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Notation

Groups:
• O(2) : the orthogonal group of R2 ;
• SO(2): The subgroup of O(2) of elements with determinant 1, called the special

orthogonal group;
• so(2): Lie algebra that consists of real skew-symmetric matrices which is the

tangent space to SO(2);
• Zk(k ≥ 2) : the cyclic group with k elements generated by the rotation of angle

2π/k. Geometrically, Zk is the symmetry group of k-sided chiral polygons;
• Dn

k (k ≥ 2) : the dihedral group with 2k elements generated by the rotation of
angle 2π/k and by the reflection in the normal axis to n. Geometrically, Dn

k is
the symmetry group of k-sided regular polygons.

Tensors and matrices:
• a : Scalar;
• {a} : Vector;
• [A] : Matrix;

Tensor spaces:
• Tn : Space of n-th order tensors on Rd;
• Ti1...in : Components of T ∈ Tn with rospect a given basis B;
• S2(Rd) the space of symmetric second-order tensor Rd;
• Kn: the space of n-th order harmonic tensors on R2, (i.e. totally symmetric and

traceless tensors), with

dim(Kn) =
2 if n ≥ 1,

1 if n ∈ {−1, 0}.
(0.0.1)

Among them:
– K0 is the space of scalars (isotropic coefficients);
– K2 is the space of deviators;
– K4 is the space of 4th order deviators.

• Ela : the space of elasticity tensors.
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Tensor products and operators:
• ⊗ : The classical tensor product;

• ⊗s : The symmetrized tensor product;

• ⊗n : The n-th power of the classical tensor product;

• ⊗ indicates the twisted tensor product defined by : (A ⊗ B)ijkl = 1
2 (AilBjk + AikBjl);

• (A ·B)i1...in = Ai1...ipjBjip+1...in : Simple contraction;

• (A : B)i1...in = Ai1...ipjkBjkip+1...in : Double contraction;

• (A :: B)i1...in = Ai1...ipjklmBjklmip+1...in : Quadruple contraction;

• (A:̂ (n⊗ n))jk = (n ·A · n)jk = Aijklninl :The twisted double contraction of a
fourth-order tensor and a first-order tensor.
• ∇ : Nabla operator;

• ∇ ·A : Divergence of A;

• A⊗∇ : Gradient of A;

Special tensors:
• I : Second-order identity tensor, (I)ij = δij;

• 1 : Fourth-order identity tensor of S2(R2), (1)ijkl = (I⊗I)ijkl = 1
2 (δikδjl + δilδjk)

;

• P0 = 1
2I⊗ I the spherical fourth-order projector;

• P2 = 1−P0 the deviatoric fourth-order projector.

• ε : 2D Levi-Civita pseudo-tensor :

(ε)ij =


1 if ij = 12,
−1 if ij = 21,
0 if i = j.

Constitutive parameters:
• E : Young’s modulus ;
• ν: Poisson’s ratio ;
• C: Elasticity tensor ;
• Γ: Christoffel tensor (actoustic tensor) ;
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General introduction

Context

The field of architectured materials has significantly developed over the past 15
years, and several industrial applications have emerged, particularly in the auto-
motive and aerospace sectors, where the weight reductions achieved through these
materials have resulted in significant performance improvements [AB03].Applications
have also emerged in civil engineering, where additive manufacturing techniques for
concrete structures have expanded construction methodologies previously employed
in metallic structures, enabling new architectural feats that were previously unattain-
able [GDR+16]. The biomedical field has also adopted the concept of architectured
materials to create similar to bones, thus facilitating the development and the de-
sign of lighter prosthetics and implants. Besides weight reduction, the use of cellular
architectures aims to endow these materials with additional functions such as wave
guiding, thermal or acoustic insulation, and energy absorption. Most of the archi-
tectured materials considered in the applications mentioned above share a common
feature - a periodic architecture. It is well-known that in such a case, the geometry of
the elementary cell (characterized by its point group) as well as the manner in which
it paves space (characterized by its space group) play an essential role in determining
the material’s effective properties. This approach, based on symmetries, is classical
in condensed matter physics and has led to the design of numerous innovative ma-
terials [New05]. In mechanics and materials engineering, design approaches do not
exploit this method. The design of an architecture is currently either purely heuristic,
i.e., based on mechanical intuition complemented by a trial-and-error process, or via
shape optimization approaches that do not take into account aspects related to the
symmetries of medium.

This research is a part of the MAX-OASIS (Matériaux Architecturés eXtotiques,
Ones, Anisotropie, Instabilités) project funded by ANR (AAP2019), aiming to de-
velop a systematic design approach based on the use of group theory. This approach
thus allows the optimization of the local arrangement of matter for addressing issues
such as wave guidance, control of the structure stability, or the design of elastically
isotropic materials with a tetragonal mesostructure imposed by manufacturing con-
straints for instance. The latter situation is an example of an exotic material, i.e.,
whose mechanical response to a given solicitation is more symmetric than that the
medium itself (local architecture). Integrating these various aspects during the design
process opens up possibilities for additional multifunctional applications: Creating
different types of anisotropy based on the regime (whether static or dynamic), con-
trolling the band-gaps through instabilities, etc.

1
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The proposed applications of this project include, on one hand, the control of wave
propagation in architectured environments (Axis 1), and on the other hand, tuning
the multifunctional properties through controlled instabilities (Axis 2). The design of
the elementary cell is an important factor in each of these applications. The process
of identifying this design based on the targeted effective properties via an inverse
architecture problem forms the core of Objective 3 in the current project.
This project is structured around three study axes, complemented by a transversal
axis related to the development of appropriate testing methods:

1. Elastodynamics of architectured media: Dynamics add to the optimization
problem of stiffness distribution, the challenge of inertia. Depending on the
targeted application, different networks may or may not be congruent.

2. Controlled instabilities, achieved by a sequence of controlled post-bifurcation
configurations. For this, an optimization of the crystallographic symmetries of
architectured materials is necessary. The applications here concern the adjust-
ment of the multifunctional properties of materials through a change in the
mesostructure due to instabilities controlled by mechanical loading.

3. The definition of an Inverse problem of architecture that can determine,
for a given set of effective material invariants, associated mesostructures. This
axis aims to “dehomogenize” the results obtained in Axes 1 and 2 in order to
obtain a real architecture, but also to explore and classify the mesostructures
associated with exotic elastic anisotropies (standard 2D and 3D).

4. Development of appropriate experimental methods for architectured ma-
terials for the identification and validation of equivalent homogeneous media.
Experimental homogenization implies specific control of boundary conditions,
moreover, instabilities will generate significant displacements at the borders re-
quiring the development of suitable experimental means.

In this axis, we will focus on 2D plane geometries, and consider linear elasticity. Un-
derstanding elastodynamic phenomena within architectured materials is a topic with
high industrial potential, where the targeted applications can be divided into two
categories: design and control. In the design approach, the emphasis is on designing a
mesostructure that allows control of wave propagation in a given medium. In the con-
trol and characterization part, addressed in this thesis, we take the inverse approach
of the previous part. Given an cellular, what can the analysis of wave propagation
tell us about this medium and, importantly, its evolution? Applications include the
control of architectured materials, with significant application in biomechanics due to
the architectural nature of bones: monitoring the itegration of bone implants, and as-
sessing the state of trabecular bone in people suffering from osteoporosis, for instance.

While the application domains are very different, the scientific problem is the same:
understanding how an elastic wave of wavelength λ interacts with a mesostructure,
of characteristic size l, when the scale separation is weak (6 < l/λ < 10). The
approach consists of replacing the architectured medium with an equivalent homoge-
neous medium. This allows us to retain, within the considered range of parameters
and frequencies, only the necessary information for the problem. The advantages of
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continuous modeling are numerous [R18] : On one hand, the continuous description
allows the problem to be solved without explicitly describing the geometry of the
mesostructure, which reduces meshing problems and the computational cost. On the
other hand, a continuous model offers the possibility of an analytical calculation (in
most cases) of field variables of interest or propagation constants expressed in terms
of material properties and/or geometric characteristics, which can be useful in the
context of topological optimization or characterization, for example.

In any case, broadening the application of architectured materials necessitates the
ability to execute and perform fast simulations, which is incompatible with simulating
a complex internal architecture. An efficient solution to this lies in homogenization,
replacing the complex heterogeneous material with an equivalent homogeneous one
having, under certain assumptions, an equivalent behavior. While this approach is
now well understood for materials with strong scale separation, its extension to the
case of weak scale separation remains an open question. In such a case, the substitu-
tion medium may fail to be a classical Cauchy continuum, and generalized continua
may have to be considered. The insufficiency of homogenization using the Cauchy
continuum is well understood in both static and dynamic situations. Therefore, the
nature of the overall continuum to be considered is the first question to be answered.
There are essentially two options to extend classical continuum mechanics : higher-
order continua, where the degrees of freedom are extended, such as Cosserat elasticity
and micromorphic elasticity; and higher-grade continua, where displacement field is
the only degree of freedom, but higher-order gradients of the displacement field are
added to the energy density, such as Mindlin’s first and second strain-gradient elas-
ticity.

The choice of which generalized continuum to consider is an open question, and ap-
proaches can be mathematical, numerical, or experimental. Once the type of contin-
uum has been chosen, the next issue lies in determining the associated constitutive
parameters or the material properties of the homogeneous material that will mimic
the behavior of the actual medium within specific range of parameters. This process,
while established for the classical elasticity (Cauchy type medium), is still an open
question when extended to a generalised continuum. Approaches can be mathemat-
ical, such as asymptotic methods, numerical based on simulations, or experimental,
relying on real-world data.

In order to maintain, in a continuous manner, the influence of mesostructure effects,
the substitute mediummust be a generalized continuous medium [ADR15,S15,NHA16].
Indeed, as the frequency increases, the mesostructure begins to play a role in dynamic
equilibrium and effects emerge at the macroscopic scale. The relationship between
frequency and wave number becomes nonlinear, and the medium is said to be dis-
persive (Fig. 2). In this regime, the periodicictions given by standard models are
insufficient [FNP+18,RPA18]. The consequence of this is that propagation constants
such as phase speed and energy speed depend on frequency. In this case, the direction
of wave propagation and that of energy are not necessarily aligned. This phenomenon
will be used to deflect acoustic energy without affecting the wave vector.
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Objectives and organisation of the manuscript
The work presented here aims to characterize the elastodynamic behaviour of periodic
architectured materials, through two approaches: Characterization and identification
of effective properties through wave propagation; and the computation of effective
properties using the asymptotic homogenization method. The starting point is to
look at how the local architecture, i.e. the geometry of the elementary cell of a given
periodic architectured material, influences the elastodynamic behaviour of the overall
medium. Once the elastodynamic signature is established, through Bloch analysis, we
can then propose a method of identifying apparent properties from the information
extracted by wave propagation. In contrast to this “phenomenological” identification
method, we propose another approach, much more mathematical, aiming to calculate
the effective properties of the medium.

This manuscript is organized into six chapters.

Chapter 1 is a general introduction and a brief state of the art on architectured
materials, providing a definition of this new class of materials, with an idea of how to
manufacture them and how to model them.

Chapter 2 groups a set of theoretical elements, essential for modelling and investi-
gating the elastodynamic behaviour of architectured materials. This chapter covers
several physical and mathematical concepts, revolving around group theory, linear
elasticity, wave propagation in periodic media, but also a brief review of generalized
continuous media.

Chapter 3, divided into two parts, provides examples of periodic architectured mate-
rials with a geometric parameterization approach based on symmetry criteria, in part
1; As for part 2, it groups together the results of numerical simulations of wave prop-
agation, allowing exploration of the elastodynamic behaviour. A qualitative analysis
of these behaviours is proposed in this chapter.

Chapter 4, presents a method for identifying the apparent properties of periodic
architectured materials, in the low-frequency/long-wavelength regime, based on the
invariants of the Christoffel tensor.

Chapter 5, presents the asymptotic homogenisation method in elastodynamics. The
contribution and novelty of this chapter lie in the establishment of some reciprocity
relations, and the mathematical construction of a Strain-gradient type model derived
from the asymptotic development method. This chapter was written in collaboration
with Marc BONNET (POEMS, Ensta Paris).

Chapter 6, presents some numerical results related to the validation of the FEM
code for the construction of the tensors of the strain-gradient model.

Ultimately, some conclusions and openings for future developments are drawn in the
two concluding and perspective chapters.
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Architectured material : a brief
state of art

Contents
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Definition of architectured materials . . . . . . . . . . . . 8
1.3 Spatial organization of the matter . . . . . . . . . . . . . 10
1.4 Overview of design and manufacturing techniqus . . . . . 12
1.5 Mechanical properties of architectured materials . . . 17
1.6 Modelling and characterization of architectured ma-

terials behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5
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1.1 Introduction
Architected materials are heterogeneous media with a well-chosen microstructure,
typically displaying periodicity, situated at an intermediate scale between the macro-
scopic and constituent material heterogeneities. This microstructure plays a cru-
cial role in governing the material’s overall behavior, granting access to properties
that conventional materials cannot achieve. As a result, these materials are clas-
sified as metamaterials [Barthelat, 2015, Kadic et al., 2019]. To be termed "archi-
tectured", a material must exhibit at least three scales of matter organization: the
classical micro and macroscopic scales, along with one or several intermediate scales
known as mesoscopic. Furthermore, if its intermediate scales possess a characteris-
tic size similar to the macroscopic scale but significantly larger than the microscopic
scale, it may be called "macro-architectured." indicating a weak scale separation be-
tween the macroscopic and mesoscopic levels (see section 1.1) [Bouaziz et al., 2008,
Poncelet et al., 2018, Dirrenberger, 2018]
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(a) Standard material with 2 well-separated
scales: macroscopic scale M and micro-
scopic scale (constitutive material) µ.
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(b) Architectured material with weak scale
separation: macroscopic scale M , meso-
scopic (inner structure) scale m and micro-
scopic scale (constitutive material) µ.

Figure 3 Ű The different scales of materials. The microscopic scale is considered through
the constitutive law.
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(b) An architectured material with weak
scale separation presenting 3 scales :
macroscopic scale M , mesoscopic (inner
structure) scale m and microscopic scale
(constitutive material) µ.

Figure 1.1: The different scales of materials

The growing interest in architected materials has arisen due to the increasing demand
and the need for materials with improved properties, leading researchers to explore
new regions in Ashby diagrams that were previously inaccessible [Fleck et al., 2010].
Ashby and Bréchet [Ashby and Bréchet, 2003b] use charts where materials are posi-
tioned in space based on their properties, with figure 1.2 being an example of such
a chart. In this figure, the distribution of existing materials in the density - Young’s
modulus space reveals a correlation between these two properties and leaves certain
areas of the chart empty. Specifically, the region representing materials with high
stiffness (high Young’s modulus) and low density is of particular interest.

The concept of "Materials by design" has recently gained prominence in material de-
velopment [Ashby and Bréchet, 2003b, Reis et al., 2015, Yeo et al., 2018]. This ap-
proach involves precisely the control of matter’s organization at mesoscopic or even
microscopic scales during both the material design phase and its subsequent fabrica-
tion, with the primary objective of achieving specific mechanical properties. Through
this novel approach, the creation of materials capable of meeting increasingly strin-
gent performance requirements becomes feasible. Consequently, architected materials
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have emerged as promising candidates for achieving continually improving perfor-
mance standards and effectively modulating the material’s macroscopic behavior.
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Figure 1.2: Material property charts (Ashby diagrams) of strength σf versus mass
density ρ for materials known in 1945 and 2010 [Fleck et al., 2010] Ashby diagrams
compare two or three properties of different material classes, and each bubble repre-
sents a distinct type of material.

The feasibility of the Materials-by-design approach is facilitated by noteworthy progress
in various domains related to materials. Recent advancements in production tech-
niques, such as additive manufacturing and laser cutting, have opened up new possi-
bilities for controlling the mesostructure of materials, leading to exceptional and non-
standard behaviors in static as well as in dynamic, such as auxeticity, instabilities,
negative thermal expansion, anisotropic wave propagation, band-gaps and dispersive
properties... Furthermore, the emergence of novel procedures for topological optimiza-
tion and shape optimization has streamlined the synthesis of tailored microstructures
[Amstutz et al., 2010, Clausen et al., 2015], with the potential to obtain custom-made
overall elasticity tensors and serve as waveguides, energy-absorbing devices, and effi-
cient shock absorbers. These developments are further complemented by remarkable
progress in numerical simulation and experimental techniques for material character-
ization, such as digital image correlation techniques [Hild and Roux, 2012].

The notion of architectured materials is a recent development, and its precise definition
remains unclear, especially in distinguishing it from metamaterials, composites, or
lattices. In the following paragraph, we aim to provide our definition of architectured
materials based on existing literature.
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1.2 Definition of architectured materials
One common aspect among the definitions in the literature is that architectured
materials possess an internal structure at the mesoscopic scale, called local archi-
tecture. However, some definitions are inadequate due to their reductive nature,
imposing constraints on the characteristic size of mesoscopic structures, for instance
[Barthelat, 2015]. Additionally, certain authors also define architected materials based
on their fabrication methods, such as additive manufacturing [Tamburrino et al., 2018],
while there are other methods, such as perforation and folding, used to create such
structures [Wadley et al., 2003].

Taking Ashby’s definition as an example. [Ashby, 2013] provides a definition for "Ar-
chitectured or hybrid materials," which are combinations of two or more materials (or
a material and void) assembled in a manner to exhibit properties not found in any
of the individual constituent materials alone. The concept of hybrid materials aligns
with that of composites, and [Ashby, 2013] illustrates this with examples in Figure
xx : Particulate, fibre composites, sandwich structures, foams, lattice structures, seg-
mented structures, zero expansion materials, and more.

pay off. And here we are fortunate. Approximate analyt-
ical models for almost all of the equivalent properties of
the configurations shown in Figure 3 already exist (sum-
marized in Ashby [1] and detailed in Ashby and Brechet
[3], Gibson and Ashby [4], Deshpande et al. [5], Zenkert
[6], and Ashby et al. [7]), allowing hybrid materials to be
plotted on the same material property charts as mono-
lithic materials.

As might be expected, the equivalent properties of hy-
brid materials lie on a trajectory with end-points at the
materials that are combined to make them. The models
give the shape of the trajectories. Steps along the trajec-
tory correspond to the relative volume fractions of the
two (or more) components. The appropriated criterion
of excellence then allows the optimal volume fractions
to be identified.

The method is best illustrated by an example. Models
exist for the stiffness and mass of a sandwich panel as a
function of the properties and dimensions of the materi-
als of the faces and core [1,4,6,7]. From these an equiv-
alent flexural modulus and equivalent density (mass/
volume) are derived. The values are calculated for a gi-
ven choice of materials for the face and core, using val-
ues of the relative thicknesses of the two. The values,
when plotted on a material property chart of flexural
modulus and strength, map out the trajectory (Fig. 4),
allowing comparison with conventional materials that
already appear on it.

The criterion of excellence for a light panel with high
flexural (bending) stiffness is E1=3

f =q, where Ef is the flex-
ural modulus. The bigger the value of this quantity, the
lighter is the panel for a given bending stiffness. A con-
tour of E1=3

f =q is shown in Figure 4 as a dashed-dotted
line. The point at which this contour just touches the
trajectory identifies the optimum ratio of face sheet to
core thickness. The trajectory in Figure 4 passes through
a “hole”; in which the optimum panel lies. It has ex-
tended the boundaries of conventional material property
space.

4. Computer aided design of architectured materials

Tools now exist to make exploration of architectured
materials easier. A typical tool [7] contains approximate
models for the equivalent properties in Table 1 for a set
of predefined configurations, such as those in Figure 3,
together with a database of the properties of potential
component materials from which to make the hybrid.
The user selects from the material database one of the
predefined configurations and materials from which to
make a hybrid, and is then prompted to enter a range
of values for the relevant parameters (relative densities,
relative volumes, or face and core thicknesses). The tool
then creates a set of records for the equivalent properties
of the architectured materials defined in this way. It

ParticulateUnidirectional Short fiberLaminates

Matrix

Reinforcement

llec ecittaLllec maoF Strand structures Segmented structures

Core: material B

Faces: material A

Material
A
B
C
D
E

Sandwich panels Multi-layers

Figure 3. Examples of architectured materials with differing configurations and connectivities.

Figure 4. A modulus–density chart with the modeled properties of a
CFRP coated polymer foam–core sandwich panel. The combination
offers a flexural modulus per unit mass that exceeds that of conven-
tional materials.

6 M. Ashby / Scripta Materialia 68 (2013) 4–7

Figure 1.3: Examples of architectured materials with differing configurations and
connectivities. [Ashby, 2013]

According to [Ashby and Bréchet, 2003a], the configuration and shape of different
constituent phases in a hybrid material play a decisive role in its properties. This con-
figuration is defined as a new parameter in material design, described as the “phase
A + phase B + shape + scale” process, indicating that composite material design
involves the following steps [Faure, 2017]:

• Selecting the constituent materials;
• Determining their configuration, i.e., local spatial organization of the matter ;
• Choosing the scale of the configuration.



CHAPTER 1. ARCHITECTURED MATERIAL : A BRIEF STATE OF ART | 9

Figure xx illustrates the orders of magnitude at which microstructure, configuration,
and structure interact.

Hybrid material

Figure 1.4: Examples of architectured materials with differing configurations and
connectivities. [Faure, 2017]

Our definition of architectured materials won’t differ significantly from Ashby’s.

Definition : Architectured materials [Auffray, 2017]

A material will be said to be architectured if:
1. It possess an inner geometry, that is, a local architecture or shape;
2. It presents of one to several scales of organization of the matter between the

micro and the macrostructure;
3. The intermediate scales of organization are commensurable with those of

the micro and/or macrostructure.

This aligns with the definition provided by Bouaziz et al., Poncelet et al., and Dirren-
berger respectively in [Bouaziz et al., 2008, Poncelet et al., 2018, Dirrenberger, 2018],
which state that a material is termed architectured if it consists of matter system-
atically organized and structured in a controlled manner at various scales to achieve
specific properties and performances.

Architectured materials vs Metamaterials

The terms “metamaterials” and “architectured materials” are often used interchange-
ably, yet they harbor subtle distinctions. Metamaterials predominantly refer to mate-
rials with structures that have been intricately engineered to give rise to unique, multi-
physical characteristics encompassing optical, magnetic, and even more exotic prop-
erties, such as cloaking [Liu et al., 2008, Landy et al., 2008, Cummer et al., 2016].
These materials draw considerable attention due to the extraordinary phenomena
stemming from their distinctive architecture. Their focus initially revolved around dy-
namic attributes but has since extended to investigate static behaviors [Nassar et al., 2022,
Xu et al., 2020, Nassar et al., 2020]. Conversely, architectured materials adopt a more
geometric point of view. They refer to materials with structures deliberately de-
signed on various scales, often with a focus on mechanical or thermal properties
[Bouaziz et al., 2008, Poncelet et al., 2018].
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1.3 Spatial organization of the matter
Architectured materials can be classified in various ways, one of which is through
their spatial organization. In this context, architectured materials can be grouped
into three primary categories: periodic, quasi-periodic, and aperiodic structures.

Periodic Structures

Periodic structures are a type of spatial organization where a single unit cell is trans-
lated in specific ways to fill space. The inherent organization of these structures inte-
grates the point group of the ’primitive cell’ with the Bravais lattice. The combined
operations result in the space group of the structure.

(a) Natural honeycomb. Source: http:
//www.nature.com

(b) Sandwich panel. Source: http://
www.polyreflex.com

(c) Lattice structures obtained by additive
manufacturing. Source: https://gen3d.com

Figure 1.5: Examples of periodic architectured materials

Quasi-periodic Structures

Quasi-periodic structures, as the name suggests, are not strictly periodic but display
some form of order. While they do not exhibit the strict repetition found in periodic
structures, they still maintain a distinct long-range order. This means that although
the pattern does not repeat exactly, it follows a discernible rule or set of rules, making
the structure predictable over large scales.

http://www.nature.com
http://www.nature.com
http://www.polyreflex.com
http://www.polyreflex.com
https://gen3d.com
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1.1. Presentation of architectured materials (A.M.)

Ů they have different unit cells (see Figure 1.10a);

Ů they have the same unit cells but belong to different local isomorphism classes,

i.e. Some patterns in the former never appear in the latter and vice versa (see

Figure 1.10b);

Ů they belong to the same local isomorphism class, i.e. the same patterns can be

found but in different locations (see Figure 1.10b and Figure 7).

Note: The belonging or not of two tilings to the same isomorphism class depends on

the parameters used in the generation methods (see section 2.4).

Quasi-periodic structures constitute an intermediate organisation between periodic

and completely aperiodic ones 4 and seem to combine some of their assets. As they are

locally disorganised, they can exhibit a global isotropic behaviour for classical elasticity

[Gong et al., 2006, Wang and Sigmund, 2020] and have a better failure resistance than

periodic lattices [Glacet et al., 2018]. Then, as they are highly deterministic structures,

studying their behaviour does not require statistical approaches as for foams.

Some well-known representatives of this category are the Penrose tilings (see Fig-

ure 1.11a). The assembly of Ąbres with icosahedral symmetry by [Duneau and Audier,

1999] can also be mentionned (see Figure 1.11b).

(a) Example of Penrose tiling (b) Assembly of Ąbres with icosahedral
symmetry [Duneau and Audier, 1999]

Figure 1.11 Ű Examples quasi-periodic structures

4. Organisations that leads to diffraction Ągures without well-deĄned peaks.

45

(a) Example of Penrose tiling (b) Icosahedral quasi-periodic structures
fabricated using off-the-shelf stereolithog-
raphy 3D printer

Figure 1.6: Examples quasi-periodic structures

Aperiodic Structures

Contrasting periodic and quasi-periodic structures, aperiodic structures lack any con-
sistent, repeating patterns or symmetry that can be seen in regular or periodic struc-
tures. They can be broadly categorized into two main types: ordered and random.
Ordered aperiodic structures, despite lacking a regular pattern, still maintain a form
of order that spans across their entire structure. On the other hand, random aperiodic
structures exhibit no noticeable order or pattern, regardless of the scale at which they
are observed.

(a) An ordered aperiodic organisation:
“hat” aperiodic monotile

(b) An random aperiodic organisation:
open-cell nickel foam. Source https:
//www.zeiss.com/

Figure 1.7: Examples quasi-periodic structures

https://www.zeiss.com/
https://www.zeiss.com/
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1.4 Overview of design and manufacturing tech-
niqus

Designing and manufacturing architectured materials involve complex processes and
techniques due to the need to manage the inner geometry at various scales. Numer-
ous techniques have been developed to meet these requirements. This section offers
a brief overview of these methods; Manufacturing architectured materials can pose
a challenge, particularly when dealing with complex architectures. Two key cate-
gories of methods exist: additive and non-additive manufacturing. It is worth noting
that, these methods aren’t exclusive to architectured materials but can be applied
to conventional materials as well [Uribe-Lam et al., 2021, Alomar and Concli, 2020,
Wadley et al., 2003, Wadley, 2006, Molitch-Hou, 2018].

Additive Manufacturing

Additive manufacturing, commonly known as 3D printing, marks a transformative
development in the fabrication of architectured materials. Through meticulous control
of both micro and macro structural scales, this method allows for the synthesis of
materials with precisely tailored mechanical characteristics.
One of the remarkable achievements of additive manufacturing lies in its capability to
produce architectured materials exhibiting unconventional properties. This includes
the creation of materials with negative Poisson’s ratios, which contract laterally when
stretched, and materials with shape memory effects, capable of returning to their pre-
defined shapes under specific conditions. Numerous additive manufacturing methods
exist. The choice of method is based on the nature of the constituent materials, the
scale, the size of the environment, and especially the properties one aims to achieve.
Among the methods used, let’s mention a few:

– Filament-based raw material technique such as Fused Deposition Mod-
elling (FDM), where a heated thermoplastic filament is deposited layer by layer
to construct a 3D object. Bonding between layers depends on the used material
(thermal proprieties, Viscosity, surface contacting ...);

– Liquid-based raw material technique such as Stereolithography (SLA),
which involves the use of a UV light source to selectively cure a photosensi-
tive resin. In this technique, a laser is utilized to solidify the resin following a
line pattern, with the process repeating layer by layer.

– Powder-based raw material method including Selective Laser Sintering
(SLS) and Direct Metal Laser Sintering (DMLS), wherein small particles of ma-
terials such as plastic, metal, ceramic, or glass are fused using a high-intensity
laser to form the desired 3D shape.

As mentioned earlier, these techniques, grounded in the principle of sequential material
addition, provide specific advantages and are employed depending on the requirements
of precision, material compatibility, and mechanical properties in the architectured
materials design.
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(a) Fused Deposition Modelling process (b) Lattice structure obtained by FDM pro-
cess

(c) Stereolithography process (d) 3D printed structure obtained by SLA
process

(e) Selective Laser Sintering process (f) Examples of several additive manufactur-
ing processes and the structures that can be
achieved using them.

Figure 1.8: Examples additive manufacturing methods
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Non-additive manufacturing

Non-additive, also known as traditional manufacturing, refers to a range of techniques
in which material is either deformed or reshaped to create desired structures. These
techniques remain essential in the fabrication of architectured materials, We will men-
tion few ones:

– Investment Casting Also known as lost-wax casting, this process is utilized for
the creation of detailed metal parts with complex geometries. It often involves
making truss patterns with attached face sheets using wax through injection
molding, though additive manufacturing methods can also be employed. This
technique has proven effective in the fabrication of intricate architectured ma-
terials, including metal lattice structures;

– Metal Wire Approaches These methods involve manipulating metal wires
into various shapes to create architectured materials. Such approaches enable
the production of 2D/3D structures through techniques like welding, braid-
ing, or weaving, and are commonly employed to fabricate materials such as
wire-woven bulk Kagome lattices. The properties of the resulting architec-
tured materials depend significantly on the mechanical characteristics of the
wire material and the geometry of the wire arrangement. This dependency
allows for the design of metallic architectured materials with high strength-to-
weight ratios and adjustable mechanical properties [Fleck and Deshpande, 2004,
Gibson and Ashby, 1997];

– Deformation Forming Deformation forming involves the application of force
to a material to induce a change in its shape. Techniques frequently employed
include sheet forming, tube hydroforming, and stretch forming. Despite cer-
tain limitations in design scope, deformation forming is a cost-effective strat-
egy for fabricating large-scale architectured materials [Goyos-Ball et al., 2017,
Hewage et al., 2016];

– Other technique Chemical methods, particularly used for foam fabrication, in-
volve adding bubbles (usually inert gases) to create irregular or periodic meso/micro-
structures. Such techniques can be applied to a variety of materials like metals,
ceramics, polymers, glasses, and composites [Gibson and Ashby, 1997, Uribe-Lam et al., 2021].
Procedures vary, from high-pressure gas introduction in polymer foams to us-
ing hydrogen-containing metal powder for metallic foams. Besides chemical
methods, other techniques, such as bonding processes, are also used for foam
fabrication.
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(a) Casting investment process (b) Lattice structure obtained Casting in-
vestment process

(c) Examples of several additive manufac-
turing processes and the structures that can
be achieved using them.

(d) 3D printed structure obtained by SLA
process

(e) Selective Laser Sintering process (f) Stereolithography process

Figure 1.9: Examples non-additive manufacturing methods
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Topology Optimization

Topological optimization, first proposed by Bensdoe and Kikuchi [Bendsøe and Kikuchi, 1988],
is a strategic approach to design where material layout is specifically structured to
optimize performance while adhering to predetermined design specifications. This
technique is instrumental in realizing optimal material use, reducing unnecessary
weigh and design time. In the past, topological optimization was primarily used for
mono-scale structures, largely due to the complexity associated with manufacturing
multi-scale materials [Bendsoe, 1988, Zhou and Rozvany, 1991] However, the advent
of advanced additive manufacturing technologies has renewed interest in the optimal
design of multi-scale structures. These technologies enable the fabrication of complex
optimized geometries that were previously unachievable with traditional manufactur-
ing methods. It’s noteworthy that the same modeling techniques used in mono-scale
structure optimization can also serve multi-scale designs through finer meshing of the
design domain. Despite the computational expense associated with this approach, it
is still a viable and powerful tool for complex designs.

To alleviate the computational challenges of multi-scale modeling, the implementa-
tion of the homogenization technique has been suggested. This method allows for
computational efficiency by creating a link between microscopic geometries and their
macro-scale effective properties [Bendsøe and Kikuchi, 1988]. Therefore, it presents a
potential pathway for architectured materials design and optimization that maximizes
lifecycle efficiency, reduces environmental impact, and accommodates the selection of
recyclable materials. Topological optimization, in essence, offers a comprehensive
strategy that harmonizes material use, design intricacy, manufacturing needs, and
performance objectives to deliver efficient, innovative, and sustainable designs.

Figure 1.10: Two different optimisation modellings (a) Mono-scale modelling
[Amstutz and Andrä, 2006] and (b) Multi-scale modelling [Amstutz et al., 2010]

In view of the rapid development of topology optimisation of multi-scale structure over
the last three decades, variety of optimisation methods have been proposed, among
which the density-based method [Zhou and Rozvany, 1991], the level set method [Allaire et al., 2002,
Wang et al., 2003] and the topological derivative [Sokolowski and Zochowski, 1999]
are the most representatives.
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1.5 Mechanical properties of architectured mate-
rials

Architectured materials are garnering substantial research interest due to their diverse
intrinsic properties and unique behaviours. Their characteristics are particularly dis-
tinctive in both static and dynamic regimes, with a significant focus on both periodic
and aperiodic lattice structures. When it comes to static behaviours, they provide
a balance between density and mechanical properties, notably in terms of strength
and stiffness which are investigated [Wicks and Hutchinson, 2001, Budiansky, 1999,
Wadley et al., 2003, Bouaziz et al., 2008, Deshpande et al., 2001a, Deshpande et al., 2001b,
Wallach and Gibson, 2001, Wicks and Hutchinson, 2001]. Further exploration into
architectured materials static behaviour has led to the development of auxetic materi-
als, characterised by a negative Poisson’s ratio, exhibiting lateral expansion under ten-
sion [Prall and Lakes, 1997, Dirrenberger et al., 2011, Li et al., 2017, Meena and Singamneni, 2019]

Figure 1.11: Example of auxetic behaviour : (a) unloaded configuration, (b) loaded
configuration

Pentamode metamaterials are also worth noting, as they behave like fluids behavior
despite being in a solid state. These materials are characterized by a disappearing
shear modulus and a non-zero bulk modulus, facilitating shear deformation but com-
plicating uniform compression [Milton and Cherkaev, 1995, Kadic et al., 2013]
Within the scope of topological optimization, the elasticity tensor of these materi-
als can be custom-designed. This process employs homogenization and topological
optimization to design a homogeneous medium with a tuned elasticity tensor. The
corresponding optimized microstructure can then be identified through a subsequent
dehomogenization process [Amstutz et al., 2010].

(a) Example of pentamode structure
[Kadic et al., 2012]

(b) Example of exotic material unit cell
obtained by optimizing the elasticity ten-
sor

Figure 1.12
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In elastodynamics, architectured materials exhibit non-classical behaviors including
non-linearities, dispersion, anisotropic wave propagation, presence of band gaps, and
can be purposed as waveguides [Rosi and Auffray, 2016, Glacet et al., 2019, McGee et al., 2019,
Spadoni et al., 2009] or even in the creation of an "invisibility cloak" [Bückmann et al., 2015]

(a) Low frequency (20Khz) (b) Low frequency (90Khz)

Figure 1.13: Time transient Finite Elements simulation of energy propagation in a
hexagonal lattice at a given instant for shear pulses of different central frequency
[Rosi and Auffray, 2016]

Figure 1.14: Example of concept of an invisibility cloak [Bückmann et al., 2015]

The Non-linear phenomena such as buckling are also leveraged to manifest behaviours
similar to auxetic materials[Bertoldi et al., 2010, Shim et al., 2013, Babaee et al., 2013].
They facilitate dynamic adjustment of band gaps’ position and width [Rudykh and Boyce, 2014,
Wang et al., 2014, Shan et al., 2014], which can be used to change the dynamic re-
sponse of the structure. Regarding energy absorption properties, architectured ma-
terials exhibits excellent performance due to reversible or irreversible non-linearities
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[Schaedler et al., 2014, Czech et al., 2015]. They serve as effective shock. absorbers
and elastomer replacements. Bistable architectured materials can also function as
reusable energy-absorbing devices or actuators [Shan et al., 2015, Rafsanjani and Pasini, 2016].

Figure 1.15: Example of a multistable lattice for trapping elastic strain energy
[Shan et al., 2015]

1.6 Modelling and characterization of architectured
materials behaviour

A detailed understanding of the elastodynamic behaviour of architectured materials
(AMs) represents an important key in order for determining their potential appli-
cations. Various methods have been deployed to capture their behaviour in static
and dynamic regime, with each approach offering unique insights. Below is consice
overview of some key methods used in this context.

– Experimental Testing: Experimental methods serve as an essential corner-
stone for characterizing the behaviour of architectured materials. These tech-
niques involve subjecting the material under investigation to static or dynamic
loading with prescribed boudary conditions and subsequently measuring its re-
sponse. For instance, dynamic mechanical analysis (DMA) is a standard method
that examines the viscoelastic properties, providing important informations
about modulus, damping, and other dynamic mechanical properties across a
range of temperatures and frequencies [Menzel, 2002]. These methods are often
combined with advanced imaging techniques, such as digital image correlation
(DIC), to measure strain distributions across the material, thereby offering a
detailed understanding of material behaviour under realistic loading conditions
[Sutton et al., 2009].

– Full Field Numerical Simulations: Numerical simulations, such as those
utilizing the Finite Element Method (FEM), where the internal architecture
is thoroughly described, and small elements are used to mesh the structure,
provides access to the whole behaviour of the material, local and global. As
no simplifications are made concerning the constitutive material, classical be-
haviour laws can be used at the local scale, which allows to simulate a variety
of loading scenarios and gain insight into the response of the medium, defor-
mation behaviour, and potential points of failure. This approach is particularly
useful when investigating structures with complex designs that may be difficult
or impossible to evaluate experimentally.
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– Wave Propagation Analysis: Analysis of wave propagation within architec-
tured materials provides valuable information regarding their dynamic response.
Techniques such as Floquet-Bloch analysis, particulary when the medium is pe-
riodic, allows to construct the elastodynamic signature of the medium and can
predict the presence of bandgaps and determine their frequency ranges, i.e.
range of frequencies in which wave propagation is forbidden or highly attenu-
ated. This understanding is crucial in applications that require vibration isola-
tion, sound absorption or wave propagation control. Another example is Lamb
wave analysis, used to investigate guided wave propagation in thin plates, a
feature commonly found in layered architectured materials. This technique can
reveal information about the material’s internal structure, identifying defects or
material properties variations [Rose, 2004].

– Homogenization Methods: Homogenization methods are used to derive ef-
fective properties of a heterogeneous material by considering its microstruc-
ture. This process bridges the scale gap between the microscopic geometries
and macro-scale effective properties, simplifying the complexity of architectured
materials geometry. Homogenization has been used extensively in the context
of periodic media where the response of the individual unit cells is replaced by
an averaged response over the whole structure [Sanchez-Palencia, 1980]. It is
a powerful approach allowing for efficient computational simulations while still
capturing essential behaviour traits of the medium.

– Non-linear Analysis: Non-linear analysis tools are required when AMs dis-
play complex dynamic behaviours such as buckling or large deformations under
specific loading conditions. Non-linear finite element analysis is one such tool
that integrates experimental testing with advanced computational simulations,
capturing and predicting these complex behaviours. It has been particularly
valuable in the study of auxetic materials, which exhibit unconventional me-
chanical properties such as negative Poisson’s ratios [Lakes, 1987].

1.7 Synthesis
The fascination for architectured materials has noticeably increased in recent years,
mainly due to the simplification of their production through innovative manufacturing
methods, and their appealing mechanical properties. This chapter offered a brief yet
comprehensive introduction to them. It detailed the definition of an architectured
material and provided the current understanding on how to model and decipher their
mechanical characteristics.

In the next chapter, we will prsent and provide a set of theoretical elements, essen-
tial for modelling and investi- gating the elastodynamic behaviour of architectured
materials. This chapter covers several physical and mathematical concepts, revolving
around group theory, linear elasticity, wave propagation in periodic media, but also a
brief review of generalized continuous media.
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In order to simplify the understanding, we will define here the terminology used
throughout the manuscript. We consider an affine Euclidean space E of dimension d
with an underlying vector space E. The two are identified through the selection of
a reference point, denoted as O. Let B = {ei}i=1...d be an orthonormal basis of the
vector space E, the couple (O,B) formed by the point O ∈ E and the basis B is called
a reference frame. Therefore, any point P ∈ E can be represented in the basis B by
its position vector x as follows :

OP = x =
d∑
i=1

xiei (2.0.1)

21
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where {xi}i=1...d are the local coordinates of the point P with respect to B. The vector
space E is equipped with an inner product denoted 〈·, ·〉

〈u,v〉 =
d∑
i=1

d∑
j=1

uivjgij (2.0.2)

in which gij = 〈ei, ej〉 is the metric tensor of the basis B. In the following, we will
consider gij = δij. It is worth noting, that the Einstein’s convention will be system-
atically used throughout the present manuscript. In this chapter, we will provide a
concise exploration of architectured materials within the framework of 2D elasticity.
The chapter is structured into four sections, each devoted to the in-depth exploration
of fundamental aspects within periodic architectured materials. In the first section,
we lay the mathematical foundation by examining symmetry operations, lattices, and
point/space groups. The second section focuses on key elements such as the consti-
tutive equations in linear elasticity, material and physical symmetries, and tensors
decomposition. Moving forward, the third section delves into the study of wave prop-
agation in periodic heterogeneous media through the Floquet-Bloch analysis. Finally,
the fourth section explores the concept of an equivalent homogeneous continuum and
investigates various homogenization techniques.

2.1 From geometry to mathematics

2.1.1 Symmetry in the plane

An isometry is a geometrical transformation that can transform an object into either
an identical object or its image with respect to a point, line, or plane. It preserves
the distance between any two points [Armstrong, 1997]. There are three types of
isometries of the plane:
• translations;
• rotations;
• simple reflections.

The combination (in the sense of composition or product) of two or several of these
elementary isometries obviously gives rise to a new isometry [Malgrange et al., 2014].
We shall distinguish two classes of isometry: a direct isometry, which preserves angles
and orientation, and an indirect one, which reverses the orientation. Let us give a
brief definition of these transformations [Hestenes and Holt, 2007].

Translation

For a given vector a ∈ R2, the linear mapping T defined by

T : R2 −→ R2

Ta(x) = x+a, ∀x ∈ R2,
(2.1.1)

is a translation by the vector a. There are no invariant points under a translation.
Since the translation is a proper transformation, the product of p translation is also
a direct isometry equal to the translation pa.
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•
P ”3a

•
P

O e1

e2

•• a M
′

M

Figure 2.1: Translation of the point M and P respectively by vectors a and 3a

Rotation

A 2D rotation is a geometrical transformation of a plane in which each point of the
plane is turned by a given angle around a fixed point, the center of rotation. Let
denote by R(θ), the rotation by angle θ around the origin O in Cartesian coordinates.
For a given vector x ∈ R2, we have

R(θ) · x = y ⇐⇒
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
B

(
x1
x2

)
B

=
(
y1
y2

)
B

Rotation by angle θ around an arbitrary point M ∈ R2 can be defined as the compo-
sition of rotation about O and translation by u = OM , such as

RM(θ) = Tu ◦R(θ) ◦T -u

more precisely, we have

RM(θ) · x = R(θ) · (x− u) + u.

When a planar object can be rotated around a fixed point P and superimposed upon
itself k times, we say that it has a k-fold rotational symmetry around P . This sym-
metry can be described by k symmetry elements, which are the rotations by angles of
2π/k, 4π/k, . . . , 2kπ/k, . . . where k is the order of the rotational symmetry. It is also
worth noting that the composition of two rotations by angles θ and φ about a given
point is itself a rotation by an angle of θ + φ. This means that the set of rotations
with k-fold symmetry forms a group under composition, which has some interesting
mathematical properties.

O e1

e2

•

M

•
P

•

•

•

-u

u

u

R(θ)

RM(θ)

Figure 2.2: Rotation around a given M
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Reflection

A reflection is a transformation that flips all points across a line called mirror. Let n
be the normal unit vector to a mirror line going through the origin, then the reflection
π(n) of vector x across the line of normal n is defined by

π(n) · x = 2(n · x)x− n, with π(n) = I− 2n⊗ n.

By parameterizing the vector n with an angle theta such as n = (cos(θ), sin(θ)), one
can write

π(n) · x = y⇐⇒
(
− cos(2θ) − sin(2θ)
− sin(2θ) cos(2θ)

)
B

(
x1
x2

)
B

=
(
y1
y2

)
B

In which θ designates the angle between n and the horizontal axis e1. The points along
the mirror line are all invariant (points that map onto themselves). If there are n-lines
passing through the center of an object that leave it unchanged when reflected across
them, we say that the object has n-mirror lines. In other words, an object has n-lines
of symmetry if n-lines of reflection divide it into n identical parts. It is important to
note that an object possessing n-mirror lines implies that it can be rotated by specific
angles around a fixed point while maintaining its original appearance, i.e. a rotation
invariance. These angles of rotation, which preserve the object’s shape, are typically
multiples of 2π/n.

n

mirror line

•
P
′

•
P

(a) Reflection across a line of normal nπ/2 (b) Object with 4-mirror lines

Glide reflection

A glide reflection is a transformation that reflects an object across a mirror then slides
it along that line. It can be defined as the composition of a reflection and a translation
along a line parallel to the reflection’s line. Let π(n) be a reflection across the line
of normal n and a translation vector perpendicular to n. Then, for a given vector
x ∈ R2, the glide reflection can be defined as 1

Gn,a := {π (n) |a} = Ta ◦ π (n)

More formally, a glide reflection of a point x is obtained by first reflecting it across the
mirror line, and then translating it by the vector a along the direction of the mirror,
such as

Gn,a (x) = π(n) · x + a.
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n

mirror line

• •

P

•
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a

Figure 2.4: Glide reflection across the horizontal axis e1 and displacement a

Composition Identity Tu π(nθ) R(α) Gnθ,t

Identity Identity Tu π(nθ) R(α) Gnθ,t

Tv Tv Tu+v Gnθ,v RM(α) Gnθ,t
′

π(nφ) π(nφ) Gnφ,u R(2φ− 2θ) π(nφ+nθ/2) RN(2φ−2θ)
R(β) R(β) RM ′ (β) π(nθ −nβ/2) R(β + α) Gnθ−nβ/2,t

Gnψ ,w Gnψ ,w Gnψ ,w′
RN ′ (2ψ −
2φ) Gnψ+nα/2,w RP (2ψ−2θ)

Table 2.1: Composition of all possible isometries in 2D

where:
– M is the center of the rotation such as xM = 1

2

(
I− 1

tan(α/2)R(α)
)
· v. Note

that the angle of rotation α must not be equal to 0 or π;
– t′ is the glide reflection translation vector defined by t′ = R (θ) · v + t;
– The construction of w′ is similar to that of t′ ;
– The coordinates of the rotation centers N, M ′ , N ′ and P are obtained in the
same way as for the point M .

In-plane chirality is a property of an object which means that it cannot be superim-
posed on its mirror image, even when subjected to rotations or translations. More
formally, an object is chiral if it lacks of mirror line. However, some isometries can
affect an object’s chirality. Rotations and translations do not have any effect on an
object’s chirality, but reflections and glide reflections can change it.

2.1.2 Lattices
Now that the basic geometrical transformations have been introduced, let us explore
how these transformations can be used to describe the geometrical symmetry proper-
ties of a periodic architectured material. In order to describe the structure of these
materials, it is essential to introduce some concepts such as lattices, elementary cell,
point group and space group.

1The group of Glide-reflection is an affine group constructed as the semidirect product of R2 and
O(2). Interested readers can refer to [Rosi et al., 2020] for the construction of such transformation
corresponding to the adopted convention of notation.
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Direct space

A medium Ω is said to be periodic when its geometry exhibits a translational invari-
ance with respect to a family of linearly independant translations. The medium is
constructued by a simple translation of a single pattern, called elementary cell, that
fills the whole plane. Due to its periodicity, a periodic architectured material can
be assimilated to a crystal and associated with a fairly simple structure, the Bravais
lattice [Malgrange et al., 2014, Armstrong, 1997, Armstrong, 1997, McWeeny, 2002].
The set of the mentioned translations is called the Lattice, defined by

R = {r ∈ E | r = m1e1 +m2e2 , mi ∈ Z} (2.1.2)
in which ej denotes the basis vectors of the lattice, and represents the direct space.
For a periodic architectured material, each point is equivalent to an infinite number
of others with an identical environment due to the translational symmetry. Hence,
physical properties defined over the medium are invariant under the set R. For
instance, the elasticity tensor C and the scalar mass ρ of a periodic medium verify
the following conditionC(x + r) = C(x)

ρ(x + r) = ρ(x)
∀x ∈ Ω,∀r ∈R (2.1.3)

The set R is a group acting on Ω ⊂ E . For a given material point x ∈ Ω, we define
the orbit of x for the action of R

Orb(x) = {x′ ∈ Ω, x′ = x + r | r ∈R} (2.1.4)
In other words, the orbit Orb(x) consists of all material points in Ω that are equivalents
to a given point x under the action of the group R. Since R represents a set of
translations that preserve the medium’s properties, the physical properties defined
over the medium are also invariant under the action of R. This invariance gives rise
to what is referred to as the “point lattice”2 [Senechal, 1996]. The figure figure 2.5
shows that x and x′ are equivalent points within the medium. These equivalent points
in the orbit share the same physical properties due to the invariance of those properties
under the action of R.

e1

e2

O

×

×

P (x+r)

P (x)

Figure 2.5: The equivalence of material points x and x′ under the action of R

2The point lattice is the orbit of the lattice, encompassing all points reachable through linear
combinations of the generating vectors. It specifically refers to the arrangement of points formed by
the Z-module, i.e. the collection of points the lattice can generate
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A periodic medium is constructed from a point lattice and a pattern, as illustrated
on figure 2.6. The point lattice is defined by the set of points obtained by considering
all the points that are equivalent to a given point3, which are called nodes. The
content of the point lattice is called the pattern, or more conventionally the unit cell,
which contains the basic information of the medium. It is important to note that
the pattern is not univocally defined, it can be reduced to a single primitive cell, as
it can contains several. Therefore, the symmetry of the lattice cannot be directly
associated with the symmetry of a pattern since the pattern does not have a univocal
mathematical meaning.

+ =

• • •

• • •

• • •

Point lattice

Pattern
• • •

• • •

• • •

Periodic medium

Figure 2.6: Example of bidimensional periodic medium

Unit/elementary/primitive cell

In the literature, three related concepts are found regarding the pattern that tiles the
space: the unit cell, elementary cell, and primitive cell.

• A unit cell of the direct-space is the smallest pattern (parallelogram or rectangle)
that can be repeated over and over by unit translations to fill the space of the
medium without gaps or overlaps. It contains one or more lattice points and
reproduces the lattice arrangement when stacked. The elementary cell is the
smallest repeating unit that captures essential lattice features. It may or may
not be equivalent to the unit cell and is chosen based on the lattice’s symmetry.

• The elementary cell may or may not be equivalent to the unit cell, depending
on the lattice’s symmetry. In some cases, they have the same shape and size,
while in other cases, the elementary cell is a smaller subset with a different
shape or size. The elementary cell represents the minimum symmetry required
to describe the point lattice.

3The set of all the points obtained by the action of R on the origin point
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Without loss of generality, only the elementary cell (denoted as T0) will be considered.
The elementary cell T0 is a fundamental domain for the action of R on Ω. It contains
exactly one point per R-orbit, and the properties of the medium can be entirely
characterized by the values taken in the cell T0.

T0 = {x0 ∈ E | x0 =
2∑
j=1

[0, 1[ ej} ⊂ Ω (2.1.5)

Figure figure 2.7 illustrates a 2D example of a elemntary cell, with a chosen couple
of vectors basis {ej}j∈[1,2]. Note that the choice of the unit cell is not unique, several
choices are possible.

e1

e2 T0

Figure 2.7: Definition of an elementary cell

Bravais lattice

In 2D space, there are 5 types of Bravais lattices grouped in 4 crystal systems, ac-
cording to the shape of the basic parallelogram formed by the elementary translation
vectors a and b : monoclinic, orthorhombic, hexagonal and tetragonal (see figure 2.8).
These lattices are entirely characterised by θ, the angle between the vectors a and b,
and their respective norms as reported in table 2.10. The study of Bravais lattices in
3D space is more complex and an exhibits rich informations (14 lattices in 3D), the
interest reader can reffer to [Malgrange et al., 2014, Armstrong, 1997].

• • •

• •

• • •

θ
•

a

b

(a) Monoclinic

• • •

• •

• • •
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d

(b) Orthorhombic

• • •

• •

• • •

•

•

•

•
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b
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•

(c) Orthorhombic centred

• •

• • •

• • •

θ

a

b
•

(d) Hexagonal

• •

• • •

• • •

θ

a

b

•

(e) Tetragonal

Figure 2.8: Bravais lattices in 2D space and their unit cell shapes (coloured area)
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Crystal system Lattice system Edge length condtions Axial angle
Monoclinic Oblic ‖a‖ < ‖b‖ < ‖a-b‖ < ‖a+b‖ θ 6= 90◦

Orthorhombic Rectangular ‖a‖ < ‖b‖ < ‖a-b‖ = ‖a+b‖ θ = 90◦, ϕ 6= 90◦

Centred rectangular ‖a‖ < ‖d‖ = ‖a-d‖ < ‖a+d‖ θ = 90◦, ϕ 6= 90◦

Tetragonal Square ‖a‖ = ‖b‖ < ‖a-b‖ = ‖a+b‖ θ = 90◦

Hexagonal Hexagonal ‖a‖ = ‖b‖ = ‖a-b‖ < ‖a+b‖ θ = 120◦

Table 2.2: Geometrical characteristics of Bravais lattice in 2D space [Armstrong, 1997]

Now that the 5 possible Bravais lattices in 2D have been introduced, one can wonder
how symmetry operations act on it. As said before, isometries can be generated
by combinations of translations, rotations or glide relections, let us list the so-called
point and space groups, the different subgroups describing the properties of lattices
that exhibits certain symmetries.

2.1.3 Point groups
The set of isometries that leave the lattice identical with respect to a fixed point
(modulo a translation) constitutes the point group of the lattice. However, the lattice
generally has other symmetries but subjected to a constraint called Crystallographic
restriction.

Theorem 1.1: Crystallographic restriction principle [Armstrong, 1997]

“The rotational symmetries of a crystal are usually limited to 2-fold, 3-fold, 4-
fold, and 6-fold” .

In other words, only rotation of order 1, 2, 3, 4 and 6 are allowed. There are 2 common
conventions used to describe lattice point groups: the first is the Hermann-Mauguin
notation, known as the international notation and used by the crystallography com-
munity [Hermann, 1934]. The second is the Schoenflies notation, more commonly
used in spectroscopy, and this is the one we will adopt throughout this manuscript.
Let us introduce the point groups for the Schoenflies system [Schoenflies, 1891].

Definition : Cyclic group Zk

The cyclic group with k elements is a subgroup of the dihedral group Dk that
contains only rotation generated by R(θk), whith θk = {2πn/k}n∈J1,k−1K.
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(a) Z2 pattern (b) Z3 pattern (c) Z4 pattern (d) Z6 pattern

Figure 2.9: Examples of k-sided chiral polygons;

Definition : Diheral group Dk

The dihedral group with 2k elements is a group that contains rotations generated
by {R (θk) and reflections across lines generated by π(nθk), such as

R(θk)k = π(nθk)2 = I, π(nθk) ·R(θk) = R(θk)−1 · π(nθk)
whith θk = {2πn/k}n∈J1,k−1K. Geometrically, it represents the symmetry group
of k-side regular polygons.

(a) D2 pattern (b) D3 pattern (c) D4 pattern (d) D6 pattern

Figure 2.10: Examples of k-sided regular polygons;

For practical simplicity throughout, the subgroups Z1 and D1 will be denoted as 1
and Zπ2 , respectively.

Classification of point groups

Accordingly, one can make a first classification of the point groups of each lattice
system. These point groups are summarized in section 2.1.3

Lattice system Point group Rotational-symmetry Reflection symmetry
Oblic C2 2-fold axis ∅

Orthorhombic D2 2-old axis 2 mirror lines
Square D4 4-fold axis 4 mirror lines

Hexagonal D6 6-old axis 6 mirror lines

Table 2.3: Classification of the Bravais lattice and their point groups

After this brief introduction of the different Bravais lattices point groups, one would
now introduce the concept of space group, known as Wallpaper groups in 2D, which
can arise as symmetry groups of periodic architectured materials.



CHAPTER 2. MATHEMATICAL MODELLING OF PERIODIC ARCHITECTURED MATERIALS | 31

2.1.4 Space group
The set of isometries that leave a periodic architectured (lattice + pattern) invariant
constitutes the space group of the medium. In addition to the point group symmetry
operations, the space group contains additional symmetry elements, such as transla-
tion, glide reflection, ect. unlike the point group, the space group has no fixed point
under the application of all symmetry operations. Before tackling the classification of
all possible wallpaper groups, we shall introduce the Hermann-Mauguin notation for
which, each wallpaper group name is made up of four symbols [Sasse, 2020]: letters
and digits. An example of full wallpaper name is p31m. The first letter refers to nature
of the lattice unit cell; p for primitive and c for centred. This is followed by a digit ,
n, wich indicates the highest order of rotational symmetry about a perpendicular axis
to the plane of the tilling: 1-fold (identity transformation), 2-fold, 3-fold, 4-fold or
6-fold. The next two symbols, when present, are either an m, g, or 1, indicates addi-
tional symmetries: at the place of third symbol, it designates respectively a reflection
line, glide reflection line, or identity, through a given axis while a 1 means that there
is no additional symmetry ; at the place of fourth symbol, m and g represents respec-
tively, a reflection line and glide reflection at an angle φ = 2π/n to the main axis. If
the last two symbols are omitted, then the medium has no mirror and glide reflection
lines. For instance, the group name p3m1 represents a group with a primitive cell,
3-fold rotation and reflection line with respect to the horizontal axis. There are two
types of space groups: symmorphic and non-symmorphic. Symmorphic groups are
only generated by the symmetry elements of its point group, which leave invariant a
given fixed point of the lattice. In the other hand, non-symmorphic groups possess
additional symmetry operations such as glide reflections, which does not preserve the
lattice points [Armstrong, 1997]. Now let us list all the possible space groups for 2D
periodic media.

Classification of Wallpaper groups

In 2D, there are a total of 17 space groups that can be defined and characterized
by a unique lattice diagram, point groups and a set of generators. To facilitate the
comprehension of the lattice diagrams, the symmetry operations such as centers of
rotations, positions of mirror lines and glide reflection lines, are represented using the
well-established symbols listed in section 2.1.4.

Symbol Meaning
2-fold rotation center (180◦)

N 3-fold rotation center (120◦)
� 4-fold rotation center (90◦)• 6-fold rotation center (60◦)

reflection line
glide reflection line

unit cell edge

Table 2.4: Symbols used for lattice diagrams

To illustrate in some details the concepts introduced in this section, one can now start
the classification of the 17 possible wallpaper groups. This classification, presented
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in table table 2.5, is based on the Hermann-Mauguin notation, which gives a unique
name to each group [Grünbaum and Shephard, 1987, Zheng and Boehler, 1994].

Space
group

Lattice
system

Point
group Type Generators

p1 moniclinic 1 symmorphic {I, a,b}
p2 moniclinic Z2 symmorphic {R(π)}
pm orthorhombic Z2π symmorphic {Ge1,0, a,b}

pg orthorhombic Z2π
non-
symmorphic {Ge1,b/2, a,b}

p2mm orthorhombic D2 symmorphic {R(π),π(e2), a,b}

p2mg orthorhombic D2
non-
symmorphic {R(π),Ge1,b/2, a,b}

p2gg orthorhombic D2
non-
symmorphic {R(π),Ge1,(a+b)/2, a,b}

cm orthorhombic D1 symmorphic {π(e1), a,b}
c2mm orthorhombic D2 symmorphic {R(π),π(e1 + e2)}
p4 square Z4 symmorphic {R(π/2), a,b}
p4m square D4 symmorphic {R(π/2),π(e2), a,b}

p4g square D4
non-
symmorphic {R(π/2),Ge2,(a+b)/2, a,b}

p3 hexagonal Z3 symmorphic {R(2π/3), a,b}
p3m1 hexagonal D3 symmorphic {R(2π/3),R(2π/3) ◦ π(e2), a,b}
p31m hexagonal D3 symmorphic {R(2π/3),R(2π/3) ◦ π(e1), a,b}
p6 hexagonal Z6 symmorphic {R(π/3), a,b}
p6mm hexagonal D6 symmorphic {R(π/3),R(π/3) ◦ π(e2), a,b}

Table 2.5: Summary of the 17 2D wallpaper groups, their properties and notations
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(a) p1 (b) p2 (c) pm

(d) pg (e) p2mm (f) p2mg

(g) p2gg (h) cm (i) c2mm

(j) p4 (k) p4mm (l) p4mg

(m) p3 (n) p3m1 (o) p31m

(p) p6 (q) p6mm

Figure 2.11: Lattice diagrams of the 17 wallpaper groups
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Figure 2.12: Examples of periodic architectured materials of the 17 wallpaper groups
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Chirality and non-centrosymmetry

Point and space groups have been introduced in terms of the nature of their generators,
before closing this section it is interesting to look at their geometric content. To that
aim we will consider geometric figures that are left fixed by each kind of group and
look at their symmetry properties. Consider the following figure

X

Y

Z

R(π)
//

π(n)

��

X

Y

Z

π(n)

��

X

Y

Z

R(π)
//

X

Y

Z

(2.1.6)

It appears that the Z3 and Z6-invariant figures do not possess mirror invariance and
can therefore turn left or right. As such, they will be called chiral. It can be observed
that Z6 and D6-invariant figures are centrosymmetric, meaning that they are invariant
under the transformation −I which correspond, in R2 to R(θ), this property is clearly
not satisfied by the Z3 and D3-invariant figures. Hence from this example introduce
the notions of chirality and centrosymmetry. These concepts are very important for
the intended physical applications. For a more formal defintion:

Definition

A subgroup of O(2) will be said to be:
• centrosymmetric (denoted by I) if it contains the inversion R(π), and non-
centrosymmetric (I) otherwise;
• chiral (noted C) if it only contains rotations, and achiral (noted C) otherwise

(i.e. if it contains reflections).

O(2)-closed subgroups can be divided into four subsets according to the nature of
their generators. The different situations are reported in the following table:

I I
C D2k D2k+1
C Z2k Z2k+1

After introducing periodic architectured materials from a mathematical point of view,
it is important to understand how their geometry can affect their physical properties
and mechanical behaviour. In the following subsection, the concept of physical and
material symmetries in linear elasticity will be introduced, which will provide further
insight into the mathematical description of physical properties.
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2.2 The space of bidimensionnal classic elasticity
tensors

2.2.1 Constitutive equations
In the theory of linear elasticity for anisotropic homogeneous body, the strain and the
stress state are described by the infinitesimal strain tensor ε ∈ S2 (R2) and by the
Cauchy stress tensor σ ∈ S2

(
R2
)
. These two quantities are second-order symmetric

tensors, i.e. there are elements of S2(R2) Since we are in the context of infinitesimal
strain theory, the strain tensor can be expressed in terms of the displacements field,
such as

ε := 1
2 (u⊗∇ + ∇⊗ u) , (2.2.1)

in which u⊗∇ is the displacement gradient. The Cauchy stress tensor obeys the
following local momentum balance equation

∇ · σ + f = ρ
∂2 u
∂t2

, (2.2.2)

and f is the body force density (force by unit of volume) and ρ is mass density of
material. These tensors (σ, ε) are both symmetric and characterize the local strain
and stress state of the matter. ·The constitutive law in linear elasticity, also called
generalized Hooke’s law, is a local relation between the components of the stress and
strain tensors

σ := C : ε (2.2.3)

The linear map from the set of infinitesimal strain tensors into the space of stress
tensors is defined as fourth order tensor, called the elasticity tensor C, which charac-
terizes the linear behaviour of the matter under mechanical stress. C has a priori 16
components in 2D space (81 in 3D), it can be represented by 4×4 generic matrix which
elements are the elastic constants. Since σij and εkl are symmetric with respect to
index permutations ij and kl, the elasticity tensor has the following minor symmetriesσij = σji

εkl = εlk
=⇒

Cijkl = Cjikl

Cijkl = Cijlk
(2.2.4)

This reduces the number of independant elastic constants from 16 to 9 in the 2D case
and from 81 to 36 in 3D problems, hence the 4x4 matrix becomes a 3×3 matrix. The
potential energy associated to the linear elastic behavior behavior behaviour of the
material can be expressed as a quadratic function of the strain :

W (ε) = 1
2Cijklεijεkl. (2.2.5)

Due to the equivalence of its second partial derivatives

∂2W (ε)
∂εij∂εkl

= ∂2W (ε)
∂εkl∂εij

, (2.2.6)

the elasticity tensor has therefore the following symmetry, called the major symmetry

Cijkl = Cklij. (2.2.7)
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Hence, the 3×3 matrix becomes symmetric and contains only 6 independant com-
ponents of C. It worth noting that the index symmetries of the elasticity tensor are
independent of those imposed by the material. The elasticity tensor space is the vector
space defined by

Ela = {Cijkl ∈ ⊗4(R2) | C(ij) (kl)}, dim Ela = 6, (2.2.8)

in which the notation (..) indicates invariance under permutations of the indices in
parentheses (the minor index symmetries) and .... indicates symmetry with respect
to permutations of the underlined blocks (the major one). In the next subsection,
in order to talk about the symmetry, and therefore the anisotropy of a material, the
transformation that acts on the space of its elasticity tensor will be introduced.

2.2.2 Material and physical symmetries
To choose a group of transformations is to choose a point of view to say whether
two objects are equivalent or not. Let denote by M a microstructure attached to a
given material point P as shown in figure 2.13. The microstructure which describes
the local organization of the matter can possess certain symmetries with respect to
orthogonal transformations Q ∈ O(2), where O(2) is the group of linear isometries
of R2 that contains both proper transformations (rotations with det Q = 1) and
improper transformations (mirror symmetries, inversion, . . . with det Q = -1). This
can be experimentally shown when the measure of a material property with respect
to a given set of orientations, within a chosen reference frame, consistently leads to
the same result.

Ω

P

e1

e2

O

(R)

M(P )

Ω

P

e1

e2

O

(R)

M(P )

Ω

P

e1

e2

O

(R)

M(P )

Figure 2.13: A microstructure M(P ) attached to a given material point P

The set of all linear isometries with respect to a fix point that preserves M forms a
point group GM(P ), called the material symmetry group [Auffray and Ropars, 2016],
such that

GM(P ) := {Q ∈ O(2), Q ?M(P ) = M(P )}. (2.2.9)
An important point to avoid any misunderstanding is the following. In most part of
this manuscript, the active interpretation of a transformation will be considered. This
means that, with respect to a fixed reference, the transformation of an object gives
rise to a new object which is usually different from the original object. This inter-
pretation has to be distinguished from the passive interpretation in which the object
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is unchanged but the basis used for its description is transformed. The difference
between of point of view is illustrated figure 2.14

Figure 2.14: Active transformation on the left figure: a new vector is obtained; Passive
transformation on the right figure, in which only the basis is changed.

Since the material element M(P ) is transformed under the action of O(2), the
physical properties described over it are also transformed[Auffray and Ropars, 2016,
Forte and Vianello, 2014, Auffray et al., 2017]. In the context of our study, the be-
haviour of the matter is described by the fourth-order elasticity tensor C attached to
each material point P of the physical body4. The action of O(2) on an element of Ela
is defined by

(Q ?C)ijkl = QipQjqQkrQlsCpqrs,

within our hypotheses, the symmetry group of C is defined by:

GC := {Q ∈ O(2) , Q ?C = C}, (2.2.10)
in which the ? product stands for the standard tensorial action. GC(P ) represents
the symmetry group of the elasticity C, which describes the physical symmetry. The
interdependence of material and physical symmetries should be acknowledged, as they
are not independent of each other. This connection is established through the Curie-
Neumann principle [Zheng and Boehler, 1994], which asserts that:

Theorem 2.1: Curie-Neumann’s principle

“For a material element and for any of its physical properties, every material
symmetry transformation of the material element is a physical symmetry trans-
formation of the physical property”.

In other words, the material symmetry group is included in the physical symmetry
group5. Mathematically,

GM ⊆ GC,

this means that, that a physical property can be more symmetrical than the mi-
crostructure is. The Hermann theorem [Hermann, 1934] gives some indications on
that point, which can be stated as follows:

4For the sake of simplicity, the tensor will be denoted simply as C. In case of a change of point,
the notation will indicate the relevant point.

5Accordingly, every symmetry transformations of M is a symmetry transformation of C.
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Theorem 2.2: Hermann’s theorem

“ Consider M be a microstructure left invariant by a rotation of order n and T a
m-th order tensor describing its effective properties. If n > m then T is at least
SO(2)-invariant (hemitropic). ”

Accordingly, materials with hexagonal symmetries in their microstructure will be elas-
tically isotropic. As mentioned before, when a material is subjected to a given linear
isometry, its nature does not change. However, the corresponding elasticity tensor
will be transformed. As a consequence, different elasticity tensors can be associated
to the same elastic material. For instance, if we rotate a sample of material in a fixed
reference frame, altough the material nature is still unchanged, we will obtain two
different6 elasticity tensors C1 and C2, associated to the same elastic material, we
say that both belong to the same orbit [Abud and Sartori, 1983]. The orbit OC of C1
in Ela is defined as the set of all elasticity tensors C∗ resulting from O(2) operations
which represent the same material:

OC := {C∗ ∈ Ela | Q ∈ O(2) , C∗ = Q ?C} (2.2.11)
Depending on C, for certain transformations, the resulting tensor may be identical to
the original one. The set of such transformations constitutes its symmetry group, the
definition of which was introduced in equation equation (2.2.10) [Auffray et al., 2014].

When an object is represented in the same basis but in two different orientations,
it may possess different symmetry groups (although conjugate). Therefore, relying
solely on the symmetry group is inadequate for accurately characterizing the intrinsic
symmetries of an object. From a physical point of view, it is interesting to introduce
another notion describing and characterizing properly the symmetry of a physical
object independently of its orientation. To make this more concrete, let C1 et C2 be
two different elasticity tensors and let GC1 and GC1 denote their respective symmetry
groups, we say that their respective symmetry groups are O(2)-conjugate if

∃Q ∈ O(2) , GC2 = QGC1QT .

In this case, we can write
C1 ≈ C2.

The latter relation is called equivalence relation, which means that the tensors are
equivalents. A conjugacy class is the set of groups which can be obtained from a given
group element by conjugation. It has been demonstrated in [Armstrong, 1997] that
a conjugacy class is a an equivalence class. Hence, the collection of all tensors which
are related to it is the equivalence class of C1. We shall define the symmetry class of
a tensor C as the set of O(2)-subgroups conjugate to GC:

[GC] := {G = QGCQT ⊂ O(2) , Q ∈ O(2)}. (2.2.12)
As mentioned in [Auffray, 2017], the symmetry class of C corresponds to its symmetry
group modulo its orientation in O(2). Moreover, it is known that there is only a finite
number of different symmetry classes and that each symmetry class is conjugate to

6Different in terms of components, since both tensors are taken in the same frame
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a closed subgroup of O(2). These subgroups can be regrouped in the following set
[Armstrong, 1997] :

{1,Zπ(n)
2 ,Zk,Dk,O(2), SO(2)}k∈N,k≥2

wherein:

• 1 : the identity group;
• Zk : the cyclic group with k elements generated by the rotation R(2π/k). Geo-

metrically, Zk is the symmetry group of k-side chiral polygons;
• Zπ2 : the group with 2 element generated by π(n);
• Dk : the dihedral group with 2k elements generated by R(2π/k) and π(n).

Geometrically, Dn is the symmetry group of k-side regular polygons;
• SO(2) : the group of rotation generated by R(θ) where θ ∈ [0, 2π[;
• O(2) : the orthogonal group generated by R(θ) and π(e1).

Rotation order 1 2 3 4

Cyclic

Dihedral

In R2, there exist four equivalence classes of the elasticity tensor with respect to
O(2). These classes correspond to the following symmetry types: biclinic, orthotropic,
tetragonal and isotropic materials. The section 2.2.2 summarizes the different symme-
try classes, their correspending symmetry group, and the dimension of the elasticity
tensor for each class."

Symmetry class Biclinic Orthotropic Tetragonal Isotropic
[GC] [Z2] [D2] [D4] [O(2)]

#indep (C) 6 4 3 2

Table 2.6: 2D symmetry groups

Let Σ[G] denotes the set that regroup each type of tensor, Σ[G] is called stratum
and contains tensors which symmetry group is conjugate to O(2). The space 2D
elasticity tensor Ela can be devided into 4 strata [He and Zheng, 1996, Vianello, 1997,
Forte and Vianello, 2014] :

Ela = Σ[Z2] ∪ Σ[D2] ∪ Σ[D4] ∪ Σ[O(2)]
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Since the elasticity tensor is a fourth-order tensor and the basis B has a different
dimension, a direct representation of the tensor within B is not feasible. Therefore, it
is necessary to introduce a linear application that transform a fourth-order symmetric
tensor to a second-order one. This can be achieved by using a 3×3 symmetric matrix
within an appropriately chosen basis. In the next section, harmonic decomposition
of the elasticity tensor will be proposed, starting with an introduction to Kelvin
basis and harmonic spaces. Then, the Clebsch-Gordan formula will be used in order
to decompose the elasticity tensor over the harmonic sub-spaces. Finally, we will
provide a overview of the relationship between the different symmetry classes and the
invariants of Ela.

2.2.3 Representation of the elasticity tensor space
Kelvin basis

The general expression of Hooke’s law requires the use of four-index objects, which is
heavy to handle. That is why some simplified notations have been proposed. Such a
simplification is interesting for both theoretical and numerical reasons. In particular,
they allow for a matrix representation of equation (2.2.3), the aim of this formalism is
to transfer the algebra of 4th-order tensor to that of a 3× 3 symmetric matrix. This
means that we aim to construct a T(ij) ' R3 basis in order to rewrite Hooke’s law as
a matrix product:

{σ} = [C]{ε} (2.2.13)

which means
σ1
σ2
σ3

 =

C11 C12 C13
C12 C22 C23
C13 C23 C33


ε1
ε2
ε3

 (2.2.14)

The most used convention to represent an element of T(ij) as a vector of R3 is the
“Voigt notation” [Voigt, 1910], which takes into account the symmetriesT(ij) to reduce
each pair of indices into one index according to the following two-to-one subscript
correspondances :

α 1 2 3
ij 11 22 12

In what follows, we will use the Kelvin notation [François, 1995], which is symmetric
and preserves the tensorial structure of the product. The idea is to construct an
orthonormal basis K = (ẽ1, ẽ2, ẽ3) of T(ij) from the canonical basis of R3. This
construction is as follows


ẽα = ei ⊗ ei,

ẽα =
√

2
2 (ei ⊗ ej + ej ⊗ ei) , if i 6= j

(2.2.15)

Since being orthonormal, the basis K coincides with its dual basis K∗ and both ε and
σ can be represented with the same convention as vectors in R3, such that
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(
ε11 ε12
ε12 ε22

)
B

=⇒

 ε1 = ε11
ε2 = ε22

ε3 =
√

2ε12


K

and
(
σ11 σ12
σ12 σ22

)
B

=⇒

 σ1 = σ11
σ2 = σ22

σ3 =
√

2σ12


K∗

.

Similarly, the Hooke’s law can be wrriten with convention as a matrix in R3 as follows
:  σ11

σ22√
2σ12


K

=

 C1111 C1122
√

2C1112
C1122 C2222

√
2C1222√

2C1112
√

2C1222 2C1212


K

 ε11
ε22√
2ε12


K

(2.2.16)

Since the constitutive law involves second-order tensors and a fourth order tensor,
respectively, the way they transform under the action of a linear isometry is often not
trivial to describe : some components are transformed (turned at different speeds),
while others remain invariant. One way of understanding the involved mechanisms
when these tensors are subjected to an orthogonal transformation is to investigate
their harmonic structures. To reach this point, the first step is to decompose the
space Ela into a collection of O(2)-irreducible spaces , i.e. a direct sum of elemen-
tary spaces where each subspace is O(2)-invariant. This decomposition is known
as the harmonic decomposition, which provides a way to extract useful informa-
tion about the material’s properties [Forte and Vianello, 2014, Auffray et al., 2017,
Desmorat and Auffray, 2019]. Before providing its explicit decomposition for the elas-
ticity tensor space, let us take an example of the space of second order symmetric
tensors S2(R2) to illustrate the main idea behind this decomposition.

For a given element T ∈ S2(R2) , T can be decomposed into deviatoric and a spherical
part :

T = Td + Ts = Td + αI = Φ
(
Td, α

)
(2.2.17)

where Td ∈ K2 and α ∈ K0 are, respectively, the deviatoric part and spherical part
of T such as :

α := 1
2T : I, and Td := T− αI

The decomposition equation (2.2.17) implies that S2(R2) and the direct sum K2⊕K0

are isomorphic, we can write

S2(R2) ' K2 ⊕K0

The decomposition above is irreducible since each its elements of the harmonic sub-
spaces can not be decomposed into smaller tensors, note that each subspace is O(2)-
invariant .

Irreducible representation of the elasticity tensor space

The aim of this subsection is to establish the harmonic structure of elasticity ten-
sor space using the Clebsch-Gordan formula. More details and mathematical proofs
concerning these notions can be found in [Auffray et al., 2021]. We recall that the
elasticity tensor space is defined by
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Ela = {Cijkl ∈ ⊗4(R2) | C(ij) (kl)}

Which can be defined also as Ela = S2 (S2(R2)). We can decompose Ela into irre-
ducible elements, namely harmonic spaces. We shall write :

Ela '
⊕
k

αkKk, (2.2.18)

In which the integer αk corresponds to the multiplicity of the harmonic space Kk. The
expression equation (2.2.18) is called isotypic decomposition of Ela [Auffray et al., 2017].
In order to determine the structure of the latter decomposition, let us introduce the
Clebsch-gordan formula.

Clebsch-Gordan formula and harmonic decomposition

After introducing the concept of the Kelvin basis and harmonic spaces, the Clebsch-
Gordan formula will be introduced in the what follows to further elaborate on the
harmonic decomposition of the elasticity tensor. This formula allows to decompose
the elasticity tensor over harmonic sub-spaces, and provides the explicit expression of
each sub-space element.

Lemma 2.1: Isotypic decomposition

For every integerm > 0 and n > 0, we have the following isotypic decompositions,
in which × indicates meaningless products:

⊗ Kn K0 K−1

Km

K2n ⊕K0 ⊕K−1 , n = m;
Kn+m ⊕K|n−m| , n 6= m;

Km Km

K0 Kn K0 K−1

K−1 Kn K−1 K0

S2 Kn K0 K−1

Km K2n ⊕K0 × ×
K0 × K0 ×
K−1 × × K0

Using the previous result, we can establish the harmonic structure of the elastic-
ity tensor space Ela = C(ij) (kl). As mentioned before, this space can be viewed as
S2 (S2(R2)), we can write :

Ela ' S2
(
S2(R2)

)
' S2

(
K2 ⊕K0

)
' S2

(
K2
)
⊕ S2

(
K0
)
⊕
(
K2 ⊕K0

)
' K4 ⊕K0 ⊕K0 ⊕K2 ' K4 ⊕K2 ⊕ 2K0

(2.2.19)
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Theorem 2.3: Harmonic decomposition of C

Due to the harmonic structure of Ela, it results that any elasticity tensor can be
explicitly decomposed as

C = H + 1
2 (h⊗ I + I⊗ h) + α2

2 P2 + 2α0P0 (2.2.20)

in which H ∈ K4, h ∈ K2, α2, α0 ∈ R and P0 , P2 are the standard spherical
and deviatoric projectors. This parametrisation is known as the Clebsch-Gordan
harmonic decomposition [Auffray et al., 2021].

The decomposition 2.2.20 is orthogonal and we have

C :: C = 4α2
0 + α2

2
2 + 4h : h + H :: H

The compact notation C = ϕ (H,h, α2, α0) will condense the previous expression,
which means that the elasticity tensor can be decomposed in a fourth-order harmonic
tensorH, a second-order harmonic tensor h and two scalar α2 and α0. Those elements
can be explicitly defined from C as follows:

K0 K2 K4

α0 = P0 :: C h = P2 : C : I H = P2 : C : P2 − α2

2 P2

α2 =
(
P2 : C : P2

)
:: P2

Using equation (2.2.20), the matrix representation of C within the Kelvin basis K7

gives

[C] =


2h1 +H1 + α0 + α2

4 −H1 + α0 −
α2

4
√

2 (h2 +H2)

−H1 + α0 −
α2

4 −2h1 +H1 + α0 + α2

4
√

2 (h2 −H2)
√

2 (h2 +H2)
√

2 (h2 −H2) 1
2 (−4H1 + α2)


K

(2.2.21)

The harmonic decomposition is of high interest for the future discussions since it allows
us to characterise the symmetry class of an object rather than its specefic symmetry
about a given orientation, by computing the elements of the harmonic decomposition.
From a geometric point of view, since the harmonic decomposition is O(2)-invariant, it
is more interesting to see how a given transformation acts on harmonic decomposition
elements rather than on the full tensor. For instance, for a rotation R by an angle θ,
and for each C ∈ Ela, we have

R(θ) ?C = ϕ (R(θ) ?H,R(θ) ? h, α2, α0) = ϕ (H∗,h∗, α2, α0) = C∗,

where

{h∗} =

 h1cos (2θ)− h2sin (2θ)
−h1cos (2θ) + h2sin (2θ)√
2 (h1sin (2θ) + h2cos (2θ))


K

,

and
7More details about the Kelvin representation can be found in [Desmorat and Auffray, 2019]
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[H∗] =

 H1cos (4θ)−H2sin (4θ) H1cos (4θ) +H2sin (4θ)
√

2 (H2cos (4θ) +H1sin (4θ))
H1cos (4θ) +H2sin (4θ) H1cos (4θ)−H2sin (4θ)

√
2 (H2cos (4θ)−H1sin (4θ))√

2 (H2cos (4θ) +H1sin (4θ))
√

2 (H2cos (4θ)−H1sin (4θ)) 2 (H1cos (4θ) +H2sin (4θ))


K

,

are the transformed elements expressed in the Kelvin basis K.

2.2.4 Symmetry classes and invariants of Ela
To study more in-depth the symmetry properties and the action of O(2) on an ele-
ment of Ela, from a geometrical point of view, let us look at the links between this
harmonic parametrisation and the symmetry classes trought the set {h,H}, called
the anisotropic harmonic bouquet HB. section 2.2.4 gives the graphical presentation
of the harmonic bouqet, whithin K2 =

(
K2

1,K2
2

)
and K4 =

(
K4

1,K4
2

)
, respectively

orthonormal canonical bases of K2 and K4 of which the construction is detailed in
[Forte and Vianello, 2014]

φ

φ+ 2θ h

h∗

K2
1

K2
2

•

(a) The action of R(θ) on h

φ

ψ + 4θ H

H∗

K4
1

K4
2

•

(b) The action of R(θ) on H

Figure 2.15: Graphical presentation of the harmonic bouqet, within the bases K2 and
K4

Wherein φ designates, the angle between h and the horizontal axis K2
1, and ψ the

angle between H and K4
1. For a generic elasticity tensor [Mou et al., 2023], HB is

said non degenerated when
– neither h nor H is nill;
– they are no aligned, meaning that (h ∗ h)×H 6= 0;

in which ∗ and × denote, respectively,the harmonic and the generalised cross product,
their definitions are provided in [Mou et al., 2023]. This last condition motivates the
introduction of the concept of Homogeneous Harmonic Bouquet HHB = {h ∗ h,H},
in which all elements belong to the same harmonic space and therefore transform
in the same way. This notion will allow us to introduce the harmonic normal form
of an elasticity tensor. To this end, let denote by K̃4 = (K̃4

1, K̃4
2) the orthonormal

basis of K4 constructed from the canonical basis B of R2 [Desmorat et al., 2020].Since
elasticity tensors sharing the same orbit have conjugate HHB, the following result is
natural

∀C ∈ Ela, ∃Q ∈ O(2) s.t. (Q ?H)2 = 0, (Q ?H)1 > 0
with (H)i = H :: K̃4

i . A generic tensor C is in its harmonic normal form, if (H)2 = 0,
and (H)1 > 0. Geometrically, this corresponds to the configuration depicted on
figure 2.16.
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K̃
4

1

K̃
4

2

•

h ∗ h
H

Figure 2.16: Harmonic normal form of a generic elasticity tensor

When a tensor exhibits a spatial invariance with respect to some transformations, its
harmonic bouquet is said to be degenerated8. Hence, the different transitions from
a symmetry class to another can be expressed in terms of covariant conditions, as
follows:

Σ[Z2]
(h ∗ h)×H = 0
−−−−−−−−−−−−→ Σ[D2]

h : h = 0−−−−−−−−−−−−→ Σ[D4]
H :: H = 0−−−−−−−−−−−−→ Σ[O(2)]

Geometrically, the harmonic normal forms of elasticity tensors in the three remaining
classes are presented in section 2.2.4.

K̃
4

1

K̃
4

2

•

h ∗ h
H

(a) D2 elasticity tensor

H

K̃
4

1

K̃
4

2

•

(b) D4 elasticity tensor

K̃
4

1

K̃
4

2

•

(c) O(2) elasticity tensor

Figure 2.17: Harmonic normal form of non generic elasticity tensors

8In other words, the conditions of generecity are no longer fullfiled.
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The corresponding matrix representation of C for each symmetry class is given in
table 2.7.

Symmetry class Dimension Matrix

[Z2], biclinic 5


2h1 +H1 + α0 + α2

4 α0 −H1 −
α2

4
√

2 (h2 +H2)

∗ H1 − 2h1 + α0 + α2

4
√

2 (h2 −H2)

∗ ∗ α2

2 − 2H1


K

[D2], orthotropic 4


2h1 +H1 + α0 + α2

4 α0 −H1 −
α2

4 0

∗ H1 − 2h1 + α0 + α2

4 0

∗ ∗ α2

2 − 2H1


K

[D4], tetragonal 3


H1 + α0 + α2

4 α0 −H1 −
α2

4 0

∗ H1 + α0 + α2

4 0

∗ ∗ α2

2 − 2H1


K

[O(2)], isotropic 2


α0 + α2

4 α0 −
α2

4 0

∗ α0 + α2

4 0

∗ ∗ α2

2


K

Table 2.7: The matrix normal forms of the elasticity tensor for each symmetry class

Tensor representations Symmetry class Covariant conditions Dimension
C = f(α0, α2,h,H) [Z2], biclinic - 5
C = f(α0, α2,h,H) [D2], orthotropic (h ∗ h)×H = 0 and h 6= 0 4
C = f(α0, α2,h,0) [D2], R0-orthotropic H = 0 and h 6= 0 4
C = f(α0, α2,0,H) [D4], tetragonal h = 0 3
C = f(α0, α2,0,0) [O(2), isotropic h = H = 0 2

Table 2.8: Covariant conditions for symmetry classes

Invariants of the elasticity tensor

Another geometrical interpretation to understand the action of O(2) on Ela can be
made by considering some polynomial functions that are formulated using tensor
components. To see that, we need to introduced the invariants of the elasticity tensor.
Consider the following quantities:

i1 = α0, j1 = α2, i2 = h : h, j2 = H :: H, i3 = h : H : h. (2.2.22)

Using index notation, we have more explicitly
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i1 = α0, j1 = α2, i2 = 2
(
h2

1 + h2
2

)
, j2 = 8

(
H2

1 +H2
2

)
, i3 = 4H1

(
h2

1 − h2
2

)
+ 8H2h1h2

(2.2.23)
These elements are polynomial functions of C that are O(2)-invariant [Vianello, 1997,
Mou et al., 2023]. In the notation, the subscript indicates the degree of the polynomial
in the elasticity tensor. As demonstrated in [Vianello, 1997] they constitute a basis
for the invariants of elasticity tensors. They satisfy the following inequalities

i2 ≥ 0, j2 ≥ 0, i22j2 − 2i23 ≥ 0. (2.2.24)

that can be added to ensure the positive-definiteness of the elasticity tensor [Desmorat and Auffray, 2019].
One can paramaterise the elements of HB in terms of two invariants such as

H =
√
j2
(
cos(ψ)K4

1 + sin(ψ)K4
2

)
, h =

√
i2
(
cos(φ)K2

1 + sin(φ)K2
2

)
, (2.2.25)

and

H∗ =
√
j2
(
cos(ψ + 4θ)K4

1 + sin(ψ + 4θ)K4
2

)
, h∗ =

√
i2
(
cos(φ+ 2θ)K2

1 + sin(φ+ 2θ)K2
2

)
.

(2.2.26)
Since a rotation R(θ) acts on h and H respectively, as o rotation of angles 2θ and 4θ,
the angle Φ = 2φ − ψ remains invariant under the action of SO(2) [Vianello, 1997].
Indeed, we have

((h ∗ h)×H) ::: ((h ∗ h)×H) = i22j2 sin (Φ)2 . (2.2.27)
Using the parameterisation below, it can be easily proved that, for (at least) or-
thotropic materials, the following polynomial relation is satisfied

i22j2 sin (Φ)2 = i22j2 − 2i23 = 0, and i2 ≥ 0, j2 ≥ 0 (2.2.28)
One can write this conditions in terms of h and H compenents, it yields

i22j2 − 2i23 = 32
(
2H1h1h2 −H2

(
h2

1 − h2
2

))2
= 0. (2.2.29)

The links between harmonic decomposition, symmetry classes and invariants are re-
ported in the table below

Tensor representations Symmetry class Polynomial conditions Dimension
C = f(α0, α2,h,H) [Z2], biclinic i22j2 − 2i23 ≥ 0 5
C = f(α0, α2,h,H) [D2], orthotropic i22j2 − 2i23 = 0 4
C = f(α0, α2, 0,H) [D4], tetragonal i2 = 0 3
C = f(α0, α2, 0, 0) [O(2), isotropic i2 + j2 = 0 2

Table 2.9: Invariant and Covariant conditions for symmetry classes

In figure 2.18b are summed-up the different transitions from a symmetry class to an-
other expressed in terms of polynomial relations between invariants, where Σe

[D2] desig-
nates R0-orthotropic materials or exotic materials [Vannucci, 2002, Mou et al., 2023],
satisfying the following polynomial condition



CHAPTER 2. MATHEMATICAL MODELLING OF PERIODIC ARCHITECTURED MATERIALS | 49

C ∈ Σe
[D2] ⇐⇒ j2 = 0 and i2 6= 0.

The different transitions from a symmetry class to another expressed in terms of
polynomial relations between invariants are summed-up in figure 2.18b.
In the case of 2D elasticity, the geometry of the elastic material space can be visualised.
figure 2.18a depicts the elastic material space with respect to (i2, j2, i3). The surface,
which corresponds to the polynomial equation: i2j2 − 2i23 = 0 contains all the at-
least-orthotropic materials. Finally, we get that, independently of the values of the
isotropic invariants i1 and j1:
• Point O corresponds to isotropic materials (stratum Σ[O(2)]);
• Open ray ]OA) corresponds to tetragonal materials (stratum Σ[D4]);
• Surface without {O}⋃]OA)⋃]OB) corresponds to ordinary orthotropic materi-

als (stratum Σ[D2]);
• Biclinic materials (stratum Σ[Z2]) are strictly inside the volume defined by the

surface.

(a)

Σ[Z2]

j2=0
{{

i22J2−2i23=0, j2 6=0

##

Σe
[D2]

i2=0

��

Σg
[D2]

i2=0
��

Σ[D4]

j2=0
{{

Σ[O(2)]

(b)

Figure 2.18: (a): Semi-algebraic variety of elastic materials with respect to (i2, j2, i3),
(b): Transitions between symmetry classes

After introducing some fundamental mathematical concepts on the geometrical aspect
of periodic architectured materials and how the constitutive law takes into account
their symmetries, one can now explore the behaviour of these materials by studying
wave propagation. The study of elastic wave proagation within periodic media pro-
vides a foundation and allows a deeper understanding of how waves interact with and
are affected by the properties of the material they are propagating through. This
is an essential step towards developing a comprehensive understanding of periodic
architectured material properties.
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2.3 Elastodynamics of architectured materials
In this section, we will introduce some basic elements about wave propagation within
periodic media. First, the concepts of direct and reciprocal spaces are introduced
through the unit cell and the Brillouin zone, which are indispensable notions to un-
derstand the physical contents and the dynamic behevior of periodic media and in
particular, architectured materials. Then, the Floquet-Bloch [Gazalet et al., 2013,
Nassar, 2015] theorem will be used in order to set up an analysis of wave propagation
within periodic media by solving the elastodynamic equations. Finally, the last part of
this section will be devoted to some numerical examples by computing the dispersion
curves, the choice made on the studied geometries and the adopted assumptions.

2.3.1 Periodic media : some elements of theory
Reciprocal space

Let E∗ denote the dual space of the direct space E . This dual space corresponds to the
wave vector space, which is also known as the phase space. To further comprehend
this notion, we introduce the reciprocal lattice R∗ as the dual set of R.

R∗ = {ξ ∈ E∗ | ξ = ξ1b∗1 + ξ2b∗2 , ξi ∈ Z}, (2.3.1)
in which B∗ = {b∗j}j=1..2

9 is a basis of the reciprocal space R∗, i.e.

b∗j · ei = 2πδij. (2.3.2)
Consider the wave vector ξ ∈ R∗ of a given plane wave, there exist x0 ∈ T0 and
r ∈R such that

e−iξ·x = e−iξ·(x0+r), ∀x ∈ Ω (2.3.3)
the wave is said to be R-periodic if and only if

ξ · r ∈ 2πZ. (2.3.4)
From equation (2.3.4), it yields

e−iξ·x = e−iξ·(x0+r) = e−iξ·x0 (2.3.5)
Thus, R∗ is the support of the complex-valued R-periodic functions. Table 2.10
resumes the expression of primitive vectors in the direct and reciprocal space for each
lattice system.

9The followed methodology in the construction of reciprocal’s basis vectors can be found in the
reference [Armstrong, 1997] (respect. [Malgrange et al., 2014] for the 3D).
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System Lattice e1 e2 b∗1 b∗2

Monoclinic Oblic (b1, 0) b2 (cosθ, sinθ)
(2π
b1
,
−2π
b1tanθ

) (
0, 2π

b2sinθ

)

Orthorhombic
Rectangular (b1, 0) (0, b2)

(2π
b1
, 0
) (

0, 2π
b2

)

Centred rect-
angular (b1, 0)

(
b1

2 ,
b2

2

) (2π
b1
,
−2π
b2

) (
0, 4π

b2

)

Tetragonal Square (b, 0) (0, b)
(2π

b , 0
) (

0, 2π
b

)

Hexagonal Hexagonal b
(√

3
2 ,
−1
2

)
b
(√

3
2 ,

1
2

)
2π
b

(
1√
3
,−1

)
2π
b

(
1√
3
, 1
)

Table 2.10: Lattice vectors in the direct and reciprocal spaces

First Brillouin zone

While an infinite number of elementary cells can exist for any point lattice, only one
cell, referred to as the Wigner-Seitz cell10, contains exactly one node of the point
lattice [Malgrange et al., 2014, Ashcroft and Mermin, 2022]. The Wigner-Seitz cell
serves as a fundamental domain for R and carries all the informations about the peri-
odic medium, particularly its symmetry properties. Geometrically, the Wigner-Seitz
cell is defined as the set of points that are closer to a given point than to any other
point in the point lattice.

We define the First Brillouin Zone (FBZ) T ∗ as the primitive cell in the reciprocal
space, its construction is analogous to the Wigner-Seitz’s construction in direct space
[Brillouin, 1930]. It represents the set of all points in reciprocal space that are closer
to the origin k = 0 than any other points,

T ∗ = {k ∈R∗ | ∀ξ ∈R∗ − {0}, ‖k‖ ≤ ‖k− ξ‖} ⊂ E∗ (2.3.6)
From equation (2.3.1) et equation (2.3.6), we have

∀k ∈ E∗,∃ (k0, ξ) ∈ (T ∗,R∗) , k = k0 + ξ. (2.3.7)
Figures figure 2.19a and figure 2.19b show a representation of a hexagonal lattice in the
direct space and in the reciprocal space. The cell T0 corresponds to the Wigner-Seitz
cell whose primitive vectors are given by

b1 = b

(√
3

2 ,
−1
2

)
, b2 = b

(√
3

2 ,
1
2

)
The cell T ∗ corresponds to the FBZ, its primitive reciprocal vectors are

10The Wigner-Seitz cell is a specific type of Voronoi cell associated with a point lattice, repre-
senting a fundamental domain around a node of the point lattice
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Figure 2.19: A 2D example of hexagonal unit cell. Left-hand figure : the Wigner-Seitz
unit cell T0 in R. Right-hand figure : FBZ T ∗ associated with T0 in the reciprocal
space R∗.

The FBZ concept is of major importance, it contains all the information necessary to
characterize the reciprocal lattice of a periodic medium. This can be shown through
the Bloch wave analysis which will be the subject of the next section, where the solu-
tions can be completely characterized by their behaviour in this zone [Brillouin, 1953].
It is interesting to note that when the lattice has additional symmetries, for example
orientation-invariance, the FBZ can be reduced to a region bounded by the points of
high symmetries, called the Irreducible Brillouin Zone (IBZ). The red region in figure
figure 2.19b represents the IBZ for a two dimensional hexagonal lattice. It corresponds
to the triangle formed by the points Γ, M and K. Restricting the study to the IBZ
is of great interest, it means to consider only the solutions whose wave vectors found
in this zone by following the path Γ→M → K → Γ.

Point Coordinates Definition

Γ (0, 0) Center of the FBZ

M

(
2π
b
√

3
, 0
)

Edge’s midpoint of the hexagonal FBZ

K

(
2π
b
√

3
,
2π
3b

)
Corners of the hexagonal FBZ

Table 2.11: High symmetry points of the Hexagonal IBZ corresponding to figure 2.19
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2.3.2 Floquet-Bloch analysis
Elasodynamic equations

Let consider a periodic heterogeneous medium denoted by Ω, and let T ∗ be its el-
ementary unit cell. Ω consists of at least two linear elastic phases (or at least one
elastic phase and void). At a material point P ∈ Ω identified by its position vector
x, we have the following equations:

• The motion equation

∇ · σ(x) + f(x) = ṗ(x), ∀x ∈ Ω; (2.3.8)
• The strain field11

ε := 1
2 [u(x)⊗∇ + ∇⊗ u(x)] ≡ u(x)⊗s ∇, ∀x ∈ Ω; (2.3.9)

• The velocity field v :

v := ∂u(x)
∂t

≡ u̇(x), ∀x ∈ Ω; (2.3.10)

• Constitutive law (Hooke’s law) :

σ(x) = C(x) : ε(x), ∀x ∈ Ω; (2.3.11)

• The momentum field p:

p := ρ(x)v̇(x), ∀x ∈ Ω. (2.3.12)

By combining those equations, equation (2.3.8) can be rewritten as

∇ · [C(x) : (u(x)⊗∇)] + f(x) = ρ(x)ü(x). (2.3.13)
It should be noted that solving the previous problem using Fourier transform is
not straightforward due to the heterogeneous nature of the medium. To analyze
the elastodynamic response of the medium, the Floquet-Bloch analysis is introduced
[Floquet, 1883]. This method involves studying the propagation of free waves within
the medium by computing dispersion curves. The Fourier transform is adapted to the
operators of equation equation (2.3.13), whose coefficients are periodic, to enable this
approach. Since the medium is only invariant under the action of R, plane waves are
no longer solutions to equation equation (2.3.13).

Bloch waves

Consider the free-wave propagation problem 12, the corresponding motion equation is
given by

∇ · [C(x) : (u(x)⊗∇)] = ρ(x)ü(x). (2.3.14)
11Defined as the second-order infinitesimal strain tensor
12In a free-wave problem, the term corresponding to the volume force density in equation (2.3.13)

vanishes
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The application of the Floquet-Bloch theorem allows us to express the elementary
solutions of equation (2.3.14) in Ω in the form of Bloch waves [Nassar, 2015]:

uk(x, t) = Re [ûk(x, t)] = Re
[
ũk(x)ei(ωt−k·x)

]
, ũk(x) ∈ C2 (2.3.15)

Theorem 3.1: Floquet-Bloch theorem [Gazalet et al., 2013]

Consider an elastic medium with a periodic structure, characterized by a periodic
elasticity tensor C and mass density ρ satisfying

C(x + r) = C(x)
ρ(x + r) = ρ(x)

∀x ∈ Ω,∀r ∈R.

If û(x) is a solution to the wave equation 2.3.14, then there exist Bloch functions
ũk(x) and a set of complex numbers cka, such that

û(x) =
∑
k

ckûk(x) =
∑
k

ckũk(x)ei(k·x−ωt),

Wherein, k a wavevector that lies in the FBZ, and ũk(x) are the periodic func-
tions that satisfy:

ũk(x+r) = ũk(x)eik·r, ∀r ∈R∗
aHere, the complex numbers ck represent the coefficients of the superposition

A Bloch wave can be viewed as a plane wave modulated by a R-periodic polarization
field ũk, i.e. a field which exhibits the periodicity of the lattice

ũk(x + r) = ũk(x), ∀(x, r) ∈ Ω×R.

Bloch waves are a generalization of plane waves for periodic heterogeneous media.
Indeed, as the lattice parameters approach zero, i.e., when the medium becomes ho-
mogeneous, Bloch waves can be identified as plane waves with a constant polarization
field.

Discrete translational invariance

Let Ta be the spatial translation operator, such as

Ta (ûk(x)) = ûk(x + a)
If a ∈R, ∃k ∈R∗ such that13

Ta (ûk(x)) = e−ik·aûk(x) (2.3.16)
which is usually written in the following form

13This result derives from using Born-Von-Karman conditions, the methodology followed by Bloch
rigorously detailed in [Gazalet et al., 2013]
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ûk(x + a) = e−ik·aûk(x) (2.3.17)
which is another formulation of the phase relationship. This relation allows to ex-
press the boundary conditions in the Bloch analysis. It is convenient to write equa-
tion (2.3.16) in the following form

Ta (ûk(x)) = λaûk(x) (2.3.18)
The latter relationship shows that equation (2.3.16) exhibits an eigenvalue problem for
the translation operator Ta, where λa = e−ik·a represents the eigenvalue associated
with the translation by the vector a. It is worth noting that equation (2.3.17) can be
viewed as a generalization of the standard periodic boundary conditions. Specifically,
as k −→ 0+ and the wavelength 2π/ ‖k‖ tends to infinity, the Bloch boundary condi-
tions reduce to the standard periodic boundary conditions.

Now, let us verify that Bloch waves satisfy the property equation (2.3.17). Using the
following change of variables x −→ x+a, it yields

ûk(x) = ũk(x+a)ei(ωt−k·(x+a))

= ũk(x)ei(ωt−k·x)e−ik·a

= ûk(x)e−ik·a
(2.3.19)

Which highlights the fact that a discrete translation of a vector a ∈R in direct space
will not affect the wavefront during propagation, but, it creates a phase-shift e−ik·a

Floquet-Bloch transform and elastodynamic equations

Taking into account the differentiation and the multiplication operators of the Floquet-
Bloch transform [Nassar, 2015], kinematical, contitutive and motion equations can be
rewritten in terms of Floquet-Bloch components

ε̃ = ũ⊗s(∇− ik), ṽ = −iω ũ, σ̃ = C : ε̃, p̃ = ρṽ. (2.3.20)
The equation of motion 2.3.13 formulated for the ansatz equation (2.3.15), takes the
form

(∇− ik) · {C(x) : [ũk(x)⊗s (∇− ik)]} = −ω2ρ(x) ũk(x), (2.3.21)
the periodicity of the medium implies

ûk(x, t) = ûk(x0 + r, t) = ũk(x0 + r)ei(k·(x0+r)−ωt) = ûk(x0, t)eik·r. (2.3.22)
Here, x ∈ Ω, x0 ∈ T , and r ∈ R. The latter relation expresses the phase shift
between the solutions at two different points within the periodic medium. Conse-
quently, the solution of a partial differential equation with periodic coefficients is not
necessarily periodic itself. In other words, the periodicity of C and ρ does not imply
the periodicity of u. By analogy, one can emphasize that the polarization field ũk is
R∗-periodic14, given by

ũk+ξ(x0) = ũk(x0), ∀(k, ξ) ∈R∗ (2.3.23)
14The proof was established in [Nassar, 2015]
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The R∗-periodicity of the solution is of great practical interest. As mentioned earlier,
it is not necessary to explore the entire set k ∈ R∗; the study can be limited to the
wave vectors within the FBZ.

Dispersion curves

A free wave, represented by the expression equation (2.3.15), is a non-null solu-
tion of the motion equation. equation (2.3.21) can thus be interpreted as a fam-
ily of eigenvalue problems parameterized by k, where ũ(k,ω)(x) is an eigenmode, and
{ω2

i (k)}1≤i≤N
15 represents the eigenvalues. The concept here is analogous to the study

of eigenstates in a crystal where wave propagation is governed by the Schrödinger
equation [Gazalet et al., 2013]. The motion equation can be rewritten as:

[
(∇− ik) ·C(x) · (∇− ik)− ω2ρ(x)I

]
· ũk(x) = Zk(ω) · ũk(x) = 0, (2.3.24)

where Zk can be defined as an impedance. The existence condition of free waves is
known as the dispersion relation. Thus, for a set of wave vectors k ∈ R∗, equa-
tion (2.3.21) admits a set of eigenfrequencies {ωn(k)}n≥1 and corresponding eigen-
modes {ũn,k}n≥1 if the following condition is satisfied:

det Zk(ω) = det
[

(∇− ik) ·C(x) · (∇− ik)− ω2ρ(x)I
]

= 0. (2.3.25)
To specify the solution class of the problem, we introduce the following Sobolev space:[

H1,] (k,Ω)
]2

= {ũk ∈
[
H1 (Ω)

]2
, ũk is R− periodic}. (2.3.26)

The graphical representation of the set of all couples (k, ω) satisfying the dispersion
relation equation (2.3.25), defines the dispersion curve. The eigenmodes ũk(x) ∈[
H1,] (k,Ω)

]2
are vectors of infinite dimension. In the case of numerical modelling such

as the finite element method, this field is approximated by a vector of finite dimension
determined by the discretization of the problem. The collection of dispersion curves
constitutes the dispersion diagram, and hence, the dispersion diagram has a finite
number of branches, unlike the continuous problem, which has an infinite number of
branches.

Polarization of waves

To complement our understanding of wave propagation, the following paragraph
delves into the specific properties and characteristics of polarization states in a 3D
framework. The field ũk describes the motion of the material during wave propa-
gation, so it is important to determine and examine the polarization state of Bloch
waves. For convenience, we will denote the polarization field as ũ and decompose it
into its real and imaginary parts:

ũ = ũR + iũC.

Let n = k/ ‖k‖ be the unit vector defining the direction of propagation, when the
vectors ũR and ũC are not collinears, they define the plane of oscillation of the wave;

15With N = +∞ in a continuous medium
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otherwise, it corresponds to the line of oscillation [Toupin, 1962]. If the line of oscil-
lation is collinear with the direction of propagation, i.e., 〈ũ,n〉 = α, where α ∈ C,
then the wave is longitudinally polarized. If the plane of oscillation is perpendicular
to the direction of propagation, the wave is transversely polarized. The wave is lin-
early polarized when ũR and ũC are collinear, which can also be determined by the
necessary and sufficient condition ũ∧ ũ∗ = 0, where ũ∗ is the conjugate of ũ. Circular
polarization occurs when ũR and ũC are perpendicular and have the same magnitude,
i.e., 〈ũ, ũ〉 = 0. Finally, if 〈ũ, ũ〉 6= 0 and ũ∧ ũ∗ = 0, the wave is said to have elliptical
polarization.

t1

t2

k

(a)

t1

t2

k

(b)

t1

t2

k

(c)

Figure 2.20: Some examples of polarizations: a) linear, b) Circular right handed, c)
Circular left handed.

Having explored the intricacies of wave propagation in periodic heterogeneous media,
we now shift our focus towards the homogenization of such media. While the study
of wave behaviour in periodic structures provides valuable insights, the analysis be-
comes increasingly complex when dealing with practical applications. To overcome
these challenges, the concept of elastodynamic effective generalized continuum arises,
offering a powerful framework for characterizing and modeling the macroscopic be-
haviour of periodic heterogeneous materials. In the next section, we will explore the
concept of generalized continua, specifically focusing on their application in the static
case. We will see how generalized continua provide a framework for extending classi-
cal elasticity to describe complex materials and structures that exhibit unconventional
behavior. We will delve into the differents models and their corresponding constitu-
tive laws that can potentially capture the overall behaviour of periodic architectured
materials.
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2.4 Effective generalized continuum : from elasto-
static to elastodynamics

2.4.1 Introduction to generalized continuum
Due to the complexity of their inner geometry and the presence of severale intermadi-
ate scales of matter’s organisation, studying the mechanical behaviour of architectured
materials can be very challenging, especially for numerical simulations. In order to
understand all the mechanisms involved and to capture the emering effects at the
macro-scale, two approaches can be envisaged:
1. performing a full-field computation of the architectured material, wherein the

inner geometry is explicitly meshed;
2. considering an equivalent homogeneous medium.

The first approach is not favored since it can be prohibitively expensive and does
not allow, at least with difficulty, to filter the different contributions and to analyse
the overall properties in a rigorous manner. The second approach consists in subti-
tuting the original heterogeneous continuum with a homogeneous one having, under
certain assumptions, an equivalent behaviour. Such equivalent continuum will be
denoted Equivalent Homogeneous Medium (EHM), in which the level of the equiv-
alence to consider will depend mainly on the domain of application (i.e. statics or
dynamics) and on the range of parameters considered. Moreover, this approach pro-
vides very interesting results such as for design optimization or properties optimiza-
tion while allowing a considerable reduction of the numerical cost. In the context
of linear elasticity, classical homogenization have always considered as an efficient
strategy and got many successes to describe the effective behaviour of heterogeneous
media with strong scale separation [Bornert et al., 2001, Yvonnet, 2019]. Neverthe-
less, when the scale separation is weak, this approach being based on a Cauchy-type
EHM may fail to describe correctly the effective behaviour, since classical elasticity
is not rich enough to capture some specific mesostructural effects emerging at the
macroscale [Allaire and Yamada, 2018, Poncelet et al., 2018, Rosi and Auffray, 2016,
Rosi and Auffray, 2019, Rosi et al., 2020]. Therefore, the overall continuum model
needs to be enriched, which gives rise to a Generalised Continuum. A generalised con-
tinuum can be seen as an extension of the classical continuum mechanics, where the
nature of enrichements depend mainly on the physical phenomena to describe. There
are several ways to enrich classical continuum mechanics, one can classify general-
ized continuum into two main families [Toupin, 1962, Mindlin, 1964, Mindlin, 1965,
Eringen, 1968, Mindlin and Eshel, 1968]:

– High-order continua, obtained by the introduction of additional Degrees Of Free-
dom (DOF) that are independent of those of Cauchy continua. One the example
of this family of models is the Cosserat continuum [Cosserat and Cosserat, 1909]
in which, in addition to the classical three translational DOF, the local rota-
tion of the microstructure is considered as a new DOF. This model is a spe-
cial case of the micromorphic elasticity [Green and Rivlin, 1964, Mindlin, 1964,
Germain, 1973], where other modes of microstructure deformation are taken
into account (kinematics are more rich). These models are necessary to model
optical branches and are particularly useful in the study of band-gaps.

– High-grade continua in which, the displacement field remains the only degree of
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freedom, but the energy density is modified to include higher-order gradients of
the displacement field. Examples of this type of model include Mindlin’s first
strain-gradient elasticity (SGE) [Mindlin, 1964, Mindlin and Eshel, 1968] and
second strain-gradient elasticity [Mindlin, 1965]. In these models, the effects
of small-scale variations in the displacement field are captured by introducing
additional terms in the energy density that depend on higher-order gradients of
the displacement field. These models can be used to describe the behaviour of
materials with microstructural effect that are not captured by classical elastic-
ity, such as dispersion, directivity and high order anisotropy.

Figure 2.21 illustrates the situation where four different types of generalized continua
are taken into consideration. Among them, two types involve extended degrees of
freedom, which are Cosserat16 and Micromorphic, while the other two, Koiter17 and
Strain-Gradient, comprise higher gradients of the displacement field. By imposing a
kinematic constraint γ, the Koiter model is derived from the Cosserat model, which is
similar to how the Euler-Bernoulli beam model is obtained from the Timoshenko beam
model. The same principle applies to the Strain-Gradient model, which is obtained
from the Micromorphic model.

Classical continua

Cosserat

Koiter

Micromorphic

Strain-Gradient

Rotations: Rotations + Stretch:

Hi
gh
er-
or
de
r

Higher-grade

γ γ

Figure 2.21: Basic extensions of a classical continuum. From the left to the right, Ro-
tation then Rotation+Stretch are added to the kinematics. For higher-order continua
these stretches are independent DOF, for higher-grade continua they are controlled
by higher-order gradients of the displacement field.

The selection of a suitable generalized continuum remains potentially an open ques-
tion, and involves two main considerations. First, what is the least possible kinematic
extension required to capture the predominant mechanism of deformation that affects
the overall behaviour, given scale separation ratio ? Second, should this extended
kinematic be treated as a separate degree of freedom, as in the micromorphic ap-
proach, or should it follows the macroscopic transformation, as in the strain-gradient
approach ?

2.4.2 Micromorphic elasticity
The micromorphic approach, in addition to the displacement field, extends the degrees
of freedom by incorporating a non-symmetric second-order tensorX that characterizes
the micro-deformation of the material. In this model, we have the following DOF and
their associated Primary State Variables (PSV) :

16The Cosserat continuum is sometimes also called a micropolar continuum (cf. Eringen) or a
couple- stress continuum (cf. Toupin and Mindlin).

17The Koiter continuum is sometimes also called a constrained couple-stress continuum.
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DOF := {u,X} ∈ R2 ×⊗2R2, PSV = {u,u⊗∇,X,X⊗∇}.

The following strain and stress measures are used:

Primary state tensors - Strain measures Dual state tensors - Stress measures
ε ∈ S2(R2) classical strain tensor σ ∈ S2(R2) Cauchy stress tensor

e ∈ ⊗2R2 := u⊗∇−X relative strain s ∈ ⊗2R2 relative stress tensor
κ ∈ ⊗3R2 := X⊗∇ micro-strain gradient tensor τ ∈ ⊗3R2 hyperstress tensor

Table 2.12: Strain and stress measures of micromorphic elasticity [Forest, 2006,
Eringen, 2001].

Assuming a linear mapping between the primary and dual state tensors, we obtain
the following linear constitutive law :

σ = C : ε+ B : e + M ∴ κ
s = BT : ε+ D : e + E ∴ κ
τ = MT : ε+ ET : e + A ∴ κ

(2.4.1)

in which the following tensors are involved:

– 3 fourth-order tensors : C ∈ S2(S2(R2)), B ∈ S2(R2)×⊗2R2 and D ∈ S2(⊗2R2);
– 2 fifth-order tensors : M ∈ S2(R2)×⊗3R2 and E ∈ ⊗5R2;
– 1 sixth-order tensor : A ∈ S2(⊗3R2).

The kinematic enrichment of a micromorphic continuum is generally composed of
three independent elements, denoted by XD, XA, and XS, which together constitute
the micro-deformation tensor X in the space ⊗2R2, such as

X := XD + XA + XS.

More formally, we have the following expression:

X = XD + θε+ 1
2αI,

wherin :
– XD ∈ H(2,2) a deviatoric tensor;
– XA ∈ H(2,−1) the Cosserat rotation or micro-rotation tensor;
– XS ∈ H(2,0) the micro-dilatation tensor;
– θ ∈ K−1 the micro-rotation pseudo scalar;
– α ∈ K0 the micro-dilataion scalar;

with H(n,k) is a subspace of Tn isomorphic to Kk, it is the embedding space for the
elements belonging to Kk. Depending on the partial enrichment, intermediate higher-
order models are obtained [Forest and Sievert, 2006] as reported in table 2.13.
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Case DOF
Model X ]

Cauchy ∅ 2
Microdilatation18 α 3

Cosserat θ 3
Microstretch (θ, α) 4

Incompressible Microstrain XD 4
Microstrain (XD, α) 5

Incrompressible Micromorphic (XD, θ) 5
Micromorphic (XD, θ, α) 6

Table 2.13: Type of enrichment and intermediate higher-order models are obtained

For a more comprehensive understanding of the enrichment in the 3D framework,
interested readers can refer to [Forest, 2006, Auffray, 2017, Somera, 2022], where the
constitutive laws are provided for each model. In what follows, we will focus on the
Cosserat model and strain-gradient model, as they are the most commonly used and
have been extensively studied in the literature.

2.4.3 Cosserat elasticity in 2D 19

A Cosserat continuum [Cosserat and Cosserat, 1909], also known as a micropolar con-
tinuum20 [Nowacki, 1972], is a material system in which the constituents are modeled
as infinitesimal rigid bodies instead of point masses. This means that the material
points have both translational and rotational degrees of freedom.

DOF and strain measures

The theory is characterized by the presence of a micro-rotation field in addition to
the displacement field such as

DOF: = {u,R(θ)} ∈ R2 × SO(2),
in which θ is the angle associated with the micro-rotation field R(θ). Under the
hypothesis where the translations and microrotations are point-wisely infinitesimally
small, the infinitesimal rotation can be expressed as

R ' I + w,

with w ∈ so(2). In the classical formulation of Cosserat elasticity, the second-order
skew symmetric tensor is usually substituted with the pseudo-scalar θ:

w = −θε , θ = −1
2ε : w.

19This section has been extracted from a previously published article [Auffray et al., 2023] with the
consent and agreement of the other authors, and has been meticulously adapted to suit the context of
this manuscript.

20Also called a micropolar or couple-stress continuum [Eremeyev et al., 2013]
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The Cosserat elasticity is a first-gradient theory, as such the linearized degrees of
freedom (DOF) and the set of the associated PSV are

DOF := {u,w} ∈ Rd × so(2), PSV = {u,u⊗∇, θ, θ ⊗∇}.

There are two different sets of strain measures available in the literature [ref]. The
first set is known as the Classical formulation, which was introduced, for instance, in
[Forest, 2005, Eringen, 2012], and is defined by the following measures:

e = u⊗∇− θε, κ = θ ⊗∇, (e,κ) ∈ ⊗2R2 × R2

The second is the Micromorphic formulation which involves the classical strain and
spin tensors ε and ω, respectively. The strain measures used in this formulation are:

ε, η = ω − θε, κ = θ ⊗∇, (ε,η,κ) ∈ S3(R2)× so(2)× R2.

This last partition follows the one classically used in the micromorphic approach of
the elasticity [Mindlin, 1964], from which Cosserat is a special case. This choice em-
phasizes that the kinematic constraint η = 021 results in the Cosserat model becoming
the Koiter one, also known as constrained couple-stress, which is a special case of a
strain-gradient continuum. In the following discussion, only the first formulation will
be taken into consideration.

Constitutive law

By duality we define the stress tensors: s the asymmetric stress tensor, and m the
couple-stress tensor. Consequently, (s,m) ∈ ⊗2R2 × R2, and the linear constitutive
law between the primary and dual state tensors is expressed as:s = A : e + M · κ

m = MT : e + d · κ
(2.4.2)

in which the involved constitutive tensors belong to the following vector spaces
A ∈ Cos := {T ∈ S2(⊗2R2) |Tijkl}

M ∈ Cou := {T ∈ ⊗3R2 |Tijk}
d ∈ Rot := {T ∈ S2(R2) |T(ij)}

From their definitions, and using the isotypic decomposition, the harmonic structure
of the constitutive tensors can be obtained. These results are provided in the following
table

Constitutive tensor space Harmonic structure
Cos K4 ⊕ 2K2 ⊕ 3K0 ⊕K−1

Cou K3 ⊕ 3K1

Rot K2 ⊕K0

From these tensor spaces, one can define the complete vector space of Cosserat elas-
ticity

Cos = Cos⊕ Cou⊕ Rot (2.4.3)
21The Euler-Bernoulli beam and the Kirchhoff-Love plate are examples of models obtained by

imposing kinematic constraints on the Timoshenko beam model and, in 2D, the Reissner-Mindlin
plate model.
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Classification

Knowing the harmonic structure of the constitutive tensors, and using the clips opera-
tors defined in [Auffray et al., 2017], the symmetry classes of each constitutive tensor
space can be obtained

Theorem 4.1: Symmetry classes of 2D Cosserat elasticity [Auffray et al., 2023]

As for Ela, the spaces Cos, Cou and Rot are respectively partitioned into 6, 4
and 2 symmetry classes:

I (Cos) = {[Z2] , [D2] , [Z4] , [D4] , [SO(2)] , [O(2)]}.
I (Cou) = {[1] , [Zπ2 ] , [D3] , [O(2)]}.
I (Rot) = {[D2] , [O(2)]}.

(2.4.4)

Hence, the space Cos is partitioned into 10 symmetry classes

I (Cos) = {[1] , [Zπ2 ] , [Z2] , [D2] , [Z3] , [D3] , [Z4] , [D4] , [SO(2)] , [O(2)]}

The global form of the constitutive law can be detailed for each symmetry class, the
constitutive laws have the following synthetic form22

L1 =
(
AZ2 Kx

KT
x

Hx

)
; LZπ2 =

(
AD2 KZπ2
KT

Zπ2
HD2

)

LZ2 =
(
AZ2 0
0 HD2

)
; LD2 =

(
AD2 0
0T HD2

)

LZ3 =
(
ASO(2) KD3

KT
D3 HO(2)

)
; LD3 =

(
AO(2) KD3

KT
D3 HO(2)

)

LZ4 =
(
AD4 0
0 HO(2)

)
; LD4 =

(
AD4 0
0T HO(2)

)

LSO(2) =
(
ASO(2) 0
0 HO(2)

)
; LO(2) =

(
AO(2) 0
0 HO(2)

)

(2.4.5)

Using trace formula [Auffray et al., 2017], the following table, which gives the number
of independent constitutive coefficients for each symmetry class, can be constructed:

[GC ] [1] [Zπ2 ] [Z2] [D2] [Z3] [D3] [Z4] [D4] [SO(2)] [O(2)]
#indep (d) (2) (2) 2 (2) (1) (1) (1) (1) (1) 1

#indep (M) 8 4 (0) (0) (1) (0) (0) (0) (0) 0
#indep (A) (10) (10) 10 6 (4) (3) 6 4 4 3
#indep (C) 20 16 12 8 6 5 7 5 5 4

In the table above, when the symmetry class of a constitutive tensor coincides with
that of C, the dimension is noted in bold. On the contrary, when the symmetry
classes differ, the dimension is indicated in parenthesis. For instance, the class [1] is a
symmetry class for C but not for A, whose symmetry class is [Zπ2 ], as such the number
of parameters is indicated in parenthesis.

22For practical applications, the matrix forms of the different constitutive tensors are detailed,
symmetry class by symmetry class, in [Auffray et al., 2023].
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2.4.4 Strain-gradient elasticity in 2D
The strain-gradient continuum is a class of continua that considers the second displace-
ment gradient as a strain measure in the energy formulation, having an energetic price.
Unlike micromorphic elasticity, it is a high-grade continuum representation that does
not introduce any additional degrees of freedom. The incorporation of higher-order
terms in energy density enables a more precise characterization of the deformation
and stress fields in these materials. As a result, the strain-gradient continuum can
provide a better understanding of the mechanical behavior behavior behaviour of ma-
terials with small length scales and/or high gradients in strain. In what follows, we
will provide a brief description Mindlin strain-gradient elasticity (SGE) theory.

DOF and strain measures

The strain-gradient theory of linear elasticity, first introduced in [Mindlin, 1964] and
later developed in [Mindlin and Eshel, 1968], considers only the displacement field
u as the degree of freedom. As previously mentioned, the strain-gradient model is
derived from the micromorphic model by imposing a kinematic constraint that sets
the relative strain field to zero, such as

e = u⊗∇−X = 0 =⇒ X = u⊗∇,

The microstrain becomes the displacement gradient and the previous strain and stress
measures become 23

Primary state tensors - Strain measures Dual state tensors - Stress measures
ε ∈ S2(R2) classical strain tensor σ ∈ S2(R2) Cauchy stress tensor

κ ∈ S2(R2)× R2 := u⊗2 ∇ second gradient of u τ ∈ S2(R2)× R2 hyperstress tensor

Table 2.14: Strain and stress measures of Strain-gradient elasticity [Forest, 2006].

Infinitesimal strain-gradient elasticity can be formulated in three equivalent ways, as
described in [Mindlin, 1964, Mindlin and Eshel, 1968]. These formulations are as fol-
lows:

• Type I formulation: The strain measure is the second gradient of the displace-
ment field, given by κ = u⊗2 ∇;

• Type II formulation: The strain measure is the gradient of the strain field, given
by η = ε⊗∇;
• Type III formulation: The strain measure is divided into two tensors of order

three: a tensor field of completely symmetric, and the gradient of rotation given
by ω = ε : (u⊗∇).

In the following, we will focus on the constitutive law expressed in terms of type II
formulation .

23As said earlier, the same construction leads to the Euler-Bernoulli beam model from the Tim-
oshenko beam model.
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Constitutive law

Assuming a linear mapping between the primary and dual state tensors, we obtain
the following linear constitutive law :σ = C : ε+ M ∴ η

τ = MT : e + A ∴ η
(2.4.6)

in which the involved constitutive tensors belong to the following vector spaces :

C ∈ Ela4 :={T ∈ S2(S2(R2))|T(ij)(kl)},
M ∈ Ela5 :={T ∈ S2(S2(R2))⊗ R2|T(ij)(kl)m},
A ∈ Ela6 :={T ∈ S2(S2(R2)⊗ R2)|T(ij)k (lm)n}.

From their definitions, and using the isotypic decomposition, the harmonic structure
of the constitutive tensors can be obtained [Auffray et al., 2021]. These results are
provided in the following table

Constitutive tensor space Harmonic structure
Ela4 K4 ⊕K2 ⊕ 2K0

Ela5 K5 ⊕ 3K3 ⊕ 5K1

Ela6 K6 ⊕ 2K4 ⊕ 5K2 ⊕ 4K0 ⊕K−1

From these space tensors, one can define the complete vector space of Strain-gradient
elasticity law:

SGE = Ela4 ⊕ Ela5 ⊕ Ela6 (2.4.7)

Classification

Theorem 4.2: Symmetry classes of 2D Strain-gradient elasticity

As for Cosserat elasticity, the spaces Ela4, Ela5 and Ela6 are respectively parti-
tioned into 4, 7 and 8 symmetry classes [Auffray et al., 2015]

I (Ela4) = {[Z2] , [D2] , [D4] , [O(2)]}
I (Ela5) = {[1] , [Zπ2 ] , [Z3] , [D3] , [Z5] , [D5] , [O(2)]}.
I (Ela6) = {[Z2] , [D2] , [Z4] , [D4] , [Z6] , [D6] , [SO(2)] , [O(2)]}.

(2.4.8)

Hence, the space SGE is partitioned into 14 symmetry classes

I (SGE) =
{

[1] , [Z2] , [Zπ2 ] , [D2] , [Z3] , [D3] , [Z4] , [D4] ,
[Z5] , [D5] , [Z6] , [D6] , [SO(2)] , [O(2)]

}
(2.4.9)

The results presented in the above theorem can also be achieved by utilizing the
clips operators and the harmonic structure of the constitutive tensors, as estab-
lished and demonstrated later in [Auffray et al., 2021]. The global form of the con-
stitutive law can be detailed for each symmetry class, the constitutive laws have
the following synthetic form footnoteFor practical applications, the matrix forms of
the different constitutive tensors are detailed, symmetry class by symmetry class, in
[Auffray et al., 2015].
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L1 =
(
CZ2 M1

MT
1 AZ2

)
; LZπ2 =

(
CZ2 MZπ2
MT

Zπ2
AZ2

)

LZ2 =
(
CZ2 0
0 AD2

)
; LD2 =

(
CD2 0
0 AD2

)

LZ3 =
(
CO(2) MZ3

MT
Z3 AZ6

)
; LD3 =

(
CO(2) MD3

MT
D3 AD6

)

LZ4 =
(
CZ4 0
0 AZ4

)
; LD4 =

(
CD4 0
0T AD4

)

LZ5 =
(
CO(2) MZ5

MT
Z5 ASO(2)

)
; LD5 =

(
CO(2) MD5

MT
D5 AO(2)

)

LZ6 =
(
CO(2) 0
0 AZ6

)
; LD6 =

(
CO(2) 0
0 AD6

)

LSO(2) =
(
CO(2) 0
0 AO(2)

)
; LO(2) =

(
CO(2) 0
0 ASO(2)

)

(2.4.10)

In what follows, we will delve into a concise comparative analysis between the Cosserat
model and Strain-gradient model, two notable extensions of classical elasticity.

2.4.4.1 Cosserat elasticity vs Strain-gradient elasticity

While both models introduced in this section aim to capture non-standard effects be-
yond traditional assumptions, they approach the overall behaviour of the medium from
distinct perspectives. The Cosserat model incorporates internal degrees of freedom,
accounting for microrotations and capturing intricate microstructural effects, par-
ticularly torsional deformations. It is widely used for static modeling of the effective
properties of cellular, porous, and architectured materials under weak scale separation
[Lakes and Benedict, 1982, Spadoni and Ruzzene, 2012, Liu et al., 2012, Addessi et al., 2013,
Bacigalupo and Gambarotta, 2014a, Giorgio et al., 2022, Lemkalli et al., 2023]. In
the other hand, strain-gradient elasticity focuses on the energetic contribution of
higher gradients of the displacement field and their influence on the overall behaviour,
addressing size effects and heterogeneity induced by the mesostructure. Modeling the
overall static behaviour of periodic architectured materials using The Strain-Gradient
model is relatively more recent [Trinh et al., 2012, Bacigalupo and Gambarotta, 2014a,
Réthoré et al., 2015, Placidi et al., 2017, Khakalo et al., 2018, Abdoul-Anziz and Seppecher, 2018,
Yvonnet et al., 2020, Durand et al., 2022].

The problem addressed here is to consider the constitutive material of the architec-
tured medium as Cauchy-type continuum, but what generalized continuum to choose
as an equivalent homogeneous medium? The choice of the minimal kinematic ex-
tension for modeling the effective properties periodic architectured materials can be
approached through local kinematics or anisotropic behavior. Local kinematics can be
directly observed through numerical or experiments, while anisotropic behavior can be
indirectly observed through the kinematics induced by the mesostructure. Once the
appropriate kinematic extension is identified, it is essential to determine whether it
represents an independent DOF or not. This distinction becomes particularly evident
in elastodynamics, where rotational modes of vibration occur in the optical branches
or a strong dispersion in the acoustic branches, for instance. The Cosserat model
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and the Strain-Gradient model offer distinct approaches to static modeling of 2D pe-
riodic architectured materials. These models differ in their theoretical foundations
and modeling methodologies. The choice between the Cosserat and Strain-Gradient
models relies on various factors, including the specific characteristics and behavior of
the architectured material under analysis. Examples of such factors may include the
need to capture microstructural effects such or size-dependent phenomena in different
scenarios. Both models are able to describe chirality and non-centrosymmetry which
is absent from Cauchy elasticity, but this description involves fewer coefficients using
the Cosserat model rather than the full Strain-gradient model. Another option would
be to consider the constrained couple stress model which is a sub-model of the strain
gradient elasticity corresponding to a constrained Cosserat model. This model is ex-
pected to be the least expensive to take into account the sensitivity to chirality and
non centro-symmetry. Another noteworthy observation is that the Cosserat model
provides a good approximation of the acoustic and optical branches in both LW-LF
and SW-LF regimes. However, due to its maximal anisotropy class being tetragonal,
this model cannot capture hexagonal and hexachiral anisotropy which can be cor-
rectly described by a SGE model. On the other hand, the latter is unable to describe
optical branches, and hence not suitable for modeling rotational vibration modes as
it does not incorporate the corresponding kinematics. By examining the formula-
tions, constitutive laws, different couplings, and their classification of each model,
valuable insights and crucial information can be provided regarding their similarities,
differences, and their accuracy. A concise comparison is presented in section 2.4.4.1,
facilitates a better understanding of their strengths and limitations, and assists in
selecting the appropriate equivalent homogeneous medium based on the phenomena
of interest.

Model Cosserat Strain-gradient
# of DOF Additional DOF Kept the same

Nature of coupling Translation-rotation Strain-gradient
# Symmetry classes 10 14
Maximal anisotropy Tetragonal D4 Hexagonal D6
Maximal coupling Trigonal D3 Pentagonal D5

# material parameters Recuced Huge amount
Non centrosymmetry Sensitive Sensitive

Chirality Sensitive Sensitive

Table 2.15: Comparison of key characteristics between the Cosserat model and the
Strain-gradient model

However, the practical challenge lies in determining the coefficients of the selected
constitutive law, using information about the microstructure and constitutive materi-
als, i.e. find an equivalent homogeneous medium that will have the same macroscopic
behaviour as the actual material within a specific range of parameters. While the
determination of coefficients for the constitutive law in classical elasticity is a well-
established procedure [ref homogenization], its extension to the generalized continuum
is still an open question. In general, there are three approaches that can be used to
tackle this problem: mathematical, numerical, and experimental. As this work fo-
cuses on the numerical and mathematical modelling of periodic media, it seems that
this type of problem has already been studied through asymptotic homogenization
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in statics for the Cosserat-type medium in [Forest et al., 2001] as well as for high-
order elasticity in [Gambin and Kröner, 1989, Boutin, 1996], while elastodynamics
has been explored in [Boutin and Auriault, 1993]. Nevertheless, there is a notable
lack of studies addressing the identification of the effective strain-gradient medium
in elastodynamics, whether it is through phenomenological models or derived from
asymptotic homogenization [Bacigalupo and Gambarotta, 2014b, Nassar, 2015].

2.4.4.2 Towards elastodynamics : Remarks on the role of micro-inertia

Taking into account the inertial contribution in Cosserat continua allows for the mod-
eling of materials with complex microstructures or micro-rotations, where the internal
degrees of freedom contribute to the overall inertia of the system. These additional
terms offers an accurate prediction of the elastodynamic behavior where the coupling
between translations and rotations is taken into account. By taking into account the
inertial contribution in the Cosserat model, it is naturally able to describe the cou-
pling between microrotations and translations and offers an accurate prediction of the
elastodynamic overall behavior of architectured materials. In particular, the Cosserat
model captures rotational modes of vibrations that occur in the optical branches,
which cannot be captured by Classical or strain-gradient elasticity.

In Strain-gradient elasticity, the focus is primarily on capturing the influence of stiff-
ness (strain gradients) on medium behavior, while micro-inertia effects are not explic-
itly considered in the formulation [Mindlin, 1965]. Instead, the emphasis is placed on
incorporating higher-order gradients of displacement or deformation to account for
size effects and material heterogeneity.

Model Cosserat Strain-gradient
Micro-inertia contribution Yes No or often isotropic

Dispersion Less sensitive (?) Sensitive
Acoustic branches Accurate approximation Accurate approximation
Optical branches Accurate approximation Cannot capture it

LW-LF Accurate approximation Accurate approximation
SW-LF Accurate approximation Accurate approximation
LW-HF Accurate approximation Cannot capture it

The omission of micro-inertia in the Strain-gradient model is based on the assumption
that its contribution is either negligible or often treated as isotropic. [Askes and Aifantis, 2011]
highlights the influence of the micro-inertia on the elastodynamic behaviour in the 1D
framework, while considering an isotropic contribution. It has shown that the phase
velocities depend not only on the high-order stiffness terms but also on micro-inertia
terms which provides a good approximation of the behaviour, espacially in the SW-LF
regime. Some investigations of a frequency dependent behaviour in hexagonal archi-
tectured materials have been made and showed the emergence of anisotropic inertial
effects, where Higher-order stiffnesses have been supplemented by higher-order inertia
tensor in a strain-gradient model [Rosi and Auffray, 2019, Rosi et al., 2018].

The unanswered questions today concern the consideration of micro-inertia in the
strain-gradient model. Should micro-inertia be taken into account in this model?
And what is the contribution of these terms? In the case of a spatial distribution of
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anisotropic mass (anisotropic inertial network), how can these effects be incorporated
into the second-gradient model? If the asymptotic homogenization in elastodynamic
allows us to construct higher-order elasticity and inertia tensors capable of accounting
for microstructure and size effects, how can these tensors be adapted to complement
the constitutive law of the strain-gradient model, taking into account all the involved
symmetries?

2.5 Synthesis
In this chapter, a comprehensive set of theoretical elements to model the behavior
of periodic architectured materials from mathematical and physical perspectives have
been presented. These elements encompass various aspects, including geometry and
behavior, providing a complete toolbox for studying the elastodynamic response of
these materials. A key topic introduced in section 2.2 is the wallpaper-group theory,
which is of great interest in designing and parameterizing geometries. By leveraging
this theory, it becomes possible to create materials with predetermined properties,
such as anisotropic propagation or the presence of bandgaps. To analyze and verify
these properties, we delve into mathematical concepts defined in section 2.2 and em-
ploy Floquet-Bloch analysis in section 2.2.Moreover, section 2.2 offers a brief overview
of generalized continua, discussing the two most commonly used models in the litera-
ture for characterizing the behavior of architectured materials within the framework
of homogenization.

With the theoretical framework now well-defined, we can proceed to study specific
families of architectured materials with diverse geometric parameterizations that hold
the potential to generate non-standard elastodynamic effects. Our focus will be on
analyzing the behavior and investigating these effects in depth.

In the upcoming chapter, we will explore the elastodynamic behavior of reference
architectured materials by analyzing their signatures through Floquet-Bloch analy-
sis. This phenomenological study aims to select the necessary enrichment from an
identification and homogenization perspective. Additionally, we will investigate the
influence of inertia on the dynamic behavior to settle the question of whether it needs
to be considered or not, and whether it will be isotropic or anisotropic. By adopting
this strategy, we can effectively address the numerous questions posed throughout this
chapter while advancing our understanding of architectured materials’ elastodynamic
behavior.
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Chapter 3

From periodic lattices to overall
homogeneous continuum
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3.1 Introduction
Architectured materials have gained significant attention in recent years due to their
unique properties and potential for various applications. Their properties are de-
termined by their geometrical arrangement, which can be parameterized by certain
characteristic parameters. The geometry of these materials can be designed to produce
specific properties and non-standard behaviours that are not present in conventional
materials. Among the different types of lattices in 2D, the tetragonal lattice is one of
the simplest and most commonly studied. It is characterized by a periodic array of
square cells, each of which contains a central core connected to four ligaments arranged
at right angles. The tetrachiral lattice is a type of tetragonal lattice that contains
additional ligaments connecting the corners of each square cell, resulting in a more
complex microstructure. This lattice type can exhibit non-standard properties such
as negative Poisson’s ratio and auxeticity. Another commonly studied lattice type is
the hexagonal lattice, which consists of a periodic array of hexagonal cells, each con-
taining a central core connected to six ligaments arranged at 120-degree angles. This
lattice type can exhibit properties such as negative thermal expansion and negative
stiffness. The hexachiral lattice is a type of hexagonal lattice that contains additional
ligaments connecting the corners of each hexagonal cell, resulting in a more complex
microstructure. This lattice type can exhibit non-standard properties such as extreme
auxeticity and negative compressibility and anisotropic dynamic behaviour. By ma-
nipulating the geometry of the microstructure, it is possible to create materials with

73
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unprecedented properties, such as extreme stiffness or flexibility, negative Poisson’s
ratio, negative thermal expansion, and many others.

3.2 Explicit parameterisation of a family of lattices
In this section, we will examine the geometrical parameterization of these materials
in greater detail, investigating various types of lattices and their distinctive charac-
teristics. The choice of geometries will be based on the symmetries of the lattice and
the elementary cell, i.e. from the point groups and space groups. Therefore, we will
select patterns with specific symmetries that are likely to bring about non-standard
effects.

Hexagonal lattice D6

Hexagonal honeycombs have been extensively studied for their mechanical proper-
ties and dynamic behavior. Gibson and Ashby [Ashby and Gibson, 1997] conducted
in-depth investigations on the mechanical properties of cellular materials, with a
particular focus on hexagonal honeycombs. Their work provided initial analyti-
cal expressions for the in-plane elastic moduli of these structures. Gonella and
Ruzzene [Gonella and Ruzzene, 2008] explored wave propagation and dynamic be-
havior within these honeycombs. Additionally, Zou [Zou et al., 2009] investigated the
dynamic response of hexagonal honeycombs under impact loading, studying their
energy absorption capabilities. More recently, Rosi et al. [Rosi and Auffray, 2016,
Rosi and Auffray, 2019] investigated anisotropic dispersive wave propagation within
hexagonal lattices, proposing a continuous modeling approach based on generalized
continua within the framework of homogenization. The hexagonal honeycomb lattices
are characterized by a hexagonal unit cell, composed of six identical beams arranged
in a hexagonal pattern. This lattice is invariant under a 6-fold rotational symmetry.
Its geometry parameters include the length R and thickness t of the beams, which is
related to the size of the unit cell a such as

L = a√
3
, t = L

(
1−
√

1− ρs
)
,

wherein, ρs is the relative density (i.e., area fraction) of the hexagonal cell. The
commonly used geometry is illustrated in 3.1

X

Y

Z

Figure 3.1: Example of hexagonal elementary cell

The hexagonal honeycomb lattice belongs to the hexagonal crystal system, character-
ized by a space group of p6mm and a point group D6, which gives rise to six mirror
lines in the lattice. This lattice can be generated by translating the unit cell (high-
lighted in yellow in figure 3.2) using the elementary vectors of the hexagonal Bravais
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lattice. Notably, the choice of these vectors is not unique, leading to the consideration
of at least two equivalent patterns, as depicted in figure 3.2.

X

Y

Z

v1

v2

v1 v2

a

2t

2R

Figure 3.2: Hexagonal tiling

Hexachiral lattice Z6

The chirality effect in chiral honeycombs was initially reported by Wojciechowski in
[Wojciechowski, 1989]. Chiral elasticity encompasses the coupling between local rota-
tion, bending, and bulk deformation. [Prall and Lakes, 1997] conducted experimental
and numerical studies on hexachiral lattices, confirming their in-plane negative Pois-
son’s ratio. They demonstrated the occurrence of a negative Poisson’s ratio within the
range of −1 < ν < 0. Alderson calculated the mechanical properties of various types
of chiral lattices, where deformation mechanisms involve core rotation and ligament
bending [Alderson et al., 2010, Liu et al., 2012]. Spadoni investigated wave propaga-
tion in periodic hexachiral lattices using Floquet-Bloch analysis to predict band-gap
properties and their dependence on cell topology [Spadoni et al., 2009]. The com-
monly used geometry is illustrated in Figure 3.3

X

Y

Z

Figure 3.3: Hexachiral elementary cell

This unit cell can be described as circular nodes (cores or rings) of radius r con-
nected tangentially to the ligaments of length L, having the same wall thickness t
[Dirrenberger, 2012]. The distance between core centers is denoted R and the angle β
is defined as the angle between the imaginary line connecting the centers of the cores
and the ligaments. We define three dimensionless geometrical parameters : β, α and
γ.

sin(β) = 2r
R
, tan(β) = 2r

L
, cos(β) = L

R
, θ = π

6 ;
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α = L

r
, γ = t

r
,
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Y

Z

×

×
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L

θ

t

β

Figure 3.4: Hexachiral unit cell parameters

The unit cell possess six ligaments which makes the microstructure invariant by a rota-
tion of order 6, which provides isotropic behaviour in classical elasicity [Dirrenberger, 2012].
The hexachiral lattice can be generated by transformation of a unit cell (yellow or
blue area in figure 3.5) under a set of linear independent translations associated with
the hexagonal Bravais lattice. The translations can be generated by the elementary
vectors v1 and v2. The choice of these vectors is not unique. Due to the lack of mirror
lines and the centrosymmetric character of the pattern, the point group of this lattice
is Z6 , and its corresponding wallpaper group is p6.

X

Y

Z

a

v1

v2

v1 v2

Figure 3.5: Hexachiral tiling

When the thickness of the ligaments is equal to that of the cores, it can be shown that
the hexachiral cell depends only the two geometrical parameters α and γ. The first
parameter controls the slenderness of the ligaments, while the second parameter influ-
ences the material density. By denoting a the length of the unit cell, the parameters
R is fixed, we have then the following relationships

R = a, β = arctan(2α−1), r = R

2 sin(β), L = Rcos(β), t = γr.
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(a) α −→ 0
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(b) α = 3

X

Y

Z

(c) α = 5
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Z

(d) α −→∞

Figure 3.6: Configurations corresponding to differents values of α for γ = 0.2.

The ratio α = r/L gives rise to significantly different configurations, as shown in
Figure 3.6. It is expected that the behavior of the hexachiral architectured material
is highly dependent on this geometrical parameter.

Tetragonal lattice D4

Tetragonal lattices, also known as Square lattice, have been the subject of numer-
ous studies. A.-J. Wang and D. L. McDowell [Wang and McDowell, 2004] explored
the mechanical properties of square honeycombs, investigating their effective elastic
stiffness and initial yield strength under in-plane compression, shear, and diagonal
compression. Xiang Lee [Li et al., 2018] conducted a theoretical and experimental
study on their mechanical response under off-axial compression. Their elastodynamic
behavior, particularly in the field of phononics, has also been extensively studied.
Zhao et al. [Zhao et al., 2021] studied wave propagation and bandgaps, shedding
light on their dispersion characteristics and band structure. In a related study, Cheng
et al. [Cheng et al., 2020] explored the impact of geometry and band gap properties
through a topological design optimization approach, contributing to the optimization
of lattice structures for specific applications. Moreover, the size effect within square
honeycombs was investigated by Yang et al. [Yang and Müller, 2021], proposing an
approach to estimate the elastic moduli of the structure using asymptotic expansions
for the static case. Additionally, Rosi [Rosi et al., 2018] proposed an identification
procedure for the elastodynamic effective properties of square honeycombs, based on
a strain gradient-model and Floquet-Bloch analysis.

Tetragonal lattices are characterized by repeated square unit cells, where each cell
consists of four identical beams arranged in a square pattern. This lattice is invariant
under a 4-fold rotational symmetry. The geometrical description of the lattice involves
two parameters: the size of the unit cell a and the thickness t of the beams (walls).
The size of the unit cell, corresponds to the length of each side of the square cell.
It defines the characteristic length scale of the lattice and determines the distance
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between two nodes of the square lattice. The thickness controls the density of the
unit cell and influences the mechanical properties of the lattice, such as its stiffness.
The commonly used unit cell is shown in figure 3.7, for which thickness of the beams
can be expressed in terms of the unit cell size and relative density as follows

t = a (1−
√

1− ρs)
2 .
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Figure 3.7: Tetragonal elementary cell

The tetragonal lattice belongs to the square crystal system, with a space group of
p4mm. Its point group is D4, which gives rise to four mirror lines in the lattice.
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Figure 3.8: Tetragonal tiling

Tetrachiral lattice Z4

The tetrachiral lattice, also known as the square chiral lattice, is a model derived
from the hexachiral lattice with the same geometric parameterization. Several stud-
ies have been conducted to investigate the static behavior of this structure. In
[Grima et al., 2008, Mousanezhad et al., 2016], the mechanical properties are deter-
mined using analytical and numerical models. The coupling between normal and
shear strains through an elastic modulus in static conditions was investigatied in
[Bacigalupo and Gambarotta, 2014a] and highlighted a remarkable variability of the
Young’s modulus and Poisson’s ratio with the direction of the applied uniaxial stress.
Similarly, a homogenization approach based on a micromorphic model was proposed
in [Biswas et al., 2020] to predict these coupling mechanisms. The dynamic behavior
has also been explored in [Lepidi and Bacigalupo, 2017], where the band structure was
established through Floquet-Bloch analysis. The tetrachiral lattice is a type of square
lattice that exhibits 4-fold chiral symmetry. Similar to the hexachiral geometry, it
consists of a core with a radius of r connected tangentially to four ligaments of length
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L, which ensures that the lattice remains invariant under a rotation of order 4. The
unit cell geometry can be described using the same parameters as the hexachiral unit
cell: α, γ, θ = π/4 and R = a. Figure 3.10 provides an illustration of a tetrachiral
architectured material, where the yellow area represents the unit cell.
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Figure 3.9: Tetrachiral tiling

The tetrachiral lattice belongs to the space group p4, which is the tetragonal space
group exhibiting 4-fold rotational symmetry. Its point group is denoted as Z4. The
chiral characteristic of this geometry arises from the absence of mirror lines, leading
to its unique asymmetric properties. Just like in the hexachiral lattice, the tetragonal
lattice depends on the pre-defined geometrical parameters, which leads to multiple
configurations with different behaviors impacting wave propagation velocities as well
as band-gaps (see figure 3.10).
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Figure 3.10: Configurations corresponding to differents values of α for γ = 0.3.

Before concluding this section, we will introduce two additional geometries of architec-
tured materials. In contrast to their counterparts, these geometries exhibit a lack of
centrosymmetry and possess a 3-fold rotational symmetry, namely trichiral and trig-
onal type PAMs. Subsequently, we will define an example of each of these materials
by providing a geometric parameterization for both.
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Trichiral lattice Z3

The unit cell of trichiral lattice can be described as circular nodes of radius r and
constant thickness tc, connected tangentially to six ligaments of variable thickness tl
and length Ll. The distance between the core centers is denoted byR, which represents
also the size of the unit cell, while the angle β defines the orientation between the
imaginary line connecting the core centers and the ligaments. Remarkably, the unit
cell exhibits a 3-fold rotational invariance, resulting in two successive ligaments with
distinct shapes, which give rise to a pattern that combines non-centrosymmetry and
chirality, as illustrated in figure 3.11

Figure 3.11: Trichiral elementary cell

In order to ensure a coherent and unified approach of the geometry modeling, we adopt
the same set of dimensionless geometrical parameters utilized in the hexachiral and
tetrachiral unit cells. This choice enables a consistent and standardized parametriza-
tion of the geometry as shown in figure 3.12

R = a, β = arctan(2α−1), r = R

2 sin(β), tc = γr, Ll =
√
a2 − (2r + tc)2,

×

×

×

×
a

r
Ll

θ

tl

tc

β

Figure 3.12: Trichiral unit cell parameters

The ligaments have been modeled with a quadratic profile having variable thickness
tl, depending on the size of the unit cell and the parameter α, in order break the
symmetry with respect to the fictive line tangent to the rod, such as

tl(x) = a

2 sin(β)
(

1−
(

1− x

Ll

)2
)
, x ∈ [0, Ll]

Then, to break the 6-fold rotational invariance, each ligament is followed by its mirror
image with respect to the line that is orthogonal to it. It should be noted that this
parameterization is not unique, and other profiles can be used as long as they break
the 6-fold rotational invariance. The unit cell possesses two sets of three ligaments,
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Figure 3.13: Trichiral tiling

which make the microstructure invariant under a rotation of order 3, with zero mirror
lines.
The trichiral lattice is generated through the transformation of a unit cell (highlighted
in the yellow area in figure 3.13) by employing a set of linear independent translations
associated with the hexagonal Bravais lattice. Notably, the trichiral lattice exhibits
a non-centrosymmetric pattern and lacks mirror lines, its point group is Z3, while its
corresponding wallpaper group is identified as p3. It is worth mentioning that numer-
ous studies in the literature have utilized an inappropriate trichiral unit cell, the most
used is shown in figure 3.14b [Mousanezhad et al., 2016, Shiyin et al., 2015]. In real-
ity, as depicted in figures 3.14a and 3.14b, the commonly used unit cell indeed exhibits
a 3-fold rotational invariance; however, the tiling itself is invariant under both 3-fold
and 6-fold rotations. The proposed parameterization addresses this inconsistency by
ensuring the compatibility between the space group of the unit cell and that of the
tiling, which provide a more accurate representation of the trichiral lattice.

θ = 60◦

(a)

θ = 60◦

(b)

Figure 3.14: Rotational invariance of the trichiral tiling : a) the proposed tiling, b)
the commonly used tiling



82| 3.2. EXPLICIT PARAMETERISATION OF A FAMILY OF LATTICES

Trigonal lattice D3

The unit cell of the Trigonal lattice can be described in a similar manner to the
trichiral one, utilizing the same geometrical parameters. However, its construction
differs slightly. Here, we have chosen to use a base similar to that of the trichiral
unit cell: circular nodes with a radius of r and constant thickness tc. However, the
ligaments, with a length of Ll and variable thickness tl, are not connected tangentially
but rather orthogonal to the cores. Despite this difference, the unit cell exhibits a
3-fold rotational invariance, resulting in two successive ligaments with distinct shapes
but symmetric with respect to the mirror line passing through the core’s center. This
unique arrangement gives rise to a pattern that combines non-centrosymmetry and
achirality, as illustrated in figure 3.15.

Figure 3.15: Trichiral elementary cell

figure 3.16 provides an overview of the geometric parameters of the trigonal cell.
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Figure 3.16: Trigonal unit cell parameters

The ligaments have been modeled with a symmetrized quadratic profile with respect to
the fictive line connecting the centers of two adjacent cores, having variable thickness
tl such as

tl(x) = −a2 sin(β)
(

1− x

Ll

)2
, x ∈ [0, Ll]

Then, to break the 6-fold rotational invariance, similar to the trigonal unit cell, each
ligament is followed by its reflection with respect to its midpoint. It should be noted
that this parameterization is not unique, and other profiles can be utilized as long as
they disrupt the 6-fold rotational invariance and ensure the presence of mirror lines.
The unit cell possesses two sets of three ligaments, which make the microstructure
invariant under a rotation of order 3 and exhibit 3 mirror lines.
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Figure 3.17: Trigonal tiling

Similar to the trichiral tiling, the trigonal tiling is also generated by transforming a
unit cell, which is highlighted in the yellow area in figure 3.13, using a set of linear
independent translations associated with the hexagonal Bravais lattice. In addition,
the trigonal lattice possesses a non-centrosymmetric pattern and exhibits three mirror
lines, i.e., its point group is D3, while its corresponding wallpaper group is identified
as p3m1.

Having established a diverse family of periodic architectured materials, each char-
acterized by distinct geometric constructions and affiliations with various wallpaper
groups, our next step is to conduct a comprehensive exploration and analysis of their
behavior through Floquet-Bloch analysis. In this study, we will closely examine their
elastodynamic signatures, looking for any interesting effects that may emerge, notably
investigating whether the underlying geometric symmetries manifest in the materials’
behavior.

3.3 Determination of the elastodynamic signatures
The study of wave propagation in Periodic Architectured Materials (PAM) has gar-
nered significant interest due to their potential to exhibit exotic properties, such as
band gaps, dispersive and anisotropic propagation, and the ability to change the
direction of energy propagation, which arise from the design of the inner geometry.
Moreover, PAMs offer opportunities to enhance non-destructive characterization prop-
erties, such as materials with specific acoustic signatures when damaged.The behav-
ior of waves propagating in these materials is strongly influenced by frequency. Some
PAMs exhibit isotropic behavior at low frequencies, transitioning to anisotropic behav-
ior at high frequencies. To investigate these phenomena, dispersion curves of PAMs
are commonly obtained through comprehensive computations based on Floquet-Bloch
analysis performed on the unit cell. These dispersion curves play a crucial role in de-
signing tailored meta-materials and waveguides as they establish a link between the
geometric properties of the unit cell and the dynamic properties of the PAMs. To
understand the diverse response of such materials, it is important to analyze the be-
havior of each geometry.
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In order to determine a suitable substitution continuum for PAMs, several aspects
need to be considered. The primary objective is to observe and analyze the phenomena
that emerge during wave propagation in various regimes with the aim of identifying the
most appropriate kinematical extension of the substitution continuum. For optimal
design applications, it is crucial to establish a homogeneous overall description of the
mechanical behavior exhibited by PAMs. This allows for the derivation of analytical
expressions for quantities of interest, such as propagation constants, which can be
used in optimization processes. However, the task of selecting the appropriate overall
continuum is not straightforward. Several questions need to be addressed in this
regard. Firstly, it is important to determine the domain encompassing wavelengths
and frequencies within which the real material can be effectively substituted by an
equivalent one. Additionally, the richness of information available within this domain
needs to be evaluated to justify the use of a generalized continuum. Lastly, it is
essential to identify the specific features related to wave propagation that must be
preserved by the effective continuum. By answering these questions, the determination
of a suitable substitution continuum for PAMs can be achieved. This section is devoted
to the analysis of some common situations that have been chosen to illustrate the
elastodynamic behaviour of PAMs. Finite Element simulations will be conducted
on various geometries to provide insights into wave propagation characteristics. The
dispersion diagram, obtained through Floquet-Bloch analysis, will be computed on
the edges of the Irreducible Brillouin Zone (IBZ), capturing the essential propagation
properties of the medium.

3.3.1 Floquet-Bloch computational signature
To study plane wave propagation, the software COMSOL Multiphysics 5.4 has been
used to solve the eigenvalue problem and compute dispersion curves. The following
case studies will be analyzed :

• 2D hexachiral (Z6) lattice;
• 2D hexagonal (D6) lattice;
• 2D tetrachiral (Z4) lattice;

• 2D tetragonal (D4) lattice;
• 2D trichiral (Z3) lattice;
• 2D trigonal (D3) lattice.

Throughout our study, we have made several key assumptions. Firstly, we consider
the influence of the sample size to be negligible, assuming it to be infinitely large.
Secondly, we assume that the internal architecture of the material is well-separated
from the microscale, leading to the separation ratio assumption:

lm
Li
� 1

where Li represents the scale of the internal architecture (mesoscale), and lm denotes
the characteristic length scale associated with the constituent material of the archi-
tectured material. For example, in the case of a metal, lm could represent the average
grain size, while for a polymer, it could indicate the average length of polymer chains.
Additionally, we emphasize the importance of the ratio η = Li/λ, which indicates the
specific position of the architectured material between a bulk material and a struc-
ture. This ratio is closely related to the condition of homogenizability, which states
that the wavenumbers must be in the first Brillouin zone T ∗. In other words, the
wavelength of the loading (λ = 2π/k) must be at least twice as large as the size of the
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unit cell. The geometric parameters of the unit cell, as well as the material constants,
are listed in table 3.1. In this case study, the material is modelled as a Cauchy con-
tinuum in plane strain, using quadratic Lagrange triangular elements. The objective
is to analyze the dynamic signature of periodic architectured materials (PAMs). To
achieve this, the dispersion diagram is computed using the Floquet-Bloch theorem,
introduced in chapter 2. To do this, Floquet-Bloch periodic boundary conditions are
enforced to accurately account for the free propagation of planar waves across adja-
cent cells. The dispersion diagram is computed following the edge of the IBZ that
delimited by points of high symmetry. The wavevectors are chosen following the path
connecting these high symmetry points along the edges of the IBZ, the latter depend
on the space group type of each unit cell.

Unit cell unit cell size a walls/ligaments thickness t α γ volume fraction (%)
Hexachiral 1 mm 0.04mm 3 0.122 16.56
Hexagonal 1 mm 0.05 mm - - 16.6
Tetrachiral 1 mm 0.05mm 3 0.135 16.57
Tetragonal 1 mm 0.04 mm - - 16.57
Trichiral 1.93 mm variable 3 0.038 16.80
Trigonal 1.93 mm variable 3 0.05 32.07

Table 3.1: Geometric properties of the studied lattices

E 70 GPa Young’s modulus
ν 0.33 Poisson ratio
ρ 2700 kg/m3 mass density

Table 3.2: Material properties of the constitutive material
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Hexachiral lattice

Our exploration begins with an investigation into the elastodynamic behavior of hex-
achiral architectured material, particulary focused on the first two modes correspond-
ing to the acoustic branches. Figure 3.18 presents an illustration of the medium
associated with the geometric parameters outlined in table 3.1.
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Figure 3.18: Left-hand figure : Hexachiral Z6 lattice and its unit cell. Right-hand fig-
ure : First Brillouin zone (gray area), IBZ (brown area) and its contour (red triangle)

The contours of dispersion surfaces for the first two modes are showcased in figure 3.19
for three frequencies, illustrating the iso-frequency contours and capturing the peri-
odicity within the frequency-wavenumber spectrum accurately.
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Figure 3.19: Iso-frequency countours of the slowness surfaces

An additional layer of insight is provided by the brown region in figure 3.18, represent-
ing the irreducible Brillouin zone. This zone, encompasses the essential characteristics
of dispersion by leveraging the inherent symmetry within the first Brillouin zone. This
inclusion enables a comprehensive and precise representation of the considered dis-
persion phenomena. Iso-frequency countours of the first two slowness surfaces showed
in figure 3.20 clearly reveals the inherent hexagonal symmetry of the chiral lattice,
which exhibit six lobes and become more pronounced at higher frequencies. Addi-
tionally, the circular iso-frequency contour curves showed in the figure, corresponding
to lower frequencies and wave numbers, suggest an isotropic elasto-dynamic behavior
of the chiral lattice. This observation further emphasizes the intriguing properties of



CHAPTER 3. FROM PERIODIC LATTICES TO OVERALL HOMOGENEOUS CONTINUUM | 87

the chiral lattice, which exhibit distinct responses based on the frequency and wave
number.
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Figure 3.20: Iso-frequency countours of the first two slowness surfaces over IBZ

The elastodynamic signature of the medium is conveniently illustrated through disper-
sion diagrams, as shown in figure 3.21. These diagrams provide a visual representation
of the relationship between wave frequency and the wave vector magnitude along the
contours of the irreducible Brillouin zone. By analyzing these diagrams, one can dis-
cern the distinct behavior exhibited by each wave mode, enabling the detection of
anisotropic behavior and the presence of band gaps.
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Figure 3.21: Dispersion curves for Z6 honeycomb lattice

The dispersion diagram, reveals distinct shapes in the behavior of wave modes and
the presence of two band gaps. Notably, the dispersion curves of the first two modes
exhibit "leveling-off" effect at low frequencies, gradually becoming flat as the frequency
increases. Conversely, the third and fourth modes exhibit contrasting behavior. These
modes undergo rapid changes at high frequencies, while their surfaces appear almost
flat around the origin Γ, i.e. around ‖k‖ = 0. Consequently, one can infer that the
wave velocities of the third and fourth modes undergo notable variations within the
first Brillouin zone. These observations highlight the intricate nature of wave prop-
agation within the medium and emphasize the unique characteristics exhibited by
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different wave modes.

Point Mode 1 Mode 2 Mode 3 Mode 4

Γ

K

M

Table 3.3: First, second, third and fourth wave modes at high symmetry point Γ, K
and M of the IBZ (total displacement in mm)

The eigenmodes for each dispersion curve at the points Γ, K, and M are presented
in table 3.3. The table has three rows, corresponding to the three points of high
symmetry, and four columns, representing the first four modes in ascending order.
Let’s focus on the four eigenmodes presented in the first column. At the point Γ, the
unit cell exhibits rigid-body translation for the first two modes, while the third and
fourth modes exhibit micro-rotation. Moving along the first branch, corresponding to
transverse waves, the behavior becomes more complex as the wavenumber increases.
The transverse nature of the eigenwaves is clearly evident from the cell deformation
at point K. The second column of the table presents the second branch of the dis-
persion curve, which consists of a longitudinal wave. Similarly, for this mode, as the
wavenumber increases, the mode exhibits a complex deformation.

In order to further advance the study, it is important to analyze the nature of ve-
locities and their dependence on frequency and direction. Phase and group velocities
provide valuable information about the behavior, particularly regarding the presence
of anisotropy within a given frequency range. This suggests the existence of preferred
directions for propagation and energy transmission, and consequently, indicates the
dispersive nature of the medium. The energy flow associated with the propagation of
wave packets within the PAM are provided by the group velocity, which define the
direction of the energy flow and allows the identification of preferred or prohibited
directions of propagation [spadoni]. We recall, for convenience, the expression of the
phase velocity and define the group velocity as follows :

vϕ = ω

k
, vg = ∂vϕ

∂n
= ω ⊗∇k.

The polar plot of the phase velocities are shown in figure 3.22. The phase velocity
plots for the lowest frequency exhibit circular shapes, indicating an isotropic behavior,
while at higher frequencies, The phase velocity plots for the lowest frequency exhibit
circular shapes, indicating an isotropic behavior, while at higher frequencies, they
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reveal the anisotropy of the lattice. Notably, as the frequency increases, the phase
velocity decreases. This behavior aligns with the dispersion branches depicted in
figure 3.21, where the slopes decrease as the wave vector approaches the edges of the
first Brillouin zone.
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Figure 3.22: Phase velocities of the Hexachiral PAM

The polar plots of the group velocities are presented in section 3.3.1. As expected,
for the first two modes at low frequencies, the group velocities closely resemble the
corresponding phase velocities, indicating a non-dispersive and isotropic behavior that
holds for long wavelengths. However, as the frequency increases, a breaking of symme-
try occurs and the group velocities reveal a complex shapes, one can easily distinguish
a hexagonal-like shape showcasing their pronounced dependence on frequency. This
behavior can be attributed to the significant energy focusing that occurs in wave pack-
ets propagation along preferential directions. The chiral effect can also be observed,
as each polar curve does not possess any mirror symmetries, while the rotational
symmetries are preserved.
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Figure 3.23: Group velocities of the Hexachiral PAM
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Hexagonal lattice

Let us now investigte the elastodynamic behavior of hexagonal architectured mate-
rials. Figure 3.24 presents an illustration of the tiling associated with the geometric
parameters outlined in table 3.1.
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Figure 3.24: Left-hand figure : Hexagonal D6 lattice and its unit cell. Right-hand fig-
ure : First Brillouin zone (gray area), IBZ (brown area) and its contour (red triangle)

The contours of dispersion surfaces for the first two modes are showcased in figure 3.25
for three frequencies, illustrating the iso-frequency contours and capturing the peri-
odicity within the frequency-wavenumber spectrum accurately.
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Figure 3.25: Iso-frequency countours of the slowness surfaces

the IBZ is represented by the brown area in figure 3.24. The Iso-frequency countours
of the slowness surfaces illustrated in figure 3.26 clearly reveals the inherent hexagonal
symmetry of the lattice. As in the hexachiral geometry, the contour curves of slowness
surfaces exhibit six lobes, which become more pronounced at higher frequencies. Sim-
ilarly, the iso-frequency contour exhibiting a circular shape, corresponding to lower
frequencies and wave numbers, suggest an isotropic elasto-dynamic behavior.
The dispersion diagram figure 3.27 is computed along the IBZ, provide important in-
formation about anisotropic wave behavior the hexagoal PAM. This diagram exhibits
notable distinctions in the behavior of the first two modes within the IBZ. Specifically,
the acoustic branches appear noticeably distant from each other, which contrasts with



CHAPTER 3. FROM PERIODIC LATTICES TO OVERALL HOMOGENEOUS CONTINUUM | 91

0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 50
0
1,
00
0
1,
50
0
2,
00
0

60 kHz
120 kHz
160 kHz

(a) First mode

0

π
6

π
3

π
22π

3

5π
6

π

7π
6

4π
3 3π

2

5π
3

11π
6

0 1,
00
0
2,
00
0
3,
00
0

300 kHz
600 kHz
900 kHz

(b) Second mode

Figure 3.26: Iso-frequency countours of the first two slowness surfaces over IBZ

the hexachiral geometry where they are closer in proximity. This indicates a significant
disparity in amplitude between their respective phase velocities. Additionally, it is
observed that the second mode rapidly becomes anisotropic in the ΓK direction com-
pared to the first mode, suggesting a greater impact on P-waves rather than S-waves.
Although the anisotropy may not be highly pronounced, it certainly has significant
effects on wave propagation, especially on S-waves. Furthermore, it is important to
note that the selected frequency range (first six eigenmodes) shows a complete absence
of a band-gap. This absence of a band-gap indicates a lack of coupling between the
modes, which is commonly associated with the absence of chirality in the geometry.
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Figure 3.27: Dispersion curves for D6 honeycomb lattice

The eigenmodes for each dispersion curve at the points Γ, K, and M are depicted
in table 3.4. Similar to the hexachiral cell, we can make analogous observations. At
Γ, the first two modes demonstrate rigid body motion, while the third and fourth
modes display local rotational motion. As the wavenumber increases, we observe a
more complex behavior, and the deformation becomes significantly more pronounced.
The phase and group velocities can be analyzed similarly, as shown in figure 3.36.
As expected, the behavior is strongly anisotropic and exhibits similar patterns. At
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Point Mode 1 Mode 2 Mode 3 Mode 4

Γ

K

M

Table 3.4: First, second, third and fourth wave modes at high symmetry point Γ, K
and M of the IBZ (total displacement in m)
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(b) Phase velocities of pressure waves
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(c) Group velocities of shear waves
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Figure 3.28: Phase and group velocities of the hexagonal PAM

the first chosen frequency, anisotropic features start to emerge, aligning with the
shape of the tetrachiral unit cell, indicating a significant anisotropy at both low and
high frequencies. The rotational symmetries are preserved throughout this frequency
range; however, the velocity pattern does not exhibit any mirror lines, as anticipated.
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Tetrachiral lattice

Let us now investigte the elastodynamic behavior of tetrachiral architectured mate-
rials. Figure 3.33 presents an illustration of the tiling associated with the geometric
parameters outlined in table 3.1.
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Figure 3.29: Left-hand figure : Tetrachiral Z4 lattice and its unit cell. Right-hand fig-
ure : First Brillouin zone (gray area), IBZ (brown area) and its contour (red triangle)

The Iso-frequency contours of the slowness surfaces shown in figure 3.30 clearly reveal
the tetrachiral symmetry inherent in the lattice, as no mirror lines are observed in
the contours. The contour curves of the slowness surfaces display four lobes, which
are distinctly present both at low and high frequencies, signifying a strong anisotropic
behavior.
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Figure 3.30: Iso-frequency countours of the first two slowness surfaces over IBZ

The dispersion diagram in figure 3.31, computed along the IBZ, reveals notable dis-
tinctions in the behavior of the first two modes within the IBZ, and the presence of
two band-gaps. Similar to the hexachiral lattice, the acoustic branches are slightly
close to each other due to the lattice’s chiral character. Moreover, it is observed that
both acoustic modes rapidly become anisotropic in the ΓX direction, indicating a
strong anisotropy, as shown in the dispersion contours. Additionally, two band-gaps
with a significant width are evident between the third and fourth modes, and between
the fifth and sixth modes, which may indicate coupling between these modes. Their
surfaces appear almost flat around the origin.
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Figure 3.31: Dispersion curves for Z4 honeycomb lattice

The eigenmodes for each dispersion curve at the points Γ, X, andM are illustrated in
table 3.6. Similar to the previous cells, one can make similar observations. At Γ, the
first two modes exhibit rigid body motion, while the third and fourth modes display
local rotational motion. As the wavenumber increases, the behavior becomes increas-
ingly complex, rapidly transitioning into anisotropy, and the deformation becomes
significantly more pronounced. Particularly at X, we can observe a clear coupling
between the transversal mode and the longitudinal mode. Less trivially, we observe a
coupling between the longitudinal mode at point X and the first optical mode at Γ.

Point Mode 1 Mode 2 Mode 3 Mode 4

Γ

X

M

Table 3.5: First, second, third and fourth wave modes at high symmetry point Γ, X
and M of the IBZ (total displacement in m)

The phase and group velocities can be analyzed similarly, as shown in figure 3.36.
As expected, the behavior is strongly anisotropic and exhibits similar patterns. At
the first chosen frequency, anisotropic features start to emerge, aligning with the
shape of the tetrachiral unit cell, indicating a significant anisotropy at both low and
high frequencies. The rotational symmetries are preserved throughout this frequency
range; however, the velocity pattern does not exhibit any mirror lines, as anticipated.
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Additionally, one can observe that the apparent velocity patterns are tilted by an angle
with respect to the reference frame. This angle is associated with the chiral parameter
β, introduced in the first section devoted to the geometrical parameterization.
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Figure 3.32: Phase and group velocities of the tetrachiral PAM
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Tetragonal lattice

Now, let’s delve into the elastodynamic behavior of tetragonal architectured materials,
commonly referred to as the square lattice. ?? provides an illustration of the tiling
corresponding to the geometric parameters outlined in table 3.1.
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Figure 3.33: Left-hand figure : Tetragonal D4 lattice and its unit cell. Right-hand fig-
ure : First Brillouin zone (gray area), IBZ (brown area) and its contour (red triangle)

The Iso-frequency contours of the slowness surfaces depicted in figure 3.34 distinctly
reveal the square symmetry inherent in the lattice, with four mirror lines observed in
the contours. Similarly to the tetrachiral PAM, the contour curves of the slowness sur-
faces display four lobes, which are distinctly visible at both low and high frequencies,
indicating a strong anisotropic behavior.
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Figure 3.34: Iso-frequency countours of the first two slowness surfaces over IBZ

The dispersion diagram in figure 3.39, computed along the IBZ, reveals notable distinc-
tions in the behavior of the first two modes within the IBZ. Similar to the hexagonal
lattice, the acoustic branches appear noticeably distant from each other. Moreover, it
is observed that both acoustic modes rapidly become anisotropic in the ΓX direction,
indicating a strong anisotropy, as shown in the dispersion contours. Additionally,
no band-gaps are observed, which may indicate the absence of coupling between the
different modes.
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Figure 3.35: Dispersion curves for D4 honeycomb lattice

The eigenmodes for each dispersion curve at the points Γ, X, and M are illustrated
in ??. Similar to the previous cells, one can make similar observations. At Γ, the first
two modes exhibit rigid body motion, while the third and fourth modes display local
rotational motion. As the wavenumber increases, the behavior becomes increasingly
complex, rapidly transitioning into anisotropy, and the deformation becomes signifi-
cantly more pronounced. Particularly at X, we can observe a clear coupling between
the rotational mode and the longitudinal mode.

Point Mode 1 Mode 2 Mode 3 Mode 4

Γ

X

M

Table 3.6: First, second, third and fourth wave modes at high symmetry point Γ, X
and M of the IBZ (total displacement in m)

The phase and group velocities can be analyzed similarly, as shown in ??. As ex-
pected, the behavior is strongly anisotropic and exhibits similar patterns. At the
first chosen frequency, anisotropic features start to emerge, aligning with the shape of
the tetragonal unit cell, indicating a significant anisotropy at both low and high fre-
quencies. The rotational symmetries are preserved throughout this frequency range;
Additionaly, the velocity pattern exhibits four mirror lines, as anticipated.
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Figure 3.36: Phase and group velocities of the tetragonal PAM
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Trichiral lattice

Let’s now explore the elastodynamic behaviour of trichiral PAM. Figure 3.37 illus-
trates the tiling associated with the geometric parameters described in table 3.1.
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Figure 3.37: Left-hand figure : Trichiral Z3 lattice and its unit cell. Right-hand figure
: First Brillouin zone (gray area), IBZ (brown area) and its contour (red triangle)

The slowness surfaces’ iso-frequency contours shown in figure 3.38 clearly exhibit
the trichiral symmetry inherent in the lattice. Similar to the hexachiral geometry,
these contours feature six lobes, which become more prominent at higher frequencies.
Additionally, the iso-frequency contour displaying a circular shape, associated with
lower frequencies and wave numbers, indicates an isotropic elastodynamic behavior.
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Figure 3.38: Iso-frequency countours of the first two slowness surfaces over IBZ

The dispersion diagram in ??, computed along the IBZ, reveals notable distinctions
in the behavior of the first two modes within the IBZ, and the presence of one band-
gap. Similar to the hexachiral lattice, the acoustic branches are slightly close to each
other due to the lattice’s chiral character. Moreover, it is observed that both acoustic
modes rapidly become anisotropic in the ΓX direction, indicating a strong anisotropy,
as shown in the dispersion contours. Additionally, a band-gap with a significant width
is evident between the third and fourth modes, which may indicate coupling between
these modes. Their surfaces appear almost flat around the origin.
The eigenmodes for each dispersion curve at the points Γ, K, andM are illustrated in
table 3.7. Similar to the previous cells, one can make similar observations. At Γ, the
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Figure 3.39: Dispersion curves for Z3 honeycomb lattice

first two modes exhibit rigid body motion, while the third and fourth modes display
local rotational motion. As the wavenumber increases, the behavior becomes increas-
ingly complex, rapidly transitioning into anisotropy, and the deformation becomes
significantly more pronounced. Particularly at K, we can observe a clear coupling
between the rotational mode and the longitudinal mode. We can also observe many
couplings between the third and fourth mode as expected from the dispersion diagram.

Point Mode 1 Mode 2 Mode 3 Mode 4

Γ

K

M

Table 3.7: First, second, third and fourth wave modes at high symmetry point Γ, X
and M of the IBZ (total displacement in m)

The phase and group velocities can be analyzed similarly, as shown in figure 3.40. As
expected, the behavior is isotropic for the lowest frequency and become anisotropic
for high frequencies, which reveals the anisotropy of the lattice. Notably, as the fre-
quency increases, the phase velocity decreases. This behavior aligns with the disper-
sion branches where the slopes decrease as the wavenumber increases. The rotational
symmetries are preserved throughout this frequency range; however, the velocities
pattern does not exhibit any mirror lines, as anticipated. Furthermore, it is notice-
able that the apparent velocity patterns exhibit a tilt at an angle relative to the
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reference frame, due the chiral character of the geometry. Interestingly, the emerging
pattern appears to resemble a six-fold pattern to some extent, rather than a three-fold
pattern, which is less straightforward.
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Figure 3.40: Phase and group velocities of the tetragonal PAM
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Trigonal lattice

Now, let’s explore the elastodynamic behavior of trigonal PAM. Figure 3.41 provides
an illustration of the tiling corresponding to the geometric parameters outlined in
table 3.1.
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Figure 3.41: Left-hand figure : Trichiral D3 lattice and its unit cell. Right-hand figure
: First Brillouin zone (gray area), IBZ (brown area) and its contour (red triangle)

The Iso-frequency contours of the slowness surfaces depicted in figure 3.42 distinctly
reveal the trigonal symmetry inherent in the lattice, with six mirror lines observed
in the contours. Similarly to the trichiral PAM, the contour curves of the slowness
surfaces display six lobes, which are distinctly visible at both low and high frequencies,
indicating a strong anisotropic behavior.
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Figure 3.42: Iso-frequency countours of the first two slowness surfaces over IBZ

The dispersion diagram in figure 3.43, computed along the IBZ, reveals notable dis-
tinctions in the behavior of the first two modes within the IBZ, and the presence of one
band-gap. Similar to the hexagonal lattice, the acoustic branches appear noticeably
distant from each other, like in hexagonal lattice. Moreover, it is observed that both
acoustic modes rapidly become anisotropic in the ΓK direction, indicating a strong
anisotropy, as shown in the dispersion contours. Additionally, one band-gaps with a
significant width is evident between the third and fourth modes, which may indicate
coupling between these modes. A very interesting observation can be made regarding
the symmetry of this cell. The proposed geometry here is both non-centrosymmetric
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and achiral. However, the presence of band-gaps has typically been associated with
the chiral nature of geometries. Yet, we observe the existence of one or more mode
couplings in this case.
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Figure 3.43: Dispersion curves for D3 honeycomb lattice

The eigenmodes for each dispersion curve at the points Γ, K, andM are illustrated in
table 3.8. Similar to the previous cells, one can make similar observations. At Γ, the
first two modes exhibit rigid body motion, while the third and fourth modes display
complex deformations. As the wavenumber increases, the behavior becomes increas-
ingly complex, rapidly transitioning into anisotropy, and the deformation becomes
significantly more pronounced.

Point Mode 1 Mode 2 Mode 3 Mode 4

Γ

K

M

Table 3.8: First, second, third and fourth wave modes at high symmetry point Γ, K
and M of the IBZ (total displacement in m)

The phase and group velocities can be analyzed similarly, as shown in figure 3.44. As
expected, the behavior is isotropic for the lowest frequency and become anisotropic for
high frequencies, which reveals the anisotropy of the lattice. The rotational symme-
tries are preserved throughout this frequency range and the velocities pattern exhibits
six mirror lines, as anticipated. Interestingly, like in the trichiral lattice, the emerging
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pattern appears to resemble a six-fold pattern to some extent, rather than a three-fold
pattern, which is less straightforward.
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(d) Group velocities of pressure waves

Figure 3.44: Phase and group velocities of the tetragonal PAM

The emergence of anisotropy in the high-frequency regime has often been considered
as a contribution of stiffness. Indeed, as shown in [Rosi and Auffray, 2019], a second-
gradient model can reproduce these effects that emerge in the SW-LF regime, where
phase velocities can be seen as a sum of first-order and second-order contributions.
The latter encodes the wave number dependence and, consequently, the frequency
dependence. In [Askes and Aifantis, 2011], it was shown that this second-order con-
tribution also depends on inertial terms and that it is important to incorporate these
terms to have an accurate approximation of the medium’s behavior. In the next
section, we propose to investigate the effect of inertia on the response of the medium.
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3.3.2 Investigation of anisotropic inertia contribution
The objective of this study is to investigate the influence of inertia on the behavior
of a periodic heterogeneous medium and to quantify its contribution. To accomplish
this, we will focus on a simplified scenario involving a periodic heterogeneous medium.
Let Ω denote the elementary cell of the medium, which is assumed to have a square
pattern comprising two distinct linear phases, Ω1 and Ω2, as illustrated in Figure 3.45.
It is important to note that both phases possess the same stiffness but differ in their
mass densities.

C1, ρ1

C2, ρ2

Figure 3.45: Unit cell of square composite
ρ1 = ρ2 ρ1 6= ρ2

C1 = C2 Reference Anisotropic mass density

In order to amplify effects, we consider a high inertial contrast between the matrix
and the inclusion. The material parameters are reported in table 3.9.

Phase E (Gpa) ν ρ (kg.m−3) density %
Matrix 70 0.35 2700 50
Inclusion 70 0.35 27000 50

Table 3.9: Material properties
Figure 3.46 illustrates the dispersion diagram along the path ΓM . It clearly shows the
emergence of anisotropy as the frequency increases. Interestingly, unlike the previ-
ous analysis with homogeneous stiffness, the P-waves are more significantly impacted
compared to the S-waves.
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Figure 3.46: Dispersion curves of the first six modes

To further illustrate these effects, it is valuable to examine the iso-frequency contours
of the slowness surfaces corresponding to the first two modes, for different values
of wavelength. The idea here is to qualitatively assess from which wavelength the
effects of inertial anisotropy appear. For this purpose, we will consider three different
wavelengths, proportional to the size of the cell a : λ1 = 50a, λ1 = 6a, λ1 = 4a.
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The iso-frequency contours of the slowness surfaces shown in figure 3.47 indicate an
isotropic behavior for λ1. However, as the wavelength becomes comparable to the size
of the cell, i.e., for short wavelengths (which is the case for λ2 and λ3), we notice that
the shape of the contours is no longer circular but takes the form of square symmetry,
indicating the emergence of anisotropic behavior.
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Figure 3.47: Iso-frequency countours of the first two slowness surfaces over IBZ

This observation can be further confirmed by computing the phase and group velocities
associated with these two modes.
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Figure 3.48: Phase and group velocities of the medium
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As illustrated in figure 3.48, we observe that at low frequencies, the propagation is
isotropic, but it becomes anisotropic as the wave vector increases. The emerging
anisotropy exhibits a tetragonal shape, which is consistent with the symmetry of the
cell. Moreover, as anticipated from the dispersion diagram analysis, we find that P-
waves are significantly more affected than S-waves. These observations qualitatively
suggest that inertia plays a substantial role in the emergence of anisotropic effects,
particularly when the wavenumber increases.

Orientation effect

With that being said, one may question the impact of the inclusion’s orientation.
In the following analysis, we will explore a modified configuration of thise medium,
consisting of two phases. The first phase represents the fixed matrix, while the sec-
ond phase represents the inclusion, which is capable of rotating within the cell. We
will consider that both phases have different material properties. Two configurations
should be considered: in the first one, the inclusion is not rotated with respect to the
matrix, and this will serve as our reference configuration. In the second configuration,
the inclusion will be rotated at an angle of θ = 45◦.
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i2

m1

m2

(a) θ = 0◦

θ

i1

i2
m1

m2

(b) θ = 45◦

Figure 3.49: The differents configurations of the inclusion’s orientation
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(a) Dispersion curves for θ = 0◦
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(b) Dispersion curves for θ = 45◦

The computed dispersion diagrams of the reference configuration shows the presence
of a partial band-gap. We observe the same band-gap in the second configuration,
but with a significantly smaller width. Indeed, rotating the inclusion with respect
to the matrix in this case results in the emergence of intriguing effects, as shown in
figure 3.51. The width of the band-gap can be controlled by the orientation of the
cell, and thus, this effect is a direct consequence of a specific spatial distribution of
the inertia network.
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Figure 3.51: Evolution of the band gap with respect to inclusion’s orientation

3.4 Determination of the appropriate kinematics
extension

After studying the elastodynamic behavior of the different proposed PAMs, through
the Floquet-Bloch analysis, we have established the elastodynamic signatures of each
geometry, particularly focusing on the acoustic branches. It has been revealed that
these materials exhibit different behaviors depending on the regime: isotropic behav-
ior at low frequencies, anisotropic behavior at high frequencies, privileged directions
of propagation, presence of band-gaps, and also mode couplings. The role of inertia
has also been highlighted through numerical experiments. Now that we have all these
elements, we need to address one of the questions posed at the end of Chapter 2,
namely, which generalized model would better represent and predict the behavior of
these media.Since we are only interested in the acoustic branches near the origin Γ, the
optical modes will not be considered in determining an ideal candidate. Within this
parameters window, i.e., LW-LF and SW-LF, we mainly observe dispersion, directiv-
ity, an absence of local rotation modes, but most importantly, higher-order anisotropy
(4 and 6). Modeling the acoustic branches with a micromorphic-type model would be
computationally expensive, which narrows down the choice to the Strain-gradient and
Cosserat models. Since we do not require kinematic descriptors involving rotation,
and the Cosserat medium, as mentioned in chapter 2, cannot account for higher-order
anisotropy beyond 4 (due to Hermann’s theorem), the ideal candidate would be the
Strain-gradient model [Mindlin, 1964].

The constitutive law of the model was proposed in Chapter 2, and we will complement
it with the inertia part, which appears essential to accurately describe the behavior.
Let’s define the Lagrangian density L is defined as the difference between the kinetic
and potential energy densities, respectively, K and E .

L = K − E

In the case of Mindlin’s Type II SGE theory,The kinetic and potential energies are
are function of the displacement and its gradients up to the second-order :

E := 1
2 (σ : ε) + 1

2 (τ ∴ η) , K := 1
2 (p · u̇) + 1

2 (q : u̇⊗∇) ,
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wherein

– τ : Hyper-stress tensor (3rd order tensor);
– η : Gradient of the strain tensor;
– p : Momentum field (1st order tensor);
– u̇ : Velocity field (1st order tensor);
– q : Hyper-momentum tensor (2nd order tensor);
– u̇⊗∇ : Gradient of the velocity field (2nd order tensor).

are the primary and dual state tensors, already introduced in chapter 2 and recalled
here for convenience. Taking into account this choice of variables, we define the total
stress and the total momentum, respectively, as follows

s = σ −∇ · τ (3.4.1)

π = p−∇ · q (3.4.2)
By application of the least action principle on the action functional [Mindlin, 1964],
and neglecting body double force, the following bulk equations are obtained:

∇ · s = π̇, (σij − τijk,k),j = ṗi − q̇ij,j (3.4.3)
The constitutive law reads

pi = ρδipvp +Kipqvp,q

qij = Kpijvp + Jijpqvp,q

σij = Cijpqεpq +Mijpqrηpqr

τijk = Mpqijkεpq + Aijkpqrηpqr

(3.4.4)

The constitutive law can be re-written in the following quadratic form
p
q
σ
τ

 =


ρI K 0 0
KT J 0 0
0 0 C M
0 0 MT A




v
v⊗∇
ε
η


In which

– ρI(ij) : Inertia tensor;
– Kijk : Coupling inertia tensor;
– J(ij) (kl) : Second order inertia ten-

sor;
– C(ij) (kl) : Classical elasticity tensor;

– M(ij)(kl)m : Coupling elasticity ten-
sor;

– A(ij)k (lm)n : Second order elasticity
tensor.

The equation of motion reads,

Cijkluk,jl +M ]
ijklmuk,lmj − Aijnklmuk,lmnj = ρüi +K]

iklük,l − Jijklük,lj (3.4.5)

where,

KH]
ikl =

(
KH
ikl −KH

kil

)
, MH]

ijklm = MH
ijklm −MH

klijm
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As mentioned previously, classical elasticity is insensitive to chirality, whereas the
sixth-order tensor exhibits sensitivity to chirality. Moreover, only odd-ranked tensors
manifest sensitivity to the absence of centrosymmetry. The diverse effects captured
by these tensors, i.e., their ability to describe certain phenomena, are summarized in
the table below

# Symmetry classes Dispersion Non-centrosymmetry Chirality
ρI(ij) 1 7 7 7

C(ij) (kl) 4 7 7 7

J(ij) (kl) 4 X 7 7

A(ij)k (lm)n 8 X 7 X
M(ij)(kl)m 4 X X X
A(ij)k (lm)n 8 X X X

3.5 Synthesis
In this chapter, we have introduced a family of PAMs with different geometric symme-
try properties, and we have explored their dynamic behavior through Floquet-Bloch
analysis. The elastodynamic signature has revealed intriguing behaviors, including
the presence of band-gaps, strong anisotropy, and privileged directions of propaga-
tion. We have also briefly investigated the role of inertia, particularly in a PAM with
an anisotropic mass distribution, where the the contribution of inertia in predicting
dynamic behavior was highlighted.

In the context of homogenization, the choice of an EHM has led us to consider the
Strain-gradient model as the optimal candidate under the assumptions of small defor-
mations and propagation in the LW-LF and SW-LF regimes. Now that we have the
elastodynamic signatures of the studied media and a generalized model that accurately
approximates their behavior in the investigated regimes, the remaining question is:
How do we identify the parameters of the constitutive law for this medium? As men-
tioned before, homogenization allows constructing an EHM when the scale separation
is verified. In the next chapter, we will establish a phenomenological identification
method that allows identifying the parameters of the constitutive law based on the
information provided by the Floquet-Bloch analysis. This identification approach will
be developed for the LW-LF regime and validated through comparison with elasto-
static homogenization.
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4.1 Introduction
By understanding the unique characteristics of periodic architectured materials, one
can develop a relevant strategy to study their effective behavior. One important ques-
tion arises: How can we determine the effective properties based on the information
obtained from Floquet-Bloch analysis? This question has already been addressed in
the works of [Royer and Dieulesaint, 1999, François, 1995, Terroir, 2022], where an
identification strategy based on wave velocities was proposed. However, the accu-
racy of this strategy remains a subject of inquiry as it relies on certain assumptions

111
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regarding the symmetry class of the medium and specific directions of propagation,
thus some information concerning the effective might be lost. In addition, the al-
gebraic structure of the Christoffel tensor, which plays a crucial role, has received
limited attention in the literature. Exploring the algebraic features of this tensor can
lead to the development of new identification strategies without assumptions on the
symmetry class. It is essential to have a clear objective in mind and develop robust
identification methods based on the invariants of the Christoffel tensor, which can be
combined with experiments and techniques like topology optimization.

In this chapter, our focus will be on the signature of architectured materials near
the origin of the dispersion curve, specifically at long wavelengths. The objective
is to revisit the identification method proposed in [Royer and Dieulesaint, 1999] by
presenting different approaches based on available information such as velocities and
polarizations. The first section aims to recall the general theoretical framework of
wave propagation in the LW-LF regime. We will briefly introduce the Homogeneous
Apparent Continuum (HAC) which, in the Long Wavelength-Low Frequency (LW-LF)
regime, modeled as a classic Cauchy continuum. The second section will detail the
parameterization of the Christoffel tensor using the harmonic decomposition of the
classical elasticity tensor, introduced in chapter 2. This parameterization is crucial for
the identification process described in section 3, where the invariants of the Christoffel
tensor, will form the core of the identification process, offering a mathematical de-
scription of the anisotropy of the medium. Finally, in the last section, we will present
numerical results obtained from the different identification approaches, including a
comparison to elastostatic homogenization as it will be detailled in appendix.

4.2 Theoretical framework

4.2.1 Homogeneous equivalent model in LW-LF approxima-
tion

Let us consider a two dimensional domain Ω occupied by a periodic heterogeneous
medium whose elementaryx cell is denoted by T . This cell consists of two phases
made of Cauchy-type elastic material1.
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It is well known that in the LW-LF regime a heterogeneous medium can be replaced

1In case of need, one of these phases can be degenerated to void in order to describe an hole.
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by an equivalent homogeneous one [Boutin and Auriault, 1993, Nassar, 2015]. In this
regime, the effective medium is generally considered of Cauchy type [Rosi et al., 2020].
In fact, when the wavelength is considerably longer than the size of the periodic unit
cell, elastic waves travelling through the medium interact weakly with the internal
architecture. Since the effective medium is homogeneous, the polarisation field ũ is
no longer space dependant. In other words, the Bloch waves have degenerated into
plane waves. Thus, the solution of the motion equation 2.3.14 introduced in chapter
2 can be sought, in this specific regime, under the form

u(x, t) = ũei(ωt−k·x), x ∈ Ω. (4.2.1)

The main consequence is that, under LW-LF hypothesis the equation of motion 2.3.13
reduces to

∇ ·
{
Chom : (ũ⊗s ∇)

}
= −ω2ρhomũ, x ∈ Ω, (4.2.2)

where in this equation ρhom denotes the effective density and Chom is the effective
elasticity tensor. It is important to remark that Chom is the same as that obtained
by classical elastostatic periodic homogenization as detailled later in Appendix [xx].
Within this regime, Equation 4.2.2 further simplifies into the classical Christoffel
equation: (

n ·Chom · n
)
· ũ = ρhomv2

φũ, ũ ∈ C2, (4.2.3)

In which, n = k/ ‖k‖ is the unit vector giving the direction of propagation while
vφ = ω/ ‖k‖ is the phase velocity. In the present study, the wave vector is assumed
to be real, which means that there is no attenuation during the propagation within
the continuum. By setting

∀n ∈ S1, Γ(n) = n ·Chom · n ∈ S2(R2), (4.2.4)

Γ can be seen a symmetric second-order tensor field over the unit 1-sphere S1. A
point n ∈ S1 can be parameterised as

nθ = cos(θ)e1 + sin(θ)e2 (4.2.5)

and the notations Γ(n) and Γ(θ) will be used indifferently. Further, Γ will denote the
tensor field, while Γ(θ) will designate the Christoffel tensor in the direction θ. At the
end, the Christoffel equation can be expressed as

Γ(θ) · ũ = ρhomv2
φũ. (4.2.6)

This expression evidences the fact that the phase velocities ρhomv2
φ and the polarisa-

tion vectors ũ are, respectively, the eigenvalues and the eigenvectors of Γ(θ). The
eigenvalues being the solutions of the equation

det
(
Γ(θ)− ρhomv2

φI
)

= 0. (4.2.7)

which corresponds to the LW-LF version of the general dispersion equation (2.3.25).
In the next sections, the solutions of equation (4.2.7) for different values of θ will be
used to determine Chom. To that aim let us first detail an adapted parameterisation
of Γ.
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4.2.2 Christoffel tensor revisited
The aim of this subsection is to introduce a parameterisation of the Christoffel ten-
sor field Γ which is consistent with the symmetry properties of Chom. In order to
tackle this problem, we will use some mathematical concepts concerning the sym-
metry classes of elasticity tensors in R2, which have been introduced in chapter 2.
The central point is the harmonic decomposition which allows to express elasticity
tensors according to their symmetry properties. This setting naturally induces a pa-
rameterisation of the tensor field Γ and its invariants. The Christoffel tensor field
will be constructed from the parameterisation Chom = ϕ (H,h, α2, α0) following the
definition (4.2.4).

Harmonic parameterisation of the Christoffel tensor field

Let us return to the definition of the Christoffel tensor field,

Γ(n;Chom) = n ·Chom · n (4.2.8)

in which the unit vector n indicates the direction of propagation. This vector will be
parameterised by an angle θ, as expressed in equation (4.2.5), which will represent the
angle between the direction of the wave propagation and the horizontal axis of the ref-
erence frame. Such setting is of particular interest since each direction of propagation
will define a Christoffel tensor, activating specific components of Chom. Consequently,
all the information about the apparent medium in the LW-LF regime is retrieved by
propagating waves in different directions. From the harmonic decomposition of the
elasticity tensor Chom = ϕ (H,h, α2, α0), we obtain the following parameterisation of
the Christoffel tensor field:

Γ
(
nθ;Chom

)
=
(
H + α0P2

)
:̂ (nθ ⊗ nθ) + h +

(
h :̂ (nθ ⊗ nθ) + 1

4 (α2 + 2α0)
)
I

(4.2.9)
in which :̂ denotes the twisted double contraction defined as

C :̂ (n⊗ n) = n ·C · n.

The intrinsic expression 4.2.9 is highly insightful, making almost straightforward the
following deviatoric and spheric decomposition

Γ
(
nθ;Chom

)
= 1

2tr
[
Γ
(
nθ;Chom

)]
I + Γdev

(
nθ;Chom

)
, (4.2.10)

with tr
[
Γ
(
nθ;Chom

)]
= 2h :̂ (nθ ⊗ nθ) + 1

2 (α2 + 2α0) ;
Γdev

(
nθ;Chom

)
=
(
H + α0P2

)
:̂ (nθ ⊗ nθ) + h.

(4.2.11)

Invariants of the Christoffel tensor field

As the orientation of a tensor varies over a manifold (here S1), it is interesting to sub-
stitute its study for that of a collection of scalar fields over the same manifold. These
scalar fields will be given by the elementary polynomial invariants of the Christoffel
tensor as θ varies. As we shall see, these fields contain all the information needed
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to identify the elasticity tensor. Since Γ(θ) is a second-order symmetric tensor, its
fundamental invariants are:

I1(θ) = tr (Γ) , K2(θ) = Γdev : Γdev (4.2.12)

There are many different possibilities for choosing the quadratic invariant, the one
we retain here conduct to the simplest expression. Further has a strong physical
content since its vanishing is associated with the equality of the wave velocities 2.
The invariants I1 and K2 can be expressed in terms of propagation speeds as follows

I1(θ) = ρhom (v2
1(θ) + v2

2(θ))
K2(θ) = 1

2
(
ρhom

)2
(v2

1(θ)− v2
2(θ))2 (4.2.13)

in which v1(θ) and v2(θ) are the phase velocities of the two waves propagating along
the direction θ, with v1(θ) ≤ v2(θ). Furthermore, expressing the invariants in terms
of phase velocities (equation (4.2.13)) opens a wide range opportunities for identifica-
tion. For instance, phase velocities can be obtained by solving the eigenvalue problem
(4.2.6), or by means of experimental measures. In order to characterize the symmetry
properties of Γ(nθ,Chom), the previous invariants need to be expressed in a explicit
form. By using the harmonic parametrisation equation (4.2.11), these invariant func-
tions can be expressed in terms of the harmonic decomposition of Chom:I1(θ) = 2h :̂ (nθ ⊗ nθ) + 1

2 (α2 + 2α0)
K2(θ) = 2α0H :: (nθ ⊗ nθ ⊗ nθ ⊗ nθ) + 2

((
H + α0P2

)
: h
)

: (nθ ⊗ nθ) + 1
4 (4i2 + j2 + 2α2

0) ,
(4.2.14)

where i2 and j2 are the invariants Chom as defined in equation (2.2.22). It can be
observed that, as soon as Chom is, at least, tetragonal, I1(θ) becomes an isotropic
function. In other words, the sum of the square of phase velocities is independent of
the direction of propagation3. The detailed expressions of these quantities are

I1(θ) = α0 + α2

2 + 2h1cos(2θ) + 2h2sin(2θ)

K2(θ) =
(

2(h2
1 + h2

2) + 2(H2
1 +H2

2 ) + α2
0

2

)
+ 2 (2(h1H1 + h2H2) + h1α0) cos(2θ) + 2 (2(h1H2 − h2H1) + h2α0) sin(2θ)
+ 2H1α0 cos(4θ) + 2H2α0 sin(4θ)

(4.2.15)
The previous expressions are given in the case of the complete anisotropic, and they
take a much simpler form for higher symmetry classes. More precisely, if [GChom ] is
(1) Orthotropic: [D2]

I1(θ) = α0 + α2

2 + 2h1 cos(2θ)

K2(θ) =
(

2h2
1 + 2H2

1 + α2
0

2

)
+ 2 (2h1H1 + h1α0) cos(2θ) + 2H1α0 cos(4θ)

2Indeed, the nullity of K2(θ) is associated with the equality of the wave velocities, and thus has
a strong physical content.

3A direct consequence of that is that for tetragonal material, to the maximal value of v2(θ)
corresponds the minimal value of v1(θ).
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(2) Tetragonal: [D4]
I1(θ) = α0 + α2

2
K2(θ) =

(
2H2

1 + α2
0

2

)
+ 2H1α0 cos(4θ)

(3) Isotropic: [O(2)]
I1(θ) = α0 + α2

2
K2(θ) = α2

0
2

We can also mention the shape for the R0-orthotropy, an exotic set of elastic materials
[Mou et al., 2023] 

I1(θ) = α0 + α2

2 + 2h1 cos(2θ)

K2(θ) =
(

2h2
1 + α2

0
2

)
+ 2h1α0 cos(2θ)

In the following section, the parametrisation of the invariants 4.2.14 will be exploited
to implement different algorithms for the identification of effective elastodynamic
properties in the LW-LF regime. The application areas of these algorithms will be
compared and then evaluated on synthetic data in the section 4.4.

4.3 Elastodynamic identification approaches of ap-
parent properties

The aim of the present section is to introduce strategies to identify the effective elasto-
dynamic properties of periodic architectured material in the LW-LF regime. Although
considered here from a theoretical point of view, these strategies are intended to be
used in experimental settings.
Two situations will be successively considered corresponding to two different scenarios:

1. In the first scenario, we assume that mode shapes and wave velocities are avail-
able as input data for the identification algorithm. Although experimentally
challenging, modal deformation measurement techniques are nevertheless possi-
ble. And this is a very active field of research with a significant development of
field measurement techniques applied to the dynamic context.

2. The second scenario involves a more realistic data set limited to measurements
of phase velocities for different propagation directions.

The starting point of both method is the harmonic decomposition of the effective
elasticity tensor Chom:

Chom = ϕ (H,h, α2, α0) .

In this approach no assumption is made regarding the symmetry class of Chom. Then,
the Christoffel tensor field is expressed following the previous decomposition:

Γ(θ;Chom) = Γ (θ;H,h, α2, α0) .
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4.3.1 Polarisation-Velocity Based Approach (PVBA)
The method consists in reconstructing explicitly Christoffel tensors for several direc-
tions of propagation in order to obtain a linear system with respect to the harmonic
components of Chom. The central formula exploited by this method is the spectral
decomposition of the Christoffel tensor in the direction θ:

Γ(θ;Chom) = ρhom
(
v2

1(θ)ŝ1 ⊗ ŝ1 + v2
2(θ)ŝ2 ⊗ ŝ2

)
(4.3.1)

in which ŝi is the unit wave polarisation vector for the i-th mode. The knowledge of
both velocities and polarisations gives then access to the complete Christoffel tensor.
To identify Chom we use the following explicit parametrisation of Γ in terms of the
harmonic parameters of C:

Γ
(
θ;Chom

)
= Γsph

(
θ;Chom

)
+ Γdev

(
θ;Chom

)
, (4.3.2)

with

[
Γsph(θ;CH)

]
=


α0

2 + α2

4 + h1 cos(2θ) + h2 sin(2θ) 0

0 α0

2 + α2

4 + h1 cos(2θ) + h2 sin(2θ)


B

(4.3.3)
and

[
Γdev(θ;CH)

]
=

h1 +
(
α0

2 +H1

)
cos(2θ) +H2 sin(2θ) h2 +H2 cos 2θ −

(
α0

2 −H1

)
sin 2θ

h2 +H2 cos 2θ −
(
α0

2 −H1

)
sin 2θ −

(
h1 +

(
α0

2 +H1

)
cos(2θ) +H2 sin(2θ)

)


B
(4.3.4)

PVBA identification algorithm

The identification problem consists in identifying the 6 unknowns (α0, α2, h1, h2, H1, H2).
Using the intermediate parameter β0, the problem can be divided in two linear ones:

1. a first linear system in the unknown (β0, h1, h2) and exploiting the first invariant
given by 4.2.15 and 4.2.13 ;

2. a second linear system in the remaining unknown (α2, H1, H2) and exploiting
the components of 4.3.2.

The set of angles to use should ensures the invertibilty of both linear systems, this
condition is generally satisfied if θi ∈ [0, π[. These directions of propagation could be
different from symmetry axes, which might be unknown. Without loss of generality,
in this work we will use θ = {0, π4 ,

π

2 }. In this case β0 can be easily determined from
the expression of the first invariant 4.2.15, and reads:

(S0) : β0 = 1
2

(
I1(0) + I1(π2 )

)
(4.3.5)
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After computing β0, the harmonic elements of h are obtained

(Sh) :


h1 = 1

4

(
I1(0)− I1(π2 )

)

h2 = 1
2

(
I1(π4 )− β0

)
= 1

4

(
−I1(0) + 2I1(π4 )− I1(π2 )

) (4.3.6)

Once the first sub-system is solved, β0, h1 and h2 can be substituted in the second
sub-system 4.3.7. In the following, and for sake of simplicity, the component ij of
Γ(θ;Chom) will be denoted by Γij(θ):

(SH) :



Γ11(π2 ) = α2

4 −H1;

Γ12(π4 ) = h2 −H1 −
1
2

(
β0 −

1
2α2

)
;

Γ12(π2 ) = h2 −H2.

(4.3.7)

Hence

(SH) :



α2 = 2h2 + β0 − 2
(

Γ12(π4 )− Γ11(π2 )
)

;

H1 = α2

4 − Γ11(π2 );

H2 = h2 − Γ12(π2 );

(4.3.8)

Then, a direct expression of the harmonic decomposition of the apparent elasticity
tensor has been obtained. The identification has required a complete set of data
(velocity and polarisation) obtained for three directions of wave propagation. It is
important to remark that no assumption has been necessary on the symmetry class
of Chom. If more data are available, or in case of noisy-data set, this direct approach
can be substituted by solving numerically two least-square identification problems.

4.3.2 Velocity-Based Approaches (VBA)
In this subsection the procedure introduced in the first subsection will be adapted to
a situation in which we suppose that polarisation vectors are not available. As will be
seen, the parameter identification problem is still solvable, but now it involves to solve
a quadratic polynomial system. The solution of this system will be sought using two
different approaches: a direct approach, introduced in section 4.3.2.1, and a Fourier
based approach, in section 4.3.2.2. This last Fourier based formulation is very helpful
in case of noise corrupted data since it allows to filter out high-frequency noise from
the signal.

4.3.2.1 Direct approach (VBA-D)

Without measuring the polarisation vectors, we cannot have access to the complete
Christoffel tensor as in the previous subsection. Since the only information available
are the measures of velocities for various directions of propagation, the Christoffel
tensor field is only observable through its fields of invariants I1 and K2.
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Identification algorithm

The approach is similar to the previous case and proceed in two steps by solving a
waterfall system of equations:

1. the first system is linear, and identical to the first step of the PVBA method
(4.3.5-4.3.6);

2. the second system, is fully constructed from the second invariant K2(θ). its
resolution requires to find the roots of a 2nd degree polynomial system:

(SH) :



K2(0) = 2 (h2 +H2)2 + 2
(
H1 + h1 + α0

2

)2

K2(π4 ) = 2 (h1 +H2)2 + 2
(
H1 − h2 −

α0

2

)2

K2(π2 ) = 2 (h2 −H2)2 + 2
(
H1 − h1 + α0

2

)2

(4.3.9)

Replacing h1 and h2 by their values in (SH), the resolution leads to the identifi-
cation of the remaining components α0, H1 and H2. The use of a Gröbner basis
[Cox et al., 2013] shows that this system is generically soluble4. For a generic elas-
ticity tensor, we obtain a Gröbner basis comprising 10 polynomials of degree 2 in
R[H2, H1, α0]. The first polynomial of which is:

a2(h1, h2)H2
2 + b2(h1, h2)H2 + c2(h1, h2) = 0

with 

a2(h1, h2) = 64 (h2
1 + h2

2)

b2(h1, h2) = 16h2

(
K2(π2 )−K2(0)

)
c2(h1, h2) = 64h4

1 + 6h2
1(4h2

2 −K2(0)−K2(π2 )) + (K2(0)−K2(π2 ))2.

It can be observed that in section 4.3.2.1 the unknowns (H1, α0) have been eliminated,
hence it can be solved for H2 only. The solution is then used to determine H1, using
the second polynomial

a1(h1, h2)H2
1 + b1(h1, h2)H1 + c1(h1, h2) = 0

with



a1(h1, h2) = 16h1

b1(h1, h2) = 16h2 (H2 − h1) + 2K2(π2 )− 2K2(0)

c1(h1, h2) = 8H2 (h2
1 − h2

2) + h1

(
K2(0) + K2(π2 )− 2K2(π4 )

)
+ h2

(
K2(0)−K2(π2 )

)
,

4Gröbner basis can be viewed as a non-linear extension of Gaussian elimination. The method is
used here using Lexicographic order and ordering the variable as (H2, H1, α0). The measured values
K2(θi), are truncated and hence considered as elements of Q.
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the solution is then used to determine the remaining unknown α0. It can also be
noticed that the coefficient of the leading terms vanish for elasticity tensor that are
at least tetragonal. In such a degenerated situation, an alternate system should be
used. In the case of noisy data, the analytical approach may have no solution at all,
one should therefore solve a minimization problem with physical constraints such as
the positive-definiteness of the apparent elasticity tensor.

4.3.2.2 Fourier-series approach (VBA-F)

An alternative method consists in exploiting the periodicity of the fields of Christoffel’s
invariants. The idea behind this approach is to collect a large dataset of velocity
measurements for various directions of propagation, with a given sampling interval.
These measurements are then used to approximate the two invariants I1 and K2.
Since I1 and K2 are π-periodic functions of θ, they can be represented by the following
Fourier series expansions:

I1(θ) =
∑
n∈N

(ancos (2nθ) + a′nsin (2nθ)) , K2(θ) =
∑
n∈N

(bncos (2nθ) + b′nsin (2nθ)) ,

in which an and bn are, respectively, the Fourier coefficients, given by

an = 1

π

∫ π/2

−π/2
I1(θ)cos(2nθ)dθ,

a′n = 1
π

∫ π/2

−π/2
I1(θ)sin(2nθ)dθ,


bn = 1

π

∫ π/2

−π/2
K2(θ)cos(2nθ)dθ,

b′n = 1
π

∫ π/2

−π/2
K2(θ)sin(2nθ)dθ.

Projecting the expressions of I1 and K2 given by onto the the cosine and sine Fourier
basis, one identifies the Fourier coefficients of each function

(SI1) :


a0 = α0 + α2

2
a1 = 2h1

a′1 = 2h2

, (SI2) :



b0 = 2(h2
1 + h2

2) + 2(H2
1 +H2

2 ) + α2
0

2
b1 = 2 (2(h1H1 + h2H2) + h1α0)

b′1 = 2 (2(h1H2 − h2H1) + h2α0)

b2 = 2H1α0

b′2 = 2H2α0
(4.3.10)

with
an = a′n = 0,∀n > 1 and bn = b′n = 0, ∀n > 2.

The previous invariant functions can be rewritten as


I1(θ) = a0 + a1cos(2θ) + a′1sin(2θ),

K2(θ) = b0 + b1cos(2θ) + b′1cos(2θ) + b2cos(4θ) + b′2cos(4θ).
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Identification algorithm

The main point of this approach is the calculation of the Fourier series coefficients of
I1 and K2 from the data set. For this purpose, the interval [0, π] must be sampled,
and the wave velocities measured for each of the sample points. From a numerical
point of view, the finer the sampling, the better the evaluation of the coefficients. Let
N be the number of samples per period T = π, the minimum-sampling rate required
to reconstruct properly I1 and K2 is given by the Nyquist–Shannon sampling theorem

N ≥ 2max{f1,max, f2,max}
T

,

where f1,max = 1/π and f2,max = 2/π are, respectively, the highest spatial frequencies
of I1 and K2. Taking into account the condition above, The number of minimally
required measures need is at least Nmin = 4. Let us now consider a sampling of I1 and
K2 on the interval [0, π] and let us denote by I1,i and K2,i, respectively, the discrete
values of the function in the i direction:

I1,i = I1(θi), K2,i = K2(θi),with i ∈ J0, N − 1K,

where {θi = 2iπ
N
}i∈[0,N−1] is a set of N equally spaced points corresponding to the

directions of propagation, with N ≥ 4. One can write,
an ≈ 1

N

N−1∑
j=0

I1(θj)cos(2nθj),

a′n ≈ 1
N

N−1∑
j=0

I1(θj)sin(2nθj),


bn ≈ 1

N

N−1∑
j=0

K2(θj)cos(2nθj),

b′n ≈ 1
N

N−1∑
j=0

K2(θj)sin(2nθj).

The mean value of I1 corresponds to the isotropic parameter β0. Further, the com-
ponents h1 and h2 are directly obtained from the above Discrete Fourier Transform
(DFT) of I1. Once these coefficients are computed, as well as in the first approach,
one can set a system of equations for identifying the remaining parameters. Now, for
a generic elasticity tensor, we use the expression of a1, a′1 , b1 and b′1 given by equa-
tion (4.3.10), to recast the expression of b0 into the following second order equation
in α2

0

α4
0 − 2

(
b0 −

(
a2

1 + a′21
))
α2

0 + (b2
2 + b′22 ) = 0. (4.3.11)

The latter equation admits 4 solutions but only one solution is retained. The solution
must satisfy the condition of definite-positiveness of the apparent elasticity tensor
and must be positive since α0 is an isotropic parameter. Finally, H1 and H2 are then
directly obtained for this solution using the expression of b1 and b′1 in equation (4.3.10).

The Fourier-series based identification approach offers a significant advantage by pro-
jecting the discrete Fourier series of the invariants I1 and K2 onto the cosine and sine
Fourier basis. This projection process efficiently eliminates and filters out any poten-
tial noise that could compromise the accuracy of the measured data. As a result, the
method naturally filters the data by removing higher-order harmonic contributions
present in the signals, specifically those above order 2 in the signals of I1 and above
order 4 in the signals of K2. This noise-filtering property of the approach allows for
the identification of the harmonic decomposition elements with an improved accuracy
and reliability.
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4.4 Numerical validation
The identification procedure presented in section 4.3 requires the knowledge of the
phase velocities (for VBA-D and VBA-F) and polarizations (for PBA), of plane waves
propagating within the architectured material towards different directions. In the
present work, in order to give a first validation of the methods, the procedure will
be tested using data from Finite Elements Method (FEM) simulations. However,
it is important to remark that the procedure is general, and can be also imple-
mented experimentally, for instance using dynamic Digital Image Correlation (DIC)
[Schaeffer et al., 2017].

4.4.1 Methodology
In this section, the methodology used to implement the identification procedure will
be sketched. The details about each step, as well as an example of implementation,
will be given in the next subsection. The first step of the procedure is the choice
of the input, which consists in the geometry of the unit cell, complemented by the
constitutive properties of the materials. The microstructure may contain several dif-
ferent phases, one of which may describe the void. The only restriction is that the
phase describing the void cannot be connected. Then, once these parameters have
been fixed, a FEM code is used to compute the propagation characteristics, i.e. phase
velocities and polarizations, needed to provide data for the identification procedure.
The computation is performed on the unit cell, considering periodic Floquet-Bloch
boundary conditions. Then, the three different approaches are used to retrieve the
invariants of C, as well as an orientation angle, thus identifying the apparent material
Capp. Subsequently, a validation procedure is performed to ensure the correctness of
the results. This consists in injecting Capp in the Christoffel equation for the homo-
geneous material (equation (4.2.5)) and comparing to the results for full field FEM
simulation. In case the validation fails, the computation of the propagation charac-
teristics can be repeated, for instance by considering a different set of propagation
directions for the plane waves. If the validation succeeds, the final output is given by
considering that Ceff = Capp. The procedure is schematically presented in figure 4.1.

Unit cell geometry
Wave velocities
+ polarizations

Parametrized
Christoffel tensor

Effective elas-
ticity tensor

Comsol Multiphysics :
Floquet-Bloch analysis

Mathematica Mathematica

Figure 4.1: Schematic of elastodynamic homogenisation method

4.4.2 Results
In this subsection, we perform the procedure using the three approaches for the spe-
cific set of periodic architectured materials introduced in chapter 3. As mentionned
before in chapter 2, the choice of the unit cells is performed in order to explore the
different symmetry classes of the constitutive tensor Capp.
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If we consider the point group GM of an infinite periodic material, i.e. the set of
vectorial isometries that let the material invariant, the Curie-Neumann’s principle
can be stated as follows

GM ⊂ GCapp . (4.4.1)
The meaning of equation (4.4.1) is that a transformation g that let M invariant is
a symmetry transformation of Capp. As a result, we can map the different symme-
try classes of the periodic architectred material into those of the continuum equiv-
alent material. At this stage, and as already pointed out, it is important to note
that the framework of Cauchy elasticity does not allow to investigate the effects
related to the chirality, or lack of centrosymmetry. In order to account for these
characteristics, a generalised continuum framework such as SGE should be considered
[Auffray et al., 2015, Auffray et al., 2018].

Name Digonal Orthotropic Tetragonal Isotropic

[GM] [1] , [Z2] [D2] [Z4] , [D4] [Z3] , [D3] , [Z6] , [D6]
[GChom ] [Z2] [D2] [D4] [O(2)]

Table 4.1: Symmetry classes

In this work, we investigate representative lattice geometries belonging to each sub-
group of GM. These PAMs are presented in figure 4.2. The unit cell of each PAM
is a two-dimensional solid modelled under plane strain hypothesis. In terms of con-
stitutive materials, each lattice is modelled as a linear elastic and isotropic material,
with the properties corresponding to the aluminium (Young’s modulus E = 70 GPa,
Poisson ratio ν = 0.33 and volume mass density ρ = 2700 kg/m3. All unit cells have
the same size (a = 1 mm). In a first time we consider the same volume fraction
(≈ 33%, as in figure 2.8), but later in this work a parametric study with respect to
this volume fraction will be also presented. For chiral geometries, the dimensionless
geometrical parameter related to the thickness of the ligaments and the radius of the
rings, as defined in [Spadoni et al., 2009], is fixed to β = 0.38.

We briefly recall here that the main idea of Floquet-Bloch analysis consists in com-
puting the propagation characteristics (phase velocities and polarizations) by solving
the elastodynamic problem over the unit cell. Periodic boundary conditions, namely
Floquet-Bloch boundary conditions, are used to take into account the infinite nature
of the lattice. It allows to impose on the boundaries of the unit cell a displacement that
corresponds to a Bloch wave and solving the equation (2.3.25) for a given wavevector
k. Consider for instance, the translation vectors v1 = ae1 and v2 = ae2 respectively,
in the two directions of the lattice e1 and e2, with a the size of the unit cell, the
Floquet-Bloch boundary condition reads 5 :

uk(x+vi, t) = R
(
ũk(x+vi)ei(ωt−k·(x+vi))

)
= uk(x, t)R

(
ei(ωt−k·vi)

)
(4.4.2)

This condition shows that the displacement is phase-shift between two homologous
points on opposite boundaries of the unit cell. However, under the LW-LF hypothesis,
4.4.2 degenerates into standard periodic boundary conditions and reads

5This result derives from using born-Von-Karman conditions, the methodology followed by Bloch
rigorously detailed in [Gazalet et al., 2013]
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Figure 4.2: Studied PAMs geometries

u(x+vi) = u(x) (4.4.3)

In order to ensure the LW-LF regime, the problem is solved for large values of the
wavelength with respect to the size of the unit cell. In this work we considered a scale
separation of

η = λl
a

= 200, (4.4.4)

where λl is the loading wavelength. This corresponds to a wavelength 200 times the
size of the unit cell. In the case of a unit cell size of a = 1 mm, this corresponds
to a wavenumber ‖k‖ ≈ 31.41 m−1. We solved the wave propagation problem for
θ = {0◦, 30◦, 45◦, 90◦}. It should be noted that the choice of an origin for the angle
measurement is arbitrary and may or may not correspond to a symmetry element of
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the mesostructure.
The software COMSOL Multiphysics 5.4 has been used to solve the eigenvalue
problem for each direction of propagation of the plane wave. The first two eigenfre-
quencies, divided by the norm of the wavevector, give the phase velocities velocities.
The corresponding polarisation fields ŝi are subsequently identified by averaging the
displacement vector over the unit cell:

ŝi = 〈ũ〉i
‖〈ũ〉i‖

, i = 1, 2, with 〈ũ〉 = 1
|T |

∫
T
ũ(x)dx. (4.4.5)

This calculation is performed for an appropriate set of propagation directions, depend-
ing on the approach considered. The inversion procedure is then carried out using the
commercial software WOLFRAM Mathematica, and gives the set of invariants of
T and an orientation angle. In order to validate the results, the phase velocities for
the apparent material are calculated as follow

v1(θ) =
√

1
2ρhom

(
I1(θ)−

√
K2(θ)

)
, v2(θ) =

√
1

2ρhom
(

I1(θ) +
√

K2(θ)
)
. (4.4.6)

and represented in polar plots compared with the results obtained from the Floquet-
Bloch analysis. It is important to remark that, given the fact that we used noiseless
numerical data to feed the identification procedure, all approaches gave quantitatively
the same results. These results are summarised in figure 4.3. At these stage, some
comments can be done:

– The results of the identification are in excellent agreement with the full-field
Floquet-Bloch computation, as the polar plots of the phases velocities are su-
perposed for every symmetry class;

– The apparent elastic behaviour of Z3, D3, Z6 and D6 lattices, as anticipated, is
isotropic;

– In the LF-LW regime, chirality and lack of centrosymmetry play no role;
– In the case of the square and the orthotropic lattices, respectively D4 and D2,
wave propagation is, again as expected, highly anisotropic. The overall be-
haviour exhibits the same symmetry as the unit cell, as the symmetry lines of
the polar plot are aligned with those of the unit cell in the reference frame;

– In the case of chiral materials, we can observe that phase velocities of shear
and longitudinal waves are closer. This is due to the auxetic nature of these
architectures;

– More interesting, and less trivial, is the behaviour of the tetrachiral lattice
Z4. From table 4.1 we expect this architecture to be identified as a tetragonal
material. This means that the identified Capp has more symmetries than the
unit cell, and the symmetry lines observed in figure 4.3(a) are not material
but mathematical symmetries. Moreover, these symmetry lines are tilted with
respect to the reference frame, and the angle cannot be predicted in advance
just by analysing the symmetries of the unit cell, showing the importance of an
identification procedure that does not formulate assumptions on the symmetry
classes of Capp.
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Figure 4.3: Polar plots of phase velocities for different symmetry classes

In a second time, a parametric study for different volume fractions has been per-
formed, and the results obtained by means of the proposed identification procedure
compared to those obtained from a elastostatic homogenization (details in Appendix).
In figure 4.4 the coefficients of Chom expressed in the reference frame, are plotted for
each architecture. The results are in excellent agreement for each symmetry class.
It is important to remark that the tetrachiral cell is still cubic, but the fact that its
symmetry lines slightly tilted explains why the coefficients c1112 and c2212 are different
from zero. Moreover, the fact that c1112 = −c2212 confirms that this remark.
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Figure 4.4: Evolution of effective elastic moduli with respect to the volume fraction
ρ/ρs

4.5 Synthesis
In this chapter a novel identification procedure for computing the effective constitu-
tive tensors of an architected material in the LW-LF regime was introduced. The
procedure is based on the computation of the invariants of the Christoffel tensor, pa-
rameterized with respect to the harmonic decomposition of the elasticity tensor. In the
methodology, wave propagation characteristics, such as phase velocities and polariza-
tions, corresponding to plane waves propagating to different directions are processed
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to retrieve the effective quantities. No assumptions are made on the symmetry class
of the effective tensor.
Three approaches are proposed to implement the procedure: PVBA, which uses both
phase velocities and polarizations; VBA, which uses only phase velocities; and VBAF,
which is still based on phase velocities, but uses a Fourier series approach. These
three strategies are formally equivalent, but they have complementing features and
characteristics, as described in table 4.2.

Approach PVBA VBA VBA-F
Nature of measurements Velocity + Polarisation Velocity Velocity

Minimal N◦ of measurements 3 3 4
Number of equation 3 (5) 3 (5) 3 (?)

Nature of system to solve linear (1st-order) non-linear (2nd-order) 2nd-order
Computational robustness Good Fair Good

Sensitivity to noise Good Fair Good

Table 4.2: Comparison of the features of the different approaches

From the point of view of computational performance, the PVBA is for certain the
best choice, as it requires a minimal number of measures, and the solution of a lin-
ear first order system. However, it requires the access to wave polarization, which
can be straightforward in the case of numerical simulations, but quite complex and
unconventional when concerning experiments. To this end, dynamic DIC methods
can be used, as well as the use of 3D laser measurements. The three procedures also
exhibit different sensitivity with respect to the presence of noise in the input data.
This point is especially interesting when working with real data form experiments.
In this case, the Fourier based procedure VBAF is the most performing, while the
VBA, since it is based on the solution of a nonlinear 2nd order system, is the less
performing. A more comprehensive study of the robustness of the different methods
will be the object of a forthcoming work. Concerning the limits of the approach, it
is important to remark that the procedure is limited to the LW-LF regime. In this
sense, the choice of the scale separation ratio equation (4.4.4) is crucial. Indeed, if
the algorithms are applied to data corresponding to wave with a smaller wavelength,
they can fail to correctly identify the apparent properties. In particular, it is known
that smaller values of η would trigger dispersive effects caused by scattering or in-
ternal resonance phenomena. For those classes whose anisotropy is well captured by
Chom, like D4 and D2 the the difference in the results may not be so remarkable.
However, for those classes that are seen as isotropic in classic continuum elasticity,
the procedure could give results that are completely wrong, as it can be observed in
[Rosi and Auffray, 2019, Rosi et al., 2020]. In this case, a richer EHM able to account
for chiral or dispersive effects should be used. It has been shown in the literature that
generalized continua, such as Strain Gradient Elasticity (SGE) of Cosserat Elasticity
are a suitable choice [Auffray et al., 2015, Rosi and Auffray, 2019].
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4.6 Appendix: Elastostatic homogenization
In this subsection, we recall some theoretical elements of computational homogeniza-
tion to predict the effective propreties of architectured materials in the context of
linear elasticity. The elastostatic homogenisation method will be performed, its re-
sults will be used as the reference for comparison results the results of the Bloch-wave
identification approach. First, the Representative Elementary Volume will be pre-
sented. Then, the localisation problem will be posed with appropriate static boundary
conditions. Finally, the effective quantities will be defined

4.6.1 Introduction
The materials and structures modeling in mechanical systems are generally based on
the assumption of materials homogeneity. However, there is a scale below which many
materials present a high density of heterogeneities, and whose phases are often ran-
domly distributed. The influence of heterogeneities on the macroscopic behavior be-
havior behaviour of the structure can be highlighted by representing the mechanisms
involved, at a sufficiently small-scale; the characteristic scale of interest becomes the
scale of the heterogeneities. However, taking into account these fine-scales often leads
to ill-conditioned problems and the numerical cost would be prohibitively expensive
(in the context of a finite element simulation for example). Homogenization techniques
are based on a decomposition in different levels of the heterogeneous microstructure
of the material. They allow, through a multi-scale approach, to provide an equivalent
homogeneous model guaranteeing the conservation of a certain number of physical
propreties of the original medium, which means an identical behavior behavior be-
haviour "on average". The objective of this section is to present the basic concepts
of computational homogenization to predict the effective propreties of architectured
materials in the context of linear elasticity. First, the notion of Represen- tative Vol-
ume Element (RVE) is introduced. Then, the localization problems are posed and the
effective propreties are defined (the effective stress and strain fields and the effective
fourth-order elasticity tensor). Finally, a numerical procedure based on Finite Ele-
ment Method (FEM) is presented to compute the effective propreties using different
types of boundary conditions.

Methodology

According to [Bornert et al., 2001], the homogenization procedure is carried out in 3
main steps:
• Representation: Definition of the representative elementary volume (REV);
• Localization: Definition of a localization operator for stress and strain fields;
• Homogenization: Calculation of the effective properties;

4.6.2 Representative elementary volume
One basic notion in homogenization and more specifically in computational homog-
enization is the Representative Elementary Volume (REV). An REV is a domain of
finite size that carries all the information about the microstructure, i.e., it describes the
microstructure: the different phases geometries and their local distributions. In addi-
tion to that, the REV must represent the macroscopic behavior behavior behaviour
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at the microscopic scale, which means that it should contain enough information for
effective properties to be calculated on the sole basis of this volume, under some
conditions of scale-separation.
The principle of scale-separation involves a comparaison between different character-
istic lengths. If we denote ”l” the characteristic size of the microstructure (size of the
considered REV) , ”L” the characteristic size of the macrostructure and ”d” the size
of microstructural heterogeneities, the condition ”l� L” guarantees the continuity of
the medium, while ”d� l” allows to assign to the REV a homogeneous macroscopic
behavior behavior behaviour.
The previous conditions can be summarized as follows

d� l� L

It is worth noting that, the choice of the REV depends on the specific investigated
properties6. In addition to that, the computed effective properties will depend on the
type of boundary conditions applied over the boundary of the REV [Yvonnet, 2019].
To summarize, the step of representation consists in describing the inner structure :
the internal composition of the different phases (local material propreties are assumed
to be known), their local distribution in the REV (when it’s possible) as well as
their respective volume fractions. A rich and realistic representation contributes to a
reliable estimation of the effective behavior behavior behaviour.

Equivalent Homogenized Medium

Chom

L

Homogenization

Equivalent Homogenized Medium

Chom

L

Homogenization

n
∂T

Γ

T C2

Ω2

C1

Ω1

l

Figure 4.5: a) Periodic microstructure; b) Representative Elementary Volume (REV)
as a unit periodic cell

Since the medium is periodic and deterministic, the REV can be reduced to a single
unit cell which must carries all the information about the microstructure and the
effective properties to be calculated. In addition to that, the computed effective
properties will depend on the type of boundary conditions applied over the boundaries
of the REV. Thus, it is more appropriate to choose Periodic Boundary Conditions
(PBC) since the convergence macroscopic quantities is ensured just with a single
periodic cell. To do so, a localisation problem using strain approach for instance,
need to be solved.

6The size of the REV for thermal conductivity would be a priori different from the REV for a
elastic moduli
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4.6.3 Localization problem
We consider a heteregeneous material composed of N phases as shown in the figure
figure 4.5.a. An REV as defined in figure 4.5.b is associated with a domaine Ω ∈ R2.
The boundary of the domain Ω will be denoted by ∂Ω and the interface between
phases will be supposed perfect and denoted by Γ. The properties are supposed to
be known, and given by the fourth-order elastic tensor which also is supposed o be
constant within each phase. Hence, we have

C(x) =
N∑
i=1

χi(x)Ci , ∀x ∈ Ω (4.6.1)

where Ci denote the elasticity tensor associated with the i − th phase, and χi(x) is
the indicator function. The idicator function, called also the characteristic function
χi(x) taks the value of 1 for any point x of the domain Ωi associated with the i− th
phase, and 0 elsewhere. The main objective is to define the effective elasticity tensor
over the equivalent homogeneous medium as shown in the figure 4.5
The localization of strains is based on the resolution of a boundary value problem
called “Strains localization”. Assuming that the REV is subjected to homogeneous
strain field, the localization problem can be stated as follows :

Definition : Strains localization problem

For a given macroscopic strain field ε, find the displacement field u(x) in Ω such
that :

∇ · σ(x) = 0 , ∀x ∈ Ω; (4.6.2)
with

σ(x) = C(x) : ε(x) (4.6.3)

ε(x) = 1
2 [u(x)⊗∇ + ∇⊗ u(x)] (4.6.4)

and verifying
〈ε(x)〉 = ε (4.6.5)

Where 〈·〉 = 1
|Ω|

∫
Ω ·dΩ denotes the spatial averaging operator. There is an alterna-

tive localization problem based on stress, assuming that the REV is subjected to a
homogeneous stress field. The formulation of the latter problem can be found in the
book of [Yvonnet, 2019].

Boundary conditions

Before homogenization process, it is necessary to set boundary conditions to Ω in
order to solve the problème equation (4.6.2) – equation (4.6.4). Hence, the condition
equation (4.6.5) can by satisfied by using appropriate boundary conditions.
Assuming that the local strain field is the superposition of a constant macroscopic
strain field ε and a microscopic fluctuation ε̃(x), we shall write

ε(x) = ε+ ε̃(x) (4.6.6)
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After applying the spatial averaging operator to equation (4.6.6), and using Green
theorem, we have

〈ε(x)〉 = ε+ 1
2|Ω|

∫
∂Ω

(ũ(x)⊗ n + n⊗ ũ(x)) dΓ (4.6.7)

Where ũ is a fluctuating displacement field such that ũ = u − ε · x. Therefore, the
condition 4.6.5 is satisfied if the second term on the right side of equation (4.6.7) is
equal to zero, which leads to the following conditions :

1. ũ(x) = 0 on ∂Ω;
2. ũ(x) is periodic on Ω.

The corresponding boundaring conditions are obtained by integrating equation (4.6.6)
with respect to x. In the present framework, only two type of boundary conditions are
considered : Kinematic Uniform Boundary Conditions - KUBC and Periodic Bound-
ary Condition - PBC ; For the case of Static uniform boundary conditions – SUBC
and stress localization problem bases, the interested reader is reffered to the book of
[Yvonnet, 2019].

Definition : Kinematic Uniform Boundary Conditions - KUBC

The displacement u(x) is prescribed for any material point x ∈ ∂Ω such that :

u(x) = ε · x , ∀x ∈ ∂Ω (4.6.8)

Definition : Periodic Boundary Condition - PBC

The displacement u(x) over the boundary ∂Ω takes the form :

u(x) = ε · x + ũ(x) , ∀x ∈ Ω (4.6.9)

Where ũ(x) is the fluctuating displacement field which is periodic over Ω. In
other words, ũ(x) takes the same value on two homologous points x+ and x− on
opposite faces of the REV Ω

4.6.4 Averaging fields
Let first define the spatial average of a kinematically compatible strain field ε(x).
Without loss of generality, we consider the REV of two phases represented in the
figure figure 4.5.b, we have

〈ε(x)〉 = 1
|Ω|

∫
Ω
εijdΩ = 1

2|Ω|

∫
Ω

(ui,j + uj,i) dΩ

= 1
2|Ω|

∫
∂Ω

(
u1
inj + u1

jni
)

dΓ + 1
2|Ω|

∫
Γ

(
u1
inj + u1

jni
)

ds− 1
2|Ω|

∫
Γ

(
u2
inj + u2

jni
)

ds

(4.6.10)
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The interfaces Γ are supposed perfect, hence the red-coloured terms are equals to
zero. Then, using equation (4.6.8) and Green theorem , we shall write

〈ε(x)〉 = 1
2|Ω|

∫
∂Ω

(uinj + ujni) dΓ = 1
|Ω|

∫
Ω
εijdΩ = εij (4.6.11)

Consider now the spatial average of a statically admissible stress field σ(x) , i.e.
σij,j = 0, it yields:

〈σ(x)〉 = 1
|Ω|

∫
Ω
σijdΩ = 1

|Ω|

∫
Ω
σikδkjdΩ

= 1
|Ω|

∫
Ω1
σ1
ikδkjdΩ + 1

|Ω|

∫
Ω2
σ2
ikδkjdΩ

= 1
|Ω|

∫
Ω1

(
σ1
ikxj

)
,k

dΩ + 1
|Ω|

∫
Ω2

(
σ2
ikxj

)
,k

dΩ

= 1
|Ω|

∫
∂Ω
σ1
iknkxjdΓ + 1

|Ω|

∫
Γ
σ1
iknkxjds− 1

|Ω|

∫
Γ
σ2
iknkxjds

(4.6.12)

As mentioned before, when the interfaces Γ are perfect, the previous relation is simply
reduced to

〈σ(x)〉 = 1
|Ω|

∫
Ω
σijdΩ = 1

|Ω|

∫
∂Ω
σiknkxjdΓ (4.6.13)

Hill-Mandel lemma

The Hill-Mandel lemma expresses the relation of equivalence in terms of mechanical
energies between the macroscopic and the microscopic description of the same medium
[Hill, 1963]. Let σ be a statically admissible stress field and ε kinematically admissible
strain field7. Then it holds

〈σ(x) : ε(x)〉 = 〈σ(x)〉 : 〈ε(x)〉 (4.6.14)
The demonstration of thee Hill-Mandel lemma is provided in the reference [Yvonnet, 2019]

Effective properties

In the strains localization problem equation (4.6.2) - equation (4.6.4), the spatial
distribution of different phases are given by the fourth-order tenserA, which expresses
the relation between micro and macroscopic strain, such that

ε(x) = A(x) : ε (4.6.15)
A(x) is the concentraion (or the localization) strain tensor, verifying

1
Ω

∫
Ω
AijkldΩ = Iijkl;

Aijkl = Ajikl = Aijlk
(4.6.16)

Applying the constitutive law, we obtain

σ = C(x) : A(x) : ε (4.6.17)
7Or σ and ε both verifies the periodic boundary conditions.
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Then, the macroscopic constitutive relationship is obtained by averaging equation (4.6.17)

σ = C : ε (4.6.18)
with

C = 〈C(x) : A(x)〉
The problem equation (4.6.2) - equation (4.6.4) being linear, its solution can be ex-
panded using the superposition principle as a linear combination of the three inde-
pendent components of the strain tensor in 2D as

u(x) = u(11)(x)ε11 + u(22)(x)ε22 + u(12)(x)ε12

where u(x) denotes the solution of the problem localisation problem equation (4.6.2)
- equation (4.6.4) when prescribing a macroscopic strain field ε, i.e., the micro-
displacement due to prescribed macroscopic strain tensor εij defined by

εij = ẽi ⊗ ẽj, (i, j) = {(1, 1), (2, 2), (1, 2)}
In other words, u(11)(x)ε11, u(11)(x)ε11 and u(11)(x)ε11 are obtained by solving the
strain localisation problem with, respectively:

ε(11) =
[
1 0
0 0

]
, ε(22) =

[
0 0
0 1

]
, ε(12) = 1

2

[
0
√

2√
2 0

]
, (4.6.19)

By setting ε(ij)(x) = ε
(
u(ij)(x)

)
, one can write

ε(x) = ε(11)(x)ε11 + ε(22)(x)ε22 + ε(12)(x)ε12,

and thus have the following compact form

ε(x) = A : ε with Aijkl(x) = ε
(kl)
ij (x).

Then, taking into the Hooke’s law, the macroscopic constitutive relationship is ob-
tained by averaging (4.6.17)8

σ = Chom : ε with Chom = 〈C(x) : A(x)〉 (4.6.20)

8An alternative definition can be obtained from Hill-Mandel lemma.
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5.1 Introduction
Homogenization theory, as mentioned previously, focuses on studying the macroscopic
behavior of systems that exhibit microscopic heterogeneities. The main idea is to re-
place such system with an equivalent homogeneous medium that serves as a reliable
approximation of the original one, preserving its the macroscopic behavior within a
certain range of parameters. In the context of wave propagation in periodic media,
scale effects emerge due to nature of the problem and the distinct characteristics of
the architectured material. At least two scales can be distinguished: the microscopic
and macroscopic scales.

Homogenization can be approached in various ways. From the physical, or mechan-
ical point of view, the idea is to identify a characteristic length-scale over which the
average of the microscopic fields is computed. The definition of homogenized or ef-
fective properties is then derived from these averaged quantities. This characteristic
length-scale is often referred to as the REV, which represents the unit cell in the
case of periodic media. On the other hand, from the mathematical point view, the
homogeneous model is defined as the limit of a sequence of heterogeneous problems,
known as auxiliary problems or cell problems, depending on a small parameter ε going
to zero, called the scale separation ratio. The homogenized or effective properties are
defined as the resulting properties of this limit problem.

The first developments of asymptotic homogenization for periodic media were made
[San70, San71, Bab76], where the term ’homogenization’ was first used in a mathemat-
ical context. Subsequently, numerous asymptotic models were developed to provide a
homogenized description of wave propagation phenomena. In the low-wavelength and
low-frequency (LW-LF) regime, Bensoussan et al. [ref] introduced a well-established
homogenization theory based on two-scale asymptotic expansions. This theory ad-
dresses static and quasi-static behaviors, offering an asymptotic description of wave
dispersion. However, it has limitations in capturing internal length scales and dis-
persion phenomena. To overcome these limitations, higher order terms (in terms
of Taylor expansions) were introduced, enabling the models to accurately capture
dispersive effects. This improvement is explored in [Bakhvalov and Panasenko, 1989,
Santosa and Symes, 1991, Boutin and Auriault, 1993, Smyshlyaev and Cherednichenko, 2000,
Fish et al., 2002, Bacigalupo and Gambarotta, 2014b, Wautier and Guzina, 2015, Allaire et al., 2016,
Abdulle and Pouchon, 2020, Cornaggia and Guzina, 2020, Cornaggia and Bellis, 2020]
for scalar waves in 1D, 2D, 3D and also elastic waves. Two-scale homogenization of
the wave equation in periodic media is nowadays well understood, particularly in
terms of higher-order contributions that involve higher gradients of the macroscopic
strain. However, these results have not been extended to strain-gradient theory. This
has motivated a different approach towards constructing a strain-gradient model of
the EHM based on two-scale asymptotic expansions. The primary objective of this
approach is to define and compute the high-order tensors of the SGE’s constitutive
law, as introduced in Chapter 3, in order to approximate the acoustic branches in
both the LW-LF and the SW-LF regimes.

This chapter is organized as follows. First, we present the formal homogenization
framework introduced in [Boutin and Auriault, 1993] for the wave propagation prob-
lem in Section 1. Here, the displacement field is expressed in terms of the solutions
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of cell problems called correctors. In Section 2, we describe in detail the procedure
for using the asymptotic expansion method to compute high-order elastic and inertial
homogenized tensors of the medium with respect to the scale parameter ε. In this
framework, ε represents the ratio between the wavelength of the wave traveling in the
medium and the size of its periodic unit cell. We explain how the cell problems are
obtained and solved, providing weak form and example of implementation. Next, in
section 3, we establish two reciprocity identities between the correctors 1which are
one of the major contributions of this chapter. These relationships, of great practi-
cal interest, allow us to reduce the number of cell problems that need to be solved.
Finally, in Section 4, we will propose the homogenized wave equations as well as the
intrinsic expressions of the homogenized higher-order tensors of the strain-gradient
constitutive law derived from the asymptotic homogenization process, which is the
second major contribution of this chapter.
The work described in this chapter has been realized in collaboration with Marc
Bonnet (POEMS, ENSTA Paris).

5.2 Two-scale homogenization framework
The objective of this section is to present the mathematical framework for the higher-
order homogenization method, which is based on asymptotic expansions. This frame-
work allows for the computation of essential correctors necessary to define the homog-
enized high-order tensors for wave propagation in periodic media. We will provide
a concise description of the scales involved, the equations employed, and outline the
overall procedure followed in this approach.

5.2.1 Scale separation
Let us consider a 2D periodic microstructered medium Ω, generated by translating
the elementary cell Yε using a set of two lattice vectors v1 and v2. The constituent
materials, denoted by Ω1 and Ω2, are assumed to be linear, elastic and modeled as
Cauchy-type continua. Due to its periodicity, the medium can be fully characterized
by the elementary unit cell Yε , which carries all the necessary information about the
medium, including its symmetry properties. For illustrative purposes, we consider the
example of square periodic media. In this specific case, the unit cell is defined as Yε

= [0, l]2, as depicted in figure 5.1b, where l is the size of the unit cell (characteristic
length) and R the lattice periodicity. As already pointed out in chapter 2, both the
elasticity tensor and the mass density are Yε-periodic, meaning thatC

ε(x+vi) = Cε(x)
ρε(x+vi) = ρε(x)

,∀x ∈ Ω,vi ∈ R, i = 1, 2 (5.2.1)

We study elastic waves in heterogeneous, unbounded, periodic media with charac-
teristic wavelength λ significantly longer than unit cell size. The condition for scale
separation is given by the scale parameter ε, defined as:

ε = l

λ
� 1.

1It is worth noting that the first reciprocity identity was previously established in
[Boutin and Auriault, 1993], while the second one was partially developed in [Fish et al., 2002] and
further completed in this work.
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Figure 5.1: Schematics of an infinite heterogeneous periodic media and its unit cell

Therefore, we need to consider two scales: the macroscopic scale O(λ) and the mi-
croscopic scale O(l) � λ. The scale parameter ε allows to represent both scales by
introducing a macroscopic spatial variable x ∈ Ω (slow variable) and a microscopic
spatial variable y = x/ε−bx/εc ∈ Yε2 (fast variable that describes local fluctuations),
as depicted in section 5.2.1
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Figure 5.2: Two well distinct scales are considered: the macro-scale, described by x,
and the micro-scale, described by y

The medium being assumed to be macroscopically homogeneous, we then haveC
ε(x) = C(y)

ρε(x) = ρ(y)
, with y = x/ε− bx/εc (5.2.2)

This means that the elasticity tensor C and the mass density ρ are both Yε-periodic
in y.

2The notation b·c denotes the closest lattice point chosen so that x/ε − bx/εc always belong to
the reference cell Yε.
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5.2.2 Governing equations
Let us denote by u(x, t) the displacement at time t of the material point of the medium
located at x. The local elastodynamic equations written at the cell scale read

ε(x, t) := 1
2 [u(x, t)⊗∇ + ∇⊗ u(x, t)] =: u(x, t)⊗s ∇, ∀x ∈ Ω (5.2.3)

σ(x, t) = Cε(x) : ε(x, t), ∀x ∈ Ω (5.2.4)

∇ · σ(x, t) + f(x, t) = ρε(x)ü(x, t), ∀x ∈ Ω (5.2.5)

in which f is the body force density. Using the constitutive equation 5.2.4 and the
compatibility equation 5.2.3, the linear momentum balance equation 5.2.5 takes the
following form

∇ · {C(x) : (u(x, t)⊗s ∇)} = ρ(x)ü(x, t)− f(x, t) (5.2.6)

As said earlier, we will follow the approach introduced in [Boutin and Auriault, 1993],
which consists of considering the propagation of time-harmonic waves of wavelength
λ, under the hypothesis of small deformations3. Accordingly, applying the Fourier
transform to 5.2.6 with respect to the time variable yields the local motion equation
in the frequency domain:

∇ · {C(x) : (ũ(x)⊗s ∇)}+ ω2ρ(x) ũ(x) = −f̃(x) (5.2.7)

5.2.3 Two-scale asymptotic expansions
After introducing the slow and fast variables x and y, the (scalar, vector or tensor)
fields are sought as functions of both variables, e.g. u(x) = ũ(x,y), ε(x) = ε̃(x,y) . . .
We furthermore assume that all fields admit a multiscale expansion along powers of
the scale parameter ε. For instance, the displacement field is sought in the form

ũε(x) =
∞∑
n=0

εn ũn(x,y) = ũ0(x,y) + ε ũ1(x,y) + ε2 ũ2(x,y) + ε3 . . . , (5.2.8)

where each coefficient ũn(x,y) is a function of the two variables x and y that is Y-
periodic with respect to the microscopic variable y. Accordingly, the stress and strain
fields admit the same kind of expansion:

σ̃ε(x) =
∞∑
n=0

εnσ̃n(x,y), ε̃ε(x) =
∞∑
n=0

εnε̃n(x,y). (5.2.9)

One way to understand this ansatz is that, at each macroscopic point x, the field
ũk(x, •) undergoes modulation as a result of the presence of intermediate small scales
in the problem at the point x. The modulation is incorporated and expressed through
the component ũk(•,y) of the function ũk.

3It is important to mention that the choice of the frequency regime is purely strategic in this
study. The same analysis in the space-time regime has also been explored in [Fish et al., 2002]. It
is merely a choice of notation, except for the definition of the reference wavelength λ which is easier
for time-harmonic waves.
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5.2.4 Homogenization procedure
In order to compute the coefficients ũn(x,y), as said above, we insert 5.2.8 into 5.2.7
without the body force terms. The spatial differentiation operators ũn(x,y) must
account for both scales, and thus have the form

div (•) := {∇x + ε−1∇y} · (•) , grad (•) := (•)⊗ {∇x + ε−1∇y}.

This process leads to a cascade of equations, to be solved successively in increasing
order of the power of ε. Using the two-scale differential operators, the strain of u is
given by

ũε(x)⊗s ∇ =
∞∑
n=0

εn ũn⊗s∇x + ε−1
∞∑
n=0

εn ũn⊗s∇y

=
∞∑
n=0

εn ũn⊗s∇x +
∞∑
n=0

εn−1 ũn⊗s∇y

=
∞∑
n=0

εn ũn⊗s∇x +
∞∑
n=1

εn−1 ũn⊗s∇y + ε−1 ũ0⊗∇y

=
∞∑
n=0

εn (ũn⊗s∇x + ũn+1⊗s∇y) + ε−1 ũ0⊗∇y.

(5.2.10)

By incorporating the expression above into the left-hand-side of the equation (5.2.7),
we obtain

∇ · {C(y) : (ũ⊗s∇)} = {∇x + ε−1∇y} · {C(y) :
∞∑
n=0

εn ũn⊗s{∇x + ε−1∇y}}

= ε−2∇y · {C(y) : (ũ0⊗s∇y)}
+ ε−1∇x · {C(y) : (ũ0⊗s∇y)} (5.2.11)
+ ε−1∇y · {C(y) : (ũ0⊗s∇x + ũ1⊗s∇y) (5.2.12)

+
∞∑
n=0

εn∇x · {C(y) : (ũn+1⊗s∇x + ũn⊗s∇y)}

+
∞∑
n=0

εn∇y · {C(y) : (ũn+2⊗s∇x + ũn+1⊗s∇y)} (5.2.13)

while the inertial term of 5.2.7 becomes

ω2ρε(x) ũ(x) = ω2ρ(y)
∞∑
n=0

εn ũn . (5.2.14)

By substituting the expansions 5.2.13 and 5.2.14 into the equation of motion 5.2.7, the
latter becomes a power series in ε. Setting each coefficient of that expansion to zero
yields a cascade of differential equations. To make this cascade of equations explicit,
we introduce the following operators [Gambin and Kröner, 1989]:

εx (•) := (•)⊗s ∇x

ηx (•) := εx (•)⊗∇x

κx (•) := ηx (•)⊗∇x


εy (•) := (•)⊗s ∇y

ηy (•) := εy (•)⊗∇y

κy (•) := ηy (•)⊗∇y

(5.2.15)
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Lyy{•} := −∇y · {C(y) : (•)⊗s ∇y}

Lxy{•} := −∇x · {C(y) : (•)⊗s ∇y} −∇y · {C(y) : (•)⊗s ∇x}

Lxx{•} := −∇x · {C(y) : (•)⊗s ∇x}

(5.2.16)

As a result, the functions ũn(x,y) satisfy the following cascade of equations:

/ε−2 : Lyy{ũ0} = 0

/ε−1 : Lyy{ũ1}+ Lxy{ũ0} = 0

/ε0 : Lyy{ũ2}+ Lxy{ũ1}+ Lxx{ũ0} = ω2ρ(y) ũ0

/ε1 : Lyy{ũ3}+ Lxy{ũ2}+ Lxx{ũ1} = ω2ρ(y) ũ1

/εn : Lyy{ũn+2}+ Lxy{ũn+1}+ Lxx{ũn} = ω2ρ(y) ũn , n ≥ 2

(5.2.17)

where in each problem of order εj−2, the main unknown is the displacement field ũj,
while the fields ũj−1 and ũj−2 are considered as inputs to the problem. Solving the
above system therefore allows to compute iteratively the terms of the two-scale ex-
pansion 5.2.8, which will be the subject of the next section. We will notably exhibit
specific cell problems, whose solutions are a family of tensor fields {χj(y)}j>0 called
cell-functions or correctors, each of these tensors being a tensor of order j + 2.

5.3 Second order homogenization of the 2D wave
equations

In this section we will provide a detailed explanation of the homogenization process.
First, we will present the main results, then the methodology to obtain formally
the successive cell problems, their formulation and resolution in order to compute
the corrector fields. Subsequently, we will provide the corresponding weak form and
example of implementation, and give the definition of the homogenized tensors at
each order. Our study will be restricted to the first four equations of 5.2.17, which
involves considering the following ansatz for the displacement field expansion

ũε(x) = ũ0(x,y) + ε ũ1(x,y) + ε2 ũ2(x,y) + ε3 ũ3(x,y) + o(ε3) (5.3.1)
We will establish that solving 5.2.17 up to the ε1-order leads to the following separated
variables solutions:



/ε−2 : ũ0(x,y) = U0(x)

/ε−1 : ũ1(x,y) = U1(x) + χ1(y) : εx
(
U0(x)

)
/ε0 : ũ2(x,y) = U2(x) + χ1(y) : εx

(
U1(x)

)
+ χ2(y) ∴ ηx

(
U0(x)

)
/ε1 : ũ3(x,y) = U3(x) + χ1(y) : εx

(
U2(x)

)
+ χ2(y) ∴ ηx

(
U1(x)

)
+χ3(y) :: κx

(
U0(x)

)
(5.3.2)

where Un(x) are the macroscopic fields, depends only on the macroscopic variable x
and defined as the mean displacement fields over the cell
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Un(x) = 〈ũn(x,y)〉Yε := 1
|Yε|

∫
Yε
ũn(x,y)dy;

and χ1(y),χ2(y),χ3(y) are the so-called cell functions, periodic and zero-mean over
Yε, representing solutions of the first three cell problems4.
To obtain this result, we first observe that the equations in 5.2.17 have the form

Lyy{ũn} = gn(x,y),

where the right-hand side gn(x,y) depends on ũ0, . . . , ũn−1. Thus, each ũn is sought
as a Yε-periodic function of the fast variable y that is parameterized (through the
right-hand side) by the slow variable x. The ensuing cascade of equations 5.2.17
is solved successively using the following lemma 3.1, which is a form of Fredhom’s
alternative [Allaire et al., 1997].
To establish a proper mathematical formalism before entering the detail of the itera-
tive resolution, let us introduce the Sobolev space in which the solutions are defined.
This definition will help us accurately formulate and present subsequent cell-problems.

Definition : Sobolev spaces of periodic functions

We denote byH1
per(Yε;Rd) the closure of C∞per(Yε;Rd) for theH1(Yε) norm (where

C∞per(Yε;Rd) is the set of all vector C∞(Rd) functions that are Yε-periodic). Then,
H1
] (Yε;Rd) is the subspace of all zero-mean vector functions in H1

per(Yε):

H1
] (Yε;Rd) =

{
w ∈ H1

per(Yε), 〈w〉Yε = 0
}

Lemma 3.1: Fredhom’s alternative

For given g(y) ∈ L2(Yε), the problem

Lyyw = g in Yε, w Yε-periodic (5.3.3)
has a unique solution w ∈ H1

] (Yε;Rd) if and only if the right hand side satisfies
the compatibility condition ∫

Yε
g(y)dy = 0. (5.3.4)

In other words, the solution of 5.3.3 is unique up to an additive constant field,
which is fixed by the zero-mean requirement featured in w ∈ H1

] (Yε).

5.3.1 Computation of ũ0

It follows from 5.2.17 that the ε−2 order problem is of the form 5.3.3 with g = 0 and
with x a parameter. By virtue of the previous Lemma, the only Yε-periodic solution

4It is important to note that selecting zero-mean solutions over the unit cell is a strategic choice,
but alternative options are also available. For instance, one can choose to either fix or not fix a
non-null mean.
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ũ0(x,y) of the problem
Lyy{ũ0} = 0 (5.3.5)

is constant with respect to y, and hence is for some function U0 of the form

ũ0(x,y) = U0(x). (5.3.6)

From a physical point of view, the macroscopic fieldU0 can be seen as large scale mod-
ulations of translatory rigid body motions, associated with a "zero-th" order constant
cell solution χ0 = I.

5.3.2 Computation of ũ1 and first cell problem
The first-order term of the displacement expansion ũ1 is obtained by solving the
O(ε−1) problem in 5.2.17. Since ũ0 is of the form 5.3.6, the governing problem for ũ1
reads

Lyy{ũ1} = g1, ũ1 Yε-periodic, with g1 = −Lxy{U0} = ∇y · {C(y) : εx
(
U0
)
}

(5.3.7)
Being the gradient of an y-periodic function, the source term g1 immediatly satisfies
the compatibility condition 5.3.4. Equation 5.3.7 is hence, by Lemma 3.1, solvable in
H1
] (Yε;Rd) and its general solution can by linearity be written in the form

ũ1(x,y) = U1(x) + χ1(y) : εx
(
U0(x)

)
(5.3.8)

where the third-order tensor χ1 is the first corrector, solution of the following problem:

First cell problem (/ε−1)

We call “first cell problem” the following PDE system with prescribed periodic
boundary conditions

−∇y · {C(y) : εy
(
χ1{kl}

)
} = ∇y · {C(y) : (ẽk ⊗ ẽl)} in Yε (5.3.9)

where χ1{kl}(y) ∈ H1
] (Yε) and {kl} = {11, 22, 12}

The first cell problem can be viewed as a family of 3 elementary 2D problems posed
on the unit cell Yε and indexed by {kl}, in which the loading is encoded by the second
member. Hence, χ1{kl} corresponds to the response of the unit cell, which means the
displacement field due to prescribed macroscopic strain tensor ε(kl) = ẽk ⊗ ẽl, i.e.

ε(11) =
[
1 0
0 0

]
K

, ε(22) =
[
0 0
0 1

]
K

, ε(12) = 1
2

[
0
√

2√
2 0

]
K
. (5.3.10)

These problems are solved in a FEM code using the following weak form5.

5The constraints associated with the zero-mean value and periodicity of the solution can be
enforced through the use of Lagrange multipliers. Interested readers can find further details on the
implementation of these constraints in [Yvonnet, 2019].
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Weak form of the first cell problem

For each macroscopic loading ẽk ⊗ ẽl, the weak of the first cell problem indexed
by {kl} is : Find χ1{kl} ∈ H1

] (Yε) such that

∫
Yε
εy(χ1{kl}) : C : εy(v)dy = −

∫
Yε

(ẽk ⊗s ẽl) : C : εy(v)dy ∀v ∈ H1
] (Yε)
(5.3.11)

Using index notation, we have more explicitly∫
Yε
χ

1{kl}
i,j Cijpqvp,qdy = −

∫
Yε
C{kl}pqvp,qdy (5.3.12)

Remark: In this chapter, the indices of the loadings will be represented using curly
braces {..}. In cases where the loading is symmetric, such as in the first cell problem,
it will be denoted within parentheses (..) for simplicity. It is important to note that
this index symmetry of the loadings will thus be consistently interpreted as a tensorial
symmetry, as introduced in Section 2 of Chapter 2.

After computing the first corrector, we now go back to the ε−1order problem 5.3.7.
Replacing ũ1 by the solution 5.3.8, it takes the form

∇y · {C(y) :
[
U1 + χ1 : εx

(
U0
)]
⊗∇y}+ ∇y · {C(y) : εx

(
U0
)
} = 0,

i.e.

∇y · {C(y) :
([
εy
(
χ1
)

+ 1
]

: εx
(
U0
))
} = 0 (5.3.13)

or, in components :

{Cijpq
[
χ1(kl)
p,q + 1

2 (δpkδql + δplδqk)
]
U0k,l},j = 0

From this order, and for the sake of clarity, we introduce the cell stress S0 given by

S0(y) = C(y) :
[
εy
(
χ1(y)

)
+ 1

]
, S(kl)

0ij = Cijpqχ
1(kl)
p,q + Cijkl, (5.3.14)

and equation 5.3.13 expresses that this cell stress is self-equilibrated:

∇y · {S0(y) : εx
(
U0
)
} = 0, i.e. {S(kl)

0ij U0k,l},j = 0.

And since U0 does not depend on y, this equation can be simply written as

∇y · S0(y) = 0, i.e. S(kl)
0ij,j = 0

5.3.3 Computation of first-order homogenized tensors
Next, ũ2 is to be found by solving the O(ε0) equation of 5.2.17, which reads

Lyy{ũ2} = g2, ũ2 Yε-periodic, (5.3.15)
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with

g2 = −Lxy{ũ1} − Lxx{ũ0}+ ω2ρ(y) ũ0

= ∇y · {C(y) : εx (ũ1)}+ ∇x · {C(y) : εy (ũ1)}+ ∇x · {C(y) : εx (u0)}
(5.3.16)

+ ω2ρ(y)u0 (5.3.17)

From the expression of ũ1 5.3.8, we have

εy (ũ1) = εy
(
χ1
)

: εx
(
U0
)
, εx (ũ1) = εx

(
U1
)

+ χ1 : ηx
(
U0
)
, (5.3.18)

while ũ0 = U0 (see 5.3.6). This allows to recast 5.3.17 as

g2 = ∇y · {C(y) :
[
εx
(
U1
)

+ χ1 : ηx
(
U0
)]
}

+ ∇x · {C(y) :
[
εy
(
χ1
)

+ 1
]

: εx
(
U0
)
}+ ω2ρ(y)U0

= ∇y · {C(y) :
[
εx
(
U1
)

+ χ1 : ηx
(
U0
)]
}+ ∇x · {S0 : εx

(
U0
)
}+ ω2ρ(y)U0

(5.3.19)
Since, in addition, the integral of ∇y · {H1(x,y)} over Yε vanishes because the quan-
tity H1(x,y) = C(y) :

[
εx
(
U1
)

+ χ1 : ηx
(
U0
)]

is Yε-periodic, the compatibility
condition 5.3.4 for g2 becomes∫

Yε
∇x · {S0(y) : εx

(
U0
)
}dy + ω2

(∫
Yε
ρ(y)dy

)
U0 = 0 (5.3.20)

We thus obtain the macroscopic balance equation at order ε0

∇x · {CH
0 : εx

(
U0
)
}+ ω2%H0 U0 = 0, (5.3.21)

Where CH
0 and %H0 are respectively, the effective elasticity tensor and the effective

mass density.

Definition : First-order homogenized tensor

The first-order homogenized elasticity tensor CH
0 and mass density %H

0 are defined
by

CH
0 = 〈S0〉Yε = 1

|Yε|

∫
Yε
C(y) :

[
εy
(
χ1(y)

)
+ 1

]
dy , %H0 = 1

|Yε|

∫
Yε
ρ(y)dy.

Using component notation, the tensor CH
0 is thus given by

CH
0ijkl = 〈S(kl)

0ij 〉Yε = 1
|Yε|

∫
Yε

(
Cijpqχ

1(kl)
p,q + Cijkl

)
dy.

This tensor satisfy the following index permutation symmetry

CH
0ijkl = CH

0jikl = CH
0ijlk = CH

0klij,

hence, its space vector is given by

CH
0 ∈ {T ∈ S2(S2(R2)) | T(ij) (kl)}
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Proof of the index symmetry of CH
0 . (i) Minor symmetry Due to the symmetry of the

elasticity tensor and the loading, it is evident that the homogenized tensor CH
0 pos-

sesses naturally the minor symmetry. We have :

CH
0ijkl = 〈Cijpqχ1(kl)

p,q + Cijkl〉Yε = 〈Cjipqχ1(kl)
p,q + Cjikl〉Yε = 〈Cijpqχ1(lk)

p,q + Cijlk〉Yε

i.e.
CH

0ijkl = CH
0jikl = CH

0ijlk

(ii) Major symmetry The major symmetry is proven using a first reciprocity identity
between the components of the cell problem. Let’s recall the weak form of the first
cell problem ∫

Yε
χ1(ij)
p,q Cpqrsvr,sdy = −

∫
Yε
Crs(ij)vr,sdy

By setting vr = χ1(kl)r as the trial field in the weak form associated with χ1(ij), and
vice versa, vr = χ1(ij)

r in the weak form associated with χ1(ij), we obtain:

(a)
∫

Yε
χ1(ij)
p,q Cpqrsχ

1(kl)
r,s dy = −

∫
Yε
Crs(ij)χ

1(kl)
r,s dy

(b)
∫

Yε
χ1(kl)
p,q Cpqrsχ

1(ij)
r,s dy = −

∫
Yε
Crs(kl)χ

1(ij)
r,s dy

(5.3.22)

Due to the symmetry of the left-hand-side bilinear forms and taking into account the
symmetry of C, we obtain∫

Yε
C(ij)rsχ

1(kl)
r,s dy =

∫
Yε
C(kl)rsχ

1(ij)
r,s dy,

which implies

CH
0ijkl = 〈C(ij)rsχ

1(kl)
r,s + Cijkl〉Yε = 〈C(kl)rsχ

1(ij)
r,s + Cklij〉Yε = CH

0klij.

5.3.4 Computation of ũ2 and second cell problem
We now return to the governing problem 5.3.15 for ũ2. The relation 5.3.21, which
ensures its solvability, may now be used to simplify its right-hand side g2. From 5.3.21,
we deduce

ω2ρ(y)U0 = −β(y) ∇x · {CH
0 : εx

(
U0
)
},

where β(y) = ρ(y)/%H0 . Putting this expression of U0 in 5.3.19, equation 5.3.15
becomes

Lyy{ũ2} = ∇y · {C(y) :
[
εx
(
U1
)

+χ1 : ηx
(
U0
)]
}+∇x · {

(
S0−β(y)CH

0

)
: εx

(
U0
)
}.

(5.3.23)
In view of the above form of its right-hand side, the general Yε-periodic solution of
problem 5.3.23 can by linearity be written in the form

ũ2(x,y) = U2(x) + χ1(y) : εx
(
U1(x)

)
+ χ2(y) ∴ ηx

(
U0(x)

)
, (5.3.24)
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where U2(x) is the average of ũ2(x,y) over Yε; χ1 solves the first cell problem; and
the fourth order tensor χ2(y) is the second cell-function. Before setting up the second
cell problem, some simplifications need to be made on the equation 5.3.23. From the
ansatz 5.3.24, we have

εy(ũ2) = εy
(
χ1
)

: εx
(
U1
)

+ εy
(
χ2
)
∴ ηx

(
U0
)
. (5.3.25)

On using the above expression and taking into account 5.3.13, equation 5.3.23 becomes
−∇y·{C(y) :

[
εy
(
χ2
)
∴ ηx

(
U0
)

+ χ1 : ηx
(
U0
)]
} = ∇x·{

(
S0 − β(y)CH

0

)
: εx

(
U0
)
}

Second cell problem (/ε0)

We call “second cell problem” the following PDE system with prescribed periodic
boundary conditions

−∇y · {C(y) : εy
(
χ2{(kl)m}

)
} =∇x · {S0{m} − β(y)CH

0{(kl)m}}

+ ∇y · {C(y) · χ1(kl)} , in Yε
(5.3.26)

where χ1{(kl)m}(y) ∈ H1
] (Yε) and {(kl)m} = {111, 221, 122, 222, 112, 121}

The corresponding weak form can be written as follows:

Weak form of the second cell problem

For each macroscopic loading indexed by {(kl)m}, the weak of the second cell
problem is: Find χ2{(kl)m} ∈ H1

] (Yε) such that
∫

Yε
εy(χ2{(kl)m}) : C : εy(v)dy

=
∫

Yε

(
S0{m} − β(y)CH

0{(kl)m}

)
· vdy−

∫
Yε

(
C{m} · χ1(kl)

)
: εy(v)dy︸ ︷︷ ︸

loading terms

∀v ∈ H1
] (Yε).

Using index notation, we have more explicitly∫
Yε
χ2{(kl)m}
p,q Cpqrsvr,sdy =

∫
Yε

(
S(kl)

0{m}r − β(y)CH
0(kl){m}r

)
vrdy−

∫
Yε
χ1(kl)
p Cp{m}rsvr,sdy

Similarly to what was said for the first cell problem, the tensor-valued cell solution
χ2{(kl)m} may be seen as a collection of six solutions corresponding to elementary loads
defined in terms of the previous cell solutions χ1{(kl)} and S(kl)

0{m}r and the material fields
C and ρ.

5.3.5 Computation of the second-order homogenized coupling
tensors

Next, ũ3 is to be found by solving the O(ε) equation of 5.2.17, which reads
Lyy{ũ3} = g3, ũ3 Yε-periodic, (5.3.27)
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with

g3 = −Lxy{ũ2} − Lxx{ũ1}+ ω2ρ(y) ũ1

= ∇y · {C(y) : εx (ũ2)}+ ∇x · {C(y) : εy (ũ2)}+ ∇x · {C(y) : εx (ũ1)}
(5.3.28)

+ ω2ρ(y) ũ1 (5.3.29)

From the expression of ũ2 5.3.24, we have

εy(ũ2) = εy
(
χ1
)

: εx
(
U1
)

+ εy
(
χ2
)
∴ ηx

(
U0
)
,

εx (ũ2) = εx
(
U2
)

+ χ1 : ηx
(
U1
)

+ χ2 : κx
(
U0
) (5.3.30)

which, used together with 5.3.18 and the ansatz 5.3.8 in the summands of 5.3.29,
yields

g3 = ∇y · {C(y) :
[
εx
(
U2
)

+ χ1 : ηx
(
U1
)

+ χ2 : κx
(
U0
)]
}

+ ∇x · {C(y) :
[
εy
(
χ1
)

: εx
(
U1
)

+ εy
(
χ2
)
∴ ηx

(
U0
) ]
}

+ ∇x · {C(y) :
[
εx
(
U1
)

+ χ1 : ηx
(
U0
)]
} (5.3.31)

+ ω2ρ(y)
[
U1(x) + χ1(y) : εx

(
U0(x)

) ]
= ∇y · {C(y) :

[
εx
(
U2
)

+ χ1 : ηx
(
U1
)

+ χ2 : κx
(
U0
)]
}

+ ∇x · {S0 : εx
(
U1
)

+ S1 ∴ ηx
(
U0
) ]
} (5.3.32)

+ ω2ρ(y)
[
U1(x) + χ1(y) : εx

(
U0(x)

) ]
(5.3.33)

wherein S1 is the second-order cell stress, introduced here for the sake of clarity

S1 = C(y) :
[
εy
(
χ2(y)

)
+ χ1(y) ⊗̂ I

]
, S{(kl)m}1ij = Cijpq

(
χ2{(kl)m}
p,q + χ1(kl)

p δq{m}
)
.

Since, in addition, the integral of ∇y · {H2(x,y)} vanishes because the quantity
H2(x,y) = C(y) :

[
εx
(
U2
)

+ χ1 : ηx
(
U1
)

+ χ2 : κx
(
U0
)]

is Yε-periodic, the
compatibility condition 5.3.4 for g3 becomes∫

Yε

(
∇x · {S0 : εx

(
U1
)

+ S1 ∴ ηx
(
U0
) ]
}
)
dy

+ ω2
∫

Yε

(
ρ(y)

[
U1(x) + χ1(y) : εx

(
U0(x)

))
dy = 0. (5.3.34)

This provides the sought macroscopic balance equation at order ε1

∇x{CH
0 : εx

(
U1
)
}+ ω2%0U1 = −∇x{CH

1 ∴ ηx
(
U0
)
} − ω2%H1 : εx

(
U0
)
, (5.3.35)

where the homogenized elastic and inertial coupling tensors, denoted as CH
1 and %H1

respectively, are given by

CH
1 = 〈S1〉Yε = 1

|Yε|

∫
Yε
C(y) :

[
εy
(
χ2(y)

)
+ χ1(y) ⊗̂ I

]
dy

i.e. CH
1ijklm = 〈S{(kl)m}1ij 〉Yε = 1

|Yε|

∫
Yε
C(ij)pq

(
χ2{(kl)m}
p,q + χ1(kl)

p δq{m}
)
dy
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and:
%H1 = 1

|Yε|

∫
Yε
ρ(y)χ1(y)dy

i.e. %H1pkl = 1
|Yε|

∫
Yε
ρχ1(kl)

p dy

These tensors satisfy the following index permutation symmetry

CH
1ijklm = CH

1jiklm = CH
1ijlkm , %H1pkl = %H1plk.

Therefore, the corresponding tensor space for these tensors can be defined as follows:

CH
1 ∈ {T ∈ S2(S2(R2))⊗ R2| T(ij)p(kl)}, %H1 ∈ {T ∈ S2(R2)⊗ R2| T(kl)m}

5.3.6 Computation of ũ3 and third cell problem
We now return to the governing problem 5.3.27 for ũ3, whose solvability is ensured
by relation 5.3.35. The latter may now be used to simplify the right-hand side g3 of
problem 5.3.27. Equation 5.3.35 multiplied by β produces

ω2ρ(y)U1(x) = −β(y)
[
∇x · {CH

0 : εx
(
U1
)

+ CH
1 ∴ ηx

(
U0
)
}+ ω2%H1 : εx

(
U0
)]

(5.3.36)
which, inserted in 5.3.33, allows to reformulate g3 as

g3 = ∇y · {C(y) :
[
εx
(
U2
)

+ χ1 : ηx
(
U1
)

+ χ2 : κx
(
U0
)]
}

+ ∇x · {
(
S0 − β(y)CH

0

)
: εx

(
U1
)
}

+ ∇x · {
(
S1 − β(y)CH

1

)
∴ ηx

(
U0
)
} (5.3.37)

+ ω2
(
ρ(y)χ1(y)− β(y)%H1

)
: εx

(
U0(x)

) ]
(5.3.38)

Moreover, the inertial term in the above expression can be reformulated using the
macroscopic balance equation 5.3.21 at order ε0, which provides

− ω2εx
(
U0
)

= 1
%H0

(
∇x · {CH

0 : εx
(
U0
)
}
)
⊗∇x (5.3.39)

Substituting this expression into 5.3.38, equation 5.3.27 becomes

Lyy{ũ3} = ∇y · {C(y) :
[
εx
(
U2
)

+ χ1 : ηx
(
U1
)

+ χ2 : κx
(
U0
)]
}

+ ∇x · {
(
S0 − β(y)CH

0

)
: εx

(
U1
)
}+ ∇x · {

(
S1 − β(y)CH

1

)
∴ ηx

(
U0
)
}

+ β(y)
(
%H1
%H0
− χ1

)
:
(
∇x · {CH

0 : εx
(
U0
)
}
)
⊗∇x

(5.3.40)
Since its right-hand side satisfies the compatibility condition 5.3.4, equation 5.3.40
has Yε-periodic solutions which, by linearity, can be written in the form

ũ3(x,y) = U3(x) +χ1(y) : εx
(
U2(x)

)
+χ2(y) ∴ ηx

(
U1(x)

)
+χ3(y) :: κx

(
U0(x)

)
,

(5.3.41)
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whereU3(x) is the average of ũ3(x,y) over Yε and χ3(y) is a 5th order tensor, solution
of the third cell problem. By substituting the expression of ũ3 from 5.3.41 into
equation (5.3.40), and considering both macroscopic balance equations 5.3.21 and
5.3.35 at orders ε0 and ε1 respectively, equation (5.3.40) simplifies to

−∇y · {
[
C(y) : εy

(
χ3
)

+ C(y) · χ2
]

:: κx
(
U0
)
} = (5.3.42)

∇x · {
(
S1(y)− β(y)CH

1 (y)
)
∴ ηx

(
U0
)
} (5.3.43)

+ β(y)
(
%H1
%H0
− χ1

)
:
(
∇x · {CH

0 : εx
(
U0(x)

)
}
)
⊗∇x (5.3.44)

After these simplifications, one can set up the third cell-problem as follows:

Third cell problem (/ε0)

We call third cell problem” the following PDE system with prescribed periodic
boundary conditions

−∇y · {C(y) : εy
(
χ3(klmn)

)
} =∇y · {C(y) · χ2{(kl)m}}+

(
S1{n} − β(y)CH

1{n}{(kl)m}

)
+ β(y)

(
%H1{n}
%H0
− χ1{n}

)
·CH

0{(kl)m} in Yε

(5.3.45)

Where χ1{(kl)mn}(y) ∈ H1
] (Yε) and {(kl)mn} =

{
1111, 2211, 1221, 2221, 1121, 1211
1112, 2212, 1222, 2222, 1122, 1212

}

The corresponding weak form can be written as follows:

Weak form of the third cell problem

For each macroscopic loading indexed by lbrace(kl)mn},the weak of the third cell
problem is: Find χ3{(kl)mn} ∈ H1

] (Yε) such that∫
Yε
ε(χ3{(kl)mn}) : C : ε(v) dy = −

∫
Yε

(
C{n} · χ2{(kl)m}

)
: ε(v) dy (5.3.46)

−
∫

Yε

(
β(y)CH

1{n}(kl){m} − S1{n}
)
· v dy (5.3.47)

+
∫

Yε

[
β(y)

(
%H1{n}
%H0
− χ1{n}

)
·CH

0{m}(kl)

]
· v dy ∀v ∈ H1

] (Yε). (5.3.48)
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Using index notation, we have more explicitly∫
Yε
χ3{(kl)mn}
p,q Cpqrsvr,sdy =−

∫
Yε
χ2{(kl)m}
p Cp{n}rsvr,sdy (5.3.49)

−
∫

Yε

(
β(y)CH

1r{n}{(kl)m} − S{(kl)m}1r{n}

)
vrdy (5.3.50)

+
∫

Yε

[
β

(
%H1r{n}p
%H0

− χ1{n}p
r

)
· CH

0p{m}(kl)

]
vr dy

(5.3.51)

5.3.7 Computation of second-order homogenized tensors
Finally, ũ4 is to be found by solving the O(ε2) equation of 5.2.17, which reads

Lyy{ũ4} = g4, ũ4 Yε-periodic, (5.3.52)

with

g4 = −Lxy{ũ3} − Lxx{ũ2}+ ω2ρ(y) ũ2

= ∇y · {C(y) : εx (ũ3)}+ ∇x · {C(y) : εy (ũ3)}+ ∇x · {C(y) : εx (ũ2)}
(5.3.53)

+ ω2ρ(y) ũ2 (5.3.54)

This time, we do not need to solve problem 5.3.52, and are only interested in formu-
lating the compatibility condition 5.3.4 on g that ensures its solvability. Since C is
Yε-periodic, the integral of ∇y{C(y) : εx (ũ2)} vanishes, and the sought condition is

∫
Yε

∇x · {C(y) : εy (ũ3)}dy︸ ︷︷ ︸
(b1)

+
∫

Yε
∇y · {C(y) : εx (ũ3)}dy︸ ︷︷ ︸

(b2)=0

+
∫

Yε
∇x · {C(y) : εx (ũ2)}dy︸ ︷︷ ︸

(b3)

+
∫

Yε
ω2ρ(y) ũ2 dy︸ ︷︷ ︸

(b4)

= 0 (5.3.55)

From the expression of ũ 5.3.41, we have

εx (ũ3) = εy
(
χ1
)

: εx
(
U2
)

+ εy
(
χ2
)
∴ ηx

(
U1
)

+ εy
(
χ3
)

:: κx
(
U0
)

(5.3.56)

which, used together with 5.3.25 and the ansatz 5.3.8 in the summands of 5.3.54,
yields

(b1) = ∇x ·
(∫

Yε
C(y) :

[
εy
(
χ1
)

: εx
(
U2
)

+ εy
(
χ2
)
∴ ηx

(
U1
)

+ εy
(
χ3
)

:: κx
(
U0
)]

dy
)

(b3) = ∇x ·
(∫

Yε
C(y) :

[
εx
(
U2
)

+ χ1 : ηx
(
U1
)

+ χ2 ∴ κx
(
U0
)]

dy
)

(b4) = ω2
∫

Yε

(
ρ(y)U2 + ρ(y)χ1 : εx

(
U1
)

+ ρ(y)χ2 ∴ ηx
(
U0
))

dy

The compatibility requirement (b1) + (b3) + (b4) = 0 then provides the sought macro-
scopic balance equation at order ε2:
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∇x ·
(∫

Yε
S0(y) : εx

(
U2
)
dy
)

+ ω2
∫

Yε
ρ(y)U2(x)dy

+ ∇x ·
(∫

Yε
S1(y) ∴ ηx

(
U1
)
dy
)

+ ω2
∫

Yε
ρ(y)χ1 : εx

(
U1
)
dy

+ ∇x ·
(∫

Yε
S2(y) :: κx

(
U0
)
dy
)

+ ω2
∫

Yε
ρ(y)χ2 ∴ ηx

(
U0
)
dy = 0,

i.e.

∇x · {CH
0 : εx

(
U2
)
}+ ω2%0U2

= −∇x{CH
1 ∴ ηx

(
U1
)
}−ω2%H1 : εx

(
U1
)
−∇x·{CH

2 :: κx
(
U0
)
}−ω2%H2 ∴ ηx

(
U0
)
,

(5.3.57)

wherein S2 is the second-order cell stress, introduced here for the sake of clarity

S2 = C :
[
εy
(
χ3
)

+ χ2 ⊗̂ I
]
, S{(kl)mn}1ij = Cijpq

(
χ3{(kl)mn}
p,q + χ2{(kl)m}

p δq{m}
)
.

and the second-order homogenized elastic and inertial tensors, denoted as CH
2 and %H2

respectively, are given by

CH
2 = 〈S2〉Yε = 1

|Yε|

∫
Yε
C(y) :

[
εy
(
χ3(y)

)
+ χ2(y) ⊗̂ I

]
dy (5.3.58)

i.e. CH
2ijnklm = 〈S{(kl)mn}2ij 〉Yε = 1

|Yε|

∫
Yε
Cijpq

(
χ3{(kl)mn}
p,q + χ1{(kl)m}

p δq{n}
)
dy

(5.3.59)

and:

%H2 = 1
|Yε|

∫
Yε
ρ(y)χ2(y)dy (5.3.60)

i.e. %H2pklm = 1
|Yε|

∫
Yε
ρχ2{(kl)m}

p dy (5.3.61)

These tensors satisfy the following index permutation symmetry

CH
2ijnklm = CH

2jinklm = CH
2ijnlkm , %H2pklm = %H2plkm.

Therefore, the corresponding tensor space for these tensors can be defined as follows:

CH
2 ∈ {T ∈ (S2(R2)⊗ R2)2|T(ij)n(kl)m}, %H2 ∈ {T ∈ S2(R2)⊗2 R2|Tp(kl)m}

5.4 Reciprocity relationships
The purpose of this section is to establish relationships between the homogenized
elastic and inertial high-order tensors, known as the “Reciprocity Identities.” These
identities directly arise from the weak forms satisfied by the first three cell solutions,
"tested" against other solutions. As mentioned earlier in this chapter, these identities
hold significant practical interest as they establish a direct link between the correctors.
Consequently, the homogenized tensors derived from the nth > 2 cell problem can be
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entirely computed using those obtained from the preceding (n − 1)th problem. This
reduction in the number of cell problems that need to be solved eliminates the need
to solve the last cell-problem, which in this case is the third one. Instead, it becomes
possible to compute the second-order homogenized tensors solely using the first two
correctors and the so-called reciprocity identities.
To this end, two new tensors, D1 and D2, will be introduced, and will also serve in
the last Section of this chapter.

5.4.1 Relationship between tensors %H
1 and CH

1

Proposition 4.1: First reciprocity identity [Boutin and Auriault, 1993]

The homogenized coupling tensors %H
1 and CH

1 satisfy the following “reciprocity
relationship”:

CH
1ijklm −

%H1p(ij)
%H0

CH
0(kl){m}p = D1ijk`m (5.4.1)

where the fifth-order tensor D1 is defined by

D1ijk`m =
∫

Yε

(
S(ij)

0{m}pχ
1(kl)
p − S(kl)

0{m}pχ
1(ij)
p

)
dy.

Proof. • Let’s recall the weak form of the first cell problem∫
Yε
χ1(ij)
p,q Cpqrsvr,sdy = −

∫
Yε
Crs(ij)vr,sdy

By setting vr = χ2{(kl)m}
r as trial field in the weak form associated to χ1(ij), we

obtain ∫
Yε
χ1(ij)
p,q Cpqrsχ

2{(kl)m}
r,s dy = −

∫
Yε
Crs(ij)χ

2{(kl)m}
r,s dy︸ ︷︷ ︸

(a)

(5.4.2)

Considering the definition of CH
1

CH
1ijklm =

∫
Yε

(
C(ij)rsχ

2{(kl)m}
r,s + C(ij){m}pχ

1(kl)
p

)
dy

one yields to the following relationships linking the components of CH
1 and the

second member (a)∫
Yε
C(ij)rsχ

2{(kl)m}
r,s dy︸ ︷︷ ︸

(−a)

= CH
1ijklm −

∫
Yε
C(ij){m}pχ

1(kl)
p dy︸ ︷︷ ︸

(b)

(5.4.3)

• Now, let’s recall the weak form of the second cell problem

∫
Yε
χ2{(kl)m}
r,s Crspqvp,qdy = −

∫
Yε

(
ρ

%H0
CH

0(kl){m}p − S(kl)
0{m}p

)
vpdy−

∫
Yε
χ1(kl)
s Cs{m}pqvp,qdy

Similarly setting vp = χ1(ij)
p as trial field in the weak form associated to χ2{(kl)m}
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∫
Yε
χ2{(kl)m}
r,s Crspqχ

1(ij)
p,q dy = −

∫
Yε

(
ρ

%H0
CH

0(kl){m}p − S(kl)
0{m}p

)
χ1(ij)
p dy−

∫
Yε
χ1(kl)
s Cs{m}pqχ

1(ij)
p,q dy

taking into account the symmetry of C, we obtain

∫
Yε
χ1(ij)
p,q Cpqrsχ

2{(kl)m}
r,s dy = −

∫
Yε

(
ρ

%H0
CH

0(kl){m}p − S(kl)
0{m}p

)
χ1(ij)
p dy−

∫
Yε
χ1(kl)
s Cs{m}pqχ

1(ij)
p,q dy︸ ︷︷ ︸

(c)
(5.4.4)

• Finally, due to the symmetry of the bilinear forms 5.4.2, 5.4.4 and taking into
account 5.4.3 , the corresponding linear forms are hence equal which implies
that their respective second members are equal (b) = −(c), it yields

CH
1ijklm −

∫
Yε
C(ij){m}sχ

1(kl)
s dy =

CH
0(kl){m}p

%H0

∫
Yε
ρχ1(ij)

p dy−
∫

Yε
S(kl)

0{m}pχ
1(ij)
p dy

+
∫

Yε
χ1(kl)
s Cs{m}pqχ

1(ij)
p,q dy

We establish the following identity

CH
1ijklm −

CH
0(kl){m}p

%H0
%H1p(ij) = D1ijk`m =

∫
Yε

(
S(ij)

0{m}pχ
1(kl)
p − S(kl)

0{m}pχ
1(ij)
p

)
dy

We note that the tensor D1 defined by 5.4.1 has respectively, the following symmetry
and skew-symmetry properties

D1ijklm = D1jiklm, D1ijklm = D1ijlkm, D1ijklm = −D1klijm. (5.4.5)
Hence, its corresponding vector space is given by

D1 ∈ {T ∈ Λ2(S2(R2))⊗ R2|T(ij)(kl)m},

in which the notation .. .. indicates antisymmetry with respect to block permutation.

5.4.2 Relationship between tensors %H
1 CH

1 and CH
2

In the previous work of [Fish et al., 2002], the second reciprocity identity was intro-
duced in the simplified case of materials with uniform density. In this subsection,
our contribution lies in presenting a complete and refined version of this relationship,
ensuring its clarity and conciseness.

Proposition 4.2: Second reciprocity identity

Let the sixth-order tensor D2 be defined by

D2ijnk`m := CH
2ijnklm −

%H1p(ij)
%H0

(
D1pnk`m −

%]p{n}s
%H0

CH
0s{m}(k`)

)
− CH

0(ij){n}a
%H2aklm
%H0
(5.4.6)
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with the third-order tensor %] defined by

%]1ik` := %H1ik` − %H1ki`. (5.4.7)

Then, the homogenized tensors %H1 , CH
1 and CH

2 satisfy the following “reciprocity
relationship”

D2ijnklm =
∫

Yε
χ2(ijn)
p,q Cpqabχ

2{(kl)m}
a,b dy−

∫
Yε
χ1(ij)
p Cp{n}a{m}χ

1(kl)
a dy

+
∫

Yε
βχ1(ij)

p χ1{n}s
p CH

0s{m}(kl)dy (5.4.8)

Proof. • Let’s recall the weak form of the first cell problem∫
Yε
χ1(ij)
p,q Cpqrsvr,sdy = −

∫
Yε
Crs(ij)vr,sdy

By setting vr = χ3(klmn)
r as trial field in the weak form associated to χ1(ij), we

obtain ∫
Yε
χ1(ij)
p,q Cpqrsχ

3(klmn)
r,s dy = −

∫
Yε
Crs(ij)χ

3(klmn)
r,s dy︸ ︷︷ ︸

(a)

(5.4.9)

Considering the definition of CH
2

CH
2ijnklm =

∫
Yε

(
C(ij)rsχ

2{(kl)m}
r,s + C(ij){m}pχ

1(kl)
p

)
dy

one yields to the following relationships linking the components of CH
1 and the

second member (a)∫
Yε
C(ij)rsχ

3(klmn)
r,s dy︸ ︷︷ ︸

(−a)

= CH
2ijnklm −

∫
Yε
C(ij){n}pχ

2{(kl)m}
p dy︸ ︷︷ ︸

(b)

(5.4.10)

• Now, let’s recall the weak form of the third cell problem∫
Yε
χ3(klmn)
p,q Cpqijvi,jdy =−

∫
Yε
χ2{(kl)m}
p Cp{n}ijvi,jdy

−
∫

Yε

(
β(y)CH

1i{n}{(kl)m} − S{(kl)m}1i{n}

)
vidy

+
∫

Yε

[
β

(
%H1i{n}p
%H0

− χ1{n}p
i

)
· CH

0p{m}(kl)

]
vidy

Similarly setting vp = χ1(ij)
p as trial field in the weak form associated to χ3(klmn)∫

Yε
χ3(klmn)
r,s Crspqχ

1(ij)
p,q dy =−

∫
Yε
χ2{(kl)m}
s Cs{n}pqχ

1(ij)
p,q dy

−
∫

Yε

(
β(y)CH

1p{n}{(kl)m} − S{(kl)m}1p{n}

)
χ1(ij)
p dy

+
∫

Yε

[
β

(
%H1p{n}s
%H0

− χ1{n}s
p

)
· CH

0s{m}(kl)

]
χ1(ij)
p dy

(5.4.11)
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taking into account the symmetry of C, we obtain

∫
Yε
χ1(ij)
p,q Cpqrsχ

3(klmn)
r,s dy = +

∫
Yε

[
β

(
%H1p{n}s
%H0

− χ1{n}s
p

)
· CH

0s{m}(kl)

]
χ1(ij)
p dy︸ ︷︷ ︸

(c1)

−
∫

Yε
χ2{(kl)m}
s Cs{n}pqχ

1(ij)
p,q dy−

∫
Yε

(
β(y)CH

1p{n}{(kl)m} − S{(kl)m}1p{n}

)
χ1(ij)
p dy︸ ︷︷ ︸

(c0)

(5.4.12)

• Finally, Due to the symmetry of the bilinear forms 5.4.9, 5.4.11 and taking into
account 5.4.10 , the linear corrsponding linear forms are hence equals which
implies that their respective second members are equal (b) = −(c0 + c1), it
yields

CH
2ijnklm −

∫
Yε
C(ij){n}sχ

2{(kl)m}
s dy =

∫
Yε
χ2{(kl)m}
s Cs{n}pqχ

1(ij)
p,q dy

+
∫

Yε

(
β(y)CH

1p{n}{(kl)m} − S{(kl)m}1p{n}

)
χ1(ij)
p dy

−
∫

Yε

[
β

(
%H1p{n}s
%H0

− χ1{n}s
p

)
· CH

0s{m}(kl)

]
χ1(ij)
p dy

regrouping the terms,

CH
2ijnklm =

∫
Yε
C(ij){n}sχ

2{(kl)m}
s dy +

∫
Yε
χ2{(kl)m}
s Cs{n}pqχ

1(ij)
p,q dy +

%H1p(ij)
%H0

CH
1p{n}{(kl)m}

−
∫

Yε
S{(kl)m}1p{n} χ1(ij)

p dy−
%H1p(ij)
%H0

%H1p{n}s
%H0

CH
0s{m}(kl) +

∫
Yε
βχ1(ij)

p χ1{n}s
p CH

0s{m}(kl)dy

We establish the following identity:

CH
2ijnklm −

%H1p(ij)
%H0

(
D1pnk`m −

%]ps{n}
%H0

CH
0s{m}(k`)

)
=
∫

Yε

(
S(ij)

0{n}sχ
2{(kl)m}
s − χ1(ij)

p S{(kl)m}1p{n}

)
dy +

∫
Yε
βχ1(ij)

p χ1{n}s
p CH

0s{m}(kl)dy
(5.4.13)

∫
Yε
χ2(ijn)
p,q Cpqabχ

2{(kl)m}
a,b dy = −

∫
Yε
χ1(ij)
p Cp{n}abχ

2{(kl)m}
a,b dy−

∫
Yε

(
β(y)CH

0(ij){n}a − S(ij)
0{n}a

)
χ2{(kl)m}
a dy

= −
∫

Yε
χ1(ij)
p Cp{n}abχ

2{(kl)m}
a,b dy− CH

0(ij){n}a
%H2aklm
%H0

+
∫

Yε
S(ij)

0{n}aχ
2{(kl)m}
a dy

=
∫

Yε

(
S(ij)

0{n}aχ
2{(kl)m}
a − χ1(ij)

p S{(kl)m}1p{n}

)
dy +

∫
Yε
χ1(ij)
p Cp{n}a{m}χ

1(kl)
a dy

− CH
0(ij){n}a

%H2aklm
%H0
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Therefore∫
Yε

(
S(ij)

0{n}aχ
2{(kl)m}
a − χ1(ij)

p S{(kl)m}1p{n}

)
dy

=
∫

Yε
χ2(ijn)
p,q Cpqabχ

2{(kl)m}
a,b dy−

∫
Yε
χ1(ij)
p Cp{n}a{m}χ

1(kl)
a dy + CH

0(ij){n}a
%H2aklm
%H0

(5.4.14)

which, used in 5.4.13, provides

D2ijnklm =
∫

Yε
χ2(ijn)
p,q Cpqabχ

2{(kl)m}
a,b dy−

∫
Yε
χ1(ij)
p Cp{n}a{m}χ

1(kl)
a dy (5.4.15)

+
∫

Yε
βχ1(ij)

p χ1{n}s
p CH

0s{m}(kl)dy. (5.4.16)

The proof of the reciprocity identity is complete.

5.5 Mean fields, homogenized equations and link
with strain-gradient elasticity

The objective of this section is to establish the connection between the higher-order
homogenized tensors derived from the asymptotic analysis and the constitutive law
of the strain-gradient model introduced at the end of Chapter 3. As observed in the
previous section, the tensors obtained through asymptotic expansion do not possess
the same symmetries as those in the strain-gradient model. Therefore, is it difficult
to compare the two models. The contribution of this work lies in constructing the
appropriate tensors that satisfy the constitutive law while respecting all the properties
of the model, including index symmetries and positive definiteness of the tensors. To
achieve this, we propose establishing the homogenized balance equations at different
orders and utilizing the reciprocity identities established in the preceding section to
construct these tensors. Subsequently, we will present a transient form of the effective
wave equation, along with its corresponding weak form.

5.5.1 Derivation of a fourth-order effective time-harmonic
wave equation

We define the second-order approximation Uε(x) of the macroscopic displacement
field as:

Uε(x) = U0(x) + εU1(x) + ε2U2(x) + o(ε2), (5.5.1)

whose coefficients U0(x), U1(x) and U2(x) satisfy the macroscopic balance equa-
tions 5.3.21, 5.3.35 and 5.3.57 at the first three orders derived in Section ??. These
equations, recalled for convenience, read:

O(ε0) : ∇x{CH
0 : εx

(
U0
)
}+ ω2%H0 U0 = 0

O(ε1) : ∇x{CH
0 : εx

(
U1
)
}+ ω2%H0 U1 = −∇x{CH

1 : ηx
(
U0
)
} − ω2%H1 : εx

(
U0
)

O(ε2) : ∇x{CH
0 : εx

(
U2
)
}+ ω2%H0 U2 = −∇x{CH

1 ∴ ηx
(
U1
)
} − ω2%H1 : εx

(
U1
)

−∇x{CH
2 :: κx

(
U0
)
} − ω2%H2 ∴ ηx

(
U0
)
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or, in component notation:

(a) 0 = CH
0ijk`U0k,`j + ω2%H0 U0i

(b) 0 = CH
0ijk`U1k,`j + ω2%H0 U1i + CH

1ijk`mU0k,`mj + ω2%H1ipqU0p,q

(c) 0 = CH
0ijk`U2k,`j + ω2%H0 U2i + CH

1ijk`mU1k,`mj + ω2%H1ipqU1p,q

+ CH
2ijnk`mU0k,`mnj + ω2%H2ipqrU0p,qr.

(5.5.2)

The effective wave equation for Uε(x) is to be obtained from the combination of the
macroscopic balance equations (5.5.2a)+ε(5.5.2b)+ε2(5.5.2c), keeping in mind that
the resulting PDE needs only be satisfied at order O(ε2). Before effecting the above
combination, we will recast equations (5.5.2b) and (5.5.2c) into equivalent forms that
take advantage of the reciprocity identities.
(a) Reformulation of the O(ε) balance equation. We write CH

1 as

CH
1ijk`m = D1ijk`m +

%H1pij
%H0

CH
0pmk`, (5.5.3)

in (b), with the reciprocity residual tensor D1 given by 5.4.1, which allows to recast
the O(ε) macroscopic balance equation (5.5.2b) as

0 = CH
0ijk`U1k,`j + ω2%H0 U1i +D1ijk`mU0k,`mj + ω2%]1ik`U0k,`, (5.5.4)

where %]1 is defined by 5.4.7.

(b) Reformulation of the O(ε2) balance equation. To this aim, we first express CH
2 as

CH
2ijnk`m = D2ijnk`m +

%H1pij
%H0

D1pnk`m +
%H2pk`m
%H0

CH
0pnij −

%H1p(ij)
%H0

%]psn
%H0

CH
0s{m}(kl), (5.5.5)

(with the reciprocity residual tensor D2 given by 5.4.8) and use again the representa-
tion 5.5.3 of CH

1 , to find

0 = CH
0ijk`U2k,`j + ω2%H0 U2i +D1ijk`mU1k,`mj +

%H1pij
%H0

CH
0pmk`U1k,`mj + ω2%H1ipqU1p,q

+
(
D2ijnk`m+

%H1pij
%H0

D1pnk`m+
%H2pk`m
%H0

CH
0pnij−

%H1p(ij)
%H0

%]psn
%H0

CH
0s{m}(kl)

)
U0k,`mnj+ω2%H2ik`mU0k,`m.

(5.5.6)

We next observe that, by combining 5.5.4 and (5.5.2a), we have

%H1pij
%H0

(
D1pnk`mU0k,`mnj −

%]psn
%H0

CH
0s{m}(kl)U0k,`mnj + CH

0pmk`U1k,`mj

)
+ ω2%H1ipqU1p,q

= ω2
(
%H1ik` − %H1k`j

)
U1k,` −

%H1pij
%H0

(
%]1psnC

H
0s{m}(kl)U0k,`mnj + ω2%]1pk`U0k,`j

)
= ω2%]1ik`U1p,j, (5.5.7)

while we also have

%H2pk`mC
H
0pnijU0k,`mnj + ω2%H0 %

H
2ik`mU0k,`m

=
(
%H2pk`mC

H
0pnij + %H2pijnC

H
0pmk`

)
U0k,`mnj − %H2pijnCH

0pmk`U0k,`mnj + ω2%H0 %
H
2ik`mU0k,`m

=
(
%H2pk`mC

H
0pnij + %H2pijnC

H
0pmk`

)
U0k,`mnj + ω2%H0

(
%H2ik`m + %H2ki`m

)
U0k,`m. (5.5.8)
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Using identities 5.5.7 and 5.5.8 in 5.5.6 allows to recast the latter into

CH
0ijk`U2k,`j + ω2%H0 U2i +D1ijk`mU1k,`mj + ω2%]1ik`U1k,`

+
(
D2ijnk`m +

%H2pk`m
%H0

CH
0pnij +

%H2pijn
%H0

CH
0pmk`

)
U0k,`mnj + ω2

(
%H2ik`m + %H2ki`m

)
U0k,`m = 0

(5.5.9)

Now, we recall expression 5.4.6 of D2 and notice that we have( ∫
Yε
βχ1(ij)

p χ1{n}s
p dy

)
CH

0s{m}(kl)U0k,`mnj = −ω2
( ∫

Yε
ρχ1(i`)

p χ1km
p dy

)
U0k,`m

thanks to equation (5.5.2a). Consequently, we have

D2ijnklmU0k,`mnj =
( ∫

Yε
χ2(ijn)
p,q Cpqabχ

2{(kl)m}
a,b dy−

∫
Yε
χ1(ij)
p Cp{n}a{m}χ

1(kl)
a dy

)
U0k,`mnj

− ω2
( ∫

Yε
ρχ1(i`)

p χ1km
p dy

)
U0k,`m (5.5.10)

Finally, thanks to equation (5.5.2a), we also have

CH
0pmk`C

H
0pnijU0k,`mnj + %H0 ω

2CH
0imk`U0k,`m = 0 (5.5.11)

We then use 5.5.10 in 5.5.9 and add to the resulting equality a scalar multiple of
equality 5.5.11, with an arbitrary weight parameter denoted η2 , which yields the final
form of the O(ε2) macroscopic balance equation (5.5.2c):

CH
0ijk`U2k,`j +D1ijk`mU1k,`mj − Eijnk`mU0k,`mnj

+ ω2
(
%H0 U2i + %]1ik`U1k,` −Gik`mU0k,`m

)
= 0 (5.5.12)

where the fourth-order tensor G and the sixth-order tensor E are defined by

Gik`m =
∫

Yε
ρχ1(i`)

p χ1km
p dy− %H2ik`m − %H2ki`m + η2CH

0imk` (5.5.13)

Eijnk`m =
∫

Yε
χ1(ij)
p Cp{n}a{m}χ

1(kl)
a dy−

∫
Yε
χ2(ijn)
p,q Cpqabχ

2{(kl)m}
a,b dy

−
%H2pk`m
%H0

CH
0pnij −

%H2pijn
%H0

CH
0pmk` + η2CH

0pmk`C
H
0pnij (5.5.14)

We observe that a suitable selection of the adjustable parameter η will ensure pos-
itivity of both tensors J and A (in the sense of the symmetric quadratic forms
D2ijnk`mQijnQk`m and Gik`mRimRk`, respectively).
(c) Effective strain-gradient wave equation. We finally formulate the combination
(5.5.2a)+ε5.5.4+ε25.5.12, i.e.:

o(ε2) = CH
0ijk`U0k,`j + ω2%H0 U0i

+ ε
[
CH

0ijk`U1k,`j + ω2%H0 U1i +D1ijk`mU0k,`mj + ω2%]1ik`U0k,`

]
+ ε2

[
CH

0ijk`U2k,`j +D1ijk`mU1k,`mj − Eijnk`mU0k,`mnj (5.5.15)

+ ω2
(
%H0 U2i + %]1ik`U1k,` −Gik`mU0k,`m

) ]
= CH

0ijk`Uεk,`j +Mijk`mUεk,`mj − Aijnk`mUεk,`mnj (5.5.16)
+ ω2

(
%H0 Uεi +Kik`Uεk,` − Jik`mUεk,`m

)
(5.5.17)
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where the correspondance between the strain-gradient notation and the previously
defined tensors are:

Kik` := ε%]1ik`, Jik`m := ε2Gik`m, Mijk`m := εD1ijk`m, Aijnk`m := ε2Eijnk`m

5.5.2 Transient fourth-order effective wave equation
A transient version of the effective wave equation can be derived following the same
steps as in the time-harmonic case. The transient effective motion hence satisfies

o(ε2) = CH
0ijk`Uεk,`j +Mijk`mUεk,`mj −Aijnk`mUεk,`mnj − %H0 U ′′εi −Kik`U

′′
εk,` + Jik`mU

′′
εk,`m

(5.5.18)
the prime symbol denoting a time derivative.

5.6 Synthesis
In this chapter, the classical second-order asymptotic expansion for the elastic wave
equation is recalled. Reciprocity relationship are recalled (for the first one) and com-
pleted (for the second one). These identities enable to (i) reduce the number of cell
problems necessary to compute the effective properties and (ii) reformulate the ef-
fective wave equation in the strain-gradient formalism, ensuring expected symmetries
and sign of higher-order tensors thanks to an arbitrary adjustable parameter. These
properties are crucial to establish the well-posedness of this model in the time do-
main6. An article in collaboration with M. Bonnet is in preparation, and numerical
application and illustrations are provided in the next Chapter.

6M. Bonnet, private communication
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The purpose of this chapter is to set the numerical framework of the homogenized high-
order tensors provided by the two-scale homogenization method for periodic media, as
presented in chapter 5. We begin recalling the numerical implementation of the cell-
problems. Next, the heterogeneities’ size effects will be highlighted by computing the
effective parameters for a two-phase unit cell, by varying the size of the heterogeneity.
Finally, we investigate the influence of translation/rotational invariance of the medium
, in the sens of symmetry groups, on the homogenized tensors for a given geometry.

6.1 Numerical validation
In order to identify the effective high-order tensors, the variational problems ?? and
?? need to be solved numerically by the finite element method in order to computes
the cell-functions χ1 and χ2. It is worth noting that, thanks to the reciprocity iden-
tities, there is no need to compute the 3th cell function. Let’s recall the variational
formulation corresponding to each cell functions, and the definition of the homoge-
nized tensors.

Cell functions: The first two cell functions χ1 and χ2 are solutions of the cell
problems consisting of the differential equations over the unit cell Y1:

(a) −∇y · {C(y) : εy
(
χ1(ij)

)
} = ∇y · {C(y) : (ei ⊗s ej)}

(b) −∇y · {C(y) : εy
(
χ2{(kl)m}

)
+ C(y) · χ1(kl)} = ∇x · {S0{m} − β(y)CH

0{(kl)m}}
(6.1.1)

With the requirements

161
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〈χi〉Y1 = 0, χi is Y1 − periodic (i = 1, 2, 3).
As shown in the figure (??), the correctors χ1 and χ2 need to be computed, by solving
respectively, the first and the second cell problems using periodic boundary conditions
over the unit cell. The corresponding variational formulations, using index notation,
are written as follows :

Variational formulation

For each macroscopic loading indexed by (i, j), respectively by (k, l,m), solve the
following variational problems: find χ1(ij) and χ2{(kl)m} ∈ H1

] (Y1) such that

(a)
∫

Y1
χ

1(kl)
i,j Cijpqvp,qdy = −

∫
Y1
C(kl)pqvp,qdy

(b)
∫

Y1
χ2{(kl)m}
p,q Cpqrsvr,sdy = −

∫
Y1
χ1(kl)
p Cp{m})rsvr,sdy−

∫
Y1

(
β(y)CH

0(kl){m})r − S(kl)
0{m})r

)
vrdy

(6.1.2)
Where (ij) = {11, 22, 12} and (k, l,m) = {111, 221, 122, 222, 112, 121}

In total, there are 9 variotionnal problem in 2D to be solved, 3 for the first corrector
χ1 and 6 for χ2. Once these cell-functions are computed, the high-order homogenized
tensors that appear in 5.5.18 can be calculated using following the definition given in
chapter 5.

1st-cell pb.



%H0 = 〈ρ〉Y1

CH
0ijkl = 〈Cijpqχ1(kl)

p,q + Cijkl〉Y1

εKH]
ikl = 〈ρ

(
χ

1(kl)
i − χ1(il)

k

)
〉Y1

εMH]
ijklm = 〈S(ij)

0{m}pχ
1(kl)
p − S(kl)

0{m}pχ
1(ij)
p 〉Y1 .

(6.1.3)

2nd-cell pb.



ε2JH
iklm = 〈ρχ1(i`)

p χ1(km)
p 〉Y1 − %H2ikm − %H2kilm + η2CH

0imkl

ε2AH
ijnklm = 〈χ1(ij)

p Cp(n)a{m}χ
1(kl)
a − χ2(ijn)

p,q Cpqabχ
2{(kl)m}
a,b 〉Y1

−
%H2pklm
%H0

CH
0pnij −

%H2pijn
%H0

CH
0pmk` + η2CH

0pmk`C
H
0pnij

(6.1.4)

Where the skew-symmetric 3th-order and the 5th-order dynamic tensors, are defined
as follows

KH]
ikl = ε−1

(
%H0ikl − %H0kil

)
, MH]

0ijklm = MH
ijklm −MH

0klijm

The second-order homogenization model described in the previous chapter is imple-
mented in the open-source code FreeFem++ with quadratic shape’ functions. The
computational tool inludes FreeFem++ script for solving cell-problems with the fi-
nite element method and provides the solutions fields, and COMSOL Multiphysics
software/Gmsh for the parametric modelling of the unit-cells and generating mesh
files with triangular elements for each geometry. The homogenization procedure is
summarized in Fig. (XX). In order to illustrate steps of implementation, we provide
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in the following, a first 2D numerical example of the computed cell-functions and
the homogenized high-order tensors for a two-phase square unit cell with a triangular
inclusion of size a = 1 mm, shown in the figure ??. An example of mesh is given in
Figure ?? as well as the nodes used for applying the boundary conditions1.

X

Y

Z

(a) Zπ2 unit cell

X

Y

Z

(b) 2D mesh of the unit cell with periodic
boundary conditions : Homologeous egdes
has the same color

Phase E (GPa) ν ρ (kg/m3) volume fraction
Matrix 70 0.33 2700 68 %
Inclusion 200 0.3 7850 32 %

Table 6.1: The material properties

The size of the unit cell is a = 1mm and he material properties for both phases (matrix
and inclusion) are shown in Table ??: E Young’s modulus, ν Poisson’s ratio, ρ mass
density, and volume fraction. We first solve the cell-problem (6.1.2.a) to compute the
first three cell-functions χ1(kl) for each unit macroscopic loading (macroscopic strain
ek ⊗s el). The figure 6.2 presents the solutions of the first three cell problems. Then
we solve the secon-cell problem (6.1.2.b) to compute the cell-functions χ2{(kl)m} for
each macroscopic strain-gradient loading.

1For each opposite two opposite boundaries of the cell, homologous nodes are coloured the same
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; ; ;

; ; ;

Figure 6.2: Cell-functions χ1(11),χ1(22) and χ1(12) produced by each macroscopic strain
loading

Hereforth, the homogenized tensors will be represented by its matrix form in the kelvin
Basis with the following notation convention CH

ijkl = CH
IJ , KH]

ikl = KH]
iI , M

H]
ijklm = MH]

Iα

, JH
ijkl = JH

IJ and AH
ijnklm = AH

αβ such as 2

I 1 2 3
ij 11 22 12

Table 6.2: Kelvin notation used for 2D strain tensors

α 1 2 3 4 5 6
klm 111 221 122 222 112 121

Table 6.3: Kelvin notation used for 2D strain-gradient tensors

Hence, one can write [Auffray et al., 2015]

[
CH

0

]
=

C
H
11 CH

12 CH
13

∗ CH
22 CH

23
∗ ∗ CH

33


K

,
[
KH]

]
=

 0 KH]
12

KH]
21 0
0 KH]

32


K

,
[
JH
]

=

J
H
11 JH

12 JH
13

∗ JH
22 JH

23
∗ ∗ JH

33


K

,

[
MH]

]
=

 0 MH]
12 MH]

13 MH]
14 0 MH]

16
−MH]

12 0 MH]
23 0 −MH]

14 MH]
26

MH]
16 MH]

26 0 MH]
23 MH]

13 0


K

,

and
2see Auffray for the construction
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[
AH

]
=



AH
11 AH

12 AH
13 AH

14 AH
15 AH

16
∗ AH

22 AH
23 AH

24 AH
25 AH

26
∗ ∗ AH

33 AH
34 AH

35 AH
36

∗ ∗ ∗ AH
44 AH

55 AH
46

∗ ∗ ∗ ∗ AH
55 AH

56
∗ ∗ ∗ ∗ ∗ AH

66


K

.

At this order, one can compute the CH
0 et %H0 . the homoginzed tensor MH] and KH]

can be obtained using the 1st reciprocity identity. We give the value of the computed
homogenized tensors defined by 6.1.3 and 6.1.4

[
CH

0

]
'

134.9 62.1 0
62.1 137.20

0 0 69.09


K

GPa, ε1
[
KH]

]
'

 0 −4.882
1.613 ∗ 10−4 0

0 6.905


K

GPa·m

ε1
[
MH]

]
'

 0 −0.023 0.083 0 0 0
0.023 0 0.21 0 0 0

0 0 0 −0.21 −0.083 0


K

GPa·m, ε2
[
JH
]
'

91.5 76.2 0
76.2 92.91 0

0 0 98.83


K

GPa·m2,

ε2
[
AH

]
'



1.195 0.782 0.950 0 0 0
0.782 0.251 0.210 0 0 0
0.950 0.210 0.614 0 0 0

0 0 0 1.437 1.006 1.168
0 0 0 1.006 0.316 0.278
0 0 0 1.168 0.278 0.625


K

GPa ·m2,

with the homogenized mass density %H0 ' 4348 kg ·m−3. Note that All cell-functions
in figure 6.2 has the symmetry of the unit cell. One can notice that CH

0 and JH,
have respectively 4 independant components, KH] and MH] respectively on depends
on 3 independant components, while the 6th-order tensor AH includes 12 independant
components. As expected, the homogenized tensors exhibit the Zπ2 symmetry, and
have the same shape as the constitutive tensors of a material havin Zπ2 symmetry,
which is in agreement with the theoretically matrix shapes predicted in [Auff,Dir,Ro].
In order to compare and validate the results, the convergence with respect to the
mesh quality, the influence of translation/rotation of the unit cell and the size of
heterogeneities will be investigated in the next subsections.

6.1.1 Convergence of the homogenization scheme
Now we compute the homogenized tensors in order to study the convergence of the
effective properties with respect to the mesh, for a number of elements ranging from
70 to 26000. To investigate to size effect, it would be interesting to consider a new
square unit-cell with square inclusion (see Figure 6.3) for which, one would expect
that the homogenized tensors exhibit the D4 symmetry. In this case, we know that the
4th-order tensors CH

0 and JH depend, respectively only on 3 independant components,
and the 6th-order tensor AH depend on 6 independant components, such as

CH,D4
11 = CH,D4

22 , JH,D4
11 = JH,D4

22 , (6.1.5)
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and

AH,D4
11 = AH,D4

44 , AH,D4
22 = AH,D4

55 , AH,D4
33 = AH,D4

66 ,

AH,D4
23 = AH,D4

56 , AH,D4
13 = AH,D4

46 , AH,D4
12 = AH,D4

45 .
(6.1.6)

It is worth noting that, due to the centrosymmetry of the unit cell, the 3th-order
tensor KH] and the 5th-order MH] are, respectively vanishing (see. Auff,Dir,Ro).

Figure 6.3: D4 unit-cell with a square inclusion

The convergence analysis consists in computing the relative errors related to the re-
lationships 6.1.5 and 6.1.6, such as

δ
C

H,D4
11

(ne) = |C
H,D4
11 − CH,D4

22 |
CH,D4

11
, δ

J
H,D4
11

(ne) = |J
H,D4
11 − JH,D4

22 |
JH,D4

11
,

δ
A

H,D4
11

(ne) = |A
H,D4
11 − AH,D4

44 |
AH,D4

11
, . . . , δ

A
H,D4
33

(ne) = |A
H,D4
33 − AH,D4

66 |
AH,D4

33

(6.1.7)
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Figure 6.4: Mesh convergence : Evolutution of the homogenized components of the
elasticity tensor CH with respect to the number of elements

the figures 6.4 and 6.5 show the convergence of the homogenized components and the
errors as a function of the mesh size. for ne= 100 , we can see that the relative errors
made on CH

11 and JH
11, are respectively about 0,003 % and 0,008%. For ne> 1000, it

appears that thoses errors become very negligible (smaller than 0.0001 %). Similar
observation can be made on figure 6.6 about the errors made on the components of
AH, THE homogenized second order elasticity tensor. The overral errors are much
larger : about 0.1 % for ne = 100, 0,05 for ne = 500, and 0,01 for ne = 900. It becomes
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Figure 6.5: Mesh convergence : Evolutution of the homogenized components of the
homogenized micro-inertia tensor JH with respect to the number of elements
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Figure 6.6: Mesh convergence : Evolutution of the homogenized components of the
homogenized second order elasticity tensorAH with respect to the number of elements
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Figure 6.7: Mesh convergence : Evolutution of the homogenized components with
respect to the number of elements

acceptable from ne = 1000, for which the relative errors are smaller than 0.0008 %.
Hence, We can see that the mesh size has almost no effect on the accuaracy of the
values of homogenized components for ne>1000. Finally, the numerical values3 of
components of the coupling tensorsKH] andMH], are found to be less than 10−6 GPA·
m which are negligible as compared to the values of the non-centrosymmetric case Zπ2 .

3Not reported here
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These results, as expected, comply with the expected symmetrie.

6.1.2 Influence of the heterogenities/unit-cell size
In this subsection, the effect of 2 parameters on the effective properties are quanti-
tatively investigated quantitatively: the size of the heterogenety (inclusion) and the
size of the unit cell. The first study focuses on the effect of the volume fraction of the
inclusion, while the second focuses on the scale ratio. Without loss of generality, we
choose to consider the previous unit cell with same material properties and a volume
fraction varying as a function of the size of the thickness of the matrix and the length
of the unit cell, such as

Vf = 1− (a− 2t)2

a2 .

The thickness of the matrix t varies from 0.005 mm to 0.4842 mm, leading to a change
of the volume fraction Vf of the matrix from 2 to 0.99 % as indicated in Table (XX).
The homogenized components are plotted on figure ?? as the functions of volume
fraction of matrix,
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Figure 6.8: Evolutution of the homogenized components with respect to the volume
fraction of heterogeneities

It can be noticed that the volume fraction Vf has more effect on the homogenized
components of the sixth-order tensor AH than those of CH

0 and JH. We observe that
the strain-gradient homogenized components increase at first, then decrease. Strain-
gradient effects only appears when the material is heterogeneous at the local scale.
However, when the volume fraction is near to 0 or to 100 %, the unit cell can be
viewed as a homogeneous single phase and thus, the strain-gradient effects vanishe.

As mentionned before, the homogenized high-order tensor are defined independently
of the scale ratio, i.e. the size of the unit cell. One would like to check this property
numerically. To do so, we compute the homogenized components over the same pre-
vious unit cell, while varying its size from 0.1 mm to 1 mm, which is equivalent to
consider the initial unit-cell (a=1mm) with multiple irreducible unit cells such that
the volume fraction remains the same. It is expected that, for each configuration,
the homogenization process provides the same value of the homogenized tensors. The
results are shown in figure ??,
One can notice that, the homogenized components of the first order elasticity tensor
remains unchaged as expected since it does not depends on the scale ratio. However,
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Figure 6.9: Evolutution of the homogenized components with respect to the unit cell
size

the high-order homogenized components depend linearly on the scale ration ε which,
in this cas, is taken to be equal to a2. As a consequence, the latter are independent
of the number of on the unit cell-size/scale ratio,. i.e. the number periods. Hence, it
can be determined by considering only one irreducible unit cell, with an suitable scale
separation ratio ε .

6.1.3 Translation invariance
As said in chapter 2, A medium is periodic if the space is filled from a set of indepen-
dent translations of the unit cell. Thus, the medium exhibits translational invariance
of the effective properties with respect to the Bravais lattice’ basis vectors. Further-
more, in the case where the elementary cell has some rotational invariance, or mirror
lines for example, it is expected that the homogenized properties will also have this
invariance. One would like to check numerically those invariance properties. To this
end, we consider 2 Zπ2 -invariant unit cells Y1 and Y2, as obtained by translation of
the refence unit cell Y0 (shifted by a distance d < a) in the direction e1 as shown in
figures ??, such as

Yref = (0, a)× (0, a), Y1 = Yref + {(2a/5, 0)}, Y2 = Yref + {(a/2, 0)}.
Then we compute the relative errors of homogenized tensors with respect to the
reference configuration (non-shifted), defined as

ε(CH) = ‖C
H
ref −CH‖
‖CH

ref‖
, ε(JH) = ‖J

H
ref − JH‖
‖JHref‖

, ε(KH]) = ‖K
H]
ref −KH]‖
‖KH]

ref‖

ε(MH]) = ‖M
H]
ref −MH]‖
‖MH]

ref‖
, ε(AH) = ‖A

H
ref −AH‖
‖AH

ref‖
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where ‖ • ‖ stands for the frobunius norm.

X

Y

Z

(a) Yref : Zπ2 reference unit
cell

X

Y

Z

(b) Y1 : Shifted cell n◦ 1

X

Y

Z

(c) Y2 : Shifted cell n◦ 2

Thus one would expect that for each of these configurations, the homogenization
procedure provides the same homogenized tensors. The results for each tensor are
shown in the table 6.4

ε CH JH KH MH AH

Y1 1.70064× 10−6 4.35424× 10−6 1.49992× 10−4 5.96706× 10−5 9.37738× 10−6

Y2 1.35382× 10−6 3.35399× 10−6 1.44675× 10−4 5.86591× 10−5 8.08951× 10−6

Table 6.4

This shows that the invariance of homogenized tensors with respect to the unit cell
choice is numerically satisfied. Furthermore, the unit cell exhibits a mirror line sym-
metry, we would like to check the property of rotational/inversion invariance of the
homogenized tensors with respect to unit cell. We choose a configuration in which
the unit cell is rotated with an angle of π/2, then we compute homogenized tensors
for a transformed unit cell under the action of the orthogonal group. Let consider the
previous refence unit-cell, which exibits a symmetry plane with respect to e2. The
coupling inertia tensor has the following form

KH
(e2) =

 0 K211
0 K222√

2K112 0


K

, KH]
(e2) =

 0 K211 −K112
0 0√

2 (K112 −K211) 0


K

(6.1.8)
The homogenized coupling inertia tensor for the reference cell is given by

KH]
Yref

(e2) =

 0 7.554448186
0 −5.697746155× 10−8

−10.6836030 0


Let Q(e2) be the reflection tensor in the normal axis to e2. The invariance of KZπ2 (e2)
under the action of Q(e2) if equivalent to

KH]? = Q(e2) ?KH]
Yref

(e2) = KH]
Yref

(e2)
Numerically, we obtain

ε(KH]) =
‖KH]? −KH]

Yref
(e2)‖

‖KH]
Yref

(e2)|
= 1.13955× 10−7
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This shows, as expected, that the invariance of the coupling inertia tensor with respect
to a mirror line transformation is numerically satisfied.

Synthesis
In this chapter, the cell problems defined in Chapter 5 were implemented and solved
using the finite element method, utilizing the open-source FreeFem++ code. It should
be noted that, thanks to the reciprocity identities established in Chapter 5, only the
first two cell problems were considered for the calculation of the homogenized tensors.

Subsequently, we numerically validated these codes through a few numerical tests for
convergence, verifying the form of the obtained tensors as well as their properties.
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Chapter 7

Conclusion and Perspectives

Conclusion

The research work presented in this manuscript has allowed us to to characterize the
elastodynamic behaviour of periodic architectured materials. This endeavor was pur-
sued via two key approaches: Firstly, through the characterization and identification
of effective properties through wave propagation, and secondly, through the compu-
tation of these effective properties using the method of asymptotic homogenization.

Through a systematic investigation, the study has highlighted the influence of local
architecture - the geometry of the elementary cell - on the overall elastodynamic be-
haviour of the architectured material. We have established an elastodynamic signature
via Bloch analysis, leading to a proposed method for identifying apparent properties
from information gleaned from wave propagation. This approach, while phenomeno-
logical in nature, provided critical insights into the inherent characteristics of archi-
tectured materials. Simultaneously, a mathematical avenue was also explored, aimed
at calculating the effective properties of the medium, which offered an interesting
contrast to the phenomenological method. By implementing the asymptotic homog-
enization method in elastodynamics, the study has contributed to the establishment
of some important reciprocity relations and the construction of a Strain-gradient type
model using the method of asymptotic development.

However, as is often the case in scientific exploration, each answer we found opened
the door to new questions. How the local architecture influences the overall be-
havioyr of architectured materials is a question that has been frequently addressed
in various ways. Future studies might delve deeper into the influences of different
architectural geometries on the material’s elastodynamic behaviour, refining the iden-
tification methods for apparent properties. Additionally, the mathematical approach
could be further extended and refined to account for more complex or different types
of materials.

Further work could also be directed towards refining the numerical models and valida-
tion tests. The robustness and versatility of the finite element code developed for the
construction of the tensors of the Strain-gradient model could be further enhanced,
and more extensive validation could strengthen our trust in the results it provides.
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Perspectives
Looking forward, there are several promising avenues for further research and explo-
ration. Firstly, a natural extension of this study is to extend the method of iden-
tification in the low-frequency and long-wavelength regime to 3D situations. This
progression can greatly enhance the versatility and applicability of the methods pre-
sented herein.

Secondly, an extension of the identification method to the short-wavelength and low-
frequency regime could be considered. This would involve the construction of invari-
ants of the generalized Christoffel tensors and would further broaden the scope and
potential applications of our work.

Thirdly, carrying out a sensitivity study related to noise would be an interesting next
step to test the robustness of our identification methods. This will provide valuable in-
sight into the effectiveness of our methods under less than ideal or variable conditions.

The fourth point for future exploration is a more profound investigation and design
of anisotropic multi-inertial networks. This investigation can potentially lead to the
development of materials with custom-designed, unique properties.

Finally, another promising direction is the construction of models based on topological
optimization, homogenization, and dehomogenization. This would provide a way to
achieve optimal control, such as controlling wave propagation, for instance. This
could lead to the development of new materials with remarkable characteristics that
can be fine-tuned for specific applications. This represents an exciting and challenging
direction for future research.
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