “evident” arguments – for instance when writing
“p · q is a simple path”, one does not often precise why this holds nor gives explicitly all hypotheses
making the concatenation simple (see Lemma 3.4). As another simple example, consider a simple
path p in a graph G, and remove a vertex v not in this path. Then, on paper, one affirms that p is
a simple path in G− v. On computer, there are a lot more to do: firstly vertices of G− v are not
syntactically vertices of G, so that p is not a path of G−v and one has to define a function f sending
paths from G to paths of G− v. Then, one has to explicitly prove that f(p) is simple because p is.
More generally, another explanation for the difficulty of considering graphs in proof assistants is that
transformations of graphs – such as adding or removing vertices and arcs – are done very frequently
in the literature but are complex formally: vertices after the transformation are not those before,
and whereas on paper one usually and implicitly consider graphs up to isomorphisms, on computer
one has to provide these isomorphisms (for instance when removing a vertex and adding it back,
we do not get exactly the original graph). Nonetheless, graph theory can benefit from the use of
proof assistants, as shown by the four colors theorem proved in Coq by Georges Gonthier [Gon23].

175

In proofs like this one with many cases, a computer check that every case has been handled brings
more trust compared to pages upon pages of proofs with a very large case study (c.f. the full proof
in appendix of Proposition 2.46).

Since a few years, a graph library has been implemented in Coq by Damien Pous and Christian
Doczkal, called Graph Theory [DP18], built upon the Mathematical Components library [MC] with
its SSReflect proof language. Thanks to this library, some non-easy results from graph theory have
been proved, involving for instance minor or treewidth [DP20]. Hence, this library seems robust
enough and adequate to the formalization of proof-nets. In particular, this library contains the
total (directed multi)graphs defined in Section 3.1.2, with labeling functions on both vertices and
arcs, as well as many operations we need: adding and removing vertices and arcs, making the union
of two graphs, isomorphisms of graphs, properties of the standard operations up to isomorphism
(e.g. that disjoint union is associative and commutative), sub-graphs, . . .

One of the goals of this PhD was to formalize connected proof-nets for MLLuf in Coq. Even
if there is not much doubt that the key results (sequentialization, cut-elimination, . . .) about
these proof-nets hold, for they have been proved in many different ways, this is not the case for
all proof-nets; for instance, the proof of sequentialization of MALL0,2

uf proof-nets of [HG05] was at
the best of our knowledge the only one before the other developed in this thesis. As this proof,
and generally proofs of sequentialization for proof-nets more complex than MLLuf ones, are usually
at least a little involved, a formalization can bring some more confidence on them. This is also
the case for demonstrations that proof-nets identify proofs exactly up to rule commutation (with
cut), that usually involve plenty of case studies. Still, before formalizing these complex objects,
starting with the simpler and most successful MLLuf proof-nets is a first step where most difficulties
arising from the formalization are present: does the graph libraries used have all needed results?
can they be used easily? It is also a sufficient setting to try several formalizations of various
equivalent definitions so as to see which ones are simpler to manipulate on computer, as even these
basic objects have an abundance of definitions – and the definition of proof-nets we formalized
does not correspond to the one defined in Chapter 4, because we want proof-nets with possibly
non expanded axioms. Proof-nets for MLLuf are also good objects to see how much the proofs
from the theory of proof-nets on paper are expanded when encoded in a proof assistant, so as to
estimate the amount of work needed for more complex proof-nets. To sum up, starting with MLLuf
proof-nets is a key step before formalizing more involved proof-nets, in a field that would really
benefit from a formalization. It is also an instrumental step towards more complex results, such as
proving that two proofs desequentialize to the same proof-net if and only if there are equal up to
rule commutation.

In more details, here are the key results one wants for MLLuf proof-nets in a proof assistant:

• a (formal) definition of what is a proof-structure, a proof-net, and a connected proof-net.

• a definition of the desequentialization function, and a proof of the sequentialization theorem;

• a definition of cut-elimination, and a proof it is convergent;

• all links with sequent calculus: cut-elimination in proof-nets mimics the one of sequent calcu-
lus, similarly for axiom-expansion, proof-nets are the quotient of proofs by rule commutation
(with cut), . . .

The first three preceding results are the core of the theory, and already there we have non-trivial
choices to make for which of the equivalent definitions to take of proof-structure, of the correctness

176

CHAPTER 5. FORMALIZATION OF MULTIPLICATIVE PROOF-NETS IN COQ

criterion, which proof of sequentialization to formalize, . . . Furthermore, this led us to develop parts
of the graph library which were lacking according to our needs, such as the theory of undirected
simple paths. As it is complicated to guess which detailed definition is the most adapted to a
formalization, we had to try and modify several choices all along the implementation.

What has been implemented exactly are the followings:

• a definition of connected proof-nets (and thus of the previous strata);

• a definition of the desequentialization function from proofs in sequent calculus to graphs;

• a proof that a graph obtained by desequentialization is a connected proof-net;

• a proof of the sequentialization theorem: given a connected proof-net, there exists a proof
desequentializing to it, or more precisely to a graph isomorphic to this proof-net;

• a definition of cut-elimination in a connected proof-net;

• a proof that applying a cut-elimination step on a connected proof-net step yields a connected
proof-net, and that one can rewrite to a cut-free graph;

• a proof of (an equivalent formulation of) the parameterized local Yeo Theorem (Theorem 3.29),
used in the proof of sequentialization – in fact we even prove a version with a little more
freedom on the parameter so as not to deal with the case of an arc-free graph;

• a proof that the number of connected components of an acyclic multigraph is given by its
number of vertices and arcs, used for showing preservation of connectivity (a variation of
Corollary 3.48).

The source code is public and can be found here: https://github.com/RemiDiG/proofnet_mll.
In this chapter are given details about some of these results, how they have been formalized

and why they have been formalized this way – as a large part of the work was to try formalization
choices to discover which ones were best suited to be formalized on a computer.

The author would like to thank Damien Pous for advice about how to use his graph library
GraphTheory and the Mathematical Components library that GraphTheory itself uses, as well as
for discussions about the implementation of proof-nets.

Outline We begin by giving the chosen formal definition of proof-net on paper, as well as parts
of its implementation in Coq with some discussion about rejected solutions (Section 5.1). Then are
explained the main difficulties encountered during the formalization, that should be solved before
formalizing more involved notions of proof-net (Section 5.2). We end this chapter with a quick
overview of the code structure (Section 5.3).

5.1 Formalization of proof-nets
We present here the cornerstone of our formalization, where choices mattered the most: the formal
definition of connected proof-nets, and all depending strata (proof-structures, . . .). Choosing these
definitions was the most complex part of the formalization because they directly influence all other
choices of formalization, e.g. the definition of the desequentialization function. Many different,
but equivalent, definitions of multiplicative proof-nets exist in the literature: the one we gave in

177

https://github.com/RemiDiG/proofnet_mll

5.1. FORMALIZATION OF PROOF-NETS

Chapter 4, proof-nets defined as hypergraphs [GM01], . . . We choose here one of the most usual
presentations, with a proof-net seen as a directed multigraph made of ax -, `-, ⊗- and cut-vertices,
and arcs between them. In addition to being the most standard definition of MLLuf proof-nets, it
seems simple enough (contrary to our definition in Chapter 4 that is more adapted to the presence
of additives). Even once this definition chosen, there are still subtle variations possible, among
which:

• does one put conclusion vertices, or have pending arcs, and thus a partial graph?

• does one put ax -vertices or just axiom links?

• which correctness criterion to differentiate proof-nets among proof-structures?

• `- and ⊗-vertices have ordered premises (i.e. syntactically A ` B ̸= B ` A); how should it
be taken into account?

Our goal was to choose a formalization making the definitions and proofs we are interested in
easier to write (desequentialization, sequentialization and cut-elimination mostly). As it is hard to
guess beforehand which choice on proof-nets leads to a simpler implementation on the whole, we
successively tried several definitions. Furthermore, for taking advantage of the definition of proofs
(from sequent calculus) already implemented in the Yalla library, some notions of formulas and
sequents were already fixed in view of integrating this work into Yalla. In particular, the choices
made in the current version of Yalla is that a sequent is a list of formulas and there is an exchange
rule, which is quite not the setting used in this thesis (recall the discussion in Section 1.1.3).

When defining proof-nets, there are concretely two main difficulties. On one hand, we need to
add some supplementary data on graphs: an order to recover a sequent, how to identify a left and
a right premise of a `- or ⊗-vertex. On the other hand, there are all the constraints on proof-
structures: in- and out-degrees of vertices, relations respected by formulas of arcs. It is natural to
separate these two parts, with first a definition of graphs with some more data, and then asking
properties on these new objects, so as to get proof-structures and then connected proof-nets. The
part on properties coming from the definitions of the supplementary data, it is no surprise the first
part was the most difficult to formalize.

In this section, we start by giving on paper a precise definition of connected proof-nets, cor-
responding to the one we formalized. Then we describe some non-trivial implementation choices
we made in the end, explaining why alternatives we thought of are worse, and thus justifying the
previous choices for our precise definitions.

5.1.1 Definition of proof-nets on paper

We give here another equivalent definition of connected proof-nets for MLLuf than the one obtained
from the proof-nets for MALL0,2

uf of Section 4.1. The present definition is more in the format of graph
theory, so that a proof-net is a graph respecting some properties, and not a linking on a sequent
such that a computable graph respects some properties. We choose to have conclusion vertices and
ax -vertices, so as to have total graphs, from which the proved sequent can be recovered, instead of
some notion of “graphs on a given sequent”, as is done in Chapter 4.

We start with the kind of underlying graphs to consider.

Definition 5.1. A MLLuf graph is a finite total directed multigraph equipped with:

178

CHAPTER 5. FORMALIZATION OF MULTIPLICATIVE PROOF-NETS IN COQ

• a labeling function R from vertices to rules of MLLuf – ax , ⊗, ` or cut – or to a special
symbol c for conclusion vertices;

• a labeling function F from arcs to formulas;

• a labeling function L from arcs to booleans to identify left premises.

Vertices are named according to their label: ax -vertices, cut-vertices, ⊗-vertices, `-vertices
and c-vertices respectively. Given a vertex v, arcs with target v are the premises of v and arcs
with source v are the conclusions of v. A c-vertex is a conclusion of the graph.

We need to identify which arcs are left and right ones for ⊗- and `-vertices. The standard trick
on paper is to always write the left premise on the left of the vertex and the right on its right.
Obviously, formally we need something else, which is here the L function. Remark we do not have
all needed information here: when considering the sequent associated to such a graph, we want it
to be a list for compatibility with the Yalla library. Thus, we have to order vertices labeled c, as
for instance ⊢ A,B and ⊢ B,A are different sequents in this formalism. This leads to the following
definition.

Definition 5.2. A MLLuf pre-proof-structure is a MLLuf graph along with a list of arcs of
this graph, called its order. The sequent associated to a formal pre-proof-structure is the list of
formulas obtained by applying F on this list.

From these graphs, which contain all the data we need, proof-structures can be defined, with on
one hand some geometrical constraint on in- and out-degrees, and one the other hand considerations
on labels of arcs. All these constraints are easily defined because there are local. We also have to
relate the list of arcs order to the c-vertices.

Definition 5.3. A MLLuf proof-structure is a MLLuf pre-proof-structure such that:

• any vertex v such that R(v) = ` has exactly two in-coming arcs a and b and exactly one
out-going arc c; moreover, L(a) is true, L(b) is false and F(c) = F(a)` F(b);

• any vertex v such that R(v) = ⊗ has exactly two in-coming arcs a and b and exactly one
out-going arc c; moreover, L(a) is true, L(b) is false and F(c) = F(a)⊗F(b);

• any vertex v such that R(v) = ax has no in-coming arc and exactly two out-going arcs a and
b; moreover, F(b) = F(a)⊥;

• any vertex v such that R(v) = cut has exactly two in-coming arcs a and b and no out-going
arc; moreover, F(b) = F(a)⊥;

• any vertex v such that R(v) = c has exactly one in-coming arc and no out-going arc;

• the order of the pre-proof-structure contains exactly the arcs of target a c-vertex, each exactly
once;

• any arc a not of target a `- or ⊗-vertex respects L(a) is true.

The last condition in the previous definition is there for the sake of canonicity, and is a convention
(choosing L(a) is false would also be adequate). Such a convention is needed because L is defined
on all arcs. Having it defined only on in-arcs of `- or ⊗-vertices is enough, but formally in Coq this

179

5.1. FORMALIZATION OF PROOF-NETS

would be a function whose domain is a dependent type, which is complex to manipulate. Having a
simpler definition, with some easy conditions to check, was overall simpler in the implementation.

We choose (a variation of) the Danos-Regnier correctness criterion [DR89], as it is one of the
most used and for it speaks about concepts from the theory of graphs only, that will anyway be
needed at some point. An important remark is that we define correctness directly on the level of
MLLuf graphs, i.e. on the simpler objects we manipulate. Thus are defined switching paths.

Definition 5.4. A switching path is an undirected path which is arc-simple, and not containing
several premises of a `-vertex. A switching cycle is a closed undirected path which is arc-simple,
and not containing several premises of a `-vertex. A left-switching path is an undirected path
which is arc-simple, and not containing a premise of a `-vertex whose image by L is false.

We choose arc-simple paths and not vertex-simple ones, as they are easier to concatenate (see
Fact 3.2 and Lemma 3.4).

Definition 5.5. A MLLuf proof-net is a MLLuf proof-structure which is correct, meaning we
have both:

acyclicity any switching cycle is an empty path;

connectivity between any pair of vertices there is a left-switching path, and the graph is non-
empty; in other words, the number of connected components for left-switching paths (corre-
sponding to the connected components of the sub-graph where right premises of `-vertices
are removed) is equal to one.

One can check this definition is equivalent to the standard one. The key arguments are the
following:

1. there is an arc-simple switching cycle if and only if there is a vertex-simple one;

2. all acyclic correctness graphs have the same number of connected components.

That Item 1 holds is because in a proof-structure any arc-simple cycle is a vertex-simple one, due
to the fact that vertices are of degree at most three. Indeed, take such a cycle and assume a given
vertex has more than two incident arcs inside. Then it must have at least four of those, as it is a
cycle: contradiction. On the other hand, Item 2 is a consequence of Corollary 3.48, as all correctness
graphs have the same number of vertices and arcs – one arc by `-vertex is removed. Hence, they
all have exactly one connected component if and only if any of them has so, and in particular we
can consider the correctness graph where we remove all right premises.

The main reason to consider these switching and left-switching paths is to stay in the underlying
graph of the proof-net. If one were to directly consider correctness graphs, then one would need to
prove results of the following kind: if a correctness graph is acyclic, and a vertex in the proof-net is
removed, then the correctness graph stays acyclic. These results, not proved on paper because they
are considered trivial, are tedious formally because one need to transport paths from one graph to
another, which is not hard but is a long and boring chore. Considering only one graph prevents
the need for such lemmas, at the lighter cost of considering paths with restrictions on their arcs –
restriction we need in some shape anyway, to prevent the repetition of arcs. Moreover, our definitions
of switching and left-switching paths, which may seem ad hoc, are simply the instantiations of an
alternating path for a particular arc-coloring in both cases.

180

CHAPTER 5. FORMALIZATION OF MULTIPLICATIVE PROOF-NETS IN COQ

Remark 5.6. We define here only MLLuf proof-nets and not MLL0,2
uf ones, because when starting

this implementation one of the simplest proofs of sequentialization known was applicable only in
this setting, and for a first formalization of proof-nets adapting a simple proof was an obvious
concern. Since then, we found a simpler proof of sequentialization even in the presence of the
optional multiplicative rules – corresponding to an use of Theorem 3.29, that itself admits a simple
proof. This proof of sequentialization is the one formalized, but the implementation was already
too far gone at that point to easily adapt it to this extended setting.

Once proof-nets are defined, other definitions follow more or less straightly. Let us consider the
case of desequentialization in details.

Definition 5.7 (MLLuf desequentialization). We define by induction on a proof π of ⊢ Γ its
desequentialization Pf (π) which is a MLLuf pre-proof-structure whose sequent is ⊢ Γ.

• If π is reduced to an ax -rule with conclusion ⊢ A⊥, A, then Pf (π) is the pre-proof-structure
with one ax -node v, two c-vertices u1 and u2 and two arcs a1 and a2. Both arcs have source
v, and a1 (resp. a2) has target u1 (resp. u2) and label A⊥ (resp. A). The order of the
pre-proof-structure is [a1; a2].

• If the last rule of π is a `-rule applied to a proof π1 then Pf (π) is obtained from Pf (π1) by
removing the two first arcs in the order of Pf (π1) as well as their targets, and adding a new
`-node v and a new c-vertex u. We also add two new arcs with the same sources and labels A
and B as the removed arcs, but with as target v, and another arc labeled A`B with source
v and target u. The order of Pf (π) is first u, then the remaining arcs coming from the order
of Pf (π1) (keeping their ordering).

• If the last rule of π is a ⊗-rule applied to two proofs π1 and π2 then Pf (π) is obtained from
the disjoint union of Pf (π1) and Pf (π2) by removing the first arc in the order of Pf (π1),
as well as its target, and the one of Pf (π2) and adding a new ⊗-node v and a new c-vertex
u. We also add two new arcs with the same sources and labels A and B as the removed
arcs, but with as target v, and another arc labeled A ⊗ B with source v and target u. The
order of Pf (π) is first the added arc of label A⊗ B, then the remaining arcs in the order of

Pf (π2), then those of Pf (π1) – this corresponds to a rule
⊢ A,Γ ⊢ B,∆

(⊗)
⊢ A⊗B,∆,Γ

, which is the

one chosen in Yalla so as to consider cyclic linear logic.

• If the last rule of π is a cut-rule applied to two proofs π1 and π2 then Pf (π) is obtained from
the disjoint union of Pf (π1) and Pf (π2) by removing the first arc in the order of Pf (π1), as
well as its target, and the one of Pf (π2) and adding a new cut-node v. We also add two new
arcs with the same sources and labels A and A⊥ as the removed arcs, but with as target v.
The order of Pf (π) is the remaining arcs in the order of Pf (π2) followed by those of Pf (π1).

• If the last rule of π is a ex -rule applied to a proof π1 then Pf (π) is the same graph as Pf (π1)
with as order the one of Pf (π1) to which is applied the permutation of the ex -rule.

5.1.2 Formalization of graphs and pre-proof-structures

We start from the definition of graphs from the library GraphTheory, which is the following:
Record graph (Lv Le : Type) : Type :=

181

5.1. FORMALIZATION OF PROOF-NETS

Graph {
vertex :> finType;
edge: finType;
endpoint : bool → edge → vertex ;
vlabel : vertex → Lv ;
elabel : edge → Le }.

Notation source := (endpoint false).
Notation target := (endpoint true).
Said differently, a graph is the data of a finite set vertex of vertices, edge of arcs, a function endpoint
generalizing the source and target functions, and labeling functions vlabel and elabel on vertices
and arcs respectively to arbitrary types Lv and Le. Remark that for more confusion an edge for
the library is what we call an arc. For consistency with the rest of this thesis, we will still call it
an arc, even if it is named an edge in the Coq code snippets.

Looking at this starting definition from the library, one better understands our choices in Defini-
tion 5.1, choosing definitions adapted to those of the graph library. The implementation of MLLuf
graphs from this definition is the following:1

Notation base graph := (graph (flat rule) (flat (formula × bool))).
Definition flabel {G : base graph} (e : edge G) : formula := fst (elabel e).
Definition llabel {G : base graph} (e : edge G) : bool := snd (elabel e).
This means a base graph is a graph with vertices labeled by rule (a type whose elements are
{ax ; cut ;`;⊗; c}), and arcs by formula (taken from Yalla) together with a bool to identify left and
right arcs. As we need two labeling functions on arcs, one giving formulas and the other stating if
an arc is a left one, we consider graphs with the product of these labeling functions, i.e. one from
arcs to the cartesian product, from which we can recover the two labeling functions flabel and llabel
respectively corresponding to F and L. This definition was easy to write, because it corresponds to
an instance of the graphs defined in the library GraphTheory, which is one of the reasons we took
on paper this definition of MLLuf graph.

Going to pre-proof-structure, in Definition 5.2, is done as follows:
Record graph data : Type :=

Graph data {
graph of :> base graph;
order : seq (edge graph of);

}.
Later, for a proof-structure, the list of arcs order will be asked to contain exactly once each arc of
target a c-vertex. This list allows to define the sequent associated to such a graph:
Definition sequent (G : graph data) : seq formula :=

[seq flabel e | e ← order G].
We choose to separate the list order from the other data on the graph, because these are quite
disjoint concepts, and we rarely need the sequent of a graph. In particular, many concepts can
be defined independently of this list, for instance switching paths. Meanwhile, the sequent is only
used to prove it is preserved by a transformation (as cut-elimination) or in desequentialization and
sequentialization.

There have been several notable previous choices of implementation we tried for defining MLLuf

1The flat function is the identity, and is used by the graph library for technical reasons about isomorphisms. It
can be safely ignored.

182

CHAPTER 5. FORMALIZATION OF MULTIPLICATIVE PROOF-NETS IN COQ

graphs and pre-proof-structures, corresponding to other definitions than the ones given in Sec-
tion 5.1.1.

Usually, on paper, left arcs are not identified this way, and it may seem strange to decide
this soon that an arc is a left one. One could wonder if it would not be simpler to report such
considerations to the time where proof-structures are defined. A short answer is that it is always
easier to have one’s data on a simple object, than a more accurate but partial data on complex
structures. A main reason is that, when modifying a graph, one also has to adapt proofs that it
is a proof-structure, on which will depend the definition of a left arc in this case. This leads to
convoluted proofs and definitions of left arcs, whereas having left from the very beginning, with
possibly some nonsensical value for, say, the premise of a c-vertex, makes defining objects easier.
And the easier our objects are, the easier are the proofs on them.

Still, other solutions than labeling functions can be considered. Doing a formalization as near
as what happens usually on paper led us first to define functions left and right , generalized as
a unique function direction, defined on `- and ⊗-vertices, and an order function, associating to
each c-vertex its order in the sequent proved by the graph, i.e. an integer bound by the number of
c-vertices. This yields the following definition in Coq, where ’I n is the set of natural numbers less
than n.
Record graph data : Type :=

Graph data {
graph of :> graph rule formula;
order : [finType of { v : graph of | vlabel v == c}] →

’I #|[finType of { v : graph of | vlabel v == c}]|;
order inj : injective order ;
direction : bool → [finType of { v : graph of | vlabel v == ⊗ || vlabel v == ` }]
→ edge graph of ;

}.
Notation left := (direction false).
Notation right := (direction true).
The order function takes as argument a c-vertex and returns an integer less than the number
of c-vertices. It is supposed injective, which by cardinality argument implies bijectivity. Alas,
this definition is terrible to manipulate, in particular because of order : using cardinals makes it
mandatory to compute these cardinals as soon as one defines such a graph, or worse when defining
a graph from another. As the generic formal way of computing cardinals is giving explicitly a
bijection, this becomes immediately unbelievably tedious. Moreover, checking injectivity to define
a new graph was quite heavy, as we need to do so for instance each time we remove or add a vertex.
Even improving this last part, for instance by saying order is a permutation on the c-vertices, the
definition stays complex to manipulate. It gives the following:

order : { perm [finType of { v : graph of | vlabel v == c}]}
Furthermore, the use of dependent types, whether for order or direction, complexifies the usage of
this definition, which is a shame as it is our basic block and therefore is present everywhere! As an
example, to do a basic operation such as the disjoint union of two graphs, one needs to use proofs
that a vertex labeled ⊗ before keeps this label after, and so on, just to define this union.

In order not to use dependent types, and thus having easily manipulable definitions, we define
the functions we need in the most general possible way, even if only some of the arguments are to be
considered, and then ask these functions to respect some properties. This way, the basic definitions
are simple to write and easy to handle, and then we prove properties on them, that we later can

183

5.1. FORMALIZATION OF PROOF-NETS

use when needed. If one further defines only left instead of both left and right with direction – as
right can be deduced from left – we get an even simpler definition, starting to look like our final
one.
Record graph data : Type :=

Graph data {
graph of :> graph rule formula;
left : graph of → edge graph of ;
order : seq graph of ;

}.
In other words, we only have a function from vertices to arcs, and a list of vertices. Still, the
function left has bogus values for ax -, cut- and c-vertices, as it really gives left premises of `-
and ⊗-vertices. The problem here was that giving a valid bogus value – for instance an arc for a
c-vertex – was sometimes non-trivial when modifying a proof-net, which complexified artificially
some proofs. The need to have some existing arc to give as a bogus value means we have to know
more about our graph, as there exists graphs without arcs. This in turn prevents us from making
general definitions valid on all graphs, as they would involve some proof our graph has an arc!

Adding an option type on the output, with left : graph of → option (edge graph of) on the
graph giving for each `- or ⊗-vertex its left arc, and for other vertices None, gives a bogus value for
free and solves our previous difficulty. Nonetheless, manipulating an option type for such a basic
concept becomes heavy quickly, and we would then need some property that left applied to a vertex
v gives None exactly when it is not a `- or ⊗-vertex.

Finally, taking for order a list of vertices, one can ask for a proof-structure that this list contains
exactly once each c-vertex. This solution is simple enough, except for defining the sequent of a proof-
structure: we need to use the proof that each c-vertex is of degree one to get its arc, and then take
the label of this arc. This was a little more complex than the current solution, with a list of arcs
directly. A variation could have been to define c(A)-vertices, with A a formula which should be the
one of the arc towards this vertex, so as to define a sequent directly from the list of vertices. Still,
it gives a more complex type for the label of vertices, in particular there is no more a finite number
of those. Plus, enforcing that a c(A)-vertex has for in-arc one labeled A would have been one more
property to enforce at the level of proof-structure.

This is why the implementation given at the beginning was chosen, as its simplicity helps
keeping following definitions and proofs easy to handle. Still, the left premise of a `- or ⊗-vertex
is undefined at this stratum, and will only be at the level of proof-structures. This is not really
a problem, for we really need this concept only for upper levels. This solution is nonetheless not
without fault, for we need to fix a value for llabel on irrelevant arcs, that we choose arbitrary to be
true. Also, conceptually, c-vertices are kind of useless, and are there only for their in-arcs and the
fact that the graph is total. This is still better than the previous difficulties encountered with the
other definitions.

5.1.3 Formalization of proof-structures

The instantiation we choose of Definition 5.3 is to consider a pre-proof-structure along proofs this
graph respects the properties in the definition:
Record proof structure : Type :=

Proof structure {
graph data of :> graph data;

184

CHAPTER 5. FORMALIZATION OF MULTIPLICATIVE PROOF-NETS IN COQ

p deg : proper degree graph data of ;
p ax cut : proper ax cut graph data of ;
p tens parr : proper tens parr graph data of ;
p noleft : proper noleft graph data of ;
p order full : proper order full graph data of ;
p order uniq : proper order uniq graph data of ;

}.
Each of these local properties correspond to a part of Definition 5.3:

p deg each vertex has the in- and out-degrees corresponding to its label;

p ax cut for each ax -vertex (resp. cut-vertex), there exists two arcs a and b of source (resp.
target) this vertex, whose labels are dual formulas;

p tens parr for each `-vertex (resp. ⊗-vertex), there exists three arcs a, b and c with the first
two of source this vertex, the last one of target this vertex, a is a left arc but not b and the
label of c is the ` (resp. the ⊗) of the labels of a and b;

p noleft each arc of target an ax -, cut- or c-vertex is a left arc (which is an arbitrary choice, but
one has to be done for canonicity);

p order full arcs in order are exactly arcs of target a c-vertex;

p order uniq the list order has no duplicate.

For instance, the code for proper tens parr is the following:
Definition proper tens parr (G : base graph) :=
∀ (b : bool) (v : G), vlabel v = (if b then ` else ⊗) →
∃ el er ec,
el \in edges at in v ∧ llabel el ∧
er \in edges at in v ∧ ¬llabel er ∧
ec \in edges at out v ∧ flabel ec = (if b then parr else tens) (flabel el) (flabel er).
An important remark is that here the exact choices of the definition of these properties are quite

irrelevant to the complexity of the code, with the meaning that when modifying them one mostly
just has then to modify their proofs and uses. This is quite different from the previous explained
choices, as modifying the definition of base graph for instance would lead to modifying almost all
following definitions and proofs.

This is from this point only that the functions left , right , . . . can be defined, as before there was
no guarantee for instance that a ⊗-vertex has exactly one in-arc with label left. We chose not to
use left to define these properties instead, as this would need to define some pseudo-left first at the
level of base graph, and to prove this function has good properties, which complexifies the code.

We could have separated the properties about order from the other ones, having on one side
p deg , p ax cut , p tens parr and p nolef , corresponding to properties on base graph, and on the
other side p order full and p order uniq which consider the list order . We choose not to do so as
this would give one or two more stratum in our definitions, and we would still need to have both
when studying sequentialization, which is the peak of our implementation. Hence we kept these
properties on the same level.

185

5.1. FORMALIZATION OF PROOF-NETS

5.1.4 Formalization of the correctness criterion

Once proof-structures have been implemented, one can finally define (connected) proof-nets, using
a correctness criterion. Recall our particular definition of the Danos-Regnier correctness criterion
in Definition 5.5. An important reason to choose this solution is that removing vertices in a graph
is done by GraphTheory through a dependent type, and as explained previously it is preferable not
to use them when possible.

Having the same general notion of paths, so that the two concepts of switching and left-switching
paths are instantiations of it, allows us to factorize most of the work, hence it is the solution we
used. On one hand, we need to be able to identify different arcs (premises of a same `-vertex
for switching paths) and to forbid some arcs (right premises of `-vertices) for left-switching paths.
Thus are defined f -paths, given as parameter a function f from arcs to some option type, which
can be seen as an arc-coloring with a special color None. A path is an f-path if its image by f
has no duplicate (meaning for two arcs a and b in this walk, which are not the same occurrence in
the walk seen as a list, f(a) ̸= f(b)) and does not contain None. Remark this is more constrained
than what happens in an alternating path: we have here a global criterion that implies in particular
arc-simplicity.

Switching paths are f -paths for f the identity, except for premises of `-vertices which are sent
to the same element – we choose here the `-vertex they point to. Left-switching paths are f -paths
for f the identity, except for right (i.e. non-left) premises of `-vertices which are sent to None.

About the implementation in Coq, undirected paths were not in GraphTheory, there were only
directed ones. We defined them this way, by mimicking the definition of directed paths:
Definition upath {Lv Le : Type} {G : graph Lv Le} := seq ((edge G) × bool).
Notation usource e := (endpoint (∼∼e.2) e.1).
Notation utarget e := (endpoint e.2 e.1).
Fixpoint uwalk (x y : G) (p : upath) :=
if p is e :: p’ then (usource e == x) && uwalk (utarget e) y p’ else x == y .

Then we define f -paths. Notice with need decidable equality in the image of f , so as to be able to
compare images of arcs.
Definition supath {Lv Le : Type} {I : eqType} {G : graph Lv Le} (f : edge G → option I) (s t
: G) (p : upath) :=

(uwalk s t p) && uniq [seq f e.1 | e ← p] && (None \notin [seq f e.1 | e ← p]).
Remark in particular that with f : e 7−→ Some e, an f -path is exactly an arc-simple path. We can
then define our switching and left-switching paths:
Definition switching {G : base graph} : edge G → option ((edge G) + G) :=
fun e ⇒ Some (if vlabel (target e) == ` then inr (target e) else inl e).

Definition switching left {G : base graph} : edge G → option (edge G) :=
fun e ⇒ if (vlabel (target e) == `) && (∼∼llabel e) then None else Some e.

There is no problem for defining acyclicity for this kind of paths. We only need to take care of the
empty path, that is a cycle in our formalization – which was simpler as we do not want to check a
list is empty too often (when concatenating, . . .).
Definition uacyclic {Lv Le : Type} {I : eqType} {G : graph Lv Le} (f : edge G → option I) :=
∀ (x : G) (p : Supath f x x), p = supath nil f x .
Nonetheless, using such a general notion of f -paths is not trivial when considering connectivity.

While operations such as taking a sub-path or inverting a path work as well as for arc-simple paths,
the notion of connected component is awkward because the relation “being linked by an f -path” is

186

CHAPTER 5. FORMALIZATION OF MULTIPLICATIVE PROOF-NETS IN COQ

not transitive. In particular, being linked by a switching path is not, looking at this graph (where
a diamond arrowhead is used to indicate a non-left arc):

ax ax

`

c cc

A

A⊥

B B⊥

A`B

Both ax -vertices are linked to the `-vertex by means of switching paths, but there is no switching
path from one to the other. Still, this relation is transitive if f is injective for arcs not of image None,
as it is the case for left-switching. In such a setting, we prove a generalization of Corollary 3.48.

5.2 Limits of the implementation

We explain here the main difficulties we faced during the implementation, which should ideally be
addressed before considering more complex proof-nets, such as the ones we consider in the rest
of this thesis (defined in Section 4.1.1). There were three of them: manipulating graphs, using
isomorphisms and the computation time of Coq itself.

5.2.1 Graph manipulation & Desequentialization

To give a glimpse into the complexity of formal graph manipulation, let us take a look at the
implementation of the desequentialization function. As one can observe in Definition 5.7, the cases
of `-, ⊗- and cut-vertices are very similar. It is then natural to factorize the definition by handling
these three cases with one definition: add node. What we want is to add a `-, ⊗- or cut-vertex
to a MLLuf graph or pre-proof-structure (in case of a ⊗ or cut , we previously do a disjoint union),
with a new c-vertex (excepted in the case of a cut) and removing the first two arcs in the list order .

We define a set with 3 elements to make the cases.
Inductive trilean :=
| tens t
| parr t
| cut t .

We can then define an add node function to this end. It takes as input a base graph named G
and two of its arcs, e0 and e1 , and returns a new base graph. The idea is that e0 and e1 are the
premises of the c-vertices to replace. Thus, what is returned is the original graph where have been
added a sub-graph graph node made of two vertices linked by an edge, or a single vertex in the cut
case, as well as two new edges from the sources of e0 and e1 to target node, the latter being the
new `-, ⊗- or cut-vertex.
Definition add node graph 1 (t : trilean) {G : base graph} (e0 e1 : edge G) :=
let graph node (t’ : trilean) := match t’ with
| tens t ⇒ edge graph (⊗) (tens (flabel e0) (flabel e1), true) c
| parr t ⇒ edge graph (`) (parr (flabel e0) (flabel e1), true) c

187

5.2. LIMITS OF THE IMPLEMENTATION

| cut t ⇒ unit graph cut
end in
let G1 (t’ : trilean) := G ⊎ graph node t’ in
let target node := match t return G1 t with
| tens t ⇒ inr (inl tt)
| parr t ⇒ inr (inl tt)
| cut t ⇒ inr tt
end in
G1 t ∔ [inl (source e0), (flabel e0 , true), target node]

∔ [inl (source e1), (flabel e1 , match t with | cut t ⇒ true | ⇒ false end), target node].
In the above code, ⊎ is the disjoint union of graphs and G∔ [v, l, u] adds to G an arc labeled l from
v to u.

One then has to remove the two (c-)vertices targeted by e0 and e1 , which can be done through
taking an induced sub-graph by induced applied to some set of vertices.
Definition add node graph (t : trilean) {G : base graph} (e0 e1 : edge G) :=

induced ([set: add node graph 1 t e0 e1] :\ inl (target e0) :\ inl (target e1)).
This defined the wished MLLuf graph. As can be seen from the code snippets, there are already

some complications because vertices of G1 are not exactly vertices of G1 ⊎G2: one uses inl to see
a vertex of the first as one of the second. The same has to be done for arcs, and thus for paths.
Nonetheless, these definitions are easy thanks to the simplicity of the definition of base graph.

Defining this transformation between MLLuf pre-proof-structures is a little harder, because we
have to prove that the new arc to a c-vertex (if any) is still in the induced sub-graph. We thus need
some intermediate steps. First, we remove from the list order the arcs removed when taking the
induced sub-graph, that in a proof-structure are exactly e0 and e1 .
Definition add node order 1 {G : graph data} (e0 e1 : edge G) :=

[seq x ← order G | (target x != target e0) && (source x != target e0) &&
(target x != target e1) && (source x != target e1)].

Then, we see these arcs as arcs of the union graph, before removing some vertices in the induced
step.
Definition add node type order (t : trilean) {G : graph data} (e0 e1 : edge G) (l : seq (edge
G)) :

seq (edge (add node graph 1 t e0 e1)) := [seq Some (Some (inl e)) | e ← l].
Afterwards, we add the arc targeting the new c-vertex at the head of this list, excepted in the case
of a cut-vertex.
Definition add node order 2 (t : trilean) {G : graph data} (e0 e1 : edge G) :=
match t return seq (edge (add node graph 1 t e0 e1)) with
| cut t ⇒ [::] | ⇒ [:: Some (Some (inr None))] end
++ add node type order t e0 e1 (add node order 1 e0 e1).

Now, we need to see these arcs as ones of the final base graph. To this end, we have to prove they
are in the kept induced sub-graph, meaning we prove the following (which is easy).
Lemma add node consistent order (t : trilean) {G : graph data} (e0 e1 : edge G) :
let S := [set: add node graph 1 t e0 e1] :\ inl (target e0) :\ inl (target e1) in
all (pred of set (edge set S)) (add node order 2 t e0 e1).

Remark that if in the definition of add node graph we had first removed vertices and arcs before
adding new ones (instead of the converse), then we would have need a proof that the sources and
targets of the arcs to add belong to the induced sub-graph.

188

CHAPTER 5. FORMALIZATION OF MULTIPLICATIVE PROOF-NETS IN COQ

Thus, we obtain the wanted list of arcs of the graph add node graph t e0 e1 .
Definition add node order (t : trilean) {G : graph data} (e0 e1 : edge G) :

seq (edge (add node graph t e0 e1)) :=
sval (all sigP (add node consistent order t e0 e1)).

The pre-proof-structure with its list of arcs is finally:
Definition add node graph data (t : trilean) {G : graph data} (e0 e1 : edge G) :

graph data := {|
graph of := add node graph t e0 e1 ;
order := add node order ;
|}.
Then, one has to prove that if the original graph was a proof-structure, then the one obtained

this way also is one, and so on.
As should be visible on this example, preserving structures can become tedious easily. This

would be worst with a left function defined exactly on `- and ⊗-vertices, because we would need
proofs that such a vertex is still labeled in the same way afterwards, and so on.

The above implementation is a more general definition than strictly needed for desequentializa-
tion, with some useless cases to take into account, but is easier to write. Generalizing adding a
⊗, ` or cut-vertex was simpler than transporting proofs everywhere, and proving thrice that this
operation preserves being a proof-structure for a `, a ⊗ and a cut .

5.2.2 Isomorphisms

When proving the sequentialization theorem, the hard part on paper is finding a terminal splitting
vertex, i.e. proving the equivalent of Lemma 4.31. Then, proving that such a vertex can be removed
to get one or two proof-nets – results equivalent to Lemmas 4.46 and 4.48 – is trivial enough to be
implicit, and is often not even mentioned on paper. On computer, it is the inverse: the proof there is
a terminal splitting vertex is not much harder than on paper, the true difficulty for sequentialization
was proving the implicit part, which translates on computer to a most tedious task!

As an example, consider a splitting terminal ⊗-vertex v. As it belongs to no cycle, removing it
gives two connected components, which correspond to two proof-nets. Formally, one has to define
those, for instance by looking at all vertices having a path from them to the source of the left
premise of v, not having v as an internal vertex. Then one has to use this complex definition to
prove that adding a c-vertex in place of v in this graph indeed yields a proof-net, with a proof of
each property in the definition of a proof-structure.

Furthermore, once this tedious part is done on both graphs, one still has to give an isomorphism
between the original graph and the two proof-nets to which one adds v back! In other words,
one must prove that taking the two proof-nets constructed this way, and adding between them a
⊗-vertex, as done in the definition of desequentialization, gives the same graph as the starting one,
up to isomorphism. To do so, one has to explicitly give a bijection between vertices, one between
arcs, and prove they are bijections.

Coding this procedure for a ⊗-, a `- and a cut-vertex was the longest part of the proof of
sequentialization, and doing so for just one kind of vertex is longer than proving the existence of
a terminal splitting vertex! See the organization of the code in Section 5.3, with a single file for
proving our version of Yeo’s theorem, and a file per kind of vertex to prove a terminal splitting one
is sequentializing.

189

5.2. LIMITS OF THE IMPLEMENTATION

5.2.3 Computation time of Coq

Some problems encountered during this formalization where due, not to the formalization on its
own, but to the internal mechanisms of Coq itself. They mainly came from the manipulation of
complex graphs. We detail here such an example, that can be found in the file bug report 1 bis.v
of the code, which is reproduced in Appendix C.

Let us consider a simple operation: adding a vertex “in the middle of an arc”, namely transform
an arc v → u into v → x→ u with x a new vertex. Doing this as we would on paper is doable with
the graph library: one removes the involved arc, adds a vertex and two new arcs with the right
sources and targets.
Variables (Lv Le : Type) (cut : Lv).

Definition extend edge graph (G : graph Lv Le) (e : edge G) (R : Lv) (As At : Le) :
graph Lv Le :=
remove edges [set e : edge G] ∔ R ∔ [inl (source e), As, inr tt] ∔ [inr tt , At , inl (target e)].
Repeating twice this basic operation is easy and can be used for studying the ax -key case of

cut-elimination in this framework of MLLuf proof-nets. Alas, the graph obtained this way is hardly
manipulable in Coq!
Definition new graph (G : graph Lv Le) (e : edge G) :=

(@extend edge graph
(@extend edge graph G e cut (elabel e) (elabel e))
None cut (elabel e) (elabel e)).

The problem comes from the fact that deleting an arc or a vertex introduces a dependent type:
arcs ofG where we remove an arc a are given by the dependent type corresponding to {b ∈ E | b ̸= a}.
Repeating the operation yields a dependent type whose main type is itself a dependent type, as in
{b ∈ {b ∈ E | b ̸= a} | b ̸= (c, π)} with π a proof that c ̸= a. In such a graph, if we consider a
particular arc, it will be an object of the following form:
Some (Some (inl (Sub (Some (Some (inl (Sub a p1)))) p2)))
where a is an arc of the original graph, p1 a proof this arc is not the removed e and p2 one it is
not the added then removed intermediate edge None. Not only is this not immediate to read and
understand, Coq also does not manage to manipulate it in a reasonable time! Consider for instance
the following function, used to consider an arc of the starting graph as one of the new one:
Fail Time Definition transport to new (G : graph Lv Le) (e : edge G) :

edge G → edge (new graph e) :=
fun a ⇒
if @boolP (a \notin [set e]) is AltTrue p1 then
if @boolP (Some (Some (inl (Sub a p1))) \notin [set None]) is AltTrue p2 then

Some (Some (inl (Sub (Some (Some (inl (Sub a p1)))) p2)))
else None

else None.
After more than ten minutes on my machine, Coq still did not manage to check it is well typed!
This is clearly not quick enough to be used in an interactive proof assistant, and this execution
time simply does not allow to manipulate this graph. A bandage solution is to give the explicit
dependent types at some points when giving such an arc, as in the following:
Definition transport to new (G : graph Lv Le) (e : edge G) :

edge G → edge (new graph e) :=
fun a ⇒

190

CHAPTER 5. FORMALIZATION OF MULTIPLICATIVE PROOF-NETS IN COQ

if @boolP (a \notin [set e]) is AltTrue p1 then
if @boolP ((Some (Some (inl (Sub a p1 : edge (remove edges [set e : edge G])))) : edge

(@extend edge graph G e cut (elabel e) (elabel e))) \notin [set None]) is AltTrue p2 then Some
(Some (inl (Sub (Some (Some (inl (Sub a p1 : edge (remove edges [set e : edge G])))) : edge
(@extend edge graph G e cut (elabel e) (elabel e))) p2 : edge (remove edges [set None : edge
(@extend edge graph G e cut (elabel e) (elabel e))]))))

else None
else None.

This is incredibly both tedious and fragile. The source of this problem seems to be on the
unification side, with the time needed for Coq to check that an object indeed is an arc of the graph
being in the order of the tens of minutes, or even hours in more complex graphs!

On a more general note, doing non-trivial manipulations of graphs with successive additions
and deletions quickly becomes a nightmare to write, read and understand. As we add dependent
types, option types or union types for each operation, one gets edges like those in the above code
snippets or like Some (Some (inl (inl (Some (inl (exist e E))))). This is an incredibly confusing
way to see an edge from the original graph as the corresponding one in the resulting graph after the
transformations. This difficulty seems hard to solve, because on paper one can by abuse consider a
same vertex or arc before and after a transformation, but formally these are distinct objects.

5.3 Organization of the code
The code developed during this thesis has not been yet incorporated into the Yalla library, as there
are still some improvements to be made. It can be find here: https://github.com/RemiDiG/
proofnet_mll. To give an overview of the size of this project, here is detailed the structure of the
files, at the time this thesis is written, ordered by dependency.

mll prelim.v general results, with no relation to linear logic;

graph more.v some general lemmas about GraphTheory;

upath.v development of part of GraphTheory, with undirected paths in a multigraph;

supath.v development of part of GraphTheory, with undirected arc-simple paths in a multigraph;

simple upath.v development of part of GraphTheory, with undirected vertex-simple paths in a
multigraph;

graph uconnected nb.v proof of Corollary 3.48, that an acyclic graph has for number of con-
nected components its number of vertices minus its number of arcs, generalized to our notion
of f -paths;

mgraph dag.v development of part of GraphTheory, about directed acyclic multigraph;

mgraph tree.v proof that in an acyclic graph, there is at most one simple path between two
vertices;

yeo.v proof of one of our generalizations of Yeo theorem (Theorem 3.29);

mll def.v definition of proof-nets, with its intermediate definitions, along basic results and refor-
mulations;

191

https://github.com/RemiDiG/proofnet_mll
https://github.com/RemiDiG/proofnet_mll

5.4. PERSPECTIVES

mll basic.v general results following from the definition of a proof-net;

mll correct.v defines some basic graph operations and proves they respect the correctness crite-
rion;

mll seq to pn.v definition of the desequentialization function, proof it produces proof-nets, and
that each step respects isomorphisms (for instance, taking two isomorphic graphs and adding
a `-vertex between isomorphic arcs yield isomorphic graphs) – the latter being used for
sequentialization;

mll pn to seq def.v definition of a sequentializing vertex as the inverse of desequentializing;

mll pn to seq.v proof that a proof-net contains a terminal splitting vertex, using Yeo theorem;

mll pn to seq ax.v a terminal ax -vertex is sequentializing;

mll pn to seq cut.v a splitting cut-vertex is sequentializing;

mll pn to seq parr.v a terminal `-vertex is sequentializing;

mll pn to seq tens.v a terminal splitting ⊗-vertex is sequentializing;

mll pn to seq th.v proof of the sequentialization theorem from the previous results;

mll cut.v definition of cut-elimination, proof it respects correction, and that it terminates;

mll ax exp.v work in progress about axiom-expansion in proof-nets;

unused.v general results that became useless during the development;

bug report x.v files with examples where Coq compiles for a very long time.

5.4 Perspectives
We implemented in Coq a definition of proof-nets for MLLuf with two main results of this theory:
a proof of the sequentialization theorem, and a normalization of cut-elimination. The current
implementation could be simplified in several ways, considering for instance only vertex-simple paths
instead of switching and left-switching paths. It was not done this way from the beginning because
the proof of sequentialization used was not found yet when starting this project! This change of
the sequentialization proof during the development induces some fragility and a revision of the code
for homogenization purpose is needed before a proper integration in the Yalla library. Likewise, it
stays to simplify the results on undirected paths for them to be integrated in GraphTheory.

Many concepts and results could be added to this formalization of proof-nets. To cite only a
few: axiom-expansion, links with sequent calculus regarding cut-elimination and rule commutation,
adding the mix 2- and mix 0-rules, . . . Nonetheless, this project shows that formalizing proof-nets
can be done in a not so tedious fashion. Extending this work to MELL0,2 or MALL0,2

uf proof-nets
seems doable, because the main difficulties should be on the manipulation of graphs, meaning the
same as for MLLuf proof-nets, which were solved here.

192

Part III

Isomorphisms
&

Retractions

193

In this part, we use the previous concepts and results (proof-nets, cut-elimination is Church-
Rosser modulo rule commutation, etc) in order to study isomorphisms and retractions in some
sub-systems of linear logic. These relations can be defined in a very generic way in category theory,
using only basic notions (see for instance [Mac, Chapter 1, Section 5]).

The concept of isomorphism is central in category theory, because it corresponds to indistin-
guishable objects. For instance, the unicity of a limit holds only up to isomorphism. A natural
question is then what is the quotient implicitly done by all the results with an “up to isomorphism”.
As this is not easy using the definition (in particular proving that two objects are not isomorphic
is hard), a good result characterizing isomorphisms is an equational theory corresponding exactly
to them. Such a theory makes it easier to check whether two objects are isomorphic or not, and its
equations are the “basic” isomorphisms generating all others.

Meanwhile, retractions give a natural notion of sub-typing, for the underlying couple of mor-
phisms allows to encode an element of the sub-type as one of the super-type thanks to the first
morphism, and to decode it back using the second morphism. Here again, one can wish for a
characterization by means of an inequational theory.

Our two main results are the following. We give in Chapter 6 a characterization of isomorphisms
in MALL2 and show they are the same as in MALL, extending a result for MLL by Balat and
Di Cosmo [BD99]. This implies a characterization for isomorphisms in ⋆-autonomous categories
with finite products. The obtained characterization is the expected one, which is a much richer
equational theory than in MLL, involving not only associativity, commutativity and unitality laws
but also distributivity and cancellation laws. The unit-free case is obtained by relying on the
proof-net syntax of Hughes & Van Glabbeek (Definition 4.1), while units are handled in sequent
calculus thanks to confluence of cut-elimination up to rule commutation (Theorem 2.49). The idea
behind this methodology is that using the canonical representation of proofs that are proof-nets is
preferable when proofs are considered up to cut-elimination and axiom-expansion, i.e. up to rule
commutation: the proof-net syntax with one graph per proof is more suitable that the usual sequent
calculus representation, where one has to consider equivalence classes for rule commutation, which
muddles the reasoning. Unfortunately, as we know no proof-net syntax for MALL with units, this
is only possible in the unit-free case. Our second contribution is stated in Chapter 7, with some
findings about retractions in MLL, and in particular a characterization of retractions to an atom.
The first problem is a simpler one (isomorphism) in a more complex setting (MALL), while the
second problem is a harder one (retraction) in a simpler framework (MLL).

195

Chapter 6

Isomorphisms for
Multiplicative-Additive Linear Logic

The question of type isomorphisms consists in trying to understand when two types in a type
system, or two formulas in a logic, are “the same”. The general question can be described in
category theory: two objects A and B are isomorphic, denoted A ≃ B, if there exist morphisms
A

f−→ B and B g−→ A such that f ◦g = idB and g◦f = idA; i.e. if the following diagram commutes:

A B

f

g
idA idB

The arrows f and g are the underlying isomorphisms. Given a (class of) category, the question
is then to find equations characterizing when two objects A and B are isomorphic (in all instances
of the class). The focus here is on pairs of isomorphic objects rather than on the isomorphisms
themselves. For example, in the class of cartesian categories, one finds the following isomorphic
objects: A × B ≃ B × A, (A × B) × C ≃ A × (B × C) and A × ⊤ ≃ A. Regarding type systems
and logics, one can instantiate the categorical notion. For instance in typed λ-calculi: two types
A and B are isomorphic if there exist two λ-terms M : A → B and N : B → A such that
λx : B.(M (N x)) =βη λx : B.x and λx : A.(N (M x)) =βη λx : A.x where =βη is βη-equality.
This corresponds to isomorphic objects in the syntactic category generated by terms up to =βη.
Similarly, type isomorphisms can also be considered in logic, following what happens in the λ-
calculus through the Curry-Howard correspondence: simply replace λ-terms with proofs, types
with formulas, β-reduction with cut-elimination and η-expansion with axiom-expansion. In this
way, type isomorphisms are studied in a wide range of theories, such as category theory [Sol83;
DP97], λ-calculus [Di95] and proof theory [BD99]. They have been used to develop practical tools,
such as search in a library of a functional programming language [Rit91; ARG21].

Following the definition, it is usually easy to prove that the type isomorphism relation is a
congruence. It is then natural to look for an equational theory generating this congruence. Testing
whether or not two types are isomorphic is then much easier. An equational theory T is called
sound with respect to type isomorphisms if types equal up to T are isomorphic. It is said complete
if it equates any pair of isomorphic types. Given a (class of) category, a type system or a logic, our

197

goal is to find an associated sound and complete equational theory for type isomorphisms. Such
a characterization is not always possible as the induced theory may not be finitely axiomatizable
(see for instance [FDB02]). As an example, according to [Sol83], the following equational theory is
sound and complete for isomorphisms of cartesian closed categories:

Commutativity Associativity Curryfication Distributivity

A×B = B ×A A× (B × C) = (A×B)× C (A×B)→ C = A→ (B → C) A→ (B × C) = (A→ B)× (A→ C)
A× 1 = A 1→ A = A A→ 1 = 1

Soundness is usually the easy direction as it is sufficient to exhibit pairs of terms corresponding
to each equation. The completeness part is often harder, and there are in the literature two main
approaches to solve this problem. The first one is a semantic method, relying on the fact that if
two types are isomorphic then they are isomorphic in all (denotational) models. One thus looks
for a model in which isomorphisms can be computed (more easily than in the syntactic model) and
are all included in the equational theory under consideration – this is the approach used in [Sol83;
Lau05] for example. Finding such a model simple enough for its isomorphisms to be computed, but
still complex enough not to contain isomorphisms absent in the syntax is the difficulty. The second
method is the syntactic one, which consists in studying isomorphisms directly in the syntax. The
analysis of pairs of terms composing to the identity should provide information on their structure and
then on their type so as to deduce the completeness of the equational theory – see for example [Di95;
BD99]. The easier the equality (=βη for example) between proof objects can be computed, the easier
the analysis of isomorphisms will be.

As we work in the framework of linear logic, the underlying question becomes “is there an equa-
tional theory corresponding to the isomorphisms between formulas in this logic?”. In MLL, which
corresponds to ⋆-autonomous categories, the question of type isomorphisms was answered positively
using a syntactic method based on proof-nets by Balat and Di Cosmo [BD99]: isomorphisms emerge
from associativity and commutativity of the multiplicative connectives ⊗ and `, as well as unital-
ity of the multiplicative units 1 and ⊥. The question was also solved for the polarized fragment
of LL by my PhD advisor using game semantics [Lau05]. It is conjectured that isomorphisms in
full linear logic (with the ⊢⊣oe transformation as well as identification of proofs up to ! − ?wc and
!− ?w commutations, see Remark 1.15) correspond to those in its polarized fragment, constituted
of the equations on Table 6.1 together with the four exponential isomorphisms !(A&B) ≃ !A⊗ !B,
?(A⊕B) ≃ ?A` ?B, !⊤ ≃ 1 and ?0 ≃ ⊥. As a step towards solving this conjecture, we prove the
type isomorphisms in MALL2 are generated by the equational theory of Table 6.1. This applies at
the same time to the class of ⋆-autonomous categories with finite products (whose corresponding
equational theory in its usual syntax is on Table 6.2 on Page 239). This situation is much richer
than in MLL since isomorphisms include not only associativity, commutativity and unitality, but
also the distributivity of the multiplicative connective ⊗ (resp. `) over the additive ⊕ (resp. &)
as well as the associated cancellation laws for the additive unit 0 (resp. ⊤) over the multiplicative
connective ⊗ (resp. `).

Using a semantic approach for completeness looks difficult here. In particular, most of the
known “concrete” models of MALL (with the meaning that isomorphisms are more easily computed
inside) immediately come with unwanted isomorphisms not valid in the syntax. For example, one
can check that ⊤⊗A ≃ ⊤ in coherent spaces [Gir87], while it is plainly obvious that ⊤⊗A ̸≃ ⊤ in
the syntax as the second formula is provable but generally the first one is not. An idea would then
be to consider less “concrete” models of MALL or of ⋆-autonomous categories with finite products,
typically categories built in a natural way over MLL or ⋆-autonomous categories. For instance,

198

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

L†︷ ︸︸ ︷
Commutativity Associativity Distributivity Unitality Cancellation

A⊗B = B ⊗A A⊗ (B ⊗ C) = (A⊗B)⊗ C A⊗ (B ⊕ C) = (A⊗B)⊕ (A⊗ C) A⊗ 1 = A A⊗ 0 = 0
A`B = B `A A` (B ` C) = (A`B)` C A` (B & C) = (A`B) & (A` C) A`⊥ = A A`⊤ = ⊤
A⊕B = B ⊕A A⊕ (B ⊕ C) = (A⊕B)⊕ C A⊕ 0 = A
A&B = B &A A& (B & C) = (A&B) & C A&⊤ = A︸ ︷︷ ︸

L

Table 6.1: Type isomorphisms in multiplicative-additive linear logic

one could consider the free completion by products and coproducts of ⋆-autonomous categories,
hoping the resulting category corresponds to MALL – in the same spirit as what has been done
for bicompletion of ⋆-autonomous categories [Joy95a; Joy95b], except MALL should not be the free
bicompletion of MLL as it is not expected to have all limits. Or one could consider models based
on coherence spaces such as [HJ97; HJ99; BHS05]. We see two main difficulties with this approach.
The first is that isomorphisms may not be that easy to compute in these categories, and we lack
results giving isomorphisms of a completion from isomorphisms of the base category. Especially
in our case, where we have distributivity isomorphisms involving both multiplicative and additive
connectives, meaning isomorphisms of MALL are not directly deducible from those of MLL and
ALL. The second obstacle is that these categories may not correspond exactly to MALL, and can
have unwanted isomorphisms. In particular, it is possible that the models built following coherence
spaces contain the same unwanted ⊤⊗A ≃ ⊤.

For this reason we prefer to use a syntactic method, and follow the approach from Balat and
Di Cosmo [BD99] based on proof-nets. Hence, our main tool will be the proof-nets defined in
Section 4.1. Indeed, the canonicity of proof-nets makes it a very good syntax for linear logic where
studying composition of proofs by cut, cut-elimination and identity of proofs is very natural, highly
simplifying the problem by going from =βη to plain equality of graphs. However, already in [BD99]
some trick had to be used to deal with units as proof-nets are working perfectly only in MLLuf .
Handling the units thus has to be done in sequent calculus, and in particular involves studying
proofs up to rule commutation.

Reasoning Our proof of completeness can be sketched as follows.

(1) A simple but key idea is to use the distributivity, unitality and cancellation equations of
Table 6.1 from left to right so as to rewrite formulas into a distributed form, where none
of these equations can be applied anymore. Between such distributed formulas, the only
isomorphisms left should be commutativity and associativity ones. Furthermore, units should
not play any special role. All the problem now is to prove this is the case.

(2) Working in sequent calculus, we prove that in any isomorphism between distributed formulas
one can indeed replace units by fresh atoms and the resulting formulas are still isomorphic.
The main difficulty here is that this only holds for distributed formulas, as generally units
do not behave like atoms at all. This leads us to identify the following patterns in proofs of

199

isomorphisms:

(⊤)
⊢ ⊤, 0

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

Once proven that unit rules are constrained to these patterns, it is easy to replace each of
their uses by an ax -rule. A problematic here is that we have to consider proofs up to cut-
elimination, hence up to rule commutation (using results from Chapter 2). In particular,
instead of the second pattern above, one must consider the following more general one, with
a sequence of ⊕1- and ⊕2-rules between the 1- and ⊥-rules, that turns the 1-formula into a
more complex one F :

(1)
⊢ 1 ⊕i
⊢ F

(⊥)
⊢ ⊥, F

Moreover, we need two main steps to get these patterns.

(2a) First, we prove these patterns are in the identity proofs and are preserved by all rule
commutations, so as to know the equivalence class of the identity has them. This is done
by giving properties preserved by rule commutations, with the tedious work of checking
each rule commutation.

(2b) Then, we transpose these patterns backward through cut-elimination to get them in the
proofs of isomorphisms. This needs a detailed study to prove that cutting proofs of an
isomorphism cannot “completely erase” a unit rule, i.e. that the comportment of the
& − ⊕i key cases and of the ⊤ − cut commutative cases are quite constrained. We do
so by a thorough consideration of the evolution of slices when eliminating a cut-rule, as
well as a meticulous monitoring of ⊤-rules during the reduction.

(3) Once the problem reduced to the unit-free case, we can transpose isomorphisms to proof-
nets, so as to not have to bother with rule commutations and equivalence classes anymore.
There, we prove that proof-nets associated to isomorphisms have very particular shapes, with
local constraints on their axiom links. More precisely, we prove that the three following
configurations are forbidden: an axiom link between atoms of a same formula, an atom with
no axiom link on it and an atom with axiom links to several distinct atoms.

X+

X−

X− X+

X+

X−

This means that proof-nets associated to an isomorphism A ≃ B have the following general
shape, with each atom of A linked to a unique atom of B by means of one or several axiom
links:

200

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

X+

X−

X−

X+

Y +

Y −

X+ X−

This is the main challenge, because having such a shape is again only true for isomorphisms
between distributed formulas, so we have to use this global property on distributed formulas in
order to deduce a local property on the shape of axiom links. We employ here the correctness
criterion (P3) in a direct way. The idea is to prove that a forbidden configuration, typically
the third one, implies having in one formula a & being an ancestor a `. The distributivity
hypothesis then gives a ⊗\⊕-vertex between these two, thanks to which a cycle contradicting
the correctness criterion can be built. This crucial part of the proof seems very hard to
transpose in sequent calculus as it hinges on a geometric reasoning, and even if it were possible
we would expect some heavy work on rule commutations, turning this already complicated
proof into an utterly bewildering one.

(4) Knowing that proof-nets have very specific shapes, we recognize they correspond only to a
rearrangement of formulas because axiom links bind an atom to a formula with one of the
isomorphic formula in a bijective fashion. This is enough to finally conclude that the only
isomorphisms are commutativity and associativity ones.

Outline Once the definition of isomorphism given and soundness of the equational theory proven
(Section 6.1), our proof of the completeness of the equational theory of Table 6.1 goes in two
main steps. First, we work in the sequent calculus to simplify the problem and reduce it to the
unit-free sub-system, by lack of a good-enough notion of proof-nets for MALL0,2 in the presence of
additive units. Using results from Chapter 2, we analyze the behavior of units inside isomorphisms
to conclude that they can be replaced with fresh atoms, once formulas are simplified appropriately
(Section 6.2, points (1) and (2) of the sketch). Secondly, being in a setting admitting proof-nets, we
adapt the proof of Balat & Di Cosmo [BD99]: we transpose the definition of isomorphisms to this
new syntax, then prove completeness (Section 6.3, points (3) and (4) of the sketch). This last step
is the core of the work and requires a precise analysis of the structure of proof-nets because of the
richer structure induced by the presence of the additive connectives. The situation is much more
complex than in the multiplicative setting since for example sub-formulas can be duplicated through
distributivity equations, breaking a linearity property crucial in [BD99]. Finally, seeing MALL as
a category, we extend our result to conclude that Table 6.1 (or more precisely its adaptation to
the language of categories, Table 6.2 on Page 239) provides the equational theory of isomorphisms
valid in all ⋆-autonomous categories with finite products (Section 6.4). We discuss the situation of
products in symmetric monoidal closed categories as well. As an aside, we observe what happens
when identifying proofs not up to βη-equality but only β-equality, and show the corresponding
notion of isomorphism is trivial (Section 6.5).

201

6.1. LINEAR ISOMORPHISMS

6.1 Linear Isomorphisms

Definition 6.1 (Isomorphism). Consider (a sub-system of) linear logic with ⊢⊣o some (possibly none,
or all) of the Rétoré transformations. Two formulas A and B are isomorphic (in this sub-system),
denoted A ≃ B, if there exist proofs π of ⊢ A⊥, B and π′ of ⊢ B⊥, A such that π

B

▷◁ π′ =βηo axA
and π′

A

▷◁ π =βηo axB :

π
B

▷◁ π′ =

π
⊢ A⊥, B

π′

⊢ B⊥, A
(cut)

⊢ A⊥, A =βηo
(ax)

⊢ A⊥, A = axA
and

π′
A

▷◁ π =

π′

⊢ B⊥, A
π

⊢ A⊥, B
(cut)

⊢ B⊥, B =βηo
(ax)

⊢ B⊥, B = axB

One can check that isomorphisms in linear logic form a congruence (Appendix B), so that it
makes sense to search for a corresponding equational theory. We aim to prove that two MALL2

(resp. MALL2
uf) formulas are isomorphic if and only if they are equal in the equational theory L

(resp. L†) defined as follows.

Definition 6.2 (Equational theories L and L†). We denote by L the equational theory given in
Table 6.1 on Page 199, while L† denotes the part not involving units, i.e. with commutativity,
associativity and distributivity equations only.

Given an equational theory T , the notation A =T B means that formulas A and B are equal in
the theory T . As often, the soundness part is easy (but tedious) to prove.

Theorem 6.3 (Isomorphisms soundness, see [Lau05, Lemma 3]). If A =L B then A ≃ B.

Proof. It suffices to give the proofs for each equation, then check their compositions can be reduced
by cut-elimination to an axiom-expansion of an ax -rule. For instance, looking at the commutativity
of `, i.e. A`B ≃ B `A, we set π and π′ the following proofs:

π =

(ax)
⊢ B⊥, B

(ax)
⊢ A⊥, A

(⊗)
⊢ B⊥ ⊗A⊥, B,A

(`)

⊢ B⊥ ⊗A⊥, B `A

and π′ =

(ax)
⊢ A⊥, A

(ax)
⊢ B⊥, B

(⊗)
⊢ A⊥ ⊗B⊥, A,B

(`)

⊢ A⊥ ⊗B⊥, A`B

One can check

202

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

π
⊢ B⊥ ⊗A⊥, B `A

π′

⊢ A⊥ ⊗B⊥, A`B
(cut)

⊢ B⊥ ⊗A⊥, A`B

(ax)
⊢ B⊥, B

(ax)
⊢ A⊥, A

(⊗)
⊢ B⊥ ⊗A⊥, A,B

(`)

⊢ B⊥ ⊗A⊥, A`B(ax)
⊢ B⊥ ⊗A⊥, A`B

β∗−→

η−→

and

π′

⊢ A⊥ ⊗B⊥, A`B
π

⊢ B⊥ ⊗A⊥, B `A
(cut)

⊢ A⊥ ⊗B⊥, B `A

(ax)
⊢ A⊥, A

(ax)
⊢ B⊥, B

(⊗)
⊢ A⊥ ⊗B⊥, B,A

(`)

⊢ A⊥ ⊗B⊥, B `A(ax)
⊢ A⊥ ⊗B⊥, B `A

β∗−→

η−→

All the difficulty lies in the proof of the other implication, completeness, on which the rest of
this chapter focuses.

6.2 Reduction to unit-free distributed formulas

As written at the beginning of this chapter, our plan is to use proof-nets so as to benefit from the
canonicity of this syntax. Unfortunately, proof-nets currently exist only for atomic-axiom proofs
in MALL0,2

uf . Using previous results about axiom-expansion from Section 2.2, one easily reduces
the problem to atomic-axiom proofs (Section 6.2.1). In parenthesis, conservativity then easily
follows: isomorphisms of MALL between MLL or ALL formulas are isomorphisms of MLL or ALL
(Section 6.2.2). Now, it stays to take care of the units. The main idea is that the multiplicative
and additive units can be replaced by fresh atoms for the study of isomorphisms. However, this is
not true in general, for instance we have (1⊕A)⊗B ≃ B⊕ (A⊗B) (using the soundness theorem,
Theorem 6.3), and this isomorphism uses that 1 is unital for ⊗. Hence, we begin by reducing
the problem to so-called distributed formulas, using the distributivity, unitality and cancellation
equations of Table 6.1 on Page 199 (Section 6.2.3). Then, for theses special formulas, we identify
patterns containing units in proofs equal to an identity up to rule commutation, patterns which
can be lifted to proofs of isomorphisms (Section 6.2.4). Finally, we prove that, in an isomorphism
between distributed formulas, replacing units by fresh atoms preserves being an isomorphism, re-
ducing the study of isomorphisms to distributed formulas in the unit-free sub-system (Section 6.2.5).
This section is fully about sequent calculus, and will then allow us to use proof-nets.

203

6.2. REDUCTION TO UNIT-FREE DISTRIBUTED FORMULAS

6.2.1 Reduction to atomic-axiom proofs
One can simplify a little the problem, considering only normal forms for proofs and forgetting about
axiom-expansion. This can be done in full propositional logic, i.e. with all optional rules and any
of the Rétoré transformations, but without the quantifier rules.

Definition 6.4. We write
π,π′

A ≃ B when the atomic-axiom, cut-free, ⇝o -normal proofs π of ⊢ A⊥, B
and π′ of ⊢ B⊥, A respects π

B

▷◁ π′ =βo idA and π
A

▷◁ π′ =βo idB .

Lemma 6.5. Set π and π′ proofs respectively of ⊢ A⊥, B and ⊢ B⊥, A such that π
B

▷◁ π′ =βηo axA.
Then, letting ϕ (resp. ϕ′) be a result of expanding all axioms, eliminating all cuts and applying all
possible ⇝o in π (resp. π′), we have ϕ

B

▷◁ ϕ′ =βo idA.

Proof. We have ϕ
B

▷◁ ϕ′ =βηo π
B

▷◁ π′ =βηo axA
η∗←− idA. In particular, ϕ

B

▷◁ ϕ′ =βηo idA. Using
Proposition 2.10, we get η(ϕ

B

▷◁ ϕ′) =βo η(idA). However, ϕ, ϕ′ and idA are atomic-axiom, hence
η(ϕ

B

▷◁ ϕ′) = ϕ
B

▷◁ ϕ′ and η(idA) = idA. Thus, ϕ
B

▷◁ ϕ′ =βo idA follows.

Lemma 6.6. Given two formulas A and B, A ≃ B if and only if there exist proofs π and π′ such

that
π,π′

A ≃ B.

Proof. The converse way follows by definition of an isomorphism. For the direct way, take proofs
π and π′ given by the definition of an isomorphism. One can expand all axioms, eliminate all cuts
and apply all possible ⇝o in π and π′ (Proposition 2.8 and Theorem 2.15) to obtain respectively ϕ

and ϕ′. Using Lemma 6.5 twice, ϕ
B

▷◁ ϕ′ =βo idA and ϕ
A

▷◁ ϕ′ =βo idB . Hence,
ϕ,ϕ′

A ≃ B.

6.2.2 Conservativity
Our study of cut-elimination from Chapter 2 is enough to obtain conservativity of isomorphisms
of MALL over MLL and ALL: if A ≃ B is an isomorphism in MALL with formulas A and B in MLL
(resp. ALL), then A ≃ B is also an isomorphism in MLL (resp. ALL). Notice the reciprocal follows
immediately from definitions. While this result will not be used to characterize all isomorphisms
of MALL, it is interesting by itself as its proof is easy and generalizes to many systems of linear
logic, e.g. could be used to prove conservativity of isomorphisms of LL over MALL (admitting our
Church-Rosser result from Chapter 2 generalizes to this framework).

Lemma 6.7 (Conservativity). Isomorphisms of MALL are conservative over MLL and ALL.

Proof. We prove it only for MLL, the same proof holding for ALL by only replacing these acronyms.
Consider A ≃ B in MALL with A and B also formulas of MLL. By Lemma 6.6, one gets MALL

proofs π and π′ such that
π,π′

A ≃ B in MALL. By the sub-formula property (Fact 1.7), π and π′ are
also MLL proofs. The only difficulty left is that cut-elimination in MALL may equalize more MLL
proofs than the simpler cut-elimination in MLL, so that π

B

▷◁ π′ =β idA and π
A

▷◁ π′ =β idB in MALL
but not in MLL. We prove it is not the case, and more generally that when two MLL proofs ϕ and
ϕ′ are β-equal in MALL, they also are β-equal in MLL, which concludes the proof. First, one can
w.l.o.g. assume ϕ and ϕ′ cut-free: otherwise, just reduce all cuts in these proofs, these reductions
involving only cut-elimination steps of MLL. By Theorem 2.47, ϕ ⊢⊣r

∗

ϕ′ using rule commutation in

204

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

MALL. But rule commutation preserves that a proof in MLL stays in MLL, because these are the
cut-free rule commutations, so any rule they may introduce is on a connective of the conclusion
sequent, thus is a rule of MLL. Thence, the sequence ϕ ⊢⊣r

∗

ϕ′ involves only rule commutations and
proofs from MLL. We conclude ϕ =β ϕ

′ in MLL thanks to Proposition 2.46 (or more exactly its
analog for MLL, whose proof is contained in the one we did for MALL).

6.2.3 Reduction to distributed formulas
Definition 6.8 (Distributed formula). A formula is distributed if it does not have any sub-formula
of the form

A⊗ (B ⊕ C) (A⊕B)⊗ C A⊗ 1 1⊗A A⊕ 0 0⊕A A⊗ 0 0⊗A

or their duals

(C &B)`A C ` (B &A) ⊥`A A`⊥ ⊤&A A&⊤ ⊤`A A`⊤
(where A, B and C are any formulas).

Remark 6.9. This notion is stable under duality: if A is distributed, so is A⊥.

Definition 6.10. We call D the following abstract rewriting system, on the set of MALL formulas.

A⊗ (B ⊕ C) → (A⊗B)⊕ (A⊗ C) (C &B)`A → (C `A) & (B `A)
(A⊕B)⊗ C → (A⊗ C)⊕ (B ⊗ C) C ` (B &A) → (C `B) & (C `A)
A⊗ 1 → A 1⊗A → A A`⊥ → A ⊥`A → A
A⊕ 0 → A 0⊕A → A A&⊤ → A ⊤&A → A
A⊗ 0 → 0 0⊗A → 0 A`⊤ → ⊤ ⊤`A → ⊤

Lemma 6.11. The rewriting system D is strongly normalizing, with as normal forms distributed
formulas.

Proof. That normal forms of D are distributed formulas follows by Definitions 6.8 and 6.10. For
the strong normalization, it suffices to give a function f from formulas to natural numbers such
that A→ B implies f(A) > f(B). We define it by induction as follows:

f(X+) = f(X−) = 2
f(A`B) = f(A⊗B) = f(A)× f(B)
f(⊥) = f(1) = 2
f(A&B) = f(A⊕B) = f(A) + f(B) + 1
f(⊤) = f(0) = 2

One can easily check that for any formula A, f(A) ≥ 2, and then that the wished property
holds. Here are some representative cases:

f(A⊗ (B ⊕ C)) = f(A)× (f(B) + f(C) + 1)

> f(A)× f(B) + f(A)× f(C) + 1 = f((A⊗B)⊕ (A⊗ C))

f(A⊗ 1) = f(A)× 2 > f(A)

f(A⊕ 0) = f(A) + 3 > f(A)

f(A⊗ 0) = f(A)× 2 > f(0)

205

6.2. REDUCTION TO UNIT-FREE DISTRIBUTED FORMULAS

Remark 6.12. The rewriting system D is not confluent. Indeed, consider the formula (X ⊕ Y) ⊗
(Z ⊕ W). It has two normal forms, according to whether the first rewriting applied is the rule
A⊗ (B ⊕C)→ (A⊗B)⊕ (A⊗C) or (A⊕B)⊗C → (A⊗C)⊕ (B ⊗C). In the first case, one get

(X ⊕ Y)⊗ (Z ⊕W)→ ((X ⊕ Y)⊗ Z)⊕ ((X ⊕ Y)⊗W)

whose unique normal form is ((X ⊗Z)⊕ (Y ⊗Z))⊕ ((X ⊗W)⊕ (Y ⊗W)). In the second case, we
have

(X ⊕ Y)⊗ (Z ⊕W)→ (X ⊗ (Z ⊕W))⊕ (Y ⊗ (Z ⊕W))

of unique normal form ((X ⊗ Z)⊕ (X ⊗W))⊕ ((Y ⊗ Z)⊕ (Y ⊗W)).
Nonetheless, D without the four upper rewriting rules in Definition 6.10 is confluent; in particular

D is confluent when restricted to MLL or to ALL. Furthermore, while D is not confluent, it is
Church-Rosser modulo associativity and commutativity of the four connectives.

Proposition 6.13. If the equational theory denoted L (recall Table 6.1 on Page 199) is complete for
isomorphisms between distributed formulas, then it is complete for isomorphisms between arbitrary
formulas.

Proof. Consider an isomorphism A ≃ B between two arbitrary formulas A and B. Let Ad and
Bd be associated distributed formulas, obtained as normal forms of the rewriting system D (using
Lemma 6.11). As each rule of this rewriting system corresponds to a valid equality in the theory
L, we have A =L Ad and B =L Bd.

By soundness of L (Theorem 6.3) and as linear isomorphism is a congruence, we deduce Ad ≃
A ≃ B ≃ Bd. The completeness hypothesis on L for distributed formulas yields Ad =L Bd from
Ad ≃ Bd. Thus A =L Ad =L Bd =L B.

Therefore, we can now consider only distributed formulas. We will use this to study units, as
well as when solving the unit-free case to prove there are only commutativity and associativity
isomorphisms left.

6.2.4 Patterns in distributed isomorphisms

In this section, we prove units in distributed isomorphisms are in very specific sets of rules, which
are the following patterns.

Definition 6.14 (Patterns).

• We call a ⊤/0-pattern the following sub-proof:

(⊤)
⊢ ⊤, 0

• Likewise, we set 1/⊥-pattern the sub-proof:

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

206

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

• A 1/ ⊕ /⊥-pattern is a 1-rule followed by a (possibly empty) sequence ρ of ⊕i-rules and
finally a ⊥-rule:

(1)
⊢ 1

ρ
⊢ F

(⊥)
⊢ ⊥, F

The main goal of this part is proving ⊤- 1- and ⊥-rules in proofs of distributed isomorphisms
belong to these patterns. The two ⊤/0- and 1/⊥-patterns are those we truly wish for. However, we
will not find directly 1/⊥-patterns, but the more generic 1/ ⊕ /⊥-patterns; this is not a problem,
for using ⊕i −⊥ commutations turns a 1/⊕ /⊥-pattern into a 1/⊥-pattern.

We will need at some point that the following sequents cannot be proved.

Fact 6.15. The sequents ⊢, ⊢ 0 and ⊢ 0, 0 have no proof in MALL2. More generally, no sequent
made of only 0 formulas is provable in MALL2.

Proof. If such a proof π exists, then w.l.o.g. it is cut-free (Corollary 2.43). The last rule of π can
only be a mix 2-rule, leading to two proofs also on these sequents. By induction on the number of
rules of π, such a proof cannot exist.

We first analyze the behavior of units in proofs equal to idA up to rule commutation, and prove
they belong to these patterns (Section 6.2.4.1). We only do so for a distributed formula A as we have
already seen it is enough in Section 6.2.3, and as the above patterns hold only for these formulas.
We can then obtain our result, for this property is preserved by cut anti-reduction. However, it is
not so easy to prove it, and we will consider slices to do so (Section 6.2.4.2). This finally allows us
to remove the units (Section 6.2.4.3).

6.2.4.1 Patterns in identities up to rule commutation

We study here patterns containing units in proofs equal to an identity up to rule commutation.
The tedious case study on rule commutations and the properties to find in this proof are a great
example on why we do not want to do the full proof of completeness in sequent calculus, but wish
instead to use proof-nets.

Proposition 6.16. Let π be a proof equal, up to rule commutation, to idA with A a distributed
formula. Then:

• the ⊤-rules of π are in a ⊤/0-pattern
(⊤)

⊢ ⊤, 0 with ⊤ in A being the dual of 0 in A⊥, or
vice-versa (⊤ in A⊥ being the dual of 0 in A);

• ⊥-rules and 1-rules come by pairs in a 1/⊕ /⊥-pattern

(1)
⊢ 1

ρ
⊢ F

(⊥)
⊢ ⊥, F

with ⊥ in A being the dual of 1 in A⊥, or vice-versa;

• there is no sequent in π of the shape ⊢ B & C;

207

6.2. REDUCTION TO UNIT-FREE DISTRIBUTED FORMULAS

• there is no mix 2-rule in π.

Proof. Given a formula B, we define the grammar⊕
[B] := B |

⊕
[B]⊕ C | C ⊕

⊕
[B]

where C ranges over all formulas. The occurrence of B which is the base case of this grammar is
called its distinguished occurrence. The key idea is to find properties of idA preserved by all rule
commutations and ensuring the properties described in the statement. Hence, we prove a stronger
property: any sequent S of a proof π obtained through a sequence of rule commutations from idA
for a distributed formula A respects:

(1) the formulas of S are distributed;

(2) if ⊤ is a formula of S, then S = ⊢ ⊤, 0 with 0 in A⊥ the dual of ⊤ if ⊤ is a sub-formula of A
(or vice-versa);

(3) if ⊥ is a formula of S, then S = ⊢ ⊥,
⊕

[1] where the distinguished 1 is the dual of ⊥ in
A⊥ if ⊥ is a sub-formula of A (or vice-versa), and the sub-proof of π above S is a sequence
of ⊕i rules leading to the 1-rule of the distinguished 1, with in addition a ⊥-rule inside this
sequence;

(4) if B&C is a formula of S, then S = ⊢ B&C,
⊕

[C⊥⊕B⊥] where the distinguished C⊥⊕B⊥
is the dual of B&C in A⊥ if B&C is a sub-formula of A (or vice-versa), and in the sub-proof
of π above S the ⊕-rules of the distinguished C⊥⊕B⊥ are a ⊕2-rule in the left branch of the
&-rule of B & C, and a ⊕1-rule in its right branch;

(5) if S contains several negative formulas or several positive formulas, then its negative formulas
are all `-formulas or negated atoms;

(6) there is no mix 2-rule in π.

Remark that (5) is a corollary of properties (2), (3) and (4). As in ⊢⊣r there is no commutation
with a cut-rule (in particular no cut − ⊤ commutation) and no ⊗ − ⊤ commutation creating a
sub-proof with a cut-rule, it follows that π is cut-free and has the sub-formula property, making
(1) trivially true. We prove that the identity idA respects properties (2), (3), (4) and (6), and that
these properties are preserved by any rule commutation of ⊢⊣r .

The identity idA respects the properties. We prove it by induction on the distributed formula
A. Notice that sub-formulas of A are also distributed. By symmetry, assume A is positive.

If A ∈ {X+, 1, 0} where X is an atom, then:

idA ∈

{
(ax)

⊢ X−, X+ ;
(1)

⊢ 1
(⊥)

⊢ ⊥, 1
; (⊤)
⊢ ⊤, 0

}
Each of these proofs respects (2), (3), (4) and (6).

Assume the result holds for B and C, and that A = B ⊗ C. Then

idA =

idB
⊢ B⊥, B

idC
⊢ C⊥, C

(⊗)
⊢ C⊥, B⊥, B ⊗ C

(`)

⊢ C⊥ `B⊥, B ⊗ C

208

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

By induction hypothesis, idA respects (6). We have to prove the sequents ⊢ C⊥, B⊥, B ⊗ C and
⊢ C⊥ ` B⊥, B ⊗ C respect the properties. The latter respects (2), (3) and (4) trivially for it has
neither a ⊤, ⊥ nor & formula. As C⊥ ` B⊥ is distributed, it follows that neither C⊥ nor B⊥ can
be a ⊤, ⊥ or & formula, and as such the former sequent also respects the properties.

Suppose A = B ⊕ C with sequents of idB and idC respecting the properties. Now

idA =

idC
⊢ C⊥, C

(⊕2)

⊢ C⊥, B ⊕ C

idB
⊢ B⊥, B

(⊕1)

⊢ B⊥, B ⊕ C
(&)

⊢ C⊥ &B⊥, B ⊕ C

By induction hypothesis, idA respects (6). The sequent ⊢ C⊥&B⊥, B⊕C respects (2), (3) and (4),
as the ⊕ is the dual of the &. By symmetry, we show the properties are also fulfilled by ⊢ B⊥, B⊕C,
and they will be respected by ⊢ C⊥, B ⊕ C with a similar proof. As the formulas are distributed,
B⊥ cannot be a ⊤ formula, hence the sequent respects (2). If B⊥ is not a ⊥ nor a & formula, then
(3) and (4) hold for ⊢ B⊥, B ⊕ C. If it is, then using that ⊢ B⊥, B respects (3) and (4), and that
B ⊕ C belongs to

⊕
[B], properties (3) and (4) follow for ⊢ B⊥, B ⊕ C.

Every possible rule commutation preserves the properties. We show it for each rule commutation,
using every time the notations from Tables 1.5 to 1.20 in Definition 1.14, on Pages 37 to 52. Remark
that the preservation of (6) is trivial, except for a C⊗⊤ or a Cmix2

⊤ commutation as these are the only
ones creating rules not already in the proof; hence we will consider no commutation with mix 2,
safe in these cases. By symmetry, we treat only one case for ⊗ − ⊗, ` − ⊗, & − ⊗ and ⊕i − ⊗
commutations, and we also consider only the ⊕1-rule and not the ⊕2 one.

⊤-commutations Using property (2), we cannot do any rule commutation between a ⊤-rule and a
`, ⊗, &, ⊕i, ⊥ or ⊤-rule. The only other commutation is a ⊤−mix 2 one. Still by (2), such
a commutation can only be one of the following four:

(⊤)
⊢ ⊤, 0 ⊢⊣r

(⊤)
⊢ ⊤, 0

π
⊢

(mix2)
⊢ ⊤, 0

(⊤)
⊢ ⊤, 0 ⊢⊣r

(⊤)
⊢ ⊤

π
⊢ 0

(mix2)
⊢ ⊤, 0

(⊤)
⊢ ⊤, 0 ⊢⊣r

π
⊢

(⊤)
⊢ ⊤, 0

(mix2)
⊢ ⊤, 0

(⊤)
⊢ ⊤, 0 ⊢⊣r

π
⊢ 0

(⊤)
⊢ ⊤

(mix2)
⊢ ⊤, 0

However, there is no proof in MALL2 of ⊢ nor of ⊢ 0 (Fact 6.15). Hence, such a commutation
is impossible, meaning one can do no commutation involving a ⊤-rule.

⊥-commutations Using property (3), we cannot do any rule commutation between a ⊥-rule and a
`, ⊗, & or ⊥-rule. A commutation between a ⊥ and a ⊕1-rule preserves property (3): we
have by hypothesis Γ empty and A⊕ B in the grammar for A belongs to it. It also respects
(2) and (4) trivially. A similar result holds for a ⊥−⊕2 commutation.

C`̀ commutation We have to show the properties for ⊢ A,B,C ` D,Γ. Because ⊢ A ` B,C `
D,Γ respects them, negative formulas of Γ are `-formulas or negated atoms by (5). By
distributivity, if A (or B) is a negative formula, then it must be a ` one or a negated atom.
Thus, ⊢ A,B,C `D,Γ fulfills (2), (3) and (4).

209

6.2. REDUCTION TO UNIT-FREE DISTRIBUTED FORMULAS

C
⊕j
⊕i commutation We treat only a C⊕1

⊕2
commutation, the others being similar. We show the

properties for ⊢ A,C ⊕D,Γ. As ⊢ A⊕B,C ⊕D,Γ respects them, negative formulas of Γ are
`-formulas or negated atoms by (5). If A is positive, a ` or a negated atom, then we are
done. Otherwise, as ⊢ A,D,Γ fulfills the properties, it follows Γ is empty and D of the desired
shape. By (1), D is not 0, thus A is not ⊤. Whether A is ⊥ or &, the sequent ⊢ A,C ⊕D
respects the properties.

C⊗⊗ commutation We have to show the properties for ⊢ A⊗B,C,Γ,∆. Because they are respected
by ⊢ A⊗B,C ⊗D,Γ,∆,Σ, negative formulas of Γ and ∆ are `-formulas or negated atoms
by (5). If C is positive, a ` or a negated atom, then we are done. Otherwise, as ⊢ B,C,∆
fulfills the properties, it follows ∆ is empty and C of the desired shape, so C is a 0, 1 or
⊕-formula. This is impossible as C ⊗D is distributed by (1).

C&
& , C&̀ , C&` , C⊗& and C&

⊗ commutations These cases are impossible by property (4).

C⊕1

& and C&
⊕1

commutations Remember we consider only the ⊕1-rule by symmetry. In these cases,
(4) for ⊢ A & B,C ⊕D,Γ implies Γ empty and C ⊕D of the desired shape. Thus C of the
desired shape, for C ⊕D is not the distinguished formula as it has the same rule ⊕1 in both
branches of the &-rule, proving the result for ⊢ A & B,C. For ⊢ A,C ⊕ D (and similarly
⊢ B,C ⊕D), A cannot be a ⊤ by (1), and if it is a ⊥ or a &, then the hypothesis on ⊢ A,C
implies that the properties are also respected in ⊢ A,C ⊕D.

C⊕1` and C⊕̀1
commutations Let us show the properties for ⊢ A,B,C ⊕ D,Γ in the first commu-

tation and ⊢ A ` B,C,Γ in the second. As they hold for ⊢ A,B,C,Γ, negative formulas in
⊢ A,B,C,Γ are `-formulas or negated atoms by (5) and the result follows.

C⊕1
⊗ commutation We have to prove ⊢ A,C ⊕D,Γ respects the properties. Because ⊢ A⊗B,C ⊕

D,Γ,∆ fulfills them, negative formulas of Γ are ` or negated atoms by (5). If A is a negative
formula other than a ` or an atom, then for ⊢ A,C,Γ respects the properties we have that Γ
is empty and C of the desired shape. By (1), C is not a 0, so A is not a ⊤. But then C ⊕D
also has the wished shape for A, and ⊢ A,C ⊕D fulfills the properties.

C⊗⊕1
commutation We prove ⊢ A ⊗ B,C,Γ,∆ respects the properties. As they are fulfilled by
⊢ A ⊗ B,C ⊕ D,Γ,∆, negative formulas of Γ and ∆ are ` or atoms by (5). As A ⊗ B is
distributed by (1), A cannot be a 0, 1 nor ⊕ formula, so by ⊢ A,C,Γ fulfilling the properties
it follows that C cannot be a negative formula other than a ` or an atom. The conclusion
follows.

C⊗` commutation We prove the properties for ⊢ A,B,C ⊗ D,Γ,∆. As they are respected by ⊢
A ` B,C ⊗ D,Γ,∆, according to (5) negative formulas of Γ and ∆ can only be `-formulas
or atoms. As A`B is distributed by (1), A and B are positive or `-formulas or atoms. The
conclusion follows.

C⊗̀ commutation We prove the properties for ⊢ A`B,C,Γ. As ⊢ A,B,C,Γ respects them, by (5)
negative formulas of ∆ and C can only be `-formulas or atoms, proving the result.

Therefore, we proved idA respects these properties, and that they are preserved by all rule commu-
tations. The conclusion follows.

210

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

6.2.4.2 Surgery on slices

Recall the definition of slices, Definition 1.6 on Page 28. Cut-elimination can be extended from
proofs to slices except that some reduction steps produce failures for slices: when a &i faces a ⊕i
and conversely. The reduction of the slice

⊢ A,Γ
(⊕1)

⊢ A⊕B,Γ
⊢ B⊥,∆

(&1)

⊢ B⊥ &A⊥,∆
(cut)

⊢ Γ,∆

is a failure since the selected sub-formulas of A ⊕ B and its dual do not match. Given two slices
s ∈ S(π) and r ∈ S(ρ) with respective conclusions ⊢ A,Γ and ⊢ A⊥,∆, their composition by cut
s
A

▷◁ r reduces either to a slice of a normal form of π
A

▷◁ ρ or to a failure.

Lemma 6.17. Let π1 and π2 be proofs such that π1
β−→ π2. For each s2 ∈ S(π2), there exists

s1 ∈ S(π1) such that s1
β−→ s2 or s1 = s2. Reciprocally, for each s1 ∈ S(π1), s1 reduces to a failure

or there exists s2 ∈ S(π2) such that s1
β−→ s2 or s1 = s2.

Proof. We can check that each cut-elimination step respects this property, with the equality case
coming from a reduction in π1

β−→ π2 on rules not in the considered slice s2 (resp. s1).

Corollary 6.18. Let π1, π2 and τ be proofs such that π1
A

▷◁ π2
β∗−→ τ . For each s ∈ S(τ), there

exist s1 ∈ S(π1) and s2 ∈ S(π2) such that s1
A

▷◁ s2
β∗−→ s.

Proof. By induction on the sequence π1
A

▷◁ π2
β∗−→ τ , using Lemma 6.17.

Lemma 6.19. Let π1 and π2 be cut-free proofs of ⊢ Γ with ⊤-rules all in ⊤/0-patterns. Assume
that π1 ⊢⊣

r∗
π2, where in this sequence there is no rule commutation involving a ⊤-rule. Then, for

each slice s1 ∈ S(π1), there exists a unique s2 ∈ S(π2) such that s1 and s2 make the same choices
for additive connectives in Γ.

Proof. This can be easily checked for each equation in ⊢⊣r , save for those involving ⊤ (precisely for
the ⊤−&, ⊤⊗ and ⊤−mix 2 commutations). We then conclude by induction on the length of the
sequence.

Take a choice C of premises for some additive connectives of a sequent, i.e. an additive-resolution
of the sequent (defined with proof-nets in Section 4.1.1). We say a slice is on C if for each &i and
⊕i-rule in this slice, the chosen premise for the corresponding connective in C is also i.

Lemma 6.20. Given a choice C of premises for additive connectives of A (but not A⊥), there exists
a unique slice of S(idA) on it, which furthermore makes on A⊥ the dual choices of C.

Proof. Direct induction on A, following the definition of idA on Table 1.1.

We now prove a partial reciprocal to Corollary 6.18. Notice in the following statement that the
assumption is on the composition over A, and the conclusion on the existence of a slice for the
composition over B, the other formula.

211

6.2. REDUCTION TO UNIT-FREE DISTRIBUTED FORMULAS

Lemma 6.21. Let π and π′ be cut-free proofs respectively of ⊢ A⊥, B and ⊢ B⊥, A, whose compo-
sition over A reduces to idB up to rule commutation. Set ρ a β-normal form of π

B

▷◁ π′. Then, for
any slice s of π, there exists a slice s′ of π′ such that s

B

▷◁ s′ reduces to a slice of ρ.

Proof. Take s ∈ S(π), and denote by C the choices made in s on & and ⊕ connectives of the formula
B. We will use that the composition over the formula A reduces to idB up to ⊢⊣r

∗

to find s′ ∈ S(π′)
that makes the dual choices of C on additive connectives of B⊥. This ensures no failure happens
during the reduction of s

B

▷◁ s′, which thus reduces to a slice of ρ (Lemma 6.17).
By hypothesis, call τ a cut-free proof resulting from cut-elimination of π

A

▷◁ π′, with τ ⊢⊣r
∗

idB .
By Lemma 6.20, there is a (unique) slice of idB with choices C on B and dual choices C⊥ on
B⊥. Applying Proposition 6.16, all proofs in the sequence τ ⊢⊣r

∗

idB have ⊤-rules with only 0 in
their context, and there cannot be any commutation involving a ⊤-rule in this sequence. Using
Lemma 6.19, there is a slice t of τ with choices C and C⊥. According to Corollary 6.18, we have
slices r ∈ S(π) and r′ ∈ S(π′) whose composition on A reduces to t. In particular, r makes choices
C on B and r′ choices C⊥ on B⊥, as these choices are those in the resulting slice t, and no reversed
cut-elimination step can modify them (a ⊤ − cut commutative case can erase such choices, but
taking it in the other direction can only create choices). Therefore, r′ makes on B⊥ the dual
choices of s on B, and we can take this slice as s′.

The previous result, Lemma 6.21, will be used to prove that given a non-ax -rule r in π, r is
not erased in all slices by & − ⊕i key cases during normalization. More precisely, taking a slice
s containing r, of principal connective in, say A⊥, the lemma gives a slice s′ ∈ S(π′) that has no
failure for a composition over B. As r does not introduce a cut formula, the only way for it to be
erased during the reduction is by a ⊤− cut commutative case, in which case its principal formula
becomes a sub-formula of the sequent on which a ⊤-rule is applied. This will be enough to conclude

in our cases, as we know that the resulting normal form only has ⊤-rules of the shape
(⊤)

⊢ ⊤, 0
(using Theorem 2.50 and Proposition 6.16).

Lemma 6.22. Let r be a non-ax rule in a cut-free slice s of conclusion ⊢ Γ, A, with the conclusion
sequent of r of the shape ⊢ ΣΓ,ΣA where ΣΓ is a sub-sequent of Γ and ΣA of A. Also assume the
principal formula (if any) of r belongs to ΣΓ, i.e. is not a sub-formula of A. Take s′ a cut-free slice
of conclusion ⊢ A⊥,∆ such that s

A

▷◁ s′ reduces to some slice s′′. Then either there is in s′′ a rule
of the same kind as r, applied on a sequent ⊢ ΣΓ,Θ with the same principal formula (if any) as r,
or ΣΓ is a sub-sequent of a ⊤-rule in s′′, whose main ⊤-formula is not in ΣΓ.

Proof. By hypothesis, r does not introduce a cut-formula, for these formulas are sub-formulas of A
or A⊥. Therefore, the only reductions in s

A

▷◁ s′
β∗−→ s′′ that can erase a rule are ⊤−cut commutative

cases, for the &i−⊕j key cases in the reduction do not lead to a failure. If no such erasure happens,
then we are done: other cut commutative cases involving r may modify its conclusion sequent, but
only in the part coming from A, thus ΣΓ is preserved.

If a ⊤ − cut reduction erases r, then ΣΓ is in the context of the resulting ⊤-rule t, possibly as
a sub-sequent. Furthermore, the principal ⊤-formula of t is not in ΣΓ. This is enough to conclude,
using an induction on the number of steps in s

A

▷◁ s′
β∗−→ s′′. Notice that t may be erased too during

the reduction but, like r, this would lead to ΣΓ being a sub-sequent of the context of another
⊤-rule.

212

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

6.2.4.3 Patterns in proofs of isomorphisms

A first step is that there is w.l.o.g. no mix 2-rule in a proof of an isomorphism, a fact we will use
implicitly from now on by assuming we are in MALL instead of MALL2.

Lemma 6.23. If
π,π′

A ≃ B with A and B distributed, then there is no mix 2-rule in π nor in π′.

Proof. Assume towards a contradiction there is a mix 2-rule r in π, and call s a slice this rule r
belongs to. The rule r is applied on a sequent ⊢ ΓA⊥ ,ΓB , with ΓA⊥ occurrences of sub-formulas of
A⊥ and ΓB of B – as the cut-free π has for conclusion sequent ⊢ A⊥, B, see Fact 1.7.

Set ρ a normal form of π
B

▷◁ π′ (using Corollary 2.43). By Theorem 2.49, ρ ⊢⊣r
∗

idA. According to
Lemma 6.21, there exists a slice s′ ∈ S(π′) such that s

B

▷◁ s′ reduces to a slice s′′ ∈ S(ρ). Applying
Lemma 6.22 to r, r is either preserved or it is absorbed by a ⊤-rule (during a ⊤− cut commutative
case) and ΓA⊥ is in the context of a ⊤-rule, possibly as a sub-sequent, and does not contain the
main ⊤-formula of this rule. But by Proposition 6.16, there are no mix 2-rule in ρ, so we are in the
second case; moreover, all ⊤-rules are in a ⊤/0-pattern. Thus, ΓA⊥ is a sub-sequent of 0, so either
the empty context or 0 itself.

By symmetry, doing the same reasoning on π′
A

▷◁ π, one find that ΓB is a sub-sequent of 0. This
means the sub-proof in π of root r is a proof of either ⊢, ⊢ 0 or ⊢ 0, 0. A contradiction, for none of
these three sequents is provable (Fact 6.15).

Lemma 6.24. If
π,π′

A ≃ B with A and B distributed, then all ⊤-rules in π and π′ are in a ⊤/0-pattern.

Proof. Consider t a ⊤-rule
(⊤)

⊢ ΓA⊥ ,ΓB in π, with ΓA⊥ occurrences of sub-formulas of A⊥ and
ΓB of B – as the cut-free π has for conclusion sequent ⊢ A⊥, B, see Fact 1.7. By symmetry, say the
main ⊤-formula of t belongs to ΓA⊥ , i.e. is a sub-formula of A⊥. Call s a slice the ⊤-rule t belongs
to.

Set ρ a normal form of π
B

▷◁ π′ (using Corollary 2.43). By Theorem 2.49, ρ ⊢⊣r
∗

idA. According to
Lemma 6.21, there exists a slice s′ ∈ S(π′) such that s

B

▷◁ s′ reduces to a slice s′′ ∈ S(ρ). Applying
Lemma 6.22 to t, t is either preserved and ΓA⊥ as well, or t is absorbed by another ⊤-rule (during
a ⊤− cut commutative case) and ΓA⊥ stays in the context of a ⊤-rule, possibly as a sub-sequent.

But by Proposition 6.16, the only ⊤-rules of ρ, and so of s′′, are
(⊤)

⊢ ⊤, 0 rules, with ⊤ being the
dual occurrence of 0. Thus, ⊤ and 0 are not both sub-formula of A⊥, and it follows ΓA⊥ is either a
sub-sequent of ⊤ or one of 0. For ΓA⊥ contains ⊤, we conclude that ΓA⊥ is ⊤. Moreover, it follows
that t had not been erased during a ⊤−cut commutative case, using Lemma 6.22 – otherwise there
would be at least two ⊤-formulas in the resulting ⊤-rule. This implies that ΓB cannot be empty: if
it were, t could not commute with any cut-rule, as it could not do a ⊤− cut commutative case for
its sequent does not have a cut formula, which is a sub-formula of B, and no other cut-elimination
step can change this – excepted a ⊤−cut commutation erasing the rule, which cannot happen here.

Thus, if ΓB were empty then t would be a rule of s′′, impossible as it would be a
(⊤)

⊢ ⊤ rule, and
thus not in a ⊤/0-pattern.

Similarly, set τ a normal form of π
A

▷◁ π′. By Theorem 2.49 and Lemmas 6.21 and 6.22, t is
either preserved during the reduction (in a slice) and ΓB as well, or t is absorbed by another ⊤-rule
and ΓB stays in the context of a ⊤-rule, possibly as a sub-sequent. But t cannot be preserved: its
main formula is a sub-formula of A⊥, and in τ there are only occurrences of sub-formulas of B and

213

6.2. REDUCTION TO UNIT-FREE DISTRIBUTED FORMULAS

B⊥. Therefore, ΓB in τ is in the context of a ⊤-rule, and does not contain its principal ⊤-formula.

Using Proposition 6.16 again, the only ⊤-rules of τ are
(⊤)

⊢ ⊤, 0 rules, with ⊤ being the dual
occurrence of 0. Hence, ΓB must be a sub-sequent of 0. As ΓB cannot be empty, ΓB is 0.

Thus, any ⊤-rule t in π (and π′ by symmetry) is of the shape
(⊤)

⊢ ⊤, 0 .

Lemma 6.25. Let π be a proof whose ⊤-rules are all in a ⊤/0-pattern. There is a cut-elimination
strategy in π whose ⊤− cut commutative cases are all of the form:

(⊤)
⊢ ⊤, 0

(⊤)
⊢ ⊤, 0

(cut)
⊢ ⊤, 0 β−→

(⊤)
⊢ ⊤, 0

Proof. Our strategy is the following. First, while we can apply a cut-elimination step which is not a
⊤− cut nor a cut − cut commutative case, we do such a reduction step. These operations preserve
that all ⊤-rules are in ⊤/0 patterns.

If no such reduction is possible, consider a highest cut-rule, i.e. one with no cut-rule above it.
The only possible cases that can be applied using this cut-rule and rules above it are by hypothesis
⊤− cut commutative cases. Thus, the cut-rule is below a ⊤-rule, so necessarily one of its premises

is
(⊤)

⊢ ⊤, 0 , with ⊤ not the formula we cut on. But then 0 is the formula we cut on, so there is a
⊤-formula on the other premise; we are in the following situation:

(⊤)
⊢ ⊤, 0

ϕ
r

⊢ ⊤,Γ
(cut)

⊢ ⊤,Γ

We prove the rule r above the premise ⊢ ⊤,Γ of the cut-rule is the ⊤-rule corresponding to the
cut formula ⊤. If r were not a ⊤-rule, then one could apply a commutative or ax key case, which
cannot be. Plus, r cannot be a ⊤-rule corresponding to another ⊤-formula, because such a rule
would have two ⊤-formulas in its conclusion. Thence, r is the ⊤-rule introducing the formula we
cut on, and our sub-proof is:

(⊤)
⊢ ⊤, 0

(⊤)
⊢ ⊤, 0

(cut)
⊢ ⊤, 0

A ⊤− cut commutative case yields
(⊤)

⊢ ⊤, 0 which is the allowed ⊤− cut reduction step.
This reduction strategy terminates (Proposition 2.38) and reaches a cut-free proof.

Lemma 6.26. If
π,π′

A ≃ B with A and B distributed, then there is no sequent of the shape ⊢ D & E
in π (and π′).

Proof. Assume w.l.o.g. D & E is a sub-formula of A⊥, and let s be a slice containing the sequent
⊢ D&E. Pose ϕ a normal form of π

B

▷◁ π′ obtained by following the strategy given by Lemma 6.25.
By Lemma 6.21, there exists a slice s′ ∈ S(π′) such that s

B

▷◁ s′ reduces to a slice s′′ of ϕ. Since
D&E is a sub-formula of A⊥, it is not a cut formula during the reduction, and the sequent ⊢ D&E
remains in s′′, so in ϕ. Indeed, reducing cuts using these steps preserves having the sequent ⊢ D&E,
and there is no failure in the reduction. This is trivial for all steps except ⊤ − cut . In the case a
⊤ − cut step, by hypothesis on the reduction strategy, it cannot erase the sequent ⊢ D & E from

214

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

the proof. Thus, the sequent ⊢ D & E belongs to ϕ, which is equal to the identity up to rule
commutation (Theorem 2.50). This is impossible by Proposition 6.16.

Lemma 6.27. If
π,π′

A ≃ B with A and B distributed, then all ⊥-rules and 1-rules in π (and in π′)
belong to 1/⊕ /⊥-patterns.

Proof. In π, we look at a possible rule r below a sequent ⊢
⊕

[1] (see the proof of Proposition 6.16
for the definition of

⊕
[]). It cannot be a ⊗-rule by distributivity, nor a `-rule for the sequent

has a unique formula, nor a &-rule due to Lemma 6.26 – nor a mix 2-rule by Lemma 6.23. If r is a
⊕i-rule, then we keep a sequent ⊢

⊕
[1], and if it is a ⊥-rule then it is one of the required shape.

As a consequence, each 1-rule is followed by some ⊕i-rules and possibly a ⊥-rule; let us call
a 1/⊕-pattern a 1-rule followed by a maximal such sequence of ⊕i-rules. If a 1/⊕-pattern stops
without a ⊥-rule below it, we have only one formula in the conclusion sequent of the proof: im-
possible as π is a proof of ⊢ A⊥, B. Thus, the ⊥-rule exists and to each 1-rule we can associate a
⊥-rule leading to a 1/⊕ /⊥-pattern. Henceforth, there are at least as many ⊥-rules as 1-rules, and
as the patterns they belong to have no &-rule, this also holds in any slice.

Consider a slice s of π. By Lemma 6.21, there exists a slice s′ ∈ S(π′) such that s
B

▷◁ s′ reduces
to a slice s′′ of ρ, the latter being a normal form of π

B

▷◁ π′ obtained by following the strategy
given by Lemma 6.25. Moreover, s′′ contains as many ⊥-rules as 1-rules, as in ρ they belong to a
1/ ⊕ /⊥-pattern (Theorem 2.50 and Proposition 6.16), so are in the same slices. Furthermore, in
s′′, each 1 from A (resp. A⊥) corresponds to a ⊥ from A⊥ (resp. A).

Remark that, in the reduction s
B

▷◁ s′
β∗−→ s′′, the only steps that may erase a ⊥ or 1-rule are

⊥− 1 and ⊤− cut cases. But a ⊤− cut commutative case cannot erase non-⊤-rules by definition
of our cut-elimination strategy. Furthermore, a ⊥ − 1 key case erases one 1-rule and one ⊥-rule.
Therefore, with rs the number of r-rules of a slice s, we have ⊥s+⊥s′ = 1s+1s′ as ⊥s′′ = 1s′′ and
any reduction step in s

B

▷◁ s′
β∗−→ s′′ preserves this equality. But, by our analysis at the beginning

of this proof, 1s ≤ ⊥s and 1s′ ≤ ⊥s′ . We conclude 1s = ⊥s, i.e. that s has as many ⊥-rules than
1-rules.

However, each 1-rule, belonging to a 1/⊕ /⊥-pattern, belongs to exactly the same slices as the
corresponding ⊥-rule of the pattern. Hence, a ⊥-rule not in a 1/⊕ /⊥-pattern would yield a slice
s with strictly more ⊥-rules than 1-rules (taking s any slice containing this ⊥-rule). Thus, every
⊥-rule belongs to a 1/⊕ /⊥-pattern.

6.2.5 Completeness with units from unit-free completeness
In 1/ ⊕ /⊥-patterns, moving each ⊥-rule up to the associated 1-rule (which can be done up to
β-equality by Proposition 2.46) allows us to consider units as fresh atoms introduced by ax -rules,
whence reducing the problem to the unit-free sub-system.

Lemma 6.28. Set X and Y unsigned atoms, and σ the substitution [X+/0, X−/⊤, Y +/1, Y −/⊥].
Take π a proof of ⊢ A⊥, B and ϕ one of ⊢ B⊥, A, such that A is distributed and π

B

▷◁ ϕ =β idA.
Assume all ⊤-rules of π and ϕ belong to ⊤/0-patterns while all their 1 and ⊥-rules belong to
1/⊕ /⊥-patterns.

Then there exists proofs π′ and ϕ′ respectively of ⊢ σ(A)⊥, σ(B) and ⊢ σ(B)⊥, σ(A), such that
π′

σ(B)

▷◁ ϕ′ =β idσ(A). Moreover, π′ (resp. ϕ′) is uniquely determined from π (resp. ϕ′): it is the
proof obtained by commuting each ⊥-rule towards the associated 1-rule in its 1/⊕ /⊥-pattern, then

215

6.2. REDUCTION TO UNIT-FREE DISTRIBUTED FORMULAS

applying the substitution σ, replacing ⊤/0-patterns and 1/⊥-patterns by ax-rules respectively on
X+ and Y +.

Proof. As a first step, we prove that w.l.o.g. all 1 and ⊥-rules of π and ϕ belong to 1/⊥-patterns.
Using ⊥ − ⊕i rules commutations to move each ⊥-rule just below the 1-rule above it, we build
π1 and ϕ1 such that π1 and ϕ1 have ⊤-rules only in ⊤/0-patterns, as well as ⊥ and 1-rules only
in 1/⊥-patterns. Plus, π ⊢⊣r

∗

π1 and ϕ ⊢⊣r
∗

ϕ1, whence π1
B

▷◁ ϕ1 ⊢⊣
r∗

π
B

▷◁ ϕ. By Proposition 2.46,
π1

B

▷◁ ϕ1 =β π
B

▷◁ ϕ. As π1 (resp. ϕ1) depends only on π (resp. ϕ), our claim holds.
We reduce cuts in π

B

▷◁ ϕ following a particular strategy, ensuring that the proofs obtained during
the reduction have ⊤-rules in ⊤/0 patterns, and ⊥ and 1-rules in 1/⊥-patterns. This strategy is a
specialization of the one given in the proof of Lemma 6.25.

First, while we can apply a step of cut-elimination which is not a ⊤ − cut , ⊥ − cut , ⊥ − 1 or
cut − cut case, we do such a reduction step. These operations preserve that all ⊤-rules are in ⊤/0
patterns, and ⊥ and 1-rules in 1/⊥-patterns.

If no such reduction is possible, consider a highest cut-rule, i.e. one with no cut-rule above it.
The only possible cases that can be applied using this cut-rule and rules above it are by hypothesis
⊤− cut , ⊥− cut or ⊥− 1.

• If a ⊤−cut commutative case can be applied, then the cut-rule is below a ⊤-rule, so necessarily

one of its premises is
(⊤)

⊢ ⊤, 0 , with ⊤ not the formula we cut on. But then 0 is the formula
we cut on, so there is a ⊤-formula on the other premise; we are in the following situation:

(⊤)
⊢ ⊤, 0

τ
r

⊢ ⊤,Γ
(cut)

⊢ ⊤,Γ

We prove the rule r above the premise ⊢ ⊤,Γ of the cut-rule is the ⊤-rule corresponding to
the cut formula ⊤. If it were not the case, then r commutes with the cut-rule (because our
proofs are atomic-axiom). But r cannot be a ⊥-rule (which cannot have a ⊤-formula in its
context), nor a ⊤-rule corresponding to another ⊤-formula (because such a rule would have
two ⊤-formulas in its conclusion). Thence, r is the ⊤-rule introducing the formula we cut on.
Thus, our sub-proof is:

(⊤)
⊢ ⊤, 0

(⊤)
⊢ ⊤, 0

(cut)
⊢ ⊤, 0

A ⊤− cut commutative case yields
(⊤)

⊢ ⊤, 0 as if we had done an ax key case.

• If a ⊥−cut commutative case can be applied, then the cut-rule is below a ⊥-rule, so necessarily

one of its premises is

(1)
⊢ 1

(⊥)
⊢ ⊥, 1 , with ⊥ not the formula we cut on. But then 1 is the formula

we cut on, so there is a ⊥-formula on the other premise; we are in the following situation:

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

τ
r

⊢ ⊥,Γ
(cut)

⊢ ⊥,Γ

216

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

We prove the rule r above the premise ⊢ ⊥,Γ of the cut-rule is the ⊥-rule corresponding to the
cut formula ⊥. If it were not the case, then r commutes with the cut-rule. But r cannot be a
⊤-rule (which cannot have a ⊥-formula in its context), nor a ⊥-rule corresponding to another
⊥-formula (because such a rule would have two ⊥-formulas in its conclusion). Thence, r is
the ⊥-rule introducing the formula we cut on. Thus, our sub-proof is:

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

(cut)
⊢ ⊥, 1

We apply a ⊥− cut commutative case, followed by a ⊥− 1 key case, obtaining

(1)
⊢ 1

(⊥)
⊢ ⊥, 1 as

if we had done an ax key case.

• No ⊥− 1 key case can be applied, for 1-rules have below them a ⊥-rule, so not a cut-rule.

This reduction strategy terminates (Proposition 2.38) and reaches a normal form τ , with ⊤, ⊥
and 1-rules only in ⊤/0 and 1/⊥ patterns – this is preserved by our strategy.

Remember σ is the substitution [X+/0, X−/⊤, Y +/1, Y −/⊥]. We extend σ to proofs where all
⊤-rules are in ⊤/0 patterns, and ⊥ and 1-rules in 1/⊥-patterns, by following the usual definition
of substitution on proofs, except when reaching a ⊤/0-pattern or 1/⊥-pattern, that we replace by
an ax -rule respectively on X+ and on Y +.

Remark one can reach σ(τ) by cut-elimination from σ(π)
σ(B)

▷◁ σ(ϕ), for the reductions we did on
units could as well have been done by ax -key cases: no ⊤ − cut , nor ⊥ − cut , nor ⊥ − 1 case was
used, except for cases that could be simulated using ax key cases. Moreover, σ(idA) = idσ(A): we
only have to look at what become ⊤, 1 and ⊥-rules; these rules in idA are in the identified patterns,
and we replace these patterns by ax -rules, hence the claim. Lastly, in τ ⊢⊣r

∗

idA we can assume

not to commute any ⊥-rule because we start and end with 1-rules and ⊥-rules in

(1)
⊢ 1

(⊥)
⊢ ⊥, 1 shapes

only, and such commutations could only move the ⊥-rule below or above some ⊕i-rules according to
Proposition 6.16. Thus, σ(τ) ⊢⊣r

∗

σ(idA) = idσ(A). Using Proposition 2.46, it follows σ(τ) =β idσ(A),

and therefore σ(π)
σ(B)

▷◁ σ(ϕ) =β idσ(A).

Lemma 6.29. Set A and B distributed formulas, as well as X and Y two unsigned atoms and
σ = [X+/0, X−/⊤, Y +/1, Y −/⊥]. If A ≃ B then σ(A) ≃ σ(B).

Proof. Suppose
π,ϕ

A ≃ B by Lemma 6.6. By Lemmas 6.24 and 6.27, π and ϕ have ⊤-rules only in
⊤/0-patterns and ⊥ and 1-rules in 1/⊕ /⊥-patterns. We apply Lemma 6.28: the two proofs given
by this result yield σ(A) ≃ σ(B).

Theorem 6.30. Take A and B formulas of MALL. Set A′ (resp. B′) a normal form of A (resp.
B) for D (recall Definition 6.10 on Page 205, normalizing by Lemma 6.11). Let X and Y be fresh
atoms for both A and B, and σ = [X+/0, X−/⊤, Y +/1, Y −/⊥]. Then A ≃ B ⇐⇒ σ(A′) ≃ σ(B′).

Proof. Remark that A ≃ B ⇐⇒ A′ ≃ B′ as ≃ is an equivalence relation (Lemma B.3), using that
the rewriting rules of D are between isomorphic formulas (Theorem 6.3).

217

6.3. COMPLETENESS

Assume first that A′ ≃ B′, and take X and Y any atoms. According to Lemma 6.29, σ(A′) ≃
σ(B′).

Reciprocally, suppose σ(A′) ≃ σ(B′) with X and Y fresh atoms – for A and B, or equivalently
for A′ and B′. Then A′ ≃ B′ follows by substituting X by 0 and Y by 1, as they were fresh, thus
[X+/0, X−/⊤, Y +/1, Y −/⊥][0/X, 1/Y] is the identity substitution, and because substitution on an
atom preserves isomorphisms (Lemma B.6).

Theorem 6.31 (Isomorphisms completeness from unit-free completeness). If L† is complete for
isomorphisms in MALLuf , then L is complete for isomorphisms in MALL (i.e. A ≃ B =⇒ A =L
B).

Proof. Take A and B formulas in MALL, possibly with units, such that A ≃ B. We assume
A and B to be distributed thanks to Proposition 6.13. It suffices to prove that A =L† B. By
Theorem 6.30, A[X+/0, X−/⊤, Y +/1, Y −/⊥] ≃ B[X+/0, X−/⊤, Y +/1, Y −/⊥], where X and Y
are fresh atoms for both A and B. For we assume L† to be complete for unit-free isomorphisms, this
yields A[X+/0, X−/⊤, Y +/1, Y −/⊥] =L† B[X+/0, X−/⊤, Y +/1, Y −/⊥]. We conclude A =L† B
by substituting X by 0 and Y by 1, as X and Y were fresh.

6.3 Completeness

Our method to prove the completeness of L† relates closely to the one used by Balat and Di
Cosmo in [BD99], with some more work due to the distributivity isomorphisms. We work on proof-
nets, as they highly simplify the problem by representing proofs up to rule commutation [HG16].
Thus, we start by transposing the study of isomorphisms to the syntax of proof-nets, never to
speak of sequent calculus again (Section 6.3.1). We then present particular shapes of proof-nets
(Section 6.3.2), and study identity proof-nets (Section 6.3.3). Afterwards, we prove isomorphisms
yield proof-nets of these particular shapes (Section 6.3.4). Having previously reduced the problem
to distributed formulas by Proposition 6.13, we can consider even more constrained proof-nets
(Section 6.3.5). These are the key differences with the proof in MLLuf from [BD99], where some
properties are given for free as there is no slice nor distributivity isomorphism. After this point the
problem is similar to MLLuf , with commutativity and associativity only. We thus conclude with
the same method used in [BD99]: restricting the problem to so-called non-ambiguous formulas
(Section 6.3.6), isomorphisms are easily characterized (Section 6.3.7).

As we adapt and generalize the proof from [BD99], many concepts (bipartite proof-nets, non-
ambiguous formulas, renamings, . . .) and results given in this section are (adapted) from this
paper.

6.3.1 Isomorphisms in proof-nets

The goal of this section is to shift the study of isomorphisms to the syntax of proof-nets. To this
aim, we use results proved in Section 4.2, linking proofs of sequent calculus and proof-nets.

Definition 6.32 (Identity proof-net). We call identity proof-net of a MALLuf formula A the
proof-net Pf (idA) – namely the unique desequentialization of the axiom-expansion of axA =

(ax)
⊢ A⊥, A . By abuse of notations, we also note idA the identity proof-net of A; it will always be
clear from the context whether this corresponds to a proof or to a proof-net.

218

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

A notion of isomorphism can be defined directly on proof-nets.

Definition 6.33. We write
θ,ψ

A ≃ B when θ and ψ are two cut-free proof-nets respectively on A⊥, B
and B⊥, A such that both of their compositions reduce by cut-elimination to identity proof-nets:

θ
B

▷◁ ψ
β∗−→ idA ψ

A

▷◁ θ
β∗−→ idB

In MALLuf , our three notions of isomorphisms are equivalent.

Lemma 6.34. Set θ and ψ cut-free proof-nets respectively of A⊥, B and B⊥, A such that θ
B

▷◁ ψ
reduces to idA. For any proofs π and ϕ (of sequent calculus) such that Pf (π) = θ and Pf (ϕ) = ψ,
we have ϕ

A

▷◁ π =β idB.

Proof. Consider a normal form τ of π
B

▷◁ ϕ, existing by Corollary 2.43. By Lemma 4.25, it follows
B(θ) B

▷◁ B(ψ) has for normal form Pf (τ). However, cut-elimination in proof-nets in confluent
(Theorem 4.12), and by hypothesis θ

B

▷◁ ψ reduces to the identity proof-net of A, which is the
desequentialization of the proof idA. Thence, Pf (τ) = Pf (idA). Furthermore, using Theorem 4.19,
if two proofs have the same proof-net, then they are related by rule commutations: τ ⊢⊣r

∗

idA.
Thanks to Proposition 2.46, we obtain π

B

▷◁ ϕ =β τ =β idA.

Theorem 6.35 (Type isomorphisms in proof-nets). Set A and B two MALLuf formulas. The
followings are equivalent:

(1) A ≃ B

(2) there exists proofs π and π′ such that
π,π′

A ≃ B

(3) there exists proof-nets θ and θ′ such that
θ,θ′

A ≃ B

Proof. That Items (1) and (2) are equivalent is simply Lemma 6.6. We prove that Items (2) and (3)
are equivalent by double implication.

Set π and ϕ proofs such that
π,ϕ

A ≃ B. Applying Lemma 4.25 twice, and as Pf (idA), Pf (idB),
Pf (π) and Pf (ϕ) are cut-free (Fact 4.17) and the unique elements respectively of P(idA), P(idB),
P(π) and P(ϕ), we obtain B(Pf (π)

B

▷◁ Pf (ϕ)) = Pf (idA) and B(Pf (ϕ)
A

▷◁ Pf (π)) = Pf (idB).

Thus,
Pf (π),Pf (ϕ)

A ≃ B .

Assume there exist two proof-nets θ and ψ such that
θ,ψ

A ≃ B. By Theorem 4.18, there exist
atomic-axiom cut-free proofs π and ϕ such that Pf (π) = θ and Pf (ϕ) = ψ (they are cut-free by
Fact 4.17, so P is the singleton containing the image of Pf). Using Lemma 6.34 twice, one get

π
B

▷◁ ϕ =β idA and ϕ
A

▷◁ π =β idB , whence
π,ϕ

A ≃ B.

6.3.2 Remarkable shapes of proof-nets
When studying isomorphisms, and retractions in the next chapter, some special shapes of proof-nets
naturally arise.

219

6.3. COMPLETENESS

Definition 6.36 (Bipartite, Half-bipartite). Consider a (cut-free) set of linkings θ on a cut sequent
A,B.

We call θ bipartite if each of its links is between a leaf of A and a leaf of B – in other words,
there is no link between leaves of A, nor between leaves of B.

If θ has no link between leaves of A, we call it half-bipartite in A.

Remark 6.37. A set of linkings θ of cut sequent A,B is bipartite if and only if it is half-bipartite in
A and in B, hence the name of half-bipartite.

Definition 6.38 (Full, Ax -unique). A set of linkings θ is called full if all of the leaves of its cut
sequent have (at least) one link on it. Furthermore, if for any leaf there exists a unique link on it
(possibly shared among several linkings), then θ is said ax -unique.

For instance:

• the top-left proof-net of Figure 6.1 (Page 221) is non-bipartite, half-bipartite in its right
conclusion, full and non-ax -unique; meanwhile, its top-right proof-net is bipartite and non-
full (so non-ax -unique);

• the three proof-nets on Figure 6.2 (Page 222) are bipartite and ax -unique;

• both proof-nets on Figure 6.3 (Page 224) are bipartite, full and non-ax -unique.

Bipartiteness is preserved by composition followed by cut-elimination, while ax -uniqueness is
preserved be composition.

Lemma 6.39. Let θ and ψ be bipartite sets of linkings of respective cut sequents A,B⊥ and B,C.
Their composition over B reduces, after cut-elimination, to a bipartite set of linkings.

Proof. The resulting set of linkings, call it ζ, has for cut sequent A,C. By bipartiteness, any link
in θ

B

▷◁ ψ containing a leaf of the cut pair is either of the form (l,m) with l in A and m in B⊥, or
(m,n) with m in B and n in C. Therefore, the only links in ζ that were not in θ nor in ψ are those
resulting from the replacement of a pair of links (l,m) and (m⊥, n) with a link (l, n), where l is a
leaf of A, m one of B and n one of C – there cannot be a bigger “chain” of leaves as it would need a
link with both leaves in the cut pair (recall Definition 4.14 of Turbo Cut-elimination). Hence, the
new axiom link (l, n) is between a leaf of A and one of C.

Lemma 6.40. If θ and θ′ are two ax-unique (resp. full) sets of linkings respectively on [Σ] A⊥,Γ

and [Σ′] A,Γ′, then θ
A

▷◁ θ′ is ax-unique (resp. full).

Proof. An axiom link of θ
A

▷◁ θ′ is either an axiom link of θ or one of θ′. Meanwhile, a leaf of θ
A

▷◁ θ′

is either a leaf of θ or one of θ′. Hence the result.

Nevertheless, applying cut-elimination steps does not preserve fullness nor ax -uniqueness, be-
cause eliminating a & − ⊕ cut-elimination step can delete linkings. Furthermore, neither fullness,
ax -uniqueness nor bipartiteness is preserved by cut anti-reduction. A counter-example is given on
Figure 6.1, with a non bipartite proof-net and a non full one whose composition reduces to a bi-
partite ax -unique identity proof-net (in fact we will prove that all identity proof-nets are bipartite
ax -unique, Corollary 6.44).

As a last remark, when considering sub-systems of MALLuf some of these shapes are given for
free.

220

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

A

`

A⊥

⊗

B

B⊥

&

B⊥

`

A

⊗

A⊥

B

⊕

B

⊗

A⊥

`

A A⊥

⊗

A

`

B⊥

A

`

A⊥

⊗

B

B⊥

&

B⊥

`

A

⊗

A⊥

B

⊕

B

⊗

A⊥

`

A A⊥

⊗

A

`

B⊥

∗

Figure 6.1: Non bipartite proof-net (top-left), non full proof-net (top-right) and one of their
composition yielding the identity proof-net (bottom)

Lemma 6.41. A proof-structure on a cut sequent whose formulas are in MLLuf is composed of a
single linking and is ax-unique.

Proof. Such a proof-structure has exactly one additive resolution, which is also its unique &-
resolution. Thus, it consists of a unique linking λ by (P1). By (P0), the additive resolution of
λ contains all cut pairs, i.e. is on the entire cut sequent. Thus, λ is a partition of the leaves of the
whole cut sequent in pairs, so each leaf has a link on it, which is unique as there is no other linking
than λ.

Lemma 6.42. Let θ be a set of linkings on a cut sequent A,B whose formulas are in ALLuf . Then
θ is bipartite, and each of its linkings is composed of a single link.

Proof. Any additive resolution contains exactly one leaf of A and one of B, because connectives of
these formulas are all additive ones.

6.3.3 Properties of identity proof-nets

Using an induction on the formula A, we prove some results on idA, the identity proof-net of A; in
particular it is bipartite ax -unique. See Figure 6.2 for a graphical intuition.

Lemma 6.43. The axiom links of an identity proof-net are exactly the (l, l⊥), for any leaf l.

Proof. By induction on the formula – see Figure 6.2.

Corollary 6.44. An identity proof-net is bipartite ax-unique.

221

6.3. COMPLETENESS

X− X+

X− Y − Y + X+

` ⊗

X− Y − Y + X+

& ⊕

Figure 6.2: Identity proof-nets (from left to right: atom, `\⊗ and &\⊕)

Proof. This follows from Lemma 6.43.

Lemma 6.45. Let λ be a linking of an identity proof-net and v an additive vertex in its additive
resolution. Then v⊥ is also inside with, as premise kept, the dual premise of the one kept for v.

Proof. Assume w.l.o.g. that the left premise of v is kept in λ. There is a left-ancestor l of v in the
additive resolution of λ, hence with a link a ∈ λ on it. By Lemma 6.43, a = (l, l⊥). As l⊥ is a
right-ancestor of v⊥, the conclusion follows.

The next result allows to go from exactly one linking on any &-resolution of A⊥, A (by (P1)) to
exactly one linking on any additive resolution of A.

Lemma 6.46. Given an additive resolution of A, exactly one linking of idA is on it.

Proof. Consider such an additive resolution R. There is an associated &-resolution R′ of A⊥, A
by taking the choices of premise of R on A and, for a &-vertex w of A⊥, taking the dual premise
chosen in R for the ⊕-vertex w⊥. By Lemma 6.45, a linking λ is on R if and only if it is on R′.
Meanwhile, by (P1) there is a unique linking λ on R′; thus the same holds on R.

6.3.4 Bipartite full proof-nets

We can now prove that proof-nets of isomorphisms are bipartite full. The difficulty is that, as written
in Section 6.3.2, neither fullness, ax -uniqueness nor bipartiteness is preserved by cut anti-reduction.
However, if both compositions yield identity proof-nets, we get bipartiteness and fullness.

Lemma 6.47. Let θ and θ′ be cut-free proof-nets of respective cut sequents A⊥, B and B⊥, A, such
that θ′

A

▷◁ θ
β∗−→ idB. For any linking λ ∈ θ, there exists λ′ ∈ θ′ such that λ ∪ λ′ matches in θ

B

▷◁ θ′,
the composition over B of θ and θ′.

Proof. Let us consider a linking λ ∈ θ, and call C the choices of premises on additive connectives
of B that λ makes. We search some λ′ ∈ θ′ making the dual choices of premises on additive
connectives of B⊥ as compared to C. Consider the composition of θ and θ′ over A. It reduces to
the identity proof-net of B by hypothesis. By Lemma 6.46, there exists a unique linking ν in the
identity proof-net of B corresponding to C. Furthermore, this linking ν of the identity proof-net
is derived from some µ ∪ µ′ for µ a linking of θ and µ′ one of θ′, with µ ∪ µ′ matching for a cut
over A: a linking in the identity proof-net is a linking of the form µ∪ µ′ where axiom links (l,m1),
(m⊥1 ,m2), . . . , (m⊥n , l⊥) in µ and µ′ are replaced with (l, l⊥), with l a leaf of B and the mi and
m⊥i of A⊥ and A (because an identity proof-net has only links of the form (l, l⊥) by Lemma 6.43).
Therefore, µ makes the choices C on B and µ∪µ′ matches for the composition of θ and θ′ over both
A and B. But λ makes the same choices C on B as µ: λ ∪ µ′ also matches for a cut over B.

222

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

Remark 6.48. Lemma 6.47 is the analogue of Lemma 6.21 in proof-nets.

Corollary 6.49. Assuming
θ,θ′

A ≃ B, θ and θ′ are bipartite.

Proof. We proceed by contradiction: w.l.o.g. there is a link a in some linking λ ∈ θ which is between
leaves of A⊥. By Lemma 6.47 there exists λ′ ∈ θ′ such that λ∪λ′ matches for a cut over B. Whence
a, which does not involve leaves of B, belongs to a linking of the composition where cuts have been
eliminated (it belongs to the linking resulting from λ ∪ λ′). But this reduction yields the identity
proof-net of A, which is bipartite by Corollary 6.44, so there cannot be an axiom link between
leaves of A⊥ inside: contradiction.

Lemma 6.50. Assume θ and θ′ are cut-free proof-nets respectively on A⊥, B and B⊥, A, such that
θ
B

▷◁ θ′
β∗−→ idA. Then any leaf of A⊥ (resp. A) has at least one axiom link on it in θ (resp. θ′).

Proof. Towards a contradiction, assume w.l.o.g. a leaf l of A⊥ has no link on it in θ. Then, θ
B

▷◁ θ′

has no link on l either. Moreover, reducing cuts cannot create links using l, for the only created links
(k, n) are those coming from the merging of links (k,m) and (m⊥, n). Whence, in the normal form
of θ

B

▷◁ θ′ there is no link on l. However, the identity proof-net of A is ax -unique by Corollary 6.44,
thence full: contradiction.

Remark 6.51. Lemma 6.50 holds not only for isomorphisms but more generally for retractions, which
are formulas A and B such that there exist proofs of ⊢ A⊥, B and ⊢ B⊥, A whose composition by
cut over B (but not necessarily over A) is equal to the axiom on ⊢ A⊥, A up to axiom-expansion
and cut-elimination. An example of retraction is given by the proof-nets on Figure 6.1, yielding a
retraction (A`A⊥)⊗B ◁ ((A`A⊥)⊗B)⊕B, which is not an isomorphism. See the next chapter
for more details on retractions, in the framework of MLL0,2.

Theorem 6.52. Assuming
θ,θ′

A ≃ B, θ and θ′ are bipartite full.

Proof. This is thanks to Corollary 6.49 and Lemma 6.50.

6.3.5 Ax -uniqueness
In general, isomorphisms do not yield ax -unique proof-nets. A counter-example is the distributivity
A ⊗ (B ⊕ C) ≃ (A ⊗ B) ⊕ (A ⊗ C), see Figure 6.3. Nonetheless, distributivity equations are the
only ones in L† not giving ax -unique proof-nets, and we should not have to consider them for
we can consider only distributed formulas (Proposition 6.13). Therefore, on distributed formulas,
distributivity isomorphisms can be ignored, and isomorphisms between distributed formulas can be
proved bipartite ax -unique.

6.3.5.1 Preliminary results

We mostly use the correctness criterion through the fact we can sequentialize, i.e. recover a proof
tree from a proof-net by Theorem 4.18. However, in order to prove ax -uniqueness, we make a direct
use of the correctness criterion to deduce geometric properties of proof-nets. This is done through
Corollary 6.53, which is a corollary from Lemma 4.28 whose proof uses (P3). This part of the proof
takes benefits from the specificities of this syntax.

We recall that given Λ a set of linkings and w a &, Λw is the set of all linkings in Λ whose
additive resolution does not contain the right argument of w.

223

6.3. COMPLETENESS

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥

` `

&

A B A C

⊗ ⊗

⊕

C⊥ B⊥ A⊥

&

`

Figure 6.3: Proof-nets for A⊗ (B ⊕ C) ≃ (A⊗B)⊕ (A⊗ C)

A

T (A)

l

w&

v

µ

δ

j

Figure 6.4: Illustration of the proof of Lemma 6.54

Corollary 6.53. Let ω be a jump-free switching cycle in a proof-net θ. There exists a subset of
linkings Λ ⊆ θ and a &-vertex w toggled by Λ such that ω ⊆ GΛ, w /∈ ω, ω ̸⊆ GΛw and there exists
an axiom link a ∈ ω depending on w in Λ.

Proof. Take Λ a minimal saturated subset of θ with GΛ containing ω. We conclude through
Lemma 4.28.

For v and u vertices in a tree, their first common descendant is the vertex of the tree which
is a descendant of both v and u and which has no ancestor respecting this property. Equivalently,
looking at a tree as a partial order of minimal element the root, the first common descendant is the
infimum.

Lemma 6.54. Let θ be a proof-net and A a formula (or a cut pair) of its cut sequent with a jump
arc l j−→ w between l, w ∈ T (A). If w is not a descendant of l, then their first common descendant
v is a `.

Proof. As there is a jump l j−→ w, there exist linkings λ, λ′ ∈ θ such that w is the only & toggled by
{λ;λ′}, and a link a ∈ λ\λ′ using the leaf l. In particular, the jump l j−→ w is in G{λ;λ′}. For l and
w are both in the additive resolution of λ, both premises of v are also in this additive resolution,
thus v cannot be an additive connective, so not a & nor a ⊕-vertex.

Assume by contradiction that v is a ⊗. Call δ the path in T (A) from w to v, and µ the one
from v to l (see Figure 6.4). Then, (l j−→ w) · δ · µ is a switching cycle in G{λ;λ′}. According to
(P3), there exists a & toggled by {λ;λ′} not in any switching cycle of G{λ;λ′}. A contradiction, for
w is the only & toggled by {λ;λ′}. Whence, v can only be a `.

224

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥

` `

&

A B A C

⊗ ⊗

⊕

C⊥ B⊥ A⊥

&

`
∗

Figure 6.5: Proof-nets from Figure 6.3 composed by cut on (A⊗B)⊕ (A⊗ C)

A B C

⊕

⊗

C⊥ A⊥ B⊥ A⊥ A B A C C⊥ B⊥ A⊥

&

`
∗
∗
∗
∗

Figure 6.6: An almost reduced composition of the proof-nets on Figure 6.3

6.3.5.2 Isomorphisms of distributed formulas

Now, let us prove that isomorphisms of distributed formulas are bipartite ax -unique. We will
consider proof-nets corresponding to an isomorphism that we cut and where we eliminate all cuts not
involving atoms. To give some intuition, let us consider the non-ax -unique proof-nets of Figure 6.3
(on Page 224). Composing them together by cut on (A⊗B)⊕(A⊗C) gives the proof-net illustrated
on Figure 6.5. Reducing all cuts not involving atoms yields the proof-net on Figure 6.6, that we call
an almost reduced composition. We stop there because of the switching cycle produced by the two
links on A (dashed in blue on Figure 6.6), less visible in the non-reduced composition of Figure 6.5.
However, reducing all cuts gives the identity proof-net, which has no switching cycle: during these
reductions, both links on A are merged. By using almost reduced composition, we are going to
prove that links preventing ax -uniqueness yield switching cycles, and moreover that these cycles
are due to non-distributed formulas only.

Definition 6.55 (Almost reduced composition). Take θ and θ′ cut-free proof-nets respectively on
Γ, B and B⊥,∆. The almost reduced composition over B of θ and θ′ is the proof-net resulting
from the composition over B of θ and θ′ where we repeatedly reduce all cuts not involving atoms
(i.e. not applying step (a) of Definition 4.9).

The previous definition uses convergence of non-atomic cut-elimination (Remark 4.13).
Let us fix A and B two MALLuf (not necessarily distributed yet) formulas as well as θ and θ′

such that
θ,θ′

A ≃ B. By Theorem 6.52, θ and θ′ are bipartite full. We denote by ψ the almost reduced
composition over B of θ and θ′. Here, we can extend our duality on vertices and premises (defined
in Section 4.1) to links.

Lemma 6.56. An axiom link a = (l,m) belongs to some linking λ ∈ ψ if and only, up to swapping
l and m, l is a leaf of A⊥ (resp. A), m is in the leaves of B (resp. B⊥) and there is an axiom link
(l⊥,m⊥) in the same linking λ, that we will denote a⊥ = (l⊥,m⊥) (see Figure 6.7).

225

6.3. COMPLETENESS

A⊥ AB B⊥

...

∗

...
T (A⊥) T (A)
l . . . m m⊥ . . .

a

l⊥

a⊥

Figure 6.7: Illustration of Lemma 6.56

Proof. Linkings of ψ are disjoint union of linkings in θ and θ′. By symmetry, assume (l,m) ∈ λ ∈ ψ
comes from a linking in θ. As θ is bipartite, one of the leaves, say l, is in A⊥ and the other, m, is
a leaf of B. For the cut m ∗m⊥ belongs to the additive resolution of λ (for m is inside), m⊥ is a
leaf in this resolution. Thus, there is a link (m⊥, l′) ∈ λ for some leaf l′, which necessarily belongs
to A by bipartiteness of θ′. It stays to prove l′ = l⊥. If we were to eliminate all cuts in ψ, we
would get the identity proof-net on A by hypothesis. But eliminating the cut m ∗m⊥ yields a link
(l, l′), which is not modified by the elimination of the other atomic cuts. By Lemma 6.43, l′ = l⊥

follows.

Lemma 6.57. Let λ be a linking of ψ, and v an additive vertex in its additive resolution. Then
v⊥ is also inside, with as premise kept the dual premise of the one kept for v.

Proof. Assume w.l.o.g. that the left premise of v is kept in λ. There is a left-ancestor l of v in the
additive resolution of λ, hence with a link a ∈ λ on it. By Lemma 6.56, we have a⊥ ∈ λ, using l⊥.
As l⊥ is a right-ancestor of v⊥, the conclusion follows.

Lemma 6.58. Let w and p be respectively a &-vertex and a ⊕-vertex in ψ, with w an ancestor of
p. Then for any axiom link a depending on w in ψ, a also depends on p⊥ in ψ.

Proof. There exist linkings λ, λ′ ∈ ψ such that w is the only & toggled by {λ;λ′} and a ∈ λ\λ′. We
consider a linking λp⊥ defined by taking an arbitrary &-resolution of λ where we choose the other
premise for p⊥ (and arbitrary premises for &-vertices introduced this way, meaning for &-ancestors
of p⊥): by (P1), there exists a unique linking on it. By Lemma 6.57, the additive resolutions of λ
and λp⊥ (resp. λ and λ′) differ, on A and A⊥, exactly on ancestors of p and p⊥ (resp. w and w⊥).
Thus, the additive resolutions of λ′ and λp⊥ also differ, on A and A⊥, exactly on ancestors of p
and p⊥, for w is an ancestor of p. In particular, {λ;λp⊥}, as well as {λ′;λp⊥}, toggles only p⊥. If
a ∈ λp⊥ , then a depends on p⊥ in {λ′;λp⊥}. Otherwise, a depends on p⊥ in {λ;λp⊥}.

The key result to use distributivity is that a positive vertex “between” a leaf l and a &-vertex
w in the same tree prevents them from interacting, i.e. there is no jump l j−→ w.

Lemma 6.59. Let l j−→ w be a jump arc in ψ, with l not an ancestor of w and l, w ∈ T (A⊥) (resp.
T (A)). Denoting by n the first common descendant of l and w, there is no positive vertex in the
path between n and w in T (A⊥) (resp. T (A)).

Proof. As there is a jump l
j−→ w, there exist linkings λ, λ′ ∈ ψ and a leaf m of B such that w is

the only & toggled by {λ;λ′} and a = (l,m) ∈ λ\λ′. By Lemma 6.54, n is a `-vertex. Let p be a

226

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

A⊥ A

l o

w&

p⊗

n`

l⊥o⊥

w⊥⊕

p⊥`

n⊥⊗

B B⊥

. . . q m m⊥q⊥ . . .

∗
∗
...

a a⊥

b b⊥

j

Figure 6.8: Switching cycle containing w if p is a ⊗-vertex in the proof of Lemma 6.59

vertex on the path between n and w in T (A⊥). We prove by contradiction that p can neither be a
⊕ nor a ⊗-vertex.

Suppose p is a ⊕-vertex. By Lemma 6.58, a depends on p⊥, and so does a⊥ through Lemma 6.56:
there is a jump arc l⊥ j−→ p⊥. Applying Lemma 6.54, the first common descendant of l⊥ and p⊥,
which is n⊥, is a `-vertex: a contradiction as it is a ⊗-vertex.

Assume now p to be a ⊗-vertex. Our reasoning is illustrated on Figure 6.8. For p is a ⊗, there
is a leaf o which is an ancestor of p in the additive resolution of λ, from a different premise of p
than w; it is used by a link b = (o, q) ∈ λ. Remark q ̸= m, for a and b are two distinct links in the

same linking λ. Then the switching cycle l j−→ w → p ← o
b

— q → ∗ ← q⊥
b⊥
— o⊥ → p⊥ → n⊥ ←

l⊥
a⊥
— m⊥ → ∗ ← m

a

— l (dashed in blue on Figure 6.8) belongs to G{λ;λ′}, with non labeled arrows
being paths in the syntactic forest. Contradiction: w, the only & toggled by {λ;λ′}, cannot be in
any switching cycle of G{λ;λ′} by (P3).

Theorem 6.60. Assuming
θ,θ′

A ≃ B with A and B distributed, θ and θ′ are bipartite ax-unique.

Proof. We already know that θ and θ′ are bipartite full thanks to Theorem 6.52. We reason by
contradiction and assume w.l.o.g. that θ is not ax -unique: there exist a leaf l of A⊥ and two distinct
leaves l0 and l1 of B with links a = (l, l0) and b = (l, l1) in θ. We consider ψ the almost reduced
composition of θ and θ′ over B, depicted on Figure 6.9. By Lemma 6.47, a and b are also links in ψ:
the linkings they belong to in θ have matching linkings in θ′, and we did not eliminate atomic cuts.

Using Lemma 6.56, we have in Gψ a switching cycle ω = l
a

— l0 → ∗ ← l⊥0
a⊥
— l⊥

b⊥
— l⊥1 → ∗ ← l1

b

— l.
Let Λ be a set of linkings and w an associated &-vertex given by Corollary 6.53 applied to ω. The

vertex w belongs to either T (A) or T (A⊥): up to swapping them, w is in T (A⊥). By Corollary 6.53,
a, a⊥, b or b⊥ depends on w. So a or b depends on w by Lemma 6.56; w.l.o.g. a depends on w.
Remark l is not an ancestor of w: if it were, by symmetry assume it is a left-ancestor. Whence a
and b belong to Λw, so a⊥ and b⊥ too (Lemma 6.56); thus ω ⊆ GΛw , contradicting Corollary 6.53.
Hence, l is not an ancestor of w, and we can apply Lemma 6.54: the first common descendant n
of l and w in T (A⊥) is a `. Using Lemma 6.59, there is no ⊗\⊕-vertex on the path between the

227

6.3. COMPLETENESS

A⊥
...

∗
∗
...

AB B⊥

T (A⊥) T (A)

l . . . l0 l1 l⊥1 l⊥0 . . .

a

b

l⊥

a⊥
b⊥

Figure 6.9: Almost reduced composition ψ of θ and θ′ by cut over B in the proof of Theorem 6.60

`-vertex n and its ancestor the &-vertex w in T (A⊥). But then, considering the first &-vertex in
this path, there is a sub-formula of the shape −` (−&−) or (−&−)`− in the distributed A⊥,
a contradiction.

6.3.6 Non-ambiguous formulas

Once our study is restricted to bipartite ax -unique proof-nets, we can also restrict formulas further.

Definition 6.61 (Non-ambiguous formula). A formula A is said non-ambiguous if each unsigned
atom in A occurs at most once (counting both its positive and negative occurrences). Otherwise,
A is called ambiguous.

Example 6.62. The formula X+&Y + is non-ambiguous, whereas X+&X− and (A⊗B)⊕ (A⊗C)
are ambiguous.

Lemma 6.63. If A is non-ambiguous, then A⊥ is too.

Proof. Because the positive (resp. negative) atoms of A⊥ are exactly the negations of the negative
(resp. positive) atoms of A.

Remark 6.64. Our definition of non-ambiguous is not exactly the same as the one from [BD99], it is
stronger (there are less formulas that are non-ambiguous). In [BD99], a formula is non-ambiguous if
each atom in A occurs at most once positive and once negative. This makes for instance X+ &X−

non-ambiguous, whereas by our definition it is ambiguous. We prefer to make formulas likeX+`X−
ambiguous, because when renaming we can go to this stronger setting, and it allows stronger results
– see for instance Remark 6.84 or Lemma 6.65, the latter being false with the definition from [BD99],
with as a counter-example the sole proof-structure on (X+ `X−)⊗ Y +, Y −, which is a connected
proof-net.

Lemma 6.65. Let θ be a set of linkings on A,B. If A is non-ambiguous, then θ is half-bipartite
in A.

Proof. There simply cannot be any axiom link between leaves of A, because two such leaves are not
on the same unsigned atom.

228

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

The reduction to non-ambiguous formulas requires to restrict to distributed formulas first: in
(A⊗B)⊕ (A⊗ C) ≃ A⊗ (B ⊕ C) we need the two occurrences of A to factorize. The goal of this
section is to prove that we can consider only non-ambiguous formulas (Corollary 6.82) and that
isomorphisms for these formulas correspond simply to the existence of proof-nets (Theorem 6.90).
These two results are an adaptation of the work on MLL by Balat & Di Cosmo (see [BD99, Sec-
tion 3]). As many results here will also be of use in the next chapter when studying retractions, we
give them with more general hypotheses that needed right now (with half-bipartiteness instead of
bipartiteness for example) so that they apply in both cases without doing twice the work.

6.3.6.1 Renaming to non-ambiguous formulas

Here is given the main result used to reduce the study of isomorphisms or retractions to the case
where we have a non-ambiguity hypothesis, namely Theorem 6.80.

We call atomic-substitution the operation [Y1/X1, . . . , Yn/Xn] of replacement of the atoms
Xi of a formula by the signed atom Yi – i.e. with X+

i replaced by Y +
i and X−i replaced by Y −i .

In other words, an atomic-substitution is a substitution where the image of each atom is a signed
atom.

We will consider atomic-substitutions extended to proof-nets, i.e. if σ is an atomic-substitution
and θ a proof-net, σ(θ) will be the proof-net obtained from θ by relabeling all leaves Xi appearing
in it by σ(Xi). Remark that with a general substitution, there would be some work to do here as
the definition of proof-nets we took has only atomic-axioms (but a more complex notion of proof-
nets with non-atomic-axioms can be defined). We also use a more general notion, renaming, that
may replace different occurrences of the same atom by different signed atoms in a proof-net, i.e.
substitute on leaves (or occurrences) instead of atoms.

Definition 6.66 (Renaming). An application α from the set of leaves of a proof-net θ to a set of
signed atoms is a renaming if α(θ), the graph obtained by substitution of each leaf l of θ by α(l),
is a proof-net.

Note that if the cut sequent of θ contains ambiguous formulas, then two different occurrences
of the same atom can be renamed differently, unlike what happens in the case of substitutions.

Lemma 6.67. Take θ a proof-net on the cut sequent [Σ] Γ. An application α from the set of leaves
of θ to a set of signed atoms is a renaming if and only if for all links a = (l,m) of θ, α(l) = α(m)⊥

and for all cut pairs A⊥ ∗A of Σ, α(A⊥) = α(A)⊥.
In particular, if θ is cut-free, then α is a renaming if and only if for all links a = (l,m) of θ,

α(m) = α(l)⊥.

Proof. The direct way follows from the definition of a linking and that a proof-net is a set of linkings.
For the converse way, remark there is a bijection between additive resolutions (resp. &-resolutions,
cut pairs) of θ and α(θ). The hypothesis on cut pairs implies that α(Σ) is a set of cut pairs, hence
that [α(Σ)] α(Γ) is a cut sequent. The hypothesis on links ensures each α(λ) is a linking, for λ ∈ θ.
There are four items to check in the definition of a proof-net, (P0) to (P3). As they are independent
from the labels of the leaves, they hold in α(θ) because they do in θ.

Lemma 6.68. Take θ a proof-net on the cut sequent A,B. Assume it is half-bipartite in A and
that there is at most one link on each leaf. The definition of α only on leaves in A is sufficient to
uniquely define a renaming α on θ – with no conditions on the definition of α on A.

229

6.3. COMPLETENESS

Proof. Assume α is defined on leaves of A only. Extend it to a complete function on leaves of θ as
follows. Given a leaf l of B, if it is linked to a leaf m of A, then it is only linked to this leaf m by
assumption; in this case, we set α(l) = α(m)⊥. Otherwise, if l is linked to no leaf of A, we define
α(l) = l.

The resulting α(θ) is indeed a proof-net: the only thing to check is that links are between dual
leaves (Lemma 6.67). Take a link a = (l,m), with l an occurrence of X and m one of X⊥, X being
a signed atom. By assumption neither is linked to other leaves, so we only have to check that their
labels after renaming are still dual. We have three cases: l and m are both in A, both in B, or one
is in A and the other in B.

• As two leaves of A are not linked together by half-bipartiteness, the first case cannot happen.

• If two leaves of B are linked together, by hypothesis neither is linked to other leaves, and in
particular to a leaf in A: we have α(l) = X and α(m) = X⊥.

• By symmetry, say l is in A and m in B. Then, by definition of α, α(m) = α(l)⊥ as wished.

This last result allows us to rename some particular proof-nets so as to have one or all conclusions
non-ambiguous.

Lemma 6.69. Let A and B be MALLuf formulas and θ a proof-net on the cut sequent A,B which
is ax -unique and half-bipartite in A. Then there exists a renaming α of θ such that α(A) is non-
ambiguous.

Proof. It is sufficient to define α only on leaves of A by Lemma 6.68. One can define α such
that α(A) is non-ambiguous, by sending leaves whose unsigned atoms are the same to different
fresh atoms (using that the set of atoms X is infinite). Indeed, the resulting formula has distinct
atoms, i.e. no atom of α(A) occurs twice in α(A), even one positively and one negatively: α(A) is
non-ambiguous.

Lemma 6.70. Consider a bipartite ax-unique set of linkings θ on the cut sequent A,B. Then A is
non-ambiguous if and only if B is.

Proof. By symmetry, assume A is non-ambiguous. As θ is ax -unique, each leaf l of B is associated to
a unique leaf f(l), by means of an axiom link. By bipartiteness, f(l) is in A, thus by non-ambiguity
it is the only leaf of A having its (unsigned) atom. As axiom links are between leaves with dual
atoms, it follows that l is the only leaf of B having this (unsigned) atom. Thence, α(B) is also
non-ambiguous.

Renamings on identities are particularly well-behaved.

Lemma 6.71. Consider a renaming α of idA. Then α(A⊥) = α(A)⊥, and α(idA) = idα(A).

Proof. By Lemma 6.43, the links of idA are exactly the a = (l⊥, l) for some leaf l of A. As α is a
renaming, it follows α(l⊥) = α(l)⊥ for every leaf l of A. Thence, α(A⊥) = α(A)⊥, as a renaming
acts only on labels of leaves.

Moreover, α(idA) is a proof-net on α(A)⊥, α(A) whose links are exactly the (l⊥, l) for l a leaf
of α(A), i.e. with the same links as idα(A) by Lemma 6.43. Plus, it also has the same additive
resolutions for each linking as those of idα(A), which are the “same” as the ones of idA: the additive
resolution of a linking α(λ) of α(idA) is equal to the additive resolution of a linking of idα(A),
which is also the renaming of the additive resolution of the corresponding linking λ of idA. Thus,
α(idA) = idα(A).

230

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

Lemma 6.72. Consider two renamings α and α′ respectively of proof-nets θ and θ′, of cut sequents
[Σ] A⊥,Γ and [Σ′] A,Γ′. Assume that α(A⊥) = α′(A)⊥, so that α(θ) and α(θ′) can still be composed
after renaming. Then their disjoint union α ⊔ α′ is a renaming of θ

A

▷◁ θ′, with α ⊔ α′(θ A

▷◁ θ′) =

α(θ)
α′(A)

▷◁ α′(θ′).

Proof. We use Lemma 6.67: it suffices to prove its two hypotheses. A link (l,m) of θ
A

▷◁ θ′ is either
a link of θ or one of θ′. Hence, it suffices to apply the direct way of Lemma 6.67 to obtain either
α(l) = α(m)⊥ or α′(l) = α′(m)⊥. Thus, α ⊔ α′(l) = α ⊔ α′(m)⊥.

For the second hypothesis, take a cut pair of A⊥ ∗ A,Σ,Σ′. If this cut pair is A⊥ ∗ A, then we
have by assumption α(A⊥) = α′(A)⊥, whence α ⊔ α′(A⊥) = α ⊔ α′(A)⊥. Otherwise, it is some cut
pair B⊥ ∗ B either in Σ or Σ′. It then suffices to apply the direct way of Lemma 6.67 to obtain
either α(B⊥) = α(B)⊥ or α′(B⊥) = α′(B)⊥. Thus, α ⊔ α′(B⊥) = α ⊔ α′(B)⊥.

Lemma 6.73. Let θ and θ′ be proof-nets respectively on A⊥, B and B⊥, A such that θ
B

▷◁ θ′ reduces
by cut-elimination to idA. Consider two renamings α and α′ respectively of θ and θ′, such that
α(B⊥) = α′(B)⊥. Then α(θ)

α(B)

▷◁ α′(θ′) reduces by cut-elimination to idα′(A). In particular, α(A⊥) =
α′(A)⊥.

Proof. By hypothesis, the composition of α(θ) and α′(θ′) by cut over α(B) is well-defined, hence
is a proof-net (Lemma 4.7). Using Lemma 6.72, α ⊔ α′ is a renaming of θ

B

▷◁ θ′, and thus induces
after cut-elimination a renaming of idA – for cut-elimination does not depend on labels. Thanks
to Lemma 6.71, α ⊔ α′(A⊥) = α ⊔ α′(A)⊥, so α(A⊥) = α′(A)⊥, and α ⊔ α′(idA) = idα⊔α′(A) =
idα′(A).

The following concept makes sense mainly for MLL proof-nets, but we will need it for isomor-
phisms in MALL. Hence, we state it in a general way.

Definition 6.74 (Class of a leaf). Take a set of linkings θ on [A⊥ ∗ A,Σ] Γ. Consider the total
simple loop-free undirected graph with vertices the leaves of θ and an edge (l,m) if there is a link
(l,m) in θ or if l belongs to A, m to A⊥ and m = l⊥. We call this graph the GOI projection
graph on A⊥ ∗A of θ.

We define the class for A⊥ ∗ A of a leaf l of θ as the vertices connected to l in the previous
graph. This defines an equivalence relation on the leaves of θ.

Example 6.75. Consider the following proof-net, on the cut sequent

[((X− &X−)⊗ Y +) ∗ (Y − ` (X+ ⊕X+))] Y −, X+, (X− ⊗ (Y + ` Y −))⊗ Y +

(where a bicolor edge means it belongs to both linkings identified by these colors).

Y − X+

X− X−

Y +&

⊗

X+X+

Y − ⊕

`
∗

X−

Y + Y −

Y +⊗

`

⊗

231

6.3. COMPLETENESS

Its GOI projection graph (on its unique cut pair) is the following, with leaves in the same order
from left to right as in the proof-net above. We put above the edges coming from axiom links, and
below the edges from duality on the cut pair. It contains three classes, each identified by a color.

Y − X+ X− X− Y + X+X+Y − X− Y + Y − Y +

Lemma 6.76. Let θ be a set of linkings on [A⊥ ∗A] Γ, and consider a class for A⊥ ∗A of θ. There
exists an unsigned atom X such that any leaf of this class is labeled either X+ or X−.

Proof. Take any leaf l in this class, its label is some X+ or some X−. Remark that any pair of
leaves linked in the GOI projection graph has dual labels. As a class is a connected component in
this graph, all leaves of a class have for label either the label of l or its dual. Therefore, any leaf in
the class is labeled either X+ or X−.

Corollary 6.77. Take an ax-unique set of linkings θ on [A⊥ ∗ A,Σ] Γ. A class for A⊥ ∗ A of θ
contains either two or zero leaves not in A⊥ ∗A.

Proof. As θ is ax -unique, in the GOI projection graph on A⊥ ∗A of θ each vertex is of degree one
or two – those in A⊥ ∗ A are those of degree two. By Lemma 3.50, this graph is a disjoint union
of non-empty simple paths and cycles. Each leaf not in A⊥ ∗ A is an extremity of one of these
paths, for they are of degree one. Thus, each class contains either two or zero leaves not in A⊥ ∗A,
according to whether this class corresponds to a non-empty simple path or to a cycle.

When restricted to MLL, using the correctness criterion we can prove a stronger result: each
class contains exactly two leaves outside the cut pair, i.e. there is no cycle in the GOI projection
graph. The case with additive is harder, because a &−⊕i key elimination case can erase linkings,
and thus links.

Lemma 6.78. Take an MLL0,2
uf proof-net θ on [A⊥ ∗ A,Σ] Γ. A class for A⊥ ∗ A of θ contains

exactly two leaves not in A⊥ ∗A.

Proof. By contradiction, assume there is a cycle in the GOI projection graph on A⊥ ∗A of θ. In θ,
reduce all cuts yielded from A⊥ ∗A except those on these leaves, using only `−⊗ key cases (this
is convergent by Remark 4.13). The resulting proof-net ψ contains the GOI projection graph as a
sub-graph, up to replacing the links l — l⊥ for l in A⊥ ∗A by l→ ∗ ← l⊥. In particular, a cycle in
the GOI projection graph yields a cycle in ψ, which is a switching one as it uses only axiom links
and premises of ∗-vertices. Contradiction with (P2).

Lemma 6.79. Let θ be a set of linkings on [A⊥ ∗A] Γ. If there is a link (l,m) in the result of fully
eliminating the cut-formula A⊥ ∗A (well-defined by Remark 4.13), then l and m belong to the same
class for A⊥ ∗A in θ (and are not leaves of A⊥ ∗A).

Proof. A link (l,m) of the reduced form is either a link of θ or one obtained from a sequence of
n + 2 links (l, l0), ((l⊥i , li+1))i∈J0;n−1K, (l⊥n ,m) of θ where each li is a leaf of A⊥ ∗ A, with as dual
leaf l⊥i in this cut pair (Definition 4.14 of Turbo Cut-elimination). In both cases, l and m belong
to the same class for A⊥ ∗A in θ.

232

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

We can now prove our main result, which will then be instantiated to the case of isomorphisms,
and to retractions in the next chapter.

Theorem 6.80 (Renaming preserves composition to identities). Let θ and θ′ be proof-nets respec-
tively on A⊥, B and B⊥, A. Assume θ and θ′ are ax-unique and half-bipartite in respectively A⊥

and A. Furthermore, suppose θ
B

▷◁ θ′ reduces by cut-elimination to idA. There exist renamings α
and α′ respectively of θ and θ′ such that:

(1) α(A⊥) and α′(A) are non-ambiguous;

(2) α′(B⊥) = α(B)⊥;

(3) α(A⊥) = α′(A)⊥;

(4) α(θ)
α(B)

▷◁ α′(θ′) reduces by cut-elimination to idα′(A);

(5) if θ′
A

▷◁ θ reduces by cut-elimination to idB, then α′(θ′)
α(A)

▷◁ α(θ) reduces by cut-elimination to
idα(B).

Proof. We begin by defining α and α′. Let f be any injective function from the classes for B⊥ ∗B
of θ

B

▷◁ θ′ to the set of positive atoms of X , existing by cardinality. Consider C one of these classes;
all leaves inside are of labels X+ or X− for some unsigned atom X (Lemma 6.76). For a leaf l
inside this class we define:

• if l is in A⊥ or B, and of label X+ (resp. X−), set α(l) = f(C) (resp. α(l) = f(C)⊥);

• if l is in A or B⊥, and of label X+ (resp. X−), set α′(l) = f(C) (resp. α′(l) = f(C)⊥).

This defines functions α and α′, respectively on leaves of A⊥, B and of B⊥, A, which are renamings
respectively of θ and θ′. Indeed, we only have to check that any link a = (l,m) is between dual
leaves after the renaming (Lemma 6.67). As l and m belong to the same class, and are of dual
labels before the renaming, they are also of dual labels after the renaming by definition. We now
prove the five wanted items.

As θ
B

▷◁ θ′ reduces by cut-elimination to idA, whose axiom links are the (l, l⊥) for l in A

(Lemma 6.43), according to Lemma 6.79 we have l and l⊥ in the same class. But θ
B

▷◁ θ′ is ax -
unique for θ and θ′ are (Lemma 6.40), so by Corollary 6.77 these two leaves are the only ones of
A⊥, A in this class. Thus, α(A⊥) is non-ambiguous, as all leaves of A⊥ belong to distinct classes.
A similar result holding for α′(A), this ensures Item (1).

That α′(B⊥) = α(B)⊥ follows from the fact that for a leaf l of B, labeled X, the dual leaf l⊥
of B⊥ belongs to the same equivalence class, with as label X⊥. Hence, Item (2) holds.

Using Lemma 6.73, as well as Item (2) we just proved, we obtain Items (3) and (4). Fi-
nally, suppose now that θ′

A

▷◁ θ reduces by cut-elimination to idB . One proves Item (5) thanks to
Lemma 6.73.

Lemma 6.81 (Distributed ambiguous isomorphic formulas). Let A and B be distributed formulas,

such that
θ,θ′

A ≃ B. There exist an atomic-substitution σ and distributed formulas A′ and B′, non-

ambiguous, such that A = σ(A′), B = σ(B′) and
ψ,ψ′

A′ ≃ B′ for some proof-nets ψ and ψ′.

233

6.3. COMPLETENESS

Proof. The proof-nets θ and θ′ are bipartite ax -unique (Theorem 6.60), on cut sequents A⊥, B and
B⊥, A respectively. By Theorem 6.80, there exists renamings α and α′, respectively of θ and θ′, such

that α(A⊥) and α′(A) are non-ambiguous, and
α(θ),α′(θ′)

α′(A) ≃ α(B), with in particular α(A⊥) = α′(A)⊥

and α′(B⊥) = α(B)⊥.

Pose A′ := α′(A) and B′ := α(B), hence
α(θ),α′(θ′)

A′ ≃ B′ and α(θ) has for sequent A′⊥, B′. Formulas
A′ and B′ are distributed, as renaming acts only on leaves, and non-ambiguous (for α(A⊥), α(B)
are non-ambiguous and Lemma 6.63).

On α(θ) one can define a renaming α−1 such that α−1(B′) = B, as α(θ) is cut-free, bipartite
and ax -unique (Lemma 6.67). Remark it is equivalent to define α−1 on α(θ) or only on leaves of
B′. Moreover, θ = α−1(α(θ)) and then α−1(A′⊥) = A⊥ follow from α−1(B′) = B.

Recall that all leaves of B′ are on distinct unsigned atoms by definition of non-ambiguous.
Hence, the definition of α−1 on B′ can be seen as a substitution σ on signed atoms of B′, with:

• if X occurs as X+ in B′, then σ(X) = α−1(l(X+)) where l(X+) is the unique leaf of B′ with
label X+;

• if X occurs as X− in B′, then σ(X) = α−1(l(X−))⊥ where l(X−) is the unique leaf of B′
with label X−.

Thus, θ = α−1(α(θ)) = σ(α(θ)): in particular, σ(B′) = B and σ(A′
⊥
) = A⊥, so σ(A′) = A

(by Fact 1.5). Finally, A′ and B′ are distributed non-ambiguous formulas such that
α(θ),α′(θ′)

A′ ≃ B′ ,
A = σ(A′) and B = σ(B′).

Corollary 6.82 (Reduction to distributed non-ambiguous formulas). The set of couples of dis-
tributed formulas A and B such that A ≃ B is the set of instances, by an atomic-substitution, of
couples of distributed non-ambiguous formulas A′ and B′ such that A′ ≃ B′. It is also the set of
instances, by a substitution, of couples of distributed non-ambiguous formulas A′ and B′ such that
A′ ≃ B′.

Proof. By Theorem 6.35 and Lemma 6.81, given an isomorphism A ≃ B between distributed
formulas, one gets non-ambiguous distributed formulas A′ and B′ such that A′ ≃ B′ and A (resp.
B) is an instance by an atomic substitution of A′ (resp. B′). This atomic substitution can also be
seen as a “standard” substitution.

Reciprocally, a substitution (and thus also an atomic-substitution) preserves isomorphisms
(Lemma B.6), so that given non-ambiguous distributed formulas A′ and B′ as well as a substi-
tution σ, A′ ≃ B′ =⇒ σ(A′) ≃ σ(B′).

6.3.6.2 Simplification with non-ambiguous formulas

The goal of this part is to show isomorphisms between non-ambiguous formulas correspond simply
to the existence of proof-nets, speaking no more about cut-elimination nor identity proof-nets. This
is done through Theorem 6.89: when A is non-ambiguous, having proof-nets on A⊥, B and B⊥, A
is enough to know their composition over B composes to idA – simply because this is the sole
proof-net on A⊥, A. This result will be deduced by proving properties close to the ones of identity
proof-nets from Section 6.3.3.

234

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

X−1 X−2 X+
3 X+

4

⊗ `

X−1 X−2 X+
3 X+

4

⊗ `
Figure 6.10: Identity proof-net (left-side) and swap (right-side) of X+ `X+

Lemma 6.83. Let θ be a set of linkings on the sequent A⊥, A, with A a non-ambiguous formula.
Axiom links of θ are of the form (l⊥, l) for l a leaf of A.

Proof. Let a be an axiom link of θ, between leaves l and m, with the label of l (resp. m) being X
(resp. X⊥). By non-ambiguity of A (and so A⊥ by Lemma 6.63), each signed atom is the label of
at most one leaf in A⊥, A. Moreover, the leaf labeled X⊥ is the dual of the leaf labeled X. Thus,
m = l⊥ and a = (l, l⊥).

Remark 6.84. Proving Lemma 6.83 with the definition of non-ambiguous from [BD99] (Remark 6.64)
is harder, even when assuming θ is a proof-net, unless one also suppose θ to be bipartite. Indeed,
consider a formula such as X+ `X−: it is non-ambiguous for this definition, but there may be an
axiom link between these two atoms. A similar remark holds for all results of this section.

Lemma 6.85. Let θ be a set of linkings on A⊥, A, with A a non-ambiguous formula. Take a linking
λ ∈ θ and an additive vertex v in its additive resolution. The vertex v⊥ is in the additive resolution
of λ, and λ keeps for v⊥ the dual premise it keeps for v.

Proof. As v is in the additive resolution A⊥, A ↾ λ of λ, one of its ancestor leaves, say l, is in
A⊥, A ↾ λ: there is a link a ∈ λ on it. By Lemma 6.83, a = (l, l⊥). But l⊥ is an ancestor of v⊥, so
v⊥ is in A⊥, A ↾ λ, with as premise the dual premise chosen for v.

Lemma 6.86. Let A be a non-ambiguous formula, θ and θ′ proof-structures on A⊥, A. Then θ = θ′.

Proof. Take λ ∈ θ a linking. It is on some &-resolution R of A⊥, A. By (P1), there exists a unique
linking λ′ ∈ θ′ on R. We have to prove λ = λ′. They have the same additive resolution, for their
choice on a ⊕-vertex P is determined by the premise taken for the &-vertex P⊥, which is in R
(Lemma 6.85). They have the same axiom links on this additive resolution, because any leaf on it
is linked to its dual (Lemma 6.83). Therefore, λ = λ′, so θ ⊆ θ′. By symmetry, the same reasoning
yields θ′ ⊆ θ, thus θ = θ′.

Corollary 6.87. Let A be a non-ambiguous formula. There is exactly one proof-structure on A⊥, A:
the identity proof-net of A.

Proof. This follows from Lemma 6.86.

Remark 6.88. This property does not hold outside of non-ambiguous formulas, even distributed.
For instance, there are two bipartite ax -unique proof-nets on X−1 ⊗X

−
2 , X

+
3 `X+

4 (where each Xi

is an occurrence of the atom X): the identity proof-net, with axiom links (X−1 , X
+
4) and (X−2 , X

+
3),

and the “swap” with axiom links (X−1 , X
+
3) and (X−2 , X

+
4) – see Figure 6.10.

235

6.3. COMPLETENESS

Al Ar

⊚ B

T (Al) T (Ar)

T (B)

l r m s

Figure 6.11: Illustration of the proof of Lemma 6.91

Theorem 6.89. Let θ and θ′ be proof-structures respectively on A⊥, B and B⊥, A, with A a non-
ambiguous formula. Then their composition over B reduces to the identity proof-net of A.

Proof. The composition of θ and θ′ by cut reduces to a proof-structure on A⊥, A. By Corollary 6.87,
this can only be the identity proof-net of A.

Theorem 6.90 (Proof-nets for non-ambiguous isomorphisms). Let A and B be non-ambiguous

formulas. If there exist proof-nets θ and ψ respectively on A⊥, B and B⊥, A, then
θ,ψ

A ≃ B.

Proof. By Theorem 6.89 both compositions yield identity proof-nets, whence
θ,ψ

A ≃ B.

6.3.7 Completeness for unit-free MALL
We now prove the completeness of L† for MALLuf by reasoning as in Section 4 of [BD99], with
some more technicalities for we have to reorder not only `-vertices but also &-vertices. Remember
that a proof-net contains a sequentializing – i.e. terminal splitting – vertex (Lemma 4.31), and that
removing a sequentializing vertex produces proof-net(s) (Lemmas 4.45 to 4.48).

Lemma 6.91. In a bipartite full proof-net on Al ⊚ Ar, B, where ⊚ ∈ {⊗;⊕}, the root of Al ⊚ Ar
is not sequentializing.

Proof. Let l be a leaf of Al and r one of Ar. By bipartiteness and fullness, there are leaves m and s
of B with axiom links (l,m) and (r, s) in the proof-net, see Figure 6.11. As there is a path in T (B)
between m and s, whether ⊚ = ⊕ or ⊚ = ⊗, it is not sequentializing.

Lemma 6.92 (Reordering `-vertices). Let θ be a bipartite ax-unique proof-net on A,B with A =
Al ` Ar, B = Bl ⊙Br, ⊙ ∈ {⊗;⊕} and A a distributed formula. Then ⊙ = ⊗ and there exist two
bipartite ax-unique proof-nets respectively on A′l, Bl and A′r, Br, where A′l `A′r is equal to Al `Ar
up to associativity and commutativity of `.

Proof. We remove all terminal (hence sequentializing) `-vertices, all in A, without modifying the
linkings. The resulting graph is a proof-net on A1, . . . , An, Bl ⊙ Br (see Figure 6.12). The roots
of the new trees Ai cannot be &-vertices because A is distributed: so they are ⊗\⊕-vertices or
atoms. These ⊗\⊕-vertices are not sequentializing, since by bipartiteness and fullness every leaf of
each Ai is connected to the formula Bl ⊙Br (reasoning as in the proof of Lemma 6.91). Thus, the

236

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

Bl Br

⊙
B

T (Bl) T (Br)

T (A1) T (A2) . . . T (An)

` `... ``
`
A

Figure 6.12: Proof-net of Lemma 6.92 with all terminal `-vertices removed

sequentializing vertex of this proof-net is necessarily Bl ⊙Br. It follows ⊙ = ⊗, because all leaves
of B are connected to leaves in A1, . . . , An, so if ⊙ = ⊕ then Bl ⊙ Br cannot be sequentializing.
Removing the sequentializing Bl ⊗ Br gives two proof-nets, with a partition of the Ai into two
classes: those linked to leaves of Bl and the others linked to leaves of Br (and any leaf is in one
of the two cases by fullness). We recover from these proof-nets bipartite ax -unique ones by adding
`-vertices under the Ai in an arbitrary order, yielding formulas A′l (with those linked to Bl) and
A′r (with those linked to Br). As we only removed and put back `-vertices, A′l ` A′r is equal to
Al `Ar up to associativity and commutativity of `.

Lemma 6.93 (Reordering &-vertices). Let θ be a bipartite ax-unique proof-net on A,B with A =
Al &Ar, B = Bl ⊕Br and A a distributed formula. Then there exist two bipartite ax-unique proof-
nets respectively on A′l, Bl and A′r, Br, where A′l & A′r is equal to Al & Ar up to associativity and
commutativity of &.

Proof. We remove all terminal &-vertices in the proof-net, then all terminal `-vertices, all in A.
The resulting graphs are proof-nets θi (for terminal negative vertices are sequentializing), on cut
sequent Ai1, . . . , Aini , Bl ⊕ Br for the i-th proof-net. An illustration is Figure 6.12, except we have
several of these proof-nets, having in common exactly T (B). As in the proof of Lemma 6.92, the
roots of the new trees Aij cannot be negative vertices because the formula A is distributed: so they
are ⊗\⊕-vertices or atoms. These ⊗\⊕-vertices cannot be sequentializing, since by bipartiteness
and fullness every leaf of Aij is connected to the formula Bl ⊕ Br (reasoning as in the proof of
Lemma 6.91). Thus, the sequentializing vertex of each of these proof-nets is necessarily Bl⊕Br, we
can remove it: for a given i, all Aij are linked only to either Bl or Br. We put back the `-vertices
we removed, in the very same order. We then put back the &-vertices we removed, but in another
order: we put together all θi linked to Bl, and all those to Br, yielding two proof-nets on Bl, A′l and
Br, A

′
r. These proof-nets are bipartite ax -unique ones (because adding and removing ` does not

modify the linkings, and & is disjoint union of linkings). We indeed have A′l &A′r equal to Al &Ar
up to associativity and commutativity of &, because we only reordered &-vertices.

We conclude by induction on the size s(A) of A, which we recall is given by its number of
connectives, and is thus unaffected by commutation and associativity of connectives.

237

6.3. COMPLETENESS

Theorem 6.94 (Isomorphisms completeness for MALLuf). Given A and B two distributed MALLuf

formulas, if
θ,ψ

A ≃ B for some proof-nets θ and ψ, then A =L† B.

Proof. We assume A and B to be non-ambiguous formulas by Corollary 6.82. We reason by induc-
tion on the size of A, s(A).1

If A and B are atoms (i.e. of size 1), then the axiom link in θ between A⊥ and B yields A = B
and the property holds. Otherwise, A⊥ and B are both non atomic. By Theorem 6.60, θ and ψ
are bipartite ax -unique. By Lemma 6.91, one of A⊥ and B is negative, otherwise neither the root
of A⊥ nor B is sequentializing in θ, contradicting sequentialization (Theorem 4.18). A symmetric
reasoning on ψ implies that the other formula is positive. Assume w.l.o.g. that B = B0 ⊙ B1 is
positive (i.e. ⊙ ∈ {⊗;⊕}) and A⊥ negative. We distinguish cases according to the kind of the
roots of A⊥ and B, considering the proof-net θ. If B a ⊗-formula and A a &-formula, we instead
consider ψ of cut sequent B⊥, A, where A is a ⊕-formula and B⊥ a `-formula. Whence, either A⊥
is a `-formula, or B and A⊥ are respectively a ⊕-formula and a &-formula.

In the first (resp. second) case, by Lemma 6.92 (resp. Lemma 6.93) ⊙ = ⊗ (in the first case only)
and there exist two bipartite ax -unique proof-nets θ0 and θ1 of respective cut sequents A′0

⊥
, B0 and

A′1
⊥
, B1, with A′

⊥
= A′1

⊥ ` A′0
⊥ (resp. A′⊥ = A′1

⊥
& A′0

⊥) equal to A⊥ up to associativity and
commutativity of ` (resp. &). In particular, A′⊥ =L† A⊥, and s(A′0) and s(A′1) are both less
than s(A). To conclude, we only need proof-nets ψ0 and ψ1 of respective cut sequents B⊥0 , A′0 and

B⊥1 , A
′
1. We will then apply Theorem 6.90 to obtain

θ0,ψ0

A′0 ≃ B0 and
θ1,ψ1

A′1 ≃ B1. Thence, by induction
hypothesis, A′0 =L† B0 and A′1 =L† B1, thus A′ =L† B.2 As A =L† A′, we will finally conclude
A =L† B.

Thus, we look for two proof-nets of respective cut sequents B⊥0 , A′0 and B⊥1 , A
′
1. As

θ,ψ

A ≃ B,

and A ≃ A′ by soundness of L† (Theorem 6.3), it follows using Theorem 6.35 that
Θ,Θ′

A′ ≃ B for
some proof-nets Θ and Θ′.3 Furthermore, Θ is a bipartite ax -unique proof-net (Theorem 6.60)
of cut sequent B⊥, A′, i.e. on B⊥1 ⊙⊥ B⊥0 , A′0 ⊚ A′1 with (⊙⊥,⊚) ∈ {(`,⊗); (&,⊕)}. We had a
bipartite ax -unique proof-net θ0 on A′0

⊥
, B0, therefore the signed atoms of B0 are exactly those

of A′0. Similarly, the signed atoms of B1 are exactly those of A′1. Whence, no atom of B0 (resp.
B1) is one of A′1 (resp. A′0), for otherwise an atom of A0 (resp. A1) also occurs in A′1 (resp. A′0),
contradicting non-ambiguousness of A′. This implies that axiom links in Θ must be between leaves
of B⊥0 and A′0, and between leaves of B⊥1 and A′1. Therefore, once we sequentialize the negative
root ⊙⊥ of B⊥ in Θ, the positive root ⊚ of A′ is sequentializing. After sequentializing both, we
obtain two bipartite ax -unique proof-nets, of respective cut sequents B⊥0 , A′0 and B⊥1 , A′1.

The above theorem, associated with preceding results, yields our main contribution for this
chapter.

Theorem 6.95 (Isomorphisms completeness).

L† is complete for MALL2
uf Given A and B two MALL2

uf formulas, if A ≃ B, then A =L† B.

1Remark that s(A) = s(B), because θ is bipartite ax -unique (Theorem 6.60), thence A and B have the same
number of leaves, so of connectives as they are all binary ones (Fact 1.3).

2The formula A′ is distributed for it is equal up to associativity and commutativity to the distributed A. Whence,
A′

0 and A′
1 are also distributed.

3Using that isomorphisms form equivalence classes on formulas according to Lemma B.3.

238

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

D

F ⊗ (G⊗H) = (F ⊗G)⊗H F ⊗G = G⊗ F F ⊗ 1 = F
(F ⊗G)⊸ H = F ⊸ (G⊸ H) 1⊸ F = F

F & (G&H) = (F &G) &H F &G = G& F F &⊤ = F
F ⊸ (G&H) = (F ⊸ G) & (F ⊸ H) F ⊸ ⊤ = ⊤

S

(F ⊸ ⊥)⊸ ⊥ = F

Table 6.2: Type isomorphisms in ⋆-autonomous categories with finite products

L is complete for MALL2 Given A and B two MALL2 formulas, if A ≃ B, then A =L B.

Proof. We assume A and B to be distributed formulas by Proposition 6.13. Using Lemma 6.23,
we can consider these two sub-systems without the mix 2-rule. The first item is a consequence of
Theorems 6.35 and 6.94. The second results from the first one and Theorem 6.31.

Remark 6.96. Looking at the proof, we get as a sub-result that isomorphisms for various sub-
systems of MALL2 are given by the equational theory L (resp. L†) restricted to their formulas,
thanks to the sub-formula property:

• L restricted to formulas of MLL is sound and complete for isomorphisms of MLL and MLL2;

• L† restricted to formulas of MLLuf is sound and complete for isomorphisms of MLLuf and
MLL2

uf ;

• L restricted to formulas of ALL is sound and complete for isomorphisms of ALL;

• L† restricted to formulas of ALLuf is sound and complete for isomorphisms of ALLuf .

6.4 Star-autonomous categories with finite products
Since MALL semantically corresponds to ⋆-autonomous categories with finite products (which also
have finite coproducts), we can use our results on MALL to characterize isomorphisms valid in all
such categories. For the historical result of how linear logic can be seen as a category, see [See89].

We consider objects of ⋆-autonomous categories described by formulas in the language:

F := X | F ⊗ F | 1 | F ⊸ F | ⊥ | F & F | ⊤

where X ∈ X for X a fixed set. There is some redundancy here since one could define 1 as ⊥⊸ ⊥
in any ⋆-autonomous category, but we prefer to keep 1 in the language as it is at the core of
monoidal categories. Our goal is to prove the theory D of Table 6.2 to be sound and complete for
the isomorphisms of ⋆-autonomous categories with finite products.

We establish this result from the one on MALL, first proving that MALL (with proofs considered
up to βη-equality) defines a ⋆-autonomous category with finite products (Section 6.4.1). Then, we
conclude using a semantic method based on this syntactic category (Section 6.4.2). In a third step
we look at the more general case of symmetric monoidal closed categories – without the requirement
of a dualizing object (Section 6.4.3).

239

6.4. STAR-AUTONOMOUS CATEGORIES WITH FINITE PRODUCTS

6.4.1 MALL as a star-autonomous category with finite products
The logic MALL, with proofs taken up to βη-equality, defines a ⋆-autonomous category with finite
products, that we will call MALL. Indeed, we can define it as follows.

Objects of MALL are formulas of MALL, while its morphisms from A to B are proofs of ⊢ A⊥, B,
considered up to βη-equality and composed by the cut-rule.4 By definition, a proof of MALL is an
isomorphism if and only if, when seen as a morphism, it is an isomorphism in MALL.

We define a bifunctor ⊗ on MALL, associating to formulas (i.e. objects) A and B the formula
A⊗B and to proofs (i.e. morphisms) π0 and π1 respectively of ⊢ A⊥0 , B0 and ⊢ A⊥1 , B1 the following
proof of ⊢ (A0 ⊗A1)

⊥, B0 ⊗B1:
π0

⊢ A⊥0 , B0

π1
⊢ A⊥1 , B1

(⊗)
⊢ A⊥1 , A⊥0 , B0 ⊗B1

(`)

⊢ A⊥1 `A⊥0 , B0 ⊗B1

One can check that (MALL,⊗, 1, α, λ, ρ, γ) forms a symmetric monoidal category, where 1 is the
1-formula, α are isomorphisms of MALL associated to (A⊗B)⊗C ≃ A⊗ (B ⊗C) seen as natural
isomorphisms of MALL, and similarly for λ with 1 ⊗ A ≃ A, ρ with A ⊗ 1 ≃ A, and γ with
A⊗B ≃ B ⊗A.

Furthermore, define A⊸ B := A⊥`B and evA,B as the following morphism from A⊗(A⊸ B)
to B (i.e. a proof of ⊢ (B⊥ ⊗A)`A⊥, B):

(ax)
⊢ B⊥, B

(ax)
⊢ A⊥, A

(⊗)
⊢ B⊥ ⊗A,A⊥, B

(`)

⊢ (B⊥ ⊗A)`A⊥, B

It can be checked that MALL is a symmetric monoidal closed category with as exponential object
(A⊸ B, evA,B) for objects A and B.

Moreover, one can also check that ⊥ is a dualizing object for this category, making MALL a
⋆-autonomous category. This relies on the following morphism from (A⊸ ⊥)⊸ ⊥ to A (which is
an inverse of the currying of evA,⊥):

(1)
⊢ 1

(ax)
⊢ A⊥, A

(⊥)
⊢ A⊥,⊥, A

(`)

⊢ A⊥ `⊥, A
(⊗)

⊢ 1⊗ (A⊥ `⊥), A
Finally, ⊤ is a terminal object of MALL, and A & B is the product of objects A and B, with,

as projections πA and πB , the following morphisms respectively from A&B to A and from A&B
to B:

(ax)
⊢ A⊥, A

(⊕2)

⊢ B⊥ ⊕A⊥, A
and

(ax)
⊢ B⊥, B

(⊕1)

⊢ B⊥ ⊕A⊥, B
Therefore, MALL is a ⋆-autonomous category with finite products [See89].

4We recall that (·)⊥ is defined by induction, making it an involution.

240

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

6.4.2 Isomorphisms of star-autonomous categories with finite products

We translate formulas in the language of ⋆-autonomous categories with finite products into MALL
formulas and conversely by means of the following translations:5

ℓ(X) = X+ ∂(X+) = X
∂(X−) = X ⊸ ⊥

ℓ(F ⊗G) = ℓ(F)⊗ ℓ(G) ∂(A⊗B) = ∂(A)⊗ ∂(B)
ℓ(1) = 1 ∂(1) = 1

ℓ(F ⊸ G) = ℓ(F)⊥ ` ℓ(G) ∂(A`B) = ((∂(A)⊸ ⊥)⊗ (∂(B)⊸ ⊥))⊸ ⊥
ℓ(⊥) = ⊥ ∂(⊥) = ⊥

ℓ(F &G) = ℓ(F) & ℓ(G) ∂(A&B) = ∂(A) & ∂(B)
ℓ(⊤) = ⊤ ∂(⊤) = ⊤

∂(A⊕B) = ((∂(A)⊸ ⊥) & (∂(B)⊸ ⊥))⊸ ⊥
∂(0) = ⊤⊸ ⊥

The translation ℓ() corresponds exactly to the interpretation of the constructions on objects of a
⋆-autonomous categories with finite products in the concrete category MALL.

Lemma 6.97. The ∂() and ℓ() translations satisfy the following properties:

• ∂(A⊥) =D ∂(A)⊸ ⊥

• ∂(ℓ(F)) =D F

• A =L B entails ∂(A) =D ∂(B)

Proof. The second property relies on the first while the third is independent.

• By induction on A:

∂((X+)⊥) = ∂(X−) = X ⊸ ⊥ =D ∂(X
+)⊸ ⊥

∂((X−)⊥) = ∂(X+) = X =D (X ⊸ ⊥)⊸ ⊥ = ∂(X−)⊸ ⊥
∂((A⊗B)⊥) = ((∂(B⊥)⊸ ⊥)⊗ (∂(A⊥)⊸ ⊥))⊸ ⊥

=D (((∂(A)⊸ ⊥)⊸ ⊥)⊗ ((∂(B)⊸ ⊥)⊸ ⊥))⊸ ⊥
=D (∂(A)⊗ ∂(B))⊸ ⊥ = ∂(A⊗B)⊸ ⊥

∂((A`B)⊥) = ∂(B⊥)⊗ ∂(A⊥) =D (∂(A)⊸ ⊥)⊗ (∂(B)⊸ ⊥)
=D (((∂(A)⊸ ⊥)⊗ (∂(B)⊸ ⊥))⊸ ⊥)⊸ ⊥
= ∂(A`B)⊸ ⊥

∂(1⊥) = ⊥ =D 1⊸ ⊥ = ∂(1)⊸ ⊥
∂(⊥⊥) = 1 =D (1⊸ ⊥)⊸ ⊥ =D ⊥⊸ ⊥ = ∂(⊥)⊸ ⊥

∂((A&B)⊥) = ((∂(B⊥)⊸ ⊥) & (∂(A⊥)⊸ ⊥))⊸ ⊥
=D (((∂(A)⊸ ⊥)⊸ ⊥) & ((∂(B)⊸ ⊥)⊸ ⊥))⊸ ⊥
=D (∂(A) & ∂(B))⊸ ⊥ = ∂(A&B)⊸ ⊥

5We set the same X for the set of unsigned atoms of MALL and for the base elements of the category.

241

6.4. STAR-AUTONOMOUS CATEGORIES WITH FINITE PRODUCTS

∂((A⊕B)⊥) = ∂(B⊥) & ∂(A⊥) =D (∂(A)⊸ ⊥) & (∂(B)⊸ ⊥)
=D (((∂(A)⊸ ⊥) & (∂(B)⊸ ⊥))⊸ ⊥)⊸ ⊥
= ∂(A⊕B)⊸ ⊥

∂(⊤⊥) = ⊤⊸ ⊥ = ∂(⊤)⊸ ⊥
∂(0⊥) = ⊤ =D (⊤⊸ ⊥)⊸ ⊥ = ∂(0)⊸ ⊥

• By induction on F :

∂(ℓ(X)) = ∂(X+) = X

∂(ℓ(F ⊗G)) = ∂(ℓ(F)⊗ ℓ(G)) = ∂(ℓ(F))⊗ ∂(ℓ(G)) =D F ⊗G
∂(ℓ(1)) = ∂(1) = 1

∂(ℓ(F ⊸ G)) = ∂(ℓ(F)⊥ ` ℓ(G))

= ((∂(ℓ(F)⊥)⊸ ⊥)⊗ (∂(ℓ(G))⊸ ⊥))⊸ ⊥
=D (((F ⊸ ⊥)⊸ ⊥)⊗ (G⊸ ⊥))⊸ ⊥
=D (F ⊗ (G⊸ ⊥))⊸ ⊥
=D F ⊸ ((G⊸ ⊥)⊸ ⊥) =D F ⊸ G

∂(ℓ(⊥)) = ∂(⊥) = ⊥
∂(ℓ(F &G)) = ∂(ℓ(F) & ℓ(G)) = ∂(ℓ(F)) & ∂(ℓ(G)) =D F &G

∂(ℓ(⊤)) = ∂(⊤) = ⊤

• We prove that the image of each equation of Table 6.1 through ∂() is derivable with equations
of Table 6.2. Commutativity, associativity and unitality for ⊗ and & are immediate.

∂(A`B) = ((∂(A)⊸ ⊥)⊗ (∂(B)⊸ ⊥))⊸ ⊥
=D ((∂(B)⊸ ⊥)⊗ (∂(A)⊸ ⊥))⊸ ⊥ = ∂(B `A)

∂(A` (B ` C)) = ((∂(A)⊸ ⊥)⊗ ((((∂(B)⊸ ⊥)⊗ (∂(C)⊸ ⊥))⊸ ⊥)⊸ ⊥))⊸ ⊥
=D ((∂(A)⊸ ⊥)⊗ ((∂(B)⊸ ⊥)⊗ (∂(C)⊸ ⊥)))⊸ ⊥
=D (((∂(A)⊸ ⊥)⊗ (∂(B)⊸ ⊥))⊗ (∂(C)⊸ ⊥))⊸ ⊥
=D (((((∂(A)⊸ ⊥)⊗ (∂(B)⊸ ⊥)⊸ ⊥)⊸ ⊥))⊗ (∂(C)⊸ ⊥))⊸ ⊥
= ∂((A`B)` C)

∂(A`⊥) = ((∂(A)⊸ ⊥)⊗ (⊥⊸ ⊥))⊸ ⊥
=D ((∂(A)⊸ ⊥)⊗ ((1⊸ ⊥)⊸ ⊥))⊸ ⊥
=D ((∂(A)⊸ ⊥)⊗ 1)⊸ ⊥
=D (∂(A)⊸ ⊥)⊸ ⊥ =D ∂(A)

Commutativity, associativity and unitality for ⊕ follow the same pattern as for `.

242

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

Then we have:

∂(A⊗ (B ⊕ C)) = ∂(A)⊗ (((∂(B)⊸ ⊥) & (∂(C)⊸ ⊥))⊸ ⊥)
=D ((∂(A)⊗ (((∂(B)⊸ ⊥) & (∂(C)⊸ ⊥))⊸ ⊥))⊸ ⊥)⊸ ⊥
=D (∂(A)⊸ (((∂(B)⊸ ⊥) & (∂(C)⊸ ⊥))⊸ ⊥)⊸ ⊥)⊸ ⊥
=D (∂(A)⊸ ((∂(B)⊸ ⊥) & (∂(C)⊸ ⊥)))⊸ ⊥
=D ((∂(A)⊸ (∂(B)⊸ ⊥)) & (∂(A)⊸ (∂(C)⊸ ⊥)))⊸ ⊥
=D (((∂(A)⊗ ∂(B))⊸ ⊥) & ((∂(A)⊗ ∂(C))⊸ ⊥))⊸ ⊥
= ∂((A⊗B)⊕ (A⊗ C))

∂(A⊗ 0) = ∂(A)⊗ (⊤⊸ ⊥)
=D ((∂(A)⊗ (⊤⊸ ⊥))⊸ ⊥)⊸ ⊥
=D (∂(A)⊸ ((⊤⊸ ⊥)⊸ ⊥))⊸ ⊥
=D (∂(A)⊸ ⊤)⊸ ⊥
=D ⊤⊸ ⊥ = ∂(0)

∂(A` (B & C)) = ((∂(A)⊸ ⊥)⊗ ((∂(B) & ∂(C))⊸ ⊥))⊸ ⊥
=D (∂(A)⊸ ⊥)⊸ (((∂(B) & ∂(C))⊸ ⊥)⊸ ⊥)
=D (∂(A)⊸ ⊥)⊸ (∂(B) & ∂(C))

=D ((∂(A)⊸ ⊥)⊸ ∂(B)) & ((∂(A)⊸ ⊥)⊸ ∂(C))

=D ((∂(A)⊸ ⊥)⊸ ((∂(B)⊸ ⊥)⊸ ⊥))&
((∂(A)⊸ ⊥)⊸ ((∂(C)⊸ ⊥)⊸ ⊥))

=D (((∂(A)⊸ ⊥)⊗ (∂(B)⊸ ⊥))⊸ ⊥)&
(((∂(A)⊸ ⊥)⊗ (∂(C)⊸ ⊥))⊸ ⊥)

= ∂((A`B) & (A` C))

∂(A`⊤) = ((∂(A)⊸ ⊥)⊗ (⊤⊸ ⊥))⊸ ⊥
=D (∂(A)⊸ ⊥)⊸ ((⊤⊸ ⊥)⊸ ⊥)
=D (∂(A)⊸ ⊥)⊸ ⊤ =D ⊤ = ∂(⊤)

Theorem 6.98 (Isomorphisms in ⋆-autonomous categories with finite products). The equational
theory D (Table 6.2) is sound and complete for isomorphisms in ⋆-autonomous categories with finite
products.

Proof. Soundness follows by definition of ⋆-autonomous categories with finite products. For com-
pleteness, take an isomorphism F ≃ G. It yields an isomorphism ℓ(F) ≃ ℓ(G) in MALL. As iso-
morphisms in MALL are generated by L (Theorem 6.95), we get ℓ(F) =L ℓ(G). From Lemma 6.97,
we deduce F =D ∂(ℓ(F)) =D ∂(ℓ(G)) =D G.

6.4.3 Isomorphisms of symmetric monoidal closed categories with finite
products

Isomorphisms in symmetric monoidal closed categories (SMCC) have been characterized [DP97]
and proved to correspond to equations in the first two lines of Table 6.2.

243

6.4. STAR-AUTONOMOUS CATEGORIES WITH FINITE PRODUCTS

We want to extend this result to finite products by proving the soundness and completeness of
the theory S presented in Table 6.2.

Theorem 6.99 (Isomorphisms in SMCC with finite products). The equational theory S (Table 6.2)
is sound and complete for isomorphisms in symmetric monoidal closed categories with finite prod-
ucts.

Proof. The language of SMCC with finite products is the language of ⋆-autonomous categories with
finite products in which we remove ⊥. In particular the translation ℓ() can be used to translate
the associated formulas into MALL formulas. In order to analyze the image of this restricted
translation, we consider the following grammar of MALL formulas (output formulas o and input
formulas ι [Lam96]):

o := X+ | o⊗ o | o` ι | ι` o | 1 | o& o | ⊤
ι := X− | ι` ι | ι⊗ o | o⊗ ι | ⊥ | ι⊕ ι | 0

The dual of an output formula is an input formula and conversely. Moreover no MALL formula is
both an input and an output formula – let us call this the non-ambiguity property. One can
check by induction on a formula F in the language of SMCC with finite products that ℓ(F) is an
output formula. We define a translation back from output formulas to SMCC formulas (which is
well defined thanks to the non-ambiguity property):

X+◦ = X
(o⊗ o′)◦ = o◦ ⊗ o′◦ 1◦ = 1
(o& o′)

◦
= o◦ & o′

◦ ⊤◦ = ⊤
(o` ι)

◦
= (ι⊥)

◦
⊸ o◦ (ι` o)

◦
= (ι⊥)

◦
⊸ o◦

We use the notation ι• = (ι⊥)
◦ (so that (o⊥)

•
= o◦). We can check, by induction on F , that

ℓ(F)
◦
= F .

ℓ(X)
◦
= X+◦ = X

ℓ(F ⊗G)◦ = (ℓ(F)⊗ ℓ(G))◦ = ℓ(F)
◦ ⊗ ℓ(G)◦ = F ⊗G

ℓ(1)
◦
= 1◦ = 1

ℓ(F ⊸ G)
◦
= (ℓ(F)⊥ ` ℓ(G))

◦
= ℓ(F)

◦⊸ ℓ(G)
◦
= F ⊸ G

ℓ(F &G)
◦
= (ℓ(F) & ℓ(G))

◦
= ℓ(F)

◦
& ℓ(G)

◦
= F &G

ℓ(⊤)◦ = ⊤◦ = ⊤

We now prove that when o =L A (resp. ι =L A) is an equation from Table 6.1 (or its symmetric
version) then A is an output (resp. input) formula and o◦ =S A◦ (resp. ι• =S A•):

• If o or ι is of the shape A⊗ (B ⊗ C), we have the following possibilities:

– A, B and C are output, then (A⊗B)⊗ C is output and:

(A⊗ (B ⊗ C))◦ = A◦ ⊗ (B◦ ⊗ C◦)
=S (A◦ ⊗B◦)⊗ C◦ = ((A⊗B)⊗ C)◦

244

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

– A and B are output and C is input, then (A⊗B)⊗ C is input and:

(A⊗ (B ⊗ C))• = A◦⊸ (B◦⊸ C•)

=S (A◦ ⊗B◦)⊸ C• = ((A⊗B)⊗ C)•

– A and C are output and B is input, then (A⊗B)⊗ C is input and:

(A⊗ (B ⊗ C))• = A◦⊸ (C◦⊸ B•)

=S (A◦ ⊗ C◦)⊸ B• =S (C◦ ⊗A◦)⊸ B•

=S C
◦⊸ (A◦⊸ B•) = ((A⊗B)⊗ C)•

– A is input and B and C are output, then (A⊗B)⊗ C is input and:

(A⊗ (B ⊗ C))• = (B◦ ⊗ C◦)⊸ A•

=S (C◦ ⊗B◦)⊸ A•

=S C
◦⊸ (B◦⊸ A•) = ((A⊗B)⊗ C)•

The symmetric case follows the same pattern, as well as associativity of `.

• If o or ι is of the shape A⊗B, we have the following possibilities:

– A and B are output, then B ⊗ A is output and (A⊗B)
◦
= A◦ ⊗ B◦ =S B

◦ ⊗ A◦ =
(B ⊗A)◦

– A is output and B is input, then B ⊗A is input and (A⊗B)
•
= A◦⊸ B• = (B ⊗A)•

– A is input and B is output, then B ⊗A is input and (A⊗B)
•
= B◦⊸ A• = (B ⊗A)•

The commutativity of ` follows the same pattern.

• If o or ι is of the shape A⊗ 1 then either A is output and (A⊗ 1)
◦
= A◦ ⊗ 1 =S A

◦, or A is
input and (A⊗ 1)

•
= 1⊸ A• =S A

•. The symmetric case follows the same pattern, as well
as unitality for `.

• If o = A & (B & C) then A, B and C are output and (A & B) & C as well. We have
(A& (B & C))

◦
= A◦ & (B◦ & C◦) =S (A◦ & B◦) & C◦ = ((A&B) & C)

◦. The symmetric
case follows the same pattern, as well as associativity of ⊕.

• If o = A&B then A and B are output and B &A as well. We have (A&B)
◦
= A◦ &B◦ =S

B◦ &A◦ = (B &A)
◦. The commutativity of ⊕ follows the same pattern.

• If o = A & ⊤ then A is output and (A&⊤)◦ = A◦ & ⊤ =S A
◦. The symmetric case follows

the same pattern, as well as unitality for ⊕.

• If ι = A⊗ (B⊕C) then A is output and B and C are input, and (A⊗B)⊕ (A⊗C) is input.
We have:

(A⊗ (B ⊕ C))• = A◦⊸ (C• &B•)

=S (A◦⊸ C•) & (A◦⊸ B•) = ((A⊗B)⊕ (A⊗ C))•

The symmetric case follows the same pattern, as well as distributivity of ` over &.

245

6.4. STAR-AUTONOMOUS CATEGORIES WITH FINITE PRODUCTS

• If ι = A ⊗ 0 then A is output and (A⊗ 0)
•
= A◦ ⊸ ⊤ =S ⊤ = 0•. The symmetric case

follows the same pattern, as well as cancellation of ` by ⊤.

Assume now that F ≃ G in the class of SMCC with finite products. As MALL is such a SMCC
with finite products, we have ℓ(F) ≃ ℓ(G) in MALL, thus ℓ(F) =L ℓ(G) by Theorem 6.95. As ℓ(F)
is an output formula, by induction on the length of the equational derivation of ℓ(F) =L ℓ(G), we
get that all the intermediary steps involve output formulas and each equation is mapped to =S by
()
◦ so that ℓ(F)◦ =S ℓ(G)

◦, and finally F = ℓ(F)
◦
=S ℓ(G)

◦
= G.

Conversely soundness easily comes from the definition of SMCC and products.

In ⋆-autonomous categories with finite products, we automatically have finite coproducts given
by A⊕ B := ((A⊸ ⊥) & (B ⊸ ⊥))⊸ ⊥ and 0 := ⊤⊸ ⊥. From equations of Table 6.2, one can
derive:

A⊕B = B ⊕A
A⊕ (B ⊕ C) = (A⊕B)⊕ C

A⊕ 0 = A
A⊗ (B ⊕ C) = (A⊗B)⊕ (A⊗ C)

A⊗ 0 = 0
(A⊕B)⊸ C = (A⊸ C) & (B⊸ C)

0⊸ C = ⊤

C

In the weaker setting of SMCC, finite products do not induce finite coproducts. It justifies the
possibility of considering them separately. The case of products only was Theorem 6.99. We are
now looking at both products and coproducts on one side, and coproducts only on the other side.

As a preliminary result, let us give a necessary condition for formulas to be isomorphic in this
symmetric monoidal closed setting.

Lemma 6.100. If A ≃ B in symmetric monoidal closed categories with finite products and coprod-
ucts with A and B distributed (i.e. ℓ(A) and ℓ(B) are distributed) then there exist cut-free proofs
of A ⊢ B and B ⊢ A in IMALL (intuitionistic multiplicative additive linear logic) [Bie95] whose left
0 rules introduce 0 ⊢ 0 sequents only and right ⊤ rules introduce ⊤ ⊢ ⊤ sequents only.

Proof. If A and B are isomorphic in SMCC with finite products and coproducts, the associated
isomorphisms can be represented as IMALL proofs which we can assume to be cut-free and atomic-
axiom. These proofs can be interpreted as MALL proofs (corresponding to the fact that MALL is
an SMCC with finite products and coproducts). By Lemma 6.24, these MALL proofs have their ⊤
rules introducing ⊢ ⊤, 0 sequents only which gives the required property on the IMALL proofs we
started with.

We conjecture that isomorphisms in SMCC with both finite products and finite coproducts
correspond to adding the equations of theory C to S (Table 6.2). However, our approach through
⋆-autonomous categories does not work since for example ⊤ ⊸ (⊤ ⊕ ⊤) and (0 & 0) ⊸ 0 are
isomorphic in ⋆-autonomous categories but not in SMCC with finite products and coproducts:

⊤⊸ (⊤⊕⊤) =D ⊤⊸ (((⊤⊸ ⊥) & (⊤⊸ ⊥))⊸ ⊥)
=D (⊤⊗ (0 & 0))⊸ ⊥ =D ((0 & 0)⊗⊤)⊸ ⊥
=D (0 & 0)⊸ (⊤⊸ ⊥) =D (0 & 0)⊸ 0

246

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

or directly by interpreting these formulas into MALL, one gets:

ℓ(⊤⊸ (⊤⊕⊤)) =L 0` (⊤⊕⊤) =L (⊤⊕⊤)` 0 =L ℓ((0 & 0)⊸ 0)

(the analogue of the non-ambiguity property does not hold). This isomorphism however is not valid
in the SMCC setting as shown by Lemma 6.100 since all cut-free proofs of (0&0)⊸ 0 ⊢ ⊤⊸ (⊤⊕⊤)
in IMALL have the following shape:

(⊤R)
⊢ (0 & 0)⊸ 0,⊤ ⊢ ⊤

(⊕iR)
⊢ (0 & 0)⊸ 0,⊤ ⊢ ⊤⊕⊤

(⊸R)
⊢ ((0 & 0)⊸ 0 ⊢ ⊤⊸ (⊤⊕⊤)

One could also investigate SMCC with finite coproducts only (without products). It is important
to notice that an initial object 0 in a SMCC induces that 0 ⊸ A is a terminal object for any A.
This first means that we cannot uncorrelate completely products and coproducts. It also means
that the theory of isomorphisms includes the equation 0 ⊸ A ≃ 0 ⊸ B even if it does not occur
in C (it might be the only missing equation). Regarding a characterization through ⋆-autonomous
categories, it is again not possible since, if we denote by ⊤ a terminal object, (⊤ ⊸ 0) ⊸ 0 and
⊤⊸ (⊤⊗⊤) are isomorphic in ⋆-autonomous categories (using 0 =D ⊤⊸ ⊥):

(⊤⊸ 0)⊸ 0 =D (⊤⊸ (⊤⊸ ⊥))⊸ (⊤⊸ ⊥)
=D ((⊤⊗⊤)⊸ ⊥)⊸ (⊤⊸ ⊥)
=D (((⊤⊗⊤)⊸ ⊥)⊗⊤)⊸ ⊥
=D (⊤⊗ ((⊤⊗⊤)⊸ ⊥))⊸ ⊥
=D ⊤⊸ (((⊤⊗⊤)⊸ ⊥)⊸ ⊥) =D ⊤⊸ (⊤⊗⊤)

(or ℓ((⊤⊸ 0)⊸ 0) =L (⊤⊗⊤)` 0 =L 0` (⊤⊗⊤) =L ℓ(⊤⊸ (⊤⊗⊤)) in MALL). But they are
not isomorphic in SMCC with initial and terminal objects by Lemma 6.100 since all cut-free proofs
of (⊤⊸ 0)⊸ 0 ⊢ ⊤⊸ (⊤⊗⊤) in IMALL have the following shape (up to permuting the premises
of the (⊗R)-rule):

(⊤R)
⊢ (⊤⊸ 0)⊸ 0 ⊢ ⊤

(⊤R)
⊢ ⊤ ⊢ ⊤

(⊗R)
⊢ (⊤⊸ 0)⊸ 0,⊤ ⊢ ⊤⊗⊤

(⊸R)
⊢ (⊤⊸ 0)⊸ 0 ⊢ ⊤⊸ (⊤⊗⊤)

or

(⊤R)
⊢ (⊤⊸ 0)⊸ 0,⊤ ⊢ ⊤

(⊤R)
⊢ ⊤

(⊗R)
⊢ (⊤⊸ 0)⊸ 0,⊤ ⊢ ⊤⊗⊤

(⊸R)
⊢ (⊤⊸ 0)⊸ 0 ⊢ ⊤⊸ (⊤⊗⊤)

6.5 Isomorphisms up to cut-elimination only
This section is a quick digression on what happens if proofs are not considered up to βη-equality,
but only β-equality. This means that in the definition of isomorphisms (Definition 6.1) one replaces
=βηo by =β .

To begin with, remark that considering proofs only up to η-equality is nonsensical from the point
of view of isomorphisms (and also retractions, discussed in the next chapter): when composing two
proofs, one gets a proof with a cut-rule, that cannot be removed up to η-equality. So there are no
formulas A and B that are isomorphic if one consider only =η in Definition 6.1!

247

6.6. PERSPECTIVES

Let us prove that, in MALL0,2, two formulas are isomorphic, when considering proofs only up to
=β , if and only if there are equal. More precisely, we prove that the only cut-free isomorphisms are
proofs composed of a unique ax -rule. This means that even if it looks like axiom-expansion brings
nothing, this is true only once axioms are expanded.

Lemma 6.101. Let A and B be two formulas in MALL0,2 along proofs π of ⊢ A⊥, B and ϕ of
⊢ B⊥, A such that π

B

▷◁ ϕ =β axA and ϕ
A

▷◁ π =β axB. Then A = B.

Proof. Without any loss of generality, one can assume π and ϕ to be cut-free proofs, up to elim-
inating cuts thanks to weak normalization of cut-elimination (Corollary 2.43). Set τA (resp. τB)
any cut-free proof such that π

B

▷◁ ϕ
β∗−→ τA (resp. ϕ

A

▷◁ π
β∗−→ τA). Thanks to Theorem 2.49, one gets

τA ⊢⊣
r∗ axA and τB ⊢⊣

r∗ axB . But no rule commutation can be applied in a proof made of only an
ax -rule: τA = axA and τB = axB for any normal forms τA and τB of π

B

▷◁ ϕ and ϕ
A

▷◁ π respectively.
Assume by contradiction that the rule r at the root of π is not an ax -rule, and by symmetry

suppose its main formula is not A⊥. Remark r cannot be a mix 0-rule as π is not on the empty
sequent. Then, in π

B

▷◁ ϕ the rule r commutes with the cut-rule. Doing this cut-elimination step,
followed by a normalization of the resulting proof (Corollary 2.43), one gets a proof with at its root
a rule of the same kind as r. But the resulting proof should be axA by our previous reasoning:
contradiction.

Therefore π, and likewise ϕ, is composed of a unique ax -rule, which implies in particular that
A = B.

Remark in the above proof that we needed both compositions to lead to axioms, which is why
this result cannot be generalized to the case of retractions.

Finally, one could imagine to modify the definition of isomorphisms (Definition 6.1) to keep only
β-equality, but asking for the composition to be equal to idA instead of axA. This gives the exact
same theory as the one described here thanks to Lemma 6.6, even in propositional linear logic with
all optional rules (i.e. the full system excepted for quantifiers).

6.6 Perspectives

Extending the result of Balat and Di Cosmo in [BD99], we gave an equational theory characterizing
type isomorphisms in multiplicative-additive linear logic with units as well as in ⋆-autonomous
categories with finite products: the one described on Table 6.1 on Page 199 (and on Table 6.2
for ⋆-autonomous categories). Proof-nets were a major tool to prove completeness, as notions like
fullness and ax -uniqueness are much harder to define and manipulate in sequent calculus. However,
we could not use them for taking care of the (additive) units, because there is no known appropriate
notion of proof-nets for MALL with additive units. We have thus been forced to work in the sequent
calculus, considering rule commutations.

Remark that we characterized not only type isomorphisms but also the isomorphisms them-
selves! They are obtained through the compositions of the "canonical ones" given in the proof of
Theorem 6.3 (all proofs being considered up to βη-equality). Indeed, reducing to distributed formu-
las can be done using the isomorphisms associated to distributivity, renaming to a non-ambiguous
unit-free formula acts only on labels, and we conclude at the end with a study of isomorphisms
(under their proof-net form) in Theorem 6.94.

248

CHAPTER 6. ISOMORPHISMS FOR MULTIPLICATIVE-ADDITIVE LINEAR LOGIC

The immediate question to address is the extension of our results to the characterization of type
isomorphisms for LL, including the exponential connectives. This is clearly not immediate since
the interaction between additive and exponential connectives is not well described in proof-nets,
in particular the ⇝oe transformation which is needed to get the exponential isomorphisms. Another
direction is considering MALLuf with quantifiers, for proof-nets can described this sub-system.

Conjecture 6.102. An equational theory sound and complete for isomorphisms of linear logic
without the optional rules, but with the ?-Rétoré transformation as well as identification of proofs
up to ! − ?c and ! − ?w commutations (see Remark 1.15), is the one given by the equations of L
(Table 6.1 on Page 199) with in addition the following equations:

Exponentials Quantifiers

!(A&B) = !A⊗ !B ∀X(A&B) = ∀XA& ∀XB
?(A⊕B) = ?A` ?B ∃X(A⊕B) = ∃XA⊕ ∃XB

!⊤ = 1 ∀X⊤ = ⊤
?0 = ⊥ ∃X0 = 0

∀XA`B = ∀X(A`B) if X not free in B
∃XA⊗B = ∃X(A⊗B) if X not free in B

∀X∀Y A = ∀Y ∀XA
∃X∃Y A = ∃Y ∃XA

(the same equations are conjectured for first order and second order quantifiers, e.g.
∀1X∀2Y A = ∀2Y ∀1XA).

Like always, it is easy to prove soundness, and all the difficulty lies in completeness. A good
definition of a distributive formula in the general setting would be to rewrite the non-commutative
equations of the above table from left to right (up to commutativity of the connectives, as we did
for distributivity):

!(A&B)→ !A⊗ !B !⊤ → 1 ?(A⊕B)→ ?A` ?B ?0→ ⊥
∀X(A&B)→ ∀XA& ∀XB ∀X⊤ → ⊤ ∃X(A⊕B)→ ∃XA⊕ ∃XB ∃X0→ 0
∀XA`B → ∀X(A`B) if X not free in B ∃XA⊗B → ∃X(A⊗B) if X not free in B
B ` ∀XA→ ∀X(B `A) if X not free in B B ⊗ ∃XA→ ∃X(B ⊗A) if X not free in B

This way, one can assume there is no & nor ⊤ below a ! and that there is no ∀ below a ` (as
X not free in B can always be satisfied up to α-renaming), reminiscent of what we did here for
distributivity (no & below a `).

Adding optional rules or Rétoré transformations may create new isomorphisms. For instance,
in MALL∅ one has ⊤ ≃ 0 (and more generally, this is true as soon as ⊢ 0, 0 is provable). Indeed,
the two associated proofs are:

(∅)
⊢ 0, 0

(⊤)
⊢ ⊤,⊤

where it does not matter on which occurrence of ⊤ the ⊤-rule is applied, for both possibilities are
related by ⊢⊣r , hence by =β . One can check that the compositions of these proofs yield identities,
using a single ⊤ − cut step (and possibly before a ⊤ − ⊤ commutation to have the ⊤-rule on the
non-cut occurrence).

249

Chapter 7

Retractions for Multiplicative Linear
Logic

Retractions are a generalization of isomorphisms: in category theory, A is a retract of B, denoted
A ⊴ B, if there exist morphisms A f−→ B and B g−→ A such that g ◦ f = idA – as in the following
commutative diagram:

A B

f

g
idA

This provides a natural notion of sub-typing: the morphism f can be seen as an encoding of
elements of A into elements of B, and g as a decoding. As for isomorphisms, one would like an
inequational theory characterizing retractions, with the same difficulties for the completeness part.
Nevertheless, there are way fewer results about retractions than isomorphisms in the literature. A
reasonable explanation for this lack of results would be its difficulty. At the best of my knowledge,
an inequational theory corresponding to retractions has only been given for simply typed affine
λ-calculus (where each abstraction uses its argument at most once) for inhabited atomic types
in [RU02]1 – which extends a similar result from [dPS92] to the case with many atoms – and for
simply typed λ-calculus in [BL85] with terms taken only up to β-equality, not βη-equality. The
corresponding inequational theory from [RU02] is the one on Table 7.1, with isomorphisms ≃ and
strict retractions ◁ which are not isomorphisms. Other results, weaker than an inequational theory,
include for instance the decidability of retractions in the simply typed λ-calculus [Pad01].

The question of retractions is mostly open in the case of linear logic with not even a conjecture
on what retractions are, in contrast to isomorphisms where an equational theory is conjectured
for full linear logic (see Conjecture 6.102 in Section 6.6). Even in MLL, the simpler sub-system for
most problems, no characterization is known. What is known is only a strict retraction (a retraction
which is not an isomorphism), the Beffara retraction A ◁ (A ⊸ A) ⊸ A = (A ⊗ A⊥) ` A. One

1More precisely, there is a subtlety in the definition of retraction from [RU02, Page 1]: a type A is a retract of B
if there exists a type environment E, terms M and N that can be typed as E ⊢ M : A → B and E ⊢ N : B → A
such that N ◦M =βη idA. In the case E is empty, they call it an embedding instead of a retraction, and what is
characterized are affine retractions. In the case where all atomic types are inhabited, both concepts are equivalent.

251

≃ ◁

A→ B → C ≃ B → A→ C A ◁ B → A
A ◁ (A→ X)→ X if A is Y1 → Y2 → · · · → X

Table 7.1: Inequational theory for retractions in simply typed affine λ-calculus [RU02]

can check the proof-nets associated to this retraction are not bipartite. In bigger sub-systems, such
as MALL, the problem looks even harder, with more retractions; for instance the one depicted on
Figure 6.1, but there also is a retraction A ◁ A⊕ A. Even only considering exponentials, one has
new retractions such as !A ⊴ !!A and ?!A ⊴ ?!?!A. This is in sharp contrast with isomorphisms,
where isomorphisms for MELL are conjectured to be the same as in MLL.

In all that follows, we implicitly assume to be in MLL0,2, retractions being complicated enough
even in this restricted case. Notice we already know the isomorphisms of MLL2 from the previous
chapter. Moreover, MLL is quite close to the simply typed linear λ-calculus (terms where each
argument is used exactly one), and the solution to the wider simply typed affine λ-calculus gives
an over-theory for retractions in the linear case – because adding more constructors or equations,
or relaxing constraints, can only give more retractions. As in the preceding chapter, we will use a
syntactic method and not a semantic one, because it is hard to guess a model preserving retractions
when one does not even known which retractions there are, so what the model should respect. We
give in this chapter some results about retractions in this setting, and in particular a proof of the
Cantor-Bernstein-Schröeder property, which was not proved before at the best of our knowledge.
Unfortunately, we did not manage to give an inequational theory for the general problem of strict
retractions A ◁ B. Still, we managed to solve the problem for X ◁ B with X a signed atom. In
other words, we found all universal super-types in multiplicative linear logic.

Outline We start by giving the necessary definitions: retractions, the Cantor-Bernstein-Schröeder
property, . . . (Section 7.1). We then proceed in a similar fashion as we did for isomorphisms in
the previous chapter, with less difficulties as we can reuse properties proved in this chapter. We
prove units do not give more retractions than if they were just atoms, except for their unitality
isomorphisms; this allows us to reduce the problem to MLLuf , and hence to use proof-nets. We
also reduce the problem in the presence of mix 2- and mix 0-rules, possibly with mix -Rétoré, i.e.
reduce the MLL0,2 case, to the MLLuf one (Section 7.2). Mimicking what we did for isomorphisms,
we can again reduce to non-ambiguous formulas, except that because the type-retraction relation
is not symmetric, we can only do it for one of the two formulas (Section 7.3). At this point, we
have enough to prove the Cantor-Bernstein-Schröeder property for MLL (Section 7.4). Afterwards,
we proceed with some general results, which are unfortunately insufficient to solve the general case
(Section 7.5). Still, associated with some more specific lemmas they allow us to find all retracts
to an atom (Section 7.6). We end this chapter by explaining why our method does not scale to
the general case (Section 7.7), and by speaking about decidability and complexity of retractions in
wider sub-systems of linear logic (Section 7.8). As an aside, we argue retractions in MLL0,2 without
axiom-expansion are retractions to an atom (Section 7.9).

252

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

7.1 Linear Retractions
Definition 7.1 (Retraction). Consider (a sub-system of) linear logic with ⊢⊣o some (possibly none,
or all) of the Rétoré transformations. There is a retraction between formulas A and B, denoted
A ⊴ B, if there exist proofs π of ⊢ A⊥, B and π′ of ⊢ B⊥, A such that π

B

▷◁ π′ =βηo axA:

π
B

▷◁ π′ =

π
⊢ A⊥, B

π′

⊢ B⊥, A
(cut)

⊢ A⊥, A =βηo
(ax)

⊢ A⊥, A = axA

When A ⊴ B is a retraction, we say A is the retract formula whereas B retracts to A. We
also call A ⊴ B a retraction to A.
Remark 7.2. By definition, if A ⊴ B then A⊥ ⊴ B⊥, with the very same proofs. Notice it is not
B⊥ ⊴ A⊥!

Fact 7.3 (≃ ⊆ ⊴). By definition, if A ≃ B then A ⊴ B, i.e. ≃ ⊆ ⊴.

Definition 7.4 (Strict Retraction). We say a formula A is a strict retract of a formula B, that
we denote A ◁ B, when A ⊴ B and A ̸≃ B.

A general result one can wish for is the Cantor-Bernstein-Schröeder property.

Definition 7.5 (Cantor-Bernstein-Schröeder property). A logic (or more generally a category) has
the Cantor-Bernstein-Schröeder property when the following holds: if A ⊴ B and B ⊴ A
then A ≃ B.

The Cantor-Bernstein-Schröeder property is also called Cantor-Bernstein or Schröeder-Bernstein
property. We choose the full name to remove any possible ambiguity. This property does not hold
directly by the definitions of retractions and isomorphisms, because the same proofs must compose
to the identities in both directions so as to yield an isomorphism, while the two retractions can give
different proofs (of the same sequents).

This notion comes as a generalization of the corresponding result from set theory about in-
jections, which is here in terms of split monomorphisms. A stronger notion of Cantor-Bernstein-
Schröeder property exists, with monomorphisms instead of split monomorphisms.

The Cantor-Bernstein-Schröeder property also has a stronger variant where we look not only on
objects but also on the underlying morphisms.

Definition 7.6 (Strong Cantor-Bernstein-Schröeder property). A logic (or more generally a cat-
egory) has the strong Cantor-Bernstein-Schröeder property when the following holds: if
A ⊴ B, with as morphisms π : A → B and π′ : B → A, and B ⊴ A, then A ≃ B, with as
morphisms π : A→ B and π′ : B → A.

As for isomorphisms, one can consider normal forms for the involved proofs.

Definition 7.7. We write
π,π′

A ⊴ B when the atomic-axiom, cut-free, ⇝o -normal proofs π of ⊢ A⊥, B
and π′ of ⊢ B⊥, A respects π

B

▷◁ π′ =βo idA.

Lemma 7.8. Given two formulas A and B, A ⊴ B if and only if there exist proofs π and π′ such

that
π,π′

A ⊴ B.

253

7.2. REDUCTION TO UNIT-FREE MLL AND PROOF-NETS

Proof. The converse way follows by definition of a retraction. For the direct way, take proofs π
and π′ given by the definition of a retraction. One can expand all axioms, eliminate all cuts and
apply all⇝o in π and π′ (Proposition 2.8 and Corollary 2.43) to obtain respectively ϕ and ϕ′. Using

Lemma 6.5, ϕ
B

▷◁ ϕ′ =βo idA. Hence,
ϕ,ϕ′

A ⊴ B.

7.2 Reduction to unit-free MLL and proof-nets

As for isomorphisms, the problem can be reduced to the unit-free case, which will allow us to use
proof-nets. We do this in three times, reducing the problem from MLL0,2 (with potentially the
mix -Rétoré transformation) to proof-nets of MLLuf . First, we prove optional multiplicative rules
and the mix -Rétoré transformation add at most one isomorphism, so that retractions in MLL0,2

can be deduced from those in MLL (Section 7.2.1). Then, we demonstrate that while units add the
unitary isomorphisms, they do not add any other retractions; thence the problem of retractions in
MLL is reduced to the one in MLLuf (Section 7.2.2). Finally, in the unit-free case the proof-net
syntax can be considered, not only for MLLuf but even for MALLuf (Section 7.2.3).

7.2.1 Optional multiplicative rules

We study here what happens when taking (some of) the optional multiplicative rules and (maybe)
the mix -Rétoré transformation ⊢⊣om. We prove that adding both optional multiplicative rules does
not add any retraction, unless one also adds the mix -Rétoré transformation, in which case the
added retractions are exactly given by the isomorphism 1 ≃ ⊥.

Lemma 7.9. In MLL0,2 with ⊢⊣om, ⊥ ≃ 1.

Proof. Consider the two following proofs:

π =
(1)

⊢ 12
(1)

⊢ 11
(mix2)

⊢ 12, 11
π′ =

(mix0)
⊢

(⊥)
⊢ ⊥2

(⊥)
⊢ ⊥1,⊥2

254

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

One can check that:

π
11
▷◁ π′

β−→
(1)

⊢ 12

(1)
⊢ 11

(mix0)
⊢

(⊥)
⊢ ⊥2

(⊥)
⊢ ⊥1,⊥2

(cut)
⊢ ⊥2

(mix2)
⊢ 12,⊥2

β−→ (1)
⊢ 12

(mix0)
⊢

(⊥)
⊢ ⊥2

(mix2)
⊢ 12,⊥2

⊢⊣r
∗

(1)
⊢ 12

(mix0)
⊢

(mix2)
⊢ 12

(⊥)
⊢ 12,⊥2

⇝
om id⊥2

And:

π′
⊥2
▷◁ π

β+−→

(1)
⊢ 12

(mix0)
⊢

(⊥)
⊢ ⊥2

(cut)
⊢

(⊥)
⊢ ⊥1

(1)
⊢ 11

(mix2)
⊢ ⊥1, 12

β−→

(mix0)
⊢

(⊥)
⊢ ⊥1

(1)
⊢ 12

(mix2)
⊢ ⊥1, 12

⊢⊣r
(mix0)

⊢
(1)

⊢ 12
(mix2)

⊢ 12
(⊥)

⊢ ⊥1, 12
⇝
om id11

Using Proposition 2.46,
π,π′

⊥2 ≃ 11 follows.

Fact 7.10. Consider π =β π
′ in MLL0,2, without the ⊢⊣om transformation. Then π has a mix 2-rule

(resp. mix 0-rule) if and only if π′ has such a rule.

Proof. Because in this logical system no cut-elimination step can erase nor produce a mix 2- or
mix 0-rule.

Lemma 7.11. In MLL0,2, with or without ⊢⊣om, a rule with as premise the empty sequent ⊢ can only
be a ⊥- or mix 2-rule.

255

7.2. REDUCTION TO UNIT-FREE MLL AND PROOF-NETS

Proof. Such a rule cannot be an ax -, `-, ⊗-, 1- nor mix 0-rule, as they have no premise or have
all premises with at least one formula. The only other rules in this system are the ⊥- and mix 2-
rules.

Lemma 7.12. In MLL0,2 with ⊢⊣om but without ⊥, proofs in normal form for ⇝om are mix 0-free or

equal to
(mix0)

⊢ .

Proof. Consider a proof with a mix 0-rule. Using Lemma 7.11, a rule below it can only be a ⊥- or
mix 2-rule. But there is no ⊥, and a mix 2-rule below would yield a possible ⇝om reduction.

Lemma 7.13. In MLL2, there is no formula A such that ⊢ A and ⊢ A⊥ are both provable.

Proof. If it were the case, we could compose both proofs to get a mix 0-free proof of the empty
sequent ⊢. Reducing cuts in this proof (Corollary 2.43), one would get a cut-free proof of ⊢. But
the only rules of MLL2 that can have for conclusion the empty sequent are a cut-rule or a mix 2-rule
between two proofs of ⊢, which leads to a contradiction.

Proposition 7.14.

• The retractions of MLL0,2 without ⊢⊣om are exactly the retractions of MLL (and thus this also
holds for MLL2 and MLL0).

• The retractions of MLL0,2 with ⊢⊣om are the retractions of MLL possibly composed with ⊥ ≃ 1.

Proof. The first item can be easily proven, and the second one can be reduced to the first. For

the first item, by Lemma 7.8 take a retraction
π,π′

A ⊴ B in MLL0,2 without ⊢⊣om. By Fact 7.10 one has

π
B

▷◁ π′ =β idA where in no proof of this sequence there is a mix 2- or a mix 0-rule. Thus
π,π′

A ⊴ B in
MLL.

Take a retraction
π,π′

A ⊴ B in MLL0,2 with ⊢⊣om (Lemma 7.8). If A (resp. B) has a 1- or ⊥-sub-
formula, then one can assume A = 1 (resp. B = 1), up to isomorphism. Indeed, thanks to ⊥ ≃ 1
and the unitality isomorphisms, one can rewrite:

1⊗ C → C 1` C → C ⊥ → 1
C ⊗ 1 → C C ` 1 → C

(following what we did for distributed formulas in Section 6.2.3, this system being convergent, and
its equations isomorphisms by Theorem 6.3 and Lemma 7.9). Remark π and π′ are mix 0-free, as
there are normal forms for ⇝om and those proofs are not of the empty sequent (Lemma 7.12).

If both A = 1 and B = 1, then 1 ⊴ 1 is a retraction of MLL.
If A = 1 and B is unit-free, then π and π′ are respectively proofs of ⊢ ⊥, B and ⊢ B⊥, 1. Using

⊥-commutations, as π is cut-free, π ⊢⊣r
∗

ϕ
⊢ B

(⊥)
⊢ ⊥, B (the ⊥-rule is reversible). Likewise, as the

only rule below the 1-rule of π′ can only be a mix 2-rule (for there is no cut- nor ⊥-rules as B⊥ is

unit-free), using mix 2-commutations one gets π′ ⊢⊣r
∗

ϕ′

⊢ B⊥
(1)

⊢ 1
(mix2)

⊢ B⊥, 1 . We thus have proofs of
B and B⊥, without mix 0-rules by hypothesis. Contradiction with Lemma 7.13.

256

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

If A is unit-free and B = 1, we can reason as in the previous case up to swapping A and B,
because we did not use that the composition of proofs yields an identity.

Thence, we can assume A and B to be unit-free. In π
B

▷◁ π′, reach a normal form ϕ using
cut-elimination and⇝om steps (Proposition 2.41). By Theorem 2.49, ϕ (⊢⊣r ∪ ⊢⊣om)∗ idA. But, for rules
of MLL0,2

uf , ⊢⊣r · ⊢⊣om ⊆ ⊢⊣om · ⊢⊣r because a rule below a mix 0-rule can only be a mix 2-rule as there
cannot be any ⊥-rule (Lemma 7.11). This allows rewriting ϕ (⊢⊣r ∪ ⊢⊣om)∗ idA into ϕ ⊢⊣om

∗

τ ⊢⊣r
∗

idA
for some proof τ . Thence, as ⊢⊣r

∗

preserves the absence of mix 0-rule, τ has no mix 0-rule. But ϕ
also has none (Fact 7.10), thus both proofs are normal forms for ⇝om, and are equal up to ⊢⊣om. By
confluence of ⇝om, ϕ = τ , hence ϕ ⊢⊣r

∗

idA. We thus found π
B

▷◁ π′ =β idA (Proposition 2.46), so this
is also a retraction in MLL0,2; meaning the second item can be deduced from the first one.

Remark 7.15. Contrary to MLL2, retractions of MALL2 are not the same as retractions without the
mix 2-rule. Indeed, one can prove that in MALL X+ ⊴ X+ & A if and only if ⊢ X−, A is provable
(Lemma 7.64), and looking at the proof of this last lemma one also gets that in MALL2 if ⊢ X−, A
is provable then X+ ⊴ X+ & A. For provability with the mix 2-rule is not provability without the
mix 2-rule, one easily deduces an example. It suffices for instance to take A = X+ ` (Y − ` Y +) to
get that X+ ⊴ X+ & (X+ ` (Y − ` Y +)) is a retraction in MALL2 but not in MALL.

7.2.2 Units do not matter
Our goal here is to prove an analog of Theorem 6.30 for retractions in MLL, reducing the problem
to the unit-free case MLLuf . To this aim, we reason as done in Section 6.2, reusing results from this
section as we have taken care to write them in a generic way. Recall a 1/⊥-pattern is the following
sub-proof:

(1)
⊢ 1

(⊥)
⊢ ⊥, 1

Also notice that a formula of MLL is distributed (Definition 6.8) if and only if it does not have
any sub-formula of the form

A⊗ 1 1⊗A ⊥`A A`⊥
(where A is any formula).

Definition 7.16. Denote by nA(B) the number of A-sub-formulas in B, i.e. the number of occur-
rences of A as a sub-formula of B. We extend this notion to sequents, with nA(⊢ Γ) the number of
A-sub-formulas in the formulas of Γ, meaning nA(⊢ B1, . . . , Bn) =

∑n
i=1 nA(Bi).

Proposition 7.17. Let A and B be two distributed formulas, π and π′ cut-free proofs respectively
of ⊢ A⊥, B and ⊢ B⊥, A. Then all 1 and ⊥-rules in π and π′ belong to a 1/⊥-pattern.

Proof. Take a 1-rule of π, proving a sequent ⊢ 1. There must be a rule r below it in π, for ⊢ 1
consists of a unique formula whereas the conclusion of π has two formulas. The rule r cannot be a
`-rule, again as ⊢ 1 contains a unique formula. By distributivity, r cannot be a ⊗-rule too, for it
would give a formula of the shape 1 ⊗ − or − ⊗ 1. As π is cut-free, the sole remaining possibility
is r being a ⊥-rule. Thence, every 1-rule of π belongs to a 1/⊥-pattern, and similarly for π′.

Exactly two kinds of rules can introduce a 1-formula in π: a 1-rule and an ax -rule on ⊢ ⊥, 1.
Similarly, exactly two rules can introduce a ⊥-formula: a ⊥-rule and an ax -rule on ⊢ ⊥, 1. Our
previous analysis proves there is at least as many ⊥-rules as 1-rules in π. As an ax -rule introduces

257

7.2. REDUCTION TO UNIT-FREE MLL AND PROOF-NETS

as many ⊥-formulas as 1-formulas, and because in MLL each formula of the conclusion sequent
has exactly one rule in a proof introducing it, we deduce that n1(⊢ A⊥, B) ≤ n⊥(⊢ A⊥, B). By
symmetry, looking at π′ instead of π, n1(⊢ B⊥, A) ≤ n⊥(⊢ B⊥, A). However:

n1(⊢ A⊥, B) = n1(A
⊥) + n1(B) = n⊥(A) + n1(B)

n⊥(⊢ A⊥, B) = n⊥(A
⊥) + n⊥(B) = n1(A) + n⊥(B)

n1(⊢ B⊥, A) = n1(B
⊥) + n1(A) = n⊥(B) + n1(A)

n⊥(⊢ B⊥, A) = n⊥(B
⊥) + n⊥(A) = n1(B) + n⊥(A)

Thence, n⊥(⊢ B⊥, A) = n1(⊢ A⊥, B) ≤ n⊥(⊢ A⊥, B) = n1(⊢ B⊥, A) ≤ n⊥(⊢ B⊥, A). Thus, we are
in the equality case, which can only hold if all (1- and) ⊥-rules in π and π′ are in a 1/⊥-pattern,
because a given ⊥ or 1-rule cannot belong to two different 1/⊥-patterns.

Remark 7.18. Proposition 7.17 corresponds to [BD99, Theorem 19], except that the result is stated
here in sequent calculus while the authors of [BD99] worked in proof-nets with ⊥-boxes.

Lemma 7.19. Set A and B distributed formulas, and X an unsigned atom. If A ⊴ B then
A[X+/1, X−/⊥] ⊴ B[X+/1, X−/⊥].

Proof. Suppose
π,π′

A ⊴ B by Lemma 7.8. Exactly two kinds of rules can introduce a 1-formula (resp.
⊥-formula): a 1-rule (resp. ⊥-rule) and a non-expanded ax -rule on ⊢ ⊥, 1. Using Proposition 7.17,
the atomic-axiom π and π′ have their ⊥ and 1-formulas introduced by 1/⊥-patterns. We apply
Lemma 6.28: the two proofs given by this result yield σ(A) ⊴ σ(B), with σ = [X+/1, X−/⊥].

Theorem 7.20. Take A and B formulas of MLL. Set A′ (resp. B′) a normal form of A (resp.
B) for D (recall Definition 6.10 on Page 205, normalizing by Lemma 6.11). Then A ⊴ B ⇐⇒
A′[X+/1, X−/⊥] ⊴ B′[X+/1, X−/⊥], where X is a fresh atom for both A and B.

Proof. Remark that A ⊴ B ⇐⇒ A′ ⊴ B′ (Corollary B.7), using that the rewriting rules of D are
between isomorphic formulas (Theorem 6.3).

Assume first that A′ ⊴ B′, and take X any unsigned atom. According to Lemma 7.19,
A′[X+/1, X−/⊥] ⊴ B′[X+/1, X−/⊥].

Reciprocally, suppose A′[X+/1, X−/⊥] ⊴ B′[X+/1, X−/⊥] with X a fresh atom (for A and B,
or equivalently for A′ and B′). Then A′ ⊴ B′ follows by substituting X by 1, as X was fresh, thus
[X+/1, X−/⊥][1/X] is the identity substitution, and because substitution on an atom preserves
retractions (Lemma B.6).

This last result tell us that the only retractions introduced by the units 1 and ⊥ are their
respective unitality isomorphisms for ⊗ and `. Therefore, we assume from now on and until the
end of this chapter to be in MLLuf , unless explicitly stated. In particular, this allows us to work
with (canonical) proof-nets! It also means implicitly that our formulas are distributed, and our
proof-nets ax -unique (Lemma 6.41).

7.2.3 Retractions in proof-nets

As for isomorphisms, a notion of retraction can be defined directly on proof-nets.

258

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

Definition 7.21. We write
θ,ψ

A ⊴ B when θ and ψ are two cut-free proof-nets respectively on A⊥, B
and B⊥, A such that θ

B

▷◁ ψ
β∗−→ idA.

We prove here that A ⊴ B,
π,π′

A ⊴ B and
θ,θ′

A ⊴ B are equivalent, as was the case for isomorphisms.
This particular result is true not only in MLLuf , but also in MALLuf .

Theorem 7.22 (Type retractions in proof-nets). Set A and B two MALLuf formulas. The follow-
ings are equivalent:

(1) A ⊴ B

(2) there exist proofs π, π′ such that
π,π′

A ⊴ B

(3) there exist proof-nets θ, θ′ such that
θ,θ′

A ⊴ B

Proof. That Items (1) and (2) are equivalent is simply Lemma 7.8. We prove that Items (2) and (3)
are equivalent by double implication.

Set π, ϕ proofs such that
π,ϕ

A ⊴ B. By Lemma 4.25 and as Pf (idA), Pf (π) and Pf (ϕ) are cut-
free, B(Pf (π)

B

▷◁ Pf (ϕ)) = Pf (idA). Thus, there exist cut-free proof-nets Pf (π) and Pf (ϕ) whose
composition over B yields after cut-elimination the identity proof-net of A.

Assume there exist two proof-nets θ and ψ such that
θ,ψ

A ⊴ B. By Theorem 4.18, there exist
atomic-axiom cut-free proofs π and ϕ such that Pf (π) = θ and Pf (ϕ) = ψ (they are cut-free by
Fact 4.17, so P is the singleton containing the image of Pf). Using Lemma 6.34, π

B

▷◁ ϕ =β idA.

Hence
π,ϕ

A ⊴ B.

7.3 Reduction to a non-ambiguous formula

We show that in A ⊴ B, one can assume A to be non-ambiguous. This is done thanks to half-
bipartiteness of proof-nets of a retraction, leveraging results from Chapter 6.

7.3.1 Retractions are half-bipartite

Proposition 7.23. Assuming
θ,ψ

A ⊴ B, θ (resp. ψ) is half-bipartite in A⊥ (resp. A).

Proof. We proceed by contradiction: w.l.o.g. there is an axiom link a in θ which is between leaves
of A⊥. Whence a, which does not involve leaves of B, belongs to the composition where cuts have
been eliminated – there is no erasure of linkings as there is no additive. But this reduction yields
the identity proof-net of A, which is bipartite by Corollary 6.44, so there cannot be an axiom link
between leaves of A⊥ inside: contradiction.

Remark 7.24. The extension of Proposition 7.23 to MALLuf does not hold. The underlying reason
is that links breaking the half-bipartite property can be erased during cut-elimination, when all

259

7.3. REDUCTION TO A NON-AMBIGUOUS FORMULA

linkings they belong to do not match. As a counter-example, consider the following retraction –
which is a strict one, as we know the equational theory L† corresponds to isomorphisms in MALLuf :

Y + ` (X+ ⊗X−) ◁ (Y + ` (X+ ⊗X−)) & (Y + ⊗ (Z+ ` Z−))

The only pair of proof-structures on the considered sequents are the following connected proof-nets,
with the left one not half-bipartite in neither of its conclusions.

X+ X−

Y −`

⊗

Y +

X+ X−

Y +

Z+ Z−

`

⊗

&

⊗

` X−X+

Y + ⊗

`

Y −

X−X+

Y −

Z−Z+

⊗

`

⊕

`

⊗

Also remark there is no renaming α of the left proof-net making even one of its conclusion non-
ambiguous. This means that when considering a retraction A ⊴ B in MALLuf , we cannot assume
A to be non-ambiguous. Neither can one assume the proof-nets to be half-bipartite, whereas it can
be done in both MLLuf and ALLuf (Lemma 6.42)! See also Figure 6.1 on Page 221 for another
example.

Lemma 7.25. Take θ a proof-net on A,B which is half-bipartite in A. Then s(A) ≤ s(B), with
equality if and only if θ is bipartite.

Proof. As θ is half-bipartite in A, as well as ax -unique (Lemma 6.41), all leaves of A are associated,
by means of axiom links, to distinct leaves of B. Hence the number of leaves of A is at most the
number of leaves of B⊥, so s(A) ≤ s(B) (using Fact 1.3).

In the equality case, there cannot be a link between leaves of B, for otherwise the number of
leaves of B would be strictly greater than the one of A. Therefore θ is bipartite.

Reciprocally, if θ is bipartite, then the number of leaves of A is equal to the number of leaves of
B, thus these two formulas have the same size (using again Fact 1.3).

Lemma 7.26. Assuming
θ,ψ

A ⊴ B, θ is bipartite if and only if ψ is.

Proof. Remember an MLLuf proof-net is always ax -unique (Lemma 6.41). We know that θ and ψ are
half-bipartite respectively in A⊥ and A (Proposition 7.23). Then θ bipartite if and only if s(A⊥) =
s(B) (Lemma 7.25), i.e. s(A) = s(B⊥) (Fact 1.2), if and only if ψ is bipartite (Lemma 7.25).

7.3.2 Reduction to a non-ambiguous formula

Proposition 7.27. Take A and B some formulas and assume
θ,θ′

A ⊴ B. There exist renamings α

and α′, respectively of θ and θ′, such that
α(θ),α′(θ′)

α′(A) ⊴ α(B), with α′(A) non-ambiguous. (In particular,
α(A⊥) = α′(A)⊥ and α′(B⊥) = α(B)⊥.)

Proof. This is a corollary of Theorem 6.80, not using its Item (5). The needed hypotheses come
from previous results, namely Lemma 6.41 and Proposition 7.23.

260

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

Lemma 7.28 (Non-ambiguous retractions). Let A and B be formulas, such that
θ,θ′

A ⊴ B. There
exists an atomic-substitution σ and formulas A′ and B′, with A′ non-ambiguous, such that A =

σ(A′), B = σ(B′) and
ψ,ψ′

A′ ⊴ B′ for some proof-nets ψ and ψ′.

Proof. By Proposition 7.27, there exists renamings α and α′, respectively of θ and θ′, such that

α(A⊥) and α′(A) are non-ambiguous, and
α(θ),α′(θ′)

α′(A) ⊴ α(B), with α(A⊥) = α′(A)⊥ and α′(B⊥) =
α(B)⊥.

Pose A′ := α′(A) and B′ := α(B), hence
α(θ),α′(θ′)

A′ ⊴ B′ and α(θ) is on the sequent A′⊥, B′. Remark
A′ is non-ambiguous, for α(A) is non-ambiguous (Lemma 6.63).

On α(θ) one can define a renaming α−1 such that θ = α−1(α(θ)). We use Lemma 6.67 for this,
which proves that α−1 is a renaming, with α−1(l) = m where m is the unique leaf of θ such that
α(m) = l.

Recall that all leaves of A′⊥ are on distinct unsigned atoms by definition of non-ambiguous.
Hence, the definition of α−1 on A′⊥ can be seen as an atomic-substitution σ on atoms of A′⊥ and
of B′, as follows. Take α(l) a leaf of A′⊥, B′, of label a signed atom α(X); w.l.o.g. α(X) is a positive
occurrence of an unsigned atom. The leaf l belongs to some class C for B⊥ ∗B of θ

B

▷◁ θ′. Remember
that in the proof of Theorem 6.80, we defined α(X) = f(C), with f any injective function from
the classes for B⊥ ∗ B of θ

B

▷◁ θ′ to the set of positive atoms of X . Then, α−1 can be seen as the
atomic-substitution σ on atoms of A′⊥ and B′, defined by σ(Y +) = α−1(l(X)) where X is a leaf
of A′⊥, B′ of label Y + (existing as by ax -uniqueness each negative leaf is associated to a positive
leaf of dual label). This is well-defined, as two leaves of A′⊥, B′ with the same label belong to the
same class C by definition of α, and by injectivity of f in this definition.

Thus, θ = α−1(α(θ)) = σ(α(θ)): in particular, σ(B′) = B and σ(A′
⊥
) = A⊥, so σ(A′) = A

(by Fact 1.5). Finally, A′ is a non-ambiguous formula such that
α(θ),α′(θ′)

A′ ⊴ B′ , A = σ(A′) and B =
σ(B′).

Corollary 7.29 (Reduction to non-ambiguous formulas). The set of couples of formulas A and B
such that A ⊴ B is the set of instances, by an atomic-substitution, of couples of formulas A′ and
B′ such that A′ is non-ambiguous and A′ ⊴ B′. It is also the set of instances, by a substitution, of
couples of formulas A′ and B′ such that A′ is non-ambiguous and A′ ⊴ B′.

Proof. By Theorem 7.22 and Lemma 7.28, given a retraction A ⊴ B, one gets a non-ambiguous
formula A and a formula B′ such that A′ ⊴ B′ and A (resp. B) is an instance by an atomic
substitution of A′ (resp. B′). This atomic substitution can also be seen as a “standard” substitution.

Reciprocally, a substitution (thus an atomic-substitution) preserves retractions (Lemma B.6),
so that given a non-ambiguous formula A′ and some formula B′ as well as a substitution σ, A′ ⊴
B′ =⇒ σ(A′) ⊴ σ(B′).

Therefore, when considering a retraction A ⊴ B, we can always assume A to be non-ambiguous.
In this case, retraction can be reduced to provability only, as was done for isomorphisms with
Theorem 6.90.

261

7.4. CANTOR-BERNSTEIN-SCHRÖEDER PROPERTY

Theorem 7.30 (Proof-nets for non-ambiguous retractions). Let A and B be formulas such that A
is non-ambiguous. If there exist proof-nets θ and ψ respectively on the sequents A⊥, B and B⊥, A,

then
θ,ψ

A ⊴ B.

Proof. By Theorem 6.89, θ
B

▷◁ ψ reduces to idA, whence
θ,ψ

A ⊴ B.

7.4 Cantor-Bernstein-Schröeder property
In the case where one of the proof-nets of the retraction is bipartite, we can prove there is an
isomorphism.

Theorem 7.31. For A and B formulas, assume
θ,θ′

A ⊴ B, with θ and θ′ proof-nets respectively on

the sequents A⊥, B and B⊥, A, such that θ or θ′ is bipartite. Then
θ,θ′

A ≃ B.

Proof. By Proposition 7.27, there exists renamings α and α′, respectively of θ and θ′, such that
α(θ),α′(θ′)

α′(A) ⊴ α(B), with α′(A) non-ambiguous. As a renaming only modify leaves, α(θ) or α′(θ′) is
bipartite. In fact, using Lemma 7.26, both are. By Lemma 6.70, as α′(θ′) is bipartite and α′(A)
non-ambiguous, it follows α′(B⊥) = α(B)⊥ is non-ambiguous, and so is α(B) (Lemma 6.63).

Using Theorem 6.90,
α(θ),α′(θ′)

α′(A) ≃ α(B). But cut-elimination does not depend on labels, so θ
A

▷◁ θ′

reduces to a proof-net whose links are those of an identity proof-net: by Lemmas 6.41 and 6.43,
this proof-net and the identity proof-net of B have each exactly one linking, and their links are the

same, hence they are equal. Thus,
θ,θ′

A ≃ B.

This last result corresponds to the strong Cantor-Bernstein-Schröeder property: proof-nets cor-
responding to a retraction between unit-free formulas of the same size are also proof-nets corre-
sponding to an isomorphism between these formulas.

Proposition 7.32. Let A and B be MLLuf formulas such that A ⊴ B. Then s(A) ≤ s(B), with
equality if and only if A ≃ B. We can be even more precise: s(B) = s(A) + 4× n for some n ∈ N.

Proof. By Theorem 7.22 and Proposition 7.23,
θ,θ′

A ⊴ B with θ (resp. θ′) half-bipartite in A⊥ (resp.
A). By Fact 1.2 and Lemmas 6.41 and 7.25, s(A) = s(A⊥) and the number of leaves of B is equal
to the number of leaves of A⊥ plus 2× n for some n ∈ N: by ax -uniqueness and half-bipartiteness
in A⊥, each leaf of A⊥ is associated to one of B by means of an axiom link; the other n links,
between leaves of B, along with Fact 1.3, yield the result. In the equality case, s(A) = s(B), and θ

is bipartite. By Theorem 7.31,
θ,θ′

A ≃ B follows. Then, according to Theorem 6.35, A ≃ B.
Reciprocally, if A ≃ B, then s(A) = s(B) as isomorphisms in MLLuf arise from associativity

and commutativity of ⊗ and ` (Remark 6.96).

Remark 7.33. In Proposition 7.32, we need the unit-freeness hypothesis. This is because iso-
morphisms in the unit-free sub-system do not modify the size of a formula, whereas neutrality
of units does. As an example, look at X+ ⊗ (⊥ ` 1) ⊴ X+ ⊗ (X− ` X+). One can check
that X+ ◁ X+ ⊗ (X− ` X+) (this is done later, in Lemma 7.50 on Page 269). But X+ ≃

262

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

X+ ⊗ (⊥ ` 1) by Theorem 6.3, and retractions can be considered up to isomorphisms (Corol-
lary B.7), so X+ ⊗ (⊥` 1) ⊴ X+ ⊗ (X− `X+). These formulas share the same size, but are not
isomorphic: X+ ⊗ (⊥` 1) ̸≃ X+ ⊗ (X− `X+) using Theorem 6.95.

Corollary 7.34. For A and B two MLLuf formulas, if A ◁ B then s(A) < s(B).

Proof. We apply Proposition 7.32: as A ⊴ B it follows s(A) ≤ s(B). And if s(A) = s(B), then
A ≃ B, a contradiction.

The result on Proposition 7.32 is a really strong one: we have on one side strict retractions A ◁ B
with s(A) < s(B), and on the other side isomorphisms A ≃ B. As a corollary, we know for instance
the followings cannot be retractions, as they are not isomorphisms (according to Theorem 6.95):

X ⊗ Y ̸⊴ X ` Y

X ⊗ (Y ` Z) ̸⊴ Y ` (X ⊗ Z)

Therefore, the problem of finding retractions in MLL reduces to finding strict retractions A ◁ B
in MLLuf , with s(A) < s(B) (remember that units have been removed in Section 7.2). We can also
deduce the Cantor-Bernstein-Schröeder property for MLL from the previous result.

Lemma 7.35 (Cantor-Bernstein-Schröeder for MLLuf). Let A and B be MLLuf formulas such that
A ⊴ B and B ⊴ A. Then A ≃ B.

Proof. By Proposition 7.32, s(A) ≤ s(B) and s(B) ≤ s(A). Whence we are in the equality case,
and A ≃ B.

Theorem 7.36 (Cantor-Bernstein-Schröeder for MLL). Let A and B be MLL formulas such that
A ⊴ B and B ⊴ A. Then A ≃ B.

Proof. Let A1 (resp. B1) be a normal form of A (resp. B) for D. Set A2 = A1[X
+/1, X−/⊥] and

B2 = B1[X
+/1, X−/⊥], for a fresh atom X. By Theorem 7.20, A2 ⊴ B2 and B2 ⊴ A2. But A2 and

B2 are unit-free and therefore, by Lemma 7.35, A2 ≃ B2. We obtain A ≃ B by Theorem 7.20.

7.5 General results

We give here some general results about retractions in MLLuf . The main idea from this section
and the next one is to find particular sub-graphs in proof-nets of a retraction, for instance a shape
(nearly) correspond to a composition with a Beffara retraction. Thence, removing one of these sub-
graphs allows to conclude by induction that a retraction is made of the “basic” retractions whose
shape we found. We prove here results on a shape corresponding to the Beffara retraction, even if
we can only prove such a shape appears in retractions to an atom (in the next section).

Recall that, when A ⊴ B, we can assume A (but not B) to be non-ambiguous, with each atom
occurring positively – no negated atom in A. Also recall cut-elimination is confluent and strongly
normalizing (Theorem 4.12).

Given a formula A, set V(A) the set of unsigned atoms occurring in A. For instance, one has
V ((X+ ` Y −)⊗ (X− `X+)) = {X;Y }.

Lemma 7.37. If A ⊴ B then V(A) = V(B).

263

7.5. GENERAL RESULTS

Proof. By Theorem 7.22, we have proof-nets θ and ψ such that
θ,ψ

A ⊴ B. According to Lemma 6.78,
each class for B ∗ B⊥ of θ

B

▷◁ ψ is a simple path in GOI projection graph. Thence, it contains two
leaves of A⊥ or A. As θ and ψ are half-bipartite respectively in A⊥ and A, each class cannot be
reduced to two leaves of A⊥ or A, i.e. it must contain a leaf in B or B⊥. Thus, a class contains at
least one leaf of A⊥ or A, and at least one of B or B⊥.

Furthermore, a class contains leaves on the same unsigned atom (Lemma 6.76). Consider an
unsigned atom X, assume it appears in A. Then its class contains a leaf of B⊥ or B, hence X also
appears in B. This gives V(A) ⊆ V(B), and the same reasoning applied on an atom of B gives the
other inclusion.

We have a general necessary condition on B when it is a retraction to any formula.

Lemma 7.38. If A ⊴ B with A and B MLLuf formulas, and A non-ambiguous, then for any leaf
X, for any sub-formula B′ of B (i.e. a sub-tree), the number nX(B′) of occurrences of X in B′ –
counting separately its positive and negated versions – differ from nX⊥(B′), the one of X⊥, by at
most one. In other words, |nX(B′)− nX⊥(B′)| ≤ 1.

Proof. Take a sub-formula B′ of B. By symmetry, we prove only nX(B′) ≤ nX⊥(B′) + 1.

We have proof-nets θ and ψ such that
θ,ψ

A ⊴ B (Theorem 7.22). In θ
B

▷◁ ψ, we reduce all cuts
except the one of root B′. We obtain a proof-net on the cut sequent [B′ ∗B′⊥] A⊥, A.

The leaves labeled X in B′ can only be linked to leaves labeled X⊥ in B′ or to the unique X⊥
of A or A⊥. In particular, they cannot be linked to any X⊥ in B′

⊥ by Lemma 4.53. Therefore,
in this proof-net, axiom links must link nX(B′) leaves labeled X to at most nX⊥(B′) + 1 leaves
labeled X⊥, with all links being disjoint. This implies nX(B′) ≤ nX⊥(B′) + 1.

The condition in Lemma 7.38 is necessary, but not sufficient. For instance, consider A = X and
B = X ⊗ (X⊥ ⊗X). Then B indeed respects the conclusion of Lemma 7.38, but we do not have
X ⊴ X⊗ (X⊥⊗X), simply because ⊢ X⊥, X⊗ (X⊥⊗X) is not provable. Also, the non-ambiguity
hypothesis is necessary: with A = X+ ⊗X+ and B = X+ ⊗ (X− ` (X+ ⊗X+)), one has A ◁ B
(see Section 7.7) but A is a sub-formula of B which does not respect the conclusion of Lemma 7.38.

We say B is a sub-formula up to isomorphism of A if there exists a formula A′ such that
A ≃ A′ and B is a sub-formula of A′.

Corollary 7.39. If A ⊴ B with A non-ambiguous, then for any signed atom X, neither X ` X
nor X ⊗X is a sub-formula up to isomorphism of B.

Proof. By contradiction, say X ` X is a sub-formula of B′ for B ≃ B′. Then A ⊴ B′ by Corol-
lary B.7, and we contradict Lemma 7.38:

nX(X `X)− nX⊥(X `X) = 2− 0 = 2 > 1

The result on X ⊗X follows the same way.

We now aim to prove that retractions contain special sub-graphs. The sub-graph we are looking
for is an axiom link between the two premises of a `-vertex. Proceding by contradiction, we look
at what a proof-net without such a sub-graph look like. As a short-hand, when a vertex v has for
child a vertex u in the syntactic tree of a formula, we say v is above u.

264

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

Lemma 7.40. Take
θ,θ′

A ◁ B and X an atom of A, such that the connective just below X in A is not
a ` – thus, either such a connective does not exist, meaning A = X, or it is a ⊗. Assume neither
θ nor θ′ contains a sub-graph of the following shape:

`

X⊥ X

`

X X⊥
or

Then every X (resp. X⊥) of B and B⊥ is above a ⊗ (resp. `).

Proof. We follow the construction of the class of X for B⊥ ∗B (Definition 6.74), starting from this
leaf X, and prove that, while not seeing a forbidden sub-graph, all visited leaves have the wished
property. This will be enough as this class contains all leaves of the proof-net, thanks to Lemma 6.78
(because there are only two leaves outside of B⊥ ∗ B). Remark this class can be constructed the
following way:

1. we start from X;

2. with l the last leaf added, we add the unique leaf l′ such that there is an axiom link l — l′ in
θ
B

▷◁ θ′;

3. If l′ belongs to A, we stop here; otherwise, l′ belongs either to B or B⊥, and we add l′
⊥,

belonging respectively to B⊥ or B. We then go back to Item 2.

This is true vacuously at the beginning of the construction for no leaf of B nor of B⊥ is crossed.
Assume the result holds up to some point in the construction. We are considering a leaf l labeled
X⊥, which is either in A⊥ (in the first step) or in B or B⊥ (in the following steps). By hypothesis
and induction hypothesis respectively, l is above no connective or above a `. It is linked to another
leaf l′, labeled X. If l′ is in A, we are done. Otherwise, it is in B or B⊥, so above either a ` or
a ⊗ – notice we use here that B is not a single leaf, which is true because of the strict retraction
A ◁ B, thus s(B) > s(A) ≥ 1 using Corollary 7.34. If it were above a `, then we would contradict
either Lemma 4.54 (if l and l′ are not above a same `) or the hypothesis on sub-graphs (if l and l′

are above a same `). Therefore, l′ must be above a ⊗. Thus, its dual l′⊥, labeled X⊥, is above a
`, which concludes the inductive case.

Here are some drawings and additional explanations to give intuitions. We start from X⊥1 in
A⊥, which is above a ` or nothing. It is linked to some X2, necessarily in B, which must be above
a ⊗ (Lemma 4.54 and s(B) > 1). We then look at the dual X⊥2 in B⊥, which must be above a ` by
duality. It is linked to some X: if it is X1 in A then we are done, otherwise it is a non-previously
seen X3 in B⊥. This leaf X3 cannot be above the ` below X⊥2 by hypothesis on sub-graphs, nor
above a different ` by Lemma 4.54. Therefore, X3 is above a ⊗. We then keep going, with X⊥3
above a ` in B, which can only be linked to some X4 which is above a ⊗ by the previous reasoning,
. . .

265

7.5. GENERAL RESULTS

X⊥1

` ?

A⊥

X2

⊗

X⊥2

`

X3

⊗

X⊥3

`

X4

⊗

X⊥4

`

X1

⊗ ?

AB B⊥

On the previous drawing, notice that some ⊗-vertices (resp. `-vertices) drawn separately may
in fact represent the same vertex.

Remark 7.41. In the proof of Lemma 7.40, we used connectivity a lot. Nonetheless, retractions with
and without the mix 2-rules should be the same according to the work done in Section 7.2.1, thus it
is surprising we have to use it here. Still, I did not manage to find a proof not using connectivity.

Lemma 7.42. Take θ a proof-net whose cut sequent has a sub-formula of the shape (X⊥⊗X)`A
or A` (X⊥⊗X) (i.e. has (X⊥⊗X)`A as a sub-formula up to isomorphism), where X is a signed
atom and A a formula. Then, on this sub-formula, θ has the following shape, where signed atoms
Xa and X⊥b may belong to A:

⊗

X⊥ X

`

Xa X⊥b

or

⊗

X⊥ X

`

Xa X⊥b

Proof. As the formula tree is given by the cut sequent θ is on, it suffices to prove the axiom links
are on the required shapes. The only way for these links not to be of this form would be for there to
be a link X⊥ — X. But this would lead to a switching cycle, forbidden by the correctness criterion
(P2): the cycle passing through this link, going to the ⊗-vertex using its right premise, and going
back to X.

We can now proceed with our main idea: removing a sub-graph corresponding to a retraction,
while still keeping the resulting proof-nets associated to a retraction. As the sub-graphs we study
are not exactly those of the Beffara retraction, but are closely alike, we call our rewriting procedure
Quasi-Beffara.

Definition 7.43 (Quasi-Beffara on proof-structures). We define the Quasi-Beffara rewriting,

noted
qBeffara

−−−−−−→, as the union of two transformations
qBeffara1
−−−−−−→ and

qBeffara2
−−−−−−→ on proof-structures

as follows.
Consider a cut-free proof-structure θ containing a sub-graph of the shape:

266

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

`

X⊥ X

⊗

or `

X⊥ X

⊗

where X is a signed atom. We define θ′ as θ where this sub-graph is replaced respectively by

or

and call θ
qBeffara1
−−−−−−→ θ′ this rewriting rule.

Similarly, take a cut-free proof-structure ψ containing a sub-graph of the dual shape of the
preceding one, namely

⊗

X⊥ X

`

Xa X⊥b

or

⊗

X⊥ X

`

Xa X⊥b

where X is a signed atom. We define ψ′ as ψ where this sub-graph is replaced respectively by

Xa X⊥b

or

Xa X⊥b

and call ψ
qBeffara2
−−−−−−→ ψ′ this rewriting rule.

Lemma 7.44. Consider a proof-net θ and a rewriting step θ
qBeffara

−−−−−−→ θ′. Then θ′ is a proof-net,
with the same number of connected components #cc as θ.

Proof. It is easy to check that if θ is a proof-structure with θ
qBeffara

−−−−−−→ θ′, then θ′ is a proof-structure
too. Remember a MLL proof-structure is composed of a single linking, whose additive resolution is
the full sequent (Lemma 6.41). The considered rewriting rule preserves this property, hence what
we get after is still a linking on the resulting cut sequent. That (P0) and (P1) are preserved is
trivial. Thus, we only need to prove (P2) as well as the result about connected components –

267

7.5. GENERAL RESULTS

remember an MLL proof-net trivially respects (P3) as it is made of a single linking (Lemma 6.41).
Preservation of (P2) follows as we only remove paths. More precisely, one can prove that a

switching cycle in θ′ would yield a switching cycle in θ, a contradiction. For this, transport a path
from θ′ to θ in the trivial way outside of the rewritten zone, while inside it one replaces each colored
path by the corresponding one:

X⊥ X

`

⊗

α β
XX⊥

⊗

`

qBeffara

−−−−−−→

α β

The number #cc of connective components is preserved as we remove 4 vertices including one
`-vertex, and 5 edges, according to Lemma 4.52.

Definition 7.45 (Quasi-Beffara on formulas). Notice that Quasi-Beffara modifies the cut sequent
of a proof-net it is applied on. Therefore, we extend these rewriting rules to (sub-)formulas through:

A⊗ (X⊥ `X)
qBeffara1
−−−−−−→ A (X⊥ `X)⊗A

qBeffara1
−−−−−−→ A

(X⊥ ⊗X)`A
qBeffara2
−−−−−−→ A A` (X⊥ ⊗X)

qBeffara2
−−−−−−→ A

By abuse of notations, we still denote
qBeffara

−−−−−−→ this rewriting on formulas.

Lemma 7.46. Consider a rewriting step θ
qBeffarai
−−−−−−→ θ′, for i ∈ {0; 1}. Then the cut sequents of θ

and θ′ are the same, except a
qBeffarai
−−−−−−→ has been applied to a formula of the sequent of θ to get the

one of θ′.

Proof. This follows from Definitions 7.43 and 7.45.

We can now extend Quasi-Beffara to retractions.

Lemma 7.47. Consider a retraction
θ,ψ

A ⊴ B where a
qBeffara1
−−−−−−→ rule can be applied on θ (resp. ψ),

yielding θ′ on ⊢ A⊥, B′ (resp. ψ′ on ⊢ B′⊥, A) with B
qBeffara

−−−−−−→ B′. Then, a
qBeffara2
−−−−−−→ step can be

applied on the corresponding dual sub-graph of ψ (resp. θ) by, giving ψ′ on ⊢ B′⊥, A (resp. θ′ on

⊢ A⊥, B′). Furthermore,
θ′,ψ′

A ⊴ B′.

Proof. Using Proposition 7.23, the
qBeffara1
−−−−−−→ step can only be applied on a sub-graph using the

syntactic tree of B (resp. B⊥). That a
qBeffara2
−−−−−−→ step can be applied on the corresponding dual

sub-graph of the other proof-net follows by Lemma 7.42.
It stays to prove the obtained graphs are proof-nets of a retraction. They are proof-nets by

Lemma 7.44, on the wished cut sequents. Finally, the normal form of θ′
B′

▷◁ ψ′ is the same as the
normal form of θ

B

▷◁ ψ: we can reduce cuts in θ
B

▷◁ ψ following what we would do in θ′
B′

▷◁ ψ′, except
for the removed vertices. But reducing a cut on a removed vertex as soon as it appears, doing as
soon as possible the `−⊗ case, followed by the ax one, permits to reduce cuts in the same way in

268

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

both compositions. The results of eliminating cuts in both proof-nets are one and the same, using
Theorem 4.12 and that as soon as the cut-elimination as been applied in the removed vertices of
θ
B

▷◁ ψ, then the reduced proof-nets obtained in both cases are equal.

Definition 7.48 (Quasi-Beffara on retractions). Consider a retraction
θ,ψ

A ⊴ B where a
qBeffara1
−−−−−−→

rule can be applied on θ (resp. ψ), yielding θ′ on ⊢ A⊥, B′ (resp. ψ′ on ⊢ B′⊥, A) with B
qBeffara

−−−−−−→

B′. Using Lemma 7.47, a corresponding
qBeffara2
−−−−−−→ step can be applied on the other proof-net

ψ
qBeffara2
−−−−−−→ ψ′ (resp. θ

qBeffara2
−−−−−−→ θ′), yielding a retraction

θ′,ψ′

A ⊴ B′. We denote in this case
θ,ψ

A ⊴ B
qBeffara

−−−−−−→
θ′,ψ′

A ⊴ B′.

7.6 Retractions to an atom

We now restrict ourselves to retractions of the shape X ⊴ B for X a signed atom. In this restricted
setting, we can characterize all retractions.

Let us remark that X ⊴ B if and only if there are proofs of ⊢ X⊥, B and of ⊢ B⊥, X (Theo-
rem 7.30, with X non-ambiguous). The retraction X ⊴ B is the retraction on one atom, as we can
rename to have the retract formula (on the left of ⊴) non-ambiguous, thus for instance deducing
retractions to X⊗X from those to X⊗Y . Furthermore, retractions B of X corresponds to universal
super-types: if we know nothing about a type X, here are the types B such that X is a sub-type
of B.

7.6.1 Beffara generates all retractions to an atom

In all this section, X is a fixed signed atom.

Definition 7.49 (Beffara). The Beffara’s type retraction is X ◁ X ⊗ (X⊥ `X).

This is indeed a strict retraction.

Lemma 7.50.
X ◁ X ⊗ (X⊥ `X)

Proof. That this retraction is strict follows from Proposition 7.32, once we have proved it is a
retraction. Here are (the) corresponding proof-nets:

X⊥

`

X⊥ X

⊗

X ⊗

X⊥ X

`

X⊥

X

269

7.6. RETRACTIONS TO AN ATOM

One could check they indeed are connected proof-nets, and that their composition on X ⊗
(X⊥ ` X) reduces to the identity proof-net – even if this last step is not necessary according to
Theorem 7.30.

Remark 7.51. Another way of writing the Beffara retraction is the following:

X ◁ (X ⊸ X)⊸ X

We want to prove that any type retraction of the shape X ⊴ A is generated by a (finite) sequence
of Beffara’s type retractions.

Theorem 7.52. Take A a formula of MLL. Then X ⊴ A if and only if A is obtained from X by
a sequence of isomorphisms and Beffara’s retractions.

To prove the above theorem, most of the work has been done in the previous section. The
lacking result is finding our sub-graph corresponding to an axiom above a `, which we manage to
when looking at retractions to an atom.

Corollary 7.53. If X ◁ B, then X `X⊥ or X ⊗X⊥ is a sub-formula up to isomorphism of B.

Proof. As X ̸≃ B, we have B ̸= X. Moreover, V(B) = {X} (Lemma 7.37). Take a “highest”
connective in B, meaning one whose both premises are leaves. Such a connective exists as B cannot
be reduced to a signed atom, so has at least one connective ` or ⊗. By Corollary 7.39, a “highest”
connective cannot be of the shape X`X, X⊗X, X⊥`X⊥ nor X⊥⊗X⊥. It must therefore be of
the shape X `X⊥, X ⊗X⊥, X⊥`X nor X⊥⊗X, so X `X⊥ or X ⊗X⊥ up to isomorphism.

Corollary 7.54. If
θ,θ′

X ◁ B, then θ or θ′ contain a sub-graph of the following shape:

`

X⊥ X or

`

X X⊥

Proof. By contradiction, if none of the two contains such a sub-graph, then by Lemma 7.40 every
X (resp. X⊥) of B and B⊥ is above a ⊗ (resp. `). This cannot be according to Corollary 7.53.

Remark 7.55. Another possible proof of Corollary 7.54, not using Corollary 7.53, is the following.
Still by contradiction, if none of the two proof-nets contains such a sub-graph, then by Lemma 7.40
every X (resp. X⊥) of B and B⊥ is above a ⊗ (resp. `). Then X in A = X, which is above
nothing, is linked to some X⊥ in B⊥, which is thus above a `: contradiction with Lemma 4.54.

Proposition 7.56. Assume
θ,ψ

X ⊴ B. Then
θ,ψ

X ⊴ B
qBeffara∗

−−−−−−→
idX ,idX
X ⊴ X. In particular, if X ⊴ B,

then B
qBeffara∗

−−−−−−→ X.

Proof. We reason by strong recurrence on s(B).
If s(B) = 1, then B is an atom Y such that ⊢ X⊥, Y is provable. This ensures B = Y = X.
If s(B) > 1, then X ◁ B because isomorphisms of MLLuf preserve the size of formulas

(Theorem 6.95). Remark we cannot have B = X ` X⊥ or dually B = X⊥ ⊗ X, up to iso-
morphism, because the sizes do not match using Proposition 7.32. Using Corollary 7.54 followed

270

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

by Lemma 4.55 (with s(B) ≥ 5), a
qBeffara1
−−−−−−→ step can be applied on θ or ψ. Therefore, by Defi-

nition 7.48,
θ,ψ

A ⊴ B
qBeffara

−−−−−−→
θ′,ψ′

A ⊴ B′. In particular, s(B′) = s(B) − 4. By induction hypothesis,
θ′,ψ′

X ⊴ B′
qBeffara∗

−−−−−−→
idX ,idX
X ⊴ X, allowing us to conclude.

We thus have proved that all (proofs of) retractions are obtained through a succession of Quasi-
Beffara steps. However, remember we wanted Beffara steps. We will bridge the gap between
Quasi-Beffara and Beffara by giving a grammar characterizing formulas B such that X ⊴ B.

Definition 7.57. We define the two following grammars, where X is a fixed signed atom.

P := X | P ⊗ (N ` P) | P ` (N ⊗ P)
N := X⊥ | N ⊗ (P `N) | N ` (P ⊗N)

Lemma 7.58. If A
qBeffara

−−−−−−→ B and B ∈ P (resp. N) then up to isomorphism A ∈ P (resp. N).

Proof. By duality, we only prove it for P with B = X or B = P1 ⊗ (N2 ` P3) – we can do so
because the grammar N contains the dual of the formulas generated by P , that the P ` (N ⊗ P)

will be symmetric to this one, and
qBeffara

−−−−−−→ is “closed under dual”, namely that applying
qBeffara1
−−−−−−→

then taking the dual is the same as taking the dual then applying
qBeffara2
−−−−−−→, and vice-versa. By

induction on the grammar of P , we consider only the case where the Quasi-Beffara step is applied
in the “pattern” of B, with as final edge e.

If B = X, then A is, up to isomorphism, either X⊗ (X⊥`X) or X` (X⊥⊗X). In both cases,
A ∈ P up to isomorphism.

Otherwise, B = P1 ⊗ (N2 ` P3). Call e1 the edge between (the root of) P1 and the ⊗, e2 the
one between the ` and the ⊗, e3 the one from N2 to the ` and e4 the one between P3 and the `.
Graphically:

⊗

`P1

N2 P3

e
1 e 2

e
3 e 4

By hypothesis, e ∈ {e1; e2; e3; e4}. Notice that for any C in P (resp. N), C ⊗ (X⊥ ` X) and
C`(X⊥⊗X) belong to P (resp. N). Thus, if e ∈ {e1; e3; e4}, then A is in P as A = P ′1⊗(N ′2`P ′3) by
the previous argument (with two formulas among P ′1, N ′2 and P ′3 equal to their non prime versions).

Finally, in case e = e2, then up to isomorphism e = e1 (in case of a
qBeffara1
−−−−−−→ step) or e = e4

(in case of a
qBeffara2
−−−−−−→ step).

Proposition 7.59. If B
qBeffara∗

−−−−−−→ X, then B ∈ P up to isomorphism. If B
qBeffara∗

−−−−−−→ X⊥, then
B ∈ N up to isomorphism.

Proof. This follows from X ∈ P , X⊥ ∈ N and Lemma 7.58.

271

7.6. RETRACTIONS TO AN ATOM

Definition 7.60. Set
Beffara

−−−−−−→ the union of the following rewriting rules on (sub-)formulas, where
X is a signed atom:

• X ⊗ (X⊥ `X)
Beffara1
−−−−−−→ X

• (X⊥ `X)⊗X
Beffara1
−−−−−−→ X

• (X⊥ ⊗X)`X
Beffara2
−−−−−−→ X

• X ` (X⊥ ⊗X)
Beffara2
−−−−−−→ X

Similarly, we set
Beffara

−−−−−−→
≃

the previous rewriting rules applied on (sub-)formulas up to isomorphism.

Lemma 7.61. If B ∈ P , then B
Beffara∗

−−−−−−→ X. If B ∈ N , then B
Beffara∗

−−−−−−→ X⊥.

In particular, if B ∈ P (resp. N) up to isomorphism, then B
Beffara∗

−−−−−−→
≃

X (resp. X⊥).

Proof. We prove the wished property by induction on the grammars P and N . By duality, we show
only the result for P .

If B = X, then the result holds trivially.
If B = P1 ⊗ (N2 ` P3), then by induction hypothesis:

P1

Beffara∗

−−−−−−→ X

N2

Beffara∗

−−−−−−→ X⊥

P3

Beffara∗

−−−−−−→ X

Therefore, B
Beffara∗

−−−−−−→ X ⊗ (X⊥ `X)
Beffara1
−−−−−−→ X.

If B = P1 ` (N2 ⊗ P3), then by induction hypothesis:

P1

Beffara∗

−−−−−−→ X

N2

Beffara∗

−−−−−−→ X⊥

P3

Beffara∗

−−−−−−→ X

Therefore, B
Beffara∗

−−−−−−→ X ` (X⊥ ⊗X)
Beffara2
−−−−−−→ X.

Lemma 7.62. If B
Beffara

−−−−−−→ A, then A ◁ B.

Proof. Because the Beffara retraction is a strict retraction (Lemma 7.50), and by contextuality
(Lemma B.4).

Our main result on retractions to an atom then follows.

Theorem 7.63. The followings are equivalent, where X is a signed atom and B an MLLuf formula:

272

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

1. X ⊴ B

2. B
qBeffara∗

−−−−−−→ X

3. B ∈ P up to isomorphism

4. B
Beffara∗

−−−−−−→
≃

X

Proof. Using Proposition 7.56, it follows Item 1 implies Item 2. By Proposition 7.59, Item 2 implies
Item 3. Through Lemma 7.61, Item 3 implies Item 4. Finally, Item 4 implies Item 1 according to
Lemma 7.62 and because retractions can be considered up to isomorphisms (Corollary B.7).

From our main theorem, one can deduce the result claimed at the beginning of this section,
namely that if X ⊴ A then A can be obtained from X by a sequence of Beffara’s retractions and
isomorphisms.

Proof of Theorem 7.52. Up to isomorphism, one can assume A to be distributed (Theorem 7.20),
and then unit-free (Theorem 7.20). Then one simply use that Item 1 and Item 4 are equivalent in
Theorem 7.63.

7.6.2 Subtleties on the result

We give here some remarks on Theorem 7.63, explaining why we stated it in terms of formulas
and not in terms of proof(-net)s, i.e. why it stands for type retractions and not the retractions
themselves.

7.6.2.1 Beffara generates all retracts to an atom only up to isomorphism

A first remark is that the “up to isomorphisms”, whether in Item 3 or in Item 4, are necessary.
For instance, consider X ◁ X ⊗ ((X⊥ `X) ` (X⊥ ⊗X)) – which is indeed a strict retraction by
Proposition 7.32 and Theorem 7.63. However, the retracting formula has the following syntactic
tree:

X

⊗

`

`

X⊥ X

⊗

X⊥ X

It is generated by Beffara only up to isomorphism, i.e. by ·
Beffara

−−−−−−→
≃

X but not by ·
Beffara

−−−−−−→ X.

Indeed, it has no sub-formula of the shapeX⊗(X⊥`X) norX`(X⊥⊗X), even up to commutativity
of the connectives. We need associativity of the `, which yields:

X ⊗ ((X⊥ `X)` (X⊥ ⊗X)) ≃ X ⊗ (X⊥ ` (X ` (X⊥ ⊗X)))

273

7.6. RETRACTIONS TO AN ATOM

A Beffara rewriting can then be applied. Similarly, X ⊗ ((X⊥`X)` (X⊥⊗X)) /∈ P , because this
would imply (X⊥ `X) in P or N , which is not. However, X ⊗ (X⊥ ` (X ` (X⊥ ⊗X))) ∈ P .

Notice that our main result, Theorem 7.63, holds only on type retractions, i.e. on formulas but
not on proofs. As we will see, we are in the situation depicted below:

Pairs of
Proof-Structures
X⊥, · and ·⊥, X

Proof-Nets

X ⊴ ·

·
qBeffara∗

−−−−−−→ X

·
Beffara∗

−−−−−−→
≃

X

(some pair of proof-structures where · is)

(X ⊗X⊥)` ((X `X⊥)⊗X⊥)

((X ⊗ (X `X⊥))`X⊥)⊗X

X ⊗ (X⊥ `X)

With a thousand words instead of a picture:

• Beffara generates all formulas retracting to an atom, but not all proof-nets that these formulas
are retracting to an atom, even up to isomorphism;

• Quasi-Beffara does generate all formulas retracting to an atom, as well as all proof-nets that
these formulas are retracting to an atom (not using any isomorphism), but it also generates
incorrect proof-structures which do not respect (P2) but compose to the identity proof-net of
the considered atom;

• nevertheless, Quasi-Beffara does not generate all proof-structures respectively on the sequents
X⊥, B and B⊥, X, with B a retracting of X, whose composition yields the identity proof-net
of X.

As the two transformations Beffara and Quasi-Beffara are really close to one another – these
transformations on proof-structures differ only by the presence of an X in Beffara that is not in
Quasi-Beffara – it seems hard to get an intermediate transformation generating exactly proof-nets
of retractions to an atom. The only way I have found to get exactly these proof-nets is to generate
all proof-structures given by Quasi-Beffara, and then to forget the pairs where one of the proof-
structures is not correct.

The following sections give examples for the above claims.

7.6.2.2 Proof-nets of a retraction not generated by Beffara

The following pair of proofs of X ◁ (X ⊗ X⊥) ` ((X ` X⊥) ⊗ X⊥) is not generated by Beffara,
even up to isomorphism.

274

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

X⊥

X

`

X

⊗

X⊥

⊗

X

`

X⊥ X⊥

⊗

X⊥

`

X

`

X⊥

⊗

X

X

Indeed, both of these proof-nets do not contain the following sub-graph, present in any result
of applying a Beffara reverted step:

X⊥ X

`

⊗

X

The only (non-reflexive) isomorphisms that can be applied are commutativity of the connectives,
and they cannot generate this shape.

Still, these proof-nets are generated by Quasi-Beffara steps. Indeed, one can apply such a step,
yielding the following proof-nets.

X⊥

X

`

X

⊗

X⊥

X⊥

⊗

X⊥

`

X

X

We then recognize the proof-nets of the Beffara retraction. We can apply another Quasi-Beffara
on those, yielding the identity proof-net of X.

7.6.2.3 Incorrect proof-structures generated by Quasi-Beffara

The retraction X ◁ ((X ⊗ (X `X⊥)) `X⊥) ⊗X has some proof-structures generated by Quasi-
Beffara that are incorrect, and as such not proof-nets. Such an example is the following pair:

275

7.6. RETRACTIONS TO AN ATOM

X⊥

`

X

⊗

⊗

X⊥

X

`

X⊥

X⊥

X

⊗

X⊥

`

`

X

X⊥

⊗

X

X⊥

`

X

⊗

⊗

X⊥

X

`

X⊥

X

X⊥ X

`

⊗

It is incorrect, as can be seen from the green switching cycle contradicting (P2). Nonetheless,
one can apply a Quasi-Beffara step on it (recognizing the sub-graph dashed in yellow), resulting on
the following proof-structures. They can be recognized as the proof-nets for the Beffara retraction,
and as such are attainable from X by one step of Quasi-Beffara.

X⊥

X

`

X⊥

⊗

X

X⊥

⊗

X

`

X⊥

X

This counter-example proves the following fact: when θ
qBeffara

−−−−−−→ θ′, whereas the correctness
of θ implies the one of θ′ (Lemma 7.44), the converse does not hold. In our example, we have θ′
correct but not θ, even without considering connectivity. Still, a property holding in both directions
is that applying a Quasi-Beffara step on proof-structures preserve the result of their composition,
as seen in the proof of Lemma 7.47.

7.6.2.4 Incorrect proof-structures not generated by Quasi-Beffara

Consider the following proof-structures which both do not respect (P2) but on the same sequents
as the proof-nets associated to the Beffara retraction, namely with X ⊗ (X⊥ `X) as a retracting
formula.

276

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

X⊥

`

X⊥ X

⊗

X ⊗

X⊥ X

`

X⊥

X

These proof-structures cannot be generated by a succession of Quasi-Beffara, even up to iso-
morphism. Indeed, both of these proof-structures do not contain the following sub-graph, present
in any result of applying a Quasi-Beffara reverted step:

X⊥ X

`

⊗

Nonetheless, composing these two proof-structures on the retracting formula gives idX after
cut-elimination.

7.7 Retractions to an arbitrary formula

Let us now go back to the general case: the problem to solve is finding an equational theory for
strict retractions A ◁ B in MLLuf . We know s(A) < s(B) (Corollary 7.34).

Here are some general form of retractions I have found, generalizing Beffara’s retraction:

• A⊗B ◁ A⊗ (A⊥ ` (A⊗B)), whose proof-nets when A and B are atoms (which implies the
general case) are depicted on Figure 7.1;

• if B or B⊥ is a sub-formula of A, then A ◁ A ⊗ (B⊥ ` B), whose proof-nets when B is an
atom are depicted on Figure 7.2;

Notice the side-condition in the second retraction, which is not what we would prefer in an inequa-
tional theory. In both cases, taking A = B yield instances of Beffara’s retractions.

Looking at these two generalizations, one could conjecture that if A ◁ B then A is a strict
sub-formula up to isomorphism of B. I have no idea whether it is true or false, but if it holds it
would be a really remarkable property.

The main difficulty compared to the atomic case, is that there are more patterns. Remember
the pattern we identified when looking at retractions to an atom, which was the crux for solving
this case:

277

7.7. RETRACTIONS TO AN ARBITRARY FORMULA

Y −

`

X− X+

⊗

`

X− ⊗

X+ Y +

Y +

⊗

X+X−

`

⊗

X+`

X−Y −

Figure 7.1: Proof-nets for X+ ⊗ Y + ◁ X+ ⊗ (X− ` (X+ ⊗ Y +))

A⊥ A

⊗

`

X− X+

AA⊥

`

⊗

X+X−
X+X−

Dotted lines here mean that between A⊥ and A there are the same links as in an identity
proof-net, except for the link between X− and X+.

Figure 7.2: Proof-nets for A ◁ A⊗ (X− `X+) when X+ is a sub-formula of A

278

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

X⊥ X

`

In the general case, we also have the following pattern in retractions (and maybe others?):

X⊥

⊗

`

X

As an example, consider the following retraction, and the associated proof-nets below which are
without the first pattern but contain the second one:

X+ ⊗ Y + ⊴ X+ ⊗ (X− ` (X+ ⊗ Y +))

Y −

`

X− X+

⊗

X−

`

⊗

X+ Y +

X−

`

X+

⊗

`

X−Y −

Y +

⊗

X+

This new pattern is less nice than the first one because it is no more on a full sub-formula
X− `X+, but on a part of a sub-formula only.

Nonetheless, the study of the atomic case gives an over-approximation of retractions in the
general case. Indeed, given a retraction A ⊴ B, one can take (an occurrence of) a signed atom X
of A and consider the proof-nets obtained by taking those of A ⊴ B and keeping only links and
leaves in the class containing X (recall Definition 6.74). These proof-nets gives a retraction X ⊴ B′,
because the original proof-nets compose to the identity! For instance, looking at the class of X+ in
the proof-nets of X+ ⊗ Y + ⊴ X+ ⊗ (X− ` (X+ ⊗ Y +)), we get the followings:

279

7.8. PROVABILITY & DECIDABILITY

Y −

`

X− X+

⊗

X−

`

⊗

X+ Y +

X−

`

X+

⊗

`

X−Y −

Y +

⊗

X+

The difficulty for this approach is that it gives that every such “projection” is a retraction to an
atom, but unfortunately all proof-structures which such projections are not correct.

Lastly, maybe retractions are not finitely axiomatizable? A problematic example is the following
family of retractions, for any natural number n:(
⊗(X+

i)i∈J1;nK
)
◁
(
⊗(X+

i)i∈J1;nK
)` (X+

1 ⊗ (X−1 ` (. . . (X+
n−1 ⊗ (X−n−1 ` (X+

n ⊗X−n)) . . .)))

This family seems hard to obtain, and each retraction also looks difficult to obtain only from
previous ones, because the following is not a retraction:

(X+ ⊗ Y +)` Z+ ̸⊴ (X+ ⊗ Y +)` (Y + ⊗ (Y − ` Z+))

7.8 Provability & Decidability

We consider the retraction problem R: given a pair of formulas (A,B), does A ⊴ B hold? We
want to know whether R is decidable or not, and if yes in which complexity class is this problem.
In other words: are retractions decidable, and if yes what is their complexity? This problem can
be declined in the various sub-systems of linear logic. In all this section, we consider linear logic
without any of the optional rules.

We show that provability in some sub-systems reduces to this problem on retractions, giving
lower-bounds for the complexity of R in Section 7.8.1. We then give in Section 7.8.2 an algorithm
proving that retractions are decidable in MALL.

7.8.1 Retractions and Provability

While retractions have not been well-studied in linear logic, provability has been extensively con-
sidered (at least without the optional rules). In particular, the complexity of provability for various
sub-systems have been found. We prove here that solving retractions in some sub-systems would
allow to solve provability in these sub-systems, giving lower-bounds for the complexity of retrac-
tions. As a remarkable result, we get undecidability in the case of full (propositional) linear logic,
and the high lower-bounds in MELL and MALL show that the retraction problem R is hard in these
sub-systems.

We start by giving two couples that are retractions if and only if some sequents are provable.

Lemma 7.64. In any sub-system with the ⊕i- and &-rules, given two formulas A and B there is
a retraction A ⊴ A⊕B if and only if ⊢ B⊥, A is provable.

280

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

Proof. Let us start with the easier converse way. Assume to have a proof π of ⊢ B⊥, A. Set:

ϕ =

(ax)
⊢ A⊥, A

(⊕1)

⊢ A⊥, A⊕B
τ =

π
⊢ B⊥, A

(ax)
⊢ A⊥, A

(&)

⊢ B⊥ &A⊥, A

One can check that ϕ
A ⊕ B

▷◁ τ
β−→ axA:

ϕ
A ⊕ B

▷◁ τ =

(ax)
⊢ A⊥, A

(⊕1)

⊢ A⊥, A⊕B

π
⊢ B⊥, A

(ax)
⊢ A⊥, A

(&)

⊢ B⊥ &A⊥, A
(cut)

⊢ A⊥, A

β−→
(ax)

⊢ A⊥, A
(ax)

⊢ A⊥, A
(cut)

⊢ A⊥, A
β−→ (ax)

⊢ A⊥, A

Therefore, A ⊴ A⊕B.
For the direct way, suppose A ⊴ A⊕B. In particular, there is a proof π of ⊢ B⊥ &A⊥, A. We

can assume it to be cut-free (Theorem 2.15). Up to rule commutation, one can assume the last rule
of π to be a &-rule (this rule is reversible). We thus have:

π =

ϕ

⊢ B⊥, A
τ

⊢ A⊥, A
(&)

⊢ B⊥ &A⊥, A

In particular, ⊢ B⊥, A is provable.

Lemma 7.65. In any sub-system with the ⊗-, `, !- and ?w-rules, given a signed atom X and a
formula A there is a retraction X ⊴ X ⊗ !A if and only if ⊢ A is provable.

Proof. As in the previous proof, let us start by the converse way. Assume to have a proof π of ⊢ A,
and set:

ϕ =
(ax)

⊢ X⊥, X

π
⊢ A

(!)
⊢ !A

(⊗)
⊢ X⊥, X ⊗ !A

τ =

(ax)
⊢ X⊥, X

(?w)

⊢ ?A⊥, X⊥, X
(`)

⊢ ?A⊥ `X⊥, X

One can check that ϕ
X ⊗ !A

▷◁ τ
β−→ axX :

ϕ
B

▷◁ τ =

(ax)
⊢ X⊥, X

π
⊢ A

(!)
⊢ !A

(⊗)
⊢ X⊥, X ⊗ !A

(ax)
⊢ X⊥, X

(?w)

⊢ ?A⊥, X⊥, X
(`)

⊢ ?A⊥ `X⊥, X
(cut)

⊢ X⊥, X

281

7.8. PROVABILITY & DECIDABILITY

β−→ (ax)
⊢ X⊥, X

π
⊢ A

(!)
⊢ !A

(ax)
⊢ X⊥, X

(?w)

⊢ ?A⊥, X⊥, X
(cut)

⊢ X⊥, X
(cut)

⊢ X⊥, X

β−→
(ax)

⊢ X⊥, X
(ax)

⊢ X⊥, X
(cut)

⊢ X⊥, X

β−→ (ax)
⊢ X⊥, X

Therefore, X ⊴ X ⊗ !A.
For the direct way, suppose X ⊴ X ⊗ !A. In particular, there is a proof π of ⊢ X⊥, X ⊗ !A, that

can be assumed cut-free (Theorem 2.15). The only non-cut-rule that can be applied on ⊢ X⊥, X⊗!A
is a ⊗-rule. As ⊢ and ⊢ X are not provable (simply because no non-cut-rule can be applied on
these sequents), we must have the following:

π =

τ
⊢ X⊥, X

ϕ
⊢ !A

(⊗)
⊢ X⊥, X ⊗ !A

But the last rule of the cut-free ϕ must be a !-rule, for it is the sole applicable rule on ⊢ !A. Thus,
⊢ A is provable.

These two couples allow us to reduce the problem of provability to the one of retractions R.
The problem of provability is the following: given a sequent ⊢ Γ, is it provable, and if yes what
is the complexity of deciding this? The complexity of provability is known in many sub-systems;
an overview of such results can be found in [Lin95; Chu21], with the additive case in [HH15,
Theorem 17]. The following table introduces the complexity of provability in the main sub-systems.

Sub-system Complexity of Provability
LL Undecidable

MELL TOWER-hard (decidability is open)
MALL PSPACE-complete
MLL NP-complete
ALL in P (linear in the product of the size of the formulas)
ELL in P

As a corollary of Lemmas 7.64 and 7.65, the above table also gives lower-bounds for the com-
plexity of retractions in these sub-systems (excepted MLL and ELL). Indeed, in ALL provable
sequents have exactly two formulas, so that Lemma 7.64 reduces provability to retraction in this
system. In a system with at least the ⊗-, `, !- and !w-rules, such as MELL and LL, deciding if a
sequent is provable is the same as deciding if a formula is (using ` to concatenate the formulas of
the sequent), which can be solved by looking if a couple is a retraction according to Lemma 7.65.
Finally, in MALL, provability of a sequent, which is equivalent to provability of a formula, is also
equivalent to provability of a sequent with two formulas. Indeed, ⊢ A is provable if and only if

⊢ X⊥, X ⊗ A is: for the direct way, given a proof π of ⊢ A,
(ax)

⊢ X⊥, X
π
⊢ A

(⊗)
⊢ X⊥, X ⊗A

is a proof of

282

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

⊢ X⊥, X ⊗A; reciprocally, any cut-free proof of ⊢ X⊥, X ⊗A must end with a ⊗-rule of the shape
⊢ X⊥, X ⊢ A

(⊗)
⊢ X⊥, X ⊗A

which yields a proof of ⊢ A. Remark in particular that deciding if a couple is

a retraction in the general case is undecidable!
As a last remark, R for MLLuf is in NP. Indeed, one can reduce the problem to provability

thanks to Corollary 7.29 and Theorem 7.30. To sum up, here is a table grouping the results of this
section and the next one together.

Sub-system Complexity of Retraction
LL Undecidable

MELL TOWER-hard (undecidable if provability is)
MALL PSPACE-hard & Decidable
MLL in NP
ALL at least P

7.8.2 Decidability of retractions
We just saw that R in the general case is undecidable. In MELL, if R is decidable then provability in
this sub-system would also be decidable (using Lemma 7.65). On the other hand, ifR is undecidable
then we cannot say anything about decidability of provability.

Algorithm 1: Deciding if a pair of formulas is a retraction in MALL
Data: A, B formulas
Result: boolean asserting A ⊴ B

Π← the set of all atomic-axiom cut-free proofs of ⊢ A⊥, A in the equivalence class of idA
for ⊢⊣r

∗

;
for π atomic-axiom cut-free proof of ⊢ A⊥, B do

for ϕ atomic-axiom cut-free proof of ⊢ B⊥, A do
τ ← a result of eliminating all cuts in π

B

▷◁ ϕ;
if τ ∈ Π then

return True;

return False;

We prove here that R is decidable in MALL, by giving a (terminating) algorithm solving it:
Algorithm 1. This algorithm halts: there is a finite number of cut-free proofs of a given sequent in
MALL, because all rules of cut-free MALL have the strict sub-sequent property (Fact 1.7). Thence,
computing all needed proofs can be done, and checking if a proof belongs to the equivalence class
for ⊢⊣r

∗

of another can also be done in finite time, by computing iteratively the proofs that can be
reached in n commutations. Lastly, reducing all cuts can be done in finite time (Corollary 2.43).

This algorithm is also correct. Indeed, A ⊴ B if and only if there are atomic-axiom cut-free
proofs whose composition is β-equal to idA (Lemma 7.8). By Theorem 2.49, this is the case if and
only if any normal form of the composition is in the equivalence class of idA for ⊢⊣r

∗

.
Inasmuch as it allows deciding R in MALL, Algorithm 1 does not apply with the exponential

connectives, because there is no longer a finite number of atomic-axiom cut-free proofs of a given
sequent due to the ?c-rule.

283

7.9. RETRACTIONS UP TO CUT-ELIMINATION ONLY

7.9 Retractions up to cut-elimination only
We argue in this section that retractions in MLL0,2 when proofs are not considered up to βη-equality,
but only β-equality, are given by retractions to an atom, that we solved. As done for isomorphisms
(in Section 6.5), this means that in the definition of retractions (Definition 7.1) one replaces =βηo
by =β .

Lemma 7.66. Let A and B be two formulas in MLL0,2 along cut-free proofs π of ⊢ A⊥, B and ϕ
of ⊢ B⊥, A such that π

B

▷◁ ϕ =β axA. Then some occurrences of A in B can be replaced by any
atom X+, in a substitution on occurrences we call α, such that α applied to π and ϕ yield proofs,

α(B)⊥ = α(B⊥) and
α(π),α(ϕ)

X+ ⊴ α(B).

Proof. As no rule commutation can be applied on axA, we know cut-elimination in π
B

▷◁ ϕ leads
to a unique normal form, axA (Theorem 2.49). Call A⊥r and Ar the occurrences corresponding to
the retract formulas A⊥ and A. We first prove there is an ax -rule on A⊥r (resp. Ar) in π (resp.
ϕ). If it were not the case, then applying cut-elimination steps can never create an ax -rule on this
occurrence, using that in MLL there is a unique rule applied on each occurrence in a proof.

Now, we show that there is a sequence of ax -rules between A⊥r in π and Ar in ϕ, by following
ax -rules and dual occurrences as done in the proof of Lemma 7.40. Say the ax -rule in π on A⊥r
is applied on an occurrence A1, a sub-formula of B (because π is cut-free, applying Fact 1.7).
Consider the dual occurrence A⊥1 in ϕ. If no ax -rule is applied on it, then when reducing cuts in
π

B

▷◁ ϕ one ends up with a non-ax -rule on A⊥r . Indeed, apply all possible cut-elimination steps which
do not involve the ax -rule on ⊢ A⊥r , A1 nor the rule r on A⊥1 . This gives a cut-rule of the form

(ax)
⊢ A⊥r , A1

(r)

⊢ A⊥1 ,Γ
(cut)

⊢ A⊥r ,Γ
in the resulting proof, thanks to strong normalization of β−→ · ⊢⊣c

∗

(Proposition 2.41) allowing to move a cut-rule up to this point and to eliminate all cut-rules above.
Applying an ax key case, one gets a non-ax -rule r of main formula A⊥r , which cannot be erased by
cut-elimination: absurd as we get an ax -rule at the end. Remark this also means that at any point
during any cut-elimination procedure applied in π

B

▷◁ ϕ, while A⊥1 is in this proof it must have an
ax -rule on it.

Therefore, there is an ax -rule in ϕ on ⊢ A⊥1 , A2, for A2 some occurrence of A. If A2 = Ar (as
occurrences), then we are done: we rename all these occurrences into X+ and X− and obtain the
wished result, as we took care to rename B and B⊥ into two dual formulas. Otherwise, we repeat
the above reasoning by replacing A1 with A2: we get an ax -rule on ⊢ A⊥2 , A3 in π, and so on. This
process does not loop, because when finding Ai we have at disposition ax -rules on all observed
occurrences excepted for A⊥i and Ar, so new ax -rules can only yield Ai+1 ̸= Aj for j ∈ J1; iK.

As one can always assume proofs associated to a retraction to be cut-free (Corollary 2.43), this
means retractions up to cut-elimination only are the same as retractions to an atom – the reciprocal
being Lemma 7.8.

7.10 Perspectives
We proved in this chapter that the usual main difficulties when considering MLL0,2 – namely the
units and the mix 2-rule – can be easily taken care of for the study of retractions. Thus, the problem

284

CHAPTER 7. RETRACTIONS FOR MULTIPLICATIVE LINEAR LOGIC

reduces to the MLLuf case, which is one of the simplest sub-systems of linear logic. Still, retractions
even in this setting are complicated. Looking at our analysis on complexity, it is even worse for
bigger sub-systems such as MALL or MELL.

One could consider the other two simplest sub-systems of linear logic: ALL and ELL. For the
additive formulas, the units also brings nothing to the table, and there seems to be only one “basic”
strict retraction:

A ⊴ A&B ⇐⇒ ⊢ A⊥, B or dually A ⊴ A⊕B ⇐⇒ ⊢ A,B⊥

Here again, retraction to an atom are manageable, this time because provability of ⊢ X,A behaves
well. The general case is not as trivial, for composition of the two above retractions is bad due to
the side condition: X ⊕ Y ◁ ((X ⊕ Z) & (X ⊕ Y)) ⊕ Y comes from X ⊕ Y ◁ (X ⊕ Y) ⊕ Y but
we dot not have ⊢ X ⊕ Z, (X ⊕ Y)⊥. It can also be proved that the Cantor-Bernstein-Schröeder
property holds in ALL. But even just proving Cantor-Bernstein-Schröeder for MALL seems hard. It
would also not be surprising if there was the following result for distributed formulas of MALLuf :
if A ⊴ B, then s(A) ≤ s(B) with equality if and only if it is an isomorphism.

Considering the exponential formulas, even if it is conjectured there is no (non-reflexive) iso-
morphism, there are retractions:

?A ⊴ ??A ?!A ⊴ ?!?!A

Again, these look like the one corresponding to an inequational theory characterizing retractions
of ELL, but proving it is not trivial. This is because this system is quite strange, with the ?w- and
?c-rules that should not matter in the case of retractions.

285

Conclusion

In this thesis, we considered equality of proofs and of formulas in linear logic, identifying proofs
equal up to cut-elimination and axiom-expansion as it is the minimum assimilation one can wish
for. We focused on MALL0,2 and worked in both the syntaxes of sequent calculus and of proof-nets
to achieve this goal, using tools from various fields such as abstract rewriting systems or graph
theory.

After recalling the necessary definitions from sequent calculus in Chapter 1, we first considered
equality of proofs. We demonstrated in Chapter 2 that in MALL0,2 two proofs are identified up
to cut-elimination and axiom-expansion – and possibly mix -Rétoré – if and only if their normal
forms are related by rule commutations – and with mix -Rétoré also up to mix -Rétoré (see Proposi-
tions 2.10 and 2.46 and Theorems 2.47 and 2.48). This proof was based on a key result about strong
normalization of β−→ ·(⇝r\⊤ ∪ ⊢⊣c ∪⇝om)∗ – i.e. of cut-elimination without the cut − cut commutative
case, modulo rule commutation and cut−cut commutation (Proposition 2.41). We conjecture these
two results on strong normalization and Church-Rosser modulo extend to the full system, with a
very similar proof for Church-Rosser modulo and a quite different one for strong normalization.
For this last proof, we gave an extended sketch based on a paper about strong normalization in
proof-nets [PT10]. Formalizing this sketch into a proper proof should be a matter of verifying the
steps from [PT10] could be adapted as stated, a work that may be tedious but not overly compli-
cated. While our results on cut-elimination, and even their generalizations to the full logic, are in
no way unexpected, the absence of a proof is a big blind spot of the literature, especially as these
results underlay motivations and results from many papers. A striking corollary is that proof-nets
are a canonical representation of proofs up to cut-elimination and axiom-expansion, because they
represent proofs exactly up to rule commutations. This explains a lot of their good properties, e.g.
convergence of cut-elimination, and was claimed without proof for decades. Furthermore, that rule
commutation (defined as the minimum relation to have cut-elimination Church-Rosser modulo it)
should not contain any commutation with an !-rule is noteworthy.

Going to the proof-net syntax, we then looked at usual graph theory in Chapter 3, where we
proved a generalization of Yeo’s theorem [Yeo97] (Theorem 3.19). This generalization allows for
the presence of very particular bridge-free cycles, as well as a more general notion of edge-coloring.
Whereas the conditions on these cycles may not be usual for a graph theoretician, they allow us
to extend the links between standard graph theory and proof-nets from MLL0,2

uf to MALL0,2
uf . Then,

we recalled in Chapter 4 the definition of proof-nets for MALL0,2
uf from [HG05]. We gave a new

simpler proof of the sequentialization theorem, a usual hard theorem allowing to recover a proof
of sequent calculus from a proof-net. It is obtained mainly as a corollary of our generalization
of Yeo’s theorem from the preceding chapter. Not only is it possible to obtain such a proof by
splitting terminal vertex, modifying the parameter from our graph theorem allows to recover other

287

CONCLUSION

kinds of sequentialization: we recover all proofs by means of a splitting vertex in one go, for plenty
of variants in the definition of proof-nets – e.g. by splitting `\&-vertices for MALL0,2

uf proof-nets.
When restricted to MLL0,2

uf proof-nets, this sequentialization proof is the simplest we are aware of,
simple enough to be given in an undergraduate lecture. Such an approach seems applicable to other
notions of proof-nets, giving a kind of unifying framework for proofs of sequentialization by splitting
vertices. Thus, this method advocates for more links between proof-nets and the more usual theory
of graphs, in the same vein as previous papers such as [Ret03; Ngu20].

We also formalized proof-nets for MLLuf in the proof assistant Coq in Chapter 5. More pre-
cisely, we proved on machine the sequentialization theorem, and a normalization of cut-elimination.
Despite many difficulties arising from the manipulation of graphs on a computer, this successful
implementation indicates this is possible with the key points on paper presenting no real problem.
Many concepts and results about proof-nets have not been formalized, e.g. axiom-expansion, sim-
ulation of cut-elimination from sequent calculus to proof-nets, MELL0,2 and MALL0,2

uf proof-nets,
etc.

The proof-net syntax was a key ingredient in the rest of this thesis, which was about the equality
of formulas. We characterized isomorphisms of MALL2 (as well as those in ⋆-autonomous categories
with finite products) in Chapter 6, extending the result of Balat and Di Cosmo for MLL (and
⋆-autonomous categories) in [BD99]. While the equational theory associated to isomorphisms is
the expected one (Table 6.1 for MALL2 and Table 6.2 for ⋆-autonomous categories), proving it was
by no mean easy. Even if the base idea of distributing formulas was a simple one, so that only
associativity and commutativity isomorphisms are left, exploiting the global information that a
formula is distributed to deduce local properties on the associated proofs necessitated thorough
studies. The previous work on sequent calculus was needed to reduce the study to the unit-free
setting, the first step of the proof. Whereas working on equivalence classes of rule commutation
was source of many technicalities, it was still manageable, contrary to considering proofs up to
cut-elimination directly. For solving the unit-free case, proof-nets were instrumental. Not only did
we recover canonicity of the representation of proofs, no more working in equivalence classes, but
the geometrical shapes found (e.g. fullness and ax -uniqueness) and reasoning applied (in particular
through the correctness criterion) seem hardly mimickable in sequent calculus without a gap in
complexity. The extension of this characterization to the exponentials, so as to consider the full
propositional linear logic, is challenging as there is no associated notion of proof-nets. The main
difficulty could be the ⇝oe transformation, which is needed to get the exponential isomorphisms
but not expected to be included in βη-equality. Still, there is a well-known conjecture on what
isomorphisms are (see Conjecture 6.102), giving a directing line.

Meanwhile, the situation is way more complex for retractions. We studied retractions of MLL0,2

in Chapter 7 and proved that all type-retractions (but not all retractions!) from an atom are
obtained from the Beffara’s retraction. While we have some general results such as a proof of the
Cantor-Bernstein-Schröeder property for MLL0,2, and generally that a retraction in MLLuf between
two formulas of the same size is an isomorphism, we were not successful in solving the problem.
What is most particular is that the usual main difficulties from MLL0,2, the units and the mix 2-
rule, are here irrelevant. Thence, all difficulties come from MLLuf , one of the simplest sub-systems
of linear logic, and surely the most studied. Nonetheless, even there retractions are complicated.
Looking at bigger sub-systems, complexity bounds obtained from provability indicate the problem
cannot be easy, and is even indecidable in the case of propositional lineal logic.

288

Appendices

289

Appendix A

Case studies for Sequent Calculus

We give here the complete proofs of case studies from Chapter 2. They were not given in the main
part for clarity and brevity sake, hence the proofs here are quite long, tedious, repetitive and boring.
These proofs are mostly given for completeness sake. No sane reader is expected to peruse all proofs
here, that in the end are mostly computational content, better suited to be computer-checked in a
proof assistant.

Lemma 2.27. For a proof π of a sequent ⊢ Γ, w(π) ≥ w(⊢ Γ). Furthermore, if π is cut-free, then
w(π) = w(⊢ Γ).

Proof. By induction on the proof π.

If π =
(ax)

⊢ A⊥, A . Then π is cut-free and w(π) = w(A⊥) + w(A) = w(⊢ A⊥, A).

If π =

π1
⊢ A,Γ

π2
⊢ A⊥,∆

(cut)
⊢ Γ,∆ . Then π is not cut-free and

w(π) = w(π1) + w(π2)

≥ w(⊢ A,Γ) + w(⊢ A⊥,∆) by induction hypothesis

= w(A) + w(⊢ Γ) + w(A⊥) + w(⊢ ∆)

> w(⊢ Γ) + w(⊢ ∆) by Fact 2.25
= w(⊢ Γ,∆)

If π =

π1
⊢ A,Γ

π2
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆ . Remark π is cut-free if and only if π1 and π2 are. Then

w(π) = w(π1) + w(π2) + 1

≥ w(⊢ A,Γ) + w(⊢ B,∆) + 1 by induction hypothesis, with equality if π is cut-free
= w(A) + w(⊢ Γ) + w(B) + w(⊢ ∆) + 1

= w(A⊗B) + w(⊢ Γ) + w(⊢ ∆)

= w(⊢ A⊗B,Γ,∆)

291

If π =

π1
⊢ A,B,Γ

(`)
⊢ A`B,Γ . Remark that π is cut-free if and only if π1 is. Then

w(π) = w(π1) + 1

≥ w(⊢ A,B,Γ) + 1 by induction hypothesis, with equality if π is cut-free
= w(A) + w(B) + w(⊢ Γ) + 1

= w(A`B) + w(⊢ Γ)

= w(⊢ A`B,Γ)

If π =
(1)

⊢ 1 . Then π is cut-free and w(π) = 1 = w(1) = w(⊢ 1).

If π =

π1
⊢ Γ

(⊥)
⊢ ⊥,Γ . Remark that π is cut-free if and only if π1 is. Then

w(π) = w(π1) + 1

≥ w(⊢ Γ) + 1 by induction hypothesis, with equality if π is cut-free
= w(⊢ Γ) + w(⊥)
= w(⊢ ⊥,Γ)

If π =

π1
⊢ A,Γ

π2
⊢ B,Γ

(&)
⊢ A&B,Γ . Remark that π is cut-free if and only if π1 and π2 are. Then

w(π) = max(w(π1), w(π2)) + 1

≥ max(w(⊢ A,Γ), w(⊢ B,Γ)) + 1 by induction, with equality if π is cut-free
= max(w(A) + w(⊢ Γ), w(B) + w(⊢ Γ)) + 1

= max(w(A), w(B)) + w(⊢ Γ) + 1

= w(A&B) + w(⊢ Γ)

= w(⊢ A&B,Γ)

If π =

π1
⊢ A1,Γ

(⊕1)
⊢ A1 ⊕A2,Γ . Remark that π is cut-free if and only if π1 is. Then

w(π) = w(π1) + w(A2) + 1

≥ w(⊢ A1,Γ) + w(A2) + 1 by induction hypothesis, with equality if π is cut-free
= w(⊢ Γ) + w(A1) + w(A2) + 1

= w(⊢ Γ) + w(A1 ⊕A2)

= w(⊢ A1 ⊕A2,Γ)

292

APPENDIX A. CASE STUDIES FOR SEQUENT CALCULUS

If π =

π1
⊢ A2,Γ

(⊕2)
⊢ A1 ⊕A2,Γ . Remark that π is cut-free if and only if π1 is. Then

w(π) = w(π1) + w(A1) + 1

≥ w(⊢ A2,Γ) + w(A1) + 1 by induction hypothesis, with equality if π is cut-free
= w(⊢ Γ) + w(A1) + w(A2) + 1

= w(⊢ Γ) + w(A1 ⊕A2)

= w(⊢ A1 ⊕A2,Γ)

If π =
(⊤)

⊢ ⊤,Γ . Then π is cut-free and w(π) = 1 + w(⊢ Γ) = w(⊢ ⊤,Γ).

If π =

π1
⊢ Γ

π2
⊢ ∆

(mix2)
⊢ Γ,∆ . Remark π is cut-free if and only if π1 and π2 are. Then

w(π) = w(π1) + w(π2)

≥ w(⊢ Γ) + w(⊢ ∆) by induction hypothesis, with equality if π is cut-free
= w(⊢ Γ,∆)

If π =
(mix0)

⊢ . Then π is cut-free and w(π) = 0 = w(⊢).

Proposition 2.46 (⊢⊣rc ⊆ =β). Given proofs π and τ in MALL0,2, if π ⊢⊣rc τ then π
β∗←− · β∗−→ τ . In

particular, if π ⊢⊣r τ then π =β τ .

Proof. It suffices, for each commutation, to give a proof that can be reduced by cut-elimination
to both sides of the commutation – using that both rule commutation and cut-elimination are
contextual, so that one can ignore what happens below the rule commutation. Remark that this
trivially holds for ⊢⊣c , as well as for other commutations of ⊢⊣rc involving a cut-rule: two such
proofs are related by β−→ or β←−. As there are 152 cases in general, we treat here only the rule
commutations of MALL0,2. In all cases here, we give a proof with a single cut-rule above two others
proofs, such that the above proof reduces to the left one or to the right one according respectively
to whether the cut-rule is first commuted with the rule on its left or on its right – once this first
commutation is done, there will always be a single result of cut-elimination, that can be reached
using only β−→ steps.

• C`̀ commutation

293

π
⊢ A,B,C,D,Γ

(`)
⊢ A`B,C,D,Γ

(`)
⊢ A`B,C `D,Γ

(ax)
⊢ B⊥, B

(ax)
⊢ A⊥, A

(⊗)
⊢ B⊥ ⊗A⊥, A,B

(`)

⊢ B⊥ ⊗A⊥, A`B
(cut)

⊢ A`B,C `D,Γ

π
⊢ A,B,C,D,Γ

(`)
⊢ A`B,C,D,Γ

(`)
⊢ A`B,C `D,Γ

π
⊢ A,B,C,D,Γ

(`)
⊢ A,B,C `D,Γ

(`)
⊢ A`B,C `D,Γ

β β

• C⊗̀ and C⊗` commutations

(ax)
⊢ C⊥, C

ϕ
⊢ D,∆

(⊗)
⊢ C⊥, C ⊗D,∆

π
⊢ A,B,C,Γ

(`)
⊢ C,A`B,Γ

(cut)
⊢ A`B,C ⊗D,Γ,∆

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

ϕ
⊢ D,∆

(⊗)
⊢ A`B,C ⊗D,Γ,∆

π
⊢ A,B,C,Γ

ϕ
⊢ D,∆

(⊗)
⊢ A,B,C ⊗D,Γ,∆

(`)
⊢ A`B,C ⊗D,Γ,∆

β β

π
⊢ C,Γ

(ax)
⊢ D⊥, D

(⊗)
⊢ D⊥, C ⊗D,Γ

ϕ
⊢ A,B,D,∆

(`)
⊢ D,A`B,∆

(cut)
⊢ A`B,C ⊗D,Γ,∆

π
⊢ C,Γ

ϕ
⊢ A,B,D,∆

(`)
⊢ A`B,D,∆

(⊗)
⊢ A`B,C ⊗D,Γ,∆

π
⊢ C,Γ

ϕ
⊢ A,B,D,∆

(⊗)
⊢ A,B,C ⊗D,Γ,∆

(`)
⊢ A`B,C ⊗D,Γ,∆

β β

• C⊥̀ and C⊥` commutations

294

APPENDIX A. CASE STUDIES FOR SEQUENT CALCULUS

(1)
⊢ 1

(⊥)
⊢ 1,⊥

π
⊢ A,B,Γ

(⊥)
⊢ A,B,⊥,Γ

(`)
⊢ A`B,⊥,Γ

(cut)
⊢ A`B,⊥,Γ

π
⊢ A,B,Γ

(`)
⊢ A`B,Γ

(⊥)
⊢ A`B,⊥,Γ

π
⊢ A,B,Γ

(⊥)
⊢ A,B,⊥,Γ

(`)
⊢ A`B,⊥,Γ

β β

• C&̀ and C&` commutations.

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

ϕ
⊢ A,B,D,Γ

(`)
⊢ A`B,D,Γ

(&)
⊢ A`B,C &D,Γ

(ax)
⊢ B⊥, B

(ax)
⊢ A⊥, A

(⊗)
⊢ A,B,B⊥ ⊗A⊥

(`)

⊢ A`B,B⊥ ⊗A⊥
(cut)

⊢ A`B,C &D,Γ

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

ϕ
⊢ A,B,D,Γ

(`)
⊢ A`B,D,Γ

(&)
⊢ A`B,C &D,Γ

π
⊢ A,B,C,Γ

ϕ
⊢ A,B,D,Γ

(&)
⊢ A,B,C &D,Γ

(`)
⊢ A`B,C &D,Γ

β β

• C⊕̀i and C⊕i` commutations We consider by symmetry only the ⊕1-rule.

(ax)
⊢ C⊥, C

(⊕1)

⊢ C⊥, C ⊕D

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

(cut)
⊢ A`B,C ⊕D,Γ

π
⊢ A,B,C,Γ

(`)
⊢ A`B,C,Γ

(⊕1)
⊢ A`B,C ⊕D,Γ

π
⊢ A,B,C,Γ

(⊕1)
⊢ A,B,C ⊕D,Γ

(`)
⊢ A`B,C ⊕D,Γ

β β

• C⊤̀ and C⊤` commutations

295

(⊤)
⊢ ⊤, 0

(⊤)
⊢ A,B,⊤,Γ

(`)
⊢ A`B,⊤,Γ

(cut)
⊢ A`B,⊤,Γ

(⊤)
⊢ A`B,⊤,Γ

(⊤)
⊢ A,B,⊤,Γ

(`)
⊢ A`B,⊤,Γ

β
β

• Cmix2` and Cm̀ix2
commutations

π
⊢ A,B,Γ

(`)
⊢ A`B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A`B,Γ,∆

(ax)
⊢ B⊥, B

(ax)
⊢ A⊥, A

(⊗)
⊢ A,B,B⊥ ⊗A⊥

(`)

⊢ A`B,B⊥ ⊗A⊥
(cut)

⊢ A`B,Γ,∆

π
⊢ A,B,Γ

(`)
⊢ A`B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A`B,Γ,∆

π
⊢ A,B,Γ

ϕ
⊢ ∆

(⊗)
⊢ A,B,Γ,∆

(`)
⊢ A`B,Γ,∆

β β

π
⊢ Γ

ϕ
⊢ A,B,∆

(`)
⊢ A`B,∆

(mix2)
⊢ A`B,Γ,∆

(ax)
⊢ B⊥, B

(ax)
⊢ A⊥, A

(⊗)
⊢ A,B,B⊥ ⊗A⊥

(`)

⊢ A`B,B⊥ ⊗A⊥
(cut)

⊢ A`B,Γ,∆

π
⊢ Γ

ϕ
⊢ A,B,∆

(`)
⊢ A`B,∆

(mix2)
⊢ A`B,Γ,∆

π
⊢ Γ

ϕ
⊢ A,B,∆

(mix2)
⊢ A,B,Γ,∆

(`)
⊢ A`B,Γ,∆

β β

• C⊗⊗ commutations.

296

APPENDIX A. CASE STUDIES FOR SEQUENT CALCULUS

π
⊢ C,Γ

ϕ
⊢ A,D,∆

(⊗)
⊢ A,C ⊗D,Γ,∆

(ax)
⊢ A⊥, A

τ
⊢ B,Σ

(⊗)
⊢ A⊥, A⊗B,Σ

(cut)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

π
⊢ C,Γ

ϕ
⊢ A,D,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,D,∆,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

π
⊢ C,Γ

ϕ
⊢ A,D,∆

(⊗)
⊢ A,C ⊗D,Γ,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

β β

π
⊢ A,C,Γ

τ
⊢ D,Σ

(⊗)
⊢ A,C ⊗D,Γ,Σ

(ax)
⊢ A⊥, A

ϕ
⊢ B,∆

(⊗)
⊢ A⊥, A⊗B,∆

(cut)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C,Γ,∆

τ
⊢ D,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

π
⊢ A,C,Γ

τ
⊢ D,Σ

(⊗)
⊢ A,C ⊗D,Γ,Σ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

β β

π
⊢ C,Γ

(ax)
⊢ D⊥, D

(⊗)
⊢ D⊥, C ⊗D,Γ

ϕ
⊢ A,∆

τ
⊢ B,D,Σ

(⊗)
⊢ A⊗B,D,∆,Σ

(cut)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

π
⊢ C,Γ

ϕ
⊢ A,∆

τ
⊢ B,D,Σ

(⊗)
⊢ A⊗B,D,Γ,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

ϕ
⊢ A,∆

π
⊢ C,Γ

τ
⊢ B,D,Σ

(⊗)
⊢ B,C ⊗D,∆,Σ

(⊗)
⊢ A⊗B,C ⊗D,Γ,∆,Σ

β β

• C⊗⊥ and C⊥⊗ commutations

297

(1)
⊢ 1

(⊥)
⊢ 1,⊥

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,⊥,Γ,∆

(cut)
⊢ A⊗B,⊥,Γ,∆

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

(⊥)
⊢ A⊗B,⊥,Γ,∆

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,⊥,Γ,∆

β β

(1)
⊢ 1

(⊥)
⊢ 1,⊥

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊥)
⊢ B,⊥,∆

(⊗)
⊢ A⊗B,⊥,Γ,∆

(cut)
⊢ A⊗B,⊥,Γ,∆

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

(⊥)
⊢ A⊗B,⊥,Γ,∆

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊥)
⊢ B,⊥,∆

(⊗)
⊢ A⊗B,⊥,Γ,∆

β β

• C⊗& and C&
⊗ commutations

ϕ
⊢ B,C,∆

τ
⊢ B,D,∆

(&)
⊢ B,C &D,∆

π
⊢ A,Γ

(ax)
⊢ B⊥, B

(⊗)
⊢ B⊥, A⊗B,Γ

(cut)
⊢ A⊗B,C &D,Γ,∆

π
⊢ A,Γ

ϕ
⊢ B,C,∆

(⊗)
⊢ A⊗B,C,Γ,∆

π
⊢ A,Γ

τ
⊢ B,D,∆

(⊗)
⊢ A⊗B,D,Γ,∆

(&)
⊢ A⊗B,C &D,Γ,∆

π
⊢ A,Γ

ϕ
⊢ B,C,∆

τ
⊢ B,D,∆

(&)
⊢ B,C &D,∆

(⊗)
⊢ A⊗B,C &D,Γ,∆

β β

298

APPENDIX A. CASE STUDIES FOR SEQUENT CALCULUS

π
⊢ A,C,Γ

τ
⊢ A,D,Γ

(&)
⊢ A,C &D,Γ

(ax)
⊢ A⊥, A

ϕ
⊢ B,∆

(⊗)
⊢ A⊥, A⊗B,∆

(cut)
⊢ A⊗B,C &D,Γ,∆

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C,Γ,∆

τ
⊢ A,D,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,D,Γ,∆

(&)
⊢ A⊗B,C &D,Γ,∆

π
⊢ A,C,Γ

τ
⊢ A,D,Γ

(&)
⊢ A,C &D,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C &D,Γ,∆

β β

• C⊗⊕i and C⊕i⊗ commutations We consider by symmetry only the ⊕1-rule.

π
⊢ A,C,Γ

(⊕1)
⊢ A,C ⊕D,Γ

(ax)
⊢ A⊥, A

ϕ
⊢ B,∆

(⊗)
⊢ A⊥, A⊗B,∆

(cut)
⊢ A⊗B,C ⊕D,Γ,∆

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C,Γ,∆

(⊕1)
⊢ A⊗B,C ⊕D,Γ,∆

π
⊢ A,C,Γ

(⊕1)
⊢ A,C ⊕D,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,C ⊕D,Γ,∆

β β

ϕ
⊢ B,C,∆

(⊕1)
⊢ B,C ⊕D,∆

π
⊢ A,Γ

(ax)
⊢ B⊥, B

(⊗)
⊢ B⊥, A⊗B,Γ

(cut)
⊢ A⊗B,C ⊕D,Γ,∆

π
⊢ A,Γ

ϕ
⊢ B,C,∆

(⊗)
⊢ A⊗B,C,Γ,∆

(⊕1)
⊢ A⊗B,C ⊕D,Γ,∆

π
⊢ A,C,Γ

ϕ
⊢ B,∆

(⊕1)
⊢ B,C ⊕D,∆

(⊗)
⊢ A⊗B,C ⊕D,Γ,∆

β β

• C⊗⊤ and C⊤⊗ commutations

299

(⊤)
⊢ ⊤, 0

(⊤)
⊢ A,⊤,Γ

π
⊢ B,∆

(⊗)
⊢ A⊗B,⊤,Γ,∆

(cut)
⊢ A⊗B,⊤,Γ,∆

(⊤)
⊢ A⊗B,⊤,Γ,∆

(⊤)
⊢ A,⊤,Γ

π
⊢ B,∆

(⊗)
⊢ A⊗B,⊤,Γ,∆

β
β

(⊤)
⊢ ⊤, 0

π
⊢ A,Γ

(⊤)
⊢ B,⊤,∆

(⊗)
⊢ A⊗B,⊤,Γ,∆

(cut)
⊢ A⊗B,⊤,Γ,∆

(⊤)
⊢ A⊗B,⊤,Γ,∆

π
⊢ A,Γ

(⊤)
⊢ B,⊤,∆

(⊗)
⊢ A⊗B,⊤,Γ,∆

β
β

• Cmix2
⊗ and C⊗mix2

commutations

π
⊢ A,Γ

τ
⊢ Σ

(mix2)
⊢ A,Γ,Σ

(ax)
⊢ A⊥, A

ϕ
⊢ B,∆

(⊗)
⊢ A⊥, A⊗B,∆

(cut)
⊢ A⊗B,Γ,∆,Σ

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

τ
⊢ Σ

(mix2)
⊢ A⊗B,Γ,∆,Σ

π
⊢ A,Γ

τ
⊢ Σ

(mix2)
⊢ A,Γ,Σ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆,Σ

β β

300

APPENDIX A. CASE STUDIES FOR SEQUENT CALCULUS

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

(ax)
⊢ A⊥, A

τ
⊢ B,Σ

(⊗)
⊢ A⊥, A⊗B,Σ

(cut)
⊢ A⊗B,Γ,∆,Σ

π
⊢ Γ

ϕ
⊢ A,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,∆,Σ

(mix2)
⊢ A⊗B,Γ,∆,Σ

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,Γ,∆,Σ

β β

ϕ
⊢ B,∆

τ
⊢ Σ

(mix2)
⊢ B,∆,Σ

π
⊢ A,Γ

(ax)
⊢ B⊥, B

(⊗)
⊢ B⊥, A⊗B,Γ

(cut)
⊢ A⊗B,Γ,∆,Σ

π
⊢ A,Γ

ϕ
⊢ B,∆

(⊗)
⊢ A⊗B,Γ,∆

τ
⊢ Σ

(mix2)
⊢ A⊗B,Γ,∆,Σ

π
⊢ A,Γ

ϕ
⊢ B,∆

τ
⊢ Σ

(mix2)
⊢ B,∆,Σ

(⊗)
⊢ A⊗B,Γ,∆,Σ

β β

π
⊢ Γ

τ
⊢ B,Σ

(mix2)
⊢ B,Γ,Σ

ϕ
⊢ A,∆

(ax)
⊢ B⊥, B

(⊗)
⊢ B⊥, A⊗B,∆

(cut)
⊢ A⊗B,Γ,∆,Σ

π
⊢ Γ

ϕ
⊢ A,∆

τ
⊢ B,Σ

(⊗)
⊢ A⊗B,∆,Σ

(mix2)
⊢ A⊗B,Γ,∆,Σ

ϕ
⊢ A,∆

π
⊢ Γ

τ
⊢ B,Σ

(mix2)
⊢ B,Γ,Σ

(⊗)
⊢ A⊗B,Γ,∆,Σ

β β

• C⊥⊥ commutation

301

π
⊢ Γ

(⊥)
⊢ ⊥,Γ

(⊥2)
⊢ ⊥,⊥2,Γ

(1)
⊢ 1

(⊥1)
⊢ 1,⊥1

(cut)
⊢ ⊥1,⊥2,Γ

π
⊢ Γ

(⊥1)
⊢ ⊥1,Γ

(⊥2)
⊢ ⊥1,⊥2,Γ

π
⊢ Γ

(⊥2)
⊢ ⊥2,Γ

(⊥1)
⊢ ⊥1,⊥2,Γ

β β

• C&
⊥ and C⊥& commutations

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

ϕ
⊢ B,Γ

(⊥)
⊢ B,⊥,Γ

(&)
⊢ A&B,⊥,Γ

(1)
⊢ 1

(⊥)
⊢ 1,⊥

(cut)
⊢ A&B,⊥,Γ

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

ϕ
⊢ B,Γ

(⊥)
⊢ B,⊥,Γ

(&)
⊢ A&B,⊥,Γ

π
⊢ A,Γ

ϕ
⊢ B,Γ

(&)
⊢ A&B,Γ

(⊥)
⊢ A&B,⊥,Γ

β β

• C⊕i⊥ and C⊥⊕i commutations. We consider by symmetry only the ⊕1-rule.

(ax)
⊢ A⊥, A

(⊕1)

⊢ A⊥, A⊕B

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

(cut)
⊢ A⊕B,⊥,Γ

π
⊢ A,Γ

(⊥)
⊢ A,⊥,Γ

(⊕1)
⊢ A⊕B,⊥,Γ

π
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

(⊥)
⊢ A⊕B,⊥,Γ

β β

• C⊥⊤ and C⊤⊥ commutations

302

APPENDIX A. CASE STUDIES FOR SEQUENT CALCULUS

(⊤)
⊢ ⊤, 0

(⊤)
⊢ ⊤,Γ

(⊥)
⊢ ⊤,⊥,Γ

(cut)
⊢ ⊤,⊥,Γ

(⊤)
⊢ ⊤,⊥,Γ

(⊤)
⊢ ⊤,Γ

(⊥)
⊢ ⊤,⊥,Γ

β
β

• Cmix2

⊥ and C⊥mix2
commutations

π
⊢ Γ

(⊥)
⊢ ⊥,Γ

ϕ
⊢ ∆

(mix2)
⊢ ⊥,Γ,∆

(1)
⊢ 1

(⊥)
⊢ 1,⊥

(cut)
⊢ ⊥,Γ,∆

π
⊢ Γ

(⊥)
⊢ ⊥,Γ

ϕ
⊢ ∆

(mix2)
⊢ ⊥,Γ,∆

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

(⊥)
⊢ ⊥,Γ,∆

β β

π
⊢ Γ

ϕ
⊢ ∆

(⊥)
⊢ ⊥,∆

(mix2)
⊢ ⊥,Γ,∆

(1)
⊢ 1

(⊥)
⊢ 1,⊥

(cut)
⊢ ⊥,Γ,∆

π
⊢ Γ

ϕ
⊢ ∆

(⊥)
⊢ ⊥,∆

(mix2)
⊢ ⊥,Γ,∆

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

(⊥)
⊢ ⊥,Γ,∆

β β

• C&
& commutation.

303

π
⊢ A,C,Γ

ϕ
⊢ B,C,Γ

(&)
⊢ A&B,C,Γ

τ
⊢ A,D,Γ

µ
⊢ B,D,Γ

(&)
⊢ A&B,D,Γ

(&)
⊢ A&B,C &D,Γ

(ax)
⊢ A⊥, A

(⊕2)

⊢ B ⊕A⊥, A

(ax)
⊢ B⊥, B

(⊕1)

⊢ B ⊕A⊥, B
(&)

⊢ B⊥ ⊕A⊥, A&B
(cut)

⊢ A&B,C &D,Γ

π
⊢ A,C,Γ

ϕ
⊢ B,C,Γ

(&)
⊢ A&B,C,Γ

τ
⊢ A,D,Γ

µ
⊢ B,D,Γ

(&)
⊢ A&B,D,Γ

(&)
⊢ A&B,C &D,Γ

π
⊢ A,C,Γ

τ
⊢ A,D,Γ

(&)
⊢ A,C &D,Γ

ϕ
⊢ B,C,Γ

µ
⊢ B,D,Γ

(&)
⊢ B,C &D,Γ

(&)
⊢ A&B,C &D,Γ

β

β

• C&
⊕i and C⊕i& commutations We consider by symmetry only the ⊕1-rule.

(ax)
⊢ C⊥, C

(⊕1)

⊢ C⊥, C ⊕D

π
⊢ A,C,Γ

ϕ
⊢ B,C,Γ

(&)
⊢ A&B,C,Γ

(cut)
⊢ A&B,C ⊕D,Γ

π
⊢ A,C,Γ

ϕ
⊢ B,C,Γ

(&)
⊢ A&B,C,Γ

(⊕1)
⊢ A&B,C ⊕D,Γ

π
⊢ A,C,Γ

(⊕1)
⊢ A,C ⊕D,Γ

ϕ
⊢ B,C,Γ

(⊕1)
⊢ B,C ⊕D,Γ

(&)
⊢ A&B,C ⊕D,Γ

β β

• C&
⊤ and C⊤& commutations.

(⊤)
⊢ ⊤, 0

(⊤)
⊢ A,⊤,Γ

(⊤)
⊢ B,⊤,Γ

(&)
⊢ A&B,⊤,Γ

(cut)
⊢ A&B,⊤,Γ

(⊤)
⊢ A&B,⊤,Γ

(⊤)
⊢ A,⊤,Γ

(⊤)
⊢ B,⊤,Γ

(&)
⊢ A&B,⊤,Γ

β
β

• Cmix2

& and C&
mix2

commutations

304

APPENDIX A. CASE STUDIES FOR SEQUENT CALCULUS

π
⊢ Γ

ϕ
⊢ A,∆

τ
⊢ B,∆

(&)
⊢ A&B,∆

(mix2)
⊢ A&B,Γ,∆

(ax)
⊢ A,A⊥

(⊕2)

⊢ A,B⊥ ⊕A⊥

(ax)
⊢ B,B⊥

(⊕1)

⊢ B,B⊥ ⊕A⊥
(&)

⊢ A&B,B⊥ ⊕A⊥
(cut)

⊢ A&B,Γ,∆

π
⊢ Γ

ϕ
⊢ A,∆

τ
⊢ B,∆

(&)
⊢ A&B,∆

(mix2)
⊢ A&B,Γ,∆

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

π
⊢ Γ

τ
⊢ B,∆

(mix2)
⊢ B,Γ,∆

(&)
⊢ A&B,Γ,∆

β β

π
⊢ A,Γ

τ
⊢ B,Γ

(&)
⊢ A&B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A&B,Γ,∆

(ax)
⊢ A,A⊥

(⊕2)

⊢ A,B⊥ ⊕A⊥

(ax)
⊢ B,B⊥

(⊕1)

⊢ B,B⊥ ⊕A⊥
(&)

⊢ A&B,B⊥ ⊕A⊥
(cut)

⊢ A&B,Γ,∆

π
⊢ A,Γ

τ
⊢ B,Γ

(&)
⊢ A&B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A&B,Γ,∆

π
⊢ A,Γ

ϕ
⊢ ∆

(mix2)
⊢ A,Γ,∆

τ
⊢ B,Γ

ϕ
⊢ ∆

(mix2)
⊢ B,Γ,∆

(&)
⊢ A&B,Γ,∆

β β

• C⊕i⊕j commutation We consider by symmetry only the ⊕1-rule.

(ax)
⊢ C⊥, C

(⊕1)

⊢ C⊥, C ⊕D

π
⊢ A,C,Γ

(⊕1)
⊢ A⊕B,C,Γ

(cut)
⊢ A⊕B,C ⊕D,Γ

π
⊢ A,C,Γ

(⊕1)
⊢ A⊕B,C,Γ

(⊕1)
⊢ A⊕B,C ⊕D,Γ

π
⊢ A,C,Γ

(⊕1)
⊢ A,C ⊕D,Γ

(⊕1)
⊢ A⊕B,C ⊕D,Γ

β β

• C⊕i⊤ and C⊤⊕i commutations We consider by symmetry only the ⊕1-rule.

305

(⊤)
⊢ ⊤, 0

(⊤)
⊢ A,⊤,Γ

(⊕1)
⊢ A⊕B,⊤,Γ

(cut)
⊢ A⊕B,⊤,Γ

(⊤)
⊢ A⊕B,⊤,Γ

(⊤)
⊢ A,⊤,Γ

(⊕1)
⊢ A⊕B,⊤,Γ

β
β

• Cmix2
⊕i and C⊕imix2

commutations We consider only ⊕1 by symmetry.

π
⊢ A,Γ

ϕ
⊢ ∆

(mix2)
⊢ A,Γ,∆

(ax)
⊢ A⊥, A

(⊕1)

⊢ A⊥, A⊕B
(cut)

⊢ A⊕B,Γ,∆

π
⊢ A,Γ

(⊕1)
⊢ A⊕B,Γ

ϕ
⊢ ∆

(mix2)
⊢ A⊕B,Γ,∆

π
⊢ A,Γ

ϕ
⊢ ∆

(mix2)
⊢ A,Γ,∆

(⊕1)
⊢ A⊕B,Γ,∆

β β

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

(ax)
⊢ A⊥, A

(⊕1)

⊢ A⊥, A⊕B
(cut)

⊢ A⊕B,Γ,∆

π
⊢ Γ

ϕ
⊢ A,∆

(⊕1)
⊢ A⊕B,∆

(mix2)
⊢ A⊕B,Γ,∆

π
⊢ Γ

ϕ
⊢ A,∆

(mix2)
⊢ A,Γ,∆

(⊕1)
⊢ A⊕B,Γ,∆

β β

• C⊤⊤ commutation

(⊤1)
⊢ ⊤1, 0

(⊤2)
⊢ ⊤,⊤2,Γ

(cut)
⊢ ⊤1,⊤2,Γ

(⊤1)
⊢ ⊤1,⊤2,Γ

(⊤2)
⊢ ⊤1,⊤2,Γ

β β

306

APPENDIX A. CASE STUDIES FOR SEQUENT CALCULUS

• Cmix2

⊤ and C⊤mix2
commutations

(⊤)
⊢ ⊤,Γ

π
⊢ ∆

(mix2)
⊢ ⊤,Γ,∆

(⊤)
⊢ 0,⊤

(cut)
⊢ ⊤,Γ,∆

(⊤)
⊢ ⊤,Γ

π
⊢ ∆

(mix2)
⊢ ⊤,Γ,∆

(⊤)
⊢ ⊤,Γ,∆

β β

π
⊢ Γ

(⊤)
⊢ ⊤,∆

(mix2)
⊢ ⊤,Γ,∆

(⊤)
⊢ 0,⊤

(cut)
⊢ ⊤,Γ,∆

π
⊢ Γ

(⊤)
⊢ ⊤,∆

(mix2)
⊢ ⊤,Γ,∆

(⊤)
⊢ ⊤,Γ,∆

β β

• Cmix2

mix2
commutations

π
⊢ Γ

ϕ
⊢ ∆

(⊥)
⊢ ⊥,∆

(mix2)
⊢ ⊥,Γ,∆

(1)
⊢ 1

τ
⊢ Σ

(mix2)
⊢ 1,Σ

(cut)
⊢ Γ,∆,Σ

π
⊢ Γ

ϕ
⊢ ∆

τ
⊢ Σ

(mix2)
⊢ ∆,Σ

(mix2)
⊢ Γ,∆,Σ

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

τ
⊢ Σ

(mix2)
⊢ Γ,∆,Σ

β β

307

(1)
⊢ 1

τ
⊢ Σ

(mix2)
⊢ 1,Σ

π
⊢ Γ

(⊥)
⊢ ⊥,Γ

ϕ
⊢ ∆

(mix2)
⊢ ⊥,Γ,∆

(cut)
⊢ Γ,∆,Σ

π
⊢ Γ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆

τ
⊢ Σ

(mix2)
⊢ Γ,∆,Σ

π
⊢ Γ

τ
⊢ Σ

(mix2)
⊢ Γ,Σ

ϕ
⊢ ∆

(mix2)
⊢ Γ,∆,Σ

β β

π
⊢ Γ

(1)
⊢ 1

(mix2)
⊢ 1,Γ

ϕ
⊢ ∆

τ
⊢ Σ

(⊥)
⊢ ⊥,Σ

(mix2)
⊢ ⊥,∆,Σ

(cut)
⊢ Γ,∆,Σ

π
⊢ Γ

ϕ
⊢ ∆

τ
⊢ Σ

(mix2)
⊢ ∆,Σ

(mix2)
⊢ Γ,∆,Σ

ϕ
⊢ ∆

π
⊢ Γ

τ
⊢ Σ

(mix2)
⊢ Γ,Σ

(mix2)
⊢ Γ,∆,Σ

β β

Concerning rule commutations for the full system, a devilishly motivated reader could prove
their inclusion in β-equality following the same schemes as for the above rule commutations, e.g.:

(∅)
⊢ Γ

(⊥)
⊢ ⊥,Γ

(1)
⊢ 1

(1)
⊢ 1

(∪)
⊢ 1

(cut)
⊢ Γ

(∅)
⊢ Γ

(∅)
⊢ Γ

(∅)
⊢ Γ

(∪)
⊢ Γ

β
β

308

Appendix B

Basic properties of Isomorphisms and
Retractions

We prove in this appendix properties of isomorphisms and retractions used implicitly in Part III.
In particular, that these relations are transitive, respect substitution and contextualization, so that
an (in)equational theory is a legal tool for their characterization.

We recall the definition of isomorphisms and retractions, from Chapters 6 and 7

Definition 6.1 (Isomorphism). Consider (a sub-system of) linear logic with ⊢⊣o some (possibly none,
or all) of the Rétoré transformations. Two formulas A and B are isomorphic (in this sub-system),
denoted A ≃ B, if there exist proofs π of ⊢ A⊥, B and π′ of ⊢ B⊥, A such that π

B

▷◁ π′ =βηo axA
and π′

A

▷◁ π =βηo axB :

π
B

▷◁ π′ =

π
⊢ A⊥, B

π′

⊢ B⊥, A
(cut)

⊢ A⊥, A =βηo
(ax)

⊢ A⊥, A = axA
and

π′
A

▷◁ π =

π′

⊢ B⊥, A
π

⊢ A⊥, B
(cut)

⊢ B⊥, B =βηo
(ax)

⊢ B⊥, B = axB

Definition 7.1 (Retraction). Consider (a sub-system of) linear logic with ⊢⊣o some (possibly none,
or all) of the Rétoré transformations. There is a retraction between formulas A and B, denoted
A ⊴ B, if there exist proofs π of ⊢ A⊥, B and π′ of ⊢ B⊥, A such that π

B

▷◁ π′ =βηo axA:

π
B

▷◁ π′ =

π
⊢ A⊥, B

π′

⊢ B⊥, A
(cut)

⊢ A⊥, A =βηo
(ax)

⊢ A⊥, A = axA

The two previous definitions correspond to instantiations of the categorical concepts, in the
category corresponding to Linear Logic, whose objects are formulas and whose morphisms are

309

proofs up to =βη [See89]. In both of these definitions, the focus is on objects, not on the underlying
morphisms.

The relation “being a retraction of”, namely ⊴, is reflexive and transitive. The last property
allows in particular to consider retractions up to isomorphisms. Meanwhile, the relation “being
isomorphic to”, ≃, is an equivalence relation.

These properties hold not only in linear logic, but more generally in any logic whose retractions
and isomorphisms are defined as in Definitions 6.1 and 7.1 and having a cut − cut commutative
case and an ax key case in its cut-elimination procedure.

Lemma B.1. Take π← ⊢ A⊥, B, π→ ⊢ B⊥, A, ϕ← ⊢ B⊥, C and ϕ→ ⊢ C⊥, B proofs such that
π←

B

▷◁ π→ =βη axA and ϕ←
C

▷◁ ϕ→ =βη axB.
Set τ← = π←

B

▷◁ ϕ← and τ→ = ϕ→
B

▷◁ π→, respectively proofs of ⊢ A⊥, C and ⊢ C⊥, A.
Then τ←

C

▷◁ τ→ =βη axA.

Proof.

τ←
⊢ A⊥, C

τ→
⊢ C⊥, A

(cut)
⊢ A⊥, A

=

π←
⊢ A⊥, B

ϕ←
⊢ B⊥, C

(cut)
⊢ A⊥, C

ϕ→
⊢ C⊥, B

π→
⊢ B⊥, A

(cut)
⊢ C⊥, A

(cut)
⊢ A⊥, A

β−→ (using a cut − cut commutative case)

π←
⊢ A⊥, B

ϕ←
⊢ B⊥, C

ϕ→
⊢ C⊥, B

π→
⊢ B⊥, A

(cut)
⊢ C⊥, A

(cut)
⊢ B⊥, A

(cut)
⊢ A⊥, A

β−→ (using a cut − cut commutative case)

π←
⊢ A⊥, B

ϕ←
⊢ B⊥, C

ϕ→
⊢ C⊥, B

(cut)
⊢ B⊥, B

π→
⊢ B⊥, A

(cut)
⊢ B⊥, A

(cut)
⊢ A⊥, A

=βη
π←

⊢ A⊥, B

(ax)
⊢ B⊥, B

π→
⊢ B⊥, A

(cut)
⊢ B⊥, A

(cut)
⊢ A⊥, A

β−→ (using an ax key case)
π←

⊢ A⊥, B
π→

⊢ B⊥, A
(cut)

⊢ A⊥, A
=βη

(ax)
⊢ A⊥, A

310

APPENDIX B. BASIC PROPERTIES OF ISOMORPHISMS AND RETRACTIONS

Lemma B.2. The relation ⊴ is reflexive and transitive.

Proof. Reflexivity is the easiest to prove: just consider π = axA = π′, given a formula A. Then
axA

A

▷◁ axA
β−→ axA using an ax key case. This proves A ⊴ A.

Now, let us prove transitivity, i.e. assuming A ⊴ B ⊴ C, let us show A ⊴ C. Take π← ⊢ A⊥, B,
π→ ⊢ B⊥, A, ϕ← ⊢ B⊥, C and ϕ→ ⊢ C⊥, B proofs such that π←

B

▷◁ π→ =βη axA and ϕ←
C

▷◁ ϕ→ =βη
axB .

By Lemma B.1, τ← = π←
B

▷◁ ϕ← and τ→ = ϕ→
B

▷◁ π→ yield A ⊴ C.

Lemma B.3. The relation ≃ is an equivalence relation.

Proof. Reflexivity follows as in the proof of Lemma B.2: given a formula A, axA
A

▷◁ axA
β−→ axA

using an ax key case. This proves A ≃ A.
For symmetry, take π and π′ respectively of ⊢ A⊥, B and ⊢ B⊥, A such that π

B

▷◁ π′ =βη axA
and π′

A

▷◁ π =βη axB . Then, these proofs not only yield A ≃ B but also B ≃ A.
Lastly, transitivity follows from Lemma B.1, as in the proof of Lemma B.2. Indeed, take

π← ⊢ A⊥, B, π→ ⊢ B⊥, A, ϕ← ⊢ B⊥, C and ϕ→ ⊢ C⊥, B proofs such that π←
B

▷◁ π→ =βη axA,
π→

A

▷◁ π← =βη axB , ϕ←
C

▷◁ ϕ→ =βη axB and ϕ→
B

▷◁ ϕ← =βη axC . According to Lemma B.1, with
τ← = π←

B

▷◁ ϕ← and τ→ = ϕ→
B

▷◁ π→, we have τ←
C

▷◁ τ→ =βη axA and τ→
A

▷◁ τ← =βη axC .

Lemma B.4.

• The relation ⊴ is contextual: if A ⊴ B then for any formula C, C[A/X] ⊴ C[B/X].

• The relation ≃ is contextual: if A ≃ B then for any formula C, C[A/X] ≃ C[B/X] (in other
words, ≃ is a congruence).

Proof. By induction on the formula C. The idea is to do as in the identity on C until reaching X,
where one replaces the ax -rules on X by proofs associated to the retraction or isomorphism. Then,
one has to check that reducing cuts can be done as wished.

Lemma B.5. Let σ be a substitution acting only on atoms and A a formula. Then σ(axA) = axσ(A)

and σ(idA) =η idσ(A). Moreover, if σ is a atomic-substitution, then σ(idA) = idσ(A).

Proof. The first statement is easy:

σ(axA) = σ

(
(ax)

⊢ A⊥, A
)

=
(ax)

⊢ σ(A)⊥, σ(A) = axσ(A)

using that σ(A⊥) = σ(A)⊥ (Fact 1.5).
For the second statement, in the case of an atomic-substitution, remark that σ(idA) has the

same rules than idA, and as we replaced some signed atoms by other signed atoms, all rules can still
be applied except maybe ax -rules. But, again using (Fact 1.5), there is no problem for ax -rules.
We prove the wished result by induction on A. For the general case, the obtained proof may not
be atomic-axiom, so we need some η−→ steps to recover idσ(A).

Lemma B.6. Take σ a substitution acting only on atoms and two formulas A and B.

• A ⊴ B =⇒ σ(A) ⊴ σ(B)

311

• A ≃ B =⇒ σ(A) ≃ σ(B)

Proof. Because such a substitution can be applied on proofs, and the same steps of axiom-expansion
and cut-elimination can be applied on the obtained proofs, for any formulas can be made to act as
an atom. We conclude by Lemma B.5, to get that the proof(s) obtained by the image of the β−→
and η−→ steps through σ is (are) still η-equal to an identity.

Corollary B.7 (Retraction up to isomorphisms).

A ≃ B ⊴ C ≃ D =⇒ A ⊴ D

A ≃ B ◁ C ≃ D =⇒ A ◁ D

Proof. Assuming A ≃ B ⊴ C ≃ D, we have A ⊴ B ⊴ C ⊴ D for ≃ ⊆ ⊴ (Fact 7.3). By Lemma B.2,
A ⊴ D.

If B ◁ C, then by contradiction assume A ≃ D. Then B ≃ A ≃ D ≃ C while B ◁ C, a
contradiction. Hence A ⊴ D but A ̸≃ D, thus A ◁ D.

312

Appendix C

A long computation in Coq

Here is given the full Coq program taken as an example in Section 5.2.3 with a too long compu-
tational time, excepted in the case where type annotations are given. This is a transcript of the
file bug report 1 bis.v of the code available on https://github.com/RemiDiG/proofnet_mll (at
least at the time this thesis is written).

Set Warnings "-notation-overridden".
From mathcomp Require Import all ssreflect .
Set Warnings "notation-overridden".
From GraphTheory Require Import mgraph.

Set Implicit Arguments.
Unset Strict Implicit.
Set Default Timeout 60.

Section Test .

Variables (Lv Le : Type) (cut : Lv).

Definition extend edge graph (G : graph Lv Le) (e : edge G) (R : Lv) (As At : Le) :
graph Lv Le :=
remove edges [set e : edge G] ∔ R ∔ [inl (source e), As, inr tt] ∔ [inr tt , At , inl (target e)].

Definition new graph (G : graph Lv Le) (e : edge G) :=
(@extend edge graph

(@extend edge graph G e cut (elabel e) (elabel e))
None cut (elabel e) (elabel e)).

Fail Time Definition transport to new (G : graph Lv Le) (e : edge G) :
edge G → edge (new graph e) :=
fun a ⇒
if @boolP (a \notin [set e]) is AltTrue p1 then
if @boolP (Some (Some (inl (Sub a p1))) \notin [set None]) is AltTrue p2 then

Some (Some (inl (Sub (Some (Some (inl (Sub a p1)))) p2)))
else None else None.

313

https://github.com/RemiDiG/proofnet_mll

Time Definition transport to new (G : graph Lv Le) (e : edge G) :
edge G → edge (new graph e) :=
fun a ⇒
if @boolP (a \notin [set e]) is AltTrue p1 then
if @boolP

((Some (Some (inl (Sub a p1 : edge (remove edges [set e : edge G])))) :
edge (@extend edge graph G e cut (elabel e) (elabel e)))
\notin [set None]) is AltTrue p2 then

Some (Some (inl (Sub (Some (Some (inl (Sub a p1 :
edge (remove edges [set e : edge G])))) :

edge (@extend edge graph G e cut (elabel e) (elabel e))) p2 :
edge (remove edges [set None :

edge (@extend edge graph G e cut (elabel e) (elabel e))]))))
else None else None.

End Test .

314

Bibliography

[Abr95] Michele Abrusci. “Noncommutative Proof Nets”. In: Advances in Linear Logic. Ed. by
Jean-Yves Girard, Yves Lafont, and Laurent Regnier. Vol. 222. London Mathematical
Society Lecture Note Series. Cambridge University Press, 1995, pp. 271–296.

[Acc13] Beniamino Accattoli. “Linear Logic and Strong Normalization”. In: Rewriting Tech-
niques and Applications. Ed. by Femke van Raamsdonk. Vol. 21. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum fuer Infor-
matik, 2013, pp. 39–54. doi: 10.4230/LIPIcs.RTA.2013.39. url: https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2013.39.

[AJM00] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. “Full Abstraction for
PCF”. In: Information and Computation 163.2 (Dec. 2000), pp. 409–470.

[AM19] Michele Abrusci and Roberto Maieli. “Proof nets for multiplicative cyclic linear logic
and Lambek calculus”. In: Mathematical Structures in Computer Science 29 (2019),
pp. 733–762. doi: 10.1017/S0960129518000300.

[AM98] Michele Abrusci and Elena Maringelli. “A New Correctness Criterion for Cyclic Proof
Nets”. In: Journal of Logic, Language and Information 7 (1998), pp. 449–459. doi:
10.1023/A:1008354130493.

[And92] Jean-Marc Andreoli. “Logic Programming with Focusing Proofs in Linear Logic”. In:
Journal of Logic and Computation 2.3 (1992), pp. 297–347.

[ARG21] Clément Allain, Gabriel Radanne, and Laure Gonnord. “Isomorphisms are back!” In:
ML 2021 - ML Workshop. Aug. 2021. url: https://hal.science/hal-03355381.

[AT12] Takahito Aoto and Yoshihito Toyama. “A Reduction-Preserving Completion for Prov-
ing Confluence of Non-Terminating Term Rewriting Systems”. In: Logical Methods in
Computer Science 8.1 (Mar. 2012), pp. 1–29. doi: 10.2168/LMCS-8(1:31)2012.

[BD99] Vincent Balat and Roberto Di Cosmo. “A Linear Logical View of Linear Type Isomor-
phisms”. In: Computer Science Logic. Ed. by Jörg Flum and Mario Rodríguez-Artalejo.
Vol. 1683. Lecture Notes in Computer Science. Springer, 1999, pp. 250–265.

[Ber57] Claude Berge. “Two Theorems in Graph Theory”. In: Proceedings of the National
Academy of Sciences of the United States of America 43.9 (Sept. 1957), pp. 842–844.
issn: 00278424, 10916490. url: https://www.jstor.org/stable/89875.

315

https://doi.org/10.4230/LIPIcs.RTA.2013.39
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2013.39
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2013.39
https://doi.org/10.1017/S0960129518000300
https://doi.org/10.1023/A:1008354130493
https://hal.science/hal-03355381
https://doi.org/10.2168/LMCS-8(1:31)2012
https://www.jstor.org/stable/89875

BIBLIOGRAPHY

[BHS05] Richard Blute, Masahiro Hamano, and Philip Scott. “Softness of hypercoherences and
MALL full completeness”. In: Annals of Pure and Applied Logic 131.1 (2005), pp. 1–
63. issn: 0168-0072. doi: 10 . 1016 / j . apal . 2004 . 05 . 002. url: https : / / www .
sciencedirect.com/science/article/pii/S0168007204000855.

[Bie95] Gavin Bierman. “What is a Categorical Model of Intuitionistic Linear Logic?” In: Typed
Lambda Calculi and Applications ’95. Ed. by Mariangiola Dezani and Gordon Plotkin.
Vol. 902. Lecture Notes in Computer Science. Springer, Apr. 1995. doi: 10.1007/
BFb0014046.

[BL85] Kim Bruce and Giuseppe Longo. “Provable isomorphisms and domain equations in mod-
els of typed languages”. In: Proceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing, Providence, Rhode Island, USA. Association for Computing
Machinery, 1985, pp. 263–272.

[Blu+96] Richard Blute, Robin Cockett, Robert Seely, and Todd Trimble. “Natural Deduction
and Coherence for Weakly Distributive Categories”. In: Journal of Pure and Applied
Algebra 113 (1996), pp. 229–296.

[Brü04] Kai Brünnler. Deep inference and symmetry in classical proofs. Logos, 2004. isbn:
3832504486.

[BV95] Gianluigi Bellin and Jacques Van de Wiele. “Subnets of Proof-nets in MLL−”. In: Ad-
vances in Linear Logic. Ed. by Jean-Yves Girard, Yves Lafont, and Laurent Regnier.
Vol. 222. London Mathematical Society Lecture Note Series. Cambridge University
Press, 1995, pp. 249–270.

[Chu21] Florian Chudigiewitsch. “Computational Complexity of Deciding Provability in Linear
Logic and its Fragments”. MA thesis. 2021. url: https://arxiv.org/abs/2110.00562.

[CL] Pierre Courtieu and Olivier Laurent. ill narratives. Coq library. url: https://github.
com/Matafou/ill_narratives.

[CLR17] Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. “Formalized Meta-Theory of Se-
quent Calculi for Substructural Logics”. In: Electronic Notes in Theoretical Computer
Science 332 (June 2017). LSFA 2016 - 11th Workshop on Logical and Semantic Frame-
works with Applications (LSFA), pp. 57–73. doi: 10.1016/j.entcs.2017.04.005.
url: https://www.sciencedirect.com/science/article/pii/S1571066117300154.

[CLR19] Kaustuv Chaudhuri, Leonardo Lima, and Giselle Reis. “Formalized meta-theory of se-
quent calculi for linear logics”. In: Theoretical Computer Science 781 (2019). Code source
at https://github.com/meta-logic/abella-reasoning, pp. 24–38. doi: https:
//doi.org/10.1016/j.tcs.2019.02.023. url: https://www.sciencedirect.com/
science/article/pii/S030439751930129X.

[CMS08] Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. “Canonical Sequent Proofs via
Multi-Focusing”. In: Fifth Ifip International Conference On Theoretical Computer Sci-
ence. Ed. by Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri, and Luke Ong.
Vol. 273. Theoretical Computer Science. Springer, 2008, pp. 383–396. isbn: 978-0-387-
09680-3. doi: 10.1007/978-0-387-09680-3_26.

[Coq] The Coq Development Team. The Coq Proof Assistant. doi: 10.5281/zenodo.1003420.
url: https://coq.inria.fr/.

316

https://doi.org/10.1016/j.apal.2004.05.002
https://www.sciencedirect.com/science/article/pii/S0168007204000855
https://www.sciencedirect.com/science/article/pii/S0168007204000855
https://doi.org/10.1007/BFb0014046
https://doi.org/10.1007/BFb0014046
https://arxiv.org/abs/2110.00562
https://github.com/Matafou/ill_narratives
https://github.com/Matafou/ill_narratives
https://doi.org/10.1016/j.entcs.2017.04.005
https://www.sciencedirect.com/science/article/pii/S1571066117300154
https://github.com/meta-logic/abella-reasoning
https://doi.org/https://doi.org/10.1016/j.tcs.2019.02.023
https://doi.org/https://doi.org/10.1016/j.tcs.2019.02.023
https://www.sciencedirect.com/science/article/pii/S030439751930129X
https://www.sciencedirect.com/science/article/pii/S030439751930129X
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.5281/zenodo.1003420
https://coq.inria.fr/

BIBLIOGRAPHY

[CP05] Robin Cockett and Craig Pastro. “A Language For Multiplicative-additive Linear Logic”.
In: Electronic Notes in Theoretical Computer Science 122 (2005). Proceedings of the
10th Conference on Category Theory in Computer Science (CTCS 2004), pp. 23–65.
doi: /10.1016/j.entcs.2004.06.049. url: https://www.sciencedirect.com/
science/article/pii/S1571066105000320.

[DF06] Paolo Di Giamberardino and Claudia Faggian. “Jump from Parallel to Sequential Proofs:
Multiplicatives”. In: Computer Science Logic. Vol. 4207. Lecture Notes in Computer
Science. Springer, 2006, pp. 319–333. doi: 10.1007/11874683_21.

[DF08] Paolo Di Giamberardino and Claudia Faggian. “Proof nets sequentialisation in multi-
plicative linear logic”. In: Annals of Pure and Applied Logic 155.3 (Oct. 2008), pp. 173–
182. doi: 10.1016/j.apal.2008.04.002.

[DG99] Roberto Di Cosmo and Stefano Guerrini. “Strong Normalization of Proof Nets Modulo
Structural Congruences”. In: Rewriting Techniques and Applications. Ed. by P. Naren-
dran and M. Rusinowitch. Vol. 1631. Lecture Notes in Computer Science. Springer,
1999, pp. 75–89. doi: 10.1007/3-540-48685-2_6.

[Di+23] Rémi Di Guardia, Olivier Laurent, Lorenzo Tortora de Falco, and Lionel Vaux Auclair.
“Sequentialization is as fun as bungee jumping”. In: Seventh International Workshop
on Trends in Linear Logic and Applications 2023. Ed. by Thomas Ehrhard, Stefano
Guerrini, and Lorenzo Tortora de Falco. 2023.

[Di11] Paolo Di Giamberardino. “Jump from Parallel to Sequential Proofs: Additives”. In:
(2011).

[Di18] Paolo Di Giamberardino. “Jump from Parallel to Sequential Proofs: Exponentials”. In:
Mathematical Structures in Computer Science 28.7 (Aug. 2018), pp. 1204–1252. doi:
10.1017/S0960129516000414.

[Di95] Roberto Di Cosmo. Isomorphisms of Types. Progress in Theoretical Computer Science.
Birkhäuser, 1995.

[Die05] Reinhard Diestel. Graph Theory. Springer, 2005.

[DL22] Rémi Di Guardia and Olivier Laurent. “Bottom-Up Sequentialization of Unit-Free
MALL Proof Nets”. In: Third Joint International Workshop on Linearity and Trends
in Linear Logic and Applications 2022. Ed. by Laurent Regnier and Daniel Ventura.
EasyChair Preprint 8431. 2022.

[DL23] Rémi Di Guardia and Olivier Laurent. “Type Isomorphisms for Multiplicative-Additive
Linear Logic”. In: International Conference on Formal Structures for Computation and
Deduction (FSCD). Ed. by Marco Gaboardi and Femke van Raamsdonk. Vol. 260. Leib-
niz International Proceedings in Informatics (LIPIcs). Full version with proofs on https:
//hal.science/hal-04082204. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
July 2023, 26:1–26:21. doi: 10.4230/LIPIcs.FSCD.2023.26.

[DP18] Christian Doczkal and Damien Pous. Graph Theory. Coq library. 2018. url: https:
//github.com/coq-community/graph-theory.

[DP20] Christian Doczkal and Damien Pous. “Graph Theory in Coq: Minors, Treewidth, and
Isomorphisms”. In: Journal of Automated Reasoning (2020). doi: 10.1007/s10817-
020-09543-2. url: https://hal.science/hal-02316859.

317

https://doi.org//10.1016/j.entcs.2004.06.049
https://www.sciencedirect.com/science/article/pii/S1571066105000320
https://www.sciencedirect.com/science/article/pii/S1571066105000320
https://doi.org/10.1007/11874683_21
https://doi.org/10.1016/j.apal.2008.04.002
https://doi.org/10.1007/3-540-48685-2_6
https://doi.org/10.1017/S0960129516000414
https://hal.science/hal-04082204
https://hal.science/hal-04082204
https://doi.org/10.4230/LIPIcs.FSCD.2023.26
https://github.com/coq-community/graph-theory
https://github.com/coq-community/graph-theory
https://doi.org/10.1007/s10817-020-09543-2
https://doi.org/10.1007/s10817-020-09543-2
https://hal.science/hal-02316859

BIBLIOGRAPHY

[DP97] Kosta Dosen and Zoran Petric. “Isomorphic Objects in Symmetric Monoidal Closed
Categories”. In: Mathematical Structures in Computer Science 7.6 (1997), pp. 639–662.
doi: 10.1017/S0960129596002241.

[DPS21] Abhishek De, Luc Pellissier, and Alexis Saurin. “Canonical proof-objects for coinductive
programming: infinets with infinitely many cuts”. In: PPDP 2021: 23rd International
Symposium on Principles and Practice of Declarative Programming. Tallinn, Estonia:
Association for Computing Machinery, Sept. 2021, pp. 1–15. doi: 10.1145/3479394.
3479402. url: https://hal.science/hal-03371935.

[dPS92] U. de’Liguoro, A. Piperno, and R. Statman. “Retracts in simply type lambda beta
eta -calculus”. In: Proceedings of the seventh annual symposium on Logic In Computer
Science. IEEE. IEEE Computer Society Press, 1992, pp. 461–469. doi: 10.1109/LICS.
1992.185557.

[DR89] Vincent Danos and Laurent Regnier. “The structure of multiplicatives”. In: Archive for
Mathematical Logic 28 (1989), pp. 181–203. doi: 10.1007/BF01622878.

[DR95] Vincent Danos and Laurent Regnier. “Proof-Nets and the Hilbert Space”. In: Advances
in Linear Logic. Ed. by Jean-Yves Girard, Yves Lafont, and Laurent Regnier. Vol. 222.
London Mathematical Society Lecture Note Series. Cambridge University Press, 1995,
pp. 307–328.

[Ehr18] Thomas Ehrhard. “An introduction to differential linear logic: proof-nets, models and
antiderivatives”. In: Mathematical Structures in Computer Science 28.7 (2018), pp. 995–
1060. doi: 10.1017/S0960129516000372.

[ER06] Thomas Ehrhard and Laurent Regnier. “Differential interaction nets”. In: Theoretical
Computer Science 364.2 (Nov. 2006), pp. 166–195.

[FDB02] Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. “Remarks on Isomorphisms in
Typed Lambda Calculi with Empty and Sum Types”. In: Proceedings of the seventeenth
annual symposium on Logic In Computer Science. IEEE. Copenhagen: IEEE Computer
Society Press, July 2002, pp. 147–156.

[FR94] Arnaud Fleury and Christian Retoré. “The Mix Rule”. In: Mathematical Structures in
Computer Science 4.2 (1994), pp. 273–285.

[Gal+22] Hortensia Galeana-Sánchez, Rocío Rojas-Monroy, Rocío Sánchez-López, and Juana
Imelda Villarreal-Valdés. “H-Cycles in H-Colored Multigraphs”. In: Graphs and Combi-
natorics 38.3 (June 2022), p. 62. doi: 10.1007/s00373-022-02464-4.

[GH83] Jerrold W. Grossman and Roland Häggkvist. “Alternating Cycles in Edge-Partitioned
Graphs”. In: Journal of Combinatorial Theory, Series B 34.1 (1983), pp. 77–81. issn:
0095-8956. doi: 10.1016/0095-8956(83)90008-4. url: https://www.sciencedirect.
com/science/article/pii/0095895683900084.

[Gir01] Jean-Yves Girard. “Locus Solum: From the rules of logic to the logic of rules”. In:
Mathematical Structures in Computer Science 11.3 (June 2001), pp. 301–506.

[Gir11] Jean-Yves Girard. The Blind Spot. European Mathematical Society Publishing House,
2011. isbn: 9783037190883.

[Gir87] Jean-Yves Girard. “Linear logic”. In: Theoretical Computer Science 50 (1987), pp. 1–
102. doi: 10.1016/0304-3975(87)90045-4.

318

https://doi.org/10.1017/S0960129596002241
https://doi.org/10.1145/3479394.3479402
https://doi.org/10.1145/3479394.3479402
https://hal.science/hal-03371935
https://doi.org/10.1109/LICS.1992.185557
https://doi.org/10.1109/LICS.1992.185557
https://doi.org/10.1007/BF01622878
https://doi.org/10.1017/S0960129516000372
https://doi.org/10.1007/s00373-022-02464-4
https://doi.org/10.1016/0095-8956(83)90008-4
https://www.sciencedirect.com/science/article/pii/0095895683900084
https://www.sciencedirect.com/science/article/pii/0095895683900084
https://doi.org/10.1016/0304-3975(87)90045-4

BIBLIOGRAPHY

[Gir91] Jean-Yves Girard. “Quantifiers in Linear Logic II”. In: Nuovi problemi della logica e della
filosofia della scienza. Ed. by Corsi and Sambin. Bologna: CLUEB, 1991, pp. 79–90.

[Gir96] Jean-Yves Girard. “Proof-nets: the parallel syntax for proof-theory”. In: Logic and Al-
gebra. Ed. by Aldo Ursini and Paolo Agliano. Vol. 180. Lecture Notes In Pure and
Applied Mathematics. New York: Marcel Dekker, 1996, pp. 97–124. doi: 10.1201/
9780203748671-4.

[GLR95] Jean-Yves Girard, Yves Lafont, and Laurent Regnier, eds. Advances in Linear Logic.
Vol. 222. London Mathematical Society Lecture Note Series. Cambridge University
Press, 1995.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge tracts
in theoretical computer science 7. Cambridge University Press, 1989.

[GM01] Stefano Guerrini and Andrea Masini. “Parsing MELL proof nets”. In: Theoretical Com-
puter Science 254.1–2 (2001), pp. 317–335.

[Gon23] Georges Gonthier. A computer-checked proof of the Four Color Theorem. Tech. rep.
Inria, Mar. 2023. url: https://inria.hal.science/hal-04034866.

[Gro95] Philippe de Groote. “Linear logic with isabelle: Pruning the proof search tree”. In: The-
orem Proving with Analytic Tableaux and Related Methods. Ed. by Peter Baumgartner,
Reiner Hähnle, and Joachim Possega. Springer, Sept. 1995, pp. 263–277. doi: 10.1007/
3-540-59338-1_41. url: https://link.springer.com/chapter/10.1007/3-540-
59338-1_41.

[Gue11] Stefano Guerrini. “A linear algorithm for MLL proof net correctness and sequentializa-
tion”. In: Theoretical Computer Science 412.20 (2011), pp. 1958–1978.

[Ham04] Masahiro Hamano. “Softness of MALL proof-structures and a correctness criterion with
Mix”. In: Archive for Mathematical Logic 43 (2004), pp. 751–794. doi: 10.1007/s00153-
004-0222-6.

[Hei11a] Willem Heijltjes. “Graphical Representation of Canonical Proof: Two case studies”.
Ph.D. thesis. University of Edinburgh, 2011.

[Hei11b] Willem Heijltjes. “Proof Nets for Additive Linear Logic with Units”. In: Proceedings
of the twenty-sixth annual symposium on Logic In Computer Science. IEEE. Toronto:
IEEE Computer Society Press, June 2011, pp. 207–216.

[HG05] Dominic Hughes and Rob van Glabbeek. “Proof Nets for Unit-free Multiplicative-
Additive Linear Logic”. In: ACM Transactions on Computational Logic 6.4 (2005),
pp. 784–842. doi: 10.1145/1094622.1094629.

[HG16] Dominic Hughes and Rob van Glabbeek. MALL proof nets identify proofs modulo rule
commutation. 2016. url: https://arxiv.org/abs/1609.04693.

[HH15] Willem Heijltjes and Dominic Hughes. “Complexity Bounds for Sum-Product Logic via
Additive Proof Nets and Petri Nets”. In: Proceedings of the 30th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). IEEE, 2015, pp. 80–91. doi: 10.
1109/LICS.2015.18.

[HH16a] Willem Heijltjes and Robin Houston. “Proof equivalence in MLL is PSPACE-complete”.
In: Logical Methods in Computer Science 12.1 (2016). doi: 10.2168/LMCS- 12(1:
2)2016.

319

https://doi.org/10.1201/9780203748671-4
https://doi.org/10.1201/9780203748671-4
https://inria.hal.science/hal-04034866
https://doi.org/10.1007/3-540-59338-1_41
https://doi.org/10.1007/3-540-59338-1_41
https://link.springer.com/chapter/10.1007/3-540-59338-1_41
https://link.springer.com/chapter/10.1007/3-540-59338-1_41
https://doi.org/10.1007/s00153-004-0222-6
https://doi.org/10.1007/s00153-004-0222-6
https://doi.org/10.1145/1094622.1094629
https://arxiv.org/abs/1609.04693
https://doi.org/10.1109/LICS.2015.18
https://doi.org/10.1109/LICS.2015.18
https://doi.org/10.2168/LMCS-12(1:2)2016
https://doi.org/10.2168/LMCS-12(1:2)2016

BIBLIOGRAPHY

[HH16b] Willem Heijltjes and Dominic Hughes. “Conflict nets: Efficient locally canonical MALL
proof nets”. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS). ACM Press, July 2016, pp. 437–446. doi: 10.1145/2933575.
2934559.

[HHS19] Willem Heijltjes, Dominic Hughes, and Lutz Strassburger. “Proof Nets for First-Order
Additive Linear Logic”. In: 4th International Conference on Formal Structures for Com-
putation and Deduction (FSCD). Ed. by Herman Geuvers. Vol. 131. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2019, 22:1–22. doi: 10.4230/LIPIcs.FSCD.2019.22.

[HJ97] Hongde Hu and André Joyal. “Coherence Completions of Categories and Their Enriched
Softness”. In: Electronic Notes in Theoretical Computer Science 6 (1997). MFPS XIII,
Mathematical Foundations of Progamming Semantics, Thirteenth Annual Conference,
pp. 174–190. issn: 1571-0661. doi: 10.1016/S1571-0661(05)80162-8. url: https:
//www.sciencedirect.com/science/article/pii/S1571066105801628.

[HJ99] Hongde Hu and Andre Joyal. “Coherence completions of categories”. In: Theoretical
Computer Science 227.1 (1999), pp. 153–184. issn: 0304-3975. doi: 10.1016/S0304-
3975(99)00051-1. url: https://www.sciencedirect.com/science/article/pii/
S0304397599000511.

[Hue80] Gérard Huet. “Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems: Abstract Properties and Applications to Term Rewriting Systems”.
In: Journal of the ACM 27.4 (Oct. 1980), pp. 797–821. doi: 10.1145/322217.322230.

[Hug12] Dominic Hughes. “Simple free star-autonomous categories and full coherence”. In: Jour-
nal of Pure and Applied Algebra 216.11 (2012), pp. 2386–2410. issn: 0022-4049. doi:
10.1016/j.jpaa.2012.03.020. url: https://www.sciencedirect.com/science/
article/pii/S0022404912001089.

[Hug13] Dominic Hughes. “Simple multiplicative proof nets with units”. In: Annals of Pure and
Applied Logic (2013). url: http://arxiv.org/abs/math/0507003.

[Hug18] Dominic Hughes. “Unification nets: canonical proof net quantifiers”. In: Proceedings of
the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). Ed. by
Anuj Dawar and Erich Grädel. Association for Computing Machinery, 2018, pp. 540–
549. doi: 10.1145/3209108.3209159. url: http://arxiv.org/abs/1802.03224.

[JM11] Paulin Jacobé de Naurois and Virgile Mogbil. “Correctness of Linear Logic Proof Struc-
tures is NL-Complete”. In: Theoretical Computer Science 412.20 (Apr. 2011), pp. 1941–
1957. doi: 10.1016/j.tcs.2010.12.020. url: https://hal.science/hal-00360894.

[Joy95a] André Joyal. “Free Bicomplete Categories”. In: Mathematical Reports of the Academy
of Sciences 17.5 (1995), pp. 219–224.

[Joy95b] André Joyal. “Free Bicompletion of Enriched Categories”. In: Mathematical Reports of
the Academy of Sciences 17.5 (1995), pp. 213–218.

[JU76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. 1976.

[Kot59] Anton Kotzig. “On the theory of finite graphs with a linear factor. II.” In: Matematicko-
Fyzikálny Časopis 09.3 (1959). In Slovak, with as original title “Z teórie konečných
grafov s lineárnym faktorom. II.”, pp. 136–159. url: https://eudml.org/doc/29908.

320

https://doi.org/10.1145/2933575.2934559
https://doi.org/10.1145/2933575.2934559
https://doi.org/10.4230/LIPIcs.FSCD.2019.22
https://doi.org/10.1016/S1571-0661(05)80162-8
https://www.sciencedirect.com/science/article/pii/S1571066105801628
https://www.sciencedirect.com/science/article/pii/S1571066105801628
https://doi.org/10.1016/S0304-3975(99)00051-1
https://doi.org/10.1016/S0304-3975(99)00051-1
https://www.sciencedirect.com/science/article/pii/S0304397599000511
https://www.sciencedirect.com/science/article/pii/S0304397599000511
https://doi.org/10.1145/322217.322230
https://doi.org/10.1016/j.jpaa.2012.03.020
https://www.sciencedirect.com/science/article/pii/S0022404912001089
https://www.sciencedirect.com/science/article/pii/S0022404912001089
http://arxiv.org/abs/math/0507003
https://doi.org/10.1145/3209108.3209159
http://arxiv.org/abs/1802.03224
https://doi.org/10.1016/j.tcs.2010.12.020
https://hal.science/hal-00360894
https://eudml.org/doc/29908

BIBLIOGRAPHY

[KP95] Sara Kalvala and Valeria de Paiva. “Mechanizing Linear Logic in Isabelle”. In: Isabelle
Users Workshop. Sept. 1995. url: https://www.cl.cam.ac.uk/~lp15/papers/
Workshop/papers/kalvala-linear.pdf.

[Lam96] François Lamarche. “From Proof Nets to Games: extended abstract”. In: Electronic
Notes in Theoretical Computer Science 3 (1996), pp. 107–119. doi: 10.1016/S1571-
0661(05)80409-8.

[Lau05] Olivier Laurent. “Classical isomorphisms of types”. In: Mathematical Structures in Com-
puter Science 15.5 (Oct. 2005), pp. 969–1004.

[Lau17] Olivier Laurent. Yalla: Yet Another deep embedding of Linear Logic in Coq. Coq library.
July 2017. url: https://perso.ens-lyon.fr/olivier.laurent/yalla/.

[Lau99] Olivier Laurent. “Polarized proof-nets: proof-nets for LC (Extended Abstract)”. In:
Typed Lambda Calculi and Applications ’99. Ed. by Jean-Yves Girard. Vol. 1581. Lecture
Notes in Computer Science. Springer, Apr. 1999, pp. 213–227.

[Lin95] Patrick Lincoln. “Deciding provability of linear logic formulas”. In: Advances in Linear
Logic. Ed. by Jean-Yves Girard, Yves Lafont, and Laurent Regnier. Vol. 222. London
Mathematical Society Lecture Note Series. Cambridge University Press, 1995, pp. 109–
122.

[LL22] The LL Handbook Project. Handbook of Linear Logic (draft). Early draft for the Linear
Logic Winter School. Jan. 2022. url: https://ll-handbook.frama.io/ll-handbook/
ll-handbook-public.pdf.

[LM08] Olivier Laurent and Roberto Maieli. “Cut Elimination for Monomial MALL Proof Nets”.
In: Proceedings of the twenty-third annual symposium on Logic In Computer Science.
IEEE. IEEE Computer Society Press, June 2008, pp. 486–497.

[LN22] Ruonan Li and Bo Ning. “A revisit to Bang-Jensen-Gutin conjecture and Yeo’s theorem”.
2022. doi: 10.48550/arXiv.2207.03793. url: https://arxiv.org/abs/2207.03793.

[Mac] Saunders Mac Lane. Categories for the Working Mathematician. 2nd ed. Springer. doi:
10.1007/978-1-4757-4721-8.

[Mai07] Roberto Maieli. “Retractile Proof Nets of the Purely Multiplicative and Additive Frag-
ment of Linear Logic”. In: Logic for Programming, Artificial Intelligence, and Reasoning
Proceedings. Ed. by Nachum Dershowitz and Andrei Voronkov. Vol. 4790. Lecture Notes
in Computer Science. Springer, 2007, pp. 363–377. doi: 10.1007/978-3-540-75560-
9_27.

[MC] The MC Team. Mathematical Components. Coq library. url: https://math-comp.
github.io/.

[Nen14] Gleb Nenashev. “A short proof of Kotzig’s theorem”. 2014. doi: 10.48550/arXiv.1402.
0949. url: https://arxiv.org/abs/1402.0949.

[Ngu18a] Lê Thành Dũng Nguy˜̂en. “On the complexity of finding cycles in proof nets”. DICE
2018 workshop. 2018. url: http://cl- informatik.uibk.ac.at/users/zini/
events/dice18/abstracts/N.pdf.

[Ngu18b] Lê Thành Dũng Nguy˜̂en. “Unique perfect matchings and proof nets”. In: 3rd Interna-
tional Conference on Formal Structures for Computation and Deduction (FSCD 2018).
Ed. by Hélène Kirchner. Vol. 108. Leibniz International Proceedings in Informatics
(LIPIcs). 2018, 25:1–25:20. doi: 10.4230/LIPIcs.FSCD.2018.25.

321

https://www.cl.cam.ac.uk/~lp15/papers/Workshop/papers/kalvala-linear.pdf
https://www.cl.cam.ac.uk/~lp15/papers/Workshop/papers/kalvala-linear.pdf
https://doi.org/10.1016/S1571-0661(05)80409-8
https://doi.org/10.1016/S1571-0661(05)80409-8
https://perso.ens-lyon.fr/olivier.laurent/yalla/
https://ll-handbook.frama.io/ll-handbook/ll-handbook-public.pdf
https://ll-handbook.frama.io/ll-handbook/ll-handbook-public.pdf
https://doi.org/10.48550/arXiv.2207.03793
https://arxiv.org/abs/2207.03793
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-3-540-75560-9_27
https://doi.org/10.1007/978-3-540-75560-9_27
https://math-comp.github.io/
https://math-comp.github.io/
https://doi.org/10.48550/arXiv.1402.0949
https://doi.org/10.48550/arXiv.1402.0949
https://arxiv.org/abs/1402.0949
http://cl-informatik.uibk.ac.at/users/zini/events/dice18/abstracts/N.pdf
http://cl-informatik.uibk.ac.at/users/zini/events/dice18/abstracts/N.pdf
https://doi.org/10.4230/LIPIcs.FSCD.2018.25

BIBLIOGRAPHY

[Ngu20] Lê Thành Dũng Nguy˜̂en. “Unique perfect matchings, forbidden transitions and proof
nets for linear logic with Mix”. In: Logical Methods in Computer Science 16.1 (Feb.
2020). doi: 10.23638/LMCS-16(1:27)2020.

[Ohl98] Enno Ohlebusch. “Church-Rosser theorems for abstract reduction modulo an equiv-
alence relation”. In: Rewriting Techniques and Applications. Ed. by Tobias Nipkow.
Vol. 1379. Lecture Notes in Computer Science. Springer, 1998, pp. 17–31. isbn: 978-3-
540-69721-3.

[Pad01] Vincent Padovani. “Retracts in Simple Types”. In: Typed Lambda Calculi and Appli-
cations ’01. Ed. by Samson Abramsky. Vol. 2044. Lecture Notes in Computer Science.
Springer, May 2001, pp. 376–384.

[PC] Pierre-Marie Pédrot and Guillaume Claret. ll coq. Coq library. url: https://github.
com/ppedrot/ll-coq.

[PT10] Michele Pagani and Lorenzo Tortora de Falco. “Strong normalization property for second
order linear logic”. In: Theoretical Computer Science 411.2 (2010), pp. 410–444.

[PT17] Michele Pagani and Paolo Tranquilli. “The Conservation Theorem for Differential Nets”.
In: Mathematical Structures in Computer Science 27.6 (2017), pp. 939–992. doi: 10.
1017/S0960129515000456.

[PW99] James Power and Caroline Webster. “Working with Linear Logic in Coq”. In: Theorem
Proving in Higher Order Logics: Emerging Trends. An implementation is available at
https://github.com/ComputerAidedLL/PowerWebster_ILL. Sept. 1999. url: http:
//www-sop.inria.fr/croap/TPHOLs99/proceeding.html.

[Ret03] Christian Retoré. “Handsome proof-nets: perfect matchings and cographs”. In: Theoret-
ical Computer Science 294.3 (2003), pp. 473–488.

[Rit91] Mikael Rittri. “Using types as search keys in function libraries”. In: Journal of Functional
Programming 1.1 (1991), pp. 71–89.

[Rob03] Edmund Robinson. “Proof Nets for Classical Logic”. In: Journal of Logic and Compu-
tation 13.5 (Oct. 2003), pp. 777–797. doi: 10.1093/logcom/13.5.777. url: https:
//doi.org/10.1093/logcom/13.5.777.

[RU02] Laurent Regnier and Pawel Urzyczyn. Retractions of Types with Many Atoms. 2002.
url: http://arxiv.org/abs/cs/0212005.

[Sad03] Mehrnoosh Sadrzadeh. “Modal Linear Logic in Higher Order Logic, an experiment in
Coq”. In: Theorem Proving in Higher Order Logics (01/09/03). Ed. by D Basin and W
Burkhart. Sept. 2003, pp. 75–93. url: https://eprints.soton.ac.uk/261814/.

[See89] Robert Seely. “Linear logic, ⋆-autonomous categories and cofree coalgebras”. In: Con-
temporary mathematics 92 (1989).

[Sey78] Paul D. Seymour. “Sums of circuits”. In: Graph Theory and Related Topics (1978). Ed.
by J. A. Bondy and U. S. R. Murty, pp. 341–355.

[Sol83] Sergei Soloviev. “The category of finite sets and cartesian closed categories”. In: Journal
of Soviet Mathematics 22.3 (1983), pp. 1387–1400.

[SS78] D. J. Shoesmith and T. J. Smiley. Multiple-Conclusion Logic. Cambridge University
Press, 1978.

322

https://doi.org/10.23638/LMCS-16(1:27)2020
https://github.com/ppedrot/ll-coq
https://github.com/ppedrot/ll-coq
https://doi.org/10.1017/S0960129515000456
https://doi.org/10.1017/S0960129515000456
https://github.com/ComputerAidedLL/PowerWebster_ILL
http://www-sop.inria.fr/croap/TPHOLs99/proceeding.html
http://www-sop.inria.fr/croap/TPHOLs99/proceeding.html
https://doi.org/10.1093/logcom/13.5.777
https://doi.org/10.1093/logcom/13.5.777
https://doi.org/10.1093/logcom/13.5.777
http://arxiv.org/abs/cs/0212005
https://eprints.soton.ac.uk/261814/

BIBLIOGRAPHY

[SS79] D. J. Shoesmith and T. J. Smiley. “Theorem on Directed Graphs, Applicable to Logic”.
In: Journal of Graph Theory 3.4 (1979), pp. 401–406. doi: 10.1002/jgt.3190030412.
url: https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190030412.

[Str09] Lutz Strassburger. “Some Observations on the Proof Theory of Second Order Proposi-
tional Multiplicative Linear Logic”. In: Typed Lambda Calculi and Applications (2009),
pp. 309–324. doi: 10.1007/978-3-642-02273-9_23.

[Str10] Lutz Strassburger. “What is the Problem with Proof Nets for Classical Logic ?” In:
Proceedings of CiE’10. Apr. 2010. url: https://www.lix.polytechnique.fr/~lutz/
papers/CiE10.pdf.

[Sze04] Stefan Szeider. “On Theorems Equivalent with Kotzig’s Result on Graphs with Unique
1-Factors”. In: Ars Combinatoria 73 (2004), pp. 53–64. url: https://www.ac.tuwien.
ac.at/files/pub/szeider-AC-2004.pdf.

[Ter03] Terese. Term Rewriting Systems. Vol. 55. Cambridge tracts in theoretical computer
science. Cambridge University Press, 2003.

[Tor01] Lorenzo Tortora de Falco. “Additives of linear logic and normalization- Part II: the
additive standardization theorem”. Sept. 2001.

[Tor03] Lorenzo Tortora de Falco. “Additives of linear logic and normalization- Part I: a (re-
stricted) Church-Rosser property”. In: Theoretical Computer Science 294.3 (Feb. 2003),
pp. 489–524. doi: 10.1016/S0304-3975(01)00176-1.

[Tra09] Paolo Tranquilli. “Confluence of Pure Differential Nets with Promotion”. In: Proceed-
ings of the 23rd CSL International Conference and 18th EACSL Annual Conference
on Computer Science Logic. CSL’09/EACSL’09. Springer, 2009, pp. 500–514. doi: 10.
5555/1807662.1807701. url: https://hal.science/hal-00374777/.

[Xav+18] Bruno Xavier, Carlos Olarte, Giselle Reis, and Vivek Nigam. “Mechanizing Focused
Linear Logic in Coq”. In: 12th Workshop on Logical and Semantic Frameworks with
Applications (LSFA 2017). Ed. by Sandra Alves and Renata Wassermann. Vol. 338.
Code source available at https://github.com/meta-logic/coq-ll. 2018, pp. 219–
236. doi: 10.1016/j.entcs.2018.10.014. url: https://www.sciencedirect.com/
science/article/pii/S157106611830080X.

[Yeo97] Anders Yeo. “A Note on Alternating Cycles in Edge-Coloured Graphs”. In: Journal of
Combinatorial Theory, Series B 69.2 (1997), pp. 222–225. doi: 10.1006/jctb.1997.
1728.

323

https://doi.org/10.1002/jgt.3190030412
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.3190030412
https://doi.org/10.1007/978-3-642-02273-9_23
https://www.lix.polytechnique.fr/~lutz/papers/CiE10.pdf
https://www.lix.polytechnique.fr/~lutz/papers/CiE10.pdf
https://www.ac.tuwien.ac.at/files/pub/szeider-AC-2004.pdf
https://www.ac.tuwien.ac.at/files/pub/szeider-AC-2004.pdf
https://doi.org/10.1016/S0304-3975(01)00176-1
https://doi.org/10.5555/1807662.1807701
https://doi.org/10.5555/1807662.1807701
https://hal.science/hal-00374777/
https://github.com/meta-logic/coq-ll
https://doi.org/10.1016/j.entcs.2018.10.014
https://www.sciencedirect.com/science/article/pii/S157106611830080X
https://www.sciencedirect.com/science/article/pii/S157106611830080X
https://doi.org/10.1006/jctb.1997.1728
https://doi.org/10.1006/jctb.1997.1728

	Abstract
	Résumé
	Introduction
	I Sequent Calculus
	Sequent Calculus of Linear Logic
	Sequent Calculus
	Formulas and Rules
	Sub-systems
	Sequents as sets & The exchange rule

	Basic concepts
	Transformations of proofs
	Axiom-expansion
	Cut-elimination
	Rule commutation
	Rétoré transformations

	Properties of Sequent Calculus
	Abstract Rewriting Systems
	Standard notions of Abstract Rewriting Systems
	Abstract Rewriting Systems modulo an equivalence relation

	Axiom-expansion
	Cut-elimination
	No strong normalization nor confluence
	Easy proof of weak normalization in MALL
	Strong normalization in MALL with one of the mix-rules
	Strong normalization in MALL with both mix-rules
	Strong normalization in full linear logic
	Confluence of cut-elimination
	Cut-elimination contains rule commutation
	Cut-elimination is Church-Rosser modulo rule commutation
	Cut-elimination and mix-Rétoré is Church-Rosser

	Comparison with the work of Cockett and Pastro

	Perspectives

	II Proof-nets
	Graph Theory
	Graphs & Paths
	Undirected graphs
	Graphs
	Paths

	Edge-coloring & Bungee Jumping
	Edge-coloring, Bridge & Splitting vertex
	Bungee Jumping

	A generalization of Yeo's theorem
	Order on edges
	Parameterized Local Yeo with Cycles
	Proof of Parameterized Local Yeo with Cycles
	Arrow-connectivity
	Finding a splitting vertex

	All hypotheses are needed
	Corollaries of the main result
	Yeo's theorem and other generalizations as corollaries
	A generalization to H-coloring as a corollary
	A generalization to hypergraphs as a corollary

	Results equivalent to Yeo's theorem
	Inductive definitions of graphs and links with proof-nets

	Folklore results
	Perspectives

	Proof-Nets
	Proof-net for unit-free MALL
	Proof-net
	Cut-elimination in proof-nets

	From Sequent Calculus to Proof-nets
	Desequentialization
	Simulation of cut-elimination

	Sequentialization
	Key lemma
	Finding a terminal splitting node
	&-graph of a sequent
	Results on proof-structures using &-graphs
	Sequentialization
	Other proofs of sequentialization
	Splitting but not maximal
	Variations

	General Results on Proof-Nets
	Connectivity and number of connected components
	Forbidden Sub-graphs in Proof-Nets

	Perspectives

	Formalization of Multiplicative Proof-Nets in Coq
	Formalization of proof-nets
	Definition of proof-nets on paper
	Formalization of graphs and pre-proof-structures
	Formalization of proof-structures
	Formalization of the correctness criterion

	Limits of the implementation
	Graph manipulation & Desequentialization
	Isomorphisms
	Computation time of Coq

	Organization of the code
	Perspectives

	III Isomorphisms & Retractions
	Isomorphisms for Multiplicative-Additive Linear Logic
	Linear Isomorphisms
	Reduction to unit-free distributed formulas
	Reduction to atomic-axiom proofs
	Conservativity
	Reduction to distributed formulas
	Patterns in distributed isomorphisms
	Patterns in identities up to rule commutation
	Surgery on slices
	Patterns in proofs of isomorphisms

	Completeness with units from unit-free completeness

	Completeness
	Isomorphisms in proof-nets
	Remarkable shapes of proof-nets
	Properties of identity proof-nets
	Bipartite full proof-nets
	Ax-uniqueness
	Preliminary results
	Isomorphisms of distributed formulas

	Non-ambiguous formulas
	Renaming to non-ambiguous formulas
	Simplification with non-ambiguous formulas

	Completeness for unit-free MALL

	Star-autonomous categories with finite products
	MALL as a star-autonomous category with finite products
	Isomorphisms of star-autonomous categories with finite products
	Isomorphisms of symmetric monoidal closed categories with finite products

	Isomorphisms up to cut-elimination only
	Perspectives

	Retractions for Multiplicative Linear Logic
	Linear Retractions
	Reduction to unit-free MLL and proof-nets
	Optional multiplicative rules
	Units do not matter
	Retractions in proof-nets

	Reduction to a non-ambiguous formula
	Retractions are half-bipartite
	Reduction to a non-ambiguous formula

	Cantor-Bernstein-Schröeder property
	General results
	Retractions to an atom
	Beffara generates all retractions to an atom
	Subtleties on the result
	Beffara generates all retracts to an atom only up to isomorphism
	Proof-nets of a retraction not generated by Beffara
	Incorrect proof-structures generated by Quasi-Beffara
	Incorrect proof-structures not generated by Quasi-Beffara

	Retractions to an arbitrary formula
	Provability & Decidability
	Retractions and Provability
	Decidability of retractions

	Retractions up to cut-elimination only
	Perspectives

	Conclusion
	Appendices
	Case studies for Sequent Calculus
	Basic properties of Isomorphisms and Retractions
	A long computation in Coq

	Bibliography

