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Résumé : Cette theése aborde le probleme
de la recherche et du suivi d'un nombre in-
connu de cibles mobiles réparties dans une
région d'intérét (Rdl) inconnue a l'aide d'une
flotte coopérative de robots aériens sans pilote
(UAVs). Ce probleme de recherche, d'acquisi-
tion et de suivi coopératif (CSAT) apparait dans
des contextes militaires, e.g., pour trouver et
suivre des véhicules ennemis, ou dans des ap-
plications civiles, e.g., pour rechercher des per-
sonnes perdues a la suite d'une catastrophe.

Pour résoudre ce probleme, chaque drone
embarque un systéme de vision par ordinateur
(CVS) composé d'une caméra et d'algorithmes
de traitement d'images qui fournissent des me-
sures liées a la Rdl. Les mesures fournies par le
CVS consistent en des images avec des pixels la-
bellisés, des cartes de profondeur et des boites
contenant des pixels associés aux cibles qui ont
été identifiées.

Cette thése considére une approche en-
sembliste pour aborder le probleme CSAT. Par
rapport a d'autres approches reposant sur des
hypotheses stochastiques sur le bruit de me-
sure, les approches ensemblistes supposent
un bruit de mesure borné avec des bornes
connues. Ces approches peuvent alors caracté-
riser des ensembles qui contiennent nécessai-
rement la position des cibles, a condition que
les hypothéses sur les modeéles de mesure et
les bornes du bruit soient respectées. Trés peu
de travaux antérieurs exploitent directement
les mesures CVS dans une approche ensem-
bliste. Cela s'explique principalement par le fait
qu'il est difficile d'obtenir des modeles de me-
sure pour un CVS lorsqu'il est composé d'al-
gorithmes d'apprentissage profond. Pour ré-
soudre ces problémes, nous introduisons plu-
sieurs hypotheses pour relier les mesures CVS
aux cibles et aux obstacles présents dans la
Rdl en utilisant une approche géométrique. A
partir de ces hypotheéses, nous proposons un
nouvel estimateur ensembliste qui exploite di-

rectement les mesures CVS pour caractériser
les ensembles qui sont garantis de contenir
la position de chaque cible identifiée. Les me-
sures CVS sont également exploitées pour éva-
luer les ensembles qui sont garantis ne conte-
nir aucune position de cible. Un processus
de prédiction-correction similaire au filtre de
Kalman a été implémenté pour tenir compte
de I'échange d'informations entre les drones.
La correction se fait via les mesures CVS ac-
quises par chaque drone et des estimées trans-
mises par les drones voisins. Plusieurs incerti-
tudes supplémentaires peuvent étre prises en
compte dans I'approche proposée. Nous nous
sommes concentrés sur la maniére de prendre
en compte l'incertitude de I'état des drones.

Comme la Rdl est encombrée d'obstacles
inconnus, chaque drone établit une carte d'oc-
cupation et d'élévation pendant la recherche
et le suivi des cibles a I'aide des mesures CVS.
Cette carte fournit une description approxima-
tive de 'emplacement, de la hauteur, et de la
forme des obstacles. La carte peut étre ex-
ploitée pour éviter les obstacles. Dans cette
these, elle est utilisée pour prédire la portion
du champ de vue de la caméra de chaque
drone qui est masquée par un obstacle. Cette
information est déterminante dans la concep-
tion d'un algorithme par commande prédictive
(MPC) pour déterminer la trajectoire de chaque
drone, en minimisant l'incertitude de localisa-
tion des cibles identifiées et en réduisant la
taille de 'ensemble contenant des cibles poten-
tiellement non détectées. Si les cibles sont plus
nombreuses que les UAVs, un compromis entre
la recherche de nouvelles cibles et le suivi des
cibles déja identifiées afin de réduire l'incerti-
tude de la localisation doit étre trouvé.

Des simulations réalisées avec Webots illus-
trent les performances de l'estimateur et de
la loi de guidage en évaluant l'efficacité des
drones a trouver et identifier les cibles, et main-
tenir une estimation précise de leur position.
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Abstract : This thesis addresses the problem
of searching and tracking an unknown number
of mobile targets spread within an unknown
Region of Interest (Rol) using a fleet of coope-
rating Unmanned Aerial Vehicles (UAVs). Such
Cooperative Search, Acquisition, and Tracking
(CSAT) problem appears in military contexts,
e.g.,when enemy vehicles have to be found and
tracked, or in civilian applications, e.g., when
searching for lost people after a disaster.

To solve the CSAT problem, each UAV em-
beds a Computer Vision System (CVS) consis-
ting of a camera and image processing al-
gorithms that provide measurements related
to the Rol. The CVS measurements consist of
images with labeled pixels, depth maps, and
boxes in the images containing pixels related to
the detected and identified targets.

This thesis considers a set-membership ap-
proach to address the CSAT problem. Com-
pared to alternative approaches relying on
stochastic assumptions on the measurement
noise, set-membership approaches assume
bounded measurement noise with known
bounds. Set-membership approaches can
then characterize sets that are guaranteed to
contain the location of the targets, provided
that the hypotheses on the measurement mo-
dels and noise bounds are satisfied. Very few
previous works directly exploit CVS measure-
ments in a set-membership approach. This is
mainly because obtaining measurement mo-
dels for a CVS involving deep learning algo-
rithms is difficult. To address these issues, we
introduce several assumptions to relate the
CVS measurements with the targets and obs-
tacles present in the Rol using a geometric ap-
proach. With these assumptions, we propose
a new set-membership estimator that directly
exploits the CVS measurements to characterize

sets that are guaranteed to contain the loca-
tion of each identified target. The CVS measu-
rements are also exploited to evaluate sets that
are guaranteed to contain no target location.
A prediction-correction scheme similar to the
Kalman filter has been considered to account
for the exchange of information between UAVSs.
The correction involves CVS measurements ac-
quired by each UAV and estimates shared by
neighboring UAVs. Several additional sources
of uncertainty may be considered in the pro-
posed approach. We have focused on the state
uncertainty of UAVs.

As the Rol is cluttered with unknown obs-
tacles, each UAV builds an occupancy-elevation
map during the search and tracking of targets
using CVS measurements. The map provides an
approximate description of the location, height,
and shape of the obstacles. The map may be ex-
ploited for obstacle avoidance. In this thesis, it
is used to predict the occlusion by obstacles in
the field of view of each UAV. This information
is instrumental in the design of a Model Predic-
tive Control (MPC) algorithm to determine the
trajectory of each UAV, minimizing the localiza-
tion uncertainty of identified targets and redu-
cing the size of the set containing potentially
undetected targets. If the targets outnumber
the UAVs, a trade-off has to be found between
searching for new targets and tracking those al-
ready identified to reduce the localization un-
certainty.

Simulations performed with Webots illus-
trate the performance of the target location es-
timator and the MPC design by evaluating the
efficiency of the cooperating UAVs to explore
the environment, find and identify the targets,
and maintain an accurate estimation of their lo-
cation.




Résumé étendu

Cette thése aborde le probleme de la recherche et du suivi d'un nombre inconnu de cibles mobiles
évoluantdans une Région d'Intérét (Rdl) encombrée d'obstacles de forme et de localisation inconnues.
Une flotte de véhicules aériens sans pilote (UAV) est utilisée de maniere coopérative et distribuée pour
résoudre ce probléme de recherche, d'acquisition et de suivi coopératifs (CSAT). Ce probléme peut
apparaitre dans des contextes militaires, e.g., lorsqu'il s'agit de trouver et de suivre des véhicules en-
nemis, ou dans des applications civiles, e.g., lorsqu'il s'agit de rechercher des personnes perdues a la
suite d'une catastrophe. L'une des difficultés de ce probléme réside dans le fait que les cibles peuvent
étre plus nombreuses que les UAVs. Dans ce cas, il faut trouver un compromis entre |'exploration de
la région d'intérét pour rechercher de nouvelles cibles et la recapture des cibles identifiées afin de
réduire l'incertitude de leur position estimée.

Le probléme du CSAT est difficile a traiter car il combine plusieurs disciplines. Pour obtenir des
mesures de I'environnement observé, chaque drone embarque un systéme de vision par ordinateur
(CVS) composé d'une caméra et d'algorithmes de traitement d'images. Ces mesures contiennent des
informations sur la présence ou I'absence d'une cible. Si une cible est détectée, un probleme d'iden-
tification doit également étre pris en compte. Ensuite, pour exploiter ces mesures CVS afin d’estimer
les emplacements potentiels des cibles identifiées et non identifiées, un estimateur robuste doit étre
concu. Enfin, chaque UAV résout le probleme de compromis susmentionné pendant la mise a jour de
la trajectoire en utilisant la théorie du controle optimal. Si elles sont disponibles, les communications
avec les drones voisins sont exploitées a la fois dans le processus de localisation de la cible et durant
la mise a jour de la trajectoire pour résoudre de maniére coopérative le probléme de la recherche et
suivi de la cible. Toutes ces composantes du probléeme CSAT ont été abordées individuellement, mais
peu de travaux les ont combinées.

Pour résoudre ce probleme de CSAT, le CVS embarqué dans chaque drone consiste en une caméra
et des algorithmes de traitement d'image qui fournissent des mesures liées a la Rdl. Les mesures CVS
consistent en des images avec des pixels étiquetés, des cartes de profondeur et des boites 2D locali-
sant les cibles détectées et identifiées dans I'image. Un modeéle de sténopé sans distorsion est utilisé
pour modéliser la caméra et son champ de vision (FoV). A partir de cette approximation, une approche
géomeétrique est proposée pour représenter les informations contenues dans une mesure CVS. Par
exemple, si un pixel est étiqueté « sol », on peut supposer que ce pixel de la caméra embarquée n'a
été éclairé que par des rayons lumineux provenant du sol. La formulation de ces hypothéses tire parti
des limites implicites connues des mesures fournies, c'est-a-dire du fait qu'elles sont liées a un pixel
de dimensions connues. Cela a motivé l'utilisation d'une approche ensembliste pour modéliser les
bruits et autres incertitudes comme des ensembles bornés de bornes connues.

Cette thése considére une approche ensembliste pour aborder le probléme du CSAT. Par rapporta
d'autres approches reposant sur des hypotheses stochastiques sur le bruit de mesure, les approches
ensemblistes supposent un bruit de mesure borné avec des bornes connues. Ces approches peuvent
alors caractériser des ensembles qui contiennent a coup sOr I'emplacement des cibles, a condition
gue les hypotheses sur les modéles de mesure et les bornes du bruit soient respectées. Tres peu
de travaux antérieurs exploitent directement les mesures CVS dans une approche ensembliste. Cela
est principalement dd au fait qu'il est difficile d'obtenir des modéles de mesure pour un CVS repo-
sant sur des methodes d'apprentissage. Pour résoudre ces problémes, nous introduisons plusieurs
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hypothéses pour relier les mesures CVS aux cibles et aux obstacles présents dans le Rdl en utilisant
une approche géométrique. Grace a ces hypotheéses, nous proposons un nouvel estimateur ensem-
bliste qui exploite directement les mesures CVS pour caractériser les ensembles qui contiennent a
coup sOr'emplacement de chaque cible identifiée. Sous certaines hypothéses, certaines mesures CVS
peuvent étre exploitées en tant qu'informations négatives pour caractériser des ensembles dont on
est sQr qu'ils ne contiennent aucune position de cible. Un processus de prédiction-correction similaire
au filtre de Kalman a été utilisé pour tenir compte de I'échange d'informations entre les drones. La
correction exploite les estimées ensemblistes caractérisés via les mesures CVS acquises par chaque
drone ainsi que les estimées partagées par les drones voisins. En plus du bruit de mesure, nous
proposons une approche pour rendre l'estimateur ensembliste robuste a l'incertitude de I'état des
drones.

Comme la zone d'intérét est encombrée d'obstacles inconnus, chaque drone exploite certaines
mesures CVS pour construire durant la recherche et le suivi des cibles une carte d'occupation et
d'élévation. Cette carte fournit une description approximative de I'emplacement, de la hauteur et
de la forme des obstacles qui ont été détectés. La carte peut étre exploitée pour éviter les obstacles.
Dans cette these, elle est utilisée pour prédire la portion du sol que le drone ne pourra pas voir car
cachée derriére un obstacle qu'il a déja rencontré. Cette information est essentielle pour résoudre le
probleme de guidage afin de concevoir des trajectoires résolvant le compromis entre la recherche de
cibles non identifiées et la recapture des cibles précédemment identifiées afin de réduire l'incertitude
associée a leur position estimée. Pour résoudre ce probleme, nous utilisons une loi de commande
prédictive (MPC) pour déterminer la trajectoire de chaque UAV en minimisant l'incertitude de localisa-
tion des cibles identifiées et en réduisant la taille de 'ensemble contenant des cibles potentiellement
non identifiées. Cette mise a jour de la trajectoire se fait de maniere coopérative et distribuée.

Plusieurs simulations sont effectuées a l'aide de Webots pour simuler un environnement urbain.
L'estimateur ensembliste et le MPC sont mis en ceuvre sous Matlab. Les simulations illustrent les
performances de l'estimateur et de la mise a jour des trajectoires en évaluant I'efficacité des drones
coopératifs pour explorer I'environnement urbain inconnu, trouver et identifier les cibles, et maintenir
une estimation précise de leur position.



Extended abstract

This thesis addresses the problem of searching and tracking of an unknown number of mobile
targets spread within a Region of Interest (Rol) cluttered with obstacles of unknown shape and loca-
tion. A fleet of cooperating Unmanned Aerial Vehicles (UAVs) is used in a cooperative and distributed
manner to solve such Cooperative Search, Acquisition, and Tracking (CSAT) problem. This problem
can appear in military contexts, e.g., when enemy vehicles have to be found and tracked, or in civilian
applications, e.g., when searching for lost people after a disaster. A difficulty of this problem is the
targets may outnumber the UAVs. In that case, a trade-off has to be solved between searching for
new targets and recapturing identified targets to reduce the uncertainty of their estimated location.

The CSAT problem is difficult to address because it combines various disciplines. To get measure-
ments from the perceived environment, each UAV embeds a Computer Vision System (CVS) consisting
of a camera and image processing algorithms. These measurements contain information regarding
the presence or absence of a target. Besides, if a target is detected, then an identification problem
has to be also considered. Then, to exploit these CVS measurements in order to estimate the poten-
tial locations of identified and unidentified targets, a robust estimator needs to be designed. Finally,
each UAV solves the aforementioned trade-off problem during the trajectory update by using optimal
control theory. If available, communications with neighboring UAVs are exploited in both the target
localization process and the trajectory update to solve cooperatively the target search and tracking
problem. All of these components of the CSAT problem have been addressed individually, but few
works have combined them all.

To solve this CSAT problem, the CVS embedding on each UAV consists of a camera and image
processing algorithms that provide measurements related to the Rol. The CVS measurements consist
of images with labeled pixels, depth maps, and bounding boxes localizing detected and identified
targets in the image. A pinhole model without distortion is used to model the camera and its Field of
View (FoV). From this approximation, a geometric approach is proposed to represent the information
contained in a CVS measurement. For instance, if a pixel is labeled Ground, then one may assume that
this pixel of the embedded camera has only been illuminated by light rays stemming from the ground.
The formulation of these assumptions takes advantage of the known implicit bounds of the provided
measurements, i.e., the fact that they are related to a pixel of known dimensions. This motivated
the use of a set-membership approach to model noises and other uncertainties as bounded sets of
known bounds.

This thesis considers a set-membership approach to address the CSAT problem. Compared to al-
ternative approaches relying on stochastic assumptions on the measurement noise, set-membership
approaches assume bounded measurement noise with known bounds. Set-membership approaches
can then characterize sets that are guaranteed to contain the location of the targets, provided that
the hypotheses on the measurement models and noise bounds are satisfied. Very few previous works
directly exploit CVS measurements in a set-membership approach. This is mainly because obtaining
measurement models for a CVS involving deep learning algorithms is difficult. To address these is-
sues, we introduce several assumptions to relate the CVS measurements with the targets and obs-
tacles present in the Rol using a geometric approach. With these assumptions, we propose a new
set-membership estimator that directly exploits the CVS measurements to characterize sets that are
guaranteed to contain the location of each identified target. Under some assumptions, some CVS
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measurements can be exploited as negative information to characterize sets that are guaranteed
to contain no target location. A prediction-correction process similar to the Kalman filter has been
considered to account for the exchange of information between UAVs. The correction involves set es-
timates that are characterized using CVS measurements acquired by each UAV and estimates shared
by neighboring UAVs. In addition of the measurement noise, we propose an approach to make the
set-membership estimator robust to the state uncertainty of UAVs.

As the Rol is cluttered with unknown obstacles, each UAV builds an occupancy-elevation map du-
ring the search and tracking of targets using CVS measurements. The map provides an approximate
description of the location, height, and shape of the obstacles. The map may be exploited for obs-
tacle avoidance. In this thesis, it is used to predict the occlusion by obstacles in the FoV of the camera
of each UAV. This information is instrumental to solve the guidance problem in order to design tra-
jectories solving the trade-off between searching for unidentified targets and recapturing previously
identified targets to reduce their estimated location uncertainty. To solve this problem, we design a
Model Predictive Control (MPC) to determine the trajectory of each UAV minimizing the localization
uncertainty of identified targets and reducing the size of the set containing potentially unidentified
targets. This trajectory update is done in a cooperative and distributed manner.

Several simulations are preformed using Webots to simulate an urban environment. The set-
membership estimator and the MPC are implemented on Matlab. The simulations illustrate the per-
formance of the target location estimator and the MPC design by evaluating the efficiency of the co-
operating UAVs to explore the unknown urban environment, find and identify the targets, and main-
tain an accurate estimation of their location.
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Notations

Notation Signification
Rol Region of Interest
OEM Occupancy-Elevation Map
UAV Unmanned Aerial Vehicle
FoV Field of View
CvsS Computer Vision System
CSAT Cooperative Search, Acquisition, and Tracking
MPC Model Predictive Control
SIVIA Set Inverter Via Interval Analysis
TIF Thick Inclusion Function
7 index related to UAV 4
j index related to target j
m index related to obstacle m
k index related to time ¢,

u superscript

related to a UAV

t superscript

related to a target

0 superscript

related to an obstacle

Notation Definition
pg () Projection on Xg
Pre (:chic»k> Projection on the CCD array of a point 77 € R3, see (3.17)
N(S,r) r-neighborhood within the Rol of a set S, see (3.5)
Ng (S, 7) r-ground-neighborhood within the Rol of a set S C X, see (3.6)
f'(.)/fY(.)  dynamics of a target/ a UAV
M% Rotation matrix from F; to F»
Tj;f (x) Coordinates of some vector z € R3, initially expressed in 7, expressed in F,

2D coordinates of a point  when projected onto the CCD array of UAV i, see (3.27)

Distance between z, and SRelalong a v € Vi (nr, nc), see (3.31)

Set estimate containing all points that may have illuminated pixel (n, n¢)
of the camera of UAV i while being at a distance consistent with [D; ] (nr, nc), see (4.1)

Set estimate containing all points of X, that may have illuminated pixel (nr, nc)
of the camera of UAV 4, see (4.5)
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Notation Definition
F|FP|F§ Reference frame / Frame attached to the body / the camera of UAV ¢
NY/NTINO List of the indexes of the NY UAVs / N* targets / N° obstacles
N List of the coordinates of each pixel of the camera
NM List of the indexes of each cell composing the OEM
Nik List of the indexes of the UAVs that can communicate with UAV ¢ at time ¢,
X5 1/ %5k State vector of target j / UAV i at time
Tk Center of gravity of target j at time
a:;gk Projection on the ground of m;k
93;1,6/(9Z & Center of gravity / attitude of UAV i at time ¢,

Optical center of the camera of UAV i at time

® (x

/st ( xt ) /%,

Shape of the i-th UAV/ j-th target / m-th obstacle at time ¢

)
o 5] 07

Circular right cylinder of height At and radius rt approximating St (xgk)

Xo/Xg Rol / Ground of the Rol
S,'EO' Set containing all points belonging to either X, a target, a UAV, or an obstacle
M i OEM known to UAV i at time ¢,
r/rt Safety distance between ({to}) a target and an obstacle, ({tt}) two targets
Vik (r, nc) Set of light rays v” illuminating pixel (ny, nc)
F (x;‘k) /F (x;’k) (unlimited / bounded) FoV of UAV i at time t;,
L i/Lik/Dik Image, labeled image, and depth map provided by the CVS of UAV i at time
DY, (nr,nc) Noise free depth measurement associated to pixel (nr, nc)
D, &) (rr, nc) Interval containing DY (nr, nc)
yigk/y}’k/y;jk/ygjk List of indexes of the pixels labeled Ground / Target / Obstacle / Unknown.
JJ;M Bounding box localizing target j within I, ;,
D!, List of target indexes identified by UAV i at time ¢,
L), List known to UAV i at time ¢, of the indexes of identified and localized targets
X;M Set estimate known to UAV i at time ¢;, containing the location of target j
Xy List containing X; ., forall j € £},
5 Set estimate known to UAV i at time ¢;, containing the location of
ik possible not yet identified targets.
x© Set estimate known by UAV ¢ at time ¢, that cannot contain az;i
ik for j € Nt due to the presence of an obstacle
tm Set estimate characterized from the CVS measurements available to
bk UAV i at time #;that contains «& for j € D},
P, , (yg ) Set estimate characterized from the CVS measurements available to
’ ik UAV i at time ¢ that cannot contain any target location
%© Set estimate representing a region around the obstacles detected by
=ik UAV i at time ¢, that cannot contain any target location
tm Set estimate representing a region around target j that cannot
Tk contain any target location except /%, with j € D!,
HEY Set estimate representing the part of X, that UAV i has not observed at time
HYEM (Xz k) Set estimate that approximates H{y> by using the OEM
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Chapter 1 - Introduction

1.1. Context

This thesis addresses the problem of target Search, Acquisition, and Tracking (SAT), which has
been formalized 70 years ago in ( ). Initially developed by the United States Navy to
search, detect, identify, and localize hostile vehicles for their termination, the introduced theory of
search has led to the foundations of a more civilian problem where one or several targets evolving
in a Region of Interest (Rol) have to be found and tracked. Nevertheless, and regardless of the ap-
plication, SAT problems have always overlapped with other problems such as efficient positioning
in the environment, exploitation of noisy measurements for target detection, target identification,
implementation of algorithms for accurate and robust target localization, deployment of strategies
involving exploration of a hazardous environment, target pursuit, and energy management. Each as-
pect has been addressed and developed. For instance, the efficient positioning problem, i.e., finding
the best location to either efficiently cover an area or to get new and useful information regarding
its exploration, has been addressed 40 years ago with an Art-Gallery problem (

). Nowadays, other approaches have been proposed such as the Next-Best-View approach (

) that combines a shadow-casting approach, initially used in video games, with a cubic
approximation of the map to search for the best path to take to explore and map an environment.
The target detection and its identification have been formalized in ( ). From that, several
methods have been proposed to address a target detection problem such as ( ;

; ), and recently, deep-learning algorithms have been developed for
target detection, and pose estimation ( ). This tendency to continuously develop new
methods, or algorithms, to solve the SAT problem has been motivated by several factors. Drones,
their embedded sensors, and the algorithms to process the information collected by these sensors
become more sophisticated. Moreover, the available computing power and storage capacity continue
to improve.

Additionally, put aside the SAT problem, other problems related to searching or pursuing a target
existand can be either addressed with these new algorithms and technologies, or be the foundation of
new methods. Consider as an example a simpler target tracking problem which involves a robot that is
tasked to keep the target within its sensing range. To address this problem, a new algorithm for target
detection and identification has been proposed and tested ( ). Target hunting problems,
asin ( ; ), assume that the targets are evasive and thus evolve within
the environment in order to avoid detection. To solve this problem, more specific strategies based
on, e.g., game theory ( ) have been used.

Observation of multiple moving targets using multiple robots is a 30-years-ago problem introdu-
cedin( ) that is close to a SAT problem. Both problems involve the search of
targets in an unknown environment, but once a target is identified, a robot stops the target search and
is assigned to only pursue the newly discovered target. A SAT problem is different because it involves
two conflicting objectives : the target search and the target pursuing, with a limited number of robots.
On the one hand, target search requires an efficient exploration of the environment in order to detect
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and identify new targets, this task becoming even more difficult if the number of targets to identify is
unknown. On the other hand, target pursuing requires the requisition of a robot to recapture a pre-
viously identified target in order to reduce its estimated location uncertainty. This is because, since
the dynamic of mobile targets is often at least partly unknown, the estimated location of an identified
target becomes more uncertain when not monitored. Consequently, a trade-off between exploration
and pursuit has to be addressed in order to accomplish the SAT mission. In this context, (

) have introduced and formalized the Cooperative Search, Acquisition, and Tracking (CSAT)
problem and proposed a first solution algorithm. The CSAT problem requires that each robot in the
fleet takes an action that contributes to solve the initial SAT problem while being beneficial to the
whole fleet, rather than of acting alone. Coordination between the robots is therefore essential.

This thesis proposes new methods and strategies to solve a CSAT problem. Unfortunately, even
though CSAT algorithms have numerous applications, where some of them are life-saving during
Search And Rescue (SAR) missions, there still exist few real-life applications. An example of SAR mis-
sion that has been achieved with the help of a UAV has been described in ( ). A
family has reported to have lost contact with one of their elders in a Polish town. Though the rescue
team deployed an Unmanned Aerial Vehicle (UAV) to assist the terrestrial search by exploring identi-
fied areas that may contain the lost man, the exploration followed a lawnmower trajectory, the UAV
took photos of the area, and their processing was done offline once uploaded on a laptop. Moreover,
a human operator has been assigned to correct the false detection provided by their algorithm. The
rescue has been successful but has required almost 4 hours. This work - which claims to be the first
successful application of a target detector in a real search and rescue mission - highlights the inherent
high complexity of CSAT missions and the number of subproblems that have to be considered per-
form target search in an automatic way. Some of these subproblems are reliable image processing,
robust estimation, UAV control design, and navigation within an unknown cluttered environment. Se-
veral approaches addressing one of these subproblems already exist, but they focus on a specific
aspect of the CSAT problem, such as target location estimation from an image or efficient explora-
tion of an unknown environment, and thus do not consider the whole CSAT problem. On the other
hand, strategies to solve a CSAT problem have been developed, but most of them consider simplifying
assumptions regarding target detection and location estimation.

The target localization problem includes several sub-problems. One of those is collecting new
information from the environment that is under observation, e.g., an urban area with cars. Then,
processing this collected information to acquire new measurements, e.g., an image or a depth map.
Lastly, transforming these measurements through an estimation process to gain new knowledge re-
garding, e.g., the possible location of the cars, before the update of previous knowledge up to the
current time. Each of those sub-processes has been already addressed and tested in real-life while
providing clear limits for their performances. For instance, as pointed out in ( ;

), the performance in target detection is dependent on the observation conditions
(including the presence of obstacles) and weather conditions. Nonetheless, weather conditions are li-
kely to be under-represented in training data sets for deep-learning algorithms such as (

). Additionally, aerial images often involve small targets with a complex background. Therefore,
according to ( ), the use of a classical target detector results in reduced performance.
This complexity in target detection (and, thus, target identification) may be hard to model. Unfortuna-
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tely, most of the current approaches to solve a CSAT problem overlook this difficulty by introducing
an idealized CVS. The capacity of the sensor to ensure the presence or absence of a target is most
of the time modeled through a stochastic approach by introducing a target detection probability as
well as a false alarm probability, which are often constant. Moreover, since the CVS is idealized, the
target location estimation process is idealized as well and provides directly a noisy measurement of
the target state as soon as it is detected within the robot sensing range. With these simplifications,
the measurement noise is often modeled with a known probability density function. According to (

), this stochastic modeling of the CVS and estimators and its related assumptions are hard
to impossible to justify. Moreover, such an approach is inadequate to account for the geometry of
the environment when obstacles are present but unknown to the robots. Consequently, the expec-
ted performance of these CSAT strategies is only theoretical and is likely to represent an unreachable
upper-bound when deployed in a real-life scenario.

Regarding the environment, it is either free of obstacles, cluttered with a priori known obstacles, or
cluttered and unknown. On the one hand, even though the environment is known, many target search
approaches only consider a 2D representation of the environment and few consider an approximated
3D representation. This choice is motivated by the fact that a 3D map of an outdoor environmentis too
complex to be stored in a UAV. Nonetheless, the 2D simplification comes at the cost of a new problem.
If an obstacle is only approximated by a 2D element, then a UAV may be unable to evaluate the portion
of its field of view that it cannot observe due to occlusions. To avoid this difficulty, one may assume
that the obstacles are tall enough. Then, according to ( ), the 2D approximation may be
relevant if the UAV flies between the obstacles and at a lower altitude than the shortest obstacle. On
the other hand, the target search in an unknown cluttered environment is still a challenging problem,
especially for aerial robots since, as pointed out in ( ), the task of simply mapping an
outdoor 3D environment may lead to unbearable computation problems. The problem of unknown
occlusions by obstacles may be solved by deploying a team of UAVs in a formation, e.g., (

). Otherwise, if no mapping device is available, other approaches have to be developed to gain
knowledge about the environment from the information collected by the embedded CVS in order to
deploy an efficient cooperative strategy to search for targets.

To address the aforementioned problems, a set-membership approach is considered. This ap-
proach, introduced by ( ), assumes that the measurement noise and other uncertain-
ties are bounded and of known bounds. Depending of the considered problem, this assumption is
as difficult to justify as the previous stochastic assumption. Nevertheless, the advantage of a set-
membership approach is that nonlinear systems can be handled more easily. The Set Inverter Via In-
terval Analysis (SIVIA) presented in ( ) is a recursive set-membership algorithm
that is used to solve several inverse problems involving non-linearities. From the set-membership
approach, several set-membership estimators have been proposed to solve a localization problem
( ; ; ). More specially, the estimator developed in
( ) is, to the best of my knowledge, the first set-membership estimator that
uses an image to estimate a location, here the location of the robot with the on-board camera. Addi-
tionally, the work in ( ) lays the foundation for the first method to solve a CSAT problem
with a set-membership approach. However, unlike ( ), ( ) consi-
ders an idealized CVS that provides directly a noisy estimation of the location of any target that is
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located within the field of view of the UAV. As mentioned, a problem of this approach is the assu-
med known bounds of the estimated target location uncertainty are hard to justify. The use of a
set-membership approach to model the CVS, as in ( ), may allow to introduce
more reliable bounds that are simpler to justify.

1.2 . Thesis outline and contributions

This thesis presents an all-in-one approach to solve the CSAT problem within an unknown structu-
red environment by using a fleet of UAVs controlled in a distributed manner. Each UAV embeds a CVS
in order to process the information collected from the portion of the environment under observation.
This process of information collected by the CVS includes RGB imagery, image segmentation, depth
map evaluation, and target detection/identification. Though different sensors, e.g., LiDAR, stereo ca-
mera, or monocular camera, can be embedded on a UAV and different image processing algorithms,
e.g., R-CNN, or YOLO, can be implemented to process the information collected by those sensors,
their modeling is a problem in itself. A CVS that relies on a deep-learning approach is hard to mo-
del, and the sensor model is highly dependent on the technology used. Instead, this thesis provides
assumptions regarding how the CVS measurements can be interpreted. Using the pinhole model to
approximate the camera, a geometric approach is used to represent the information contained in
a CVS measurement. For instance, if a pixel of the acquired image is labeled Ground, then one may
assume that this pixel has only been illuminated by light rays stemming from the ground, regardless
of the type of camera used. The formulation of these assumptions takes advantage of the known
implicit bounds of the provided measurements, i.e., the fact that they are related to a pixel of known
dimensions. This motivated the use of a set-membership approach to model measurement noise
and other uncertainties as bounded sets with known bounds. Then, from those assumptions, a set-
membership estimator is proposed to characterize, from the CVS measurements, set estimates that
are guaranteed to contain the location of the targets, and set estimates that are guaranteed to contain
no target location. Additionally, the CVS measurements related to the obstacles are used to create a
rough approximation of the environment in order to predict what the UAV will not see in the future
when it updates its trajectory. Moreover, each UAV can communicate with neighboring UAVs in order
to mutually improve its knowledge about the environment or the possible locations of the targets.
The structure and contributions of the thesis are detailed hereafter.

Chapter 2 reviews some work related to the problem addressed by this thesis. The CSAT problem
and its challenges are presented. Some sensors and algorithms that provide CVS measurements are
discussed. Several target location estimators are presented. The methods to search for a target, pur-
sue a target, and keep track of its location when the identified target is not under observation are also
discussed as well as some methods to map an unknown environment. Lastly, some control schemes
are presented.

Chapter 3 formalizes the considered problem. This chapter introduces, in a first time, assump-
tions regarding the structure of the unknown environment. Then, the targets are modeled and their
characteristics and behaviors that are assumed a priori available to the UAVs are detailed. The same
is done with the UAVs. The camera model based on a pinhole model is presented and followed by se-
veral assumptions regarding the interpretation of the CVS measurements (pixel label, bounding box
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related to an identified target, and depth map). These assumptions, even though they do not aim to
model the complexity of the embedded CVS, are instrumental in defining a measurement function
that explains how the acquired CVS measurements are obtained from the portion of the environment
monitored by the UAV.

Chapter 4 presents - to the best of our knowledge - the first target location estimator that directly
exploits CVS measurements using a set-membership approach. Target-related CVS measurements
refer to pixels labeled as Target. Then, based on the assumptions and the geometric approach detai-
led in the previous chapter, the estimator characterizes a set containing all the possible points that
may be related to the identified target and, thus, may have contributed to the illumination of those
pixels. A strength of the set-membership approach is when the assumed bounds of the measurement
noises and other uncertainties are satisfied, then one can prove that this set of points is guaranteed
to contain points belonging to the target. Nonetheless, we have no interest in estimating the location
of arandom point belonging to an identified target. Instead, we want to estimate the location of a spe-
cific and invariant point of the target that is denoted as its location. For that purpose, we assume that
the main dimensions of the identified target are a priori available to the UAVs. Consequently, from
the set that is proved to intersect the target, another set is characterized such that it is guaranteed to
contain its location. Such a result is obtained even if the identified target is partially hidden behind an
obstacle. Similarly, and under some assumptions that are detailed in the previous chapter, the esti-
mator exploits CVS measurements related to the obstacles and the ground to characterize other set
estimates that are guaranteed to contain no target location. Finally, through a prediction-correction
process, the set estimates obtained from the CVS measurements are used to update :

+ the sets that are guaranteed to contain the location of each identified target
+ the set that is guaranteed to contain the location of not yet identified targets

This update step may involve other UAVs if they are within communication range and can broadcast
their set estimates. Lastly, the chapter presents our approach to update from CVS measurements
an occupancy-elevation map that is used as our rough approximation of the shape of the obstacles.
The simulation results presented in this chapter are only done to evaluate the performance of the
proposed target location estimator. Therefore, no control design is considered.

Chapter 5 presents several cooperative control designs, all based on a model predictive controller.
They aim to solve an optimization problem defined as the search for the best new list of trajectories
allowing the whole fleet to a better cooperative navigation within the environment to search and
track the targets. A criterion reflecting this objective has been proposed for each control design. The
main difference between those criteria is the amount of knowledge that a UAV has about the envi-
ronment during the trajectory update. Three different degrees of available environmental knowledge
are considered :

+ No environmental knowledge. The UAV is unable to gain any knowledge regarding the environ-
ment

+ No memory regarding the shape of the obstacles. The UAV approximates the shape of the obs-
tacles that are currently under observation and uses this knowledge to look for a better search
and tracking trajectory, but no memory is allocated to store such a knowledge over time

+ Mapping of a 3D environment. The UAV embeds the required devices, algorithms, and memory
to update a map of the environment that approximates the shape of the obstacles in order to
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predict during the trajectory update how they would limit its field of view.
The simulation results of this chapter compare the performance of each control design in terms of
map exploration or reduction of estimated target location uncertainty, while using the target location
estimator presented in the previous chapter.

Chapter 6 takes into account the possibility that the state vector of the UAVs is uncertain. This
uncertainty may come from the fact that the UAV dynamic is not perfectly known, and the measure-
ments provided by embedded proprioceptive sensors are corrupted by a bounded noise. Therefore,
the uncertainty regarding the UAV location and attitude directly affects the target location estimator
presented in Chapter 4. This chapter presents an adaptation of how the set estimates introduced
in Chapter 4 are characterized in order to retain their useful properties even with an uncertain UAV
state. Since some of the previously introduced set estimates are 3D, an interval-based approach is
considered. Nonetheless, it is shown that the classic interval analysis is insufficient to efficiently ad-
dress the problem of characterizing 3D set estimates from CVS measurements while accounting for
UAV state uncertainty. Instead, thick-intervals are used. The simulations of this chapter reuse the si-
mulation setup of Chapter 4 in order to illustrate the drop in performances for several examples of
UAV state uncertainties.

Chapter 7 concludes the thesis, and Chapter 8 presents some research directions that come out
of our work such as:

+ the addition of an unknown uneven ground

+ the relaxation of the assumption regarding the structured environment

+ the addition of CVS errors like an imperfect target detection/identification
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Accepted international conference paper :
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Chapter 2 - State of the art

The aim of this thesis is to design a strategy to control a fleet of Unmanned Aerial Vehicles (UAVs)
such that they explore a possibly unknown environment containing obstacles to find and track an
unknown number of targets. The UAVs have to find targets and estimate their locations using em-
bedded sensors that provide measurements related to parts of the environment. The control design
of the robots has to meet a compromise between tracking already identified targets and exploring
parts of the environment that may contain targets not detected yet.

Section 2.1 overviews the target search and tracking problem and the different approaches to
address it. Then, the sensors and computer vision algorithms that can be embedded on a robot are
presented in Section 2.2. Using the measurements provided by these sensors and algorithms, the
robot may update its knowledge regarding the environment by building a map using an approach
presented in Section 2.3. Otherwise, the robot can exploit these measurements to estimate where the
targets can or cannot be by using an approach presented in Section 2.4. Then, Section 2.5 describes
some approaches to address the search and tracking problem. Finally, Section 2.6 presents some
control design approaches.

2.1. Target search and tracking using mobile robots

The efficient exploration of an environment to search, identify, and track targets is an interesting
and attractive problem due to its numerous applications. This problem, for instance, encompasses

monitoring of a perimeter ( ), evasive target search ( ), or exploration
of hazardous areas ( ). The deployment of robots, also called mobile sensors or agents
in some surveys ( ; ), to supplement or replace human

operators has proved to be an efficient approach to address this kind of problem. This is due to the
efficiency of the robots to evolve within a Region of Interest (Rol), e.g., underwater using submarine
robots or in urban environments using aerial drones. They can reach interesting locations to collect
useful information while keeping the human operator safe. Nevertheless, the deployment of robots
and the design of strategies to address the target search and tracking problem depend on the mission,
the available resources, the available knowledge about the Rol or the targets, and the considered
models such as the target dynamic or the sensors embedded in the robots. The survey (

) presents a variety of recent results regarding the target search and the exploration of an area
after a disaster. For surveys with a broader scope, one may be interested in ( ;

).

Regarding the mission and the available resources, different classes of problems have been poin-
ted out in ( ). Section 2.1.1 presents these classes and details their objectives and
assumptions. Section 2.1.2 focuses on the problem considered in this thesis : the cooperative target
search, acquisition, and tracking problem. Then, depending of the available resources (e.g., robots,
sensors) and the available computing power, different levels of knowledge can be gained and different
strategies can be deployed. The target search and tracking problem may be complex to address at
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first glance. Thus, Section 2.1.3 decomposes the target search and tracking problem into several sub-
problems that are easier to handle.

2.1.1. Mission classification

The multi-robot target search and tracking problem encompasses a wide variety of situations and
applications which, according to ( ; ) can be grouped into four main
categories : Cooperative Tracking (CT), Cooperative Multirobot Observation of Multiple Moving Tar-
gets (CMOMMT), Cooperative Search, Acquisition, and Tracking (CSAT), and Multirobot Pursuit Evasion
(MPE). The main differences between them rely on the knowledge available to the human operator
about the targets, and on how many robots he/she has access to. For instance, the a priori know-
ledge regarding the targets may be their number, their location, or how they interact with the robots,
i.e., they can be neutral, cooperative, or evasive. The a priori available knowledge regarding the ro-
bots is their dynamics, the sensors and algorithms they embed, their communication capability, their
number compared to the number of targets, et cetera.

Assume the number of targets and their estimated locations are known. A Cooperative Tracking
(CT) mission consists in deploying the robots to pursue the known targets. This type of mission is
often linked with a task of monitoring or perimeter surveillance. The number of known targets is
not constrained. Therefore, if it exceeds the number of robots, then the deployed strategies have to
minimize the time between two observations for each target, e.g., by maximizing the visibility of the

targets ( ) or, minimizing the target location uncertainty (
), in order to know when a robot has to switch between targets. Otherwise, some robots may
be - directly ( ) or indirectly ( ) - partitioned into sub-fleets to pursue a

target from different angles. Hereafter, the notion of target pursuit means that a mobile robot should
follow a target in order to keep it within sensing range, whereas the notion of target tracking refers
to the deployment of algorithms and strategies to estimate the state of a tracked target even if it is
not always observable.

When no a priori knowledge about the state vector of the targets is available, i.e., the vector contai-
ning the target location, orientation, or other variables of interest, the mission involves a target search.
The Cooperative Multirobot Observation of Multiple Moving Targets (CMOMMT) approach introduced
in ( ) is a find-and-pursue approach where the robots switch permanently
from a search mode to a pursuit mode as soon as a target is detected within their field of view. The
aim is to maximize the number of monitored targets at every time instant while having a limited ex-
change of knowledge between the robots. This approach is well-suited when there are fewer targets
than robots, see ( ; ) and the references therein. Nevertheless, the
CMOMMT approach is not well-suited when the number of targets is unknown and may outnumber
the robots while having a Rol cluttered with obstacles. The reason is when a robot is in the pursuit
mode, it is forbidden to leave the target that it is tasked to pursue in order to explore a neighboring
area that may contain undetected targets.

In Cooperative Search, Acquisition, and Track (CSAT) approaches, robots continuously solve a
trade-off between searching for new targets and maintaining a good accuracy of the estimated state
of those already identified. Therefore, the main difference between CMOMMT and CSAT approaches
is that CMOMMT algorithms maximize the number of currently monitored targets, and thus mini-

32



mize the estimation uncertainty of the pursued targets, whereas CSAT algorithms try to maximize the
number of identified targets while maintaining the estimated state of the already identified target as

accurate as possible. For instance, ( ) proposes a CSAT algorithm where targets can freely
leave and enter the Rol. When the Rol is an area containing targets to find after a disaster, the term
Search And Rescue (SAR) is preferred, see ( ) and the references therein.

The above approaches assume that the targets either cooperate with the robots to help find them,
or are neutral, or move slower than the robots. When the targets are faster or are evasive, i.e., the
targets try to avoid belng observed, Multirobot Pursuit Evasion (MPE) approaches have been deve-
loped. In ( ; ), MPE algorithms use game theory (

) or rely on other strategies such as auction mechanisms ( ) to design trajectories
minimizing the time needed to either physically or visually capture a target.

Other categories of problems exist such as static surveillance, also named the art gallery pro-
blem ( ), when the robots are static. When the targets are static, then tra-
cking/pursuit steps are not required anymore. Instead, the target search in this scenario is rather
close to an area-covering problem as in ( ). In addition, one may remark that, as
soon as all targets located within the Rol are identified and their state is estimated, the initial CMOMMT
or CSAT/SAR problem becomes a CT problem.

2.1.2. Cooperative Search, Acquisition, and Track

Unlike CT approaches, which assume to already know where the targets are, or MPE approaches,
which consider specific target behaviors, CSAT/SAR approaches can be related to a wide variety of
real-life problems and applications. See (DJI, ) only as an example of a list of situations that can be
encountered in the context of a SAR problem. Traditionally, the CSAT approach only considers mobile
targets whereas the SAR approach may consider either static or mobile targets. For the latter, the
main difficulty of the SAR approach is to deal with an unknown and unstructured Rol, which is the
case after a natural disaster (storm, earthquake). In such a situation, the targets do not or are unable
to move. In the case of a marine rescue, the target may drift away. For the rest of this section, we will
only consider mobile targets for a target search and tracking problem with CSAT/SAR approach. See
( ; )and the references therein for CSAT and SAR algorithms respectively.

As for CMOMMT algorithms, CSAT algorithms consider two modes : a search mode where the ro-
bot explores the Rol to find a target, and a pursuit mode where the robot pursues a target to collect
more information in order to reduce its state estimation uncertainty. Unlike CMOMMT, the robots
controlled by a CSAT algorithm will not be locked in pursuit mode once they have found a target. Ins-
tead, CSAT algorithms are designed to enable a robot to switch between the two operating modes.
CSAT algorithms have been first introduced in ( ) : Four UAVs are deployed to
search for six mobile ground targets. The UAVs are able to communicate with all the other UAVs wi-
thout failures and delay. They exchange information to mutually update their knowledge regarding
the actual possible locations of the targets. Then, each robot individually evaluates its best sequence
of control actions which maximizes an objective function involving both the search and the pursuit
part. The search mode is designed to explore the Rol in order to reduce the uncertainty of the target
location, modeled with a probability density function. A robot switches from search mode to pursuit
mode if it has detected a target. Then, it switches back to search mode when the target is considered
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rescued, meaning that a rescuing helicopter had the time to reach the actual location of the pursued
target to retrieve it. Nonetheless, most of the other CSAT problems do not involve a vehicle that will
remove the pursued target from the Rol. Therefore, as in ( ; )
the robots explore the Rol to acquire new observations in order to estimate where the targets can or
cannot be. A robot switches from search mode to pursuit mode to reduce the estimated state uncer-
tainty of a detected target. Then, it switches back to search mode if the uncertainty of the pursued
target estimated state is below some threshold. Thus, the robot stops monitoring the targets and
starts searching for new ones. Nevertheless, since the targets move and their dynamics are at least
partially known, their estimated state uncertainty grows until they are re-observed by a robot in the
pursuit mode.

This threshold, and more generally the transition condition between search mode and pursuit
mode, controls the trade-off between searching for new targets and recapturing already identified
targets to reduce the uncertainty regarding their estimated state. An example of transition condition
is described in ( ). The spectral norm of a target state covariance matrix is used
as the metric to evaluate the uncertainty of its estimated location. The evolution over time of this un-
certainty can be predicted. Therefore, as long as a robot has the time to recapture the target before
an uncertainty limit is violated, it remains in search mode. In ( ), the mode transition is
managed with a task assignment between the UAVs. However, as highlighted in ( ) the
design of the transition condition has to be defined carefully to avoid the estimated state uncertainty
of the identified and non-detected targets growing too fast. Recently, a new approach has been pro-
posed to simultaneously search and pursue targets ( ;

; ). While exchanging information with its neighbors, a robot searches for the best
action it can take to minimize a criterion that accounts simultaneously for the future gain of exploring
areas potentially containing undetected targets and the future gain in recapturing already identified
targets to get a more accurate estimation of their states.

2.1.3. Problems related to the target search and tracking problem

A target search and tracking problem involves several disciplines - or subproblems - such as the
processing of the information collected by the embedded sensors, a robust target state estimation,
or the design of a controller. For instance, a robot embeds sensors and computer vision algorithms
to gain new measurements regarding the targets or the environment. Measurements related to the
presence of targets are used to estimate their states ( ), whereas measurements
related to the absence of targets are used to remove some of their potential locations and, thus, re-
duce the uncertainty of the estimated target location ( ). Measurements related
to the environment are used to gain some knowledge such as the location of obstacles or the cha-
racterization of pathways ( ). This kind of knowledge is dubbed as environmental
knowledge. Such knowledge may take the form of a 2D or a 3D map used as input for exploration
or target search/pursuit strategies. Exploration strategies aim to drive the robot toward unexplored
areas of the Rol for mapping purposes ( ). Target search strategies aim to drive the
robots toward areas that may contain either a new target to detect or a target to recapture (

). Pursuit strategies aim to evaluate new observation locations to further increase the accuracy
of the estimated state of currently monitored targets ( ; )-
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To summarize the inherent complexity of a target search problem, this thesis proposes the follo-
wing subproblems :
* Acquisition of information : the embedded sensors collect new information from the monitored
environment. Then, the collected information is processed using computer vision algorithms
« Extraction of knowledge : interpretation of the measurements provided by the sensors and the
computer vision algorithms to gain knowledge about the possible values of the target state as
well as the environment through an estimation process
+ Target search : application of strategies to continuously collect new information about where the
targets can and cannot be
* Target pursuit : application of strategies to keep a target within sensing range
* Target tracking : exploitation of a priori knowledge about the targets to predict their evolu-
tion from previously gained knowledge in order to, e.g., evaluate the next best location for re-
observation
* Map exploration : use of either a priori or gained environmental knowledge to design an efficient
robot trajectory within the cluttered area in order to optimize the future gain of information
+ Cooperation : deployment of a network architecture (centralized, decentralized, or distributed)
to allow the robots to cooperate, i.e., exchange knowledge, and thus, increase the overall per-
formance of the proposed approach.
These subproblems and the current approaches to solve them are discussed in what follows.

2.2. Sensors and computer vision algorithms

The first difficulty regarding the target search and tracking problem is how to collect new infor-
mation from the perceived environment and exploit this information to infer the possible values of
the state of each target contained in the Rol. To achieve this goal, the robots embed Computer Vision
Systems (CVS) composed of sensors (thereis in general at least one camera) and computer vision algo-
rithms to process the information collected by those sensors. Alternatively, the robots may transmit
the acquired sensor measurements to a robot or a ground unit with a higher computing power, or to
store them for offline processing.

In what follows, we distinguish the information contained in a scene that is under observation,
the measurements provided by the CVS, and the knowledge acquired by the robot. What we call
information is - to put it simply - all that composes an environment. For instance, a building is not
only defined by its shape but by its color and location too, or a target can be defined by a heat signal
or its features such as the license plate for a vehicle. The embedded sensors collect some of this
information to provide raw measurements such as an image, but this collected information can be
processed by embedded computer vision algorithms to provide other measurements such as a depth
map or the detection of a target. In what follows, a measurement provided by either the sensors or the
computer vision algorithms is dubbed as CVS measurement. Finally, the available CVS measurements
are processed further by an estimator to gain knowledge on what the sensors have perceived : target
location, absence of target, presence of an obstacle, etc. Figure 2.1 illustrates this chain to get new
knowledge from the portion of the environment that is under observation.

Section 2.2.1 presents some examples of sensors. Section 2.2.2 presents some computer vision
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algorithms that can be used with some of the aforementioned sensors. Lastly, Section 2.2.3 discusses
the accuracy of some computer vision algorithms.

Yy
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o
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Scene containing information
that can be collected

Gained knowledge

CVS measurements

Figure 2.1 - lllustration of the chain to get new knowledge from an observed scene. A UAV is moni-
toring an area with cars and obstacles. Its embedded CVS provides new measurements such as an
image, bounding boxes (purple) of the moving objects, a segmentation, or a depth map. Then, these
CVS measurements are used to estimate the location of the cars (green sets) and the location of the
obstacles (blue sets).

2.2.1. Examples of sensors

Exteroceptive and proprioceptive sensors are two categories of sensors that can be embedded in
a robot. Proprioceptive sensors provide measurements of the state of the robot on which they are
embedded whereas exteroceptive sensors provide measurements related to the environment. This
section only presents exteroceptive sensors.

In most cases, a robot embeds an RGB camera to get images of parts of its environment. The
camera may be supplemented by a LiDAR or a sonar to get additional distance measurements to
surrounding obstacles to get a depth map. As in ( ), @ LiDAR can be used to get an
approximation of the environment through a point cloud, i.e., a discrete set of points in space used
as a way to approximate the surface of objects and structures. Figure 2.2 provides a result regarding
this mapping technique. Alternatively, a depth map can be obtained using a stereo camera (

) through the computation of a disparity map or a monocular camera using structure-
from-motion algorithms ( ). The latter require, however, multiple images from the
same scene and are more time-consuming ( ). More recently, deep-learning
techniques have been proposed to compute depth estimates from monocular images. (

) proposes a self-supervised depth estimator trained using a dataset containing videos (RGB
and depth map) generated by a UAV flying in an urban environment at an altitude ranging from 50 to
100 meters. ( ) proposes a similar approach with a combination of a CNN and an
Optical Flow algorithm, trained with a dataset generated by AirSim. Lenslet light field cameras can also
be used to generate a depth map asin ( )where the authors propose a stereo-matching
algorithm that has been modified to account for the angular coordinates of the light field.

Other sensors may be considered depending on the context, like in ( )with a gas sensor,
orin( Ywith a thermal camera, but their utilization will not be considered in this thesis.
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Figure 2.2 - Snapshots of the exploration mission presented in ( ). The magenta
dots are candidate locations that the robot may choose to reach to continue the exploration. The
white line is the trajectory that the robot took. The red line shows the path to the selected candidate
location. The point cloud represents the portion of the indoor environment that has been mapped.

2.2.2. Examples of computer vision algorithms

Using computer vision algorithms, other information - dubbed as measurements in what follows

- may be obtained from the information collected by the sensors. Image or point cloud segmentation
( ; ; ) can be used to evaluate the category of
the objects perceived in the environment. Then the approach presented in ( ) can be
applied to improve image segmentation using the confidence that each pixel has in belonging to a
class. Regarding target detection, one may rely on deep- Iearnlng methods such as R-CNN (

). SSD ( ), or YOLO ( ; ; )-
Figure 2.3 provides some results for a target detector embedded on an aerial robot that has been
presented in ( ) where several vehicles are localized in the image using boxes. In (

), the authors use a point cloud to detect the presence of a human target by detecting its
legs. ( ) propose another target detector specially designed for the low computing
power of UAVs, which combines optical flow for feature tracking with background elimination.

Moreover, depending on the application and the available dataset, more complex measurements
can be obtained such as the current action of a human ( ), e.g., handshaking or phone
call. Another example of computer vision algorithms is the 6D-pose detection that relies on a deep-
learning approach. These algorlthms can provide an estimation of the position and the orientation
of a static object ( ; ), or a vehicle ( ;

). Nonetheless, these algorithms often require strong a priori information such as 3D models of
the target shapes.

Target identification, i.e., the capacity to estimate the identity of a target strongly depends on the

nature of the target. Some approaches, such as ( ; ; )
use QR codes or ArUco markers attached to the target to simplify their identification. Without such
markers, one can use the Bi-directional Similarity Matching algorithm, presented in ( )
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Figure 2.3 - lllustration of the detection results obtained with the YOLOD algorithm developed in (Luo
et al.,, 2022). Red boxes are for detected cars. Purples boxes are for detected pickups. Orange boxes
are for detected trucks. Cyan boxes are for detected boats. Green boxes are for detected camping
cars.

andusedin (Liu et al., 2022a), to detect a target, store in memory information regarding its shape, and
try to re-identify the target in the future by testing if the newly collected information matches with
that stored, see Figure 2.4. The authors of (Silva et al., 2019) consider a similar approach, but it only
works with the extracted features of a human face.
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Figure 2.4 - lllustration from (Liu et al., 2022a) of the detection of human targets using YOLOv3 and the
identification of the correct target to track with the Bi-directional Similarity Matching (BSM) algorithm
(Oron et al., 2017).

2.2.3. Accuracy of computer vision algorithms
Most of the aforementioned CVS are, nowadays, commonly embedded in robots to collect and
process new information before applying estimation and control design algorithms with the newly
obtained CVS measurement. Nevertheless, the measurements provided by these CVS are not perfect,
see(Jamwaletal., 2016) as a survey of the accuracy of UAV-based mapping approaches using structure-
from-motion. Outliers, e.g., the detection of a target that is not present or the non-detection of a
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visible target, can occur and have to be correctly managed to avoid failures in the following processes.
Though the generation of outliers is rare for some computer vision algorithmes, it is still useful to have
access to some metrics evaluating their accuracy to know if robust approaches have to be considered
in order to reject those outliers.

Some metrics have already been introduced for target detection. To evaluate the accuracy of the
target detection in one picture, one may use the Intersection over Union (loU). The loU represents how
accurate is the localization of a detected target in the image. The way this metric is evaluated is by
comparing the box representing the ground truth, i.e., what the target detector is aimed to achieve,
with the box representing where in the image a target has been detected. Figure 2.5 provides an
example. Then, to get an estimation of the expected accuracy of a target detection algorithm, the
mean average precision (MAP) may be used. The mAP is obtained by computing the average over
the number of considered categories (car, bus...) of the average of the precision for each considered
category. The precision is defined as the ratio between the true positives, i.e., having an loU above
some threshold, and the sum of the number of true positives and false positives, i.e., detection of a
target that does not exist. Another metric is the F1score. It is the harmonic mean of the precision and
the recall of the sensor. The recall is the ratio between the true positives and the sum of the number
of true positives and false negatives, i.e., non-detection.

In (Luo et al., 2022), the mAP of their algorithm designed to detect targets from aerial images is
83.19 %, which is better than YOLOv4 (Bochkovskiy, 2020) (with an mAP of 80.13 %) or Faster R-CNN
(Ren et al., 2016) (with an mAP of 44.39 %). Nonetheless, the probability of bad target detection still
exists and the bounding box provided by the embedded target detector may not or only partially
contain the target.

Union

Ground truth

Figure 2.5 - Illustration of the loU metric. A car is visible the image. The blue box is the ground truth,
and the orange box is what the target detector (trained to detect cars) returns. The loU is the ratio
between the intersection between the two boxes and the area of their union.

Other highly inaccurate measurements may be provided by the CVS when, e.g., target misiden-
tifications or non-detection occur. These outliers are commonly referred to either false positives or
false negatives and can make the entire estimation process fail. (Symington et al,, 2010) and (Meera
etal., 2019) have proved that the quality of a deep learning target detection algorithm depends, among
others, on the observation condition (including the presence of obstacles) and weather conditions.
This is due to the fact that the performance of these algorithms heavily depends on the content of
their training dataset. If the dataset is not consistent enough to encompass all possible situations
encountered by the robot, the provided measurement is biased because it is only obtained after a
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comparison between what has been actually perceived and with what the deep-learning algorithm
has been trained. Consider the 6D-pose detection algorithm proposed in (Mousavian et al.,, 2017) as
an example. Though the average precision of their approach is 92.98 % , their algorithm can still fail
to provide a correct estimation of the target location and dimensions, as illustrated in Figure 2.6.

Figure 2.6 - lllustration of the performance of a 6D-pose algorithm. Red boxes are for cars and green
boxes are for cyclists. Most of the estimated locations, orientations, and dimensions are correct.
Nonetheless, in the top-right figure, the algorithm provided an erroneous pose estimation of the
partially-visible black car. Figure taken from (Mousavian et al., 2017).

The measurements provided by the CVS embedded on a robot can be either used to map the
environment or to characterize areas where a target can or cannot be.

2.3 . Map building

A target search problem involves the navigation of a robot within an environment cluttered with
obstacles whose locations are often unknown. This section considers the problem of gaining know-
ledge about the location and shape of obstacles in some unknown environment using CVS measure-
ments. To achieve this goal, several approaches to map the environment have been proposed in the
context of Simultaneous Localization and Mapping (SLAM) algorithms, see the survey (Placed et al.,
2023). Their differences are mainly related to the choice of the representation used to describe the
environment, i.e., with a point cloud or with a grid map.

A first representation of the environment is by point clouds, i.e., a set of 3D points approximating
the surface of objects. This type of representation is well suited when distance measurements are
acquired by a LiDAR sensor. An example of a point cloud used for the mapping of a city is provided
in Figure 2.10. The point cloud is build progressively. The main difficulty is to put in correspondence
newly acquired measurements with previous knowledge about the point cloud or the model repre-
senting the environment. Iterative Closest Point (ICP) algorithms (Besl and McKay, 1992) compare two
point clouds : one is the data and the other is the model. The aim is to find the best transformation
that makes the data point cloud match the model point cloud. From this method, approaches to ite-
ratively build a map of the environment have been developed. (Tomono, 2009) uses a stereo camera
to generate a point cloud to map a 3D indoor environment. An approach adapted to outdoor envi-
ronments is presented in (Mendes et al., 2016). The authors propose a graph approach in which each
node is related to a scan, i.e., a point cloud. For each newly obtained point cloud, if it does not overlap
too much with previous scans, a new node is created to store the scan. To evaluate the overlap, the
scan is not compared with the entire registered map but only with a local map built from previous
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scans. Nonetheless, to reduce the computational burden of ICP, up to 80% of the dense point cloud is
filtered without losing the structural information of the obstacles. Alternatively, (Williams et al., 2020)
use a grid approach to limit the number of registered 3D points

A second representation of an environment uses a 3D occupancy grid. The authors of (Hardouin
et al., 2020) propose a method to cooperatively reconstruct the surface of a building using an occu-
pancy grid. An occupancy grid consists of cells which are either unknown and need to be explored,
empty and contain no obstacle that may obstruct the path of the robot, or occupied meaning that at
least a part of an obstacle or an object is located in the cell. (Serdel et al., 2023) present two different
approaches to build these 3D grid maps, i.e., by using either Octomap (Hornung et al., 2013) or Voxblox
(Oleynikova et al., 2017). (Asgharivaskasi and Atanasov, 2023) use a semantic Octomap representation
to explore and map an unknown outdoor environment, see Figure 2.7. The semantic segmentation
has been performed using a neural network that takes RGB images as inputs. See (Andersone, 2019)
and the reference therein for other examples of grid maps.

[C] (e)

Figure 2.7 - Figure from (Asgharivaskasi and Atanasov, 2023) illustrating the grid-based representation
(via semantic Octomap) of the Rol during its exploration.

The availability of semantic information, such as classification (Grilli et al., 2017), i.e., knowing what
class of object has been detected, or traversability (Stelzer et al., 2012; Liu et al., 2023), i.e., evaluating
the capacity of a robot to cross a mapped terrain, can improve the mapping algorithms (Atanasov
et al., 2014; Zhong et al., 2018; Zhang et al., 2022; Asgharivaskasi and Atanasov, 2023; Serdel et al,,
2023) by, e.g., distinguishing static and mobile objects as in (Zhong et al., 2018). To map an outdoor
environment, (Zhang et al., 2022; Serdel et al., 2023) use semantic information to evaluate the traver-
sability between two locations.

Nevertheless, as pointed out in (Placed et al., 2023), 3D mapping and exploration of large out-
door environments is still challenging, especially for aerial vehicles due to their limited computational
power when they are tasked to map a city-scale environment with a 3D occupancy grid. Using an Oc-
tomap may reduce the complexity as shown in (Asgharivaskasi and Atanasov, 2023), but their study
is limited to the ground exploration of an area of 22500 m? (equivalent to a 150 m x 150 m?).

For the mapping of a large-scale outdoor environment, alternative 2.5D mapping approaches re-
present less accurately the environment in the third coordinate, i.e., the height. This approximation
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allows the use of simpler geometric representations of the environment at the cost of a decrease in
the quality of the description of complex structures and objects of the Rol. An example is the use of an
elevation map. This approach consists of a 2D grid where each cell contains the value of the measured
floor height. In (Fankhauser et al., 2014), the elevation map is updated from the noisy measurement
provided by a ground robot, whereas a UAV is used instead in (Zhang et al., 2022). The authors of
(Du et al., 2018) present a method to get a bounded elevation map with a set-membership approach.
Moreover, (Zhang et al., 2022) use, among others, an elevation map with a traversability map, see
Figure 2.8, to rapidly map the Rol with a UAV in order to provide enough information for a ground
vehicle to find a trajectory that crosses the previously unknown Rol to reach a known target location.

Ground Path
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Figure 2.8 - Figure from (Zhang et al., 2022) illustrating the maps that are considered during the explo-
ration and mapping of the environment using a UAV. With the elevation map, other properties of the
terrrain are evaluated : the slope, the roughness, and the step height. These metrics are evaluated
using (Stelzer et al., 2012). Once obtained, the traversability map is deduced.

(Dellenbach et al., 2022) also uses an elevation map to solve a SLAM problem in an outdoor envi-
ronment where, instead of applying the ICP algorithm to the newly obtained point cloud, they trans-
form the point cloud into an elevation map and then search the 2D rigid transformation between
the newly obtained elevation map and the stored elevation maps. When a match is obtained, an ICP
refinement is performed with the initial elevation map's point clouds for the loop closure.

Alternatively, the authors of (Zhang et al., 2023) assume that the buildings located inside the Rol
can be approximated by a pyramidal stacking of parallelepipedic blocks. Therefore, the map repre-
sentation is based on layers, see Figure 2.9 and Figure 2.10. This approximation enables the generation
of fictive point clouds used for vehicle localization which are quite close to the ground truth.

(Souza and Goncalves, 2016; Du et al., 2018; Souza and Goncalves, 2018; Bayer and Faigl, 2019)
combine the elevation map with a 2D occupancy map in order to map the Rol. An occupied cell is a
cell that is at least partially occupied by an obstacle for which its height is either known or has been
estimated using CVS measurements. An empty cell of the Occupancy-Elevation Map (OEM) represents
an area where there is no building, and where the robots and the targets are free to move. In (Souza
and Goncalves, 2016; Souza and Goncalves, 2018), at time ¢, the cell n of the OEM carries an occupancy
probability, an estimated height yi,, 1, and the variance o7, ;. of the estimated height. The update of the
occupancy probability relies on a stochastic sensor model that provides an occupancy probability
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Figure 2.9 - Figure from (Zhang et al., 2023). lllustration of the assumption related to the pyramidal
stacking of parallelepipedic blocks to model urban buildings.

X
3

Front
View

Figure 2.10 - Figure from (Zhang et al., 2023). Illustration of the building reconstruction approach with
a point cloud initially obtained from CVS measurement (in blue) and the fictive point cloud generated
from the pyramidal assumption (in red).

for each cell that is flown over by a ray, see Figure 2.11. The update of the estimated height and the
uncertainty of the cell n is

2 2
O 1Pt + Ohin k-1

Hnk = D) D) ) (21)
Onk—1 T O
g ag
2 nk—1"k
Un,k = ﬁ, (2.2)
Tnk—1 7T 9k

where h; and o7 are the newly estimated height with its uncertainty. A set-membership approach ap-
proach is used in (Du et al., 2018) to build an elevation map. Their set-membership estimator provides
set estimates that are characterized by ellipsoids. From these set estimates, the authors update the
elevation map. Yet, instead of simply updating the height of each cell, they propagate the bounded
uncertainty of the measured height by obtaining two bounds for each cell of the elevation map, i.e.,
the highest and the lowest elevation.

This approach to approximate the shape of the buildings in an urban environment, asin asin (Hu
et al., 2019; Liu et al., 2020; Wu et al,, 2020), can be supported with the main assumption of (Zhang
et al., 2023) which approximates buildings as stacking of parallelepipedic blocks.
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Figure 2.11 - Figure from (Souza and Goncalves, 2016). lllustration of the sensor model. Abeam is castin
a direction. The cells of the OEM that are flown over are detected, and a probability of being occupied
by an obstacle is assigned to them. This occupancy probability accounts for a measured distance.

Regardless of the approach used to build a representation of the environment, such environmen-
tal knowledge can be used to better estimate the location of the targets.

2.4 . Target localization

This section describes related work considering the problem of estimating the target location from
CVS measurements. The difficulty and type of approaches to address this problem depend on the type
of measurements provided by the CVS. It also depends on the assumptions regarding the measure-
ment noises and other uncertainties and, thus, the approach to consider so as to account for those
noises in order to process those measurements.

A deterministic approach is presented in Section 2.4.1. It is then followed by the presentation of
a stochastic approach in Section 2.4.2, and a set-membership approach in Section 2.4.3. Section 2.4.4
introduces the negative information and how it can be used during the estimation process. Lastly,
Section 2.4.5 discusses a simplification of the CVS that can be found in several approaches initially
developed to solve a target search and tracking problem.

2.4.1. Deterministic approach

In (Liu et al., 2022a), a UAV and a ground robot cooperate to track a human inside a Rol free of
obstacles but containing other humans. The UAV and the ground robot embed a camera, the YO-
LOv3 algorithm for target detection, and the Bi-directional Similarity Matching algorithm for target
identification. The available measurement is the bounding box provided by YOLOv3 which allows the
re-identification of the target using the Bi-directional Similarity Matching algorithm, see Figure 2.4.
From this bounding box, the proposed estimator implemented on the UAV exploits only its bottom-
center pixel because this particular pixel is assumed representative of the target location. Then, the
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algorithm estimates the target location by searching for the intersection between the flat horizontal
ground and the line passing through this pixel and the camera optical center. This is achieved by using
Thales theorem. Similar processes to determine the location of a target from its estimated location
in the image can be found in (Minaeian et al., 2015; Vanegas et al., 2016; Sun et al., 2016; Wang et al.,
2016; Liu et al., 2018). Some of these approaches also assume to know a priori the height of the target.
Nevertheless, compared to approaches like 6D-pose estimation using a CAD model of the target, the
absence of knowledge regarding the target shape may lead to relatively large and unpredictable es-
timation errors, as evidenced by (Di Gennaro and Waldmann, 2023) where estimating the location of
humans evolving in the overlapping FoV of static cameras is achieved by stereoscopy techniques, see
Figure 2.12. In addition, since these estimators are often developed for target pursuit, i.e., the robot is
controlled to keep the target within sight, their estimation algorithm does not provide an evaluation
of the uncertainty regarding the estimated target location.

Cameraz s

-~ |

= ,&-—‘
h i %

Figure 2.12 - Figure from (Di Gennaro and Waldmann, 2023) where three detected targets evolving wi-
thin the overlapping FoV of static cameras have to be localized using stereoscopy techniques. Target 1
has been detected. However, their algorithm has poorly estimated its location.

2.4.2 . Stochastic approach

To evaluate the uncertainty regarding the estimated target location, one has to model the mea-
surement noises and other uncertainties. An approach to model these uncertainties is to rely on a
probability distribution.

CVS-based approaches estimating the location of a target and its related uncertainty have been
proposed in (Goldhoorn et al., 2018; Meera et al., 2019). The authors of (Meera et al., 2019) consider
a UAV that is tasked to find ground targets scattered within a region cluttered with obstacles. These
obstacles are known and modeled using a 3D grid map. A probabilistic model combining the embed-
ded camera and a target detector (YOLO Tiny 2.0) is used. The authors choose a normal distribution
to model the sensor performance, and its parameters are chosen according to an empirical study of
the accuracy of the implemented target detector illustrated in Figure 2.13. Targets are assumed to be
present on a flat ground. The field of target occupancy is modeled using a discretized Gaussian pro-
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cess. After an observation, the FoV of the UAV is projected on the ground to identify which cells have
to be updated using a recursive technique presented in (Popovic et al., 2017). This projection accounts
for the part of the Rol masked by obstacles. In (Goldhoorn et al., 2018), the authors consider a ground
robot, evolving in a mapped environment, which embeds a LiDAR for human detection and a camera
for identification. They model what the sensors perceive with the following probabilistic model that
evaluates the probability of seeing a point x5 from a point x; :

0 if RAY (1, x2) intersects an obstacle
Piisivility (1, 2) = { Pobs else if ||z; — 2| < dmax
max (0, pops — @ (||x1 — ®2|| — dmax)) Otherwise.
(2.3)
RAY (z1, 2) is the raytrace function that uses the known map to evaluate when the segment [z, 2]
crosses an obstacle. The parameter pops represents the probability that the robot sees x5 from its cur-
rent location x;. The third line of (2.3) models the possible occlusions generated by nearby unknown
dynamic obstacles, i.e., other humans.
|
I||||||||||I||||||||| T
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Figure 2.13 - Empirical study of YOLO Tiny 2.0 to detect the presence of a human-like target. The chosen
metric to evaluate the accuracy of the target detector is the F1 score. Figure taken from (Meera et al.,
2019).

2.4.3 . Set-membership approach

Instead of considering known probability distributions, the measurement noises and other un-
certainties may be assumed as bounded. Several representations of these bounds exist. The author
in (Schweppe, 1968), who is the first to solve a state estimation problem with a set-membership ap-
proach, used ellipsoids. An interval representation has also been introduced in (Moore, 1979; Jaulin
and Walter, 1993). Unlike stochastic techniques, which provide point estimates with a confidence set,
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set-membership techniques characterize a bounded set denoted as a set estimate. This set estimate
gathers all the values that are consistent with a measurement model and the assumed bounds of
the noises and other uncertainties that perturb the measurement process. Then, if the assumptions
regarding the bounds related to these perturbations are satisfied, the set estimate provided by a
set-membership estimator always contains the true value of the estimated state ( )-

Regarding a target localization problem at time g, e.g., ( ; ), it is assumed
that the target location at time ¢;_; belongs to a set estimate X! _,. Then, with a prediction step
that will be detailed later, a set estimate X}dk_l is obtained and contains all the possible locations
of the target at ¢;, known to the robot. X}C‘k_l can thus be considered as an a priori. Then, at time
instant ¢, the CVS embedded in the robot provides a measurement y;, of the target location. This
measurement has been corrupted by a perturbation denoted by w; € W, with W being the assumed
bounded set where the perturbation can take its values. The goal is to deduce from y, W, and X}glk_l
the a posteriori set estimate containing the target location. For that purpose, a measurement function
f modeling the relation between y and xy, is required in order to characterize the set estimate

Xt = {a: € Xz‘k_l | Iw e W,y = f(zc,w)}. (2.4)

This set estimate gathers all the possible locations of the target that are consistent with the a priori
X}qkq' the available measurement y, and the assumed bounded measurement noise W. Assuming
the measurement function f is a reliable representation of the processing performed by the CVS,
and the measurement bounds are not violated, then the solution set XZ is guaranteed to contain the
actual target location at time instant ¢.

An application of this approach for the self-localization of an underwater drone in a pool is illus-
trated in ( ). The drone is equipped with a sonar providing a measure of distance to the
walls of the pool, but the measurement is corrupted by a bounded additive measurement noise. The
authorsin ( ) solve a similar problem involving a cooperative fleet of UAVs. Each
UAV embeds a camera that is described by the simple pinhole model ( ). The camera is
used to perceive landmarks of known locations in order to estimate its location. The measurement
is an image in which the known landmarks can be identified. The drones are also equipped with a
ranging system antenna in order to get the distance between the drone and its neighbors, and thus
get more constraints regarding the possible locations of the drone. The pinhole model is used to de-
fine the measurement function relating the available measurement to the environment. The noise
related to the measurements provided by the camera depends on the resolution of the image, which
is clearly bounded, but the distance measurement is also corrupted with an assumed bounded noise.

2.4.4 . Negative information

A shared characteristic of a target location estimator is that it relies on the exploitation of CVS
measurements which are directly associated with the presence of a detected/identified target. These
CVS measurements can be considered as True Positives when they are related to a correctly detec-
ted/identified target. In addition, one may also exploit True Negative measurements, i.e., CVS mea-
surements concluding in the (true) absence of a target in the FoV of the sensor. The exploitation of
these True Negative measurements, or negative information as introduced in ( )
requires the introduction of other assumptions/models in order to design an estimator that would ex-
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tract from the true negatives new knowledge about possible values that the target state cannot take.
In ( ), negative information is used to detect the absence of collision during
the landing of a vehicle in order to improve its estimated state. ( ) uses negative information
to detect the absence of targets in an area monitored by UAVs in order to reduce the uncertainty
regarding their estimated location. This is achieved during the update of the posterior probability.
Nevertheless, unlike the authors of ( ) who tell that negative collision, i.e.,
an absence of collision, can be obtained by using an accelerometer, ( ) does not explain
where the negative measurements come from. Only a target detection probability is introduced, as
in ( ; ; ). Moreover, according to ( ;

; ), the target detection probability is hard to quantify, especially in unknown
environments.

2.4.5 . ldealized CVS

A target state can be composed of its location, its orientation, or its velocity. Regarding the target
location, it may be defined as the coordinates of its center of mass, or its GPS location. Nonethe-
less, these components may be hard to estimate from a measurement provided by a camera. Some
approaches such as ( ) manage to solve this problem with 6D-pose detection
algorithms, but they are not suitable for aerial drones whose computing power is inferior to that of
ground drones. Other approaches, such as ( ), rely on the exploitation of a specific pixel,
e.g., the one located at the center of a bounding box provided by YOLO, associated to the detected
target to evaluate a location that is considered representative of the actual target location. Thus, these
approaches, designed for a pursuing problem where the target should always remains within the field
of view of the drone, rather approximate the target location than solve an estimation problem. This
may lead to errors that are hard to evaluate. ( ; ;

) have proposed different approaches to model the embedded CVS to solve a detection and
localization problem. Nevertheless, most of the work addressing a target search and track problem
frequently neglects this aspect of the problem by conS|der|ng an idealized version of the embedded
CVS ( ; ; ; ; ).
Thus, this idealization often leads to assume that the robot gets directly a noisy measurement of the
target state once located within the FoV.

Nowadays, very few approaches developed to solve either a CSAT or a SAR problem consider the
difficulty of estimating the target location from CVS measurements. The more or less complex target
shape, such as a human or a car, is no longer considered. Instead, the target shape is assumed punc-
tual, see ( ; ; : ). Itis detected only when its
location enters the robot field of view and an estimation of its location - corrupted by some estimation
noise - is directly obtained. This simplification has the advantage of proposing a framework allowing a
simplified evaluation of a control design but at the cost of the introduction of assumptions regarding
the capacity to collect and process new information, e.g., a target detection probability or a model of
the estimation uncertainty. According to ( ) and ( ), the choice to
represent - most of the time - the localization uncertainty by a known noise and the capacity to detect
the presence of a target with a probability of detection is not realistic. Therefore, the performance of
the algorithms that use this simplified framework is likely to not be representative of the efficiency of
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their approach once deployed in a real-life context with real CVS.

2.5. Target search and tracking

The solution of a target search problem consists of three different steps : target search, target
pursuit, and target tracking. The target search step consists of efficiently exploring the Rol to find
targets that have not been previously identified. Once a mobile target is identified, a robot may be
tasked to pursue the target and evolve within the Rol so as to keep the pursued target within range of
its sensors. Additionally, unlike CMOMMT approaches, the robot may be tasked to return to a search
mode and stop pursuing the target. Consequently, the robots must remain capable of recapturing
these left-alone identified targets. For that purpose, the step of target tracking, i.e., being able to track
the target state even if itis not under observation, is to predict the future possible values of the target
state by using previous knowledge of its estimated values with the knowledge the UAV has about the
target dynamic.

Section 2.5.1 presents several approaches to model the presence/location of a target within the
environment. Then, Section 2.5.2 provides some examples to search for a target. Section 2.5.3 explains
how to pursue a target. Finally, Section 2.5.4 presents how a robot may remotely track a target.

2.5.1. Representation of the target state

The first difficulty in exploring a Rol in order to find the targets is to define how the estimated target
stateisrepresented. In target localization problems acommon approach with stochastic assumptions
is to rely either on a 2D ( ; ; ; ;

yor 3D ( ) discretization of the Rol in order to have access to a grid in which each
cell stores the probability that it contains a target. This regular grid is often called a Target Probability
Map (TPM), see Figure 2.14.

The resolution of the TPM is an issue since it has to cover the entirety of the Rol. A low resolu-
tion limits the accuracy of the estimated target location, but a high resolution leads to more storage
and computatlon requirements. Alternative representations have been considered in ( ;

; ) where the authors model the set containing the location
of all targets that are present within the Rol at some time instant by a Random Finite Set (RFS). Itis a
grid-free approach that relies on a set containing a finite and random number of random elements.
As an example, one of the RFS introduced in ( ) contains a random number of elements
in which each element may be the value of the state vector related to a target. More specifically, the
authors consider a Poisson RFS, which is defined as a set of independent and identically distributed
elements where the cardinality of the set follows a Poisson distribution. One of the strengths of this
approach is, since the number of elements to track is a variable, it is built to handle the disappearance
of previously identified targets that have left the Rol as well as the appearance of new targets entering
the Rol.

Moreover, as introduced in Section 2.4, set-membership approaches can be used if the measu-
rement noise and other uncertainties are assumed bounded. Such approaches are defined by the
characterization of a certain amount of possibly disconnected sets, their number being related to the
number of identified targets. Each set estimate associated with an identified target contains the true
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Figure 2.14 - lllustration of a 2D TPM which has been taken from the simulation results of (

).

value of the target location. Such set can be characterized as a list of non-overlapping boxes (

; ; ), ellipsoids ( ;

), or polygons ( ). Figure 2.15 illustrates a polygon representation. These ap-
proaches can be used to determine an area of the Rol which may contain identified or unidentified
targets, or areas that are guaranteed to contain no target location by using negative information.
Such representation clearly defines areas to explore, to either find new targets, or capture previously
identified targets.

2.5.2. Target search

The most basic approach to explore an area of the Rol which may contain a target is to use a
pre-planned trajectory ( ; ). The authors in ( )
present an approach to explore an unknown cluttered environment to find one lost ill man. The man
is able to move but, due to its illness, it will remain static at some point in time. They address the
search aspect of the problem as follows. Since the target may be anywhere in the neighborhood of
a Polish town, several Rols are defined (using techniques detailed in the article). Once an area that
may contain the target is defined, a UAV is tasked to explore the area, take photos, and upload the
photos on a laptop for an automatic human detection which is corrected by a human operator. The
exploration is performed using a lawnmower trajectory. Once the exploration of one of the Rols is
over, the UAV flies toward the next Rol to explore. Some advantages of their approach are (i) it is easy
to deploy and it has been proved enough to save the man’s life, and (ii) the pre-planned trajectory
has been designed to reduce the impact of occlusions by unknown obstacles during the search of
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Figure 2.15 - lllustration from ( ) of the evolution at 4 different time instants of

the possible locations of targets (black dots) that have been identified (green sets) and not-identified
(yellow sets) by a fleet of 4 UAVs. The white circles are decoys that have not to be localized. The gray
polygons represent the obstacles.

the ground target. However, such an approach has been designed for static targets. Therefore, with
mobile targets that can enter an area already explored by the UAV, another search strategy has to be
considered.

Unlike ( ), other approaches have been designed to actively account for the
presence of obstacles during the target search. The method in ( ) considers a
ground robot. It exploits a known map to evaluate if the robot is able to observe a point or if it is
hidden behind an obstacle, see equation (2.3). Then, during the target search, the robot searches for
the cell that solves a trade-off between having a high probability to contain a target and having a
fast reach time, i.e., the path to reach the location must be short. Alternatively, the authors of (

) propose an approach to design a polynomial trajectory that drives the robot toward the
next best observation point while avoiding obstacles. However, these approaches assume to have
access to an accurate representation of the shape of the obstacles located within the Rol, which is
not always ensured. To overcome this difficulty, mapping approaches may be used. The 3D cluttered
environment in ( ) is unknown, but the robot is able to detect an obstacle and approxi-
mate its shape by a sphere. Then, the search problem is addressed with a combination of a TPM and
a potential-field-based path-planning approach where discovered obstacles are used to generate re-
pulsion fields in order to reach a desired location. The unknown environment in ( ) is
modeled using a 2D grid map. The uncertainty that a target is located within a given cell is modeled
by a TPM. Additionally, some cells contain a static obstacle that the drones have to avoid. These cells
are a priori unknown and detected only when the UAV is nearby. Once detected, they are avoided
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Figure 2.16 - Illustration of the searching strategy presented in ( ) where 4 Rols
(not represented) have been defined and explored using a lawnmower trajectory. The orange star
and the blue pentagon are two locations that have been used to define the areas where the lost man
may be. The red dot is the location where he has been found by the UAV.

during the path planning step which is based on the Dijkstra’s algorithm (these occupied cells have
an infinite weight). The UAV achieves the target search by cooperatively evaluating the sequence of
actions that maximizes the difference between the current uncertainty of the map and its predicted
uncertainty according to a time horizon defined by an energy constraint. Targets are static and the
uncertainty of a cell is reduced after having been searched by a UAV embedding a sensor modeled
by a coefficient e that represents its accuracy to detect a target, i.e.,

TPMy11 (r,¢) = (1 — €) TPMg (1, ¢) , (2.5)

where r and ¢ are the coordinates of the cell of the TPM that is updated.

( ) consider a static target search in an environment with an uneven ground
modeled by an elevation map, see Figure 2.17. ATPM is used with a Beta distribution to model that a
target can appear and disappear from the robot FoV, e.g., due to obstacle occlusion.

An alternative approach to handle the occlusions by unknown obstacles is to rely on a robot for-
mation as in ( ). The authors assume a structured unknown environment. They
assume that a single robot is unable to know if it has observed the ground where mobile targets are,
or if it has observed an obstacle. To overcome this issue, they propose a geometric approach in order
to evaluate an area on the ground that is proved to have been observed if the area is simultaneously
monitored by several cooperative UAVs from a sufficient number of different points of view. This ap-
proach relies on the evaluation of a list of conic observation subsets used to define these different
points of view. Then, if a point belonging to the ground has been observed by a UAV located in each
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Figure 2.17 - lllustration from (Kuhlman et al., 2017) of an uneven ground generated by an elevation
grid

of these conic observation subsets, and there is no detected target, then the point is proved to not
be a target location. Using this approach, the target search is achieved by splitting the fleet of UAVs
into groups and, then, controlling each group in order to maximize the size of the area that has been
cooperatively observed. See Figure 2.18

Q@
S

Figure 2.18 - lllustration taken from (Ibenthal et al., 2023) which represents the area theoretically cove-
red by the 4 UAVs (ligth gray). A point on the ground is guaranteed to be observed only if it has been
observed simultaneously by 4 UAVs where each one is located within one of the conic observation
subsets represented by the geometrical observation conditions illustrated by the subset C; (green),
Ca (red), Cs (blue), and Cy4 (purple). The dark gray set is the area that has been proved to be observed
even in the presence of unknown obstacles.

2.5.3. Target pursuit

Once a target is identified and visible within the FoV of a robot, one can task the robot to simply
pursue the target until an accurate estimation of its state is obtained. Assume that a bounding box
in the image captured by its embedded camera is provided by a target detection algorithm such as
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YOLO. Then a target pursuit may be achieved by controlllng the robot to keep the bounding box close
to the center of the image ( ; ; ). Such a technique may
work in cluttered environments ( ). Otherwise, ( ) uses optical flow
techniques to estimate the direction of motion of the pursued target from a sequence of images. The
authors in ( ) propose an approach of target re-identification based on the extraction
of human features using a deep-learning algorithm. During the process, a bounding box is used to
localize the target in the image. Then, to predict the future target location in the image, they assume
that the target does not move significantly between two frames. Consequently, they dilate the initially
obtained bounding box to get an area where the target would be. To pursue the target, they control
the UAV to keep the target face in front of the camera.

2.5.4 . Target tracking

The strategy to track the state of a target without directly monitoring its evolution is strongly rela-
ted to the representation of the estimated target state and must use some a priori knowledge. The tra-
cking process usually involves a prediction-correction approach. Prior knowledge about the potential
values of the tracked target state at a previous time instant, and the available information regarding
the dynamics are used to predict its evolution at the current time. Then the prediction is corrected
with the knowledge acquired from newly collected information (including negative information).

With a TPM, the prediction may be done by assuming that the target has a uniform probability to
stay static in the previous cell it is located or to move to one of its neighboring cells ( ).
The predicted TPM is then evaluated as

r+1 c+1
TPMy 41 (7€) Z > TPM (i, ) (2.6)
z r—1j=c—1

Then, the correction may be achieved using a Bayesian filter to evaluate the corrected TPM as

TPMyq 1)k (ry ) -pre
TPMy 1k, (r,¢) .t + (1 — prp) (1 — TPMygq g (7, 0))

TPMg4q (r,¢) = (2.7)
where prp is the probability of the UAV to truly detect a target in the cell.

Another approach to represent the probablllty of presence of a target is to use a particle filter
as in ( ; ; ). Knowing the target dynamic, one is
able to evaluate the probability density function p (ac}C | 5”24) of the current target state, knowing the
previous state },_,. Then, with all the measurements y,.,_, that have been used since the beginning
to evaluate the state of the target at time ¢;,_1, one is able to predict the probability density function
of :1:}6,

p (:1:2 | yl:kfl) = /P (:BEC | 93}{71) p (93}@71 | yl:kfl) daj_,. (2.8)
The posterior probability of the actual target state, assuming the probability to get a measurement

at time ¢;, knowing the target state is p (y;, | @},), is then

p (2l | yre_1)p (i | 2)

(2.9)
p (yk ‘ yl:k—l)

b (a"gﬁ ’ yl:k) =
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However, the evaluation of such posterior probability may be difficult for nonlinear systems or non-
Gaussian noise. To solve this issue, one can use the Monte Carlo Sampling by approximating the
posterior distribution by N particles, i.e., p (@ | y14) ~ YN, w6 (anc}C - xz(i)), where z0", for
i = 1,...N, is a particle and w,(f) is the weight associated to the particle i. The weight represents
the confidence that the particle wz(i) is the target state. The particles are obtained using importance
sampling which relies on the introduction of an easy-to-sample distribution ¢. The weights are obtai-
ned using the update rule

oo Pl ) (0 50)

wy =wp’y ; ; (2.10)
NECIE

The tracking is achieved by predicting the possible new values of the target state using the particles,
followed by a step of resampling.

Another problem arises regarding the tracking of multiple targets with a Bayes filter. To address
a multi-target tracking problem, two RFSs can be used to model a discrete set of targets and mea-
surements. However, the use of RFSs with classic Bayes filters leads to a high computational burden
due to the evaluation of the multiple integrals that have to be considered ( ;

). To avoid this problem, the first statistical moment A of the probability distribution of the
RFS related to the targets, also named the Probability Hypothesis Density (PHD) or the intensity, is
considered. The integral of the PHD over the region of interest gives the expected cardinality of the
target-RFS. Poisson RFS holds a particular place within this approach since it is entirely defined by its
first moment. Then, with this approach and under other assumptions that are detailed in (
), the PHD filter, which tracks the evolution of the PHD, is

Mg (2) =b () + /R () plal | o) A (@) daf (2.1)
(o]
Ak () = (1 —p (), | 27)) M1 (},) (2.12)
Vyay (@) A1 (},)
+ k (2.13)
ygk Prp (y | 33%) + fRoI wy,mz (m) )‘k—l (33) dx

where b () and d () are the intensities of birth (a target entering the Rol) and survival (the target staying
in the Rol). p (z}, | x}) is the detection probability knowing that the robot is located at &}.. ¢y yu (x},)
is the probability that the robot at location x} would get the measurement y,, if the target is at ..
pre (y | 2}) is the probability of getting a false positive, i.e., getting a measurement of a target state
that is not present. This filter has been used in ( ; ).

Atarget tracking algorithm based on a set-membership approach also involves a prediction-correction
mechanism. Consider that X?krepresents the set estimate containing the possible locations of target j

at time t;, and X; is the set estimate gathering all the possible locations of still unidentified targets.
Consider that the target dynamics is | = f («}, wy) where w;, € W is an unknown but bounded
state perturbation. The prediction step consists in characterizing the possible future locations of the
tracked target X?Hl‘k, and the still unidentified targets XZH‘,C, knowing X%, and X,.. Equation (2.14)
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defines how to characterize those sets, with X, and X instead of ng and XE, or X; and

1|k
<t
Xpq 1)k
Xipipp ={z | P € X, Tw e W,z = f (p,w)}. (2.14)
Then, using a measurement obtained at time 51, ( ) characterizes two sets. With
t,neg

negative information, they characterize a set X > gathering all the current locations where no target
can be. If target j has been identified at time ¢; 1, then the UAV gets a set estimate XE{,‘C‘H containing
all the locations of target j which are consistent with the noisy measurements. Finally, the correction
step consists of an intersection or a difference, i.e.,

t _ (et t,m t,neg
Xj7k+1 - (Xj,k+1|k N Xj,k—i—l) \Xk;+1 . (2.15)

If target j is a newly detected target, i.e., XE. does not exist, then we rather have

1k
t it t, t,ne
Xjk+1 = (Xk+1|k A Xj,rl?ﬂ) \Xk+1g- (2.16)
Finally, the correction of X2+1|k is simply

<t <t t,
Xpv1 = X \an+61g- (217)

Note that if target j has not been identified at time ¢; 1, then X}’leoes not exist and should be
removed from equation (2.15).

However, the intersection may be difficult to characterize. Therefore, an inner or outer approxi-
mation can be computed with algorithms such as the Set Inverter Via Interval Analysis (SIVIA) (

).

2.6 . Control design

Once the information collected by the sensors has been processed by the embedded CVS and an
estimator has been used to get new knowledge about the presence and location of obstacles or tar-
gets, the robot has to update its current control input according to a pre-defined strategy. Section 2.6.1
introduces the different approaches available to coordinate the robots, with their advantages and
drawbacks. Then, Section 2.6.2 presents some examples of control design before presenting in Sec-
tion 2.6.3 the model predictive control.

2.6.1. Coordination between the robots

There exist three different approaches to address the problem of coordination between the ro-
bots in a team : the centralized approach, the decentralized approach, and the distributed approach.

The centralized approach assumes that all the robots are able to communicate with a central
node. This central node receives from the robots new measurements/knowledge that is processed to
evaluate the next best control input for each robot. This list of control laws is defined as the course of
actions of the fleet that is obtained, e.g., by solving an optimization problem reflecting the objectives
to achieve. The central node has access to all the knowledge of the fleet, and usually has enough
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computational power to design the control law for each robot. Nevertheless, the measurements have
to be gathered at the central node, which may be difficult when the Rol is large, usually due to limited
communication range constraints. Moreover, since each robot relies on the central node, if the central
node fails, the whole fleet is disrupted.

The decentralized approach assumes a heterogeneous fleet of robots where some of them act
as mobile local nodes, i.e., a robot that has access to enough computational power to design the
control input for any robot that is connected to it. Therefore, the fleet is partitioned into groups of
robots. Each group contains one of these mobile local nodes, i.e., a leader, whereas the others, i.e.,
the followers, are only here to collect new information and stay close enough to the associated lea-
der. Consequently, unlike the centralized approach, an advantage of the decentralized approach is
that it solves the problem of limited communication range. However, if the leader has a problem,
all of its followers are disabled. Moreover, since the leader has access, most of the time, only to the
measurements of its followers, the evaluated control laws may be suboptimal.

The distributed approach assumes that each robot has the computing power to evaluate its own
control input by only accounting for the knowledge it has access to and the knowledge broadcast by
its neighbors. Since each robot is assumed autonomous, the lack of communication between robots
is no longer a problem. However, if a robot is isolated from the others, then, even if it is able to
update its control input, it cannot cooperate with the others. Thus the evaluated control laws may be
suboptimal as well.

2.6.2 . Examples of control design approaches

CSAT problems aim to navigate in a Rol to search and identify all targets and maintain an accurate
estimation of their state. Consequently, the control strategies that have to be deployed to address
these problems to guide the robots toward positions where they would cooperatively maximize the

information they collect. See ( ) for a survey of SAR algorithms and the considered
strategies.
In the presence of known obstacles, ( ) iteratively updates the UAV trajectory by

designing a new polynomial trajectory passing through N — 1 waypoints. At each iteration, a list of
possible future UAV locations is generated by a random sampling of locations in the environment.
To avoid obstacles, each new sampled location must be visible from the previous location. Then, the
possible future location which maximizes a criterion that considers the information collected, the risk
of collision, and the flight time is taken as the next waypoint for the updated polynomial trajectory.
The authors evaluate the information the UAV would collect by comparing the trace of the (prior)
covariance matrix of the Gaussian process with the one obtained (i.e., the posterior covariance matrix)
at the expected location. During the planning, the UAV is assumed to detect no target.

In ( ), @ ground robot either pursues a target or enters in a search mode if
it has lost it. One of their proposed tracking approaches relies on a particle filter. The search mode
evaluates the list of cells containing the highest density of particles. Then, knowing the map and the
obstacles, it searches for the best cell to reach. The path planning is done with a combination of a
Dijkstra algorithm (for known static obstacles) and a trajectory roll-out planner (for unknown dynamic
obstacles).

The trajectory design for target search and obstacle avoidance in ( ; )is
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done with attractive and repulsive fields. Both use a TPM. ( ) directly use a gradient of

the TPM to evaluate its attraction force, whereas ( ) proceeds to a nonlinear transformation
of the TPM in order to get a map of uncertainty regarding the presence of a target in each cell, see
Figure 2.19. Then, using this evaluated uncertainty, ( ) define a criterion that compares the

gain in going toward an attractive location with the gain in going toward unexplored cells.

uncertainty
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Figure 2.19 - Figure from ( ). The nonlinear transformation between the probability that a
target exists in a given cell, i.e., TPM (r, ¢), and what they defined as the uncertainty of the cell, i.e.,
pur (15 ¢) = exp (=K [In (1/TPMg (r, ¢)) — 1{).

( ) uses a PHD filter with the Lloyd's algorithm to guide the robots toward areas with
a high density of targets. The Lloyd's algorithm is defined as the minimization of

/ ({wik}ie{leuQ - /R0| et (@ wx))" M (@) do 219
and is used to update a Voronoi partition. N is the number of robots, and d (x,y) evaluates the
distance between x and y. AVoronoi cell is associated to each robot, and the barycenter of the Voronoi
cells is the location the robot has to reach. A similar partition-based approach is used in (

; ).

When the target is cooperative, ( ) proposes an approach combining particle swarm
optimization with a fruit-fly optimization algorithm to search and reach a target in an unknown clut-
tered environment. The fruit-fly optimization algorithm ( ) is an algorithm where the target
(the fruit) emits some signal with an intensity that decreases with the distance to the robots (the fruit-
flies). Other pheromone-based algorithms exist, e.g., ( ; ), but they are
rather used to enhance the area coverage rather than designed for the search of mobile targets.

Another possible control design is based on the partially observable Markov decision process
(POMDP), see ( ; ) and the references therein. A POMDP is a stochastic
path-planning approach relying on the modeling of a decision process of the robot, also denoted as
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the agent. The environment and what is contained in it are represented with a finite set of discrete
states the agent can have, actions the agent can take, and observations the agent can acquire. The
goal is to find the best sequence of actions that optimizes a criterion. ( ) considers
communication problems and uncertain UAV location, and ( ) adds a modified multi-
agent reinforcement learning layer to enhance the cooperative behavior of the robots.

Alternatively, the authors of ( ) propose a control design that searches the trajec-
tory which minimizes the probability of not detecting a target. For that purpose, knowing that the
probability of one robot to detect a target is prp, they introduce the probability that the fleet fails
to detect a target with pe,; = Hf\fl (1 — prp), N being the number of robots within the fleet. From
that probability, they define a criterion with some constraints related to the robot dynamics. Then,
to solve their proposed optimization problem, the authors use deep reinforcement learning (a com-
bination of Multi-Agent Reinforcement Learning and Proximal Policy Optimization) to search for the
best sequence of control inputs in order to find the targets.

Multi-agent reinforcement learning approaches ( ; ) aim to emu-
late an interaction between the robot and the environment in order to learn a strategy that optimizes
a criterion. Nonetheless, as pointed out in ( ), multi-agent reinforcement learning ap-

proaches are not considered suitable to solve a target search and tracking problem because the data
base used for the training may be not representative of the actual situation. Similarly, strategies based
on Markov decision processes are not scalable to large and complex outdoor environments.

Potential-field-based strategies, as in ( ; ), enable a natural evaluation
of the direction to follow in order to search for targets while avoiding obstacles. Otherwise, control
designs based on the update of the current long-term trajectory, as in ( ;

), search for the best new trajectory that optimizes a criterion. The criterion is generally based
on the maximization of the expected gain of information, i.e., information that can be processed to
reduce the uncertainty regarding the estimated state of the targets. Moreover, the criterion can be
completed with other cost functions for obstacle avoidance or incorporate other approaches such as
a pheromone-based methods, see ( ).

2.6.3 . Predictive control

Unlike classical controllers, such as the PID controller, predictive controllers rely on a model of
the system to predict its future behavior when a sequence of control inputs ug., = {u, ..., Ug+n-1}
is applied over a control horizon composed of h steps ( ;

). This prediction allows to evaluate the distance between the desired reference state and the
expected state of the system over a prediction horizon. Then, the effectiveness of the sequence ug.,
is evaluated by using a criterion J accounting for that distance and possibly other terms such as the
energy consumption, and the smoothness of the trajectory. Predictive controllers aim to search for
the sequence 1y.;, which optimizes J.

According to ( ) predictive controllers are easier to implement than classi-
cal controllers. The reason is classical controllers involve the definition of explicit control laws which
would become more tedious or even impossible for constrained nonlinear systems. On the other
hand, predictive controllers mostly rely on a model of the system, that is often well-defined and easily
accessible, and on a criterion J to determine its desired behavior. The price to pay is an increased
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computational burden since the predictive controller has to update at each time step the sequence
of control inputs.

The application of Model Predictive Control (MPC) for target search and tracking is slightly different
from what is presented in ( ). Regarding robot i, the MPC still searches for the
sequence of control inputs 1, x.;, which optimizes a criterion J. However, instead of evaluating the
deviation between a reference and future measured state of the system, it evaluates the expected
capacity of the robot to reduce the uncertainty of the estimated target states.

This section presents the MPC by comparing the MPC used in ( ) (stochastic approach)
and in ( ) (set-membership approach) to solve a CSAT problem.

At time ¢, the state of robot i is x;‘k with i € {1,... NY} where NY is the number of robots. To
search for the optimal sequence of control inputs 1, ., the MPC considers a candidate sequence of
controlinputs u; .., € Ux---xU, where Uis a known set of feasible control inputs, evaluates its impact
on the reduction of uncertainty, and reiterates until convergence. For instance, both ( )
and ( ) consider a UAV flying at a fixed altitude and speed and the set of feasible
control inputs is a finite set of heading (yaw) angle increments. In this case, the number of possible
candidate sequences of control inputs is finite. Since the dynamics of the UAV is perfectly known, a
sequence of states X;J,k:h|k = {X;{k—&-uk’ . 'X;J,k+h|k} is deduced. If the robot dynamics is uncertain or
is affected by some external disturbances, tube MPC can be used ( ; ;

).

To evaluate the impact of a candidate sequence of control inputs u; 1., one has to evaluate the

expected gain of knowledge the robot would acquire at each of its future states, ie., x;k:hw In (

), who use a TPM, the authors identify which cells would be under observation and, if the
probability of target presence is above 0.8, then they assume to detect a target. Then, they evaluate the
reduction of uncertainty for each cell within sensing range by computing the difference of uncertainty
between two time instants, where the uncertainty is defined as

&k (r,¢) = — TPMy_1 (1, ¢) logy (TPMg_1 (1, ¢)) (2.19)
— (1 = TPMy—1 (r, ¢)) logy (1 — TPMy_y (7, ¢)) , (2.20)

For a set-membership approach, the reduction of uncertainty is represented by a reduction of the
size of the set estimates after each new observation. Nonetheless, it is often not possible to ensure
that a target will be observed in the future. Therefore, the simplifying assumption that no target will
be observed is considered, as in ( ). Consequently, with the robot i FoV F (XiJH_g‘k),
where ¢ = 1,... h, and without obstacles, they update the set estimates by only removing potential
locations that would have been observed, i.e.,

tP _ tP
X ke = X o \F (X0t epk) (2.21)

where XE!'ZH, is the correction of the predicted set estimate Xﬁﬁlk containing the potential locations
at time ¢y 0 of the previously identified target j, knowing its set of estimated locations at time t, i.e.,
X§ - The characterization of xtP follows a similar set-membership prediction process described

3, k+C|k
by (2.14), i.e.,
P P
XU = {f (pw) [ peX , L we W} , (2.22)
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with the difference that if / = 1, then XE."Z = ng The same approach is applied regarding the set

estimate which may still contain unidentified targets XZ.
The criterion to evaluate the impact of u; 3., may be rather simple as in ( Yywhere
the impact of u; 1., is evaluated by computing the area of what remains to explore, i.e.,

J (i) =6 [Xihau U X5 (2.23)
Jeﬁz,k
<tP
+ Ad | X ke Xjqn U U XEZM (2.24)
JEL: K

where ¢ (X) is the area of X C R?, and/.; x is the list known to UAV i that contains the indices of all the
targets that have been identified at time ¢;. The second part of (2.23) evaluates the closest distance
between the set estimates and the UAV location.

The criterion in ( )is

J (ui,k:h) )‘1Rtarg + /\QRuncertalnty + )‘3Rphero + Rpar + RCO”ISIOH (2.25)

where Rﬁ;’?g evaluates the number of targets that would be detected, according to the assumption that

a target would be detected if |ts associated probability of presence is above 0.8. Runcertalmy evaluates

the uncertainty reduction. R __isapheromone-based cost function to encourage the UAV to explore

phero
unexplored areas. Rpar is to keep the UAV within its dedicated area to explore. R"
collisions.

Depending on the context, other criteria may be defined, as in ( )where the problem
of limited communication range is addressed by introducing a component in the cost function to keep
neighbors close enough to maintain communication, but spread enough to maintain a large covering
area.

For cooperative design, each robot should account for the sequence of control inputs of the other
robots in order to move toward a location that still solves the target search and track problem while
being beneficial for the rest of the fleet. For a fleet composed of NY robots, the following joint opti-
mization problem can be considered

coms'on is to avoid

{ﬁi=k5h}z’€j\f“ = arg min Z J(ui7k:h) . (2.26)
{ui,k:h}ieNu iENU

Nonetheless, the resolution of such optimization problems may be difficult and time-consuming.
Therefore, alternative approaches and simplifications have to be considered. For example, U may
be finite. Otherwise, the authors of ( ) consider a suboptimal cooperative approach
where each UAV computes its optimal sequence of control inputs only once it has received the optimal
sequence from all of the other UAVs within communication range and with a smaller index. This allows
a simpler update of the trajectory while maintaining some cooperative behavior between the drones
since, except for the first one, each UAV accounts for the trajectory of its predecessors to update its
own.
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2.7 . Conclusion of the chapter

This chapter has presented an overview of some approaches to address the main subproblems
that compose a CSAT problem. The acquisition of new measurements from the embedded CVS and
the exploitation of these measurements to solve a target localization problem. Different approaches
have been presented to represent the potential locations of both unidentified and identified targets.
Then, for each representation some approaches to either explore the Rol to search for the target, or
to remotely track their potential location, are presented. Target pursuing approaches have also been
discussed as well as approaches to map the Rol or to control the robots.

Clearly, the CSAT problem is a complex problem to address. Simplifying assumptions are often
made, such as the idealization of the CVS and the target location estimator. Those assumptions have
the advantage of simplifying the evaluation of a proposed control design. Unfortunately, the perfor-
mance of the proposed control design is strongly related to the reliability of those simplifying assump-
tions that are unjustifiable in most cases. The reason is, CVS measurements and, more importantly,
measurements related to the detection and the identification of a target, are obtained by deep lear-
ning algorithms. The acquisition of these measurements is conditioned by the training data set that
has been used and the observation conditions - which involve the weather conditions and the pre-
sence of obstacles -. Therefore, the approximation of the process to detect a target by a probability of
detection is difficult to justify, even more if unknown obstacles are located within the Rol. Moreover,
since the performance of a target location estimator is strongly related to the CVS measurements
that are used as inputs, the idealization of the estimator with a known estimation noise is also hard
to justify.

The main objective of this thesis is to propose a new approach to take into account the complex
measurements provided by the CVS to maintain the most accurate estimation of the target locations.
Depth-maps, classified images, and bounding boxes related to the detection and identification of a
target are considered. A set-membership estimator is developed to exploit these CVS measurements
in order to characterize set estimates that either contain the true location of a target or are proved to
contain no target location. Then, the tracking algorithm of ( ) is adapted to update the
knowledge of a UAV regarding the potential location of both identified and unidentified targets.

Unlike CMOMMT approaches, CSAT approaches aim to determine the exact number of targets
inside an Rol. Therefore, until the fleet of UAVs determines that there cannot be more unidentified
targets within the Rol, the UAVs have to simultaneously track all already identified targets while explo-
ring the Rol to find new ones. Assuming the targets outnumber the UAVs, a trade-off has to be solved
between searching for new targets and pursuing identified targets to keep an accurate estimation of
their locations. To solve this trade of, a MPC is used and a new criterion is defined to account for the
presence of unknown 3D obstacles.

The motivation behind the design of this new criterion is that there exists few CSAT algorithms that
consider an unknown and cluttered 3D environment with a mapping approach. On the one hand, the
absence of a 3D mapping approach can be justified since a UAV has a limited storage capacity and
computing power. On the other hand, new and more storage-efficient mapping approaches have
been presented for urban environments. Thus, by using CVS measurements to map efficiently the
unknown environment, a new criterion inspired by ( ) is proposed to improve the
target search within a cluttered Rol.
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Chapter 3 - Hypotheses and Problem formulation

Consider an unknown number N of targets spread within a Region of Interest (Rol) containing
an unknown number N°of structured obstacles of unknown location. A fleet of NY cooperative Un-
manned Aerial Vehicles (UAVs) is deployed to find and identify these targets and maintain an accurate
estimation of their location. This Cooperative Search, Acquisition, and Tracking (CSAT) problem is for-
malized in this chapter.

The assumptions and models to represent the structured environment, the targets, and the UAVs
are detailed. Each UAV embeds a Computer Vision System (CVS) consisting of a camera and compu-
ter vision algorithms to get measurements from the environment. These algorithms process images
collected by the camera. There is, among them, an image segmentation, a depth map evaluation, and
a target detection/identification algorithm. These algorithms are instrumentals in getting measure-
ments related to the presence of an identified target or to assess its absence.

We choose to address the CSAT problem with a set-membership approach. The approach as-
sumes that the measurement noises and other uncertainties are bounded with known bounds. Thus,
we can design a set-membership estimator that characterizes sets that are guaranteed to contain the
location of the targets, provided that the hypotheses on the measurement models and noise bounds
are satisfied. Few previous methods developed to address a CSAT problem exploit CVS measurements
in a set-membership approach. This is mainly because obtaining measurement models for a CVS in-
volving deep learning algorithms is difficult. Thus, the measurement error is hard to characterize. To
address this issue, this chapter introduces assumptions and models to relate the CVS measurements
with the targets and obstacles present in the Rol. With these assumptions and models, the CVS mea-
surements can be exploited by a set-membership estimator to characterize these set estimates that
either are guaranteed to contain the location of a target or, with negative information, are guaranteed
to not contain a target location.

The assumptions introduced here are used to design a new target location estimator in Chapter 4
and a control approach for the UAVs in Chapter 5. The estimator exploits CVS measurements related
to targets and obstacles to update the knowledge the UAV has regarding the potential locations of
both identified and unidentified targets. The proposed estimator is also used to update the knowledge
of the UAV regarding the location and shape of the observed obstacles. Then, a control algorithm uses
this updated knowledge to update the trajectory of the UAV.

3.1. Environment model

Consider an environment with a frame F attached. In what follows, several other frames are intro-
duced, such as the frames attached to the UAVs. To simplify the notations, vectors with no superscript
related to a frame are implicitly expressed in the reference frame F.

The Region of Interest (Rol) X, is a bounded subset of the 3D space, i.e., Xy C R? x RT, containing
the targets, the UAVs, and the obstacles. The bounds of the Rol are assumed to be fixed and known
to the UAVs. The ground of the Rol is assumed to be flat and horizontal, i.e., Xg = {x € X | 3 = 0},
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where x5 is the third coordinates of a vector «, representing the height. The ground of Rol may contain
several elements such as roads, sidewalks, or soils, but, their height is considered negligible. In addi-
tion, their particular nature is assumed irrelevant to the target search. Therefore, they are merged in
Xq.

N°fixed obstacles are spread within the Rol. They are assumed to be indexed with indexes in the
set N° = {1,..., N°}. The shape of the m-th obstacle, i.e., the part of the Rol occupied by the m-th
obstacle, is denoted S8, C R3. S?, is assumed to be Z-convex, i.e.,

Ve € Sy, YA € [0,1], Az + (1 — \) pg (z) €S}, (3.1

where p, (z) is the projection of z on the ground X,. Figure 3.1illustrates this assumption.

© © &

Figure 3.1 - lllustration of different obstacles that may or may not satisfy equation (3.1).

This assumption is relevant for most of the buildings, as pointed out by (Zhang et al., 2023). Ele-
ments of the environment such as trees or streetlights may be present but do not satisfy (3.1) and,
thus no such element is considered present in the environment, see Chapter 8 for an extension. The
footprint of obstacle m € N/° is the subset of X, that belongs to S9,, i.e., S9, N X;. According to 3.1, the
footprint of an obstacle is also pg (S7,).

Figure 3.2 - lllustration of the urban Rol simulated on Webots (Webots, ) used to evaluate the perfor-
mance of our approach in Chapter 5. Only buildings satisfying (3.1) are considered.
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3.2. Target model

Let N*' be the unknown but fixed number of ground targets evolving in the Rol X,. Targets are
uniquely identified with indexes in the set N'* = {1, e ,Nt} . All targets are assumed to be vehicles
of the same type, and they do not enter or leave Xg.

The state vector of target j € N* at time ¢, is xgk This state vector contains, among others, the
vector x;k of the coordinates of the center of gravity of target ;. In this thesis, we only consider ground
targets evolving on X;. Moreover, we limit the target search to a 2D space. Thus, we consider that the

location of target j at time ¢, is the projection of z';, on Xg, denoted as x;i = pg (:CE k) rather than

wgk We do not try to estimate its orientation.
We consider that the behavior of target j can be modeled by

tg et t8 .t
T =t ("Bj,w”j,k) ; (32)
where f]t. is known and v; i represents the unknown but bounded target control input as well as the
state perturbations at time k. The vector v} . Is only assumed to belong to a known box [v'].
The space occupied by target j, i.e., its shape, is the subset S (XEk) C R? x Rt and depends on

xgk Since the targets are cars, the target shape is rigid and S <X§7k> depends mainly on the target

position and orientation. If the shape evolves, other components of x}  Must be considered. We also
assume that the center of gravity of a target is always located inside its shape, i.e.,

VJ (S Nt, :U;»’k € St (X;,k) . (3~3)

. t, . t
The target location :cj%c, however, does not necessarily belong to St (XE k) as for cars where a:jgk

is located between the wheels. The shape of the tracked targets is unknown to the UAVs, but their
type (car, truck. . .) is usually known. Consequently, some information about the target dimensions is
available.

Assumption 1. We assume that a vertical circular right cylinder Ct (a:ﬁ) of known height ht and radius

rt with basis centered in azgi can be defined such that, for any target state x§-7 b

S (x ) € C* (a4%,). (3.4)

Figure 3.3 illustrates Assumption 1. The projection p, ((Ct (w;i)) of Ct (a:;gk) on X; is the disc of
center m;gk and radius rt.

3.2.1. Interaction of a target with its environment

This section introduces some assumptions about the interaction of a target and its environment,
including other targets.
The r-neighborhood of a set' S C X is defined as

N(S,r)={reXo|d(z,S) <r} (3.5)

65



Figure 3.3 - lllustration of a possible vertical circular right cylinder Ct (a:Ei) containing the shape

st (x§k> of a car-like or truck-like target
with d (z,S) = minycs |z — y|| .
We also introduce the r-ground neighborhood of aset S C Xg
One can remark that Ng ({x},r) is a disc of center x € Xg, and radius r. Thus, another way to

express p, (Ct <a:;g,€>) is Ng ({w;gk} ,rt>.

With Obstacles
We assume that a target cannot enter any obstacle. Therefore,
Vje N',Vm e N°,S' (x5,) NSy, = 0. (3.7)

As the shape of targets is unknown, (3.7) is difficult to exploit. Besides, we aim to only determine
the target location wﬁ Thus, we assume that the distance between m;i and any obstacle is always
larger than some known safety distance r°, i.e.,

Vj € N, ¥m € N Ny ({mgi} ,T;O) Npg (S2,) =0 (3.8)
ex8 ¢ Ny (pg (S9,),7%) . (3.9)
Figure 3.4 illustrates (3.8).

Remark 2. We assumed that the target shape is always contained in the cylinder Ct of radius r', then a
possible choice for r is rf® = rt,

With other targets

We assume also that two targets never collide, i.e.,
Vi e N VL e NU\ {j},S" (x),) NS (x5,) = 0. (3.10)
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Figure 3.4 - lllustration of the r®-ground neighborhood (in red) of two obstacles (houses, in gray).
Target is in green and its location is the black dot.

However, as in Section 3.2.1, this assumption is difficult to exploit. Alternatively, one considers that
the distance between the location of target j and any other target location is always larger than ¥,
ie.,

Vi€ NV e N\ {5}, 28 ¢ N ({w;:i},r;t). (3.11)
Figure 3.5 illustrates (3.11).

Remark 3. Another formulation for (3.11) is
Vj e NLVE e N\ {j}, N, ({xggk} ,rgf/Q) NN, ({wgi} ,rgf/z) — 0. (3.12)

Thus, since we assumed that the target shape is always contained in the cylinder Ct of radius rt, then a
possible choice for r is to take r* = 2r*,

3.3. UAV model

A fleet of NY cooperative UAVs is deployed within X to search, find and track the targets. UAVs
are identified with indexes in the set V¥ = {1,..., NY} . Each UAV embeds a CVS, including a camera,
described and modeled as reported below.

At time t;, the state vector x}j’k of UAV i € N'¥ contains, among others, the location of its center of
gravity zi!; € R? x R** and its attitude ©}; € R?. The vector x}'; evolves as

u __ gpu u u u
Xip1 =1 (Xi,kv u; g Wi,k) : (3.13)

The function f" is known; u;', represents the control input, assumed to belong to a finite set of
feasible control inputs U; w}, represents some unknown perturbation only assumed to be contained
in the known box [w"] = [w", W"]. Thus, if w}', # 0 at some time instant, the state vector of UAV i
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Figure 3.5 - Illustration of (3.11). The red sets are the boundaries of the r{-ground neighborhoods of
the two target locations (black dots).

becomes uncertain. In Chapters 4 and 5, the UAVs are assumed to perfectly know their state vector,
at each time instant. It is only in Chapter 6 that we consider an uncertain UAV dynamics and, thus,
have to account for the state uncertainty of the UAV in the estimation process.

Each UAV embeds proprioceptive sensors such as Inertial Measurement Units (IMU) or GPS recei-
vers to measure its state. The measurement y;', of the state of UAV i by those sensors is assumed to
be described as

yiw = 0" (x5) + Wil (3.14)
where w/" is some measurement noise, unknown but bounded in the known box [w"™] = [w"™ w"™].

The shape of UAV i is S! (x;’k> and is perfectly known. A body frame FP, with origin ¥, is attached

to UAV 4. The rotation matrix from FP?, to F is denoted M]JTEb . Mib
’ ik ik

notation, the time index is omitted for the frames attached to a UAV.
The coordinates of some vector = € R?, when expressed in F?, are

depends on ;.. To simplify the

FP FP
T (x) = MY (:L' — :B;Jk) . (3.15)

3.3.1. Communication
Data exchange within the fleet is modeled by the undirected graph G, = (NY, &), with MY the
set of vertices and &, C MY x N the set of edges of the graph. & describes the connectivity at time
ty. For two UAVs i € NV and i’ € NY, if (i,i') € &, then both UAVs are able to exchange information
without delay and error. The set \V; , = {i' € NV | (i,4') € &} contains all UAV indexes to which UAV ;

is able to communicate at time ¢;. For simplicity, we consider that i € N .
For more details regarding the various communication protocols that may be used for UAVs, see

( ).
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3.4 . Model of the camera and CVS

This section presents a geometric approach to model the way UAVs perceive their environment
and collect information that will be processed by their CVS, see also Section 3.5.

Section 3.4.1 introduces a geometric model for the embedded camera that is used to get images
of the monitored environment. Section 3.4.2 uses this model to characterize the FoV of the camera,
and Section 3.4.3 presents an approach to deduce from this geometric model the coordinates on the
CCD array of any point belonging to the environment.

To simplify the notations in this section, the time index is omitted.

3.4.1. Camera model

Each UAV of the fleet embeds the same type of camera. An image I,; provided by the camera of
UAV ¢ consists of N, rows and N¢ columns.

A camera frame 7 is attached to the camera of UAV i. This frame has its origin located at the
camera optical center azc’fib and is oriented such that the positive z-axis represents the optical axis
of the camera, the z-axis is parallel to the pixel rows in the CCD array and the y-axis is parallel to the
columns. The rotation matrix from FP to F¢ is noted M 1

Usually, the camera’s intrinsic parameters such as the dimensions of the CCD cells or the focal
length are known. Table 3.1 gathers all the camera intrinsic parameters that are used in this work.

Notation Relation Definition (unit)
f - camera focal length (m)
ol oy - camera horizontal/vertical aperture (rad)
HJ/H, H«=2ftan (%) dimensions of the CCD array (m)
I Ir f+= fN«/H, camera focal length (pixels)

Table 3.1 - Camera's intrinsic parameters. 'c’is for column, horizontal, or z-axis; 'r'"is for row,
vertical, or y-axis

We consider the pinhole model without distortion presented by ( ). With this model,
the matrix of intrinsic parameters

_(—fc 0 N2
K= ( 0 —f Nr/2)' (3.16)

is used to define the projection p (.) of some point /i € R3 belonging to the environment onto
the CCD array in order to obtain the 2D coordinates on the CCD array of its image, i.e.,

C C F¢€
pr: (w]:> =K 2], (3.17)
where :cfc is the third coordinate of 2+ See Figure 3.6 for an illustration of the pinhole model.
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Figure 3.6 - lllustration of the pinhole model : ¢ = —fcxf’?/x? + Nc/2and r = —frx?c/z:ff + N;/2.

3.4.2 . Field of view

According to the geometric approach (3.17) to model the camera, each light ray passing through
the optical center of the camera and illuminating the CCD array at (¢,r) € [0, N¢| x [0, N,] can be
modeled by a half-line of direction

(& - C) /fe
o) = | (S, (3.18)
v (er) |
where
v(er) = (5 =) /5) + (% —r) /£)°+1 (319)

is a normalization coefficient. See Figure 3.7 for an illustration of some light rays illuminating a pixel
(nr,nc). The set

Vi (nr,ne) = {M/;icvfic (¢,r) | c€[nc—1,nc,r € [n— 1,nr]} (3.20)

gathers the directions, expressed in F, of all light rays contributing to the illumination of the pixel
(nr, nc). The matrix Mﬁc = MJT M descrlbes the rotation from F7 to F.

From this geometric representatlon of the camera, one can represents the FoV of the camera of
UAV ; (dubbed as FoV of UAV ; in what follows) with the set

F(x;) = {w;: + 22}21 WM;UUZ:; lag € R+} ) (3.21)
with
vf" = vl (co,me) 0 =1,...,4, (3.22)
where
(NC70)3 (050)7}
R S . 2
(e2,72) {(Nc, N, (0,) 3-23)
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Figure 3.7 - Some light rays illuminate of the pixel (nr, n¢); The 4 blue lines are the light rays illumina-
ting the corners of (nr,nc); The quadrangle P ((nr, nc)) is defined in Section 4.3.1.

The FoV of UAV i denotes the set of points in R3 that are potentially observed in the Rol by a UAV
when its state is x; (ignoring obstacles and targets).

In addition, one assumes that the CVS cannot reliably process information related to parts of the
FoV situated too far away from the optical center of the camera. On the contrary, any information
related to some x € F (x}') at a distance from xf smaller than d.x can be reliably processed by the
CVS, where d,,,.« is some a known distance. Therefore, the set of points of the FoV that can be reliably
processed by the CVS embedded on UAV i is

F (X;J) =F (X;J) nB (Cczca dmax) ) (3.24)
where B (x5, dmax) is the ball of R? of center x; and radius dmax.

3.4.3 . Projection on camera frame

This section introduces the transform to obtain the 2D coordinates in the CCD array of any point
expressed in the reference frame.

First, consider the transform T;Z (.) expressing in F£ the coordinates of a point z’7 (expressed
in the body frame of UAV i) '

as b o b JFP
7 (7)< M7 (o7 ).
Composing (3.15) and (3.25), one gets the transform
Was as Fb
Ty =T 0Ty (3.26)

7

to express in F{ the coordinates of z, initially expressed in F.
By combining (3.17) with (3.26), one obtains the function p. (x}', ) which provides the 2D coordi-
nates in the CCD array of UAV i of any point « of the environment

P (Xi, ) = Py (Tﬁ (w)) : (3:27)
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For any pixel (nr,nc) € N, the notation p, (x¥, ) € (nr, nc) indicates that the projection of z on
the CCD array belongs to that pixel, i.e.,

Dc (Xf, x) € ([nc — 1,ne], [nr — 1anr])T- (3.28)

Moreover, for any = € F (xV), there exists a pixel (nr,nc) € N such that their exists a vector v €

Vi (nr, nc) thatis colinear W|th the line (xf, ). Consequently, since & may have contributed to the illu-

mination of pixel (nr, n¢), then the projection of 2 on the CCD must belong to ([nc — 1, nd] , [nr — 1,1¢])7,
ie.,

T e F (X;J) = El (nr,nc) € Nlapc (X;J’m) € (nl’vnc) . (329)

3.5 . Information provided by the CVS

At time ¢, the camera generates the i |mage L .. Itis fed into the CVS which provides a depth-map
D; 1, obtained using, e.g., ( ; ; ). An array
of pixel labels L; j is also obtained using, e.g., ( ; ), as well as a list

Dg’k of identified targets. For each of these targets, a box [y.tjk} in the image I, ;, containing pixels

of the identified targets j D!, may be obtained using, e.g., (
; ; ; ). We assume that the depth map D; ;, and the
array of labels L; ;, have the same size as I, ;. Besides, at time t;, the Rol, consisting of the ground

Xg, the obstacles S3,, m € N, the targets S* ( ) j € N', and the UAVs sY ( ) i € N, can be
represented as

Sfe! = X U U S2 U U St (x4 ) U U SY (xV) - (3.30)
meN© JENT ieNU

UAV i is only able to collect information from the portion of the Rol that is located within its FoV, i.e.,
F (x ) N SRel. Information related to obstacles, targets, or parts of the ground in F ( ) \F ( )
may be reliable, but is not considered as such in what follows.

To keep the notation simple, the time index is again omitted in this section.

In the following sections, assumptions and models are introduced to describe the way measure-
ments provided by the CVS can be related to the environment (ground, obstacles, targets, and other
UAVs) of each UAV. These models will be instrumental in the estimation algorithms described in Chap-
ter 4.

3.5.1. Depth map

The CVS provides an array of N¢ x N, depth measurements D,. Each element (n.,n¢) of D; is
assumed to be an estimation of the distance between the optical center x{ of the camera of UAV i
and the part of the environment that has reflected light rays illuminating the pixel (n,, nc).

Consider a pixel (nr,n¢) € N'. The distance p (z¢, v) between the optical center of the camera x{
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and the environment along a vector v € V; (nr, nc) is

p(ng7v) =min {d’v (mgan) 7d’U (mfa U S?n) ) (331)

meN©

dy | @5, U S'(x5) |+ do (mf, U st (x?)) (3.32)
JENT LeNU
where d, (z,S) is the distance from a point x € X, to the intersection between the set S and the
half-line of origin « and direction v. If there is no intersection, then d,, (x,S) is infinite.
We assume that the measured distance D; (nr, nc) associated to pixel (nr, n¢) is such that

Fv € V; (nr,ne) , Di (nr,nc) = p (xf,v) (1 +w), (3:33)
where w is some unknown noise assumed to belong to the known interval [w, w]. In what follows,

D; (nr,n
DY (nr,ne) = 1(+er) (3.34)

is used to represent the noise-free distance, i.e., p (x}',v), that would be measured with w = 0.
As w € [w,w], the interval

1 1
[D;] (nr,nc) = |:1_|_u}7 1—|—w] D; (nr,nc), (3.35)

contains DY (nr, nc).

3.5.2 . Pixel classifier

The CVS provides an array of N x N, pixel labels L;. In this work, only four classes of pixel labels
are considered, namely Ground, Target, Obstacle, and Unknown. We assume that all pixels labeled by
the CVS as Ground, Target, or Obstacle are reliably labeled. For example, pixels with Ground labels
actually correspond to elements of the Rol such as roads, soils, or sidewalks. When the Target label is
used for some pixels, we assume that they actually correspond to the observation of, at least, parts of
a target. When a pixel is labeled Obstacle, light rays reflected by an obstacle have actually contributed
to the illumination of that pixel. Pixels labeled Unknown correspond to other UAVs, or to elements of
the environment that are too far to be reliably identified by the CVS.

The estimation approaches considered in this work are much more sensitive to misclassified pixels
than to pixels without labels. Usually, the confidence threshold of pixel classifiers may be adjusted to
get a compromise between the proportion of misclassified pixels and not labeled pixels (

). Here, the threshold should be tuned in such a way to avoid misclassified pixels.

Considering the four classes, four sets of pixel indexes are deduced from L;, namely Y%, )}, ))°,
and V! gathering coordinates of pixels respectively labeled Ground, Target, Obstacle, and Unknown.
Besides, we assume with (3.24) that any information collected by the camera from F (x}) NSk can be
reliably processed by the CVS. Consequently, we assume that yf’, Y, V2 are subsets of a set gathering
the coordinates of reliable pixels defined as

1
Vi = {(nnnc) eN| mDi (e, ne) < dmax} : (3:36)
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Unknown pixels are related to elements of the environment that cannot be reliably identified. Thus,
the pixels (nr,nc) € Y may not be used to estimate a target location since the UAV does not know
what has been observed. Nonetheless, we propose to exploit )" to approximate the portion of the
ground I (x}') N X; that has been hidden by unidentified objects. For that purpose, we assume that
Y C Y; . Consequently, all pixels (nr,nc) ¢ YV; are, in fact, not labeled and not considered in the
following chapters.

This section introduces three different assumptions relative to the behavior of the classifier when
it processes the information collected by the camera at one time instant. Each of the assumptions
will lead to a variant of the estimation algorithm for the location of targets and obstacles detailed in
Chapter 4 and Appendix A.1.

With Assumption 4 below, we assume that if a pixel belongs to V!, to J?, or to Y%, then all light
rays illuminating that pixel come from the same target, from the same obstacle, or from the ground.

Assumption 4. If a pixel (n,,nc) € V! then all light rays illuminating this pixel stem from the same target,
ie.,
3j € N',Vv € Vi (nr,ne) , p (x5,v) = dy (af,S" (Xg)) ) (3.37)

Similarly, if (nr,nc) € Y2, then all light rays illuminating this pixel stem from the same obstacle
Im e N°. Vv € V; (nr,ne), p (x5, v) = dy (25,S5,) (3.38)
and if (ny,nc) € V5, then all light rays illuminating this pixel stem from the ground,
Vv € Vi (nr,nc) , p (x5,v) = dy (mg,Xg) . (3.39)
Moreover, in the three cases,
Jv € V; (nr, ne) such that DY (ny,ne) = p (z6,v) . (3.40)

According to Assumption 4, if a pixel is illuminated by light-rays stemming from different entities,
it must belong to Y!.

With Assumption 5 below, we assume that if a pixel belongs to y}, to Y2, orto yf, then at least one
light ray illuminating that pixel come from a target, from an obstacle, or from the ground. Moreover,
the noise-free distance DY (nr, nc) corresponds to the distance along that light ray.

Assumption 5. If a pixel (n;,nc) € Vi then at least one light ray stems from a target, i.e.,

3j e N Fv €V} (nr,nc), p (x5, v) = dy (x,S" (x5)) . (3.41)
with
Vf (nﬁnf) = {U € Vl (nﬁnC) | 3] € Nta P (ZU;,’U) = d’u (va St (X;))} ) (342)
and DY (nr, nc) = p (z¢, v) along some unknown vector v € V! (ny, nc). Similarly, if (ny,n¢) € Y2, then
Im e N° Fv € V? (nr,ne), p (x5, v) = dy (x5,S5,) , (3.43)
with
VY (nr,nc) = {v € Vi (nr,nc) | Im € N, p (xf,v) = dy (z7,S7,)}, (3.44)
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Figure 3.8 - According to Assumption 4, if pixel p; € V?, then all light rays illuminating p, are assumed
to stem from an obstacle. If pixel p; € yf, then all light rays illuminating p; are assumed to stem from
Xg. If py € Y}, then all light rays illuminating p, are assumed to stem from a different entities. The
orange lines represent the light rays v used to obtain the noise-free distance D? (orange dots) for
each of the 3 pixels. The blue dots correspond to D; (p,) and the black intervals are [D;] (p,), with

¢ e {1,2,3}, see(3.35).

and DY (nr, n¢) = p (x€,v) along some unknown vector v € V? (nr, nc). Finally, if (ny, nc) € V¢, then
3'0 6 Vf (nra nC) 7p (mzca 'U) - dv (wzca Xg) 9 (345)
with
VE (nr,ne) = {v € Vi (n,ne) | p(xf,v) = dy (25,Xg) }, (3.46)

and DY (ny,nc) = p (x¢,v) along the corresponding v € V% (ny, ne).

With Assumption 6 below, we assume that if a pixel belongs to )%, to Y2, or to V%, then the light
ray illuminating the center of its corresponding CCD cell stems from a target, from an obstacle, or
from the ground. In other words, with Assumption 6, the portion of the Rol that is observed by a pixel
is summarized by the entity (target, obstacle, or ground) that has illuminated its center. Moreover,
the noise-free distance DY (n,, n¢) corresponds to the distance along that light ray.

Assumption 6. If a pixel (n,,nc) € VY, then
3j € N, p (2,0 (nr,nc)) = duc(n, e (25, 8" (%])) (3.47)

where v© (n,, nc) is the the light ray illuminating the center of pixel (n,,n¢). Similarly, if (ny,nc) € Y2, then

¢ QO

dm € NO7 p (mfv v° (nl’v nC)) = dvc(nr,nc) (xiv m) : (3.48)

Finally, if (nr,nc) € V¥, then
P (:Bfa v¢ (nl’a nC)) = dvf(n,,nc) (332, Xg) . (349)

Moreover, one has DY (ny,n¢) = p (x5, v (nr,nc)).
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Figure 3.9 - According to Assumption 5, if pixel p; € Y?, then at least one light ray illuminating p,
stems from an obstacle. If pixel p; € yf, then at least one light ray illuminating p; stems from Xg.
If p, € Y7, nothing can be said about light rays illuminating p,. If p, € Y?° or V%, then at least one
light ray illuminating p, is assumed to stem from an obstacle or the ground respectively. Assuming
Dy € V7, then the purple set represents V? (p,). The orange lines represent the light rays v used to
obtain the noise-free distance DY (orange dots) for each of the 3 pixels. The blue dots correspond to
D, (p,) and the black intervals are [D;] (p,), with £ € {1,2,3}, see (3.35).

Figure 3.10 - According to Assumption 6, if pixel p; € )?, then the light ray illuminating the center of
p; stems from an obstacle. If pixel p; € ng, then the light ray illuminating the center ofp; stems from
Xg. If p, € VP, then the light ray illuminating the center of p, stems from an obstacle. The red lines
represent the light rays v¢ (p,) illuminating the center of p, that has been used to obtain DY (p,) (red
dots), with ¢ € {1, 2,3}. The blue dots correspond to D; (p,) and the black intervals are [D;] (p,), see

(3-35).

Each of these assumptions leads to a different way to exploit the information from a labeled pixel.
Therefore, during the target localization process, different variants of the set-membership estimators
have to be considered depending on the adopted assumption.
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Assumptions 4 and 5 appear to be the most realistic, and provide less information related to
distance measurements. In Chapter 4, only Assumption 4 is considered. The estimators exploiting
Assumption 5 and Assumption 6 are presented in Appendix A.1.

3.5.3. Target detection and identification

The array of pixel labels L; represents a useful source of information to detect the presence of a
target within the FoV of UAV i. If Y} is not empty, then there exists at least one target within F (x}'),
regardless of the assumption chosen to interpret pixels labeled Target. Nevertheless, the label carries
no information about the identity of the target. Therefore, Jf can only be used to describe an area of
the Rol containing at least one target but whose identity is unknown.

In addition to I;, L;, and D;, the CVS also provides a list D! C N* of target indexes relative to the
targets that have been identified. The set D} may be empty when no target is identified in the FoV
of UAV i. For each target j identified by UAV ¢, i.e., j € th.’ , an axis-aligned box [yfj} locating the
target in I; is also provided. Such a box can be obtained by combining a target detection algorithm,
eg.( ), with target identification approaches as in ( ). To model the
behavior of the target detection algorithm in the CVS and exploit the information carried by [y;]} for
each j € Dj, consider the set ); ; C Y} containing all pixels of Y} associated to target j only. Note that
y},j is not provided by the CVS. We introduce y;j only to define the following assertions.

According to Assumption 4, y;’j can be defined as

Vii={(nr,nc) € Vi | Vv € Vi (nr,ne) , p(xf,v) = dy (5,S" (x5)) } - (3.50)

The above assertion can be easily adapted for Assumption 5 and 6. We assume that if target j is
identified, then y;j cannot be empty, i.e.,

jeD;=Vi; #0. (3.51)
Moreover, the CVS is assumed to be tuned in such a way that [yf]} either contains y;,j, ie.,

JED; =V, C Vil (3.52)
or intersect ) ;, i.e.,
JED=Vi;n[Vi;] #0. (3.53)

Assumption (3.53) is relatively mild and may well reflect the behavior of detection algorithms,
which are usually not able to ensure (3.52). Consequently, in what follows, only (3.53) will be conside-
red.

3.6 . Assumption on observed targets

This section introduces an observation condition that, if satisfied, allows the exploitation of Ground-
labeled pixels as negative measurements. To simplify notations, the time index is again omitted in this
section.
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We recall that the location x;'g for a target j does not necessarily belong to its shape (see Figure
3.1). Thus, for a pixel (nr, n¢) such that p. (x;‘, a:;’g) € (nr,nc), none of the three assumptions presen-

ted in Section 3.5.2 is useful to predict if (n;, nc) would be labeled Target, if the target is not hidden,
Obstacle, ifitis behind an obstacle, Unknown, or Ground since :n;'g belong to X,. Consequently, another
assumption is needed.

Assumption 7. If a target j is such that sczfg € F (xY), then the half-open segment [;cc $;g [ intersects
t t i
S (xj), i.e.

a:;fg eF(x{) = [a:g,cc;g[ﬂ S*(x}) # 0.

(3.54)
The validity of (3.54) depends on the camera orientation and the characteristics of the target shape

St (x§ . This assumption is reasonable for many targets such as cars or trucks, provided that they are
observed from a location sufficiently above the target, with a camera oriented towards the ground.
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1]
Figure 3.11 - lllustration of (3.54). The blue dot represents xt and the green dot represents w;,g_ The

dashed-red line is the line-of-sight [mg,w;g [ The purple dot represents the part of St (xg) seen by
the UAV.

. . . . . t,
Under Assumption 7 and Assumption 4 applied to Ground-labeled pixels, if acjg € F (x}'), then the

pixel (nr, nc) such that p ( x}, a:;fg € (nr, n¢) cannot be labeled Ground since there exists at least one
light ray that does not stem from the ground. In addition, one can remark that such a property cannot
be guaranteed with Assumption 5 or 6. Therefore, Assumption 4 must be considered for Ground-
labeled pixels to make use of (3.54).

3.7 . Problem formulation

Assume that the information available to UAV i before time t;, is gathered in the setZ; 1. Z; 1
contains, among others, alist !, | ofindexes of targets already identified. For each targetj € £}, |,
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we assume that UAV i has access to a set estimate X; ,, | C X of all possible target locations x;‘lgk—l

which are consistent with Z; ;. It has also access to a set X;k_l containing all locations of targets
still to be identified.

At time ¢, the camera and CVS of UAV i provides an image I, ;, a depth-map D, ;, and an array
of labels L; ;.. In addition, the CVS may also provide a list D, of identified targets and a list 5%, =

i?j?k
Tig—1 U {Ii,ka Di,k,Li,k,DE,kyBE,k} :

Using this information UAV i can evaluate an updated list of identified targets £} Kk = Ly, UD:,.
Then, for each targets j € E;k'k, it has to characterize the set X;m,c C X, of all possible target

{[yt ]} - of associated bounding boxes. The information available at time ¢, is then Z; ;.. =
J€D; K

locations m;gk which are consistent with Z; ;.. UAV i has also to update the estimate Xg,k_l to get X;k‘k.

Then, UAV i broadcasts some updated information such as £} Kl Xt and Xt-k ;. to its
) 3T |k jGEt " 1, ‘
neighbors with indexes in \V; ;. and receives similar information from them. With this new information,

UAVi can further update its list of identified targets to get £ ,, the set estimates X! ., foreach j € L},

Z!jIk
. . t _ t . 7t 7t
which are gathered in &}, = {Xi,j,k} , as well as an updated version X , of X ;..

JELs
The estimation uncertainty about the localization of both identified and undetected targets may
be defined as

<t <t
P <Xit,k7Xi,k> =0 | Xjp U U Xk | (3.55)
JELS

where ¢ (X) is the area of the set X C R,
Our aim is to obtain the smallest set estimates from the available measurements and to design a
trajectory for each UAV in order to minimize (3.55).

3.8 . Conclusion

This chapter formalizes the CSAT problem with ground targets evolving within an unknown but
structured environment. A fleet of cooperative UAVs is deployed to search, identify, and localize those
targets. For that purpose, each UAV embeds a CVS to collect and process information from the envi-
ronment. Similarly to ( ; ; ), and unlike
( , ; ; ; ), no
idealized CVS is considered to solve our CSAT problem. Instead, each UAV must exploit available CVS
measurements consisting of a labeled image, a depth map, and a list of bounding boxes associated to
identified targets, to estimate the location of the targets. The target location estimator that exploits
these CVS measurements is presented in Chapter 4. Additionally, the environment is a priori unk-
nown. Thus, each UAV must exploit the CVS measurements to gain knowledge regarding the shape
and location of the obstacles. This environmental knowledge is then used in Chapter 5 with an ap-
proach similar to the one presented in ( ) to better design the updated trajectory of
each UAV by predicting the portion of the Rol that will be masked by the detected obstacles.
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How these CVS measurements are obtained is often hard to model since, nowadays, they often
involve deep learning algorithms, as in ( ; ). Therefore, in most cases,
there are no simple measurement models to represent the computer vision algorithms. To address
this issue, a camera model is introduced in Section 3.4, and assumptions modeling how the CVS mea-
surements can be related to the Rol are introduced in Section 3.5. The purpose of those assumptions
is to make the available CVS measurements exploitable by the target location estimator presented in
Chapter 4. We use the pinhole model to model the camera. The depth map model (3.31) is consistent
with this camera model. Then, three different assumptions are introduced to relate a labeled pixel
to the Rol. Each of those assumptions has its advantages and drawbacks. If the UAVs are not too far
from the Rol, then assumptions 4 and 6 seem to be the simplest assumptions to consider. Nonethe-
less, Assumption 4 assumes that as soon as a pixel is labeled Target, then that pixel must have been
illuminated by only one target. From an aerial point of view, if the UAVs fly high, the targets are small.
Consequently, this assumption is a bit unrealistic. Regarding Assumption 6, only the light ray illumi-
nating the center of a labeled pixel is considered. This simplification may become unrealistic for the
same reason because a detected target may not be located at the exact center of a Target-labeled
pixel. Assumption 5 appears to be the most realistic. The subsets V¥, with ¢ € {t, g, 0}, model the fact
that if a pixel is labeled, e.g., Target, then some light rays must have stemmed from a target. The sub-
set V!, however, is unknown. Consequently, and as explained in Appendix A.1, there is no difference
between Assumptions 4 and 5 regarding the design of the target location estimator. That is why only
Assumption 4 is considered in the following chapters.

Assumption (3.54) is instrumental in transforming some of the available CVS measurements into
negative information. Besides, this assumption can be easily satisfied. Moreover, Section 3.5.3 reflects
the behavior of detection algorithms that, with the target identification algorithm of ( )
can provide a reliable target identification. Nevertheless, possible bad evaluations of the bounding

box { f]k} are possible, as it may be the case when the target detector encounters a situation which
has not been well represented in its training data set. In such situations, the Intersection over Union
between the bounding box and the ground truth may be very low. Nonetheless, if Assumption (3.53)
is satisfied, i.e., there is at least one pixel associated to the identified target which is located within the
bounded box, then, a robust target location estimation is still possible with the estimator presented in
Chapter 4. Nonetheless, target misidentification, and target non-detection are problems that have not
been considered. The target misidentification problem can be handled by the approach developed
in ( ), and False Positives, i.e., a Target-labeled pixel that is not illuminated by any
target, could be handled by our approach. Nevertheless, target non-detection or False Negatives, i.e.,
a pixel is labeled Ground even though it has been illuminated by a target, is still a problem that is not
formalized in this chapter, and not addressed in this thesis.
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Chapter 4 - Target localization from CVS measurements

In this chapter, a method to estimate the location of targets from measurements provided by a
Computer Vision System (CVS) embedded in a UAV is presented. Using a set-membership approach,
the aim of the proposed estimator is to characterize sets that are guaranteed to contain the location of
atarget, and sets that are guaranteed to contain no target location. For that purpose, the assumptions
introduced in Chapter 3 will be used.

This chapter considers the part of the Cooperative Search, Acquisition, and Tracking (CSAT) pro-
blem devoted to the estimation process and the update of the knowledge of a UAV about the location
targets using the CVS measurements. The design of a trajectory to track those targets is addressed in
Chapter 5.

The notations used in this chapter are first recalled in Section 4.1 before a formulation of the esti-
mation problem studied in this chapter. Then, Section 4.2 presents a method to exploit the measure-
ments provided by the CVS to characterize various set estimates related to the location of identified
targets. Section 4.3 presents a method to characterize set estimates containing no target location.
Section 4.4 proposes an approach to estimate the portion of the ground that has been occluded by
an obstacle. Those sets are then used to update the knowledge each UAV has about the possible
locations of the targets by using a prediction-correction approach that is presented in Section 4.5.
Section 4.6 describes the way CVS measurements are used to build the map of the Region of Interest
(Rol). Then, some simulations and results are presented in Section 4.7 before concluding.

Appendix A.2 describes how one may compute the introduced set estimates.

To simplify the notation, the time index is omitted in the Sections 4.2, 4.3, and 4.4.

4.1. Problem formulation

A fleet of NY UAVs is dispatched within an Rol X, which contains N mobile ground targets and is
cluttered with N° static obstacles of unknown shape and location.

Just before time ¢;, assume that UAV i € 'Y has access to some knowledge about some previously
identified targets and the environment. This knowledge consists of a list £}, | of indexes of targets
already identified. For each j € L}, ;, UAV i has access to a set estimate Xg,j,kq C Xg containing
the location ¥, | of target j at time t;_;. The list of sets X}, | = {Xg,j,kfl}jeﬁt gathers all

ik—1
the knowledge UAV i has about the identified targets. It has also access to a set X;k_l containing
all locations where potential unidentified targets may still be present. Lastly, UAV i has access to a
set X?, representing areas around previously observed obstacles where no target can be. Those
previously observed obstacles may also have been mapped through the Occupancy Elevation Map
(OEM) M 1.

At time t,, UAV 4, with state x}',, observes a subset F (X;Jk> of its environment using a camera to
get an image I, ;.. Then, the embedded CVS processes I, ;, to provide a depth map D, x, an array of

pixel labels L; 1, a list D} , of targets identified at time ¢, and a list B}, = { [y;j k] } - of bounding
) ) 2y ]G ik
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boxes associated to those identified targets.
The problem addressed in this chapter is the exploitation of the measurements provided by the
CVS using the assumptions presented in Chapter 3 to localize the targets. For that purpose, if j € D},

a set estimate XETk containing the location w;k of a target j is evaluated. A set estimate IP’ZgJC (y§k>

is also characterized using the pixels labeled Ground such that Pzgk (yfk) cannot contain any target

location. Similarly, pixels labeled Obstacles are used in two ways. The first is to characterize a set ng
that can never contain any target location due to the proximity of an obstacle. The second is to update
the OEM.

Then, once characterized, these set estimates as well as the information broadcast by potential
neighbors are used to update the list £ , | and the sets X}, _,, Xz’k,l and X9, | toget L], X, X;k
and X7,

4.2 . Exploiting CVS information to localize an identified target

Consider that a target j € D} is identified by UAV i at time ¢;.. The CVS provides a depth map D;, a
list V! of pixels labeled Target, and a bounding box [ygj} .According to (3.51), since the target has been
identified, then at least one pixel contained in )} is associated to target j. Therefore, by combining
[y;j} with V* and D;, UAV i is able to characterize a set estimate XET containing the target location
z'®,

Chapter 3 has introduced three assumptions to describe the way measurements provided by
the CVS can be related to the environment. This chapter only considers Assumption 4. Appendix A.1
presents variants of that estimator that one would obtain by considering the other assumptions.

We start with a preliminary result : Assume that a point = belonging to the shape St (XE) of a
target j is available, then, using the following proposition, it is possible to characterize a set containing
the location :n;'g of target j.

Proposition 8. Forall j € N, ifx € S <x§k> then x5 € Ng ({pg (x)},r").

Démonstration. Consider some x € St <x§> According to (3.4), we have St <X§> cCt (:c;g) where
Ct <a:§!g> is a vertical circular right cylinder of height At and radius r* with basis centered in a:;.'g.
Thus, we also have have p, (St (xg)) C pg <<Ct (zc;g>> We recall than p, (Ct <$§g)) is a disc of
radius r* and center a:;'g. Another notation of this disc is Ng ({w;g} ,rt) . Therefore, we have p, (z) €
Ng ({wgg} ,rt>.

Consequently, one has Hpg (x) — ac;ng < rt. This is equivalent to have H:v;’g — Pg (x)H < rt. Conse-

quently, we deduce that Ng ({pg ()} ,") contains x;’g. O

Consequently, if a target j is identified, it suffices to determine = € S* (xg) to be able to build a

set estimate Ng ({pg ()} ,7") containing cc;.'g. This will be done in what follows.
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If a pixel (nr,nc) € V5, i.e., is labeled Target, then, according to Assumption 4, all light rays contri-
buting to its illumination are stemming from a single target £ € N'*. Assumption 4 does not provide
any information about ¢. Using the depth map measurement D; (n,, nc) associated to that pixel, our
aim is to characterize a set P; ((nr, nc)) intersecting the shape of the observed target /.

For any pixel (nr,n¢) € I;, the set

P; (nr,ne)) ={x € F(x}) NXp | (4.7
Jv € V; (nr,ne) ,dy (5, {x}) € [D;] (nr,nc)}

contains all points in IF (x}') N X, that may have contributed to the illumination of (nr, nc) while being
at a distance from UAV i consistent with D; (nr, nc). According to Proposition 9, if (nr, nc) € V5, then
P; ((nr, nc)) intersects the shape S* (x}) of some target ¢.

Proposition 9. If (n,, nc) € Y, then there exists £ € N such that P; ((n,, nc)) NS* (x}) # 0.

Démonstration. If (nr,nc) € VY, then according to Assumption 4, there exists a target £ € A" such
that for all v € V; (nr,nc), p(xf,v) = dy (x5, S" (x})). Therefore, there exist v € V; (nr,nc) and
z* € S (x}) C X such that dy, (x5, {z*}) = DY (nr, nc). According to (3.35), one has d, (x5, {x*}) €
[Dy] (nr, nc). Inaddition, as (nr, nc) € Vi C Y, see(3.36), then 52D i (1r, c) < dinax @and dyy (a5, {z*}) <
dmax. Therefore * € F (x}). Finally, from (4.1), one has «* € P; ((nr,nc)), and thus P; ((nr, nc)) N

St (xt) # 0. 0

Figure 4.1illustrates Proposition g with three pixels labeled Target. The orange sets are the P; ((nr, nc))
obtained for each pixel, and they contain a point * (in red) belonging to a target (here, the same tar-
get) for which the noise-free depth measurement D? (nr, nc) is assumed to have been obtained.

DY}, (nr, ne) P; i (e, ne))

Figure 4.1 - lllustration of the sets IP; ((nr, nc)) (in orange) for different (nr, n¢) € y;,j N [yfj] and for
a target detected and identified by UAV ¢

According to (3.51), since target j has been identified by UAV i at time ¢, the set y;’j of pixels labe-

led Target associated to target j is not empty. Moreover, from (3.53), one has y;j N [y}]} # (). Even if
only the set of pixels )} such that y;j C Yt is available, see Section 3.5.3, using the following Propo-

sition 10, there exists at least one pixel (n;,nc) € [yfj} N Yt for which the set P; ((nr, nc)) intersects
t t
S (Xj>.
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Proposition 10. If j € D, then 3 (n,, nc) € [yfj} N Yt such that P; ((nr,ne)) NS (XD # 0.

Démonstration. If j € D}, then y}’j # () and y;j N [y;]} # (). Combining (3.51), (3.53), there exists a
pixel (ny,nc) € [y}]} N V¥ such that (nr,ne) € y;j. Then, according to (3.50) and Proposition 9, we
deduce P; ((nr, nc)) N St (x;) £ 0. O

The pixel (nr,n¢) such that P; ((ny,nc)) N St (X§> # () exists, but it is only known to belong to
yin [yfj} .To get a set intersecting St (xE) one has to consider the union of all sets P; ((nr, nc)) over

the pixels (nr,n¢) € [y;j} N Y} to obtain a set P ; intersecting S* (XE) as reported in Corollary 11 (a
direct consequence of Proposition 10).

Corollary 11. If j € D}, then the set

Pl = U P (4.2)
(nr,nc)e[yf_’j]ﬂyg

is such that P ; N'S* <x§> # 0.

Then, according to Proposition 12, if P} ; N S' <X§> # 0, then p, (]Pf]) N pg (St (xg)) # 0.
Proposition 12. Consider the sets A and B. If A "B # (), then we have p, (A NB) C pg (A) N p, (B)

Démonstration. Consider z € ANB. Then,wehavex € A, z € Band pg () € pg (ANB). Asx € A,
we have p; (z) € pg (A). We have the same for B. Consequently, p; (A NB) C pg (A) N pg (B). O

P} ; is only known to intersect S* (X§> Ifz € Pj;NS" (XB) would be available, one would be able
to exploit Proposition 8 to characterize a set estimate Ng ({pg ()} ") for a:;'g. As x is only known to
m
J

belong to P! , using Proposition 13, one obtains a set estimate XE:

.. t,g
i containing :Cj .

Proposition 13. If j € D, then the set estimate
X=X | N({=},r) (4.3)
zepg (P} ;)

is such that a:;fg € Xi’]”

Démonstration. As j € Dj, we have P; ; NS§ (xg) # 0. Then, using Proposition 12, we have p, (Pb) N
j (St <X§>) # (). So, there exists « € Pg (ng) N pg (St (XD) Consequently, from Proposition 8,

one has a:;-'g € Ng ({:c},rt). However, as ]P’E’j is only known to have a non-empty intersection with

St <X§> to build a set estimate for x;'g, one has to consider all z € p, (ng) and build the union

of Ng ({z},r") over all z € p, <]P’§j> Then, since % is always within Xg, we deduce that the set
tm _ t ; tg
X7 = Xg N Upep,(p ) Ne ({z},r") contains z;°. O
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In practice, the estimate XET is evaluated as

X4 = Xg N (pg (P};) ®Ng ({0},71)),, (4.4)

which, compared to (4.3), only involves the Minkovski sum of the disc Ng ({O} ,rt) and the projection
of P} ; on Xg, see Figure 4.2.

0 ct (a3%)

t
Pi,j,k

t,m

i7j7k
Figure 4.2 - Estimation of the location of target j : The set ]P’;j is projected on the ground (red set).
Then P ((Ct) (horizontal circles represented by the black lines) is used to build XE’? (green set). The
green dot represents wg

4.3 . Exploiting CVS information to characterize a target-free area

An approach to characterize a subset of X, that contains no target location is presented in this
section. This is achieved by processing the pixels labeled Ground, in Section 4.3.1, Obstacle, in Sec-
tion 4.3.2, or Target, in Section 4.3.3.

4.3.1. Using pixels labeled Ground

This section presents an approach to characterize a subset of F (x}') N Xg, i.e., the intersection of
the FoV with the ground, containing no location of any target j € N*.
For that purpose, we first introduce the set

P ((nr,nc)) = {z € E(x}) NXg | pc (x}, @) € (nr,nc) } (4-5)

that contains all points in I (x}') ' X whose projection on the CCD array p. (x}, ) belongs to (nr, nc),
see (3.29). }P’Zg ((nr,nc)), illustrated in Figure 3.7, represents the portion of X, that would be observed
by pixel (nr,n¢) in absence of obstacles and targets.

According to Assumption 4, pixels in )%, i.e., labeled Ground, are such that only points in Xg have
contributed to their illumination. Consequently, the set

P2 (VF) ={x e F(x}) NXg | pc (x{, ) € VE} (4.6)
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of points of X; whose projection onto the CCD array belongs to a pixel labeled Ground cannot contain
the location of a target, see Proposition 14.

Proposition 14. For all j € N, a'f ¢ P§ ()%).

Démonstration. First, if :c;.’g ¢ F (xY), then gc;.'g ¢ P& (V8), by definition of P ()#). Consider now ;c;’g €

F (x¥). According to (3.29), there exists (nr,nc) € N such that p, (x;‘,az;fg> € (nr,nc). Moreover,

according to (3.54), there exists an half-open segment [a:g, :c;!g[such that [mg, a:;'g {ﬂSt <x§> # () while

having [mg,x;'g [ﬂXg = (). Consider the unit vector v € V; (nr, nc) such that v is colinear with [:cg, :z:;.'g{.

Therefore, p (x5, v) # dy (25, Xg) and, according to Assumption 4, p, (x;’, :c;fg> ¢ V?. Consequently,
from (4.6), = & ¢ P& (V%) O
Figure 4.3 illustrates Proposition 14. Two pixels labeled Ground (highlighted in orange) are consi-

dered. According to (3.54), the pixel p; (highlighted in blue) containing the projection on the CCD array
of m;.’g cannot be labeled Ground. Therefore, P (%) (in orange) cannot contain a:;fg.

g

PE, (V2))

Figure 4.3 - lllustration of the set }P’Zg (yf) (inorange) defined as a set which cannot contain the location
(in green) w;'g, for j € N, of any target

4.3.2 . Using pixels labeled Obstacle

This section presents an approach to use pixels labeled Obstacle to characterize a subset ng of
Xg that cannot contain any target location. The proposed approach relies on Assumption 3.8, stating
that, for any target j € N¢, the distance between x;’g and any obstacle is always larger than some
known safety distance r%.

For pixels labeled Obstacle, Proposition 15 provides a subset of X intersecting some obstacle S9,.

Proposition 15. If (n,,nc) € J?, then there exists m € N° such that P; ((ny, ne)) N'SY, # 0.
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Démonstration. If (ny,nc) € V¢, then, according to Assumption 4, there exists m € N° such that
forallv € V; (nr,nc), p(x5,v) = dy (x5,S),). Therefore, there exists v € V; (nr, nc) and there exists
x € S%, C X such that d,, (2§, {z}) = D? (nr,nc). This leads to have d, (2§, {z}) € [D;] (nr,nc). In
addition, as (nr,nc) € Y C Vi, we have ﬁDi (nr,nc) < dmax and dy (x5, {x}) < dmax according to
(3.36). Therefore x € F (x}'). Consequently, from (4.1), € P; ((nr, nc)). So there exists m € N° such

that P; ((nr, nc)) N'S2, # 0. O

If, for some (nr,nc) € Y2, & € P;((nr,nc)) NSy, would be known, then, according to Assump-
tion 3.8, one would be able to prove that there is no target location in Ng (p, ({x}) , °). Nonetheless,
as P; ((nr,nc)) NSS, is only known to belong to P; ((nr, n¢)), one considers the set

S ((nr,ne) 1) = ﬂ Ng ({z},7°). (4.7)

xepg(Pi((nr,nc)))

defined as the intersections of the discs Ng ({z},7°) for all x € pg (Pi ((nr, nc))). According to Pro-
position 16, S ((n,, n.) , ) is an inner-approximation of the r°-ground neighborhood of an obstacle,
as illustrated in Figure 4.4.

Proposition 16. If (n,,nc) € V?, then there exists m € N°, such that
S ((nr,ne) ,75°) C Ny (pg (S5,) ,75°) - (4.8)

Démonstration. If (nr,nc) € Y2, then, according to Proposition 15, there exists m € N° such that

P; ((nr, nc))NSy, # 0. Consequently, pg (P; ((nr, nc)))Npg (S5,) # 0. Since (10g (P; ((nr,ne))) N pg (S9,)) C
pg (Sy,), one has

Ng (pg (Pi ((nr,1¢))) Npg (Sp,) , ) C Ng (pg (S7,) 5 7°) - (4.9)

Moreover, one has
ﬂ Ng ({z},r?) C ﬂ Ng ({z},r?), (4.10)

zEpg (P;((1rnc))) z€pg (P;((1r,nc)))NPg(S2,)
as well as
ﬂ Ng ({:U} ,7420) - Ng (pg (]P)l ((nra nC))) N pg (81071) 7T§O) . (4-11)
z€pg (P;((1r,nc))) NPy (S%,)

Finally, one gets S ((n,,n.) ,7°) C Ng (pg (S9,),75°) - O

Consequently, an inner-approximation of the r°-ground neighborhood of all the obstacles located
within the FoV of UAV i can be obtained by characterizing the union of all S ((n,, n.),7) over all
pixels (n,,n.) € V7. Therefore, UAV i is able to characterize a set estimate

XX=|J S((nne),rP) (4.12)

(nrync)ey?
which cannot contain any target location as stated by the following proposition.

Proposition 17. If J? # (), then the set X? is such that a:;fg ¢ X9, forall j € N*.
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\\“i« )

A
N (o iV
Figure 4.4 - lllustration of Proposition 16 : The obstacle S7, and the projection on the ground p, (S7,)
of its shape S?, are represented by the light-green sets. The set P; ((nr,nc)) associated to a pixel
(nr, nc) labeled Obstacle and its ground projection are represented by the orange sets. Ng ({z}, r°)
is represented by the black segments. The red set is s((nr,nc),rgO) and the dark-green set is

Ng (Pg (S7,) ,7%°)-

Démonstration. Using Proposition 16, for each (n,,n.) € J?, there exists m € N°suchthat$ ((n,,n.),r®) C
Ng (pg (S9,),75°) . Then

U S(mne),r®) ¢ |J Nelpg(Sh), 7). (4.13)

(nrme)€Y? meN©

Consequently X? € U,,cno Ng (pg (S9,), 7). According to Assumption 3.8, we have

Vj e N\ Vm € No,m;fg ¢ Ng (pg (S,),7) (4.14)
eVjeNaf¢ | ) Ng(pg(S5,),r) (4.15)
meN©
therefore
Vi e N, a8 ¢ X0, (4.16)
]

4.3.3 . Using pixels labeled as Target

This section presents a method to characterize a subset Xﬁ'f;‘ of X that cannot contain the location
of any target ¢ € N\ {;j} using the information associated with the identified target j € D..

If target j is identified at time ¢, then, with the approach presented in Section 4.2, a set estimate
XE"T containing its location is available. Using Assumption (3.11), we have the following proposition.

Proposition 18. If j € D!, then the set estimate

X = () Ne({z},r¥) (4.17)

tm
zeX'
€ V)
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is such that for all ¢ € N\ {5}, ¢ ¢ XET '

Démonstration. If j € D, then according to Proposition 13, the set estimate XET is such that x;'g €
X;. Consequently, one has

M Ng({z}, ) C N ({m;:g} ,r;t) . (4.18)
wEXE’?
Therefore, according to Assumption (3.11), wz,g ¢ ng‘ forall ¢ € N\ {j}. O

4.4 . Estimation of the hidden area

Some parts of IF (x}') N X may not be seen by UAV i when they are hidden by an obstacle, a target,
a UAV, or something that has not been identified.

Consider, for now, a point € F (x}') N X; that is hidden by a detected obstacle, i.e., there exists
a (ny,ne) € Y? such that p. (x{,z) € (n,,n.). If this point on the ground has been hidden by an
obstacle, then, there exists an obstacle m, with m € N° such that d,, (z£,S,) < dy (x5, {x}), where
v € V; (nr, nc) is collinear with the segment [z, x]. Thus, according to (3.31), we have that p (x5, v) <
dy (xf, {x}). The set of points belonging to IF (x}') N X, that are hidden by a detected obstacle is then

HY ={z e F(x;') NXg |
I (np,ne) € V7,30 €V (ne,ne), p(x5,v) < dy (5, {x})}. (4.19)

The same sets can be defined for the points belonging to I (x}') N X, that are hidden either by a
detected target or by something not labeled, i.e.,

H; = {2 € F(x}) N X |

3 (ny,ne) € Vi, 30 €V, (ne,ne) , p (x5,v) < dy (x5, {z}) } . (4.20)
HY = {@ € F (x¥) N Xg |
I (np,ne) € Y, v €V (ne,ne), p(x7,v) < dy (x5, {x})}. (4.21)
Consequently, the set
HEYS = H? UH UHD, (4.22)

represents the portion of the ground that UAV i cannot see. The main difficulty to characterize (4.22)
comes from the fact that p (z$, v) cannot be evaluated without a perfect knowledge of SR, Never-
theless, UAV i is able to outer-approximate HS"® by a set estimate HSY> that will be useful in the UAV
exploration process in Chapter 5.

To get this outer-approximation of H-'®, we assume that as soon as a pixel (nr,n) is labeled
Obstacle, Target, or Unknown, i.e., (nr,nc) € Y° U YH U YN, then it is not illuminated by the ground.
According to Assumption 4, this assumption is true for pixels labeled Obstacle and Target, but not
necessarily for pixels labeled Unknown. Consequently, we can prove that HY C IP’Zg (¥?), and E -
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P% ()}) since, according to Assumption 4, for all v € V; (nr,nc), with (nr,nc) € Y2 U VY, one has
p(x§,v) < dy (x§,Xg). We have an equality only when the point € F (x}') N Xg belongs to the
footprint of an obstacle m € N°, i.e., z € S5, N X, or if it belongs to S* <X§> N Xg for a target j € N

The same can be done with pixel labeled Unknown, i.e., H} C IP";g (ym.
Consequently, an outer-approximation of H® is

HEYS — P8 (12 U U YD) (4.23)

4.5 . Estimation algorithm

This section describes an adaptation of the distributed set-membership target location estimator
introduced in ( ) to exploit measurements provided by the CVS. Just before time t,
UAV i has access to the possible locations of identified targets, i.e., X ; , , foreach j € L, andthe

possible location of the targets still to be identified, i.e., X;k_l. The UAV has also access to a subset
of X; that represents an inner-approximation of the r{°-ground neighborhood of all the previously
detected obstacles, i.e., X9, ;. Attime to, the set estimates of UAV i are initialized as L} , = 0, X}, = 0,

X;O = Xg, and X9, = 0.

4.5.1. Prediction step

The predicted set Xg’j’k‘kA

getj € L, , is evaluated from X{ ., ,, the target dynamics (3.2), and the known bounds [v'] of its
control input

of possible future possible locations of the previously identified tar-

X27j7k|k_1 = {ft (z,v)eXg|x € X57j7k_1,v € [vt]} (4.24)
= f' (Xg,j,k—l? [v']) N Xe. (4.25)

Similarly, the predicted set X;k‘k_l of all possible locations of targets still to be identified is

<t <t
Xiklk—1 = f! (Xi,k—lv [’UtD N Xg. (4.26)

Obstacles being static, the predicted set X?k|k_1 is
X1 = Xop—1- (4.27)

4.5.2 . Update using CVS measurements

The CVS of UAV i provides I, , L; x, D; , Dﬁk and Bik From these CVS measurements, UAV i
has characterized several set estimates. Some of them are guaranteed to contain the location of an
identified target. Others are guaranteed to contain no target location. Using these set estimates, UAV i
updates the knowledge it has about the environment and the possible locations of both identified and
unidentified targets.

Using Proposition 17, the list of pixels labeled Obstacle )P, is used to characterize the set X2k
that is guaranteed to contain no target location. This set represents an inner-approximation of the
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r°-ground neighborhoods of all the obstacles that are detected at time t;. Thus, the update of the
region around the obstacles that cannot contain any target location is,

ke = X ppe—1 U Xop- (4.28)

Regarding the set X;Hk_l which may contain unidentified targets, Propositions 14 and 17 showed

that P%, (yfk) and X, (and therefore X7,

since X;k‘k_l should contain only the locations of potential unidentified target, thus, according to
Proposition 18, the set XETk for all targets j € D!, cannot contain the location of an unidentified

) cannot contain the location of any target. In addition,

target. Consequently, the set X;,dk_l is updated to get

<t <t t,

Riae = Koo \ [ B (V&) uxe0 U X0y | (4.29)
e},

Then, for the target set estimate X§7j7k|k_1,

get. Furthermore, according to Proposition 18, for any target j € A%, its location cannot be contained

in the union of the X7, over all identified targets except itself, i.e, 3% ¢ Uten: i) X}y Therefore,

we know that P% (yfk) UX?, cannot contain any tar-

for each previously identified target j € £{, ,\ D!, which is not identified at time ¢;, the set estimate

ng ki1 1S updated to get

t,
XLk = X jao \ | B (V) uxeu U X |- (4.30)
eD;  \{j}

For each previously identified target j which has been identified at time t, i.e., j € EE i1 N th.k,

then, Proposition 13 showed that XET,C is guaranteed to contain mﬁ Therefore, the update of the set
ng K1 CONntaining all of its predicted possible locations is

¢ [t : g (18 t
Xi ke = (Xi,j,ldk—l N Xﬂ“k) \ | B3y (%k) UXP e U U X |- (4.31)
(€Dt \ ()

In the case of a newly identified target j € D%, \ £}, |, its possible locations known to UAV i at time
ti, are only known to belong to X;Mk,l. Consequently, UAV i characterizes the set estimate

<t
X ke = (Xi,k|k—1 N XE?I@) \ | B3, (ﬁk) ux% U U X (4.32)
teD; , \{j}

Finally, the list of indexes of identified targets becomes

ﬁE,Hk =L 1 UDj. (4.33)
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4.5.3 . Update after communication with neighbors
Once UAV i has updated its knowledge using the CVS measurements it has acquired at time ty, it
exchanges information with its neighbors. This data exchange consists of broadcasting to the neigh-
bors the sets X° e Z,ﬂk, Xt ikl for each j € Lt e and the list £t e while receiving theirs.
Each UAV /, with ¢ € N“ broadcasts the list of indexes of identified targets Ce Kl the ri°-ground
neighborhood of obstacles X7 k|k, the set estimates X&j’k‘k, Jj e Em‘k and the set of possible locations

of targets still to be identified X&klk' UAV ¢ receives this information from its neighbors with indexes in
N k- We recall that we always have i € N ;. As indicated in Section 3.3.1, communication is assumed
perfect and without delay. More practical aspects related to the scheduling of communications are
detailed in Section 5.3.2.

Using the information received from its neighbors, UAV i updates the list of identified targets as

L; k = U Ly K|k (4.34)
KENZ k
the ri°-neighborhood of obstacles as
zk: = U Xy |k (4.35)
ZENZ k

and the set of possible locations of targets still to be identified as

<t <t
Xik= m Xkl (4.36)
LEN;

Then, for each target j € L}, one has

¢ t —t
Xijk = ﬂ Kojle | N m Xekk | - (4.37)
ZGM k KE./\[Z k
Stjel:e |k stg&ﬂek‘k

The expression (4.37) accounts for the estimate Xj, ., . of the location of target j made by the neighbor

£,5,k
UAVs which have already identified target j. It also accounts for the fact that mEk € X;Jclk for all
neighbors of UAV i which have not identified target j up to time .

4.6 . Update of the occupancy-elevation map

This section presents an approach to build a map from the CVS measurements available to UAV 4.
Section 4.3.2 explains how to obtain an inner-approximation of the r°-ground neighborhood of the
detected obstacles, i.e., X7, C Ng (10g (S9,), 7). Nonetheless, the map is used to get a rough approxi-
mation of the location and the 3D shape of the obstacles within the Rol. Thus, ng will not be used
since it provides no information about the height of the obstacles. Additionally, the map is not used to
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estimate the location of the targets. Its main purpose is to improve the update of the UAV trajectories,
as presented in Chapter 5, by predicting H{} , with 7 > 1.

The proposed approach relies on an Occupancy-Elevation Map (OEM) (Souza and Goncalves, 2016;
Du et al., 2018) introduced in Section 4.6.1. Then, Section 4.6.2 explains the update of the OEM for each
UAV using the CVS measurements. Finally, Section 4.6.3 describes its update with the information

broadcast by the neighbors of each UAV.

4.6.1. Definition of an occupancy-elevation map

The combination of a 2D-occupancy map with an elevation map results in a 2.5D representation
to map a 3D environment. With this approach, obstacles spread within the Rol are approximated by
a list of parallelepipeds, see Figure 4.5.

The OEM M, managed by UAV ¢ at time ¢; is a 2D grid composed of non-overlapping square
cells of same dimension. Each cell is uniquely identified with indexes 7 in the set VM. A cell n € &M,
is characterized by the location of its center ¢ () € Xg, its status s; ; (1), and its elevation h; . (). The
status s; , (1) takes its value in the set {U, O, E} where U stands for unexplored, O for occupied, and E
for empty. Then, M; x = {c(n), sik (n), hik (1)}, cpu- AN unexplored cell represents an area where no
information has been collected yet. An occupied cell represents an area where an obstacle has been
detected. An empty cell represents an area where there is no obstacle, i.e., only the ground has been
observed.

Initially,s; o0 () = {U} and h; o (n) = 0 for all € AM.

Figure 4.5 provides an example of OEM where some cells are empty (in green), others contain an
obstacle with a measured height (in red), and the remaining cells are still unexplored (in blue).

m)

measured height (

Figure 4.5 - Representation of an occupancy-elevation map M; ;.. Green cells represent empty cells;
the portions of X covered by those cells are considered free of obstacles. Blue cells are unexplored
cells; no useful information related to the map topology is available. The red parallelepipeds are
obtained from the location and size of the occupied cells (an obstacle has been detected on those
cells) and the measured height (related to those detected obstacles).
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4.6.2 . Update using CVS information
Justbefore time ¢, assume that UAV i has accesstothe OEM M, 11 = {c (1) , sik—1 (1) , hik—1 (n)}neNM'
Obstacles are static. Consequently, no prediction of the evolution of the OEM is required. Thus, h; y. (1) =
hije—1(n) and s; g, () = six—1 (n) for alln € AM,
At time ¢ new measurements are provided by the CVS of UAV i. They are used to get an updated
version M, i, of the OEM.

Detection and approximation of an obstacle

Consider a pixel labeled Obstacle (nr,nc) € V7. According to Proposition 15, then there exists
m € N° such that P;;, ((nr,nc)) NS, # 0. Therefore, P; ;. ((nr, nc)) has a non-empty intersection
with at least one obstacle. Nonetheless, points belonging to this intersection, and consequently to
So, cannot be easily characterized. This is why only an approximation of the obstacles is provided
by the OEM. Then, to characterize the approximation of the shape of the obstacle m € A° that has
illuminated pixel (nr, n¢), we consider the following point of I; , ((nr, nc))

D’i,k (nr7 nc)

1 _l_ w ,UC (nCJ nr) ) (4'38)

T (nr,nc) = asz, +

where v° (n¢, nr) is the unit vector belonging to V; . (nr, nc) which defines the light-ray illuminating
the center of pixel (nr, nc). The point Z (nr, nc) of P;  ((nr, nc)) is the farthest from zf, that may have
illuminated the center of the pixel (nr, n¢). Since the considered obstacles in our structured environ-
ment are likely to be buildings, & (nr, n¢) is likely to be inside an obstacle m € N°. Consequently, if
the projection on Xg of Z (nr, nc), for a (nr,nc) € Y7, belongs to a cell that is not empty, then that
cell is updated as occupied. Moreover, we choose hyax (P 1 ((nr, nc))) as the estimated height of the
detected obstacle, where hy,.x (P) returns the highest third coordinate value over all the elements
contained in . Thus, one has for all (nr,nc¢) € y;jk

if In € NM such that p, ( (nr, nc)) € cell () (4.39)
and s; g (1) € {U, O},
then s; yx (7) = {O},
and h; g (1) = max (R ki (1)  hmax (Pik ((7r, 1))

where cell (n) is the subset of X; that is included in that cell. Figure 4.6 illustrates this update step.

Detection and approximation of the ground

For all pixels (nr,nc) labeled Ground, i.e., for all (nr,nc) € yﬁk, the state of cells whose center
belongs to Pﬁk ((nr,nc)) is updated to empty and their height is set to 0. Consequently, one has for all
(nr,ne) € yﬁk

ife(n) € Pzg,k ((nr,nc)) then s; g (n) = {E}, hygpp. (n) = 0. (4.40)

Figure 4.6 illustrates this update.
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hmax,1

hpax,2----------" N

hmux, R e e

hpax,2 ---=-reremmememe s

U U U E O O U U
Figure 4.6 - lllustration of the update of the OEM. The blue pixels are labeled Obstacle. From those

pixels, UAV i characterizes their P; ;. (.) (in orange). The blue and purple dots are their  and hy,.x. The
green pixel is labeled Ground. The green set is the IPZg’k (.) related to this pixel and the green dot is the

center c (1) where the cell 5 is the only cell that has its center contained in P§, (yfk) . Assuming that

each cell was previously unexplored, the fifth and sixth cells are updated as occupied with the correct
elevation. The fourth cell is updated as empty.

4.6.3 . Update after communication with neighbors

UAV i also updates its OEM as follows.

A cell considered as empty by at least one of the UAVs is updated to empty. Thus, for all € NV,
if there exists £ € N, such that s, i, (1) = {E} , then s, (1) = {E} and hy . () = 0.

After this update, for a cell that is not empty, if that cell is considered occupied by at least one of
the UAVSs, then it is updated to occupied and the height is set to the maximum observed height. Thus,
for all n € A, such that there does not exist any ¢ € N ;, with s, 1, (7) = {E}, but such that there
exists ¢ € N with sp g, (n) = {O}, then s; ;. () = {O} and h; ;. (n) = maxgen; ,, (herr (1))

4.6.4. Approximation of HfY* using the OEM

This section presents an approach to approximate H%s by using the OEM.
At time ¢, the OEM maintained by UAV i can be used to define the set of boxes

{BY, () | six (n) ={0},ne NM}. (4.41)

This set is an approximation of the shape of all obstacles that have been detected up to time ¢;. For
each IB%'X'k (n), using the approach developed in ( ), UAV ¢, with state x}, is able to
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characterize a set HYM (x/
Figure 4.7.

n) C Xg representing the portion of the ground occluded by IB% % (), see

’L

Figure 4.7 - lllustration of the portion of the ground occluded by an obstacle approximated by the
red box B}, (7). The UAV location is represented by the blue star, the set F (Xl;k) N Xg is delimited in

black, and the set H?,EM (xgk, ) is delimited in purple. Thus, the portion of F < ) that is occluded

by B, (1) (the set delimited in green) is the intersection between HZ; (XM, 77) and F (sz> Figure
taken from ( ).

To characterize HPEM (x¥, n) for a UAV with state xV, one has to account for the locations of the
optical center of the camera and of the 8 vertices of the box IBB'X'k (n). Since the box IBB'X'k (n) is convex,
the portion of the ground hidden by that box is convex too. Then, we evaluate the convex hull of the
intersection of X with the 8 lines passing through x{ and one of the 8 vertices of IB%'X'k (n).

Then the portion of the ground occluded by all boxes within (4.41) is

HOM (xi') = U HEM (x4',7), (4.42)
neENM s; 1 (n)={0}

and the portion of F (x}') that is hidden by the obstacles approximated by the OEM is HPEM (x
F (xY).

()

Figure 4.27 in Section 4.7 illustrates the difference between ]HIOE’V' ( ) NF ( ) and Hf\,gs

uy A

X;

4.7 . Simulation

This chapter presents a set-membership estimator that exploits CVS measurements to characte-
rize and update a set estimate containing the location of each target that has been identified. This
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estimator is composed of the algorithms that are required to characterize the set estimates XET,C

Pik (yfk) ka and Xﬁ?‘k from the CVS measurements available at time ;. Sections 4.2 and 4.3 pro-
vide an explanation of how the CVS measurements are exploited to get these set estimates, and
Appendix A.2 details how they are characterized. Then, these set estimates are used to update the
knowledge UAV i has before time ¢, regarding the potential locations of the identified and unidenti-
fied targets, i.e, X, withj € £}, |, and X;_1- These set estimates are also used to update the
knowledge UAV i has before time ¢, regarding the environment, i.e., ng_l. This update is explained
in Section 4.5.

This section presents some simulation results regarding the performance of the proposed target
location estimator. Only one UAV is considered and it only exploits the CVS measurements available at
one time instant to estimate the possible locations of the targets and update its previous knowledge.
Consequently, to evaluate the performance of the proposed estimator, we consider that cgvk_l =0,

and X;k_l = Xg. The tracking of the targets and, thus, the capacity of the UAVs to maintain an accurate
estimation of their location is studied in Chapter 5.

Simulation results have been obtained using Webots ( ) to generate the targets, the CVS
embedded on the UAYV, as well as the measurements it collects. Webots then sends the CVS measu-
rements to MATLAB where the code has been implemented.

4.7.1 . Simulation conditions and metrics

The targets are cars with the following dimensions 4.6 m x 1.8 m x 1.5 m. The cylinder C* containing
the shape of the cars is chosen with a radius r* = 2.5 m, and a height h* = 1.5 m.

A single UAV is placed within the Rol. It is equipped with a camera producing images that are
subsampled to get an image of size N, x N, = 360 x 480 pixels in order to reduce the computational
time. The camera has an aperture angle of 7/4 rad, and is fixed in the UAV frame. Therefore, the
rotation matrix is

0 -1 0 cos@ 0 —sind

0 0 -1 0 1 0 , (4.43)
1 0 0 sinf 0 cosf

Fe

M, =

where § = 7 /6 is the orientation of the camera in the UAV body frame.

A depth map is provided by the range finder of Webots with the same resolution as the camera.
Its maximal measurement range is set to dy.x = 300m. The bounds of the noise w, appearing in
the acquisition of D; (nr, nc) from DY (nr,nc) in Section 3.5.2, i.e., D; (nr,nc) = DY (nr,nc) (1 +w)
are taken as [w,w] = [-0.01,0.01]. For example, if DY (n;,nc) = 200m, then the depth measure-
ment D; (nr, nc) is obtained by selecting w € [w,w] = [—0.01,0.01] uniformly at random, to get, for
example, D; (nr,nc) = 201 m. Then, using (3.35), one gets [D;] (nr,nc) = [199.01 m,203.03 m|. The
pixel classification and target detection-identification is done by Webots.

Figure 4.8 shows an example of CVS information provided to the UAV.

Most of the outputs provided by the target location estimator are set estimates. Consider that a set
estimate X C R? represents the knowledge a UAV has about the location of a target. The uncertainty
regarding its estimated location is measured by the area ¢ (X) of X. A more intuitive evaluation of the
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Segmentation Depth-Map

Figure 4.8 - CVS information provided to a UAV by the sensors simulated by Webots. On the left : the
image I; with two bounding boxes. At the center : the array of pixel labels L;with two bounding boxes
(Target-labeled pixels in green, Obstacle-labeled pixels in blue, Ground-labeled pixels in brown, and
Unknown-labeled pixels in black). On the right : the depth map D;.

estimation accuracy of a target location may be obtained by the radius

¢ (X) = ¢(X) : (4.44)

™

of a disc with an area equal to ¢ (X). In addition, if ¢ (X) represents the barycenter of X, then the
distance between sc;.'g andc (Xb) ie.,

6 (X1,) = ||e (x¢,) - at® (4.45)

represents an additional metric to evaluate the estimation uncertainty of the location :I:E-'g of target j
using the set estimate Xj .

The following simulations are performed at a single time instant while assuming no prior know-
ledge regarding the environment and the targets, i.e., the obstacles and the targets are detected and
identified for the first time.

4.7.2 . Location estimation of a fully-visible target

First, we consider the following setup. A UAV is placed at the location (0,0, 50)T. Its attitude is
(0,0,0)". Then, five targets are placed in front of the UAV. The location of these targets are : (60, 0,0)’,
(90,0,0)7, (120,0,0)", (150,0,0)", and (180, 0,0)". Figure 4.9 illustrates some CVS measurements that
UAV i can acquire with this setup. The five targets are identified and the pink rectangle is their as-
sociated bounding box [y;]] No obstacle is considered. Additionally, for the sake of simplicity, we

consider that the targets are sufficiently far apart to avoid characterizing XET withj =1,...,5.The
usefulness of XET is considered in Section 4.7.3.

Figure 4.10illustrates the set estimates obtained considering the setup presented in Figure 4.9. The
black dots in each subfigure represent the location of the targets. The blue set represents IP’? (yf), ie.,
the part of X, containing no target location. It does not contain any black dots. The sets delimited by a
;.o I-€., a subset of X, that has a non-empty
intersection with the shape of target j, for each target. Since the UAV is able to observe the sunroof of
the cars, p, (IP%) contains the location of its associated target. Nonetheless, according to Corollary 11,

red border are the projection on the ground p, (IP’EJ) of Pt
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Segmentation

Figure 4.9 - lllustration of some of the CVS measurements that a UAV can acquire in a situation with no
obstacles. The UAV location and attitude is (0, 0, 50, 0, 0, O)T. The location of the targets is : (60, 0, O)T,
(90,0,0)7, (120,0,0)7, (150,0,0)", and (180,0,0)".

}P’;j is only known to intersect the target shape. Therefore, there is no reason that p, (]Pﬁ]) always

contains a:;.'g. The only set that has this property is XET represented by the sets delimited by a green

border.
Moreover, as X} is proved to contain ¥ and P (J) is proved to not contain %, with j =

1,...,5, the part X' N P§ (VE) of XI'™ can be removed because it does not contain &, see the
update rule (4.32) in Section 4.5.2.

distance to UAV : 78m distance to UAV : 102m distance to UAV : 130m
10

5

E E
5
55 60 65 70 85 90 95 100 115 120 125 130
X (m) X (m) X (m)

distance to UAV : 158m distance to UAV : 186m

145 150 155 160 175 180 185 190
X (m) X (m)

Figure 4.10 - Representation of the set estimates IP’Zg (yf) (in blue), Pg (IP’EJ) (inred), and XET (ingreen)

obtained after the processing of the CVS measurements with the set-membership estimator. The
black dots are the different target locations.

Since it is the first time these five targets are identified, the set estimate containing their possible
locations is computed using (4.32). Additionally, there is no obstacles and we assumed that X;k,l =
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Xg. Therefore, in this case, (4.32) becomes

X, = (Xg N XET) \ P ()E), (4.46)
=Xi7 N (Xg \PF(37)) - (4.47)

One can remark that Xg \ P# (%) are the white sets shown in Figure 4.10.

Figure 4.11 compares ¢°R (XET) (in green), and ¢°R (X%) (in black), and ¢° (ng) (in red) obtai-
ned for these five targets. The results have been averaged over 100 independent simulations where
only the measurement noise associated to the evaluation of the depth map changes. As illustrated
in Figures 4.10 and 4.11, the closer the target is to the UAV, the better the accuracy is. This is because,
since the UAV has a better point of view for these close targets, a large portion of nggﬂ is overlapped

by P (V7).
Regarding ¢°R (XEJ) one can remark that the standard deviation increases for targets located

more than 130 m away from the UAV. As illustrated with the standard deviation of ¢} (XET) the
measurement noise associated to the evaluation of the depth map affects the characterization of
XZT This is expected since P; ((nr, nc)) relies on [D;] (nr, nc), with (nr, ne) € [y;]] NYY, andis required
to get X;'T'. Nevertheless, the characterization of P§ ()¥) does not rely on the depth map. P% (J¥) is
the same for each of the 100 simulations, but er]n varies. Consequently, with (4.46) and Figure 4.10,

one can see that for any small variation of the size of XE’]“ the set estimate xg,j obtained for the
targets that are located at 78 m and 102 m from the UAV will not change. The reason is because

(Xg \ P§ (V8)) NP2 (y;]) where P§ (yfj) represents the portion of X, that is masked by target j,
is included in XET In fact, some Unknown pixels have to be considered for the characterization of
Pt (yzt]) but no notation is introduced for them. Nevertheless, a small variation of the size of er]“
for the targets located more than 130 m away from the UAV implies a small variation of Xg’j because
(Xg \ PE (V8))nPS (3)}]) is no longer included in X;™". The sets P# (yfj) are represented by the white
set in each subfigure of Figure 4.10.

Moreover, according to ¢, the error associated with the point estimate ¢ (XEJ) is less than two
meters. Additionally, the curve of ¢° <X§]> is rising between 78 m and 130 m, i.e., ¢ (X§J> is get-
ting away from w;'g, and stagnates afterward. The reason is, between 78 m and 130 m, we have that
(Xg \ P2 (V%)) NPS (y;]) is included in X;'7". Thus X ; is the portion of the ground that is hidden by
the target, i.e., its shadow, and in our case, this shadow of the target is not under but behind the tar-
get, see the white sets in Figure 4.10. Moreover, the further the target is from the UAV, the wider the

shadow is. Consequently, ¢ <X§J> is getting away from a:;.'g. Nevertheless, between 130 m and 186 m,
we no longer have (Xg \ P¢ (V%)) NP8 (y;]) included in X}'™". Thus, X! ; no longer grows behind the
target with its shadow along the z axis. Consequently, ¢° (X%) stagnates.

In Figure 4.12, the set estimates X;j are represented in yellow and the point estimates ¢ <X§])

are represented by a red dot. The circle of center ¢ (X%) and radius ¢°R <X§]k> (in red) provides a
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Location uncertainty : r'=2.5m

o™ (%)
7l |—e— o (%)
comer (1))

Location Uncertainty (m)
N
T

60 80 100 120 140 160 180 200
Distance to UAV (m)

Figure 4.11 - Mean value and standard deviation over 100 simulations of ¢eR (XET) (in green),

R (X%) (in black), and ¢¢ (X%) (in red).

good approximation of XEJ- and of the associated estimation uncertainty.

distance to UAV : 78m distance to UAV : 102m distance to UAV : 130m

Y (m)

55 60 65 70 85 90 95 100 115 120 125 130
X (m) X (m) X (m)
distance to UAV : 158m distance to UAV : 186m

°
145 150 155 160 175 180 185 190
X (m) X (m)

Figure 4.12 - Representation of the set estimates ]P’;‘.g (yf) (in blue), er]“ (in green), and Xgﬁj (in yellow).
The black dots represent the different target locations. The red dots correspond to ¢ (X%) and the

circle of center ¢ (X%) and radius ¢} (XEJ) is in red.

Figure 4.13 compares the performance of the estimator for different values of the radius rt of the
cylinder Ct. Set apart the vertical translation, the evolution of the ¢®R (XE?) (the green curves) are
almost the same. A green curve only differs from another one due to a translation that is seemingly
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equal to the difference of r* between the two green curves. Consequently, the larger 7t is, i.e., the
larger the uncertainty about the target shape is, the larger the size of the set XE";‘ will be. Nonethe-
less, the value of r* only impacts the size of XET but not the size of P# (). Therefore, as shown by
the solid curves (black curves), most of the additional uncertainty of the estimated target location is
compensated (the black curves are almost identical). This compensation of the additional uncertainty
related to a large value of r* comes from the capacity of eliminating the portions of XE'J'T‘ that cannot
contain the location of the target, i.e., X;7' NP, (VE).

Regarding ¢°R (XEJ) and ¢¢ (ng) the larger r' becomes, the more probable XEZT contains the
set (Xg \ P§ (%)) nP% (y%) as illustrated with ¢°R (XET) This is the reason why the standard de-

viation of ¢°R (ng) increases later, and why the distance from the UAV at which ¢¢ <X§]> stagnates
is greater.

10 7Location uncertainty : r'=2.5m 10 Location uncertainty : '=3m 0: Location uncertainty : rt=4m
o tm
oot (Xr.,/.k)
9 | —g— e (X'{.J_k) 9 9
ol |-em- o7 (X ,4) sl sl
7 Tr 7

Location Uncertainty (m
(52

Location Uncertainty (m)
(52

Location Uncertainty (m
(52

o)
2F 2F 2r - L
/’ﬁ
1t 1t 1 ef/g
. . . 0 . . . 0 . . .
100 150 200 100 150 200 100 150 200
Distance to UAV (m) Distance to UAV (m) Distance to UAV (m)

Figure 4.13 - Mean value with standard deviation over 100 simulations of ¢®R (XET) (in green),

=R (XL) (in black), and ¢* (X%) (in red). The left subfigure is for r* = 2.5 m. The middle subfigure
is for ' = 3 m. The right subfigure is for r* = 4 m.

The impact on the measurement noise associated to the depth map is now analyzed. We consider
three bounded sets [w, w] for that noise : [w,w] = [—0.01,0.01], [w,w] = [—0.05,0.05], and [w, W] =
[—0.1,0.1]. Figure 4.14 compares the different metrics that are obtained for each of these bounded
E’a]m'
larger bounded set for [w, w]. Actually, the larger [w,w] is, the larger P; ((nr,nc)) is for any (nr,n¢) €

, , t
[y;j} N Y. Thus, P; ; is larger which leads to have a larger X;"7".

sets. As expected, the uncertainty regarding X', i.e., ¢°R (XZT) increases when we considered a

Nonetheless, and as in Figure 4.13, the value of [w, w] only impacts the size of XET but not the size
of IP’Zg (yf). Therefore, most of the additional uncertainty of the estimated target location is compen-

sated by P ()#). Consequently, ¢°R (XL) and ¢° (ng) are almost unaffected by the measurement
noise associated to the depth map.
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Figure 4.14 - Mean value with standard deviation over 100 simulations of ¢®R (XET) (in green),

@R (X%) (in black), and ¢¢ (XEJ) (in red). The left subfigure is for [w,w] = [-0.01,0.01]. The middle
subfigure is for [w, w] = [—0.05, 0.05]. The right subfigure is for [w,w] = [-0.1,0.1].

The impact on the estimation uncertainty of the camera resolution is now analyzed, considering
a camera acquiring images of Ny x N = 360 x 480 pixels and a camera with a resolution of Ny x N¢ =
720 x 960 pixels. Figure 4.15 displays the obtained CVS measurements with a camera of resolution
720 x 960 and Figure 4.16 shows the set estimates obtained with that camera. Figure 4.17 compares
the different metrics obtained with the camera of N, x N. = 360 x 480 pixels (in blue) and that of
Ny x Nc = 720 x 960 pixels (in green).

Comparing ¢¢R <X§rj“> (dashed curves) for the two cameras, one observes that a larger resolution
decreases slightly the estimation uncertainty. This is also true for ¢R (XEJ) . Besides, since there are
more pixels labeled Ground or Target, the characterization of }P’Zg (yf) is more accurate to the ground

truth and X7 is likely to be larger. Consequently, it is more likely to have (Xg \ P§ (VF)) N P$ (y;]>

included in XET That explains the difference between the two curves associated to ¢° (XEJ)

4.7.3 . Exploiting the minimum distance between targets

A problem with target localization is that, when a target is identified, the UAV gets no information
of what is behind the identified target. Therefore, without Assumption (3.11), the update of Xz,k—y
according to (4.29), is

<t
Xip =Xg\ Pzg,k (yig,k> : (4.48)

Consequently, during the update ofX;k,l, the portion ofgzyk“{,l (which is equal to X in (4.48)) that is

hidden by a target, i.e., X;,dk,l alli (y;]) cannot be removed using P%, (yfk) Figure 4.18 illustrates
. <t g t

this phenomenon where X; , N P (ym.) are represented by yellow sets.

To address this problem, we introduce in Section 3.2.1 an assumption regarding the minimum
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Segmentation

Figure 4.15 - lllustration of CVS measurements with a camera of resolution N, x N. = 720 x 960 pixels

distance to UAV : 78m distance to UAV : 102m distance to UAV : 130m
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145 150 155 160 175 180 185 190
X (m) X (m)

Figure 4.16 - Representation of the set estimates ]P’f (yf) (in blue), Pg (IPEJ) (inred), and er]“ (ingreen)
that are obtained from the measurements provided by the embedded CVS when the camera provides
images of resolution Ny x N = 720 x 960 pixels. The black dots are the different target locations.

safety distance between two targets. This hypothesis has been exploited in Proposition 18 to define a
set X&T that, once a target j has been identified, does not contain any other target locations except
the location of that identified target. This section evaluates the impact of this assumption.

Consider rf = 6 m. This distance represents the minimum distance separating the location of two
vehicles, i.e., :n;i and mzi with j € Ntand ¢ € N\ {j}. Therefore, by accounting for the dimensions
of the considered targets, i.e., 4.6 m x 1.8 m, it is as if the vehicles have to maintain at least a distance
between 1.4 m (if they are face to face) and 4.2 m (if they are side by side) between their chassis.
Figure 4.18 shows Pzg,k (V%) (in blue), Xs’k ﬁPﬁk < thk) (inyellow), and the set estimate Xﬁ’]“k (ingreen),
that does not contain any target location other than ac;i The set Xﬁr]“k (in green) can be used to
remove a portion of the set X;k (in yellow), as illustrated in Figure 4.18.

To evaluate the percentage of size reduction of the set X;k N IPZg,k (y;jk> using er]“k consider the
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Localization uncertainty in function of camera resolution
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Figure 4.17 - Mean value and standard deviation over 100 simulations of ¢¢R (ngm) (dashed lines -

curves at the top of the figure), R (X§j> (solid lines - curves in the middle of the figure), and ¢¢ (XEJ)
(broken lines - curves at the bottom of the figure). The green curves represent the results obtained
with a camera of resolution Ny x N = 720 x 960 pixels; the blue curves represent the results obtained
with a camera of resolution Ny x N = 360 x 480 pixels.
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Figure 4.18 - Representation of the set estimates Pzg’k (y;‘fk) (in blue), X;k N Pﬁk ( f]k) (in yellow),

and Xﬁ?’k (in green). The black dots are the different target locations. Here, r* = 6 m

metric
P4 (X1, Xa) = 1009 (X1 N Xa) /¢ (X1) (4.49)

to evaluate how much X overlaps X;.
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Figure 4.19 shows &2 (Xﬁ?k,ifk nPe, (y;j k)) for different values of 7, When r{ = 8 m, the set

X:Tk entirely covers XE,,C ﬂIP’ik (yfjk) for targets less than 130 m away from the UAV. Thus, according

to Proposition 18, X;k N ]P’f,€ ( thk) is proved to contain no target. Regarding the other values of r{
that have been considered for the simulation, one can conclude that Assumption 3.11 can be used to
prove that most of, if not all, the portion ofX;,C that is hidden behind a target, i.e., X;k N Pik (yfjk)
can be safely removed.

Target Exclusion Space over Shadow in function of target-target safety distance
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Figure 419 - Mean value with standard deviation over 100 simulations of
A [(tm g t ; tt
¢ (Xw}k’ Xk NP7y ( ZM)) for different values of rg'.

4.7.4 . Target localization in the presence of obstacles

This section presents some results for the localization of a target in the presence of obstacles.

Figure 4.20 shows the identification of a target that appears close to an obstacle in the image
acquired by the camera of the UAV. This is clear in the bottom-left and bottom-right subfigures, where
the pixels labeled Target (in green) are close to those labeled Obstacle (in blue).

Figure 4.21 shows that because of an obstacle, only a small portion of X, can be proved to be
target-free using Proposition 14 (the white set in Figure 4.21). To avoid overloading the figure, ng‘k is
not represented here.

In Figure 4.20, the target is fully visible : no part of it is hidden behind an obstacle. We assume
that it is the first time this target is identified. Consequently, the set X;?’j?k containing all of its possible
locations must be characterized using (4.32). Nonetheless, as the target appears to be close to an
obstacle, er]“k (the set with a pink border) overlaps with the portion ofX;,ﬂk_l \Pf’k <y§k) (the yellow
set) that is hidden behind the obstacle. Consequently, even though the target is fully visible, some of
its possible locations contained in X?M are located behind the obstacle.

4.7.5 . Inner approximation of the r{°-ground neighborhood of an obstacle
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Figure 4.20 - Illustration of the CVS measurements when a target is located close to an obstacle (in
the image).
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Figure 4.21 - Estimation of the location of a target which seems to be close to an obstacle (c.f. Fi-
gure 4.20). The red dot represents the UAV location. szk is in yellow, Xj ; , is in green, and XZT,{ is
represented by the set with the pink border. The set X?,k representing an inner approximation of
r°-ground neighborhood of an obstacle is in gray.

In Section 3.2.1, assumption (3.8) states that the minimum distance between the projection on the
ground of the shape of an obstacle and the location of a target should be at least r{°. This distance
is interpreted as a safety distance between a target and an obstacle to avoid collisions. Using (3.8),
Proposition 17 has introduced the set X? which is the inner-approximation of the r{°-ground neighbo-
rhood of all obstacles in the environment. In Proposition 17, X? has been shown to target-free. Thus,
as indicated by the equations in Section 4.5.2, this set can be used by a UAV to gain new knowledge
about the environment in order to improve the accuracy of the target location estimator. This section
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shows the capacity of a UAV located at (0, 0, 50) to characterize X? from CVS measurements reported
in Figure 4.22.

The considered environment contains towers and houses, as well as a long synthetic building in
light blue used as a test bench. Different values for ° are considered for the characterization of X2,
see Figure 4.23.

Segmentation

100 200 300 400 100 200 300 400

Figure 4.22 - lllustration of the CVS measurements when numerous obstacles are located within the
FoV of the UAV.

Figure 4.23 shows the sets X? that are obtained using Proposition 17 and the pixels labeled Obstacle
illustrated in Figure 4.22 for four values of rgo :2m (in green), 2.5 m (in red), 3 m (in blue), and 5 m (in
purple).

For each r°, the UAV is able to characterize X?. One can remark that, when % is large, the UAV
is unable to characterize an inner approximation of the r°-ground neighborhood of the obstacles
that are far away from it. This is illustrated Figure 4.23 (right) where the green and red sets start to
disappear. Nonetheless, since the obstacles are statics, the UAV does not need to characterize an
inner-approximation of the r°-ground neighborhood of far-away obstacles at each time step. During
target search, as illustrated in Figure 5.13 of Chapter 5, the UAVs will explore the Rol in search for a tar-
get. Consequently, they will, at some point, get closer to the obstacles that were far away at a previous
time instant, and be able to characterize an inner approximation of the r{°-ground neighborhood of
those obstacles.

4.7.6 . OEM construction

As detailed in Section 4.6, the CVS measurements are also exploited to update a 2.5D map in order
to get an approximation of the location, height, and shape of the obstacles located in the Rol. To show
how the OEM is updated from the CVS measurements available at a given time instant, we consider
a situation where a UAV is currently observing some buildings and houses. Figure 4.24 shows the
environment that is considered for this simulation. Figure 4.25 illustrates the CVS measurements that
are available to the UAV.

Figure 4.26 illustrates the OEM M, . = {c (1), 5% (n) , hik (n)}neNM while assuming that at time
ty—1 we had s; 51 (n) = {U}, i.e., the cell n is Unexplored, and h; 1 (n) = 0 for all cells n € AM.
The resolution of the OEM is 5 m. The CVS measurements related to the detected obstacles and the
CVS measurements related to the ground are exploited by the UAV to find and update some of the
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Figure 4.23 - Illustration of X? obtained for different values of r{°. The red dot represents the UAV
location and the set with the black border is IF (x}') N Xg.

Figure 4.24 - Example of a scene simulated on Webots where several buildings and houses are located
within the Rol
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Figure 4.25 - CVS measurements available to the UAV when it observes the scene in Figure 4.24. The
UAV state (location and attitude) is (0, 0, 50, 0, 0, O)T.

cells of M; ;, using (4.39) and (4.40). The cells whose status is updated from Unexplored to Empty are
green in Figure 4.26. Similarly, the cells whose status is updated from Unexplored to Occupied are
red. The height of each parallelepiped is the maximum height measured for an obstacle that could
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be associated with one of the occupied cells. Finally, blue squares represent the cells that are still
Unexplored.

The UAV is able to observe the roof of the blue building on its left, see Figure 4.25. Consequently,
it is able to get a better estimation of its height and shape than with the two obstacles in the back-
ground for which the UAV does only see one face without seeing their roof. The blue building on
the left-hand side is represented in Figure 4.26 by the block composed of 16 parallelepipeds around
the XY-coordinates (100, 50). The buildings in the background are represented by the series of 10
parallelepipeds that are around the XY'-coordinates (150, —50).

Occupancy-Elevation Map

Z(m)

e

-2,
i

200

Figure 4.26 - Representation of an OEM after processing the CVS measurements reported in Fi-
gure 4.25. The blue squares represent the Unexplored cells. The green squares represent the Empty
cells. The red parallelepipeds result from the Occupied cells and the registered height. The UAV loca-
tion is represented by the black dot with a pink outline.

With the OEM reported in Figure 4.26, one can compare H$Y>, j.e., the approximation of the portion
of the ground hidden by the obstacles, targets, or unknown objects, with HOEM (x{) N F (x¥), i.e., the
portion of the ground hidden by the obstacles approximated by the OEM. To evaluate the similarity
between HV®> and HPEM (x¥) N F (xV'), we consider the metric

¢ (ANB)
¢(AUB)’

that computes the ratio between the area of the intersection between two sets and the area of their
union. The better B approximates A, the closer loU (A, B) is to 1.

Figure 4.27 (right) illustrates HY® (in blue) and HOEM (x¥) N F (xY) (in red). Figure 4.27 (left) shows
the black boxes used to approximate the shape and the location of the obstacles that are currently

loU (A,B) = (4.50)
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under observation, and the H?®M (x¥) NF (xY) that is obtained with these boxes. In Figure 4.27 (right),
HEY overlays HOEM (x¥) N F (xV). By evaluating loU (HSY>, HPEM (x¥) N F (xY)), we obtain a similarity
between HSY® and HOEM (x¥) N F (xY) of 91.7 %. Consequently, from this one-time measurement, an
OEM of resolution 5m can be used to reliably approximate H¢V>.
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Figure 4.27 - lllustration of HOtM (x¥) N F (x¥) (in red) and H$Y® (in blue) when the OEM is built with
only the CVS measurements acquired at time ¢;. In the left subfigure, the black boxes represent the
set of boxes (4.41), and the red set is HOEM (xY), where x¥ is the black dot. In the right subfigure, HE>
overlaid HOEM (x¥) N FF (x¥).

4.8 . Conclusion

This chapter presents the first (to the best of our knowledge) set-membership target location
estimator exploiting multiple measurements provided by a CVS. Compared to previous works, the
CVSin (Jaulin, 2009; Ehambram et al., 2022) consists of a sonar or a LiDAR. In (Kenmogne et al., 2019),
the CVS returns an image, and the pinhole model is used to model the camera, but no depth map or
labeled image is considered.

The main difficulty with the CVS is that it is difficult to obtain measurement models because the
CVS often involves deep learning algorithms. To address this problem, we introduced in Chapter 3
several assumptions to relate the CVS measurements (labeled pixels, depth map, bounding boxes
around identified targets) to the environment, the obstacles, and the targets. Under these assump-
tions, we propose several approaches to exploit the CVS measurements in order to solve a target
localization problem.

In this chapter, Section 4.2 presents how the measurements related to an identified target j can
be used to characterize a set estimate th;jk that is guaranteed to contain the location of that target.

1
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This is only true if the hypotheses on the model associated with the range measurements, the pixel
labeling, the target identification, and the a priori knowledge the UAV has regarding the dimensions
of the target, i.e., (3.4), are satisfied. The simulation results in Figure 4.13 and Figure 4.14 show that
the larger the uncertainty on the target dimensions or on the depth-map noise, the more inaccu-
rate the set estimate X”]“ To reduce the target location uncertainty of Xt ik @ UAV can exploit CVS
measurements related to the ground or the obstacles as negative information in order to characte-

rize two set estimates, i.e., P% (yfk) and X7, that are guaranteed to contain no target location, see

Section 4.3. Then, Section 4.5.2 details how XE’% can be combined with ]P’fk <y§k) and ng to get
a set estimate Xj ; ;. This set estimate is guaranteed to contain the true location of target j and, as

illustrated in Figure 4.14, the use of IP’fﬁk (yfk) contributes to reduce the localization uncertainty. With
assumption (3.11) in Chapter 3 a UAV can also characterize another set estimate that is guaranteed to
contain no target location except one, but this assumption relies on a priori known minimum distance
between two targets that may not be always verified in practice. Overall, the performance of the tar-
get location estimator, according to the above simulations, is satisfactory. The point estimation error,
i.e., ¢ (XEM) for a one-time observation, is about 1.5 meter with a point estimate uncertainty, i.e.,

¢°R ( i k) that looks linear with the distance between the target and the UAV.

Section 4.4 presents how the CVS measurements that are not related to the ground can be exploi-
ted to approximate the portion of the ground that is masked by a target, an obstacle, or something
else. The set estimate ]HIZC\,QS that approximates this hidden ground can be used to approximate the
portion of the ground that is masked by the obstacles at time t;. Nonetheless, it is hard to use this set
estimate to get some knowledge about the shape, the height, or the location of the obstacles. The set
estimate X7, which approximates a neighborhood around the obstacles, can be used to get an ap-
proximation of the location of the detected obstacles, but their locations only. To get some knowledge
about the shape of the obstacles, we present in Section 4.6 an approach that relies on an OEM. The
OEM exploits the CVS measurements related to detected obstacles to update either the unexplored
or the occupied cells in order to represent locally the detected obstacles using parallelepipeds, see
Figure 4.26. The CVS measurements related to the ground are also exploited to characterize a region
without obstacles.

Chapter 5 will present a control strategy which allows to solve the CSAT problem in an unknown
environment. In this next chapter, each UAV embeds the target location estimator presented in Chap-
ter 4 to determine, from their location at time ¢, who and where are the targets that are identified
and where the unidentified targets may be. Then, after the update of the set estimates X;j,k, Xﬁk
and X?k using the prediction-correction approach detailed in Section 4.5.2, the UAVs cooperatively
update their trajectories to keep searching for new targets while maintaining an accurate estimation
of the location of identified targets. We propose to use the OEM to improve the trajectory update step
in this next chapter. Chapter 6 presents an adaptation of the estimator to account for an uncertain
UAV state.
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Chapter 5 - Trajectory design for target search and tracking

This chapter presents several strategies for iteratively designing the UAV trajectories, so that the
fleet can efficiently explore the Region of Interest (Rol) to search and track targets. As the Rol is clut-
tered with obstacles, the UAVs should fly toward areas where targets are more likely to be found.
The main difficulty is that the shapes and locations of those obstacles are a priori unknown and they
might occlude the Field of View (FoV) of the UAVs.

Each UAV runs a target location estimator to exploit CVS measurements to characterize and up-
date set estimates of the location of identified targets and sets that do not contain any target location,
see Chapter 4. This chapter shows how these sets are used to update the trajectory of each UAV. As
will be seen, the target search and tracking efficiency depends on the knowledge each UAV is able to
gain about its environment.

A distributed approach is considered to improve the robustness of the fleet against the loss of
one or several UAVs. The design could be made on each UAV independently of the other UAVs. Ne-
vertheless, to improve the exploration and target tracking efficiency of the fleet, each UAV may take
into account the updated trajectories of its neighbors to design its own trajectory. When the targets
outnumber the UAVSs, a trade-off needs to be found between exploration to find new targets, and re-
capture and pursuit of previously identified targets to maintain accurate estimates of their locations.

The trajectory update that solves this trade-off is performed by an adaptation of a distributed
Model Predictive Control (MPC) approach introduced in ( ). Each UAV searches for
a sequence of control inputs that minimizes a criterion reflecting the goals to achieve. Using a model
of the UAV dynamics (3.13), the sequence of control inputs can be transformed into a sequence of
states representing a trajectory. The trajectory such a the considered criterion serves as a reference
and it is exploited by a low-level controller implemented in each UAV.

The estimator presented in Chapter 4 is used to estimate and update the possible locations of the
targets. Nevertheless, accounting for all sources of information provided by the CVS may be complex.
Consequently, we first do not consider all hypotheses introduced in Chapter 3. Thus, some of the set
estimates presented in Chapter 4 cannot be characterized, which also affects the trajectory design.
Then, more hypotheses are considered and more complex trajectory design strategies are introduced.
For example, one ignores that the targets must evolve within the Rol while keeping a minimal safety
distance with the obstacles, see Hypothesis (3.8) in Chapter 3. Consequently, the characterization of
an area free of targets around the detected obstacles is not possible, see Section 4.3.2 of Chapter 4.

Section 5.1 formulates the trajectory design problem. Then, Section 5.2 presents four different
strategies to update the trajectories of the UAVs. Section 5.3 addresses some practical issues related
to the implementation of the MPC approach. Finally, Section 5.4 evaluates the performance of the
presented strategies in a simulated urban-like environment.
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5.1. Problem formulation

Attimety, UAV i uses the depth map D 4, the pixels labeled Target y}k, and a bounding box { itj k}
associated to an identified target j to characterize, with Proposition 13, a set estimate XETk thatis gua-

ranteed to contain the location of that target. Then, UAV i exploits the pixels labeled Ground yfk and

the Hypothesis (3.54) to characterize with Proposition 14 a set estimate IP’f,k (yf;k) that contains no
target location. Using pixels labeled Obstacles y;)k the depth map D, ;, and Hypothesis (3.8) (mini-
mum distance between targets and obstacles), UAV i is also able to characterize with Proposition 17
a region Xﬁk around the detected obstacles that will never contain any target location. Additionally,
from XETk and using Hypothesis (3.11) (minimum distance between targets), UAV i can characterize
with Proposition 18 another set estimate Xzz‘k that cannot contain the location of any target except
the location of target ;.

Once these set estimates have been characterized, UAV i can update its knowledge regarding
the environment and the possible location of the identified and unidentified targets. This update is
performed via a prediction-correction process that also exploits the information broadcast by the
neighbors of UAV i within communication range. The update is detailed in Section 4.5 of Chapter 4.
At the end of the prediction-correction process, UAV i has access, at time t, to a set estimate X;j’k
containing the possible locations of an identified target j Lgk These set estimates are gathered in

the list Xf, = {ngk} . It has also access to a set estimate X;k containing all possible locations

jeL;,
of targets still to identify askwell as a set sz representing the portion of the Rol that can never contain
a target location due to the presence of an obstacle.

From pixels that are not labeled Ground, UAV i can also characterize a set estimate IHIZC\,QS This set
represents an approximation of the part of X, that UAV i has been unable to observe at time ¢, due
to the presence of obstacles, targets, or unidentified elements in the acquired image, see Section 4.4
of Chapter 4. Finally, UAV i can exploit pixels labeled Ground or Obstacle to build and update an OEM
M, j, that provides an approximate representation of the detected obstacles, see Section 4.6 of Chap-
ter 4. From the OEM, UAV i can estimate the part of the environment hidden by obstacles HS,EM, see
Section 4.6.4.

Using part or all of this available knowledge, UAV i has to update its trajectory to explore the Rol
and find new targets while maintaining an accurate estimation of the location of already identified
targets. This update may account for the information broadcast by its neighbors N ; to design a
trajectory complementary to that of UAVs in \V .

A criterionis introduced to evaluate the efficiency of the designed trajectories. As in (

), the criterion is based on the area of the set estimates X} ; ;, with j € £}, and X;k . The area
of the set X} ; , provides a measure of the localization uncertainty for target j € £ ,. The area of X;k
determines the estimation uncertainty of the location of targets still to be identified.

Consequently, at time ¢, the target location estimation uncertainty for UAV i is expressed as

t t
(I)<Xit,kaxi,k> =9 XngU U Xﬁ,j,k ) (5.1)

: t
JELL

114



where ¢ (X) is the area of the set X C R?. The target estimation uncertainty for the fleet of UAVs is
then the average of the target location estimation uncertainty for each UAV

3, — NL EZN @ (4.5, (5.2)

The minimization of (5.2) leads to a trade-off between tracking already identified targets to maintain
an accurate estimation of their location (by reducing the size of ngk, j € Lf,), and exploring the

Rol to search for unidentified targets (to reduce the size of Xz’k). The transition between search and

tracking modes depends on the relative sizes of the sets X ., j € £}, and X

Depending on the computing power of the UAVs, it is possible that some of the aforementioned
set estimates cannot be characterized. This limitation affects simultaneously the target location es-
timator and the trajectory update. In Section 5.2 three situations are considered. In Section 5.2.1, we
assume that the UAVs do not have the time to process the pixels labeled Obstacles and, thus, Xok as
well as HCVS are not evaluated. In Section 5.2.2, we assume that the UAVs have the computing power
to charactenze all the set estimates but are unable to build and update the OEM. This limitation is
not considered in Sections 5.2.3 (and 5.2.4). Thus, the most complex target location estimator and the
most complex trajectory design can be used to search and track the targets. Table 5.1 summarizes
which set estimates are assumed available during each of the proposed trajectory update strategies.

Sections Set estimates provided by the estimator | Evaluation of
5.2.1 X X X - - -
5.2.2 X X X X X -
5.2.3and 5.24 X X X X X X

Table 5.1 - Set estimates provided by the set-membership estimator presented in Chapter 4
depending on the limitations that are considered in some of the sections of Chapter 5.

5.2 . Trajectory design for cooperative exploration

This section presents several variants of a cooperative trajectory design algorithm for the fleet
of UAVs. Each variant depends on the type of processed information, which impacts the required
computing resources for each UAV.

5.2.1. Trajectory design ignoring the presence of obstacles

In this section, it is assumed that the UAVs are unable to maintain a map of the Rol. Moreover,
Hypothesis (3.8) related to the minimum distance between a target and an obstacle is not exploited.
Consequently, Xﬁk is not evaluated and ng = 0.

With such a setup, the trajectory design strategy consists in driving the UAVs toward areas which
may contain targets, i.e., either X;k or XZM with j € sz, So as to minimize (5.2). This strategy is
simple but may be suboptimal in the presence of obstacles. Figure 5.1 illustrates such a situation
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where, starting from the red UAV location, three candidate future locations (in blue) are considered.
Without knowledge of the map, they would theoretically lead to the same reduction of the size ofX;k
(in yellow). In practice, the trajectory leading to the left yields a significantly reduced FoV due to the
gray obstacle.

Figure 5.1 - lllustration of the design of a trajectory to explore the set X;k (in yellow) when the UAV
(in red) is not aware of the presence of an obstacle (in gray). The blue UAVs represent three possible
next UAV locations.

Evaluation of the trajectory

At time ¢;_1, assume that UAV i has evaluated a trajectory over a prediction horizon of h > 1
time intervals i;kflzh\kfl = (k;kmfl’ .. ,kzkah'kfl). With the CVS measurements obtained at
time t;, UAV i updates its set estimates and its trajectory to explore the Rol more efficiently, by taking
the information acquired at time ¢, into account. This update is done by using a distributed MPC,
see ( ), implemented on UAV i. The MPC approach determines a sequence of
h control inputs Q; k., = (Wi, ..., Wiktrh—1) € U that minimizes the predicted target localization
estimation uncertainty denoted 5k+h|k attime typ, ie.,

U; j:p, = arg P}f}l (Prtnk) (5.3)
with
_ 1 t,P *t,P
Cpynk = NU Z o <X57k+h|kvxz,k+h|k> ; (5.4)
LeNY
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and

t,P <P _ <P t,P
‘I)(Xi,k+h|kaxz’,k+h|k> =0 | Ky U X |- (5.5)

. AP
J€£¢,k+h|k

In(5.5), LE'LW is the list of target indexes that UAV i predicts to be identified at time ¢, knowing

t i t,P t,P
Lk The set estimate Xm,ﬁh‘k i-k+h|k

tk+n kKNowing ng - The set X;:ZMW contains all the predicted locations of the targets still to identify
attime ., knowing X;k. The list Xz"[,7ls+h|k gathers all the XEZ;H}L“{:. The evaluation of (5.5) is achieved

while accounting for the trajectories broadcast by the other UAVs. Once 1, 4., is available, an updated

contains all the predicted locations of the target j € £ at time

trajectory f‘;k:h|k = <§<2k+1|k, e ,&;Hh‘k) for UAV i can be deduced using the dynamic model of the
UAV (3.13). The elements in the sequence of predicted states fc;{k:hlk are then used as desired state
vectors to a low-level controller of UAV i, responsible of tracking the desired trajectory X', ;.

UAV i, however, does not have access to all the terms in (5.4). At time ¢, UAV i has only access
to its own knowledge and the information broadcast by its neighbors N ;. Thus, for all UAV ¢ with
¢ € NY\ N, i.e, the UAVs that are not within the communication range of UAV 4, UAV i does not
know neither their actual location nor their updated trajectory. Consequently, UAV i cannot predict
with which UAVs it will be able to communicate in the future and what knowledge they will share.
Moreover, other limitations related to the evaluation of (5.5) must be considered. For instance, UAV ¢
is unable to predict precisely in which state it will observe again target j, and thus it is unable to
predict X}, ,, introduced in (4.4). It is also unable to predict P%, (yfk%), see (4.6). To address
these issues, we use the same approach as in ( .

Consequently, at time t;, UAV i updates its trajectory by evaluating a sequence of control inputs
U; f:p € U" that accounts only for its own information by minimizing

P <P
Jzo (uk:h) =9 (Xit’k+h‘k>xi,k+h\k> ) (5.6)

where ® has been introduced in (5.1). For a candidate sequence of control inputs u;., € U”, the

. . , <tP o
evaluation of J? (uy.;) requires an evaluation of EE';M',C, X?Hh‘k, and XE:;HW, with j € £§:Z+h|k
using the information available at time t. This is detailed in the next section.

Prediction of estimates using UAV own information

t,P

This section describes the evaluation of XtP F ket hlk

Z7j>k+h|k'
manageable in a MPC context.
First, with the known UAV dynamics introduced by (3.13), and for a sequence of control inputs
U, = (Wi, ..., W g4h—1), ONe getsforanyr =1,...,h

forje L and XE:ZHM with a complexity

u __gu u
X e = £ (Xi,k+r—1|k7 uk+T—1> ; (5.7)

with x;’k']€ =x;',..Once foT'k is available, the resulting FoV F (X;’Jk+7—|k) can be evaluated using (3.21)
and (3.24).
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Then, to evaluate X'¥ forj e Qk and XE:ZH‘R, forr =1,...,h, we do not account for any

i,j,k+7|k’
potential observation of target j. Thus, as in ( ), we assume that D; , . = 0, and,
according to (4.33), that E; Z+T|k L‘E p forT =1,... h.Moreover, we assume that the FoV during the
evolution of UAV i will not be limited by any obstacle, target, or unknown object, i.e.,

g g _
B kerln (yi,k+r|k) =F (X;'J,Hﬂk) NXg. (5.8)
To evaluate X\*

Jhrl forr=1,...,h fromX} ;Weusean adaptation of the prediction-correction
process presented in Section 4.5 of Chapter 4. The prediction (4.24) is unchanged, but, since we as-
sume D! =0, ka = (), and with the simplification (5.8), the correction (4.30) can be adapted to
forr=1,...,h,as

i,k+1 T

evaluate iteratively Xz Tk

Xt,skwk (ft (Xt,s k+r—1lk’ [v ]) n Xg) \ (E (x;j,k+7-|k) a Xg) : (5.9)

1 t7P _ t
with Xm’k‘k = Xi’j’k.

The same hypotheses are used to evaluate iteratively XE:ZJFT“C, T=1,...,h, from X;k as follows

XEZZ-FT‘]C = (ft (Xz Fetr 1]k [V ]) N Xg) \ (E (szwm) N Xg) ; (5.10)
with X;'p = X .

Remark 19. The evaluation of Xi 5 fr |k and XE:Z ok using (5.9) and (5.10) are similar. Moreover, the cost

function (5.5) involves the union of these sets predicted at time ;... Consequently, introducing

A Sl t
Xi,k = Xi,k: U U Xi,jjw (5.11)
JELY

(5.9) or (5.10) can be directly applied to Xﬁ 1. to perform an iterative evaluation of

AP
Xz k|l = X; k-l—ﬂk U U 7] k+7’|k (5.12)
]GE%
using
AP t
Xiktrle = (f ( ST D ng) \ (E (Xg,k:—i-ﬂk:) ng) ; (513)
AP A
with X" hlk = =X Kk

Using information from neighbors

Assume that the neighbors of UAV i with indexes in the set \V; ,, C N\ {i} have already evaluated
their sequence of control inputs k., with £ € \V; , and broadcast their sequence of states Xe bk
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After communication, UAV i, during its own control design, may account for the areas F (x}; ka) NXg
that will be explored by these neighboring UAVs.
Using the information provided by its neighbors in \V; ,, UAV i can anticipate the part of the envi-

ronment that will be observed by the other UAVs and evaluate Xf':+T|k, forr=1,...,h, as
AP _ (gt AP t
Xikrrle = (f (Xi,k+rfl|k’ v ]) n Xg)
\ ((E (xikwk) UlUeew, B (*Z’,k+7|k)) n Xg) : (5.14)

instead of (5.9) and (5.10).
More details related to the organization of communications and computations are provided in
Section 5.3.2.

First criterion

In some cases, it is not possible to determine a trajectory which minimizes (5.6). For instance,
once large parts of the environment have been explored, UAV i may be located too far from other set
estimates to predict that they will be explored in the future h time steps. To address this problem, the
following term can be added to (5.6)

J? (Wpp) =d (c (JF (Xi{'kimk) N Xg) ,Xﬁ',fwk) (5.15)

where ¢ (X) is the barycenter of the set X. The idea is to drive the FoV of UAV i toward the closest
predicted set estimate.
Combining (5.6) and (5.15), the first considered strategy aims at minimizing the criterion

JZSTR1 (uk:h) = JZ-O (uk:h) + )\Jila (uk;h) . (5.16)

The parameter \ trades off the reduction of the size of the set estimates via J? (ug.n) and future
reductions via JZ.la (ug.n). This parameter can be taken as constant, as in ( ), or
variable as in ( ). For instance, until JZ.O (ug.,) does not remain constant regardless of the
tested sequence, J;}@ (uy.;,) can be disabled (and thus it is not computed). Otherwise, J!? (ug.) is
enabled in order to fly toward the closest set estimate.

This first strategy is an adaptation of the MPC proposed in ( ) to address a CSAT
problem with an unknown cluttered environment. The target location estimator in (

) does not consider CVS measurements related to the obstacles. The MPC approach in (

) does not exploit X, , i.e., the portion of the ground that cannot contain any target location
due to the presence of an obstacle, see Table 5.1. In the following sections, we consider that pixels
labeled Obstacle can be exploited by the UAVs. We propose new strategies, built upon that of (

), to search for trajectories that account for part of the environment that will be occluded
when UAVs move. In ( ), the obstacles are not explicitly taken into account and the
proposed approach relies on controlling the UAVs to fly in a specific formation in order to explore
the Rol without gaining environmental knowledge. The UAVs will not be forced to stay in a specific
formation in the following sections.
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5.2.2 . Considering obstacles

In this section, the UAVs have the computing power to process the pixels labeled Obstacles at
each time step and, thus, characterize X?,, with i € NY, ie., aregion that cannot contain any target
location due to the presence of an obstacle. Moreover, using CVS measurements at time ¢, UAV i has
also the time to process other CVS measurements to characterize Hf\,gs i.e., the part of the ground
that UAV i is unable to observe due to the presence of an obstacle, a target, or an unidentified object,
see Section 4.4. The OEM is again not taken into account in this section.

As in Section 5.2.1, the detection and identification of targets is ignored. Moreover, as UAV i cannot
determine whether new obstacles will be detected in its FoV, the prediction X?, ., of X7, _ will
be taken equal to X9, for 7 = 1,..., h. Similarly, the prediction H}3 |, of Hf}? is also assumed
constant and equal to Hf}>. This second simplification is coarser than the first, as H{}5 . depends
more on the location of UAV i than X?, .

Therefore, by using the simplification HCYS

i,k+T1|k

Lo <y§k+7\k) = (E (X;J,k:—&-r\k;) n Xg) \HG . (517)

Then, as for (5.9), the prediction (4.24) is used to predict the evolution of the targets and is cor-
rected by an adaption of (4.30). This adaption accounts for the simplifications we made to evaluate

X, With a complexity manageable in a MPC context, ie., D}, = 0, X9, = X2, and (5.17).

Consequently, with those simplifications, UAV i can adapt (5.13) to evaluate iteratively X% from

i,k+7|k
XM, forr=1,...,h,as

= H%S (5.8) becomes

Xé\,'15+r|k = (ft (XiA,IIS—&-T—l\k’ [”t]) N Xg) (5.18)
(820 (e ) 7))

The main difference between (5.13) and (5.18) is that ng is used in (5.18) to avoid exploring regions
near obstacles because they are guaranteed to never contain a target location.

Then, as in Section 5.2.1, if some neighbors of UAV ¢ with indexes in /L/Z-J€ C N, have already
evaluated their sequence of control inputs ty k., ¢ € /\Ji,k and broadcast ’A(Zkr:hlk as well as H%S then
(5.18) becomes

AP _ (et (AP t
Xz’,k+7’|k = (f (Xi,k+771|k’ [” ]) ﬂXg)

\ (326U (B (%) %) \EES) U (519)
U ((E (ﬁzj,k—&-r\k) n Xg) \ H?}?)) :
LeN;
A drawback of the simplification H%iﬂk = H{y>, with 7 = 1,..., h, is that it does not favor trajec-

tories that turn around obstacles, as illustrated in the left part of Figure 5.2. Consider that the red UAV
represents UAV i at time t;,. In this figure, the set H-Y> (delimited by a red hatched set) represents a
coarse estimate of the portion of the ground that will not be observed in the future h time steps. Thus,
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by following the trajectory represented by a blue curve, the next location of UAV i (the purple UAV)
will allow an observation of what is behind the obstacle detected at time ¢;. Nevertheless, due to the
proposed simplification, the portion of XAk+ I (in yellow) within HC}QS cannot be removed because it

is assumed to remain hidden behind an obstacle, which is false. Thus, XA:+h|k is not as reduced as it

should be. Moreover, as H%S only considers the obstacles detected at time t;, the obstacles that are
not within the FoV of UAV i at time ¢, cannot be considered. Thus, since their shapes and locations
are unknown, we still have the same problem as in Section 5.2.1 where, without knowledge of the
map, the reduction of the FoV due to the unknown obstacles cannot be predicted. Consequently, the
predicted reduction of the size of the set Xﬁk is difficult to predict and trajectories which may lead
to reductions will not necessarily be selected. This is illustrated on the right part of Figure 5.2 where
the blue UAVs are two possible future locations of UAV i. From these locations, and since we assume
Hf\lﬁﬂk = H{)>, the light-orange sets are portions of XAk+h|k that are removed during the prediction
step. Nevertheless, this reduction will not happen because of the presence of unknown obstacles
where the portion of the ground they will occlude, i.e., Hcﬁh, is represented by the purple hatched

sets.

Figure 5.2 - Impact of the simplification Hf}5 k= H{Y? (red hatched set), for 7 = 1,..., h in the MPC
trajectory design : the UAV location at time ¢ is in red the candidate trajectories and final locations
arein blue or purple. Trajectories such that the FoV intersects HCVS (left part) will be avoided due to the
reduction of the usable part of the FoV in favor of trajectories W|thout intersection between the FoV
and H{ > (right part). The purple hatched sets are the H{y> , obtained at each location represented
by the blue UAVs.

Second criterion

As in Section 5.2.1, to address situations where all sequences of control inputs do not lead to any
reduction of the localization uncertainty, a variant of J!? introduced in (5.15) is proposed to account
for HEYS

I (agen) = d (e (F (% pnpe) 0 Xg)  X0F L VHOE) (5.20)
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This avoids leading UAV i towards areas that are likely to be occluded by an obstacle. Then, combining
(5.6) and (5.20), the second considered strategy aims at minimizing the criterion

JZ-STRz (uk;h) = JZD (uk;h) + )\Jilb (uk;h) . (5.21)

Compared to (5.16), (5.21) is computationally more demanding since (5.21) accounts for ]HIZC\,QS and
X?,., even if both sets are constant during the evaluation.

5.2.3 . Exploiting the OEM

In this section, the OEM managed by each UAV is exploited to predict the parts of the ground that
will be hidden by obstacles. The aim is to favor trajectories that observe areas that may contain a
target while avoiding occlusions.

At time t, the OEM of UAV ¢ M, ;, contains information regarding the location and the shape of
the obstacles already observed. As in Section 5.2.2, for a trajectory leading to the exploration of partly
uncharted parts of the environment, UAV i is unable to determine whether new obstacles will be
observed. Consequently, in the MPC approach, the predicted map M, ;.. - ;. is taken equal to M, , for
all 7 = 1,...,h. The main difference with Section 5.2.2 is that here the part of the environment that
will be hidden by obstacles can be predicted, even if M; ;. is not updated during the prediction.

The OEM M, ;. introduced in Section 4.6, can be used to define a list of boxes (4.41), i.e.,

{BY. n) | six () ={O},n e NM} (5.22)

that approximates the shape of all obstacles that have been detected up to time t;. Using these boxes,
UAV 4, with state x¥, is able to evaluate the set HPEM (x¥) representing the portion of the ground hid-
den by all boxes within (4.41), and (F (x¥) N Xg)ﬂHS,EM (x) is the portion of F (x{')NXg that is predicted
to be hidden by obstacles, see Section 4.6.4. Similarly, to predict for any 7 = 1,..., h the portion of
the ground that will be hidden by obstacle, i.e., IP"EHT ( SHT), UAV i evaluates (E <X$,k+'r\k> N Xg) N

OEM (ju
L2 by <Xi,k+7\k)'

Therefore, (5.8) becomes

g g _ OEM
Pz’,k—i—ﬂk (yi,k—l—ﬂk) - (E (XzL'J,k:—i-le:) N Xg) \Hi,k (X;'J,Hf\k) : (5.23)
Then, as for (5.18), the equation (4.24) is used to predict the evolution of the targets and is corrected
by an adaption of (4.30). This adaption accounts for the simplifications : D} , . = = 0, Xk = X

and (5.23). Consequently, UAV i can adapt (5.13) to evaluate iteratively Xf'kPJrT'k from X7, for 7 =
1,...,h,as

Xf:lkp—l—ﬂk = (ft (Xﬁllf-i-r—l\k’ [”t]) N Xg) (5.24)
\ (X?k U (E (X;k+7'|k) \H?,IEM (XliJ,k‘Jrﬂk‘))) :

As in Section 5.2.1, if a subset of neighbors Mi,k C N, of UAV i has already evaluated their se-

quence of control inputs Gy ., wWith £ € .MM and broadcast their sequence of states x| ek then,
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assuming they share the same OEM, UAV i is able to evaluate their HPEM (&;’Hﬂk), with £ € N; ;.
Therefore, (5.18) becomes

AP t AP t
Xz k4Tl T (f (Xz k+7— 1|k’[ ]) mxg)

\ ( ik U (E (Xi,k—i-rlk) \ PR ( zk—&-r\k)) U (5.25)
U (E (&2,194-7\1:) \ P ( +7‘|k>))
LeEN, .

Third criterion

As in Section 5.2.2, to address situations where all sequences of control inputs do not lead to any
reduction of the localization uncertainty, a variant of J}a in (5.15) is introduced to account for H?E'V',
ie.,

I (agen) = d (e (F (xepnpe) 0 %) s X0E L VHOEY (e ) - (5.26)
This avoids trajectories leading UAV i towards parts of the environment that are hidden by an obstacle.
Therefore, by combining (5.6) and (5.26) the following criterion can defined

T (wpn) = I (W) + A (W) - (5.27)

Compared to (5.21), (5.27) is more computationally demanding since the UAV has to evaluate H?]E’V'
for each prediction-correction process (5.25).

5.2.4 . Promoting the exploration of recently hidden areas

In (5.27), J? favors trajectories leading to future reductions of the size of Xﬁk, whereas J!¢ is used
to drive the UAV closer to the set estimates. Neither Ji0 nor Ji1c in (5.27) favor trajectories leading to
the exploration of parts of Xﬁk that were previously hidden. This section introduces a term J?2 (ug.;)
to complete (5.27) to favor such trajectories and search for previously potentially hidden targets.

Using the approximation of the hidden portion of the ground deduced from CVS information HZC\,QS
each UAV is able to evaluate the portion of X2, that has not been observed, i.e., X}, N H{)>. Then,
consider the hidden parts of the Rol for UAV i and its neighbors at time t;

Hy = |J HSPS, (5.28)
LEN i
and the surface of X" el that may be hidden
—=CVS
Jz2 (uk:h) = ¢ (XZA]5+h|k N Hz k ) (5.29)

By introducing (5.29) in (5.27), UAV i can search for trajectories leading to a reduction of the size of
Xf,ithk ﬂﬁ%s. Therefore, |fIHICVS = (), then one remarks that UAV i can search for trajectories leading
to the exploration of set estimates that were previously hidden for its neighbors. Thus, the term (5.29)
implies a cooperative behavior because two UAVs may explore what the other has not been able to

observe.
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Nevertheless, when UAV i designs a trajectory to explore over the time interval [tx1, tx+n] what
was hidden attime ¢, it also has to take into account the portion oszAk that was previously hidden but

has not been explored yet. To explain why it is important to take into account for the ﬁf\,is obtained
at a previous time instant, we consider the following example. Let assume that at time ¢;_1, UAV ¢

, . —CVS . .
designed a trajectory to explore Xﬁ'kp_prh N Hi,\,i_l, but the UAV will start the exploration of that area

only attime t5_1.4. Then, during the trajectory update at time t, ifﬁicf' = (), then, according to (5.29)

J? (ug.p) = 0 regardless of the sequence uy.,. Consequently, UAV i forgets that it was supposed to

AP —=CVS
explore X 1, NH; ;.

To avoid this issue, we consider the union

k
—cvs —Cvs
H; k—hy1n = U H; 4 (5.30)
t=k—h-+1

of the h past ﬁgs. Using ﬁ%s_hﬂzh instead ofﬁ%s, (5.29) becomes

—CVS
J? () = ¢ (Xﬁerhlk N Hi,k—h—i—l:h) . (5.31)
Consequently, by combining (5.6), (5.26), and (5.31) to get the criterion
T () = TP (W) + A (W) + £T7 () (5.32)

UAV i can favor trajectories leading to the exploration of recently hidden areas that may contain
hidden targets.

The value of « represents a trade-off between the general target search and the exploration of
specific areas that may contain hidden targets. This value may depend on the density of the obstacles
within the Rol, on their structure, and how the UAVs are able to monitor an area.

5.3. MPC implementation

This section presents how we implemented the MPC on the UAVs. Section 5.3.1 describes some
design choices in the MPC approach such as the determination of the prediction horizon h and how
to simplify the evaluation of Xﬁ'kf”'k for + = 1,..., h. Then, Section 5.3.2 details the organization of
computations and communications.

5.3.1. Practical choices

Assuming that the UAVs are flying at a fixed height and with a constant speed, then the sequence
of control inputs 4, ., provided by the MPC to the low-level controller is chosen to be a sequence

of yaw angle increments. Each control input @; 44, € @, for 7 = 0,...,h — 1, is taken from a
set of feasible control inputs U = [—A¢max, Atmax] Where A,y is the considered maximal angle
increment.

To determine the period TMPC¢ to update the control input with the MPC, we consider the time
response of the quadcopter regarding the evolution of its yaw angle. A step response for a step of
m/3 radian is used to evaluate this time response, see Figure 5.3. By approximating the step response
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to a second-order system, one remarks that the system needs ¢y59, = 1.2 seconds to reach a steady-
state error of less than 5 %. From that measure, we consider that the quadcopter requires TMP¢ ~
3tese to reach the desired angle. Thus, we take TMPC = 3 seconds.

70 - Step response of the UAV simulated on Webots

60

% 05 % 5 2 25 3

Time (s)
Figure 5.3 - Evolution of the yaw angle of a UAV in response to a yaw angle step of 7/3 radian (or
60 degrees).

Then, consider the trajectory f‘?,k;h\k of UAV 4, updated at time t;. This trajectory has been designed
to guide UAV i over the time window [t;11, tx+1]. Atrajectory designed by the MPC at some time instant
t1, should be designed to guide the UAV until it is re-updated, i.e., at time ¢, + TMPC, Consequently, we
must have

ti+TMPC < tpup, &t + TVPC <ty + AT (5.33)

where T' is representative of the time needed for the target location estimator to update the set
estimates from the CVS measurements. Therefore, one has h > T'V'PC/T. Besides, since his aninteger,
one has instead h > ceil (TMP¢/T), where ceil (z) rounds z to the nearest integer greater than or
equal to z. In what follows, we use 1’/ = ceil (T™PC/T) as the smallest possible value that can take the
prediction horizon h.

The value of h can be chosen as high as possible aslong as h > h’. The higher h is, the more capable
UAV i is to design a trajectory that will efficiently reduce the localization uncertainty, but the heavier
the computational burden will be, see Figure 5.4. So, one may choose the prediction horizon h such
that the trajectory %!, ,, . is designed to last for NMPC > 1 multiple calls of the MPC, i.e., h = NMPCp/,

Figure 5.4 illustrates two cases of trajectory update, both with 1’ = 3. The left part illustrates the
trajectory update with NMPC = 2 whereas the right part illustrates a trajectory update with NMPC —= 1.
Both trajectories explore the green set, but, with NMPC = 2, UAV i is able to design a trajectory that
will lead to a quicker exploration of the yellow set, since the UAV predicts that at time t;, (h = 6
here) it will start its exploration.

We assume that a UAV requires TMPC to reach the desired angle for a given control input. The-
refore, if TMPC/T > 1 and since the control inputs are angle increments, then the sequence of
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Figure 5.4 - lllustration of two trajectory updates, one with with NMPC = 2 (left), the other with NMPC =
1 (right), while having h" = 3. The purple circle is the current location of UAV i (and also &; ;). The
blue and black circles are the locations of UAV i according to the sequence of control inputs obtained
at time t;_;, whereas the red circles are the locations of UAV i according to the sequence obtained
at time ¢;. The difference between the blue and black circles are that the black circles are actually
representing the trajectory that UAV i has taken, whereas the blue circles are what remains of the
previous trajectory, i.e., the fragment of }A(;J,k—h’:mk:—h” before the trajectory update at time t. For the
sake of simplicity, the targets are not moving here.

control inputs (@, ..., U k4n—1) IS such that ;, = ;5 and @, = OWith 7 = 1,... 0" — 1,
i.e., the desired angle must not change until ¢; ;. The same reasoning is applied for each fragment
(W ottt - - - Wy o (ny1yr—1) OF the sequence of control inputs @; j., with n = 0,... NMPC — 1,

Consider that the set of feasible control inputs is finite. Then an approach to search for the optimal
trajectory is to test all combinations of control input sequences, i.e., by a tree search. This implies a
computational burden that will slow the MPC.

We have assumed that the time T needed for the target location estimator to update the set
estimates is much smaller than the time TMPC needed for the UAV to reach the desired state. So,
one can assume that the predicted set estimates do not really change between two consecutive time
instants tx., and tx.-11. Thus, one can lighten the computational burden of the MPC by making the
prediction of the evolution of Xﬁ']';rﬂk TMPC_periodic instead of T-periodic.

Nevertheless, while this simplification reduces the computational burden required to evaluate all
possible combinations of the sequence of control inputs, it also reduces the quality of the predicted
set estimates and, thus, the predicted reduction of the localization uncertainty. Figure 5.5 illustrates
the pros and cons of the proposed simplification with NMP¢ = 2 and TMP¢ /T = 3.

5.3.2. Task scheduling

Another problem to consider is when the neighbors of UAV i broadcasts their trajectory and other
relevant information.

A first approach is to consider a sequential scheduling where the UAV in the neighborhood of
UAV i with the lower index starts the trajectory update. Once finished, it broadcasts its updated tra-
jectory, and the UAV with the second lower index searches for the best sequence of control inputs
that minimizes one of the aforementioned criteria, i.e., (5.16), (5.21), or (5.32), while accounting for
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Figure 5.5 - Comparison between an approach where the prediction of the set estimates is done
with a period T (right) and (left) an approach where the set estimates are only updated with a period
TMPC — 3T. The light green and light yellow part of the set estimates represent the observed parts.
Targets are assumed static.

the trajectory of its predecessor. This scheme is repeated until each UAV has updated its trajectory.
Figure 5.6 illustrates this sequential scheduling with 3 UAVs.

Adrawback of this approach is that the UAV with the highest index has to wait for the others before
updating its trajectory, and this delay may be larger than T'. Another issue is illustrated in Figure 5.6.
The updated trajectory of UAV 1 is not cooperative since it does not account for any of the trajectories
of its neighbors. A possible approach to solve this issue is that UAV 1 waits to receive the trajectory of
UAV 2 and 3 before re-evaluating the best sequence of control inputs. This re-evaluation is performed
by UAV 2 and 3 as well. This loopback is likely to improve the cooperation between UAVs, but at the
cost of doubling the time needed without loop.

UAV1—,—_:_:'_| , >

tr XY e tht1

uAy 2 — I ,

tk )A('Y_)I.L:h\k tk+1

Y

UAV 3 — I I ;

Y

Lk Tt
B Acquisition of CVS [0 Low-level controller
information

[ Estimation from CVS [ Information emission
information (estimates or trajectories)

M Update of estimates I Information reception
(estimates or trajectories)

[ Trajectory evaluation

Figure 5.6 - Succession of tasks performed by three UAVs; here the trajectory update with the MPC
is performed sequentially.
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Another approach is to consider a non-sequential scheduling where the UAVs only work with the
previous trajectory of their neighbors. At time t;, UAV i keeps in its memory the sequence of states
izj,kfh/:hwcfh/ ofthe neighborsithad attime ¢/, i.e., ¢ € N; j_p. Foratl € N; _js, one can remark that

SU SU SU
(Xé,k+1|k:—h’7 . 'Xé,k:+h—h/|k—h/> of Xg ke—n':h|k—

states X7, /.y With7 =0,...,n" — 1 are actually in the past.

UAV 7 can use (izj,k+1|k7h” .. .i;7k+h7h,|k7h,> as an estimate of the trajectory that UAV ¢ is sup-

only the portion , 1S useful. This is because all predicted

posed to take. Therefore, one has x} fort = 0,...,h — h'. One can remark that

Lk+rlk — 5‘2k+ﬂk-h/
this approach only works if we have NMPC > 1, Then, for the future time instants t;_,_j. with
7 =1,...,}/, a possible assumption is to consider that UAV ¢ only flies in a straight line while main-
taining the same orientation as at time tx5_p/.

The main advantage of the latter approach is that no UAV has to wait for its neighbors to update
its trajectory.

Figure 5.7 illustrates this non-sequential approach.

Uav 1 — T —— ,

Y

12 th+1
X hshlk—h )Adzl.h—h”h\k—h’
UAY 2 — I ) -
tr tk+1
*r;,k—h':h\k—h’
UAV 3 _ T e ; >
tr tk+1
M Acquisition of CVS [J Low-level controller
information

[ Estimation from CVS [ Information emission
information (estimates or trajectories)

B Update of estimates M Information reception
(estimates or trajectories)

[ Trajectory evaluation

Figure 5.7 - Succession of tasks performed by three UAVs; here the trajectory update with the MPC
is performed using only the previously known trajectories of the UAV's neighbors

5.4 . Simulation

The section presents simulation results to compare the performance of the criteria (5.16), (5.21),
or (5.32) designed to update the UAV trajectory to solve a CSAT problem within an unknown and clut-
tered environment. Section 5.4.1 introduces the simulation conditions. Then, Section 5.4.2 describes
the metrics used to compare the control strategies. Section 5.4.3 compares and analyses the criteria
defined for target search and the minimization of the localization uncertainty. Section 5.4.4 focuses
only on the exploration, and Section 5.4.5 provides some results regarding the computing time of the
estimator and the MPC.
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5.4.1. Simulation parameters

Simulations have been performed using a combination of Webots (Webots, ) to generate UAV and
target displacements as well as the measurements collected by the UAVs, and MATLAB where the
estimation and trajectory design algorithms have been implemented. The communication between
Webots and MATLAB is done via TCP-IP.

The Rol is a simplified urban environment with different types of buildings, all with a height less
than 50 m, see Figure 5.8. One has X, = [-250m, 250 m] x [—250 m,250m] x R*. The ground area
occupied by building represents 5 % of the total area of Xg. The Rol contains N* = 8 targets (cars of
the same shape).

The resolution of the occupancy elevation map M; . for all UAVs is taken as 5 m.

Figure 5.8 - Simulated urban environment in Webots

Each car has the following sizes 4.6 m x 1.8 m x 1.5 m, and can be included in a cylinder C' of
radius r* = 2.5 m and height h* = 2 m. The safety distances are taken as r®> = 2.5 m and rff = 8 m.

The state x§ ; = (wE,l,k, 5 oo x§3k> of target j € N'* consists of the coordinates (x;,l,k’ x§2k) of the
projection on X, of its center of mass, and of its heading angle x§3k Its dynamic model, c¢.f., 3.2, is

t t t t
Lj1k+1 Tk T T0j1 c08 (Tjqy
t
zt = | .t t o t )
{,2,k+1 Lok + ij71 sin xj73’k> ) (5.34)
x t t
P WEDREVEY:

where v}l is the constant target speed and v;.&k is the target turn rate. At the start of the simulation
v}yl is randomly chosen in the interval [0, vyax] for each target j € N'. At each time instant, U;‘,Z,k is
constrained to maintain the car on the roads. The UAVs do not exploit any knowledge related to the
roads during the search.

A fleet of 4 identical quadcopters is considered (the DJI Mavic2Pro model in Webots). As in Sec-
tion 4.7 of Chapter 4, these UAVs are equipped with a camera of resolution N, x N. = 720 x 960 pixels,
but the processed image is downsampled to work with a resolution of N; x N, = 360 x 480 pixels,
aperture angle of r/4 rad, and orientation in the UAV body frame of § = /6 rad. A depth map is provi-
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ded by the range finder of Webots with the same resolution as the camera. Its maximal measurement
range is set to dyax = 300 m and the bounds of the noise w in (3.33) are [w, w] = [—0.01,0.01].

The CVS provides measurements with a period 7' = 0.5 s. The set estimates are updated with
the same period using the algorithms presented in Chapter 4. Since only v.x = 1 m/s is known to
the UAVs, the model of the dynamics of the targets used to perform the prediction is (5.34) but we
replace 0;71 by vmax. Actually, since the UAVs only know vp,.x, then the prediction of the target-related
set estimates is simply a dilatation.

Regarding the MPC, the value of the prediction horizon is h = 12, i.e., NMPC = 2., Moreover,
instead of using the quadcopter dynamics, see ( ), during the UAV trajectory update,
a simpler dynamic model with constant altitude and speed v", as well as null roll and pitch angles are
considered

u u u )

3;;1717“1 Tt Tv" cos (xiA,k‘ + Uik

u
loo u T u .

3,27k+1 _ Tiop T Tv"Y sin (xi,4,k + Uk _ (5.35)
X - u
xﬁ’d’k“ Ti,3,k+1

; u

i,4,k+1 T4k + u; g

A low-level PID controller is implemented on each UAV to ensure a constant speed of v“ = 5 m/s
and a constant fly height. This fly height guarantees that the UAVs fly above the obstacles. Moreover,
the fly height of each UAV is different from the others to avoid collisions.

All the components of uy.;, are yaw angle increments taken in U = {—x/3, —7/6,0,7/6,7/3}. As
in ( ), the first weight parameter of the criteria (5.16), (5.21), or (5.32) is taken as
A = 1075, The second weight parameter of the criterion (5.32) is set to x = 1.

No restriction is considered on the communication range between the UAVs, and we assume that
the communications are done without error or delay. In addition, to organize the computations and
communications between the UAVs, we consider the sequential scheduling, see Figure 5.6, with a
loopback.

All UAVs are launched from the same location outside the Rol.

5.4.2 . Evaluation metrics
To evaluate the performance of the propose approach regarding the accuracy of the set estimates
of identified targets, one considers the average localization error with respect to a point estimate

taken as the barycenter ¢ <Xt. > of the set estimate

Z7j7k
1
= — 3 ol —e 0| 536
card (L‘E k) ject,
as well as the average surface of the set estimates of identified targets
1
Bfp=——— > o(Xi). (5.37)
card (Q k) ject,
and the average
1
P = D 0T (X)), (5.38)

card ( £t > -
( i,k jELE’k
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where ¢°? (X) is the radius of a disc of area ¢ (X), i.e.,

6 (%)

s

¢ (X) =

Since there is no restriction on the communication range between the UAVs, we have N, , = NVY, the
UAVs share the same set estimates and, thus, the values of ¢}, ®;, , and @Eﬁf are the same for all
UAVs i € AU,

The theoretical coverage of the FoV of the UAVs at time &

B = ¢ ( U (F (x)n Xg)> (5.40)

ieNU

(5.39)

represents the part of X observed at time t;, by all UAVs if there is no obstacle nor target. The part
of the ground that is actually seen and identified as Ground at time ¢, is

o= ¢ ( P (ygk)> . (5.41)

ieNU

The cumulated ground surface observed up to time ¢ is

e (U U (yf,T)) . (5.2

T=1ieNU

Most of these metrics may also be expressed relative to the ground surface ¢ (Xg)
Additional metrics of interest are the surface ¢ ( i k) ofthe set XZ kandthesurface ¢ (Xz e X?k)

of the part of Xi,k which has been occluded by an obstacle. In this last metric, the set X?,k represents
the portion of X; that has not been seen by UAV i at a previous time instant due to an occlusion by
an obstacle and has not yet been observed again up to time ¢;. This set is initialized with th,o =(pand
is updated as

X Kl = (th 1Y HCVS) \ P, (yig,k> - (5.43)
Moreover, using information received from its neighbors, UAV i updates X" Pk @
Xk = ( U % k|k> \ ( U P (yf,k)) : (5.44)
LeNu LeNv

To evaluate the quality of the prediction of the hidden area using the elevation map, i.e., HI?; (xz k)
when compared with the actual portion of the ground that is hidden, i.e., H%S, one can use the metric
(4.50) introduced in Section 4.7 of Chapter 4, i.e., the intersection over union of HOEM (x3k> NF (x;‘k)
and H%S :

cvs OEM
) 6 (HSE n (HPEM (¢
PPM = —— — : (5.45)
card (N9) ;N: o (BSE U (O (x,) 0 ()

s
kol
~
D)
=
/N
>
S
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~
N2
~
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5.4.3 . Target search and tracking performance

This section compares the strategies associated with the criteria (5.16), (5.21), (5.27), and (5.32).
Their performance is evaluated during cooperative target search and tracking in the unknown envi-
ronment illustrated in Figure 5.8. All of the following results have been averaged over 10 independent
simulations, each lasting 300 s. Table 5.2 contains links to videos illustrating a typical evolution of the
UAVs and their set estimates for each criterion.

Note that, in what follows, we compare (5.21) with (5.21) when H> is not considered. The purpose
of this comparison is to see how the addition of H*> can improve the target search and tracking.
Thus, when H5 is not considered, it is as if H?,f = 0 in (5.19) and (5.20), with £ € N; ;. U {i}.

Criterion | Evolution set estimates | Mapping of the Rol
(5.16) Video_Crit_1 -
(5.21) (no HY) Video Crit 2_noH -
(5.21) Video Crit 2 -
(5.27) Video_Crit_3 OEM_Crit_3
(5.32) Video_Crit_3_bis OEM_Crit_3_bis

Table 5.2 - Videos illustrating a typical evolution of the UAVs during the target search. XE,,{ is
the yellow set. X9, is the black sets. X[, is the blue sets. X! . , is the green sets. H}® is shown
in red.

Figure 5.9 shows the evolution of the number card ([,E,J of identified targets (left figure) and the
number of targets included in the FoV of at least one UAVs (right figure-black curve) with the number
of targets that are actually identified, i.e., card (Uee/\/u ng) (right figure-green curve).

The UAVs, in most cases, manage to identify the 8 targets located within the Rol. With the criterion
(5.27) (the magenta curve), the curve remains around 7.2 identified targets : in only 2 out of the 10
simulations, the fleet has managed to find the 8 targets, whereas the UAVs only found 7 targets during
the 8 other simulations.

The UAVs do not know the exact number of targets to identify. Nonetheless, if we disregard the
magenta curve, the UAVs manage to identify and localize all the targets in less than 150 seconds. With
criterion (5.32) (the black curve), the UAVs manage to identify all targets in less than 100 seconds.
The inclusion of the term (5.31) in the criterion which favors trajectories leading to the exploration of
areas recently occluded and thus ensuring the exploration in the vicinity of a UAV, instead of a general
exploration that leaves unchecked those recently occluded areas.

Regarding the right part of Figure 5.9, the difference between the black and the green curves can
be explained by the fact that a target may be physically located within the FoV of a UAV but either too
far from the UAV to be identified, or hidden behind an obstacle. There is a larger difference between
the black and green curves when the UAV trajectory design is performed based on the criterion (5.16),
than with the criterion (5.32). This is because, unlike criterion (5.32), criterion (5.16) does nothing to
take into account the obstacles. With this criterion, the set estimate ng (region around obstacles
that is free of targets) is not characterized, and the OEM is not available. Consequently, when a UAV
updates its trajectory, it cannot design a target search trajectory that minimizes the occlusions and
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https://nextcloud.centralesupelec.fr/s/HNin6cYAB4iF4j8
https://nextcloud.centralesupelec.fr/s/FNsmKoHq4HFaetc
https://nextcloud.centralesupelec.fr/s/Wa4r6Ebc5NSDRBy
https://nextcloud.centralesupelec.fr/s/fWwJ7Pew2pMkbj7
https://nextcloud.centralesupelec.fr/s/YEinbPEk2YjNpAH
https://nextcloud.centralesupelec.fr/s/3kxYBsjiaMSqTpF
https://nextcloud.centralesupelec.fr/s/MiCXiMyp6e8Yn2r

may even be attracted toward the obstacles. The reason is, according to the correction equations in
Section 4.5.2 and (5.13), since we have sz = () with criterion (5.16), then the portions of X?,};T\k' for
T=1,...,h, that are too close to an obstacle (or inside an obstacle) are not removed. Consequently,
with that criterion, the UAVs are more likely to have obstacles within their FoV and, thus, have targets
hidden behind by those obstacles. In criterion (5.32), X?, is characterized and the OEM is exploited to
predict the occluded in the future. Consequently, the UAVs are able to design target search trajectories
that lead them towards regions of the Rol where the targets can actually be (they are not within
the neighborhood of the obstacles) while minimizing the portion of Xé}l;ﬂk' forr =1,...,hthatis
hidden behind the obstacles. Thus, with that criterion, the targets are less likely to be hidden behind

an obstacle.

Number of targets within FoV & identified - STR 1
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4 Identified
°f g
j=d
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8 s f |
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Figure 5.9 - (Left) Time evolution of card (Egk) for each considered criterion. (Right) Evolution of the
number of targets located in the FoV of at least one UAV (black), and of the number of identified
targets, i.e., card (Uee/\/u szk) (green). Only criterion (5.16) (top-right) (5.32) (bottom-right) are consi-
dered. These curves are average of 10 simulations.

Figure 5.10 illustrates the evolution of ¢} , , the evolution of ®; ;, and the evolution of (I)E"‘;’CR for each
criterion. Table 5.3 gathers the average and the standard deviation of those metrics betweent¢ = 150 s
and t = 300 s, for each criterion.

For all criteria, the average localization error is between 1 m and 1.5 m. Criterion (5.16) provides
the worst results as obstacles are not taken into account. The criteria (5.27) and (5.32) provide the
best results illustrating the benefit provided by the OEM in the trajectory design of the UAVs.

The top-right part of Figure 5.10 shows the evolution of the average localization uncertainty <I>§7,g
evaluated as the surface of X| ; , averaged over each detected target, see (5.37). One has @}, about
0.3 % of the Rol area. The radius of a disc of equivalent surface is represented in Figure 5.10 (bottom-
right). The obtained radius is between 12 m and 18 m depending of the criterion, showing that even
if the localization error remains small, the uncertainty regarding the estimated location is large.

As shown in Figure 5.9, the UAVs identify the 8 targets in less than 150 seconds. Nevertheless, they
are unable to determine whether all targets have been identified. To evaluate the number of targets
N, the Rol has to be explored until X;k = (. As long as X;k # 0, not yet identified target may still
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Figure 5.10 - Mean value over 10 simulations for each criterion of ¢}, (left), <I>§7k (top-right) and <I>§'2R
(bottom-right). To lighten the figure, the standard deviation is not shown.

criterion (5.16) (5.21) no H®® (5.21) (5.27) (5.32)
et,(m) | 143+059 | 1.28+£045 | 1.10+040 | 0.92+0.46 | 0.95=0.23
QYR (m) | 18.29£8.10 | 16.06+£4.48 | 13.57+5.50 | 11.71 £ 4.63 | 13.77 + 3.76

Table 5.3 - Mean value and standard deviation of ¢} ;, and <I)§"';’€R betweent = 150sandt = 300s

<t
belong to X .

Figure 5.11 shows the evolution of ¢ (XZ,J /o (Xg) (solid lines) for each criterion. Table 5.4 gathers

the average of those quantities between ¢ = 150 s and ¢t = 300 s for each criterion. Even if ¢ (X;k)

decreases quickly during the first time steps, no strategy is able to get ¢ (ka) = 0 so as to ensure
that all targets have been found. Instead, this area still to explore seems to converge to a value related
to the ability of the fleet to spread themselves and explore the unknown urban environment.

Figure 5.1 also shows the evolution of ¢ (Xﬁk N ijk> /¢ (Xg) (dashed lines), where X;k N ng

represents the portion ofX;k that has been occluded by an obstacle and has not yet been observed
again. According to Table 5.4, when the trajectory update is performed using (5.16), almost two thirds
ofX;k remain hidden by an obstacle. The parts ofX;k intersecting th,k: grow until they are observed
from a different point of view. In fact, 42 4 4 % of X; may still be a possible location of an unidentified
target. This clearly shows a limitation of this strategy that does not account for any kind of mapping
of the obstacles.

When the UAV trajectory is designed using either the criterion (5.21) or (5.32), thus when X?, or the

OEM are used, then the exploration ofxz,C is largely improved. According to the results, the criterion
(5.32), which involves a strategy favoring the exploration of occluded areas, is proved to be the best
approach to search for unidentified targets.
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Figure 5.11 - Mean value over 10 simulations for each criterion of ¢ (X:,O /¢ (Xg) (solid lines),

o (sz N Xi‘k) /¢ (Xg) (dashed lines). To lighten the figure, the standard deviation is not shown.

criterion (5.16) (5.21) no H*® (5.21) (5.27) (5.32)
b (th) (%) 42,06 +4.21 | 29.56+3.70 | 26.34+2.88 | 23.14 £ 2.87 | 22.06 + 2.35
¢ <X§7k N X2k> (%) || 26.88£2.29 | 17.70+£249 | 17.20£2.00 | 14.10 +1.78 | 13.18 + 1.94

Table 5.4 - Mean value and standard deviation of ¢ (XE,J /¢ (Xg) and ¢ (sz N X?k> /o (Xg)
betweent =150 sand t =300 s

5.4.4 . Exploration efficiency
The UAV trajectory design strategies are now compared considering their performance regarding
the exploration of the environment.
Figure 5.12 compares the evolution of ®f°" /¢ (X;) and of ®¢ /¢ (X;) while only considering criteria
(5.16) (top) and (5.32) (bottom). Table 5.5 gathers the average of those metrics as well as the ratio

FFov _ mean (V) — mean (9%)
mean (®f°Y)

representing the averaged portion of the ground within the FoV of one UAV that is not monitored due
to the presence of an obstacle. An efficient trajectory design strategy within a cluttered environment
should be such that " is small. This is because, the smaller [ is, the more information from the
ground (observation of a target or the ground) is collected to evaluate the presence or the absence
of a target.

Figure 5.12 and Table 5.5 illustrate the impact of the presence of obstacles within the Rol. Regar-
ding criterion (5.16), the fleet theoretically monitors 30 % of the Rol. Nonetheless, due to the presence
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of unknown obstacles, almost one third of this theoretically monitored area is actually occluded. Cri-
terion (5.21) does not really improve the ratio oY since, unlike criterion (5.27), it cannot predict effi-
ciently the part of the FoV that will be hidden by obstacles during the future time steps. The inclusion
of H%S in (5.21) as the area that UAV ¢ cannot observe during the next h time steps due to the pre-
sence of recently detected obstacles only improves slightly 3. The criteria involving the OEM and,
thus, the prediction of the hidden areas, proves to be the best approach to reduce the ratio 3% The
value of &% is larger when using criterion (5.27) than with criterion (5.32). This may be explained by
the fact that since (5.32) favors trajectories leading to the exploration of areas near obstacles, the FoV
of the UAVs controlled by this strategy will contain more often an obstacle.

The oscillations of the curves are due to the update of the trajectories with a period of 3 s.
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Figure 5.12 - Mean value of %%V /¢ (X;) (black) and of &% /¢ (Xg) (green) when only criteria (5.16) (top)
and (5.32) (bottom) are considered

criterion (5.16) (5.21) no H*® (5.21) (5.27) (5.32)
oV (%) || 30.24 +2.24 | 30.13+2.25 | 28.34+2.00 | 28.66+2.17 | 28.46 4+ 2.12

D% (%) | 18.73+327 | 10.38+3.39 | 19.06+3.35 | 21.63 £ 3.04 | 21.04 % 3.02
3 (%) 38.06 35.68 32.73 24.55 26.07

Table 5.5 - Mean value and standard deviation of &V /¢ (Xg), %/ (Xg) and 3 between
t=150sandt=300s

Figure 5.13 shows the evolution of the proportion of the X, that has been explored, i.e., <I>gg/qﬁ (Xg).
Table 5.6 gathers the average and standard deviation of this metric.
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Remind that no controller presented in this chapter has been designed to simply explore the Rol.
Our main interest is to search and localize the targets, not to map the Rol. Consequently, @;g/é (Xg)
is more a metric representing the capacity of the UAVs to efficiently evolve within the environment
and explore the Rol than to evaluate the performance of these strategies to map the Rol.

As illustrated in Figure 5.13, <I>gg/¢ (Xg) increases quickly at the beginning but, then, one can
remark 3 distinct tendencies. The criterion (5.16) has the slowest increase since the strategy does
not account for any kind of mapping. Criterion (5.21) leads to a faster exploration because the UAVs
may avoid the obstacles since they are not attracted toward the area ng around detected obstacles
where no target can be. Nevertheless, and as expected, criterion (5.27) leads to the fastest increase of
<I>gg/¢ (Xg) since the UAVs are able to predict the portion of the ground that they will not see using the
OEM, and thus efficiently move around obstacles. Moreover, one can have the same remark as for Fi-
gure 5.12, i.e., the criterion (5.27) shows a slightly better performance regarding the metric @igﬂﬁ (Xg)
than criterion (5.32). This is because UAVs that update their trajectory by using criterion (5.32) are
likely to stay around their neighbors in order to explore the area they did not observe due to the
presence of an obstacle. Consequently, they explore less.

In addition, since 5% of X is occupied by obstacles, the maximum theoretical value of (I)Ck:g/gb (Xg)
is 95%. This value is almost reached by the criteria at time ¢ = 300 seconds, with 92.7 % with (5.16) to
93.5 % with criterion (5.27).
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Figure 5.13 - Mean value over 10 simulations for each criterion of q)ici/qﬁ (Xg). To lighten the figure,
the standard deviation is not shown.

criterion | (5.16) | (520)noHY* | (5.21) | (5.27) | (5.32)
©F | 88.64+2.01 | 90.14£1.19 |90.12+1.56 | 91.15 4 1.03 | 91.14 + 1.19

Table 5.6 - Mean value and standard deviation of @f’%/qﬁ (Xg) betweent = 150 sandt = 300 s

Figure 5.14 shows the evolution of ®%EM. At the beginning of the target search, ®*increases
quickly but becomes more or less stable around ¢ = 100 seconds. This is consistent with Figure 5.13
since most of the Rol has been explored and, thus, most of the obstacles have been detected. The
mean and standard deviation of this metric when averaged between ¢t = 150 s and ¢t = 300 s is
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74.38 £+ 9.25 %. This means that around three quarters of the part of the ground that is predicted to
be hidden by obstacles HPEM (xfk) NF (X;Jk> is actually hidden when considering CVS information

HSY. Itis likely that with an OEM of higher resolution, i.e., with a cell dimension smaller than 5 m, the
prediction would be of higher quality. Nonetheless, this result shows that a 2.5 D mapping approach
can be used to efficiently predict which portion of the ground the UAV may or may not observe in the
future.

Intersection over Union (%)

20 I I I I I ]
0 50 100 150 200 250 300

Simulated time (s)

Figure 5.14 - Mean value and standard deviation over 10 simulations of ®98™ when only criterion (5.32)
is considered

5.4.5 . Computing time

Figure 5.15 (left) shows the evolution of the average computing time required by a single UAV to
process the CVS measurements and to update its knowledge. The time includes the characterization
of the set estimates from the CVS measurements and the update of A7, ka and X?; (communica-
tion with neighbors included). We recall that we consider the sequential scheduling, see Figure 5.6,
with a loopback to organize the computations and communications between UAVs. Thus, during the
trajectory update, each UAV has to wait a certain amount of time after the first iteration of the MPC
to receive the second updated trajectory of its neighbors. Figure 5.15 (right) does not account for
this delay and only shows the average time required by a single UAV for the last iteration of the
MPC. These results have been obtained on a computer embedding an Intel Core i7-10875H 2.30GHz.
Consequently, they provide only a first idea of the time that would be actually required considering
an implementation on a UAV.

Thetime thatis required to process the CVS information is almost the same for criteria (5.21) (SRT2)
and (5.32) (STR3), i.e., about 2.15 seconds, and is almost three times that required for criterion (5.16)
(STR1), i.e., about 0.81 second, which does not exploit CVS information related to obstacles and does
not characterize ng and ka The update of the OEM (the main difference between criteria (5.21) and
(5.32)) does not take much time.

The time required by the MPC is almost the same for criteria (5.16) and (5.21), i.e., about 0.90 se-
conds, but is around 1.52 seconds for criterion (5.32) (regardless of the value of k). This is mainly due

to the evaluation of HPEM <x;‘k+ﬂk>,for 7 € {1,...h}, fromthe OEMin criterion (5.32). Consequently,
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the improved performance in target search and tracking when we add this 2.5D mapping approach
is counterbalanced by the additional time required to update the trajectories of the UAVs.

Time required for CVS estimator B Time required for MPC

STR1: No mapping STR1: No mapping
45t STR2: without HICVS STR2: without HICVS
STR2: with HICVS STR2: with HICVS
STR3: =0 STR3: 5= 0

STR3: 5 =1 STR3: k= 1

25

Time required (s)
Time required (s)
&

0.5

. . . . . . 0 . . . . . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Simulated time (s) Simulated time (s)

Figure 5.15 - Mean value over 10 simulations of the time required for a UAV to run the set estimator
from CVS measurements (left) and the MPC approach (right)

5.5 . Conclusion

This chapter presents several strategies to update the trajectories of a fleet of UAVs in order to
address a CSAT problem within an unknown environment. The targets are assumed to outnumber
the UAVs. Therefore, a trade-off between searching for new targets and pursuing previously iden-
tified targets must be found. For that purpose, the chosen control strategy, based on a distributed
MPC, aims to search for a sequence of control inputs that minimizes a criterion translating the main
objective to achieve : the reduction of uncertainty regarding the estimated location of both identified
and unidentified targets. The performance of the strategy proposed in ( ), represented
by criterion (5.16), is evaluated. Nonetheless, this criterion does not take into account any available
knowledge regarding the environment. Consequently, other criteria based on the one proposed in
( ) have been developed to account for different levels of available knowledge about the
environment that the UAV may gain, namely

* No environmental knowledge : the UAVs are unable to gain any knowledge regarding the envi-

ronment

+ No memory regarding the shape of the obstacles. The UAVs are able to get some knowledge

regarding the obstacles that are under observation, but no memory is allocated to concatenate
this knowledge over time

+ Mapping of a 3D environment. The UAVs embed the required devices, algorithms, and memory

to update a map of the environment that approximates the shape of the obstacles.
The performance of the criteria that are derived considering these hypotheses have been compared.
The more environmental knowledge is available, the better the strategy that exploits this knowledge
is. The reason is during a target search within an unknown and cluttered Rol, a UAV has to design
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a trajectory in order to move around obstacles to explore areas that may contain targets. Thus, the
better the UAV knows about the location and shape of an obstacle, the better it can move around that
obstacle. The simulations performed for this chapter are clear about this statement, even though the
exploitation of this knowledge related to the obstacles induces a higher computational time for both
the target localization and the trajectory update. Besides, the simulations have been performed in
a idealized situation where the communications between the UAVs are without error and delay. We
considered this idealized situation to evaluate the performance of our approach designed to solve a
CSAT problem before including communication issues or other real-life problems which will undoub-
tedly reduce its target-search-and-track performance.

The main contribution of this chapter is the exploitation of the OEM, in criterion (5.27), to improve
the target search within an unknown and cluttered environment. The OEM approximates the pre-
viously detected obstacles with boxes that are then used by the UAVs to better predict what they
will observe in the future. According to the simulations, criterion (5.27) always provides better target-
search-and-tracking performance than criteria (5.16) or (5.21). Nevertheless, due to the presence of
obstacles, the UAVs cannot observe some portions of the Rol that may contain unidentified targets.
To efficiently explore those unchecked regions, a UAV must circle around an obstacle faster than the
targets. To address this path-planning problem, we added in criterion (5.27) a new term, i.e., J2 intro-
duced in (5.31), to favor trajectories leading to the cooperative exploration of these recently hidden
areas. Even though this new criterion, i.e., (5.32), has shown promising results, the target-search-and-
tracking performance is not fully satisfying. On the one hand, the criterion allows a better reduction
of the hidden regions that may contain unidentified targets. On the other hand, the fact that the UAVs
favor trajectories that lead to the exploration of recently hidden regions disadvantages trajectories
that would allow a UAV to recapture a previously identified target in order to reduce its estimated
location uncertainty.
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Chapter 6 - Target localization with UAV state uncertainties

The approaches presented in Chapter 4 and Chapter 5 to search and localize ground targets as-
sume that each UAV has an accurate knowledge of its state vector. Nevertheless, due to uncertainty in
the dynamics and noise on the measurements provided by their embedded propnoceptlve sensors,
the UAVs only have an uncertain estimate of their state, see, e.g. ( ; )
and ( ).

In this chapter, it is assumed that each UAV disposes only of an estimation of its state vector and
the uncertainty associated with this estimate is assumed bounded. As the CVS measurements used
for target localization are initially expressed in a frame attached to each UAV and the set estimates
containing the locations of the targets are expressed in a common reference frame, it is necessary
to account for the UAV state uncertainties in the target localization problem. Consequently, the ap-
proaches introduced in Chapter 4 must be adapted to account for the UAV state uncertainty.

The set-membership estimator presented in Chapter 4 exploits the available CVS measurements
to characterize set estimates that either are guaranteed to contain the location of a target Xz?k for
each identified target j € D;k at time ¢, or are guaranteed not to contain a target location at time

tx, €.8., IP’;‘?”,C (yfk) . These set estimates used for target localization are built considering the following
sets

* P; 1 ((nr,nc)), see (6.4), used by UAV i to characterize XETk for each identified target j € D;k as

well as X9, and X;'T,

. Pivk ((nr,nc)), see (6.13), used by UAV i to characterize Pik (ygk) and HEY®.

The definitions of B; ;. ((nr, nc)) and P&, ((nr,nc)) and the methods used for their characterization
need to be adapted to account for the UAV state uncertainty.

These problems are formalized in Section 6.1. Section 6.2 describes briefly the approach to solve
this problem. Then, Sections 6.3, 6.4, and 6.5 propose a method to characterize P; ;, ((nr, n¢)) and
P§, ((nr, nc)) while being robust to UAV state uncertainty. These adapted set estimates are then used
to make the target location estimator robust to UAV state uncertainty. Finally, Section 6.6 presents
simulation results to evaluate the performance of the robust estimator.

6.1. Problem formulation

As in the previous chapters, we consider that a fleet of N cooperative UAVs is tasked to find and
localize N* unknown ground targets in a Rol Xq. For that purpose, each UAV estimates the possible
locations of the target by using the set-membership estimator presented in Chapter 4, and evolves
within Xy according to a cooperative target search and tracking strategy detailed in Chapter 5.

6.1.1. UAV state uncertainty
In this chapter, the dynamics of UAV i, with i € N'Y, is modeled as

u __fpU u u u
Xipy1 = f (Xi,kvui,k7wi,k) (6.1)
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where w}, represents the state perturbations assumed unknown but bounded in a known box [w"] =
[w", w"]. Consequently, the UAV state vector x{; is only known to belong to the set estimate X},.
This set estimate can be obtained with set-membership estimation techniques by using the uncertain
dynamics (6.1) and X;{k_l, i.e., the possible values of the state vector of UAV i known at time t;_4

Xamkq = £ (XY gy, (W) (6.2)

This prediction is then corrected by using the measurement vector y', provided by proprioceptive
sensors like an IMU or gyroscope, see (3.14), i.e.,

X = {x € Xy |0 (=) € ({wte} - W)}, (6.3

where h' is the measurement function associated to the proprioceptive sensors and [w“™] is some
known box assumed to contain the measurement noise of those sensors. UAV i can improve the
accuracy of the estimation of its state vector by accounting for information provided by neighboring
UAVs considering a cooperative navigation, see ( ). In what follows, we assume that,
at time ¢, Xj; is available and we focus on the impact of the UAV state uncertainty on the target
localization accuracy.

6.1.2 . Exploiting CVS measurements

To lighten the notations, the time index is omitted.
The CVS measurements available for a pixel (ny, n¢) € N attime t;, consist of an interval [D;] (nr, n¢)
containing the depth information and a pixel label, i.e., (nr,n¢) € V¥ with £ € {t,0,g,n}. A bounding

box [y;]} containing (nr, nc) may also be available when a target is identified. In Chapter 4, two sets

have been introduced depending on the label of (n,, nc). If (nr,nc) € [ygj] NYtor (nr,nc) € Y2, one
may evaluate P; ((nr, nc)), which has a non-empty intersection with a target or with an obstacle. If
(nr,nc) € V¥, one may evaluate P# ((nr,nc)) to get a part of the ground free of target. Even though
H$S is not used to localize the target, it is also obtained from P% ((nr, nc)) when (nr,nc) € YOUYUYD.

Our aim in what follows is to define ; ((nr,nc)) and P# ((nr,nc)) as the solution of set inversion
problems that involves the uncertain UAV state.

Consider first the case of a pixel (n;,n¢) € [y;]} NYtor (nr,nc) € V2. For a given value x" of the
state vector of UAV i, P; ((nr, nc)) has been defined in Section 4.2 as
P; (nr,ne),x") ={zx € X |z € F(x"),3v € V; (nr,nc), (6.4)
dy (@, {x}) € [Di] (nr,nc)}
where x{ is the location of the optical center of the camera embedded on UAV i expressed in the
reference frame F. Moreover, since x € F (x"), then x € B (x}, dmax) according to (3.24), where

B (x, dmax) is a ball of center xf and radius dmax. Consequently, according to (3.29), (6.4) can be re-
defined as

[ne — 1,y

P; ((nr, nc) ,x") Z{w €Xo | pc(x", @) € <[n° ~ 1’nc]]> ;

Jf — || € [Dd] (nr, nc) N[0, dmax]}. (6.5)
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One can remark that ||z — x| = HT}T"C (m)H, where T?’C (z) is the transform (3.26) introduced in

Chapter 3 that expresses in F} the coordinates of z, initially expressed in F. To get a more compact
notation, we introduce the function

hs (z, x" ( HT H ) (6.6)

pc X a:
and the box
[DZ] (nr; nC) N [07 dmax]
[yived] = [nc — 1,n(] : (6.7)
[nr — 1, nr]
Thus, we have
]P)i ((nﬁ nC) ,Xu) = {$ € XO ‘ hCVS (33, X ) [ygll(')C]} (68)

In 6.5, the dependency of P; in x}' has been made explicit. Evaluating P; ((nr, nc) ,x") requires the
solution of a set inversion problem as P; ((nr,n¢) ,x") is the intersection of X, with the preimage of

the box [yt’ﬁ’c} by the function h®Y5, considered as a function of = . Now, if the state of UAV i is only

known to belong to some set X!, one may introduce the set of locations (in the Rol) that have been
observed for at least one value x" € X! while being consistent with the depth measurement,

P} ((nr,nc)) = {= € Xo | 3x" € X!, 0 (2,x") € [yiP]} (6.9)
= |J Pi((u,no),xY), (6.10)
xUeXY

and the set of locations that have been observed for any value of the UAV state x" € X! while being
consistent with the depth measurement,

Py ((nr,ne)) = {x € Xo | Vx" € X{,h™ (z,x") € [y{o]}, (6.11)
= [ Pi(nr,nc),x"). (6.12)
xUeXy

These two sets can be interpreted as variants of P; ((nr, nc) ,x") robust to the UAV state uncertainty.
Similarly, for the case of a pixel (nr,n¢) € yf, and for a given value x" of the state vector of UAV i,
P% ((nr, nc)) has been defined in Section 4.3.1 as

P8 ((ny, ne) ,x%) = {a} eXg|xeF(xY),p (x%x) € <[[Zi - igj) } : (6.13)

Thus, (6.13), as with (6.4), can be redefined as

B (nene) %) = {@ € 0 | pe (o) € ({17 1 0) ot —all € Dl | (610
= {@exg | (z,x) € [v5, |} (6.15)

143



with

[07 dmax]
|:yzg7r,c:| = [nC - 17 nC] . (616)
[nr - 1, nr]

In (6.13), the dependency of P} in x" has again been made explicit. Evaluating P§ ((nr, nc) ,x") requires
the solution of a set inversion problem as P% ((nr, nc) ,x") is the intersection of Xg with the preimage
of the box [yf}r'c} by the function h®®, considered as a function of . Now, if the state of UAV i is only

known to belong to some set X!, one introduces the set of ground locations that may have contributed
to the illumination of pixel (nr, n¢) for at least one value x" € XY,

P§’3 ((ne,ne)) = {:1: eXg|Ix" e XY hY® (z,xY) € [yirlc} } . (6.17)
= U B¥((nr.ne) . x"), (6.18)
xueXy

and the set of locations that may have contributed to the illumination of pixel (n., nc) for any value of
the UAV state x" € XY,

P ((nr,nc)) = {az € Xg | ¥xU € XY, hYS (2, xY) € [yirlc} } . (6.19)
= [ P& (o), xY). (6.20)
xueXy

Again, (6.17) and (6.19) can be interpreted as variants of 6.13 robust to the UAV state uncertainty.

All of the set estimates introduced in Chapter 4 that are used to estimate the location of the
targets are built upon P; ;. ((nr, nc) ,x}') or Pﬁk ((nr,ne) ,xy'), where x!' is the true value of the state
vector of UAV i. Thus, by replacing P; ((nr, nc) ,x¢) with P ((nr, nc)), then one can be sure to get a set
estimate that intersects the detected target or the detected obstacles, i.e., because P; ((nr, nc) ,x}') C
P3 ((nr, nc)) for any x¢ € XY. Similarly, by replacing (6.14) with (6.19), then, for a pixel labeled Ground,
one can be sure to get a set estimate that represents the portion of the ground that contributed to
the illumination of pixel (nr, n¢), whatever the values of the state of the UAV. This is due to the fact
that P¥" ((nr, nc)) C B, ((nr,nc) ,xy) if x! € X7

The sets PY ((nr,nc)) and ]P’Zg'3 ((nr,nc)) may also be useful to characterize. Nevertheless, repla-
cing P; ((nr, nc) , x}') with P7 ((nr, nc)) and replacing P$, ((nr, nc) , x{') with P& ((nr, nc)) will make the
characterization of XET,C ]P’lg’k (yfk) X?,, and X;Tk robust to the UAV state uncertainty.

Sections 6.3 and 6.4 present a method to characterize IP’?"3 ((nr,ne)), ]P’zg'v ((nrymc)), P2 ((nry mc)),
and PY ((nr,nc)).

6.2 . Interval analysis

We want to characterize P; ((nr, nc) ,x) and P§ ((nr, nc) ,x"), for a pixel (nr, nc) € N' while taking
into account the fact that the true value of state vector of UAV i x}' is only known to belong to X}'.
Various approaches are available to evaluate set estimates, e.g., using ellipsoids or zonotopes, (
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; ). Most are limited to models with linear measurement functions h

( ). The set inversion problems P&~ ((n;, nc)), P& ((nr, nc)), P3 ((nr, nc)), and PY ((nr, ne))
involve nonlinear functions. Consequently, we choose to use tools from interval analysis (
) and the Set Inverter Via Interval Analysis (SIVIA) ( ) to approximate these

sets by unions of non-overlapping boxes.
This section briefly recalls the basis of interval analysis and the way it may be used to characterize
the sets such as P§'3 ((nr,mc)) or IP’?'V ((nr,n¢)). More details may be found in Appendices A.3 and A.4.
Aninterval [z] = [z, Z] of real numbers is the subset of R such that

[z]={zreR|z<zandzx <7T}, (6.21)

where z and T are respectively the lower and upper bounds of the interval. The set IR contains all the
real intervals. A box, denoted [x], is a Cartesian product of intervals.

6.2.1. Inclusion functions and set inversion

Consider a function h : Xy x R™ — R™ taking as inputs a vector x and a vector of parameters p.
Assuming x and p are only known to belong to the boxes [xz¢] C X( and [p] C R", we may want to
characterize the set containing the image of h over [x] x [p], i.e.,

h ([zo], [p]) = {h (@, p) | = € [xo] ,p € [p]}- (6.22)

This set can be impossible to characterize accurately if h is nonlinear. To approximate h ([xo], [p]),
we may use an inclusion function [h] of h defined by interval analysis. An inclusion function takes
intervals (or boxes) as inputs and returns an interval (or a box) as its output such that

¥ [z] C Xo,Y [p] C R", one has h (], [p]) C [h] ([], [p]). (6.23)
Consider now that we want to characterize the set
X={z € [zo] | h(z,p) € [y]}, (6.24)

for some known vector of parameters p. If an inclusion function of h is available, SIVIA can be used
to get an inner and an outer approximation of X using two unions of non-overlapping boxes (subpa-
vings), see the example (A.21) and Figure A.6 in Appendix A.3. Actually, SIVIA builds iteratively three
list of boxes or subpavings : Bin, Bout, and Bporder- The method to get these subpavings is
* Iffor a box [z] C [xo], one has [h] ([z],p) C [y], then [x] C X and [z] € Bi,
* If for a box [x] C [x], one has [h] ([z],p) N [y] =0, then [x] N X = and [x] € Bout
+ If none of these two conditions is satisfied
« if the width of [z] is larger than some parameter ¢, [x] is bisected and the tests are applied on
the resulting subboxes [z], and [z],
* else [x] € Bporder
When the vector of parameters is only known to belong to [p], one may want to characterize one of
the two following sets

X" = {z € [zo] | Vp € [p],

h(z,p) € [y]}, (6.25)
X? ={x €[] | 3p € [p] ,h (z,p) €

(z,p) € [y]}. (6.26)
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One has clearly X¥ c X7, In our case, the uncertain vector of parameters is the uncertain UAV state
vector.

An approach (that is useful for in the next section) to reformulate these sets is to introduce the
set of functions

H([p]) = {f € F(Xo,R™) [ 3p € [p], V& € Xo,f () = h(z,p)}, (6.27)
where F (X, R™) is the set of functions from X, to R™. Then, one has

XY = {x € o] |V € H ([p]) , f (=) € [y]}, (6.28)
XT = {x € [xo] | If € H ([p]),f (x) € [y]}. (6.29)

For a box [x] C [x], and assuming [h] is available, if [h] ([x], [p]) C [y], then, according to (6.23),
one has h ([z], [p]) C [y]. Consequently, for allx € [z] and for all p € [p], h (x,p) € [y]. Thus, [z] C X¥
and [z] € Bi,. Similarly, if [h] ([z] , [p]) N[y] = 0, thenforallx € [x] and for allp € [p], h (x,p)N[y] = 0.
Thus, [z] N X7 = 0 and [z] € Bout.

Consequently, Bin is an inner-approximation of X¥ and, since Boy: has no intersection with X3, and
[20] \ Bout = Bin U Boorders Bin U Bporder is an outer-approximation of X=.

Nevertheless, to approximate either X" or X7 with SIVIA, the algorithm has to characterize Bjp,
Bout, and Byorder, but the characterization of Byorger may lead to a heavy computational burden when
the vector of parameters is uncertain, see Figure A.7 in Appendix A.3. The reason is that SIVIAis unable
to evaluate whether a box [z] is such that [z] ¢ X7\ X". Besides, if [p] is large, then it is likely that
X7\ X"grows. Moreover, since [zo]\ (Bout U Bin) = Bborder, then Bporder is also an outer-approximation
of X7\ X". Consequently, the more uncertain [p] is, the larger the number of boxes with width ¢ there
are in Bporder and, thus, the computational complexity increases.

6.2.2 . Thick intervals

The authors of ( ) propose an adaptation of SIVIA to address set inver-
sion problems involving an uncertain vector of parameters. Their approach has led to the introduction
of thick intervals. This section briefly recalls thick intervals, thick functions, and how they can be used
to get an inner-approximation of X" or an outer-approximation of X3 more efficiently than with SIVIA.
More details may be found in Appendix A.4.

A thick interval [z] is a set of intervals. The lower and upper bounds of the thick interval [x] have
to belong to an interval of lower bounds [z~] and an interval of upper bounds and [z 1], i.e.,

[2] ={[z,z] € IR |z € [z ] andZ € [z]}. (6.30)

A thick box is the Cartesian product of thick intervals.

Consider a thick interval [x] and an interval [z] = [inf ([z7]), max ([z7])], where inf ([x7]) is the
lower bound of [#~] and max ([x]) is the upper bound of [x*]. Then for an interval [a] € [z], one as
clearly [a] € [z]. Nevertheless, for an interval [a] € [z], we may not have [a] € [z] if the lower bound of
[a] is not in [z~] and the upper bound of [a] is not in [x]. Figure 6.1 illustrates this property for thick
boxes.
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Figure 6.1 - Illustration of a thick box [z]] = [[~], [z T]] (not represented) and a box [z] (the dashed
box). The boxes [b1], [b2], and [bs] are included in [x], but [bs] is not included in [x] because its lower
and upper bounds (represented by dots) are notin [z~ ] and [zT].

To get a thick box for a given function h, one has to evaluate a thick function |h] of h. A thick func-
tion is a set of functions f such that their images, for an input x, always belongtoabox [h™ (z) ,h* (z)]
of known bounds, i.e.,

= {f € F(Xo,R™) | V& € Xo,h™ () < f(x) <h™ (x)}. (6.31)

Then, by evaluating the inclusion functions of h~ and h, one gets a Thick Inclusion Function (TIF) [h]
of h. The image of some [z] C X by the TIF [h] is a thick box, i.e., set of boxes [y, y] € IR™ such that
y belong to [h~] ([x]) and 7 belongs to [h*] ([x]), i.e.,

[h] ([z]) = {[y,y] e IR™|y € [h~] ([=]),7 € [h*] ([=])}. (6.32)
C

Consequently, if one chooses h™ and h* such that H ([p]) C | h], then one can define the sets

={z € [=o] | Vf € |h],f(x) € [y]}, (6.33)
X' ={x € [zo) | I € |h],f(z)€ [y]}. (6.34)

m

One has X2 ¢ X- and X" ¢ XV,

The approach proposed in ( ) to get more efficiently an inner approxi-
mation of XY and an outer-approximation of X~ consists in using a TIF of h to characterize an inner
approximation of X" and an outer approximation of X. For that aim, the authors of (

) propose the Thick SIVIA algorithm that evaluates two subpavings Bi, and Boyt using the
following tests that involve a TIF [h] of h:
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« If for a box [x] C [xg], one has [h] ([z]) C [y], then [x] € X" and [z] € B,

+ If for a box [z]  [z), one has [h] ([z]) N [y] = 0 then [x] N X" = 0 and [z] € Bout
Additionally, if for a box [x] C [xo], one has [h] ([z]) N [y] # 0, then one can prove that [z] C X (see
Sections A.4.3 and A.4.4 in Appendix A.4 for more details for this test). Consequently, a new subpaving
Bpenumbra cONtaining those boxes can be characterized. The method to get Byorqer is unchanged, i.e.,
if a box [z] C [zo] does not satisfy the three aforementioned tests, then it is bisected and its resulting
boxes are retested until they are considered too small.

In Appendix A.4, Section A.4.3 presents a version of Thick SIVIA optimized to characterize X In
that section, all boxes [z] € Bpenumbra are such that [x] C X". Section A.4.4 presents another version
of Thick SIVIA to characterize X- and X". In that section, all boxes [z] € Bpenumbra are such that [z] C
X\ X

This third test, i.e., the one to get Byenumbra, has been made possible only because thick boxes are
used, see Proposition 30 in Appendix A.4. In fact, for a thick box [x], this test relies on the upper bound
of [z~] and the lower bound of [z "]. Those bounds are not available with a classic interval. Moreover,
it is this third test that solves the problem of SIVIA because all boxes [x] € Bpenumbra are such that

[x] C X (or [z] C X \ X" depending of the version of Thick SIVIA that is used). Consequently, the
characterization of X7\ X" is more efficient.

As illustrated in Figures A.g9 and A.10, Thick SIVIA is able to provide more efficiently an outer ap-
proximation ofXa, and thus X7, as well as an inner-approximation of X", and thus X", than SIVIA. We
use Thick SIVIAin what follows to characterize PY ((nr, nc)), P2 ((nr, nc)), P& ((nr, nc)), and B2 ((nr, nc)),
for any pixel (nr,nc) € N while taking the uncertain UAV state vector into account.

Besides, since we use interval analysis, we consider that X} can be defined or approximated by a
box [x}] such that X! C [x}].

6.3 . Thick function of h¢¥s

The setsPY ((nr, nc)), P3 ((nr, nc)), P8 ((nr, nc)), and P& ((ny, nc)) can be characterized using SIVIA,
see Appendix A.3. Nevertheless, SIVIA is not efficient enough when the set to characterize involves an
uncertain vector of parameters, here itis the uncertain UAV state. The Thick SIVIA algorithm has been
developed to solve the problem of efficiency of SIVIA, but, instead of an inclusion function of h®">, it
requires a thick inclusion function of h®Y>. This section presents a method to get this thick inclusion
function.

According to Appendix A.4.2, a thick function |h®"*] for h®* is obtained by characterizing two
functions h®>~ and h®>7 such that

vxU € [x¥], Ve € Xo, h®> () < h®® (x,x") < h®>F (z). (6.35)

Then, to get a TIF [h“*] of h®*one must get the inclusion functions [h®>*] and [h<>~] of h<V>+
and h®>~. This can be achieved by evaluating the natural inclusion functions of h;f. and h;, cf,
Appendix A.3.2.

This section only presents a method to obtain the upper bound h®V>+, The approach to obtain
the lower-bound h®>~ is similar.
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Consider a x € X and a x" € [x}'], one has
hevs (z,x") = (pc (x, ), | - (6.36)
)

where (p. (x", x)), is the {-th coordinate of p. (x", ). One can remark that, in the transform

T?C (x) = Mg (M;’b (x —x") — 33:’]:?) : (6.37)
- M;Mf( (Mf P )) (6.38)

the rotation matrix MF andz, 77 are assumed to be perfectly known. M , depends on the uncertain
attitude of UAV ¢ and «}' is its the uncertain location. Then, according to (3 27), one has p (x},x) =

Pre (T?C( )), where

xfic/a:]:ic
7\ _ (—fc 0 Nej2 ke
P (m )‘( 0 —f Ny2) | %2700 (6.39)

is a function that returns the 2D coordinates of the projection of some point 7% € R3 on the CCD
array
Then, consider a x € X

hCvs.+ (z) = m?x] hevs (x,xY), (6.40)
xie xl;
b
max ]: ( (M]: i +3L' ))H
x“G
x]:j'
— ?;?Xu] (—fc;l; + Nc/2> , (6.41)
X X’i x3
7
max <—frm2f_c + Nr/2>
xue[x‘ﬁ} xat
max ‘ (beml k + @ )
x“e[x;']
]_—C
— —fe urrelinu] ( ) + Ne/2 . (6.42)
X X’i CL’3

—fr min < Fc) + Ny /2

u u
xYe [xi Tg

The evaluation of the maximum or the minimum of the norm HT? (a:)H and the evaluation of

the maximum or the minimum of the ratio xfl 2}/95?' over the [x}'] is difficult. Instead, we propose

149



in Section 6.3.1 and 6.3.2 an approach to obtain a lower and upper bound of these minimum and
maximum and, thus, an upper bound of h®>+ and an lower bound of h®>—,

Once the upper bound of h®>* and the lower bound of h®V>~ are available, one can characterize
the natural inclusion functions of the upper bound of h®/>* and the lower bound of h®>~ to deduce
a TIF of h®Ys.

6.3.1. Upper bound for the maximum of a norm

. c,Fb
Instead of evaluating max ‘w - (M;xzk + :1:”)
x”E[x;‘] i 7

Proposition 20 is introduced to get this upper bound.

, We propose to evaluate an upper bound.

Proposition 20. Consider a series of functions g; (p) : R — R, fori € {1,...m}. such that

max y gi (p) <) maxg; (p) (6.43)
i=1 i=1
min ; gi (p) > ; min g; (p) (6.44)
One has
( F CFP ) 23: ( C fb) 2
max ‘:c — (MZpz;™ +z¢ ‘ = max ( (w —xy — be:z:i’ ¢ > ), (6.45)
x“G[x;‘] ¢ x“G[x;‘] =1 5 14

where (M), is the /-th coordinate of the vector that results from the matrix-vector product M.
Then, with Proposition 20, one has

max

¢, FP
‘a: — (Mib:cl ‘ +:1:”)
x“e[xﬂ :

3 2
P
‘ < g max] <xg —xy — (M;me: i )) . (6.46)

=1 x“e[x;‘

Then, the maximum of this quadratic function can be computed using interval analysis.

6.3.2. Upper bound for the maximum of a ratio

The maximum of the ratio [y] / [z] between two intervals [z] = [z,7] and [y] = [y,7] lies in the
set {%, %, %, %} Therefore, the evaluation of me[Lx] (mf /xf) is equivalent to compute the extrema
- - xue|xy

C b
of each coordinates of M; (Mi (x—z)) — wc,be). For that purpose, we introduce the following
proposition

Proposition 21. Consider a function f (p) : R — R and a function g (z) : R — R. We have for all z € R

mx g ()1 (1) = o { g (o) e (7 1) o (o) i (7 )} (6.47
min g ()1 ) = min {3 (o) (F 1) 9 o) (£ )} (6.48
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Démonstration. In (6.47), max, (g (z) f (p)) depends of the sign of g (z). If g () > 0, then

max (g (z) f (p)) = g (x) max (f (p))- (6.49)

Moreover, since min, (f (p)) < max, (f (p)), then g (z)min, (f (p)) < g (x) max, (f (p)). If g(z) <0,
then

max (g (z) f (p)) = g (x) min (f (p)) - (6.50)

Moreover, since min,, (f (p)) < max, (f (p)), then g (z) max, (f (p)) < g (x) min, (f (p)). Consequently,
we have for all z € R

g )1 () = max { g (o) e (7 1) o (o) min (7 )} .50
The same approach is used to prove (6.48). O
According to Proposition 20, one has
F¢ FP u ¢, FP FSn o FP . FEn e F2 4
(3 K3 _ . _ X (3 < 7 7 _ 7 K3
e (M3 (M (@ o) =07 ) < ma, (MEMG) = min (MM o)
F& ¢ FP
— min_ (M7jz, "), (6.52)
x“e[x;'] ( Fi )

where [®}] is a box containing all the possible attitudes of UAV i. The right term is independent of the
UAV state. Therefore, it is constant. The middle term can be obtained using interval analysis. For the

C b
left term, we first introduce the elements of the matrix 1\/I]J:ijTT as follows

e b €11 (@) €12 (@) €13 (@)
M]:@M];i = €921 (G‘)) €99 (@) €923 (@) . (6.53)
' €31 () e32(0) e33(0)

Then, we have

( max (11 (©)z1 + €12 (O) x2 + €13 (O©) z3)

oc[ey]

C b

qnicey (MM ) = o gl (o (O e (O e (O) ) oo
max (e31 (0©)z1 + e32 (0) x2 + e33 () x3)

oc(ey]

max (e11 (©)z1) + max (e12(0)z2) + max (e3(0)x3)
CHIcH oc[e] ec[ey]

612[%);] (€21 (©) 1) + 612[%);] (€22 (©) x2) + @Iél[%xg] (€23 (©) x3) (6.55)

max (e31 (©)z1) + max (es32(0)z2) + max (es3(0)xs)
oc[e] oc[ey] CHIcH

IN

Finally, Proposition 21 can be used to get an upper bound of this maximum.
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6.4 . Characterization of P; ((n,, nc)) and P% ((n,, nc)) accounting for UAV state uncer-
tainties

With a TIF of h°YS available, one can use Thick SIVIA to efficiently characterize P& ((ny, nc)), P2 ((nr, ne)),
P& ((nr,nc)), and PY ((nr, nc)).

This section explains which of these sets can be used to replace P; ((nr, nc) , x¥) and P§ ((nr, nc) , x¥),
with x;' being the true value of UAV i state vector, to make the target location estimator robust to UAV
state uncertainties.

6.4.1. Characterization of P; ((ny,n¢))

Assuming the label of the pixel (n, n¢) is either Target or Obstacle, then P; ((nr, nc) ,x") mustinter-
sect the shape of the detected target or the detected obstacle regardless of the UAV state x" e [x}].
According to (6.9), one has P; ((nr, n¢) ,xY) C IP’? ((nr,nc¢)) for all x" € [x]. Consequently, if x}' € [x}],
where x¥ is the true value of the state of UAV i, then one will have P; ((nr, nc) ,x¥) C P3 ((nr, nc)).

Therefore, if we manage to characterize P7 ((n, nc)), then we can adapt Propositions 9 and 15 by
replacing P; ((nr, nc) ,x¥) with P2 ((nr, nc)) in order to retain their useful properties even if the UAV
state vector is uncertain.

For that purpose, we can characterize an outer-approximation of P7 ((nr, n¢)) using the Thick SIVIA
described in Appendix A.4.3. Thus, the set P ((nr,nc)) is the union of the subpavings Bpenumbra and
Bporder-

In what follows, when a set X is built using P; ((nr, nc) ,x"), then, the notation (X)?means that the
set X is characterized by using an outer-approximation of P7 ((nr, n¢)) instead of P; ((nr, nc) ,x"). The
notation (X)” would be used to represent that the set X is characterized using an inner-approximation
of PY ((nr, nc)) instead of P; ((nr, nc) ,x4).

6.4.2 . Characterization of P& ((n,, n))

Assuming the pixel (nr, nc) is labeled Ground, then P§ ((nr, nc) ,x") must be a subset of Xg that is
observed by UAV i for any possible value of its state vector x" € [x}']. According to (6.19) , one has
IP’Zg’V ((nr,ne)) C P& ((nr,nc),x") forallx! € [x{]. Consequently, if x¥ € [x!], where x¥ is the true value
of the state of UAV 4, then one will have P27 ((ny, nc)) C P8 ((nr, nc) ,xY).

Therefore, if we manage to get an inner-approximation of IP’ZC.”’V ((nr,nc)), then we can adapt Pro-
position 14 by replacing P& ((nr, nc) ,x¥) with IP’?’V ((nr,mc)) in order to retain its useful properties even
if the UAV state vector is uncertain.

For that purpose, we characterize an inner-approximation of Pzg’v ((nr,nc)) using the Thick SIVIA
described in Appendix A.4.4. Thus, the set P‘?’v ((nr,nc)) consists only of the subpaving Bi,.

As in Section 6.4.1, in what follows, when a set X is built upon P& ((ny, nc),x"), then, the notation
(X)” means that the set X is characterized by using an inner-approximation of IP’Zg'v ((nr,nc)) instead
of P& ((nr, nc) ,x"). The notation (X)7 (only useful for HSS) is used to represent that the set X is cha-
racterized by using an outer-approximation of IP’?’3 ((nr,nc)) instead of P ((nr, nc) , x4).

Remark 22. One has P§ (%) = (F (x¥) NX,) \ HE. Therefore, assuming that F (x¥) N Xy = F (x¥) N
X,, the characterization of (P8 (V8))" can be achieved by characterizing (F (x4) NXg)" = (B8 (N'))"
and (HZ-CVS)H. The characterization of (P (A ’))V is easier to obtain than U, et (% ((nr, nc)))v. It is
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because (IPf (/\/' ! ) )v implicitly involves all the pixels. Thus, its characterization is less likely to be empty than
with (IP’f ((nr, nc)))v (the latter being an inner-approximation of the portion of the ground observed by only
one pixel instead of the camera). The characterization of (% (N ))V can be performed with (6.19) but with

[0, dmax]
[yir,c} = ( [0, N ) . (6.56)

[0, V7]

The characterization of (HEVS)3 can be performed by evaluating the union of the outer-approximations of
P57 ((n,,nc)) over all pixels (ny,nc) € Y° U yiu .

2

6.5 . Inverse of the measurement function

This section considers the special case where the function h®"> is bijective, and how the inverse
of h®> can be used.

6.5.1. Bijection

Consider a point 277 € F (x¥) \ {z$}. According to (3.17), the coordinates (c, r) in the CCD array of
the projection of the point =77 are

C

i T

c\ _(—fc O Ne/2 xlg/x3;

(o) = 5 o) || @57
1

<

Therefore, the set of points 7% such that pc (27%) = (¢,r)" is

. U 1C Ok~ B
Py (c,r) = (xl Ty, Ty ) eER*xR™ | = F , (6.58)
1 (5 =) % “

= D? (nr, nc)

which is a half-line starting from the origin. Similarly, the set of points 2”7 such that H:cff
is the sphere B ((0, 0,0)", DY (n,, nc)> (not the ball B (., .)).

Consider a point z* € F (x¥) \ {x¢} such that h%S (z*) = (D? (ny,nc),c,r)’ . This point is the
intersection between B ((O, 0,0)", DY (nr, nc)) and p}i} (c,7). Consequently, the inverse of h®V> is

Ne
_ u D? (nra n ) Fb P C) /fc ol u
W ) = =y MAM ((ﬁf )| Ml et (659)
withy = (D? (nr,ne) ¢, T)T and
vier) = (5 =) /19" + (=) 1£) 41 (660



6.5.2 . Exploitation of the bijection

According to the Proposition 23, an inclusion function of (hCVS)_1 can be used to characterize an
outer-approximation of 3 ((nr, nc)).

Proposition 23. [(hcvs)_l} <[y§/‘,’c] ,[x;’]) o PF ((nr,nc))

Démonstration. According to (6.23), one has (h®S) ™ ([ygfsc} ,[x“]) C {(hcvs)_l} <[y§’?c] ,[xf]).Consi—

7
der xY € [xV], (hCVS)_1 ([yg/ﬁ’c} ,x”) is the set of the possible points belonging to the shape of the
detected entity (target, obstacle,...) while assuming that the state of UAV i is xY. Thus, one has

(0%) " ([yfed . x) = {@ € Xo [ 3y € [y¥2] 2 = (1Y) (g,x) }. (6.61)

Since this is true for all x" € [x}], one deduces

()7 [y ) = {w €Xo |3 e [x¥],3y € [y¥o] @ = (k) (y,xu)}, (6.62)
=P ((nr,ne)) . (6.63)
Consequently, {(hcvs)_l} ([Yy?c] ,[xf]) > P ((nr, nc))- O

Note that a similar property can be deduced for IP’?'3 ((nr,nc)) but, in that case, we recall that the
first component of [yfrlc} is [0, dmax] Which can be troublesome.

The reason is that [(hCVS)A] ({yir,c} ,[XU}) is a subset of X (and not X;) containing all points

)

whose distance from x{ is between [0, diax]. This can result in a set that is too large to be useful.

6.6 . Simulation results

This chapter presents an adaptation of the set-membership estimator introduced in Chapter 4
in order to account for the UAV uncertainty. This section presents simulation results related to the
characterization of set estimates that are guaranteed to contain or to not contain a target location
from CVS measurements obtained at a given time instant. Thus, the time index is omitted in this
section.

6.6.1. Simulation conditions

The simulation conditions are similar to those presented in Chapter 4. Five cars are placed in
front of a UAV whose actual state vector (position and attitude only) is x}' = (0,0, 50,0,O,O)T. The
locations of each target are (60,0,0)", (90,0,0)", (120,0,0)", (150,0,0)", and (180,0,0)". Figure 6.2
recalls the considered organization of the targets. The camera produces images that are subsampled
to get an image of size N, x N = 360 x 480 pixels. The bounds of the noise associated to the depth
measurement are taken as [w, w] = [-1%, 1%].

To represent the uncertain UAV state, we consider

+ (Uncertainty 1) [w*"] = [£0.1m, 0.1 m, £0.1 m, £0.1 deg, +0.1 deg, +:0.1 deg]"
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+ (Uncertainty 2) [w*?] = [+5m, £5m, 0.1 m, +0.1 deg, +0.1 deg, +0.1 deg]"

* (Uncertainty 3) [w*?] = [£0.1m, +0.1 m, £0.1 m, 0.1 deg, +0.1 deg, +5 deg]’

* (Uncertainty 4) [w*?*] = [£5m, +5m, +0.1 m, +0.1deg, +0.1 deg, +5 deg]’
and X = x¥ + [w¥], 0 =1,...,4.

The threshold ¢ for Thick SIVIA is set to 2 meters. The algorithm stops bisecting a box if all its
dimensions are smaller than 2 meters. In addition, we assume that IF (x;') N Xg = IF (x}') N Xg, i.e., dmax
is not taken into account.

Segmentation

Figure 6.2 - lllustration of some of the CVS measurements that a UAV can acquire in a situation with
no obstacles. All targets are identified and the pink boxes represent their location in the image.

6.6.2 . Adaption of the set-membership estimator

This section introduces a change of notation regarding the set estimates Pg’j, ng‘ XEE“ Xg’j, XE,

PS (V8), X2, X9, and HEYS to make a clear distinction between the set estimates that are obtained when
the UAV state vector is perfectly known, and the set estimates that are obtained from P3 ((nr, n¢)) and
P;;»V ((nr,nc)). The set estimates introduced in Section 4.2 are adapted as follow :

3
* The union of the P? ((n, nc)) over all the pixels (nr,nc) € [y;]} N Yt provides (H])
3
* The characterization from (ng) of the set estimate containing the location of the identified

target j is denoted (XZ?)H
The set estimates introduced in Sections 4.3 and 4.4 are adapted as follow :
» The union of the P®" ((n,, nc)) over all the pixels (ny,nc) € Y& provides (P (yig))V
+ The union of the P® ((n, nc)) over all the pixels (n,, nc) € Y° U Yt U VP provides (]HIZ.CVS)3
* The characterization from P7 ((nr, nc)) of the an inner-approximation of the r{°-ground neigh-
borhood of all the obstacles is denoted (X°)~

3
* The characterization from (XE?‘) of an set estimate that cannot contain any target location

tg t,m 3
except z;* is denoted (Xi',j >
The set estimates introduced in Sections 4.5 are adapted as follow :

+ The set estimate containing all the possible locations of an identified target j is denoted (ng)
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* The set estimate containing all the possible locations of the targets that are not identified yet is
0\ 3
denoted ( F)

* The set estimate representlng an inner-approximation of the r°-ground neighborhood of all
the obstacles is denoted (X?)?

6.6.3 . Characterization of a set estimate containing no target location

In this section, we only evaluate the capacity of the proposed approach to characterize the portion
of the ground that the UAV has observed while accounting for its uncertain state vector.

First, X2 has been considered for the uncertain state. Figure 6.3 illustrates (P£ (A))7, ie., the
portion of the ground that UAV i may have seen from at least one possible value of its state x" € X;"2
and (P8 (M))", ie., the portion of the ground that UAV i has seen whatever its state x! € X%
(p% (/\/'))v is represented by the green set whereas (P# (/\f'))3 is the union of the sets in green, yellow,
and blue.

The set (P% (A"))” is contained in the true FoV of the UAV (red), i.e., F (x
expected, since (P% (N')) is an inner-approximation of ext? ( ( U) NXg). Similarly, it was to be

)

expected that the set (P% (j\/"))3 contains F (x¥) N Xg because (]P’g (NM'))~ is an outer-approximation
of Uruexe2 (F (x) NXg). The main difference between (P} (M) and (P& (M) is that (P8 (A1))7
is the portion of the ground that UAV i can guarantee to have monitored. The points belonging to
(p% (/\/'))3 \ (P (N'))v may have been observed, but no proof is available.

Therefore, when UAV i exploits assumption (3.54) and the pixels labeled Ground to characterize an
area that cannot contain a target location, it has to characterize two sets. The first one is (P$ (/\/'))V
because it represents the portion of the ground that UAV i can guarantee to have monitored. The
other set is (IHIZ-CVS)3 because it represents the portion of the ground that may have been masked by

#)NXg. This result was to be

a target, an obstacle, or something else. Then, according to Remark 22, (P% (yf))v = (% (N'))v \
(19"

€v9)~,

Figure 6.4 illustrates the set (P% (N'))v that can be obtained for different UAV state uncertainties.
The true FoV of UAV 4, i.e., IF (x}') N Xg, is represented by the set with a black border.

To evaluate the impact of the UAV state uncertainty on the characterization of (P% (N'))V, and
since (P& (M) ¢ (F (x¥) N Xg), we propose to compute the ratio between the area of (P8 (A))”
and the area of IF (x}') N Xg, i.e.,

(6.64)

HFov (Xu,e) _ 4 <(P§ (V) )

' ¢ (F(x{) NXg)

With Uncertainty 1, we have ¢V (Xf’l) = 82.2 %. This means that only 82.2 % of F (x}') N X; can
be guaranteed to have been monitored. This percentage decreases to 66.2 % with Uncertainty 2, then
63.2 % with Uncertainty 3, and 43, 5 % with Uncertainty 4.

6.6.4 . Fully-visible Target location estimation
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Figure 6.3 - Representation of (P‘?’k (N')> where By is in green, Bpenumbra iS in blue, and Byorder is in

yellow. The red set is the true intersection of the UAV FoV with the ground when the state is perfectly
known.

220 - C—JTrue Fov
[ IUncertainty 1
Uncertainty 2
[——Juncertainty 3
[—_Juncertainty 4

200 [
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Figure 6.4 - lllustration of (P% (/\/"))v for different values of UAV state uncertainties. The set with a
black border is I (x}') N X;. The black dots represent the 5 target locations.

Figure 6.5 illustrates three different evaluations of the set containing the location of an identified
target j. Here, only the target whose location is (60,0, 0)" is considered. Uncertainty 4 has been used
to characterize the following sets.

The green set is XE"?obtained without UAV state uncertainty. The set with a red border and the
3 3
blue set represent (XET) where (IP§J> is obtained as the union of the sets P7 ((nr,n¢)) over all

pixels (nr,n¢) € [y;j] N y;. The difference between the set with a red border and the blue set is how
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P2 ((nr, nc)) is characterized. For the set with a red border, P ((nr, n¢)) is obtained by only evaluating

i
[(hCVS)_l} ({YE/?c] ,[x?]).Thus, PZ ((nr, nc)) is only one box. For the blue set, {(hCVS)_l} <[y§/;’c} ,[xf])
is used as the starting box for Thick SIVIAin order to get a smaller outer-approximation of P3 ((ny, nc)).
The green set is only here for the sake of size comparison.

The blue set is (a little) smaller than the set with a red border. This result was to be expected
since we use Thick SIVIA to remove a portion of [(hCVS)fl} ([ygfgc} : [xf]) that are notin P7 ((nr, nc)).
Nevertheless, the set with a red border is obtained in 0.08 second, whereas the blue set is obtained
in 119.03 + 0.36 seconds . This drastic increase in computation time is because UAV i has to run a 3D
Thick SIVIA to get an outer approximation of P ((nr, n¢)) for every pixel (nr,nc) € [yfj} N Y5, which
is around 400 pixels in this case.

20 I—(x™)” without Thick SIVIA 20} |3 (x!™) " without Thick SIVIA
[ (x4 with Thick SIVIA 1y, { — e N
15t 15f
10} 10+
5 5
E ° E
> 0Ff > oFfF
5 5
-10r H -10F
-15F L J[ -15+ L J[
50 55 60 65 70 50 55 60 65 70
X (m) X (m)

3
Figure 6.5 - Comparison between two different approaches to get an outer-approximation of (XzT)

The set with a red border is obtained by an approach that does not use Thick SIVIA whereas the blue
setis obtained with an approach that uses Thick SIVIA. The green set represents the set XE’? thatwould
be obtained if there are no UAV state uncertainties. The black dot represents the target location.

Figure 6.6 compares the set estimates that are would be obtained without UAV state uncertainties,
with the set estimates that are obtained when Uncertainty 1 is considered. The set estimates P# (%)

and (IP’? (yig))v are represented by the blue sets, p, (ng) and <pg (Pg’j))a are represented with by

3
the sets with a red border, and er]“ and <X§T) are represented with the sets with a green border.

The first line of Figure 6.6 is dedicated to the set estimates obtained without UAV state uncertainty,
and the second line is dedicated to the set estimates obtained while taking into account the UAV state
uncertainty.

3
One can remark that, even though X' and (XE?) look similar, P§ (V€) and (P¢ (3€))” are not

1. Those results have been averaged over 10 independent simulations run on a computer equipped with a
Intel(R) Core(TM) i7-10875H 2.30GHz
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the same. The reason lies in the characterization of (vas)a. Due to the UAV state uncertainties, UAV ¢
must evaluate an outer-approximation of the union of the portions of the ground that may have been
masked by a target for each possible value of its state vector. Thus, (HiCVS)H is larger. Consequently,

3 3
even though XET and (XET) are almost the same, a smaller portion of (XET) can be removed by

using (P& (V&))" to reduce the localization uncertainty.

distance to UAV: 78m distance to UAV: 102m  distance to UAV: 130m  distance to UAV: 158m distance to UAV: 186m
10 10 10 10

5 5 \ 5
-
0 -r) 0 0

5 5 -5

Y (m)
Y (m)

E
>

Y (m)

60 70 90 100 115 120 125 130 150 160 180 190
X (m) X (m) X{(m) X (m) X (m)

distance to UAV: 78m distance to UAV: 102m  distance to UAV: 130m  distance to UAV: 158m distance to UAV: 186m
10

10 10 10 10

~ 5 ~ 5 ~ 5
E E E
> 0 >~ 0 > 0

-5 -5 -5

_5
E
N

-5

60 70 90 100 115 120 125 130 150 160 180 190
X (m) X (m) X (m) X (m) X (m)

Figure 6.6 - Comparison of the set estimates that would be obtained without UAV state uncertainties
(first line), with the set estimates that are obtained while considering an uncertain UAV state vector

(second line). For both lines, P& (V&) and (P8 (1%))" are represented by the blue sets, Py (]P’ij) and

3 3
(pg (IP’EJ)) are represented with by the sets with a red border, and XET and (XET) arerepresented
with the sets with a green border. The black dots represent the target locations.

Figure 6.7 illustrates the performance of the set-membership estimator to provide an accurate
estimation of the target location while accounting for UAV state uncertainties (Uncertainty 1) (right
part of the figure). This performance is compared with the performance of the same estimator, but
when the UAV state vector is precisely known (left part of the figure).

3
As we expected with Figure 6.6, ¢°R (XE?’) and ¢R <<X§rj“> > are almost the same. Nonetheless,

3
when UAV ¢ characterizes the set estimate <X§j> during the correction step, c.f., (4.32) (or (4.46)
for a simplified version of the correction), since (P (J€))" is smaller that P (1) , a smaller portion

3 3
of (XE?‘) is removed. Thus, as indicated by the metric ¢°R <<X§j) ) (the black curve in the right

subfigure), the localization uncertainty is not reduced as much as with ¢} (ng) (the black curve

in the left subfigure). For instance, if we only consider the target whose location is (60,0,0)T, ie.,
its distance to the UAV is around 78 m, the localization uncertainty without UAV state uncertainty is
around 2.39 m whereas the localization uncertainty when an uncertain UAV state vector is considered
i$4.66 +0.49 m
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3
Strangely, the distance between the actual target location and the barycenter of (X%) , Le.,

3
s ((ng) > (in red), is smaller when we consider an uncertain state vector. The reason behind this

3

phenomenon is that (pg (IP)EJ)) contains az;’g because the UAV is able to get some measurements
3

from the sunroof of the cars. Consequently, (pg (IP’L)) is likely to be centered around :c;.'g, and since

- em\7 g vENY (st )\ : tg
a small portion of (Xzf’j ) is removed by (P% ()F)) ", (Xm.) is also likely to be centered around z;°.

10 no UAV state uncertainty 10 - with UAV state uncertainty
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Figure 6.7 - On the left : Mean value and standard deviation over 100 simulations of ¢®R (XET) (in

green), ¢k (X%) (in black), and ¢° (XEJ (in red). The UAV state vector is assumed perfectly known.

3
On the right : Mean value with standard deviation over 10 simulations of ¢°R (<X§T> ) (in green),

3 3
qﬁeR <<X§]> >(in black), and ¢° <<X§j> ) (in red). Uncertainty 1is considered to model the UAV state

uncertainties.

Figure 6.8 illustrates the impact that an uncertain UAV state vector has regarding the usefulness
of assumption 3.11.

With Proposition 18, UAV i can exploits er]“
the location of any target except a:;'g. In Chapter 4, we have shown with Figure 4.19 that this proposition
can be used to prove that almost all the ground that is hidden behind a target cannot contain the
location of another target. This result is useful to further reduce th

to characterize a set estimate ijm that cannot contain

3 3
Nonetheless, as illustrated in Figure 6.8, the characterization of (XET) from (XET) , see Appen-
dix A.2, is almost useless, even with 7% = 8 m. There are two reasons for this. The first one is that the

3
characterization of (Xﬁ?‘) relies on an inner-approximation of the intersection of all the discs of ra-
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3 3
dius r which have their center in (XET) . Consequently, since (XET) is alittle bigger than Xg'g‘,then
this intersection is either smaller or empty. The second reason is that (]1-]I§:V5)3 is larger. Therefore, if

3 3
g <t . . . . .
we have (]P)Z. (y;)) C (Xl) , I.e., the portion of the ground masked by target j may contain an uni-
3 3 3
dentified target, then (X§T> must be even larger than X" to safely remove (Pzg (yfj)) N (XE) :

3 3 3
That will not be the case. In fact 4 ((XET) : (XE) N (IF’? (y;)) ) would be even smaller than

oA (Xt.'m X;k NPé (yzt])) where

2450
2 (X1,Xo) = 1006 (X1 N X2) /¢ (X1) (6.65)

evaluates how much X, overlaps Xj.
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Figure 6.8 - Representation of the set estimates (P} (yf))\’ (in blue), (XE) N (IP’? (y}]» (in yellow),

3
and(g’g‘) (in green). The black dots are the different target locations. Here, r* =8 m

6.6.5 . Inner approximation of the r£°-ground neighborhood of an obstacle

Figure 6.9 provides some results regarding the capacity of a UAV with an uncertain state vector
to obtain an inner-approximation of the r°-ground neighborhood of an obstacle. Different values of
r© are considered. The UAV state uncertainties that are considered for that figure are :

¢ [w*] =[£0.1m,+0.1m, 0.1 m, £0.1deg, 0.1 deg, +-0.1 deg]T (Fig A)

« [w¥]=[£1m,£+1m,4+0.1m,£0.1deg, +0.1 deg, £0.1 deg]T (Fig B)

« [W¥]=[£2m,+2m,+0.1m, £0.1deg, +0.1 deg, £0.1 deg]T (Fig Q)

In Figure 6.9-A, the UAV is able to characterize (X,?)3 for each r{°. Nonetheless, as the UAV state un-
certainties increase, the UAV has more difficulties in characterizing the r°-ground neighborhood of
close obstacles. This is even more the case when we look at Figure 6.9-C. The UAV state uncertainty is
mainly about the UAV location, and we only considered an uncertain location of £2 m. Nonetheless,
even with this relatively small UAV location uncertainty, the UAV is unable to characterize (Xg’)3 for
small values of r%. This is a problem because, since we cannot assume a too large safety distance
between the targets and the obstacles, if the UAV is unable to characterize (X?)3 even for close obs-
tacles, then it cannot gain environmental knowledge during its exploration of the Rol. Consequently,
the performance of the implemented strategy to solve the CSAT problem is reduced, c.f., Chapter 5.
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Figure 6.9 - Comparison of (Xg’)3 for different values of r{° and UAV state uncertainties. The red dot
represents the actual location of the UAV and the set with a black border represents I (x}') N Xg.

6.7 . Conclusion

This last chapter considers that the UAVs tasked to search for an unknown number of targets
within an unknown environment no longer have access to an accurate estimation of their state vector.
Thus, when a UAV processes its available CVS measurements to update the set estimates that are
guaranteed to contain the location of a target, it has to account for its uncertain state vector. This
is because the CVS measurements are initially expressed in a frame attached to that UAV whereas
the resulting set estimates are required to be expressed in the reference frame F. Consequently, the
target location estimator introduced in Chapter 4 must be adapted to be robust against the UAV state
uncertainties.

Nonetheless, the set estimates characterized and used by the target location estimator are all
built on the set estimates P; ;. ((nr, nc)) and Pik ((nr,nc)). Consequently, we do not need to adapt
the entire algorithm but only the characterization of P; ;. ((nr, nc)) and IP’f’k ((nr,nc)). This chapter pre-
sents an approach to characterize a new version of these set estimates, denoted Pik ((nr,n¢)) and
Pi’,j ((nr,nc)), that carry the same useful properties of their predecessors while accounting for an un-
certain UAV state vector. The method used to characterize Pik ((nr,mc)) and ]P’f”,j ((nr,nc)) relies on
interval analysis. The characterization of P}, ((nr,nc)) and IP’E’,\: ((nr,nc)) can determined by solving
a set inversion problem. Thus, SIVIA may be used to approximate these set estimates with a paving
of non-overlapping boxes. Nonetheless, since this set inversion problem involves an uncertain vector
of parameters (here : the UAV state vector), SIVIA is too computationally expensive. Instead, we use
Thick SIVIA to solve this problem efficiently. To use Thick SIVIA, we introduce a function that relates
a point of the Rol to a depth measurement and the coordinates of a pixel containing the projection
of that point in the CCD array while making the dependency explicit in the UAV state vector. A me-
thod to obtain the thick inclusion function of the measurement function is presented. Then, Thick
SIVIA uses this thick inclusion function to provide either an inner-approximation of ]P’Zg”,\: ((n,nc)) or
an outer-approximation of Pik ((nr,nc)) more efficiently than with SIVIA.

Several simulations have been performed to evaluate the performance of the target location es-
timator when it has to be robust to UAV state uncertainties. The approach is still able to characterize
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from CVS measurements a set estimate that is guaranteed to contain the location of an identified
target. Nevertheless, the accuracy of the estimated target location is clearly reduced. There are two
possible reasons for this loss of performance. The first one is, since the UAV state vector is uncertain,

(XE’L%)E is larger than XETk Then, the UAV has some difficulties in exploiting negative information,
i.e., the presence of an obstacle, or the detection of the ground, to characterize set estimates that are
guaranteed never to contain a target location. For instance, in Figure 6.9, the UAV may be unable to
exploit pixels labeled Obstacle to characterize a non-empty set around the detected obstacles such

that it never contains a target location. Additionally, the use of Thick SIVIA to process CVS measure-
3
ments might be a bad approach. According to Figure 6.5, the characterization of (XET,C) involves a

sequential execution of Thick SIVIA in a 3D space to get IP’E,C ((nr,n¢)) for each Target-labeled pixels
(nr,nc) € Vi, N [ ;j k] Since Yt N [ Z.tj k} may contain hundreds or thousands of pixels, the charac-

3
terization of (XE%) would be too demanding for real-time applications.
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Chapter 7 - Conclusion

This thesis addresses the problem of searching, identifying, localizing, and tracking an unknown
number of mobile ground targets in an unknown and cluttered Region of Interest (Rol) using a fleet
of cooperative UAVs. Each UAV embeds a Computer Vision System (CVS) consisting of a camera and
image processing algorithms. The CVS processes the information collected from the perceived envi-
ronment in order to provide some measurements such as a labeled image, a depth map, or a boun-
ding box when a target is identified. These CVS measurements are related to the presence or the
absence of a target or an obstacle and, thus, can be exploited to solve a localization problem in order
to estimate the possible locations of the targets. Once the CVS measurements available at a given
time have been processed, a UAV exploits the updated knowledge about the possible locations of the
identified and unidentified targets as well as its knowledge about the environment, i.e., the location
and shape of the obstacles, to update its trajectory. Moreover, if the UAV can communicate with its
neighbors, then it can update its own knowledge and its trajectory in a cooperative fashion.

To address this problem, formalized as a Cooperative Search, Acquisition, and Tracking (CSAT) pro-
blem, we consider a set-membership approach. Hence, we model the measurement noise and other
uncertainties as bounded with known bounds. This allows to characterize the set estimates that are
guaranteed to contain the location of the targets, provided that the hypotheses on the measurement
models and noise bounds are satisfied. An alternative approach would be to consider stochastic as-
sumptions on the measurement noises. Nonetheless, these assumptions, i.e., the known bounds for
the set-membership approach or the knowledge of the probability density functions for the stochas-
tic approach, are difficult to justify. Moreover, the CVS embedded in each UAV often involves deep
learning algorithms. Consequently, it is difficult to get measurement models and to characterize the
measurement noise of these algorithms since their performance high depends of the training dataset
on which they were trained.

To address these issues, we proposed in Chapter 3 a formalization of the CSAT problem. This
formalization includes assumptions about the structured unknown Rol, the targets, the UAVs, and the
embedded CVS. For instance, the embedded camera is modeled by a simple and common geometric
model, i.e., the pinhole model without distortion. Regarding the CVS, several assumptions and models
have been introduced to describe how the measurements provided by the CVS can be related to the
environment, the targets, and the obstacles. The validity of these assumptions and models is arguable,
depending on specific scenario at hand, but they are mild enough to model the information contained
in the CVS measurements that can be used to localize the targets. Among the proposed assumptions,
the one that has been favored in this thesis is that if a pixel is labeled either Target, Obstacle, or Ground,
then that pixel is assumed to be illuminated by light rays stemming only from a target, an obstacle,
or the ground respectively. Besides, Ground-labeled pixels are used along a reasonable observation
condition between a UAV and a target in order to get a negative measurement, i.e., a measurement
that can be used to prove the absence of a target. Additionally, even though this thesis considers
only an RGB camera to collect information from the environment, the proposed framework can be
extended to include other sensors and algorithms that have not been covered in the thesis, such as
thermal cameras.
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These assumptions and models are then used to solve a localization problem. Chapter 4 presents
the first (to the best of our knowledge) set-membership target location estimator exploiting directly
multiple measurements provided by a CVS. The proposed estimator exploits the CVS measurements
related to the presence of an identified target to characterize a set estimate that is guaranteed to
contain the location of that target. The estimator also exploits CVS measurements related to the obs-
tacles and the ground to characterize two set estimates that are guaranteed not to contain the location
of a target. Once a UAV has characterized these sets, it updates its previous knowledge regarding the
potential locations of identified and unidentified targets through a prediction-correction process. Ad-
ditionally, if the UAVs have enough computational power, then the CVS measurements can be used
to map the unknown Rol using a 2.5D mapping approach, i.e., with an Occupancy-Elevation Map. The
purpose of this map is mainly to get a rough approximation of the location and shapes of the a priori
unknown obstacles. Several simulations have been performed to evaluate the performance of the
target location estimator by only considering measurements obtained at a given time instant, and
without a priori. These simulations show that the estimated target location remains accurate (under
2 m), even when the depth measurement noise is large, or when the a priori known target dimensions
are inaccurate.

Once a UAV has updated its knowledge by exploiting the CVS measurements and the information
broadcast by its neighbors, it updates its trajectory to keep searching for new targets while main-
taining an accurate estimate of the location of the identified targets. Nonetheless, since the targets
are assumed to outnumber the UAVs, a trade-off between searching for new targets and pursuing
already identified targets to maintain an accurate estimation of their location must be found. To ad-
dress this problem, we consider a control design based on a distributed MPC. Chapter 5 presents this
control strategy. Our aim is to update the trajectory of a UAV such that it minimizes the uncertainty
of the estimated location of both identified and unidentified targets. Thus, a criterion that translates
this objective is introduced, and the MPC searches for the sequence of control inputs that minimizes
this criterion. In this chapter, the proposed control strategy is built upon the one presented in (

). In fact, the proposed simulations evaluate the performance of the criterion proposed in
( ) but with 3 different levels of knowledge regarding the environment. The first level, i.e.,
the one considered in ( ), assumes that no environmental knowledge is available to eva-
luate the impact of a sequence of control inputs on the reduction of uncertainty. This first level leads
to trajectories that do not account for the presence of obstacles and, thus, leads the UAVs towards
locations where obstacles may occupy a huge part of their field of view. The second level considers
that the knowledge acquired from the obstacles that are currently under observation can be used to
better evaluate the impact of a sequence of control inputs on the reduction of uncertainty. This level
enables the UAVs to take the presence of some obstacles into account, while evaluating how they may
reduce their field of view in the future. Unfortunately, since there is no mapping, this approach cannot
predict the impact of the obstacles that are not currently under observation. To address this problem,
a third level is considered. This level takes advantage of a 2.5D map to predict the portion of the Rol
that a UAV would not observe due to the presence of a previously detected obstacle. This prediction
of the hidden areas is used to search for the sequence of control inputs that lead to interesting points
of view to observe an area that may contain a target while avoiding obstacle occlusions. Simulations
in an urban environment have shown that this third level always provides the best target search and
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tracking performance. In addition, a new criterion is proposed to enhance the target search within
a cluttered environment. Nonetheless, the simulations show that this improvement in target search
comes at the cost of a slight decrease in the capacity of the UAVs to maintain an accurate estimation
of the location of identified targets.

Chapter 6 presents the final work of the thesis. Itimproves the target location estimator presented
in Chapter 4 in order to make it robust to the state uncertainty of the UAVs. The formalism introduced
in Chapter 3 is unchanged. Only the method to characterize the set estimates that either are guaran-
teed to contain the location of a target or are guaranteed to not contain a target location is adapted.
This adaptation is done by using interval analysis and thick intervals in order to solve this problem
of robustness as a set inversion problem. Nevertheless, even though the simulations show that the
proposed adaption contributes to robust target location estimates, the proposed method requires
too much time to be used in an on-board system.
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Chapter 8 - Perspectives

This chapter presents some research directions that may extend the work presented in this thesis.
Each of the following sections highlights a limit of the assumptions, models, and algorithms that have
been considered. Then, differentideas are proposed to address these problems while providing some
insights on the difficulties that may be encountered.

8.1. Imperfect target detection and identification

In Section 3.5, we introduced some assumptions and models to describe the way measurements
provided by the CVS can be related to the environment. Those CVS measurements consist of a depth
map, an RGB image, a classified image, and a set of bounding boxes locating the identified target in
the image. We assumed that the depth map has the same resolution as the image. This can be the
case depending on the type of CVS used, see Section 2.2.

Regarding the image segmentation, we considered, according to ( ), that the pixel
classifier is able to evaluate the confidence it has on attributing one of the three considered labels,
i.e., Ground, Target, or Obstacle, to a pixel. If the confidence is too low, then the pixel is considered
Not-labeled and, thus, not used in most of the presented algorithms.

We also consider that a target detector is used. A part of this information is a bounding box that
correctly localizes the target in the image. Using (3.53), the imperfection of target detectors, i.e., with a
bad loU (Intersection over Union) score, can be handled. Those imperfections may come from a poor
training dataset regarding the actual scenario, or a target located in a crowded place. Then, based on
the algorithm presented in ( ), we assumed that as soon as a bounding box is available
the target is identified. Nevertheless, we do not account for target misidentification.

8.1.1. Proposed approach

Trees have not been considered in this thesis because (i) they are not Z-convex and (ii) Webots
have some issues in generating correct CVS measurements when a tree is within the FoV of a UAV.
Regardless of this problem, one would be interested in using the Tree-labeled pixels Y'"®® to charac-
terize and predict areas where the UAV would have more difficulties to detect/identify a target. This
additional environmental knowledge may be represented by a set like X7, , or another OEM to predict
(and avoid) these areas occluded by a tree during the trajectory update.

Regarding the target identification, two problems can be considered :

+ how to model the capacity of a UAV to identify a target, and with which confidence

* how to manage non-identification and misidentification
Regarding the first problem, one may assume to have access to y;m and compute the ratio

card (y}’jJ€ N thk]) Jcard (Vi N D)thk]) (8.1)

to estimate, with a given threshold, if the target has been identified or not. Otherwise, one may use
the geometric approach developed in ( ), or the stochastic approach presented
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in ( ). Another possible approach is the following : if the UAV has detected but not
identified target j, with j € E;k_l, then if F (x;*k) N Xg has a non-empty intersection with X;j’k'k_l

and an empty intersection with X;k‘k_l and XE,Z,kUa—l fort e Eg’k_l \ {j}, that one can conclude that
the only possible target in the sensing range is target j

However, non-identification is not a problem with our approach because, even if target j is not
identified, the projection of its location on the image, i.e., p. (xgk, w;gk) cannot belong to a Ground-
labeled pixel, see Section 3.6 of Chapter 3. Therefore, the location of a non-identified target j cannot
be removed from X[ , ., | or Xz’k‘k,l by P, (yfk)

For misidentification, one can take inspiration from ( ) to improve the target
location estimator. Additionally, in ( ) @ robust approach has been developed (not
presented in this thesis) to estimate the location of a target from a list of set estimates where some
of them are outliers, i.e., there is a target misidentification or the measurement noise bounds have
been violated. This list is the collection of set estimates provided by neighboring UAVs, e.g., Xt‘,j,k|k—1’

7

XET,{ and erjnk with £ € N \ {i}. Then, instead of using the basic intersection, as in Section 4.5.3
of Chapter 4, one can use the ¢-relaxed intersection to obtain a set that has a high chance of contai-
ning the target location while identifying which UAV has generated the outliers. Figure 8.1 illustrates

different set estimate intersections while considering an outlier.

TR

No outlier Soft outlier Hard outlier

Figure 8.1 - Estimation of the location of a target (black dot) from several set estimates. The green
sets are the set estimates that are guaranteed to contain the target location. The orange set estimate
represents an outlier. The left part shows a situation where no outlier is present. The middle part
shows a situation with one outlier. However, since the intersection of the 3 sets is not empty, the
error cannot be detected. The right part shows a similar situation but where the intersection of the 3
sets is empty. The presence of the outlier can be detected and rejected using ¢-relaxed intersection.

8.2. Uneven ground

One of our assumptions regarding the environment was to assume that the ground X is a flat
horizontal plane of known altitude. This assumption has been used to characterize Pik ((nr,nc)). This
set is used to either characterize portions of the ground that are free of obstacles, i.e., IP’Z%,C (yfk)
without accounting for the depth map, or approximate portions of the ground that are hidden be-
hind an obstacle H}>. Additionally, Xg allowed to evaluate HZM (mzllsﬂlk)' with 7 =1,... h. With an
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unknown uneven ground Xg, the UAV is no longer able to get those sets.

8.2.1. Proposed approach

As illustrated in Figure 8.2, Webots is able to create an uneven ground. Thus, a new challenge is
how the UAVs can gain knowledge regarding the ground from CVS measurements.

One can adapt the proposed approach to approximate the location and shape of the obstacles
using the OEM to approximate the shape of the ground. With this approach, empty cells of the OEM
will no longer have an elevation of 0. Instead, IP; . ((nr, nc)) can be used for each Ground-labeled pixel
to estimate locally the height of the ground, and update the map accordingly. The OEM is then used
to approximate the uneven ground in order to characterize Pik ((nr,nc)) or IHI?,EM.

Nonetheless, assuming an unstructured uneven ground may lead to situations where Assump-
tion 3.54 is no longer verified. This assumption is mandatory for the proposed target location estima-
tor since it allows to characterize a set that is guaranteed to contain no target location. Consequently,
to apply the target location estimator detailed in this thesis, one may have to assume a structured
uneven ground.

Figure 8.2 - lllustration of the city setup with uneven ground created on Webots for the simulation in
Chapter 5.

8.3 . Relaxation of the Z-convex obstacle assumption

One of our strong assumptions is (3.1) which, according to (Zhang et al., 2023), considers that all
the obstacles in an urban environment are Z-convex. This assumption strongly limits the possible ap-
plication scenarios since tunnels, bridges, or buildings similar to the Pisa Tower may be encountered.

8.3.1. Proposed approach
Assumption (3.1) has been made so that UAV i is able to process any Obstacle-labeled pixels to
define an area in the neighborhood of the obstacle footprint, i.e., S;, N Xg, that is guaranteed to not
contain any target locations. Besides, we only consider ground targets. Consequently, they only evolve
around the base of the obstacles. Thus, when UAV i characterizes IP; . ((nr, nc)) for an Obstacle-labeled
pixel, then UAVi can evaluate if (nr, nc) is looking at the base of the obstacle. Consequently, by defining
the base of an obstacle as

soPase = §° N {x € Xg | x5 € |00, h']}, (8.2)
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since a target is assumed to never collide with an obstacle, then if the UAV is able to prove that an
Obstacle-labeled pixel is related to the base of an obstacle, this pixel can be used to characterize of
72,6 This approach allows the presence of T-shape or V-shape obstacles within the Rol since the roof’
of those obstacles is not taken into account, see Figure 8.3.

Figure 8.3 - lllustration of a T-shape obstacle observed by a UAV. The green area is
{x € X¢ | x5 € [0,h']}. Pixels p, and p, are labeled Obstacle. p; cannot be related to the base of the
obstacle because P; ; (p;) (purple set) does not intersect with S%°3¢. p, can be related to the base of
an obstacle because P; ;. (p,) (orange set) is included in the green area.
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Chapter A - Appendix

A.1. Alternative target location estimator

This appendix considers how to design the target location estimator presented in Chapter 4 when
either Assumption 5 or Assumption 6 is considered instead of Assumption 4. Since the only modifica-
tion to the estimation process is the change of the assumption used to model how a pixel label can
be related to the environment, only the approaches to characterize the sets XETk X?;, and Xﬁ?‘k are
adapted. The prediction-correction process is unchanged. To lighten the notations in this appendix,
the time index is omitted.

A.1.1. Target localization - Assumption 2

Consider that Assumption 5 is used for Target-labeled pixels. This assumption states that if a pixel
(nr,nc) is labeled Target, then there exists at least one light ray v € V! (nr,nc) that illuminates the
pixel (nr, nc) while stemming from a detected target. Nonetheless, V! (nr, nc) C V; (nr, nc) is unknown.
Consequently, only V; (nr, n¢) can be considered and, thus, the definition of P; ((nr, n¢)) introduced in
(4.1) is unchanged.

Nonetheless, the proof of Proposition 9 must be adapted.

Proposition 24. If (n,,nc) € ), then there exists { € N* such that P; ((nr,nc)) NS* (x}) # 0.

Démonstration. If (nr,nc) € VY, then according to Assumption 5, there exists a target £ € A" such
that there exists v € V! (nr,nc) C V; (nr, nc) such that 3z* € S* (x}) C X such that dy, (z, {z*}) =
DY (nr, nc). This leads to have d,, (z$, {z*}) € [D;] (nr, nc). In addition, as (nr, nc) € V¥ C Vi, then we
have ﬁDi (nr,nc) < dmax and dy, (x5, {x*}) < dmax according (3.36). Therefore, * € F (x}'). Finally,
from (4.1), we have z* € P; ((nr,n¢)). S0 B; ((nr, nc)) NSt (xh) # 0. O

The strong hypothesis in Assumption 5 is that the light ray v that is used to define DY (nr, n¢) is
constrained to belong to V! (nr, nc) (assuming that the pixel (nr, nc) is labeled Target). If we do not
have this strong hypothesis, then we might be in the case where the depth measurement is related
to an entity (ground, obstacle,...) behind the detected target. See Figure A.1 as an illustration of this
issue.

Then, Proposition 10, Corollary 11 and Proposition 13 are unchanged.

A.1.2. Target localization - Assumption 3

Here, Assumption 6 is considered for the Target-labeled pixels. This assumption states that all the
information associated to a pixel (nr, nc) can be related to the information that is carried by the light
ray illuminating the center of (n, n¢), i.e., v (nr, n¢). Compared to Assumption 4 and 5, Assumption 6
clarifies which direction v € V; (nr, n¢) should be used to describe how a Target-labeled pixel can be
related to the environment. Consequently, the definition of P; ((nr, nc)) can be adapted into

P;i ((ne,ne)) ={x € F (%) N Xo | dycnyne) (5, {z}) € [Di] (nr,nc) } - (A1)
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[Vi,] Nyt

Figure A.1- lllustration of an issue with P; ((nr, nc)) (in orange) for a target-labeled pixel (n;, nc) € YN
[y;j} while considering Assumption 5 but without assuming that the vector v such that DY (n,, n¢) =

p (z$,v) belongs to V! (nr,nc) (the purple set). Without that assumption, even though the pixel is
labeled Target, P; ((nr,nc)) does not intersect with the shape of a target.

Vi n yf/ ~

\ B, (e, nc))

3t
RN
N

Figure A.2 - Illustration of the sets P; ((nr, nc)) (in orange) for different target-labeled pixels (nr, n¢) €
yin [y;]} while considering Assumption 6

Figure A.2 illustrated this new definition of P; ((nr, nc)) for three pixels labeled Target.
Then, the proof of Proposition 9 must be adapted

Proposition 25. If (n,, nc) € ), then there exists { € N* such that P; ((n,, nc)) N S* (x}) # 0.

Démonstration. If (nr,nc) € V5, then according to Assumption 6, there exists atarget ¢ € N''such that
there exists a point z* € S (x}) C X, such that dye(n, no) (25, {2*}) = DY (nr, nc). This leads to have
Ao (e me) (X5 {az 1) € [Dy] (nr,nc). In addition, as (nr,nc) € J) c Vi then we have 1+wD (nry,me) <
dmax and d (xf,{x*}) < dmax according (3.36). Therefore =* € F (x}'). Finally, from (4.1), we have
x* € P; ((nr,nc)). So P; ((nr,nc)) NS (x5) # 0. O

Then, Proposition 10, Corollary 11 and Proposition 13 are unchanged.

A.1.3 . Exploiting CVS information to characterize a target-free area

In addition of the set estimate XET with j € D%, Chapter 4 introduced 3 more set estimates. The
set estimate P% ()#) is characterized from Ground-labeled pixels in order to get an area that cannot
contain any target location. The set estimate X? is another set that cannot contain any target location

due to the presence of an obstacle, and is characterized using Obstacle-labeled pixels. Lastly, the set
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estimate XE’? represents an area that cannot contain the location of any target except the location of
target j.

According to 3.54, the set estimate IP’? (yf) cannot be characterized with Assumption 5 or Assump-
tion 6. Then, the characterization of X? relies on the characterization of the set P; ((nr, n)) for pixels
labeled Obstacle. If Assumption 5 is used for them, then nothing changes. If, instead, Assumption 6 is
considered, then the characterization of S ((n,, n.) , &) is simplified since P; ((nr, nc)) will be a simple
segment instead of a set. Lastly, the characterization of XE:T relies on XET Thus, nothing changes as
well.

A.1.4 . Simulation

To compare Assumption 4, Assumption 5, and Assumption 6, we consider the simulation condi-
tions as in Section 4.7.2 of Chapter 4. Figure A.3 illustrates the performance of the target location
estimator for each of these assumptions while considering the metrics ¢°? and ¢°. Note that since
P; ((nr,nc)) is the same for Assumption 4 and Assumption 5, those two assumptions are plotted to-
gether in blue. The performance related to Assumption 6 is plotted in green.

Even though the target location estimation uncertainty, i.e., ¢® <X§Tk> is lower with Assump-

tion 6, ¢} <X§jk> and ¢° (XEM) are very similar. There is no real advantage to consider Assump-

tion 6 instead of Assumption 4 or Assumption 5.

8 Localization uncertainty in function of pixel classification assumption
—O— H1/H2
H3

o
T

3
T

IS
T

Location Uncertainty (m)
w
T

N
T

60 80 100 120 140 160 180 200
Distance to UAV (m)

Figure A.3 - Mean value with standard deviation over 100 simulations of ¢®R (XETO (dashed lines

- curves at the top of the figure), ¢} (X?

z,j,k> (solid lines - curves in the middle of the figure), and

¢ <X§ j k) (broken lines - curves at the bottom of the figure). The green curves are for Assumption 6.
The blue curves are for Assumption 4 and 5.

A.2. Practical implementation

This section describes an approach to get an outer-approximation of the set estimate XF'Tk intro-

(3

duced in Section 4.2, an inner-approximation of sz and XE'?,C introduced in Section 4.3.2 and 4.3.3,
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an inner-approximation of Pfk (yfk) introduced in Section 4.3.1, and an inner-approximation of H¢/>

i,k
introduced in Section 4.4.
The determination of X7, X?, and X', require the characterization of P; ; ((nr,nc)) and S (1, ne) , 7).
Thus, their characterization is explained as well.
To lighten the notations, the time index is omitted.
The operations (union, intersection, ...) between 2D sets described as polygons are performed
using the polyshape library of MATLAB.

A.2.1. Characterization of P; ;. ((nr, n¢))

Consider a pixel (nr,n¢). The set P; ((nr, nc)), as defined in (4.1), is the intersection of /) the set of
points between the sphere of center z¢ and radius —=D; (nr,n¢) and the sphere of center z$ and

1+w
radius ﬁDi (nr,nc) and i) the half cone with apex z¢ and edges M%”Z?,c' with ¢ = 1,...,4. The
vectors vf;’ =07 (Torc,yore) for € =1,...,4, with
(nc,nr - 1) ) (nC - 17nl’ - 1) 7}
Torc € .
( 4,r,c yﬂ,r,c) { (nc’ nr) ’ (nc o 1’ nr)

See Figure 3.7 where the 4 vectors vﬁ are represented by the blue lines.

A truncated pyramidal outer-approximation P; ((nr, n¢)) of P; ((nr, n¢)) is easily built. For that pur-
pose, consider the angle 6, between the vﬁc with v&77 (n¢, ny), the unit vector defining the light-ray
illuminating the center of the pixel (nr, n¢). The eight vertices defining B; ((ny,nc)) are

F i
&? = $§ + ﬁDz (nr, nc) M]_—ic’U&r’c, (AZ)
1 1 -
=P _ F
T, = x; + m@Di (nr, mc) MFevy o (A.3)
with ¢ € {1,2,3,4}. The set P; (nr,nc) = {z,...,z},2",..., 2|} contains the vertices defining

P; ((nr, nc)).

A.2.2 . Characterization of X:;“k

The evaluation of XE’? requires the determination of the projection p, (IP%) of]P’;j on the ground
Xg, where P} ; is the union of the sets P; ((nr,nc)) over all (nr,nc) € [y;]] N ), see Proposition 13.

Therefore,p, (]P’gj) is the union of the sets pg (P; ((nr, nc))) over (nr, nc) € [y;]} NVt Since P; ((nr, nc)) C
P; ((nr,nc)) and P; ((nr, nc)) is a convex set, an outer-approximation Ofpg (P; ((nr,mc))) is obtained by
characterizing the convex hull of p, (P; ((nr, nc))). Finally, an outer-approximation of XE?‘ is obtained
as Xg N (pg (Pij) ® Ng ({0},7Y)), with pg (P; ;) being the union of p, (P; ((nr,nc))) over (nr,nc) €
oz

Since Ng ({0} ,7%) is just a disc of radius * and centered at the origin, the Minkovski sum p, (P; ;) @
Ng ({0}, ") is a dilatation of p, (P; ;) by a distance 1", i.e.,

Xg N (pg (Pij) ©Ng ({0},7)) = Ng (pg (i) . 7") -
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A.2.3. Characterization of S ((n,, n.), rl)

According to (4.7), S ((nr, ne), ) is the intersection of all discs Ng ({z},r) of radius rl® and
of center x taken in p, (P; ((nr,nc))). Since P ((nr,ne)) C P; ((nr,nc)), one has pg (P; ((nr,nc))) C
pg (Pi ((nr,nc))). Consequently

N Ng ({z},r%) c N Ng ({z}, 7). (A.2)
@€y (P;((nr,nc))) zEpg(Pi((nrinc)))
Therefore, we have
ﬂ N ({=}, re) CS ((nr,me) ,r§°) ) (A.5)

wepy(Bi((neno)))

Moreover, as P; ((nr, nc)) is convex, we have

N Nz} = [ Ng({=},rP), (A.6)

Q?EPg(ﬁi((nr,nc))) prg(ﬁi(nr,nc))

An inner approximation of S ((n,,n.), ) is then obtained as the intersection of, at most, eight discs
each with a center in the set p, (Pi (nr, nc)) and of radius r&°. This inner approximation can be compu-
ted with polyshape by approximating each disc Ng ({2}, re°), with @ € pg (P; (nr, nc)), by a polygon
contained in Ny ({:c} ,rgO) where each of its vertices is a point belonging to the circle associated to
Ng ({x},rP).

m
j?k“

The set X?, introduced in Proposition 17, is the union of the sets S ((nr,nc) ,7«§°), forall (nr,ne) €
)P,

The characterization of an inner-approximation ofXE";n can be done by characterizing the convex
t,m tm c; t,m tm
hull <Xi7j > of X;;.Since X7 C <Xi,j > then

A.2.4. Characterization of X2, and X5

N Ne({z} < () Ne({a},rl). (A7)
ze(X37) mex!
Therefore, we have
N Ne({=},rd) cxi7. (A.8)
mE<X§T>

Moreover, as <X§T> is @ convex polygon, instead of evaluating the intersection of all the discs of
radius r which have their center taken in <X§rj“> we rather compute the intersection of the discs of

radius rZ which have their center taken as the vertices of <X§r]“> The same trick used to characterize

an inner approximation of S ((n,, n.) ,r®) is used here.
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A.2.5. Characterization of %, (yfk) and HEYS

The set P§ (%), introduced in (4.6), is the union of sets P$ ((nr, nc)) for (nr,nc) € VE. Neglecting
here the limitation of the FoV by B (x¥, dimax) and as Xg is a known horizontal plane, P ((nr, nc)) is the
convex quadrangle defined by the intersection of X, with the half-cone of apex ={ and edges related
to the four unit vector fvf:c with¢=1,...,4, see Figure 3.7.

P$ (V8) is then the union of the convex quadrangles P% ((nr,nc)) for all (nr,nc) € YE. Similarly,
HEYS is the union of the convex quadrangles P ((nr, nc)) for all (nr, nc) € Y2 U YEU Y.

To account for B (z}, dmax), ONe can evaluate the disc defined by the intersection B (x, dmax) N
{z € R? | z3 =0}, and then intersect the resulting disc with P (1#) or HFV.

A.3 . Interval Analysis and SIVIA

The appendix presents what is interval analysis and the Set Inverter Via Interval Analysis (SIVIA).
Most of what is presented in this appendix comes from ( ).

A.3.1. Preliminaries

This section introduces interval arithmetic while recalling some results and properties.
An interval [z] = [z, Z] of real numbers is defined as the subset of R such that

[z]={zeR|z<zandzx <7T}, (A.9)

where z and 7 are respectively the lower and upper bounds of the interval. Another definition exists
which does not rely on the bounds x and 7 of the interval but rather on its center ﬂT@ and radius 5%

The set containing all the real intervals is denoted IR. A box [z] € IR" is a vector of n components
where all of its components are real intervals. In Appendix A.4, the notion of thick interval (and thus
thick boxes) is used. A thick interval [z] = [[z7],[zT]] € IIR is a set of intervals [z] = [z,7] € IR
where their lower and upper bounds have to be contained in an interval of lower bounds [x~] and an

interval of upper bounds [z1], i.e.,
[2] ={[z] = [z,Z] €IR |z € [¢7] andz € [z7]}. (A.10)
Let consider a measurement function h : Xy x R" — R™ such that
y=h(x,p)+w, (A1)

where y € R™ isthe measurement of x € Xy, pis an unknown vector of parameters of h,and w € R™
is the unknown but bounded measurement noise contained in [w] € IR™. The vector of parameters
is assumed bounded and contained in the known box [p]. One may deduce that the interval [y] =
{y} — [w] contains the noise-free measurement, i.e., h (z, p) € [y].

Assuming that « belongs to the shape of an object S C X, then, one may estimate the location
of that object from the noisy measurement [y]. Since the vector of parameters p is uncertain, there
exists two solution sets that result from this localization problem. Either one wants to characterize a
set of locations that are consistent with all possible values of the vector of parameters :

XY = {xeXo|Vpepl.z=h""(y],p)}, (A.12)
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or one wants to get the set of locations that are consistent with at least one value p € [p], i.e.,
X3 = {:I:GXO | Ip € [p],cc:h*1 ([y],p)}. (A.13)

Nonetheless, the function h could be non-linear and, thus, hard to inverse. This is why one prefers to
solve the set inversion problem defined by

X' ={zeXo|Vpe[p],h(zp) < [y}, (A14)
X¥={xze€Xo|Ipe€p . h(zp) <y} (A15)

Figure A.4 illustrates X" in green and X7in blue (and green). The black sets correspond to

X(p) ={z €Xo | h(z,p) € [y]} (A.16)
for three different values of p € [p]. Alternative formulations of A.14 and A.15 are
X"= (] X(p), (A17)
PE[p]
X7 = J X(p). (A18)
PE[p]

~

e
Search Space

Figure A.4 - lllustration of XY and X7, The black sets are potential solution sets for a specific value of
the vector of parameters.

A.3.2. Inclusion function

The image of h for some = € X, and some p € [p] is defined as h (z, p). Thus, the range of h
over [x] x [p] is defined as the set containing all the images of h for any input (z, p) € [z] x [p], with
[x] C Xo. The expression of this set is

h([z],[p]) = {h(z,p) | z € [z],p € [p]}. (A.19)

Nonetheless, h ([z], [p]) may be hard or impossible to evaluate due to non-linearities. To approxi-
mate h ([z], [p]), one may use interval analysis to get an inclusion function [h] of h. By definition, an
inclusion function [h] of h provides a box [h] ([x], [p]) that contains h ([x], [p]), i.e.,

h ([z], [pl) C [b] ([=], [p]) - (A.20)
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Search Space Measurement Space

Figure A.5 - Illustration of an inclusion function and the pessimism induced by this approximation.

Figure A.5 illustrates a possible box that may be obtained for a possible inclusion function [h] of h.
Natural inclusion functions are obtained by replacing arithmetic operations and elementary func-
tions with their interval counterpart, see ( ) for more details.
Using inclusion functions, several properties can be obtained.

Proposition 26. If [h] ([z], [p]) C [y], then [x] C X¥

Démonstration. If [h] ([x],[p]) C

[y], then, according to (A.20), one has h ([z], [p]) C [y]. Therefore,
forall x € [z] and for all p € [p], h(

x,p) € [y]. Consequently, [z] C X". O
Proposition 27. If [h] ([z], [p]) N [y] = 0, then [x] N X" = ()

Démonstration. If [h] ([x], [p]) N[y] = 0, then, according to (A.20), one has h ([z], [p]) N [y] = 0. There-
fore, for all € [x] and for all p € [p], h(x, p) ¢ [y]. Consequently, [z] N XY = (. O

A.3.3. Set Inverter Via Interval Analysis

The Set Inverter Via Interval Analysis (SIVIA) ( ) can be used to characterize
XY or X7, assuming that an inclusion function [h] of h is available. This algorithm characterizes an
inner and an outer-approximation of X" by building iteratively a list of non-overlapping boxes. SIVIA
relies on the properties 26 and 27. The first one allows to test if the image of [x] by [h] while knowing
[p] is included inside [y] to prove that [x] C XY, i.e., [x] only contains solutions of the inverse problem
related to X". The second allows to test if the image of [z] by [h] while knowing [p] has no intersection
with [y] to prove that [x] N X", i.e., [z] does not contain any solution. If none of those tests is satisfied,
then [z] is proved to contain at least one solution x; such that x; € X" while containing at least a
xo such that z, ¢ X". Therefore, [z] is bisected, and the resulting boxes, i.e., its children, are tested
with the same process. This scheme continues until the tested box is considered too small regarding
some threshold ¢ to be bisected again.

Starting with an initial box contained in X, SIVIA provides

* asubpaving of boxes B, such that all [x] € Bi, satisfy Proposition 26

* a subpaving of boxes Byt such that all [x] € Byt satisfy Proposition 27

* a subpaving of boxes Byorger Such that none [x] € Bporgersatisfy Propositions 26 and 27 but are

deemed too small to be bisected again.

Consequently, using SIVIA and a starting box sufficiently large to ensure that it contains X7, one is
able to get an inner-approximation of X" with Bj, and an outer-approximation of X3 with Bin U Bporder-
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Bborder has to be considered for X7 because each [x] € Bporder cONtains solutions of the inverse pro-
blem (A.15).
Figure A.6 illustrates the application of SIVIA when one tries to characterize the set

X = {:13 €155 | h(z p) e [2,4]} (A.21)

where p = (0,0)" and h (x,p) = ||z — p||.

Y
b b b A A o an e s o

&

0 5
X

Figure A.6 - Characterization of the set defined by (A.21) using SIVIA. Bi, is the 304 green boxes. Byt
is the red boxes. Bporger is the 920 yellow boxes.

Unfortunately, the capacity of SIVIA to provide an outer-approximation of X7 is also what made
the algorithm unfit to solve set inversion problems that involve an uncertain vector of parameters,
see Figure A.7 where the vector of parameters p is only known to belong to [—0.5, 0.5]°.

Due to the recursive approach based on testing and bisecting, the termination of the algorithm
only occurs when all the remaining boxes that do not satisfy 26 and 27 are too small to be bisected.
Therefore, since Bporder is also an outer-approximation of X7\ X7, if the uncertainty regarding the vec-
tor of parameters [p] becomes large, then it is likely that X7\ X" grows. This leads to more boxes of the
minimal size in Bporder and thus a higher computational time to only obtain an inner-approximation
of XV, i.e., Bin.

Y
R

Figure A.7 - Characterization of the set defined by (A.21) using SIVIA while considering an uncertain
vector of parameters. Bj, is the 236 green boxes. Byt is the red boxes. Byorger is the 8672 yellow boxes.
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This problem of efficiency comes from the fact that inclusion functions are unable to determine
whether Va € [z],3p € [p] such that h (x, p) € [y]. Thick intervals and Thick-SIVIA address this issue,
see ( ).

A.4 . Thick intervals & Thick-SIVIA

This appendix presents an approach to improve the performance of SIVIA when one want to cha-
racterize as efficiently as possible sets that are defined by either (A.14) or (A.15). Most of what is pre-
sented in this appendix comes from ( ).

A.4.1. Set inversion reformulation
Consider the set of functions

H ([p]) ={f € F Xo,R™) | Ip € [p],Vx € Xo,f (x) =h(x,p)}

where F (Xo, R™) is the set of functions going from X, to R™. This set contains all the measurement
functions for a specific value p € [p] of the vector of parameters. From % ([p]), the set X7 A.15 may be
redefined as

X ={xeXo|3IF cH(p]),f(x)< [y}, (A22)

Similarly to (A.22), an alternative formulation of X" is
X7 = {x e Xo | Vf € H([p]),f (2) € [y]}. (A.23)
To efficiently characterize X7 and XY, one has to resort to thick intervals and thick inclusion functions.

A.4.2 . Thick sets and thick inclusion function
This section introduces the thick function |h| of a measurement function h as well as its thick
inclusion function [h]. Once introduced, several properties are recalled.
Athick function | g] is a set of functions f for which their image f (x), for an input , always belong
to a box [g (x)] of known bounds. Thus, to obtain a thick function of h, we define for all € X

h™ (z) = minh (z,p), (A.24)
pE[p]

h'* () = maxh (z, p), (A.25)
pE[p]

where the minimization and the maximization are performed component-wise. Naturally, one has
Vp € [p],Vx € Xo,h™ (z) < h(z,p) <h" (x). (A.26)
From h™~ and h™ the thick function defined as
[h] = [h™,h"] (A.27)

— {f € F(Xo,R™) | V& € Xo,h™ (z) < f (z) < h* (z)} (A.28)
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is such that one has
Vf € H([p]),Vx € Xo,h™ (z) < f(z) <h" (z). (A.29)

Consequently, the thick function | h] contains, among others, all the functions H ([p]), i.e.,
H([p]) C [h]. (A.30)
Consider now the set
X ={xeXy|3feh] f(z)ey]}. (A.31)
From (A.22) and (A.30), one has X= C X, Similarly, one as X" ¢ XY with
X' ={x Xy |Vfe|h] f(zx)ecy}. (A.32)

Consider two inclusion functions [h~] and [h*] of h™ and h*. A thick inclusion function (TIF) [h]
associated to |h] is the set of all inclusion functions [f] such that for all [x] C X, its image [f] ([x]) =
ly, y| satisfies

y € [h7] ([x]) and g € [h7] ([x]). (A.33)
The TIF [h] may also be written as [h] = [[h~], [h*]], and the image of some [z] C X, by the TIF [h] is
the set of boxes [y,y]| € IR™ such that y belong to the box of lower bounds [h~] ([z]) and 7 belongs
to the box of upper bounds [h™] ([z]), i.e.,

[b] ([=]) = {[y, 9] € TR™[y € [h"] ([z]),y € [07] ([2])} . (A.34)

[h] ([«]) is a thick box. Figure A.8 shows an example of a thick box.

Example

Consider the function f (z,p) = = — p. The input z is uncertain but contained in [z] = 0, 10].
Similarly, one assumes to have p € [p] = [0, 15].
Basic interval analysis gives

[f1([z], [p]) = [2] = [p] (A.35)
= [z—p,7—p] (A.36)
= [-15,10] (A.37)

If one computes the thick function of f, one obtains

fr () = max f (z,p) (A.38)
PE[p]

=z—p (A.39)

f7 (z) = min f (z, p) (A.40)
PE(p]

=T—p (A.47)
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Then, we deduce a TIF of f

LA (=D = [[f~ (=D], [£7 (=DI] (A.42)
= [l=] - 15 [z] -0, (A.43)
[/1 (10, 10]) = [[-15, =5] , [0, 10]] - (A.44)

As we can see, [f] ([x]) has more information than [f] ([z], [p]) because, as an example, [y] =
[—2, —1] is an output impossible to obtain.

Y2

[by] -

LG |

Y1

Figure A.8 - lllustration a thick box [h;] ([x]) = [[h; ] ([x]), [hi"] ([x])] and boxes such that [b;] €

[hi] ([x]) and [bs] € [hy] ([x]) but [bs] & [h] ([;])

Consider a thick box [a] = [[a~], [a*]] and a box [b] = [b, b]. The following definitions are dedu-
ced from Proposition 7 introduced in ( ).

A thick box [a] is included in a box [b], i.e., [a] C [b] if and only if for all coordinatesi € {1...m}
the thick interval [[a;] is included in the interval [b;], where

lai] C [bi] & Vai] € [ai] = [[a7], [ai7]] s [ad] < [bi]

b;— [a;] CR™ and
i A,
‘:){[aj]_bic]@—. (A45)

A thick box [a] is not included in a box [b], i.e., [a] ¢ [b] if and only if there exists a coordinate
i € {1...m} such that the thick interval [a;] is not included in the interval [b;], where

[ai] Z [bi] < V[ai] € [ai] = [[a; ], [a]7]] , [ai] & [bi]

l[a;] —b;C R~ or
< {bi o] c R~ (A-40)

A thick box [a] has a non-empty intersection with a box [b], i.e., [a] N [b] # @ if and only if for
all coordinates i € {1...m} the thick interval [a;] has a non-empty intersection with the interval [b;],
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where

lai] N [bi] # 0 & Vai] € [ai] = [[a; ], [a; ]+ [as] N [b:] # 0

b~ [af] CR- and
12 17 A.
@{[ai]_bic]@—. (Aa7)

Athick box [a] has an empty intersection with a box [b], i.e., [a] N [b] = () if and only if there exists
a coordinate i € {1...m} such that the thick interval [a;] has an empty intersection with the interval
[bi], where

[[Cbi]] N [bl] =)V [CLZ] € [[CLZ]] = [Ha;] s [CL+H] , [al] N [bl] =0

7

laf] —b;Cc R~ or
- A.48
@{bz—[al} C R™. (A-48)

From those results, several properties can be obtained.
Proposition 28. For some [x]| C X, if [h] ([x]) N [y] = 0, then [z] N X =0

Démonstration. For some [x] C Xy, if [h] ([z]) N [y] = 0, then, according to (A.20) and (A.34), one has
|h] ([z]) N [y] = 0. Therefore, Va € [x], Vf € |h], f (x) ¢ [y] which leads to have [z] NX =0 O

Proposition 29. For some [x] C Xy, if [h] ([z]) C [y], then [x] C X"

Démonstration. For some [x] C X, if [h] ([x]) C [y], then, according to (A.20) and (A.34), one has
|h] ([x]) C [y]. Therefore, Va € [z], Vf € |h], f (x) € [y] which leads to have [z] C X" O

Proposition 30. For some [x] C X, if [h] ([z]) N [y] # 0, then [z] c X

Démonstration. Let assume that we have [h] ([x]) N [y] # 0 for a [x] C Xy. Consider a x € [z], thus,
[h] (x) becomes a box. However, according to (A.47), we still have [h] () N [y] # 0. Consequently,
according to (A.20) and (A.34), one has |h] (x) N[y] # 0. Therefore, using (A.27), there exists a f € |h]
such that f(x) € [y]. Since this is true for any « € [x], one has [z]| C X O

Proposition 31. For some [x] C X, if [h] ([z]) ¢ [y)], then [z] ¢ X¥

Démonstration. Letassumethatwe have [h] ([z]) Z [y]fora[z] C Xo.Considerax € [z], thus, [h] (x)
becomes a box. However, according to (A.46), we still have [h] () ¢ [y]. Consequently, according to
(A.20) and (A.34), one has |h] (x) ¢ [y]. Therefore, using (A.27), there exists a f € |h] such that
f(x) ¢ [y]. Since, there exista « € [x] and a f € |h] such that f(x) ¢ [y], one cannot have [z] C X'
Consequently, [z] ¢ X". O
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A.4.3 . Thick SIVIA without X"

Assuming a TIF [h] of |h] is available, one can obtain an outer-approximation of X using the
Thick SIVIA algorithm.

Similarly to SIVIA, the Propositions 30 and 28 are used to test if a box [z] C X, belongs to X or
if it contains no solution. If one has [h] ([z]) N [y] # 0, then, according to Proposition 30, one has
[x] C X Else, if [h] ([x]) N [y] = 0, then, according to Proposition 28, one has [x] NX’ = . Otherwise,
the box is bisected and retested.

Consequently, the Thick SIVIA provides :

* asubpaving of boxes Bpenumbra such that all [x] € Bpenumbra Satisfy 30

*+ a subpaving of boxes Boyt such that all [x] € Boyt satisfy 28

+ a subpaving of boxes Bporger SUch that none [x] € Byorgersatisfy 30 and 28 but are deemed too

small to be bisected again
where Bpenumbra U Boorder IS an outer-approximation of X" which is a easier to obtain than an outer-
approximation of X7 with the SIVIA algorithm, but at the cost of some additional pessimism. Figure A.9
illustrates the characterization by Thick SIVIA of the set (A.21) when the vector of parameters p is only
known to belong to [—0.5,0.5]%.

Thick-SIVIA

-5 0 5
X

Figure A.g9 - Characterization of the set defined by (A.21) using Thick SIVIA while considering an un-
certain vector of parameters. Bpenumbra IS the 272 blue boxes. Boyt is the red boxes. Byorder is the 912
yellow boxes.

A.4.4 . Thick SIVIA with X"

Other tests can be defined to get an inner-approximation of X". According to Proposition 29, if
we have [h] ([z]) C [y] for some [x] C X, then we have [x] C X". Nevertheless, boxes satisfying
Proposition 29 also satisfy Proposition 30. Therefore, to avoid an overlapping of boxes, one may prefer
to approximate X \ X" rather than X". For that purpose, one must combine Proposition 30 with
Proposition 31 to obtain the following test : if we have [h] ([z]) N [y] # @ while having [h] ([x]) Z [y]
for a box [z] C Xy, then we have respectively [x] C X and [x] ¢ X". Otherwise, if a box [x] does not
satisfy any test, then it is bisected and its children are retested using the same process.

Consequently, this Thick SIVIA provides :

* a subpaving of boxes Bi, such that all [x] € B, satisfy 29

+ a subpaving of boxes Bt such that all [z] € Boyt satisfy 28
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* asubpaving of boxes Bpenumbra such that all [x] € Bpenumbra Satisfy 30 and 31
* a subpaving of boxes Byorger such that none [x] € Byorgersatisfy no test but are deemed too
small to be bisected again
where By, is an inner-approximation of X", and Bi, U Bpenumbra U BoorderiS an outer-approximation

of XH. Figure A.10 illustrates the characterization by Thick SIVIA of the set (A.21) when the vector of
parameters p is only known to belong to [—0.5, 0.5

Thick-SIVIA

Y
EEEE .

&

0 5
X

Figure A.10 - Characterization of the set defined by (A.21) using Thick SIVIA while considering an un-
certain vector of parameters. By, is the 236 green boxes. Bpenumbra is the 1752 blue boxes. Byt is the
red boxes. Bporder is the 1752 yellow boxes.
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