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Abstract
Incident management on telecom and computer networks, whether it is related to infras-

tructure or cybersecurity issues, requires the ability to simultaneously and quickly correlate

and interpret a large number of heterogeneous technical information sources. In this the-

sis, we study the benefits of structuring this data into a knowledge graph, and examine how

this structure helps to manage the complexity of networks, particularly for applications in

anomaly detection on dynamic and large-scale networks. Through an ontology (a model

of concepts and relationships to describe an application domain), knowledge graphs allow

different-looking information to be given a common meaning. We first introduce a new on-

tology for describing network infrastructures, incidents, and operations. We also describe an

architecture for transforming network data into a knowledge graph organized according to this

ontology, using Semantic Web technologies to foster interoperability. The resulting knowledge

graph allows for standardized analysis of network behavior. We then define three families of

algorithmic techniques for using the graph data, and show how these techniques can be used

to detect abnormal system behavior and assist technical support teams in incident diagnosis.

Finally, we present a software architecture to facilitate the interactions of support teams with

the knowledge graph and diagnostic algorithms through a specialized graphical user interface.

Each proposal has been independently tested through experiments and demonstrations, as

well as by a panel of expert users using the specialized graphical interface within an integrated

solution.
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Abrégé
La gestion des incidents sur les réseaux informatiques et télécoms, qu’il s’agisse de problèmes

d’infrastructure ou de cybersécurité, nécessite la capacité de traiter et d’interpréter simultané-

ment et rapidement un grand nombre de sources d’information techniques hétérogènes en

matière de format et de sémantique. Dans cette thèse, nous étudions l’intérêt de structurer

ces données dans un graphe de connaissances, et étudions en quoi cette structure permet de

maîtriser la complexité des réseaux, notamment pour des applications en détection d’anoma-

lies sur des réseaux dynamiques et de grande taille. À travers une ontologie (un modèle des

concepts et relations pour décrire un domaine d’application), les graphes de connaissances

permettent en effet de donner un sens commun à des informations différentes en apparence.

Nous introduisons pour commencer une nouvelle ontologie permettant de décrire les infra-

structures réseaux, les incidents, et les opérations d’exploitation. Nous décrivons de même

une architecture pour transformer les données des réseaux en un graphe de connaissances

organisé selon cette ontologie, en utilisant les techniques du Web Sémantique pour favoriser

l’interopérabilité. Le graphe de connaissances résultant permet d’analyser le comportement

des réseaux de façon homogène. Nous définissons ensuite trois familles de techniques al-

gorithmiques pour utiliser les données du graphe, et montrons comment ces techniques

peuvent être utilisées pour détecter des comportements anormaux des systèmes et aider les

équipes d’exploitation dans le diagnostic d’incidents. Enfin, nous présentons une architecture

logicielle pour simplifier les interactions des exploitants avec le graphe de connaissances et

les algorithmes d’aide au diagnostique par l’intermédiaire d’une interface graphique spécia-

lisée. Chaque proposition a été testée de manière indépendante par des expérimentations

et démonstrations, ainsi que par un panel d’utilisateurs experts depuis l’interface graphique

spécialisée dans le cadre d’une solution intégrée.
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Chapter 1

Introduction

When managing large-scale IT & telco networks (broadband international backbones, cor-

porate networks, Internet access networks), one is sooner or later involved into handling

complex incident situations, such as general IT service disruption because of cascading fail-

ures or cyber-attacks. For incident management, technical support teams typically leverage

information from decision support tools like Network Monitoring Systems (NMSs) or Security

Information and Event Management (SIEM) systems. These tools often use an elementary

representation of the network infrastructures and services. Basically, an IT network is a set of

computers, routers, and other devices connected and configured to allow data processing and

sharing. Similarly, an IT service is the usage of this processing and sharing capability for spe-

cific purposes, from the most trivial ones (entertainment, ticket booking, home automation)

to more challenging ones (stock exchange, road lights, or nuclear plant management).

Although obvious at first glance, this level of description is not sufficient to scale up for

maintaining high-standard quality of service on large-scale networks. This is due to the het-

erogeneity of the Information and Communications Technology (ICT) systems that compose

them, making incident diagnosis and remediation a challenging task: to ensure network

services function properly, supervision teams need to understand information from diverse

and dynamic technical systems. For example, one can consider a service architecture that

combines Virtual Machine (VM) distributed across data centers, which are interconnected

through an IPoDWDM1 network. To achieve efficiency, it is necessary to integrate and correlate

data from various sources. This includes data from VM management tools, Optical Transport

Network (OTN) layer management tools (which may be managed by a third-party operator),

information about scheduled operations, and contact details for local servicing teams. Given

the interdependencies between services and infrastructure and the inherent complexity of

networks, the importance of a comprehensive and standardized knowledge representation of

network assets and events therefore becomes evident for anyone wishing to develop a decision

1Internet Protocol (IP) over Dense Wavelength-Division Multiplexing (DWDM).
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support system that can capture and analyze an incident context in its full complexity.

At the same time, one might be tempted to solve these complexity and operational efficiency

challenges by adding Artificial Intelligence (AI) techniques to monitoring tools. This is already

observed in various commercial and open source products for alarm grouping, alarm pri-

oritization, alerting on trend breaks (e.g. sudden increase in network traffic), or alerting on

risky user behaviors (e.g. unusually frequent authentication attempts from various sites). It is

typically implemented through a business rules system and an overlay of correlation analysis.

This approach is effective in that the business rules ensure a form of explainability for the

generated alerts and recommendations thanks to their explicit and logical form. However,

the operational burden remains significant because rule-based systems are complicated to

maintain due to a great number of fine-grained rules and typically react to discrete stimuli,

which hinders the generalization of rules for complex networks and often leads to missing the

detection of anomalies (false negatives). Another approach is the use of probabilistic models

derived from machine learning. It is also effective in that it allows for generalization to different

types of stimuli but sacrifices explainability because of untractable model representations

(e.g. the weight matrices of a deep neural network) and introduces an operational burden due

to the need to qualify falsely generated alerts (false positives). Given that both approaches

seem to have complementary advantages and disadvantages, the question arises of identifying

principles that can be shared to meet the requirements of explainability and generalization, in

line with the earlier mentioned need for standardized representation.

Drawing on the understanding that Knowledge Representation and Reasoning (KRR) are

inherently linked, this research work addresses both aspects in tandem by delving into explicit

knowledge representations of networks, and exploring their direct utilization or integration

with AI techniques for anomaly model learning and detection.

The remaining part of this chapter is organized as follows: Section 1.1 presents a description

of the application domain. Section 1.2 formalizes the problem addressed in this thesis work

and summarizes it through two research questions. Section 1.3 presents a summary of the

contributions made through this thesis work. Finally, Section 1.4 provides an overview of the

overall organization of the thesis work and manuscript.

1.1 Background

1.1.1 Network Design

What are networks? Basically, an IT network is a set of computers, routers, and other devices

connected and configured to allow data processing and sharing. Similarly, an IT service is the

usage of this processing and sharing capability for specific purposes. The standardization

2



1.1 Background

efforts in the telecom and IT industry have led to standards and specifications for data trans-

mission and processing system interfaces, such as the OSI model [161]. The OSI model allows

for a description of network infrastructures and services along horizontal and vertical axes,

representing the technical assets and protocol stack required for data transmission (Figure

1.1).

Figure 1.1: A flat view of a network with a data flow, and its equivalent in the OSI model.
Top: schematical view of an IT network. The central bubble represents a simplified network consisting of a mesh network of
routers (i.e. network elements that determine and ensure the routing of data packets). The router in the center is an abstract
representation of the redundancy group formed by the mesh of routers. Bottom: data path along the OSI model. The horizontal
axis gives us a lecture of the technical assets (e.g. laptop, ethernet switch, router, firewall, etc.) involved in handling message data.
The vertical axis provides insights into the protocol stack required for data takeover (i.e. encoding, routing, presentation, etc.).
Based on the TISO2930-94/d11 diagram from [161].

According to this framework, routing a payload data unit from point A to B involves a horizon-

tal data path formed by a set of network elements (Eq. 1.1, where t p stands for transmission

path, and ne for network element), such as when Alice is sending an “hello” message to Bob

using an instant messaging service.2

t p A→B = A → ne1 →···nei · · ·→ neN → B (1.1)

The vertical perspective considers the protocol stacking within each network element, includ-

ing line coding and error correction services of L1, encapsulation, link and medium access

control of L2 microcode, L3 routing engine, etc., up to L7 if relevant. Combining both axes

allows for stack-to-stack connections between protocol endpoints, such as from the L7 layer

on Alice’s terminal to the L7 layer on Bob’s terminal in Figure 1.1.

2Implementation details, such as bidirectional mechanisms for flow control or data link management (e.g.
IP/TCP “SYN/SYN-ACK/ACK” sequence), are not discussed here for simplicity.
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Network dynamics. The previous details describe a scenario where data flows along a fixed

transmission path. However, considerations for network dependability introduce the use of

a mesh network architecture and failover mechanisms, which bring temporal reachability

concerns. In terms of the horizontal axis, a temporarily unavailable network element is

automatically replaced by another, ensuring the continuity of the data path from the end

users’ perspective (Eq. 1.2), where t1 and t2 are two different instants.(
t p A→B (t1) = A → ne t1

1 →···ne t1
i · · ·→ ne t1

N → B
)

≡
(
t p A→B (t2) = A → ne t2

1 →···ne t2
i · · ·→ ne t2

N → B
) (1.2)

This leads to a functional object that remains invariant over time, represented by a pseudo

ordered set (Eq. 1.3), where {nei , j } is a set of network elements that forms a redundancy group

(i.e. assets within t p that are functionally equivalent).

t p∗
A→B = A →··· {nei , j } · · ·→ B (1.3)

The dynamics of networks must also be viewed through the multiplexing and virtualization

capabilities offered by the networks. These capabilities are primarily motivated by consider-

ations of optimal resource allocation and rapid deployment in relation to the expectations

for the network/service functions (e.g. forwarding, filtering, processing) and performance

(e.g. throughput, number of simultaneous users, latency). Multiplexing can involve paral-

lelizing links (t p A→B = A → ···{t pa1→b1 ∥ · · · ∥ t paN→bN
} · · · → B) to increase throughput or

path resilience. Multiplexing can also mean partitioning or stacking flows through recursive

encapsulation (
{

t pa1→b1 ∥ · · · ∥ t paN→bN
} ⊂ t p A→B ) to maximize the reuse of a given data

transmission resource. Finally, virtualization enables temporary and mobile processing capac-

ity based on processing resource sharing ((nei ⊂ ne j ) ≺ (nei ⊂ nek )), like deploying a firewall

based on user needs or a cache system based on the localization of users.

1.1.2 Network Operations and Incident Management

What is an “anomaly”? The term “anomaly” commonly refers to a deviation from the normal

state that requires action for recovery. In the context of Network administration and Opera-

tions (NetOps), an anomaly is defined with respect to a supervision process3 where alarms

are a logical consequence of errors (i.e. a deviation of a system from normal operation [165])

caused by persistent fault causes (i.e. the physical or algorithmic cause of a malfunction [165]).

These faults occur within the atomic functions of network devices [162]. The alarms should be

reported to a Management and Control System (MCS), such as a Computerized Maintenance

3Quoting [162]: the way in which the actual occurrence of a disturbance or fault is analysed with the purpose of
providing an appropriate indication of performance and/or detected fault condition to maintenance personnel.
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Management System (CMMS) or Software Defined Network (SDN) controller. The logical se-

quence of these concepts can be summarized by: F aul t ≻ Er r or ≻ Al ar m ≻ Al ar mRepor t .

In the context of Cyber security Operations (SecOps), an anomaly is defined based on a busi-

ness policy: user and device activities that comply with the policy are considered legitimate,

while others may be classified as attack4. Errors, alarms and other automated analysis re-

ports from both the NetOps and SecOps domains serve as input for a behavioral analysis

process that utilizes causal entities such as threats (i.e. entities that can adversely act on an

unwanted asset [104]) and vulnerabilities (i.e. weaknesses of assets that can be exploited

by threats [104]). This analysis helps detecting attacks and incidents (i.e. unwanted events

resulting in the loss of confidentiality, integrity, and/or availability [104]).

Incident management and root cause analysis. The concept of IT Service Management

(ITSM) emerged in the 70s-80s as organizations recognized the importance of Information

Technology (IT) for their operational efficiency. Standards and best practices, such as ISO/IEC

20000 [1], ITIL [17], and FitSM [160], were developed to provide guidance to IT organizations

in aligning their ITSM processes with business needs and international best practices. These

standards emphasize the establishment of a continuous quality improvement loop, which

relies on the observability of ICT systems and the accumulation of knowledge, such as the

causes of incidents and the corrective actions taken. By adhering to these standards, network

operators are well-positioned to achieve and maintain the expected level of quality for end-

users, as defined in Service Level Agreements (SLAs). These SLAs often establish demanding

performance or reliability requirements, such as achieving “five nines” (99.999%) uptime,

which is especially critical for essential systems like power, transportation, and telecom

networks.

Security management standards – such as the ISO/IEC 27000 series [1], ETSI TVRA [104], NIST

SP 800-53 [183] – distinguish between the business policy topic (i.e. rules for leveraging the

information system to detect and track illegitimate activities) and the security implementation

topic (i.e. selecting protocols and mechanisms to enforce security). These standards provide

guidelines for establishing an Information Security Management System (ISMS), which focuses

on risk mitigation through a multilevel iterative approach, such as a plan-do-check-act (PDCA)

cycle. Methodological frameworks, such as OCTAVE [304], EBIOS RM [33], and NIST SP 800-

61 [277], can help organizations setting up a cyber security management organization and

aligning it with the ISMS.

The Incident Management Process (IMP) and Incident Response Management (IRM) pro-

cesses are designed to meet SLAs and security requirements (Figure 1.2). The terms IMP

4Quoting [75]: any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy informa-
tion system resources or the information itself.
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and IRM can be considered interchangeable or have some level of difference depending on

the perspective of the individual [295]. Notably, due to the sensitive nature of cyber secu-

rity incidents, the SecOps incident lifecycle has a natural inclination to be seen as an IRM.

However, the underlying concepts apply to both the NetOps and SecOps perspectives. For

example, the containment stage in the SecOps context (e.g. disabling a compromised user

account to prevent the attacker from accessing endpoints and other resources in the network)

is similar to the restoration stage in the NetOps context (e.g. applying a failover activation

procedure on a load balancer cluster to prevent the loss of access to an application). In both

cases, the concept of an incident (impacting the service or its security) is defined from the

perspective of the end user. The decision-making capabilities regarding the actions to be

taken for system restoration, attack containment, incident resolution or repair depend on the

diagnostic stage. Ideally, a Root Cause Analysis (RCA) leads to a clear diagnosis (i.e. to be able

to clearly and unequivocally state which event on which asset is at the origin of the situation),

and consequently, an objectively immediate choice of the repair procedure.

Figure 1.2: Incident Management Process (IMP) vs Incident Response Management (IRM).
Drawing a parallel between the alert and incident management processes for NetOps (ITIL Incident Management [334]) and
SecOps (Management of Information Security and Improvements [159, Annex A 5.24] & Design Basis Threat framework [154])
contexts, showcasing their fundamental stages and temporal milestones. These milestones can serve as metrics for evaluating
process performance and also for modeling and analyzing cyber-physical interactions.

1.2 Problem Statement

In this section, we specify the objectives of this research work by analyzing the challenges

inherent in ICT systems operations (Section 1.2.1), stating the working hypotheses (Section

1.2.2), and defining two specific research questions (Section 1.2.3). In relation to this analysis

phase, a summary of the contributions resulting from this research work is presented in the

following Section 1.3.

6



1.2 Problem Statement

1.2.1 Challenges

Process performance and knowledge capitalization. To effectively manage network opera-

tions, including incident management, it is essential to have a thorough understanding of the

ICT systems’ state and operational rules. In the absence of such knowledge, it becomes neces-

sary to develop a method to group and prioritize the multitude of indicators and notifications

originating from network operations, which are reported through NMSs and SIEM systems.

These notifications encompass various aspects like system and application logs, performance

indicators, technical alarms, and service alarms, which are associated with spontaneous faults,

configuration changes, normal usage, and malicious activities.

By implementing a systematic approach to managing these informations & notifications,

several benefits can be realized. For instance, it would allow to highlight explicit behavioral

patterns exhibited by the network, promptly report critical situations, facilitate tractable

analysis of incidents, and identify new instances of faults that are identical or similar to

previously encountered issues. Moreover, this process could enable the creation of new

supervision rules that give priority to relevant notifications until the root cause is pinpointed,

thus establishing a connection with appropriate remedial actions.

Scale effect. However, as networks grow in size and complexity, organizations tend to adopt

siloed structures to maintain high expertise within specialized teams. This dual dynamic leads

to Network Operation Center (NOC) and Security Operation Center (SOC) teams becoming

overwhelmed with data analysis and alarms prioritization, considering that 1’000 events per

day and per security engineer is the practical maximum to deal with [90]. Although automatic

alarm prioritization solutions are used to assist, they have limitations: rule-based solutions

result in false negatives and are hard to maintain, while machine learning-based solutions

lead to false positives and lack explainability.

Another consequence of this dual dynamic is that the knowledge about ICT systems’ behavior

is fragmented across different teams with varying terminologies and rules, even for similar

equipment types. Hence, although the variety of decision support tools and technical so-

lutions to manage networks is a wealth in itself that corresponds to the variety of technical

or functional scopes to be managed, it is at the same time a challenge for efficient incident

situation understanding: in practice, decision-making on the remediation action to be taken

for a given situation must be based on a multiplicity of viewpoints stemming from various

specialized tools. This diversity also makes it challenging to consistently and practically

account for system behavior, thus undermining the principle of continuous improvement

loop recommended in quality management standards like the ITIL Incident Management

process [334], ISO/IEC 20000 [1] and NIST SP 800-61 [277].
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Knowledge representation. We observe that graph technologies are more and more used

to monitor complex systems or help to detect anomalies [85, 370, 94, 217]. Using relational

models like graphs could be highly beneficial to network and cybersecurity administrators

for improving situation understanding and response through User and Entity Behavior Ana-

lytics (UEBA) [381] solutions as part of NMSs and SIEMs. Beyond the fact that networks are

generally represented as graphs for the intuitive value of this representation mode, employing

a relational model is crucial because similar network events can lead to different incidents

depending on the technical context in which they occur (i.e. thinking of network configuration

in the broad sense, including network topology and equipment & service parameters). In

fact, not using graphs eliminates the possibility of considering an incident event as part of a

larger whole that may itself contribute to more complex events/incidents (e.g. common cause

failures, cascading failures and alarm spreading phenomenon).

Heterogeneity in concepts and data. At the same time, using graphs necessitates imposing

a certain level of consistency in knowledge representation to ensure effective data utilization.

The heterogeneous nature of network data (e.g. technical characteristics of assets, techni-

cal logs and alarms, performance measurements as time-series, users and organizations),

combined with the fact that graphs are a versatile data structure, may lead to the temptation

of directly recording this diversity of data in the graph, potentially overlooking the need for

generalization for downstream analysis tools (e.g. interpreting network interface state changes

consistently, irrespective of the manufacturer providing the textual notification). Building

upon earlier management protocols like SNMP [112], various modeling languages and data

models are now available to tackle this heterogeneity challenge. For instance, the TM Forum

Open APIs [355] offer interoperable definitions for states and operations in decision support

tools, the YANG [268] modeling language describes configuration and state data of network

elements, and several prior studies in close relation to knowledge graphs [8] and Semantic

Web [352] technologies have shown the value of semantic modeling in network infrastruc-

ture monitoring, such as INDL [235], CRATELO [12], UCO [388], ToCo [294], ACCTP [29], and

DevOpsInfra [270].

The use of graphs also opens the door to the use of analysis and inference tools directly

aligned with graph theory (e.g. risk diffusion using shortest path calculations [380], event

clustering using a centrality measure [231]), machine learning (e.g. fraud analytics using

graph isomorphism [210]), or automated reasoning (e.g. identifying computer forensic sce-

narios using pattern matching [30]). However, introducing new AI techniques or adapting

existing ones for anomaly detection and root cause analysis within graph structures must

prioritize compatibility with this data format. Challenges may arise, such as handling dynamic

graphs [231, 222] or data transformations with information loss at the models’ input, thus

leading to costly inference pipelines for result recontextualization. Similarly, relying on a

8
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single AI technique may prove inadequate for addressing the wide range of failure or attack

scenarios that can arise. Typically, detection tools and models specialize in specific data types

and detection cases, like using file excerpts to detect viruses by their signatures [365] or IP

packet headers to identify trend disruptions in application usages [151]. However, incident

characterization often involves multiple artifact types or compromise indicators due to the

complex nature of large-scale system failures and the ingenuity of malicious actors in devising

attack scenarios. Therefore, unless an inference model capable of handling all data types and

detection cases is available, an architecture like synergical reasoning [46] (cooperative decision

making) becomes essential. Such an architecture could follow a model stacking scheme [273],

or incorporates diverse specialized inference models that collaborate, leveraging each other’s

outcomes through mechanisms like voting, on-demand inference and re-use of previous

inference results.

Observability and decision-making. Finally, since ICT systems are inherently intercon-

nected, any action of modification (whether it is intended to evolve or repair the system) must

be taken with full knowledge of the consequences. Therefore, having precise and complete

knowledge of the system is a desirable ideal, but it is not the general case for various reasons.

From a completeness perspective, typical examples include the absence of measurement

means, encrypted or protected data, or dropped notification data unit by the network. From a

precision perspective, the typical case is the accumulation of layers of data interpretations,

each introducing errors that hinder unambiguous decision-making. Taking inspiration from

[32], this phenomenon can typically be represented with Eq. 1.4:

DT = TH (TS(TP (D))) (1.4)

where T is an interpretation function, D is the data representing a system state, measured by

a probe P , encoded into the information system S, and then understood by a human operator

H for potential decision-making.

The first drawback arising from this observability context is that the diagnostic phase cor-

responds to a special situation of making an inference from vague or fuzzy premises [78],

thus necessitating the inclusion of a belief or confidence indicator with the results of the RCA

(Figure 1.3). The second drawback is the risk of error in choosing the remediation action.

This is theorized in [46] through equation L ≡ C ∧Pi → G〈p〉, where L is a logical lemma,

C a concept, Pi the i th procedure stored in a knowledge base, G the goal to be reached (i.e.

returning the system to normal operations) and 〈p〉 a probabilistic measure of confidence over

L.5 The typical approach in this kind of situation is to proceed through trial and error until the

system is brought back to a viable state. This involves making decisions in uncertainty about a

5The equation can be read as “If the context C appears to hold currently, then if I enact the procedure P , I can
expect to achieve the goal G with certainty p” [46].
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Figure 1.3: Graduated Root Cause Analysis (RCA) computation strategy.
During incident diagnosis, the accuracy of root cause search results determines remediation action selection. In the best case,
actions are deduced from the cause; otherwise, abductive reasoning [298, 108] is used to select probable causes/solutions or
present research hypotheses.

system whose state evolves over time, influenced by its own dynamics and the consequences

of attempted actions for incident recovery (Figure 1.4).

Figure 1.4: Sequential & uncertain decision problem on a hybrid “concrete-conceptual” model.
Witness 1 interprets the network’s state (a set of state vectors related to structural elements SE at time t ) abstractly using concepts
(C ) and combinations of concepts (CoC ). Each time step has potential future states based on the technical and conceptual
neighborhood of SE (M = malicious actor, Ops = planned operations, etc.), and a state transition model (set of r ul es). Witness
2 can predict future state vectors by analyzing transitions or actions on the system, while Witness 3 observes the system with its
new set of states and concepts (same as Witness 1) resulting from the application of the state transition model. Lack of knowledge
about state vectors or rules leads to considering the inference process (e.g. alerting on undesirable user/system trajectory,
predicting next user/system action for corrective maintenance) as a sequential decision-making problem under uncertainty,
where states and transitions represent the system’s dynamics.

1.2.2 Hypotheses

Considering the aforementioned challenges, we aim to provide a constructivist framework

towards mastering the complexity of ICT systems behavior in the context of network operations

and incident management. Therefore, we propose the following main hypotheses for this

research work.

10



1.2 Problem Statement

Hypothesis 1. The fundamental model for representing ICT systems and their dynamics is a

dynamic graph (network topology + notifications = dynamic graph).

Hypothesis 2. Alarm spreading and cascading failures are bounded in terms of both time and

location.

Hypothesis 3. The functioning logic of ICT systems can be (partially) inferred or learned by

observing both network topology and notifications.

Hypothesis 4. The state trajectory of ICT systems reflects the course of action, including

malicious usage.

Hypothesis 5. The state trajectory of ICT systems can be mapped to a logic-based abstracted

representation of the situation.

Ultimately, by leveraging diverse data sources and drawing insights from domain experts,

the research community, and shared/private data models, the framework based on these

hypotheses could facilitate understanding the behavior of a complex technical system. This

understanding could then be used to reason about the system’s trajectory in a transparent

manner through a fundamental dataflow abstraction (Eq. 1.5), enabling applications such as

anomaly detection and optimal design calculations.

E
e.t .l .−−−→K ⟲r i n f er.−−−−→P (1.5)

The semantics of Equation 1.5 are as follows: E the Environment (i.e. primary and secondary

data describing the network)6, K the Knowledge (i.e. information about the network behavior

and business rules guiding network administration tasks), P the Propositions (i.e. explained

inferences about the network states and behavior), e.t .l . an Extract-Transform-Load process

or alike, r a reasoning process (i.e. an “internal” inference process aimed at producing facts

and knowledge from basic facts present in K ) and i n f er. an inference process.

1.2.3 Research Questions

These hypotheses lead to the following main question of this doctoral research:

How to define an anomaly model in a dynamic technical environment with various

interdependencies, and what form should this model take to be shareable among

practitioners (network designers, network administrators, cybersecurity analysts,

etc.) and directly usable in anomaly detection tools and decision support systems?

6We use a general definition of primary data (data directly collected on the source, may be in raw format or
that have been normalized for future processing steps) and secondary data (data that has already been collected,
processed, or even aggregated).
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On the one hand, the anomaly model production/exploitation aspect with heterogeneous

data needs to be investigated:

RQ 1. What is an adequate neuro-symbolic AI architecture that can learn logically-constrained

behavioral rules from events and topology data of an ICT system, and enable to detect and

interpret complex anomalous technical or user-based situations (e.g. network service issue with

alarms spread across time, locations and data sources; stealthy cyber security attacks)?

On the other hand, the constraints on internal representation of data/knowledge aspect needs

to be investigated too:

RQ 2. Can human operators and decision support AI agents use the same Knowledge Represen-

tation (KR) of ICT systems for anomaly detection and knowledge management, that KR being

subject to computation efficiency (e.g. near real time anomaly detection) and interpretability

(e.g. decision tree like representation of predefined/learned ICT system’s dynamics)?

1.3 Outcomes

This work contributed to the research with the following outcomes.

Methods and insights. Four groups of contributions have emerged from this doctoral work

in relation to the research questions RQ 1 and RQ 2. They can be summarized as follows, and

their interrelationships are shown in Figure 1.5.

• NORIA-O. We proposed the NORIA ontology, a Semantic Web-based data model devel-

oped in collaboration with network and cybersecurity experts. The ontology enables

operators and analysis tools to have a comprehensive and homogeneous view of net-

works, even with data from diverse sources. Existing data models focus on representing

computing resources and their allocation, but there is currently no model that describes

the inter-dependencies between the structural, dynamic, and functional aspects of a

network infrastructure. NORIA-O addresses this gap.

• KG-based data platform. We developed an end-to-end data processing architecture

that combines design patterns from NMSs/SIEMs with Semantic Web tools to construct

a Knowledge Graph (KG) [8]. This architecture enables the interconnection of heteroge-

neous data using shared definitions, which is crucial for efficient interpretation of events

and incidents. Semantic Web techniques play a vital role in addressing challenges re-

lated to data heterogeneity, knowledge sharing, and logical/probabilistic reasoning. The

platform includes features such as batch/stream processing, declarative data mapping,

12



1.3 Outcomes

data patching and reconciliation, centralized configuration and data management for

provenance auditability, and semantic data transfer using message bus technologies.

• Anomaly detection framework. We defined three families of anomaly detection tech-

niques using KGs and the NORIA-O data model: model-based design, process mining,

and statistical learning. We showed that heterogeneous ICT system data can be unified

for downstream algorithms, allowing broader inference capabilities and reducing the

coupling between the techniques and the data sources. We also demonstrated that

using multiple detection techniques defined within this framework combines intrinsic

explainability and probabilistic reasoning capabilities through the application of the

synergistic reasoning principle (cooperative decision-making). This principle involves

reinjecting knowledge from each technique into the KG, providing additional contextual

information for subsequent techniques. This approach enables broader coverage of

abnormal situations compared to a single specialized detection model for specific data

types or application domains.

• UI/UX design. We proposed a Web-based client-server software architecture using a

KG for decision support in complex network situations. Through this, we identified

NetOps/SecOps expectations in terms of ergonomics and functions, based on expert

interviews. We demonstrated the need to go beyond simple data retrieval from the KG.

Synergistic reasoning and interactive analysis of multi-layered systems are essential.

Our User Interface/User eXperience (UI/UX) evaluations provide a foundation for future

KG-based NMS/SIEM designs with hybrid logical/probabilistic reasoning.

Outreach. This PhD thesis’ results were accomplished and applied in the frame of the

“machine learNing, Ontology and Reasoning for the Identification of Anomalies (NORIA)”

research project at Orange7, an international network infrastructure and service provider.

They had significant industrial impact, leading to the active deployment of a knowledge

graph-based digital twin infrastructure at the company’s level. Additionally, they provided

an opportunity to supervise and support four students in their internships and final projects,

providing them with training in Semantic Web technologies and Decision Support Systems

(DSSs). This PhD thesis’ results also contributed to the establishment of the “RML join”

community, an expert discussion group within the W3C Knowledge Graph Construction

Community Group8, as part of the effort to standardize the RML ontology [23] and make it a

W3C Recommendation.

7https://hellofuture.orange.com
8https://www.w3.org/community/kg-construct/
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Figure 1.5: Overview of this PhD thesis.
The outcomes of this thesis work and their interrelationships, presented in the form of a block diagram. The diagram includes
references to the addressed research questions (RQ) and chapters that detail the associated work.

Papers, communications and resources. This PhD thesis led to eight peer-reviewed papers

in international conferences, all of which have been accepted [203, 205, 204, 339, 340, 300,

341, 338]. The paper [339] was among the nominees for the Best Paper Award in the ESWC9

2024 Resource track, and the paper [341] received the IC@PFIA10 2024 Best Paper Award.

Additionally, there was one poster, one demo, one blog post, and one keynote presented.

Furthermore, eight resources and tools were published as open source. For a comprehensive

list of the papers, communications and open-source code published in the context of this

thesis, please refer to the end of the manuscript in Chapter A.

1.4 Thesis outline

The remainder of this thesis is organized as follows.

Firstly, in Chapter 2, we present the state of the art of the field according to the two facets

Knowledge Representation and Reasoning, and Anomaly Detection and Explainability that

we aim to articulate to address the research questions RQ 1 and RQ 2. We demonstrate here

9Extended Semantic Web Conference
10Ingénierie des Connaissances
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that while data heterogeneity and interrelatedness between data entities (i.e. distinct and

persistent units of information) appear to be cornerstones for advancing the capabilities of

NMS/SIEM DSSs, several semantic models and algorithmic methods for anomaly detection

share common properties that could help address these two aspects. This enables us to tackle

challenges outlined above in Section 1.2.1 through research on the means of constructing a

rich representation of networks and their ecosystem that can be used by one or a combination

of several inference techniques.

The presented work is then divided into two main parts.

Part I focuses on “Knowledge Engineering and Massive Data Integration”. It begins with the

design of NORIA-O (Chapter 3), an ontology implemented using Semantic Web techniques

that allows describing a network infrastructure, its events, diagnosis, and repair actions during

incident management. We then establish the design methodology and principles for an end-

to-end knowledge graph-based data platform (Chapter 4), for handling descriptive datasets

and events streams.

In Part II, the focus is on “Exploitation of the Knowledge Graph for Anomaly Detection and

Diagnostic Assistance”. This part leverages the data from the knowledge graph built using

NORIA-O and the Extract-Transform-Load (ETL) architecture discussed earlier. Firstly, three

complementary anomaly detection approaches are proposed and discussed: model-based

(Chapter 5), process mining & conformance checking (Chapter 6), and statistical learning with

graph embeddings (Chapter 7). Then, we introduce and evaluate NORIA UI (Chapter 8), a

Web application co-designed with network operations experts for incident diagnosis using

knowledge graphs and the aforementioned anomaly detection approaches.

Finally, in Chapter 9, we provide a summary of this research work with conclusions and

perspectives.
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Chapter 2

State of the Art

With this survey we propose to tackle the challenges defined in Section 1.2.1 by exploring the

conditions for developing a network & IT monitoring system with advanced anomaly detection

and reasoning capabilities through the lenses of Knowledge Representation and Reasoning

(KRR): we provide an end-to-end overview with perspectives about graph-related knowledge

representations, available anomaly detection methods, and how these two perspectives can

match. Through this, we consider the possibility of improving operational efficiency in

incident management situations and enhancing the design of complex network architectures

by learning an explicit representation of the context of incidents (i.e. including information

about system configuration and events that have occurred).

The remaining sections of this chapter are structured as follows. Section 2.1 outlines the

research methodology used for this survey. Section 2.2 examines Decision Support Systems

(DSSs) in the NetOps and SecOps fields, and identifies limitations that need to be addressed

based on their capabilities and the expectations of these fields. Section 2.3 examines semantic

models for storing and managing technical and operational data required for NetOps and

SecOps activities. Section 2.4 examines algorithmic methods for anomaly detection from

the literature, focusing on application domains close to NetOps and SecOps. It provides an

overall analysis of these methods, considering their principles, practicality within the incident

management process, and the data structures involved. Finally, Section 2.5 concludes the

survey by summarizing the technological and scientific challenges and suggesting future

directions for knowledge graph-based monitoring systems.

2.1 Research Methodology

In this section, we explain the methodology used for creating this survey. Considering anomaly

detection for Information and Communications Technology (ICT) systems as an end-to-end

research topic, we followed a two-step research methodology to collect and analyze relevant
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scholar and technical articles.

Firstly, in relation to the challenges discussed in Section 1.2.1, we broke down the field into the

four following research axes to establish a framework for exploration and analysis: Knowledge

Representation (KR) as the capability to store and process heterogeneous data; CompleXity

(CX) as the capability to (efficiently) handle and process data streams as well as older/static

stored data; Anomaly Detection (AD) as the capability to contextualize events and use them

as a basis for complex anomaly detection; eXPlainability (XP) as the capability to provide

feedback to the decision support system users about the reasoning process that led to a given

alert.

Next, we conducted a keyword/topic-based bibliographic research, paying particular attention

to the sources such as university libraries (e.g. Cambridge1, Standford2), publishing houses

(e.g. ACM3, IEEE4), interest groups (e.g. W3C5, ITU6, TM Forum7), well-known organizations

(e.g. Gartner8, CISCO9), and the targeted application domains (e.g. networks and data cen-

ters management, software engineering, cyber security, cyber-physical systems). We also

considered the co-citation network, adoption degree, and the availability of implementations.

In order to address the subject comprehensively, our initial set of keywords included “anomaly

detection”, “failure detection”, “availability”, “dependability”, “self-healing”, and “process mod-

eling and comparison”. Then, regarding the knowledge representation axis, we further looked

for data structures and knowledge representations commonly used in the ITSM and cyber

security domains with more specific keywords: “network and system topology/functional de-

scription”, “event/fault/signaling notification”, “asset management”, “communication protocol

definition”. This included scrutinizing telco and IT standards, user manuals of products, and

code analysis from the research community projects. As graphs have a natural affinity with ICT

system diagrams, we primarily targeted knowledge representations with native support for

graph structures, notably knowledge graphs [8] based on Semantic Web technologies [352] for

their knowledge interoperability and inference capabilities. We also expanded our exploration

to more traditional data structures such as relational tables in DataBase Management System

(DBMS), decision trees, and Bayesian networks [83], as translations between these structures

and graphs can be made back and forth with help of additional tools.

1https://www.cam.ac.uk/
2https://www.stanford.edu/
3https://www.acm.org/
4https://www.ieee.org/
5https://www.w3.org/
6https://www.itu.int/
7https://www.tmforum.org/
8https://www.gartner.com/
9https://www.cisco.com/
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2.2 Detecting Anomalies and Malicious Activity: a Cartography of Industrial Tools

Using this method, we have selected ∼ 270 references10 that have been further analyzed

according to the specific criteria for the three sections that follow: in Section 2.2 (capabilities

of DSSs), we examined a corpus made of approximately 65 industrial tools, file formats, and

data exchange standards; in Section 2.3 (semantic models), we examined 95 references that

were published between 2004 and 2023; in Section 2.4 (algorithmic methods for anomaly

detection), we examined 103 references that were published between 1999 and 2023. Note

that some references may address more than one research focus. For example, as shown in

the FOLIO work [57], the development of knowledge-based anomaly detection techniques is

typically associated with the development of a semantic model that allows for representation

and reasoning in the discourse domain.

2.2 Detecting Anomalies and Malicious Activity: a Cartography of

Industrial Tools

Designing a data processing architecture for incident management of ICT systems involves

various research and technical domains, such as data transformation and wrangling, storage

and processing architectures, decision making, and business process management. In this

section, we review related work focusing on the current architectures of Network Monitoring

System (NMS) & Security Information and Event Management (SIEM) systems. First, we

examine high-level requirements from the eye of NetOps & SecOps in Section 2.2.1. Then, we

analyze the well established capabilities of these tools in Section 2.2.2. Finally, we discuss the

remaining limitations in Section 2.2.3.

2.2.1 What Do Experts Need To Ask Monitoring Tools and Decision Support Sys-

tems?

As mentioned in Section 1.1.2, recommendations apply to both the NetOps & SecOps domains

in terms of organization and tooling. These recommendations aim to achieve the dual ob-

jective of maximizing service quality/security and minimizing anomaly detection/correction

times. In both domains, the incident management process is described as a sequence of

iterative steps including the diagnosis of the situation and leading to the remediation and

correction of an undesirable situation. As such, it is akin to an “action-observation-reward-

goal” process model [27] with the following scenario: 1) a failure (issue) on an asset induces

events and alarms on the asset’s neighborhood; 2) responding to a trouble ticket (an alert), a

network or security administrator analyzes events and alarms to distinguish primary events

(causes) from secondary events (effects); 3) contextualizing events and alarms with respect to

“in policy” or “out of policy” activity models enables the administrator to select a remediation

10The number of references provided is approximate as some sources are spread across multiple documents,
particularly technical documentations and standards related to DSSs and their ecosystem.
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action; 4) based on the remediation action results, the administrator closes the trouble ticket

(the issue) or loops back for further analysis and corrective actions.

When engaged in this four-step scenario, experts wish to get an accurate insight about some

specific event occurring over the network and be able to answer fundamental questions such

as: “what are the objects involved?”, “what are the observations?”, “what can we infer from a

set of observations and why can we infer this?”, “what are the causes / consequences?” and

“what is the remedy ?”.

It is noteworthy that these questions follow an incremental situation understanding task

scheme, i.e. from elementary queries on a knowledge base (e.g. using SPARQL queries [368],

the DROOLs [228] engine) to queries combined with specialized inference modules (e.g. rule-

based, entailment [119], classification, what if model [246], digital twin simulation [102, 87]). It

is also noteworthy that these questions lead to secondary requirements in terms of reasoning

capabilities upon situations: dependency calculus (e.g. what services are at risk whenever this

host fails?); causality inference (e.g. is this log related to some other log?), situation awareness

(e.g. is this set of log anecdotal evidence of an attack course of action?). These questions and

remarks themselves are guides for the expectations of NetOps and SecOps teams regarding

monitoring tools and DSSs.

2.2.2 What Are the Well Established Capabilities of Those Tools?

Umbrella systems for centralized situation understanding. To support network and security

administrators in their task, numerous tools and procedures are available for diagnosing the

state of ICT systems (remote access to devices [208], on-site measurements and indicators

from probing systems [73], decision support tools such as NMSs [274, 185] or SIEMs [189,

134]), monitoring the life cycle of incidents, and capitalizing on knowledge of the causes

and solutions to incidents (help desk ticketing systems [152], knowledge bases [145]). This

variety of tools and solutions is a wealth in itself that corresponds to the variety of technical or

functional scopes to be managed (e.g. network traffic analysis [72, 347] vs malware signature

in files [365], IPoDWDM international backbone network vs distribution and access datacenter

network). However, this is at the same time a challenge for a unified approach to the diagnostic

stage: in practice, decision-making on the remediation action to be taken for a given situation

must be based on a multiplicity of viewpoints stemming from various specialized tools. NMS

and SIEM platforms play a crucial role in addressing this challenge, as their typical role is to

centralize and present all technical information and alerts from networks.

Log recording/management & notification analysis. NMSs and SIEMs are two different

product lines due to the nature of the data processed and the expectations regarding the
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incident management processes in which they are involved. For telecommunication networks,

alarms (i.e. a persistent or non fugitive fault that happens on an atomic function, as discussed

in Section 1.1.2) are first class citizens that should be reported to a Management and Control

System (MCS) for performance analysis and service impairment detection. For cybersecu-

rity, technical logs need to be combined with vulnerabilities and threat intelligence in a Log

Collection → Log Normalization → Notifications and Alerts → Security Incident Detection

component chain for threat response management [90]. Both product lines show two main

functional blocks: log recording/management and notification analysis, with the second block

dependent on the first. Figure 2.1 illustrates this for SIEMs, highlighting the characteristic

sub-functions of each block. It also shows that the implementation of the recording/manage-

ment block primarily involves technical solutions, while the analysis block primarily involves

algorithmic solutions.

Figure 2.1: SIEM technical and functional capabilities.
Use case analysis for SIEMs, based on [90], using the UML representation standard. Dotted lines indicate a functional dependency,
and diamond lines represent a composition relationship. The light blue use cases (top ellipses) are technical-focused use cases,
while the other use cases are primarily algorithmic-based.

Handling heterogeneous data & short/long-term analysis. As ICT event data falls into the

category of big data (e.g. high volume, variety, and velocity characteristics) [308], design

choices for the implementation of the recording/management and analysis features are influ-

enced by the need for efficient data ingestion, processing performance, and data retention.

These design choices aim to enable both near-real-time anomaly detection (e.g. event correla-
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tion indicating the propagation of malware) and long-term behavior analysis of the systems

(e.g. calculation of the characteristic propagation method of a given malware).

In both NMS and SIEM contexts (e.g. ZenOSS [389], NetWitness [311]), data processing archi-

tectures generally follow the producer/consumer design pattern (a.k.a. observer pattern [101])

and inspirations from distributed computing (i.e. hubs + aggregator).11 This type of archi-

tecture indeed offers a level of modularity that allows for managing the integration of data

sources with varied persistence and dynamics characteristics through specialized modules

that operate independently. This is particularly the case when monitored systems are het-

erogeneous, such as a High-Performance Computing (HPC) platform with a data transfer

and processing service offer vs an Internet service provider with communication service and

Platform as a Service (PaaS) offers.

The architectures used also allow for combining multiple storage solutions. The general trend

is to maximize Input/Output (I/O) performance and minimize storage footprint, subject to

both data semantics and persistence/dynamics characteristics: 1) daemons and web appli-

cations (e.g. dedicated filesystem for raw logs, binaries and libraries); 2) events and node

information (e.g. PostgreSQL12 for structured notifications and characteristics); 3) perfor-

mance data (e.g. RRD13 for throughput or CPU usage time series). When not combining

storage solutions, alternative approaches are to apply rule-based data normalization before

storage (e.g. ManageEngine’s EventLog Analyzer14), store raw logs/events then normalize

data before applying rule-based analysis modules (e.g. SolarWinds’s Security Event Man-

ager15), or apply in-memory real-time analysis of data streams and process the resulting

information (e.g. OSSEC Foundation’s OSSEC HIDS16, IBM’s QRadar17). It is noteworthy that

persistent storage formats mainly correspond to relational database management systems

or time series databases, rather than graph formats, except for new entrants in the market

(e.g. Luatix’s OpenCTI18, EXFO’s Nova Context19). Overall, the proposed approaches are a

compromise between two related trends: how data is conceptually stored and managed, and

how hardware/software handle data.

11The TM Forum’s Open Digital Architecture (ODA) aims to improve user experience and Information System
(IS) interoperability in the ICT industry beyond general best-practice approaches for Decision Support Systems
design.

12https://www.postgresql.org/
13http://www.rrdtool.org/
14https://www.manageengine.com/
15https://www.solarwinds.com/
16https://www.ossec.net/
17https://www.ibm.com/
18https://www.opencti.io/
19https://www.exfo.com/
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Information correlation & shared services. Log centralization in NMS and SIEM systems

allows network administrators to focus their monitoring and analysis activities on a single tool.

An additional strategy implemented by monitoring tools and DSSs to minimize (cognitive)

resources required for analyzing alarms and logs when presented to the operator is based

on the concept of semantic distance (i.e. the distance between the goal aimed by the user

and the actions/objects of the user interface [172]). Various complementary approaches are

observed in this regard, among which notification contextualization through rendering and

notification rewriting and enriching are playing a significant role and typically leverage the

DSS operators’ skills through implicit characterization of the notification. Regarding rendering,

classic examples include flashing a shape on a network map and displaying the alarm in text

form alongside other information related to the equipment or service affected by the alarm. For

rewriting and enriching, examples include mapping an alarm to a basic supervision category20

and annotating it with probableCause [165] attribute value or confidence score based on

inference services (Figure 2.2), thereby relating the notification to the fault interpretation

domain and the context for assessment.

Another strategy involves grouping and hierarchically prioritizing notifications to facilitate

Root Cause Analysis (RCA) and decision-making for remediation actions. RCA for alarm

spreading phenomenon in ICT systems is typically approached as an inductive process that

distinguishes between primary failures (i.e. a failure that directly indicates the fault loca-

tion and initiate a repair action, e.g. a broken cable or a misconnection) and secondary

failures (i.e. a consequential failure, e.g. an upper level service that is gone down) [162, Sec-

tion 7.1.1.1]. Therefore, the cause of a data transmission impairment is sought in the first

alarming network element of a datapath, and redundant Alarm Indication Signal (AIS) can

be silenced using an alarm suppression function or linked to a parent notification using a

correlatedNotifications [165] attribute.

Similarly, for non-hierarchical or more complex systems, User and Entity Behavior Analytics

(UEBA) is typically approached through a doubt removal process using dependency graphs or

decision trees. Applied examples of this model-based approach are present in NMSs/SIEMs

where it is assumed that the network topology and transaction records (i.e. a sequence of

one or more operations – reads or writes – which reflects a single real-world transition [125])

are a model for causality relationships about network elements, services and applications.

As this kind of feature is a key differentiator for commercial tools, few detailed papers are

freely available about this but online blog posts for demonstration purposes. For examples,

see the Zenoss “Layer 2 ZenPack” [191], the Riverbed “APM” [306] or the Cisco AppDynamics

20As per [162, Section 7.1.1] for telecommunication networks: transmission (management of the transmission
resources in the network), quality of service (degradation in the performance), processing (software or software
processing fault), equipment (fault localization and repair of the equipment itself) and environment (ambient
conditions within an enclosure in which the equipment reside). In the cyber security domain: Confidentiality,
Integrity, Availability (a.k.a. the CIA triad).
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Figure 2.2: Cyber security tools relationships.
This entity-relationship diagram shows how specialized cyber security applications like SIEM (e.g. OpenCTI) or Cybersecurity
Threat Intelligence (CTI) tools (e.g. VirusTotal) can compose, with help from shared services (e.g. NVD [257], MISP [248],
Maltego [343]) or exchange formats (e.g. STIX [264]), in order to provide contextualized information over detection tools (e.g.
SNORT [72], YARA [365]). Regarding relationships around SIEMs, emphasis is placed on the OpenCTI tool due to the easy
accessibility of its detailed features, as it is an open source tool. Relationships around the UCO [388] component showcase the
data sources and exchange formats used for knowledge discovery and After Action Report (AAR) annotation tasks as mentioned
in [388], providing insights into the functional domains covered by the UCO project. The method used to construct this survey
consisted of distinguishing, within the exchange formats, the aspects from those that rely on specific analysis tools, and then
tracking the interrelationships between these tools.

“Cognition Engine” [307]. In the absence of algorithmic solutions, doubt removal is typically

achieved in DSSs by facilitating an exploratory approach to data through the use of hyperlinks

for navigating between information elements, display filters, a query system on the DSS

database, and even interactive annotation (e.g. IBM “i2 Enterprise Insight Analysis” [148]) and

event sharing among the supervision staff.

2.2.3 What Are the Limitations Remaining?

Although NMSs/SIEMs are a data focal point for network element characteristics and opera-

tional states, it is noteworthy that automated contextualization of notifications does not (or

minimally) take into account network topology information (e.g. network links, data flows,
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routing tables, failover mechanisms, location), network operation information (i.e. current

and past trouble tickets or scheduled operations), agreed-upon work methods (e.g. equipment

upgrade or IP address blacklisting procedures), or information regarding services provided to

users (e.g. contractual data, business functions affected by a network service). Instead, it is

rather the principles of UI/UX ergonomics and easy access to complementary (ad hoc) tools

(e.g. search engine of Operations Support Systems (OSS), network diagram inference from

traffic dumps, queries to third-party CTI tools) that are deployed, trusting that the DSS user

will have and know how to mobilize the necessary skills to perform diagnostics.

Part of the reasons for this state of affairs comes from the fact that networks are complex

(please refer to Section 1.1.1 and Section 1.2.1 for details) and open systems (i.e. no a priori

knowledge of the behavior of users and connected neighboring systems) that are constantly

evolving (e.g. new customers, new devices, new services). This, in turn, leads to an admin-

istrative effort in managing DSSs, defining alert rules, and ensuring data coherence, with

costs exceeding regular operational expenses. For example, regarding the RCA and UEBA

techniques evoked just before in Section 2.2.1, it is indeed necessary to consider that learning

and using causal models rely on the idea of having complete knowledge of the ICT systems.

This requires a complex technological ecosystem composed of network discovery protocols

(e.g. LLDP [149]), cross-vendors definitions of managed objects (e.g. non vendor-specific

branch in a SNMP Management Information Base or in a YANG model [52]), active network

monitoring systems (e.g. flow monitoring with an IPFIX [392] compliant system) running

over an in-production network, and even information sharing between network production

and operation stakeholders. Regarding information sharing, functional alignment issues can

be observed between the data models and vocabularies implemented and used by network

production and operation stakeholders, thus entailing poor interoperability (e.g. challenges

in interpreting potentially similar facts and concepts) and further complicating the imple-

mentation of RCA and UEBA techniques (i.e. causal relationships filtering for unseen yet

failure modes or incident situation is generally unavailable unless explicitly implemented by

NetOps & SecOps experts responsible for a specific network). Table 2.1 illustrates this with data

exchange formats in the field of cyber security, along with the existence of numerous cyber

security taxonomies from various sources: European Commission [106, 116], NIST Computer

Security Research Center21, IEEE22, IFIP23, ECSO24, cyberwatching.eu25, and so on.

Although interoperability of data representations and exchange formats is a cornerstone of

current limitations, the heart of the problem lies in the ability of DSSs to effectively support

the diagnostic steps performed by experts by providing full and reliable contextualization of

21https://csrc.nist.gov/
22https://www.ieee.org/
23https://www.ifipsec.org/
24https://ecs-org.eu/
25https://www.cyberwatching.eu/
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CAPEC ✓ ✓ ✓ ✓ ✓

CCE ✓ ✓ ✓ ✓ ✓ ✓

CCSS ✓ ✓ ✓

CEE ✓ ✓ ✓ ✓

CPE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CVRF ✓

CVSS ✓ ✓ ✓ ✓ ✓ ✓ ✓

CWE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CWSS ✓ ✓ ✓

CYBEX ✓

CYBOX ✓ ✓ ✓ ✓ ✓ ✓

IODEF ✓ ✓

MAEC ✓ ✓ ✓ ✓ ✓ ✓ ✓

OCIL ✓ ✓ ✓ ✓ ✓ ✓

OVAL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

SBVR ✓
STIX ✓ ✓ ✓ ✓ ✓

SWID ✓ ✓ ✓ ✓ ✓ ✓

XCCDF ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 2.1: Cyber security vocabularies and featured application domains.
Comparison of the application domains for well-established cyber securities vocabularies, based on [346].

events occurring on the ICT systems. According to Cybernetics [261], processing a notification

alone cannot increase its informational content, but enhancing the precision of the knowledge

about the situation in which it occurs can be valuable, even in ambiguous situations. Similarly,

time psychomechanics [133] suggests that a complete understanding of an object involves

considering not only its current state but also the various states it has gone through. Based

on these principles, a natural approach to enhance the capabilities of NMSs/SIEMs is for

analysis algorithms to rely on a comprehensive and integrated view of ICT systems and their

ecosystem, rather than aggregating inference results from several algorithms, each using a

subset of data. The means to implement this proposal are analyzed in the following sections,

starting with the knowledge representation and reasoning perspectives in Section 2.3, and

then the anomaly detection perspective in Section 2.4. Ultimately, as insights from NetOps
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can benefit SecOps and vice versa, NMSs and SIEMs could then be considered as part of the

same DSS solution.

2.3 Knowledge Representation and Reasoning: a Cartography of

Semantic Models

In order to represent data in graphs for NMSs and SIEMs, the remaining limitations discussed

in Section 2.2.3 highlight the need to combine various facets of knowledge. Ontologies – as

explicit representations of a discourse domain through concepts and relationships – and

their instantiation as knowledge graphs [8], enable data analysis and inference techniques

to handle heterogeneous data and reason about the context of represented objects. In this

section, we provide a summary of the ontologies we found during the bibliographic research

stage, starting with the definition of evaluation criteria in Section 2.3.1, and reporting on our

analysis in Section 2.3.2. For more details on the different graph models, including knowledge

graphs, the reader is invited to refer to Appendix B.1.

2.3.1 Evaluation Criteria

The data collected and evaluation criteria used to analyze the ontologies are as follows:

Name. The name of the ontology or, if not available, the title of the document describing it

(e.g. research paper, specification, website).

Primary application domain. The domain or field of application that originated the ontology,

based on the indications provided by the authors, or if not available, deduced by us.

Bibliographic document category. We categorize reference documents discussing the data

model based on a detailed reading to estimate the effort required for understanding,

using, or implementing the model. The six categories are: “position” (analyzing domain

issues and expressing intentions for future work), “overview” (providing a high-level

description and use cases), “specification” (formally describing the design methodology

and model), “dataset” (primarily presenting a dataset), “documentation” (providing

context and usage information), and “no access to paper” (due to broken links or access

restrictions).

Main concepts and relations. We sample concepts and relationships from the data model,

either from its implementation or the authors’ description. We focus on top-level

concepts and their relationships, and sometimes second-level concepts if there are

few top-level ones. In complex models with many top/second-level concepts and

shallow hierarchy, we consider the centrality of concepts. This centrality indicates their
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importance in the domain’s conceptualization and can be inferred from graph diagrams

in ontology reference documents (research papers, documentation).

Availability and location. We assess availability of data model implementation: “yes” (pub-

licly accessible), “broken link” (unavailable despite reference), “empty content” (reach-

able but empty), “no reference provided” (location not indicated or explicitly stated

as unpublished), or “not relevant” (not related to Semantic Web or data model). If

implemented, we record URL and serialization used.

Bibliographic citation count. We evaluate the usage or consideration of the proposed data

model based on the number of citations of the research paper or reference document de-

scribing it. The citation count is obtained from Google Scholar26, and the corresponding

URL is recorded.27

Ontology metrics. We gather the characteristics of the data models, including the number of

classes, object properties, data properties, individuals, and Description Logic (DL) [119]

expressivity. This information is collected using the Protégé 5.1 tool [227] or, if we do

not have access to the implementation of the model, based on the details provided by

the authors (in research papers or online documentation describing the data models).

Best practice compliance. We assess the quality of implemented data models using best

practices described in [225] and the related OOPS! tool28. To do this, we obtain a copy

of the data model (from references in research papers, online documentation, or by

contacting authors), normalize it into RDF/XML format using Protégé 5.1, send it to

the OOPS! Web service for analysis, and aggregate the results. For modular models, we

merge the ontologies into a single file using Protégé before analysis with OOPS!.

Conceptual facets coverage. We analyze the capability of data models to encompass the four

facets of the discourse domain, as established in Section 3.2.2, that are essential for

representing networks and their dynamics: structural (network assets such as servers

and links), functional (network services and flows), dynamic (events and states changes)

and procedural (processes and actions). We evaluate this by examining main concepts

and relations of the data models using a subset of competency questions (Table 2.2)

derived from NetOps & SecOps expert panel interviews.29 The reader is invited to refer

to Section 3.2.1 for details on the origin of these competency questions.

26https://scholar.google.com/
27To fully understand ontology adoption, detailed usage information such as the number of instantiated classes

and its evolution over time would be valuable. However, this information is generally unavailable.
28https://oops.linkeddata.es/
29We acknowledge that automatic topic modeling could help qualifying a data model for facets. However, based

on our experience (e.g. using the ZeSTE tool [157]), we find that it is possible but not reliable due to its dependence
on concept naming and description, which is influenced by ontology author bias.
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St. Fu. Dy. Pr. Competency Questions

✓ ✓ What assets are shared by a given asset chain?
✓ ✓ Which entity (resource/application/site) is concerned by a given incident?
✓ ✓ On which resource did this sequence of events take place and in which order?

✓ What corrective actions have been carried out so far for a given incident (who, what,
where)?

✓ What interventions were carried out on this resource that could have caused the incident?
✓ What operation plan (automations, operating procedures, etc.) could help us solve the

incident?
✓ Given all the corrective actions carried out so far for the incident, what possible actions

could we still take?

Table 2.2: Competency questions for analyzing the conceptual facets coverage.
The four knowledge facets to represent (St.: structural, Fu.: functional, Dy.: dynamic, Pr.: procedural) map to a subset of
competency questions (i.e. user queries expressed in natural language) derived from NetOps & SecOps expert panel interviews,
as described in Section 3.2.1 and [339].

2.3.2 Semantic Models

In this section, we present the identified data models from the literature review, their cat-

egorization, and evaluation based on the previous criteria. Out of 95 references analyzed,

50 had an implementation based on Semantic Web technologies [352] (i.e. using a RDF-

related serialization [305] or OWL functional syntax [54]), while the remaining 45 did not

have an implementation. In the following, we focus on the models with available imple-

mentations. The complete analysis and resources are open source and can be found at

https://w3id.org/noria/docs/sota/.

Table 2.3 shows the results in the form of a list of data models. We observe that the models clus-

ter into six primary application domains (theme), with varying proportions of available models

and model characteristics. Table 2.4 summarizes to what extent the set of models for each

application domain theoretically aligns with the targeted discourse domain as established in

Section 3.2.2. From the proportion of models with identified facets in Table 2.4, we observe

that the models developed in the domains of Process modeling and Smart Environment &

Smart Industry (SE-SI) are the most represented. This suggests the significance of modeling

efforts in representing networks and their dynamics in these domains. However, the models

in these domains generally exhibit disparities in terms of the targeted concepts, as revealed

by the fact that process mining models focus on the dynamic and procedural facets without

significant overlap with the structural and functional facets, which are primarily addressed by

models in the SE-SI domain. Similarly, the proportion of models simultaneously covering mul-

tiple facets (i.e. F x% columns in Table 2.4) indicates that models in the CyberSec domain seek

to cover the maximum of facets simultaneously. This suggests a greater expressiveness and

complexity of this group of models (e.g. in terms of the number of concepts and relationships

between them).

In this line of thought, regarding the low coupling between facets and potential difficulties
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in precisely allowing for reasoning on the interplay between network architecture and its

operation, a detailed analysis of the data models reveals various opportunities for enrich-

ment, improvement, or linking of the models. For example, the combination of the SEAS and

PEP [240, 241] models enables the representation of communication links between technical

assets and facilitates the analysis of assets’ state changes by tracking commands and results.

However, SEAS mainly targets the Internet of Things (IoT) domain and end-user devices, and

the semantics of PEP relates to computer process. The DevOpsInfra [270] ontology enables

the provisioning of data processing services and tracking computer resources hosting capa-

bilities. However, concepts are missing for a finer grain description of the network topology.

Additionally, the ontology mainly focuses on the provisioning activity and is not aligned with

other well-known models such as SOSA [194] for sensors and probing systems, and the TM

Forum Open API [355] for interoperable definitions of states and operations between DSSs.

The CRATELO [12] and PACO [258] models enable the representation and classification of

network traffic. However, they lack concepts for network topology and operations, which

are necessary for contextualizing network traffic sessions within the network topology itself

and day-to-day operations. Regarding the representation of procedural knowledge, the de-

tailed analysis of the data models also reveals that Semantic Web-based models have less

presence in modeling capabilities for knowledge about processes with conditional branching

(e.g. IF-THEN-ELSE decision making) compared to sequential and relatedness knowledge.

This suggests that representing networks using the available models or through the knowledge

graphs formalism may not be self-sufficient for interpreting their dynamics, unless relying

on external knowledge and reasoning tools as proposed by FOLIO [62] through the Failure

Mode and Effect Analysis (FMEA) approach and the use of a rule engine (e.g. leveraging the

Semantic Web Rule Language (SWRL) [147] or the SPARQL Inferencing Notation (SPIN) [143]).

Finally, regarding the compliance with best practices, all models exhibit non-conformities to

varying degrees across application domains, in terms of both quantity and severity. However,

it is worth noting that the number of non-conformities generally increases with the size of the

model.

Table 2.5 highlights the top five implementation pitfalls found in the set of semantic models

listed in Table 2.3. The relatively low severity of these non-conformities (three “Minor”, two

“Important”), as well as their nature (i.e. primarily related to the characterization of relation-

ships and the description of concepts & relationships), suggest that the proposed models are

generally ready for short-term integration into a knowledge graph-based solution. However,

it is important to note that their inference capabilities may need to be adjusted based on

experiments with practical cases.
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Table 2.3: Semantic models comparison table, for models with an implementation, and as per a subset of the evaluation criteria defined in
Section 2.3.1. Abbreviations: Re f . = bibliographical reference, CC = class count, OPC = object property count, DPC = data-type property
count, IC = individual count, SE −SI = smart environment & smart industry, n.a. = non applicable.

Theme Short title Ref. St. Fu. Dy. Pr. Expressivity CC OPC DPC IC

CyberSec ACCTP [29] ✓ ALEROI+(D) 117 52 20 160

CyberSec CASE [100] ✓ ✓ AL(D) 17 3 7 11

CyberSec D3FEND [284] ✓ ✓ ✓ ✓ SROIQ(D) 1568 198 41 1740

CyberSec ICAS ontology [216] ✓ ✓ ✓ ✓ SROIN(D) 559 385 144 256

CyberSec MALOnt [256] ✓ ALH(D) 76 11 13 265

CyberSec ORD2I [382] ✓ ✓ ✓ ✓ SHOI(D) 67 49 82 14

CyberSec OWASP OdTM [28] ✓ ALCROI(D) 100 42 4 30

CyberSec SLOGERT log extraction ontology [26] ✓ ✓ AL(D) 5 6 4 98

CyberSec SLOGERT log event ontology [26] ✓ ALH(D) 12 15 45 0

CyberSec ForensicOntology [110] ✓ ✓ ✓ ✓ SHIQ(D) 483 148 51 1800

CyberSec UCO [388] ✓ ✓ ✓ ✓ SRIN(D) 422 177 574 455

Generic A Core Pattern for Events [193] ✓ ALERI 5 7 0 0

Generic Basic geo Ontology [376] ✓ SROIQ(D) 61 22 1 4

Generic EmOCA [117] ✓ AL(D) 18 4 3 1

Generic Event Ontology [386] ✓ ✓ ALCHI(D) 8 17 5 2

Generic EventKG [332] ✓ ✓ AL(D) 10 3 2 2

Generic FARO [384] ✓ ✓ ALRI+ 5 32 0 4

Generic FOAF [81] ALCHIF(D) 22 36 15 0

Generic GeoSPARQL [254] ALCH(D) 9 37 18 0

Generic Geonames [139] ALEROIN+(D) 15 33 17 701

Generic Mining Minds Context Ontology [74] ALCF(D) 52 4 2 031
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Generic Ontology of units of Measure (OM) [135] ALCON(D) 815 23 11 2242

Generic OWL-S [89] ✓ ✓ ALCHOIN(D) 86 88 41 13

Generic OWL-Time [331] ✓ SROIN(D) 21 33 25 15

Generic PROV-O [354] ✓ ALCRIN(D) 31 44 6 1

Generic Procedure Execution Platform (PEP) [241] ✓ ✓ ALCRIF(D) 6 10 2 1

Generic QUDT [297] ✓ SHOIQ(D) 138 132 102 78

Generic Semantic Sensor Network (SSN) [38] ✓ ✓ ✓ ALRIN 39 34 0 1

Generic Vocabulary Status Vocabulary (VSV) [80] n.a.

Health Science HeLiS [236] ✓ ALCIQ(D) 281 23 31 30005

Net-IT INDL [212] ✓ ✓ ALUIF(D) 26 29 17 0

Net-IT DevopsInfra (network) [270] ✓ ✓ ALH(D) 17 15 25 0

Net-IT DevopsInfra (product) [270] ✓ ALCHOQ(D) 22 20 3 2

Net-IT DevopsInfra (workflow) [270] ✓ ALCHOQ(D) 13 16 8 2

Net-IT The SEAS Communication ontology [241] ✓ ✓ ALCRIN(D) 69 46 5 6

Net-IT ToCo [294] ✓ ✓ ✓ ALCRI(D) 85 41 54 1

Net-IT HTTP in RDF [234] ✓ ALH(D) 15 26 13 0

Process modeling Activity Ontology [243] ✓ ✓ ✓ SRIQ(D) 21 70 12 0

Process modeling BPMN ontology [219] ✓ ✓ ALCRIQ(D) 158 103 34 0

Process modeling FOLIO [62] ✓ ALEQ(D) 29 19 3 0

Process modeling gist [288] ✓ ✓ ✓ ✓ SROIQ(D) 138 71 39 15

SE-SI BOnSAI [345] ✓ ✓ ALCHIN(D) 99 76 41 1

SE-SI DogOnt [84] ✓ ✓ ✓ ALCHOIN(D) 167 18 26 0

SE-SI IoT-Lite [220] ✓ ✓ ALUI(D) 20 13 9 0

SE-SI RAMI Ontology [155] ✓ ✓ ALH+ (D) 35 47 19 3

SE-SI SAREF [239] ✓ ✓ ✓ ✓ ALCIQ(D) 81 35 5 10
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Theme Short title Ref. St. Fu. Dy. Pr. Expressivity CC OPC DPC IC

SE-SI SAREF4SYST [239] ✓ ✓ SRIN 4 9 0 0

SE-SI SOSA [194] ✓ ✓ ✓ ALI(D) 16 21 2 1

SE-SI The Building Topology Ontology (BOT) [215] ✓ SRIN 10 16 1 5

SE-SI mIO! Ontology Network [226] ✓ ✓ ✓ ✓ SROIQ(D) 624 364 310 520
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Theme MC St. % Fu. % Dy. % Pr. % F0 % F1 % F2 % F3 % F4 %

Generic 18 0,0 11,1 55,6 38,9 33,3 33,3 27,8 5,6 0,0
CyberSec 11 54,5 54,5 63,6 81,8 0,0 36,4 18,2 0,0 45,5
SE-SI 9 88,9 66,7 55,6 44,4 0,0 11,1 44,4 22,2 22,2
Net-IT 7 71,4 42,9 28,6 28,6 0,0 42,9 42,9 14,3 0,0
Process modeling 4 50,0 25,0 75,0 100,0 0,0 25,0 25,0 25,0 25,0
Health Science 1 100,0 0,0 0,0 100,0 0,0 0,0 100,0 0,0 0,0

Overall 50 44,0 36,0 54,0 54,0 12,0 30,0 32,0 10,0 16,0

Table 2.4: Number of semantic models and facet coverage ratios by application domain.
This table summarizes Table 2.3 from the perspective of the number of models (MC ) and the use of facets by primary application
domain (T heme). The columns St .% , Fu.%, D y.%, and Pr.% correspond to the proportion of models for which the facet has
been identified. The columns F x% account for the expressiveness of the models by comparing the proportion of models that
meet 0, 1, 2, 3, or 4 facets. Italicized values for the Health Science theme indicate that they may not be representative due to the
inclusion of only one model from this family in the sample.

Code Importance Level Description Count

P13 Minor Inverse relationships not explicitly declared 43
P11 Important Missing domain or range in properties 42
P08 Minor Missing annotations 41
P04 Minor Creating unconnected ontology elements 29
P10 Important Missing disjointness 20

Table 2.5: Most common implementation pitfalls in semantic models.
This table highlights the top five implementation pitfalls found in the set of semantic models listed in Table 2.3, as reported by
the OOPS! tool.

2.4 Anomaly Detection: a Cartography of Algorithmic Methods

NMSs and SIEMs, seen in Section 2.2.2 as umbrella systems for centralized situation under-

standing, already enable significant operational efficiency for incident management. However,

the remaining limitations discussed in Section 2.2.3 show room for improvement in their

automated analysis functions towards greater explainability, notification contextualization,

and notification grouping and prioritizing. With the aim of enabling these improvements, we

provide in this section a summary of the anomaly detection methods we found during the

bibliographic research stage, starting with the definition of evaluation criteria in Section 2.4.1,

and reporting on our analysis in Section 2.4.2.

2.4.1 Evaluation Criteria

The data collected and evaluation criteria used to analyze the anomaly detection methods are

as follows:
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Name. The name of the anomaly detection method or, if not available, the title of the docu-

ment describing it (e.g. research paper, blog post, tool documentation).

Primary application domain. The domain or field of application that originated the anomaly

detection method, based on the indications provided by the authors, or if not available,

deduced by us.

Approach. A short description of the method, and a categorization of the method summariz-

ing its core principle.

Usage step. The typical stage of the incident management process – as discussed in Section

1.1.2 and Figure 1.2 – to which the use of the method corresponds, based on the informa-

tion provided by the authors, or deduced by us otherwise. We define the following three

macro stages: design (i.e. techniques providing prior knowledge of system operation

and enabling optimal deployment based on safety criteria or potential reengineering

to meet these criteria), detection and classification (i.e. techniques analyzing artifacts

related to the system lifecycle to generate an alert for an undesirable situation), and

diagnostic aid (i.e. techniques enabling the characterization of a given situation).

Data structure. The main data structure(s) used within the algorithmic method for its model

learning and inference stages. This data structure may differ from that of the input data

due to the specificities of the method (e.g. aggregation of heterogeneous data into a

knowledge graph, semantic annotation of natural language documents).

2.4.2 Algorithmic Methods

In this section, we present the identified algorithmic methods from the literature review,

and their categorization based on the previous criteria. Out of 103 references analyzed, 55

emerged with both a primary application domain close to the NetOps and SecOps fields and

practicality falling into an incident management stage. We use this shortlist of 55 references in

the following paragraphs, providing an overall analysis from the point of view of approaches,

usage stage, and data structures. Statistics on the primary application domain for our shortlist,

in terms of the number of references, are as follows: CyberSec = 20, Net-IT = 16, Generic = 5,

Industry 4.0 = 5, Energy systems = 4, Smart-Cities & Smart-Homes (SC-SH) = 2, Business

process = 1, and Software engineering = 1. For complete details on these 55 references,

including a summary of each approach, please refer to Table B.1 in Appendix B.2.

Logic for design and diagnosis vs probabilities for detection. Analyzing the references high-

lights six families of approaches: graph-based where the processing relies on the structure and

characteristics of data represented in a graph, with principles drawing from graph theory [6] or
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message passing [245]; knowledge-based where deductive30 and abductive31 reasoning lever-

ages domain knowledge organized in taxonomies or ontologies; Markov model [327] where a

probabilistic model describing the potential state transitions of a system is used for inference;

ML-based where the probabilistic model used for inference leverages correlations between

multiple observational variables as an indicator; model checking where a behavioral model in

the form of a Finite State Automaton (FSA) [125, 114] is used for inference; rule-based where

deductive reasoning applies leveraging a set of business rules typically of the IF-THEN-ELSE

form. Table 2.6 shows the distribution of references in these approach families across the

three usage stages defined in Section 2.4.1. The proportions reported in this table indicate a

predominance of works applicable to the detection & classification stage. Additionally, there is

a prevalence of logic-based approaches in the design and diagnostic aid stages, as opposed to

correlation-based approaches in the detection & classification stage. These trends suggest a

current focus for anomaly detection on the ability to capture complex situations without nec-

essarily leveraging prior or expert knowledge of the ICT systems. This contrast also suggests

a limited current capability for coupling between logic-based and probabilistic approaches.

However, the presence of the graph-based approach in all three usage stages suggests that a

significant portion of the addressed problems involves the interconnected nature of the data.

Approach
System
Design

Detection &
Classification

Diagnostic
Aid

Rule-based 1 5 0
Model checking 1 2 1
Knowledge-based 2 6 6

Markov model 0 1 0
Graph-based 1 10 5
ML-based 0 14 0

Overall 5 (9,1 %) 38 (69,1 %) 12 (21,8 %)

Table 2.6: Approach family and incident management stage in analyzed papers.
This table provides information on the distribution (in number and proportion) of the analyzed papers, based on the approach
family (the middle line serves as an arbitrary separation between logic-based and correlation-based approaches) and the stage of
the incident management process involved. Values in bold highlight the most representative approach for a given stage of the
incident management process.

Partially ordered sets and graphs as key data structures. Table 2.7 shows the distribution of

data structures used in algorithmic solutions, as a function of the solution’s approach family

and usage stage. The following five types of structures emerge from our analysis: data with an

30In an inference process, the formation of a conclusion is based on generally accepted statements or facts (i.e.
from general or universal premises).

31In an inference process, observational facts (major premise) are evident, but the cause (minor premise) and
therefore the conclusion are only probable. Backward chaining on a rule set [228] is a typical implementation of
this process, where the system checks if an hypothesis is true or not.
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order relation, which includes timestamped sequential data such as event logs and alarms,

network traffic captures, and time series for regularly sampled measurements such as data

throughput or temperature; graph (static or streaming) such as network topology; tabular

data, such as a list of assets with their characteristics; multi-dimensional data points; and

so-called mixed approaches that simultaneously use a combination of the aforementioned

structures. From the proportions in Table 2.7, we observe that data with an order relation are

generally predominant across all usage stages. In the detection & classification usage stage,

approaches primarily utilize data structures – in descending order of preference – such as

ordered data, graphs, and tables, with a prevalence of ordered data for ML-based approaches.

In the diagnostic aid usage stage, approaches make the most use of mixed structures. These

observations suggest a general tendency for detection & classification approaches to focus on

the temporal evolution of systems, while diagnostic aid approaches tend to focus on a broader

context of the system’s state.
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[%] [%] [%] Σ [%] [%] [%] [%] [%] [%] [%] [%] Σ [%]

Design

G.-based 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1 10,0 0,0 0,0 1 8,3
K.-based 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 1 10,0 1 100,0 0,0 2 16,7
M. check. 1 7,1 0,0 0,0 1 4,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
R.-based 0,0 0,0 0,0 0,0 1 9,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Detection & Classification

G.-based 2 14,3 0,0 1 16,7 3 12,0 3 27,3 1 50,0 2 66,7 0,0 1 10,0 0,0 0,0 1 8,3
K.-based 2 14,3 1 20,0 0,0 3 12,0 3 27,3 0,0 0,0 0,0 0,0 0,0 0,0 0,0
Markov 1 7,1 0,0 0,0 1 4,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
ML-based 5 35,7 1 20,0 5 83,3 11 44,0 0,0 1 50,0 0,0 2 100,0 0,0 0,0 0,0 0,0
M. check. 1 7,1 0,0 0,0 1 4,0 1 9,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0
R.-based 1 7,1 3 60,0 0,0 4 16,0 1 9,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Diagnostic Aid

G.-based 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 5 50,0 0,0 0,0 5 41,7
K.-based 0,0 0,0 0,0 0,0 2 18,2 0,0 1 33,3 0,0 2 20,0 0,0 1 100,0 3 25,0
M. check. 1 7,1 0,0 0,0 1 4,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Overall 14 25,5 5 9,1 6 10,9 25 45,5 11 20,0 2 3,6 3 5,5 2 3,6 10 18,2 1 1,8 1 1,8 12 21,8

Table 2.7: Data structures within algorithmic methods for anomaly detection.
This table provides information on the distribution (in number and proportion) of the main data structures used within the algorithmic solutions in the analyzed papers, based on the algorithmic
approach family and the stage of the incident management process involved. Values in bold highlight the most representative approach for a given data structure. The columns in italics represent
cumulative values (ordered = columns 1 + 2 + 3, mixed = columns 9 + 10 + 11) to provide a summary view of similar structures.

38



2.5 Summary of Technological and Scientific Challenges

2.5 Summary of Technological and Scientific Challenges

With the aim of facilitating the capture and interpretation of complex situations occurring on

networks, we have proposed a review of NMS and SIEM DSSs capabilities, semantic models,

and algorithmic solutions that, through their individual improvement or combination, could

allow to achieve both crisp and approximate reasoning on the interplay between a large-scale

ICT system architecture and its operation. Table 2.8 summarizes the key findings from the

analysis phase of the survey. It highlights that NMS and SIEM DSSs are well-established

tools that simplify the analysis of diverse data sources (e.g. assets database, logs and alarms

from IPoDWDM and VM management systems, vulnerability scans, etc.). However, their

effectiveness is hindered by the implicit heterogeneity of these sources, which limits the

ability to contextualize network and service failures and implement comprehensive analysis

solutions that consider a broader range of information, including network topology. Further-

more, while there are semantic models that align with the discourse domain of NetOps and

SecOps, enabling the utilization of knowledge graphs for knowledge representation, they do

not individually fully cover the necessary discourse domain. Additionally, they do not inher-

ently support reasoning about system state changes related to procedures with conditional

branching in decision-making processes. Finally, various algorithmic methods exist to address

key steps in the incident management process. However, individually, they do not capture

and analyze phenomena that involve temporal, structural, logical, and probabilistic aspects

simultaneously.

Advancing through knowledge engineering and massive data integration. Data heterogene-

ity and interrelatedness between data entities (i.e. distinct and persistent units of information)

appear to be cornerstones for advancing the capabilities of DSSs. In this survey, we assumed

that knowledge graphs naturally align with these two notions in the sense that they bring

an abstraction level for standard interpretation and logical reasoning over heterogeneous

data. Sketching a next-generation NMS/SIEM therefore leads to understand how to bring

knowledge graphs to such a system, while considering that NMSs & SIEMs systems rely on a

multitude of both streamed and static data sources.

Several tools have been proposed in different application domains for Knowledge Graph

Construction (KGC). For streamed data: RMLStreamer [122] applies declarative mapping

on the fly to structured data streams (e.g. file, Kafka topic) with RDF Mapping Language

(RML) [24] rules; StreamingMASSIF [292] uses basic string substitution for mapping, and

allows for real-time reasoning (e.g. SPARQL query processing, Complex Event Time process-

ing); C-SPARQL [91] extends the SPARQL query language for continuous reasoning within a

publisher/subscriber platform. For static data: RMLMapper [24] enables data fetching and

declarative mapping with RML rules; Ontop [132] creates a virtual graph representation of
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KR CX AD XP

Decision Support System – Section 2.2

• Data is generally recorded
in a structure close to
its original format, typi-
cally in a tabular structure,
without annotations.

• Data normalization can
be performed at different
stages of the data inges-
tion process, depending
on the design choices of
the DSS.

• The data recording/man-
agement block utilizes a
combination of storage
technologies and often fol-
lows a hub/aggregator ar-
chitecture.

• The analysis block can
utilize internal resources
and/or external services.

• Correlation-based analy-
sis on top of rule-based
characterization is com-
mon.

• Automated contextualiza-
tion may not consider net-
work topology or network
operation information.

• Explainability is ad-
dressed by contextualiz-
ing notifications through
rendering, rewriting, and
enriching.

Semantic models – Section 2.3

• There are many models
with good overall quality,
but none fully cover all as-
pects required for reason-
ing on the interplay be-
tween network architec-
ture and its operation.

• Some models describe
network topology but at a
high level or for specific
domains.

• Current data models re-
veal various opportunities
for enrichment, improve-
ment, or linking of the
models.

• Inference capabilities may
need to be adjusted based
on experiments with prac-
tical cases.

• Anomaly detection with
semantic models cur-
rently generaly rely on
graph traversal or rule-
based techniques.

• Semantic Web-based
models have limited ca-
pabilities for conditional
branching knowledge.

• Explainability is naturally
addressed for semantic
models due to their ex-
plicit knowledge represen-
tation, roots in logic, and
utilization of shared vo-
cabularies.

Algorithmic methods – Section 2.4

• Data with an order re-
lation is generally pre-
dominant across all usage
stages.

• In the detection and
classification stage, ap-
proaches primarily use
ordered data, graphs, and
tables, with a prevalence
of ordered data for ma-
chine learning-based
approaches.

• Detection and classifica-
tion approaches focus on
the temporal evolution of
systems, while diagnostic
aid approaches consider a
broader context of the sys-
tem’s state (typically using
mixed structures).

• There are few solutions
directly designed for
streamed analysis, and
they generally require a
training phase.

• Focus on detection and
classification in current
works on anomaly detec-
tion.

• Focus on the capability
to capture complex sit-
uations without relying
heavily on prior or ex-
pert knowledge of ICT sys-
tems in current works on
anomaly detection.

• Interconnected data
(e.g. graphs) is impor-
tant, but its usage is not
widespread.

• Explainability is naturally
addressed for algorithmic
methods with roots in
logic.

• Limited current capabil-
ity for coupling between
logic-based and proba-
bilistic approaches.

Table 2.8: Key findings from the survey.
Summary of the key messages from the capabilities of DSSs, semantic models, and algorithmic methods for anomaly detection
aspects according to the research axes Knowledge Representation (KR), CompleXity (CX), Anomaly Detection (AD), and eXPlain-
ability (XP) defined in Section 2.1.
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various data sources via SPARQL queries; and SLOGERT [26] orchestrates log modeling and

annotation with Cybersecurity Threat Intelligence (CTI) tags32.

These solutions provide a foundation towards a KG-based NMS/SIEM. However, additional

research effort is required to achieve an end-to-end solution design that bridges the Semantic

Web tools with the design patterns observed in industrial DSSs. It includes satisfying require-

ments for distributed processing, separation of concerns, data sketching (i.e. enabling both

early and posterior reasoning on data), openness to third-party databases/tools, and re-use of

well-established frameworks (e.g. declarative data transformation, message passing). Indeed,

in end-to-end frameworks [290, 377, 315, 58], the KGC step is never considered singular, initial

or terminal, but rather is the subject of multiple instances of a similar tool/principle within

processing flows depending on the application field. In addition, this step is always placed

between heterogeneous non-RDF data and a knowledge graph working sometimes as a main

data storage, and sometimes as a support for third-party inference processes. This variety of

options in itself constitutes a field of exploration to be pursued.

Regarding the standardized interpretation of data, the variety of available semantic models

encourages understanding how to leverage existing implementations of vocabularies without

introducing complexity. This can be achieved by avoiding using vocabularies with loosely

coupled semantics to the application domain, avoiding the introduction of a new ontology

that lacks interoperability with other standard vocabularies, and preventing the creation of an

ontology network that would unnecessarily lengthen reasoning paths. Various knowledge engi-

neering methodologies allow for approaching this research, whether it be general approaches

such as practical guides to semantic modelling [150] and ontology design patterns [266],

or more focused approaches: Competency Questions [385], Dichoscope [49], DOE [299],

NeOn [336], OntoClean [129], ontology design with Formal Concept Analysis (FCA) [265],

automated ontology learning from raw data with Text2Onto [71], automated derivation of

class taxonomies from an already existing knowledge graph [293], and translation of formal

models to an ontology [10, 348, 45].

Advancing in anomaly detection and explainability. Put simply, anomaly detection methods

in the context of NetOps and SecOps aim to identify deviations from normal behavior and

flag potentially undesirable/suspicious activities at both the ICT system and user level. While

various approaches have been proposed, as discussed in Section 2.4, only a few of them

simultaneously combine intrinsic explainability through the use of explicit representations

(e.g. knowledge graphs, FSA, Petri nets) and the ability to handle interconnected multi-

dimensional data, including the temporal dimension. Assuming the use of knowledge graphs

as a foundational formalism for NMS/SIEM DSSs, this prompts us to understand to what

32As for SLOGERT v0.9.1: with MITRE CEE categories from http://cee.mitre.org/language/1.0-alpha/
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extent the existing algorithmic solutions are suited to it.

Focusing on activity modeling and analysis, trace-based reasoning [21] shows opportunities

in creating tools for semantically interpreting digital services artifacts using controlled vo-

cabularies and semantic models. Indeed, the representation of events and activities within

knowledge graphs is implemented across a range of data models, encompassing both domain-

independent and domain-specific contexts: process modeling and execution (BBO [22], Petri

nets-related [97, 186], HTTPinRDF [178, 234]); causal analysis (FARO [384]); cyber-security

(UCO [388], MITRE D3FEND [284]); smart cities (iCity ActivityOntology [244]).

At the same time, User and Entity Behavior Analytics (UEBA) corresponds to the temporal

dimension of the knowledge graph, which further motivates the search for how an anomaly

context capture (e.g. a subgraph centered around the undesirable event) can accommodate

historical graphs [107] or a graph that evolves over time. Graph embeddings [312] typically

allow for capturing the context of graph entities. However, since learning embeddings (i.e.

a vector representation of the subgraph that enables similarity calculations) is a potentially

time-consuming process performed on a snapshot of the graph, using such an approach

requires defining the content of the subgraphs to capture [169], particularly in relation to the

speed of graph evolution. Moreover, since such an approach may also not be generalizable, the

simultaneous implementation of various approaches can prove useful, whether by following

the principles of cooperative decision making [46] (i.e. a heuristic approach for problem-

solving by using results obtained from complementary inference techniques) or by combining

properties of inference models into a single one [111, 51, 314, 64] (e.g. by including the power

of logical reasoning into ML-based models).
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Introduction

For NetOps & SecOps teams, efficiency in incident management and situation understanding

requires a comprehensive view on how communication devices are interconnected and are per-

forming. However, the information is spread across heterogeneous data sources which triggers

information integration challenges. Semantic Web technologies are essential in this context, as

they address the problems of data heterogeneity, knowledge sharing and logical/probabilistic

reasoning. Existing data models enable to represent computing resources and how they are

allocated. However, to date, there is no model to describe the inter-dependencies between

the structural, dynamic, and functional aspects of a network infrastructure. Additionally,

well-established Network Monitoring Systems (NMSs) and Security Information and Event

Management (SIEM) systems do not explicitly use Semantic Web knowledge representation,

thus limiting the ability to efficiently analyze incidents in their full complexity.

To address these gaps, we propose the NORIA Ontology (Chapter 3) that has been developed

together with network and cybersecurity experts in order to describe an infrastructure, its

events, diagnosis and repair actions performed during incident management. We also propose

an end-to-end data processing architecture (Chapter 4) that combines NMS/SIEM design

patterns with Semantic Web tools to construct a knowledge graph suitable for understanding

incident situations using data from various sources relevant to network operations. The

platform features batch/stream processing, declarative data mapping with RML, data patching

& reconciliation with SPARQL queries and SKOS, provenance auditability with centralized

configuration and data management, and semantic data transfer with Kafka. In conjunction

with NORIA-O, the proposed architecture has been instantiated and tested in an industrial

setting, producing an RDF knowledge graph that shows strong potential for addressing cross-

domain anomalies from heterogeneous data.
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Chapter 3

An Ontology for Anomaly Detection

and Incident Management in ICT

Systems
3.1 Introduction

To achieve efficiency in incident management and situation understanding, NetOps & SecOps

teams require the ability to simultaneously and quickly correlate and interpret a large number

of heterogeneous technical information sources. This is even more important when operating

large-scale networks, which often consist of various ICT sub-systems and have complex inter-

dependencies between services and infrastructure (Chapter 1). To tackle these cross-domain

data interpretation and incident management challenges, we argue that a graph-based explicit

knowledge representation would help capturing complex network situations (e.g. discrepancy

of routing metrics with respect to an engineering rule, lack of redundancy in a distributed

service) and reasoning on them (e.g. inventory list to scrutinize further, cause and remediation

procedure search). Our main contribution in this regard is the NORIA Ontology (NORIA-O)

for representing network infrastructures, incidents and operations on networks. This ontology

re-uses and extends well-known ontologies such as SEAS [240, 241], FOLIO [62], UCO [388],

ORG [86], BOT [215] and BBO [22]. It also includes controlled vocabularies for handling data

from various ICT systems and incident situations through a small set of shareable definitions.

NORIA-O has been developed within the Orange company. Its long-standing experience

on complex network management allows us to back NORIA-O with insightful details from

domain experts and to evaluate the model with real-world data. As shown later in Chapter 4

and Chapter 7, NORIA-O has also been successfully used in a knowledge graph construction

pipeline in an industrial setting and for capturing and classifying incident contexts using graph

embeddings. The ontology, controlled vocabularies and their associated documentation are

available at https://w3id.org/noria.

The remainder of this chapter is organized as follows. In Section 3.2, we describe the method-

ology we follow to design NORIA-O, starting from competency questions that capture the

knowledge of experts. In Section 3.3, we deep dive into the different concepts as well as into
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the associated vocabularies. We evaluate the ontology with respect to our requirements and

competency questions in Section 3.4. We exemplify how NORIA-O is used for the supervision

of a network infrastructure in Section 3.5. Finally, Section 3.6 concludes this chapter by sum-

marizing the work done and presenting preliminary conclusions on the opportunities and

potential future developments associated with it.

3.2 Methodology

In this section, we describe the knowledge engineering methodology we used to develop

NORIA-O. First, we capture Competency Questions (CQs) from a panel of experts familiar

with network operation issues and derive archetypes from these CQs for further analysis

(Section 3.2.1). Second, we show how we designed the conceptual model (Section 3.2.2).

3.2.1 Competency Questions and Conceptualization

We gathered experts from several entities in the fields of engineering, operations, supervi-

sion, and incident management on networks and data centers, including teams from NOC

and SOC. This panel consists of 16 experts who collectively represent 150 operations team

members. To effectively capture the knowledge of the experts, we followed a user-centered

design methodology combined with ontology engineering methods. From our review of the

literature, the Competency Question approach [385] turns out to be the most intuitive and

straightforward with respect to how NOC and SOC teams use and talk about their tools. Indeed,

this approach involves extracting the conceptual model of the knowledge domain by analyzing

user queries expressed in natural language through a set of semantic patterns. During several

iterations of knowledge capture meetings on a shared notebook, the experts could validate,

invalidate, add and modify Competency Questions (CQs). At the end of this stage, the teams

validated 26 CQs presented in Table 3.1. This includes questions on events, resources (e.g.

server, router), applications (e.g. Domain Name System, Video-on-Demand platform), log

and alarms (e.g. login, CPU overload) and operation plan (e.g. SSL/TLS certificate renew, IS-IS

interface re-prioritization).

From the set of CQs, we derived a conceptual model of the domain of discourse by applying the

“Competency Question archetype mapping” approach [385, Section 4.3]. For example, CQ#1 can

be mapped to the “Which [CE1] [OPE] [CE2]?” archetype (ID: 1), yielding to breaking down the

competency question into the following components: C E1 = Asset (resource/application/site),

OPE = areContainedIn, and C E2 = Incident. We also adhered to the guidelines of the Linked

Open Terms (LOT) methodology [224], which notably include reusing or aligning with existing

vocabularies.

Upon scrutinizing the conceptual model and candidate vocabularies, two characteristics
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are observed. Firstly, concepts derived from the Table 3.1 can be referred to as “atomic con-

cepts” (e.g. application, alarm, resource), representing concepts that are not defined by

composition but are considered indivisible in nature. Thus, we can expect to use simple

relationships (potentially hierarchical) between concepts during the modeling and imple-

mentation phases. Secondly, research domains related to ICT systems management (such as

event spreading [217], software engineering [138], knowledge management, and automated

reasoning [46]), exhibit abstract concepts common to these domains and the NORIA-O field,

such as physical vs functional and cause vs consequence. Therefore, we suggest structuring the

NORIA-O domain concepts using similar facets to leverage the approaches and tools applica-

ble in these research domains, such as finite state automatons and Markov decision processes.

For instance, combining the facets allows for a comprehensive analysis of the complexity and

observability levels of networks, which we refer to as a hybrid “concrete-conceptual” model

(Figure 1.4). In this model, assets’ states dynamically vary based on behavioral rules and are

interpreted through higher-level composite concepts. Consequently, predicting the next set of

states/concepts becomes a sequential decision under uncertainty problem. We further define

these facets in the next section.

Table 3.1: NORIA-O Competency Questions (CQs)
In this table, we list the NORIA-O CQs collected during knowledge capture meetings (Section 3.2.1), along with their correspond-
ing archetype (Arch. ID, as defined in [385, Section 4.3]) and authoring tests results (Section 3.4, with the number of implemented
queries for the evaluation stage). Facets (Section 3.2.2): S = structural, F = functional, D = dynamic, and P = procedural.

# CQs Facets Arch. ID AT Eval.

1 Which resource/application/site is concerned by a given incident? S, F, D 1 OK (4)
2 What assets are shared by a given asset chain? S, F 6 OK (1)
3 What logs and alarms are coming from a specified resource? S, D 1 OK (1)
4 Which metrics are coming from a specified resource? S 1 OK (1)
5 To which event family does this log belong and is this event normal or abnormal? D, P 3 OK (1)
6 What events are associated with a given event? D 1 OK (1)
7 Which agent/event/resource caused the event under analysis? S, F, D, P 1 OK (3)
8 What do the various fields in the log refer to? D 1, 3 OK (1)
9 Is there any pattern in a given set of logs/alarms? D, P 1, 6 AI (1)

10 What interventions were carried out on this resource that could have caused the
incident?

S, D, P 1, 6 OK (2)

11 What was the root cause of the incident? D, P 6 AI (1)
12 Which sequence of events led to the incident? D, P 6 OK (1)
13 On which resource did this sequence of events take place and in which order? S, D 1 OK (1)
14 What past incidents are similar to a given incident? D, P 6 AI (1)
15 What operation plan (automation, operating procedures, etc.) could help us solve the

incident?
D, P 1, 3 AI (1)

16 What corrective actions have been carried out so far for a given incident? D, P 1 OK (1)
17 What is the list of actions taken that led to the resolution of the incident? D, P 1 OK (1)
18 Given all the corrective actions carried out so far for the incident, what assumptions

covered the actions taken?
D, P 1, 4 AI (1)

19 What has been the effect of the corrective actions taken so far for the incident? D, P 1 OK (1)
20 Given all the corrective actions carried out so far for the incident, what possible actions

could we still take?
D, P 6 AI (1)

21 What is the summary of this incident and its resolution? D 1 OK (1)
22 Which agents were involved in the resolution of the incident? D 1 OK (1)
23 What is the financial cost of this incident if it occurs? D 2 Ext.
24 How long before this incident is resolved? D 1 AI (1)
25 What are the vulnerabilities and the associated risk levels of this infrastructure? S, F, D 1, 2 AI (1)
26 What is the most likely sequence of actions that would cause this infrastructure to fail? S, F, P 6 AI (1)
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3.2.2 Domain of Discourse and Modeling Strategy

Facets. Considering dynamic ICT systems with constrained and multi-level functional behav-

ior, we define the four following facets for structuring the knowledge domain. An illustration

of these facets is provided in Figure 3.1.

Figure 3.1: ICT system state transition model and relations to the NORIA-O facets.
The representation of a network can be divided into four facets: structural, functional (the blue path indicates an operational
data flow, the red path a faulty flow), dynamic, and procedural (logged events are related to cybersecurity attack tactics from the
MITRE ATT&CK matrix [284]). Tau stands for state transition, O(t ) for observed state at time t , and p for state prediction.

• The structural facet describes the physical and logical elements of the network. It

allows modeling the equipment classes, connections and compositions. This facet

aims to support calculations on network objects and properties (direct or deduced) and

calculations on the physical and logical structures (real or patterns).

• The functional facet describes services provided and diffusion areas. This facet makes

it possible to meet the need for functional isomorphism (e.g. replacing one equipment

with another performing the same function). It allows modeling the service types,

interactions between them, and compositions. This facet allows calculations on network

domains and their properties (direct or inferred) and calculations on services and

streams (e.g. “end-to-end” notion).

• The dynamic facet describes the sequence of events. It allows modeling the occurrence

of an event on a given equipment or service as well as precedence relationships. This

facet aims to support time calculations (absolute, relative, membership) and causality

calculations (first order or probabilistic).

• The procedural facet describes how things work and should be interpreted. Automation

principles (e.g. fail-over mechanisms of redundant systems) or operation principles
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(e.g. doubt removal procedures) are expected parts of this facet. Associated application

goals are deductive/abductive reasoning over facts and reflection over knowledge for

automated learning (discovery/recommendation) of procedures (e.g. evolutionary

search over targeted goals, composition calculus over sequences of events).

Modeling strategy. Considering the domains of anomaly detection and incident manage-

ment, we consider incidents as a central concept for i) computing and reasoning about

anomaly signatures, and ii) linking trouble tickets to anomaly signatures for root cause analy-

sis tasks. We introduce the noria namespace, which encompasses the entire set of NORIA-O

concepts and relations in a unified manner. To align with risk management and business

modeling practices (such as the incident logging and categorization steps in the ITIL’s Incident

Management Process model – IMP [334]), we adopt a top-to-bottom modeling strategy, start-

ing from the process and extending to objects. Due to the “atomic concepts” characteristic of

the knowledge domain (Section 3.2.1) and our top-to-bottom approach, we primarily focus

on an axiomatization based on subsumption with RDFS [82], and with OWL [319] for cases

that require additional logical structuring (e.g. class disjointness, property qualification)1.

Model re-use. Following the best practices in ontology development, we aim to re-use

existing data models and vocabularies as a base and extend them to represent domain-specific

classes and properties. From RDF-based ontologies, we interconnect and/or extend the

following models: BBO [22] for describing activities from the business process modeling

perspective in conformance to the Business Process Model Notation (BPMN); BOT [215]

for describing resource locations and enabling geographical neighboring analysis for root

cause analysis tasks; DCTERMS for standard management of NORIA-O instances as parts of a

catalog; DevOpsInfra [270] for enabling potential interactions of NORIA-O with the DevOps

perspective; FOAF [81] for describing social organizations; FOLIO [62] for enabling Root Cause

Analysis (RCA) tasks based on the FMEA approach; ORG [86] for describing stakeholders and

related organizations; SEAS & PEP [240, 241] for describing technological systems, measures,

commands, and results; UCO [388] for enabling cyber-security risk assessment on instances

of NORIA-O; SLOGERT [26] for describing system logs and enabling potential usage of the

SLOGERT log interpretation framework.

From non RDF-based data models, we take advantage of the concept hierarchy and vocabulary

definitions from the TM Forum Data Model2 for enabling an interoperable definition of trouble

tickets and change requests with third-party OSS and DSSs, ITU-T [166, 164] for standard

1During implementation, cardinality restrictions were not prioritized as they were not considered crucial.
Instead, we see cardinality restrictions as more beneficial for post-implementation data quality tasks using
SHACL [142].

2https://github.com/tmforum-apis
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definitions of notifications and ways to handle them within the telecommunication industry,

IETF for precise use of terminology in the context of a Request for Comments (RFC)3.

We propose implementing alignment with third-party data models and vocabularies on a

class or property basis when relevant, using the dedicated OWL and RDF constructs such

as owl:equivalentClass, rdfs:subClassOf, or rdfs:isDefinedBy. Similarly, we aim to

provide guidelines for directly instantiating these vocabularies in cases where aligning a class

or property would be redundant.

Modeling observations. Considering observables and their state change (e.g. the operational

state of a network interface, the temperature measurements from a sensor), we observe that

modeling and logging observations can be done:

(a) as a string,

(b) as a concept from a controlled vocabulary,

(c) as an instance,

(d) as an instance with time property or time instance (e.g. using reification, or following

the sosa:Observation model4).

These four options are relevant for the NORIA-O application domain. The concern is not

about choosing one option for all situations, but how we can mix them. Hence, we adopt the

following selection criterion:

• use (a) and (b) for invariant properties,

• use (c) and (d) for time-dependent and/or specific use-case extensions to NORIA-O (i.e.

additional observables are defined in a side vocabulary so the main ontology remains

stable).

Controlled vocabularies. Because of potentially heterogeneous data incoming from varied

ICT systems and incident situations to handle, we take notes of terms from datasets and

other ontologies for building up a controlled vocabulary. This aims at efficient management

of anomaly detection patterns, rules and methods by reducing the lexical range of possi-

ble situations to interpret. For this, we propose a set of domain-specific vocabularies (e.g.

Incident Management Process, Application, Notification vocabularies) modeled as SKOS con-

cepts within concept schemes (e.g. the milestones of the Incident Management Process). We

3https://datatracker.ietf.org/
4https://www.w3.org/TR/vocab-ssn/#SOSAObservation
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add, whenever available, alternate definitions of the concepts for reconciliation of similar

object attribute values through a single concept reference (e.g. communication devices may

report the same status of network interfaces with varied terms such as “active”, “up” or “en-

abled”). We also use the concept scheme approach for enabling multiple interpretation of

a similar concept. For example, an event may be categorized as an integrityViolation
based on the analysis of the event text, which allows us to reason on the event type and

infer a SecurityAlarm thanks to a dual membership of the integrityViolation concept

definition. The implementation of the vocabulary reconciliation task (e.g. relating the ob-

served network interface administrative status to the adequate concept reference using natural

language processing) is out of the scope of this work and is left to the NORIA-O user’s choice.

3.3 NORIA-O: Formalization and Implementation

We have implemented the NORIA-O conceptual model in RDFS/OWL-2. NORIA-O consists

of 59 classes, 107 object properties, and 71 datatype properties. It is organized with the four

facets presented in Section 3.2.2 and illustrated in Figure 3.2. Its expressivity is ALC HOI (D)

as per Protégé 5.1. In this section, we introduce some of the main concepts and properties.

3.3.1 Resources, Network Interfaces, Network Links and Applications

Within computer science, a resource is some “part contributing to the functioning of an

ICT system.” Similarly, as per the TM Forum Data Model5, a resource is “an abstract entity

that describes the common set of attributes shared by all concrete resources in the inventory”.

Therefore, we define the Resource class for describing any physical or logical manageable

entity composing the network. Defining the type of a resource is made possible through object

properties such as resourceType (i.e. controlled-vocabulary concepts such as rack, server,

router, virtual machine, etc.) and resourceProductModel (i.e. entity model instances).

Additional properties allow for identifying the resources based on their logistic identifier,

hostname, installation date, etc.

Locating and reasoning over a physical entity from a geographical standpoint is available with

a chain of bot:containsZone and bot:hasElement properties, starting from a bot:Site
with bot:hasZeroPoint property, down to a Locus concept for precise Resource location

within a Room (i.e. a specialization of bot:Space). Locating a resource is also available

through a dependency relationship with the seas:subSystemOf object property from the

SEAS SystemOntology6. This allows for describing and reasoning with parts from various

levels of organization (e.g. a virtual router instance in a router, a hard drive in a server, a server

5https://github.com/tmforum-apis/Open_Api_And_Data_Model
6https://w3id.org/seas/SystemOntology
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Figure 3.2: Overview of the NORIA-O model.
We depict the most important classes and properties, including related domain of discourse facets and relationships to third-
parties models. noria is the default namespace. The red star indicates where events are characterized within the data model as
incidents or anomalies. Examples are provided for the “literal” and “SKOS scheme” blocks. For the sake of clarity, some object
properties are grouped (see “simplified object property”) for a light representation of similar properties (i.e. same rdfs:domain
or same rdfs:range). The diagram partly follows the Graffoo specification [330].
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in a rack, a rack in a bot:Site, etc.).

Describing the network topology itself is defined with the NetworkInterface and

NetworkLink classes. We align with the SEAS CommunicationOntology7 model through

object properties such as networkInterfaceOf and networkLinkTerminationResource.

It should be noted that this approach is compatible with advanced networking features such as

sub-interfaces, link aggregation, virtual channels, etc. Operational characteristics for interface

and links are available with properties such as networkInterfaceOperationalStatus and

networkInterfaceRoutingPriorityMetric.

The Application concept enables to define models of purpose (e.g. internet access, network

time, alarm monitoring) for sets of resources, and to categorize these with respect to their

nature (i.e. controlled-vocabulary concepts such as infrastructure, service platform, etc.). An

ApplicationModule is a concrete instance of a given model (e.g. national federated Internet

access, corporate network time service, monitoring for in-production devices). This grouping

level enables to relate specific technical skill centers, such as a named IP backbone engineering

or support team (Section 3.3.4), to a given module for specific expertise (e.g. re-engineering,

diagnosis and repair). Additional properties allow for finer grain resources and events man-

agement at the module level such as applicationModuleSlaLevel for prioritizing servicing

teams, or applicationModuleHotlineEnabled for triggering night shift support teams.

We also define the Service concept in accordance to the TM Forum TMF638 Service Inventory

API8 and the IETF SFC Architecture [167] for grouping instances of ApplicationModule, and

thus enabling the data path and application composition perspectives of the functional facet

(Section 3.2.2). The network topology related to a given service is inferred from the set of

resources, network interfaces and network links included in each application that is part of

the service. We observe that, although deterministic, the data path granularity calculus for

some communication session (e.g. a time-bounded IP/http query with its response) depends

on the specificity of the resources included in ApplicationModule instances. For example,

the resulting granularity for a “national IP backbone infrastructure” application instance will

correspond to the routing domain.

3.3.2 Logs and Alarms

As per the International Telecommunication Union (ITU), “the log is a repository for records”

(ITU-T Rec. X.735) [166] and an event log record “represents the information stored in the

log as a result of receiving notifications or incoming event reports” (ITU-T Rec. X.721) [164].

Based on this definition, we define the EventRecord class for storing any event coming

7https://w3id.org/seas/CommunicationOntology
8https://github.com/tmforum-apis
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from managed objects (e.g. Resource, Application) such as system logs [123], SNMP

Traps [112] and application specific messages (e.g. user applications, operational support

systems, processing platforms). Fundamental properties such as loggingTime, logText,

logOriginatingManagedObject and logOriginatingManagementSystem allow for keep-

ing track of the event origin and content. Details about the message meaning are managed with

the dcterms:type property that refers to a controlled-vocabulary for event type tagging9 (e.g.

state change, processing error alarm, integrity violation). The alarmSeverity property pro-

vides an indication of how it is perceived that the capability of the managed object has been af-

fected, or how serious are the service affecting conditions (including for security alarms). Addi-

tional properties related to alarm management and interpretation are available with alignment

to the DCTERMS and PEP models, such as: alarmMitigatedBy and dcterms:relation for

aggregating events and building event signatures; dcterms:conformsTo for root cause analy-

sis and repair planning; dcterms:mediator for responsibility follow up.

3.3.3 Trouble Tickets and Change Requests

We define the TroubleTicket concept accordingly to the TM Forum DataModel where a

trouble ticket is “a record of an issue that is created, tracked, and managed by a trouble ticket

management system”10. It is not an event per se, but a mean to efficiently manage targeted

resource/service (e.g. troubleTicketRelatedResource property) restoration operations

through collaboration. Hence, we also consider trouble tickets as a product of the ITIL’s Inci-

dent Management process [334], and relate them to ITIL’s Problem Management process [335]

and the BPMN by alignment to the bbo:DataResource class.

Corrective maintenance action details are logged as TroubleTicketNote and related to

the parent TroubleTicket with the dcterms:isPartOf property. Actions’ accountability

is implemented with the dcterms:creator in relation to the foaf:Agent class (Section

3.3.4). Correlating actions to the digital traces (i.e. EventRecord) they produce at the struc-

tural and functional level (e.g. login, configuration change, upgrade) is available with the

dcterms:relation property towards a pep:ProcedureExecutionContainer entity.

We provide additional properties for improving the incident diagnosis stage efficiency (e.g.

dcterms:hasPart for hierarchical grouping of tickets), and moving towards root cause

analysis based on the notion of Known Error Database (KEDB) (e.g. troubleTicket-
Category and problemCategory for a priori and a posteriori categorization, respectively)

and primary/secondary anomaly (cause/effect) with alignment to the FOLIO model. With

greater details, a trouble ticket is a document transitively referencing a set of corrective

9Event type tagging can be carried-out at the data integration stage, or through a posteriori language processing
of the “logText” property.

10http://datamodel.tmforum.org/en/master/Common/TroubleTicket/
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maintenance actions that can be abstracted into an issue remediation OperationPlan
for solving the AnomalyPattern at hand. Reaching such abstraction from actions’ digi-

tal traces is enabled by considering the PEP model with TroubleTicket as a specializa-

tion of a pep:ProcedureExecutionContainer, actions as pep:ProcedureExecution and

OperationPlan as pep:Procedure.

Similarly to trouble tickets, we define the ChangeRequest concept according to the TM Forum

DataModel11 for tracking scheduled change operations (as sets of pep:ProcedureExecution
carried-out in correspondence to a given OperationPlan) with structural or functional im-

pact, and computing (potential) causality for trouble tickets based on the set of correlated

resources/applications and operations start/end time.

3.3.4 Agents, Teams and Organizations

From the incident management point of view, finding experts in short time is key for op-

erational efficiency. One common approach is to form teams based on technical exper-

tise (e.g. routing and international backbone, servers and virtual machines, forensics and

malware retro-engineering) and assign them to manage specific devices or services. Ex-

ternal support and engineering services are also relied upon for specialized cases. To fa-

cilitate interoperability with complementary knowledge bases, we utilize the FOAF and

ORG data models for representing entities such as agents and users (foaf:Person), or-

ganizational units (org:OrganizationalUnit), and organizations (org:Organization).

Relationships with IT entities, such as Resource and Application, are modeled using

properties like elementManagedBy and applicationModuleRelatedParty. We introduce

the CorporateUserIdentifier class as a specialization of foaf:OnlineAccount and pro-

vide a controlled vocabulary for detailed role descriptions of agents, teams (e.g. Techni-

cal Support Group), and organizations (e.g. Manufacturer). This notably enables apply-

ing the cyber security out-of-policy principle (i.e. what is not defined is not allowed) for

tracking non-legitimate operations (unless facing an insider) by asserting access control

groups as org:OrganizationalUnit and scrutinizing observed or declared user actions (e.g.

eventLogOriginatingAgent, dcterms:creator).12

3.4 Evaluation

We have evaluated the NORIA-O implementation according to the ability of the model to an-

swer the CQs that were collected in Section 3.2.1. The CQs have emerged from an iterative and

collaborative process of capturing knowledge from domain experts. Therefore, we consider

11http://datamodel.tmforum.org/en/master/Common/ChangeRequest/
12We assume that companies’ human-resource databases are reliable and accurate sources of truth.
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that translating these CQs into Authoring Tests (ATs) [385, 173] and obtaining a satisfactory

answer to these SPARQL [368] queries from the knowledge graph constitute a sound evalua-

tion of NORIA-O. This evaluation aims to check that all the concepts and relations that are

important for the experts’ needs are included in NORIA-O. The set of authoring tests, available

at https://w3id.org/noria/evaluation, has been defined and tested on two knowledge graph

instances structured by NORIA-O. The first one describes a fictitious case of supervision and is

publicly available (Section 3.5). The second one has been generated from Orange internal data

(10 data sources encompassing 128 features over 15 tables) using an in-house data pipeline

(Chapter 4); the size of the resulting RDF dataset is approximately 4 million triples for 400K

entities, including streamed events spanning over 111 days.13

After this evaluation, we distinguish three situations depicted in column “AT Validation” of

Table 3.1. First, a large number of CQs (16/26) can be answered using a single or several

simple SPARQL queries and the ontology (“OK” in Table 3.1). 9/26 CQs (“AI” in Table 3.1) are

partially satisfied using SPARQL queries, to which complementary AI techniques should be

added to fully answer the CQs. For example, to answer CQ#11 “What was the root cause of the

incident?”, the representation of alarms and logs associated with a given incident needs to be

enhanced with root cause analysis algorithms (e.g. using semantic reasoners with failure mode

descriptions as discussed in [57] and Chapter 5, or similar incident context search as discussed

in Chapter 7). Another example is CQ#25 “What are the vulnerabilities and the associated risk

levels of this infrastructure?” that can be answered only by looking for non-desirable network

topology shapes or relations to cybersecurity knowledge derived from network structure and

security scanners (e.g. using the SHACL [142] toolset, or graph-based risk assessment [380]

with UCO-labelled data [388]). Third, 1/26 CQs requires the introduction of new concepts or

relations via an extension of NORIA-O (“Extension” in Table 3.1). The CQ #23 “What is the

financial cost of this incident if it occurs?” involves information about the cost of an incident

(e.g. leveraging the SEAS Failable System ontology [241] and calculating the number of users

affected by a service impairment).

3.5 Use Case: Modeling a Complex IT Infrastructure

We illustrate the usage and expressiveness of NORIA-O through a fictitious case of network

infrastructure supervision. The Figure 3.3 summarizes this use case by showing both the

network topology and the corresponding entities. The dataset for this scenario is available at

https://w3id.org/noria/dataset. 660 triples are needed for representing the full scenario with

additional resources, organization and root cause analysis details.

Based on this scenario, we observe that NORIA-O enhances anomaly detection and analysis

13Due to confidentiality, this large dataset is not made public but the fictitious one has been created with the
purpose of being a shareable resource.
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Figure 3.3: NORIA-O instantiation example.
A fault on an access switch (red star) impacts redundancy for critical application resources. The technician identifies the issue
through an inferred alert (t = t2), traces it back to the faulty equipment, and takes corrective action (t = t3). The process is
documented in a trouble ticket, including the cause and repair action. noria is the default namespace for classes and properties.
“SKOS scheme” block values (e.g. “equipmentAlarm”, “inferredAlert”, etc.) are coming from the NORIA-O controlled vocabulary.

tasks with the following capabilities.

Data integration: it consolidates data from various sources and provides a standardized

interpretation using the rdf:type and skos:Concept constructs. For example, this

allows entities in the structural and functional facets to combine data from network

discovery tools, VM hypervisors, and the company directory. Events can also be looked

up by their type, regardless of their originating signaling system.

Data querying: it enables facet-wise checking of the network state and configuration in a

rule-based approach using data retrieval. For example, a SPARQL query can derive

the scenario’s inferred alert (a resilience problem) using a k out-of n graph pattern

on Resource and Application entities (Section 5.4.1). This would not have been

possible with a single data source or without standardized interpretation of the data

using controlled vocabularies.

Situation understanding & classification: it enables gaining facet-wise insights about a sit-

uation and its ecosystem using graph traversal. For instance, a SPARQL query can

calculate the network neighborhood for a specific incident or identify the teams in-

volved in its resolution. Categorizing event patterns and root cause analysis is addressed

using reasoning through complementary ontologies [57, 255] or rule engines [292, 228].

Additionally, the context of an incident, represented by the graph structure related to

59



Chapter 3. An Ontology for Anomaly Detection and Incident Management in ICT Systems

a TroubleTicket entity, can be captured and categorized using graph embeddings

(Chapter 7).

3.6 Conclusion and Future Work

In this chapter, we presented NORIA-O, an ontology for representing network infrastructures,

incidents and maintenance operations, that relies on and extends well-known semantic

models such as BBO, BOT, FOAF, FOLIO, SEAS and UCO. NORIA-O is available at https://

w3id.org/noria under a BSD-4 License, along with its documentation and a sample dataset.

We conducted an evaluation of NORIA-O using the Competency Questions & Authoring

Tests methodology [385], demonstrating its suitability according to the expert needs. We

also illustrated the usage and expressiveness of the data model using a fictitious case of

network infrastructure supervision. Additionally, we discussed the importance of this model

by showcasing the complementary use of graph traversal techniques, reasoning, and incident

context capture through graph embeddings. These techniques are discussed in detail in Part

II of this manuscript.

Future work will focus on experimenting with NORIA-O for cross-domain alarm correlation

and aggregation. First, event logs from heterogeneous data sources depicting an identical

phenomenon need to be parsed and categorized in the same way. This can be achieved by in-

corporating specific technological domains, such as OTN or 5G mobile network specifications,

into the NORIA-O controlled vocabulary. Techniques such as log parsing [175, 325] and se-

mantization [26] can be applied, either before or after the data integration stage. NLP-related

techniques, including named entity recognition [37], topic modeling [156], and vocabulary

reconciliation [276], are crucial in this process. Second, relating events to anomaly models

(Chapter 7) or attack scenarios [42], requires to filter-out event logs and alarms on both trou-

ble tickets’ timespan and impacted resources characteristics. Recent research on dynamic

graphs with event streams has shown promising results in estimating the useful spreading of

observables [68, 379, 351, 92].

We also note that network resilience and cybersecurity application domains will benefit from

extensions of a NORIA-O knowledge graph with third-party data collection tools. For example,

network topology anti-patterns and semantic interpretation of the ICT resources configura-

tion [371] could be related to the network performance and issues. Similarly, integrating data

from vulnerability scanners and cyber threat intelligence tools could enable cybersecurity risk

evaluation and minimization (e.g. combining CVSS [285] data from OpenCTI14 with optimized

countermeasure placement techniques [380]).

Finally, to maximize the opportunities for improving NORIA-O through its use in various

14https://www.opencti.io/
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application contexts, as well as to facilitate the sharing of operational knowledge among

network operators by using NORIA-O as a common model, we have referenced NORIA-O in

the LOV15 [291] and ENIT Industry Portal16 [20]. Improving the implementation of NORIA-O or

adjusting the model to new application contexts can be achieved by monitoring the indicators

and metrics provided by these portals, such as the names of projects integrating NORIA-O,

third-party ontologies reusing NORIA-O, and the NORIA-O’s FAIR score [99].

15https://lov.linkeddata.es/dataset/lov/vocabs/noria
16https://industryportal.enit.fr/ontologies/NORIA-O
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Chapter 4

A Knowledge Graph-based Platform

for Anomaly Detection and Incident

Management in ICT Systems
4.1 Introduction

Incident management for broad scale ICT systems implies scrutinizing massive amounts of

heterogeneous data for proper definition of remediation strategies. In the best case, crisp

reasoning over situations at hand brings fast root cause analysis and high level of confidence

for selecting the corrective maintenance actions to carry out. Anomaly detection within

decision support systems, such as NMSs and SIEM tools, typically rely on expert knowledge

translated into logical rules for catching specific situations based on the systems activity traces.

However, uncertainty arises whenever the ICT system’s activity shows unexpected values or

behaviors poorly fitting known activity models. A typical solution would be to fine-tune the

decision support system stack, for example by extending the detection rule set with the new

values, or retraining the anomaly detection model. This unfortunately brings computational

complexity and overfitting to the diagnosis stage.

A better solution is to keep rules and models consistent by working on semantically equal data.

The notions of “ontology” and “data model” solve the challenge of reasoning upon composite

alerting signals at the semantic level (Chapter 3). Indeed RDF Knowledge Graphs (KGs) bring

an abstraction level for standard interpretation and logical reasoning over heterogeneous

data.

Leveraging on Semantic Web tools could bring decision support systems for ICT systems to a

next level of diagnosis and recommendation capabilities. However, few feedback exist about

the design of such data processing platform from an end-to-end point of view. This chapter

reports on the design experiments for a knowledge graph-based data platform made at Orange.

It comprises the following key features:

1. Building a RDF knowledge graph from static (IT resources lists, organization) & streamed

(trouble tickets, logs) data;
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2. Providing data & inferences provenance and confidence indicators;

3. Enabling inline & posterior entity patching and reconciliation;

4. Enabling multi-level & synergical reasoning.

Our main contributions with this work are: setting design methodology and principles for an

end-to-end KG-based data platform, providing ETL architecture details and code for handling

descriptive datasets and events streams, and sharing lessons learned while building the

platform about data mapping strategies and configuration deployment.

The rest of the chapter is organized as follows. Section 4.2 explores design challenges and

requirements through a tool chain model proposal. Section 4.3 details our knowledge graph-

based data platform architecture. References to contributed open source code are provided

there. Section 4.4 evaluates the platform features and discusses lessons learned. Finally,

Section 4.5 concludes this chapter by providing a summary of the work that has been done

and offering some preliminary conclusions regarding the opportunities and potential future

developments associated with it.

4.2 Design Methodology and Challenges

This section outlines the methodology followed in constructing a knowledge graph-based data

platform with stream processing and reasoning capabilities for incident management over

ICT systems. It proposes a conceptual tool chain and examines design challenges and require-

ments to frame the high-level design and implementation work discussed in Section 4.3.

Conceptual tool chain & design principles. Looking at data integration theory and generic

data transformation processes (e.g. “Extract, Transform, Load”, CRISP-DM [323]), we remark

that none directly take into account the abstraction and reasoning capabilities brought by

the Semantic Web technologies and Knowledge Graphs. Furthermore, these design patterns

set apart decision making concerns where informed-decisions potentially involve gradual

understanding of data (i.e. raw data → information → knowledge) combined with synergical

reasoning [46].

Extending on these, we propose a tool chain model (Figure 4.1) to guide design thinking steps:

unstructured data (e.g. event logs) enters the tool chain and becomes structured data by

application of a defined/learnt structure model. Semantic mapping is applied for making

annotated data. These can benefit of additional knowledge from some enrichment service (e.g.

mapping assets to organization or vulnerability knowledge). Reasoning service (e.g. rule-based

inference, confidence propagation, link/entity prediction) works from annotated data for

producing further knowledge (i.e. interpreted data). Downstream agents (e.g. operational
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teams, information system) get informed (e.g. situation awareness) by querying interpreted

data. This conceptual tool chain is open to complementary processes, such as a direct feed of

structured data or recursive loops of the inference step.

Based on the above, we posit the following design principles (further discussed below) to

streamline integration and improve user adoption: 1) Minimize transformation needs at

ingress: data encoding (serialization & structuration) must be backward compatible early in

the processing chain to limit the number of technologies used; 2) Independent downstream

usage: parallel downstream applications may focus on different data facets, so the serializa-

tion/structure should allow easy separation of data from meta-data without imposing specific

remote procedure calls; 3) Implementation independent: abstractly describing transformation

and processing rules enables system behavior description and transposition independent of

implementation; 4) Integrate, customize or build: prioritize integrating existing frameworks

that meet requirements, extend partially meeting frameworks, or develop specific solutions if

neither of the previous options apply.

Note that knowledge engineering methodologies (e.g. Competency Questions [385] and

Linked-Open Terms [224]) are separate from our proposal. Data models resulting from these

methodologies are used in the annotation step, but our tool chain is not affected by changes

in data models from a functional and technical perspective.

Dataset characteristics organize the processing architecture. Scrutinizing Orange internal

datasets and third party datasets based on their TAM Domain/Sub domain1, we took note of

the data structures and technical characteristics (e.g. number and type of features, serialization

syntax, schema definition, access protocol, update period) for devising a data integration

strategy. The update period and data access method emerged as key design factors: descriptive

datasets (e.g. assets database, network topology, organization) have a low refreshment pace

(one day to one week period) and are generally available through file-based platforms (e.g.

database API, file dumps), while network operations and events (e.g. interface status change,

applications logs, alarms, trouble tickets) are stream feeds with fast-paced time-stamped data

(real time to quarter-hour period).

Data wrangling with syntax heterogeneity. When transforming data, we need to simultane-

ously consider syntax heterogeneity and batch/stream processing. This can be represented

using the ET [P1]L[P2]L model embedded in Figure 4.1, where P1 components are for per

feed processing and P2 components apply at the dataset level. The P1/L interface should

comply with standard data transport solutions (e.g. JSON for Kafka messages) and knowledge

1i.e. their parent application/research domain within the TM Forum’s GB929 Application Framework (TAM),
see https://www.tmforum.org/application-framework/
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graph data ingestion methods (e.g. SPARQL Update, periodic/on-demand bulk load), while

the L/P2/L interfaces require data representation transformation to match P2 requirements

(e.g. Turtle to JSON-Graph) and integrate results (e.g. time-stamped confidence as a RDF

triple) into the knowledge graph-based application data model.

Data wrangling with annotation, patching & reconciliation tasks. We assume data must

have meaning (e.g. data is about a hostname or a date, and not just a string of characters) and

structure to be useful (in our case, a relational graph structure). Therefore we introduce the

concept of data patching & reconciliation to do in-place update of the graph data and link

entities from different sources. This includes substituting equivalent literals with controlled

vocabulary and normalizing terms and relationships.

Post-processing constraints on the ETL stages. First, it is important to track the data origin

for trustworthiness. From a practical standpoint, this allows for:

1. Isolating/correcting contaminated (intentionally or not) data sources;

2. Accessing the original data to restore its original meaning and context;

3. Exposing data characteristics (e.g. freshness, validity period) for refined decision mak-

ing.

Second, it is necessary to make post-processing efficient by considering both the composition

of post-processing (e.g. sequential, parallel) and the form of the data for lossless transforma-

tion, such as from graph to table. The third goal is to determine how post-processing results

are utilized. This involves considering the compatibility of processing blocks and whether

the results can be interpreted beyond their original context. It also involves reintroducing the

results into the base data space to serve iterative or synergistic reasoning. The nature of the

result must also be considered in terms of form and value, as it can add information to an

existing object (e.g. assigning a cyber security risk level to a network asset) or create a new

object (e.g. an alert). Provenance and trust are necessary here, but with different semantics

since they affect the product of data interpretation, not the original data.

4.3 KG-based Platform and Data Processing Architecture

Thinking through the design methodology of Section 4.2, we developed two data integration

pipelines and a mechanism for data interpretation (Figure 4.1) based on well-known open
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source frameworks (e.g. Apache Kafka2, Apache Airflow3, OpenLink Virtuoso4), academic

projects (e.g. RMLMapper [24], StreamingMASSIF [292], string2vocabulary [276], grlc [9],

RDFUnit5) and ad hoc code (Table 4.1). The overall system is akin to a Lambda data processing

architecture [95].

Figure 4.1: Conceptual tool chain & data platform overview.
Acronyms: ESB = Enterprise Service Bus, SSB = Semantic Service Bus, KG = Knowledge Graph. Plain arrows are for data flows,
dotted arrows for control and query flows. Arrows start from the component initiating the flow/transaction. Numbers for the
“descriptive datasets” and “events” blocks refer to the number of sources in Table 4.2. Component names within brackets relate to
ad hoc code from Table 4.1. P1 and P2 stands for Processing components groups in an ET [P1]L[P2][L] reading of the tool chain
(i.e. matching the tool chain with the ETL process model).

Knowledge graph management. We manage the knowledge graph using a Virtuoso quad

store, with enabled SPARQL endpoint and Faceted Browser services. Named graphs enable

fast data access and help track the source of triples in RDF datasets. We use predefined

URI [50] patterns that closely match the NORIA-O data model (see below), following the Graph

per Source and/or Graph per Aspect data management patterns [200]. This prior knowledge

simplifies the creation of linked data using a declarative transformation approach before

inserting mapped data into the graph (see below for implementation details).

Batch processing for descriptive datasets [airflow-dag-gen, virtuoso_loader]. A set of

Apache Airflow Directed Acyclic Graph (DAG)6 periodically triggers data downloading,

mapping and inserting tasks. DAGs are defined on a per 〈Sour ce,V i ew〉 basis and

2https://kafka.apache.org/
3https://airflow.apache.org/
4https://virtuoso.openlinksw.com/
5https://github.com/AKSW/RDFUnit
6https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/dags.html
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Table 4.1: Complementary developments for the KG-based platform

Component name Role

airflow-dag-gen Parametric Airflow DAG generator for data integration and patching.

KafkaSink StreamingMASSIF [122] component for JSON-LD output to Kafka,
available at https://github.com/Orange-OpenSource/SMASSIF-RML.

grlc Enhanced grlc [9] with GitLab connector and SPARQL Update,
available at https://github.com/Orange-OpenSource/grlc.

NORIA-O RDF data model for IT networks, events and operations information,
available at https://w3id.org/noria/.

SMASSIF-RML Modified RMLMapper [24] for StreamingMASSIF [292] component,
available at https://github.com/Orange-OpenSource/SMASSIF-RML.

ssb-consum-up Kafka to SPARQL gateway,
available at https://github.com/Orange-OpenSource/ssb-consum-up.

virtuoso_loader Event-triggered (Kafka) bulk load of remote RDF datasets into Virtuoso.

are configured using a limited set of parameters: schedule interval, a reference to a

noria:ETL_process_node entity, and templated ETL tasks to schedule.

noria:ETL_process_node entities are configuration nodes stored in the platform’s knowl-

edge graph. They include a reference to the data source to download via a dcat:downloadUrl
property, and a relationship to the RML mapping rules (also stored in the platform’s knowledge

graph). This allows for centralizing information (configurations and mapped data) with a ho-

mogeneous representation, resulting in simplified interrogation and audit of data provenance.

Because RML is RDF data, making these rules available from the knowledge graph is as simple

as uploading an RML file into the graph store once the mapping implementation done.

Prior starting a mapping thread (i.e. a local rmlmapper-java instance), 1) a fetchRules
task queries the knowledge graph for the mapping rules and stores them in a temporary

file, and 2) a fetchData task downloads the raw data to map. Then mapping is started with

complementary output configuration parameters asking for RDF Trig7 serialization (enables

targeting specific named graphs in the downstream graph store with rr:graph attributes in

the mapping implementation) and provenance metadata generation at the dataset level [25]

(relates the mapping activity to the rml:source used in the mapping implementation with

a prov:used attribute). Because rmlmapper-java does not include target graph data in the

provenance metadata file, we rewrite the file with an adjustProvenance step. Once the

mapping thread is over, a loadRequest signal triggers fetchMappedData and loaderRun
threads on a downstream virtuoso_loader component listening to a specialized Kafka

7https://www.w3.org/TR/trig/
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topic. This ends the batch processing for descriptive datasets by inserting mapped data and

provenance metadata into the knowledge graph.

Speed processing for events [SMASSIF-RML, KafkaSink, ssb-consum-up]. A set of special-

ized StreamingMASSIF pipelines continuously consume, map and forward data for insertion

into the knowledge graph by a downstream ssb-consum-up component (a Kafka to SPARQL

gateway). Equation (4.1) shows the typical form of the pipelines:

K a f kaSour ce → RMLM apper → (Opti onalPr ocessi ng ) → K a f kaSi nk (4.1)

where K a f kaSour ce is a StreamingMASSIF native component, RMLM apper is a modi-

fied version of the rmlmapper-java tool (to handle streamed data as a StreamingMASSIF

component), Opti onalPr ocessi ng can consist of any combination of StreamingMASSIF’s

reasoning components8, and K a f kaSi nk is a contributed component that sends the data

stream in JSON-LD syntax to a Semantic Service Bus (SSB). Pipelines are defined on a per

〈Sour ce,V i ew〉 basis and are configured using a limited set of parameters: input topic, refer-

ence to an RML rules implementation, and output topic.

We posit that RDF data downstream of the mapping pipelines can serve multiple purposes as

distinct streams (e.g. direct update of the knowledge graph, intermediary vocabulary recon-

ciliation, multi-source event logs co-occurrence alerting, notification-triggered dependency

calculus). To manage the distribution of streams, we developed the concept of SSB using the

Kafka event streaming technology and considering the following features: 1) forwarding RDF

data messages in standard RDF serialization; 2) providing provenance metadata; 3) providing

named-graph compatibility; 4) enabling the use of SPARQL Update actions9.

The Kafka platform uses 〈ke y, value〉 pair-based messaging with native JSON compatibility,

hence JSON-LD is a natural serialization choice for forwarding RDF data through the SSB. We

identified two strategies for mapping JSON-LD with the 〈ke y, value〉 message model while

handling potentially RDF dataset-shaped streams:

1. Build Kafka messages with key = NULL, and value = <JSON-LD payload> (with or

without named graph).

2. Assuming named graph at the subject level, build Kafka messages with key =
<JSON-LD metadata> (e.g. {[provenanceMetadata], [updateAction], [other-
Metadata]}) and value = <JSON-LD payload> (with named graph).

8As for StreamingMASSIF v0.0.1: Windowing, Filtering, Abstraction, Complex Event Processing (CEP).
9https://www.w3.org/TR/sparql11-update/
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The strategy #1 is the most straightforward and versatile approach, as it delegates all deci-

sion making regarding RDF triples to the downstream consumer(s), including which graph

update operations to apply (such as INSERT or DELETE). Further, it directly complies with

the fact that the Kafka’s ke y is for partitioning and compaction10, which means that ke y

is akin to a primary key and may not be used for metadata unless made compatible with

the partitioning and compaction principles (note that ke y can be left empty). The strategy

#2 enables providing guidance to downstream consumers on how to handle RDF triples

through metadata. We remark that updateAction can leverage on well-known vocabu-

laries such as schema:UpdateAction11. Similarly, provenanceMetadata can include a

prov:wasGeneratedBy attribute to keep track of the successive modifications made within a

tool chain. A downside of the second strategy is that the scope of the updateAction should

match all <JSON-LD payload> triples, both in terms of the operations to apply and target

named graph. Because the strategy #2 can be later built upon the #1, we chose to implement

the #1 as a starter, that is: straightforward payload mapping at the KafkaSink level and graph

update operations defined at the ssb-consum-up level.

Since we are using named graphs at the knowledge graph level and that the Virtuoso graph

store requires defining the target graph parameter for data insertion using SPARQL update

queries, we explicit the design of the ssb-consum-up component with Equations (4.2) & (4.3):

(s, p,o, g ) −→
Op

Op{GRAPH g {s p o}} (4.2)

(s, p,o) −→
Op,g

Op{GRAPH g {s p o}} (4.3)

where Eq. (4.2) states that incoming messages from the SSB are RDF triples along with a

target graph information, thus data insertion into the downstream SPARQL endpoint is akin to

translating the messages into SPARQL update queries subject to a user-defined action Op (e.g.

INSERT); and Eq. (4.3) reflects the same with an additional user-defined target graph parame-

ter g whenever incoming messages are raw RDF triples. Assuming many StreamingMASSIF

pipelines pushing mapped data with target graph information into a same SSB topic, then a

single ssb-consum-up component instance is sufficient for continuous data insertion (e.g.

with Op = I N SERT , and g = 〈De f aul tGr aphU RI 〉 for filling any gaps).

Data model [NORIA-O]. The NORIA-O data model, presented in Chapter 3, is used as the

main data model for the data integration and exploitation work described in this chapter as

it can model complex ICT system situations and serve as a basis for anomaly detection and

root cause analysis. The NORIA-O data model also provides a set of controlled vocabularies

10https://kafka.apache.org/documentation/#compaction
11https://schema.org/UpdateAction
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useful for standard interpretation of the knowledge graph entities; for example, with recon-

ciliation (see below) on the network device alarms through the <Notification/EventTypeGroup/

SecurityAlarm> concept scheme.

Patching & reconciliation [airflow-dag-gen, grlc]. The per source and per concept mapping

approaches discussed above entails handling data ingest interdependencies with comple-

mentary patching & reconciliation tasks. We make use of an Airflow DAGs-based periodic

run of ordered patching queries in SPARQL syntax via a enhanced grlc [9] tool instance. For

this approach to work, we assume that the NORIA-O data model is available in the data store,

including the controlled vocabularies (a.k.a. NORIA-O KOS).

We observe that patching requests follow a limited number of forms that can be expressed

as (arche)types of patching queries, thus leading to a standard approach to patching (Eq. 4.4,

where P stands for Patching Queries and O for Ontology):

Ptempl ates ×Pde f i ni t i ons
query generator−−−−−−−−−−→ P ; O ×P

patching−−−−−−→O′ (4.4)

We define the three following archetypes, hence making the mapping definition process faster

and easier to maintain via patching requirements set in a definition file (e.g. YAML syntax)

and query generation (e.g. Python script + templated SPARQL queries in JINJA2 syntax12):

1. l i ter al2KOS := 〈Li ter al〉 → 〈skos : Concept(Sub j ect)〉. We implement it with

SPARQL queries as an exact string match via a LCASE(STR(x)) = LCASE(STR(y))
statement in order to avoid declaring redundant skos:altLabel in the NORIA-O vo-

cabulary files. For example, from Figure 4.1: “interface went down” → EventRecord.type

(<kos/Notification/EventType/StateChange>).

2. l i ter al2U RI := 〈Li ter al〉→ 〈Sub j ect〉) (but not a KOS URI). Likewise l i ter al2KOS,

we implement it as an exact string match. For example, from Figure 4.1: “router

HSR2EE2” → Resource.resourceHostName('HSR2EE2').

3. addShor tcut := {〈Pr edi cate,Ob j ect〉} → 〈Sub j ect〉, i.e. a direct property between

a subject and an object when these two nodes are related by a given longer path. For

example, from Figure 4.1: “issue potentially triggered by” → EventRecord.conformsTo(

Vulnerability('CVE-2021-20433')).

Complementary iterative processing. Complementary Airflow DAGs trigger data model

and data quality audits (e.g. querying the knowledge graph against the NORIA-O competency

12https://jinja.palletsprojects.com/
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questions, checking data ingest conformance with the RDFUnit tool), performance evaluations

(e.g. queries velocity vs NORIA-O expressivity), and application-specific code (e.g. querying

the IT network topology from the knowledge graph and then running a graph-based risk

assessment method).

4.4 Lessons Learned

Our design currently runs on Orange internal data (10 data sources encompassing 128 used

features over 15 tables, see Table 4.2). Batch processing generates, updates and patches

the knowledge graph on a hourly basis. Speed processing works on generated data until

further integration within the data ecosystem. The size of the resulting RDF dataset at hand is

approximately four million triples for 400K entities, including streamed events spanning over

111 days13.

Table 4.2: Data sources and mapping overview, with generic names of Orange internal data
sources, along with features and mapping statistics. Acronyms: AAA = Authentication, Autho-
rization and Accounting; VM = Virtual Machine. Unused features are due to data redundancy,
or data without correspondence with the NORIA-O data model.

Nature
Data source
(table)

Features
(total)

Features
(used)

Features
(used ratio)

rr:TriplesMap
(count)

Events Trouble Tickets 28 21 75,00 % 6
Change Tickets 124 11 8,87 % 2
Alarm monitoring 152 8 5,26 % 1
Logs monitoring 164 3 1,83 % 1

Descriptive AAA groups 6 4 66,67 % 2
Applications 25 15 60,00 % 2
Teams 14 8 57,14 % 3
Users 12 6 50,00 % 2
Logistic database 51 19 37,25 % 8
Backbone logical links 14 5 35,71 % 2
Backbone physical links 14 4 28,57 % 3
Applications types 63 9 14,29 % 1
Network topology 16 2 12,50 % 1
VM management 74 9 12,16 % 3
VM clusters 57 4 7,02 % 2

By applying the Authoring Test approach [385] with the NORIA-O competency questions14, the

resulting RDF dataset proves to be of great interest from a business perspective as it enables

the handling of incident management needs across heterogeneous data through the use of

13Due to confidentiality, this dataset is not made public.
14https://w3id.org/noria/cqs/
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data retrieval techniques and complementary AI-based algorithms. Indeed, out of the 26

competency questions defined with expert panel interviews, a significant number of them

(16/26) can be answered using simple SPARQL queries and the NORIA-O ontology, while the

remaining questions (9/26) may require additional techniques such as relational learning or

anomaly detection algorithms.

From a more technical standpoint, the software infrastructure is deployed using an Infrastruc-

ture as Code approach. A main project installs and configures the platform using templated

scripts based on a host feature inventory. Components can be individually started, stopped,

or upgraded thanks to a microarchitecture design. The platform uses nine virtual machines

hosted in Orange’s private cloud with varying hardware setups (e.g. 1-4 vCPU, 8-16 GB memory,

20-80 GB storage). CI/CD is further used for granular version control and performance evalua-

tion, particularly for the NORIA-O data model, where pre-publishing review and expressivity

evaluation are enforced as per the LOT methodology [224]. The data model is automatically

loaded into the data store when there is a change. The same approach is used for orchestration

DAGs, where data integration tasks can change based on data source changes. The latest

DAGs releases are downloaded and scheduled via an update signal sent to the Apache Airflow

instance.

From the Apache Airflow DAGs and Virtuoso logs, we measure that the map data and adjust

provenance tasks are from far the longest tasks of the DAGs (Table 4.3). As we implemented

simple RML rules (i.e. without rr:joinCondition), the mapping time can hardly be lowered

as it depends on the input file size and rmlmapper-java tool implementation. We remark

from complementary experiments that rr:joinCondition entail a ×2 to ×5 increase of pro-

cessing time. However, improving provenance data generation for the adjust provenance file

step (e.g. at the rmlmapper-java or file rewriting level) may bring better overall performance

with a ×4 increase in throughput.

For speed processing, we confirmed the effectiveness of our SMASSIF-RML→ ssb-consum-ub
→ Virtuoso tool chain based on local experiments with generated data (related to the “events”

category from Table 4.2). However, a thorough load study is yet to be conducted with real data

sources. Evaluation is left for future work, which will depend on the evolution schedule of the

streaming sources to provide standardized connectors. Besides performance, we observed

that although Kafka allows data replay for overcoming subsystems failures, it is a complex

system; so materializing mapped data in files (as in our batch processing approach) seems

more reliable.

For patching & reconciliation, we make use of 42 SPARQL queries (l i ter al2KOS = 16,

l i ter al 2U RI = 19, addShor tcut = 7). From our experience on reconciliation, l i ter al 2KOS

with exact match is sufficient in a great majority of cases, but will misses advanced text

analysis situations, such as for noria:logText parsing (e.g. noria:EventRecord.log-
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Table 4.3: Batch processing performance for three representative (small/medium/big) sources
from Table 4.2. Preprocessing may include: convert to csv, delete first line, convert to UTF-8,
crop columns.

AAA groups Users Logistic database Unit

Input data size 0.16 2.4 45.5 [Mb]

Download data 0.44 6.63 % 0.95 1.54 % 3.32 0.69 % [s]
Dump rules 0.14 2.11 % 0.19 0.31 % 0.15 0.03 % [s]
Preprocessing 0.19 2.86 % 9.46 15.37 % 8.66 10.83 % [s]
Map data 3.27 49.25 % 8.54 13.87 % 79.97 16.70 % [s]
Adjust provenance 2.27 34.19 % 40.66 66.05 % 374.26 78.16 % [s]
Notify for loading 0.27 4.07 % 0.29 0.47 % 0.29 0.06 % [s]
Data bulk load 0.05 0.75 % 1.46 2.37 % 12.17 2.54 % [s]
Prov. bulk load 0.01 0.15 % 0.01 0.02 % 0.02 0.00 % [s]
Total time 6.64 61.56 478.84 [s]

Output data 0.52 21 222 [Mb]
5 110 244 532 2 415 676 [Triples]

Throughput 769.58 3 972.25 5 044.85 [Triples/s]

Text("LINK-3-UPDOWN: Interface GigabitEthernet0/0/1, changed state to
up") to enrich with dcterms:type <kos/Notification/EventType/stateChange>).

Hence we developed two complementary approaches:

1. We extended the String2Vocabulary tool [276] with named graph processing capabilities

for enabling vocabulary reconciliation with a fuzzy match approach as a DAG task

consecutive to data mapping.

2. We experimented with the Slogert framework [26] for complementary noria:logText

structuring and annotation in a KG
Sl og er t−−−−−→ KG fashion through a DAG.

More generally, we remark that combining Airflow with grlc [9] allows quick development

of knowledge graph-based applications of the extract-process-report type, and friendly ac-

cess to data and operations for non-technical/non-expert users. Furthermore, our two

step “simple mapping vs posterior patching” approach allowed us maximizing direct graph

traversal capability with URIs while minimizing duplicates although handling them. This

has notably allowed us to keep the knowledge graph’s complexity low by avoiding the

use of owl:sameAs predicates. Finally, we remark that, thanks to a report table such as

Table 4.2, tracking the characteristics of the source files and TripleMaps for comparison

is simplified, resulting in time savings for exploring and cross-referencing information.

Building this table is possible through scripted process akin to RMLs ×Dat aSour ces →
{Sour ceF i l e, f eatur estot al , f eatur esused }. A nice consequence of this programmatic analy-
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sis is the natural emergence of mapping management patterns; this notably led to design a

DAG generator tool for convenient management and deployment of the ETL and patching

DAGs. Table 4.2 is also valuable for complementary analysis. First, the “used ratio” indicator

reveals sparse/dense data sources for our application domain, raising concerns about infor-

mation redundancy and database design practice. Second, it suggests potential for additional

concepts/relationships, depending on clever understanding of the necessary and sufficient

features for a given domain. Third, it enables direct reading of data flow from sources to

concepts and graphs, revealing design principles and characteristics behind them.

4.5 Conclusion and Future Work

In the work described in this chapter, we aimed to design and implement a data processing

architecture for knowledge graph-based incident management of broad scale ICT systems.

We firstly hypothesized that the cross-referencing of semantic representations from multiple

sources would enable the evolution of decision support systems for ICT systems to a next level

of diagnosis and recommendation capabilities. Next, we developed and deployed a Lambda

data processing architecture combining well-known open source frameworks (Apache Kafka,

Apache Airflow, OpenLink Virtuoso), academic projects (RMLMapper [24], StreamingMAS-

SIF [292], string2vocabulary [276], grlc [9], RDFUnit) and ad hoc code released in open source

(grlc15, SMASSIF-RML16, ssb-consum-up17). The proposed architecture has been instantiated

and tested in an industrial setting, producing an RDF knowledge graph that shows strong

potential for addressing cross-domain anomalies from heterogeneous data.

The solution notably minimizes the effort for data quality and trust audit thanks to the gen-

eralized use of RML, and the centralized storage of both data and mapping configuration

within the knowledge graph. Additionally, we open up the possibility of distributed processing

or event-triggered processing through the generalization of RDF data transfer by a message-

broker software. However, the data provenance tagging at the dataset level leads to a loss of

information granularity after the data patching/reconciliation steps and introduces a heavy

file adjustment step. Further, a thorough load study is necessary to consider deploying the

stream processing pipeline on massive data (e.g. telemetry data from broadband network

routers or a fleet of IoT devices).

Future work on the NORIA platform will consider both improving the Knowledge Graph

Construction (KGC) process and using the resulting knowledge graph for efficient inci-

dent management. Focusing on KGC, future work will explore how the full descrip-

tion of the ETL processes could be stored within the knowledge graph with RDF pro-

15https://github.com/Orange-OpenSource/grlc
16https://github.com/Orange-OpenSource/SMASSIF-RML
17https://github.com/Orange-OpenSource/ssb-consum-up
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cess models [22, 186]. This would allow auditing data platforms through a single lan-

guage, thanks to a joint representation of data and processing mechanisms. In the same

line of thought, automated patching generation can be enabled by browsing RML files

for rr:predicateObjectMap [rr:objectMap [rml:reference "<someRef>"]], poten-

tially with an additional toPatchWith(<someGraphPattern>) property for better end-to-

end process automation and automated URI template checking. For stream processing, we

envision comparing our approach with other frameworks [122, 91]. This should help identify

decision boundaries, particularly in terms of energy efficiency and network overhead, in order

to move towards a Kappa architecture [95]. This should also provide insights on the signaling

mechanisms to be implemented for opportunistic processing (e.g. SKOS reconciliation as a

service, in-line graph clustering) and synergical reasoning [46] (cooperative decision making).

Finally, scrutinizing knowledge graph pruning and summarization techniques will prevent

from ever expanding datasets (e.g. ICT systems situation models vs an accumulation of logs),

although using generic RDF data models for knowledge representation is already a mitigating

factor.

Beyond future work on the NORIA platform itself, we also envision conducting a reflection

on the generalization of KG-based approaches at the level of enterprise-scale IT urbanism.

Firstly, as a KGC pipeline, such as the NORIA platform, provides a unified view of various data

silos at the scale of a specific resource management domain (e.g. a regional or national busi-

ness unit, a technological domain such as OTN or 5G networks), one might indeed consider

the deployment of a higher level unified view (Figure 4.3) while considering constraints on

data ownership, data access authorization, and data hosting infrastructures. The SPARQL

Federated Query extension18 is a typical option for this research, assuming data stored as

RDF or viewed as RDF via middleware (e.g. OnTop VKG [132]) and distributed over different

SPARQL endpoints. A second axis of reflection on IT urbanism involves leveraging high I/O

performance technologies and frameworks for specific types of data (Appendix B.5) while

remaining aligned with the idea of providing a unified and KG-based view of the data. This

is the case, for example, with Time Series DataBase (TSDB) and column-oriented DBMS,

optimized for time series and sequential data. Figure 4.2 illustrates a development option

where the data is distributed both to the KGC pipeline and a TSDB, maintaining a possible

relationship with shared references. Through experiments on this architecture, insights can be

gained on the storage footprint of time series data in KG-DBMS compared to TSDB, based on

KGC policies. Additionally, trade-offs between training time and accuracy of machine learning

models for multidimensional time-stamped data in KG-DBMS versus TSDB can be explored.

18https://www.w3.org/TR/sparql11-federated-query/
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Figure 4.2: Unified access to data distributed across various technological platforms.
This diagram illustrates a technical architecture where data domain owners within an organization, with data hosted on different
platforms and locations, provide access to a reconciled view through a mediation layer using the SPARQL protocol and its
Federated Query extension. A SPARQL endpoint allows access to data in each silo, potentially through a middleware if the
DBMS is not compatible with SPARQL. Common data models across the organization enable the creation of a unified view. Data
authorization policies at the silo level determine the subgraphs returned to end users by federated queries. Acronyms: KG =
Knowledge Graph; RDB = Relational database; PG = Property Graph; xDBMS = DataBase Management System; VKG = Virtual
Knowledge Graph; QL translat. = Query Language translator; SPARQL EP = SPARQL endpoint; CDR = Call Detail Record.
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Figure 4.3: KG-only vs mixed KG/non-KG data integration for event data streams.
This diagram shows two data integration strategies using KGs to represent streaming data (such as cybersecurity logs) on a
network topology. In the “KG-only” pipeline, all events are materialized in the graph. In the “mixed” pipeline, the stream is
replicated to a time series database (TSDB), and only the start and duration of event sequences are materialized in the KG using
an aggregation function in the KGC pipeline. In this second case, the homogeneity of identifiers allows for transitioning from one
representation to another (dashed blue arrow) while benefiting from the advantages of each formalism and the performance of
each storage technology, such as analyzing an incident context in KGs and calculating trend breaks in the TSDB. Other acronyms:
ESB = Enterprise Service Bus; SSB = Semantic Service Bus.
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Introduction

Securing IT & telco networks is of utmost importance across industries. A solid understanding

of user and equipment behavior is crucial for effectively handling network incidents, managing

security risks, and comprehending the impact of user activities on the network infrastructure.

While having a complete and inherently explainable behavioral model of systems is an ideal

that every network designer and operator strives for, it is unfortunately almost impossible to

achieve due to the complexity of Information and Communications Technology (ICT) systems

and the inherent combinatorial nature of technical configurations. Furthermore, accessing

network traffic and system/application logs to obtain an accurate system status can be difficult

due to encryption or decentralized systems. This complexity hampers the ability to learn

precise user and equipment action sequences and behavioral patterns, thereby introducing

uncertainty in causal reasoning and making efficient incident management challenging.

To effectively address complexity and challenges in anomaly detection and situation under-

standing, we first approach the problem by conducting expert interviews to identify key use

cases (Chapter 5). These use cases are analyzed towards a formal representation, allowing ex-

ploration of different approaches. We demonstrate that the use case “circumscribe assets and

causes search space for multi-applications incident situations” defines a general framework

of exploration that corresponds to three families of anomaly detection approaches: model-

based design (Chapter 5), process mining (Chapter 6), and statistical learning (Chapter 7). By

utilizing NORIA-O and the Knowledge Graph (KG) produced in the earlier steps of this thesis

(Part I), we showcase how each approach can be implemented and used individually or in

combination to handle a wide range of situations. We evaluate their effectiveness using anno-

tated real-world data and feedback from network administrators. We understand that network

administrators prioritize interpreting network behavior and making quick decisions during

incident management, rather than delving into the intricacies of data integration and anomaly

detection techniques. Therefore, we also explore the expectations of network administrators,

obtained through expert interviews, to enhance the usability of the knowledge graph and

these techniques. We present the implementation of a graphical interface that addresses these

expectations and conduct a field evaluation to assess its performance (Chapter 8).
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Chapter 5

Model-based Anomaly Detection

5.1 Introduction

Deploying ICT systems is based on design rules and expectations in terms of functionality and

performance, which means that once operational, the behavior of networks is supposed to

follow an underlying rationale and conform to pre-established models. These rules and models

are in themselves a priori knowledge of what could be observed by NetOps and SecOps teams

through Network Monitoring System (NMS) and Security Information and Event Management

(SIEM) systems, and therefore serve as a basis for defining alert mechanisms [55] to detect

undesirable ICT system states and explaining system behavior.

Description Logic (DL) [119] are a family of formal knowledge representation languages in

which KGs take their roots [8, 119]. DL, as a formal system, could allow for addressing the

description of anomaly detection cases for IT networks, providing a guarantee of consistency in

case descriptions, as well as a capacity for explainable reasoning due to their logical foundation.

Thereby, they bring an interesting general framework to address the challenges in incident

management and envision a unified approach to the anomaly detection and diagnostic stages

(Chapter 1). However, considering the combinatorics of large-scale ICT systems, further

understanding of key anomaly detection cases is required to scope the description effort.

Additionally, NetOps and SecOps teams face challenges in rule management in NMS/SIEM

DSSs, thus bringing the objective to minimize the number of detection models or provide

fundamental principles for expansion. This includes exploring opportunities to make the

representation of networks through the KG formalism self-sufficient in interpreting their

dynamics, for instance, by relying on simple queries on the KG (e.g. using SPARQL [368]) and

avoiding the use of extensions such as Semantic Web Rule Language (SWRL) [147] or SPARQL

Inferencing Notation (SPIN) [143] for cause-effect calculation if possible.

In the rest of this chapter, we consider the formal description of anomaly detection cases as

an essential working foundation for knowledge capitalization and management, and subse-
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quently the implementation of a KG-based solution for anomaly detection and diagnostic.1

To accomplish this, we begin in Section 5.2 by defining a hierarchy of anomaly detection

cases to consider. This hierarchy is based on interviews conducted with domain experts to

identify the most complex diagnostic scenarios. In Section 5.3, we analyze to what extent DL

allow for representing emblematic detection cases, leading us to define three complemen-

tary families of anomaly modeling techniques: model-based design, process mining, and

statistical learning. Additionally, we discuss how they could practically help in key incident

management process stages. Then, we focus on model-based design techniques in Section 5.4

with experiments on anomaly detection with graph retrieval and reasoning techniques (we

discuss the process mining and statistical learning in Chapters 6 and 7, respectively). Finally,

Section 5.5 concludes this chapter by providing a summary of the work that has been done

and offering some preliminary conclusions regarding the opportunities and potential future

developments associated with it.

5.2 Scoping the Diagnostic Phase with Experts

Assuming that the above-mentioned unified approach to the anomaly detection and diag-

nostic stages is an achievable goal, decision-making depends heavily on how the operating

parameters of the systems are obtained and represented. We argue that observables (i.e. arti-

facts of the network assets’ events and states) result from a generative process in a semi-open

world: as assets’ states dynamically vary with respect to other agents (e.g. neighboring assets,

servicing technicians, end users, randomness) based on behavioral rules (e.g. failover mecha-

nisms, remediation procedures), sets of states are interpreted through higher level (composite)

concepts (Figure 1.4). Although these perspectives provide indications on the entities to

represent and how to do it, the nature of the processing carried out on these concepts for the

diagnostic phase remains a broad subject.

To get more specific on the nature of the analysis and responses that are performed, we

conducted interviews with a panel of NetOps & SecOps experts, inviting the experts who were

present for NORIA-O (Chapter 3) to participate again. We used the following methodology:

1. Ask experts for “pitfalls and wishes”;

2. Analyze responses with clarifying questions following ideas from the Agile frame-

work [318] and ISO/IEC/IEEE 29148:2011 guide [2];

3. Write exemplified anomaly detection use cases following the Cockburn-style tem-

plate [18].

As a result, six use cases were defined to serve as a framework for the implementation of an

1The correspondence between computer programming and logic, as emphasized in [252], supports this intent.
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automated reasoning system. Table 5.1 provides a short version of these use cases.

Table 5.1: List of anomaly detection use cases from expert panel interviews

# Description

1 Circumscribe assets and causes search space for multi-applications incident situations
2 Alert on impaired service situations occurring on (distributed) fail-over architectures
3 Assess legitimacy of a given network flow
4 Track single identity from a set of various activity traces
5 Analyze false-positive and recurrent cyber security alerts
6 Analyze compliance of web navigation traces from institutional website

We notice that the use case #1 is the most challenging and encompasses the other use cases

in that it generalizes the heuristic established in the incident diagnostic phase. During the

interviews, the experts notably regularly raised the need for a confidence indicator alongside

the inference results, which supports the need to search for a general mechanism. Therefore,

we will consider the use case #1 as the ultimate goal to achieve in the remainder of this thesis

work.

The experts also emphasized that the confidence indicator, seen as uncertainty about the

interpretation to be given to a situation, should not be systematically used to reject inferences

because it can itself contain information about complex situations (common cause failures,

multi-application failures) for relating trouble tickets. To illustrate this, let us consider that

each trouble ticket holds for a single independent incident or problem. However, it may occur

that several tickets are linked, thus covering related incidents. Network assets being linked,

mutual information arise about causes and consequences from the knowledge of the faults

at hand. Hence, it is possible to infer and exploit a parent/child relationship reflecting the

hierarchy of incidents from this confidence indicator: the child tickets describe incidents

which are considered as consequences of the incident described in the parent ticket. Eq. (5.1)

expresses this with modal logic in order to give substance to this idea:

∃x,∃y : (F.x → T.x)∧ (F.y → T.y)

∀x,∀y : ♦(F.x → F.y)

|= ∃x,∃y : T.x → T.y

(5.1)

where (x, y) are network assets (e.g. router, server, application), F a fault indicator, T a trouble

ticket, and ♦ a possibility operator.

In fact, the notion of probability in the association of tickets for common cause failures

directly relates to the need to capture incident contexts broadly, which would make it possible

to generate a single incident ticket for a complex situation instead of soliciting various teams

simultaneously and without coordination through multiple tickets. We remark that to further
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develop on this approach with tractable computational complexity, we may hypothesize that

alarm spreading and cascading failures are bounded with respect to time and space (Hyp. 2).

5.3 Approach

In this section, we first analyze the extent to which DL allow for representing emblematic

detection cases (Section 5.3.1). We demonstrate that the principle of causality, essential in

the diagnostic process, influences the modeling of detection cases. We also highlight the

need for set-returning functions to fully express expectations regarding detection cases, going

beyond the simple framework of DL. We then analyze the potential form of these functions

through anomaly detection techniques that leverage KGs (Section 5.3.2). This leads us to

define three complementary families of anomaly modeling techniques: model-based design,

process mining, and statistical learning. We also discuss the practical implementation of these

techniques through reasoning services, analyzing their role in decision support for incident

management.

5.3.1 Getting Formal: on Description Logics for Anomaly Detection

Implicational logic involves negating roles in Description Logics. The abstraction of IT net-

works along a horizontal (transmission path) and vertical axis (protocol stack) – as discussed

in Section 1.1.1 – embeds the functioning of networks in a performative implicational logic

(Eq. 5.2).

antecedent{Oper ati onal St ate,F aul tSt ate} ⇒ consequent{Nor mal Behavi or,F aul tBehavi or } (5.2)

For example, intermittent faults on the packet forwarding process of a network router result in

sporadic packet retransmit requests at the data receiver side. Similarly, an anomaly on the

Session layer of a connection between two terminals prevents the activation of the Presen-

tation and Application layers. In short, by reformulating in a logical language, inferring the

normal/fault (anomaly) state of ICT systems is the conclusive part of a logical formula.

In [16], event sequence mining and Horn clauses (i.e. a rule-like logical formula in disjunctive

form with at most one positive literal [229]) are presented as means for detecting decision

processes and anomalies from KGs. Interestingly, Horn clauses enable the representation of

antecedents with multiple facts, which is a common case in the fields of NetOps & SecOps

using fault signatures and attack signatures (Figure 5.1).

Because Horn clauses involves negation of concepts (a.k.a. “atomic negation” in DL), special

care should be provided to knowledge representation in KGs as DL implement negation at

the role level (i.e. the role complement “¬R” [119, Section 2.4.1]). As a consequence, the “¬”
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Figure 5.1: Indicator of Compromise (IoC) as a combination of multiple observables
The fault/attack signature concept refers to a combination of observables, where these observables depend on the supervised
technical component. In this diagram, the evidence of malicious activity I oC 2 of type T 2 on N E2 is the logical consequence of the
detection of D2, D4, D5, and D7 implying T 2, which is expressed in Horn clause using the formula: ¬D2∨¬D4∨¬D5∨¬D7∨T 2.
The following abbreviations apply: N E x = Network Element (e.g. switch, router, server, virtual machine); Dx = Detection
(observable); T x = Technique (signature); I oC x = Indicator of Compromise. A belief network between observables is established
based on co-occurrence analysis, thereby providing the opportunity to refine a diagnosis in the absence of direct evidence.

construct on KG relations (i.e. object properties and datatype properties) expresses difference

of relations rather than complement: drawing from the DL view, negating a role amounts to

defining an inference rule from which we can search for entities that have all roles except the

one that is negated.

In the following paragraphs, we present two detection cases in relation to use cases of Table

5.1, and analyze the impact of implicational logic on their modeling. This analysis allows us

to explore the rule expressivity used in anomaly detection and determine whether limiting

ourselves to Horn clauses is sufficient or if there is a need to express more complex rules.

Detecting a network interface state inconsistency. To start, we aim to address the ques-

tion “Which hosts have a NetworkInterface Admin/Operational status inconsistency?” This

question pertains to situations where the network interface of a network device is configured

(administrative status) for transmitting data but lacks connectivity (operational status) due to

signal loss with the neighboring device or misconfiguration. Figure 5.2 depicts this situation

as a graph pattern using the NORIA-O data model (Chapter 3), and Equation 5.3 provides the

logical form of this detection case.

pr.1∃x,∃y : R.x ∧N .y ∧P.x y ∧F.y → F.x
pr.2∃y : (A.y ∧¬O.y)∨ (¬A.Y ∧O.y) → F.y

∃x,∃y : F.y → F.x
(5.3)

Premise #1 (pr.1) in (5.3) implements the principle of fault signaling by the parent element,

and reads as:
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Figure 5.2: Network interface state inconsistency graph pattern
Graph pattern example for the “Which hosts have a NetworkInterface Admin/Operational status inconsistency?” detection
case. noria is the default namespace for concepts and relationships. Other namespace: rdf = http://www.w3.org/1999/02/
22-rdf-syntax-ns#. The diagram conforms to the Graffoo graphical notation [330].

• If x is a noria:Resource,

• If y is a noria:NetworkInterface,

• If y is a part of x, i.e. a 〈y,nor i a : net wor kInter f aceO f , x〉 subject-predicate-object

triple,

• If y is in a faulty state, then x is in a faulty state.

Premise #2 (pr.2) in (5.3) implements the business rule, and reads as:

• A holds the noria:networkInterfaceAdministrativeStatus value,

• O holds the noria:networkInterfaceOperationalStatus value,

• If there is an inconsistency between the states A and O of y , then y is in a faulty state.

The conclusion in (5.3) implements the proof of reliability of the alert system (observability),

and reads as: if y is in a faulty state, then x is in a faulty state.2

Several remarks can be derived from (5.3). Firstly, pr.1 restricts the domain of interpretation

of the business rule (i.e. network interfaces attached to a resource). This easily translates into

a graph pattern in a SPARQL query to query a KG using NORIA-O, and incidentally allows for

addressing the “circumbscribe assets and causes search space” use case (Table 5.1). Secondly,

(5.3) describes the alarm triggering mechanism itself through the observation of F.x. This also

easily translates into a SPARQL query (e.g. using a CONSTRUCT or INSERT form). However, it

overlooks the notification rewriting and enriching mechanisms (such as alarm masking and

severity modification, as discussed in Section 2.2), which require additional logical clauses.

Thirdly, the business rule (pr.2) assumes the ability to express the negation of predicates3,

2The completeness of the logical system was validated with ProofTools (https://creativeandcritical.net/
prooftools), resulting in a proof tree with 1+3×32+5 = 102 leaves.

3As discussed earlier: the role complement, defined by (¬R)I =⊤I
n \ R I , which reads as “any role except the one

mentioned”.
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which in DL would correspond to defining the concept F.x as (Eq. 5.4):

F aul t y Inter f ace ≡(
net wor kInter f ace Admi ni str ati veSt atus

⊓ ¬net wor kInter f aceOper ati onal St atus
)

⊔ (¬net wor kInter f ace Admi ni str ati veSt atus

⊓ net wor kInter f aceOper ati onal St atus
)

(5.4)

Equation (5.4) sets expectations for anomaly detection at the Knowledge Graph Construction

(KGC) process level (Chapter 4) with respect to the two following cases:

1. Deriving F aul t y Inter f ace requires that, for example, the 〈x,net wor kInter f ace-

Admi ni str ati veSt atus,∗〉 triple is not materialized while 〈x,net wor kInter f ace-

Oper ati onal St atus,∗〉 is (and vice-versa). This involves implementing conditional

data mapping at the data integration pipeline level, both to match the truth table of the

business rule, which is equivalent to using an XOR operator, and to ensure the absence

of false alerts (i.e. false negatives, false positives) in case a materialization has not been

performed due to lack of access to information about the network interface.

2. Describing the state of interfaces using NORIA-O is achieved through an object prop-

erty. Hence, to align with True/False values of a logical representation, the following

assumptions must hold:

Tr ue(Ax) ≡ 〈x,net wor kInter f ace Admi ni str ati veSt atus,Enabl ed〉
F al se(Ax) ≡ 〈x,net wor kInter f ace Admi ni str ati veSt atus,Di sabled〉
Tr ue(Ox) ≡ 〈x,net wor kInter f aceOper ati onal St atus,Enabled〉

F al se(Ox) ≡ 〈x,net wor kInter f aceOper ati onal St atus,Di sabled〉

Therefore, it is not possible to handle other interface states using a logical rule, such

as < x,net wor kInter f ace Admi ni str ati veSt atus,St andB y >, or the absence of a

triple unless we deviate from the Open World Assumption of the knowledge graph world

and work according to the Negation By Default principle [229].

Detecting a “k out-of n” resilience issue. Next, we aim to address the question “Which

Applications have k out of n (50%) Resources with Alarm (EventRecord)?” This question corre-

sponds to a typical resilience problem, such as ensuring the data forwarding functionality of a

network router redundancy group configured in an active-passive failover setup, or ensuring a

minimum processing capacity in a Web server cluster with load balancing. Figure 5.3 depicts

this situation as a graph pattern using the NORIA-O data model. Equations (5.5) and (5.6) are

two logical formulations of the problem, as a Kripke structure in Tarski notation [56] and Set
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theory within First-Order Logic respectively – the most concise forms for the given problem –

where F is a predicate for faulty states, and k is the decision threshold.

Figure 5.3: “k out-of n” graph pattern
Graph pattern example for the “Which Applications have k out-of n (50%) Resources with Alarm (EventRecord)?” detection case.
The diagram includes a simplified view of the network’s topology (access network and backbone network) through which servers
communicate to exchange Hello messages. noria is the default namespace for concepts and relationships. Other namespace:
rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#. The diagram partly conforms to the Graffoo graphical notation [330].

∃x1,∃x2 . . .∃xn :
( k∧

i=1
F (xi )∧

n∧
j=k+1

¬F (x j )
)

(5.5)

∃X :
(
car d(X ) ≥ k ∧∀y :

(
y ∈ X → F (y)

))
(5.6)

Several remarks can be derived from (5.5) and (5.6). Firstly, both equations account for the

ability to trigger an alert once we are able to define a group of entities on which the logical test

applies ({x1, . . . , xn} in the case of (5.5), and X in the case of (5.6)). This easily translates into a

graph pattern in a SPARQL query leveraging the fact that the entities under test have a relation

to a grouping entity (e.g. the <object/APP_99995_TST> in Figure 5.3). However, equation

(5.5) highlights the importance of testing for the absence of faults on the entities (as indicated

by clause ¬F (x j )), while equation (5.6) is tolerant to the absence of this information (i.e. it

only relies on the number of faulty entities as indicated by the clause car d(X ) ≥ k). Missing

fault information could be due to data collection or materialization issues. In both cases, the

functioning of the anomaly detection puts back-pressure on the KGC process, similar to the

previous case of network interface state inconsistency.

Secondly, neither of the two equations allows for pinpointing the cause of the incident since

the test provides a logical value encompassing all the entities in the group. Therefore, a second

step of KG querying is required for cause investigation. In Figure 5.3, diagnosing a Resource
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redundancy group using Hello packets, which are messages exchanged between members

of a cluster indicating their operational state (e.g. according to the Gateway Load Balancing

Protocol4 or a similar protocol), may require querying the KG to check for connectivity be-

tween Resource entities or determine the network paths taken by the packets to diagnose

intermediary Resource entities. This can be addressed using SPARQL queries, as SPARQL

1.1 [368] allows for defining property path (i.e. constraints on the graph pattern specific to

relationships between the KG entities), which includes the * operator that stands for “any

number of”. However, the * operator only determines the existence of a path, not the specific

path or the length of the shortest path [115]. This reflects the limitations of DL, and therefore,

providing the support team members with the means to target their diagnostic intervention

by giving them the list of faulty devices between two Resource entities (Eq. 5.7) involves

introducing a set-returning function into the problem definition, such as shor testPath in

(5.7): {
∃x,∃y : R.x ∧R.y ∧∀z

(
z ∈ shor testPath(x, y) → R.y ∧F.z

)}
(5.7)

The semantics of (5.7) are as follows: R is a predicate for identifying Resource entities, F

is a predicate for identifying entities with a faulty state, and shor testPath is a function

name referring to algorithms such as A∗. It is noteworthy that works from parallel research

communities provide similar answers to this approach. For example, [39] introduces the

concept of a set-returning function for spatial reasoning on a KG, and [198] uses shortest path

calculations on a KG5 to reveal semantic relationships within it.

Concluding remarks. To conclude this section, the causal interpretation used in anomaly

detection and incident management implies the need to have control over the KGC process

to ensure the effective implementation of detection cases. Indeed, it is important that KGC

practice should not solely focus on materializing all the available data – as it might be suggested

in Chapter 4 by the ease of implementing and deploying RML rule set – but is considered

through the inference methods that NetOps/SecOps need to apply afterwards. The causal

perspective also implies going beyond a strictly logical framework by introducing set-returning

functions to model the detection cases and provide the support team members with the means

for situation understanding. We further analyze the potential form of these functions in the

following Section 5.3.2.

4https://www.cisco.com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.html
5https://github.com/IDLabResearch/eice
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5.3.2 Anomaly Modeling Techniques and Reasoning Services

Families of anomaly modeling techniques. While the logical foundations of KGs provide a

solid basis for implementing anomaly detection, details from previous sections encourage

going beyond a strictly logical framework. For instance, NetOps/SecOps experts emphasized

the need for fuzzy reasoning and a confidence indicator for incident diagnosis (Eq. 5.1).

Additionally, circumscribing assets and causes search space (use case #1 in Table 5.1) holds

an implicit sub-graph computation requirement not available from the SPARQL 1.1 standard

(e.g. using A∗ search algorithm in the case of Eq. 5.7). This means that relying solely on KG

queries is not sufficient for our purpose. To address these apparent limitations, we define

three families of anomaly modeling techniques (Table 5.2) that incorporate the notion of time

and explainability capabilities thanks to the use of explicit representation:

• Model-Based Design assumes that the knowledge graph holds the necessary and suffi-

cient data to infer unwanted situations with information retrieval (e.g. SPARQL queries);

• Process Mining, including conformance checking tools and Petri nets (P/T nets) repre-

sentation, is effective for situations tied to a decision-model and bounded in time and

location;

• Statistical Learning with graph embeddings [312, 153] assumes that anomaly models (i.e.

the generalizing context of a set of situations) derive from the structure of the knowledge

graph.

Towards reasoning services. Let’s assume, for the sake of understanding how we could

orchestrate the aforementioned families of techniques, that the greatest increase in operational

efficiency in human-driven incident management would result from providing assistance for

the automatic filling of trouble tickets. Such incident situation categorization can be done at

several stages: before the ticket creation (early detection), at the ticket opening (cause/solution

similarity based on ticket descriptors and context), during the resolution (cause/solution

refinement and proposal of next action based on the actions taken). According to the use

cases list defined in Table 5.2, we summarize the above analysis by proposing the following set

of reasoning and inference services:

1. Predicting the category of a trouble ticket (i.e. the initial nature or technical impact,

such as “isolated customer site”, “traffic disruption”, “integrity violation”). This is a

classification problem, with classes defined in a user-provided controlled vocabulary

represented as SKOS concepts.

2. Predicting the probable cause of a trouble ticket. We can imagine that this would also

be a classification problem with references to a controlled vocabulary.
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Table 5.2: Anomaly modeling technique families

Principles Strengths Weaknesses

Model-Based Design

Query the graph to retrieve
anomalies and their context.

Detecting anomalies
“recorded” somehow in
the graph thanks to the
alarm system; straightfor-
ward translation of simple
anomaly detection rules;
multiple abstraction levels
(subsumption).

Relies on expert knowledge;
lack of probabilistic reason-
ing; hard to represent sequen-
tial decisions; may require to
infer more prior information
about the anomaly, e.g. its
type using classification.

Process Mining

Align a sequence of entities
to activity models, then use
this relatedness to guide the
repair.

Detecting anomalies with
multiple alerting signals
and sequential decisions;
replayable models.

Relies on expert knowledge;
may require denoising mod-
els; probabilistic relatedness.

Statistical Learning

Relate entities based on con-
text similarities, then use this
relatedness to alert and guide
the repair.

Detecting anomalies with
multiple alerting signals.

Requires fine tuning of the
context definition depending
on use case and temporal-
ity requirements; probabilis-
tic relatedness.

3. Detecting anomalies before a trouble ticket is even created. This service could be

implemented with Link Prediction techniques [170]. The link being predicted is not

necessarily related to incident remediation initially, but can rather be a link that would

lead to the creation of an alarm or a trouble ticket.

4. Adding comments to a given trouble ticket, namely, a comment proposing the next best

action to undertake based on the observations of a given situation.

5. Calculate the n closest anomalies given an observed anomaly (with the ambition of then

transposing/adapting the remediation plans that have worked in the past).

We notice that these five services have a common point concerning the capture of the context

related to the nature of the incident. In the model-based experiments described in the following

Section 5.4, we assume that we already have a model of the anomaly, and the detection result

provides additional knowledge that indirectly enriches the trouble ticket during the associated

incident diagnostic phase. This partially addresses reasoning services #1, #2, #3, and #4.

Chapters 6 and 7 will cover both the capture and inference aspects through the process mining

and statistical learning approaches respectively, thus inherently covering the five types of
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services discussed. In general, we will assume that implementing service #1 will allow for the

development of the others through incremental design.

5.4 Experiments

In this section, we explore the model-based design techniques family through three experi-

ments with Semantic Web related techniques on data stored in a KG using the NORIA-O data

model. We start, in Section 5.4.1, by directly applying the graph retrieval approach described

above using SPARQL queries on the graph. Then, in Section 5.4.2, we extend graph retrieval

with reasoning for root cause analysis using the FOLIO [62] ontology. Finally, in Section

5.4.3, we extend graph retrieval with reasoning for sequence analysis using the CFGOwl [255]

approach.

5.4.1 Graph Retrieval

As mentioned in Table 5.2, graph retrieval refers to querying the graph to retrieve anomalies

and their context based on formal expectations of a situation from experts. It assumes that all

the necessary and sufficient data for the detection case is present in the KG. Since the KG is

the result of a KGC process in which data is structured according to one or more ontologies,

we consider that the implementation process of the detection case specified by the experts

corresponds strictly to writing a SPARQL query that represents a graph pattern using the

concepts and properties of the ontologies. In the following paragraphs, we use the detection

cases studied in Section 5.3.1 as the basis for experimentation and conduct an evaluation

based on the dataset defined in Appendix B.3.

Detecting a network interface state inconsistency. To begin with, we translate the question

“Which hosts have a NetworkInterface Admin/Operational status inconsistency?” into the query

of Listing 5.1 to match the graph pattern of Figure 5.2.

Using the Apache Jena SPARQL command line tool6, we execute the query in Listing 5.1. This

query returns ResHostName="rt_tsi_2" and NI_Name="Te-1-0", satisfying the require-

ment for the detection case. However, the query is focused on a single pair of states and does

not generalize to the various combinations of states shown in Table 5.3.

To address this limitation and achieve generalization, we implement and execute a new query

that looks for incorrect state equivalences (Listing 5.2). To function properly, this query

requires the inclusion of complementary state correspondence relationships in the KG (Listing

5.3), as the current NORIA-O v0.3 data model implementation lacks these relationships.

6http://jena.apache.org/documentation/query/
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1 # === PREFIXES =================================================================
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX noria: <https://w3id.org/noria/ontology/>
4 BASE <https://w3id.org/noria/>
5

6 # === QUERY ====================================================================
7 SELECT ?ResHostName ?NI_Name {
8 ?NI a noria:NetworkInterface ;
9 noria:networkInterfaceOf ?Res ;

10 rdfs:label ?NI_Name ;
11 noria:networkInterfaceAdministrativeStatus <kos/Resource/AdministrativeState/unlocked> ;
12 noria:networkInterfaceOperationalStatus <kos/Resource/OperationalState/disabled> .
13 ?Res noria:resourceHostName ?ResHostName .
14 }

Listing 5.1: SPARQL query for the “Network Interface State Inconsistency” case.

Table 5.3: Network interface state inconsistency truth table

OperationalState/enabled OperationalState/disabled
AdministrativeState/unlocked OK Fault
AdministrativeState/locked Fault OK

1 # === PREFIXES =================================================================
2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
3 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
4 PREFIX noria: <https://w3id.org/noria/ontology/>
5

6 # === QUERY ====================================================================
7 SELECT ?ResHostName ?NI_Name ?NI_Admin ?NI_Oper ?NI_Admin_related_candidate {
8 ?NI a noria:NetworkInterface ;
9 noria:networkInterfaceOf ?Res ;

10 rdfs:label ?NI_Name ;
11 noria:networkInterfaceAdministrativeStatus ?NI_Admin ;
12 noria:networkInterfaceOperationalStatus ?NI_Oper .
13 ?Res noria:resourceHostName ?ResHostName .
14 ?NI_Admin skos:relatedMatch ?NI_Admin_related_candidate .
15 FILTER (?NI_Oper != ?NI_Admin_related_candidate)
16 }

Listing 5.2: SPARQL query for the “Network Interface State Inconsistency” case
(generalization).

1 # === PREFIXES =================================================================
2 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
3 @base <https://w3id.org/noria/> .
4

5 # === DEFINITIONS ==============================================================
6 <kos/Resource/AdministrativeState/locked>
7 a skos:Concept ;
8 skos:inScheme <kos/Resource/AdministrativeState> ;
9 skos:relatedMatch <kos/Resource/OperationalState/disabled> .

10

11 <kos/Resource/AdministrativeState/unlocked>
12 a skos:Concept ;
13 skos:inScheme <kos/Resource/AdministrativeState> ;
14 skos:relatedMatch <kos/Resource/OperationalState/enabled> .

Listing 5.3: Complementary SKOS definitions for the “Network Interface State Inconsistency”
case, in Turtle syntax.
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Detecting a “k out-of n” resilience issue. We now consider the question “Which Applications

have k out of n (50%) Resources with Alarm (EventRecord)?” and translate it into the query

of Listing 5.4 to match the graph pattern of Figure 5.3. In this implementation, we nest two

SPARQL queries. The inner query lists the resources associated with an application and

matches those that are linked to an event using an OPTIONAL7 clause to calculate the ratio of

resources in fault. The outer query, of type CONSTRUCT8, creates a new triple associated for

at-risk applications (i.e. new knowledge that can be integrated into the KG to alert and assist

in diagnosis).

1 # === PREFIXES =================================================================
2 PREFIX noria: <https://w3id.org/noria/ontology/>
3

4 # === QUERY ====================================================================
5 CONSTRUCT { ?App noria:atRisk "K out-of N (50%)" . }
6 WHERE {
7 SELECT
8 ?App (COUNT(DISTINCT ?Res) AS ?ResTotal)
9 (COUNT(DISTINCT ?ResImp) AS ?ResWithImpact)

10 WHERE {
11 ?Res a noria:Resource ;
12 noria:resourceForApplication ?App .
13 OPTIONAL {
14 ?Event a noria:EventLog ;
15 noria:eventLogOriginatingManagedObject ?Res .
16 BIND (?Res AS ?ResImp)
17 }
18 } GROUP BY ?App HAVING ( (?ResWithImpact / ?ResTotal) >= 0.5)
19 }

Listing 5.4: SPARQL query for the “k out-of n” resilience issue.

Using the Apache Jena SPARQL command line tool, we execute the query in Listing 5.4,

which returns the two following triples of Listing 5.5, thereby fulfilling the requirement for

the detection case. However, we observe that the results do not adhere to the modeling for

inferred-alerts proposed by the NORIA-O data model (i.e. the noria:atRisk property is

not included in the data model), nor do they follow best practices for attribution (e.g. lack of

time-stamping, lack of reference to the signaling system).

1 # === PREFIXES =================================================================
2 @prefix noria: <https://w3id.org/noria/ontology/> .
3

4 # === Alarm ====================================================================
5 <https://w3id.org/noria/object/APP_99995_TST> noria:atRisk "K out-of N (50%)" .
6 <https://w3id.org/noria/object/APP_99996_TSI> noria:atRisk "K out-of N (50%)" .

Listing 5.5: Results for the “k out-of n” resilience issue, in Turtle syntax.

7https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#optionals
8https://www.w3.org/TR/2013/REC-sparql11-query-20130321/#construct
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To address these two remarks, we extend the initial SPARQL query to the one in Listing 5.6.

This new query generates an entity of type noria:EventRecord with a time-stamp, criticality

and alarm nature information, and origin. Listing 5.7 shows the result of executing this query.

By inserting the triples from Listing 5.7 into the knowledge graph, it becomes possible to

consider resilience issues as any other type of alert, whether through a SPARQL query or any

other KG-based technique.

1 # === PREFIXES ================================================================
2 PREFIX dcterms: <http://purl.org/dc/terms/>
3 PREFIX prov: <http://www.w3.org/ns/prov#>
4 PREFIX noria: <https://w3id.org/noria/ontology/>
5 BASE <https://w3id.org/noria/>
6

7 # === QUERY ===================================================================
8 CONSTRUCT {
9 ?EventURI a noria:EventRecord ;

10 prov:wasDerivedFrom "noria-sdlri2023-toy-example" ;
11 noria:alarmMonitoredAttribute "Resilience" ;
12 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/major> ;
13 noria:logOriginatingManagedObject ?App ;
14 noria:logOriginatingManagementSystem <object/APP_NORIA_AD> ;
15 noria:loggingTime ?NotificationConstructTime ;
16 dcterms:description "Application at risk: K out-of N (50%)" ;
17 dcterms:type <kos/Notification/EventType/inferredAlert> .
18 } WHERE {
19 SELECT
20 ?App (COUNT(DISTINCT ?Res) AS ?ResTotal)
21 (COUNT(DISTINCT ?ResImp) AS ?ResWithImpact)
22 (NOW() as ?NotificationConstructTime)
23 (IRI(CONCAT("event/AIS_TOY_", strUUID())) AS ?EventURI)
24 WHERE {
25 ?Res a noria:Resource ;
26 noria:resourceForApplication ?App .
27 OPTIONAL {
28 ?Event a noria:EventRecord ;
29 noria:logOriginatingManagedObject ?Res .
30 BIND (?Res AS ?ResImp) }
31 } GROUP BY ?App HAVING ( (?ResWithImpact / ?ResTotal) >= 0.5)
32 }

Listing 5.6: SPARQL query for the “k out-of n” resilience issue, with generation of alerts as an

EventRecord entity.

1 # === PREFIXES =================================================================
2 @prefix dcterms: <http://purl.org/dc/terms/> .
3 @prefix prov: <http://www.w3.org/ns/prov#> .
4 @prefix noria: <https://w3id.org/noria/ontology/> .
5 @base <https://w3id.org/noria/kos/> .
6

7 # === Alarm ====================================================================
8 <event/AIS_TOY_bb7818a2-c15e-4e33-9655-dc45e5c4d8c3>
9 a noria:EventRecord ;

10 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
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11 noria:alarmMonitoredAttribute "Resilience" ;
12 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/major> ;
13 noria:logOriginatingManagedObject <object/APP_99995_TST> ;
14 noria:logOriginatingManagementSystem <object/APP_AM049124> ;
15 noria:loggingTime "2023-09-08 04:00:0.0" ;
16 dcterms:description "Application at risk: K out-of N (50%)" ;
17 dcterms:identifier "AIS_TOY_bb7818a2-c15e-4e33-9655-dc45e5c4d8c3" ;
18 dcterms:type <kos/Notification/EventType/inferredAlert> .
19

20 # [...] similar for <object/APP_99996_TSI>

Listing 5.7: Results for the “k out-of n” resilience issue, with alerts as an EventRecord entity, in

Turtle syntax.

5.4.2 Reasoning with FOLIO for Root Cause Analysis

In this experiment, we utilize reasoning to extend graph retrieval for RCA in a scenario where

a network service is affected due to a fault in the upstream data transmission path. Figure 5.4

provides an example of a knowledge graph representing this situation.

To establish a connection between separate observables (e.g. EventRecords entities on

network resources making the data transmission path) and provide insights into the prob-

able cause, we incorporate expert knowledge from an Failure Mode and Effect Analysis

(FMEA) study (Table 5.4). The model from this study establishes a causal chain between

an OpticalLinkCutOrUnpluggedOrDirty cause at the NetworkLink entity level and the

ServiceImpairement effect at the Resource entity level.

Table 5.4: Deduction rules from FMEA study
This table presents domain knowledge structured through FMEA for the “optical link continuity loss” issue. It is akin to a set of
two deduction rules that can be read as: when Cause occurs on Entity then observe Effect; this is a Mode situation that can be
solved by Containment action. The chaining of the two rules (i.e. the EndpointLostConnection effect of rule #1 is the failure
mode of rule #2) enables to infer causal relationship of the <event/AIS_ServiceImpairement> alert of Figure 5.4 to a fault at
the level of the <object/NL_TOY_rt_tsi_1_rt_tsi_2> network link.

# Entity Mode Detect & Respond

1 NetworkLink OpticalLinkContinuityLoss
Effect: EndpointLostConnection
Cause: OpticalLinkCutOrUnpluggedOrDirty
Containment: CleanReplugReplace

2 Resource EndpointLostConnection
Effect: ServiceImpairement
Cause: OpticalLinkContinuityLoss
Containment: TracerouteRestart

To implement the attribution mechanism, which assigns responsibility to each entity in the

situation, we utilize the FOLIO ontology [62]. This ontology enables the classification of an

incident situation through OWL-based reasoning, particularly by identifying the role of each

observable through concepts such as FailureMode (the characteristic observable of a given

fault), LocalEffect (refers to the first detected effect on the system), and FailureCause
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Figure 5.4: Optical link continuity loss graph pattern
Graph pattern example for the RCA experiment with the FOLIO ontology with two network devices connected by network link,
and an application relying on the connectivity state of this network link. The diagram includes two alarms reflecting on a fault
occuring on the device on the left and the application it is a resource for. The red box highlights the location of the probable cause
of the issue, and number (1), (2) and (3) the temporal relatedness of the events. noria is the default namespace for concepts and
relationships. Other namespace: rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#. The diagram conforms to the Graffoo
graphical notation [330].

(defines a concept with no further hasNextEffect relations).

Experiment & results. For this experiment, we followed the steps outlined below using the

FOLIO’s toolset, which was shared in open source9 by the authors of the ontology: 1) we

transcribed the FMEA from Table 5.4 into a CSV file that aligns with the FOLIO data model;

2) we adapted the original FOLIO mapping rules to accommodate the experiment’s FMEA

CSV file, and then used the yarrrml-parser10 tool to generate the corresponding RML

mapping rule set in Turtle syntax; 3) we converted the experiment’s FMEA definitions into an

OWL/FOLIO-based ontology using the rmlmapper-java11 tool and the RML mapping rule

set generated in the previous step; 4) we loaded the experiment’s dataset into the Virtuoso

graph store of the KG-based platform described in Chapter 4, along with the FMEA ontology

created in the previous step, the FOLIO ontology, and the NORIA-O ontology; 5) we looked for

means to infer causes and effects with the native capabilities of the Virtuoso DBMS.

The Virtuoso platform offers reasoning mechanisms accessible via SPARQL queries that are

initially limited to subsumption.12 Unfortunately, the use of FOLIO requires the ability to

reason through a sequence of restrictions on class equivalences (i.e. finding entities satis-

9https://github.com/IBCNServices/Folio-Ontology
10https://github.com/RMLio/yarrrml-parser
11https://github.com/RMLio/rmlmapper-java
12https://docs.openlinksw.com/virtuoso/virtuosotipsandtricksrdfschowlinfrl/
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fying a combination of [owl:equivalentClass/owl:onProperty] property paths). This

functionality cannot be achieved using the native capabilities of Virtuoso without employing

pragmas13 in the SPARQL queries or implementing custom inference rules using the SPIN

vocabulary [192].

As reasoning over [owl:equivalentClass/owl:onProperty] property paths typically cor-

responds to tableau calculus, we followed the additional steps outlined below to overcome the

above apparent limitations: 1) we loaded the experiment’s dataset into the Protégé 5.1 ontology

editor [227], along with the FMEA ontology created in the previous steps, the FOLIO ontology,

and the NORIA-O ontology; 2) we merged the set of ontologies to create a single reasoning

space for the HermiT reasoner [127] (a Protégé plugin enabling tableau calculus); 3) we ran

the HermiT reasoner for inferring causes of the <event/AIS_ServiceImpairement> entity

of Figure 5.4.

Unfortunately, when activating the HermiT reasoner, we encountered an “error occur-
red during reasoning: Java heap space” exception after more than ten minutes of

execution, regardless of the memory allocated to the process (i.e. from 400 MB to 1.5 GB).

Discussion. Although inconclusive due to the failure to implement the inference mechanism,

these experiments highlight the interesting aspect that modeling the detection case according

to an FMEA study can align with representing an abnormal situation on a network topology

represented as a knowledge graph, using properties from the noria:EventRecords entities

as observables. It is also noteworthy that the FMEA, in addition to being a proven and well-

established method in industrial environments, has an intrinsic form of explainability due to

the representation of deduction rules in the form of a standardized table. Furthermore, despite

the lack of results to support this claim, we observe that the use of reasoning with FOLIO lacks

the capability for forward prediction of the next ICT system state. However, this is partially

offset by the fact that the ontology resulting from the conversion of domain knowledge can

incorporate expert-provided advice (i.e. the Containment attribute in Table 5.4). Finally,

we remark that although the use of SWRL is highlighted by the authors of FOLIO in [62] for

rule-based inference (e.g. IF (CPU load > 75%) AND (process progress = 0) THEN
alert hanging process), this can be substituted by utilizing SPARQL CONSTRUCT queries

to minimize the need for additional engines involved in the overall RCA process.

5.4.3 Reasoning with CFGOwl for Sequence Analysis

In this experiment, we assume that there is no prior knowledge of the temporal relationship

between events that would allow them to be associated into a logical trace, except for the

13Language constructs that specifies how a given parser/compiler should process its input.
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fact that they are all emitted by the same source. Hence the question arises of what are the

means for identifying a pattern in the absence of materialization of these relationships in

the knowledge graph, including for sequences of events nested at multiple levels such as

illustrated in Figure 5.5 with logged events of user actions on a given host.

Figure 5.5: Universal trace model for logged user actions
This diagram presents three perspectives for trace-based reasoning [290] on user actions logged as observable elements (ObsEl).
The “generic activity pattern” captures the fact that login and execution of commands on a remote device (should) typically
correspond to a {User Log i n,n ×User Acti on,User Log out } sequence. Finer-grain analysis of the User Acti on should also
allow to detect a configuration change activity, which corresponds to the “change activity pattern”. The combination of both
patterns leads to considering a “universal dynamic system model” for activity detection and categorization at multiple levels (i.e.
at the most abstract level of the generic pattern, as well as at the level of configuration change).

In the following, we utilize formal-grammar-based reasoning to extend graph retrieval for

alerting on cybersecurity risk. Figure 5.6 depicts a situation where a user fails to connect

via Secure Shell (SSH) [208] to a device due to too many authentication attempts, which is

considered an indicator of intrusion attempts on a system.

Experiment & results. For this experiment, we followed the steps outlined below using the

CFGOwl approach [255]: 1) we executed the query of Listing 5.9 to retrieve the SSH service

messages from the OOTD 2023 dataset (Section B.3); 2) we implemented the formal grammar of

Listing 5.8 in Lark syntax14 for the classification of groups of messages; 3) we concatenated the

messages and processed them with the command of Listing 5.10 to generate a CFGOwl-based

ontology. This ontology was then further analyzed by browsing it and running the HermiT

reasoner to infer sequence classification.

1 // A bunch of logs to scrutinize through rules
2 start: rule+
3

4 // Detection rules
5 ?rule: login_success
6 | login_attempt
7 | login_max_auth_tries

14https://www.lark-parser.org/ide/
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Figure 5.6: EventRecords related to a malicious user attempting to log in through Secure Shell
Graph pattern example depicting a set of logged events from the SSH service of <object/RES_TOY_srv_tst_2> following
login attempts by the <agent/USER_rogue> user. The diagram includes an inferred alarm notifying a login_max_auth_tries
situation. noria is the default namespace for concepts and relationships. The other namespaces are the following: dcterms =
http://purl.org/dc/terms/; observable = https://unifiedcyberontology.org/ontology/uco/observable#; skos = http://www.w3.
org/2004/02/skos/core#; rdf = http://www.w3.org/1999/02/22-rdf-syntax-ns#. The diagram conforms to the Graffoo graphical
notation [330].

8

9 // Situations
10 login_success: LOG_CONNECTION_ESTABLISHED LOG_LOGIN_FAIL~0..2 LOG_LOGIN_SUCCESS
11 login_attempt: LOG_CONNECTION_ESTABLISHED LOG_LOGIN_FAIL~0..2 LOG_LOGIN_GRACE_TIME
12 login_max_auth_tries: LOG_CONNECTION_ESTABLISHED LOG_LOGIN_FAIL~3
13

14 // Vocabulary
15 LOG_CONNECTION_ESTABLISHED: "sshd:ConnectionEstablished"
16 LOG_LOGIN_SUCCESS: "sshd:AcceptedPassword" | "sshd:AcceptedPublickey"
17 LOG_LOGIN_FAIL: "sshd:FailedPassword"
18 LOG_LOGIN_GRACE_TIME: "sshd:ConnectionClosedPreAuth"
19

20 // Disregard spaces in text
21 WHITESPACE: (" " | "\n")+
22 %ignore WHITESPACE

Listing 5.8: Context free grammar for the “login classification” use case, in Lark syntax.

1 # === PREFIXES ================================================================
2 PREFIX noria: <https://w3id.org/noria/ontology/>
3

4 # === QUERY ===================================================================
5 SELECT ?logText WHERE {
6 ?Log a noria:EventRecord ;
7 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution" ;
8 noria:logText ?logText ;
9 noria:loggingTime ?logTime .

10 } ORDER BY ?logTime

Listing 5.9: SPARQL query for the “login classification” use case.

1 python cfgowl.py \
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2 -g ./sshd_01.lark \
3 -s "sshd:ConnectionEstablished sshd:AcceptedPassword
4 sshd:ConnectionEstablished sshd:FailedPassword sshd:ConnectionClosedPreAuth
5 sshd:ConnectionEstablished sshd:FailedPassword sshd:FailedPassword sshd:

ConnectionClosedPreAuth
6 sshd:ConnectionEstablished sshd:FailedPassword sshd:FailedPassword sshd:FailedPassword" \
7 -f turtle \
8 > ./sshd_01_seq_all.ttl

Listing 5.10: Generating a CFGowl-based ontology from a grammar and a event sequence,

using the CFGowl tool set.

Scrutinizing the resulting ontology (i.e. the sshd_01_seq_all.ttl file in Listing 5.10) in the

Protégé 5.1 ontology editor, we find a correct classification for each sequence (lines 4−6 of

Listing 5.10) by looking at the parent class under the <http://w3id.org/cfgowl/start>
entity where each terminal entity (i.e. vocabulary strings in Listing 5.8) would ap-

pear grouped. For example, the entities for the fourth sequence are found under

<http://w3id.org/cfgowl/login_max_auth_tries>. Looking at the object properties

and other class hierarchies that are produced by the cfgowl.py tool, we find the sequence

of the terminal entites in the (Eq. 5.8) form.15 Using the HermiT reasoner, we infer new

relationships of the (Eq. 5.9) form.

Ter mi nal1
sequence:di r ect l yFol low s←−−−−−−−−−−−−−−−−−−− Ter mi nal2 (5.8)

Ter mi nal1
sequence:di r ect l yPr ecedes−−−−−−−−−−−−−−−−−−−−→ Ter mi nal2 (5.9)

Discussion. From these results, we observe the correct identification of the

login_max_auth_tries sequence, even when it is hidden among other logged events,

thereby satisfying the detection use case. For example, one could retrieve the classification of

such results directly in the context of a knowledge graph using a SPARQL query. Furthermore,

we observe the inference of temporal relationships, which are useful for RCA and deducing

when the adversary began its task.

It is also noteworthy that using a reasoner is not required to parse the sequence, but it

is useful in cases where the ontology defines high-level axioms based on the classes we

parse the sequence on. For instance, in the case of Figure 5.6, we might define a class that

classifies a sequence of events as “unsafe attempts” using an inference pattern of the form(
log i n At tempt ⊓ log i nM ax AuthTr i es

)
⊏Unsa f eLog i n At tempt , which a reasoner can

infer reasonably quickly.

Additionaly, considering the expressivity of context-free grammars, we can use recursive

15Where the namespace sequence refers to http://www.ontologydesignpatterns.org/cp/owl/sequence.owl#

103

http://www.ontologydesignpatterns.org/cp/owl/sequence.owl#


Chapter 5. Model-based Anomaly Detection

functions to compose different classification settings, enabling the identification of nested

sequences of events through rule set factorization. We can also handle partial observations

of a situation, which would manifest as missing terminals, using the “?” symbol in the

Lark syntax. For example, the login_success rule can be rewritten as login_success:
LOG_CONNECTION_ESTABLISHED? LOG_LOGIN_FAIL~0..2 LOG_LOGIN_SUCCESS.

Finally, we also observe that the CFGowl approach does not allow forward prediction of the

next ICT system state. Therefore, anticipating a future state or making a remediation action

recommendation will involve fuzzy reasoning over the grammar vocabulary or associating

domain knowledge (whether learned or defined by an expert) at the level of the entity defining

the semantics of the login_max_auth_tries alert.

5.5 Conclusion and Future Work

In this chapter, we assumed the existence of fundamental and logical formal models to

describe the dynamics of ICT systems. The principles used for the design and deployment of

networks are good candidates for this, as well as the incident summaries written by experts

during the post-incident activities. The availability of these models is not, however, the general

case, and the diversity of forms of those available raised the question of what basis to use to

develop a generic approach to anomaly detection that would use knowledge graphs.

We then chose to attempt to express some detection cases using DL, given the expressiveness

and intrinsic explainability of DL, as well as the strong links that KGs have with DL. To assist us

in choosing the detection cases to study, we interviewed a panel of NetOps & SecOps experts.

The discussions with them led us to conclude on the prioritization of detection cases, with

the ability to capture an incident context or the ability to determine an investigation scope as

ultimate goals to implement.

In parallel to this, the modeling attempts of two detection cases using DL allowed us to un-

derstand that, even though leveraging a knowledge graph for anomaly detection can be seen

as a subsequent step to KGC, the causal perspective used in anomaly detection and incident

management implies the need to have control over the KGC process to ensure the effective

implementation of detection cases. For example, simply materializing all available data is

not sufficient to ensure the detection of anomalies with logical rules. Similarly, the ability

to implement a contextual KGC process (e.g. using logical rules at the KGC process level to

introduce default values in case of missing data) also determines the strategy of anomaly

detection to be implemented. Indeed, the absence of some data at the KG level can be consid-

ered as contributing to the detection mechanism or as misleading the mechanism, depending

on the expressiveness of the chosen logical rules for anomaly detection. Furthermore, we

have also observed that the causal perspective implies going beyond a strictly logical frame-
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work by introducing set-returning functions to model the detection cases and provide the

NetOps/SecOps teams with the means for situation understanding. This last point has notably

led us to define three complementary families of anomaly detection techniques: model-based,

process mining, and statistical learning.

The model-based family was further explored in this chapter through three experiments using

graph retrieval as a basis, which involves querying the KG for anomaly detection using the

available data and translating the expert knowledge (the model) directly into the detection

case query. Using graph retrieval, we demonstrated how to implement SPARQL queries that

fulfilled the requirements for the detection cases. We then complemented the graph retrieval

with reasoning for RCA and event sequence classification. The RCA experiments with the

FOLIO approach [62] showed, despite the inability to successfully conduct the experimen-

tation, the need to add deduction rules to the KG-DBMS in the platform from Chapter 4 in

order to effectively use expert knowledge derived from an FMEA study. Similarly, the experi-

ments showed that this approach allows for recommending remediation actions but does not

enable forward prediction of the ICT system states. The experimentation of event sequence

classification using the CFGowl approach [255], on the other hand, showed the possibility of

identifying nested or incomplete sequences based on an abstract definition of detection cases

in a grammar. Similarly, forward prediction of the ICT system states is not possible in this case

either.

Based on these results, we are considering two complementary development axes. The first

concern is to allow designers and support engineer to formalize their domain knowledge into

SPARQL queries, an FMEA-related format, or a context-free grammar. It is noteworthy that

scrutinizing how to write detection cases in DL has brought the intuition that the proof trees

resulting from the validation of the anomaly detection formulas could be a means to estimate

the computational complexity of the anomaly detection rule in logical form. Therefore, it

would be interesting to include this estimation in the knowledge capture phase in order to

anticipate the response times of the implementations of the detection cases. In addition

to providing support to experts in the definition effort, we also envision the use of Natural

Language Processing (NLP) techniques to (partially) extract these models from procedures

and descriptions of network behavior in text format [390], or eventually infer these models

from the network itself, including both its structure and configuration, but also its behavior,

which is discussed then in Chapters 6 and 7. Finally, the second axis aims to understand

how to complement the model-based techniques presented in this chapter with those of the

process-mining and statistical-learning families. The idea is that a combined operation of

the three families would allow leveraging the explainability properties of each while opening

up detection capabilities to cases that are not (or are difficult to) covered by model-based

techniques. These reflections are also supported by Chapters 6 and 7, and an illustration of

combination according to the principle of synergistic reasoning is proposed in Chapter 8.
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Chapter 6

Relational Learning and Anomaly

Detection on Web Navigation Traces

6.1 Introduction

Behavioral analysis in cyber-security is a technique used to identify and mitigate security

threats by analyzing the activities of users, systems, and network entities. It focuses on under-

standing normal patterns of behavior and detecting anomalies that may indicate malicious

activities. As significant portion of user interactions with applications now takes place through

a Web interface, let us consider, for example, an exploit of a public-facing application1. A

relatively simple scenario could be that, after a phase of reconnaissance of the targeted system,

the malicious user directly accesses the homepage of a service platform, deceives the authenti-

cation system (e.g. using SQL injection technique2), exfiltrates data, and then exits the service

by navigating directly to another webpage. Detecting this kind of situation involves analyzing

both the application logs and the network traffic content. Unfortunately, application logs can

be inaccessible or unusable due to their privacy or improper formatting. Similarly, network

traffic can be encrypted or out of reach for collection, resulting in the loss of information about

the user’s interaction with the platform and the attack scenario [151].

Due to these observability issues, it is difficult for NetOps/SecOps teams to ensure a solid

learning of a behavioral model based solely on network topology and usage data stored as a

knowledge graph. Additionally, the study of data models (Chapter 2) has shown shortcomings

in their ability to represent decision models with branching conditions, which is important for

accurately characterizing a course of action and its potential next steps.

In this chapter, we posit that in the absence of being able to learn these behavioral models

from network-side logging, learning them at the user-side can provide a useful – albeit partial

– basis for characterizing network-side observables. To achieve this, we extend the Dynagraph

project [203] (a system combining trace dumping tools with a Web app for rendering graph

1https://attack.mitre.org/techniques/T1190/
2https://en.wikipedia.org/wiki/SQL_injection
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data from traces) with process mining techniques to learn interpretable activity models based

on linked data: the Graphameleon Web extension collects user activity traces (network traffic,

interactions with the Web browser) during a Web navigation session and serializes this data in

RDF using the UCO [388] vocabulary. The resulting data is processed to interpret the activity

traces at a semantic level and derive activity patterns, notably in the form of Petri nets. These

activity models can then be used to identify similar activities from events recorded via the

KG-based platform (Chapter 4), and even assist with root cause analysis by reordering a set of

events (Chapter 8).

The remainder of this chapter is organized as follows. In Section 6.2, we introduce our ap-

proach to capture knowledge from Web navigation traces. This involves a three-layer activity

modeling (HTTP, micro-activities, macro-activities) based on the UCO vocabulary. We also

describe the Graphameleon data capture component and the utilization of Petri nets for

anomaly detection in Web navigation traces. Section 6.3 describes our experiments and

evaluations. Finally, Section 6.4 concludes this chapter by providing a summary of the work

that has been done and offering some preliminary conclusions regarding the opportunities

and potential future developments associated with it. The Graphameleon code is available

at https://github.com/Orange-OpenSource/graphameleon, along with the Graphameleon

dataset at https://github.com/Orange-OpenSource/graphameleon-ds.

6.2 Approach

Our approach focuses on learning Web navigation activity templates at the Web browser level.

Using these learned templates, our goal is to analyze new activity traces within the context

of the network in which they occur. For example, weighting the risk level of a malicious

activity based on the nature of the targeted servers, or segmenting a long trace into subparts

by observing that non-connected network segments are being used.

To learn these activity templates, capturing data at the Web browser level is essential. Addi-

tionally, an explicit representation of activities with controlled vocabulary is necessary for an

explainable generalization. Finally, the representation of these activities should seamlessly

integrate with network topology data, which can be modeled as graphs. This integration

could help contextualize activities, like assessing risk according to infrastructure criticality or

separating actions when no network link exists between resources.

To achieve these objectives, we propose a three-step approach. First, we utilize semantic

modeling of activities by leveraging a knowledge graph and the UCO vocabulary (Section

6.2.1). Second, we develop a Web browser plug-in called Graphameleon, which captures data

and serializes it in RDF (Section 6.2.2). Finally, we derive activity models using Petri nets for

detecting Web navigation activity scenarios (Section 6.2.3). Figure 6.1 provides an overview of
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our approach. The experimental results and findings of our approach are discussed in Section

6.3.

Figure 6.1: Overview of the Graphameleon data processing pipeline.
The Graphameleon Web extension captures and annotates user activity at the Web browser level. A process mining component
derives activity models from the resulting RDF KG. These models can be used to build a library of activity templates, which are
then used by a conformance checking component to classify new activity traces as normal or abnormal activities.

In terms of application context, our overall approach targets the following uses: an average

user could use the framework as a tool for transparency regarding Web services, particularly

concerning tracking practices and privacy compliance (the experiment described in Section

6.3.1 illustrates this); a cybersecurity analyst could install the Graphameleon component to

capture activity traces with the aim of creating a detection model by interacting within a

sandbox with an infected system (the experiment described in Section 6.3.2 illustrates this);

a platform engineer could analyze the performance factors of managed service platforms in

relation to activity traces, both of which are described in the same knowledge graph.

6.2.1 Semantic Modeling of User Activity

In this section, we delve into activity modeling within the context of Web navigation. We

introduce the concepts of “micro-activity” and “macro-activity” and provide implementation

details using knowledge graphs and the UCO vocabulary [388]. Figure 6.2 illustrates this

implementation by presenting the data model.

Concept of activity. In the context of Web navigation, the concept of activity lacks a precise

definition, as its interpretation heavily relies on the specific data and observation scale cho-

sen. The understanding of activity varies depending on the field of study, ranging from the

microscopic level of molecular interactions to the macroscopic scale of societal dynamics.

For example, let us consider the activity of buying a car online. From the highest scale, “buy

a car” can be seen as an atomic activity. If we delve deeper and examine the process, we
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realize that it is composed of several smaller activities that contribute to the overall objective.

Indeed, the activity of buying a car online involves various steps. It starts with researching

different car models, comparing prices, and reading reviews. At this lower level, we are still

considering activities that are perceptible to humans. However, it is important to note that

from the perspective of a Web browser, which handles requests and interactions, those explicit

concepts may not be directly observable. In order to adopt the perspective of the Web browser,

at first, we will focus on the lowest level of activity representation. If we go back to the previous

scenario, a person wishing to buy a car online will navigate to a seller’s website. An HTTP

connection is established and a user-initiated request from the browser client is sent to the

server hosting the website. However, most of the time, the requested document needs some

additional resources like scripts, images, videos, or other documents. Those dependencies

will lead to a set of sub-requests. From our perspective, this action consists in navigating

through a link in one single click (or accessing to the page through a URL), whereas from

the Web browser it can be seen as a sequence of requests. In this chapter, we consider this

sequence as a so called “Micro-activity” trace. Then, exploring the level above, we could

simply consider a trace as a set of requests and interactions. An interaction can be defined as

any user-initiated action that has an impact on a webpage or application (click on link, form

filling, form submission, etc.). We call such a trace a “Macro-activity”.

Semantical mapping. Knowledge graphs model the relationships between different concepts

and represent knowledge on a semantic level. In this work, we perform a semantic mapping

to leverage the advantages of this representation for anomaly detection. This mapping relies

on the UCO (Unified Cyber Ontology) vocabulary. UCO is a popular community-developed

ontology built around the cyber security domain, covering a wide range of important concepts

such as agents, resources, or actions. Since UCO is also used in NORIA-O (Chapter 3), we

could establish meaningful connections and access additional contextual information within

the knowledge graph.

Firstly, knowledge graphs help to homogenize different data sources and address the challenge

of interoperability. While the conventional functioning of Web browsers already relies on

established standards and protocols, knowledge graphs can be beneficial when integrating

data from sources outside of the Web browser context. Secondly, while a key-value structure

used by Web browser provides a simple way to store and retrieve information, it lacks the

ability to express semantic connections between the data elements. By leveraging a structured

knowledge graph, we can uncover hidden relationships, such as the hosting relationship

between a URL and an IP address, and gain a deeper understanding of the interconnectedness

of entities. Lastly, the graph structure facilitates exploration of relationships, allowing for

the discovery of unexpected connections. By identifying anomalies within a specific part

of the graph, it becomes possible to investigate related entities and detect potential issues
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more accurately. For example, identifying an anomaly in a particular resource could lead to

examining the network topology and identifying other nearby resources that may be affected.

Building upon these ideas, we observe that the UCO vocabulary appears to be well-suited

for the semantic representation of activities as it enables the representation of Web nav-

igation at various scales, including action cycles, individual actions, connections, proto-

cols, resources, domains, and IP addresses. For the design of the mapping, the principle

is to maximize the reuse of concepts and properties defined in the UCO vocabulary, and

to match the fields and values captured at the Web browser level with these concepts and

properties whenever their semantics align. Figure 6.2 summarizes the data model in the

form of a class diagram, and the corresponding mapping rules in RML syntax [24] are avail-

able in open source at https://github.com/Orange-OpenSource/graphameleon. For exam-

ple, notably in the context of capturing micro-activities, an HTTP request is represented

by an entity of the class ucobs:HTTPConnectionFacet, and its headers are represented

by specific properties such as ucobs:startTime and ucobs:endTime for timestamps, and

core:tag for fetch metadata request headers [367]. Since an IP address or URL can be

common to multiple requests (e.g. a user repeating the same call to a website, a web-

site with various services hosted on the same server), these elements shall be material-

ized through the ucobs:IPAddressFacet and ucobs:URLFacet classes respectively, and

cross-references between entities is built through properties such as ucobs:hasFacet and

ucobs:host. For macro-activities, we consider the user interactions (e.g. click on a hyper-

link, on a Web browser button) as ucoact:ObservableAction class instances, with relations

to the above ucobs:HTTPConnectionFacet and ucobs:URLFacet entities for describing

the context in which they occur. Further, we consider the types:threadNextItem and

types:threadPreviousItem properties from UCO for modeling the chronology of activity

traces.

6.2.2 Data Collection with Graphameleon

A Web browser serves as the primary interface between a user and the Web, thus considering

interactions and requests is crucial as it reflects direct and indirect user intent. Table 6.1

summarizes the type of data captured by the Graphameleon Web extension. Capturing

requests enables us to extract wealth of meaningful information from the headers such as

URLs, associated IP addresses and domains, providing an essential context for anomaly

detection. Additionally, we collect fetch metadata request headers [367] which further enriches

this context (Figure 6.3). For example, Sec-Fetch-Site indicates the relationship between a

request initiator’s origin and its target’s origin, thus providing indirect knowledge about the

network topology. Then, we characterize user interactions by capturing events, identifying the

relevant DOM elements, and associating them with the corresponding resource URLs, thereby

enabling a comprehensive understanding and global identification of individual elements
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Figure 6.2: Data model for user activities.
The class diagram defines the concepts and properties used for the semantic representation of micro-activities (left) and
macro-activities (right) as described in Section 6.2.1. For micro-activities, the presented classes and properties accu-
rately describe a sequence of requests captured at the Web browser level. Macro-activities further enhance the model-
ing by allowing the description of interactions. The names of concepts and properties used here are defined within the
UCO vocabulary, the following namespaces apply: core = https://ontology.unifiedcyberontology.org/uco/core#, ucobs =
https://ontology.unifiedcyberontology.org/uco/observable# and types = https://ontology.unifiedcyberontology.org/uco/types#.

within the Web browsing context. Finally, we collect the user-agent header and timestamp

values for each capture. The user-agent header provides valuable information about the user’s

device and browser environment, and serve as a primary characteristic utilized in the user

fingerprinting domain for user identification [196]. Moreover, the collection of timestamp

allows for precise chronological analysis, facilitating the detection of time-based anomalies.

Request collection. Graphameleon applies request listeners to both sending and receiving

processes at the background script level. All browser requests are intercepted to retrieve

information from the headers. Depending on the collection mode, user-initiated requests

are filtered by focusing on the Sec-Fetch-User variable. In order to abstract certain con-

textual elements and avoid excessive diversity in activities for similar cases, we have chosen

to tokenize the URLs associated with the requested resources. Thus, all arguments con-

tained in the URLs are replaced by the names of their respective parameters. For example,

considering the URLs https://www.shop.com/?client_id=2313 and https://www.sh-
op.com/?client_id=346, regardless of the user initiating the request, it reflects the same

behavior. Therefore, it will be tokenized to become https://www.shop.com/?client_id=-
[client_id].
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Figure 6.3: Fetch metadata for inferring the user/equipment activity
This sequence diagram illustrates the principle for inferring the user/equipment activity from the four fetch metadata HTTP
headers through a fictional example of a Web browsing session where the user logs into a search website and follows a hyperlink.
The semantics of fetch metadata summarize as follows: Sec-Fetch-Site = relationship between a request initiator’s origin and
the origin of the requested resource (e.g. same site, cross site); Sec-Fetch-Mode = mode of the request (e.g. user navigating
between HTML pages vs secondary requests to load images and other resources); Sec-Fetch-User = only sent for requests
initiated by user activation, and its value will always be “?1” (e.g. identify whether a navigation request from a document, iframe,
etc., was originated by the user); Sec-Fetch-Dest = where and how the fetched data will be used for better request handling on
the server side (e.g. iframe, video component). The sub-documents of each Web page (implicit requests) are identified based on
the absence of value for the Sec-Fetch-Dest header.

Interaction collection. In order to capture interactions between the user and the browser,

content scripts are injected into each of the active tabs. These scripts apply listeners to all

interactive elements on the page, such as links, buttons, forms, etc. This approach reduces the

impact on the browser performance and prevents capturing unwanted interactions, such as

miss-clicks on non-interactive elements. Multiple listeners are applied for various types of

events, such as a simple click, a value change or a focus. In order to globally identify interac-

tions, we consider the recorded event type, the element and the URL of the corresponding

resource. When an element has an i d attribute, its identification is straightforward. However,

in most cases, webpage elements lack an identifier, necessitating the use of an alternative

method. Thus, we identify an element based on its absolute position within the Document

Object Model (DOM) [366] hierarchy. This involves calculating the absolute path of the el-

ement from the root of the DOM, resulting in an identifier such as body > maindiv[2] >
div > div > a. While this method provides a deterministic means to identify elements

without an i d attribute in a given webpage rendering context, it is important to note that

the resulting identifiers in the form of hierarchical paths are often complex and difficult to

interpret. Indeed, this technique makes it challenging to understand which element is being

referred to solely based on its path identifier, unless a capture of the webpage itself is provided

along with the interaction collection for posterior context analysis by looking up for the DOM

path. An opportunity here could be to inject i ds into webpage elements using listeners, but

this would not necessarily solve the problem of i d stability between browsing sessions for

pages with content that changes between each visit.
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Table 6.1: Data collected with Graphameleon.
Type of data collected by the Graphameleon Web extension as a function of the capture mode (micro-activity vs macro-activity),
and grouped by their scope (request vs interaction vs both).

Scope Feature/header name Micro Macro
Request Method ✓ ✓

URL ✓ ✓
IP ✓ ✓
Domain ✓ ✓
Sec-Fetch-Dest ✓ ✓
Sec-Fetch-Site ✓ ✓
Sec-Fetch-User ✓ ✓
Sec-Fetch-Mode ✓ ✓

Interaction EventType - ✓
Element - ✓
Base URL - ✓

Both User-Agent ✓ ✓
Start time ✓ ✓
End time ✓ ✓

6.2.3 Anomaly Detection with Petri Nets

Three families of anomaly detection techniques are presented in Chapter 5 for analyzing net-

work data represented using a knowledge graph: model-based design, where the knowledge

graph holds the necessary and sufficient data to infer unwanted situations with information

retrieval; process mining, including conformance checking tools and Petri nets (P/T nets) rep-

resentation, for situations tied to a decision-model and bounded in time and space; statistical

learning with graph embeddings [153] where anomaly models (i.e. the generalizing context of

a set of situations) derive from the structure of the knowledge graph.

In this chapter, we focus on the process mining approach, considering that data collection

using Graphameleon corresponds to relatively well-defined Web navigation sessions in terms

of duration and activities: a single user generates an activity trace captured at the Web browser

level, which can be directly annotated by the user in terms of activity purpose at the end of

the Web navigation session. We posit that activity traces are akin to decision models, as the

sequence of user actions during a Web navigation session (such as clicking on a link, using

the Web browser’s back button, or filling an input box) aims to achieve a specific goal (i.e. the

activity purpose) based on the information presented on the webpages. We assume that P/T

nets are a suitable representation for analyzing and classifying Web navigation traces due to

several reasons:

1. They possess intrinsic explainability through their graphical representation;

2. Decision models associated with P/T nets can generalize to various situations regardless
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of the underlying knowledge representation;

3. Decision models can be readily derived from network and service designers’ specifica-

tion documents and implemented as P/T nets using tools like TINA [48].

Using P/T nets enables to leverage anomaly detection techniques commonly referred to as

“conformance checking”, that is, evaluating the fitness of a trace with respect to a given model

or replaying a trace through a model to analyze any inconsistent steps within the activity.

Thereon, we define the following concepts to clarify the notion of anomaly in relation to what is

observed and what is expected from the perspective of activities. Firstly, we define an “activity

model” as the translation of any activity trace (obtained during the data collection phase) into

a P/T net representation using a process mining algorithm. Following this definition, data

collections conducted with the Graphameleon Web extension (Section 6.2.2) lead users to

establish a catalog of activity models. Next, we define an “activity template” as a universal

model of activity represented with P/T nets. A template is established based on either a

specification of the expected behavior of the user-Web system for a specific situation or an

ideal behavior derived from aggregating and refining multiple activity traces from the catalog

of activity models. We remark that it is the responsibility of the user to manage and convert

the activity models into templates (analysis, selection, refinement), which falls outside the

scope of this thesis work.

Anomaly detection is therefore defined by the comparison of an activity model to an activity

template. Hence, assuming a “normal activity template” (e.g. authentication to a webmail is

followed by a phase of email browsing), a fitness value below an acceptance threshold is akin

to detecting an abnormal situation (Eq. 6.1, with η a threshold parameter):

abnor mal ≡ f i t{al i g nment |r epl ay}(model , templ ate) < η (6.1)

In such case we can trigger an alert but without being able to provide further details about what

is abnormal. In practice, we consider that testing against a set of complementary “abnormal

activity templates” is necessary in a second stage referred to as the “qualification” phase for

classifying the abnormality.

6.3 Experiments and Evaluation

This section details the experiments conducted based on the approaches described in Sec-

tion 6.2. First, we analyze the correlation between the volume of RDF triples generated by

Graphameleon and the nature of the visited website (Section 6.3.1). Second, we model and

identify three Web navigation scenarios using Graphameleon and P/T nets in a controlled

environment (Section 6.3.2). The experiments are conducted using Graphameleon v2.1.0. The
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results are presented and discussed in each section. We release the data associated with these

experiments at https://github.com/Orange-OpenSource/graphameleon-ds.

6.3.1 Website Complexity Clustering

In this initial experiment, we seek to understand to what extent the behavior of a website

during a first connection is crucial in creating a usable footprint subsequently for anomaly

detection. For this, we focus on the ability to study the complexity of websites in terms of the

number and the size of the resources to be loaded. We study this complexity by measuring the

number of RDF triples generated by Graphameleon during the initial connection to a website,

across a set of websites. Table 6.2 presents the recorded measurements.

To our knowledge, there is currently no study describing well-known website complexity

groups (clusters) but from a marketing perspective [350] (e.g. industry sector vs average request

count per landing page, average page weight bytes, average speed index). Moreover, with

over one billion websites as of now [188], existing website classification tools mainly focus on

competitive analysis [275]. This highlights the challenge of selecting representative examples

from each group. For the experiment, we consider establishing a set of website landing pages

for analysis according to three arbitrary complexity categories. This categorization is based on

the idea that complexity aligns with the extent of editorial content to be rendered. For each

category, we select a subset of three reference websites based on third-party expert opinions:

One-Page where the “Swappa Bottle”3, “Garden Studio”4 and “Mark My Images”5 (MMI) are

identified in [214] as the top three best examples of one-page websites to get inspiration

from for website design projects;

Encyclopedia where “Encyclopedia Britannica Online”6 (EBO), “Scholarpedia”7 and “Ency-

clopedia.com”8 are discussed in [190] as the top three alternatives to Wikipedia from

the information trustworthiness perspective;

Content-Heavy where “RTI International”9, “PrintMag”10 and the “International Women’s

Media Foundation”11 (IWMF) are identified in [197] as the top three engaging websites

with large amounts of written content while creating an intuitive experience.

3https://swappabottle.com/
4https://gardenestudio.com.br/
5https://www.markmyimages.com/
6https://www.britannica.com/
7http://www.scholarpedia.org/
8https://www.encyclopedia.com/
9https://www.rti.org/

10https://www.printmag.com/
11https://www.iwmf.org/
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Next, we proceed with the collection and analysis of navigation traces data for each website

landing page as follows:

1. Within a Firefox desktop instance (anti-tracking ∈ {str i ct , st and ar d}), load

Graphameleon and enable data capture (collect mode ∈ {mi cr o,macr o}, output mode

= semanti ze);

2. Open a navigation tab and the Network Monitor console12 (caching = deacti vated);

3. Navigate to the target website by entering its URL in the Web browser’s navigation bar;

4. Cease Graphameleon capture 10 seconds post full page load event detection in

the Network Monitor console for consistent runtime of embedded page scripts (i.e.

DOMContentLoaded event13);

5. Save the data to a file (serialization = Tur tle);

6. Gather the data collection statistics (requests count, responses count, interactions count,

vertices count, edges count) from the Graphameleon user interface, and those of the

resulting knowledge graph through a set of SPARQL queries on the serialized data (triples

count, subjects count, class instances count).

Results & discussion. Using this procedure, 27 data collections were performed (three cate-

gories × three sites × three data collection setups), with 23 enabling data analysis and four

encountering issues (a server-side SSL_ERROR_NO_CYPHER_OVERLAP access error for “Swappa

Bottle” on both the micro and macro mode, and a Web extension undetermined processing

error for “Scholarpedia” in macro mode). Table 6.2 presents the related statistics regarding

RDF triples. For macro mode data (CM = M), we observe that the statistics over the RDF triples

remain consistent regardless of the visited website. An analysis of the resulting Turtle files

also reveals that the RDF data structure adheres to the data model depicted in Figure 6.2.

Regarding the micro mode (CM = µ), the counts for a given anti-tracking policy configura-

tion exhibit significant variability within each complexity category. In this line of thought,

Table 6.3 focuses on the mean entity count for the ucobs:HTTPConnectionFacet (UHC) and

ucobs:IPAddressFacet (UIP) object classes, and for each scenario. The comparison of the

mean entity count values based on the anti-tracking policy (“Std. / Str.” column in Table

6.3) reveals an increase in the average number of connections and remote servers accessed

when the anti-tracking rules are relaxed, regardless of the complexity level. Based on these

measurements, we conclude on the correct functioning of Graphameleon and its suitability

for studying initial connection behaviors. While the current proposed complexity categories

might not be pertinent for website grouping due to limited sample size and content variability,

12https://firefox-source-docs.mozilla.org/devtools-user/network_monitor/
13https://developer.mozilla.org/en-US/docs/Web/API/Document/DOMContentLoaded_event
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Table 6.2: Statistics for the Website complexity experiment.
Statistics based on the “micro” (CM = µ) and “macro” (CM = M) data collection mode, and as a function of the Web browser’s
anti-tracking policy. The following abbreviations apply: CM = collection mode, Trk. = anti-tracking policy (strict vs standard), TC
= Triples count, SC = Subjects count, UOA = ucobs:DomainNameFacet entities count, UDN = ucobs:DomainNameFacet entities
count, UHC = ucobs:HTTPConnectionFacet entities count, UIP = ucobs:IPAddressFacet entities count, UURL = ucobs:URLFacet
entities count, n.a. = non applicable.

Website CM Trk. TC SC UDN UHC UIP UURL

One-Page

Swappa Bottle µ Str. n.a. - - - - -
µ Std. n.a. - - - - -
M Str. n.a. - - - - -

Garden Studio µ Str. 886 163 5 84 5 69
µ Std. 985 189 11 89 11 78
M Str. 21 5 1 1 1 1

MMI µ Str. 427 81 3 38 3 37
µ Std. 423 80 3 38 3 36
M Str. 21 5 1 1 1 1

Encyclopedia

EBO µ Str. 599 122 13 54 13 42
µ Std. 2195 472 71 194 70 137
M Str. 21 5 1 1 1 1

Scholarpedia µ Str. 452 111 4 55 4 48
µ Std. 579 143 11 64 11 57
M Str. n.a. - - - - -

Encyclopedia µ Str. 350 66 2 31 2 31
µ Std. 1483 320 44 125 144
M Str. 21 5 1 1 1 1

Content-Heavy

RTI µ Str. 381 76 6 33 6 31
µ Std. 562 118 14 48 14 42
M Str. 21 5 1 1 1 1

PrintMag µ Str. 552 111 9 47 8 47
µ Std. 1143 234 25 101 24 84
M Str. 21 5 1 1 1 1

IWMF µ Str. 362 72 5 31 5 31
µ Std. 388 78 6 33 6 6
M Str. 21 5 1 1 1 1

the rise in network exchanges under varied anti-tracking policies provides a basis for future

categorization by employed analytics strategies and network topology.
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Strict Standard Std. / Str.
UHC UIP UHC UIP UHC UIP

One-Page 61.0 4.0 63.5 7.0 1.04 1.8
Encyclopedia 46.7 6.3 127.7 41.7 2.73 6.6
Content-Heavy 37.0 6.3 60.7 14.7 1.64 2.3

Table 6.3: Average number of entities in micro mode.
Comparison of the average UHC and UIP entities count from Table 6.2 as a function of the complexity level and of the anti-
tracking policy. Only “Garden Studio” and “MMI” values considered for “One-Page” category. The following abbreviations apply:
UHC = ucobs:HTTPConnectionFacet entities count, UIP = ucobs:IPAddressFacet entities count.

6.3.2 Navigation Trace Classification

In this second experiment, our goal is to classify Web navigation traces as either normal or

abnormal behaviors. Using macro-activity modeling (Section 6.2.1) and Petri nets (Section

6.2.3), we analyze the following three scenarios (outlined in Figure 6.4) and report on the

ability to identify anomalies:

Figure 6.4: Overview of navigation scenarios for the navigation trace classification experiment.
This flow diagram summarizes the three navigation scenarios implemented in Section 6.3.2. From left to right, the key steps
correspond to 1) user authentication on the simulated online bookstore website, 2) navigation to the homepage, 3) purchasing
a book, 4) returning to the homepage. The authentication step has two options: basic authentication or SSO authentication.
The purchase step alternates between normal input of the author’s name in a form and input with XSS injection. The arrows
correspond to the sequence of steps for each scenario: Normal = basic authentication + fill form; Alernative = SSO authentication
+ fill form; Abnormal = basic authentication + XSS injection.

Base scenario (normal behavior): a user accesses the website, logs in to their account using

their username and password, navigates to the “Sell a Book” page, fills out the form, and

then returns to the homepage where they find their book.

Alternative scenario (different behavior): a user accesses the website, logs in to their ac-

count using Single Sign-On (SSO), navigates to the “Sell a Book” page, fills out the form,

and then returns to the homepage where they find their book.

XSS attack scenario (abnormal behavior): an attacker accesses the website, logs in to their

account using their username and password, navigates to the “Sell a Book” page, and

performs a code injection in the “Author” field. Finally, they return to the homepage

where the injected script is executed.
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To maintain complete control over the experiment, we use a simulated online bookstore

website which brings multiple benefits. Firstly, it allows intentional exposure of the website to

various security vulnerabilities. In this experiment, we introduce a common form of attack, an

XSS vulnerability. Secondly, before the study, we can thoroughly label each webpage element,

enhancing the interpretability of collected data.

We proceed with the collection and analysis of navigation traces data for each scenario as

follows:

1. Within a Firefox desktop instance, load Graphameleon and enable data capture (collect

mode = macr o, output mode = semanti ze);

2. Open a navigation tab and browse the simulated online bookstore website according to

the navigation scenario;

3. Cease Graphameleon capture and save the data to a file (serialization = Tur tle);

4. Gather the data collection statistics (requests count, responses count, interactions count,

vertices count, edges count) from the Graphameleon user interface;

5. Compute the activity model from the saved trace using the PM4PY Pro-

cess Mining library [11] (process discovery ∈ {Inducti ve, Al pha,Log -

Skeleton, Heur i st i c, Al phaPl us});

6. Compute the fitness of the activity model against the activity template using the PM4PY

Process Mining library (process mining ∈ {TokenB asedRepl ay, Ali g nment }).

The base scenario, which corresponds to the behavior we define as “normal,” is used to create

our reference model (activity template) using the PM4PY Process Mining library14.

Evaluation & discussion. Using this procedure, three data collections were performed. Table

6.4 presents the related statistics regarding the resulting navigation graph, and Table 6.5

compares the results of different fitness evaluation techniques on the “normal” activity model.

From a graph statistics perspective and with reference to the “base” scenario, we observe

that the “alternative” scenario involves fewer interactions but more network transactions.

This aligns with the fact that the user has only one button to click for authentication, and

authentication is delegated to various external entities as a service. For the “XSS attack”

scenario, the number of interactions remains the same, but the number of requests increases

by one. This corresponds to the authentication path aligning with the baseline scenario, yet for

the additional query involved by the SQL injection step. Still for this same scenario, we notice

a slight variation in the fitness scores (average of 98% fitness, calculated with the “normal”

14https://pm4py.fit.fraunhofer.de/
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activity model as reference), which also corresponds to the single additional request caused

by the SQL injection step. We further observe that this additional query is easily identifiable

through sequence alignment using the developed vocabulary applied at the level of the Web

extension to standardize the interpretation of the traces.

Table 6.4: Data collection statistics for the navigation trace classification experiment.
Statistics in terms of the number of network requests, user interactions with the Web browser, nodes and edges of the resulting
navigation graph, as reported by the Graphameleon user interface for the navigation scenarios defined in Section 6.3.2.

Base Alternative XSS Attack
Request 10 13 11
Interaction 18 14 18
Vertice 263 283 277
Edge 404 431 426

Table 6.5: Fitness scores evaluated on normal activity model.
Comparison of fitness scores from deviant activity traces on the normal activity model. Different conformance checking and
process comparison techniques are used to provide fitness indicators. Token-Based and Alignment checking methods require
model discovery. Alpha/Alpha+, Inductive and Heuristic miner algorithms are used to generate normal activity model. The Log
Skeleton technique provides fitness scores directly using traces.

Alternative XSS Attack
Token-Based Alpha 0.886 0.968

Alpha+ 0.890 0.969
Inductive 0.923 1.000
Heuristic 0.923 1.000

Alignement Alpha - -
Alpha+ - -
Inductive 0.718 0.976
Heuristic 0.718 0.976

Log Skeleton 0.684 0.999

Therefore, although our approach provides a standardized and interpretable representation of

navigation traces, we observe that its direct use is not suitable for anomaly detection when

micro-changes occur in comparison to an activity template (i.e. when differentiating elements

to qualify deviations are relatively rare within the sequence). Similarly, we remark that, while

discovery algorithms typically use multiple trace samples to generate a generalized model of

activity, we considered a single-trace perfect model in our case. It is important to recognize

that a real-world model of normal behavior in such scenario is much more complex. For

instance, when completing a form, the conventional reading order is usually followed. Yet,

due to cognitive biases, a user might complete it in a different sequence while still staying

within the bounds of actual normal behavior.

Finally, reflecting on data collection and semantic processing, we find that there is minimal

lexical compression of navigation trace data due to consistent formatting (e.g. the request

URL is consistently located using the “url” header). However, this compression pertains more
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to interaction semantics. Indeed, one challenge in aligning activity models stems from the

lack of a reliable method to identify HTML elements (especially when lacking an explicit i d)

across browsers, sessions, and users. This challenge becomes apparent when the DOM of

page content changes with each site visit, especially when dynamic ad insertions occur.

6.4 Conclusion and Future Work

In this chapter, we sought ways to analyze Web navigation activity traces in order to char-

acterize user and application activities, particularly for the purpose of detecting cyberat-

tacks. Expanding on DynaGraph [203], we hypothesized that knowledge graphs would bring

structure to data collected at the Web browser level during a Web navigation session for

further analysis through activity modeling with Petri nets and conformance checking tech-

niques. To test our approach, we developed the concepts of micro-activity and macro-

activity on the basis of the UCO vocabulary [388] for the semantic representation of user

activities. We also developed Graphameleon, an open source Web extension available at

https://github.com/Orange-OpenSource/graphameleon for live data collection and seman-

tization of Web navigation traces at the Web browser level, and analyzed the activity traces

collected by this component using a two-part experimental plan. Firstly, with the website

complexity clustering experiment, we showed that the rise in network exchanges under var-

ied anti-tracking policies provides a basis for future categorization by employed analytics

strategies and network topology. Secondly, with the navigation trace classification experiment,

we showed the limits of the conformance checking technique for anomaly detection when

micro-changes occur in comparison to an activity template. We also highlighted the challenge

in aligning activity models from the lack of a reliable method to identify HTML elements

across browsers, sessions, and users.

Building upon the Graphameleon Web extension component and the utilization of knowledge

graphs, future work will focus on Web cartography, behavior analytics and anomaly detection.

Regarding Graphameleon, specific technical aspects require deeper development, such as

graph streaming, activity labeling through the user interface, and handling multiple Web

navigation sessions simultaneously. Regarding conformance checking, there are several

options to reduce the sensitivity of our approach. One option is to divide the reference

trace into smaller sub-models, thus enhancing the fitness score’s variation in case of non-

conformity. Using sub-models, another option is to employ action-qualifying patterns to

confirm an anomaly and pinpoint the pattern through sequence alignment (e.g. a pattern

for SQL injection rather than normal input). A third approach could involve amplifying the

alignment mismatch weight in the fitness score using context from the knowledge graph (e.g.

infrequent IP address in an SQL injection request, impossible network hop due to the lack

of connectivity, a same user connected in two places simultaneously). The aim is to give
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these weights enough significance to mask minor variations due to “noise” in comparison

to variations caused by genuine errors. Finally, regarding knowledge graphs, we also aim to

incorporate activity models as part of anomaly context data for decision support applications

using graph embeddings as proposed in Chapter 7, where P/T nets can be serialized into RDF

graphs with suitable vocabularies [97, 186].
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Chapter 7

Capturing and Categorizing Incident

Contexts with Graph embeddings

7.1 Introduction

The complexity of ICT systems, entails uncertainty in causal reasoning for incident manage-

ment (Chapter 1 & Chapter 5). Mastering this complexity has been a long-standing effort by

the industry and academic communities, including developing NMS/SIEM DSSs to assist

operators with incident management (Chapter 2), and logical and statistical modeling of the

network dynamics [202, 358, 130, 320, 217, 76]. However, there is still a step to be taken to

learn explicit anomaly models from incomplete knowledge of ICT systems and to use these

models outside the initial learning context. With such an approach, we could consider assist-

ing NetOps/SecOps teams in decision-making without prior knowledge of the characteristics

of a given system, including its multiple stacks of configuration and interactions with other

external systems; thereby going beyond the sole local understanding of a subsystem’s state

and observable artifacts of a situation.

To tackle this challenge, we propose to better capture the context of labeled anomalies through

a multi-faceted knowledge graph and to use it to classify incident types with statistical learning

techniques. More precisely, we make use of an RDF knowledge graph structured by the NORIA-

O ontology (Chapter 3 & Chapter 4) and we explore how graph embeddings [312, 153] provide

a suitable representation for categorizing trouble tickets. We notably introduce a method for

capturing the context of anomalies and examine how it can partially correspond to logical

formulations. This analysis includes exploring whether logical formulations could suffice and

how statistical approaches can compensate for their limitations. Overall, these contributions

lead to the development of a graph embeddings-based classification method for categorizing

trouble tickets, and the identification of SPARQL query patterns for anomaly detection based

on a qualitative analysis of trouble tickets.

The remainder of this chapter is organized as follows. Section 7.2 details our approach that

makes use of the aforementioned knowledge graph. Section 7.3 describes our experiments and
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evaluations. Finally, Section 7.4 concludes this chapter by providing a summary of the work

that has been done and offering some preliminary conclusions regarding the opportunities

and potential future developments associated with it.

7.2 Approach

In this section, we present two approaches to explicitly represent anomaly models. Firstly, we

approach decision support in Section 7.2.1 as a classification problem and develop a model

to predict the category of a trouble ticket using graph embeddings. Secondly, we assume

that the anomaly models learned by the classifier have a correspondence, possibly partial,

with a logical representation. We analyze trouble tickets qualitatively in Section 7.2.2 and

highlight corresponding SPARQL queries for comparison with the classifier. We intentionally

set aside the process mining approach discussed in Section 5.3.2 and Chapter 6 because it

only captures local processes and therefore misses out on the need for learning from a larger

context that is enabled by graph embeddings. We present the related experiments and results

in Section 7.3.

7.2.1 Multiclass Classifier with Graph Embeddings

Understanding a network-impacting incident based only on network monitoring functions

is an ill-posed problem (Section 5.2). We propose that using graph embeddings could help

solve the inverse problem. Indeed, we assume that a trouble ticket represents an approximate

dual of the anomaly structure in the network’s parameter space. Thus, we can create an

anomaly model by aggregating the graph representations of each incident in the network’s

parameter space that have the same characteristics (e.g. problem category, probable cause).

In what follows, we focus on the task of predicting the category of a trouble ticket by building

a multiclass classifier upon the context of trouble ticket entities (Figure 7.1).

For knowledge representation of ICT systems, we leverage on NORIA-O. It is used as the main

data model for the experiments described in this chapter as it can model complex ICT system

situations and serve as a basis for anomaly detection and root cause analysis.

From a NORIA-O vocabulary perspective, building the classifier involves learning the relational

model on events near the resource that is reported in a given incident (i.e. walking the graph
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Figure 7.1: Learning an incident context with graph embeddings
This diagram illustrates the process of building a multiclass classifier upon the context of trouble ticket entities by highlighting
the relationship between an incident context (i.e. a subgraph centered around a Resource entity concerned by a given
TroubleTicket), the context vector (i.e. the embedding of the subgraph into a vector space), and the classification model that is
trained on the relationship of the context vector to the problem class defined at the TroubleTicket entity level. The URI [50] of
the TroubleTicket entity is used as the context key (i.e. the identifier of the vector in the embedding vector database) in order
to retrieve the context vector from the TroubleTicket entity identifier, and even to search for one or multiple TroubleTicket
entities from a context vector. noria is the default namespace for concepts and relationships. Other namespaces: rdf =
http://www.w3.org/1999/02/22-rdf-syntax-ns#, skos = http://www.w3.org/2004/02/skos/core#. The diagram partly conforms
to the Graffoo graphical notation [330].

and computing embeddings), and then linking the relational model to a category (Eq. 7.1):{
EventRecor d .l ogOr i g i nati ng Ag ent

(
Resour ce(i )

)
.l ogOr i g i nati ng Ag ent

(
Resour ce(i )nei g hbor s

)}
∼Tr oubl eT i cket .

(
r el atedResour ce

(
Resour ce(i )

)
⊓pr oblemC ateg or y

) (7.1)

where noria:problemCategory is an attribute describing the final nature or technical impact

of a noria:TroubleTicket entity. This attribute is part of the key fields used in the trouble

ticket system to fully qualify incident resolution upon closure1. It is an owl:ObjectProperty

1Other fields are noria:problemResponsibility, noria:troubleTicketCause and pep:forProcedure.
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with values from the kos/TroubleTicket/trouble-category controlled vocabulary, a

SKOS Concept Scheme defining nine concepts.

We make use of the pyRDF2Vec library [61] and the scikit-learn library [279]. pyRDF2Vec2 is a

Python implementation of the RDF2Vec algorithm [283], which captures the context of RDF

graph nodes (properties and neighboring nodes) as latent feature vectors and is inspired by

Node2Vec and Word2Vec. The data processing steps for our approach are the following:

1. We create graph walks (i.e. sequence of vertices) by traversing the RDF dataset with

noria:TroubleTicket entities as the starting points, and filtering out the noria:pro-
blemCategory property as it is used for classification;

2. We compute embeddings for the noria:TroubleTicket entities by training a

Word2Vec model on the graph walks;

3. We train a random forest classifier with the embeddings as training input samples, and

noria:problemCategory ranged entities as target values.

The choice of the random forest classifier is based on its intrinsic interpretability as it is using

decision trees.

A potential interest with this approach is that for any new trouble ticket matching a certain

set of characteristics, projecting the anomaly model onto the rich graph representation of the

network would be equivalent to circumscribe the search space in the network’s parameter

space (i.e. assets and features of interest to further scrutinize for anomalies). This meets the

circumbscribe assets need raised for network and security operations (use case #1 in Table

5.1). With network administrators’ commands also logged as noria:EventRecord entities,

projecting the model could also recommend remediation and repair actions to perform (Eq.

7.2):

Tr oubl eT i cketsi mi l ar ×Tr oubl eT i cketactual → {Resour ce, Acti on}actual (7.2)

7.2.2 Model-Based Anomaly Detection

In addition to the statistical learning approach that has been presented above, we further

develop in this section the anomaly detection retrieval approach from Chapter 5.

A limited set of queries is available beforehand due to the lack of comprehensive knowledge

about the situations to be detected. We posit that similar queries apply for similar trouble

tickets. Thereon, we use the following analysis scheme on a user-provided dataset to identify

the form of the queries and gain additional insight on similarities:

2See INK [59] for an alternative to pyRDF2Vec.
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1. For each trouble ticket, display it and provide an expert analysis about the SPARQL

query to implement for anomaly detection;

2. Retrieve the k most similar trouble tickets based on their embeddings using a cosine

distance;

3. Display these k tickets with all known attributes (e.g. creation date, services or resources

involved) and provide an expert analysis as whether we could consider these tickets

indeed related to the origin ticket and according to which dimension.

We analyze the reciprocal alignment between trouble tickets grouped according to the

noria:problemCategory attribute and grouped according to the clusters obtained from

a similarity graph on the embeddings (Algorithm 1).

Algorithm 1 Similarity graph of entity embeddings

E ← embeddings of entities
k ← number of entities for similarity
SG ←; ▷ Empty similarity graph (SG)
for all e ∈ E do

SG ← e ▷ Add vertex
SI M ← MostSi mi l arcosi ne (e,E ,k) ▷ Similarity on embeddings
for all esi m ∈ SI M do

SG ← esi m ▷ Add vertex
SG ← (e,esi m ) ▷ Add edge

end for
end for
SG ← PLouvain modularity(SG) ▷ Vertex partitioning
SG ← RCentrality(SG) ▷ Vertex ranking

The potential interest for this approach is twofold. First, it brings to enumerate query patterns

for anomaly models, including for trouble tickets describing complex situations like a network

outage impacting multiple applications. Second, it enables to explore how the embedding

space is correlated with the semantic similarity [144] based on the logical form of the anomaly

model (i.e. the SPARQL query).

7.3 Experiments and Results

This section details the experiments conducted based on the approaches described in Section

7.2 and analyzes their results.

7.3.1 Dataset

For our experiments, we use a RDF dataset generated using the NORIA knowledge graph

construction platform (Chapter 4). The input data of the platform is based on 15 tables dis-

tributed across 10 sources such as: trouble tickets, change requests, logs & alarms monitoring,
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network topology, applications, teams, users, etc. The size of the resulting RDF dataset is

approximately 4 million triples for 400K entities, including streamed events spanning over 111

days. The Table 7.1 provides an overview of the dataset.3

Table 7.1: Dataset overview.
Class names are provided in the 〈pr e f i x〉 : 〈C l ass〉 form. Percentage is the ratio of the entities count for a given class over the
total number of entities.

Class name Entity count Percentage
noria:Resource 236’318 54.535
noria:EventRecord 89’606 20.678
foaf:Person 26’879 6.203
noria:CorporateUserIdentifier 26’879 6.203
noria:Locus 22’662 5.230
noria:ApplicationModule 9’314 2.149
noria:ProductModel 4’306 0.994
org:OrganizationalUnit 3’677 0.849
noria:Application 3’170 0.732
bot:Storey 2’869 0.662
noria:Room 2’869 0.662
bot:Building 1’656 0.382
bot:Site 1’374 0.317
org:Organization 366 0.084
noria:NetworkInterface 346 0.080
prov:Activity 324 0.075
noria:ChangeRequest 190 0.044
noria:NetworkLink 181 0.042
noria:TroubleTicket 150 0.035
noria:TroubleTicketNote 110 0.025
noria:AnomalyMode 75 0.017
pep:Procedure 9 0.002
TOTAL 433’330

7.3.2 Multiclass Classifier with Graph Embeddings

Computing embeddings and training the model. Prior to computing embeddings, we

generate nine sets of walks with a random walk strategy [60], walk depth W D ∈ {4,8,10}

(vertices) and walk counts W C ∈ {10,20,30} (per entity). Then, the Word2Vec training for

embeddings holds on ten epochs for each set of walks. These sets of walks are referred to as

WDxx/WCyy in the Table 7.3.

We use the random forest algorithm as the classifier. The input values of the model are the

3Due to confidentiality, this dataset is not made public.
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embeddings. Target classes are values from the noria:troubleTicketCategory4 property.

The Table 7.2 presents the possible values and their distribution in the dataset. We use a

stratified fixed-split strategy to build the training dataset while taking into account the target

class imbalance, with a proportion of 25% of the dataset to include in the test split. Tuning

the model’s hyper-parameters relies on a grid-search heuristic, with parameters: the number

of trees ∈ {10,20,30,50,70,100}, split criterion ∈ {gini,entropy}, maximum depth of the trees

∈ {3,5,10,pure leaves}, and feature selection weight ∈ {sqr t(# f eatur es), l og2(# f eatur es), (

# f eatur es)}. We use a weighted F1 score for model selection.

Evaluation & discussion. Table 7.3 reports on the classifier performance with respect to the

weighted F1 score and the model parameters for each WDxx/WCyy set of walks. The WD08-

WC30 shows the best performance for the classification task with a 0.81 weighted F1 score.

Table 7.2 reports on the per class weighted F1 score for the best model (WD08-WC30) in order

to discover if some classes are harder to predict than others, regardless of their frequency.

Table 7.2: Target class distribution
Class labels relate to the NORIA-O skos:Concept skos:prefLabel for the noria:troubleTicketCategory property. Per-
centage is the ratio of the noria:TroubleTicket entities count for a given class over the total number of entities. F1 weighted
and Support are classification performances for the WD08-WC30 random forest model over the test data.

Class label Entities Percentage F1 weight. Support
Interrupted service 77 55.8 0.97 19
Degraded QoS 22 15.9 0.75 5
No service impact 22 15.9 0.62 6
Defect to be qualified 13 9.4 0.57 3
Equipment failure 4 2.9 0.00 1
TOTAL 138 100.0 0.81 34

Table 7.3: Classifier performance
F1 weighted score and random forest best model parameters as a function of graph walks parameters. WC = Walk Count, WD =
Walk Depth, model parameters in the form <criterion>-<max depth>-<max features>-<n estimators>.

WC10 WC20 WC30

WD04
0.64

gini-05-SQRT-030
0.59

gini-05-SQRT-020
0.73

gini-05-SQRT-030

WD08
0.49

gini-05-SQRT-100
0.75

gini-05-SQRT-050
0.81

gini-05-SQRT-020

WD10
0.52

gini-05-SQRT-020
0.60

gini-05-SQRT-020
0.76

gini-05-SQRT-020

We observe from Table 7.3 that the model performance globally increases with the walk counts

(W C ) parameter. The performance does not appear to increase proportionally to the walk

depth (W D) parameter. However, the F1 score reaches a peak at W D = 8. In-depth analysis of

4https://w3id.org/noria/ontology/troubleTicketCategory
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the dataset to better understand the phenomenon shows that the available context for trouble

ticket entities is not systematically consistent. For example, some noria:TroubleTicket en-

tities refer to noria:Resource entities out of the scope of the knowledge graph construction

process, hence the context from the network neighborhood is absent from the embeddings.

Similarly, the time frame of some noria:EventRecord entities (e.g. alarms, device logs)

does not overlap with the creation date of the noria:TroubleTicket. We also observe some

non-standard values for the noria:troubleTicketCategory (i.e. values absent from the

NORIA-O controlled vocabulary), hence the 150− 138 = 12 delta between the number of

noria:TroubleTicket from Table 7.1 and Table 7.2.

Overall, we conclude that the classifier works relatively well but that the dataset is too small (for

some classes in particular) and inconsistent for generalizing and tackling the circumbscribe

assets need (use case #1 in Table 5.1). The typical approach to overcome this issue is to

improve the knowledge graph construction stage with broader data sources and data quality

assessment.

7.3.3 Model-Based Anomaly Detection

Qualitative analysis of trouble tickets. To identify query patterns for anomaly models, we

first retrieve all attributes values associated with noria:TroubleTicket entities from the

RDF dataset with a SPARQL query. Next, we employ the model-based anomaly detection

analysis scheme developed in Section 7.2. In a second step, we compute the similarity graphs

(Algorithm 1) over the WD08-WC30 embeddings with parameter k ∈ {3,4,5}, and then compare

the overlap of query patterns with the partitions resulting from the Louvain community

detection algorithm. We use the Szymkiewicz-Simpson coefficient for analyzing the overlap.

Results & discussion. From the qualitative analysis step, we identified 12 query patterns over

139 trouble ticket entities. The details of these patterns are detailed below with indications

on the involved classes and properties and examples of corresponding situations5. Table

7.4 reports on the overall distribution of the patterns, and how they were captured by the

community detection algorithm for the k = 3 similarity graph. Running the Algorithm 1 with

k ∈ {3,4,5} led to generate |P (SG ,k)| = {7,6,5} partitions respectively.

We observe that a significantly lower number of patterns emerge from the dataset compared

to the number of tickets considered (12/139 ≃ 0.09 reduction factor). Furthermore, it appears

that some patterns, such as “AlarmState” and “HeartBeat”, can capture diverse situations

while remaining very specific by using restrictions on the objects and values of properties.

This provides valuable insights on the detection and implementation of new patterns, in

5See https://w3id.org/noria/dataset/ for query examples.
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Table 7.4: Retrieval patterns distribution and overlap coefficients
“C&O” stands for Count & average Overlap coefficient. Columns [C 0, . . . ,C 6, None] report on the pattern count and overlap
coefficient for the WD08-WC30 / k = 3 similarity graph. None stands for entities that were rejected by the Algorithm 1 due to
syntax issues.

Pattern name C0 C1 C2 C3 C4 C5 C6 None C&O
AlarmState 2 2 1 1 25 15 3 49

0.13 0.13 0.06 0.07 0.96 0.88 0.14 0.00 0.30
AuthError 1 4 2 2 9

0.11 0.00 0.44 0.00 0.00 0.00 0.22 0.22 0.13
CoFailure 3 3

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13
Complex 7 6 1 1 15

0.47 0.00 0.40 0.07 0.00 0.00 0.00 0.08 0.13
Debug 1 1 2 2 6

0.00 0.17 0.17 0.33 0.00 0.00 0.00 0.33 0.13
ErroneousRes. 2 6 1 9

0.00 0.00 0.22 0.67 0.00 0.11 0.00 0.00 0.13
HeartBeat 11 2 13

0.00 0.85 0.00 0.00 0.00 0.00 0.15 0.00 0.13
Overbilling 6

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RecurringFai. 1 1

0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13
RequestForIn. 1 1 1 1 5 8 17

0.06 0.00 0.06 0.00 0.06 0.06 0.29 0.62 0.14
RiskPreventi. 2 1 4 10 17

0.13 0.00 0.06 0.29 0.00 0.00 0.59 0.00 0.13
RMA 10

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C&O 16 15 16 14 26 17 22 13 139

0.16 0.18 0.12 0.12 0.09 0.09 0.12 0.10 0.12

the perspective of an increase in the size of the dataset. However, as discussed in Section

7.3.2, the inconsistency of the data prevents us from directly validating the queries and their

relevance on the dataset. As a consequence of this, we are currently not able to establish

a correspondence between the patterns, the incident categories reported by the classifier,

and the relevant anomaly models. Despite this, we can observe from Table 7.4 a connection

that, although not entirely clear, suggests that there might be n-to-1 or n-to-m relationships

between the patterns and the trouble ticket categories.

AlarmState: Alarm state w.r.t. noria:EventRecord.* and

(noria:Resource or noria:Service). Examples: Service disruption on Optical Network Ter-

minal (ONT). Unable to access http://example.org

AuthError: User role conformance w.r.t. noria:EventRecord.type() and
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noria:EventRecord.logOriginatingAgent() and org:OrganizationalUnit. Exam-

ples: Authentication error. User does not have access to the ‘xxx’ role. Please check my

rights.

CoFailure: Alarm state w.r.t. noria:TroubleTicket.troubleTicketRelatedResource() and

seas:connectedTo and noria:EventRecord.logOriginatingManagedObject() and

noria:EventRecord.type(). Example: Co-occurring alarm in a network device neighbor-

hood and creation of a parent/child relationship between trouble tickets for SLA tracking.

Complex: Requires further expertise for providing a pattern.

Debug: Non-relevant trouble ticket entity, present for debugging purposes of the ticketing system.

ErroneousResourceInOperationPlan: Non-existing resource in operation plan with respect to

noria:EventRecord.type(). Example: The processing flow references a resource that does

not exist.

HeartBeat: Value conformance and event frequency w.r.t. noria:EventRecord.type() and

noria:EventRecord.alarmMonitoredAttribute() and noria:EventRecord.logText().

Examples: The number of failed calls has increased significantly. No response to SNMP polling

and Ping. Agent not running or cannot communicate. Extreme slowness or even unavailability

of the service when opening and closing documents on the platform.

Overbilling: Value conformance w.r.t. noria:EventRecord.logOriginatingManagedObject()
and noria:EventRecord.type() and noria:EventRecord.alarmMonitoredAttribute()
and noria:EventRecord.logText() and foaf:Person and org:OrganizationalUnit.

RecurringFailure: Repeated situation w.r.t. noria:TroubleTicket.troubleTicketRelated-
Resource() and noria:TroubleTicket.problemCategory(). Example: Repeated occur-

rence of the same type of failure on a device within a short period of time.

RequestForIntervention: Resource or service w.r.t. noria:ChangeRequest.changeRequestPlan-
nedStartTime() and noria:ChangeRequest.changeRequestStatusCurrent(). Examples:

Please decommission the ‘xxx’ system. The Customer is calling about the Request For Change

(RFC) status.

RiskPreventionNotification: Presence of en event w.r.t. noria:Resource and

noria:OperationPlan. Example: Automated deployment flow triggered on resource.

RMA: Alarm type w.r.t. noria:EventRecord.* and noria:Resource.resourceProductModel().

Example: Return Merchandise Authorization (RMA) for redundant Power Supply Unit (PSU).

7.4 Conclusion and Future Work

In this chapter, we aimed to simplify incident management activities related to broad scale

ICT systems, using knowledge graphs and learning an explicit representation of the context

of each incident. We notably tackle the emblematic “common cause failures” and “alarm
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spreading phenomenon” cases since they require considering simultaneous situations that

are seemingly unrelated as a whole.

Providing knowledge about the potential relationships between events and incidents occur-

ring in networks is a way to simplify the diagnostic phase. Based on this idea, we firstly

hypothesized that relating situations requires a common language to describe them, both

in their variety and in the context that groups them together. We posit that RDF knowledge

graphs are adequate knowledge representation formalism as they bring an abstraction level

for standard interpretation and logical reasoning over heterogeneous data. We also consider

that learning the relational structure for each type of incident, to a greater or lesser extent,

would allow us to gain an explicit understanding of the complex phenomena that occur in

network operations.

We developed a dual statistical learning/model-based approach for modeling anomalies to

overcome the lack of exhaustive knowledge of the situations to be addressed. The statistical

learning approach led to the development of a graph embeddings-based classification method

for categorizing incident tickets using a random forest model. For our experiments, we

used a RDF dataset generated using the NORIA knowledge graph construction platform

(Chapter 4) and making use of NORIA-O (Chapter 3). Based on our evaluation of the classifier,

we have determined that while it performs reasonably well (0.81 weighted F1 score), the

dataset is too small and inconsistent (particularly for certain classes) to effectively address

advanced inference services, such as projecting back the anomaly models onto the knowledge

graph for guiding support teams on similar incidents. The model-based approach led to

the identification of 12 SPARQL query patterns for anomaly detection based on a qualitative

analysis of 139 incident tickets from the RDF dataset. The rather small number of patterns and

the versatility of some of them provided valuable insights on the detection and implementation

of new patterns, notably in the perspective of an increase in the size of the dataset. We also

explored the limits of the model-based approach and the complementarity of the statistical

approach through the projection of the query patterns onto the embeddings. We observed

that there might be n-to-1 or n-to-m relationships between the patterns and the trouble ticket

categories. This should be further investigated as we found some data inconsistency during

the classifier evaluation step.

Future work will first focus on addressing data quality issues to improve the performance of

the classification model and continue our research efforts in connecting query patterns to the

latent space of embeddings. We also plan to continue exploring ways to improve the capture

of the context of incidents at the knowledge graph embeddings stage. Hence, we aim to

automatically process the description of incidents or the description of recovery interventions

written in natural language. Indeed, traditional knowledge graph embeddings techniques just

go through object properties to build the embeddings of a node since a datatype property
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breaks the graph (i.e. a literal cannot be a subject). Alternative knowledge graph embeddings

approaches exist to handle literals [7]. However, this gives rise to further challenges, including

the requirement to discretize the literals (e.g. determining a general criterion for discretizing

dates, numbers, etc.). An alternative consists in annotating datatype properties with semantic

entities using a language model. Next, we aim to explore additional sampling and walk

strategies [169]. This could notably allow us to guide the extraction of network topology data

from the knowledge graph according to infrastructure or time criteria. Finally, we would like

to test our approach using dynamic graph generation tools [223] to open it up for comparative

studies, particularly regarding scalability. Ultimately, future research could explore automating

IT support functions by reasoning on these shared explicit models of infrastructure and service

behavior and past incidents management.
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Chapter 8

Designing a User Interface for

Graph-based Advanced Anomaly

Detection
8.1 Introduction

Ensuring a high level of Quality of Service (QoS) on telecommunications and data processing

services requires a constant human and technical commitment (Chapter 1), whether it is

for the most trivial applications or most critical ones. The ICT systems supporting these

applications are indeed complex systems. As a consequence, despite the availability of well-

established NMS/SIEM DSSs (Chapter 2), supervision experts face cognitive overload due

to numerous indicators and alarms. The heterogeneity of ICT systems’ configurations and

potential lack of information about neighboring systems further complicate their tasks, leading

them to decision making under uncertainty in incident management context.

Providing a comprehensive and unified view of ICT systems and their dynamics, while facili-

tating access to anomaly detection algorithms and solution recommendation tools, appears

to be a critical path to enable increased operational efficiency in the incident management

process. RDF KGs have proven to be flexible for data integration and logical reasoning over

heterogeneous data, notably thanks to shared semantics provided by ontologies. However, we

notice that the use of KGs has not yet become widespread in NMS/SIEM DSSs (Section 2.2)

although various ontologies related to NetOps/SecOps are already available for describing net-

work systems and for cybersecurity (Section 2.3). Additionally, the multiple knowledge facets

that need to be represented for situation understanding pose a limit to intuitive and efficient

exploration of KGs (i.e. quick and limited access to only relevant information) without a deep

understanding of the ontologies at work, especially when short response time is imposed by

Service Level Agreements (SLAs). Regarding the use of AI, various approaches demonstrate

practical interest for anomaly detection or diagnostic assistance (Section 2.4). However, as

suggested in Section 5, it is important for supervision experts to have the ability to combine

and call different approaches and models in order to cover a wide range of system behaviors

and support efficient decision-making.
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In this chapter, we posit that the combination of knowledge graphs and automated inference

tools offer promising prospects for improving NMS/SIEM DSSs, assuming that the DSSs’

ergonomics meet the NetOps/SecOps teams’ business requirements in terms of information

accessibility (e.g. breaking down technical silos), incident situation contextualization (e.g.

reducing cognitive load through alarm grouping), and continuity of operational tasks. To

tackle this, we present NORIA UI, a Web-based client-server software architecture for net-

work anomaly management based on data stored in a KG, with its ergonomics (UI/UX) being

the result of collaboration with a panel of NetOps/SecOps experts from Orange. Our main

contributions are the following. Firstly, we provide details of the business requirements for a

next-gen NMS/SIEM DSS in terms of ergonomics and functions. Secondly, we present the tech-

nical details of the architecture implemented to meet these requirements, going beyond the

simple data exposition from a knowledge graph by implementing the principle of synergistic

reasoning for the combination of various diagnostic AI techniques, and the implementation of

interaction mechanisms for exploratory analysis of multi-layered systems. Finally, we provide

a feedback on the proposed solution and its prospects based on performance analysis and

UI/UX evaluation by users in operational situations.

The remainder of this chapter is organized as follows. Section 8.2 presents the methodology to

capture the business requirements. Section 8.3 presents the set of UI/UX features designed to

meet these requirements. Section 8.4 provides details on the client-server architecture sup-

porting these features. Section 8.5 illustrates diagnostic assistance with synergistic reasoning.

Section 8.6 reports on user evaluation of the proposed architecture and features. Section 8.7

concludes this chapter by providing a summary of the work that has been done and offering

some preliminary conclusions regarding the opportunities and potential future developments

associated with it.

8.2 Personas and Requirements

To meet the operational needs of NetOps and SecOps experts, we used a methodology based

on personas and interviews to develop the NORIA UI solution, including its UI/UX perspective.

NORIA UI allows different user profiles to interact with it, catering to various usage scenarios

and objectives. Personas, as described in [221], are archetypes of user classes that capture

goals, behavior patterns, skills, attitudes, and environment. These personas are designed to

be effective for the specific design problem at hand.

Gathering requirements. To capture these different perspectives, we firstly pre-defined

a set of professional profiles that could potentially contribute to the expression of needs,

and then launched a call for participation, ensuring that we had a sufficiently broad and

representative panel. Due to a good match of profiles, we have once again called upon the
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panel of experts who contributed to the design of NORIA-O (Chapter 3) and the definition

of six fundamental anomaly detection cases (Chapter 5). In addition to these two set of

interviews, we organized a series of UI/UX co-design workshops. To do so, we initially derived

preliminary UI/UX requirements from the Precondition/Success Guarantees/Trigger of the six

fundamental detection cases. These requirements were then sketched and challenged with

the panel of experts during the workshops. The outcomes of these workshops served as the

basis for the UI design presented in this chapter.

All experts have consistently expressed a recurring need and frustration regarding the hetero-

geneity of network infrastructures that are monitored. This directly relates to the necessity of

handling and analyzing multiple data sources to effectively comprehend network situations.

Users, therefore, hold a positive perception of a tool that could standardize and consolidate all

data into a single platform with correlation capabilities. However, it is important to note that

these users represent different skill sets and activity fields, each with their own distinct objec-

tives and approaches on the comprehensive overview. Typical persona are agents from NOC

and SOC. For the definition of the personas, we have chosen to abstract from the specificities

of the network and cybersecurity domains in the sense that NORIA can be considered as a

platform for supervising network infrastructures and detecting anomalies, whether they are

the result of a malfunction, human error or a malicious act.

Defining personas. We can define four different personas that will be interacting with the

tool. The first is the incident manager in charge of the investigation of a given incident. This

contributor manages the reception of the alert and its context, assembles an investigation

team adapted to the type of situation, coordinates efforts and facilitates communication

between investigators, and then communicates the results of the investigation. The main

need of this user is to quickly obtain an overview of a situation as well as all the sharing

functions enabling him to facilitate work within his team of responders. The team of the

incident manager is composed of several supervision experts and/or cybersecurity analysts,

our second and third personas, depending on the needs and the perimeter impacted. The

network supervision expert use NORIA UI to correlate events, in particular alarms, from

different network equipment. This persona has in-depth knowledge of a technical perimeter

and of the events generated by the various systems in the network. This type of user is

particularly interested in analysis functions such as root cause analysis and the ability to

quickly identify faulty equipment within a defined technical perimeter. The identification

and description of the network infrastructure, the accuracy of event information and the

correlation of indicators from different sources are important aspects for these users.

The cybersecurity analyst uses NORIA UI to identify possible malicious activity (i.e. forensic).

These users have a good knowledge of the services offered by a given infrastructure and the
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types of events that can occur. Similarly to the network supervision expert, they are particularly

interested in the ability to correlate indicators from different sources. They are particularly

attentive to analysing the events that occur and the information linked to these events (in

particular the textual description of the logs).

The fourth persona is the system architect who aims to understand how a system works in

order to improve its performance through re-engineering or upgrading (e.g. adding a function)

or its security (by installing devices such as countermeasures, firewalls, etc.).

8.3 NORIA UI Features

In this section, we present the set of UI/UX features designed to meet business requirements

derived from expert panel interviews in Section 8.2. Specifically, the analysis of user stories by

personas leads us to identify the following five groups of features:

1. Cross-consultation of information on network topology, events and alarms,

2. Display of 2D/3D network topology enriched with indicators,

3. Aggregation and analysis of information in a dedicated digital investigation space,

4. Use of analysis and anomaly detection tools,

5. Access to community functions for sharing information between collaborators.

In the following, we describe from a functional perspective how we have implemented these

groups of features. The overall design, called NORIA UI, is a KG-based network monitoring

tool & decision support system that offers NetOps/SecOps teams a comprehensive view

of multiple data sources and integrated analysis functions for diagnostic assistance and

knowledge sharing. NORIA UI leverages data from an RDF knowledge graph generated through

the KGC pipeline described in Chapter 4, and structured by the NORIA-O data model described

in Chapter 3. In addition to the information provided in this chapter, a demonstration video

showcasing the tool’s main features is available online in the “NORIA: Network anomaly

detection using knowledge graphs” blog post (Section A).

8.3.1 Dashboard: the Network in One Glance

The dashboard page (Figure 8.1) consists of four panels providing access to information

about the network’s life based on four complementary facets derived from the knowledge

graph: trouble tickets, events and alarms, resources and applications, and an enriched view

of network topology. It is the main page of the application and serves as the primary tool

for NetOps/SecOps experts to explore the data in the knowledge graph and gain an overall

understanding of the network’s status or a specific event.
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Figure 8.1: NORIA UI: the dashboard page
The dashboard page consists of four panels providing access to information about the network’s life based on four complementary
facets derived from the knowledge graph: (A) trouble tickets, (B) events and alarms, (C ) resources and applications, and (D)
the enriched network topology. Entities are displayed along with their main properties (E). Checkboxes (F ) allow for a display
pivot that applies to all panels. Each entity has contextual commands (G). An input field (H) allows defining a display scope and
searching for entities based on their properties.

Interacting with the panels. Out of the four panels, three present the information in the

form of a list. To match the needs of personas and avoid potential cognitive overload, we

apply customized rendering for certain properties of the KG entities (e.g. color-coding the

trouble ticket status for quick understanding of its priority) and enable users to select which

properties to display. Furthermore, to facilitate quick interaction with the KG entities, we

provide entity-specific action buttons on the right side of each table. The current version of

NORIA UI offers the following four actions: 1) Focus: clicking on this button focuses the entity

in the graph visualization panel, allowing users to quickly center their view for studying the

network context of the entity. 2) Information: when more information is needed, clicking on

this button redirects to a specialized page (Section 8.3.2) for the entity type (e.g. trouble ticket,

events, etc.) and applies pre-filtering to highlight the entity. 3) Linked Data: for advanced users,

this button redirects them to the entity in the KG-DBMS’s frontend (Section 8.4). 4) Notebook:

to assist users in conducting in-depth analysis of specific situations, the NORIA UI provides a

notebook feature (Section 8.3.4). Clicking on this button, the entity is added to the notebook.

The last panel embeds a graph visualization library to provide an interactive view of the

knowledge graph. It represents the entities from the three previously mentioned panels, along

with the physical and logical network connections between resources and applications, as

well as the composition relationships between these resources (e.g. a network packet filtering

card as part of a network router device). This feature allows users to have a multi-faceted view

of the network (i.e. topology, events, etc.) Each node in the graph is color-coded based on its
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type. This view is interconnected with the other three panels, enabling users to analyze the

context of each entity. For instance, clicking on an item in the “Trouble Tickets” panel brings

the corresponding node to the center of the graph view, displaying its relations to the linked

resource/application in the knowledge graph. This provides a comprehensive understanding

of the incident context at a glance, by examining the neighboring resources/applications

in the network and the associated alarms. See Section 8.3.3 for more details on the graph

visualization feature.

Searching and filtering. The user has access to various functions for searching and filtering

information. As a first one, the user can use the pivot function, which enables dynamic

cross-referencing between different information facets [88]. This function allows sequential

filtering in the “Trouble Tickets,” “Resources and Applications,” and “Events and Alarms” data

panels. Checkboxes in these panels (Figure 8.1.F) are used to select source entities for the pivot,

creating a pivot that filters the content of the other two panels. For example, selecting trouble

tickets in the first panel will display entities linked to those tickets in the other panels. The

user can then choose to apply a second pivot (based on the first one at the trouble tickets level)

by selecting items in one of the remaining panels. For instance, selecting a set of resources

in the “Resources and Applications” panel will result in filtering being applied to the “Events

and Alarms” panel based on the entities selected in the two pivots. This feature supports

exploratory searches by sequentially filtering correlated entities in the three data panels based

on the relationships stored in the knowledge graph.

A second set of search and filtering functions is available at the top of the UI (Figure 8.1.H).

The global search allows users to search all data, regardless of the entity type. Users can use

tags (i.e. shorthands to the knowledge graph concepts and properties) to structure their search

query and specify search criteria. For example, users can select the “Trouble Ticket” entity type

(i.e. an owl:Class)1, the “status” field (i.e. an owl:ObjectProperty), and the attribute value

“current” (i.e. a skos:Concept)2 to search for all open trouble tickets. Users can also enter any

value, such as a network device hostname or logistic identifier, for a broader search across

all data. The second part of the search is the scope. Users can define a functional/technical

perimeter (e.g. core network, mobile network, email services) by specifying applications, and

the presented data will be filtered accordingly. Similarly, users can filter data using a time

scope. For example, selecting a time scope of 1000 minutes will display data from the last 1000

minutes.

1The owl namespaces refers to http://www.w3.org/2002/07/owl#.
2The skos namespaces refers to http://www.w3.org/2004/02/skos/core#.
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8.3.2 Entities, Details and Comparison of Objects

To obtain comprehensive information on entities, NORIA UI provides a dedicated page for

each type of entity (trouble tickets, resources and applications, events and alarms) using a

shared page layout template. The template includes a data table to display all occurrences

of the entity type in the knowledge graph. The layout, rendering options, and action buttons

are consistent with the dashboard page (Section 8.3.1). Users can switch to a card layout

for better readability and comparison, such as placing resource entity cards from different

technical scopes side by side. The template also includes a panel on the right side to display

detailed information about a selected entity, allowing users to keep this information visible

while browsing the entity list. Additionally, the template includes a synthesis panel to provide

statistics on selected entities based on their properties. This panel allows users to quickly

identify commonalities within a subset of entities, such as the number of resources deployed

in a specific building or the distribution of alarm types.

8.3.3 Graph: Exploring an Incident Context

To explore the relationships between the entities of the knowledge graph, the NORIA UI also

provides a graph visualization component called noriaConnect. It allows users to have an

multi-faceted and interactive view of the network (i.e. topology, events, etc.) in pages where

graph visualization is needed, such as the dashboard page (Section 8.3.1), the graph page, and

the notebook page (Section 8.3.4).

noriaConnect is based on the force-graph3 library, which we enhanced to meet the needs of

NORIA UI, notably in terms of interactions with the graph. For example, considering the graph

page (Figure 8.2), the noriaConnect component occupies the majority of the window and is

linked to two side panels for displaying details on the currently selected node, and synthesis

view when multi-selection occurs in the graph. It enables displaying the entities from the

three “Trouble Ticket”, “Events and Alarms”, and “Ressources and Applications” facets, along

with the physical and logical network connections between resources and applications, as

well as the composition relationships between these resources. Each node in the graph is

color-coded based on its type.

Each click on a node triggers an action. A left-click on a node zooms in on it and displays the

labels of neighboring nodes (i.e. nodes linked to that node by an arc). For example, clicking on

a trouble ticket node highlights its linked resource/application and related events, allowing

the user to quickly focus on the incident context. A right-click opens a context menu that

provides access to ad hoc functions. One function sends the node to the notebook, allowing

the user to gather items of interest as they explore the network context. Another function is the

3https://github.com/vasturiano/force-graph
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Figure 8.2: NORIA UI: the graph view for analyzing the network context.
The noriaConnect component on the graph page allows users to explore and interact with the knowledge graph. Checkboxes
at the top of the component enable to select the type of entities and relationships to display . A “Graph 3D” toggle command
allows to switch to 3D rendering of the graph, providing spatial clustering for comprehending the network behavior as suggested
in [203]. Hovering the mouse over a node displays its shortened URI in a tooltip. Right-clicking on a node displays a context
menu. Two side panels provide details on the active node and a synthesis of the properties for multi-selection.

graph contraction/expansion function, which reduces/expands the amount of information

displayed by noriaConnect on the screen (by default, no nodes are contracted).

We have implemented the three following contraction strategies. 1) Directed graph contrac-

tion by depth: contracts the graph by searching for neighboring nodes along directed edges

starting from a reference node. This is useful for gathering all constituent nodes of a technical

infrastructure linked by a hierarchical relationship or gathering all linked and succeeding

temporal nodes from a reference moment. It involves implementing a depth parameter to the

function (i.e. number of edges in depth), which we set to one by default. 2) Undirected graph

contraction by depth and attributes: contracts the neighbors of a reference node based on a

criterion provided by the user, without considering the direction of the edges. This is useful for

servers hosting a given application, incident tickets related to a specific server, or servers of an

application with a specified operating system. 3) Graph node grouping by attributes: groups
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the nodes of a graph based on an attribute, regardless of the presence of an edge between

them. This is useful for nodes of a specific type, such as servers, applications, or sites.

noriaConnect also allows for adjusting the graph actions and rendering based on the specific

usage context and needs of the users. For example, additional commands can be added to

the context menu to execute stored SPARQL queries using the URI [50] of the active node as

an argument. Additionally, the size of the nodes can increase based on their degree (i.e. the

number of connected nodes) to facilitate focusing on dense parts of the graph (e.g. a resource

node with multiple alarms). Finally, nodes and arcs can blink to highlight a path in the graph

(e.g. indicating the temporal relatedness of events for root cause analysis).

8.3.4 Notebooks: Analyzing an Incident Context

The notebook is a place where users can save entities of interest (trouble tickets, resources,

alarms, etc.) for an on-going diagnosis process. For example, the root cause analysis of an

application performance degradation issue may involve examining the servers hosting the

application and the network routers bringing connectivity to these servers. This can potentially

require conducting a long-term analysis, during which the user may lose track of their working

hypothesis. To facilitate this investigation into the anomaly, users can create a notebook (they

can have multiple notebooks at any given time) to gather the entities that are likely to guide

them towards understanding and resolving the anomaly.

For a given notebook, the notebook page provides a set of display tricks and analysis functions

enabling the user to analyze the context independently of the many entities that are not

relevant to the case under investigation. For example, the entities in the notebook are displayed

as cards that the user can browse and reorganize to find similarities.

Similarly, a three-tab side panel provides access to three groups of tools that use the content

of the notebook to generate insights. The first tab, the notebook synthesis tab, calculates

an aggregated list of entity properties from the notebook to highlight commonalities in the

observables. It functions in the same way as in the entities views (Section 8.3.2). The second

tab, the notebook graph tab, displays the subgraph composed of the elements in the notebook,

similar to what is offered in the dashboard and graph pages. The contextual menu associated

with the nodes allows for automatically adding the neighboring nodes of the targeted node to

the notebook, thereby facilitating the extension of the scope of diagnosis. The third tab, the

notebook analysis tab, allows users to call stored inference models (Section 8.4) to categorize

the situation depicted by the elements of the notebook using a knowledge base. In the current

NORIA UI version, we have implemented the process mining approach discussed in Chapter 6

to enable searching for procedural models in the knowledge base that best fit the events of

the notebook. By projecting these models onto the data in the notebook, it is then possible
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to reorder the events to trace back the initiating event or highlight a candidate behavior of

the network in the notebook graph tab. These last two points are illustrated further down in

Section 8.5.

In order to maximize the opportunities for sharing the implicit knowledge contained in a

notebook about an incident situation, we assign a unique identifier to each notebook upon

creation. This identifier is used in the URI that opens the notebook page, allowing different

users to share an analysis context by exchanging the URIs of their notebooks. Similarly, the

notebook can be exported in JSON format to feed third-party SPARQL algorithms.

8.4 NORIA UI Architecture

NORIA UI presents itself to the user as a Web application. In detail, it is a Web-based client-

server architecture [310] with four main components (Figure 8.3).

Figure 8.3: NORIA UI architecture overview
This functional block diagram provides an overview of the NORIA UI Web-based client-server architecture. The four main
blocks are the front end, the back end, the graph database (KG-DBMS), and the model database. The end-user interacts with the
knowledge graph data through the back end API. The back end implements and orchestrates a set of services, typically of the
data fetching/processing/forwarding kind.
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Firstly, the front end handles data rendering and user interactions through reusable compo-

nents (e.g. templated list for entities, graph view, etc.), and accesses the knowledge graph data

through the back end API. It is developed using the VueJS4 framework for the codebase, and

the Orange Boosted5 toolkit for styling. Access to the Web application is protected through an

OpenID Connect (OIDC)6 connection managed by a single-sign-on (SSO) service, ensuring

that only authorized users can access the NORIA UI. All user-related data, such as preferred

display scope and notebooks, are stored separately in a MongoDB7 database through the back

end API.

Secondly, the back end implements and orchestrates a set of services, typically for data fetching,

processing, and forwarding. Some services are made available through a RESTful API to directly

meet the needs of the front end. For example, the graph service returns a JSON Graph8 data

structure that provides the network topology data based on the user’s display scope, ready to

be consumed by the noriaConnect component in the front end for rendering. This structure

is prepared at the back end level from a pre-established parameterized query to the KG-

DBMS (graph database). The query service relies on the SPARQL Transformer package [206],

which manages interactions with the SPARQL endpoint of the graph database. To minimize

network and processing load, we implemented a caching strategy: we minimize requests to

the KG-DBMS using a pre-fetch approach for various types of entities, with specific cache

durations based on the frequency of data changes. For example, entities of type “resources

and applications” have a cache duration of 24 hours as they change infrequently, while “events”

and “trouble tickets” have a cache duration of 15 minutes as they are ingested quasi real-

time into the graph. The back end is developed using Flask9 to enable rapid and efficient

development of the necessary features for end users. Just like the front end, access to the API

is protected by OIDC.

Thirdly, the knowledge graph database management system (KG-DBMS), namely an OpenLink

Virtuoso10 graph store instance, handles the data as an RDF knowledge graph, including the

ontologies and controlled vocabularies, and gives access to these through a SPARQL endpoint.

An independent data integration pipeline, separate from the NORIA UI solution, ensures the

KGC process. This includes the periodic execution of SPARQL queries to enrich the graph

with inferred-alert events for anomaly detection based on business rules corresponding

to graph patterns (Chapter 5). Doing so implements a synergistic reasoning approach to

anomaly detection and situation understanding at the NORIA UI level (Section 8.5). Indeed,

diagnosis actions carried out in the notebook page using ad hoc analysis functions leverage

4https://vuejs.org/
5https://boosted.orange.com/
6https://openid.net/developers/how-connect-works/
7https://www.mongodb.com/
8https://jsongraphformat.info/
9https://flask.palletsprojects.com/

10https://virtuoso.openlinksw.com/
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knowledge graph data from both the field sources and the output of algorithms running at the

KGC platform level. The data integration pipeline described in Chapter 4 serves as a basis for

the KGC process and periodic execution of anomaly detection queries.

Finally, a model store, specifically an Apache MLFlow11 instance, is used to store

and retrieve inference models. For example, in the notebook page (Section 8.3.4), a

processing:ppm-compute service of the back end structures the notebook’s data, calls a

process discovery function from the PM4Py library [11], wraps the resulting Petri net model

into a Python object, and sends the object to MLFlow. To enable this process, we implemented

a Python class that inherits from MLFlow’s mlflow.pyfunc.PythonModel12 class definition.

This allows us to store and version procedural models computed by users, as well as retrieve

or run stored models for situation classification. It is important to note that this approach is

not limited to procedural models but can also be applied to any type of inference models (e.g.

random forest) whose serialization is compatible with MLFlow’s functionalities.

In addition to these core components, we enhance the NORIA UI solution with a Skosmos

instance [337] connected to the KG-DBMS. This integration allows users to easily browse the

controlled vocabulary used in the knowledge graph. The controlled vocabulary is rendered in

the front end as hyperlinks to the Skosmos UI.

8.5 A Synergistic Reasoning Scenario

In this section, we apply the concept of synergistic reasoning (i.e. the cooperation of multiple

algorithms to provide reasoning) [46] to test the NORIA UI proposition. We start by defining a

fictitious incident situation, then we show how the diagnosis can be performed via the user

interface. The scenario described here serves as the basis for the user evaluation described in

the following Section 8.6. The dataset used is described in Section B.3.

Combining anomaly detection techniques. We consider the following incident context,

shown in Figure 8.4: a fault in the technical environment of a network router causes it to stop,

degrading user access performance to an application and triggering various alarms on the

supervision system. A supervision technician receives a call from an application user reporting

a drop in performance, but with no further details.

As discussed in Section 5.3.2, we assume that the anomaly detection approaches developed in

this thesis work could combine to provide efficient situation understanding, each approach

being related to a specific scope of inference.

11https://mlflow.org/
12https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html

148

https://mlflow.org/
https://mlflow.org/docs/latest/python_api/mlflow.pyfunc.html


8.5 A Synergistic Reasoning Scenario

Figure 8.4: Combining anomaly detection techniques for situation understanding
This diagram highlights how the model-based, process mining, and statistical learning approaches combine for anomaly detection
and situation understanding on a fictitious incident situation, each approach being related to a specific scope of inference.
The graph is a simplified version of a knowledge graph structured by the NORIA-O data model, depicting a network topology
with alarm events and a trouble ticket. The incident situation summarizes as follows: a “time out” alarm is emitted by the
supervision system because of a hardware fault on rt_tsi_1 making it unreachable; consequently, an interface down alarm is
raised by srv_tst_1 as its link to rt_tsi_1 is down; an inferred alarm, computed thanks to a SPARQL query, is attached to the
app_tst to alert on a resilience problem because of a fault on srv_tst_1; a trouble ticket is attached to app_tst, following a
user complaint about its performance. The dashed boxes with numbering indicate the diagnosis steps through the NORIA UI.

More precisely, and firstly, model-based (Chapter 5) relates to querying the graph to retrieve

anomalies and their context. Basic examples, derived from NetOps/SecOps expert interviews,

are: “k out-of n devices with faults”, “user with unusual account rights”, and “absence of traffic

on an interface supposed to be active.” In the case depicted in Figure 8.4, an inferred alarm,

defined as a graph pattern based on expert knowledge and computed thanks to the SPARQL

query of Listing 5.4, is attached to the app_tst entity to alert on a resilience problem because

of a fault on srv_tst_1. Besides alerting on the resilience issue at the noria:Application
entity level, the description of the inferred alarm is also a guide for the diagnostic stage of the

incident management process by encouraging to further scrutinize the lower layers of the

network (i.e. the server resources hosting the application). It is also noteworthy that, because
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the inferred alarm is new knowledge enriching the KG, it could serve as a basis for subsequent

use of other anomaly detection techniques (as discussed right below with the process mining

and statistical learning approaches).

Secondly, process mining (Chapter 6), relates to aligning a sequence of timestamped en-

tities (e.g. noria:EventRecord) to activity models, then use this relatedness to guide

the repair. Basic examples are of the (LoginFail)=>(LoginFail)=>(LoginFail) and

(EnergyLoss)=>(TimeoutAlert)=>(LossOfSignal) kind. In the case of Figure 8.4, an

enriched version of the second example, such as (EnergyLoss)=>(TimeoutAlert)=>-
(LossOfSignal)=>(AtRisk50%) will relate the time out alarm as a probable cause to the

resilience alarm.

Finally, statistical learning (Chapter 7) captures the incident context (e.g. the

sub-graph centered on a given noria:TroubleTicket entity), thereby enabling to

relate entities based on context similarities (e.g. capturing the presence of a

(<InterfaceDown>:Alarm)→(Server) relationship instead of the too much precise

(<InterfaceDown>:Alarm)→(<srv_tst_1>:Server) one) and then use this relatedness

to alert and guide the repair. In the case of Figure 8.4, we would capture the signature of

resilience issues occuring on applications hosted close to a core network, and thereby be

able to detect similar issues on other locations of the network even if the network topology is

not exactly the same. It is noteworthy that, because the noria:TroubleTicket entities hold

information about how a given issue has been solved, it becomes then possible to suggest

how to remediate new situations based on context similarities. Akin to this, another example

derived from NetOps/SecOps expert interviews is “the hidden cause of the trouble ticket on

the application is a ‘data leak’ attack that started on server 2”, suggested by the idea that com-

plementary CTI knowledge and that events over a long period of time are part of the learning

process for incident contexts.

Situation understanding. We now illustrate how the diagnosis of the previous scenario is

implemented in NORIA UI. The process follows three main steps as indicated in Figure 8.4: (1)

incident acknowledgment, (2) situation understanding through model-based inference, and

(3) situation understanding through conformance-checking inference.

At step (1), the NORIA UI user searches for a given noria:TroubleTicket based on its

identifier (Figure 8.5) and filters out useless information from the Ressources and applications

and Events and alarms panels by pivoting on it (Figure 8.6), thereby highlighting the presence

of an alarm attached to the related noria:Application entity.

At step (2), clicking on the alarm, the user is forwarded to the details of the

noria:EventRecord entity, revealing the inferred-alert type of it and the resilience na-
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Figure 8.5: Diagnosing with NORIA UI: searching on TroubleTickets based on an i d .

Figure 8.6: Diagnosing with NORIA UI: pivoting on TroubleTickets.

ture of the alert (Figure 8.7). Clicking on the details, the user is then forwarded to the enriched

graph view of the network (Figure 8.8), from which he selects a set of entities to send to a

notebook for further analysis.

At step (3), the user obtains a summary of the properties of the entities in the notebook (Figure

8.9), then requests a search for a procedural pattern that can explain the situation. This search

returns the model in the knowledge base with the best fitness, allowing the user to get an

ordered list of the noria:EventRecords of the notebook against the model to trace back the

probable cause, to get an annotated network context to visually understand the dynamics of
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Figure 8.7: Diagnosing with NORIA UI: getting details on EventRecords.

Figure 8.8: Diagnosing with NORIA UI: analyzing the network context.

the situation (Figure 8.10), and to view the formal model in the base (Figure 8.11).

Discussion. This three-step scenario highlights an exploratory approach for situation un-

derstanding. The model-based approach is shown transparent to the user as the execution of

SPARQL anomaly detection queries is performed periodically in the background by an orches-

tration tool associated with the NORIA platform (Chapter 4). The process mining approach,

on the other hand, is activated upon user request within the notebook context. Although not

illustrated, the statistical learning approach could be automatically activated periodically to

generate inferred alerts, or activated on-demand as a reasoning service (Section 5.3.2), similar

to the process mining approach.

This scenario was used to prepare the “Semantical anomaly sensing” demonstration of the

overall NORIA approach at the OOTD 2023 exhibition (Section A). The demonstration received

very enthusiastic feedback live from numerous visitors from various backgrounds. In the

following Section 8.6, we further analyze the NORIA UI proposition based on this scenario
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Figure 8.9: Diagnosing with NORIA UI: getting a synthesis on the entities in a notebook.

through a formal evaluation by a panel of users.

8.6 Evaluation

In this section, we first present the evaluation process and the corresponding usage context for

the proposed NORIA UI solution. We then analyze the evaluation results to draw conclusions

about the effectiveness of the design and identify any potential areas for improvement.

Evaluation process. The overall evaluation approach involves engaging a panel of beta

testers with a profile closely aligned with network/cybersecurity operations. They are invited

to connect and use the NORIA UI solution and provide feedback by responding to a question-

naire based on the System Usability Scale (SUS) method [181]. The SUS method evaluates the

usability and user experience through a weighted score derived from ten closed-ended ques-

tions, assessing the potential adoption and relevance of the tool. We used the SUS questions

as proposed in the seminal paper describing SUS [180], and their French version from [131]

for French-speaking participants. To ensure reader convenience, we have included the SUS

statements as defined in [180] in Table 8.1. To capture users’ expectations more accurately, we

have included two additional questions in the base SUS questionnaire, which were presented

at the end of each evaluation session: “In a few words, what were you looking for the last time
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Figure 8.10: Diagnosing with NORIA UI: graphical root cause analysis
A prototype of the graphical root cause analysis view obtained by projecting the procedural model from Figure 8.11 onto the
entities in the notebook. The circled nodes highlight the noria:Resource and the noria:EventRecord likely responsible for
the incident. The dotted lines emphasize the temporal sequence.

you used NORIA?”, and “Do you have any feedback, positive/negative opinions about NORIA

UI, or any suggestions?” The questionnaire is anonymous by default, but beta testers had the

option to provide their email for personalized follow-up. Additionally, we collected usage data

of NORIA UI through a Matomo13 instance, which captures telemetry data such as the browser

used, hardware configuration of the workstation, user journeys, and page loading times. Each

beta tester has the possibility to connect to the solution and evaluate it as many times as

desired during the evaluation period. At the end of the period, we extracted the results from

the enriched SUS questionnaire, calculated the SUS scores per user and per question, and

analyzed the correlation between these scores and the respondents’ profiles in relation to the

verbatim responses.

Evaluation scenario. We designed an incremental evaluation campaign, with a first phase

focused on evaluating the ergonomics of the NORIA UI Web interface with its core features

(Section 8.3) using synthetic data, and then iterating the evaluation by adding features to

the solution, incorporating real operational data, and introducing new diagnostic tools. We

report below on the first phase of the evaluation campaign, which is based on a scenario that

corresponds to a typical incident detection and diagnosis chronology for a technical support

engineer. The usage scenario, evoked in the previous Section 8.5, summarizes as follows:

1) the user logs in and authenticates to NORIA UI through a Web browser from a workstation;

2) configures his user profile by setting the display and search scope; 3) looks for a given

trouble ticket in the dashboard view using the search bar based on its i d ; 4) pivots on the

trouble ticket entity to filter out all non-related entities from the dashboard alternative panels

13https://matomo.org/
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Figure 8.11: Diagnosing with NORIA UI: viewing a procedural model in the knowledge base
The procedural model, stored as a Petri net, can be viewed in the Apache MLFlow’s user interface (an open source model store).

(i.e. events and alarms, and resources and applications); 5) send the related alarms to the

notebook view; 6) check for the details of alarm that triggered the trouble ticket, this reveals

an Application at risk: k out-of n (50%) event of the inferred-alert type; 7) get

the network context of the alarm in the graph view; 8) select the nodes of the network context

(i.e. noria:Resource, noria:Application, and noria:EventRecord entities) and send

them in the notebook; 9) get an overview of the incident context browsing the notebook view,

with a first level level of situation diagnosis using its analysis features.

Evaluation and performance results. For the first phase of the evaluation campaign (2024-

02-10 to 2024-03-10), we recruited a panel of 25 beta tester, upon which ten actively engaged

into the evaluation process, with the following distribution of personas: two cybersecurity

analysts, two incident managers, one network supervision expert, five system architects. Out

of the ten participants, two did not complete the test scenario for unknown reasons. Table

8.2 summarizes the SUS scores for these ten participants. The overall average SUS score is

68.4 when considering SUS questionnaire answers related to complete tests, and 59.0 when

considering all the answers.

Four topics emerge from the “what were you looking for” verbatims, and can be summarized

as follows: 1) Dependency Visualization: users want to search for equipment and understand

their connections; examples or technical diagrams would be helpful during the initial use of

the tool to ensure a clear understanding of the displayed graphs; users also want to under-

stand which applications are installed on which servers. 2) Incident Correlation: users seek

assistance in correlating incidents and events; they suggest that an AI could automate the
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Table 8.1: Statements from the SUS method
This table provides the ten statements for subjective assessments of usability, as defined in [180].

Statements

Q.1 I think that I would like to use this system frequently
Q.2 I found the system unnecessarily complex
Q.3 I thought the system was easy to use
Q.4 I think that I would need the support of a technical person to be able to use this system
Q.5 I found the various functions in this system were well integrated
Q.6 I thought there was too much inconsistency in this system
Q.7 I would imagine that most people would learn to use this system very quickly
Q.8 I found the system very cumbersome to use
Q.9 I felt very confident using the system
Q.10 I needed to learn a lot of things before I could get going with this system

Table 8.2: Notes and overall SUS scores by personas
The Q.x columns provide the ratings for SUS questions as presented in [180, 131] on a scale of 1 to 10, with the +/− sign indicating
whether it is a positive question (the higher the better) or a negative question (the lower the better). The SU S column is the
overall SUS score calculated by weighted sum according to the formula from [180]. The values by personas are separated between
respondents who completed the test scenario fully and those who completed it partially. The values in bold highlight the highest
scores. N stands for the number of respondents.

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7 Q.8 Q.9 Q.10 SUS
Persona N + − + − + − + − + − w.Σ

Cybersecurity analyst 2 10.0 0.5 7.5 4.0 9.0 2.0 9 2.0 8.5 2.5 78.8
Incident manager 2 10.0 0.5 8.0 8.0 8.5 9.0 7 2.5 9.5 2.5 63.1
Network supervision expert 1 10.0 2.0 8.0 2.0 8.0 1.0 8 1.0 8.0 1.0 81.3
System architect 3 7.3 6.7 6.0 4.3 8.0 0.7 8 2.7 8.3 4.7 60.8

Average (complete) 8 9.0 3.0 7.1 4.9 8.4 3.1 8 2.3 8.6 3.1 68.4

System architect (partial) 2 5.5 7.0 3.0 7.5 4.0 5.0 3 7.0 4.0 6.0 21.3

Average (all) 10 8.3 3.8 6.3 5.4 7.5 3.5 7 3.2 7.7 3.7 59.0

correlation of events related to a root cause and automatically provide suggestions in the note-

book. 3) Utilization for Incident Diagnosis: users are interested in exploring how NORIA can

assist in incident diagnosis, particularly for transmission supervisors; they want to envision

how the tool would be used by supervisors/operators; users note that if the context is saved,

it could accelerate the automation of diagnostics. 4) Ontology and Automated Processing:

users are looking for an illustration of the NORIA-O data model to utilize automatic processing

algorithms for detection, diagnosis, and remediation proposals.

Regarding the “feedback and opinions” verbatims, the respondents provided feedback on the

overall relevance of the proposal (e.g. “the tool could be very useful for ICT systems supervision

to quickly identify the root cause of an incident, calculate incident impact, and analyze inci-

dents retrospectively”), while suggesting some improvements in the sequence of actions (e.g.

“the concept of a notebook to pin relevant elements is interesting, but the manipulations are
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somewhat tedious” and “the tool appears to be designed as a navigation tool for domain experts,

requiring many clicks and not suitable for real-time incident handling”). Respondents also

requested evaluation in further usage contexts (e.g. “a more realistic test scenario would have

been helpful to fully grasp the interface and data”) and highlighted minor ergonomic issues

(e.g. changes in colors and missing tooltips for increased readability, page and parameter

display/refresh problems on a specific Web browser).

Finally, regarding the NORIA UI usage analytics, the platform (consisting of two RHEL7.6

120 GB disk, 16 GB RAM virtual machines on Ericsson HDS 8000 - Intel Xeon DP 2.8GHZ

hosts [356]) received 134 visits from authenticated users during the evaluation period. The

average time on the website per visitor was 16 minutes, with an average of 14.3 actions

per visitor. All visitors accessed the UI from a desktop or laptop workstation, with a screen

resolution of 2560×1440 for 36% of them, 1920×1080 for 20%, and lower for the rest. The

UI navigation was done through standard Web browsers, with Chrome accounting for 44%,

Microsoft Edge for 29%, and Firefox for 27%. The average page loading time observed was 2.89

seconds (2.03 seconds for generating the DOM), with the following average times per specific

page (in decreasing order of the top four): Graph = 4.62 seconds, Home page/Dashboard

= 2.97 seconds, Inventory = 2.79 seconds, Notebook = 1.94 seconds.

Analysis and discussion. The analysis of values and SUS scores in Table 8.2 suggests a

correlation between the respondents’ profiles and their evaluations. As per [44], the scores

indicate an acceptability level ranging from good (Incident manager, System architect) to

high (Network supervision expert, Cybersecurity analyst) of the solution for beta testers who

completed the test scenario fully, and not acceptable for those who tested it partially (System

architect ×2). The joint analysis of verbatims provides additional insights into the evaluations

and scores by persona. For example, considering Q.6 answers, respondents rated the proposed

solution based on the available data (synthetic data + partially consolidated operational data

from [205]) and unresolved display bugs at the time of evaluation. This heightened their overall

expectations regarding their capability to act quickly in an incident management context

with perfect data quality and faultless tools. Furthermore, the multi-faceted, homogenized,

and graphical view of the network and its dynamics is seen as beneficial for operational

efficiency (Q.1 and Q.5 answers). Similarly, the co-design of a graphical interface to leverage

the framework consisting of a knowledge graph and anomaly detection algorithms is also

seen as beneficial for diagnostic aid (Q.7, Q.8, and Q.9 answers). Enriching the proposition

by integrating additional synthesis and recommendation algorithms, as well as the ability

to interact with systems from the UI through contextual commands, seems essential to take

operational efficiency to the next level. This suggestion is supported by certain verbatims and

the Q.2, Q.8, and Q.10 scores, notably of personas (Incident manager and System architect)

whose role typically involves using analysis rather than producing it. Focusing on usage
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analytics, we notice that respondents generally tested NORIA UI with display conditions that

allowed them to take advantage of simultaneous display of maximum information, enabling

them to explore and analyze data without the need for window resizing or extreme use of

responsive design functions. Regarding page loading time, we notice that the average time

is above the theoretical “under a second” threshold [250], and that the high values (Graph

and Dashboard views) correspond to the most demanding pages in terms of rendering and

data fetching. User feedback does not indicate any responsiveness issues, so the loading and

display delay caused by interactions with the graph database and visual rendering in the graph

component seem acceptable as it is. However, it will certainly need to be closely observed

under intensive usage conditions and with optimization of the service implementation and

strengthening of cache usage.

8.7 Conclusion and Future Work

In this chapter, we considered the combination of knowledge graphs and automated inference

tools as crucial for advancing NMS/SIEM DSSs to the next level. This enhancement aims

to improve operational efficiency in incident management on ICT systems, assuming that

the ergonomics of the DSSs align with the business requirements of NetOps/SecOps teams.

However, since the use of KGs is not yet widespread in the design of NMS/SIEM DSSs, various

challenges needed to be addressed in order to achieve this objective, notably in terms of timely

access to relevant information and integration of multiple anomaly detection algorithms for

the analysis of large-scale network incident contexts.

To tackle these challenges, we designed NORIA UI, a Web-based client-server architecture

for network anomaly management based on data stored in a knowledge graph structured by

the NORIA-O data model. The ergonomics (UI/UX) of NORIA UI are the result of collabora-

tion with a panel of NetOps/SecOps experts from Orange. We conducted a user evaluation

campaign using an incident diagnosis scenario to validate the effectiveness of our proposal.

The results confirmed the value of NORIA UI in terms of providing rapid navigation through

various aspects of a network by aggregating heterogeneous data. It also demonstrated the

ease of use of the synergistic approach for establishing a diagnosis through the successive

combination of various analysis techniques. Additionally, the evaluation highlighted the

specific expectations of NetOps/SecOps user profiles in terms of functions and usage actions.

Based on this, two axes of evolution for future work emerge from the proposal. The first axis

concerns the analysis functions that need to be enhanced, for example by integrating the

calculation of incident context similarity using graph embeddings discussed in Chapter 7.

This would enable users to perform comparative case analyses, raise inferred-alerts on

diffuse situations by periodically executing models, and even propose alarm grouping before

their presentation [92].
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Furthermore, similar to the intrinsic explainability of knowledge graphs and procedural mod-

els in the form of Petri nets, the integration of new algorithms less anchored in logic or explicit

representation should be accompanied by a reflection on how to present the results of infer-

ence in the UI in order to maintain the user’s confidence in the system. One option worth

considering is to slightly modify the UI to allow the user to consult a trace of the inference

process, either in a text format close to natural language or in a graphical format [237]. Another

option would be to implement a collaborative filtering approach, which involves a feedback

mechanism from users [42]. Indeed, this would allow, for example, using voting buttons in

the UI, to gradually improve the accuracy of recommendations from statistical models while

giving the user a sense of maintaining some control over the functioning of the models. It is

noteworthy that such a feedback mechanism could also be useful for addressing data quality

issues. It would enable the user to tag non-relevant or inaccurate information on the fly.

The second axis of evolution focuses on enhancing the performance of the NORIA UI solution,

specifically in terms of data loading time and interface responsiveness. One approach to

consider is offloading more computation to the backend, including at the KG level. This could

involve precomputing aggregating nodes or “short cut relationships” [187] in the knowledge

graph (e.g. for graph contraction). Additionally, tracking user activities more closely could

help identify common knowledge graph traversals, leading to insights on optimizing I/O

performance at the KG-DBMS level (e.g. with additional indexing) and improving the data

model (e.g. reworking excessively long property paths).
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Chapter 9

Conclusions

This thesis contributed in research application to the specific domain of Knowledge Represen-

tation and Reasoning (KRR) for anomaly detection and incident management on large-scale

ICT systems. In the following, we summarize the content of this thesis, report some initial

implications of the obtained results, and suggest future research perspectives on this topic.

9.1 Summary of the Research

In small and simple IT networks, when failures or service impairments occur, Root Cause

Analysis (RCA) and decision-making for containment procedures and restoration to normal

operations are usually straightforward. Technical alarms reported by NMS and SIEM systems

directly reflect the cause, and the number of system states to consider is small and manageable.

However, when scaling up to critical IT networks, we observe that a significant portion of the

difficulties in effectively managing network incidents, despite the use of monitoring tools and

diagnostic aids, stems from the variety of situations and technical details to be considered

at once. Indeed, RCA becomes harder for complex and heterogeneous systems because of

cascading failures and alarm spreading phenomenon. To tackle this situation, we delved into

the fundamental question of:

How to define an anomaly model in a dynamic technical environment with various

interdependencies, and what form should this model take to be shareable among

practitioners (network designers, network administrators, cybersecurity analysts,

etc.) and directly usable in anomaly detection tools and decision support systems?

To further enhance our investigation, we divided this question into two sub-research ques-

tions. The first one (RQ 1) focuses on examining anomaly model production and utilization

with heterogeneous data. The second one (RQ 2) scrutinizes the constraints on the internal

representation of data and knowledge.
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Thinking about networks generally involves considering a meshed system, or more abstractly,

considering a graph structure. Adding to this the fact that a large number of notifications

(alarms, technical logs) and indicators (OS names, file hashs, equipments’ temperature, CPU

load, network traffic throughput) are reported in monitoring tools, one can naturally arrive

at the intuition of a dynamic graph (Hypothesis 1). Assuming a strictly logical formulation

of the network’s ecosystem, then the precise description of the network’s behavior can be

compared to deriving a history of events in the lifecycle of the network from a formal grammar

(Hypothesis 5). In other other words, network events and states result from a generative

process defined by the network’s configuration and its ecosystem. Based on such a grammar,

anyone would be able to explain the past and future behavior of a system, thus providing the

mean to anticipate abnormal network behavior or trace back to the root cause of network

incidents. However, in the general case, it is necessary to consider an imperfect understanding

of the network and its ecosystem due to limited observability of some indicators, challenges

in comprehending identical facts, the lack of observability of neighboring networks, the non-

deterministic behavior of users, and other factors (Hypotheses 2 & 3). As a consequence,

to effectively learn and utilize anomaly models (Hypothesis 4), it is essential to combine

knowledge representations and analysis techniques that draw their expressiveness from both

the realm of strict logic and the realm of probabilities.

Based on these initial insights, the approach adopted in this research involved utilizing an

explicit representation of networks (including assets, topology, events, and alarms) and their

ecosystem (such as servicing teams, asset locations, incident management artifacts like trouble

tickets, etc.) in the form of a Knowledge Graph (KG). Additionally, algorithmic techniques

heavily reliant on formal representation at the level of generated models or their results were

experimented with. Implementing this approach involved taking a holistic perspective on the

application domain, which encompassed defining the domain of knowledge and detection

cases in collaboration with network operation experts, as well as developing a data processing

pipeline and evaluating the proposed techniques based on their performance and usability by

operational teams.

9.2 First Implications

The contributions of this work are manifold (see Table 9.1 for an overview). Focusing on

RQ 1 (anomaly model production & utilization with heterogeneous data), the first main

outcome is the proposal of a KG-based data platform architecture (Chapter 4) where 15 data

sources are used for constructing the KG, whether it be from streamed sources or using batch

processing. Beyond the technical details and processing components shared in open source, a

key implication of this result is that data, through the KG, can be presented and interpreted

in a unified manner to downstream algorithms. As a benefit, the same anomaly detection
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Table 9.1: Research Questions and Outcomes
This table summarizes how the outcomes of this thesis work have addressed the research questions RQ 1 (anomaly model
production & utilization with heterogeneous data), and RQ 2 (constraints on the internal representation of data and knowledge).

Outcome NORIA-O
KG-based

data platform
Anomaly detection

framework
UI/UX
design

Ref. Chapter 3 Chapter 4 Chapters 5 – 7 Chapter 8

RQ 1 ✓ ✓ ✓
RQ 2 ✓ ✓ ✓

technique can take into account a broader spectrum of facts for making inferences, in terms of

manipulated concepts such as assets, events, sites, teams, etc., thereby validating Hypothesis

1. Moreover, and more importantly, the same technique will remain independent of the data

source, as syntactically different but semantically identical facts will be considered in the

same way (e.g. a network interface status reported as UP for a CISCO device and Enabled for a

JUNIPER device). This capability is enabled by the NORIA-O ontology (Chapter 3), which is

the main outcome of RQ 2 (constraints on the internal representation of data and knowledge).

NORIA-O is an RDFS/OWL-2 ontology available in open source and that re-uses and extends

well-known ontologies such as SEAS, FOLIO, Devops Infrastructure, UCO, ORG, BOT and BBO.

This model allows to describe a network infrastructure, its events (e.g. user login, network

route priority reconfiguration), diagnosis and repair actions (e.g. connectivity check, firmware

upgrade) that are performed during incident management. The NORIA-O data model also

provides a set of controlled vocabularies, based on the SKOS data model, that facilitates

the standardized interpretation of entities within the knowledge graph entities, such as the

network interface status – as evoked above – or device alarm types.

Back to RQ 1, a third significant outcome is the introduction of an anomaly detection frame-

work. The proposal relies on the aforementioned KG-based data platform and the implementa-

tion of three complementary families of detection techniques: data extraction from the graph

using SPARQL queries and reasoning schemes established from business rules (Chapter 5,

validating Hypotheses 4 & 5), event correlation using learned or declared procedural models

following process mining and conformance checking approaches (Chapter 6, validating Hy-

potheses 3, 4 & 5), and subgraph classification using incident contexts learned through graph

traversal and graph embedding techniques (Chapter 7, validating Hypotheses 2 & 3). Beyond

highlighting each technique individually, a key implication of the proposal is that it combines

intrinsic explainability and probabilistic reasoning capabilities through the application of the

synergistic reasoning principle (cooperative decision-making). The principle emphasized

here is that each technique, taken individually, allows for the reinjection of knowledge into the

KG, which can then serve as an additional contextual element for a second technique. In line

with this idea, a second implication is that the combination of detection techniques allows
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for coverage of a theoretically broader range of abnormal situations than what a single model

specialized in a specific data nature (e.g. time series, tables, graphs) or application domain

(e.g. network traffic, computer viruses) would allow.

Finally, considering both RQ 1 and RQ 2, this thesis work resulted in the organization of a

user evaluation of anomaly detection models through a UI/UX study and design proposal

(Chapter 8). Beyond the technical and ergonomics details for exploring the KG and presenting

inference results, a significant implication of this proposal is that it establishes a strong

foundation for future work on enhancing operational efficiency in incident management. This

is achieved by demonstrating the ability to capture and analyze a formal incident context

through the comprehensive approach proposed.

9.3 Limitations and Further Perspectives

Towards trustworthy synergical reasoning with knowledge graphs. Summarizing the points

discussed above, we are now able, thanks to the NORIA-O data model and the proposed KG-

based architecture, to study incident management at the level of user actions (e.g. network

administrators, customers, attackers) by contextualizing them within the network topology.

Incident resolution methods become explicit and more easily shareable among practitioners

and with clients seeking accountability.

However, although the results of this thesis have provided, through a set of coherent building

blocks, an answer to how to define and leverage an anomaly model for a dynamic system, a

new key question emerges to guide future work: how to select and ideally order each anomaly

detection approach to ensure trustworthy decision-making?

Considering the limitations and future work identified in each chapter: NORIA-O (Chapter 3)

showed that while we can now leverage an explicit representation of the network dynamics,

complementary vocabularies (e.g. OTN or 5G mobile network specifications) and reconcil-

iation techniques (e.g. log parsing [175, 325, 26] and NLP-related techniques [37, 156, 276])

should be implemented and used to fully enable cross-technical-domain anomaly correlation

based on symbolic knowledge representation; the KG-based platform (Chapter 4) has demon-

strated how to convert and link massive and heterogeneous data, but the pre-conditions and

triggering mechanisms for opportunistic reasoning (e.g. SKOS reconciliation as a service,

in-line graph clustering) and data/model management (e.g. KG pruning and summarization

techniques) are yet to be designed and integrated; the model-based design (Chapter 5) and

process mining (Chapter 6) anomaly detection approaches showed how expert knowledge

could serve as a basis for implementing logic-related detection use cases, however, we now

need to further develop the knowledge capture methods, particularly by identifying a cri-

terion (e.g. algorithmic complexity, representation complexity) that would indicate which
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combination of formalism to use and how to factorize/group detection models without losing

detection capacity; the statistical learning approach (Chapter 7) has demonstrated its ability

to capture an incident context and provide indications of probable causes and solutions,

however, it remains to be established to what extent a procedural model can enhance the

accuracy of this approach (e.g. using specific sampling and walk strategies [169] or including

P/T nets as RDF graphs [97, 186] into the embeddings computation), or how a causal model

could emerge from the approach and be used by NetOps/SecOps teams; finally, the UI/UX

design study (Chapter 8) showed that while specialized ergonomics and tooling allow for

efficient situation understanding based on knowledge graphs, the evaluation of the proposed

approaches mentioned above needs to be complemented by identifying how to practically use

them beyond the simple framework of anomaly detection (e.g. calculating similarity between

incidents, comparing different scenarios, event/alarm clustering) and to what extent we can

guarantee quick response (e.g. including “short cut” properties into the KG [187], monitoring

the data model expressivity, monitoring the knowledge graph density1 and refresh rate, adding

indexes to the KG-DBMS or offloading processing to specific hardware platforms) and trust of

detection models for users (e.g. collaborative filtering to reinforce confidence in ambiguous

cases [42], explain the inference with natural language or in a graphical format [237]).

With these limitations in mind, to further elaborate on our new research objective, a strategy

could be to consider the NORIA-O model, the KGC platform, and the statistical learning

approach as viable baseline options. Subsequently, identifying the performance and explain-

ability conditions in anomaly detection would consist in conducting a system sensitivity

analysis. Indeed, the incident management process coupled with the continuous feeding of

the graph database ensures the continuous learning of incident context based on the com-

bined information of network status, incident categorization by NetOps/SecOps experts in

trouble tickets, and tracking of remediation actions. Therefore, at a constant performance

level of anomaly detection and incident classification, gradually substituting/complementing

one approach with another or perturbing the KG and data model should help identify the

point at which symbolic approaches definitively take over the more generalist nature of the

statistical learning approach. From an analytical perspective, this exploratory process involves

traversing the configuration space (phase space) of the inference system. Finding this phase

transition point could ultimately be related to identifying the inference conditions where an

autonomous network monitoring and control system would become no more accountable

(i.e. explainable) and should interrupt its decision/control process, deeming that future ICT

system states might be undesirable (e.g. highly complex for a return to normal operations,

lethal for users).

1For directed graphs: d = m
n(n−1) , where n is the number of nodes and m the number of edges.
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Additional work streams and opportunities. Taking a broader perspective on the incident

management domain, we can see that we are ultimately also able to approach the study of

network dynamics based on activities, interactions, and the configuration of the networks

themselves. This allows us to strive for making recommendations for improving ICT systems

engineering based on observations of their behavior. In line with User and Entity Behavior

Analytics (UEBA), this is particularly evident in the idea of including activity traces semantically

in the KG and performing embeddings on them. Conversely, this leads to the notion that

the vector space resulting from graph embeddings is partly structured by a decision-making

process, which opens up avenues for future research in the field of eXplainable AI (XAI).

Leveraging the concept of moduli spaces [103] (a geometric space whose points represent

algebro-geometric objects of some fixed kind), an option here could be to study the effect of

continuous transformation of incident contexts on the corresponding vectors.

In terms of anomaly detection, future work will also focus on further contextualizing anomalies

by adding additional data sources (e.g. network traffic from NetFlow [73] probes, cybersecurity

vulnerabilities from the CVE2 database and vulnerability scanner results), comparing with

additional predictive models open to causal analysis (e.g. logical tensor networks [211, 111],

geometric deep learning [64]), analyzing predictive architecture variants (e.g. neuro-symbolic

architectures [14, 353, 361]) through model combination or stacking, and studying the impact

of semanticization of unstructured data on model performance (e.g. utilizing reconciliation

techniques [35, 276] and language models [157, 26]).

Although improved anomaly detection performance and understanding should result from

this, it is noteworthy to mention that the framework introduced by this thesis work has the

potential to change the way we perceive the organization of incident management. Indeed,

it might concentrate administrative tasks on data model management, formal definition

of use cases, and data linking. This highlights the need for providing training to network

administrators, and developing and testing methods at an enterprise scale to manage the

consistency and alignment of data models and anomaly detection models. It is therefore

also important for future work to explore the impact of model modifications on reasoning

capabilities, expressiveness, and performance. Furthermore, it is crucial to ensure that the

primary form of presenting KG data to network practitioners is not limited to Semantic Web

serialization formats such as RDF/XML, Turtle, or TriG. Emphasizing meaningful annotation of

ontologies and SKOS vocabularies for natural language representation should be maintained

to ensure a high level of adoption of this overall approach. Leveraging language models could

be an option for generating information when it is lacking or hard to summarize, both when

adding new knowledge to ontologies and KGs [373], or presenting KG data to users [282].

Finally, from the perspective of information processing IT architectures and observability,

2https://cve.mitre.org/
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future work should ensure the interoperability of different data silos used for constructing a KG

at an enterprise scale and provide differentiated access to subsets of it. Indeed, the framework

proposed in this work showed high potential to operate at the scale of a large enterprise,

and has highlighted the importance of using diverse data facets to learn and infer system

behavior effectively. From an IT architecture perspective, to support this ambition, it typically

involves deploying graph stores, interfacing with legacy DBMS using Virtual Knowledge Graph

(VKG) systems (e.g. Ontop3), and querying the entire system through the SPARQL federated

query4 approach. However, several challenges still need to be addressed, such as establishing

a correspondence between query language algebras that do not have an obvious bijection

(e.g. SPARQL vs ArangoDB Query Language5). Algebraic analysis, potentially through the

concept of database normalization or category theory [109], is a typical approach to make

progress on this. Another significant challenge is enabling the handling of high-throughput

and short-lived data in graph stores without degrading the read/write performance of this

particular storage type. On-the-fly data aggregation [128, 313] or hybrid architectures that

combine graph stores with Time Series DataBase (TSDB) are interesting options in this regard.

3https://ontop-vkg.org/
4https://www.w3.org/TR/sparql11-federated-query/
5https://arangodb.com/
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Publications list

The research carried out during this doctoral work has lead to the publication of the following

scientific papers, communications and artifacts:

Peer-Reviewed Workshops and Conferences

1. Lionel Tailhardat, Raphaël Troncy, and Yoan Chabot. Walks in Cyberspace: Improving

Web Browsing and Network Activity Analysis with 3D Live Graph Rendering. In The

Web Conference, Developers Track, April 25–29, 2022, Lyon, France. https://doi.org/10.

1145/3487553.3524230 [203]

2. Lionel Tailhardat, Yoan Chabot, and Raphaël Troncy. Designing NORIA: a Knowledge

Graph-based Platform for Anomaly Detection and Incident Management in ICT Sys-

tems. In 4th International Workshop on Knowledge Graph Construction (KGCW), May

28, 2023, Crete. https://ceur-ws.org/Vol-3471/paper3.pdf [205]

3. Lionel Tailhardat, Raphaël Troncy, and Yoan Chabot. Leveraging Knowledge Graphs For

Classifying Incident Situations in ICT Systems. In The 18th International Conference

on Availability, Reliability and Security (ARES), GRASEC track, August 29–September 1,

2023, Benevento, Italy. https://doi.org/10.1145/3600160.3604991 [204]

4. Lionel Tailhardat, Benjamin Stach, Yoan Chabot, Raphaël Troncy. Graphameleon:

Relational Learning and Anomaly Detection on Web Navigation Traces Captured

as Knowledge Graphs. In The Web Conference, Resources Track, May 13–17, 2024,

Singapore. [340]

5. Lionel Tailhardat, Raphaël Troncy, Yoan Chabot. NORIA-O: An Ontology for Anomaly

Detection and Incident Management in ICT Systems. In 21st European Semantic Web

Conference (ESWC), Resources Track, May 26–30, 2024, Hersonissos, Greece. Best Paper

Award nominee. [339]
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6. Youssra Rebboud, Lionel Tailhardat, Pasquale Lisena, Raphaël Troncy. Can LLMs Gener-

ate Competency Questions? In 21st European Semantic Web Conference (ESWC), LLMs

for KE Track, May 26–30, 2024, Hersonissos, Greece. [300]

7. Lionel Tailhardat, Benjamin Stach, Yoan Chabot, Raphaël Troncy. Graphaméléon : ap-

prentissage des relations et détection d’anomalies sur les traces de navigation Web

capturées sous forme de graphes de connaissances. In Plate-Forme Intelligence Artifi-

cielle (PFIA), IC Track, July 01–05, 2024, La Rochelle, France. Best Paper Award. [341]

8. Lionel Tailhardat, Yoan Chabot, Antoine Py, Perrine Guillemette. NORIA UI: Efficient

Incident Management on Large-Scale ICT Systems Represented as Knowledge Graphs.

In The 19th International Conference on Availability, Reliability and Security (ARES),

GRASEC track, July 30–August 02, 2024, Vienna, Austria. [338]

Posters, Demos, Invited Talks and Blogs

1. Lionel Tailhardat, Yoan Chabot, and Raphaël Troncy. NORIA - Machine LearNing,

Ontology and Reasoning for the Identification of Anomalies. Position poster presented

at the Institut d’Automne en Intelligence Artificielle (IA2), Sorbonne Center for Artificial

Intelligence (SCAI), September 2021, Paris, France. https://genears.github.io/pubs/

IA2-2021-NORIA-POSTER.pdf

2. Lionel Tailhardat, Yoan Chabot, Perrine Guillemette, and Antoine Py. Semantical

anomaly sensing – Recommend remediation solutions using knowledge graphs. Soft-

ware platform prototype presented at the Orange Open Tech Days (OOTD), Novem-

ber 2023, Châtillon, France. https://hellofuture.orange.com/app/uploads/2023/11/

2023-OpenTechDays-book-demonstrations-conferences.pdf

3. Yoan Chabot, Lionel Tailhardat, Perrine Guillemette, and Antoine Py. NO-

RIA: Network anomaly detection using knowledge graphs. Blog arti-

cle in Orange – Hello Future, 2024. https://hellofuture.orange.com/en/

noria-network-anomaly-detection-using-knowledge-graphs/.

4. Lionel Tailhardat. Anomaly detection for telco companies: challenges and opportu-

nities in knowledge graph construction. Keynote Talk at the 5th International Work-

shop on Knowledge Graph Construction (KGCW), 2024. https://genears.github.io/pubs/

KGCW-2024-keynote.pdf.
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Tutorial

1. Lionel Tailhardat. Eléments d’Exploitation Des Réseaux Pour Une Conception

Raisonnable. Lecture presented at the LGI Safety & Risks chair, CentralSupélec, March

1, 2021. https://genears.github.io/pubs/lgi_orange_2020-2021_lecture.pdf

Code and Dataset

The links to all resources & tools realized and published in the context of this research are

summarized in Table A.1.

Resource or Tool URL
TOOLS

NORIA-O https://w3id.org/noria
grlc https://github.com/Orange-OpenSource/grlc
SMASSIF-RML https://github.com/Orange-OpenSource/SMASSIF-RML
ssb-consum-up https://github.com/Orange-OpenSource/ssb-consum-up
SemNIDS https://github.com/D2KLab/SemNIDS
Dynagraph https://github.com/Orange-OpenSource/dynagraph
Graphameleon https://github.com/Orange-OpenSource/graphameleon

DATA
Graphameleon dataset https://github.com/Orange-OpenSource/graphameleon-ds

Table A.1: Links to resources and tools.
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Chapter B

Additional materials

These appendices complement the information presented in the main body of this thesis

manuscript. They consist of the following five independent parts: Appendix B.1 reviews

the graph forms commonly used in DSSs, Appendix B.2 provides the full list of anomaly

detection techniques studied in Chapter 2, Appendix B.3 presents the implementation of the

dataset used for the experiments in Part II, Appendix B.4 introduces an algorithm to produce a

graphical root cause analysis view in the absence of a procedural model, and Appendix B.5

discusses the relationships between data structures and computational efficiency.

B.1 Formal Graph Forms

The aim of this section is to provide an overview of available formal graph forms that are

commonly used within DSSs. Casual graph notations from graph theory are presented in

Section B.1.1, followed by data graph models in Section B.1.2, and finally graphical models and

graph related forms in Section B.1.3. Knowledge graphs are discussed in p. 184 of Section B.1.3.

An overwhelming literature about graphs and related topics already exists, therefore no deep

analysis of each item will be given here unless necessary; for more details or a broader overview,

the curious reader may refer to reference books and survey papers such as [6, 43] for the graph

theory aspects, [119, 8] for the knowledge graph aspects, and [199, 118, 309] for the knowledge

representation and combinatorial optimization aspects.

B.1.1 Graph Notations

Given a set of abstract objects V = {v1, v2, . . . , vn} and some notion of relatedness between these

data points, let us define Γ+(vi ) the successor function giving the set of v ∈V directly related

to vi when taking vi as a starting point. From the example of Figure B.1, Γ+(v1) = {v2, v3},

Γ+(v2) = {v3, v5}, Γ+(v3) = {v3}, Γ+(v4) = {v2, v5} and Γ+(v5) = {∅}.
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v1 v2

v3

v4

v5

e1→2

e1→3 e2→3 e2→5

e3→3

e4→2

e4→5

Figure B.1: Basic directed graph

Directed graph. Knowing V and the full set of successors of v ∈ V , one can thus define a

graph G (Eq. B.1):

G = (V , A) (B.1)

where V is called the vertex set and A = {(vi , v j ) | ∀vi ,∃v j ∈ Γ+(vi )} is the arc set. Such graph is

called a directed graph. Elements of V may also be called nodes.

Assuming that the application of Γ−(vi ), the predecessor function, yields the exact same arc set

as the successor function, or assuming that no particular meaning of direction is to be given to

arcs, one can then define an undirected graph.

Undirected graph. We call undirected graph the graph defined by (Eq. B.2):

G = (V ,E) (B.2)

where E is the edge set, i.e. the set E = {(vi , v j )} where (vi , v j ) can interchangeably be read

(v j , vi ). Based on these definitions, complementary functions and concepts may be defined

to describe graphs:

• The order of the graph: or d(G) := ∥V ∥ = N ,

• The size of the graph: si ze(G) := ∥A∥ = K , with 0 ≤ K ≤ N · (N −1)/2 for a non-planar

graph,

• The density of the graph: densi t y(G) := K /N ,

• The out-going degree of a vertex: d+
v := ∥Γ+(v)∥, the in-going degree of a vertex: d−

v :=
∥Γ−(v)∥ and the degree of a vertex: dv := ∥Γ+(v)∥+∥Γ−(v)∥.

• A path is a set of arcs where the end vertex of each arc, but for the last one, is the starting

vertex of the next arc. A path where the starting node is also the ending node is called a

cycle. The length of a path is the number of its arcs.

• A graph is said connected if there are paths containing each pair of vertices. More

generally, the connectivity of a graph relates to the number of vertices or edges to be
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removed to separate the initial graph into two or more subgraphs. When removing

vertices, such separation is called a vertex cut and the number k of vertices to remove

leads to say that the graph is k-vertex-connected (or k-connected).

• A graph that is connected and has no cycles is called a tree graph. When working with

a Directed Acyclic Graph (DAG), the graph is called polytree (or arborescence, oriented

tree) and the starting vertex is called the root1. A forest is a disjoint union of trees. For

applications where the use of a metric distance is needed on top of the graph structure,

trees can be embedded in a hyperbolic plane [316, 31].

Moreover, looking at A as a set of pairs, A is a binary relation over the set V (i.e. A ⊂ V ×V ,

where × is the cartesian product operator). In the undirected graph case, this relates to the

mathematical concepts of preordered set (i.e. a binary relation that is reflexive and transitive)

and lattice (i.e. a partially ordered set with unique least upper bounds and greatest lower

bounds) [309, §1 & §3]. Also, a natural representation of A is given by an adjacency matrix.

Adjacency matrix. An adjacency matrix A(G) is a square matrix of size N ×N where the ai , j

element of A takes the value:

ai , j =
{

1 if vertex vi is connected to vertex v j

0 otherwise
(B.3)

If G is simple (i.e. no vi → vi arc or edge), then di ag (A(G)) = 0 (i.e. the diagonal of the

adjacency matrix has only zero values). If G is an undirected graph, then A(G) is a symmetrical

matrix.

From the example of Figure B.1, the following A1 and A2 matrices are the adjacency matrices

of the directed graph and equivalent undirected graph, respectively:

A1 =



0 1 1 0 0

0 0 1 0 1

0 0 1 0 0

0 1 0 0 1

0 0 0 0 0

 A2 =



0 1 1 0 0

1 0 1 1 1

1 1 1 0 0

0 1 0 0 1

0 1 0 1 0


Using the adjacency matrix definition and assuming that the arcs (or edges) should carry

some quantitative information about the relationship between vertices (e.g. the intensity of

the relationship), this leads us to the representation this information as a weighted adjacency

matrix.

1From the Figure B.1, choosing the vertex v4 as the root leads to the polytree where V = {v2, v3, v4, v5} and
A = {(v2, v3), (v2, v5), (v4, v2), (v4, v5)}.
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Weighted adjacency matrix. Given some weight value wi j associated to the relationship

between the vetices vi and v j , then a weighted adjacency matrix W(G) is an adjacency matrix

where the wi , j element of W takes the value:

wi , j =
{

wi j if vertex vi is connected to vertex v j

0 otherwise

B.1.2 Data Graph Models

Based on the elementary directed graph (Eq. B.1) and undirected graph (Eq. B.2) structures,

extended constructs can be designed to capture the relational structure of more complex

data sets. These complex data sets may include labeled relationships, complex objects with

numerous characteristics, and groups of data sets from various fields of applications. This

ambition relates to the notion of interpretation from descriptive logic, which stands for the

idea that an unambiguous reading of abstract constructs with respect to real world facts can

be done (see [119, §2.2.1] and [8, B.5] for more information). This unambiguous reading can

be used for deductive reasoning. A brief overview of these data graph models is provided

below. Data graph models can also be referred to as graphical models (see below).

Directed edge-labeled graph. Given a directed graph G such as in (B.1) and some need to

tag arcs with a label from a predefined label list (e.g. the arc (v1, v2) has the label e1→2 in

Figure B.1), then a directed edge-labeled graph is defined by (Eq. B.4):

G = (V , A,L) (B.4)

where V is a finite set of vertices, L is a finite set of arc labels, and E ⊆V ×L×V a set of arcs.

Property graph. Given a directed graph G such as in (Eq. B.1) and some need to add named

values (i.e. properties) to vertices and arcs, then a property graph is defined by the tuple (Eq.

B.5):

G = (V , A,L,P,U , a, l , p) (B.5)

where V is a finite set of vertices ids, A a finite set of arcs ids, L a finite set of labels, P a finite

set of properties, U a finite set of values, a : A → V ×V a mapping function of arc ids to a

pair of vertices ids, l : V ∪ A → 2L a mapping function of vertex or arc id to a set of labels, and

p : V ∪ A → 2P×U a mapping function of vertex or arc id to a set of property-value pair.

180



B.1 Formal Graph Forms

Graph dataset. Given a directed edge-labeled graph G as defined in (Eq. B.4) and n an

associated graph name, a named graph is defined as a pair (n,G). Based on this, a graph

dataset is defined by (Eq. B.6):

D = (GD , N ) (B.6)

where GD is a directed edge-labeled graph called the default graph, and N is either the empty

set or a set of named graphs {(n1,G1), . . . , (nk ,Gk )}. Graph names n are used only once (i.e.

ni = n j if and only if i = j ).

Multigraph. A multigraph is a graph where multiple edges (or arcs) can connect a given

pair of vertices. Two cases of multigraph definitions occurs: 1) multigraphs where edges are

without own identity and, 2) multigraphs where edges are with their own identity. Formal

definitions are provided below for the undirected and unlabeled case:

• Edges without own identity: the multigraph G follows the formal definition of (Eq. B.2)

where E is a multiset of unordered pairs of vertices (i.e. a set that allows for multiple

instances of (vi , v j ) pairs).

• Edges with own identity: the multigraph G is defined by (Eq. B.7):

G = (V ,E ,r ) (B.7)

where r : E → {
(vi , v j ) | vi , v j ∈V

}
is a mapping function of edges to an unordered pair

of ending vertices.

Hypergraph. From the binary relation between vertices provided by an adjacency matrix

(Eq. B.3), only two vertices can be linked by an arc or an edge. In contrast, an hypergraph is a

graph data model where arcs or edges can connect more than two vertices. A more complex

construct called generalized hypergraph [46, §14.2.1] can be furthermore defined from there

with the addition of two features: 1) arcs (or edges) that connect to arcs (or edges); 2) vertices

that contain embedded hypergraphs2. Going a step further, weighted labeled hypergraph

can also be defined. An hypergraph is not to be confused with a multigraph (see above): an

hypergraph has edges that can connect multiple vertices, whereas a multigraph has multiple

edges connecting a given pair of vertices.

Multilevel graph. When the vertices of a graph can be categorized into different “levels” (or

“domains”) and “ties” (i.e. edges) represent relationships within and across levels, then this

2Embedded hypergraphs: this follows the same modeling principles as nested graphs and hypernodes [303, 213].
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graph structure is called a multilevel graph [369]. A k-level graph has k different categories of

vertices.

Multilevel graphs can also be defined through a graph clustering (or graph coarsening)

task [121, 286]. Given an undirected weighted graph (Eq. B.8):

G = (V ,E ,c, w) (B.8)

where c : V →R≥0 are vertices weights and w : E →R>0 are edges weights, and given a partition

N = N1 ∪N2 ∪·· ·∪NP of G such that: 1) the sum of the vertices weights in each N j is “about

the same”; 2) the sum of all edge weights of edges connecting all different pairs N j and Nk

is minimized. Then an edge contraction operation can be fulfilled over some partitions N j

resulting in quotient graph Q of G that holds the same meaning as G (i.e. provide a correct

representation or estimate of G with respect to the use case).

Bipartite graph. Given an undirected graph G = (V ,E), like in (Eq. B.2), this graph is called

bipartite if V can be partitioned in two sets V1 and V2 (i.e. two different groups) such that

edges follow the constraint E ⊆ V1 ×V2 (i.e. relations are only between vertices of different

groups). From there, a bipartite graph can be formalized as follows (Eq. B.9):

G = (V1,V2,E) (B.9)

where V1 and V2 are disjoint and independent sets of vertices, and E ⊆V1 ×V2 is the edge set.

When E =V1 ×V2 (i.e. each vertex of V1 is connected to all vertices of V2), the bipartite graph

is said complete and is denoted Km,n , where m = ∥V1∥ and n = ∥V2∥.

The notion of bipartite graph can be generalized to n-partites graphs by partitioning V in n

groups such that the edge set still follows the different-group constraint (Eq. B.10):

E ⊆ ⋃
i ̸= j

Vi ×V j (B.10)

B.1.3 Graphical Models and Graph Related Forms

Graphical models refer to the use of a graph structure along with additional ad hoc axioms to

represent and resolve a given problem instance that is not naturally represented in its initial

form with a graph structure. This kind of form transposition provides additional means for

resolving problems with the help of algorithms specifically designed for graph structures,

problems that would have been hard to resolve otherwise (e.g. optimization and decision

problems). The inherent universality of the graph structure for modeling purposes entails the
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existence of a wide variety of derivatives and related forms. The following definitions provide a

brief overview of the sub-families of graphical models and graph related forms that are present

in decision problems. In each case, a semantic about vertices and edges must be explicitly

defined to ensure a correct grounding with the application under consideration (i.e. the goal

of the application, the associated algebra and/or algorithms).

Temporal graph. The will to use a temporal graph relates to the need for analysis of dynami-

cal features in data graph models. The variety of object types to represent (e.g. asset status

duration, event occurence time) and the multiple ways to manipulate the concept of time

(e.g. reachability [182], causality [202], stability [242] or timing [379] analysis) entails that a

practical form for the representation of dynamic systems may require more than a series of

static graph snapshots set together (Figure B.2). Thus a single and general formal definition of

temporal graphs may not apply (see [287] for a thorough analysis of the representation and

manipulation challenges).

One possible approach to defining temporal graphs is through the concept of the “narrative of

events” [171] (i.e. the temporally ordered set of actions), which relates to the directedness and

the timescale of (emerging) patterns of relations.

The directedness is also known as the time asymmetry property, e.g. vi → v j should be distin-

guished from v j → vi if the time of occurence t(v j ) of an event v j is after t(vi ); that can be

represented with the help of a directed graph and associated depending on the practical use

case (e.g. a directed property graph where vertices have a “timestamp” property). The timescale

of successive events leads to the composition of events (e.g. with the timestamped relations

vi → v j and v j → vk one can infer vi → vk ) and the parallelism of events (e.g. two distinct

interactions between vi and v j with similar temporal characteristics can be represented by

two named arcs between vi and v j ); that, in turn, can be represented with the help of a directed

multigraph.

In both the directedness and timescale perspectives, the temporal graph form should be chosen

through the lenses of the temporal graph algebra [363] it conveys or the associated set of appli-

cable analysis techniques (e.g. edge or node prediction through graph embedding [351, 68] or

message passing [98]). Although this choice may seem complex, there exist two main models

for dynamic graphs [98]: Discrete-Time Dynamic Graph (DTDG) (i.e. sequences of static graph

snapshots taken at intervals in time) and Continuous-Time Dynamic Graph (CTDG) (i.e. timed

list of events with a set of transformation operators on nodes/edges/features). Following on

the CTDG case, a temporal graph can be formalized as follows (Eq. B.11):

G = (V ,E ,T,ρ) (B.11)
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where V is the set of vertices, E the set of edges, T ∈ΩT ×ΩT a time attribute (e.g. a period of

observation) on the time domainΩT , and ρ : (V ∪E)×ΩT ×ΩT → {0,1} a presence function

that indicates whether a given vertex or edge exists at the given time T .

Figure B.2: Approaches for temporal graph representation, from [222] and [107, §2].

Knowledge graph & semantic graph. Knowledge graphs basically designate a formal repre-

sentation of Cyber-Physical Systems (CPSs) with help of a data graph model: vertices designate

tangible/conceptual entities, and edges qualify the nature of their relationships. Figure B.3

provides a general example of this.

The “knowledge graph” phrase itself has a long definition drifting history, with first relevant

usage in publications found in the 70’s [8, Section A]. Ideas from graph notations (see above)

and description logic [119] lead to the current situation where knowledge graphs can be found

in two major flavors3. A common practice to distinguish these is to use the knowledge graph

phrase for property graph-based models , and semantic graphs for logically-framed models.

In the first case (i.e. property graph-based), the graph semantics (i.e. the way knowledge

should be interpreted) apply to the graph as a whole. Labeled edges provide directions about

the nature of the relationship between vertices. Interesting characteristics about property

graph-based graphs are that: 1) vertices and edges can be augmented with valued properties

for additional context definition (e.g. name, surname and date of birth for a Person vertex);

2) vertices can relate multiple time to other vertices (e.g. various network sessions between

host A and host B vertices); 3) data schema can be expanded depending on use-cases needs

by direct addition of edges and properties to the graph.

In the second case (i.e. logically-framed models), entities are connected with directed binary

relations (Eq. B.12):

〈s, p,o〉 (B.12)

3Knowledge graphs definitions can be more precisely staggered over four categories; see [8, Section A.3] on this.
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Figure B.3: Example of a knowledge graph.
Nodes represent entities (e.g. “mid345”) or “entities types” (e.g. “Recording”). Edges are property-named “relationships” (e.g.
“artist” for (entity)-(entity) relationship, “type” for (entity)-(entity type) relationships). The example is called “Product Graph -
example for 2 songs” and is from [378].

where s is a subject vertex, p a predicate edge and o an object vertex. Extensions to (Eq. B.12),

such as 〈s, p,o, t〉 or 〈s, p,o, [ts , te ]〉, allow for time-stamped relations [68].

Predicate edges play a fundamental role in semantic graphs. Firstly, assuming that s and o

vertices are called ressources [305], the graph semantics is per resource. This relates to the

notion that predicates materialize a truth value4 over given entities. For example, Socrates is a

man is equivalent to the
(
Socrate

) is a−−−→ (
Man

)
graph. Secondly, predicate edges’ directedness

enforce a single possible interpretation of relations. For example, one cannot say that Man are

Socrate, unless an explicit symmetry of above mentioned
is a−−−→ relation is stated.

Semantic graphs benefit from a set of implementation standards commonly referred to as Se-

mantic Web [352] languages. Most important components of this framework are the Ressource

Description Framework (RDF) [305] (a framework for representing information in the Web),

the RDF Schema (RDFS) [82] (a data-modeling vocabulary for RDF data), and the Web Ontol-

ogy Language (OWL) [54] (an ontology language for the Semantic Web). In short, RDFS gives

structure (e.g. object class definition and domains/ranges constraints over relations) and OWL

gives meaning (i.e. applicable logical entailments). Applicable relations are of the following

kinds: 1) object properties link individuals to individuals (e.g. <hasMember>); 2) datatype

properties link individuals to data values (e.g. <releaseDate>).

The need for formally defined meaning relates to the fact that various kinds of knowledge can

be represented with knowledge graphs. Knowledge management typically distinguish the fol-

lowing organizations: 1) dictionary as a collection of terms and their definitions; 2) taxonomy

used to create a hierarchy between terms; 3) thesaurus for describing some basic relationships

between terms (mostly by just specifying that two terms are related), and 4) ontology for pro-

viding all that a dictionary, taxonomy and thesaurus do, but with better-qualified relationships

4General reflections on predicate logic and syllogism can be found in Wikipedia - Syllogism.
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between concepts (e.g. <<Actor wins Academy Award>>).

Although property graphs and semantic graphs look the same but stand on their own in two

separate application approaches, [126] argue that an hybrid situation is beneficial for repre-

senting CPSs. The authors notably recommend that “CPS graphs should [not systematically]

be reduced to RDF graphs” as the description of complex systems with RDF may not be car-

ried out without either a cumbersome reification process, or making an edge into a properly

instantiated resource. Moreover, converting property graphs to semantic graphs would ob-

fuscate, flatten and dissolve the relevant graph structure that is used by graph-theoretical

algorithms. Meta-models like the NGIS-LD [105] provide a formal basis for representing

property graphs using RDF/RDFS/OWL, and therefore allow for best of both world usage

through back and forth conversion. Additional approaches, like RDF-star/SPARQL-star [96],

work toward an hybridized solution through syntactic extensions for better reification. Re-

quests usually devoted to property graphs become here applicable to semantic graphs (e.g.

<<Kubrik influencedBy Welles>> significance 0.8). Experiments like Single-Triple

Named Graphs, Singleton Properties, Nested Triples, and Nested Triple Patterns are analogous

to RDF-star/SPARQL-star. Above examples indicate an on-going trend towards connectors or

bridges that will enable hybridized property/semantic graph solutions.

Similarity graphs. Given a set of data points X = {x1, x2, . . . xn} and some notion of similarity

measure si j ≥ 0 between these data points, then one can define a mapping X → V (i.e. the

vertex vi represents the data point xi ) and S → E (i.e. the arc or edge (vi , v j ) holds the similarity

value si j ) to build a graph representing weighted similarity relations between data points.

Such construct is called a similarity graph and similarity values are commonly stored in a

weighted adjacency matrix .

Usual techniques to model the local neighborhood relationships between the data points [359,

§2.2] are to build 1) an ϵ-neighborhood graph (i.e. connect all points whose pairwise distances

are smaller than ϵ); 2) a k-nearest neighbor graph (i.e. connect vertex vi with vertex v j if v j

is among the k-nearest neighbors of vi ); or 3) similarity weighted fully connected graph (i.e.

connect all points with positive similarity and weight all edges by si j ). For the fully connected

graph technique, the use of a similarity function accounting for local neighborhood modeling

is expected; the Gaussian similarity function (Eq. B.13) is part of it:

s(xi , x j ) = exp(−∥xi −x j∥2/(2σ2)) (B.13)

where the parameter σ controls the width of the neighborhoods.
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Transition system. A transition system specifies the allowed evolutions of a given abstract

reactive system. It is commonly represented by a directed graph. It can be formalized, in its

minimalist form, by the quadruple (Eq. B.14):

T = (S, I ,A ,δ) (B.14)

where S is a set of states, I ⊆ S a non-empty subset of initial states, A a set of actions, and δ a

total transition relation δ⊆ S ×A ×S (i.e. for every state there must exist an action that leads

to a subsequent state). A run of T is an infinite sequence ρ = s0s1 . . . of states si ∈ S such that

s0 ∈ I and ∀i ∈N, (si , Ai , si+1) ∈ δ for some Ai ∈A .

When S and A are finite, T is said finite; thus relating a transition system to a Finite State

Machine (FSM), i.e. when it can be in exactly one of a finite number of states at any given time.

An extended form T = (S, I ,A ,δ, AP,L), where AP is a set of atomic propositions and L : S →
2AP a labeling function, allows for including propositional constraints and labeled states is

given [70, Section 2.1]. This extended form allows for applications such as model checking,

simulation through Petri nets and Proclets [374] or specific modeling constructs like BPMN5

and Event-driven Process Chain (EPC). It also sets a link with other theoretical approaches

like Kripke models and Abstract Rewriting Systems (ARSs) [333].

Decision/condition/evolutionary trees. A decision tree is a special instance of a directed tree

used as a decision support tool or as a convenient representation of a sequential decision

process. In general terms, vertices represent conditions and arcs represent decisions (e.g. a

if <condition> then <...> else <...> clause).

In more formal terms, a decision tree is constructed using a directed graph from (Eq. B.1)

with a set of vertices V split into three disjoint sets V =D∪C ∪T of decision (i.e. where the

decision maker selects an action), chance (i.e. where the decision is taken randomly), and

terminal (i.e. the end of the decision process) vertices, respectively [53]. For each arc a ∈ A and

its associated (v1, v2) pair, the v1 ∈V denote the parent vertex and the v2 ∈V denote the child

vertex. Terminal vertices can only be child vertices (i.e. terminal vertices have no children).

From this preliminary set up, a decision tree is defined as follows (Eq. B.15):

DT = (G , y, p) (B.15)

where y : A →R is a payoff mapping function associating a valued result (e.g. a gain) to the

arc stemming from the v ∈ {D,C } parent vertex, and p : {a ∈ A : a1 ∈C } → [0,1] is a mapping

function associating a probability of selection to the arcs, this probability being subject to a

5https://www.bpmn.org/
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correctly defined probability constraint ∀v ∈C :
∑

a∈A,a1=v p(a) = 1.

In the industry, decision trees are widely used in the field of reliability engineering and can

be found under the terms FTA (Fault Tree Analysis) and DFT (Decision Fault Tree). Such kind

of trees can be produced with decision support and dependability modeling tools like KB36,

TopEvent FTA7 or OpenFTA8.

Some additional graph-related models, in short. In the dependency/influence/probabilis-

tic diagrams and graphs category: Data Flow Diagram (DFD) are a way of representing a

flow of data through a process or a system, e.g. in threat modeling [5, 29]. In the ensemblist

diagrams and graphs category: Euler diagrams and Venn diagrams (Figure B.4) are graph-

ical representations of set-theoretic basic operations9 over a set of points. They allow for

visually exploring set intersections, through intersection formulas, or through trees (typically

formulated in Newick syntax)10. Spider diagrams, a.k.a. constraints diagrams, are an extension

of Euler and Venn diagrams with a logical tree. Relations within this tree are defined by a

logical OR operator (∨ logical symbol). A quantifier may be associated to the OR operators (i.e.

expressions involving two place predicates). In the lattices category: lattices as an abstract

structure in order theory, such as in [263] where they allow to define a formal context (Eq.

B.16) using Formal Concept Analysis (FCA):

F = (G , M , I ) (B.16)

where G is a set of objects, M a set of attributes, and I ⊆ G ×M the description of objects

through attributes via a binary relation. Lattices can be projected onto a simplicial com-

plex [34], which establishes a connection with topology and graph theory for applications in

analyzing the structure of the lattice. Lattices are also known as lattice graphs, mesh graphs, or

grid graphs.

B.2 Anomaly Detection: State of the Art

The following Table B.1 provides complete details on the shortlist of 55 references from the

literature review on the anomaly detection techniques (Chapter 2), including a summary of

each approach.

6https://www.edf.fr/en/the-edf-group/inventing-the-future-of-energy/r-d-global-expertise/our-offers/
simulation-softwares/kb3

7https://www.fault-tree-analysis.com/free-fault-tree-analysis-software
8https://sourceforge.net/projects/openfta/
9Within set theory, fundamental operations for constructing new sets from given sets are: unions, intersections,

complements and the cartesian product.
10https://icytree.org/

188

https://www.edf.fr/en/the-edf-group/inventing-the-future-of-energy/r-d-global-expertise/our-offers/simulation-softwares/kb3
https://www.edf.fr/en/the-edf-group/inventing-the-future-of-energy/r-d-global-expertise/our-offers/simulation-softwares/kb3
https://www.fault-tree-analysis.com/free-fault-tree-analysis-software
https://sourceforge.net/projects/openfta/
https://icytree.org/


B.2 Anomaly Detection: State of the Art

Figure B.4: Venn diagram example
Venn diagrams are part of the ensemblist diagrams family. The sets in this diagram represent a hierarchy of network function
for service delivery. The assets participating in the system operation can simultaneously be part of a redundancy group (g r 1),
part of a service chain (g s1 and g s2), and be identified as being in a faulty state ( f aul t ). The intersection of sets corresponds
to the application of a logical AND operator. The numbers within the sets indicate the count of declared assets that satisfy an
intersection of sets. It allows to highlight common elements in the functioning and situation signatures (e.g. [service1] and
[gr1] and [service2] and [fault]: e2 e3). Diagram built using [141].
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Table B.1: Anomaly detection models comparison table, as per a subset of the evaluation criteria defined in §2.4.1. In the Name or short title
column, we indicate the name of the method when provided by the authors, it is the abbreviated title of the paper otherwise. Abbreviations:
Ref. = bibliographical reference, SC-SH = Smart-Cities & Smart-Homes, n.a. = non applicable.

Theme Ref. Year Name or short title Data structures within method

Short description

Design Graph-based

Net-IT [217] 2019 Measuring Network Reliability . . . Mixed (seq. + graph)

Probabilistic measure based on network performance through iterative link removal.

Design Knowledge-based

Energy systems [79] 2018 Ontology-driven multilevel sequential . . . Mixed (seq. + graph)

Mining sequential patterns on a knowledge graph.

Net-IT [19] 2023 Inferring Threatening IoT Dependencies . . . Mixed (seq. + tab.)

Knowledge graph construction for dependency calculus between devices.

Design Model checking

Net-IT [177] 2006 Perracotta Sequential data

Association rule learning from software process logs, followed by checking for non-conforming event

sequences using activity patterns expressed in rules in a form close to Computation Tree Logic (CTL).

Design Rule-based

Energy systems [218] 2008 Gestion de la complexité dans . . . Graph

Modeling systems logically and exploring state space to identify potential failure scenarios.

Detect. & Class. Graph-based

CyberSec [375] 2007 GBAD-MDL/P/MPS Graph

Detecting node/edge modifications, insertions, and deletions.

CyberSec [387] 2017 Measuring Similarity between Cyber . . . Tabular

Computing similarity between incident reports using graph-based clustering and assignment algorithm.

190



B
.2

A
n

o
m

aly
D

etectio
n

:State
o

fth
e

A
rt

Theme Ref. Year Name or short title Data structures within method

Short description

CyberSec [326] 2020 MIDAS Graph streams

Detecting sudden bursts of activity with repeated nodes or edges by computing the evolution of event count.

CyberSec [233] 2020 ADSAGE Sequential data

Classifying the edge representing the predicted next event from audit events as attributed graph edges using a

Feedforward Neural Network (FFNN) model for classification and a Recurrent Neural Network (RNN)

model for predicting the next event.

CyberSec [207] 2021 A Picture is Worth 1,000 Rows Tabular

Graph-based clustering to identify related alerts, using centrality measures to prioritize clusters.

Fraud analytics [210] 2023 PANG Graph

Anomaly detection and fraud analytics in relational or graph-structured data, involving learning graph patterns,

ranking and filtering them, graph embedding, and training a classifier using the bag-of-subgraphs concept.

Net-IT [93] 2015 DNODA/CNA Graph

Analyzing node attribute distribution in relation to global, local, and community perspectives using the

Direct Neighbour Outlier Detection Algorithm (DNODA) and Community Neighbor Algorithm (CNA) techniques.

Net-IT [320] 2017 Model-Based Probabilistic Reasoning . . . Mixed (sequential data + graph)

Event classification using a probabilistic model (Bayesian Network) representing network topology and observables,

accounting for alarm diffusion phenomena, provided by an expert or learned from incomplete data.

Net-IT [69] 2022 Graph Neural Network Based Root . . . Time series

RCA by constructing a device dependency graph structure using a neural network from performance time series,

and performing node classification over the dependency graph using a Graph Convolutional Network (GCN).

SC-SH [317] 2020 Anomaly Detection in Smart Homes . . . Sequential data

Behavior classification on event logs using a probabilistic model (Bayesian Network).

Detect. & Class. Knowledge-based

CyberSec [30] 2004 Rich Event Representation for . . . Graph
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Theme Ref. Year Name or short title Data structures within method

Short description

Classification of computer forensic scenarios by extracting facts from digital event logs and applying

expert-made correlation rules using the RETE algorithm.

CyberSec [324] 2010 An Ontology-Based Forensic . . . Graph

Classification and risk analysis of attacks using subsumption-based and graph-traversal-based methods.

CyberSec [249] 2013 An Ontology-Based Forensic . . . Graph

SPARQL-based situation understanding by exploring evidence data from a knowledge graph.

CyberSec [258] 2015 PACO Sequential data (network)

Binary classification of network traffic using an Instance-Based Learning agent and the PACO OWL-DL ontology.

Generic [292] 2020 StreamingMASSIF Sequential data

Processing of data streams using Semantic Web techniques and Complex Event Processing (CEP).

SC-SH [263] 2018 MRGS/MFCSoFCA+symACS Sequential data

Trace classification comparing the similarity of traces to behavior patterns derived from Multi-Resolution

Grid-based Segmentation (MRGS) and Multi-Frequency Co-occurrence Similarity (MFCS) analysis,

in conjunction with Formal Concept Analysis (FCA).

Detect. & Class. Markov model

CyberSec [259] 2000 A Markov Chain Mo.. . Sequential data

Threshold-based event classification using a transition probability matrix. The anomaly detection threshold is

determined based on the low probability of a temporal behavior observed in the recent past.

Detect. & Class. ML-based

CyberSec [137] 2018 RL4AD Sequential data (network)

Anomaly detection on sequential data using a hybrid reinforcement learning / deep neural network model.

Energy systems [66] 2015 Isolation Forest. . . Data points

Benchmarking the Isolation Forest method over 30+ datasets.

Generic [113] 2008 iForest Data points
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Anomaly detection (outliers) by scoring data points based on their distance from the root of a binary search tree.

Generic [272] 2016 EncDec-AD Time series

Anomaly likelihood based on the reconstruction error of a time series with respect to a learned normal model,

which is a single-layer Long Short Term Memory (LSTM).

Generic [344] 2020 Introduction aux auto-encodeurs Time series

Anomaly detection using the reconstruction error obtained from an EncDec model. The anomaly detection threshold

is defined as one standard deviation above the mean reconstruction error.

Generic [278] 2020 Timeseries Anomaly Detection. . . Time series

Anomaly detection time series data using the reconstruction error obtained from a convolutional autoencoder.

The anomaly detection threshold is defined as the maximum mean absolute error loss value observed during training.

Industry 4.0 [289] 2020 How Airbus Detects Anomalies . . . Sequential data

Anomaly detection on sequential data using the reconstruction error obtained from an LSTM autoencoder.

Industry 4.0 [238] 2020 IForestASD Sequential data

Anomaly detection on sequential data using an extended version of the Isolation Forest technique.

Industry 4.0 [251] 2021 Approche de traitement des . . . Sequential data

Model-based classification (Bayes, decision tree, deep learning) of data over a sliding-window bag of features.

Industry 4.0 [67] 2021 SM-iForest Time series

Anomalous data segments detected using Isolation Forest and a similarity measure.

Net-IT [342] 2013 Network Failure Detection . . . Sequential data

SysLog logs clustered using mined patterns and non-negative matrix factorization.

Net-IT [342] 2013 Network Failure Detection . . . Sequential data

RCA using user messages from social networks, where the messages are first classified using a

Support Vector Machine (SVM) model.

Net-IT [136] 2020 Single Model Based Anomaly . . . Time series
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Anomalous data segments detected across multiple time series using an Isolation Forest algorithm applied to

z-Scores, which represent deviations of each key performance indicator value from its own patterns.

Net-IT [174] 2021 FastTrack/AugSplicing Graph streams

Detection of synchronous events in multidimensional data streams based on the identification of dense blocks

of data (sub-tensors) and iterative partitioning for near-real-time analysis.

Detect. & Class. Model checking

Business process [3] 2011 Cost-Based Conformance Chec. . . Sequential data

Event logs are replayed on a process model to identify skipped activities and inserted activities.

CyberSec [267] 2004 Scenario Graphs and Attack . . . Graph

Definition of rules in the form of graphs, followed by rule execution for activity detection.

Detect. & Class. Rule-based

CyberSec [364] 1999 BRO Sequential data (network)

Rule-based alerting on live network traffic using a multi-agent software system.

CyberSec [281] 2003 Using CLIPS to Detect Net. . . Sequential data (network)

Rule-based alerting on network traffic by combining the SNORT and CLIPS tools and including string

pattern matching, certainty factors and time-stamp operators.

CyberSec [322] 2014 Co-FQL Sequential data (network)

Fuzzy rule-based classification of network traffic packets, where the appropriate combination of rules is

learnt and decided with help of Q-Learning (reinforcement learning algorithm to learn the

value of an action in a particular state).

CyberSec [315] 2018 Cognitive CyberSecurity (CCS) Graph

Anomaly detection using a SWRL-based rule set on RDF data, with expert knowledge from a

complementary knowledge graph (UCO), and additional analytics (statistical, graph) to enrich the knowledge graph.

Net-IT [280] 2006 Automatic Detection of SLS . . . Sequential data
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Rule-based situation classification on event logs using the CLIPS tool.

Diagnostic Aid Graph-based

CyberSec [130] 2016 TerminAPTor Mixed (seq. + graph)

Relational structure discovery between attack alerts using information flows and tag propagation approaches.

Net-IT [329] 2019 SAKURA Mixed (seq. + graph)

RCA by solving a logical dependency graph with observational values using a

Satisfiability Modulo Theory (SMT) solver.

Net-IT [372] 2020 AIOps Series V : RCA Based . . . Mixed (seq. + graph)

Unsupervised out-of-trend alerting using LSTM and probability density on transaction volume data stored in a KG.

Net-IT [328] 2020 Fault Management of. . . Mixed (seq. + graph)

RCA by constructing a dependency graph based on prior knowledge of network topology, and then calculating

constraints (SAT) based on observed events and their testability.

Net-IT [92] 2023 Clustering of Liv. . . Mixed (seq. + graph)

Alarm clustering by pre-filtering events based on network topology, followed by clustering based on inter-arrival times.

Diagnostic Aid Knowledge-based

CyberSec [302] 2013 Automated Classification of Computer . . . Mixed (seq. + graph)

Situation classification is performed using tableau calculus, leveraging an ontology designed for network attacks.

CyberSec [301] 2014 A Formalised Ontology for Network . . . Mixed (seq. + graph)

Situation classification is performed using tableau calculus, leveraging an ontology designed for network attacks.

CyberSec [15] 2016 A Semantic-Web-Technology-. . . Graph

Situation understanding with both SWRL-based and SPARQL-based approaches, using an ad hoc ontology

and an RDF-based representation of facts and events.

Energy systems [184] 2022 Root Cause Analysis in the Industrial . . . Graph

RCA using both SWRL-based and SPARQL-based approaches on data stored in a KG.
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Industry 4.0 [62] 2018 FOLIO Tabular

RCA by annotating and processing event streams using rules, leveraging FMEA mapped onto the FOLIO ontology,

and utilizing SWRL rules from Fault Tree Analysis (FTA).

Net-IT [390] 2023 KTeleBERT Mixed (seq. + unstr.)

RCA using a Graph Convolutional Network (GCN) on network events and recorded network

documentation elements stored in a knowledge graph.

Diagnostic Aid Model checking

Software engineering [357] 2014 Perfume Sequential data

Association rule learning over logs using Timed Propositional Temporal Logic (TPTL).
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B.3 Anomaly Detection: Dataset for Experiments

The following listing (Listing B.1) depicts a fictitious network infrastructure (Figure B.5) that

was developed and used for anomaly detection experiments. It was specifically created for

the Orange Open Tech Days 2023 “Semantical anomaly sensing - Recommend remediation

solutions using knowledge graphs” demo (Chapter A).

1 # === PREFIXES ================================================================
2 # --- Basic ---
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix owl: <http://www.w3.org/2002/07/owl#> .
5 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
6 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
7 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
8

9 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
10 @prefix dc: <http://purl.org/dc/elements/1.1/> .
11 @prefix dcterms: <http://purl.org/dc/terms/> .
12 @prefix prov: <http://www.w3.org/ns/prov#> .
13

14 # --- Domain specific ---
15 @prefix seas: <https://w3id.org/seas/> .
16 @prefix org: <http://www.w3.org/ns/org#> .
17

18 # --- NORIA-O ---
19 @prefix noria: <https://w3id.org/noria/ontology/> .
20 @base <https://w3id.org/noria/> .
21

22 # =============================================================================
23 # --- Application ---
24 <object/APP_99995_TST>
25 a noria:Application;
26 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
27 noria:applicationBusinessImportance "Not defined";
28 noria:applicationFunctionalDomain "Enterprise Management";
29 noria:applicationFunctionalSubDomain "Accounting Management";
30 noria:applicationModelIdentifier "AM099995";
31 noria:applicationNumericalIdentifier "99995";
32 noria:applicationShortIdentifier "OOTD_TST";
33 noria:applicationType <kos/application/type/application>;
34 noria:elementManagedBy <agent/TEAM_SDLRI>;
35 rdfs:comment "NORIA-SDLRI2023 application";
36 rdfs:label "OOTD_TST" .
37

38 <object/APP_99996_TSI>
39 a noria:Application;
40 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
41 noria:applicationBusinessImportance "Not defined";
42 noria:applicationFunctionalDomain "Enterprise Management";
43 noria:applicationFunctionalSubDomain "Accounting Management";
44 noria:applicationModelIdentifier "AM099996";
45 noria:applicationNumericalIdentifier "99996";
46 noria:applicationShortIdentifier "OOTD_TSI";
47 noria:applicationType <kos/application/type/infrastructure>;
48 noria:elementManagedBy <agent/TEAM_SDLRI>;
49 rdfs:comment "NORIA-SDLRI2023 infrastructure";
50 rdfs:label "OOTD_TSI" .
51

52 # --- Network elements ---
53 <object/RES_TOY_srv_tst_1>
54 a noria:Resource;
55 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
56 noria:resourceForApplication <object/APP_99995_TST>;
57 noria:resourceHostName "srv_tst_1";
58 noria:resourceLogisticId "srv_tst_1";
59 noria:resourceInstallationDate "2020-07-09";
60 noria:resourceType <kos/Resource/type/server>;
61 noria:resourceManagedBy <agent/TEAM_SDLRI>;
62 noria:resourceProductModel <object/PRODUCT_Orange_SDLRI_SERVER>;
63 seas:subSystemOf <object/RES_TOY_rack_01> .
64

197



Additional materials

65 <object/RES_TOY_srv_tst_2>
66 a noria:Resource;
67 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
68 noria:resourceForApplication <object/APP_99995_TST>;
69 noria:resourceHostName "srv_tst_2";
70 noria:resourceLogisticId "srv_tst_2";
71 noria:resourceInstallationDate "2020-07-09";
72 noria:resourceType <kos/Resource/type/server>;
73 noria:resourceManagedBy <agent/TEAM_SDLRI>;
74 noria:resourceProductModel <object/PRODUCT_Orange_SDLRI_SERVER>;
75 seas:subSystemOf <object/RES_TOY_rack_02> .
76

77 <object/RES_TOY_rt_tsi_1>
78 a noria:Resource;
79 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
80 noria:resourceForApplication <object/APP_99996_TSI>;
81 noria:resourceHostName "rt_tsi_1";
82 noria:resourceLogisticId "rt_tsi_1";
83 noria:resourceInstallationDate "2020-07-01";
84 noria:resourceType <kos/Resource/type/network-element>;
85 noria:resourceManagedBy <agent/TEAM_SDLRI>;
86 noria:resourceProductModel <object/PRODUCT_Orange_SDLRI_ROUTER>;
87 seas:subSystemOf <object/RES_TOY_rack_01> .
88

89 <object/RES_TOY_rt_tsi_2>
90 a noria:Resource;
91 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
92 noria:resourceForApplication <object/APP_99996_TSI>;
93 noria:resourceHostName "rt_tsi_2";
94 noria:resourceLogisticId "rt_tsi_2";
95 noria:resourceInstallationDate "2020-07-01";
96 noria:resourceType <kos/Resource/type/network-element>;
97 noria:resourceManagedBy <agent/TEAM_SDLRI>;
98 noria:resourceProductModel <object/PRODUCT_Orange_SDLRI_ROUTER>;
99 seas:subSystemOf <object/RES_TOY_rack_02> .

100

101 # --- Organization ---
102 <agent/ORG_orange-france>
103 a org:Organization;
104 org:hasUnit <agent/OU_ORANGE_SDLRI> .
105

106 <agent/OU_ORANGE_SDLRI>
107 a org:OrganizationalUnit;
108 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
109 rdfs:label "Orange SDLRI department";
110 org:hasUnit <agent/TEAM_SDLRI>;
111 org:classification <kos/org/org-classification/manufacturer> .
112

113 <agent/TEAM_SDLRI>
114 a org:OrganizationalUnit;
115 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
116 noria:teamInstructions "Enjoy the demo!";
117 rdfs:label "SDLRI demo team";
118 org:classification <kos/org/ou-classification/tsg>;
119 org:identifier "SDLRI" .
120

121 <object/PRODUCT_Orange_SDLRI_ROUTER>
122 a noria:ProductModel;
123 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
124 noria:productManufacturedBy <agent/OU_ORANGE_SDLRI>;
125 rdfs:label "Orange_SDLRI_ROUTER" .
126

127 <object/PRODUCT_Orange_SDLRI_SERVER>
128 a noria:ProductModel;
129 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
130 noria:productManufacturedBy <agent/OU_ORANGE_SDLRI>;
131 rdfs:label "Orange_SDLRI_SERVER" .
132

133 # --- Network interfaces ---
134 <object/NI_TOY_rt_tsi_2_rt_tsi_1>
135 a noria:NetworkInterface;
136 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
137 rdfs:label "Te-1-0";
138 rdfs:comment "Back-to-back RES_TOY_rt_tsi_2 <=> RES_TOY_rt_tsi_1";
139 noria:networkInterfaceOf <object/RES_TOY_rt_tsi_2> ;
140 noria:networkInterfaceConnects <object/NL_TOY_rt_tsi_1_rt_tsi_2> ;
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141 noria:networkInterfaceAdministrativeStatus <kos/Resource/AdministrativeState/unlocked>;
142 noria:networkInterfaceOperationalStatus <kos/Resource/OperationalState/disabled>.
143

144 # --- Network links ---
145 <object/NL_TOY_srv_tst_1_rt_tsi_1>
146 a noria:NetworkLink;
147 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
148 noria:networkLinkId "NL_TOY_srv_tst_1_rt_tsi_1";
149 noria:networkLinkTerminationResource
150 <object/RES_TOY_srv_tst_1>,
151 <object/RES_TOY_rt_tsi_1>.
152

153 <object/NL_TOY_srv_tst_2_rt_tsi_2>
154 a noria:NetworkLink;
155 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
156 noria:networkLinkId "NL_TOY_srv_tst_2_rt_tsi_2";
157 noria:networkLinkTerminationResource
158 <object/RES_TOY_srv_tst_2>,
159 <object/RES_TOY_rt_tsi_2>.
160

161 <object/NL_TOY_rt_tsi_1_rt_tsi_2>
162 a noria:NetworkLink;
163 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
164 noria:networkLinkId "NL_TOY_rt_tsi_1_rt_tsi_2";
165 noria:networkLinkTerminationResource
166 <object/RES_TOY_rt_tsi_1>,
167 <object/RES_TOY_rt_tsi_2>.
168

169 <object/NL_TOY_rt_tsi_1_mid_1>
170 a noria:NetworkLink;
171 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
172 noria:networkLinkId "NL_TOY_rt_tsi_1_mid_1";
173 noria:networkLinkTerminationResource
174 <object/RES_TOY_rt_tsi_1>,
175 <object/RES_TOY_rt_bkb_1>. # Host in the backbone network
176

177 <object/NL_TOY_rt_tsi_2_mid_2>
178 a noria:NetworkLink;
179 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
180 noria:networkLinkId "NL_TOY_rt_tsi_2_mid_2";
181 noria:networkLinkTerminationResource
182 <object/RES_TOY_rt_tsi_2>,
183 <object/RES_TOY_rt_bkb_2>. # Host in the backbone network
184

185 # --- Alarm ---
186 <event/AIS_TOY_srv_tst_1_ifDown>
187 a noria:EventRecord;
188 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
189 noria:alarmMonitoredAttribute "InterfaceOperStatus";
190 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/major>;
191 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_1>;
192 noria:logOriginatingManagementSystem <object/APP_AM008897>; # Application for alarm management
193 noria:loggingTime "2023-09-08 03:31:17.0";
194 dcterms:description "Interface OperStatus down, link 'srv_tst_1_rt_tsi_1'";
195 dcterms:identifier "AIS_TOY_srv_tst_1_ifDown";
196 dcterms:type <kos/Notification/EventType/communicationsAlarm>.
197

198 <event/AIS_TOY_rt_tsi_1_TimeOut>
199 a noria:EventRecord;
200 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
201 noria:alarmMonitoredAttribute "ResourcePollingStatus";
202 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/warning>;
203 noria:logOriginatingManagedObject <object/RES_TOY_rt_tsi_1>;
204 noria:logOriginatingManagementSystem <object/APP_AM008897>; # Application for alarm management
205 noria:loggingTime "2023-09-08 03:38:00.0";
206 dcterms:description "ResourcePollingStatus exceeded timeout threshold, resource 'rt_tsi_1'";
207 dcterms:identifier "AIS_TOY_rt_tsi_1_TimeOut";
208 dcterms:type <kos/Notification/EventType/equipmentAlarm>.
209

210 <event/AIS_TOY_rt_tsi_2_ifDown>
211 a noria:EventRecord;
212 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
213 noria:alarmMonitoredAttribute "InterfaceOperStatus";
214 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/major>;
215 noria:logOriginatingManagedObject <object/RES_TOY_rt_tsi_2>;
216 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
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217 noria:loggingTime "2023-09-08 03:31:17.0";
218 dcterms:description "Interface OperStatus down, link 'rt_tsi2_rt_tsi_1'";
219 dcterms:identifier "AIS_TOY_rt_tsi_2_ifDown";
220 dcterms:type <kos/Notification/EventType/communicationsAlarm>.
221

222 # --- Logs ---
223 <event/LOG_TOY_srv_tst_2_sshd_n1_01>
224 a noria:EventRecord;
225 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
226 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
227 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/indeterminate>;
228 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
229 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
230 noria:loggingTime "2023-09-08 02:20:00.0";
231 noria:logText "sshd:ConnectionEstablished";
232 noria:logOriginatingAgent <agent/USER_legitimate>;
233 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_n1_01".
234

235 <event/LOG_TOY_srv_tst_2_sshd_n1_02>
236 a noria:EventRecord;
237 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
238 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
239 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/indeterminate>;
240 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
241 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
242 noria:loggingTime "2023-09-08 02:20:15.0";
243 noria:logText "sshd:AcceptedPassword";
244 noria:logOriginatingAgent <agent/USER_legitimate>;
245 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_n1_02".
246

247 <event/LOG_TOY_srv_tst_2_sshd_n2_01>
248 a noria:EventRecord;
249 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
250 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
251 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/indeterminate>;
252 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
253 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
254 noria:loggingTime "2023-09-08 02:25:00.0";
255 noria:logText "sshd:ConnectionEstablished";
256 noria:logOriginatingAgent <agent/USER_rogue>;
257 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_n2_01".
258

259 <event/AIS_TOY_srv_tst_2_sshd_n2_02>
260 a noria:EventRecord;
261 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
262 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
263 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/warning>;
264 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
265 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
266 noria:loggingTime "2023-09-08 02:25:10.0";
267 noria:logText "sshd:FailedPassword";
268 noria:logOriginatingAgent <agent/USER_rogue>;
269 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_n2_02".
270

271 <event/AIS_TOY_srv_tst_2_sshd_n2_03>
272 a noria:EventRecord;
273 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
274 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
275 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/indeterminate>;
276 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
277 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
278 noria:loggingTime "2023-09-08 02:25:20.0";
279 noria:logText "sshd:ConnectionClosedPreAuth";
280 noria:logOriginatingAgent <agent/USER_rogue>;
281 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_n2_03".
282

283 <event/LOG_TOY_srv_tst_2_sshd_n3_01>
284 a noria:EventRecord;
285 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
286 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
287 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/indeterminate>;
288 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
289 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
290 noria:loggingTime "2023-09-08 02:26:00.0";
291 noria:logText "sshd:ConnectionEstablished";
292 noria:logOriginatingAgent <agent/USER_rogue>;
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293 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_n3_01".
294

295 <event/AIS_TOY_srv_tst_2_sshd_n3_02>
296 a noria:EventRecord;
297 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
298 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
299 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/warning>;
300 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
301 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
302 noria:loggingTime "2023-09-08 02:26:10.0";
303 noria:logText "sshd:FailedPassword";
304 noria:logOriginatingAgent <agent/USER_rogue>;
305 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_n3_02".
306

307 <event/AIS_TOY_srv_tst_2_sshd_n3_03>
308 a noria:EventRecord;
309 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
310 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
311 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/warning>;
312 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
313 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
314 noria:loggingTime "2023-09-08 02:26:20.0";
315 noria:logText "sshd:ConnectionClosedPreAuth";
316 noria:logOriginatingAgent <agent/USER_rogue>;
317 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_n3_03".
318

319 <event/AIS_TOY_srv_tst_2_sshd_n3_04>
320 a noria:EventRecord;
321 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
322 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
323 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/indeterminate>;
324 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
325 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
326 noria:loggingTime "2023-09-08 02:26:30.0";
327 noria:logText "sshd:ConnectionClosedPreAuth";
328 noria:logOriginatingAgent <agent/USER_rogue>;
329 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_n3_04".
330

331 <event/LOG_TOY_srv_tst_2_sshd_01>
332 a noria:EventRecord;
333 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
334 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
335 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/indeterminate>;
336 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
337 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
338 noria:loggingTime "2023-09-08 03:20:00.0";
339 noria:logText "sshd:ConnectionEstablished";
340 noria:logOriginatingAgent <agent/USER_rogue>;
341 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_01".
342

343 <event/AIS_TOY_srv_tst_2_sshd_02>
344 a noria:EventRecord;
345 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
346 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
347 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/warning>;
348 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
349 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
350 noria:loggingTime "2023-09-08 03:20:10.0";
351 noria:logText "sshd:FailedPassword";
352 noria:logOriginatingAgent <agent/USER_rogue>;
353 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_02".
354

355 <event/AIS_TOY_srv_tst_2_sshd_03>
356 a noria:EventRecord;
357 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
358 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
359 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/warning>;
360 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
361 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
362 noria:loggingTime "2023-09-08 03:20:20.0";
363 noria:logText "sshd:ConnectionEstablished";
364 noria:logOriginatingAgent <agent/USER_rogue>;
365 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_03".
366

367 <event/AIS_TOY_srv_tst_2_sshd_04>
368 a noria:EventRecord;
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369 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
370 noria:alarmMonitoredAttribute "Secure remote-login and remote-execution";
371 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/warning>;
372 noria:logOriginatingManagedObject <object/RES_TOY_srv_tst_2>;
373 noria:logOriginatingManagementSystem <object/APP_AM001997>; # Application for alarm management
374 noria:loggingTime "2023-09-08 03:20:30.0";
375 noria:logText "sshd:FailedPassword";
376 noria:logOriginatingAgent <agent/USER_rogue>;
377 dcterms:identifier "AIS_TOY_srv_tst_2_sshd_04".
378

379 # --- Trouble ticket ---
380 <document/TT_TOY_2023SDLRI01>
381 a noria:TroubleTicket;
382 prov:wasDerivedFrom "noria-sdlri2023-toy-example";
383 noria:troubleTicketRelatedResource <object/APP_99995_TST>;
384 noria:troubleTicketCategory <kos/TroubleTicket/trouble-category/service-impaired>;
385 noria:troubleTicketOrigin <kos/TroubleTicket/origin/clt>;
386 noria:troubleTicketPriority <kos/TroubleTicket/priority/2>;
387 noria:troubleTicketStatusCurrent <kos/TroubleTicket/status/initialised>;
388 noria:troubleTicketType <kos/TroubleTicket/type/failure>;
389 noria:troubleTicketUrgency <kos/TroubleTicket/urgency/immediate-response>;
390 dcterms:description "Customer call reporting slow downs in data processing by the APP_99995_TST application.";
391 dcterms:identifier "TOY_2023SDLRI01";
392 dcterms:created "2023-09-08T03:50:00.0Z"^^xsd:dateTime.
393

394 # === EOF ===

Listing B.1: OOTD 2023 dataset: implementation, in Turtle syntax, of a knowledge graph

describing a fictitious network infrastructure with events and organization details, for anomaly

detection experiments.
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Figure B.5: OOTD 2023 knowledge graph
Overview of the OOTD 2023 dataset (Listing B.1). noria is the default namespace for concepts and relationships. The diagram
conforms to the Graffoo graphical notation [330].
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B.4 Time-Ordered Contact Map for Statistical Learning

In this appendix, we outline an algorithm for calculating causal relationships between events

on a network topology graph. This is an extension of the “graphical root cause analysis”

representation idea presented in Figure 8.10, but this time without prior knowledge of event

sequences, as it was the case in Section 8.5 with a procedural model projected onto the

graph. Here, we consider that we only have a subgraph of network topology with timestamped

event nodes (Figure B.6), as could result from an incident context calculation using the graph

embeddings approach from Chapter 7. The approach presented below notably solves the

problem of disambiguating events for which the occurrence time is close or identical; for

this, we assume that the mechanism of fault propagation on the network is a function of the

distance to be traveled in terms of the number of network hops. This proposal represents a

direction for future work.

Figure B.6: Time-ordered contact map for statistical learning
A toy example of a network topology with three events (triangular shapes with t1 ≤ t2 ≤ t3). The heavy dashed arcs represent
“followed by” relationships (bold numbers in Eq. B.17). The light dashed arc represents the transitive cause-effect relationship of
the t1 event to the t2 event, based on the composition (t2 → t3)◦ (t1 → t2).

Goal. Computing event sequence relationships candidates on a network topology sub-graph,

with controlled number of candidates w.r.t. ∥event edges∥ = (∑N
n=1 n

)−N .

Principle. The approach is two-fold. Contact map: place each of the events in the subgraph

along the axes of the subgraph’s adjacency matrix (Eq. B.17), with a score at each pairing used

to represent how close they are in the topology space. Sequence: relate events based on their

order in time and closeness in term of network topology space.


01→1 21→2 31→3

22→1 02→2 32→3

33→1 33→2 03→3

 (B.17)
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Algorithm. The following steps sketch the algorithm to compute the time-ordered contact

map. The Figure B.6 and Equation (B.17) are illustrations for this algorithm.

1. Retrieve the network topology graph with event records,

2. Compute all shortest path length between event nodes (caution: this is expensive for

large graphs),

3. Set shortest path lengths in an adjacency matrix,

4. Arrange the matrix columns & rows with continuous time ordering,

5. Get the upper-right triangular part of the matrix (i.e. getting back to a directed graph),

6. Prune the matrix rows towards the lowest distance,

7. Assert time relationship between event nodes from the remaining adjacencies, but for

null distances.

B.5 Data Structure and Computation Efficiency

As mentioned in Section 2.2.2, ICT systems event data processed by NMS/SIEM DSSs fall

into the big data category with high volume, variety, and velocity characteristics [308]. This

classification has potential consequences on anomaly detection, particularly in terms of

data ingestion, processing performance, and data retention, which need to be explored. The

analysis of the field is driven by the inherent link between Knowledge Representation and

Reasoning (KRR), leading to understand the relationships and trade off between how data is

conceptually stored and managed and how hardware handle data. In the following paragraphs,

we discuss these two perspectives to highlight the challenges and opportunities associated

with knowledge representation as graphs and Graph-Based Anomaly Detection (GBAD).

Table vs graph data management. The design and administration of DataBase Management

System (DBMS) is a long-standing and constantly evolving field of research. Six research axes

have emerged over time and structure the domain [296]: query optimization and execution;

relational operators; files and access methods; buffer management; disk space management;

database design. Assuming a correct database design (i.e. a conceptual data model meeting the

use case requirements), the next classical quality evaluation criteria are the access performance

(e.g. read-write I/O) and database capacity (e.g. maximum number of stored records).

The access performance itself has multiple performance factors (Figure B.7). A first and leading

factor is how data records are interconnected. This typically draws a distinction between

Relational DBMS (RDBMS) and Graph DBMS (GDBMS).
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GDBMS are well-suited for highly connected data (graph-like data) as their internal data

structures allow them to avoid the execution of multiple JOIN operations [360], which are

often required in the case of RDBMS where connected data is implemented through foreign

keys as logical pointers (using these increases computational complexity for retrieving graph

data for as multiple lookup sequences are needed to resolve references). To avoid the JOIN
complexity, GDBMS implement arcs as physical pointers to the filesystem/memory address of

the neighboring entities. Hence, given a data node from where to start a search query, data

fetching is enhanced by direct knowledge of where to read data from the neighboring; thus

providing 1) fast response time for local search and graph traversal queries, 2) the ability to

avoid the use of index.

Figure B.7: DBMS technological and performance factors relationships.
This cause/consequence/solution diagram illustrates technological and performance factors entanglement for an increase in the
number of files situation.

Conversely, RDBMS have an intrinsic data alignement characteristic linked to the use of

data types and size for table design. This allows for fast response time to queries like “find all

entities of type X ” (e.g. aggregation functions to be computed over all the rows of a table) as the

computation of row pointers relies on a fixed offset: poi nterr ow+1 = poi nterr ow + r owsi ze ,

depicting a sequential access pattern.
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In addition, the use of an index can help to improve data lookup, filtering, join and aggregation

operations speed [269]. In short, an index is an ordered data structure that focus on data values

and maps these values to physical/logical pointers. Index data structures implementations

are typically of two kind: 1) tree-like [47, 230]; 2) hash tables.

The use of the index technology11 is not exclusively for RDBMS: “find all entities of type X ”

queries execution can also be optimized for GDBMS with help of an index. The notion of

“indexing node” is an in-graph example of such. The addition of a search engine to GDBMS

is another one for an out-of-graph approach (e.g. like Apache Lucene in [349]). Selecting a

specialized index w.r.t. the main request argument is also a useful strategy. For example, the

Neo4J GDBMS12 maintains varied indexed views on its data and focus its lookup operation on

the most appropriated one as needed (i.e. nodestore, relstore, propostore, stringstore
and arraystore).

Transactions for data integrity. The second data access performance factor is defined

within a multi-user or multi-process context (i.e. users/process may try to write/update a

same record at a same time) through the concept of transaction (TXN): a sequence of one or

more operations (reads or writes) which reflects a single real-world transition. This concept is

critical for both integrity and performance concerns, namely: 1) recovery & durability (i.e. the

capability to keep the DBMS data consistent and persistent in case of crashes, aborts or system

shutdowns); 2) concurrency (i.e. the capability to achieve better performance by parallelizing

transactions without creating anomalies).

When understood at information system design level, these two points of view show that they

are not limited to DBMS query execution considerations. Event-driven architectures [63, 146]

are an example of such paradigm change about “what data semantic is stored in database”.

Figure B.8 illustrates this with a CQRS-ES architecture.

Data continuity, locality, and alignment for high-perf at the hardware level. General per-

formance expectations, as mentioned above, implicitly rely on performance factors that are

highly relevant in hardware design considerations. For example, the von Neumann computer

architecture highlights the role of memory and Instruction Set Architecture (ISA) in design

considerations [65]. On one side, memory is a limited table of fixed-size data words. On the

other hand, the ISA reflects what can be requested from a computer, in a more or less complex

fashion depending on the case. Therefore, insights into processing architectures are of prime

11Let us remark that the index technology is an active research domain that is also present in the Operating
System (OS) design domain (e.g. see [124] for the filesystem sub-domain).

12Neo4J insights given here are deduced from the analysis of code available at github.com/neo4j/neo4j. Addi-
tional optimization process are also implemented, such as data caching though a software prefetcher and the use
of the Java Non-blocking I/O subsystem.
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Figure B.8: Event-Stream architecture.
This architecture follows the Command Query Responsibility Segregation (CQRS) and Event Sourcing (ES) principles. POST
command queries forward events to the EventStore, GET command queries fetch (intermediary) states through a RequestProcessor.
POST/GET command queries act on different process and stores. EventProcessor is a function taking a current state and an
event as arguments, and returning the next state. Inspired by [63].

interest for evaluating the potential of hardware acceleration.

At memory module level, one example of a hardware acceleration strategy is the use of a

Content-Addressable Memory (CAM). CAMs allow for fast indirection to associated entities

when given a specific value (or value pattern) to search for. The topic of DBMS data traversal

mentioned above can be seen as a practical use case for CAMs. As discussed in [271], the

performance of CAMs in terms of data fetching time is linked to: 1) the number of transistors

used in memory cells; 2) the search line and match line utilization scheme; 3) firmware

optimizations such as memory bank activation, pre-calculus, and dense encoding.

At the processing unit level, hardware acceleration involves choosing a specific architecture

from the options encompassed within the “xPU” acronym. This includes Central Processing

Units (CPUs), Graphical Processing Units (GPUs), Vector Processing Units (VPUs), and Field

Programmable Logic Arrays (FPGAs). At a more detailed level, each of these architectures refers

to a set of sub-components and implementation strategies that best match specific business

needs (e.g. general-purpose applications, real-time video encoding, speech recognition,

etc.). In addition to memory architecture, data processing architectures13 and instruction

execution optimization – such as the Out-of-Order Execution (OoOE) and speculative families

of techniques – are useful guides for comparing designs. Table B.2 provides a first level of

13The comparison of data processing architectures is commonly made through the Flynn’s taxonomy: Single
Instruction Single Data (SISD); Single Instruction Multiple Data (SIMD); Multiple Instruction Single Data (MISD);
Multiple Instruction Multiple Data (MIMD).
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analysis of generally acknowledged pros and cons about xPUs.

Pros Cons

CPU
OoOE.
Branch prediction.

SISD.
CISC.

GPU Matrices processing.
Memory transfer cost.
Poor efficiency for sparse matrix.

VPU
SIMD.
Small power consumption.

Small number of operators (x, ∗, supeq).
No data sharing between processes.

FPGA
Fast computation capabilities and
small power consumption
inherent to PLD.

Need special design skills.
Functional blocks subject to intellectual property.

Table B.2: Generally acknowledged pros and cons about xPUs.
The following abbreviations apply: Complex Instruction Set Computer (CISC), Programmable Logic Device (PLD), Central
Processing Unit (CPU), Graphical Processing Unit (GPU), Vector Processing Unit (VPU), Field Programmable Logic Array (FPGA),
Out-of-Order Execution (OoOE), Single Instruction Multiple Data (SIMD), Single Instruction Single Data (SISD).

However, when using a data processing application such as anomaly detection techniques

or a more specific GBAD algorithm, it is important to analyze potential pitfalls related to

processing type and data representation (Table B.3). Therefore, selecting the appropriate

hardware is crucial, while also considering how the software interacts with the hardware. The

research and applied domain of high-performance programming focuses on studying optimal

code execution [176]. This domain provides general concepts and strategies for data handling.

Hints from this domain refer to general concepts about data handling strategies: 1) data

continuity (i.e. to which degree subsequent data elements can be accessed sequentially);

2) data locality (i.e. spatial locality refers to data that is stored near in proximity to recently

accessed data; temporal locality refers to the principle that data most recently accessed is

likely to be accessed in the near future [391]); 3) data alignment (i.e. processed data share a

common bit-encoding size and endianess).

Several lines of research have explored these concepts. Firstly, [391] investigates the impact

of prefetch schemes commonly used in von Neumann architectures on Breadth-First Search

(BFS) graph traversal algorithms. The study reveals that these prefetchers, which rely on

spatial locality principles, introduce I/O bottlenecks and are not suitable for the “random

pointer hopping” memory access pattern [232, 262]. To address this issue, the author proposes

and tests a new hardware prefetcher called Graph-Locality Prefetcher (GLP) that mitigates

the performance degradation caused by traditional prefetchers. Secondly, focusing on data

alignment and data feed, an abstraction layer between the xPUs and the programming lan-

guages is proposed in [36]. This abstraction layer monitors calculus done at the xPU level and

dynamically adapt the data feed (e.g. data alignment and endianess) for optimal execution.
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Data feed is also hinted in [176] where, for example, the MKL library14 is said to be optimized

for in-memory processing whereas DAAL15 is optimized for data handled through distributed

computing and arriving in stream-like fashion [176, Chap. 13, p. 203].

Additional lines of research are discussed hereafter by focusing on higher layers of the data

processing components (i.e. data structure, data encoding and software architecture).

Application type Execution characteristic(s) Architecture best choice(s)

Traditional
Highly branching execution graph
(e.g. decision tree).

CPU

ML/DL
Loop a same operation
over a high volume of data.

GPU and VPU

Graph processing
Random pointer hoping access.
Sparse matrix data.

PIUMA [4]
VPU
At the filesystem level,
a data continuity/locality
management strategy
can also hold [176].

Table B.3: xPU best choice w.r.t. processing type and data representation potential pitfalls.

Data structure & encoding vs memory footprint & computational efficiency. Typical stor-

age structures for graphs include the adjacency matrix and adjacency list. In [321], the memory

footprint of these structures is analyzed and compared to the needs of graph processing algo-

rithms. The study demonstrates that graph processing algorithms, typically of the “traversal”

kind, are more computationally efficient with adjacency lists, as they directly include a pointer

to adjacent nodes. Additionally, real-world graphs, which typically have a high order and

low density, result in sparse adjacency matrices, considered a greedy and inefficient use of

memory. Therefore, the general conclusion drawn is that adjacency lists are the best choice in

terms of the memory footprint-computational efficiency pair.

Another aspect related to data structures is the consideration of queries. As mentioned earlier,

data alignment and data locality are crucial factors for performance in data processing. In

the general case of graph traversal, where any direction within the graph needs to be consid-

ered unless there is prior knowledge about usual traversal queries associated with a specific

graph [40], the locality criterion is equivalent to or even more important than the alignment

criterion.

14The Intel Math Kernel Library (MKL) is a library of optimized, general-purpose math software. It is available at
www.intel.com - oneMKL as part of the Intel oneAPI Base Toolkit.

15Intel Data Analytics Acceleration Library (DAAL) is a library of optimized algorithmic building blocks for data
analysis. It is available at www.intel.com - oneDAL as part of Intel oneAPI Base Toolkit.
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The relationship between data locality and graph data structure is further explored in applied

research papers. For example, [195] proposes identifying principal components of graph-

based data by analyzing the increase in graph complexity with depth-traversal. In [362],

attenuated Bloom filters are discussed as a means to accelerate the decision-making process

of a depth-traversal procedure through the prediction of “far features”. Additionally, [168]

opportunistically selects the most efficient data storage structure (row-oriented, cluster-

oriented, or column-oriented) based on the data compression ratio as a decision criterion.

On long duration storage. Regarding the data storage period criterion, the driving forces in

system design can be categorized into two potentially competing categories: modeling, and

data retention.

In terms of modeling, it is a well-established fact in Machine Learning (ML) and Description

Logic (DL) that having more data available can make a model more powerful. This leads to

a natural trend towards big data, which involves high data volume and long storage periods,

especially in AI-driven businesses. This trend is rooted in the principles of ML/DL techniques,

such as overparametrization and regularization effects [253, §2]. There is also a promise of

greater business opportunities associated with the use of “dark data”.16 However, pursuing

infinite data is not a panacea, as ML/DL techniques can suffer from issues like anomaly

detection model starting up time, re-training delay/cost, or poor accuracy when long-term

data is considered. For example, in [247] the effect of detection depth on time-series with

an Long Short Term Memory (LSTM) model has been studied, highlighting the potential

drawbacks of considering long-term data. Additionally, improving the performance of a DL

model is not solely dependent on having more parameters, as deep neural networks often

generalize better than shallow networks with the same number of parameters [383].

In terms of data retention, legal and business requirements dictate the collection of logs and set

limits on both data content and duration. Telecommunications service providers, for example,

typically deal with Call Detail Records (CDRs) [120] and IP Detail Records (IPDRs) [179]. The

storage period for these records can range from a minimum of three months to a maximum of

seven years, depending on the specific business domain and the regulations in the hosting

country (e.g. [77] for French regulatory issues). Compliance standards such as PCI DSS17,

HIPAA18, NERC19, and SOX20 outline the duration requirements for data retention. It is

important to note that logs may contain sensitive information about individual users, which

raises privacy concerns. Regulations like General Data Protection Regulation (GDPR) impose

16https://www.gartner.com/en/information-technology/glossary/dark-data
17Payment Card Industry Data Security Standard, see https://www.pcisecuritystandards.org/document_library
18Health Insurance Portability and Accountability Act, see https://www.hhs.gov/hipaa/for-professionals/index.

html
19North American Electric Reliability Corporation, see https://www.nerc.com/Pages/default.aspx
20Sarbanes-Oxley Act (SOX), see https://www.soxlaw.com/
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specific content and duration policies for managing logs. For example, a minimum storage

period of 3 months is required, followed by anonymization and eventual erasure of logs after

one year [13]. Record management is the implementation of these policies at the organizational

level, ensuring compliance with privacy regulations and data retention requirements.

Record management is defined as the “field of management responsible for the efficient

and systematic control of the creation, receipt, maintenance, use and disposition of records,

including the processes for capturing and maintaining evidence of and information about

business activities and transactions in the form of records” [158]. Similarly, it is defined by the

set of activities including “the planning, controlling, directing, organizing, training, promoting,

and other managerial activities involving the life cycle of information, including creation,

maintenance (use, storage, retrieval), and disposal, regardless of media” [41, DL1.105].

The driving forces mentioned above provide some guidance for time-related aspects of

database capacity planning. The data retention period, ranging from three months to po-

tentially over seven years, can be considered “long” in terms of data volume and velocity

when viewed from a day-to-day perspective. This introduces a tradeoff between persistent

data storage and access speed. In the field of data processing, persistent data refers to in-

formation that is infrequently accessed and not likely to be modified. On the other hand,

dynamic data or transactional data refers to information that is periodically updated, meaning

it changes asynchronously over time as new information becomes available. Considering this

distinction between persistent data and dynamic data is important when making decisions

about database design, storage, and access speed. It allows for a more efficient allocation of

resources based on the specific characteristics and requirements of the data.

Various research lines and strategies address the challenge of long-term and short-term data

access. Key principles used to tackle this problem include data compression, data abstraction,

subsampling, resolution adaptation, and data forget. Data compression is an important prin-

ciple that can be applied in different ways [247], for example: 1) basic data compression is

applied by DBMS; 2) old time-series data are “consolidated” (i.e. subsampled and averaged).

Summary and concluding remarks. In this section, we have discussed computational effi-

ciency from four perspectives: DBMS, hardware, data structure/encoding, and data retention.

These angles have been shown to be entangled or stacked, and, in summary, the goodness

of fit of all the technological and abstract components encompassed in these perspectives

determines I/O perfomances.

A more detailed analysis has highlighted the concept of data continuity as a key factor for

I/O performance in general. At the OS level, studies such as [47, 124, 230] have demonstrated

that this continuity characteristic is influenced by related concepts and hypotheses such as
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mutable/immutable variables, reference locality, and programming models. Therefore, unless

there is complete control over the implementation of the hardware-OS-software stack, graph

data processing should prioritize understanding the technical and algorithmic principles that

can ensure data is stored, transferred, and processed in a continuous and localized manner.

In addition, the analysis of storage engines’ implementation suggests that using indirection

tables with as many tables as there are ways (views) to query the data (i.e. queries/views

with a look-up component that is principally node-based, edge-based, attribute-based, value-

based, etc.) is the best approach for data traversal. Therefore, traversal performance should

be considered as a primary analysis axis, if not as important as the data access performance

criterion. Similarly, data access performance is shown to be determined by the fit between

both data structures and hardware architectures depending on “where data is managed” and

“how data is presented”. Thus any processing modeling attempt that follows the pattern

of (algorithm with data)
xPU−−→ (processed data) will be superficial and will not generalize. Fi-

nally, the concept of data site (location) can be useful for modeling structure mappings and

analyzing the performance of the processing pipelines. Different data structures perform dif-

ferently depending on the site considered (e.g. file system, Python dictionaries, CPU registers).

This concept is related to the knowledge compilation [140] and Abstract Rewriting Systems

(ARSs) [333] research topics.

To conclude on the richness and complexity of the data structure and computation efficiency

topic, it is worth noting that it is an established and active technical/research domain with well-

organized communities. In the 80s, the Fifth Generation Computer Systems (FGCS) initiative21

aimed at efficient reasoning with hardware implementation but failed to achieve its goals

due to the lack of expressiveness in the usage of tree-like structures [201]. More recently,

the OpenCypher project22 maintains various sub-topics of research in data structure and

computation efficiency, including data models, expressiveness, scalability, and performance.

Relevant research papers, such as a survey of graph database models [303] and approaches

for high-performance exploration on large graphs [260], can be found there. Additionally,

bridges with other scientific domains, such as biology, can enrich the technological approaches

discussed above. For example, Rent’s rule in biology provides an empirical law for evaluating

the compactness of technical/biological systems [209], which relates to concerns about locality

and compression.

21See https://en.wikipedia.org/wiki/Fifth_Generation_Computer_Systems for an overview.
22https://www.opencypher.org/
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Chapter C

Résumé en français

C.1 Introduction

Problématiques et motivations. L’exploitation de réseaux informatiques et télécoms de

grande taille (backbones internationaux haut débit, réseaux d’entreprises, réseaux d’accès à

Internet) amène, tôt ou tard, à être confronté à la gestion de situations d’incident complexes,

telles que des perturbations globales de services du fait de défaillances en cascade ou de

cyber attaques. Pour établir un diagnostic et gérer les incidents, les équipes de support

technique utilisent typiquement des informations provenant d’outils de supervision et d’aide

à la décision de la famille des NMS (Network Monitoring System) et des SIEM (Security

Information and Event Management). Ces outils utilisent généralement une représentation

élémentaire des infrastructures et des services réseau.

De façon simplifiée, les réseaux informatiques et télécoms sont un ensemble d’ordinateurs,

de routeurs et autres dispositifs connectés et configurés pour le traitement et la transmission

de données. De même, un service réseau est l’utilisation de cette capacité de traitement et

de partage à des fins spécifiques, des plus triviales (divertissement, réservation de billets,

domotique) aux plus exigeantes (marchés financiers, gestion des feux de circulation, gestion

de centrales nucléaires).

Bien qu’évident au premier abord, ce niveau de description n’est pas suffisant pour garantir

une qualité de service élevée pour des réseaux de grande taille. Cela est dû à l’hétérogénéité

des TIC (Techniques de l’Information et de la Communication) qui les composent, rendant

difficile le diagnostique et la résolution des incidents : afin d’assurer le bon fonctionnement

des services, les équipes de supervision doivent prendre en compte et interpréter rapidement

un grand nombre d’informations provenant de systèmes techniques divers et dynamiques. On

peut prendre pour exemple une architecture de service qui combine des machines virtuelles

réparties dans divers centres de calcul, ces centres étant interconnectés par un réseau mul-
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ticouche IPoDWDM1. Être efficace dans ce contexte nécessite d’intégrer et de corréler les

données de sources et de nature variées, telles que celles provenant des outils de gestion des

machines virtuelles, des outils de gestion du réseau de transport optique (qui sont potentielle-

ment gérées par un opérateur tiers), des informations sur les opérations planifiées et les infor-

mations de contact des équipes de maintenance locales. Compte tenu d’interdépendances

complexes entre les services et l’infrastructure réseau, l’importance d’une représentation com-

plète et standardisée des connaissances sur les actifs et les événements des réseaux devient

évidente pour quiconque souhaite développer un système d’aide à la décision capable de

capturer et d’analyser un contexte d’incident dans son ensemble.

Dans le même temps, nous pourrions être tentés de résoudre ces problèmes de complexité

et d’efficacité opérationnelle en ajoutant des techniques d’IA (Intelligence Artificielle/Aug-

mentée) aux outils de supervision. Cela s’observe déjà dans divers produits commerciaux

et open source, notamment pour le regroupement et la priorisation d’alarmes, les alertes

en cas de rupture de tendance (p.ex. une augmentation soudaine du trafic réseau) ou les

alertes en cas de comportements à risque d’utilisateurs (p.ex. des tentatives d’authentification

inhabituellement fréquentes à partir de diverses localisations). En pratique, cela correspond à

mettre en œuvre un ensemble de règles métier combiné à de l’analyse de corrélations. Cette

approche est efficace dans la mesure où les règles métier donnent, grâce à leur caractère

logique, une certaine forme d’explicabilité aux alertes et recommandations générées par l’IA.

Malgré cela, la charge opérationnelle pour les équipes de supervision reste importante car

les systèmes à base de règles sont compliqués à maintenir en raison d’un grand nombre de

règles ad hoc et qui réagissent sur des états discrets des systèmes, ce qui nuit à la générali-

sation et entraîne de nombreux faux négatifs. Une approche alternative consiste à utiliser

des modèles probabilistes issus de l’apprentissage automatique. C’est également efficace car

ce type d’approche permet une généralisation des modèles de détection à différents types

de signaux, mais perd en explicabilité en raison de l’opacité des modèles (p.ex. un tenseur

de probabilités dans un réseau de neurones) et induit, là encore, une charge opérationnelle

due aux faux positifs. Étant donné que les deux approches présentent des avantages et des

inconvénients complémentaires, la question se pose d’identifier des principes qui peuvent

être partagés pour répondre aux exigences d’explicabilité et de généralisation, en ligne avec le

besoin mentionné juste avant de représentation standardisée.

Approche générale et résultats. Dans cette thèse, nous abordons les enjeux de la représen-

tation standardisée des données et de la corrélation d’informations à travers la pratique de

l’ingénierie des connaissances. Plus précisément, nous étudions l’intérêt de structurer les

données des réseaux dans un graphe de connaissances [8, 119], et explorons en quoi cette

structure permet de maîtriser la complexité des réseaux, notamment pour des applications en

1Internet Protocol (IP) over Dense Wavelength-Division Multiplexing (DWDM).
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détection d’anomalies sur des réseaux dynamiques et de grande taille. Quatre ensembles de

résultats et de contributions ont émergé de ce travail de recherche, qui peut être résumé ainsi :

• NORIA-O. Nous avons proposé l’ontologie NORIA-O, un modèle de données reposant

sur les techniques du Web sémantique [352] et développé en collaboration avec des

experts en réseaux et en cybersécurité. L’ontologie permet aux équipes d’exploitation

et aux algorithmes d’analyse d’avoir une vue complète et homogène des réseaux, y

compris pour des données provenant de sources différentes. Les modèles de données

existants se concentrent sur la représentation des ressources informatiques et de leur

utilisation, mais il n’existe actuellement aucun modèle qui décrive les interdépendances

entre les aspects structurels, dynamiques et fonctionnels d’une infrastructure réseau.

NORIA-O comble cette lacune.

• Plateforme de données basée sur les graphes de connaissances. Nous avons développé

une architecture de traitement de données qui combine des principes de conception

du domaine des NMS/SIEM avec des outils du Web sémantique pour construire un

graphe de connaissances. Cette architecture permet l’interconnexion de données

hétérogènes en utilisant des vocabulaires contrôlés, ce qui est primordial pour une

interprétation efficace des événements et des incidents. Les graphes de connaissances

et les techniques du Web sémantique jouent un rôle essentiel dans la résolution des défis

liés à l’hétérogénéité des données, au partage des connaissances et au raisonnement

logique/probabiliste. La plateforme inclut des fonctions telles que le traitement par

lots/en flux, la transformation déclarative des données, le patching et la réconcilia-

tion des données, la gestion centralisée de la configuration de la plateforme, l’audit

de la provenance des données, et le transfert des données sémantiques par un bus de

messages.

• Système de techniques de détection d’anomalies. Nous avons défini trois familles

de techniques de détection d’anomalies s’appuyant sur les graphes de connaissances

et le modèle de données NORIA-O : model-based design, process mining et statistical

learning. Nous avons démontré que, à travers une vue homogénéisée des données des

réseaux, les capacités d’inférence de chaque famille de techniques sont étendues à un

plus large éventail de situations anormales. De même, le couplage entre les techniques

et les sources de données est réduit. Nous avons également démontré que l’utilisation

conjointe des techniques selon le principe de raisonnement synergique (prise de dé-

cision coopérative) [46] amène le système à présenter simultanément une propriété

d’explicabilité intrinsèque et de capacité de raisonnement probabiliste. Ce principe

consiste à réinjecter les connaissances résultantes de l’application d’une technique

dans le graphe de connaissances, ce qui fournit des informations supplémentaires de

contexte lors de l’application ultérieure des autres techniques. Par rapport à un modèle
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unique de détection spécialisé sur un type de donnée ou un domaine d’application,

cette approche permet de couvrir globalement un plus nombre de situations anormales.

• Conception et ergonomie d’une interface homme-machine. Nous avons proposé une

architecture logicielle client-serveur utilisant les techniques Web [310] et un graphe

de connaissances pour accompagner les équipes support dans leur prise de décision

lors d’anomalies réseau complexes, à la fois pour le périmètre de la gestion des in-

frastructures et celui de la cybersécurité. À travers cela et une série d’entretiens avec

un panel d’experts des opérations réseaux, nous avons identifié les attentes essen-

tielles des équipes en matière d’ergonomie et de fonctions. Nous avons notamment

démontré la nécessité de concevoir ce type de solution en allant au-delà de la seule

récupération et présentation des données du graphe de connaissances. Le raison-

nement synergique et l’exploration interactive des systèmes techniques apparaissent

en effet comme des principes essentiels à mettre en œuvre. L’évaluation de l’interface

par un panel d’utilisateurs fournit par ailleurs une base de travail importante pour de

futur travaux de conception d’outils de type NMS/SIEM qui utiliseraient des graphes de

connaissances et des mécanismes de raisonnement hybride logique/probabiliste.

Cette recherche a été développée dans le cadre du projet “NORIA” de la direction de la

recherche d’Orange2, un opérateur international d’infrastructures et de services réseaux.

Les résultats de cette thèse de doctorat ont mené à plusieurs publications et présentations

(Chapitre A), dont huit papiers de recherches acceptés dans des conférences scientifiques inter-

nationales et un en cours de relecture. Ces résultats ont par ailleurs eu un impact industriel sig-

nificatif, menant notamment au déploiement actif d’un système de jumeau numérique [163]

basé sur les graphes de connaissances au niveau du groupe Orange. Ils ont de même donné

l’opportunité d’encadrer et de soutenir quatre étudiants dans leurs stages et projets finaux,

leur fournissant ainsi une formation en techniques du Web sémantique et en architecture des

systèmes d’aide à la décision. Enfin, les résultats de cette thèse ont également contribué à

l’établissement de la communauté “RML join”, un groupe de travail au sein du Knowledge

Graph Construction Community Group du W3C3, dans le cadre d’un effort de standardisation

de l’ontologie RML [23] afin d’en faire une recommandation W3C.

Dans la suite de ce chapitre, nous présentons les détails essentiels des travaux de cette thèse.

Dans la Section C.2 nous abordons le développement de NORIA-O et de l’architecture de

construction de graphes de connaissances. Dans la Section C.3 nous présentons les trois

familles de techniques de détection d’anomalies et leur utilisation à travers l’interface homme-

machine développée. Enfin, nous concluons ce résumé en Section C.4.

2https://hellofuture.orange.com
3https://www.w3.org/community/kg-construct/
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C.2 Ingénierie des connaissances et données massives

Une ontologie pour la détection d’anomalies et la gestion des incidents des TIC. Afin de

développer NORIA-O, nous avons réuni un panel d’experts en provenance de diverses entités

du groupe Orange en rapport aux domaines de l’ingénierie et de l’exploitation des réseaux.

Ce panel se compose de 16 experts qui représentent collectivement 150 membres d’équipes

des opérations. Nous avons suivi l’approche dite des “Questions de Compétence” [385] pour

établir le modèle conceptuel du domaine de discours. Cette approche consiste à identifier les

concepts et relations clés du domaine de discours par le découpage, selon un ensemble de

motifs sémantiques pré-établis, des requêtes d’utilisateurs formulées en langage naturel. À

l’issue de plusieurs réunions de travail, les équipes ont validé 26 questions de compétences.

Ces questions sont disponibles dans la Table 3.1 et en open source à l’adresse https://w3id.

org/noria/cqs/.

Pour l’étape d’implémentation, nous définissons l’espace de nommage noria. Nous avons

choisi d’utiliser une axiomatisation reposant principalement sur un raisonnement par sub-

somption en utilisant le langage de représentation RDFS [82], et le langage OWL [319]

lorsqu’une structuration logique plus poussée est nécessaire (p.ex. disjonction de classes,

relations qualifiées). Nous avons de même suivi les principes de la méthode “Linked Open

Terms” (LOT) [224] qui vise, entre autres, la réutilisation ou l’alignement à des vocabulaires

existants. Des ontologies existantes utilisant le modèle de graphe RDF, nous interconnectons

et/ou étendons les vocabulaires suivants : BBO [22] pour décrire les activités du point de

vue de la modélisation des processus métier conformément au standard BPMN ; BOT [215]

pour décrire la localisation des ressources techniques ; DCTERMS pour décrire les instances

de NORIA-O en tant qu’éléments d’un catalogue ; DevOpsInfra [270] pour permettre des

interactions potentielles de NORIA-O avec la pratique DevOps ; FOAF [81] pour représenter

les personnes et groupes sociaux ; FOLIO [62] pour permettre l’analyse des causes racines

selon l’approche FMEA (analyse des modes de défaillance) ; ORG [86] pour décrire les parties

prenantes et les organisations associées ; SEAS & PEP [240, 241] pour décrire les systèmes tech-

niques et l’exécution de procédures ; UCO [388] pour permettre une évaluation des risques de

cybersécurité sur les instances de NORIA-O ; SLOGERT [26] pour décrire les journaux système

et envisager l’utilisation de la suite d’outils de SLOGERT de traitement des journaux. Des

modèles ne reposant pas sur RDF, nous réutilisons une partie du vocabulaire et de la tax-

onomie du TM Forum4 concernant l’interopérabilité des systèmes de gestion des opérateurs

télécoms, de l’ITU-T [166, 164] sur les messages des systèmes de supervision dans l’industrie

des télécommunications, et de l’IETF pour une utilisation précise de la terminologie des

techniques d’Internet telles que définies dans les “Requests for comments” (RFC)5.

4https://github.com/tmforum-apis
5https://datatracker.ietf.org/
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L’implémentation de NORIA-O est disponible en open source à l’adresse https://w3id.org/

noria/. Le modèle est composé de 59 classes, 107 propriétés d’objet et 71 propriétés de

données. La Figure C.1 en donne un aperçu. Son expressivité est ALC HOI (D) selon l’outil

Protégé 5.1 [227].

Figure C.1: Aperçu du modèle NORIA-O
Ce diagramme montre les classes et les propriétés les plus importantes du modèle de données, ainsi que les facettes du domaine
de discours et les relations avec des modèles tiers. Les facettes sont définies ainsi : structural = décrit les éléments physiques et
logiques constituant les réseaux (p.ex. serveurs, routeurs, liaisons Ethernet), functional = décrit les services et zones d’échanges,
dynamic = décrit les séquences d’événements, procedural = décrit comment les choses fonctionnent ou comment une séquence
d’événements doit être interprétée. noria est l’espace de nommage par défaut. Certaines propriétés sont regroupées du
modèle sout regroupées dans ce visuel (voir “object property simplifiée”) afin de simplifier la représentation. Le diagramme suit
partiellement la spécification Graffoo [330].

Une plateforme basée sur les graphes de connaissances. En partant de l’hypothèse que

la mise en correspondance de sources de données multiples à travers leur représentation

sémantique permettrait d’améliorer les capacités de détection des outils de supervision,

nous avons cherché à comprendre comment les processus type de traitement des données

classiques (p.ex. “Extract, Transform, Load”, CRISP-DM [323]) pourraient s’appliquer aux

graphes de connaissances. Ces processus classiques ne prennent pas directement en compte

les capacités d’abstraction et de raisonnement offertes par les techniques du Web sémantique

et les graphes de connaissances. De plus, l’intégration des données et les fonctions d’aide à

la décision y sont généralement considérées comme deux aspects distincts. Une approche

cognitive de l’analyse des données par itérations (i.e. des données brutes → des informations

→ des connaissances) ou par raisonnement synergique [46] est ainsi écartée.

Sur la base de ces considérations, nous proposons un modèle de chaîne de traitement (Figure

C.2) pour guider les étapes de conception d’une plateforme basée sur les graphes de connais-

sances : les données non structurées (p.ex. les journaux d’événements) entrent dans la chaîne

et sont transformées en données structurées grâce à l’application d’un modèle de structure
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pré-défini/appris. Un modèle sémantique est appliqué pour créer des données annotées.

Celles-ci peuvent être associées à des connaissances supplémentaires provenant d’un service

d’enrichissement (p.ex. la mise en correspondance des ressources techniques avec des infor-

mations sur l’organisation de l’entreprise ou sur les vulnérabilités des systèmes). Le service de

raisonnement (p.ex. règles métier, propagation des convictions, prédiction de liens/entités)

traite les données annotées pour produire des connaissances supplémentaires (i.e. des données

interprétées). Des agents en aval (p.ex. les équipes opérationnelles, des outils du système

d’information) sont informés (p.ex. diagnostic d’un incident) en interrogeant les données

interprétées. Ce modèle de chaîne de traitement est ouvert à des processus complémentaires,

tels que l’intégration de flux direct de données structurées ou l’exécution récursives de l’étape

d’inférence.

Nous proposons les principes de conception suivants pour rationaliser le développement

d’une plateforme basée sur les graphes de connaissances et en faciliter l’adoption par les

utilisateurs : 1) Minimiser les besoins de transformation à l’entrée de la chaîne : l’encodage des

données (sérialisation et structuration) doit être rétro-compatible le plus tôt possible dans la

chaîne de traitement afin de limiter le nombre de technologies utilisées ; 2) Indépendance à

l’utilisation en aval : les applications en aval de la chaîne fonctionnent potentiellement en

paralèle les unes des autres et en s’intéressant à différents aspects des données, la sérialisa-

tion/structure doit donc permettre une séparation facile des données des métadonnées sans

imposer d’appels de procédures distantes spécifiques ; 3) Indépendance à l’implémentation :

une approche déclarative (i.e. description abstraite) des règles de transformation et mé-

canismes de traitement permet de décrire et de transposer le comportement du système

indépendamment des implémentations et socles technologiques ; 4) Intégrer, personnaliser

ou développer : donner la priorité à l’intégration de solutions existantes qui répondent aux

exigences, étendre/adapter les solutions partiellement conformes ou développer des solutions

spécifiques si aucune des options précédentes ne s’applique.

En suivant ces principes, nous avons développé et déployé une architecture de traitement

des données (Figure C.2) de type Lambda [95] en combinant des solutions open source bien

connues (Apache Kafka6, Apache Airflow7, OpenLink Virtuoso8), des projets académiques

(RMLMapper [24], StreamingMASSIF [292], string2vocabulary [276], grlc [9], RDFUnit9) et du

code ad hoc publié en open source (Table 4.1). L’architecture proposée a été instanciée et

testée dans un environnement industriel, produisant un graphe de connaissances RDF qui

présente un fort potentiel pour traiter les anomalies impliquant plusieurs systèmes à partir de

données hétérogènes. Elle permet typiquement de :

6https://kafka.apache.org/
7https://airflow.apache.org/
8https://virtuoso.openlinksw.com/
9https://github.com/AKSW/RDFUnit
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1. Construire un graphe de connaissances RDF à partir de données statiques (listes de

ressources informatiques, organisation) et de données en flux (tickets d’incident, jour-

naux système, alarmes) ;

2. Annoter les données par des informations de provenance et de niveau de confiance ;

3. Modifier/réconcilier/lier les données sémantiques (patching) au moment de la con-

struction du graphe ou a posteriori ;

4. Mettre en œuvre des algorithmes de raisonnement en cascade et synergiques.

La solution minimise notamment les efforts en matière de qualité et de traçabilité des données

grâce à l’utilisation généralisée du vocabulaire RML [24] pour décrire les transformations, ainsi

que grâce au stockage centralisé des données et des règles de transformation dans le graphe

de connaissances. En outre, la solution ouvre à la possibilité d’un traitement distribué ou

déclenché par des événements grâce à la généralisation du transfert de données RDF par un

bus de messages. Cependant, en l’état, nous observons que l’annotation de la provenance des

données à l’échelle du jeu de données, plutôt qu’au niveau de chaque triplet du graphe généré,

entraîne une perte de granularité de l’information après les étapes de patching. De même,

une étude de charge approfondie est nécessaire pour envisager le déploiement des outils de

traitement de flux sur des données massives (p.ex. les données de télémétrie provenant de

routeurs de réseau large bande ou d’une flotte d’objets IoT).

C.3 Détection d’anomalies et aide au diagnostique

Pour aborder efficacement le sujet de la détection d’anomalies sur les réseaux de grande taille,

nous avons commencé par mener des entretiens avec des experts de l’exploitation des réseaux

en vue d’identifier les cas de détection et de diagnostic clés dans leur activité quotidienne. Ces

cas d’utilisation sont analysés en vue d’une représentation en logiques descriptives [119] afin

de fournir des garanties d’explicabilité et de transposabilité lors d’éventuelles implémentations

dans des solutions algorithmiques.

À travers cette analyse, nous démontrons que le diagnostique d’incidents nécessite l’utilisation

de la logique implicative, ce qui conditionne la façon dont le graphe de connaissances est

construit, ainsi que les possibilités de transcription des cas de détection en SPARQL (le lan-

gage de requête standard des graphes de connaissances RDF) [368]. Pour premier exemple,

l’hypothèse du monde ouvert10 – inhérente à l’utilisation des logiques descriptives et des

graphes de connaissances – peut être aisément contredite par le fait qu’une mesure de l’état

du système (un observable tel que la présence de signaux sur une interface d’un équipement

de réseau) puisse temporairement échapper aux outils de supervision (perte de paquet dans le

10Open World Assumption [8] : ne pas matérialiser un fait ne veut pas dire qu’il n’est pas avéré.
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Figure C.2: Aperçu de la chaîne d’intégration de données.
L’architecture présentée est de type Lambda [95]: une chaîne transforme les données statiques par lots à partir de règles
de transformation en langage RML, une chaîne traite les données en flux à partir de règles elles aussi en RML, le graphe de
connaissances est construit au fur et à mesure en enregistrant les données sémantiques issues des deux chaînes précédentes
dans une base de données spécialisée (KG). Les données du graphe sont structurées selon l’ontologie NORIA-O. Acronymes :
ESB = Enterprise Service Bus, SSB = Semantic Service Bus, KG = Knowledge Graph. Les flèches pleines représentent les flux de
données, les flèches en pointillés représentent les flux de contrôle et de requête. Les flèches commencent à partir du composant
initiant le flux/la transaction. Les chiffres pour les blocs “descriptive datasets” et “events” font référence au nombre de sources
utilisées dans nos expérimentations pour construir le graphe de connaissance. Les noms des composants entre parenthèses
sont liés aux outils de la Table 4.1. P1 et P2 représentent les groupes de composants de traitement dans une lecture de la chaîne
d’outils ET [P1]L[P2][L] (i.e. en correspondance avec le modèle de processus Extract-Transform-Load).

réseau, défaut dans le traitement, etc.), ce qui induirait des faux positifs/négatifs selon la façon

d’implémenter la règle de détection. Le second exemple vient du fait que le processus de diag-

nostic peut amener à utiliser des opérateurs qui ne sont pas aisément exprimables en logique

descriptive ou qui sont absents de SPARQL (p.ex. calcul de voisinage, plus court chemin), ce

qui implique de sortir d’un cadre strictement logique en définissant des opérateurs additionels

retournant des ensembles (“set returning functions”). Ce second exemple se retrouve notam-

ment dans le besoin d’être en capacité de “circonscrire l’espace d’investigation des ressources

réseaux et de recherche des causes pour les situations d’incident multi-applications” tel que

formulé par les experts lors des entretiens, et qui définit un idéal à atteindre en matière de

solution algorithmique à développer.

Sur la base de ces analyses, nous avons défini trois familles d’approches pour modéliser

et détecter les anomalies (Table C.1) à l’aide de graphes de connaissances, chaque famille

couvrant des attentes spécifiques en rapport aux cas de détection mentionnés par les experts

(p.ex. analyse de séquence, apprentissage de contexte) et des propriétés différentes (p.ex.

apprentissage automatique vs connaissances métier, explicabilité intrinsèque vs post-hoc).

En utilisant NORIA-O et le graphe de connaissances produit dans les étapes précédentes

de cette thèse (Section C.2), nous montrons comment chaque approche peut être mise en
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Table C.1: Familles de techniques de modélisation des anomalies

Principe Forces Faiblesses

Model-Based Design

Interroger le graphe pour récupérer
les anomalies et leur contexte.

Détection d’anomalies “enreg-
istrées” de quelque manière que
ce soit dans le graphe grâce aux
systèmes de supervision ; traduc-
tion simple des règles de détection
d’anomalies ; plusieurs niveaux
d’abstraction (subsumption).

Repose sur les connaissances
d’experts ; absence de raison-
nement probabiliste ; difficile de
représenter des décisions séquen-
tielles ; peut nécessiter d’inférer
plus d’informations préalables sur
l’anomalie, par exemple son type à
l’aide d’une classification.

Process Mining

Aligner une séquence d’entités sur
des modèles d’activité, puis utiliser
cette similarité pour guider la répa-
ration.

Détection d’anomalies avec
plusieurs signaux d’alerte et dé-
cisions séquentielles ; modèles
rejouables.

Repose sur les connaissances
d’experts ; peut nécessiter de
débruiter les modèles ; similarité
probabiliste.

Statistical Learning

Relier des entités en fonction de
similarités de contexte, puis utiliser
cette similarité pour alerter et
guider la réparation.

Détection d’anomalies avec
plusieurs signaux d’alerte.

Nécessite un réglage fin de la défini-
tion du contexte en fonction du cas
d’utilisation et des exigences sur la
profondeur temporelle à capturer;
correspondances probabilistes.

œuvre et utilisée individuellement ou en combinaison pour gérer une large gamme de situ-

ations d’incidents. Les trois paragraphes qui suivent présentent chacune des trois familles

d’approches, et le quatrième paragraphe montre comment utiliser les approches à travers une

application Web développée spécifiquement.

Des connaissances métier et des modèles formels pour la détection d’anomalies. Nous

explorons la famille de techniques model-based design à travers trois expériences reposant

sur l’idée que les données présentes dans le graphe de connaissances sont nécessaires et

suffisantes pour détecter et qualifier une anomalie. Pour cela, nous utilisons directement les

techniques du Web sémantique, à savoir l’exécution de requêtes SPARQL pour interroger le

graphe, et les règles de raisonnement implicites au modèle de données qui structure le graphe.

La première expérience correspond au cas décrit en Figure C.3, représentatif d’une situation

de dégradation de la redondance d’un système. L’approche model-based équivaut à considérer

qu’une règle métier fourni par les experts sert de référence à l’implémentation du mécanisme

de détection. Dans le cas présent, l’objectif “Quelles applications ont k sur n (50%) ressources

en alarme ? Lever une alerte pour celles-ci.” est rempli en transcrivant la règle en requête

SPARQL (Listing C.1).

1 # === PREFIXES ================================================================
2 PREFIX dcterms: <http://purl.org/dc/terms/>
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Figure C.3: Motif de graphe pour le cas de détection “k sur n”
Exemple de motif de graphe pour le cas de détection “Quelles applications ont k sur n (50%) ressources en alarme ?”. Le
diagramme inclut une vue simplifiée de la topologie du réseau (réseau d’accès et réseau cœur) à travers lequel les serveurs
communiquent pour échanger des messages Hello. noria est l’espace de nommage par défaut pour les concepts et les relations.
Le diagramme suit partiellement la spécification Graffoo [330].

3 PREFIX prov: <http://www.w3.org/ns/prov#>
4 PREFIX noria: <https://w3id.org/noria/ontology/>
5 BASE <https://w3id.org/noria/>
6

7 # === REQUETE =================================================================
8 CONSTRUCT {
9 ?EventURI a noria:EventRecord ;

10 prov:wasDerivedFrom "noria-sdlri2023-toy-example" ;
11 noria:alarmMonitoredAttribute "Resilience" ;
12 noria:alarmSeverity <kos/Notification/Severity/PerceivedSeverity/major> ;
13 noria:logOriginatingManagedObject ?App ;
14 noria:logOriginatingManagementSystem <object/APP_NORIA_AD> ;
15 noria:loggingTime ?NotificationConstructTime ;
16 dcterms:description "Application at risk: K out-of N (50%)" ;
17 dcterms:type <kos/Notification/EventType/inferredAlert> .
18 } WHERE {
19 SELECT
20 ?App (COUNT(DISTINCT ?Res) AS ?ResTotal)
21 (COUNT(DISTINCT ?ResImp) AS ?ResWithImpact)
22 (NOW() as ?NotificationConstructTime)
23 (IRI(CONCAT("event/AIS_TOY_", strUUID())) AS ?EventURI)
24 WHERE {
25 ?Res a noria:Resource ;
26 noria:resourceForApplication ?App .
27 OPTIONAL {
28 ?Event a noria:EventRecord ;
29 noria:logOriginatingManagedObject ?Res .
30 BIND (?Res AS ?ResImp) }
31 } GROUP BY ?App HAVING ( (?ResWithImpact / ?ResTotal) >= 0.5)
32 }

Listing C.1: Requête SPARQL pour le problème “k sur n” de dégradation de redondance, avec

génération d’une entité EventRecord pour alerter.

Les deux expériences suivantes (non détaillées ici, voir la Section 5.4 pour cela) complètent

l’exécution d’une requête par du raisonnement automatique. Nous utilisons l’ontologie FO-
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LIO [62] pour l’analyse de cause racine, une étude préalable des modes de défaillance11 servant

de règles métier pour le système de déduction. Enfin, nous utilisons le générateur d’ontologies

CFGOwl [255] pour la classification de séquences d’événements, une spécification préalable

des motifs de séquences ayant été effectuée en syntaxe Lark12 (une syntaxe et un analyseur

pour définir une grammaire non contextuelle) et servant de règles métier pour le système de

déduction.

Dans l’ensemble, les trois expérimentations montrent la faisabilité de transcrire directement

des connaissances d’experts dans un mécanisme formel de détection. Ces mécanismes

permettent de détecter une anomalie à partir des données présentes dans un graphe de

connaissances, mais ne permettent cependant pas de prédire un état futur du système. Pour

contourner cette limitation, l’expert doit inclure de lui-même un indice des potentialités

dans le modèle formel, indice qui ne sera pas utilisé en tant que tel dans le mécanisme de

raisonnement mais simplement comme une information complémentaire rapportée aux

utilisateurs.

Apprentissage relationnel et détection d’anomalies sur les traces de navigation Web. Une

part importante des interactions des utilisateurs avec les applications se fait désormais via

une interface Web. Un scénario relativement simple pourrait être le suivant : après une phase

de reconnaissance du système ciblé, l’utilisateur malveillant accède directement à la page

d’accueil d’une plateforme de service, trompe le système d’authentification (p.ex en utilisant

une technique d’injection SQL13), extrait des données, puis quitte le service en naviguant

directement vers une autre page. La détection de ce type de situation nécessite l’analyse

à la fois des journaux d’application et du contenu du trafic réseau. Malheureusement, les

journaux d’application peuvent être inaccessibles ou inutilisables en raison de problèmes

de confidentialité ou de formatage incorrect. De même, le trafic réseau peut être chiffré

ou inaccessible à la collecte, ce qui entraîne la perte d’informations sur l’interaction de

l’utilisateur avec la plateforme et le scénario d’attaque [151].

Pour aborder ces difficultés, nous faisons l’hypothèse qu’une contextualisation des traces

d’activité des utilisateurs et des processus informatiques par rapport aux informations de

topologie de réseau devrait permettre d’identifier les comportements anormaux. Pour ap-

prendre des modèles d’activité interprétables sous forme de données liées, nous développons

une extension de navigateur Web et l’utilisons dans une chaîne de traitement de données

(Figure C.4) mettant en pratique la famille de techniques dénommée plus haut process mining.

L’extension, baptisée Graphaméléon, collecte les traces d’activité des utilisateurs (trafic réseau,

interactions avec le navigateur Web) lors d’une session de navigation Web et sérialise ces

11Aussi connu sous le terme “Failure Mode and Effect Analysis” dans le monde Anglo-saxon.
12https://www.lark-parser.org/ide/
13https://en.wikipedia.org/wiki/SQL_injection
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données en RDF en utilisant le vocabulaire UCO [388]. Les données résultantes sont ensuite

intégrées dans un graphe de connaissances pour interpréter les traces d’activité à un niveau

sémantique et dériver des motifs, notamment sous forme de réseaux de Petri [374]. Ces

modèles d’activité peuvent ensuite être utilisés pour identifier des situations similaires en

les projetant sur le graphe de connaissances et, sur la base de cette projection, obtenir des

informations contextuelles en parcourant le graphe.

Figure C.4: Aperçu du pipeline de traitement des données de Graphaméléon.
L’extension Web Graphaméléon capture et annote l’activité de l’utilisateur au niveau du navigateur Web. Un composant de
découverte des processus (process mining) dérive des modèles d’activité à partir du graphe de connaissances RDF résultant. Ces
modèles peuvent être utilisés pour construire une bibliothèque de modèles d’activité, qui sont ensuite utilisés par un composant
de vérification de conformité (conformance checking) pour classer de nouvelles traces d’activité en tant qu’activités normales
ou anormales.

Nous évaluons notre approche à travers deux séries d’expérimentations. Tout d’abord, nous

analysons la corrélation entre le volume de triplets RDF générés par Graphaméléon et la

nature/complexité d’un ensemble de sites Web de référence accessibles sur l’Internet. Ensuite,

nous modélisons et identifions trois scénarios de navigation Web en utilisant Graphaméléon

et les réseaux de Petri dans un environnement contrôlé. L’un des scénario correspond à

une attaque par injection SQL, comme évoqué au début de ce paragraphe. Les expériences

sont menées en utilisant Graphaméléon v2.1.0, disponible en open source sur https://github.

com/Orange-OpenSource/graphameleon. Nous mettons de même à disposition les données

associées à ces expériences sur https://github.com/Orange-OpenSource/graphameleon-ds.

L’expérience d’analyse de la complexité des sites Web montre que l’augmentation des échanges

réseau (visible notamment à travers la structure du graphe résultant) est fonction de la poli-

tique d’anti-traçage appliquée au niveau du navigateur Web, ce qui fournit une base de travail

intéressante pour de futurs travaux de catégorisation de sites Web par les stratégies de traçage

en ligne mises en œuvre par les éditeurs de contenu Web et la topologie du réseau qui y corre-

spond. Avec la seconde expérience, portant sur la classification des traces de navigation, nous

montrons la façon de procéder pour utiliser les outils de découverte de processus (librairie
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PM4PY Process Mining [11]) sur des graphes de connaissances. Notre approche permet de

dériver des motifs d’activité sous forme de modèles procéduraux utiles pour constituer une

base de données du comportement du couple utilisateur-système. L’utilisation de ces modèles

d’activité révèle toutefois les limites en l’état de la technique dite de “conformance checking”

pour la détection d’anomalies lorsque de micro-écarts se produisent entre l’activité d’un

utilisateur/système par rapport à un modèle. Nous avons également souligné le défi d’aligner

les modèles d’activité en raison de l’absence d’une méthode fiable pour identifier de façon

univoque les éléments des pages HTML du Web à travers l’utilisation de différents navigateurs,

ou selon les sessions de navigation.

Plongement de graphe pour la capture et la catégorisation d’un contexte d’incident. Nous

explorons la troisième famille de techniques dénommée statistical learning en proposant

d’accompagner l’exploitant réseaux dans une compréhension rapide d’une situation décrite

dans un ticket d’incident. Pour cela, nous développons un classifieur qui permettrait de

catégoriser une dynamique de réseau donnée à partir d’une référence de ticket d’incident. Du

point de vue du vocabulaire NORIA-O, la construction du classifieur implique d’apprendre

le modèle relationnel sur les événements proches de la ressource signalée dans un ticket

d’incident (i.e. parcourir le graphe et en calculer un plongement [312, 153]), puis de relier le

modèle relationnel à une catégorie (Eq. C.1 et Figure C.5) :{
EventRecor d .l ogOr i g i nati ng Ag ent

(
Resour ce(i )

)
.logOr i g i nati ng Ag ent

(
Resour ce(i )nei g hbor s

)}
∼Tr oubl eT i cket .

(
r el atedResour ce

(
Resour ce(i )

)
⊓pr oblemC ateg or y

) (C.1)

où noria:problemCategory est un attribut décrivant la nature finale ou l’impact technique

d’une entité noria:TroubleTicket. Cet attribut fait partie des champs clés utilisés dans le

système de gestion des incidents pour qualifier pleinement la résolution de l’incident lors de sa

clôture.14 Il s’agit d’une owl:ObjectProperty avec des valeurs issues du vocabulaire contrôlé

kos/TroubleTicket/trouble-category, un schéma de concepts SKOS définissant neuf

concepts dans NORIA-O.

Pour les expérimentations, nous utilisons la bibliothèque pyRDF2Vec [61] et la biblio-

thèque scikit-learn [279]. pyRDF2Vec15 est une implémentation en Python de l’algorithme

RDF2Vec [283], qui capture le contexte des nœuds du graphe RDF (propriétés et nœuds

voisins) sous forme de vecteurs de caractéristiques latentes (plongements). Les étapes de

traitement des données pour notre approche sont les suivantes :

14Autres propriétés possibles : noria:problemResponsibility, noria:troubleTicketCause et pep:for-
Procedure.

15Voir INK [59] pour une alternative à pyRDF2Vec.
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Figure C.5: Apprentissage d’un contexte d’incident par plongement de graphe
Ce diagramme illustre le processus de construction d’un classifieur multi-classes à partir du contexte d’un ticket d’incident en
mettant en évidence la relation entre un contexte d’incident (i.e. le sous-graphe centré sur une entité Resource concernée par
un TroubleTicket donné), le vecteur de contexte (i.e. le plongement du sous-graphe dans un espace vectoriel), et le modèle
de classification qui est entraîné sur la relation du vecteur de contexte à la classe de problème définie au niveau de l’entité
TroubleTicket. L’URI de l’entité TroubleTicket est utilisée comme clé de contexte (i.e. l’identifiant du vecteur dans la base
de données des vecteurs) afin de récupérer le vecteur de contexte à partir de l’identifiant de l’entité TroubleTicket, ainsi que
pour rechercher une ou plusieurs entités TroubleTicket à partir d’un vecteur de contexte. noria est l’espace de nommage par
défaut pour les concepts et les relations. Autres espaces de nommage : rdf = <https://www.w3.org/1999/02/22-rdf-syntax-ns#>,
skos = <https://www.w3.org/2004/02/skos/core#>. Le diagramme suit partiellement la spécification Graffoo [330].

1. Nous créons une liste de parcours du graphe (i.e. des séquences de sommets) en

traversant l’ensemble de données RDF avec des entités noria:TroubleTicket comme

points de départ, tout en filtrant la propriété noria:problemCategory car elle est

utilisée pour la classification ;

2. Nous calculons les plongements pour les entités noria:TroubleTicket en entraînant

un modèle Word2Vec sur les parcours de graphe ;

3. Nous entraînons un classifieur de type Random Forest16 en prenant les plongements

comme échantillons d’entraînement, et les entités noria:problemCategory comme

valeurs cibles.

16Les classifieurs de type Random Forest utilisant des arbres de décision en font un choix privilégié pour
l’explicabilité intrinsèque qu’ils offrent au modèle.
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Le jeu de données utilisé comprend environ 400’000 entités (Table 7.1) avec une profondeur

temporelle de 111 jours pour les événements. Dans l’ensemble, nous concluons que le classi-

fieur fonctionne relativement bien, mais que le jeu de données est trop petit (en particulier

pour certaines classes) et incohérent pour généraliser et répondre immédiatement au besoin

de “circonscrire l’espace d’investigation” évoqué plus haut. L’approche typique pour surmon-

ter ce problème consiste à améliorer l’étape de construction du graphe de connaissances en

utilisant des sources de données plus larges et en renforçant les processus de gestion de la

qualité des données. En plus d’analyser les performances de notre approche, nous comparons

les résultats d’inférence du classifieur avec un ensemble de requêtes SPARQL similaires aux

cas de détection des tickets d’incidents du jeu de données. Cette comparaison montre que

l’espace vectoriel des plongements du graphe de connaissances reflète une structuration

logique. Cela ouvre une opportunité de recherche pour identifier des modèles causaux à partir

de l’espace latent en utilisant la similarité sémantique, comme discuté dans [144].

Une interface pour l’analyse basée sur les graphes de connaissances. Les graphes de con-

naissances RDF ont fait leur preuves depuis de nombreuses années pour résoudre des prob-

lèmes d’intégration de données et de raisonnement logique sur des données hétérogènes,

notamment par l’entremise des ontologies et de vocabulaires partagés [8]. Malgré cela et

l’existence de diverses ontologies liées aux domaines NetOps/SecOps (Table 2.3), nous con-

statons que l’utilisation de ce mode de représentation n’est pas encore répandue dans les

outils de type NMS et SIEM. Intégrer les graphes de connaissances dans ces outils tout en

facilitant l’accès aux algorithmes de détection d’anomalies et aux outils de recommandation

de solutions semble donc la voie naturelle à suivre pour réduire la surcharge cognitive des

experts en supervision de réseaux et améliorer l’efficacité opérationnelle dans la gestion des

incidents. Les multiples facettes de connaissances qui doivent être représentées pour la com-

préhension d’une situation d’incident posent cependant une limite à l’exploration intuitive

et efficace des graphes de connaissances (i.e. un accès rapide et limité aux informations

pertinentes), surtout lorsque des délais de réponse courts sont imposés par les accords de

niveau de service (SLA). Une compréhension approfondie des ontologies en jeu peut en effet

s’avérer essentielle. En ce qui concerne l’utilisation de l’IA, diverses approches démontrent

un intérêt pratique pour la détection d’anomalies ou l’assistance au diagnostic (Table B.1).

Cependant, comme suggéré plus haut, il est important que les experts en supervision aient la

capacité de combiner et d’appeler différentes approches et modèles afin de couvrir un large

éventail de comportements des systèmes et de s’assurer d’une prise de décision bien étayée.

Pour relever ces défis, nous faisons l’hypothèse que l’intégration des graphes de connaissances

dans les NMS/SIEM est la voie à suivre à condition que l’ergonomie des outils d’aide à la

décision réponde aux exigences métier des équipes NetOps/SecOps en termes d’accessibilité

de l’information (p.ex. en brisant les silos techniques), de contextualisation de la situation
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des incidents (p.ex. en réduisant la charge cognitive grâce au regroupement des alarmes) et

de continuité des tâches opérationnelles (i.e. éviter une ergonomie disruptive par rapport

aux usages courants). Sur la base de cette hypothèse, nous développons et présentons NORIA

UI, une architecture logicielle client-serveur Web [310] pour la gestion des anomalies réseau,

basée sur les données stockées dans un graphe de connaissances, et dont l’ergonomie (UI/UX)

est le résultat d’une collaboration avec un panel d’experts NetOps/SecOps d’Orange. La Figure

C.6 donne un aperçu de l’interface de NORIA UI.

Figure C.6: NORIA UI : la page du tableau de bord
La page du tableau de bord se compose de quatre panneaux offrant un accès à des informations sur la vie du réseau issues
du graphe de connaissances selon quatre facettes complémentaires : (A) les tickets d’incidents, (B) les événements et les
alarmes, (C ) les ressources et les applications, et (D) la topologie réseau enrichie. Les entités du graphe sont affichées avec
leurs principales propriétés (E). Des cases à cocher (F ) permettent un pivot d’affichage qui s’applique à tous les panneaux. Des
commandes contextuelles sont associées à chaque entité représentée (G). Un champ de saisie (H ) permet de définir le périmètre
technique affiché et de rechercher des entités en fonction de leurs propriétés.

À travers ces travaux, nos principales contributions sont les suivantes. Tout d’abord, nous

détaillons les exigences métier en matière d’ergonomie et de fonctions pour l’élaboration d’un

outil d’aide à la décision de nouvelle génération. Ensuite, nous présentons les détails tech-

niques de l’architecture technique et logicielle mise en œuvre pour répondre à ces exigences.

Les fonctions développées correspondent à la mise en œuvre du principe du raisonnement

synergique pour la combinaison de différentes techniques d’IA (Figure C.7), ainsi qu’à la mise

en œuvre de mécanismes d’interaction pour l’analyse exploratoire de réseaux multicouches.

Ces fonctions peuvent être résumées ainsi: 1) consultation croisée d’informations sur la

topologie du réseau, les événements et les alarmes ; 2) affichage de la topologie du réseau

en 2D/3D enrichie d’indicateurs ; 3) appel périodique ou à la demande d’outils d’analyse

et de détection d’anomalies accessibles en tant que services Web ; 4) agrégation et analyse

d’informations dans un espace d’analyse dédié (“notebook”) ; 5) accès à des fonctions com-
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munautaires pour le partage d’informations entre collaborateurs. Enfin, nous fournissons

un retour d’expérience sur la solution proposée et ses perspectives, sur la base d’une analyse

des performances de la plateforme technique, ainsi que d’une évaluation de l’UI/UX par les

utilisateurs selon la méthode SUS [181, 180, 131] dans des situations opérationnelles. L’analyse

du verbatim du panel d’utilisateur a globalement fait ressortir une forte acceptabilité de la

proposition NORIA UI, ainsi que des marques d’intérêt spécifique selon les profils métier (p.ex.

gestionnaire d’incident, administrateurs réseaux, ingénieur système) pour des développe-

ments complémentaires futurs (p.ex. résumé d’une situation, algorithmes supplémentaires

de détection, commande du réseau depuis l’interface).

Figure C.7: Détection d’anomalies et raisonnement synergique
Ce diagramme montre comment les approches model-based, process mining et statistical learning se combinent pour la détection
d’anomalies et l’aide au diagnostique, chaque approche étant liée à un domaine d’inférence spécifique. Le graphe est une version
simplifiée d’un graphe de connaissances structuré par le modèle de données NORIA-O, représentant une topologie réseau avec
des alarmes et un ticket d’incident. La situation peut être résumée comme suit : une alarme de délai d’attente dépassé (time
out) est émise par le système de supervision en raison d’une défaillance matérielle sur rt_tsi_1 le rendant inaccessible ; en
conséquence, une alarme de perte de signal sur une interface est émise par srv_tst_1 car son lien vers rt_tsi_1 est en panne ;
une alarme calculée (inferred alarm) grâce à une requête SPARQL est insérée dans le graphe et associée à app_tst pour indiquer
un problème de résilience dû à une défaillance sur srv_tst_1 ; un ticket d’incident est associé à app_tst suite à une plainte
d’un utilisateur concernant les performances de l’application. Les zones en pointillés avec numérotation indiquent les étapes de
diagnostic via l’interface utilisateur NORIA.
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C.4 Conclusion

Dans ce travail de recherche, nous avons étudié l’intérêt de structurer les données

d’exploitation des réseaux informatiques et télécoms dans un graphe de connaissances, et

dans quelle mesure cette structure peut simplifier la détection et le diagnostic d’anomalies

sur des réseaux complexes. Pour orienter cette recherche et maximiser l’interopérabilité de

nos propositions, nous avons utilisé l’ingénierie des connaissances et les techniques du Web

sémantique.

Pour commencer, nous avons développé une nouvelle ontologie, NORIA-O, pour décrire les

infrastructures réseaux, les incidents, et les opérations d’exploitation. Une architecture de

construction de graphes de connaissances a été conçue pour transformer les données des

réseaux provenant de sources diverses. Le graphe de connaissances résultant, structuré par

NORIA-O, permet d’analyser le comportement des réseaux de manière homogène.

Nous avons de même défini et évalué trois familles de techniques algorithmiques utilisant

les graphes de connaissances. Ces techniques peuvent être utilisées pour détecter des com-

portements anormaux des systèmes et aider les équipes d’exploitation dans le diagnostic

d’incidents.

Enfin, nous avons proposé une architecture logicielle pour simplifier les interactions des

exploitants avec le graphe de connaissances et les algorithmes d’aide au diagnostic via une

interface graphique spécialisée.

Toutes les propositions ont été testées de manière indépendante par des expérimentations

et démonstrations, ainsi que par un panel d’utilisateurs experts via l’interface graphique

spécialisée dans le cadre d’une solution intégrée. Les résultats obtenus, tant sur le plan

scientifique que sur la base des retours des utilisateurs et de l’impact industriel, ont démontré

la faisabilité et l’intérêt d’utiliser les graphes de connaissances couplés à un ensemble de

techniques d’intelligence artificielle. Cette approche permet de maîtriser la complexité des

réseaux et ouvre la voie à la conception de systèmes plus résilients à l’avenir, notamment en

capitalisant sur la compréhension de la dynamique des systèmes dans une forme utile à la

fois pour les humains et les outils de calcul.
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