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Chapter 1  

Introduction 

 

1.1 Healthcare context 

The World Health Organization (WHO) and its partners [1] estimated that the global maternal 

mortality ratio in 2020 was 223 maternal deaths per 100000 live births. The maternal deaths 

amounted to 287000 women who died during and following pregnancy and childbirth. This 

corresponds to almost 800 women dying every day or approximately one woman every two 

minutes. This is more than a third lower than in 2000 when there were an estimated 446000 

maternal deaths. The Sustainable Development Goals target is to reduce the global maternal 

mortality ratio to less than 70 maternal deaths per 100000 live births by 2030. Maternal 

mortality is impacted by various factors, among which health system failures play a pivotal 

role. These failures manifest in several ways, contributing to the challenges faced by pregnant 

women. First, there are delays in seeking and receiving care after reaching healthcare facilities, 

exacerbating the risks associated with childbirth. Second, the quality of care provided within 

these facilities is often subpar, further compromising maternal outcomes. The shortage of 

essential medical supplies poses an additional barrier, hindering the provision of adequate and 

timely healthcare services. Moreover, the accountability of the health system is frequently 

lacking, amplifying the difficulties in addressing maternal health effectively.   

According to the WHO report, between 2016 and 2020, pregnancy-related deaths would claim 

the lives of a woman every two minutes [1], highlighting the persistent issue of maternal 

mortality. The maternal mortality rate saw an increase in Europe and Northern America, as well 

as in Latin America and the Caribbean, rising by 17% and 15%, respectively. In contrast, other 

regions like Australia and New Zealand, along with Central and Southern Asia, significantly 

decreased maternal mortality rates, with reductions of 35% and 16%, respectively. The 

immediate causes of maternal death frequently pertain to direct obstetric factors, such as 

postpartum hemorrhage, which leads to severe blood loss after childbirth. Conditions like pre-

eclampsia and hypertensive disorders are also significant contributors to maternal deaths, 

posing risks due to elevated blood pressure during pregnancy. Furthermore, pregnancy-related 

infections can develop, causing life-threatening complications if untreated. Maternal fatalities 

are predominantly concentrated in the world’s poorest regions and nations experiencing 

conflict. In 2020, Sub-Saharan Africa accounted for almost 70% of all maternal fatalities. 

In 2019, approximately 2 million stillbirths (i.e., babies delivered with no signs of life at 28 

weeks of pregnancy or later) were reported globally [2]. Adequate care could have potentially 

prevented many of these occurrences. The global stillbirth rate stood at 13.9 stillbirths for every 

1000 births. This means that 1 in 72 deliveries results in a fetal death, equivalent to one 

occurrence every 16 seconds. In the last two decades, the globe has endured a staggering 48 

million stillbirths. However, it is important to note that this figure may be underestimated since 

stillbirths are frequently underreported. The majority of stillbirths can be averted by ensuring 

access to established interventions that enhance the well-being of both mothers and infants 

file:///D:/PHD/THESE/V5.docx%23_References
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throughout the care process. It was estimated that 42% of stillbirths worldwide happen during 

labor. Nearly 832000 deaths in this category in 2019 could have been avoided through the 

provision of adequate medical treatment during childbirth. This encompasses continuous 

intrapartum monitoring and prompt intervention in the case of complications. The Sustainable 

Development Goals aim for every country to achieve a fetal mortality rate of no more than 12 

deaths per 1000 live births by the year 2030.   

The health of a mother is directly connected to her fetus. In low- and middle-income countries, 

infections such as malaria, syphilis and HIV rank among the most common causes of stillbirths, 

accounting for 8% to 50% of all cases [3], [4]. In sub-Saharan Africa, around 20 percent of fetal 

deaths are linked to malaria, while syphilis is associated with over 11 percent of cases [5]. In 

all income settings, the mothers’ conditions like obesity, diabetes and hypertension are 

identified as a cause or contributor to stillbirths, accounting for approximately 10% of global 

cases [6]. Apart from maternal disease, additional variables that may contribute to the danger 

of both maternal conditions and stillbirths include the mother’s age and smoking habits. A study 

in the United Kingdom revealed that mothers who smoked had a roughly four-fold higher risk 

of experiencing limitations in fetal growth compared to non-smoking mothers [7]. Furthermore, 

there are some congenital abnormalities linked to fetal deaths. Due to limits in diagnostic 

capabilities, the precise percentage of these fatalities in low-income countries is undisclosed. 

Nevertheless, in high-income nations, they constitute less than 10% of stillbirths recorded 

nationwide [8]. While congenital anomaly-related fatalities are often considered unavoidable, 

some can be avoided using readily available therapies like increasing maternal folic acid 

consumption to lessen neural tube abnormalities. 

Intrauterine asphyxia, or a decrease in the fetus’s oxygen supply, is the primary factor 

contributing to the majority of fetal deaths.  Placental abruption, protracted labor, preeclampsia, 

breech presentation (when the feet or buttocks come first) and incidents involving the umbilical 

cord are some of the variables that may cause this syndrome [9]. The placenta serves as the 

point of interaction for the transfer of oxygen and nutrients from the mother to the fetus, while 

simultaneously removing carbon dioxide and other waste products from the fetal circulation. 

Oxygen-rich blood travels from the placenta to the fetus through the umbilical vein, reaching 

the fetal liver, where it combines with venous blood from the fetal vena cava. The placenta must 

operate properly for the best possible fetal growth. If the placenta is unable to protect or nourish 

the baby, serious problems will ensue [10]. Umbilical cord prolapse represents a critical 

obstetric emergency where the cord is compressed, leading to the complete or partial blockage 

of cord vessels and subsequently compromising the oxygen supply to the fetus [11]. The 

diagnosis of umbilical cord prolapse occurs when the cord has passed past or parallel to the 

fetal portion that is now visible through the cervix. This situation typically happens following 

a rupture of the membranes. Fetal fatalities can also result from pregnancy problems, including 

growth retardation and multiple fetuses.  

The robustness of a health system can be determined by looking at the fetal mortality rate, 

which is a sensitive measure of the standard of treatment throughout pregnancy and delivery. 

To prevent stillbirths and guarantee that mothers are assisted by qualified healthcare 

professionals during pregnancy and delivery, nations, international organizations, and partners 

must take prompt action. Advocating for healthcare accessibility for everyone is crucial for 

realizing the commitment to universal health coverage and preserving the lives of all children. 

Additionally, ending preventable maternal mortality and ensuring that women not only survive 

pregnancy but also thrive in health is essential. 
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Although knowledge and techniques for reducing maternal deaths and stillbirths have been 

available for many years, a significant number of women – in various regions worldwide – still 

face barriers to accessing these life-saving remedies. Climate change and prolonged war, along 

with overburdened health systems depleted of key supplies and medications, exacerbate the 

situation for many people. To address this, it is crucial to invest in strengthening our health 

workforce by providing them with the necessary resources, tools, and training to deliver high-

quality treatment that can make a meaningful impact. It is imperative to hold health systems 

accountable for ensuring the provision of quality, respectful, and equitable care. This can be 

achieved through a well-trained and supported workforce, as well as ensuring that types of 

equipment are adequately stocked with essential supplies. 

1.2 Background  

1.2.1 Overview of childbirth simulations 

Childbirth simulations have been investigated in an attempt to forecast and prevent severe 

complications in both mothers and fetuses during delivery. Constructing a comprehensive 

model of the pregnant woman’s pelvic system and the fetal body is crucial in advancing the 

understanding of childbirth mechanics. The intricate process involves not only building 

accurate representations of the maternal pelvic system but also creating detailed models of the 

fetus inside the uterus. These simulations enable researchers and healthcare professionals to 

delve into the mechanical properties of pelvic tissues, offering valuable insights into the 

dynamics of childbirth. 

One method used before was statistical analysis of observational data collected in the past. 

Correlation coefficients between a difficult labor situation and particular maternal/fetal 

characteristics can be obtained by examining data that describe a wide variety of deliveries. For 

example, consider the case of cephalopelvic disproportion, which happens when there is an 

imbalance in the size or shape of the fetal head and the mother’s pelvis. This incongruence can 

lead to failed labor for mechanical causes. If not addressed, this can result in obstructed labor, 

which potentially elevates the risk of maternal or perinatal death for both the mother and infant 

unless a cesarean section is performed. Korhonen et al. [12] assessed the diagnostic precision 

of the ratio of fetal head and maternal pelvis in predicting cephalopelvic disproportion. This 

study observed 274 pregnant women who underwent X-ray or magnetic resonance imaging 

pelvimetry from 2000 to 2008 due to an elevated risk of fetal-pelvic disproportion at North 

Karelia Central Hospital, Finland. Regression methods, both univariate and multivariate, were 

used to find the cesarean risk variables. Frémondière et al. [13] evaluated the factors that can 

be used to forecast instrumental aid and cesarean delivery by using discriminant analysis to 

examine several fetal-pelvic characteristics. The research included the CT scans of 114 

pregnant women. There were measurements of 18 foetal and 43 pelvic variables for every 

mother-fetus pair. Numerous studies have highlighted the limitations of relying solely on 

radiological pelvimetry to predict the method of delivery [14], [15]. This technique is not 

possible to anticipate if an infant can successfully traverse the measured pelvis without 

encountering cephalopelvic disproportion. It merely indicates whether the pelvis is healthy. The 

fetal head compliance has a confusing effect in the prediction of cephalopelvic disproportion 

through a straightforward radiological assessment of the interaction between the fetal head and 

the mother’s pelvis. Obstetric professionals often make decisions on the best delivery modes 

based solely on their intuition and experience if solid tools for anticipating are absent. This 
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reliance can lead to numerous women facing challenges in naturally giving birth, and a 

considerable number of cesarean sections are probably carried out unnecessarily.   

Utilizing physical birth simulators presents an alternative method for comprehending the 

childbirth process. These simulators enable healthcare professionals to gain practical 

experience in delivery training, which is an important aspect of preserving the lives of both 

mothers and their infants. Laerdal Medical Health Stavanger has created the MamaNatalie 

learning kit, which is a low-tech simulator to train medical students on how to manage and 

detect delivery situations [16] (Figure 1). This birth simulator is a user-friendly pregnant belly 

that instructors can easily strap on. Using only their hands, instructors can simulate various birth 

scenarios, including fetal heart sounds, placenta delivery, baby positions in the birth tract, and 

uterine firmness. MamaNatalie offers a training device for replicating the leading cause of 

maternal mortality during childbirth is postpartum hemorrhage. When wearing MamaNatalie, 

the instructor assumes the position of the mother, controlling the amount of blood lost and the 

rate at which it occurs. They may even mimic a mother who is experiencing shock or extreme 

blood loss. In addition, teaching the students how to effectively interact with the mother and 

teammates in such a crucial and traumatic scenario. Gaumard Scientific, based in Coral Gables, 

has developed a high-fidelity childbirth patient simulator named Noelle, designed to enhance 

training in labor and delivery, postpartum hemorrhage, and neonatal resuscitation [17] (Figure 

2). This full-sized female birth simulator offers a comprehensive teaching system to provide a 

complete birthing simulation experience, covering care before, during, and after delivery. The 

set includes a full-sized intubatable manikin, an articulated birthing baby, and a full-sized, 

intubatable, and cyanotic newborn that changes color with positive pressure ventilation. 

Notable features of the simulator include a removable abdominal cover, articulated arms, 

multiple fetal heart sounds, and various placenta locations. This innovative simulation tool is 

tailored to equip healthcare professionals with hands-on experience in managing scenarios 

associated with childbirth. 

 

Figure 1. MamaNatalie childbirth simulator includes a blood tank, uterus, placenta, 

umbilical cord, and infant [16]. 
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Figure 2. Noelle full-sized female birth simulator with fetuses (https://www.gaumard.com/). 

However, physical birth models have several drawbacks when it comes to providing a more in-

depth understanding of the mechanisms behind birth-related injuries. Initially, the capacity of 

these simulators to depict patient-specific data is restricted. Typically, they are designed to 

imitate a typical delivery scenario, which includes an average-sized woman and fetus. It is 

difficult to modify a simulator to fit measurements unique to a patient once it is built. Secondly, 

there is a limit to how complicated physical delivery models can capture all the aspects that are 

essential to the biomechanics of giving birth. Physical delivery models tend to oversimplify soft 

tissue geometry, such as the muscles of the pelvic floor, without attempting to validate the 

mechanical characteristics of the soft tissue. Accurately simulating complex physiology on 

physical simulators becomes problematic. 

Childbirth computational models have been explored since the 1990s using numerical methods 

to investigate how childbirth affects the tissues of mothers and newborns [18], [19], [20]. The 

approaches have the potential to address certain constraints in physical childbirth models, 

providing a more profound understanding of the mechanisms underlying maternal and fetal 

injuries during labor and delivery. Yan et al. [21] explored the impact of fetal head shape 

variation on the second stage of labor with particular attention to potential problems and 

consequences for the mother and fetus. The second stage of labor, marked by the descent of the 

baby through the birth canal, is crucial for a successful delivery. To analyze this influence, the 

study employed the finite element method. Childbirth simulations were performed with skull 

models, which were generated from computed tomography (CT) images of fetal heads, and 

female pelvic floor models based on magnetic resonance imaging (MRI). Krofta et al. [22] 

developed MRI-based model to simulate the deformation of the levator ani muscle during 

vaginal delivery. The stress experienced during childbirth is known to potentially result in 

stretch-related injuries to the levator ani muscle. A detailed 3D finite element model of the 

maternal pelvis and fetal head was created using MRI images of newborn fetuses and 

nulliparous women for geometry. A virtual childbirth simulation tool utilizing Mixed-Reality 

(MR) technology and integrating Hyperelastic Mass-Spring Model (HyperMSM) for real-time 

soft tissue displacements was proposed by Ballit et al. [23] (Figure 3). This innovation aimed 

to improve the midwife's skills through user interaction with the virtual physical model. The 

Microsoft HoloLens was employed in developing the MR simulator, which features a 

comprehensive holographic obstetric model. The uterus, the fetus, the birth canal, the pelvis 

bone, and the pelvic floor muscles were all included in the maternal pelvis system model of a 

pregnant woman.  

https://www.gaumard.com/
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Figure 3. General geometric representations of the maternal pelvic system include rigid and 

flexible tissues along with a fetus [23]. 

The development of computer technology and numerical modeling software has led to the 

creation of more realistic and advanced computational models for birthing, capable of 

examining intricate subjects. However, current studies on childbirth simulations face some 

limitations. The primary focus of research has been on pelvic floor injuries sustained by mothers 

during delivery, with the popular portrayed maternal pelvic system being the levator ani 

muscles. Fetal models, in many instances, have been limited to including only the head, with 

joint articulations infrequently considered. The delivery process has often been driven by pre-

determined forces. Moreover, materials with extremely high stiffness have been used to depict 

fetal models.  

1.2.2 Applications of Machine learning and Deep learning in Healthcare 

1.2.2.1 Machine learning and Deep learning 

Artificial intelligence (AI) has grown to be a vital component of our daily lives, exerting a 

significant influence on society nowadays. Thanks to the expansion of computational 

capabilities, advancements in methodologies and the increase of data volume, AI has 

established itself as a crucial technological asset across a wide range of industry, business, 

entertainment and education [24], [25], [26], [27], [28], [29]. Machine learning, a subfield of 

AI, is dedicated to creating models and algorithms that enable computers to learn from 

information and enhance their performance based on prior experiences. In simple terms, 

machine learning allows systems to emulate human-like thinking and understanding by learning 

from data. Deep learning, a subfield of machine learning, employs neural networks to tackle 

complicated problems. Neural networks are inspired by the structure and operations of the 

human brain, comprising layers of linked nodes for processing and manipulating data.  

An artificial neural network (ANN) consists of a series of equations designed to mimic the 

inherent connections within a provided dataset. By examining samples, an ANN discovers 

patterns in the data, typically operating without explicit and task-specific instructions. The basic 

structure of an ANN is illustrated as in Figure 4. 
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Figure 4. Artificial neural network architecture. 

Giving the input dataset 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚}, weight set for the i-th hidden neuron node 𝑊𝑖 =

{𝑤1
𝑖 , 𝑤2

𝑖 , … , 𝑤𝑚
𝑖 } and bias parameters 𝑏𝑖 = {𝑏1

𝑖 , 𝑏2
𝑖 , … , 𝑏𝑚

𝑖 }, when applying the dot produce 

summation along with the bias, a result 𝑧 is obtained as follows 

𝑧𝑖 = ∑ 𝑤𝑗
𝑖𝑥𝑗 + 𝑏𝑗

𝑖

𝑚

𝑗=1

(1) 

To calculate the values of the hidden layer, we feed 𝑧 into an activation function 𝑓(. ). 

Activation functions play a pivotal role in neural networks as they introduce non-linearity, 

determining which nodes will be activated. Some common activation functions include: 

 Identity function 

𝑓(𝑥) = 𝑥 (2) 

 Sigmoid function 

𝑓(𝑥) =
1

1 + 𝑒−𝑥
 (3) 

 Tanh function 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (4) 

 Rectified Linear Unit (ReLU) 

𝑓(𝑥) =  {
0   𝑓𝑜𝑟  𝑥 < 0
𝑥   𝑓𝑜𝑟  𝑥 ≥ 0

 (5) 

 SoftPlus function 

𝑓(𝑥) = 𝑙𝑛(1 + 𝑒𝑥) (6) 
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The value of hidden node i-th is given by 

ℎ𝑖 = 𝑓(𝑧𝑖) (7) 

After hidden layers, having 𝑛 values of hidden nodes ℎ = {ℎ1, ℎ2, … , ℎ𝑛}, a weighted set 𝑊ℎ =
{𝑤1

ℎ, 𝑤2
ℎ, … , 𝑤𝑛

ℎ} and a bias set 𝑏ℎ = {𝑏1
ℎ, 𝑏2

ℎ, … , 𝑏𝑛
ℎ}, the output �̂� is obtained as follows 

𝑧 = ∑ 𝑤𝑗
ℎℎ𝑗 + 𝑏𝑗

ℎ

𝑛

𝑗=1

(8) 

�̂� = 𝑓(𝑧) (9) 

During the training process, the loss function is minimized to assess the network’s performance 

on the training dataset, allowing it to adjust and navigate appropriately. The predominant loss 

function employed is the mean square error, which measures the disparity between 𝑘 predicted 

values �̂� and 𝑘 target values 𝑦 as below 

ℒ =
1

𝑘
∑(�̂�𝑗 − 𝑦𝑗)

2
𝑘

𝑗=1

(10) 

As the loss function ℒ relies on weighted and bias parameters, optimization functions are 

invoked to adjust these parameters in order to minimize it. Gradient-based algorithms are 

commonly employed for training neural networks with several prevalent optimizers including: 

 Stochastic gradient descent (SGD) directly updates and returns weights and biases in 

each time step 𝑡 by 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 − 𝜂 ∙ 𝑔𝑡,𝑖∇ℒ(𝜃) (11) 

where 𝜃 denotes parameters, 𝜂 denotes learning rate and 𝑔𝑡,𝑖 = ∇ℒ(𝜃𝑡,𝑖) is the partial derivative 

of the loss function ℒ. 

 Adaptive gradient (Adagrad) algorithm [30] adapts the learning rate of each parameter 

during training, scaling it based on the previous gradients for that parameter  

 

𝜃𝑡+1,𝑖 = 𝜃𝑡,𝑖 −
𝜂

√𝐺𝑡,𝑖𝑖 + 𝜀
 ∙ 𝑔𝑡,𝑖 (12) 

in which 𝐺𝑡 stands for a diagonal matrix where each diagonal element 𝑖 and 𝜀 is a smoothing 

term to avoid divisibility by. 

 Adadelta [31] is a variation of the Adagrad optimizer. Instead of accumulating all past 

squared gradients, this algorithm restricts the window of accumulated past gradients to a fixed-

size sliding window to avoid the diminishing learning rate encountered in Adagrad  

 

𝜃𝑡+1 = 𝜃𝑡 −
𝑅𝑀𝑆𝐸[∆𝜃]𝑡−1

𝑅𝑀𝑆𝐸[𝑔]𝑡
 ∙ 𝑔𝑡 (13) 

where 𝑅𝑀𝑆𝐸 is the root mean square error. 
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 Root mean square propagation (RMSprop) [32] is a method that addresses Adagrad’s 

declining learning rates. It keeps a moving average of squared gradients that decays over time, 

providing greater weight to recent gradients and thereby preventing the learning rate from 

falling too low too rapidly 

𝜃𝑡+1 = 𝜃𝑡,𝑖 −
𝜂

√𝐸[𝑔2]𝑡 + 𝜀
 ∙ 𝑔𝑡 (14) 

where 𝐸[𝑔2]𝑡 is a running average at the current time step, defined as: 

𝐸[𝑔2]𝑡 = 0.9𝐸[𝑔2]𝑡−1 + 0.1𝑔𝑡
2 (15) 

 Adaptive moment estimation (Adam) [33] is an optimizer commonly used for training 

neural networks. Adam combines advantages of both Adagrad and RMSprop. The algorithm 

maintains two moving averages, the first and second moment of the gradients, which are 

expressed as: 

𝑚𝑡 = 𝛽1𝑚𝑡 + (1 − 𝛽1)𝑔𝑡 (16) 

𝑣𝑡 = 𝛽2𝑣𝑡 + (1 − 𝛽2)𝑔𝑡
2 (17) 

where 𝛽1, 𝛽2 ∈ [0,1] manage the exponential decay rates of the moving averages. Subsequently, 

calculate the bias-corrected first and second moment estimates 

�̂�𝑡 =  
𝑚𝑡

1 − 𝛽1
𝑡  (18) 

𝑣𝑡 =  
𝑣𝑡

1 − 𝛽2
𝑡  (19) 

The update rule for Adam optimizer is as stated below: 

𝜃𝑡+1 = 𝜃𝑡,𝑖 −
𝜂

√𝑣�̂� + 𝜀
�̂�𝑡 (20) 

Machine learning can be viewed as a practical application of statistics with a heightened 

reliance on computer assistance to estimate complex functions statistically while placing less 

demonstration on establishing ranges of confidence across these functions. The majority of 

machine learning algorithms can be categorized into supervised learning, unsupervised learning 

and reinforcement learning methodologies. The categorization is based on the type of 

experience they are permitted to undergo throughout the learning process.  

Supervised learning methods operate with a feature-rich dataset where each sample is linked to 

a label or target. Models are trained on datasets consisting of both inputs and corresponding 

outputs. They are then employed to forecast outcomes on test datasets, wherein only the inputs 

are given. The outputs generated by the model are compared against the concealed target 

variables, thereby gauging the model’s proficiency. Two primary categories of supervised 

learning problems exist: classification, which entails forecasting a class label, and regression, 

which includes predicting a numerical value. 

Unsupervised learning methods operate a dataset with numerous features, from which they 

extract valuable characteristics regarding the dataset’s architecture. Models aim to learn the 

whole probability distribution responsible for generating a dataset, whether through implicit 

methods for duties such as synthesis and denoising, or explicit approaches such as densities 
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calculation. In contrast to supervised learning, unsupervised learning solely relies on inputs 

without corresponding outputs or targets. Thus, unsupervised learning lacks an instructor to 

modify the model. There are two major issues that users frequently face: clustering, which 

includes identifying groups within data, and density estimation, which requires summarizing 

the data’s distribution. 

Reinforcement learning methods operate in an environment where there is no preset training 

dataset. Instead, there exist specific objectives for an agent to accomplish, and feedback 

provided regarding its performance in reaching those objectives. Similar to supervised learning, 

in reinforcement learning, the model receives feedback to learn from. However, reinforcement 

learning might be difficult for the model in establishing causal relationships because the 

feedback could be delayed and contain statistical noise. There are two primary types into which 

reinforcement learning can be classified: positive reinforcement, which involves rewarding the 

agent for executing a desired action, thereby motivating it to repeat the behavior, and negative 

reinforcement, which entails removing an undesired stimulus to motivate a desired activity. 

Deep learning methods have a main feature that is the usage of deep neural networks, which 

consist of numerous layers of interconnected nodes. These networks possess the ability to grasp 

intricate data representations by identifying structured patterns and characteristics. Deep 

learning models can autonomously learn and enhance themselves through data, eliminating the 

requirement of manual adjusting. Some of the most noticeable deep learning architectures 

contain recurrent neural networks (RNNs) and convolutional neural networks (CNNs). 

Recurrent neural networks are a family of neural networks tailored for handling sequential 

data. RNNs excel in managing significantly longer sequences compared to non-sequence-

specialized networks, making them feasible for practical applications. Additionally, most 

recurrent networks are adept at processing sequences of varying lengths. RNNs use previous 

inputs to shape the present input and outcome. Unlike traditional deep neural networks, which 

assume independence between inputs and outputs, RNNs base their outputs on preceding items 

in the sequence. While considering future occurrences could enhance output prediction, 

unidirectional RNNs lack the ability to incorporate such events. Variant RNNs structures 

encompass Bidirectional recurrent neural networks [34], Long short-term memory [35] and 

Gated recurrent units [36].   

Convolutional neural networks are a specific type of deep learning that processes data using 

predefined grid-like structures, predominantly employed in tasks such as classification and 

computer vision. CNNs signify the utilization of convolution, a specific type of linear operation. 

In essence, CNNs are neural networks that substitute convolution for matrix multiplication in 

at least one layer, distinguishing them from traditional networks. CNNs consist of three primary 

types of layers: the convolutional layer, which serves as the fundamental component of a CNN 

and is responsible for the majority of computational tasks, requiring input data, a filter, and 

generating a feature map. The pooling layer, also referred to as downsampling, diminishes 

dimensionality, reducing input parameters. Unlike the convolutional layer, the pooling 

operation applies a filter across the entire input without any weights, employing an aggregation 

function within the receptive field to populate the output array. Finally, the fully connected layer 

connects each node in the output layer directly to a node in the preceding layer, facilitating 

classification based on features extracted from earlier layers and their respective filters. There 

are some popular convolutional neural network architectures such as Residual Networks [37] 

and U-Net [38].  
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1.2.2.2 Clinical care applications 

In recent years, AI has undergone remarkable advancements, making it a compelling tool for 

various clinical care procedures. Its potential applications in medicine have garnered increasing 

research attention, with Machine learning (ML) and Deep learning (DL) emerging as 

indispensable technologies across the medical field. From diagnostics to therapeutics, prognosis 

prediction, and patient health management, AI is revolutionizing healthcare delivery. 

Moreover, it plays a vital role in hospital administration, as well as in regulatory activities 

within healthcare systems.  

Machine learning and Deep learning have applied well in conducting various diagnostic tasks, 

encompassing omics and clinical data processing. Within cardiovascular medicine, numerous 

models have been developed for predicting and diagnosing various conditions such as incident 

hypertension [39], detecting atrial fibrillation [40], and classifying aortic stenosis [41]. 

Similarly, in clinical neurosciences, tools have been devised for predicting strokes [42], [43]. 

In hematology, these technologies have significantly advanced the diagnosis of conditions such 

as lymphoma, leukemia, and thalassemia [44], [45], [46]. ML and DL technologies are 

particularly adept at medical image detection. Many segmentation tasks, including right and 

left ventricular segmentation and atrial wall segmentation [47], [48], are effectively handled by 

ML and DL techniques. Moreover, these technologies excel in segmenting organs such as the 

liver, kidney, bladder, vagina, and rectum [49], [50], [51], as well as in detecting cancerous 

tumors [52], [53]. Google DeepMind [54] has developed a groundbreaking predictive model 

capable of foreseeing kidney injury up to 48 hours in advance with an astonishing accuracy rate 

of 90%. This remarkable capability provides medical professionals with crucial lead time for 

preemptive interventions, potentially saving lives and improving patient outcomes. Similarly, 

Zebra Medical Vision [55] has pioneered algorithms adept at detecting signs of various diseases 

and conditions within medical images, spanning from lung cancer and breast cancer to liver 

diseases and cardiovascular conditions. By leveraging these AI-driven tools, radiologists can 

enhance their diagnostic accuracy and expedite the detection of illnesses in their early stages, 

leading to more effective treatment strategies and improved patient care. Furthermore, ML and 

DL play a crucial role in identifying diseases such as dementia and Alzheimer’s [56], 

Parkinson’s [57], multiple sclerosis [58], and brain abnormalities in temporal lobe epilepsy 

patients [59]. 

Utilizing artificial intelligence methods in drug development offers a comprehensive approach 

to understanding molecular properties. Through in silico modeling, these methods not only aid 

in determining the presence of lead compounds with optimal properties but also offer theoretical 

insights into absorption, bioactivity, metabolism, side effects, and excretion of the drug. 

Moreover, by using multi-objective optimization approaches, AI assists in lowering attrition 

costs throughout the preclinical phase. AI has proven its effectiveness in a number of areas, 

including estimating drug-protein interactions [60], determining medication efficacy [61], and 

guaranteeing biomarker security [62]. Cutting-edge ML and DL models that predict protein 

structures like AlphaFold [63], and tools that evaluate protein quality such as ProQ3D [64], 

QACon [65] and DeepQA [66], showcase the breadth of AI influence in advancing drug 

development and therapeutics. OrthoGrid Hip [67] is advanced software designed to correct 

distortion and ensure precise alignment during direct anterior total hip arthroplasty. It is 

compatible with various implants and operates on an AI-powered digital platform. 
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Additionally, artificial intelligence is reshaping patient health management through innovative 

technologies. Wearable devices powered by AI enable continuous collection and monitoring of 

vital patient data, including heart rate, blood pressure and sleep patterns. This real-time 

information serves as a valuable tool for both individuals and healthcare professionals, 

facilitating the tracking of health trends and early detection of anomalies. AI virtual assistants 

further enhance patient care by assisting with appointment scheduling, medication reminders, 

and providing basic medical information in a conversational manner. These virtual agents play 

a progressive role in patient wellness, offering personalized recommendations on diet, exercise, 

and stress reduction. A notable example of AI in healthcare is IBM Watson Health [68], which 

harnesses AI, machine learning, and natural language processing to analyze extensive medical 

data. By assisting healthcare professionals in decision-making, IBM Watson Health empowers 

more informed and effective patient care strategies. 

The rapid integration of AI into healthcare practices signifies a paradigm shift in how medical 

services are delivered and regulated, promising significant improvements in patient outcomes 

and overall healthcare efficiency. 

1.3 Objectives 

Childbirth simulations have been investigated in an attempt to forecast and prevent severe 

complications in both mothers and fetuses during delivery. Constructing a comprehensive 

model of the pregnant woman’s pelvic system and the fetal body is crucial in advancing the 

understanding of childbirth mechanics. However, scientific challenges remain in the realistic 

representation of the fetus and suitable computational cost and processing speed to deploy the 

childbirth simulations into clinical routine practices. 

This PhD thesis has three original contributions to overcome these challenges:  

1) Automated segmentation of fetal skeletons into distinct components utilizing a model based 

on generative adversarial networks (GAN) and 3D point cloud data.  

2) Forecasting real-time soft tissue deformations employing recurrent neural networks (i.e. long 

short-term memory neural networks (LSTM)) integrated with a learning strategy based on 

principal component analysis (PCA).  

3) Designing and assessing an outstanding model for simulating real-time soft tissue 

deformations, leveraging the physics-informed Neural Networks (PINN) and Neural Ordinary 

Differential Equations (NeuralODE). 

This thesis introduces novel methods for accurately modeling fetal representation and 

dynamically simulating soft tissue deformation in real-time. These advancements aim to 

contribute to the development of a next-generation decision support tool tailored for childbirth 

training and simulating complications. By combining innovative techniques, this research lays 

the foundation for more realistic simulations that can enhance training outcomes and facilitate 

a better understanding of childbirth complexities.   

1.4 Thesis organization 

The rest of the thesis is organized as follows: 
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 Chapter 2: State-of-the-Art. The chapter reviews and explores the state-of-the-art of 

newborn 3D skeleton part segmentation and the predictions of soft tissue deformations 

in real-time.  

 Chapter 3: Generative adversarial network for newborn 3D skeleton part 

segmentation. We propose a generative adversarial network-based model to segment 

the fetal skeleton into separate parts using 3D point cloud data.  

 Chapter 4: A novel deep learning-driven approach for predicting the pelvis soft-tissue 

deformations toward a real-time interactive childbirth simulation. Deep learning-based 

models to predict the deformation of pelvic soft tissue within interactive childbirth 

simulators are built and evaluated. This involves the integration of long short-term 

memory neural networks (LSTM), deep neural networks and principal component 

analysis (PCA)-based learning. 

 Chapter 5: Physics-informed neural ordinary differential equations and mass-spring 

system modeling framework for predicting the real-time soft-tissue deformations. We 

develop and evaluate the state-of-the-art model to simulate real-time deformations of 

soft tissue. This innovative approach employs Physics-informed Neural Networks 

(PINN) and Neural Ordinary Differential Equations (NeuralODE). 

 Chapter 6: General discussion. The key contributions and a summary of the work will 

be discussed. 

 Chapter 7: Conclusions and perspectives. The final chapter presents conclusions and 

perspectives. 
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Chapter 2 

State-of-the-Art 

 

2.1 3D part segmentation 

2.1.1 Summary of used methods  

Deep learning has been intensively used to perform medical image analysis tasks such as 

classification, reconstruction, and segmentation. This advancement has paved the way for more 

accurate and efficient analysis of complex medical data, leading to improved diagnostic 

accuracy and patient care. Segmentation of female pelvis organs is essential for a wide range 

of clinical applications, including gynecology, oncology, and obstetrics. Accurate delineation 

of organs such as the vagina, uterus, and cervix is crucial for diagnosing, treatment planning, 

and monitoring of female reproductive health conditions. Similarly, the segmentation of 

newborn skeletons is vital for detecting developmental abnormalities, congenital anomalies, 

and growth disorders. Furthermore, it plays a critical role in building the maternal pelvic model, 

which includes a comprehensive fetal model with articulated joints, especially important for 

simulating childbirth. 

Traditional segmentation methods often struggle with complex anatomical structures and 

variations in organ shapes and sizes. Deep learning approaches offer promising solutions by 

leveraging large-scale datasets and sophisticated neural network architectures to learn complex 

relationships and features directly from medical images. This facilitates more accurate and 

efficient segmentation.  

A kind of CNN model commonly used for image segmentation is U-Net, which was initially 

proposed by Ronneberger et al. [38]. The U-Net architecture is characterized by its symmetrical 

U-shaped structure, hence the name U-Net. The network can be divided into two main parts: 

the contracting path and the expanding path. Each part serves a distinct purpose: 

 Contracting Path: The contracting path employs a convolutional block and max pooling 

for downsampling. The convolutional block consists of convolutions, batch normalization, and 

an activation function. While max pooling reduces computational complexity and enhances 

noise robustness, it also has the drawback of information loss. After each downsampling step, 

the number of feature channels is doubled. Dropout is often employed to address overfitting, 

where a model becomes too specialized to the training dataset and fails to generalize well to 

unseen data. By randomly dropping units from the network during training, dropout simulates 

the use of multiple models for predictions, reducing overfitting. 

 

 Expanding Path: The expanding path decoder consists of an up-convolution operation, 

concatenation with the corresponding feature map from the contracting path, and two 

convolutional blocks. This part reduces the size of the feature map using a convolutional layer, 

and then expands the feature map using up-convolution. Up-convolution involves zero-padding 
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the pixels before applying convolution to the padded image. The unique aspect of the U-Net 

structure is the symmetric connection between the contracting and expanding paths, allowing 

information to flow seamlessly between the two sides. 

 

While U-Net is a powerful and widely used architecture for image segmentation, it has some 

drawbacks. U-Net requires a high amount of memory, especially when processing large input 

images. Despite its ability to capture local and global features through skip connections, U-Net 

may still struggle with capturing long-range dependencies and contextual information in large 

images or in cases where objects of interest are highly context-dependent. To get the best 

performance, U-Net demands considerable amounts of annotated training data. 

 

Traditional deep learning models, such as convolutional neural networks and recurrent neural 

networks, work well with data that is represented by grid-like structures (such as images or 

sequences). However, they may not work well with data that has irregular or non-Euclidean 

structures, like graphs, point clouds, or meshes. Geometric deep learning [69], [70], a class of 

deep learning, addresses this limitation by designing neural network architectures and 

algorithms that can operate directly on unstructured data while preserving the inherent 

geometric properties. In the context of classical deep learning, dimensionality is closely linked 

to the number of features included in the data; meanwhile, in geometric deep learning, 

dimensionality pertains to the nature of the data rather than its feature count.  

Geometric deep learning algorithms involve defining convolutional and pooling operations, as 

well as other layers, that are compatible with irregular structures. By leveraging techniques 

from differential geometry, graph theory, and topology, geometric deep learning enables the 

processing of complex data types commonly encountered in various domains. 

In addition to conventional deep learning approaches, the use of Generative Adversarial 

Networks (GAN) [71] has also gained traction in medical image segmentation. GAN is a state-

of-the-art method for deep learning generative modeling. The aim is to find patterns in input 

data, which allows the model to generate new instances that reasonably mirror the original data. 

We can deconstruct the term “generative adversarial networks” into three components as 

follows: 

 Generative: this aspect involves learning a model that generates data, which explains 

the process of generating data in the context of a probabilistic framework. 

 Adversarial: this term denotes that the generated outputs are pitted against the real data.   

 Networks: this word indicates the use of artificial intelligence algorithms (i.e. machine 

learning, deep learning) to training tasks. 

 

The structure of GAN consists of a generator model and a discriminator model as in Figure 5: 

 Generator: is a crucial component of a GAN that generates novel and correct data from 

random noise. Typically depicted as a deep neural network, the generator learns the 

fundamental distribution of the training data through layers of adaptable parameters during 

training. By utilizing backpropagation, it adjusts its output to create samples closely resembling 

real data. The generator’s effectiveness lies in its capability to produce diverse, high-quality 

samples that can deceive the discriminator. 
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 Discriminator: is for distinguishing between generated and real input. Acting as a binary 

classifier, the discriminator assesses input data to assign the likelihood of authenticity. Through 

continuous exposure to both real data and synthetic samples produced by the generator, the 

discriminator gradually improves its ability to discern between real and artificial data. This 

iterative process enables the discriminator to refine its parameters and enhance its 

discriminatory accuracy over time. 

 

Training a GAN comprises an iterative process where both the generator and discriminator 

neural networks are simultaneously trained. Each of the two models has a unique loss function. 

The loss function of the generator evaluates its success in deceiving the discriminator, whereas 

the discriminator’s loss function assesses its capability to differentiate between real and 

synthetic data. It is essential to highlight that training GANs can pose challenges and necessitate 

meticulous adjustment of hyperparameters, along with vigilant monitoring for problems like 

overfitting or instability. 

 

Figure 5. Overview of Generative adversarial networks (GAN) architecture. 

Generative adversarial networks have developed into a variety of forms that are optimized for 

certain tasks or offer enhanced training stability and effectiveness. For example, Conditional 

GAN [72] expands upon the vanilla GAN for controlled creation by incorporating extra data 

like class labels to condition the generator and discriminator. By integrating deep CNN into the 

generator and discriminator, Deep convolutional GAN [73] aids in the production of high-

resolution images with better stability. Another notable variant of GAN that has garnered 

attention is the Cycle-consistent GAN (CycleGAN) [74], developed specifically for unpaired 

image-to-image translation problems. Unlike vanilla GAN, CycleGAN learns to translate 

pictures from one category to another in a cycle-consistent way without the need for coupled 

training data. 

2.1.2 Existing applications 

Generative adversarial networks have been used extensively and successfully in numerous 

segmentation issues in recent years. For instance, Nie et al. [75] presented a residual adversarial 

network for distinguishing pelvic organs of the bladder, prostate, and rectum from MRI scans. 

The segmenter network employed convolution layers to produce the predicted mask, while a 

CNN served as the discriminator network for adversarial learning, aimed at refining the 

segmented organ structures (Figure 6). 
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Figure 6. Architecture of segmentation networks using adversarial learning. A segmenter 

network to create the predicted mask and a discriminator network for adversarial learning 

[75]. 

Kalantar et al. [76] designed a deep learning model to synthesize pelvic MRI from CT scans. 

The study employed CycleGAN and U-Net++ to accomplish this task. Notably, the generated 

images enhanced sharpness throughout all pelvic slices, particularly in the bladder and bowel. 

In order to produce high-quality MRI scans from low ones, Li et al. [77] proposed a super-

resolution model employing a GAN with cyclic loss and attention mechanism. The approach 

was applied to pelvic images obtained from healthy subjects. 

Additionally, Tong et al. [78] based on GAN to develop a model for fully automated head and 

neck segmentation on CT and low-field MRI (Figure 7). The study employed a DenseNet, a 

deep supervised fully convolutional network, as the segmentation network. Following this, a 

discriminator network based on CNN was used to rectify anticipated errors and address 

discrepancies between the prediction and the ground truth at the image level. 

 

Figure 7. Head and neck segmentation using GAN compared to ground truth [78]. 
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Facial analysis systems have experienced innovation because of deep learning algorithms, 

which make them able to accurately recognize facial features, expressions, and even motions. 

Nguyen et al. [79], for example, developed a model to predict the facial motion of patients with 

facial deformities. The integration of reinforcement learning with finite element modeling 

enhanced the model’s capacity to facilitate personalized treatment planning and rehabilitation 

strategies (Figure 8). In another study, Nguyen et al. [80] applied a geometric deep learning 

method to recognize facial expressions from 3D point cloud data. This approach directly 

leveraged the geometric structure inherent in the data, leading to more precise recognition 

outcomes. 

 

a) 

 

b) 

Figure 8. a) Summary of the innovative integration process linking reinforcement learning 

with finite element modeling, b) Facial animation for motion with symmetry [79]. 

Yolcu et al. [81] analyzed customers’ facial expressions using convolutional neural network-

based models. The proposed system began by detecting frontal face poses, then segmented key 

facial parts to generate iconized face images. Furthermore, Kim et al. [82] presented the 

application of U-Net for segmenting facial wrinkles, introducing a novel loss function designed 

to consider wrinkle thickness (Figure 9). The study utilized a semi-automatic labeling approach 

to enhance accuracy and efficiency in wrinkle segmentation. 
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Figure 9. Overview of a wrinkle segmentation model. Wrinkle regions were labeled to build 

the binary mask M. The source picture I used to produce the suggested texture map T. After 

that, the wrinkle texture map T’ was produced by multiplying the non-wrinkle text [82]. 

With the use of deep learning algorithms, bone segmentation has also advanced significantly. 

Belal et al. [83] introduced the segmentation of human bone into 49 distinct parts from the CT 

scans using convolutional neural networks (Figure 10). Schnider et al. [84] improved the bone 

segmentation through the utilization of segmentation networks that were trainable end-to-end, 

which amalgamated multiple 3D U-Nets. Cui et al. [85] designed a system based on deep 

learning to segment tooth and alveolar bone from cone-beam CT images. To segment teeth, an 

initial step involved a network that identified the foreground region of the upper and lower 

teeth. After that, a specialized deep network employed detailed geometric data to outline each 

tooth accurately. In the segmentation of alveolar bone, a tailored filter-enhanced network 

initially boosted intensity contrasts along bone borders.  

 

Figure 10. Segmentation and reconstruction of bony parts from CT scans [83]. 



33 
 

In addition, Zeng et al. [86] integrated the attention method and deep supervision technique into 

the V-Net model to segment fetal head and skull structures from ultrasound images. Moreover, 

a multiscale loss function to comprehend supervision was presented. McCay et al. [87] 

employed fully convolutional neural networks to classify the movements of infants’ bodies as 

in Figure 11. The study extracted normalized feature sets based on poses, histograms of joint 

orientation, and joint displacement to be utilized within deep learning frameworks. 

 

Figure 11. The skeleton output and its corresponding joint reference numbers [87]. 

2.1.3 Point cloud dataset 

Point cloud data is a collection of points in a three-dimensional coordinate system. These points 

exhibit the external surface of an object or scene. Each point in the cloud has its own set of 

coordinates (𝑥, 𝑦, 𝑧), representing its position in space, and may also include additional 

information such as color, intensity or reflectivity. Figure 12 illustrates a point cloud 

representation for the 3D rabbit [88]. Point clouds are commonly used in various fields such as 

architecture, engineering, urban planning, and computer graphics. They serve as a detailed 

representation of real-world objects or environments, allowing for accurate measurements, 

analysis, visualization, and modeling. Additionally, point cloud data is often processed and 

manipulated using specialized software to extract meaningful information, create 3D models or 

perform tasks such as object recognition and segmentation. 

 

Figure 12. Point cloud depiction of a three-dimensional rabbit [88]. 
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Point cloud classification and segmentation play vital roles in comprehending scenes, 

prompting numerous explorations into these areas. Machine learning approaches are the most 

commonly used methods for data analysis. In the field of point cloud classification and 

segmentation, deep learning is widely employed. Methods for point cloud segmentation can be 

categorized into three primary groups: projection-based methods, voxel-based methods, and 

point-based methods. 

Projection-based methods focus on generating multi-viewpoint representations of point clouds, 

followed by learning the 2D features from these projections using 2D convolutional operators. 

The essence lies in constructing a robust understanding of the scene from various perspectives. 

Subsequently, the extracted features from the multi-viewpoint clouds are effectively fused. This 

fusion enhances the richness of information by integrating data from diverse viewpoints, 

culminating in a more comprehensive representation of the scene. Su et al. [89] introduced a 

CNN-based framework for recognizing 3D shapes. Initially, the framework identified shapes 

from individual views with high accuracy, surpassing current 3D shape descriptors. Then, it 

integrated information from multi-view into a single shape descriptor to enhance recognition 

(Figure 13). Wei et al. [90] presented two view-based graph convolutional network (GCN) 

models for 3D shape recognition, utilizing a graph representation of various perspectives. They 

established a view graph where each view served as a node and developed two GCNs to 

hierarchically learn discriminative shape descriptors, taking into account relationships among 

views. 

 

Figure 13. Top perspectives where objects were most salient [89]. 

Voxel-based methods involve partitioning the point cloud into a regular grid of volumetric 

elements and converting the point cloud into a voxel-based representation. This approach 

enables the application of convolutional neural networks, which are well-suited for regular grid 

structures. Voxel-based methods are useful when spatial relationships across the entire scene 

are important. Zhi et al. [91] suggested a volumetric CNN model called LightNet, aimed at 

tackling the challenges of real-time 3D shape identification through multiple learning tasks 

(Figure 14). The model concurrently predicted labels from both entire and partial objects. Wang 

et al. [92] also proposed a CNN model based on voxels to recognize 3D shapes, using both 

surface normal vectors and voxels of objects as inputs. To implement the convolution layers, 

the study introduced a module that captured identifiable characteristics for 3D visual analysis 

but substantially lowered the required parameters. 
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Figure 14. Converting the point clouds into structured 3D regular voxels [91]. 

The computational expense associated with the two aforementioned methods is significant, 

leading to the development of neural networks designed to operate directly on raw point clouds. 

In point-based methods, each point cloud is typically processed individually, which allows for 

the feature extractions and deep learning algorithms directly on the raw point data.  Among 

these methods, PointNet [93] emerged as one of the earliest approaches to utilize deep learning 

for handling original point clouds (Figure 15). It revolutionized the field by capturing both local 

and global features without relying on intermediate representations such as voxels or meshes. 

PointNet streamlines the processing pipeline and facilitates more efficient analysis of point 

cloud data. 

 

Figure 15. PointNet – one framework for several tasks [93]. 

2.2 Deep learning-driven prediction 

2.2.1 Summary of used methods 

In recent years, the applications of deep learning techniques in biomechanics have witnessed 

tremendous progress, completely changing our understanding and prediction of soft-tissue 

mechanical properties in the human body [94], [95], [96]. Among these, the prediction of 

deformation of pelvis soft tissue has enormous potential to improve diagnostic accuracy, 

treatment planning and patient outcomes in a variety of medical specialties such as obstetrics 

and gynecology. Soft-tissue displacements in the pelvis region can be influenced by a multitude 

of factors, including anatomical variations, pathological conditions, and external forces. Within 

the context of this thesis, we specifically investigate the deformation of pelvic soft tissue during 

childbirth. Accurate prediction of these displacements is crucial for tasks ranging from 

preoperative planning to real-time image-guided interventions. Traditionally, computational 
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models based on finite element analysis and biomechanical principles have been employed for 

such predictions. However, these models often rely on simplified assumptions and lack the 

capacity to capture complex nonlinear relationships inherent in soft tissue behavior.  

2.2.1.1 Recurrent neural networks (RNNs) 

The emergence of deep learning, particularly recurrent neural networks (RNNs), has opened up 

new avenues for more accurate and efficient soft-tissue displacement prediction. Recurrent 

neural networks are a category of neural networks enabling the utilization of prior outputs as 

inputs while maintaining hidden states. The primary function of these networks is to process 

sequential data, wherein the network’s setup preceding the memory cycle influences subsequent 

output node information. This typical structure entails interconnected nodes within the hidden 

layers, where inputs to the hidden layer comprise not only those from the input layer but also 

outputs from preceding hidden layers.  

The basic idea behind RNNs is that they contain loops that allow information to be retained 

over time. The network receives input 𝑥𝑡 at time step 𝑡 and computes the output �̂�𝑡. It also 

calculates the internal state update ℎ𝑡. Subsequently, it transfers this internal state information 

from one network time step to the next. Because information is internally transferred within the 

network, we label these networks containing loops as recurrent networks. Figure 16 illustrates 

the unrolling form of the loop over time. In this representation, we can explicitly express the 

weighted matrices: first, the weights that transfer the input to the hidden state; then, the weights 

that transfer the hidden state to the output; and last, the weights that transfer the previous hidden 

state to the present hidden one. At every time step, we use the same weighted matrices. For 

RNNs, the loss is calculated at every time step, and the overall loss is obtained by adding the 

individual losses.  

 

Figure 16. The expansion mode of RNN over time. 

Besides their advantages, one significant issue with RNNs lies in the problem of vanishing and 

exploding gradients. The problems can be attributed to several factors. One way to 

conceptualize each RNN unit is as an individual neural network unit that is linked to the one 

after it. RNNs feature three states: an input state, an output state, and an internal memory state 

that holds onto data from earlier units. We advance through the network similarly to how we 

would in a feedforward network, predicting the output of each RNN unit and transmitting the 

data forward. Then, computing the loss of each unit to train the RNN, the total loss is obtained 

by summing up the losses of all units. After that, the network performs backpropagation, which 

leads to issues. This is due to the fact that backpropagation, particularly when working with 

lengthy sequences, requires computing many gradients to adjust the weights. As a result, by the 

time we backtrack to the first unit, multiple gradients have been computed. If gradients are less 
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than 1, the multiplication of many small numbers results in what is known as a vanishing 

gradient. If the gradients are more than 1, the multiplication of only a few numbers leads to 

what is referred to as an exploding gradient. The issue of exploding gradients can be alleviated 

through a technique known as “gradient clipping”, which aims to limit excessively large 

gradients to prevent them from escalating. As for the vanishing gradient issue, it can be 

addressed by employing various strategies such as adjusting the activation function, optimizing 

weight techniques, and network structure. 

A variant of the RNNs known as the Long Short-term Memory (LSTM) network, introduced 

by Hochreiter and Schmidhuber [35], was developed specifically to tackle the issue of vanishing 

gradients. In the LSTM architecture, there are two main components: the cell state and the 

hidden state. Throughout each iteration of the training process, the cell state is updated. This 

update process involves passing through three gates within the hidden state before the operation 

is repeated. Each gate plays a crucial role in determining the amount of information to retain 

and discard. These gates effectively manage gradients, ensuring they remain stable and 

preventing issues of vanishing and exploding gradients. The gates consist of standard neural 

network layers such as the sigmoid and pointwise multiplication. These three gates are referred 

to as: the forget gate, input gate, and output gate. The forget gate examines the information 

from the preceding cell state and determines which information needs to be retained and which 

can be disregarded before updating the cell state. This is made up of a sigmoid layer, with 0 

representing forgetting, and 1 representing remembering. The input gate identifies which 

information is to be modified concerning the prior cell state. It uses a sigmoid layer to perform 

this evaluation, followed by transmitting these values via a tanh layer to generate new values. 

The output gate synthesizes the information from the previous stage to produce an updated 

state. Every time the training procedure is performed, the aforementioned loop is repeated, and 

the weights are updated at each stage. In terms of mathematics, the weight updates at each stage 

of the training process assisted in maintaining gradients that were constant or closer to 1, 

preventing RNNs’ vanishing and exploding gradient issues. 

A variant of the LSTM architecture is the Bidirectional long short-term memory (BiLSTM). 

The network was introduced by Schuster and Paliwal [97] to address the challenge of capturing 

long-term dependencies in sequential data. The distinguishing feature of BiLSTM lies in its 

ability to process sequences from both ends, unlike traditional LSTM that only moves forward 

through the data. This bidirectional processing enhances the network’s understanding of 

context. Moreover, BiLSTM excels in learning long-term dependencies, making it well-suited 

for tasks involving sequential data analysis. By leveraging bidirectional processing, this model 

mitigates the risk of information loss that may occur in unidirectional LSTM setups, ensuring 

a more comprehensive representation of the input sequence. However, it is noted that BiLSTM 

has a slower processing speed and longer training time compared to LSTM. Consequently, we 

advise employing BiLSTM only when its unique bidirectional capabilities are essential for the 

task at hand. 

2.2.1.2 Physics-informed neural networks (PINN) 

Over the last decade, we have seen an incredible expansion in computer power, which has led 

to breakthrough developments in deep learning, particularly in deep neural networks. A unique 

deep neural network framework called physics-informed neural networks (PINN) has been 

created recently. PINN effectively combines the fundamental physical principles conveyed by 

partial differential equations (PDEs) with neural networks. By leveraging this inherent physical 
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understanding as a foundation, PINN can be trained as surrogate models for solving PDEs with 

minimal labeled data or sometimes no labels. Fully connected feedforward neural networks 

serve as the central component of the surrogate models to forecast outputs within the domain 

of differential equations. The differential operator in the governing equations is computed using 

automatic differentiation (AD) [98]. By traversing the backward chain in the neural networks, 

automatic differentiation – a continuous grid-free differentiation technique – can analytically 

compute derivatives.   

In finite differences, the derivatives are approximated utilizing values of the original function 

assessed at specific sample points. Their basic definition relies on the limitation of a derivative. 

For instance, the derivative of a multivariate function 𝑓 with respect to 𝑥 is expressed as 

follows:  

𝑓′(𝑥) = lim
𝜀→0

𝑓(𝑥 + 𝜀) − 𝑓(𝑥)

𝜀
 

in which 𝜀 is a small value. This approach offers the benefit of simplicity in execution, yet it 

comes with the drawback of having to conduct 𝑂(𝑛) evaluations of 𝑓 to obtain a gradient in 𝑛 

dimensions. It is evident that computing 
𝜕𝑓

𝜕𝑥𝑖
 entails assessing 𝑓 twice: one for 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑖 … , 𝑥𝑛) and one for 𝑓(𝑥1, 𝑥2, … 𝑥𝑖 + 𝜀, … , 𝑥𝑛). Moreover, it demands thoughtful 

selection of the 𝜀 number, and the outcome may lack precision when dealing with nonlinear 

functions. 

Given that the neural networks embody composite functions, automatic differentiation 

iteratively calculates the derivatives by the chain rule. As a technical concept, AD denotes a 

particular set of methods that calculate derivatives by aggregating values throughout code 

execution to produce numerical derivative assessments rather than derivative expressions. 

There exist two versions of AD: forward mode and reverse mode. The forward mode is a 

combination of symbolic and numerical differentiation, although it produces numerically 

accurate results, it uses a lot of resources because it necessitates one traversal through the 

computational graph for each input parameter. In contrast, the reverse mode demands only two 

passes through the computational graph: a forward pass, which calculates all variable values, 

followed by a backward pass, which calculates derivatives. The reverse mode is widely adopted 

in practical applications, such as its utilization in TensorFlow. 

Considering a function 𝑦 = 𝑓(𝑔(ℎ(𝑥))), the inputs of the function are transmitted downwards 

in the forward pass as follows: 

𝑣0 = 𝑥 

𝑣1 = ℎ(𝑣0) 
𝑣2 = 𝑔(𝑣1) 
𝑣3 = 𝑓(𝑣2) 
𝑦 = 𝑣3 

The derivatives are calculated in the backward pass using the chain rule. For example, the 

derivative 
𝜕𝑦

𝜕𝑥
 is computed as follows: 

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑣3
∙

𝜕𝑣3

𝜕𝑣2
∙

𝜕𝑣2

𝜕𝑣1
∙

𝜕𝑣1

𝜕𝑣0
∙

𝜕𝑣0

𝜕𝑥
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Automatic differentiation proves significantly more productive than finite difference in 

scenarios with high dimensional inputs. AD can be used recursively n times for computing n-

th order derivatives. Nevertheless, because of the potential for inefficiency and numerical 

instability associated with this stacked approach, other techniques such as Taylor-Mode 

automatic differentiation have been developed. It is important to highlight that AD allows the 

differentiation of neural networks, enabling the handling of noisy data. 

A typical PINN approach is depicted in Figure 17 to solve differential equations. The input 

(𝑥, 𝑡) of the neural network in the PINN framework corresponds to the training point 

coordinates, which can be divided into three parts. These are the samples (𝑥𝑖 , 0) representing 

the initial condition, the samples (𝑥𝑏 , 𝑡𝑏) reflecting the boundary condition, and the collocation 

points (𝑥𝑓 , 𝑡𝑓) located within the domain of the equation. To compute the predicted value 

�̂�(𝑥𝑖, 𝑡𝑖 , 𝜃) that corresponds to the input point (𝑥𝑖, 𝑡𝑖). The parameters 𝜃 of the neural network 

(NN) include weights 𝑊 and biases 𝑏. Automatic differential of the NN is employed to compute 

the partial derivatives of �̂�(𝑥𝑖, 𝑡𝑖, 𝜃). These derivatives are then submitted to the governing 

equations, and boundary/initial conditions to compute the errors of residuals for the 

aforementioned components. The loss function is defined as the linear sum of errors. Afterward, 

the predicted values are driven towards convergence with the exact values by minimizing total 

loss using an optimizer to adjust the parameters of the neural network.   

 

Figure 17. A schematic of Physics-informed neural network. 

To elaborate on the concepts behind physics-informed neural networks and facilitate 

comprehension, we compare some points between PINN and traditional numerical methods as 

the following: 

 Modeling approach: 

- PINN is a mesh-free method that directly learns the underlying physics of a system from 

data, and incorporates the governing equations and boundary/initial conditions into the 

loss function. 
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- Traditional numerical methods like finite difference, finite element, and finite volume 

methods discretize the domain into a mesh and solve the algebraic equations iteratively 

to approximate the solutions of partial differential equations. 

 

 Computational cost: 

- During PINN training, neural network parameters are optimized using methods such as 

stochastic gradient descent and backpropagation. While training can require expensive 

computation, once trained, evaluation is often completed quickly. 

- Traditional methods involve solving large systems of equations iteratively, which can 

need a lot of processing power, especially for high-dimensional or finely discretized 

problems. 

 

 Generalization: 

- PINN has the potential for better generalization to unseen data, as they learn the 

underlying physics from data and can capture complex patterns. 

- Traditional numerical methods are limited in the ability of generalization since the 

assumptions and approximations are made during discretization and solving procedures. 

 

 Accuracy: 

- PINN substitutes the differential operation with automatic differentiation, bypassing the 

necessity for differential discretization and thereby mitigating discretization and 

truncation errors. This enables PINN to achieve solutions of high accuracy. 

- Traditional numerical methods highly depend on the chosen discretization scheme, 

mesh resolution and numerical stability of the solver, so their accuracy and robustness 

may struggle with high-dimensional nonlinear problems. 

 

 Data dependency: 

- PINN requires data to train the neural networks, but they can also incorporate physics-

based constraints to guide the learning process. 

- Traditional methods rely solely on the equations governing the physical system and do 

not directly utilize data for their computations.  

    

2.2.1.3 Neural ordinary differential equations (NeuralODE) 

Differential equations and neural networks represent two prominent modeling frameworks that 

are widely employed in scientific and technological domains. For centuries, differential 

equations have served as a fundamental tool for modeling a broad range of phenomena. Neural 

networks, on the other hand, have gained global prominence in recent decades to handle a 

variety of works like natural language processing and imaging identification. Recently, 

attention has shifted towards merging these methods into a blended approach known as neural 

differential equations. 

We can conceptualize a neural network as a single large function composed of nested functions. 

However, determining the appropriate number of layers is not straightforward. Typically, fewer 

layers suffice for simpler problems or mappings, but as complexity increases, adding more 

layers is often beneficial. Yet, training a neural network with a large number of layers presents 
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challenges, primarily due to overfitting and vanishing gradients. A residual neural network 

(ResNet) is essentially identical to a standard neural network, with just one small modification. 

In a traditional neural network, the output of one layer is passed directly to the next layer. 

However, in a ResNet, we do not merely pass the output of one layer to the next; instead, we 

feed the output of the current layer plus the input of the same layer into the subsequent layer. A 

method to solve a first-order differential equation is Euler’s Method, which operates in discrete 

time steps. Similarly, residual networks exhibit a formula, treating each layer as a discrete unit 

for weight optimization. Both approaches aim to approximate a function, but in the context of 

calculus, a differential equation solver like Euler’s Method is used to derive the function. In 

Neural Ordinary Differential Equations (NeuralODE) [99], we apply ordinary differential 

equation solvers to solve a structure resembling a residual network, yet with a continuous unit 

instead of discrete ones (Figure 18). NeuralODE is well-suited for addressing challenges in 

modeling time series data. It provides memory efficiency, the capability to handle irregular 

data, and robust generalization to unseen data. 

 

Figure 18. Difference between ResNet and NeuralODE. A residual network produces a 

discrete sequence; an ODE network produces a continuously transforming state [99]. 

2.2.2 Principal component analysis-based approach  

When the number of attributes or dimensions in a dataset rises, the amount of data needed for 

meaningful outcomes grows dramatically, resulting in concerns like model overfitting, time-

consuming computation, and poor precision of machine learning methods. With more 

dimensions, the potential attribute combinations also rise significantly, posing computational 

challenges for acquiring representative datasets. Consequently, tasks like clustering or 

classification are costly.  Moreover, certain machine learning methods may be affected by the 

number of dimensions, necessitating more data to maintain accuracy degrees comparable to 

lower dimensional data. Thereby, feature selection and extraction techniques are employed to 

overcome this problem. The goal of dimensionality reduction methods is to minimize the input 

quantities while preserving the majority of the original data. In this section, we discuss the most 

widely used dimensionality reduction technique that is principal component analysis (PCA) 

[100].   

The principal component analysis is a statistical method to translate a group of correlated 

variables into a group of independent variables. It is often utilized in data analysis and 

developing predictive models in machine learning. PCA is employed in data visualization to 

graphically represent complex data in 2D or 3D, simplifying interpretation. For feature 
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selection, PCA helps find crucial variables in data. It is also applied to data compression to 

downsize datasets while preserving key information. Additionally, PCA serves as an 

unsupervised learning approach to explore the connections between variables. 

PCA determines a series of orthogonal axes known as principal components, which effectively 

encapsulate the most variance within the data. Principal components represent novel variables 

formed by combining or mixing the initial variables, which are arranged based on their 

declining significance. The majority of the variability in the data is captured by the primary 

principal component. Subsequently, each succeeding principal component captures the largest 

variance orthogonal to the previous one. PCA can be elucidated through a series of steps, 

unraveling the process of transforming a high-dimensional dataset into a lower-dimensional 

representation while retaining as much variance as possible.  

The initial step is standardization to normalize the continuous original variables’ scope to 

ensure each one makes an equal contribution to the analysis. This step is crucial because PCA 

is highly sensitive to variations in the original variables, which may bias outcomes if not 

addressed. Large differences in variable ranges can lead to a dominance of variables with wider 

ranges, thus standardization mitigates this issue by translating the data to equivalent scales, 

resulting in all variables being brought onto a uniform scale. 

Next, the covariance matrix is computed to understand the interrelationships between the 

variables in the input dataset and to identify any duplicate information caused by strong 

correlations. Computing the eigenvectors and eigenvalues of the covariance matrix follows in 

step 3, determining the principal components of the data.  

Step 4 involves generating a feature vector to decide whether to retain all principal components 

or dismiss those with lower relevance, which are characterized by low eigenvalues. We then 

form a matrix of vectors known as the feature vector, using the selected principal components. 

The resulting dataset will have a p-dimension if we retain p eigenvectors.  

Finally, in step 5, the data is reoriented along the axes of the principal component. Except for 

the standardization step, no alterations are made to the data in the preceding stages; instead, 

principal components are selected and a feature vector is constructed. However, the input data 

is aligned with the original axes or initial variables. This step utilizes the feature vector 

generated from the eigenvectors to transform the data from its original axes to those defined by 

the principal components.  

2.2.3 Existing applications 

Various applications of RNN models in biomechanics demonstrate their efficacy in predicting 

complex physiological phenomena. For example, Burton et al. [101] employed BiLSTM 

models to forecast joint contact and muscle forces based on predictor attributes obtained from 

gait lab data (Figure 19). These predictor attributes comprised various factors such as stature, 

mass, and angles reflecting pelvic orientation, knee flexion, ankle plantar, and dorsi flexion. 

Despite eliminating reliance on specific subsets of predictor attributes, RNNs accurately 

anticipated patient mechanics. Said et al. [102] proposed the use of BiLSTM alongside an 

attention layer for predicting breast tissue deformation during mammography. Two phases were 

involved in applying the deformation: simulation of compression and estimate of the unloaded 

state. Numerous clinical datasets and realistic compression ratios were used to evaluate the 

approach. Furthermore, Zhang et al. [103] introduced a deep learning model of LSTM 
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combined convolutional neural networks to predict brain tumor growth. The method integrated 

3D spatial and temporal images along with clinical data to simultaneously capture intra-slice 

spatial patterns, inter-slice relationships within 3D contexts, and temporal changes within 

sequences over time. Similarly, Lombardo et al. [104] developed LSTM-based models to 

anticipate future tumor locations in two motion directions and to dynamically adjust an existing 

contour, giving rise to the future tumor contour. The performance of these models was assessed 

using various metrics to gauge their precision in deformable multi-leaf collimator tracking, 

utilizing MRI data collected during patient treatments. 

 

Figure 19. Workflow of estimating forces during activities. A) gather ground response force 

inputs and marker data. B) determine joint angles in musculoskeletal modeling from marker 

data. C) estimate mechanical properties from musculoskeletal modeling [101]. 

Physics-informed neural networks have been effectively applied across numerous domains 

including mechanics [105], [106], [107], material science [108], [109], and medical diagnostics 

[110], [111]. For example, Buoso et al. [112] suggested the use of physics-informed neural 

networks capable of tailoring to individual patients, offering rapid and dependable assessments 

of left ventricular mechanics as in Figure 20. This network efficiently created a function cardiac 

model from anatomical clinical images, requiring significantly less computational time 

compared to conventional finite element methods.  

 

Figure 20. Outline the systematic steps for forecasting left ventricular mechanics [112]. 

Moreover, Li and Lee [113] provided the foundation for parameter identification and boundary 

force prediction using a PINN incorporating a boundary condition integrated estimate function. 

The efficacy of the proposed model was showcased through its application in determining 
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critical factors that define the ankle joint’s dynamics. Zhang et al. [114] introduced a 

musculoskeletal framework based on PINN to predict joint kinematics and muscle forces from 

surface electromyograms. Datasets of walking trials and wrist motions were used to verify the 

model. The predicted outcomes showed the efficiency of the suggested model, which addressed 

the limitations of data-driven and physics-based methods. Additionally, Movahhedi et al. [115] 

presented a blended PINN designed to predict 3D flow-induced tissue dynamics and physical 

properties from 2D images. This approach combined an LSTM model representing soft tissue 

with a differentiable fluid solver. By utilizing pre-existing knowledge in solid mechanics, the 

algorithm translated the governing equation onto a discrete eigenspace. 

In the applications of neural ordinary differential equations technique, Goyal et al. [116] 

integrated deep neural networks with NeuralODE for learning dynamical models from noisy 

and irregularly sampled data. The goal was to train two networks: one to implicitly represent 

measurement data and another to approximate the vector field, connected through integral 

forms of ODEs. Notably, this approach did not demand explicit noise estimation and 

accommodates varying temporal grids for dependent variables. Kashyap et al. [117] employed 

NeuralODE to examine the trajectories of brain network models, which replicate the brain’s 

activity. These models were simulated over short trajectories using estimated initial conditions 

derived from observed functional MRI data. Yang et al. [118] implemented NeuralODE, where 

deep feature extraction was governed by an ODE parameterized by a neural network, to enhance 

deep learning explainability in glioma segmentation from multi-parametric MRI data. The 

schema depicted as in Figure 21. Visualizing the dynamics of MR images after interacting with 

the deep neural network and segmentation formation was achieved by solving the ODE. 
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Figure 21. Structure of a Neural ODE model based on U-Net architecture for glioma 

segmentation [118]. 

Principal component analysis, a widely recognized statistical method, has been utilized to create 

models tailored to individual subjects. Samei et al. [119] constructed prototype models by 

applying a PCA model to the motion vectors of each patient. The ultimate model comprised a 

weighted fusion of predictions derived from all individual sub-models. In a subsequent study, 

Tanner et al. [120] tracked liver vessel landmarks and temporally extended them to achieve 

spatiotemporal forecasting based on the PCA model. Garau et al. [121] introduced a motion 

model that relied on regions of interest (ROI) identified from 4D computed tomography and 

2D cine-MRI scans. The objective was to effectively address alterations occurring during the 

treatment of lung tumors. The approach employed PCA to construct the model based on ROI 

associated with anatomical structures. 

2.3 Challenges and objectives of the thesis 

Constructing a robust model for simulating the childbirth process necessitates the 

comprehensive construction of both the maternal pelvic system and the fetal body, complete 

with full joint articulations. While numerous models have emerged recently, they still have 

various limitations. One common shortfall is the omission of a fully articulated fetal body 

representation, with a predominant focus solely on the head and neck of the fetus. Additionally, 

the conventional numerical methods employed for solving the motion of soft tissue prove to be 
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time-consuming, hindering real-time simulation. Furthermore, there is a notable absence of the 

utilization of state-of-the-art deep learning methods to accurately predict pelvic soft tissue 

deformation in real-time scenarios. Overcoming these challenges is imperative for the 

development of a comprehensive childbirth simulation model that can accurately depict the 

complex dynamics of labor and delivery. 

The objectives of this thesis are to develop and evaluate models for fetal representation and 

real-time soft tissue deformation. The main works are distributed into three chapters. 

In Chapter 3, we develop and assess a generative adversarial model for the automatic and rapid 

segmentation of bone components within the entire neonatal skeleton (Figure 22). A dataset 

comprising CT images of newborns was gathered and segmented, with each 3D reconstructed 

skeleton segmented into separate bony segments. We propose a GAN model based on PointNet 

to conduct automated segmentation directly on the 3D point clouds. A comparative analysis 

with a pointwise convolutional neural network to showcase the accuracy and efficiency of our 

method will be presented. 

 

Figure 22. Newborn 3D skeleton part segmentation using GAN. 

The point cloud data used in our study for newborn skeleton segmentation is derived from a CT 

database containing 124 subjects. Each subject undergoes manual segmentation of the whole 

skeleton using the software. Following this, we partition the skeleton into 23 sections. To 

enhance the data quality for training purposes, we augment it by applying rotation and 

resampling algorithms on the original points. As a result of this augmentation, the dataset 

comprises 3808 samples. 

In Chapter 4, we present a novel method utilizing deep learning techniques to forecast the 

deformation of pelvic soft tissues (Figure 23). Specifically, we employ the Long Short-term 

Memory (LSTM) alongside a deep neural network (DNN) to address high-frequency oscillation 

signals. We also implement various learning approaches, including those with and without data 

dimension reduction. We construct a simulation-driven database utilizing the Hyperelastic 

Mass-Spring Model (HyperMSM) model to facilitate training and testing. 
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Figure 23. The prediction of pelvic soft-tissue displacement. 

We generate the learning database by simulating childbirth processes. Our training method 

involves taking raw time-series data, including vertex positions, velocities, and interactive 

forces applied to nodes, and predicting nodal displacements. We choose to use our proprietary 

Hyperelastic Mass-Spring Model (HyperMSM) simulator for these simulations and to compile 

the database, as it has proven capable of simulating the biomechanical properties of soft tissues 

with a satisfactory level of accuracy. The model includes a fetal body, pelvic soft tissues such 

as floor muscles, vagina and uterus, as well as the bony structure of the pelvis. While simplified 

and not fully representative of the anatomical complexities of the female pelvis system, it is 

considered adequate for the immediate objectives of this study.  

Using HyperMSM, we execute many simulations of the birthing process while keeping the 

same material characteristics. For these simulations, the time-step is fixed at 2 milliseconds in 

each case. While some other methods allow for variable time-steps, HyperMSM uses the 

projective dynamic technique for time integration, which demands a constant time-step 

throughout the simulation. In dynamic simulations, the time-step value setting is crucial: while 

a bigger time-step accelerates the simulation process, a lower time-step enhances simulation 

stability. We produce a database with entries made up of the vectors 𝑥𝑡, 𝑣𝑡, 𝐹 and 𝑢𝑡+ℎ. the 

deep learning models will use the first three vectors as input, and 𝑢𝑡+ℎ as output. We simply 

consider unconstrained surface points in three dimensions. The model consists of 1653 surface 

nodes, resulting in vectors of size 3×1653. During each simulation, random external forces are 

applied to the surface of the pelvic floor muscles to simulate potential clinical intervention 

forces. We obtain a training database of 15396 frames concerning 8 simulations, and a test 

database of 18633 frames with respect to 6 simulations.  

Extending the work in Chapter 4, in Chapter 5, we develop an appropriate predictive model 

by combining Physics-informed neural networks (PINN) and Neural ordinary differential 

equations (NeuralODE) within the mass-spring system (MSS) modeling framework to simulate 

real-time deformations of soft tissue subjects (Figure 24). We evaluate our innovative method 

on 2D and 3D mass-spring systems and a 3D cantilever beam. Lastly, we simulate and assess 

the deformation of a 3D uterus model under the influence of gravity loading. 
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Figure 24. Physics-informed neural networks for predicting deformation of pelvic soft-tissue 

in real-time. 
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Chapter 3 

Generative Adversarial Network for Newborn 3D 

Skeleton Part Segmentation 

 

Research on childbirth simulations aims to anticipate and mitigate challenging delivery 

complications. Key to this endeavor is the reconstruction of the maternal pelvic model, which 

incorporates a detailed fetal model complete with articulated joints. Yet, the traditional methods 

of segmenting the diverse bone structures using classical image processing techniques are 

arduous and time-intensive. Thus, this chapter endeavors to introduce and assess a generative 

adversarial network (GAN) tailored to swiftly and automatically segment the bone components 

of the entire neonatal skeleton, offering a promising solution to this persistent challenge. 

3.1 Introduction 

In many computer-aided medical applications, the precise segmentation of every single bone in 

the individual body is significantly essential. Bone segmentation holds the potential to enhance 

the diagnosis of bone diseases, evaluates post-treatment progress, as well as guides imaging for 

treatment strategies such as surgical operation and radiotherapy. The consistent forms, locations 

and alignments of the skeleton structure make the segmentation task challenging and difficult. 

In particular, bony structures of fetuses affect to the childbirth process and relative to injuries 

of infants and mothers. Clinical experts have been concentrating their studies on understanding 

the process of birthing for a long time. In fact, extracted knowledge can be used to determine 

the causes of injuries to babies and mothers in labor works and investigate treatment strategies 

for complex deliveries. To achieve this objective, many methodologies have been used. One 

common method is to analyze historical observations to obtain correlation factors between a 

delivery situation and particular maternal–fetal variables. For example, neonatal brachial plexus 

palsy (NBPP) has been studied using a retrospective cohort [122]. Shoulder dystocia was 

identified as a potential risk factor, which is statistically relevant to the incidence of NBPP, but 

this problem cannot be forecasted with only shoulder dystocia symptoms. This approach fails 

to explain the mechanism and cause of injuries of the mother and fetus in the childbirth process.  

Another method relates to the use of maternal and neonatal birthing simulators. Medical 

students and clinicians practice realistic normal and abnormal labor works with such simulators. 

For example, Macedonia et al. [123] presented a female robotic childbirth simulator, named 

Noelle, to train clinicians in operating vaginal delivery and improving skills in vaginal breech 

labor work. Dupuis et al. [124] evaluated transvaginal fetal head station by using a birth 

simulator. However, physical birth simulators have drawbacks when providing the 

physiological causes of birth-related damage processes. They are often designed for a typical 

delivery scenario with typical sizes of the mother and fetal anatomies. Thus, it is difficult to 

present patient-specific parameters. Moreover, physical simulators are restricted in their ability 

to describe mechanical properties exhibited commonly in the delivery such as deformation of 

soft tissue (e.g. uterus, pelvic organs). It is also impossible to adequately reproduce complex 

situations for example the uterus contraction.  
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In addition, childbirth computational modeling can be identified as a promising approach to 

study mechanisms of the delivery and injuries happening to the mother and fetus. Parente et al. 

[125] simulated the fetal head motion during the birth canal to investigate its impact on pelvic 

muscles using the finite element method. The 3D rotation of fetal shoulders was modeled to 

evaluate how shoulder dystocia damage to brachial plexus tension and birth pressure by Chen 

et al. [126]. Typically, fetal models primarily include the head. Only few studies integrate a 

detailed fetal body with joints [127], [128]. It is important to note that the articulated fetal body 

is of great important to accurately model newborn skeleton movement and associated delivery 

mechanics. In fact, fetal skeleton part segmentation contributes significantly to the development 

of a fetal model with full joint definition to understand better the childbirth process. 

Recently, there has been a growing interest in point cloud learning, driven by its diverse range 

of applications in computer vision, automatic control and robotic fields. While deep learning 

has been highly effective in solving 2D vision tasks as well as has dominated the AI landscape, 

its application to point cloud learning is relatively new and faces distinct challenges. In 

particular, there is a burgeoning interest and development in deep learning methods for point 

cloud learning. In this study, we propose to use deep learning methods applied directly on 3D 

point clouds for the newborn skeleton part segmentation. 

Deep learning methods have obtained great achievements in several domains such as 

computational biomechanics [129], [130], [131], computer vision [132], [133], medical 

diagnosis and healthcare [25], [134], [135]. Liu et al. [136] presented the deep multi-class 

network-based U-Net to segment pelvic bones of the lumbar spine, sacrum, left hip and right 

hip from CT imaging dataset. Other parts of the pelvic bone such as sacrococcyx, femoral head, 

femoral neck, ischium and pubis, were also segmented from MRI scan data by applying 3D U-

Net in the study performed by Liu et al. [137]. Moreover, Zhang and Wang [138] developed a 

framework using PointNet++ architecture for the cervical vertebrae segmentation. 

In this study, we develop the generative adversarial network (GAN) based on the pointwise 

multi-layer perceptron method to segment multiple parts of the fetal skeleton from 3D point 

cloud dataset. GAN is a state-of-the-art method of generative models, which was first 

introduced by Goodfellow et al. [71]. The structure of GAN includes two neural network 

models that are trained simultaneously. The first network is known as the discriminator with a 

duty to distinguish authentic and fraudulent samples. The other one is known as the generator 

to generate samples to trick the discriminator as actual samples with high likelihood. In recent 

years, GAN has been widely employed in many problems and achieved considerable success. 

For instance, Odena et al. [139] demonstrated a well-performed GAN for the image synthesis 

on the ImageNet dataset. An image-to-image translation was also solved by Zhu et al. [140] 

with the GAN and cycle-consistent loss algorithm that is able to learn to capture distinctive 

properties of one picture set and figure out how these qualities may be transferred into the other 

set. Moreover, Ma et al. [141] trained an unsupervised generative adversarial autoencoding 

network (UGGAAN) for the semantic segmentation of the objects in a real scene.  

It is well-known that when the inherent inconsistencies exist in the data, conventional deep 

learning techniques designed for 2D images are not readily transferable to 3D point clouds. 

PointNet [93] stands out as an innovative approach that accepts point clouds directly as inputs 

and accomplishes permutation invariance through the use of a symmetric function. PointNet 

separately acquires point-specific characteristics using multi-layer perceptron and captures 

global characteristics through a max pooling layer. In the present work, we study the GAN 
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model based on PointNet algorithm to segment newborn skeleton parts directly from 3D point 

clouds. We also compare our approach with the pointwise convolutional neural network method 

[142]. 

3.2 Material and Methods  

3.2.1 Newborn skeleton database and segmentation workflow 

In this study, we collected post-mortem newborn CT scans from the New Mexico Decedent 

Image Database (NMDID) [143]. The CT scan database of 124 subjects aged from 0 to 10 

months was obtained and processed. The average body length was 51.7 ± 11.5 cm and the 

average body mass was 4.6 ± 3.2 kg. The format of images was saved in DICOM format with 

sagittal, coronal and frontal axes.  

Each subject of the full 3D skeleton structure was segmented through a threshold-based 

approach and the 3D Slicer software. Then, 23 bony parts were manually isolated and refined 

for each subject. Figure 25 describes the labelling scheme of the 23 bony segments (i.e. the 

skull, left- and right- (L- R-) clavicula, L- R- pelvis, L- R- femur, L- R- foot, L- R- hand, L- R- 

humerus, L- R- radius + ulna, L-R- scapula, L-R- tibia + fibula, vertebrae_C, vertebrae_L, 

vertebrae_S + coccyx, and vertebrae_T). A total of 119 subjects were retained and saved in 

Object File Format (OFF) format for further processing. Thus, 5 subjects were removed from 

the database due to missing or ambiguously identifiable segments in their scans. 

We augmented the database by rotating and applying the resampling algorithms on the original 

point clouds to improve the quality of data for training. The obtained database after data 

augmentation includes 3808 instances. Thus, each subject dataset was transformed to have 

additional 31 datasets. Each subject and its data augmentation were orderly placed in the 

database. To split our database, we took the first 83 subjects and their data augmentation (about 

70%) to the training set. Then, the next 12 patients and their data augmentation (about 10%) 

were used for the test set while the remaining 24 patients and their data augmentation (about 

20%) were assigned to the validation set. This splitting process ensures that different subjects 

are stayed in different sets. Each subject had 2048 3D points clouds. Each point cloud belongs 

to one of 23 labels corresponding to 23 bony parts. All labels were represented in one-hot 

encoding format. Furthermore, the 3D data point clouds of instances were normalized in the 

range [-1,1] for each spatial dimension. We proposed the GAN-based PointNet method and 

pointwise convolutional neural network for the skeleton part segmentation. The segmentation 

workflow of the 23 bony parts of the newborn skeleton using our proposed deep learning 

methods from the 3D point clouds is shown in Figure 26. Note that the implementation of the 

proposed methods was performed by using the Google Colab engine. 
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Figure 25. Illustration of the full 3D skeleton with associated description of the labels of 23 

bony segments. 

 

Figure 26. Implementation flowchart of the part segmentation of the newborn skeleton using 

deep learning methods from 3D point clouds. 

3.2.2 Generative Adversarial Network (GAN) 

The generative adversarial network is a cutting-edge generative model that is capable of 

understanding the pattern of training data and generating novel samples based on it. The 

fundamental finding of the GAN is the training procedure as a competition between two neural 

networks: a generator (G) to create new plausible samples and a discriminator (D) to 

differentiate which samples are fake and which ones are real. These networks are trained 

simultaneously. The training dataset for the discriminator is gathered from two origins that are 

ground truth used as positive samples during training, and fake dataset, which is generated by 

the generator, used as negative samples. While the discriminator undergoes training, the 

generator remains static, maintaining fixed weights as it generates samples for the 

discriminator’s training. The discriminator distinguishes between true and fake data, and its 

weights are updated by the backpropagation according to the discriminator loss. The generator 

learns to generate counterfeit data by integrating the discriminator feedback that tries to trick 
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the discriminator into classifying the generator’s output as authentic. The overview of a GAN 

is illustrated in Figure 27. 

Generative adversarial networks are evaluated by the minimax loss function. A GAN can have 

two loss functions: one for generator and one for discriminator. The loss function can be 

mathematically expressed as follows: 

ℒ(𝐷, 𝐺) = 𝐸𝑥[log(𝐷(𝑥))] − 𝐸𝑧 [log (1 − 𝐷(𝐺(𝑧)))] (21) 

where 𝐷(𝑥) denotes the estimation of the discriminator about the likelihood of real data 𝑥 when 

it is real, 𝐸𝑥 is the predicted value across all real data. Input random noise is denoted as 𝑧, the 

output of the generator is 𝐺(𝑧), 𝐷(𝐺(𝑧)) denotes the estimation of the discriminator about the 

likelihood of a fake sample when it is real. 𝐸𝑧 is the predicted value across all inputs according 

to the generator. The generator attempts to minimize the loss value while the discriminator aims 

to maximize it. 

 

Figure 27. A schematic representation of a generative adversarial network architecture. 

To build a generator network, we base on the PointNet model that is a novel neural network 

architecture to handle point clouds data proposed by Qi et al. [93]. PointNet reads unsorted 

point clouds straight away and ensures the permuting consistency of the points. The 

fundamental advantage of the PointNet is its resistance to input perturbation and manipulation. 

In addition, the model can be trained to describe a form using a sparse collection of key points. 

The main idea of PointNet is to use a family of symmetric functions by neural networks on 

altered points for estimating the generic function given on a set of points. Multi-layer perceptron 

(MLP) and max pooling functions are commonly used.   

In order to perform the segmentation skeleton parts, the input of the generator network is a set 

of 𝑁 point clouds  {𝑝1, 𝑝2, . . . , 𝑝𝑁} with each 𝑝1 having a coordinate (𝑥, 𝑦, 𝑧); the output is 𝑁 ×
𝑚 scores, where 𝑚 is the number of segmented parts (𝑚 = 23 in this study). The model includes 

spatial transformer networks, which aim to standardize the data using solid or affine 

transformations to ensure that each individual point undergoes independent transformation. A 

transformation block consists of many neural network layers so-called as T-net and an identity 

matrix. The T-net has convolutional neural networks 1D (conv1D) of features 64, 128, 1024 

with batch normalization layer and the ReLU activation function, a max pooling layer, shared 

MLP layers with features of 512, 256 and a fully connected layer to reduce the size of features 

into a transformation matrix. The output of the T-net is added to the identity matrix. In the 

proposed generator model, the input point clouds 𝑁 × 3  are transferred to the transformation 
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block with output feature of 3. The segmentation network applies shared MLP to map 𝑁 point 

clouds from 3 channels to 64 channels. After that, the second transformation block, which has 

the same structure to the first one, but the output includes 64 features, is employed. Next layers 

are shared MLP features of 128, 1024. Following that, we apply max pooling function to obtain 

a global feature in 1024-dimension, which is concatenated with the output of the second 

transformation block. Finally, a series of MLP features of 512, 256, 128 and m are used to 

achieve 𝑁 × 𝑚 output scores. Note that the last layer uses the softmax activation function. The 

Figure 28 shows the architecture of this generator network. 

 

Figure 28. The structure of the generator model based on PointNet architecture. 

For the discriminator network, we apply the convolutional neural networks (CNN). The input 

includes two sets (i.e. point clouds and associated ground truth part segmentation), point clouds 

and generated data from the generator model. We feed input data through conv1D features of 

64, 128, 256 and 512 respectively. A max pooling layer, a batch normalization layer and Leaky 

ReLU activation function are provided. Finally, a fully connected layer is used for the likelihood 

score output. The flowchart of the discriminator model is described in Figure 29. 

 

Figure 29. The structure of the discriminator model using convolutional neural networks in 

the present study. 

Regarding the model hyperparameter, the Adam optimizer was used in both discriminator and 

generator with a beta of 0.5. The learning rate of the generator network begins at 0.001, then it 

is divided by 10 after every 50 iterations. In the discriminator, the learning rate was fixed at 

0.001 for all loops. Figure 30 shows the change of learning rate according to steps from 1 to 

200. We trained the GAN with different batch sizes of 1, 2, 8, 16, 32 and 64. 
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Figure 30. The learning rate schedule generated from our hyperparameter tuning process. 

3.2.3 Pointwise convolutional neural network (Pointwise CNN) 

Hua et al. [142] presented a convolutional neural network for semantic segmentation with 3D 

point clouds. The foundation of the method was a novel convolution operator known as 

pointwise convolution. This operation enabled the learning of features at individual points 

within a point cloud resulting in elegantly straightforward manner and fully convolutional 

networks tailored for the segmentation task. The input point clouds are supplied into 4 

convolutional layers with 9 output channels and the ReLU activation function for each one. 

Then, all outputs are concatenated to feed into convolutional layers of 40 and m features to 

segment m parts. The activation function of the last layer is softmax. We trained the pointwise 

CNN with a learning rate fixed at 0.001 for all epochs. The used optimizer is Adam and batch 

size is 128. The pointwise CNN was convergent after 1000 epochs. Figure 31 illustrates the 

model of pointwise CNN for the part segmentation of newborn skeleton from 3D point clouds. 

 

Figure 31. The pointwise convolutional neural network structure used in the present study for 

the part segmentation of newborn skeleton from 3D point clouds. 

3.2.4 Performance metrics 

We used different conventional metrics to evaluate the efficacy and performance of the part 

segmentation of the newborn skeletons. Several factors are involved in selecting an acceptable 

assessment metric, according to how the program operates [144]. This section contains some 

typical performance measures that we used for the present study. 
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3.2.4.1 Intersection over union (IoU) 

The intersection over union metric is defined as the ratio of the overlapped area between the 

predicted segmentation and the ground truth segmentation to the union area between the 

predicted segmentation and the ground truth segmentation. It can be mathematically expressed 

using the following equation: 

𝐼𝑜𝑈 =  
𝐺 ∩ 𝑆

𝐺 ∪ 𝑆
 (22) 

where 𝑆 is the segmentation output and 𝐺 is the gold reference data. This metric can be defined 

by using the Boolean notation as follows: 

𝐼𝑜𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (23) 

where TP is the true positive, FP is the false positive and FN is false negative. 

3.2.4.2 Dice similarity coefficient (DSC) 

The Dice coefficient analyzes a spatial overlap between the segmentation outcome and the 

ground truth. Note that a greater value indicates a better segmentation performance. A DSC 

score varies from 0 to 1, with 0 implying that there is no spatial overlap between two binary 

segmentation sets and 1 representing the total overlap. The DSC formula is mathematically 

defined as follows: 

𝐷𝑖𝑐𝑒 =  
2|𝐺 ∩ 𝑆|

|𝐺| + |𝑆|
 (24) 

When apply to Boolean data, the equation becomes as follows: 

𝐷𝑖𝑐𝑒 =  
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (25) 

where TP is the true positive, FP is the false positive and FN is false negative. 

3.2.4.3 Accuracy score 

The accuracy score is considered as a rand index to quantify the proportion of accurate 

predictions, which encompasses both correctly predicted positives and negatives divided by the 

total performed predictions. The mathematical equation of this metric is expressed as follows:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (26) 

where TP is the true positive, FP is the false positive and FN is false negative. 

3.2.4.4 Precision and recall metrics 

The precision metric is defined as the ratio of true positive predictions to the total number of 

predicted positives. In mathematical terms, the precision metric is calculated using the 

following formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(27) 

where TP is the true positive and FP is the false positive.  
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The recall metric is a measure used for assessing the performance of a machine learning model, 

especially in binary classification issues. It is also related to the sensitivity or true positive rate. 

The recall metric is given as the ratio of true positive predictions to the total number of actual 

positives (both true positives and false negatives) as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(28) 

where TP is the true positive and FN is false negative. 

 

It is worth noting that the precision and recall metrics are often considered together and there 

is a trade-off between them. The precision metric highlights the accuracy of positive 

predictions, whereas the recall metric concentrates on the capacity to capture all relevant 

instances of a class. Combining these two metrics allows us to comprehend the advantages and 

disadvantages of the proposed model. 

3.3 Computational results 

3.3.1 GAN-based segmentation outcomes 

The best GAN model was with a batch size of 1 looped 150 steps that returned a mean IoU of 

93.68% ± 7.37%, a mean Dice of 96.56% ± 4.41% and a mean accuracy score of 96.72% ± 

3.56% for predicted segmentation on the validation set. The second good one was the GAN 

model with a batch size of 2 obtained a mean IoU from 78.97% to 89.09% for 50 to 200 

iterations, respectively. Training the GAN model with a batch size of 32 returned the lowest 

results with a mean IoU of 76.09% after 50 steps and just reached to a mean IoU of 84.46% 

after 200 loops. All average performance metrics of predicted results on the validation set by 

our GAN models trained with different batch sizes and iterations are depicted in Table 1. In the 

case of batch size of 8, the accurate prediction on the validation set slightly increased from 

79.96% to 85.35% for the mean IoU after 200 iterations while the Dice score increased from 

88.47% to 91.66% and the accuracy changed from 88.56% to 92.02%. The GAN model with 

the batch size of 64 obtained the predicted result not significantly different after 50 iterations 

and 200 ones with 85.37% and 85.40% for the mean IoU, respectively. The GAN model using 

the batch size of 16 acquired the highest mean IoU of 85.29% at the iteration of 150 for the 

prediction on the validation set. In training a GAN model, setting a larger batch size could 

potentially degrade the performance as it may lead to an imbalance effect during the initial 

training. The discriminator might be given numerous samples that lead to dominating the 

generator and thereby adversely impacting the training process and overfitting. In this study, 

using a batch size of 1 showed the best outcome. Figure 32 illustrated the mean IoU evolution 

of predicted results on the validation set using our GAN model with different batches over 

different steps. Note that the training time for each step was about 1 minute on Google Colab 

GPU.  

With the best GAN algorithm, we obtained the best predicted newborn skeleton part 

segmentation with  99.63%, 99.81% and 99.98% for the means of IoU, Dice and accuracy score, 

respectively. Meanwhile, the worst case returned the mean IoU of 65.81%, mean Dice of 

79.37% and mean accuracy score of 80.03%. Figure 33 and Figure 34 illustrated the best and 

worst case of bony part segmentation from 3D point clouds using our GAN model.  
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The segmented results on the training set, testing set and validation set using GAN with a batch 

size of 1 were described in Table 2. The prediction on the training dataset returned a very high 

mean IoU of 99.22 ± 0.87%, a mean accuracy score of 99.64 ± 0.24%, and the same Dice, 

precision and recall metrics of 99.61 ± 0.45 %. On the testing set, the segmented output was 

92.52 ± 8.13 % for the mean IoU, 96.03 ± 4.96 % for the mean accuracy and 95.45 ± 6.78% for 

the mean Dice, precision and recall metrics. Note that the high score and similarity of precision 

and recall metrics point out that the model is very accurate and not missing many positive 

instances. Moreover, they share similar values with the Dice coefficient, which confirms how 

precise and robust our used model is. Note that the Dice coefficient and IoU metric have specific 

characteristic of penalizing false positives, which are especially crucial in datasets with 

substantial class imbalances. 
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Table 1. The means (in %) of the intersection over union (IoU), Dice similarity coefficient (Dice), accuracy score (Acc) of predicted segmentations on the 

validation set using our GAN model with different batches according to different iterations of 50, 100, 150 and 200. 

Iteration 50  100  150  200 

Batch IoU Dice Acc  IoU Dice Acc  IoU Dice Acc  IoU Dice Acc 

1 93.60 96.54 96.70  93.67 96.56 96.72  93.68 96.56 96.72  93.66 96.55 96.71 

2 78.97 87.96 88.01  88.46 93.66 93.98  88.73 93.81 94.14  89.09 94.02 94.31 

8 79.96 88.47 88.56  83.69 90.66 91.03  84.08 90.89 91.58  85.35 91.66 92.02 

16 84.67 91.36 91.51  85.06 91.58 91.97  85.29 91.75 92.15  84.42 91.22 91.53 

32 76.09 86.10 86.37  82.56 90.10 90.63  80.48 88.88 89.13  84.46 91.22 91.53 

64 85.37 91.98 92.36  85.18 91.88 92.26  83.86 91.11 91.32  85.40 91.98 92.36 

 
Table 2. Comparison of mean ± standard deviation (in %) of the IoU, Dice, accuracy, precision and recall metrics of the prediction segmentation on the 

training set, test set and validation set using pointwise CNN and GAN models. 

  IoU Dice Accuracy Precision Recall 

Pointwise CNN Training 75.50 ± 0.75 86.04 ± 0.49 88.04 ± 0.82 86.04 ± 0.49 86.04 ± 0.49 

Test 71.12 ± 5.69 82.26 ± 3.86 83.65 ± 4.01 82.26 ± 3.86 82.26 ± 3.86 

Validation 72.30 ± 5.10 83.82 ± 3.44 84.81 ± 3.25 83.82 ± 3.44 83.82 ± 3.44 

GAN (batch 1) Training 99.22 ± 0.87 99.61 ± 0.45 99.64 ± 0.24 99.61 ± 0.45 99.61 ± 0.45 

Test 92.52 ± 8.13 95.45 ± 6.78 96.03 ± 4.96 95.45 ± 6.78 95.45 ± 6.78 

Validation 93.68 ± 7.37 96.56 ± 4.41 96.72 ± 3.56 96.56 ± 4.41 96.56 ± 4.41 
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Figure 32. The evolution of the obtained intersection over union (IoU) metrics on different 

batches and over different iterations using our proposed GAN model. 

 

Figure 33. The best predicted skeleton part segmentation by our GAN method with a mean 

IoU of 99.63%, a mean Dice of 99.81% and a mean accuracy score of 99.98%. 

 

Figure 34. The worst segmentation case by our GAN with a mean IoU of 65.81%, a mean 

Dice of 79.37% and a mean accuracy score of 80.03%. 
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3.3.2 Pointwise CNN segmentation outcomes 

For Pointwise CNN method, we trained the pointwise CNN model with the batch size of 128, 

learning rate of 0.001 and Adam optimizer. The number of epochs was set up as 1000. It took 

very quick to train on Google Colab GPU, just around 1 second for one epoch. The predicted 

segmentation on the training set returned a mean IoU of 75.50% ± 0.75%, a mean Dice of 

86.04% ± 0.49%, a mean accuracy of 88.04% ± 0.82%, same mean precision and recall of 

86.04% ± 0.49%. On the testing set, the model predicted bony segmentation with 71.12% ± 

5.69% for the mean IoU, 83.65% ± 4.01% for the mean accuracy and 82.26% ± 3.86% for the 

same mean Dice, precision and recall metrics. The segmented results on the validation set 

obtained a mean IoU of 72.30% ± 5.1%, a mean Dice of 83.82% ± 3.44% and a mean accuracy 

score of 84.81% ± 3.25%. The best case resulted 86.31% for the mean IoU, 88.75% for the 

mean Dice and a mean accuracy score of 89.37%. The worst prediction showed a mean IoU of 

45.10%, a mean Dice of 62.15% and an accuracy score of 62.88%. The visualization of the best 

segmentation case and the worst one is shown in Figure 35 and Figure 36, respectively. 

 

Figure 35. By using the pointwise CNN method, the best result was obtained with a mean IoU 

of 86.31%, a mean Dice of 88.75% and a mean accuracy score of 89.37%. 

 

Figure 36. The worst segmentation case from the used pointwise CNN method with a mean 

IoU of 45.10%, a mean Dice of 62.15% and an accuracy score of 62.88%. 
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We summarized the performance of our used GAN and pointwise CNN methods in segmenting 

23 different body parts of the newborn skeleton in Figure 37. The GAN method achieved a 

mean IoU of around 85% for the R-scapula segment and around 99% for skull segment while 

the pointwise CNN returned the worst segmentation case with a mean IoU of 42% for the R-

clavicula segment and also obtained the highest mean IoU at skull segment with a mean IoU of 

95%. 

 

Figure 37. The performance comparison using the IoU metric between the GAN and 

pointwise CNN methods for segmenting each bony part from the full skeleton. 

3.4 Discussion 

The foetus descent through the birth canal during the childbirth process has a complex pattern. 

The successful vaginal delivery depends strongly on this kinematic process. Numerical 

modeling has been commonly used to reproduce and describe this process for a better 

understanding due to ethical issues of the experimental studies [23], [126], [145]. However, the 

foetus model is still simplified, especially on the description of articulated joint mechanics. To 

develop a more detailed articulated skeleton model, the segmentation and reconstruction of 

separate 3D segments of the fetal skeleton are still challenging and time-consuming. In 

particular, cleaning and isolating a large number of segments from the whole 3D skeleton 

demands a substantial work. The task of labelling 23 segments in this study, for example, 

consumes about 30 to 50 minutes by a skilled operator using 3D Slicer software. In this work, 

we proposed a generative adversarial network to accurately and quickly segment bone 
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components, just in 5 seconds. Our GAN model showed also that the segmentation performance 

is higher than that of the pointwise convolutional neural network. However, the pointwise CNN 

model took cheaper training time than the GAN model.  

Within the context of 3D point cloud processing, Achlioptas et al. [146] first presented GAN 

models to reconstruct and interpolate objects and human motions from 3D point clouds. The 

model was coupled with the auto-encoder network, which learns to reproduce point cloud 

inputs, including an encoder net and a decoder net. The encoder used 5 layers of 1D-

convolutional and a batch normalization layer. The decoder used 3 fully connected layers to 

produce outputs. By training the auto-encoder first, then GAN models were trained in the latent 

space of the auto-encoder. The generator model included 2 fully connected layers and a ReLu 

layer. The discriminator also consisted of 2 fully connected layers but with a sigmoid one. The 

limitations of the approach were that the auto-encoder tended to overlook highly frequent 

features or fail to reconstruct rare geometries. Moreover, the GAN had difficulty in creating 

realistic-looking forms and the synthesis of unrealistic results. Yu et al. [147] presented a 

network, which was relied on PointNet and GAN, for 3D point cloud inpainting. The model 

produces the missing portion straight from the defective point cloud. Both the generator and the 

discriminator in this method were based on the PointNet model. Whereas, we built our 

discriminator using convolutional neural networks with fewer layers (i.e. 5 1D-convolutional 

layers), a max-pooling and a batch normalization layer. The discriminator does not need to 

distinguish on high-resolution images because here is a study of a binary segmentation problem. 

Thus, we execute this discriminator convolutionally over the inputs, aggregate the responses 

and average them to generate the final outputs. This approach can reduce the system memory 

and computational cost compared PointNet scheme. We harnessed the benefits of the T-net 

structure, which enhanced the feature extraction from the training data and facilitated the 

adjustment of rotation angles, in the development of the generator. We found out that the GAN 

model with the batch size of 1 give the best segmentation outcomes and cheaper memory space. 

To extract the human skeleton from 3D point clouds, Qin et al. [148] presented a convolutional 

neural network-based (CNN) method. The framework comprised two phases. First, ambiguous 

points were eliminated from the raw dataset. Second, the interest point clouds were lowered 

toward the matching joint points. The first network was trained on 6000 epochs with batch size 

of 16, the second one was trained on 4000 epochs with batch size of 8. The initial learning rate 

was 0.001 and the Adam optimizer was used. On the raw point clouds, the results returned a 

mean IoU range of 76% to 81%, while interest point clouds outputted a mean IoU range from 

92.6% to 98.7%. Takmaz et al. [149] created a synthetic training dataset for virtual people in 

accurate 3D interior scenes and proposed a transformer-based model, named Human3D, which 

unifies the performance of 3D body part segmentation in point clouds. The model included a 

sparse convolutional filter backbone coupled with a transformer decoder. Within the anticipated 

human instance mask, the body-part masks, based on two-level searches, are repeatedly 

improved using multi-scale point features. The model was trained on 36 epochs. The Adam 

optimizer was used with a learning rate schedule of maximal 0.0001 and a batch size of 4. The 

segmentations of 15 body parts obtained the mean IoU of 69.9%. Zang and Wang [138] 

employed PointNet++ [150] to segment cervical spine part from bone tissue structures, which 

were segmented from CT images. Then, applying a combination of edge and concave points to 

delineate the boundary, which overlaps between segmented vertebrae. The segmentation 

outcomes achieved an accuracy score of 96.15%. In our study, the best GAN model with batch 

size of 1 and 150 epochs produced an IoU of 93.68% ± 7.37%, a Dice of 96.56% ± 4.41% and 
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an accuracy score of 96.72% ± 3.56% for segmenting 23 bony segments of the newborn 3D 

skeleton. In fact, the use of modern deep learning approaches (e.g. CNN, transformer-decoder 

model, GAN) showed great potential applications for 3D human skeleton segmentation with a 

high accuracy level. However, the model interpretability remains a challenging issue when 

applying such approaches in the medical context to help the medical doctors and professionals 

in their decision-making process. The present study limited the use of the GAN method on the 

reconstruction of the detailed articulated skeleton for childbirth simulation purpose.  

Since point clouds are chaotic and unstructured, conventional convolutional neural networks 

(CNNs) cannot be implemented directly into them. CNNs demand that data possess a specific 

orientation, meaning that CNNs do not inherently exhibit invariance to changes in picture 

orientation. PointNet, considered as a groundbreaking method, processes point clouds by 

acquiring spatial representations for individual points, consolidating these learned 

representations into features, then supplying them to tasks such as classification and 

segmentation. PointNet employs shared MLP layers and symmetric pooling functions to 

generate global features. Numerous networks have been created by using the PointNet 

framework due to its straightforwardness and powerful capacity to represent data. Wang and 

Lu [151] proposed the VoxSegNet model for the part segmentation of 3D objects from 

voxelized data. The method performed well for part segmentation of many objects such as 

airplanes with an average IoU of 86.2%, and 92% for chairs. Yu et al. [152] developed the first 

model for hierarchical segmentation of 3D objects, called PartNet. The segmented results by 

PartNet showed an average IoU of 87.8% for part segmentation of airplanes, and 91.9% for 

chairs.  

However, the limitation of the PointNet deals with the failure to capture the local context 

information between points because features have been learned individually for each point. In 

general, point-based methods cannot represent explicit neighboring information. Thus, many 

methods need to rely on costly neighbor searching algorithms. This restricts the effectiveness 

of existing approaches. Nonetheless, the recently suggested point-voxel joint representation can 

be promising in the future study. Although GAN’s recent advancements have brought fresh 

concepts for 3D point cloud segmentation, it still has certain practical limitations. We assessed 

the ability to implement the GAN-based model rather than its efficacy in clinical applications. 

There are still a few challenges, including the training set up complexity and cost as well as 

non-convergence issues.  

While typical CNNs segment data on a per-pixel or per-voxel basis by optimizing segmentation 

metrics such as dice coefficient and intersection over union, GANs additionally penalize 

segmentation outcomes lacking visual realism. The adversarial loss, which the discriminator 

introduces, offers a creative technique to include unlabeled samples in the training process and 

enforce higher-level consistency. The discriminator guides the outcomes of the generator 

toward the actual distribution thereby improving the generator’s work by refining what it 

generates. In the present study, we build the discriminator using CNN architecture that accepts 

the combined setup of multiple input variables, thus higher order possibilities are integrated 

into the network. This allows representing the geometric disparity between the prediction and 

real through the trainable model, rather than relying on heuristic clues.  

From the segmentation performance and visualization aspect, we found out that the accuracy of 

the outcomes depends on the fetal postures. When the subjects were in physiological position, 

a higher accuracy level was achieved. In the bad segmentation scenario, the arms of babies 
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rested above their chests. This posture made the model harder to distinguish the hands from one 

another and the forearms and hands from the coasts. This finding is interesting given the goal 

of our segmentation method to precisely segment the various bony segments from 3D point 

clouds collected via MRI or 3D ultrasound scan of developing fetuses. This strategy could be 

used for creating personalized childbirth simulations models. It is worth noting that the data 

collection involves unborn fetuses and these subjects are typically in a fetal position within the 

maternal uterus. Moreover, the difficulty of distinguishing between fused organs such as 

vertebrae is also a limitation of the present study. Because of the significance of the cardinal 

motions during natural childbirth, creating an articulated musculoskeletal model of the fetus for 

delivery simulations necessitates the precise spine articulation, particularly for the cervical 

vertebrae. Thus, future study should be investigated to solve this issue. Finally, the small sample 

size is also a limitation of the present study due to the challenging acquisition of fetal data. 

Thus, more data will be added when available to enhance the findings. The use of transfer 

learning strategy [129] from the adult data, which is largely available, to the fetal data could be 

also a potential solution. However, the bone shape discrepancies between adults and fetuses 

should be elucidated before applying this strategy. 
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Chapter 4 

A Novel Deep Learning-Driven Approach for 

Predicting the Pelvis Soft-Tissue Deformations 

toward a Real-Time Interactive Childbirth 

Simulation 

 

The dynamics of soft tissue are pivotal for understanding the mechanical behavior of the human 

body. Presently, numerical methods employing finite element modeling and mass-spring 

frameworks are employed to approximate the dynamic properties of biological soft tissues. 

Despite their utility, these approaches are encumbered by significant computational expenses, 

largely stemming from the necessity of mesh configurations in formulating dynamic 

equilibrium equations and encountering challenges related to unstable convergence. Addressing 

these issues is crucial for advancing our comprehension of soft tissue dynamics and enhancing 

the efficiency of computational simulations in biomechanical studies. 

This chapter introduces a methodology rooted in the deep learning paradigm to forecast the 

deformation of uterine soft tissues. Specifically, the utilization of Long Short-term Memory 

(LSTM) neural networks and deep neural networks (DNN) is proposed to handle the intricate 

high-frequency oscillation signals inherent in such biological systems. Various learning 

strategies, encompassing approaches both with and without data dimension reduction, will be 

explored to optimize performance. To facilitate model development and evaluation, a 

simulation-based database is constructed utilizing the HyperMSM model, serving as a 

comprehensive resource for training and testing purposes. This innovative approach holds 

promise for enhancing our understanding of uterine dynamics and advancing predictive 

capabilities in childbirth simulation. 

4.1 Introduction 

Biological soft-tissue dynamics plays an essential role in the mechanical functions of the human 

body [153], [154]. Biological soft tissues commonly exhibit a nonlinear behavior when 

interacting with other tissues and external devices. For example, skeletal muscle excitation and 

contraction contribute into the dynamic movements such as walking or running. Another 

example relates to the deformation of the uterus organ to deliver the fetal body during childbirth 

[155]. In particular, when developing the interactive childbirth training tool with man-machine 

interaction, the prediction of the soft tissue deformation is of great clinical relevance to optimize 

the training gestures and design novel delivery devices (e.g. forceps with adaptive control using 

soft tissue feedback). At the moment, there is no reliable experimental protocol to measure the 

soft tissue dynamics in non-invasive and in vivo conditions. Medical imaging techniques such 

as dynamic magnetic resonance imaging (dMRI) [156] or magnetic resonance elastography 

(MRE) [157] could be used. However, only limited information (e.g. 2D mobilities or local 

material properties) could be extracted. Numerical modeling becomes an alternative solution to 

estimate the biological soft tissue dynamics. The finite element method has been commonly 

used to estimate the soft tissue deformation and stress under internal and external mechanical 
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loadings [158]. Besides this, mass-spring model (MSM) formulation has been also applied to 

achieve a fast estimation of the soft tissue dynamics [159]. However, these numerical 

approaches use a mesh configuration in the formulation of the dynamic equilibrium equation to 

solve the problem. This still leads to important computational cost, especially for solving the 

principle of virtual displacement equation in the framework of the finite element theory. Note 

that some studies proposed potential improvements of finite element methods to speed-up the 

computational time. For example, the Kalman filter method, which was introduced by Song et 

al. [160], reduces nonlinear order. Xie et al. [161] proposed a new constrained finite element 

method that approximates undetermined applied forces to compute the deformation of soft 

tissue. Furthermore, the convergence stability is also a challenging issue for these approaches 

to obtain a reliable estimation outcome [153], [154]. In fact, the integration of developed models 

into an interactive tool remains a scientific and technological challenge.  

In addition, machine learning has been the state-of-the-art approach applied to numerous 

domains such as natural language processing, computer vision and medical diagnosis [162], 

[163], [164]. The ever-increasing volume of information is now accessible and the development 

of innovative algorithms and high-performance computing systems are the reasons why 

machine learning has been widely employed recently. A well-known type of machine learning 

approach is deep learning, which relies on a deep neural network for learning data 

representations rather than specified task algorithms. This approach has been found to be very 

effective in extracting detailed representations of complicated processes. The deep learning 

architecture commonly includes a feedforward neural network with weighting features and 

nonlinear transform elements, so-called units. These units are set up into layers, with the input 

data passing through them multiple times before it becomes output [165], [166]. The 

applications of deep learning to predict physical quantities in computational mechanics have 

been significantly increasing in recent years. Nguyen et al. [167] proposed the long short-term 

memory (LSTM) model and multilayer neural networks to forecast the crack propagation of 

concrete beams and in hydraulic fracturing. Combining LSTM with a hidden Markov model to 

predict the growth of fracture was introduced by Nguyen-Le et al. [168]. Kollmann et al. [169] 

presented a convolutional neural network model for topology optimization of metamaterials, 

which used the energy homogenization method and periodic boundary conditions to create data. 

Haghighat et al. [170] studied the application of physics-informed neural networks to linear 

elasticity problems, then performed on nonlinear elastoplasticity with data generated from finite 

element methods and isogeometric analysis. Moreover, the uses of deep learning in fluid 

mechanics can be found in [171], [172] and for material science presented in the literature [173], 

[174]. In the discipline of biomechanics, the models based on deep learning approach have been 

widely utilized for segmentation works [175], [176], [177]. To classify magnetic resonance 

spectroscopy signals in order to detect brain tumors, a model based on LSTM was also studied 

[178]. Regarding the estimation of mechanical quantities (e.g. displacement, strain and stress 

fields), Zaroug et al. [179], [180] used LSTM to extrapolate the kinematics of lower extremity 

motions during walking. Khadem and Rey [180] combined the direct numerical simulation and 

LSTM to analyze the nucleation and growth of collagen-based biomaterials. Dao [129] 

employed an LSTM network to predict the skeletal muscle forces from joint kinematics data 

during a walking period. Recently, this approach has been also applied to predict skeletal muscle 

stress during a dynamic contraction behavior [130]. In fact, the deep learning approach and 

particularly the LSTM neural network with gate structure ensuring the efficient dependence 

learning between input data set has shown its great capacity to deal with time series data with 

nonlinear and high-frequency oscillations.  

Innovative data-driven computing approaches have introduced a novel way of advancing 

computational mechanics. The rapid utilization of data-driven computing has been focused on 
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resolving challenges related to computational material science, for example, the use of 

experimental results to substitute constitutive equations by Kirchdoerfer and Ortiz [181]. The 

development of data-driven methodologies for multiscale modeling has been shaped by the 

works of Mou et al. [182]  that presented a data-driven framework for creating a reduced order 

model, which is built upon the hierarchical arrangement of the variational multiscale approach. 

This framework leverages data to enhance the accuracy of the reduced order model while 

maintaining a reasonable level of computational resources. In the framework of dynamic 

simulations, Kirchdoerfer and Ortiz [183] developed data-driven computing methods that 

encompass the inclusion of time integration within both distance-reduction and entropy-

enhancement approaches. Recently, data-driven methods have been employed to soft tissue 

mechanics. Santesteban et al. [94] proposed a data-driven model that acquired input of shapes 

of human body and motion using recurrent regression to predict deformations of body surface 

soft tissues. A data-driven approach called the local convexity data-driven model was 

introduced by He et al. [184] to simulate the mechanical behavior of the posterior leaflet of a 

porcine heart. The efficiency of the framework was examined through the utilization of different 

combinations of biaxial and pure shear training protocols, demonstrating its performance. Tac 

et al. [185] provided data-driven modeling using deep neural networks to predict strain energy 

and its derivative functions while capturing the anisotropic mechanical characteristics of 

porcine and murine skin. Data-driven modeling can be an alternate approach for simulating 

complicated biological tissues when adequate data is accessible. 

In summary, deep learning has metamorphosed different engineering fields with more accurate 

prediction and faster computation capacities. However, this approach is still not investigated 

for the pelvis soft tissue deformation prediction within an interactive childbirth simulator. In 

this present work, we develop and train different deep learning architectures (classical deep 

neural network and LSTM) and different learning strategies (without and with data dimension 

reduction) to predict the deformation of soft tissues for childbirth simulation. The proposed 

models analyze the relationship between dynamic displacement with node position, velocity 

and external force. The objective is to provide a real-time estimation with stable prediction 

outcome.  

4.2 Materials and Methods 

4.2.1 Novel workflow and mathematical background of the soft tissue 

deformation prediction 

To estimate the soft tissue deformation in real-time and stable condition, a novel workflow was 

developed and shown in Figure 38. First, a simulation-based database was generated from a 

childbirth simulation performed using our recently developed HyperMSM model [159]. Next, 

different deep learning architectures and learning strategies were designed, implemented and 

evaluated. Finally, the best trained machine-learning model will be integrated into a runtime 

interactive simulation of the physiological childbirth procedure.  
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Figure 38. The proposed data-driven workflow coupling the database generation, deep 

learning network implementation and deployment. 

A 3D-model usually consists of a closed 3D-surface made of nodes and facets. A deformable 

3D-model is such a model that exhibits deformations as a response to internal and external 

mechanical loadings. A dynamic deformation simulation is time-dependent and involves a 

discretization of the time domain and consists of finding the new nodal positions at each time-

step. The prediction problem can be thus rewritten as follows: 

𝑥𝑡+ℎ =  𝑓(𝑥𝑡, 𝑣𝑡, 𝐹, ℎ, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) (29) 

where the current nodal position vector at each simulation instant is noted 𝑥𝑡, whereas the new 

one to be calculated is noted 𝑥𝑡+ℎ. Similarly, we note 𝑣𝑡 the current nodal velocity vector, and 

𝑣𝑡+ℎ the updated one. 𝐹 is the external foces vector and ℎ is the simulation time-step. It is also 

possible to work with the nodal instant displacement vector 𝑢𝑡+ℎ instead of 𝑥𝑡+ℎ knowing that 

𝑥𝑡+ℎ =  𝑥𝑡 +  𝑢𝑡+ℎ. Hence, we get the following reformulation of the problem as follows:  

𝑢𝑡+ℎ =  𝜑(𝑥𝑡, 𝑣𝑡 , 𝐹, ℎ, 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠) (30)  

Equation 30 can be interpreted as follows: to predict the nodal displacement of a deformable 

model within a time-step, we need to know the time-step value (ℎ), the material properties of 

the model, the external forces (𝐹) applied to the nodes, the current nodal (𝑥𝑡) position and the 

current nodal velocity (𝑣𝑡). 

4.2.2 Childbirth model and learning database generation 

The learning database was generated through childbirth process simulations. Our training 

process takes raw time-series data consisting of vertex positions, velocities, and interactive 

forces applied to the nodes, and produces predicted nodal displacements. This makes a wide 

range of physics-based simulation methods applicable for gathering the necessary data for our 

approach. In this study, we opted to utilize our in-house HyperMSM simulator to conduct 

simulations and compile the database, since HyperMSM has demonstrated its ability to rapidly 

simulate the biomechanical characteristics of soft tissues with a satisfactory level of physical 

accuracy [23], [159]. As for the childbirth model used in these simulations, we employed a 

previously developed generic model [23]. The model consists of a fetal body, pelvic soft tissues 

combining the floor muscles, vagina and uterus, and the bony structure represented by the pelvis 

(Figure 39). In reality, this constitutes a simplified model that does not mirror the anatomical 

complexities of the female pelvis system; nonetheless, it is deemed sufficient for the immediate 

objective of this study. 
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Figure 39. Our childbirth model. (a) shaded 3D model sliced for visualization. (b) the 

HyperMSM model of the pelvic soft tissues, the red nodes are the bodes fixed in the space. (c) 

One frame of the HyperMSM simulation of the physiological chilbirth scenario. 

Material properties utilized in our models are drawn from existing literature. Lepage et al. [186] 

provided estimations of mechanical attributes concerning pelvic organs in both pregnant and 

non-pregnant women, focusing on Young’s Modulus—a parameter relevant to linear elasticity. 

Given the design of HyperMSM to portray the Neo Hookean model, renowned for its 

simplification of soft tissue mechanics [23], the computation of Neo-Hookean parameters from 

linear elasticity parameters is feasible, using the well-known equivalence relationship between 

these two models for small deformations. Consequently, for the pelvic soft tissues model, we 

assigned C10 = 10.34 kPa and D−1 = 100 kPa, values derived from E=60 kPa, as stated by Lepage 

et al. [186] for the pelvic floor muscle of a pregnant female, accompanied by a Poisson ratio of 

0.45 [187], [188]. Regarding the fetal model, we adopted C10 = 70 kPa [189] and D−1 = 66.66 

kPa. A density of 1g/cm³ was uniformly applied to all of our models, as it aligns with the 

established soft tissue density within this range [190]. 

The HyperMSM models of the deformable objects (pelvic soft tissues and baby) were created 

through volumetric tetrahedral meshing, achieved through Abaqus CAE. The final mesh of the 

pelvic soft tissues comprises 6874 tetrahedral elements, thus yielding a HyperMSM model 

equipped with 10,790 springs and 2103 nodes. Notably, 450 nodes were subject to a boundary 

condition, constraining their displacement (Figure 39b). This encompasses nodes located within 

the interconnected region of the soft tissues and the pelvis bone, as well as nodes corresponding 

to ligament insertion sites. Additionally, the terminus of the uterus was restrained to avert 

undesirable uterine displacements or collapse during the simulation. As for the fetal model, a 

mesh resolution involving 6274 tetrahedral elements was implemented, resulting in a fetal 

HyperMSM model comprising 8269 springs and 1382 nodes. The fetal nodes, unlike their 

pelvic counterparts, remain unconstrained, as the fetus is free in the space. Notably, the 

geometrical representation of the pelvic bony structure takes the form of a rigid entity, modeled 

as a three-dimensional triangular surface that remains entirely immobilized in space. 

In reality, the fetal movements during the labor are induced by the uterine contractions (causing 

the intra-uterine contraction forces) and the interactions of the fetal head with the pelvic 

anatomy which causes what is known as “fetal cardinal movements”. To simplify this, we 

simply applied to body force to the fetal model whose direction changes according to a 

predefined trajectory that mimics the curve of Carus [191], along with applied torques at each 

stage to simulate the rotations of the fetal head at the different stages of the cardinal movements 
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[192]. This force-based trajectory was employed instead of an imposed displacement along a 

trajectory, to preserve the significant role played by the resistance exerted by the pelvic soft 

tissues on the fetus, and also to enable interactions between the fetus and external interactive 

forces. The use of an imposed displacement would negate these crucial dynamics. Contact 

between the baby and the soft tissues was modeled using a node-to-surface discrete collision 

algorithm coupled with elastic penalty forces. Further elaboration on the executed dynamics of 

our model can be found in [23]. 

To generate the database, we conducted several HyperMSM simulations of the childbirth 

process, maintaining constant material properties across all simulations. The simulation time-

step was also constant and set to 2 ms for all cases. In fact, HyperMSM uses the Projective 

Dynamic (PD) algorithm to solve the time integration. While many algorithms can support 

variable simulation time-step, PD necessities a constant one all over the simulation [193]. The 

selection of the time-step value plays a critical role in dynamic simulations: a smaller time-step 

ensures greater simulation stability, while a larger time-step speeds up the simulation. In our 

application, we opted for a 2ms time-step to strike a balance between speed and stability. Thus, 

by treating the material properties and time-step as constants in Eq. 30, a database consisting of 

a set of records formed of vectors 𝑥𝑡, 𝑣𝑡, 𝐹, and 𝑢𝑡+ℎwas generated. The first three vectors will 

form the input set of the deep learning model, whereas 𝑢𝑡+ℎ will be the output. We only consider 

in this stage the surface points that are not constrained in the 3D-space. The number of the 

surface nodes of our model is 1653, and therefore, the size of each of the vectors to be collected 

is 3x1653. Thus, multiple HyperMSM childbirth simulations were performed in which the data 

was captured at 100 frames per second. At each simulation, we applied random external forces 

to the surface of the pelvic floor muscles to consider the clinical intervention forces that may 

be interactively applied to this area. Thus, the model of the pelvic soft tissues is subject to these 

randomly generated external forces as well as the contact forces induced by the collision with 

the baby model. Eventually, we acquired a database of 15396 frames for training. The test 

database, similarly, generated 18633 frames with 6 simulations.  

4.2.3 Deep learning architectures and learning strategies  

4.2.3.1 Long Short-term Memory (LSTM)  

The accurate prediction of complex time series data requires a specific neural network. One of 

the most well-known models used to solve this problem is the recurrent neural network (RNN). 

RNN was derived from feedforward neural networks, which only transfer information in one 

direction from the input layer to the output layer via the hidden layers. RNN features loops 

inside its network, which enable it to preserve information of previous inputs in a not prior fixed 

time, hence this network considers the weights of the current and the past inputs as well. An 

extension model of RNN is the LSTM network, which was proposed by Hochreiter and 

Schmidhuber in 1997 [35] to address the problem of vanishing gradients. A significant finding 

in the LSTM architecture was the integration of non-linear and data-dependent controls to an 

RNN that helps the loss function overcome the vanishing gradients problem. Assuming that the 

unfolded LSTM units are performed as in Figure 40 for 𝑘 time steps. The LSTM unit at the step 

𝑡 uses the input 𝑥𝑡, the previous output ℎ𝑡−1, and the cell state signal 𝑐𝑡 to compute the output 

signal ℎ𝑡 at this present step. Figure 41 shows the architecture of a LSTM unit. A common 

LSTM unit contains three control gates that are forget, input and output. These gates decide 

which information is to store or delete from a cell state. The forget gate was attached to the 

LSTM structure by Gers et al. 1999 [194] to remove unimportant information in the cell, the 

input gate restricts the amount of new information entering the cell and the output gate is to 

control the information used for the output of LSTM unit. 
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Figure 40. The repeating of LSTM units for k time steps. 

 
 

Figure 41. The architecture of LSTM network used in the present study. 

The mechanism of LSTM can be described in four steps. The first step is called the forget stage, 

where the LSTM decides which information from its last cell state should be eliminated. This 

decision is implemented by a sigmoid layer with two inputs 𝑥𝑡 and ℎ𝑡−1. When the control 

signal is 0, the amount of data propagated is 0 percent. As the signal is 1, there is 100 percent 

of data propagated to the cell 𝑐𝑡−1. This step can be described in the equation as follows: 

𝑓𝑡 = 𝜎(𝑊ℎ𝑓 . ℎ𝑡−1 + 𝑊𝑥𝑓 . 𝑥𝑡 + 𝑏𝑓) (32)  

where 𝜎 is a sigmoid function defined as 𝜎(𝑥) = 1/(1 + 𝑒−𝑥), 𝑊ℎ𝑓 is the weight matrix 

associating the hidden state ℎ𝑡−1 at the previous step 𝑡 − 1 with the forget control gate at the 

current state, 𝑊𝑥𝑓 is the weight matrix associating the input 𝑥𝑡 with the forget control gate at 

the current state, and 𝑏𝑓 is the bias vector. 

The second step is the store stage to determine what new data will be stored in the cell state. A 

sigmoid layer is called again to select values to be updated, i.e. the values of the input stage are 

between 0 and 1, as in Eq. 32 as follows: 

𝑖𝑡 = 𝜎(𝑊ℎ𝑖. ℎ𝑡−1 + 𝑊𝑥𝑖. 𝑥𝑡 + 𝑏𝑖) (32) 
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where 𝑊ℎ𝑖 is the weight matrix associating the previous output ℎ𝑡−1 with the input control gate 

at the present step, 𝑊𝑥𝑖 is the weight matrix associating the input 𝑥𝑡 with the input control gate, 

and 𝑏𝑖 is the bias vector. Then, a tanh layer is used to generate an array to save new information 

in the long-term. Note that the tanh function returns the value in range of -1 and 1, so the new 

information is only added to the cell state at the current time step if the returned value is positive. 

Eq. 33 describes this phase as follows: 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑐. ℎ𝑡−1 + 𝑊𝑥𝑐. 𝑥𝑡 + 𝑏𝑐) (33) 

where tanh function is defined as 𝑡𝑎𝑛ℎ(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥), 𝑊ℎ𝑐 and 𝑊𝑥𝑐 are the 

weight matrices connected to the hidden output ℎ𝑡−1 and the input 𝑥𝑡, respectively, and 𝑏𝑐 is 

the bias vector. 

The next step is to update the old cell state into the new one. The values obtained from the 

second step are integrated together to add an update to the cell state. While the old state 𝑐𝑡−1 

and the term 𝑓𝑡 from the first step are multiplied, then the new state is calculated as follows: 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡 (34) 

The final step can be called the output stage. The information impacts on the output is 

determined through a sigmoid layer as shown below: 

𝑜𝑡 = 𝜎(𝑊ℎ𝑜. ℎ𝑡−1 + 𝑊𝑥𝑜. 𝑥𝑡 + 𝑏𝑜) (35) 

where 𝑊ℎ𝑜 and 𝑊𝑥𝑜 are the weight matrices connected to the hidden output ℎ𝑡−1 and the input 

𝑥𝑡, respectively, and 𝑏𝑜 is the bias vector. To compute the current hidden state, we use the 𝑜𝑡 

and a tanh function of the new cell state gained in the third step. This step is formulated as in 

Eq. 36: 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) (36) 

All weighted and biased parameters of the LSTM network can be summarized as follows: 

Θ ≡ {
𝑊ℎ𝑓 , 𝑊𝑥𝑓 , 𝑏𝑓 , 𝑊ℎ𝑖, 𝑊𝑥𝑖, 𝑏𝑖,

 𝑊ℎ𝑐, 𝑊𝑥𝑐, 𝑏𝑐, 𝑊ℎ𝑜 , 𝑊𝑥𝑜 , 𝑏𝑜 
} (37) 

We also used a variant of long short-term memory that is a bidirectional LSTM (BiLSTM) 

[195], [196]. When the input series is large and the model has to understand the association 

across future and past information. It is necessary for us to deliver data in such a manner. In 

order to solve this issue, a bidirectional network was developed. In BiLSTM model, the input 

is provided from both the left-to-right and the right-to-left directions simultaneously. Take 

notice that this is not a case of backward propagation; rather, this only refers to the input that is 

supplied from both sides. Therefore, the issue that has to be answered is how the data from the 

two inputs are integrated into one output. A mechanism for combining both is known as a merge 

stage. The merging can be the functions of sum, multiplication, averaging and concatenation. 

Figure 42 describes the overview structure of the used BiLSTM network, where 𝑋𝑡 is the input 

vector, 𝑌𝑡 is the output vector that is the combination of LSTM forward and LSTM backward 

nodes, the green arrows denote the forward sequence and the red arrows are for the backward 

sequence. 



74 
 

 
Figure 42. An architecture of the used bidirectional LSTM for pelvis soft tissue prediction. 

4.2.3.2 Deep Neural Network (DNN) 

To compare with LSTM architecture on the prediction of pelvis soft tissue deformation, a 

classical deep neural network was used [197]. The structure of this traditional network includes 

an input layer, layers that are concealed, and an output layer. A node in the current layer has a 

weighted connection to all nodes in the next layer. Further, every node in the next layer is 

supplied a summation that is the product of weighted parameters with the outcomes, which 

respect to nodes of the current layer, then that node provides output applied activation function 

for the summation according to the following formula: 

𝑜𝑖
𝑘+1 = 𝑓(𝑢𝑖

𝑘+1) = 𝑓(∑ 𝑤𝑖𝑗
𝑘 × 𝑜𝑗

𝑘 + 𝜃𝑖
𝑘+1𝑁𝑘

𝑗=1 ) (38)  

where 𝑜𝑖
𝑘+1 and 𝑢𝑖

𝑘+1 are output and input of activation function 𝑓 of node 𝑖-th in the layer 𝑘 +

1, 𝑤𝑖𝑗
𝑘  denotes the weighted parameter connected node 𝑖-th in layer 𝑘 + 1 to node 𝑗-th in layer 

𝑘, and 𝜃𝑖
𝑘+1 is a bias parameter. 𝑁𝑘 is the number of nodes in the layer k, 𝑜𝑗

𝑘 is the output of 

activation function of node j-th in layer k. 

4.2.3.3 PCA-based learning strategy  

Due to the high dimensionality of the input data, we opted to apply a model reduction technique 

to investigate the impact of model reduction on the accuracy of a deep learning model. The 

primary objective of model reduction in this context is to effectively decrease the model’s 

dimensionality by identifying and utilizing the essential ‘snapshots’ that define the physical 

quantities present in the model. One widely used technique for model reduction is Principal 

Component Analysis (PCA) that employs Singular Value Decomposition (SVD) on the data 

covariance matrix to extract the principal components, which inherently represent the directions 

of maximum variance in the data. An alternative model reduction technique based on SVD is 

Proper Orthogonal Decomposition (POD). PCA and POD are closely linked methodologies, 

often utilized interchangeably, particularly in fields like fluid dynamics and structural 

mechanics [198], [199], [200]. However, a key distinction lies in their primary application 

domains. While PCA is commonly employed for general datasets encompassing various data 

types, POD is primarily designed for spatiotemporal data applications, where temporal 

information plays a significant role. PCA has previously been employed to decrease the 

dimensionality of a finite element simulation system [201], as well as in a deep learning 

approach to achieve a computer graphic simulation of cloth deformations [202]. In this study, 

we opted to employ PCA due to our specific focus on reducing the dimensionality of spatial 

data without incorporating temporal information. This decision is in consideration of the fact 

that the neural network is tasked with predicting the subsequent state based on the current state. 

The goal of PCA is to identify a small set of new variables that are unobserved, which are 
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derived from the existing set of variables in a manner that records the majority of the 

information present in the original set. The transformation to project the dataset from an original 

space into a new space for dimensionality reduction while maintaining information in the best 

way possible can be defined as below:    

 

𝑋 =  𝑋𝑀 + 𝑃𝑏 (39) 
 

where 𝑋 is the vector of observed variables with size of 𝑁,  𝑋𝑀 is the mean vector of the dataset 

with size of 𝑁, 𝑃 denotes the principal components matrix with size of 𝑁 × 𝑛 and 𝑏 is the vector 

of the principal component coefficients with size of 𝑛 much smaller than 𝑁. The vector 𝑏 is 

derived from Eq. 39 as follows: 

 

𝑏 = 𝑎𝑟𝑔𝑚𝑖𝑛[(𝑋𝑀 − 𝑋 + 𝑃𝑏)𝑇(𝑋𝑀 − 𝑋 + 𝑃𝑏)] (40) 

 

or 

𝑏 = (𝑃𝑇𝑃)−1𝑃𝑇(𝑋𝑀 − 𝑋) (41) 
 

Thus, all the dataset of nodal positions, velocities, external forces and displacements were 

reduced to the optimal number of principal components before transferring to training models. 

This means inputs of DL models are vectors principal component coefficients of position, 

velocity and external force. The predicted output is a vector principal component coefficient of 

displacement. Then, this vector is applied back to PCA Eq. 39 to obtain predictions of nodal 

displacement. The flow chart of our model reduction implementation is shown in Figure 43. 

 
Figure 43. Flow chart of the implementation. The black line is for deep learning method, the 

blue line is for deep learning hybrid PCA approach. 

4.2.4 Training and Evaluation 

The LSTM, BiLSTM and DNN networks were trained on the raw learning database including 

15396 records with the total size of input and output vectors of 19836 columns as well as on 

the PCA-generated database. These models were also evaluated with a testing database with 

18633 records and the same number of surface nodes and columns with the training dataset. A 

hyperparameter tuning process on the numbers of hidden layers (from 1 to 3) and associated 

nodes (from 100 to 1000), batch size (from 10 to 100), learning rate (from 1×10-3 to 1×10-6) and 

activation functions (Linear, Sigmoid, Tanh, ReLU) was conducted using Optuna, which is a 

hyperparameter optimization framework introduced by Akiba et al. [203]. In particular, dropout 
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technique [204] is applied on the hidden layers to prohibit neural network from overfitting, with 

probability of 0.005. The optimizer used to update the kernel weights is an adaptive moment 

estimation (Adam) that is a popular adaptive stochastic gradient descent algorithm. All 

computation tasks were implemented on the HPC cluster using 10 nodes with 2 CPU Intel Xeon 

E5 for each node of University de Lille. 

Before applying the learning process, data was normalized by Eq. 42 scaling values in the range 

[-1,1] 

𝑥𝑡
′ = 2 ×

𝑥𝑡 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1 (42) 

where 𝑥𝑡
′ is the normalized value of 𝑥𝑡 in the dataset X = [𝑥1,  𝑥2, … , 𝑥𝑇  ], 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are 

the minimum value and maximum value, respectively, in the dataset. 

To evaluate the proposed model, we used the root mean square error (RMSE) (Eq. 43) and the 

Pearson correlation coefficient (𝑟) as given in Eq. 44. Pearson correlation coefficient provides 

information about the strength and direction of the relationship between two variables [205], 

[206]. This coefficient is range in −1 ≤ 𝑟 ≤ 1. When the direction is positive, the relationship 

is said to be strong when 𝑟 > 0.5 , moderate if 0.3 < 𝑟 ≤ 0.5 and weak if 0 < 𝑟 ≤ 0.3. If 𝑟 =
0, the relationship between two variables is uncorrelated. With negative direction, the 

relationship expresses strongly when 𝑟 < −0.5, moderate if −0.5 ≤ 𝑟 < −0.3 and weak if 

−0.3 ≤ 𝑟 < 0. 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑(𝑦𝑖 − 𝑦�̂�)2

𝑁

𝑖=1

 (43) 

𝑟 =  
∑ (𝑦𝑖 − 𝑚𝑦)(𝑦�̂� − 𝑚�̂�)𝑁

𝑖=1

√∑ (𝑦𝑖 − 𝑚𝑦)
2𝑁

𝑖=1
√∑ (𝑦�̂� − 𝑚�̂�)

2𝑁
𝑖=1

 (44)
 

where 𝑁 is the number of samples, 𝑦 denotes the actual value, �̂� denotes the predicted value, 

𝑚𝑦 =
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1  is the mean of 𝑦, similarly, 𝑚�̂� is the mean of �̂�. 

4.3 Computational results   

4.3.1 Simulation-derived Learning Database  

The learning database corresponds to delivery scenario under different external forces applied 

to push the fetal body out of the mother uterus (Figure 44). The average interval time of 

HyperMSM simulations was in the range of 0s to 10s with time step 𝛥𝑡 = 0.002s. During each 

simulation, node position, node velocity and associated applied force were recorded and saved 

for further processing. Note that the maximal nodal deformations were 52.26 mm and 52.35 

mm for the training database and test database, respectively. 
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a)      b)  

Figure 44. 3D visualization of a simulation example in the training database (a) and 

associated nodal displacement of one node (b). 

4.3.2 Different deep learning prediction outcomes   

The evaluation of the predicted results on the training database shows a root mean square error 

(RMSE) of 0.173 mm, 0.168 mm and 0.139 mm for LSTM, BiLSTM and DNN models 

respectively. Pearson correlation coefficient (PCC) of 0.999 was obtained for all applied 

networks. The maximal displacement errors corresponded to 8.384 mm and 3.824 mm for 

LSTM and DNN models, respectively. Figure 45 displays the forecasted displacements along 

X-, Y- and Z-direction using different deep learning architectures with reference values of the 

node where the highest deformation performs in the training dataset (see Figure 46). 

Regarding the evaluation on the testing database, root mean square error (RMSE) of 1.062 mm, 

0.988 mm and 0.936 mm for LSTM, BiLSTM and DNN models respectively. Pearson 

correlation coefficient (PCC) of 0.994 was obtained for both LSTM and BiLSTM networks. A 

PCC of 0.996 was achieved with the DNN network. Table 3 depicts RMSE and PCC of the 

predicted results using LSTM models and DNN model on the training database and the testing 

database. 

 

a)       b)                 c)  

Figure 45. The highest nodal displacement of the training dataset at 52.26 mm at X-axis. 

Plotting predicted displacements of the node using LSTM, BiLSTM models and DNN model 

along X- component (a), Y- component (b) and Z-component (c). 
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Table 3. Root mean square error (RMSE) and Pearson correlation coefficient (PCC) of predicted 

values using LSTM, BiLSTM models and DNN model on the training and the testing datasets. 

 LSTM  BiLSTM  DNN  

 RMSE (mm) PCC  RMSE (mm) PCC  RMSE (mm) PCC  

Training 0.173 0.999  0.168 0.999  0.139 0.999  

Test 1.062 0.994  0.988 0.994  0.936 0.996  

More precisely, the best predicted case from the testing database produced mean errors of 0.103 

mm ± 0.116 mm and 0.107 mm ± 0.083 mm with LSTM and DNN networks respectively (Table 

4). Figure 47 compares the best predicted deformation using LSTM to HyperMSM estimation 

of the childbirth simulation at time step 1s, 5s, 8s and 11.186s when it obtained the maximum 

absolute error of 3.264 mm. By DNN model, the best prediction returned the maximum absolute 

error of 2.765 mm at the time step 11.092s. The visualization of this case can be seen in Figure 

49.  

Regarding the worst predicted case, the prediction using LSTM resulted in absolute mean error 

of 0.845 mm ± 1.214 mm, while the DNN-based deformation forecast has a mean error of 0.775 

mm ± 1.041 mm. Figure 48 shows the LSTM prediction of this simulation in comparison with 

HyperMSM reference at time step 1s, 5s, 7.446s - the largest absolute displacement error here 

of 24.219 mm and 10s. The prediction using DNN produced the maximum absolute error of 

23.293 mm at time step 7.446s as well. Note that larger errors occurred at the vaginal orifice 

where there is high deformation during the childbirth process. Figure 50 describes the worst 

case by DNN prediction over time. The rest of forecasted simulations returned mean errors from 

0.266 mm ± 0.352 mm to 0.750 mm ± 0.989 mm for LSTM network and mean errors from 

0.257 mm ± 0.317 mm to 0.719 mm ± 0.870 mm for DNN model. Figure 51 shows the 

forecasted displacements along X-, Y- and Z-direction using LSTM and DNN methods with 

reference values of the node where the highest deformation performs in the test dataset. 

 
Table 4. Mean absolute error and standard deviation (SD) of predicted values using LSTM and DNN 

models on the testing database. 

 LSTM  DNN  

Simulation Mean (mm) SD (mm)  Mean (mm) SD (mm)  

1 0.103 0.116  0.107 0.083  

2 0.266 0.352  0.257 0.317  

3 0.735 1.147  0.662 0.966  

4 0.750 0.989  0.719 0.870  

5 0.845 1.214  0.775 1.041  

6 0.589 0.917  0.544 0.792  
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Figure 46. Comparing mean absolute error (mm) of the deformation prediction over 6 test 

childbirth simulations using LSTM method and DNN method. 

 
 

Figure 47. The best predicted simulation by LSTM over time obtained the largest absolute 

displacement error of 3.264 mm at time step 11.186s. 

 
 

Figure 48. The worst case by LSTM prediction over time resulted in the largest absolute 

displacement error of 24.219 mm at time step 7.446s. 
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Figure 49. The best predicted simulation by DNN over time obtained the largest absolute 

displacement error of 2.765 mm at time step 11.092s. 

 
 

Figure 50. The worst case by DNN prediction over time resulted in the largest absolute 

displacement error of 23.293 mm at time step 7.446s. 

 

a) Displacement along X-axis b) Displacement along Y-axis     c) Displacement along Z-axis 

 

Figure 51. The highest nodal displacement of the test dataset at 52.35 mm at X-axis. Plotting 

predicted displacements of the node using LSTM, BiLSTM models and DNN model along X- 

component (a), Y- component (b) and Z-component (c). 

4.3.3 PCA-based learning strategy outcomes   

By applying on our database, an optimal number of 11 principal components was achieved for 

maximizing variance of data up to 99.99% while keeping as much data as possible. The 

predicted results of nodal displacement by PCA-based learning strategy obtained a RMSE of 

0.708 mm and mean± standard deviation of 0.438± 0.556 mm for the training dataset. The 

predicted results on the testing data returned RMSE from 1.535 mm to 1.547 mm and mean± 

SD of 0.865± 1.280 mm. Moreover, Table 5 compares the maximum absolute errors (Max.) 

(mm) and mean errors on the prediction validation set using three deep learning models with 
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three learning approaches: only training and test by deep learning (DL); training and test by DL 

and outputs processed by PCA; and inputs processed by PCA then by DL and outputs processed 

by PCA as well. 

Table 5. Comparing the maximum absolute errors (Max.) (mm) and mean errors on the testing dataset 

using three deep learning models with three learning approaches: only training and test by deep 

learning (DL); training and test by DL and outputs processed by PCA; and inputs processed by PCA 

then by DL and outputs processed by PCA as well. 

 

 

DL  
DL + PCA-

derived Output 

 PCA-derived + 

DL + PCA-

derived Output 

 Max. Mean  Max. Mean  Max. Mean 

LSTM 24.219 0.548  ~25 0.869  ~25 0.867 

BiLSTM 23.875 0.532  ~25 0.869  ~25 0.868 

DNN 23.293 0.511  ~25 0.870  ~25 0.866 

4.4 Discussion 

Accurate and fast prediction of biological soft tissues play an essential role in the development 

of the next-generation interactive decision support tools and systems. Such achievement could 

be of great interest in providing accurate and fast feedback (e.g. tissue displacement, 

deformation and stress) during different virtual interactions between tissues with and without 

external devices. This information is valuable for optimizing the intervention gestures or device 

design optimization. To reach this challenging achievement, different numerical approaches 

such as finite element or mass-spring model formulations have been commonly used in the 

biomechanics field. These approaches are usually mesh-based and then still computationally 

expensive leading to the limited use in the clinical routine practice. Recently, the deep learning 

approach has metamorphosed the biomechanical modeling and simulation with capacities to 

predict the biological soft tissues (e.g. skeletal muscle, brain tissue) [130], [207] deformation 

in a fast and accurate manner. Thus, new perspectives have been opened for innovative virtual 

surgical planning and decision support tools and systems. In the present study, pelvis soft tissue 

deformation during the delivery process of the fetal body was accurately and rapidly estimated 

using classical deep neural network and two recurrent neural networks (LSTM and BiLSTM). 

This achievement opens new avenues for the optimization of the delivery scenario to avoid 

complications for both fetus and mother.  

 

Biomechanical modeling and simulation of the labor and childbirth processes are complex 

engineering tasks. A childbirth model is a complex structure that includes the fetal body, pelvic 

floor muscles, vagina and uterus covered by the pelvic bony system. The interaction between 

the fetal body and mother’s uterus and soft tissue during different cardinal movements exhibits 

a nonlinear behavior. Hyperelastic laws with Neo-Hookean or Mooney-Rivlin formulations 

have been commonly used to model biological soft tissues in virtual interactive tools and 

systems due to cheaper computational cost and simpler model formulation according to more 

advanced laws with transversely isotropic and active behaviors [153], [154]. We showed in the 

present study that different deep learning models could reproduce the hyperelastic behavior of 

biological soft tissue in an accurate and fast manner. Our prediction accuracy level is also 

comparable with other studies. Recently, Liang et al. [208] presented a deep neural networks 

(DNN) method to predict stress distributions of the aorta. The model trained on the data of stress 
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distribution, which was created by finite element simulation from 729 virtual patient shapes. 

Each shape required the mesh of 5000 nodes and 4950 elements. The DNN configured two 

hidden layers with 128 nodes for each layer. The normalized mean absolute error of Von Mises 

stress distribution was 0.492% and peak Von Mises stress was 0.891%. Meister et al. [209] 

applied a deep learning method to speed up the total Lagrangian explicit dynamics model. The 

study simulated soft tissue deformation of a liver lobe with the mesh of 507 vertices and 1493 

tetrahedra. The mean error was 0.21 mm ± 0.67 mm and the maximum displacement error was 

3 mm over the time 0s to 1s. Pellicer-Valero et al. [210] predicted the real-time deformation of 

the liver using a feedforward neural network. The study reconstructed 154 liver geometries from 

Computed Tomography (CT) images, then generated 10000 simulations using finite element 

method. The meshes consisted of around 12000 nodes. Forces were applied on random nodes 

and random orientations. The study also applied the PCA method to reduce features with 27 

principal components. Feedforward neural network contained a hidden layer and activation 

function of ReLU. The predicted displacements on a validation set of about 12.5% of the whole 

data obtained mean absolute error of 0.433 mm and correlation coefficient of 0.977. The use of 

convolutional neural network to predict the current displacement of all internal liver points 

when only providing the deformation of surface nodes was proposed by Pfeiffer et al. [211]. 

The training inputs were the surface meshes of 10000 simulations, which were generated by 

Elmer software. Validation of the model on 1334 samples, the estimated displacement returned 

a maximum error of about 25 mm and an average error of 20 mm when the whole liver's surface 

was observable. Madani et al. [212] estimated stress of arterial wall in atherosclerosis using 

finite element method (FEM)-based neural networks. From FEM simulations, parameters of 

arterial geometry and pressure were extracted as inputs. The network trained on 9737 

simulations and test on 2435 samples. The configuration of the model included 3 hidden layers, 

an activation function of ReLU and Adam optimizer. The prediction of maximum von Mises 

stress obtained a mean squared error of 9.86% and a mean absolute error for polar distance of 

0.223 mm. Finally, Mendizabal et al. [213] applied U-Net to predict lesion deformation in breast 

biopsy. Hexahedral meshes were generated by FEM for training data input. The proposed U-

Net was trained on 800 meshes and tested on 200 samples. The network set up 100000 epochs 

and Adam optimizer. The predicted displacement lesion compared with real displacement 

extracted from ultrasound images showed a mean norm error from 2.124 mm to 6.194 mm over 

10 tumors. Furthermore, Joldes et al. [214] presented a meshless method for computing soft 

tissue deformation that was meshless total Lagrangian explicit dynamics including a modified 

moving least squares method. The method was verified on the unconstrained compressed cube 

with a length of edge 100 mm and Neo-Hookean material. Compared to analytical solutions, 

the method obtained a normalized root mean square error (NRMSE) of 3.08×10-3 for 1014 

integration points. Verifying on a sample of sheep brain in 3D, the method acquired NRMSE 

7.74×10-3 in x-direction, 5.57×10-3 in y-direction and 2.03e-2 in z-direction, comparing with 

ABAQUS solution. A finite element method based on absolute nodal coordinate formulation to 

model soft tissue in 3D was introduced by Obrezkov et al. [215]. Applying the method to a 

cylinder with radius of 0.1 m, length of 1 m and material of Neo-Hookean, its deformation was 

0.06 m when the load was 5000N. In the experiment of rectangle cross section beam with the 

width and height of 0.1 m, length of 1 m and also Neo-Hookean material, the displacement was 

0.22 m under the load of 5000N. Our obtained results showed a relative root mean square error 

less than 3% and very good Pearson correlation coefficients demonstrating the strong similarity 

between predicted outputs and ground truth data. In particular, the computational time for 

training a LSTM epoch took 5 minutes, so 1000 epochs took more than 83 hours running on the 

HPC cluster of Université de Lille. Meanwhile, it took 3 minutes to train a DNN epoch and 250 

hours to finish 5000 epochs. In general, the prediction just consumed a few seconds running on 

a personal computer. Thus, our proposed approach could be an alternative solution to replace 
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finite element or Mass-Spring model formulation in which mesh configurations are compulsory 

toward a meshless deep learning model for real-time soft tissue deformation estimation. 

  

The stochastic nature of the deep learning has been a well-known characteristic in the prediction 

of signals with nonlinear and high-frequency oscillations. To avoid unreliable prediction 

outcomes, optimal hyperparameters should be selected. A rigorous hyperparameter tuning 

process was realized in the present study to select the optimal set of model parameters for each 

deep learning architecture. Moreover, repeated runs were performed to get stable outcomes. 

Generally, possessing an ample dataset allows us to develop a more precise predictive model 

due to the increased data available for training the computer. However, dealing with huge 

datasets comes with its own set of disadvantages. Large datasets with high dimensionality give 

rise to the most prevalent issue that is overfitting. Overfitting limits the ability to make 

generalizations beyond the scope of the training data. Consequently, it is advisable to utilize 

dimensionality reduction methods to decrease the number of features in the dataset. In this 

study, we use the principal component analysis (PCA), which enhances interpretability, 

minimizes information loss, assists in identifying crucial attributes and aids in identifying linear 

combinations of diverse sequences. However, a little effect was noted for the accuracy level 

while the computational cost is largely cheaper. In fact, the computational time for PCA-derived 

learning takes only 16 minutes.  

 

To obtain accurate prediction with deep learning, reliable and accurate learning database should 

be used. In the biomechanics field, due to the impossible acquisition of soft tissue displacement 

and deformation in a non-invasive and in vivo conditions, numerical simulations have been 

commonly used for database generation [216]. Finite element simulations have been usually 

used. In the present study, our learning database was generated using our recently developed 

HyperMSM formation, which has a cheaper computational cost and more flexible simulation 

configuration capacities. Note that our novel formulation was evaluated using the finite element 

solution and obtained results are very comparable for hyperelastic law with Neo-Hookean 

formulation [159].  

One of the important limitations of the present study remains in the number of delivery 

scenarios. Thus, only the normal delivery process of the fetal body was considered. Thus, 

further investigations should be performed with more complex delivery scenarios (e.g. forceps-

assisted delivery or complicated delivery scenarios) toward a complete prediction of pelvis soft 

tissues during the childbirth process. Another limitation relates to the simplifications adopted 

in our childbirth model. This encompasses the geometric representation, the fetal descent 

model, and the node-to-triangle contact model employed to handle interactions between the 

fetal body and pelvis soft tissue [159]. While these simplifications are deemed suitable for the 

present study and adequately serve the established objectives (predict the soft-tissue 

deformations using machine-learning model), future studies would benefit from an 

anatomically accurate model equipped with an advanced contact model and physiologically 

simulated fetal cardinal movements to attain a heightened level of realism. Another limitation 

relates to the use of a simple node-to-triangle contact model for managing the interaction 

between the fetal body and pelvis soft tissue [159]. More complex contact model is needed in 

the future for a more realistic interaction. Another limitation deals with the use of recurrent 

neural network with our problem formulation. In fact, the long-short term memory (LSTM) 

networks give a similar accuracy level in comparison with classical deep neural network in our 

present study. Normally, this specific network architecture with memory components provide 

appropriate function approximations to describe the non-linear mappings between the input 

time-series data and the desired time-series outcomes. One possible reason remains in our 
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problem formulation. In fact, the prediction of the next time step information based on only the 

previous one is not favorable with the recurrent neural network philosophy. Thus, further 

studies should be investigated to propose a new model prediction formulation to take the 

advantage of the LSTM network into consideration. Furthermore, physics-informed neural 

networks will be investigated to add direct physical properties of the problem formulation itself 

to guide the training process leading to improve the prediction accuracy. In particular, the use 

of our novel mass-spring system modeling (i.e. HyperMSM) approach makes the direct 

comparison with other state-of-the-art outcomes using deep learning for soft tissue prediction 

unfeasible. Thus, traditional finite element modeling approach will be used to generate the 

training data to enhance the finding of the present methodology. In addition, non-learning neural 

network methodologies for modeling soft tissue deformation should be also potential solutions 

to deal with the lack of representative and realistic training data [217], [218]. Finally, the present 

study focused on the complexity of the coupling between finite element modeling outcomes 

and different deep learning techniques for solving real-time soft tissue deformation. Thus, the 

state-of-the art deep learning models were used. Further improvements on the used methods 

will be considered in a future study.  
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Chapter 5 

Physics-Informed Neural Ordinary Differential 

Equations and Mass-Spring System Modeling 

Framework for Predicting the Real-Time Soft-Tissue 

Deformations 

 

Expanding upon the research conducted in Chapter 4, this chapter endeavors to advance 

childbirth simulation by simulating soft tissue deformations in real-time. Traditional numerical 

methods, reliant on mesh configurations, are fraught with high processing costs and instability 

in convergence. To address these challenges, we turn to physics-informed neural networks 

(PINN), recognized for their efficacy in solving differential equation problems. Our approach 

integrates PINN and neural ordinary differential equations (NeuralODE) with the mass-spring 

system (MSS) modeling framework to develop a predictive model for soft tissue deformation. 

We establish the theoretical underpinnings of our methodology using PINN, NeuralODE, and 

MSS formulations. Subsequently, we assess the efficacy of our novel approach through 

simulations on 2D and 3D mass-spring systems, as well as a 3D cantilever beam. Finally, we 

apply our model to simulate and evaluate the deformation of a 3D uterus model under gravity 

loading, marking a significant step forward in the development of realistic childbirth 

simulations. 

5.1 Introduction 

Machine learning (ML) and deep learning (DL) have been emerging as pivotal methods for 

propelling scientific study and computational advancements across various domains, including 

solid mechanics [168], [219], biomechanics [129], [130] and computer vision [132], [133]. ML 

and DL were initially proposed in computational science to overcome inefficient data modeling 

techniques that hindered rapidly engaging with complicated data. These methodologies have 

revolutionary possibilities for exploring large design environments, identifying 

multidimensional relationships, and addressing complex difficulties. Nevertheless, traditional 

ML and DL techniques struggle to derive meaningful insights and expertise from intricate 

multi-dimensional data. While they can efficiently map observations or computational data, 

their predictions might lack physical rationality or credibility, leading to subpar generalization. 

The mechanical functions of the human body depend essentially on the movements of soft 

tissues. When these tissues interact to other tissues and external equipment, they display 

commonly non-linear characteristics and behaviors. Numerical models have been developed to 

assess and predict soft tissue deformations. Ballit and Dao [159] introduced a hyperelastic mass-

spring model, called HyperMSM, for simulating deformations of Neo-Hookean material. The 

model supported tetrahedral and hexahedral meshes and was evaluated for its performance on 

skeletal muscles and residual limb deformation. Santesteban et al. [94] offered a data-driven 

approach to represent soft-tissue dynamics while considering both body shape and motion. The 
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model unraveled the conventional pose representation by eliminating features specific to 

individual subjects. Nguyen-Le et al. [131] suggested the use of deep neural networks and long 

short-term memory to forecast the displacement of the uterus during the second stage of labor 

simulation. Various learning strategies, including those with and without data dimension 

reduction mechanism, were applied. Despite advancements, challenges persist in terms of 

precision, computational cost and speed when simulating in real-time configuration. 

Recently, there has been a demonstrated benefit in combining differential equations with 

machine learning. Thus, physics-informed neural networks (PINN) were first introduced by 

Raissi et al. [107]. They execute supervised learning while adhering to prescribed physical laws, 

which are presented in the form of differential equations. The PINN methods adhere to the rules 

of physics by combining a weakly enforced loss function that includes the residuals from 

physics equations and initial/boundary conditions. To compute derivatives of the neural 

network outputs concerning inputs such as spatiotemporal and model parameters, the automated 

differentiation [98] is employed. The networks minimize the loss function to approach solutions 

approximately. There have been numerous studies employing PINNs to solve partial differential 

equations. For example, Arnold and King [220] provided a state-space modeling using the 

PINN. The model eliminated the need for numerical solution techniques in state propagation. 

Instead, each time step relied on assessing a moderately sized neural network, which 

approximated the solution of dynamic systems illustrated by the Kalman filter and Burger’s 

equation. Schaffer et al. [221] presented the use of PINN to examine the complete three-

dimensional static micromagnetic equations approach for the continuous magnetization 

configuration. The model was trained to minimize the Gibbs free energy using a low-parametric 

network. Additionally, the study used PINN to address the significant and computational cost 

stray field problem. In particular, the practicality of identifying nonlinear structures has been 

investigated by employing neural ordinary differential equations (NeuralODE) [99] as a means 

of approximating governing equations. NeuralODEs, a category of deep neural network models, 

offer a framework that connects neural networks - commonly associated with data-driven 

approaches - with differential equations, which are rooted in physics. These models have 

demonstrated their ability to learn the inherent governing dynamics from observed data of a 

dynamic system. Luo et al. [222], for example, constructed predictive control models using 

NeuralODE. A range of data processing approaches were used to ensure closed-loop stability 

and address resilience to noise. The study examined the work of the proposed control models 

when subjected to both Gaussian and non-Gaussian noises. Roehrl et al. [223] combined the 

physics-informed neural network and NeuralODE to simulate a forward model of an inverted 

pendulum on a cart. The results showed that it was capable of learning the non-conservative 

forces in a physically actual system with a significant degree of uncertainty. 

Numerous open-source software libraries tailored for physics-informed neural networks have 

been created, which is fueling the discipline's explosive growth. Xu and Darve [224] introduced 

the ADCME library to lean spatially-varying physical fields. In order to facilitate the execution 

of physics-informed learning, ADCME operates as a wrapper, converting low-level functions 

from different libraries into comparatively high-level operations. Users remain responsible for 

carrying out all necessary steps to solve the issue. Hennigh et al. [225] developed SimNet for 

Nvidia GPU to simulate large-scale problems. The toolkit considers not only the system’s 

geometry but also an explicit parameterized space of the input geometry. Another wrapper tool 

like ADCME is SciANN introduced by Haghighat and Juanes [226]. Certain software, like 

DeepXDE [227], can function as a solver. This library is capable of solving ordinary differential 
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equations (ODEs), partial differential equations (PDEs), integro-differential equations, and 

fractional PDEs. Additionally, it accommodates a wide range of domain geometries. An 

extensive collection of software packages centered around physics-informed learning is found 

in SciML [228], [229]. This ecosystem includes numerous libraries designed for addressing 

various types of equations such as ODEs, stochastic differential equations, differential-

algebraic equations, and hybrid differential equations, encompassing multi-scale models and 

combinations with agent-based simulations. Each of these libraries employs automatic 

differentiation, which is available in other software tools like TensorFlow. 

In this work, we developed and evaluated a suitable predictive model of the soft tissue 

deformation based on PINN approach and physics-informed hybrid neural ordinary differential 

equations (PINODE) coupled with the mass-spring system (MSS) modeling framework. Our 

proposed approach was evaluated on 2D and 3D mass-spring systems as well as a 3D cantilever 

beam. Then, its application on the soft tissue deformation of the 3D uterus organ was performed 

and evaluated. 

5.2 Methods 

5.2.1 Theoretical basis: governing equation of the mass-spring model 

(MSM) for soft tissue deformation   

In this study, we adopted the mass-spring model (MSM) approach to describe the soft tissue 

deformation [159]. This approach is frequently driven by its uncomplicated expression of 

constitutive equations and its ability to execute real-time calculations with adequate physical 

correctness.  

Assuming that a dynamical system is constructed from s springs with m mass points in the r-

dimension (r=2,3). In this study, we solve the following equation of motion:  

𝑀�̈� + 𝐷�̇� + 𝐾𝑥 = 𝐹 (45) 

where  𝑀 is the mass matrix, 𝐾 is the stiffness matrix, 𝐹 denotes the external force vector and 

𝐷 is the damping matrix given by the following equation: 

𝐷 =  𝛼1𝑀 + 𝛼2𝐾 (46) 

with 𝛼1and 𝛼2 are two constants. 

According to Hooke’s law, the potential energy in a spring is expressed as follows: 

𝐸 =
1

2
𝑘(‖𝑝1−𝑝2‖ − 𝑑)2 (47) 

where 𝑘 is a stiffness of the spring, 𝑝1, 𝑝2 ∈ 𝑅𝑟 are two spring endpoints. 𝑑 is a vector that 

characterizes the equilibrium state of a spring, represented by a vector with a norm equal to the 

rest length. It is adjusted based on changes in nodal positions. 

By summing the presentations of all springs in a system and applying matrix calculus, the total 

spring potential energy is obtained as follows: 

𝐸𝑠(x) =
1

2
∑ 𝑘𝑖‖𝑝𝑖1

− 𝑝𝑖2
− 𝑑𝑖‖

2
=

1

2

𝑠

𝑖=1

x𝑇𝐿x − x𝑇𝐽𝑑 (48) 
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where L is a Laplacian matrix based on the stiffness values and the connections among nodes, 

J is a matrix that outlines the allocation of nodes to the springs. These two matrices are 

calculated as follows: 

𝐿 = (∑ 𝑘𝑖𝐴𝑖𝐴𝑖
𝑇

𝑠

𝑖=1

) ⊗ 𝐼𝑟 (49) 

𝐽 = (∑ 𝑘𝑖𝐴𝑖𝑆𝑖
𝑇

𝑠

𝑖=1

) ⊗ 𝐼𝑟 (50) 

where 𝐴𝑖 ∈ 𝑅𝑚 stands for the incidence vector corresponding to the i-th spring given by 𝐴𝑖,𝑖1
=

1, 𝐴𝑖,𝑖2
= −1, and zero otherwise. 𝑆𝑖 ∈ 𝑅𝑠 represents the i-th spring indicator, 𝑆𝑖,𝑗 = 𝛿𝑖,𝑗. The 

matrix 𝐼𝑟 denotes the identity matrix and operator ⊗ is the Kronecker product. 

The internal spring forces, which arise from the restoring tendency of the springs to return to 

equilibrium positions, are given as follows: 

𝐹𝑠(x) = −𝛻𝐸𝑠(x) = −𝐿x + 𝐽𝑑 (51) 

By combining the Eq. 45 and 51, we have the equation to describe the mass-spring systems in 

2D and 3D as follows: 

𝑀�̈� + 𝐷�̇� + 𝐿𝑥 − 𝐽𝑑 = 𝐹 (52) 

5.2.2 Physics-informed neural network (PINN) coupled to the MSM model 

for soft tissue deformations 

The approach of PINN differs significantly from standard supervised machine learning, as it 

does not solely depend on data; rather, it leverages the physical properties of the differential 

equations to direct the training process. The inclusion of known data into the loss function based 

on physics enhances the training speeds. PINNs exploit two fundamental features of neural 

networks. First, neural networks serve as universal function approximators. As a result, if a 

neural network is deep and powerful enough, it can estimate any function, including the solution 

to the differential equations. Second, computing derivatives of outputs of a neural network 

concerning its inputs, as well as model parameters during backpropagation, is straightforward 

through automatic differentiation. 

Suppose the targeted solution of the ordinary differential equation Eq. 52 is 𝑢(𝑡). We seek an 

approximated solution using a neural network, represented as �̂�(𝑡; 𝜃), which is �̂�(𝑡; 𝜃) ≈  𝑢(𝑡). 

Here, t denotes different time values, and 𝜃 is a set of parameters in the neural network. The 

optimization problem is based on the two loss functions as follows: 

𝐿 = 𝑤𝑑𝑎𝑡𝑎𝐿𝑑𝑎𝑡𝑎 + 𝑤𝑂𝐷𝐸𝐿𝑂𝐷𝐸  (53) 

where 𝑤𝑑𝑎𝑡𝑎 and 𝑤𝑂𝐷𝐸 are parameters that need to be determined. 𝐿𝑑𝑎𝑡𝑎 is defined as follows: 

𝐿𝑑𝑎𝑡𝑎 =
1

𝑁𝑑𝑎𝑡𝑎
∑ (�̂�(𝑡𝑖) − 𝑢𝑖)

2

𝑁𝑑𝑎𝑡𝑎

𝑖=1

 (54) 
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where 𝑁𝑑𝑎𝑡𝑎 is a dataset of known solution at different times including the initial and boundary 

conditions. The term 𝐿𝑂𝐷𝐸 is defined as follows: 

𝐿𝑂𝐷𝐸 =
1

𝑁𝑂𝐷𝐸
∑ (𝑀

𝑑2�̂�(𝑡𝑗)

𝑑𝑡
+ 𝐷

𝑑�̂�(𝑡𝑗)

𝑑𝑡
+ 𝐿�̂�(𝑡𝑖) − 𝐽d (�̂�(𝑡𝑗)) − 𝐹)

2𝑁𝑂𝐷𝐸

𝑗=1

(55) 

where 𝑁𝑂𝐷𝐸 is a set of collocation points in a domain. Figure 52 provides an overview of the 

structure of the vanilla physics-informed neural network. 

 
 

Figure 52. Overview of the architecture of the physics-informed neural network. 

5.2.3 Neural ordinary differential equations (NeuralODE) coupled to the 

MSM model for soft tissue deformations 

The fundamental concept of NeuralODE relates to the consideration of the hidden states of a 

neural network as outcomes of a system of ordinary differential equations [99]. In conventional 

neural networks, the learning procedure is based on stacking neural layers and applying a series 

of parameterized transformations to the input data. In contrast, NeuralODE approaches the 

problem from a continuous-time perspective using ordinary differential equations to define the 

evolution of the hidden layers of a neural network over time. A hidden state in a residual 

network, for example, enables the transition from layer t to layer t+1 using a neural network f 

as follows: 

ℎ𝑡+1 = ℎ𝑡 + 𝑓(ℎ𝑡, 𝜃𝑡) (56) 

where 𝜃𝑡 denotes a set of parameters at layer t.  

Rather than employing discrete layers connecting inputs and outputs, we consider the hidden 

layers as continuous by parameterizing them through the limit where a time step ∆𝑡 approaches 

zero as follows: 

ℎ𝑡+1 −  ℎ𝑡

∆𝑡
 =

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑓(ℎ(𝑡), 𝑡, 𝜃) (57) 

where ℎ(𝑡) is the value of the hidden state at some time t with input layer ℎ(𝑡0) = ℎ0, 𝑓(. ) 

governs the evolution of the state concerning time, and 𝜃 presents all the parameters of the 

network.  

We can solve the Eq. 57 by deriving the integration as follows: 
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ℎ(𝑡) = ∫ 𝑓(ℎ(𝑡), 𝑡, 𝜃)𝑑𝑡 (58) 

With the initial condition ℎ(𝑡0) = ℎ0, the output ℎ(𝑡𝑝) after p time steps can be derived from 

Eq. 58 as follows: 

ℎ(𝑡𝑝) = ℎ(𝑡0) + ∫ 𝑓(ℎ(𝑡), 𝑡, 𝜃)𝑑𝑡
𝑡𝑝

𝑡0

 (59) 

We can solve the Eq. 59 by numerical methods through a black-box ODE solver as follows: 

ℎ(𝑡𝑝) = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(ℎ(𝑡0), 𝑡0, 𝑡𝑝,  𝜃, 𝑓) (60) 

Then, it is essential to evaluate a loss function by backpropagating through the ODE solver to 

determine the parameters 𝜃 of the neural network as follows: 

𝐿 (ℎ(𝑡𝑝)) = 𝐿 (𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒(ℎ(𝑡0), 𝑡0, 𝑡𝑝,  𝜃, 𝑓)) (61) 

The gradients 
𝜕𝐿

𝜕𝜃
 can be computed by an adjoint sensitivity method, which can help to lower 

memory costs. To further optimize 𝐿, we apply optimization methods such as stochastic 

gradient descent (SGD), adaptive moment estimation (Adam). The time derivative 
𝑑ℎ(𝑡)

𝑑𝑡
 is 

approximated by the neural network 𝑓(. ), which is learned during the training process. 

5.2.4 Physics-informed neural ordinary differential equations (PINODE) 

coupled to the MSM model for soft tissue deformations 

We explore the combination of physics-informed neural networks and neural ordinary 

differential equations to solve our dynamic system related to the soft tissue deformation. It is 

noted that the structure of NeuralODE conforms to the standard dynamic system form when 

considering the hidden state ℎ(𝑡) = [𝑥(𝑡)  �̇�(𝑡)]𝑇, where 𝑥(𝑡) denotes the displacement vector 

and �̇�(𝑡) denotes the velocity vector. We know that the majority of practical structural dynamics 

issues involve forced vibration rather than being limited to initial value problems. We adjust 

governing equations to following equation with the aim of including domain knowledge to the 

design of NeuralODE: 

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑓𝑝ℎ𝑦(ℎ(𝑡), 𝑡, 𝐹(𝑡)) + 𝑁𝑁(ℎ(𝑡), 𝑡, 𝜃) (62) 

where 𝑓𝑝ℎ𝑦(. ) is a physics-informed term guided by potential prior domain knowledge, 𝑁𝑁(. ) 

represents a feed-forward neural network. 𝑓(. ) in Eq. 57 has been divided into these two terms. 

𝐹(𝑡) represents a vector of recognized external forces exerting on the system. 

Inserting Eq. 52 into Eq. 62, we have the state-space form as follows: 

𝑑ℎ(𝑡)

𝑑𝑡
= [ 𝜪(𝟏) 𝜤

−𝑀−1𝐿 −𝑀−1𝐷
] ℎ(𝑡) +  [

𝜪(𝟐)

𝑀−1𝐽
] 𝑑 + [ 𝜪(𝟑)

𝑀−1𝐹
] + [

𝜪(𝟒)

𝑁𝑁(ℎ(𝑡))
] (63) 

where 𝛰(.) stand for zeros vectors with different sizes, 𝛰(1) ∈ 𝑅𝑑𝑜𝑓×𝑑𝑜𝑓 (dof: degree of 

freedom), 𝛰(2) ∈ 𝑅𝑑𝑜𝑓×𝑠, 𝛰(3) ∈ 𝑅𝑑𝑜𝑓×1 and 𝛰(4) ∈ 𝑅𝑑𝑜𝑓×1. The identity matrix 𝛪 ∈ 𝑅𝑑𝑜𝑓×𝑑𝑜𝑓. 
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5.2.5 Numerical examples and uterus soft tissue deformation application 

5.2.5.1 2D/3D mass-spring systems and 3D cantilever beam 

a) 2D mass-spring system 

The 2D mass-spring model system includes one spring and one mass. The spring was fixed at 

a point as in Figure 53, so the number of degrees of freedom is 2. The stiffness of the spring is 

10 N/m, the weight of the mass is 1 kg, and two damping coefficients are 𝛼1 = 0, 𝛼2 = 0.001. 

We simulated the motion of the system using PINN and PINODE methods with the initial 

positions 𝑥(𝑡0 = 0) = [1, 0], initial velocities �̇�(𝑡0 = 0) = [0, 2], and the external forces are 

zero. We used the Runge-Kutta method to obtain data solution as the ground truth. The total 

time simulation was in 10 s, we split the first 5 s for training neural networks, then the obtained 

models extrapolated the motion of system in the time interval [5, 10] s. The time step size in 

this example is 0.05, so there are 100 data points in the training set. 

 
Figure 53. A mass-spring system in 2D including a spring and a mass. 

To implement the PINN model, the number of hidden layers is 3 with 60 nodes per each layer. 

The learning rate is set at 0.001, the number of epochs is 250000. The activation function is 

sigmoid. For the PINODE, we trained the model through 20000 iterations. The learning rate 

starts at 0.05 and reduces 5 times after each 5000 iterations. The hidden layer consists of 1 layer 

with 10 nodes, and the activation function is tanh. We used the Google Colab platform to run 

implementations of the physics-informed neural models. 

b) 3D mass-spring system 

Given a 3-dimensional mass-spring system as illustrated in Figure 54. Three masses are 

distributed within a tetrahedral structure, connected by 6 edge springs. The system exhibits 9 

degrees of freedom. Each mass has a weight of 1 kg. The stiffness of each spring is 10 N/m. 

The damping constants are 𝛼1 = 0.01, 𝛼2 = 0.01. We applied constant forces of 10 N on all 

three dimensions of the nodes. Utilizing a time step size of 0.05 s and generating a dataset 

comprising 200 data points for the training phase in 10 s. Following this training period, the 

models were tested for ability to extrapolate by predicting positions from 10 s to 20 s. We 

employed the Runge-Kutta method to derive the solution data, which serves as the ground truth. 
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Figure 54. Tetrahedral structure of the 3D mass-spring system. 

In implementing the PINN, a model architecture with 3 hidden layers, each comprising 50 

nodes, was employed. The neural network was trained over 500000 epochs. The learning rate 

is 10−6. The activation function chosen for the network is the sigmoid function. To the PINODE 

framework, we used a single hidden layer containing 30 nodes. The tanh function was chosen 

as the activation function. The training process loops over 40000 iterations with a learning rate 

schedule. The initial learning rate is set at 0.05 and is reduced by a factor of 5 after every 10000 

epochs. 

c) 3D cantilever beam system 

In this example, we studied the deformation of a cantilever beam under the influence of gravity, 

as illustrated in Figure 55. The beam was constructed from a Neo-Hookean material 

characterized by a Young’s modulus of 𝐸 = 0.1 MPa and a Poisson’s ratio of 𝜈 = 0.4. The 

dimensions of the beam were 0.04 m in width, 0.04 m in height and 0.1 m in length. The 

structural mesh included 430 tetrahedral elements interconnected by 136 nodes. We fixed 17 

nodes at the right-hand side. With 119 active nodes, the system exhibits a total of 357 degrees 

of freedom. 

 
 

Figure 55. Cantilever beam under the gravity force. 

We simulated the beam deformation in 5 s. The first 2 s was dedicated to training the PINODE 

model, followed by extrapolation for subsequent 3 s. The model consists of one hidden layer 

with 10 nodes. The tanh activation function was employed. We set the learning rate of 0.05 and 
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we trained the model through 3000 epochs. Unfortunately, implementing the PINN method in 

Python exceeds the memory resource available in Google Colab. Consequently, we compared 

the performance of PINODE method with the ground truth data, which was generated using the 

ODE backward differentiation formula solver in the Sundials package with Julia code. The 

length of the training set was 1000 data points. 

5.2.5.2 3D uterus soft tissue model  

Our proposed approach was applied to the biomechanical analysis of the soft tissue of uterus, 

which is developed by using the Neo-Hookean material with Young’s modulus of 0.06 MPa 

and a Poisson’s ratio of 0.45. In this simulation, we examined the displacement of the uterus 

under the gravity loading. The structural representation consists of 1389 nodes with 1347 nodes 

marked as active and 42 nodes fixed at the left-hand side. We had a mesh of 4077 tetrahedral 

elements. The simulation was characterized by 4041 degrees of freedom. Figure 56 depicts the 

initial state of the uterus. 

 
Figure 56. Initial state of the uterus soft tissue model. 

In the simulation, the time of 2 s interval was divided into two phases. The first 1 s is allocated 

for training, and the subsequent 1 s involves extrapolation. The time step size is 0.002 

throughout the simulation. The training dataset included 500 points. We applied the ODE 

backward differentiation formula solver to generate the data for reference. The configuration of 

the PINODE model consists of one hidden layer with 10 nodes. The training process involves 

4000 iterations with a learning rate of 0.05 for the initial 2000 iterations and a reduced learning 

rate of 0.01 for the remaining epochs. The activation function employed was the tanh function. 

The implementation of PINN faced memory limitations on Google Colab when handling 

simulations of hundreds of degrees of freedom in the dynamic system due to exceeding the 

available memory resources. 

Note that, for the implementation of PINN in Python, we employed the DeepXDE library, 

which is an efficient tool for the PINN algorithm to solve forward and inverse problems in 

partial differential equations. For PINODE, we turned to Julia, a high-performance 

programming language, utilizing libraries such as DiffEqFlux, DifferentialEquqtions from 

SciML. Finally, we applied the optimizer of adaptive moment estimation (Adam) in all 

experiments. 
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5.2.5.3 Performance metrics 

We implemented three different performance metrics (root mean square error, 𝐿2 norm relative 

error, and Pearson correlation coefficient (PCC)) to evaluate the outcomes of the performed 

numerical examples and the uterus model. The root mean square error is a commonly used 

metric to measure the average magnitude of the errors between predicted values and ground 

truths. The RMSE is calculated as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑥𝑖 − �̂�𝑖)2

𝑛

𝑖=1

 (64) 

where n is the number of observations or data points, 𝑥𝑖 is the i-th ground truth data point and 

�̂�𝑖 is the i-th predicted data point. 

The 𝐿2 norm relative error is a measure of the difference between two vectors in terms of their 

Euclidean norms. The following equation defines the 𝐿2 norm relative error: 

𝐿2 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
‖𝑋 − �̂�‖

2

‖𝑋‖2
 (65) 

where 𝑋 denotes the ground truth, �̂� denotes the predicted vector and  ‖  ∙  ‖2 is given as: 

‖𝑋‖2 = √∑ 𝑥𝑖
2

𝑛

𝑖=1
 (66) 

In addition, the most prevalent method for quantifying a linear correlation is the Pearson 

correlation coefficient, which is a numerical value ranging from -1 to 1. This coefficient gauges 

both the magnitude and direction of the association between two variables.  The formula for 

calculating the Pearson correlation coefficient is defined as follows: 

𝑟 =  
∑ (𝑥𝑖 − 𝑚𝑋)(𝑥�̂� − 𝑚�̂�)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑚𝑋)2𝑛
𝑖=1 √∑ (𝑥�̂� − 𝑚�̂�)2𝑛

𝑖=1

 (67) 

where 𝑚𝑋 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  is the mean of 𝑋 and 𝑚�̂� is the mean of �̂�. 

5.3 Computational results 

5.3.1 2D mass-spring systems 

For the predictions from the training set, the PINN model returned the RMSE of 1.034 ×10-3 m 

and 𝐿2 norm relative error of 0.122%, whereas the PINODE obtained higher errors with 8.549 

×10-3 m for the RMSE and 0.982% for 𝐿2 norm relative error. However, the capacity of 

extrapolation of PINODE performed much better than PINN. The RMSE and 𝐿2 norm relative 

errors of the predicted results were 0.117 m and 13.718% using PINODE, and 1.491 m and 

about 174% using PINN, respectively. The PCC of -0.139 demonstrated that the prediction by 

PINN model was a weak negative correlation. All the errors in the predictions are given in Table 

6. In Figure 57 and Figure 58, we can see that extrapolated curves used PINODE fit well to the 

ground truth, but PINN extrapolated the simple ones. Figure 59 shows that the RMSE when 
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predicting positions of the mass in the time from 5 s to 10 s using PINN were significantly 

higher than using the PINODE. 

Table 6. The performances of the predicted trajectories of the 2D mass-spring dynamic system from 

the training during 5s and the extrapolation from 5s to 10s using the PINODE and PINN models. The 

terms of performance metrics are the root mean square error (RMSE), L^2 norm relative error and 

Pearson correlation coefficient (PCC). 

 

 PINODE  PINN 

 RMSE (m) 𝐿2 (%) PCC  RMSE (m) 𝐿2 (%) PCC 

Training 8.549 ×10-3 0.982 0.999  1.034 ×10-3 0.122 0.999 

Extrapolation 0.117 13.718 0.990  1.491 174.099 -0.139 

 

 
Figure 57. Comparison of the predicted positions of the mass on the x-axis from the training 

and extrapolation using the PINN and PINODE methods with the ground truth (GT). 

 
Figure 58. Comparison of the predicted positions of the mass on the y-axis from the training 

and extrapolation using the PINN and PINODE methods with the ground truth (GT). 
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Figure 59. Plotting the root mean square errors (RMSE) over time steps when predicting 

positions of the mass using the PINN and PINODE methods. 

5.3.2 3D mass-spring system 

The predicted trajectories from the training set using PINN method achieved the RMSE of 0.012 

m, 𝐿2 error of 0.978% and the PCC of 0.999. These metrics suggest a high level of accuracy 

and correlation between the predictions and the actual values. On the other hand, the predictions 

from the training dataset using PINODE model returned slightly higher errors, with the RMSE 

of 0.069 m, 𝐿2 error of 5.810% and the PCC of 0.997. When extrapolating the predictions from 

10 s to 20 s, the PINODE yielded the RMSE of 0.168 m, 𝐿2 norm relative error about 12%, the 

PCC of 0.951. Meanwhile, the PINN model showed a larger increase in errors, with the RMSE 

of 0.975 m, 𝐿2 error of 57% and a lower PCC of 0.392. These metrics indicate that the PINN 

model has struggled more with accurate predictions during extrapolation compared to the 

PINODE model. Table 7 shows these performance metrics. Figure 60, Figure 61 and Figure 62 

depict the plotting the predicted trajectories of three nodes according to the x-axis, y-axis and 

z-axis from the training and extrapolation using PINN and PINODE with the ground truth. In  

Figure 63, we can observe that the use of PINN method returned the RMSE significantly higher 

in the time [10, 20] s compared to the PINODE. The PINN has limited potential in extrapolation 

for prediction when faced with new initial conditions compared to PINODE. 

Table 7. Comparison of the performance metrics of the predicted motions of the 3D mass-spring 

system from the training during 10s and the extrapolation from 10s to 20s using the PINODE and 

PINN models. 

 

 PINODE  PINN 

 RMSE (m) 𝐿2 (%) PCC  RMSE (m) 𝐿2 (%) PCC 

Training 0.069 5.810 0.997  0.012 0.978 0.999 

Extrapolation 0.168 12.099 0.951  0.975 57.102 0.392 
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a)                                      b)          c) 

Figure 60. Plotting the predicted positions of the node 1 on the a) x-axis, b) y-axis, c) z-axis from the training and extrapolation using the PINN 

and PINODE methods with the ground truth. 

 

a) b)          c) 

Figure 61. Plotting the predicted positions of the node 2 on the a) x-axis, b) y-axis, c) z-axis from the training and extrapolation using the PINN 

and PINODE methods with the ground truth. 
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a)   b)        c) 

Figure 62. Plotting the predicted positions of the node 3 on the a) x-axis, b) y-axis, c) z-axis from the training and extrapolation using the PINN 

and PINODE methods with the ground truth. 

 
Figure 63. Comparing the root mean square errors (RMSE) over time steps when predicting positions of the three masses using the PINN and 

PINODE methods. 
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5.3.3 3D cantilever beam 

The predicted displacement of the cantilever beam using the PINODE model performed 

remarkable accuracy in both training and extrapolation phases. During training, the RMSE was 

2.625 ×10-5 m that indicated a high precision in capturing the beam deformation. The 𝐿2 norm 

relative error was 0.077%. Even during extrapolation, the model maintained its precision with 

the RMSE of 1.057×10-5 m and 𝐿2 error of 0.031%.  Furthermore, the high PCC of 0.999 in 

both training and extrapolation underscored the strong linear relationship between the predicted 

and actual data. Table 8 depicts these metrics. Figure 64 shows that the predicted deformations 

of a node aligned well with the ground truth along the z-axis during 5-second training and 

extrapolation processes. The displacement of an edge beam is illustrated in Figure 65. The 

deformation is visualized in the color scale and 3D view in Figure 66 and Figure 67. 

Table 8. Root mean square error (RMSE), L^2 norm relative error and Pearson correlation coefficient 

(PCC) from the predictions on the training set and the extrapolation using the PINODE model. 

 PINODE 

 RMSE (m) 𝐿2 (%) PCC 

Training 2.625 ×10-5 0.077 0.999 

Extrapolation 1.057×10-5 0.031 0.999 

 

 

Figure 64. Plotting the displacement of a node in the beam over 5s following z-axis using the 

PINODE method. 
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Figure 65. Comparing the displacement field predicted by the PINODE model with the 

ground truth (GT). 

 

Figure 66. Deformation of beam under the gravity predicted by the PINODE method. 

 

Figure 67. 3D view of the beam deformation under the gravity of the ground truth (GT) and 

predicted by the PINODE method. 
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5.3.4 3D uterus soft tissue model  

The training phase of the PINODE model yielded promising results with the RMSE of 0.509 

×10-3 m and 𝐿2 norm relative error of 0.349%. During the extrapolation phase, there were 

increases in the RMSE of 6.404×10-3 m and 𝐿2 error of 6.357%. These metrics indicate an 

accurate representation of the proposed model, presented in Table 9. Figure 68 describes the 

predicted displacements on the training set at 0.5 s and 1 s. The extrapolation of the uterus 

displacements at 1.5 s and 2 s is shown in Figure 69 and Figure 70 displays a comparison 

between the visualization of deformation at the time 2 s using the PINODE model and 

corresponding ground truth. An interesting observation in this example is that the PINODE 

extrapolated displacements within just in 1 s, while conventional numerical method required 1 

hour. 

Table 9. Root mean square error (RMSE), L^2 norm relative error and Pearson correlation coefficient 

(PCC) from the predicted uterus soft tissue deformation on the training set and the extrapolation using 

the PINODE model. 

 PINODE 

 RMSE (m) 𝐿2 (%) PCC 

Training 0.509 ×10-3 0.349 0.999 

Extrapolation 6.404×10-3 6.357 0.996 

 

 

Figure 68. Comparison of the predicted displacements on the training set at 0.5 s and 1 s 

using the PINODE model with the ground truth. 



102 
 

 

Figure 69. The PINODE model extrapolates the uterus displacements at 1.5s and 2s. 

 

Figure 70. Visualization of the uterus soft tissue deformation at the time 2s using the PINODE 

model compared to the ground truth. 

5.4 Discussion 

Soft tissue deformation has been commonly described using traditional numerical methods like 

finite element method [154] or mass-spring model [159]. The use of a mesh configuration 

makes the solution convergence and numerical instabilities challenging for complex material 

definition and loading conditions. Besides, deep learning has been used to overcome these 

challenges for real-time soft tissue deformation [131]. Traditional deep learning approaches 

based essentially on a relevant and representative database to obtain an accurate prediction. 

Recently, physics-informed deep learning approach has been intensively investigated to 

incorporate physical knowledge to enhance the physical predicting capacities of the deep 

learning models. We presented in this study the use of vanilla physics-informed neural network 

(PINN) and physics-informed neural ODE (PINODE) for simulating different dynamic systems 

including 2D/3D mass-spring systems and the deformation of cantilever beams and soft tissue 

deformation. Obtained results showed encouraging accuracy levels from the training and 

extrapolation phases. In particular, the PINODE models showed strong potential in 
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extrapolating the motions of systems with new initial conditions compared to PINN models. 

Utilizing PINODE for extrapolation, the beam achieved astonishing root mean squared error 

(RMSE) of 1.057×10-5 m and 𝐿2 relative error of 0.031% for the time from 2s to 5s. The 

extrapolating of soft tissue uterus deformation in [1, 2] s obtained an RMSE of 6.404×10-3 m 

and 𝐿2 error about 6%. In general, the Pearson correlation coefficient (PCC) for most cases 

approached an impressive value of 0.99. Regarding the uterus soft tissue deformation, a 

noteworthy observation is that PINODE achieved extrapolated displacements in just 1 second, 

whereas the traditional numerical method took 1 hour for the same task. 

In addition, Bazmara et al. [230] introduced a framework for PINN applied to the nonlinear 

bending analysis of 3D beams. The study leveraged the inherent physical principles governing 

a 3D functionally graded beam on a Winkler-Pasternak foundation and advantages in machine 

learning. The model included 5 hidden layers, 100 training points, a learning rate of 0.0001 and 

Adam optimizer. The training was processed through 60000 epochs. Notably, the PINN 

framework achieved predictions of bending up to 37 times faster than finite difference method. 

Wu et al. [231] enhanced the PINN through a residual-based adaptive distribution to solve 1D 

wave equation over a time span of 1s. The model was trained with 100000 iterations and 

incorporated 2000 residual points. The results showcased a remarkable achievement as the 𝐿2 

relative error was about 0.1%. Lai et al. [232] explored a novel approach to structural 

identification using PINODE incorporating domain knowledge in structural dynamics. The 

study investigated the free vibration scenario of 4 degrees of freedom dynamical system with 

masses and springs. The network was trained in 0 s to 6 s, followed by extrapolation up to 12 

s. The number of iterations was 3000. The use of PINODE demonstrated superior performance 

in terms of faster convergence and higher precision compared to the direct implementation of 

NeuralODE. Our proposed PINN frameworks have demonstrated notable performance 

according to the literature when solving dynamic problems, requiring only the strong form of 

physical systems and small datasets. Particularly, our study has effectively addressed complex 

problems of 3D real-time soft tissue deformation with significant degrees of freedom. These 

cases included 357 degrees of freedom for the cantilever beam and 4041 degrees of freedom 

for the uterus systems. Another notable strength of our models lies in their rapid and accurate 

extrapolation capabilities, adeptly adapting to new initial conditions, thus offering promising 

avenues for future research and application in various domains.  

The approach of PINN smoothly combines data with mathematical physics models, even in 

situations where understanding is partial and dimensions are high. Regression methods based 

on neural networks provide efficient and mesh-free implementations. The structure of PINN 

closely resembles that of conventional neural networks, with input, hidden, and output layers. 

Nonetheless, their unique characteristic is evident in the loss function, which incorporates terms 

aimed at enforcing the network’s adherence to the governing physical laws and equations. 

PINNs are less susceptible to overfitting due to their incorporation of physical principles. They 

are applied in diverse issues, enhancing data mining processes and offering valuable insights 

into intricate scientific challenges. PINODE methods surpass the capabilities of the PINNs in 

scenarios where explicit formulations of ODEs are absent and there is limited measurement 

data. Although the cumulative root mean squared error and 𝐿2 relative error for PINODE 

experiences a slight increase during extrapolation, it notably outperforms PINN models. 

The design of NeuralODE is characterized by a continuous depth that exhibits an ability to 

maintain consistent memory costs throughout computational processes. Unlike traditional 

neural networks, NeuralODE adjusts its assessment approach for each input and can explicitly 
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exchange numerical accuracy for increased speed. The use of ODE solvers for optimizing 

backpropagation stands out due to its ability to hold on to a constant memory footprint, a stark 

departure from other techniques where memory consumption typically scales linearly with 

model complexity. By treating hidden layers as a continuous sequence rather than discrete ones, 

NeuralODE offers a significant advantage in terms of speed and memory efficiency. 

Moreover, the use of the Julia programming language yielded advantages in terms of speed and 

computational cost. Julia was specifically outlined for scientific computing, offering a 

comprehensive array of packages that facilitate diverse applications in science, mathematics 

and machine learning. The primary attraction of Julia lies in its remarkable speed. Julia is 

known for its swiftness, employing just-in-time compilation, reducing the likelihood of code 

interpretation multiple times and minimizing overhead. Julia surpasses existing data 

programming languages like Python. A drawback of Python revolves around its speed. As a 

dynamically typed interpreted language, Python tends to be slower in comparison to compiled 

languages like C and Java. The flexibility of Python with respect to data types contributes to a 

higher consumption of memory. 

Physics-informed neural networks exhibit significant promise for modeling dynamic systems 

governed by ordinary differential equations. Nevertheless, it is essential to acknowledge that 

they are accompanied by various limitations that warrant careful consideration. Vanilla PINN 

models employ deep networks composed of fully connected layers along with a specific variant 

of gradient descent. The hyperparameters are manually adjusted and the learning phases depend 

on the sample size and issues. Consequently, the training of these models may encounter issues 

like gradient vanishing, particularly posing challenges in handling 3-dimensional problems and 

resulting in potentially slow convergence. Keep in mind that PINNs encompass different terms 

in the loss function. The relative weights assigned to these terms significantly impact the 

predictions. Currently, there are no established guidelines for the optimal selection of these 

parameters. Another limitation of the vanilla PINN models relates to the extrapolation ability. 

To predict values from new initial conditions, PINNs need to train a new neural network. This 

requirement arises from the inherent limitation that the design of vanilla PINNs cannot grasp 

the fundamental works of a specific phenomenon, thereby restricting their ability to generalize. 

Though physics-informed neural ODE models have shown promise in simulating intricate 

dynamical systems, these novel approaches encounter some difficulties. The training process 

of PINODE is challenging due to its continuous-depth structure. Therefore, PINODE models 

also encounter the limitations related to convergence and are dependent on both sample size 

and problem characteristics. Compared to PINN, PINODEs often have more complicated 

designs and require more work to implement. Despite their setup difficulty, PINODEs show 

promising potential for accelerating real-time computation of dynamic systems and 

demonstrate better generalizability compared to vanilla PINN.  

Finally, the focus of future studies would be on investigating dependable learning methods to 

ensure secure predictions in extrapolation stage. Considering the application of deep operator 

networks (DeepONet) [233] may a viable option. The foundation of DeepONet lies in the 

universal approximation theorem for operators, allowing the precise and efficient learning of 

operators while minimizing generalization errors. Additionally, DeepONet has the capability to 

be trained using sparse labeled datasets and has the loss function established differential 

equations. Wang et al. [234] applied PINN based DeepONet in solving issues like Burger’s 

equation, diffusion reaction. The outcomes showed notable gains in data efficiency, predictive 
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precision and generalization capability. From an applicative point of view, the current uterus 

soft tissue model is still limited in its representation of the various forces involved in the labor 

and delivery process, particularly those exerted by maternal contractions, pushing, and obstetric 

interventions, such as pulling to aid in the delivery. Achieving a comprehensive real-time 

interactive childbirth training tool necessitates a richer database encompassing real scenarios 

and a wide array of forces, external loads and soft tissue contact behaviors. The present study 

pays the way to this objective. Moreover, it should consider the incorporation of maternal 

hormonal and mechanical signaling, which leads to the remodeling of soft tissues in the vagina 

and perineum during pregnancy, resulting in increased vascularity and reduced stiffness of 

connective tissue. Integrating these factors will enhance the fidelity and effectiveness of 

childbirth simulation models. 
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Chapter 6 

General Discussion  

 

6.1 Thesis overview  

Minimizing maternal and fetal mortality cases is crucial for sustainable healthcare systems [1], 

[2], [9], [10], [11]. Central to this endeavor is the prevention of stillbirths and ensuring that 

mothers receive steadfast assistance from qualified healthcare professionals throughout their 

pregnancy and delivery. This commitment not only enhances healthcare outcomes but also 

fosters a supportive environment where maternal and fetal health is prioritized and safeguarded. 

The development of a skilled medical workforce with the knowledge and skills to reduce the 

rate of stillbirths and maternal fatalities is essential to achieving this aim. Over the years, 

numerous methods have been developed to address these challenges. 

Previously, one method utilized for addressing childbirth challenges involved analyzing 

observational data collected over time. However, relying solely on radiological pelvimetry to 

predict delivery methods has proven limited [14], [15]. Studies have underscored its constraints, 

particularly in anticipating whether an infant can navigate the pelvis without encountering 

cephalopelvic disproportion. While radiological pelvimetry indicates pelvic health, it does not 

guarantee successful traversal for the fetus. Another method was the use of physical birth 

simulators for healthcare professionals to gain practical experience in delivery training [16], 

[17]. Nevertheless, their ability to offer a thorough understanding of birth-related injuries was 

limited. These simulators lacked the ability to depict patient-specific data, as they were 

designed for average-sized women and fetuses. Furthermore, they made no effort to verify the 

mechanical properties of the pelvic soft tissue. Childbirth computational models based on 

numerical methods have been investigated to understand the impact of the process on the 

mother and fetus [18], [19], [20]. These models have provided insights into fetal and maternal 

damage during labor, addressing the shortcomings of physical birthing models. Advancements 

in computer technology and numerical modeling have enabled the development of more 

realistic and advanced childbirth models. However, there are several restrictions on the present 

research on birth simulations: 

1) Current studies on fetal models have generally neglected to incorporate full-body 

representations with joint articulations, focusing instead on the head and neck.  

 

2) The utilization of mesh-based methods to solve the motion of soft tissue remains 

challenging in time consumption for computation and processing.  

3) There is still a deficiency in using deep learning methods to predict real-time pelvic soft 

tissue deformation. 
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Therefore, this thesis aims to develop models for fetal representation and real-time soft tissue 

deformation. These models will contribute to creating an advanced decision support tool for 

childbirth training and simulating complications. 

6.2 Main contributions 

The thesis presented three main contributions: 

 The first contribution was the automated and fast segmentation of newborn skeletons 

into distinct parts employing a model based on generative adversarial networks and 3D point 

cloud data.  

 

 The second contribution was the accurate and rapid prediction of soft tissue 

deformations applying recurrent neural networks (i.e. long short-term memory neural networks) 

integrated with a learning strategy based on principal component analysis.  

 

 The final contribution was developing a cutting-edge model to simulate real-time soft 

tissue deformations, based on the physics-informed neural networks and neural ordinary 

differential equations. 

 

The deep learning models proposed in the thesis have undergone rigorous numerical validation 

demonstrating a commendable level of precision when compared to conventional methods. 

Through the utilization of advanced techniques, the thesis successfully enhanced accuracy, 

minimized computational costs, improved simulation speed, and toward a next-generation tool 

for childbirth training simulation. These advancements collectively contribute to a more 

comprehensive understanding of childbirth dynamics. The results not only validate the efficacy 

of the proposed deep neural models but also highlight their potential to revolutionize the field 

by providing a more efficient and precise approach to studying and simulating childbirth 

processes. 

6.2.1 Skeleton part segmentation of newborns from 3D point clouds 

Childbirth simulations have been studied in order to predict and prevent difficult delivery 

issues. The reconstruction of the maternal pelvic model, which consists of a comprehensive 

fetal model with articulated joints, is important for therapeutic purposes. However, it is difficult 

and time-consuming to segment the various bones using classical image processing approaches. 

The aim of the study in Chapter 3 is to develop and evaluate a generative adversarial network 

to automatically and fast segment the bone elements of the complete neonatal skeleton.  

A database of 124 newborn CT images was collected and segmented. Each 3D reconstructed 

skeleton was divided into 23 distinct bony segments. We proposed the generative adversarial 

network based on PointNet to perform the automated segmentation directly on the 3D point 

clouds. Our method was compared to the pointwise convolutional neural network to 

demonstrate its accuracy and efficiency. The GAN model produced highly accurate results with 

an IoU of 93.68% ± 7.37%, a Dice of 96.56% ± 4.41%, and an accuracy score of 96.72% ± 

3.56%, compared to 72.30% ± 5.10% for IoU, 83.82% ± 3.44% for Dice and 84.81% ± 3.25% 

for accuracy respectively by the pointwise convolutional neural network. With the best GAN 

algorithm, we obtained the best prediction with  99.63%, 99.81%, and 99.98% for the means of 

IoU, Dice and accuracy score, respectively. Meanwhile, the worst case returned the mean IoU 
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of 65.81%, the mean Dice of 79.37%, and the mean accuracy score of 80.03%. In addition, our 

model behaved better on skeletons in anatomical postures than ones in fetal positions.  

The study opens new avenues for fast and accurate 3D part segmentation of the newborn 3D 

skeleton. In the future, further study should focus on segmenting fused bones like vertebrae and 

integrating the whole articulated skeleton into the maternal pelvic model to simulate complex 

vaginal delivery and perform associated preventive actions. 

6.2.2 A novel deep learning-driven for predicting pelvic soft tissue 

deformations 

Soft-tissue dynamics plays an essential role in the mechanical functions of the human body. 

Numerical approaches using finite element modeling and mass-spring framework have been 

currently used to estimate the biological soft tissue dynamics. However, these approaches still 

have important computational costs due to the use of a mesh configuration in the formulation 

of the dynamic equilibrium equation and unstable convergence issue.   

We present in Chapter 4 a novel approach based on the deep learning framework to predict the 

deformation of soft tissues. In particular, the Long Short-term Memory (LSTM) neural network 

and deep neural network (DNN) were used to deal with high-frequency oscillation signals. 

Different learning strategies (with and without data dimension reduction) were also applied. A 

simulation-based database was generated using our HyperMSM model for training and testing 

purposes. The application of the proposed approach on the childbirth simulation was addressed. 

Using the root mean square error, the LSTM- and DNN-derived deformation deviation range 

from 0.139 mm to 1.062 mm (0.266% to 2.028%) for both training and testing processes. The 

Pearson correlation coefficient of 0.994 – 0.999 demonstrates the strong similarity between 

predicted outputs and ground truth data. The best predicted case from the test database produced 

mean errors of 0.103 mm ± 0.116 mm using LSTM, and 0.107 mm ± 0.083 mm using DNN. 

For the worst prediction, using LSTM resulted in a mean error of 0.845 mm ± 1.214 mm, while 

the DNN-based deformation forecast has a mean error of 0.775 mm ± 1.041 mm. 

This work showed the capacity of the deep learning neural networks to predict complex 

physiological signals of the human body functions. As a perspective, this approach will be 

coupled with the Hololens device toward a novel interactive childbirth training tool with real-

time feedback on the soft tissue deformations. 

6.2.3 Novel coupled state-of-the-art methods to simulate the real-time 

deformation of soft tissue  

Traditional numerical methods of the soft tissue deformations, based commonly on a mesh 

configuration, incur large processing costs and difficulties associated with unstable 

convergence. Physics-informed neural networks (PINN) have recently been recognized as an 

effective approach for solving differential equation problems. In Chapter 5, we developed and 

evaluated a suitable predictive model of the soft tissue deformation based on PINN and neural 

ordinary differential equations (NeuralODE) coupled with the mass-spring system (MSS) 

modeling framework. 

Theoretical basis of the proposed approach was established using the PINN, NeuralODE and 

MSS formulations. Then, we evaluated our novel approach on the 2D and 3D mass-spring 
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systems as well as a 3D cantilever beam. Finally, a 3D uterus model deformation under gravity 

loading was simulated and evaluated.  

The best extrapolation phase was in the experiment of the cantilever beam that achieved a 

stunning root mean squared error (RMSE) of 1.057×10-5 m and 𝐿2 relative error of 0.031% for 

the time from 2s to 5s. The extrapolating aspect of soft tissue uterus deformation from 1s to 2s 

returned an RMSE of 6.404×10-3 m and 𝐿2 error about 6%. Overall, the Pearson correlation 

coefficient (PCC) for most cases was 0.99. The physics-informed neural ordinary differential 

equations models showed strong potential in extrapolation compared to vanilla PINN. 

We designed and assessed an outstanding model to simulate deformations of soft tissue using 

the physics-informed neural networks and neural ordinary differential equations. This 

achievement opens new avenues in the real-time soft tissue deformation during the childbirth 

simulation toward a next-generation decision support tool for childbirth training and 

complication simulation. 

6.3 Limitations 

While our methods have yielded promising results, there are some things to be aware of. We 

have examined every aspect of our methodology, identifying several limitations discussed in 

each part. 

We proposed the GAN-based PointNet model for segmenting skeletons of newborns from 3D 

point clouds. The drawback of PointNet was its inability to collect local meaning between 

points. PointNet has separately learned features of each point. Consequently, numerous 

methods have to depend on expensive neighbor searching strategies, limiting the success of the 

current method. While GAN-based models have opened up new possibilities for 3D point cloud 

segmentation, there was a certain difficulty with the cost and sophisticated training setup. 

Another limitation was that the prediction relied on the fetal postures during scanning. A greater 

degree of precision was attained when the individuals were positioned physiologically. There 

was poor segmentation when infants’ arms were positioned on their chests. Additionally, it was 

challenging to differentiate between fused organs like vertebrae. Moreover, the limited amount 

of data was a challenge because of the difficulties in gathering fetal data. Data collection is 

complicated since the unborn fetuses are usually placed within the mother’s uterus.  

The pelvic soft tissue models developed in this thesis have been constrained by their inability 

to fully capture the diverse forces at play during the labor and delivery process. Our experiments 

were predominantly reliant on gravity or external forces, thus limiting the scope of our findings. 

We used straightforward node-to-triangle contact models to control the interface between the 

fetal body and the mother’s uterus. The absence of complicated contact models was a drawback 

in our investigation. Another limitation regarding the scope of delivery scenarios explored. We 

only focused on the normal birthing process, where delivery occurs naturally through the vagina 

without external intervention. 

An additional constraint concerned the application of recurrent neural networks to predict soft 

tissue deformation in real-time. In our study, the accuracy level provided by long short-term 

memory networks was comparable to that of traditional deep neural networks. A potential 

explanation may lie within our problem formulation. Predicting the next time step solely based 

on the preceding seems not to align well with the philosophy of recurrent neural networks. 
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Although there was great potential for simulating dynamic systems driven by ordinary 

differential equations with physics-informed neural networks, there were several drawbacks to 

consider. Usually, these models use fully connected deep neural networks that were trained 

using a particular type of gradient descent. Fine-tuning hyperparameters may be difficult, and 

sample size and computing difficulties have a big impact on how successful learning phases 

are. Thus, gradient vanishing was one of the difficulties that PINN models may face during 

training, especially when dealing with 3D issues. In addition, the loss function of PINN 

included some terms and the relative weights given to these items impacted predictions. The 

lack of defined recommendations for optimizing these factors, despite their potential, 

highlighted the necessity for more studies. The extrapolation capacity of the conventional PINN 

models was another drawback. PINNs require building a new neural network in order to predict 

values from novel beginning conditions. This stipulation stems from the intrinsic constraint that 

the architecture of vanilla PINNs is unable to comprehend the essential components of a 

particular phenomena, which limits their generalizations. In physics-informed neural ordinary 

differential equations models, the limitation concerned the convergence. This problem was due 

to the continuous-depth structure, which made it difficult to interpret the data’s subtleties and 

provide trustworthy predictions. Thus, the convergence of PINODE models mostly relied on 

the training size and the characteristics of the issue.  
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Chapter 7 

Conclusions and Perspectives 

 

7.1 Conclusions 

This thesis represented a groundbreaking advancement in the realm of realistic fetal 

representation and real-time soft tissue deformation modeling. By integrating cutting-edge 

techniques and innovative methodologies, it opens new avenues in the field of healthcare, 

promising to revolutionize childbirth training and complication simulation. With a focus on 

accuracy and precision, this research laid the foundation for the development of a next-

generation decision support tool. These tools not only enhance the effectiveness of childbirth 

training but also facilitate the simulation of various complications, providing invaluable 

insights for medical professionals. By bridging the gap between theory and practice, this thesis 

marked a significant step forward in improving maternal and neonatal healthcare outcomes. 

Through this thesis, we proposed a deep learning approach for segmenting the newborn skeleton 

into 23 distinct bony segments directly from the 3D point clouds. The results demonstrated that 

our generative adversarial network based on the PointNet model was fast and highly precise for 

the segmentation of the different bony parts. The proposed GAN model used the advantage of 

T-net in PointNet to build the generator and 1D convolutional neural network to build the 

discriminator. The segmentation outcomes were achieved in just 5 seconds compared to 30 to 

50 minutes using software like 3DSlicer. Thus, the research has the potential to pave the way 

for the creation of reliable childbirth simulations with detailed articulated skeletons.  

Following up, a novel deep learning-driven approach for predicting the pelvis soft tissue 

deformation using recurrent neural and classical deep neural networks was developed and 

evaluated. Obtained outcomes showed a strong correlation between predicted outcomes and 

ground truth values. The combination method of long short-term memory neural networks, deep 

neural networks, and principal component analysis-based learning also was proposed. The use 

of the principal component analysis method reduced significantly the dimension of data that 

assisted networks save computational costs, but kept the accuracy. The proposed approach can 

be a promising solution, which is fast, stable, accurate and without mesh configuration, to 

predict and track the displacement of pelvic soft tissues.  

Furthermore, we developed physics-informed neural networks (PINN) and physics-informed 

neural ordinary differential equations (PINODE) to predict deformations of biological soft-

tissue toward a real-time interactive simulation solution. We evaluated these methods on 

numerical examples of 2D and 3D mass-spring systems, 3D cantilever beams, and 3D soft tissue 

uterus. The predicted results from the training dataset returned very good accuracy in terms of 

root mean square error, 𝐿2 norm relative error and Pearson correlation coefficient when using 

both two methods. PINODEs demonstrated superior performance in extrapolations when 

compared to PINNs, particularly excelling in extrapolating the behavior of a cantilever beam 
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and the soft tissue of the uterus. Overall, the proposed models demonstrated exceptionally fast 

prediction speeds, typically within a second, in comparison to traditional numerical methods. 

Although our proposed methods have shown promising results, it is important to acknowledge 

certain limitations. Segmenting newborn skeleton parts proved challenging due to fused bones, 

while a limited dataset further complicated the process. Existing pelvic soft tissue models 

lacked a comprehensive representation of the diverse forces inherent in labor and delivery. The 

childbirth simulation models were simplistic, focusing solely on normal circumstances and 

failing to incorporate the complexities found in real-world cases. Furthermore, to govern the 

interaction between the fetal body and the maternal uterus, we utilized simplistic node-to-

triangle contact models. Therefore, future works will aim to address these drawbacks to develop 

a more comprehensive and accurate model that can effectively simulate the dynamics of 

childbirth and offer insights into the physiological processes involved.   

7.2 Perspectives 

Efforts in the future will focus on refining outcomes and overcoming present constraints.  

The accuracy of skeleton part segmentation in newborns hinges on the depiction of fetal 

postures. One notable challenge lies in effectively distinguishing between fused organs. Future 

studies should focus on segmenting fused bones like vertebrae and merging the whole 

articulated skeleton into the maternal pelvic model to perform complex delivery simulations 

and associated preventive actions. Additionally, research efforts should be directed toward 

collecting more data to refine the existing and enhance segmentation accuracy. Moreover, there 

should be a focus on investigating solutions that involve meticulous attention to spine 

articulation, particularly concerning the cervical vertebrae.  

From a methodological point of view, we aim to investigate points that divide geometry into 

parts, and use them as a learning feature to improve the accuracy of the model. Moreover, edges 

and concave points could be combined to precisely delineate the borders between vertebrae to 

increase the segmentation accuracy for overlapping vertebrae. Furthermore, further study could 

be also investigated by using different variants of the GAN models such as deep energy GAN 

model for point cloud processing. 

The current soft tissue model of the uterus has limitations in accurately capturing the 

complexities of childbirth dynamics. This thesis primarily concentrates on normal fetal delivery 

scenarios, showcasing its narrow scope in representing the diverse forces involved in childbirth. 

To address these shortcomings, future research endeavors plan to incorporate additional factors 

such as maternal contractions, pushing, and obstetric interventions like pulling to facilitate 

birthing. Additional research will involve integrating more intricate delivery scenarios, such as 

forceps-assisted deliveries or abnormal fetal positions during birth. This effort is aimed at 

improving the effectiveness of the tool in equipping healthcare professionals for a wider array 

of childbirth circumstances. Enriching the database to include a diverse range of real-world 

scenarios will ensure that the training tool faithfully mirrors the complexities encountered in 

clinical practice. Furthermore, the current models utilize a simplistic node-to-triangle contact 

model to govern the interaction between the fetal body and the soft tissue of the pelvis. To 

achieve a more authentic interaction, it is imperative to implement a more sophisticated contact 

model in future developments. This enhancement will enable a stronger representation of the 

intricate dynamics between the fetal body and pelvic soft tissue. 
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Additionally, future studies should explore the integration of maternal hormonal and 

mechanical signals into simulation models of birthing. Throughout pregnancy, these variables 

play pivotal roles crucial in the reshaping of the pelvic soft tissues such as the uterus, and 

vagina. Specifically, they contribute to increased vascularity and decreased stiffness of 

connective tissue, shaping the physiological landscape of childbirth. By incorporating these 

intricate mechanisms into simulation frameworks, a more comprehensive understanding of 

maternal and fetal interactions during labor and delivery can be achieved. This will improve the 

realism and efficacy of childbirth training resources. 

Achieving high-fidelity pelvic soft tissue deformations in real-time necessitates accurate 

predictions during the extrapolation phase. Therefore, the focal point of forthcoming research 

will center on exploring dependable learning methodologies to guarantee secure prediction at 

this stage. Our strategy will study the utilization of neural operators-based physics-informed 

neural networks [223], advancing the capability for real-time childbirth simulation. 

In childbirth simulation, essential components include a maternal pelvic model and a detailed 

fetal model with articulated joints. Future research aims to integrate these crucial models into 

the Hololens device [23], envisioning an enhancement of childbirth training skills through the 

creation of physiologically plausible delivery scenarios. By merging these models within the 

immersive environment of the Hololens, trainees will gain valuable hands-on experience and 

insights into the complexities of childbirth, fostering a more comprehensive understanding of 

maternal and fetal dynamics. 
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Brief summary in French 

Titre : Modélisation avancée du système d’accouchement à l’aide de différentes méthodes 

d’apprentissage profond : de la segmentation du squelette fœtal à la déformation des tissus mous 

en temps réel. 

1. Introduction 

L’Organisation mondiale de la santé (OMS) et ses partenaires [1] ont estimé que le taux mondial 

de mortalité maternelle en 2020 était de 223 pour 100000 naissances vivantes. Environ 287000 

femmes sont décédées pendant et après la grossesse et l’accouchement. Cela correspond à près 

de 800 décès par jour, soit environ un toutes les deux minutes. Ce chiffre est plus d’un tiers 

inférieur à celui de l’année 2000, où l’on estimait à 446000 le nombre de décès maternels. 

Environ 2 millions de mortinaissances (c’est-à-dire des bébés nés sans signes de vie à partir de 

28 semaines de grossesse ou plus tard) ont été signalées dans le monde en 2019 [2]. Des soins 

adéquats auraient pu potentiellement prévenir nombre de ces événements. Le taux mondial de 

mortinaissance s’élevait alors à 13,9 mortinaissances pour 1 000 naissances. Cela signifie 

qu’une naissance sur 72 se soldait par un décès fœtal, soit une occurrence toutes les 16 secondes. 

Au cours des deux dernières décennies, on ne dénombre pas moins de 48 millions de 

mortinaissances dans le monde. Cependant, il est important de noter que ce chiffre pourrait être 

sous-estimé car les mortinaissances sont souvent sous-déclarées. Un facteur contribuant de 

manière significative à ce taux de mortalité alarmant est le travail obstétrical compliqué. Dans 

de tels cas, le bébé ne parvient pas à sortir du bassin pendant le processus d'accouchement, 

malgré la contraction normale de l’utérus. Cette complication constitue une menace sérieuse 

pour la santé maternelle et infantile, soulignant le besoin de soins obstétricaux améliorés et 

d'interventions pour faire face et atténuer les risques associés au travail obstétrical compliqué. 

Une méthode utilisée auparavant était l’analyse statistique des données d'observation collectées 

dans le passé. Les coefficients de corrélation entre une situation de travail difficile et des 

caractéristiques maternelles/fœtales particulières peuvent être obtenus en examinant des 

données décrivant une grande variété d'accouchements. De nombreuses études ont souligné les 

limitations de se fier uniquement à la pelvimétrie radiologique pour prédire la méthode 

d'accouchement [14], [15]. Cette technique ne permet pas d’anticiper si un nourrisson peut 

traverser avec succès le bassin mesuré sans rencontrer de disproportion céphalopelvienne. Elle 

indique simplement si le bassin est sain. La conformité de la tête fœtale a un effet déroutant 

dans la prédiction de la disproportion céphalopelvienne à travers une évaluation radiologique 

simple de l’interaction entre la tête fœtale et le bassin de la mère. 

En revanche, l’utilisation de simulateurs de naissance physiques présente une méthode pour 

comprendre le processus d’accouchement. Ces simulateurs permettent aux professionnels de la 

santé d’acquérir une expérience pratique dans la formation à l’accouchement, ce qui est un 

aspect important de la préservation de la vie des mères et de leurs nourrissons. MamaNatalie 

[16] et Noelle [17] sont deux simulateurs de naissance courants, offrant un système 

d’enseignement complet pour former les étudiants en médecine. Cependant, les modèles 

physiques de naissance présentent plusieurs inconvénients en ce qui concerne la compréhension 

plus approfondie des mécanismes des blessures liées à l’accouchement. Tout d’abord, la 

capacité de ces simulateurs à représenter des données spécifiques au patient est limitée. Ils sont 
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généralement conçus pour imiter un scénario d’accouchement typique, qui comprend une 

femme de taille moyenne et un fœtus de taille moyenne. Il est difficile de modifier un simulateur 

pour qu’il corresponde aux mesures uniques d’un patient une fois qu’il est construit. 

Deuxièmement, les modèles physiques d’accouchement ont tendance à simplifier à l’excès la 

géométrie des tissus mous, tels que les muscles du plancher pelvien, sans chercher à valider les 

caractéristiques mécaniques des tissus mous. La simulation précise de la physiologie complexe 

sur des simulateurs physiques devient problématique. 

Par conséquent, des modèles computationnels d’accouchement ont été explorés en utilisant des 

méthodes numériques pour étudier comment l’accouchement affecte les tissus des mères et des 

nouveau-nés [18], [19], [20]. Les approches ont le potentiel de résoudre certaines contraintes 

des modèles physiques d’accouchement, offrant une compréhension plus profonde des 

mécanismes sous-jacents aux blessures maternelles et fœtales pendant le travail et 

l’accouchement. Le développement de la technologie informatique et des logiciels de 

modélisation numérique ont conduit à la création de modèles computationnels de naissance plus 

réalistes et avancés, capables d’examiner des sujets complexes. Cependant, les études actuelles 

sur les simulations d’accouchement rencontrent certaines limites. La recherche s’est 

principalement concentrée sur les blessures du plancher pelvien subies par les mères pendant 

l’accouchement, le système pelvien maternel souvent représenté étant les muscles du levator 

ani. Les modèles fœtaux, dans de nombreux cas, se sont limités à inclure uniquement la tête, 

les articulations étant rarement prises en compte. Le processus d’accouchement a souvent été 

influencé par des forces prédéterminées. De plus, des matériaux présentant une rigidité 

extrêmement élevée ont été utilisés pour représenter les modèles fœtaux. 

Ces dernières années, l’Intelligence Artificielle (IA) a connu des avancées remarquables, 

devenant un outil convaincant pour diverses procédures de soins cliniques. Ses potentielles 

applications dans le domaine médical ont suscité une attention croissante des milieux de la 

recherche, avec l’émergence de l’apprentissage automatique et de l’apprentissage profond 

comme des technologies indispensables. De diagnostics à la thérapeutique, en passant par la 

prédiction du pronostic et la gestion de la santé des patients, l’IA révolutionne la prestation des 

soins de santé. Dao [84] a utilisé un réseau de neurones à mémoire à court et long terme pour 

prédire les forces musculaires squelettiques à partir de données cinématiques articulaires 

pendant une période de marche. Ballit et Dao [85] ont également appliqué cette approche pour 

prédire le stress musculaire squelettique lors d’un comportement de contraction dynamique. 

Dans les simulations d’accouchement, la construction d’un modèle complet du système pelvien 

de la femme enceinte et du corps fœtal est importante pour faire avancer la compréhension des 

mécanismes de l’accouchement. Cependant, des défis scientifiques subsistent dans la 

représentation réaliste du fœtus, le coût computationnel et la vitesse de traitement adaptés pour 

déployer les simulations d’accouchement dans les pratiques cliniques courantes. Les objectifs 

de cette thèse de doctorat sont de relever ces défis.  

La thèse est divisée en 7 chapitres. Le premier chapitre introduit le contexte des soins de santé, 

une vue d’ensemble des simulations d’accouchement, les applications de l’apprentissage 

automatique et de l’apprentissage profond dans les soins de santé, ainsi que les objectifs de la 

thèse. Le chapitre 2 passe en revue et explore l’état de l’art de la segmentation des parties du 

squelette 3D du nouveau-né et la prédiction de la déformation des tissus mous en temps réel. 

Nous proposons et évaluons un modèle basé sur un réseau antagoniste génératif (GAN) pour 

segmenter le squelette fœtal en parties distinctes, utilisant les données du nuage de points 3D 

du chapitre 3. Dans le chapitre 4, nous construisons et évaluons des modèles pilotés par 
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l’apprentissage profond pour prédire la déformation des tissus mous pelviens dans des 

simulateurs interactifs d'accouchement, impliquant l’intégration de réseaux neuronaux à 

mémoire à court et long terme (LSTM), de réseaux neuronaux profonds et de l’apprentissage 

basé sur l’analyse en composantes principales (PCA). Nous développons et évaluons le modèle 

de pointe pour simuler les déformations en temps réel des tissus mous en utilisant des réseaux 

neuronaux informés par la physique (PINN) et des équations différentielles ordinaires 

neuronales (NeuralODE) dans le chapitre 5. Le chapitre 6 discute des contributions clés et 

résume le travail réalisé. Le dernier chapitre présente les conclusions et les perspectives. 

2. Réseau antagoniste génératif pour la segmentation des parties 

du squelette 3D du nouveau-né 

La recherche sur les simulations d’accouchement vise à anticiper et à atténuer les complications 

lors de l’accouchement. Au cœur de ces travaux de recherche se trouve la reconstruction du 

modèle pelvien maternel, qui intègre un modèle fœtal détaillé avec articulations. Cependant, 

les méthodes traditionnelles de segmentation des structures osseuses diverses à l’aide de 

techniques classiques de traitement d’images sont ardues et chronophages. Ainsi, le chapitre 3 

s’efforce d’introduire et d’évaluer un réseau antagoniste génératif (GAN) [71] adapté pour 

segmenter rapidement et automatiquement les composants osseux de l’ensemble du squelette 

néonatal, offrant une solution prometteuse à ce défi. 

Le réseau antagoniste génératif est un modèle génératif de pointe capable de comprendre le 

schéma des données d’entraînement et de générer de nouveaux échantillons basés sur celui-ci. 

La découverte fondamentale du GAN est la procédure d'entraînement en tant que compétition 

entre deux réseaux neuronaux: un générateur pour créer de nouveaux échantillons plausibles et 

un discriminateur pour différencier quels échantillons sont faux et lesquels sont réels. Ces 

réseaux sont entraînés simultanément. La Figure 1 représente le schéma d’un GAN. 

 

Figure 1. Une représentation schématique de l'architecture d'un réseau antagoniste génératif (GAN). 

Pour construire un réseau générateur, nous nous appuyons sur le modèle PointNet, qui est une 

nouvelle architecture de réseau neuronal pour traiter les données de nuages de points proposée 

par Qi et al. [93]. PointNet est apparu comme l’une des premières approches à utiliser 

l’apprentissage profond pour traiter les nuages de points d’origine. Il a révolutionné le domaine 

en capturant à la fois des caractéristiques locales et globales sans recourir à des représentations 

intermédiaires telles que les voxels ou les maillages. La structure de PointNet comprend des 

perceptrons multicouches (MLP) et des fonctions de max pooling. Pour le réseau 
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discriminateur, nous appliquons les réseaux neuronaux convolutionnels (CNN). L’entrée 

comprend deux ensembles (c’est-à-dire des nuages de points et une segmentation de données 

de référence), des nuages de points et des données générées à partir du modèle générateur. Nous 

alimentons les données d’entrée à travers des couches de convolution 1D, une couche de max 

pooling, une couche de normalisation de lots et une fonction d’activation Leaky ReLU. Enfin, 

une couche entièrement connectée est utilisée pour la sortie du score de vraisemblance.   

 Les données de nuage de points utilisées dans notre étude pour la segmentation du squelette du 

nouveau-né sont issues d’une base de données de tomographie informatisée contenant 124 

sujets. Chaque sujet subit une segmentation manuelle de l’ensemble du squelette à l’aide du 

logiciel. Ensuite, nous partitionnons le squelette en 23 sections. Pour améliorer la qualité des 

données à des fins d’entraînement, nous les augmentons en appliquant des algorithmes de 

rotation et de rééchantillonnage sur les points originaux. En conséquence de cette augmentation, 

l'ensemble de données comprend 3808 échantillons. 

Nous divisons la base de données en 70% pour l’ensemble d’apprentissage, 10% pour 

l’ensemble de test et le reste pour l’ensemble de validation. Chaque sujet comporte 2048 nuages 

de points 3D. En ce qui concerne les hyperparamètres du modèle, l’optimisation Adam est 

utilisée à la fois pour le discriminateur et le générateur avec un beta de 0.5. Le taux 

d’apprentissage du réseau générateur commence à 0.001, puis il est divisé par 10 toutes les 50 

itérations. Dans le discriminateur, le taux d’apprentissage est fixé à 0.001 pour toutes les 

boucles. Nous entraînons le GAN avec différentes tailles de lots: 1, 2, 8, 16, 32 et 64. 

Le meilleur modèle GAN était avec une taille de lot de 1, bouclée sur 150 étapes, qui a retourné 

un IoU moyen de 93.68% ± 7.37%, un Dice moyen de 96.56% ± 4.41% et un score de précision 

moyen de 96.72% ± 3.56% pour la segmentation prévue sur l’ensemble de validation. Avec le 

meilleur algorithme GAN, nous avons obtenu la meilleure segmentation des parties du squelette 

du nouveau-né prédit avec respectivement 99.63%, 99.81% et 99.98% pour les moyennes de 

IoU, Dice et score de précision. Pendant ce temps, le pire cas a rendu un IoU moyen de 65.81%, 

un Dice moyen de 79.37% et un score de précision moyen de 80.03%. La Figure 2 illustre le 

meilleur cas de segmentation des parties osseuses à partir de nuages de points 3D en utilisant 

notre modèle GAN. 

 

Figure 2. La meilleure segmentation des parties du squelette prédite par notre méthode GAN. 

Notre méthode a été comparée au réseau de neurones convolutifs par points (Pointwise CNN) 

[142]. Les résultats segmentés sur l’ensemble de validation ont obtenu un IoU moyen de 

72.30% ± 5.1%, un Dice moyen de 83.82% ± 3.44% et un score de précision moyen de 84.81% 
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± 3.25%. Le meilleur cas a donné un IoU moyen de 86.31%, un Dice moyen de 88.75% et un 

score de précision moyen de 89.37%. La prédiction la moins précise a montré un IoU moyen 

de 45.10%, un Dice moyen de 62.15% et un score de précision de 62.88%. 

Dans le chapitre 3, nous avons proposé un réseau antagoniste génératif basé sur PointNet pour 

segmenter avec précision et rapidité les composants osseux, en seulement 5 secondes. Notre 

modèle GAN a montré que les performances de segmentation sont supérieures à celles du réseau 

de neurones convolutifs par points. Cependant, la précision des résultats dépend des postures 

fœtales. Il reste difficile de séparer les os fusionnés. Par conséquent, les études futures devraient 

se concentrer sur la segmentation des os fusionnés comme les vertèbres et fusionner l’ensemble 

du squelette articulé dans le modèle pelvien maternel pour effectuer des simulations 

d’accouchement complexes et des actions préventives associées. 

3. Une nouvelle approche basée sur l’apprentissage profond 

pour prédire les déformations des tissus mous du bassin vers 

une simulation d’accouchement interactive en temps réel 

La dynamique des tissus mous est cruciale pour comprendre le comportement mécanique du 

corps humain. Actuellement, des méthodes numériques utilisant la modélisation par éléments 

finis et des cadres de type masse-ressort sont employées pour réaliser une approximation des 

propriétés dynamiques des tissus mous biologiques. Malgré leur utilité, ces approches sont 

handicapées par des dépenses computationnelles significatives, principalement dues à la 

nécessité de configurations de maillage dans la formulation des équations d’équilibre 

dynamique et aux défis liés à la convergence instable. Il est essentiel de résoudre ces problèmes 

pour faire progresser notre compréhension de la dynamique des tissus mous et améliorer 

l’efficacité des simulations computationnelles dans les études biomécaniques. 

Pour estimer la déformation des tissus mous en temps réel et dans des conditions stables, un 

nouveau flux de travail a été développé et présenté dans la Figure 3. Tout d’abord, une base de 

données basée sur la simulation a été générée à partir d’une simulation d’accouchement réalisée 

à l’aide de notre modèle HyperMSM récemment développé [159]. Ensuite, différentes 

architectures et stratégies d’apprentissage profond ont été conçues, implémentées et évaluées. 

Enfin, le meilleur modèle d’apprentissage automatique entraîné sera intégré dans une 

simulation interactive en temps réel de la procédure d'accouchement physiologique. 

 

Figure 3. Le flux de travail proposé basé sur les données couple la génération de bases de données, la 

mise en œuvre et le déploiement d’un réseau d’apprentissage profond. 

Nous générons la base de données d’apprentissage en simulant les processus d’accouchement. 

Notre méthode d’entraînement consiste à prendre des données brutes en séries temporelles, 

comprenant les positions des sommets, les vitesses et les forces interactives appliquées aux 
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nœuds, et à prédire les déplacements nodaux. Le modèle comprend un corps fœtal, les tissus 

mous du bassin tels que les muscles du plancher pelvien, le vagin et l’utérus, ainsi que la 

structure osseuse du bassin. Nous utilisons HyperMSM pour exécuter de nombreuses 

simulations du processus d’accouchement tout en conservant les mêmes caractéristiques 

matérielles de Neo-Hookean. Pour ces simulations, l’intervalle de temps est fixé à 2 ms dans 

chaque cas. Nous considérons simplement des points de surface non contraints en 3D. Le 

modèle se compose de 1653 nœuds de surface, ce qui donne des vecteurs de taille 3×1653. 

Pendant chaque simulation, des forces externes aléatoires sont appliquées à la surface des 

muscles du plancher pelvien pour simuler des forces d’intervention clinique potentielles. Nous 

obtenons une base de données d’entraînement de 15396 trames concernant 8 simulations, et une 

base de données de test de 18633 trames concernant 6 simulations. 

Nous avons utilisé une variante des réseaux neuronaux récurrents appelée réseau mémoire à 

court terme (LSTM) [35]. Le fonctionnement du LSTM peut être décrit en quatre étapes. 

Initialement, la phase d’oubli se produit, pendant laquelle le LSTM évalue quelles informations 

de son état de cellule précédent doivent être oubliées. Ensuite, dans la phase de stockage, il 

détermine quelles nouvelles données seront incorporées dans l’état de la cellule. L’étape 

suivante consiste à mettre à jour l’état de la cellule précédent pour former le nouveau en 

intégrant les valeurs obtenues de la phase précédente. Enfin, la phase de sortie, qui implique de 

déterminer l’influence des informations sur la sortie via une couche sigmoïde, permet au réseau 

LSTM de saisir les dépendances à long terme. Nous avons également utilisé une variante du 

LSTM appelée mémoire à court terme (BiLSTM) [97]. Le réseau a été introduit pour relever le 

défi de capturer les dépendances à long terme dans les données séquentielles. Dans le modèle 

BiLSTM, l’entrée est fournie à la fois des directions de gauche à droite et de droite à gauche 

simultanément. En raison de la grande dimensionalité des données d’entrée, nous avons choisi 

d’appliquer une technique de réduction de modèle pour étudier l’impact de la réduction de 

modèle sur la précision d’un modèle d’apprentissage en profondeur. L’analyse en composantes 

principales (ACP) est une méthode statistique pour traduire un groupe de variables corrélées en 

un groupe de variables indépendantes. Elle est souvent utilisée dans l’analyse des données et le 

développement de modèles prédictifs en apprentissage automatique. 

Nous formons le réseau à travers un processus de réglage d’hyperparamètres impliquant la 

variation du nombre de couches cachées (de 1 à 3) et de leurs nœuds associés (de 100 à 1000). 

De plus, des ajustements ont été apportés à la taille du lot (de 10 à 100), aux fonctions 

d’activation (Linéaire, Sigmoïde, Tanh, ReLU) et au taux d’apprentissage (de 10-3 à 10-6). Ce 

processus de réglage a été réalisé en utilisant Optuna, un cadre d’optimisation des 

hyperparamètres, avec l’optimisation Adam. Avant de commencer le processus 

d’apprentissage, les données ont été mises à l’échelle en utilisant des valeurs dans l’intervalle 

[-1,1] pour normaliser. Pour comparer avec l’architecture LSTM sur la prédiction de la 

déformation des tissus mous du bassin, un réseau neuronal profond classique (DNN) a été 

utilisé. 

En ce qui concerne l’évaluation sur la base de données de test, l’erreur quadratique moyenne 

(RMSE) était de 1.062 mm, 0.988 mm et 0.936 mm respectivement pour les modèles LSTM, 

BiLSTM et DNN. Un coefficient de corrélation de Pearson (PCC) de 0.994 a été obtenu pour 

les réseaux LSTM et BiLSTM. Un PCC de 0.996 a été atteint avec le réseau DNN. Plus 

précisément, le meilleur cas prédit à partir de la base de données de test a produit des erreurs 

moyennes de 0.103 mm ± 0.116 mm et 0.107 mm ± 0.083 mm avec respectivement les réseaux 

LSTM et DNN. La Figure 4 compare la meilleure déformation prédite en utilisant LSTM à 
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l’estimation HyperMSM de la simulation d’accouchement aux pas de temps 1s, 5s, 8s et 

11.186s lorsque l’erreur absolue maximale de 3.264 mm a été obtenue. Avec le modèle DNN, 

la meilleure prédiction a renvoyé une erreur absolue maximale de 2.765 mm au saut de temps 

11.092s. En ce qui concerne le pire cas prédit, la prédiction à l’aide de LSTM a donné une 

erreur moyenne absolue de 0.845 mm ± 1.214 mm, tandis que la prévision de déformation basée 

sur DNN a une erreur moyenne de 0.775 mm ± 1.041 mm. 

 

Figure 4. La meilleure simulation prédite par LSTM au fil du temps. 

En application sur notre base de données, un nombre optimal de 11 composantes principales a 

été obtenu pour maximiser la variance des données jusqu’à 99.99% tout en conservant autant 

de données que possible. Les résultats prédits du déplacement nodal par la stratégie 

d'apprentissage basée sur l’ACP ont obtenu une RMSE de 0.708 mm et une moyenne ± écart-

type de 0.438 ± 0.556 mm pour l’ensemble de données d’entraînement. Les résultats prévus sur 

les données de test ont renvoyé une RMSE de 1.535 mm à 1.547 mm et une moyenne ± SD de 

0.865 ± 1.280 mm. 

En utilisant nos modèles d’apprentissage en profondeur sans maillage, nous avons estimé avec 

précision et rapidement la déformation des tissus mous du bassin lors de l’accouchement du 

corps fœtal dans le chapitre 4. Les résultats prévus sont bien considérés dans la littérature 

scientifique. Une fois que le modèle est entraîné, les prédictions peuvent être générées en 

quelques secondes sur un ordinateur personnel. L’étude actuelle est limitée par son focus 

uniquement sur des scénarios de délivrance fœtale normaux, en négligeant des situations plus 

complexes. De plus, les simplifications dans notre modèle d’accouchement, y compris la 

représentation géométrique et la manipulation des interactions, sont reconnues. Bien que ces 

simplifications correspondent aux objectifs actuels, des études futures pourraient améliorer le 

réalisme avec des modèles anatomiquement précis et une simulation de contact avancée. 

4. Équations différentielles ordinaires neurales informées par la 

physique et cadre de modélisation du système masse-ressort 

pour prédire les déformations des tissus mous en temps réel 

Approfondissant la recherche menée dans le chapitre 4, le chapitre 5 s’efforce de faire 

progresser la simulation de l’accouchement en simulant en temps réel les déformations des 

tissus mous. Les méthodes numériques traditionnelles, basées sur des configurations de 

maillage, sont confrontées à des coûts de traitement élevés et à une instabilité dans la 

convergence. Pour relever ces défis, nous nous tournons vers les réseaux neuronaux informés 

par la physique (PINN), reconnus pour leur efficacité dans la résolution de problèmes 
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d’équations différentielles. Notre approche intègre les PINN et les équations différentielles 

ordinaires neuronales (NeuralODE) avec le cadre de modélisation du système masse-ressort 

(MSS) pour développer un modèle prédictif de déformation des tissus mous. Nous établissons 

les bases théoriques de notre méthodologie en utilisant les équations différentielles ordinaires 

neuronales informées par la physique (PINODE), ainsi que les formulations MSS. Ensuite, nous 

évaluons l’efficacité de notre approche novatrice à travers des simulations sur des systèmes 

masse-ressort en 2D et 3D, ainsi que sur une poutre en porte-à-faux en 3D. Enfin, nous 

appliquons notre modèle pour simuler et évaluer la déformation d’un modèle d’utérus en 3D 

sous chargement gravitationnel, marquant ainsi une avancée significative dans le 

développement de simulations d’accouchement réalistes. 

Les réseaux neuronaux informés par la physique sont une méthode sans maillage qui apprend 

directement la physique sous-jacente d’un système à partir des données, et intègre les équations 

gouvernantes ainsi que les conditions aux limites/initiales dans la fonction de perte (Figure 5). 

En exploitant cette compréhension physique inhérente comme fondement, les PINN peuvent 

être entraînés en tant que modèles de substitution pour résoudre des équations différentielles 

avec un minimum de données étiquetées, voire parfois sans étiquettes du tout. Les PINN 

exploitent deux caractéristiques fondamentales des réseaux neuronaux. Premièrement, les 

réseaux neuronaux servent d’approximations de fonctions universelles. Par conséquent, si un 

réseau neuronal est suffisamment profond et puissant, il peut estimer n’importe quelle fonction, 

y compris la solution des équations différentielles. Deuxièmement, le calcul des dérivées des 

sorties d’un réseau neuronal par rapport à ses entrées, ainsi que des paramètres du modèle lors 

de la rétropropagation, est direct grâce à la différenciation automatique [98]. 

 

Figure 5. Vue d’ensemble de l’architecture du réseau neuronal informé par la physique. 

Nous combinons les réseaux neuronaux informés par la physique et les équations différentielles 

ordinaires neuronales pour résoudre notre système dynamique lié à la déformation des tissus 

mous. Le concept fondamental de NeuralODE est lié à la considération des états cachés d’un 

réseau neuronal comme résultats d’un système d’équations différentielles ordinaires [99]. Dans 

les réseaux neuronaux conventionnels, la procédure d’apprentissage repose sur l’empilement 

de couches neuronales et l’application d’une série de transformations paramétrées aux données 

d’entrée. En revanche, NeuralODE aborde le problème d’un point de vue en temps continu en 

utilisant des équations différentielles ordinaires pour définir l'évolution des couches cachées 

d’un réseau neuronal au fil du temps. 

Notre approche proposée a été appliquée à l’analyse biomécanique des tissus mous de l’utérus, 

développée en utilisant le matériau Néo-Hookean avec un module de Young de 0.06 MPa et un 
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coefficient de Poisson de 0.45. Dans cette simulation, nous avons examiné le déplacement de 

l’utérus sous la charge gravitationnelle. La représentation structurelle se compose de 1389 

nœuds avec 1347 nœuds marqués comme actifs et 42 nœuds fixés du côté gauche. Nous avions 

un maillage de 4077 éléments tétraédriques. La simulation était caractérisée par 4041 degrés de 

liberté. Le temps de simulation de l’intervalle de 2 s a été divisé en deux phases. La 1ère seconde 

est allouée à l’entraînement, et la 2nde seconde implique une extrapolation. La taille du saut de 

temps est de 0.002 tout au long de la simulation. L’ensemble de données d'entraînement 

comprenait 500 points. Nous avons appliqué la résolution de formule de différenciation 

rétrograde d’ODE pour générer les données de référence. La configuration du modèle PINODE 

se compose d’une seule couche cachée avec 10 nœuds. Le processus d’entraînement implique 

4000 itérations avec un taux d’apprentissage de 0.05 pour les 2000 premières itérations et un 

taux d’apprentissage réduit de 0.01 pour les époques restantes. La fonction d’activation utilisée 

était la fonction tangente hyperbolique. Pour l’implémentation de PINODE, nous avons utilisé 

Julia, un langage de programmation haute performance, en utilisant des bibliothèques telles que 

DiffEqFlux, DifferentialEquations de SciML [228], [229]. Enfin, nous avons appliqué 

l’optimisation Adam dans toutes les expériences. 

La phase d’entraînement du modèle PINODE a donné des résultats prometteurs avec une RMSE 

de 0.509×10-3 m et une erreur relative de norme 𝐿2 de 0.349%. Pendant la phase d’extrapolation, 

il y a eu une augmentation de la RMSE de 6.404×10-3 m et de l'erreur 𝐿2 de 6.357%. La Figure 

6 présente une comparaison entre la visualisation de la déformation au temps 2 s en utilisant le 

modèle PINODE et la vérité terrain correspondante. Une observation intéressante dans cet 

exemple est que les déplacements extrapolés par PINODE ont été effectués en seulement 1 

seconde, tandis que la méthode numérique conventionnelle a nécessité 1 heure. 

 

Figure 6. Visualisation de la déformation des tissus mous de l’utérus au temps 2s à l’aide du modèle 

PINODE par rapport aux données de référence. 

Nos modèles PINODE ont montré un fort potentiel dans l’extrapolation des mouvements des 

systèmes avec de nouvelles conditions initiales par rapport aux modèles PINN classiques. 

Cependant, le processus d’entraînement de PINODE est difficile en raison de sa structure à 

profondeur continue. Par conséquent, les modèles PINODE rencontrent également des 

limitations liées à la convergence et dépendent à la fois de la taille de l’échantillon et des 

caractéristiques du problème. Les études futures porteraient sur l’investigation de méthodes 

d’apprentissage fiables pour garantir des prédictions sûres dans la phase d’extrapolation. D’un 

point de vue applicatif, le modèle actuel des tissus mous de l’utérus est encore limité dans sa 

représentation des diverses forces impliquées dans le processus de travail et d’accouchement. 
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Pour obtenir un outil complet de formation à l’accouchement interactif en temps réel, il est 

nécessaire de disposer d’une base de données plus riche comprenant des scénarios réels et une 

large gamme de forces, de charges externes et de comportements de contact des tissus mous. 

5. Conclusions et perspectives 

Cette thèse représente une avancée révolutionnaire dans le domaine de la représentation réaliste 

du fœtus et de la modélisation en temps réel de la déformation des tissus mous. En intégrant 

des techniques de pointe et des méthodologies innovantes, elle ouvre de nouvelles voies dans 

le domaine de la santé, promettant de révolutionner la formation à l’accouchement et la 

simulation des complications. Avec une attention particulière portée à l’exactitude et à la 

précision, cette recherche a posé les bases du développement d’un outil d’aide à la décision de 

nouvelle génération. Ces outils améliorent non seulement l’efficacité de la formation à 

l’accouchement, mais facilitent également la simulation de diverses complications, fournissant 

des informations inestimables pour les professionnels de la santé. En comblant le fossé entre la 

théorie et la pratique, cette thèse marque une avancée significative dans l’amélioration des 

résultats en matière de santé maternelle et néonatale. 

Bien que nos méthodes proposées aient montré des résultats prometteurs, il est important de 

reconnaître certaines limites. La segmentation des parties du squelette du nouveau-né s’est 

avérée difficile en raison des os fusionnés, tandis qu’un ensemble de données limité a encore 

compliqué le processus. Les modèles existants des tissus mous du bassin manquaient d’une 

représentation complète des forces diverses inhérentes à l’accouchement. Les modèles de 

simulation de l’accouchement étaient simplistes, se concentrant uniquement sur des 

circonstances normales et échouant à incorporer les complexités rencontrées dans les cas du 

monde réel. De plus, pour régir l’interaction entre le corps fœtal et l’utérus maternel, nous avons 

utilisé des modèles de contact de nœud à triangle simplistes. 

Par conséquent, les travaux futurs viseront à aborder ces limites afin de développer un modèle 

plus complet et précis qui puisse simuler efficacement la dynamique de l’accouchement et offrir 

des connaissances sur les processus physiologiques impliqués. Dans la simulation de 

l’accouchement, les composants essentiels comprennent un modèle pelvien maternel et un 

modèle fœtal détaillé avec des articulations. Les recherches futures visent à intégrer ces modèles 

cruciaux dans le dispositif Hololens, envisageant une amélioration des compétences en 

formation à l’accouchement grâce à la création de scénarios d’accouchement 

physiologiquement plausibles. En fusionnant ces modèles au sein de l’environnement immersif 

des Hololens, les stagiaires acquerront une précieuse expérience pratique et des perspectives 

sur les complexités de l’accouchement, favorisant une compréhension plus complète des 

dynamiques maternelles et fœtales. 
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Titre en français : Modélisation avancée du système d’accouchement à l’aide de différentes 

méthodes d’apprentissage profond : de la segmentation du squelette fœtal à la déformation des 

tissus mous en temps réel. 

Résumé en français : 

Le rapport annuel de l’Organisation mondiale de la santé (OMS) met en évidence une statistique 

stupéfiante de 100 millions d’accouchements se produisant dans le monde chaque année. 

Cependant, une réalité sombre accompagne ce chiffre élevé, car le taux de mortalité atteint 

environ un demi-million. Un facteur contributif significatif à ce taux de mortalité alarmant est 

le travail obstétrical compliqué. Des simulations d’accouchement ont été étudiées dans le but 

de prévoir et de prévenir les complications graves chez les mères et les fœtus pendant 

l’accouchement. La construction d’un modèle complet du système pelvien de la femme enceinte 

et du corps fœtal est importante pour faire progresser la compréhension des mécanismes de 

l’accouchement. Cependant, des défis scientifiques persistent dans la représentation réaliste du 

fœtus et dans le coût computationnel et la vitesse de traitement adaptés pour déployer les 

simulations d’accouchement dans les pratiques cliniques courantes. 

Cette thèse de doctorat apporte trois contributions originales pour surmonter ces défis : 1) la 

segmentation automatique du squelette fœtal en parties distinctes à l’aide d’un modèle basé sur 

les réseaux antagonistes génératifs (GAN) et des données de nuage de points 3D ; 2) la 

prédiction de la déformation des tissus mous en temps réel à l'aide de réseaux neuronaux 

récurrents (c’est-à-dire des réseaux neuronaux à mémoire à court et long terme (LSTM)) 

couplés à une stratégie d’apprentissage basée sur l’analyse en composantes principales (ACP) 

; et 3) le développement et l’évaluation d’un modèle exceptionnel pour simuler les déformations 

en temps réel des tissus mous en utilisant les réseaux neuronaux informés par la physique 

(PINN) et les équations différentielles ordinaires neurales (NeuralODE). 

Cette thèse ouvre de nouvelles voies dans la modélisation réaliste de la représentation fœtale et 

de la déformation en temps réel des tissus mous vers un outil de soutien à la décision de nouvelle 

génération pour la formation à l’accouchement et la simulation des complications. 

Mots-clés : Modélisation prédictive, accouchement, apprentissage profond, systèmes 

dynamiques, squelette fœtal, tissu mou. 
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Titre en anglais: Advanced modeling of the childbirth system using different deep learning 

methods: from fetal skeleton segmentation to real-time soft tissue deformation. 

Résumé en anglais: 

The annual World Health Organization (WHO) report highlights a staggering statistic of 100 

million childbirths occurring worldwide each year. However, a somber reality accompanies this 

high number, as the death rate reaches approximately half a million. A significant contributing 

factor to this alarming mortality rate is complicated obstructed labor. Childbirth simulations 

have been investigated in an attempt to forecast and prevent severe complications in both 

mothers and fetuses during delivery. Constructing a comprehensive model of the pregnant 

woman’s pelvic system and the fetal body is crucial in advancing the understanding of 

childbirth mechanics. However, scientific challenges remain in the realistic representation of 

the fetus and suitable computational cost and processing speed to deploy the childbirth 

simulations into the clinical routine practices. 

This PhD thesis has three original contributions to overcome these challenges: 1) automatic 

fetal skeleton segmentation into distinct parts using generative adversarial networks (GAN)-

based model and 3D point cloud data; 2) prediction of real-time soft tissue deformation using 

recurrent neural networks (i.e. long short-term memory neural networks (LSTM)) coupled with 

principal component analysis (PCA)-based learning strategy; and 3) development and 

evaluation of an outstanding model to simulate real-time deformations of soft tissue using the 

physics-informed Neural Networks (PINN) and Neural Ordinary Differential Equations 

(NeuralODE). 

This thesis opens new avenues in the realistic modeling of the fetal representation and real-time 

soft tissue deformation toward a next-generation decision support tool for childbirth training 

and complication simulation. 

 

Mots-clefs: Predictive modeling, childbirth, deep learning, dynamic systems, fetal skeleton, 

soft tissue. 

 
 

 

 

 

 

 

 

 


