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Résumé : Cette thèse aborde le problèmede la recherche et du suivi d’un nombre in-connu de cibles mobiles réparties dans unerégion d’intérêt (RdI) inconnue à l’aide d’uneflotte coopérative de robots aériens sans pilote(UAVs). Ce problème de recherche, d’acquisi-tion et de suivi coopératif (CSAT) apparaît dansdes contextes militaires, e.g., pour trouver etsuivre des véhicules ennemis, ou dans des ap-plications civiles, e.g., pour rechercher des per-sonnes perdues à la suite d’une catastrophe.Pour résoudre ce problème, chaque droneembarque un système de vision par ordinateur(CVS) composé d’une caméra et d’algorithmesde traitement d’images qui fournissent desme-sures liées à la RdI. Les mesures fournies par leCVS consistent en des images avec des pixels la-bellisés, des cartes de profondeur et des boîtescontenant des pixels associés aux cibles qui ontété identifiées.Cette thèse considère une approche en-sembliste pour aborder le problème CSAT. Parrapport à d’autres approches reposant sur deshypothèses stochastiques sur le bruit de me-sure, les approches ensemblistes supposentun bruit de mesure borné avec des bornesconnues. Ces approches peuvent alors caracté-riser des ensembles qui contiennent nécessai-rement la position des cibles, à condition queles hypothèses sur les modèles de mesure etles bornes du bruit soient respectées. Très peude travaux antérieurs exploitent directementles mesures CVS dans une approche ensem-bliste. Cela s’explique principalement par le faitqu’il est difficile d’obtenir des modèles de me-sure pour un CVS lorsqu’il est composé d’al-gorithmes d’apprentissage profond. Pour ré-soudre ces problèmes, nous introduisons plu-sieurs hypothèses pour relier les mesures CVSaux cibles et aux obstacles présents dans laRdI en utilisant une approche géométrique. Apartir de ces hypothèses, nous proposons unnouvel estimateur ensembliste qui exploite di-

rectement les mesures CVS pour caractériserles ensembles qui sont garantis de contenirla position de chaque cible identifiée. Les me-sures CVS sont également exploitées pour éva-luer les ensembles qui sont garantis ne conte-nir aucune position de cible. Un processusde prédiction-correction similaire au filtre deKalman a été implémenté pour tenir comptede l’échange d’informations entre les drones.La correction se fait via les mesures CVS ac-quises par chaque drone et des estimées trans-mises par les drones voisins. Plusieurs incerti-tudes supplémentaires peuvent être prises encompte dans l’approche proposée. Nous noussommes concentrés sur la manière de prendreen compte l’incertitude de l’état des drones.Comme la RdI est encombrée d’obstaclesinconnus, chaque drone établit une carte d’oc-cupation et d’élévation pendant la rechercheet le suivi des cibles à l’aide des mesures CVS.Cette carte fournit une description approxima-tive de l’emplacement, de la hauteur, et de laforme des obstacles. La carte peut être ex-ploitée pour éviter les obstacles. Dans cettethèse, elle est utilisée pour prédire la portiondu champ de vue de la caméra de chaquedrone qui est masquée par un obstacle. Cetteinformation est déterminante dans la concep-tion d’un algorithme par commande prédictive(MPC) pour déterminer la trajectoire de chaquedrone, en minimisant l’incertitude de localisa-tion des cibles identifiées et en réduisant lataille de l’ensemble contenant des cibles poten-tiellement non détectées. Si les cibles sont plusnombreuses que lesUAVs, un compromis entrela recherche de nouvelles cibles et le suivi descibles déjà identifiées afin de réduire l’incerti-tude de la localisation doit être trouvé.Des simulations réalisées avecWebots illus-trent les performances de l’estimateur et dela loi de guidage en évaluant l’efficacité desdrones à trouver et identifier les cibles, etmain-tenir une estimation précise de leur position.



Title : Set-membership estimation and distributed control for a fleet of UAVs for target searchand tracking
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Abstract : This thesis addresses the problemof searching and tracking an unknown numberof mobile targets spread within an unknownRegion of Interest (RoI) using a fleet of coope-rating Unmanned Aerial Vehicles (UAVs). SuchCooperative Search, Acquisition, and Tracking(CSAT) problem appears in military contexts,e.g., when enemy vehicles have to be found andtracked, or in civilian applications, e.g., whensearching for lost people after a disaster.To solve the CSAT problem, each UAV em-beds a Computer Vision System (CVS) consis-ting of a camera and image processing al-gorithms that provide measurements relatedto the RoI. The CVS measurements consist ofimages with labeled pixels, depth maps, andboxes in the images containing pixels related tothe detected and identified targets.This thesis considers a set-membership ap-proach to address the CSAT problem. Com-pared to alternative approaches relying onstochastic assumptions on the measurementnoise, set-membership approaches assumebounded measurement noise with knownbounds. Set-membership approaches canthen characterize sets that are guaranteed tocontain the location of the targets, providedthat the hypotheses on the measurement mo-dels and noise bounds are satisfied. Very fewprevious works directly exploit CVS measure-ments in a set-membership approach. This ismainly because obtaining measurement mo-dels for a CVS involving deep learning algo-rithms is difficult. To address these issues, weintroduce several assumptions to relate theCVS measurements with the targets and obs-tacles present in the RoI using a geometric ap-proach. With these assumptions, we proposea new set-membership estimator that directlyexploits the CVSmeasurements to characterize

sets that are guaranteed to contain the loca-tion of each identified target. The CVS measu-rements are also exploited to evaluate sets thatare guaranteed to contain no target location.A prediction-correction scheme similar to theKalman filter has been considered to accountfor the exchange of information betweenUAVs.The correction involves CVS measurements ac-quired by each UAV and estimates shared byneighboring UAVs. Several additional sourcesof uncertainty may be considered in the pro-posed approach. We have focused on the stateuncertainty of UAVs.
As the RoI is cluttered with unknown obs-tacles, each UAV builds an occupancy-elevationmap during the search and tracking of targetsusing CVSmeasurements. Themapprovides anapproximate description of the location, height,and shape of the obstacles. Themapmaybe ex-ploited for obstacle avoidance. In this thesis, itis used to predict the occlusion by obstacles inthe field of view of each UAV. This informationis instrumental in the design of a Model Predic-tive Control (MPC) algorithm to determine thetrajectory of each UAV, minimizing the localiza-tion uncertainty of identified targets and redu-cing the size of the set containing potentiallyundetected targets. If the targets outnumberthe UAVs, a trade-off has to be found betweensearching for new targets and tracking those al-ready identified to reduce the localization un-certainty.
Simulations performed with Webots illus-trate the performance of the target location es-timator and the MPC design by evaluating theefficiency of the cooperating UAVs to explorethe environment, find and identify the targets,andmaintain an accurate estimation of their lo-cation.
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Résumé étendu

Cette thèse aborde le problème de la recherche et du suivi d’un nombre inconnu de ciblesmobiles
évoluant dans uneRégiond’Intérêt (RdI) encombréed’obstacles de formeet de localisation inconnues.
Une flotte de véhicules aériens sans pilote (UAV) est utilisée demanière coopérative et distribuée pour
résoudre ce problème de recherche, d’acquisition et de suivi coopératifs (CSAT). Ce problème peut
apparaître dans des contextes militaires, e.g., lorsqu’il s’agit de trouver et de suivre des véhicules en-
nemis, ou dans des applications civiles, e.g., lorsqu’il s’agit de rechercher des personnes perdues à la
suite d’une catastrophe. L’une des difficultés de ce problème réside dans le fait que les cibles peuvent
être plus nombreuses que les UAVs. Dans ce cas, il faut trouver un compromis entre l’exploration de
la région d’intérêt pour rechercher de nouvelles cibles et la recapture des cibles identifiées afin de
réduire l’incertitude de leur position estimée.

Le problème du CSAT est difficile à traiter car il combine plusieurs disciplines. Pour obtenir des
mesures de l’environnement observé, chaque drone embarque un système de vision par ordinateur
(CVS) composé d’une caméra et d’algorithmes de traitement d’images. Ces mesures contiennent des
informations sur la présence ou l’absence d’une cible. Si une cible est détectée, un problème d’iden-
tification doit également être pris en compte. Ensuite, pour exploiter ces mesures CVS afin d’estimer
les emplacements potentiels des cibles identifiées et non identifiées, un estimateur robuste doit être
conçu. Enfin, chaque UAV résout le problème de compromis susmentionné pendant la mise à jour de
la trajectoire en utilisant la théorie du contrôle optimal. Si elles sont disponibles, les communications
avec les drones voisins sont exploitées à la fois dans le processus de localisation de la cible et durant
la mise à jour de la trajectoire pour résoudre de manière coopérative le problème de la recherche et
suivi de la cible. Toutes ces composantes du problème CSAT ont été abordées individuellement, mais
peu de travaux les ont combinées.

Pour résoudre ce problèmede CSAT, le CVS embarqué dans chaque drone consiste en une caméra
et des algorithmes de traitement d’image qui fournissent des mesures liées à la RdI. Les mesures CVS
consistent en des images avec des pixels étiquetés, des cartes de profondeur et des boîtes 2D locali-
sant les cibles détectées et identifiées dans l’image. Un modèle de sténopé sans distorsion est utilisé
pourmodéliser la caméra et son champde vision (FoV). À partir de cette approximation, une approche
géométrique est proposée pour représenter les informations contenues dans une mesure CVS. Par
exemple, si un pixel est étiqueté « sol », on peut supposer que ce pixel de la caméra embarquée n’a
été éclairé que par des rayons lumineux provenant du sol. La formulation de ces hypothèses tire parti
des limites implicites connues des mesures fournies, c’est-à-dire du fait qu’elles sont liées à un pixel
de dimensions connues. Cela a motivé l’utilisation d’une approche ensembliste pour modéliser les
bruits et autres incertitudes comme des ensembles bornés de bornes connues.

Cette thèse considère une approche ensembliste pour aborder le problèmeduCSAT. Par rapport à
d’autres approches reposant sur des hypothèses stochastiques sur le bruit de mesure, les approches
ensemblistes supposent un bruit demesure borné avec des bornes connues. Ces approches peuvent
alors caractériser des ensembles qui contiennent à coup sûr l’emplacement des cibles, à condition
que les hypothèses sur les modèles de mesure et les bornes du bruit soient respectées. Très peu
de travaux antérieurs exploitent directement les mesures CVS dans une approche ensembliste. Cela
est principalement dû au fait qu’il est difficile d’obtenir des modèles de mesure pour un CVS repo-
sant sur des methodes d’apprentissage. Pour résoudre ces problèmes, nous introduisons plusieurs
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hypothèses pour relier les mesures CVS aux cibles et aux obstacles présents dans le RdI en utilisant
une approche géométrique. Grâce à ces hypothèses, nous proposons un nouvel estimateur ensem-
bliste qui exploite directement les mesures CVS pour caractériser les ensembles qui contiennent à
coup sûr l’emplacement de chaque cible identifiée. Sous certaines hypothèses, certainesmesures CVS
peuvent être exploitées en tant qu’informations négatives pour caractériser des ensembles dont on
est sûr qu’ils ne contiennent aucune position de cible. Un processus de prédiction-correction similaire
au filtre de Kalman a été utilisé pour tenir compte de l’échange d’informations entre les drones. La
correction exploite les estimées ensemblistes caractérisés via les mesures CVS acquises par chaque
drone ainsi que les estimées partagées par les drones voisins. En plus du bruit de mesure, nous
proposons une approche pour rendre l’estimateur ensembliste robuste à l’incertitude de l’état des
drones.

Comme la zone d’intérêt est encombrée d’obstacles inconnus, chaque drone exploite certaines
mesures CVS pour construire durant la recherche et le suivi des cibles une carte d’occupation et
d’élévation. Cette carte fournit une description approximative de l’emplacement, de la hauteur et
de la forme des obstacles qui ont été détectés. La carte peut être exploitée pour éviter les obstacles.
Dans cette thèse, elle est utilisée pour prédire la portion du sol que le drone ne pourra pas voir car
cachée derrière un obstacle qu’il a déjà rencontré. Cette information est essentielle pour résoudre le
problème de guidage afin de concevoir des trajectoires résolvant le compromis entre la recherche de
cibles non identifiées et la recapture des cibles précédemment identifiées afin de réduire l’incertitude
associée à leur position estimée. Pour résoudre ce problème, nous utilisons une loi de commande
prédictive (MPC) pour déterminer la trajectoire de chaque UAV enminimisant l’incertitude de localisa-
tion des cibles identifiées et en réduisant la taille de l’ensemble contenant des cibles potentiellement
non identifiées. Cette mise à jour de la trajectoire se fait de manière coopérative et distribuée.

Plusieurs simulations sont effectuées à l’aide de Webots pour simuler un environnement urbain.
L’estimateur ensembliste et le MPC sont mis en œuvre sous Matlab. Les simulations illustrent les
performances de l’estimateur et de la mise à jour des trajectoires en évaluant l’efficacité des drones
coopératifs pour explorer l’environnement urbain inconnu, trouver et identifier les cibles, etmaintenir
une estimation précise de leur position.
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Extended abstract

This thesis addresses the problem of searching and tracking of an unknown number of mobile
targets spread within a Region of Interest (RoI) cluttered with obstacles of unknown shape and loca-
tion. A fleet of cooperating Unmanned Aerial Vehicles (UAVs) is used in a cooperative and distributed
manner to solve such Cooperative Search, Acquisition, and Tracking (CSAT) problem. This problem
can appear in military contexts, e.g., when enemy vehicles have to be found and tracked, or in civilian
applications, e.g., when searching for lost people after a disaster. A difficulty of this problem is the
targets may outnumber the UAVs. In that case, a trade-off has to be solved between searching for
new targets and recapturing identified targets to reduce the uncertainty of their estimated location.

The CSAT problem is difficult to address because it combines various disciplines. To get measure-
ments from the perceived environment, each UAV embeds a Computer Vision System (CVS) consisting
of a camera and image processing algorithms. These measurements contain information regarding
the presence or absence of a target. Besides, if a target is detected, then an identification problem
has to be also considered. Then, to exploit these CVS measurements in order to estimate the poten-
tial locations of identified and unidentified targets, a robust estimator needs to be designed. Finally,
each UAV solves the aforementioned trade-off problem during the trajectory update by using optimal
control theory. If available, communications with neighboring UAVs are exploited in both the target
localization process and the trajectory update to solve cooperatively the target search and tracking
problem. All of these components of the CSAT problem have been addressed individually, but few
works have combined them all.

To solve this CSAT problem, the CVS embedding on each UAV consists of a camera and image
processing algorithms that provide measurements related to the RoI. The CVSmeasurements consist
of images with labeled pixels, depth maps, and bounding boxes localizing detected and identified
targets in the image. A pinhole model without distortion is used to model the camera and its Field of
View (FoV). From this approximation, a geometric approach is proposed to represent the information
contained in a CVSmeasurement. For instance, if a pixel is labeled Ground, then onemay assume that
this pixel of the embedded camera has only been illuminated by light rays stemming from the ground.
The formulation of these assumptions takes advantage of the known implicit bounds of the provided
measurements, i.e., the fact that they are related to a pixel of known dimensions. This motivated
the use of a set-membership approach to model noises and other uncertainties as bounded sets of
known bounds.

This thesis considers a set-membership approach to address the CSAT problem. Compared to al-
ternative approaches relying on stochastic assumptions on themeasurement noise, set-membership
approaches assume boundedmeasurement noise with known bounds. Set-membership approaches
can then characterize sets that are guaranteed to contain the location of the targets, provided that
the hypotheses on themeasurementmodels and noise bounds are satisfied. Very few previous works
directly exploit CVS measurements in a set-membership approach. This is mainly because obtaining
measurement models for a CVS involving deep learning algorithms is difficult. To address these is-
sues, we introduce several assumptions to relate the CVS measurements with the targets and obs-
tacles present in the RoI using a geometric approach. With these assumptions, we propose a new
set-membership estimator that directly exploits the CVS measurements to characterize sets that are
guaranteed to contain the location of each identified target. Under some assumptions, some CVS
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measurements can be exploited as negative information to characterize sets that are guaranteed
to contain no target location. A prediction-correction process similar to the Kalman filter has been
considered to account for the exchange of information between UAVs. The correction involves set es-
timates that are characterized using CVS measurements acquired by each UAV and estimates shared
by neighboring UAVs. In addition of the measurement noise, we propose an approach to make the
set-membership estimator robust to the state uncertainty of UAVs.

As the RoI is cluttered with unknown obstacles, each UAV builds an occupancy-elevation map du-
ring the search and tracking of targets using CVS measurements. The map provides an approximate
description of the location, height, and shape of the obstacles. The map may be exploited for obs-
tacle avoidance. In this thesis, it is used to predict the occlusion by obstacles in the FoV of the camera
of each UAV. This information is instrumental to solve the guidance problem in order to design tra-
jectories solving the trade-off between searching for unidentified targets and recapturing previously
identified targets to reduce their estimated location uncertainty. To solve this problem, we design a
Model Predictive Control (MPC) to determine the trajectory of each UAV minimizing the localization
uncertainty of identified targets and reducing the size of the set containing potentially unidentified
targets. This trajectory update is done in a cooperative and distributed manner.

Several simulations are preformed using Webots to simulate an urban environment. The set-
membership estimator and the MPC are implemented on Matlab. The simulations illustrate the per-
formance of the target location estimator and the MPC design by evaluating the efficiency of the co-
operating UAVs to explore the unknown urban environment, find and identify the targets, and main-
tain an accurate estimation of their location.
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4.5 Representation of an occupancy-elevationmapMi,k. Green cells represent empty cells ;the portions ofXg covered by those cells are considered free of obstacles. Blue cells are
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Notations

Notation Signification
RoI Region of InterestOEM Occupancy-Elevation MapUAV Unmanned Aerial VehicleFoV Field of ViewCVS Computer Vision SystemCSAT Cooperative Search, Acquisition, and TrackingMPC Model Predictive ControlSIVIA Set Inverter Via Interval AnalysisTIF Thick Inclusion Function

i index related to UAV i
j index related to target j
m index related to obstaclem
k index related to time tku superscript related to a UAVt superscript related to a targeto superscript related to an obstacle
Notation Definition
pg (.) Projection on Xg

pFc
i

(
xFc

i,k

) Projection on the CCD array of a point xFc
i ∈ R3, see (3.17)

N (S, r) r-neighborhood within the RoI of a set S, see (3.5)
Ng (S, r) r-ground-neighborhood within the RoI of a set S ⊂ Xg, see (3.6)

f t (.) /fu (.) dynamics of a target / a UAV
MF2

F1
Rotation matrix from F1 to F2

TF2
F1

(x) Coordinates of some vector x ∈ R3, initially expressed in F1, expressed in F2

pc
(
xui,k,x

) 2D coordinates of a point x when projected onto the CCD array of UAV i, see (3.27)
ρ
(
xc
i,k,v

) Distance between xc
i,k and SRoIk along a v ∈ Vi,k (nr, nc), see (3.31)

Pi,k ((nr, nc)) Set estimate containing all points that may have illuminated pixel (nr, nc)of the camera of UAV i while being at a distance consistent with [Di,k] (nr, nc), see (4.1)
Pgi,k ((nr, nc)) Set estimate containing all points of Xg that may have illuminated pixel (nr, nc)of the camera of UAV i, see (4.5)
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Notation Definition
F/Fb

i /F c
i Reference frame / Frame attached to the body / the camera of UAV i

N u/N t/N o List of the indexes of the Nu UAVs / N t targets / No obstacles
N I List of the coordinates of each pixel of the camera
NM List of the indexes of each cell composing the OEM
Ni,k List of the indexes of the UAVs that can communicate with UAV i at time tk

xtj,k/xui,k State vector of target j / UAV i at time tk
xt
j,k Center of gravity of target j at time tk

x
t,g
j,k Projection on the ground of xt

j,k

xu
i,k/Θ

u
i,k Center of gravity / attitude of UAV i at time tk

xc
i,k Optical center of the camera of UAV i at time tk

Su
(
xui,k
)
/St
(
xtj,k

)
/Som Shape of the i-th UAV/ j-th target /m-th obstacle at time tk

Ct (xt,g
j,k

)
/ht/rt Circular right cylinder of height ht and radius rt approximating St (xtj,k)

X0/Xg RoI / Ground of the RoI
SRoIk Set containing all points belonging to either Xg, a target, a UAV, or an obstacle
Mi,k OEM known to UAV i at time tk
rtos /rtts Safety distance between ({to}) a target and an obstacle, ({tt}) two targets

Vi,k (nr, nc) Set of light rays vFc
i illuminating pixel (nr, nc)

F
(
xui,k
)
/F
(
xui,k
) (unlimited / bounded) FoV of UAV i at time tk

Ii,k/Li,k/Di,k Image, labeled image, and depth map provided by the CVS of UAV i at time tk
D0

i,k (nr, nc) Noise free depth measurement associated to pixel (nr, nc)
[Di,k] (nr, nc) Interval containingD0

i (nr, nc)
Yg
i,k/Y t

i,k/Yo
i,k/Yn

i,k List of indexes of the pixels labeled Ground / Target / Obstacle / Unknown.[
Y t
i,j,k

] Bounding box localizing target j within Ii,k

Dt
i,k List of target indexes identified by UAV i at time tk

Lt
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Chapter 1 - Introduction

1.1 . Context

This thesis addresses the problem of target Search, Acquisition, and Tracking (SAT), which has
been formalized 70 years ago in (Koopman, 1956). Initially developed by the United States Navy to
search, detect, identify, and localize hostile vehicles for their termination, the introduced theory of
search has led to the foundations of a more civilian problem where one or several targets evolving
in a Region of Interest (RoI) have to be found and tracked. Nevertheless, and regardless of the ap-
plication, SAT problems have always overlapped with other problems such as efficient positioning
in the environment, exploitation of noisy measurements for target detection, target identification,
implementation of algorithms for accurate and robust target localization, deployment of strategies
involving exploration of a hazardous environment, target pursuit, and energy management. Each as-
pect has been addressed and developed. For instance, the efficient positioning problem, i.e., finding
the best location to either efficiently cover an area or to get new and useful information regarding
its exploration, has been addressed 40 years ago with an Art-Gallery problem (O’rourke and others,
1987). Nowadays, other approaches have been proposed such as the Next-Best-View approach (Bati-
novic et al., 2022) that combines a shadow-casting approach, initially used in video games, with a cubic
approximation of the map to search for the best path to take to explore and map an environment.
The target detection and its identification have been formalized in (Johnson, 1985). From that, several
methods have been proposed to address a target detection problem such as (Girshick et al., 2014;
Liu et al., 2016; Redmon et al., 2016), and recently, deep-learning algorithms have been developed for
target detection, and pose estimation (Fan et al., 2022). This tendency to continuously develop new
methods, or algorithms, to solve the SAT problem has been motivated by several factors. Drones,
their embedded sensors, and the algorithms to process the information collected by these sensors
becomemore sophisticated. Moreover, the available computing power and storage capacity continue
to improve.

Additionally, put aside the SAT problem, other problems related to searching or pursuing a target
exist and canbe either addressedwith these newalgorithms and technologies, or be the foundation of
newmethods. Consider as an example a simpler target tracking problemwhich involves a robot that is
tasked to keep the target within its sensing range. To address this problem, a new algorithm for target
detection and identification has been proposed and tested (Liu et al., 2022a). Target hunting problems,
as in (Vidal et al., 2002; Olsen et al., 2022), assume that the targets are evasive and thus evolve within
the environment in order to avoid detection. To solve this problem, more specific strategies based
on, e.g., game theory (Basar and Olsder, 1998) have been used.

Observation of multiple moving targets using multiple robots is a 30-years-ago problem introdu-
ced in (Parker and Emmons, 1997) that is close to a SAT problem. Both problems involve the search of
targets in an unknown environment, but once a target is identified, a robot stops the target search and
is assigned to only pursue the newly discovered target. A SAT problem is different because it involves
two conflicting objectives : the target search and the target pursuing, with a limited number of robots.
On the one hand, target search requires an efficient exploration of the environment in order to detect
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and identify new targets, this task becoming even more difficult if the number of targets to identify is
unknown. On the other hand, target pursuing requires the requisition of a robot to recapture a pre-
viously identified target in order to reduce its estimated location uncertainty. This is because, since
the dynamic of mobile targets is often at least partly unknown, the estimated location of an identified
target becomes more uncertain when not monitored. Consequently, a trade-off between exploration
and pursuit has to be addressed in order to accomplish the SAT mission. In this context, (Furukawa
et al., 2006) have introduced and formalized the Cooperative Search, Acquisition, and Tracking (CSAT)
problem and proposed a first solution algorithm. The CSAT problem requires that each robot in the
fleet takes an action that contributes to solve the initial SAT problem while being beneficial to the
whole fleet, rather than of acting alone. Coordination between the robots is therefore essential.

This thesis proposes new methods and strategies to solve a CSAT problem. Unfortunately, even
though CSAT algorithms have numerous applications, where some of them are life-saving during
Search And Rescue (SAR) missions, there still exist few real-life applications. An example of SAR mis-
sion that has been achieved with the help of a UAV has been described in (Niedzielski et al., 2021). A
family has reported to have lost contact with one of their elders in a Polish town. Though the rescue
team deployed an Unmanned Aerial Vehicle (UAV) to assist the terrestrial search by exploring identi-
fied areas that may contain the lost man, the exploration followed a lawnmower trajectory, the UAV
took photos of the area, and their processing was done offline once uploaded on a laptop. Moreover,
a human operator has been assigned to correct the false detection provided by their algorithm. The
rescue has been successful but has required almost 4 hours. This work - which claims to be the first
successful application of a target detector in a real search and rescuemission - highlights the inherent
high complexity of CSAT missions and the number of subproblems that have to be considered per-
form target search in an automatic way. Some of these subproblems are reliable image processing,
robust estimation, UAV control design, and navigation within an unknown cluttered environment. Se-
veral approaches addressing one of these subproblems already exist, but they focus on a specific
aspect of the CSAT problem, such as target location estimation from an image or efficient explora-
tion of an unknown environment, and thus do not consider the whole CSAT problem. On the other
hand, strategies to solve a CSAT problemhave been developed, butmost of them consider simplifying
assumptions regarding target detection and location estimation.

The target localization problem includes several sub-problems. One of those is collecting new
information from the environment that is under observation, e.g., an urban area with cars. Then,
processing this collected information to acquire new measurements, e.g., an image or a depth map.
Lastly, transforming these measurements through an estimation process to gain new knowledge re-
garding, e.g., the possible location of the cars, before the update of previous knowledge up to the
current time. Each of those sub-processes has been already addressed and tested in real-life while
providing clear limits for their performances. For instance, as pointed out in (Symington et al., 2010;
Meera et al., 2019), the performance in target detection is dependent on the observation conditions
(including the presence of obstacles) and weather conditions. Nonetheless, weather conditions are li-
kely to be under-represented in training data sets for deep-learning algorithms such as (Redmon et al.,
2016). Additionally, aerial images often involve small targets with a complex background. Therefore,
according to (Luo et al., 2022), the use of a classical target detector results in reduced performance.
This complexity in target detection (and, thus, target identification) may be hard tomodel. Unfortuna-
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tely, most of the current approaches to solve a CSAT problem overlook this difficulty by introducing
an idealized CVS. The capacity of the sensor to ensure the presence or absence of a target is most
of the time modeled through a stochastic approach by introducing a target detection probability as
well as a false alarm probability, which are often constant. Moreover, since the CVS is idealized, the
target location estimation process is idealized as well and provides directly a noisy measurement of
the target state as soon as it is detected within the robot sensing range. With these simplifications,
themeasurement noise is oftenmodeled with a known probability density function. According to (Bai
et al., 2021), this stochastic modeling of the CVS and estimators and its related assumptions are hard
to impossible to justify. Moreover, such an approach is inadequate to account for the geometry of
the environment when obstacles are present but unknown to the robots. Consequently, the expec-
ted performance of these CSAT strategies is only theoretical and is likely to represent an unreachable
upper-bound when deployed in a real-life scenario.

Regarding the environment, it is either free of obstacles, clutteredwith a priori known obstacles, or
cluttered and unknown. On the one hand, even though the environment is known,many target search
approaches only consider a 2D representation of the environment and few consider an approximated
3D representation. This choice ismotivated by the fact that a 3Dmapof an outdoor environment is too
complex to be stored in a UAV. Nonetheless, the 2D simplification comes at the cost of a new problem.
If an obstacle is only approximated by a 2D element, then aUAVmay be unable to evaluate the portion
of its field of view that it cannot observe due to occlusions. To avoid this difficulty, one may assume
that the obstacles are tall enough. Then, according to (Liu et al., 2020), the 2D approximation may be
relevant if the UAV flies between the obstacles and at a lower altitude than the shortest obstacle. On
the other hand, the target search in an unknown cluttered environment is still a challenging problem,
especially for aerial robots since, as pointed out in (Placed et al., 2023), the task of simply mapping an
outdoor 3D environment may lead to unbearable computation problems. The problem of unknown
occlusions by obstaclesmay be solved by deploying a teamof UAVs in a formation, e.g., (Ibenthal et al.,
2023). Otherwise, if no mapping device is available, other approaches have to be developed to gain
knowledge about the environment from the information collected by the embedded CVS in order to
deploy an efficient cooperative strategy to search for targets.

To address the aforementioned problems, a set-membership approach is considered. This ap-
proach, introduced by (Schweppe, 1968), assumes that the measurement noise and other uncertain-
ties are bounded and of known bounds. Depending of the considered problem, this assumption is
as difficult to justify as the previous stochastic assumption. Nevertheless, the advantage of a set-
membership approach is that nonlinear systems can be handled more easily. The Set Inverter Via In-
terval Analysis (SIVIA) presented in (Jaulin and Walter, 1993) is a recursive set-membership algorithm
that is used to solve several inverse problems involving non-linearities. From the set-membership
approach, several set-membership estimators have been proposed to solve a localization problem
(Kieffer, 1999; Kenmogne Fokam, 2019; Ibenthal, 2022). More specially, the estimator developed in
(Kenmogne Fokam, 2019) is, to the best of my knowledge, the first set-membership estimator that
uses an image to estimate a location, here the location of the robot with the on-board camera. Addi-
tionally, the work in (Ibenthal, 2022) lays the foundation for the first method to solve a CSAT problem
with a set-membership approach. However, unlike (Kenmogne Fokam, 2019), (Ibenthal, 2022) consi-
ders an idealized CVS that provides directly a noisy estimation of the location of any target that is
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located within the field of view of the UAV. As mentioned, a problem of this approach is the assu-
med known bounds of the estimated target location uncertainty are hard to justify. The use of a
set-membership approach to model the CVS, as in (Kenmogne Fokam, 2019), may allow to introduce
more reliable bounds that are simpler to justify.

1.2 . Thesis outline and contributions

This thesis presents an all-in-one approach to solve the CSAT problemwithin an unknown structu-
red environment by using a fleet of UAVs controlled in a distributed manner. Each UAV embeds a CVS
in order to process the information collected from the portion of the environment under observation.
This process of information collected by the CVS includes RGB imagery, image segmentation, depth
map evaluation, and target detection/identification. Though different sensors, e.g., LiDAR, stereo ca-
mera, or monocular camera, can be embedded on a UAV and different image processing algorithms,
e.g., R-CNN, or YOLO, can be implemented to process the information collected by those sensors,
their modeling is a problem in itself. A CVS that relies on a deep-learning approach is hard to mo-
del, and the sensor model is highly dependent on the technology used. Instead, this thesis provides
assumptions regarding how the CVS measurements can be interpreted. Using the pinhole model to
approximate the camera, a geometric approach is used to represent the information contained in
a CVS measurement. For instance, if a pixel of the acquired image is labeled Ground, then one may
assume that this pixel has only been illuminated by light rays stemming from the ground, regardless
of the type of camera used. The formulation of these assumptions takes advantage of the known
implicit bounds of the provided measurements, i.e., the fact that they are related to a pixel of known
dimensions. This motivated the use of a set-membership approach to model measurement noise
and other uncertainties as bounded sets with known bounds. Then, from those assumptions, a set-
membership estimator is proposed to characterize, from the CVS measurements, set estimates that
are guaranteed to contain the location of the targets, and set estimates that are guaranteed to contain
no target location. Additionally, the CVS measurements related to the obstacles are used to create a
rough approximation of the environment in order to predict what the UAV will not see in the future
when it updates its trajectory. Moreover, each UAV can communicate with neighboring UAVs in order
to mutually improve its knowledge about the environment or the possible locations of the targets.
The structure and contributions of the thesis are detailed hereafter.

Chapter 2 reviews some work related to the problem addressed by this thesis. The CSAT problem
and its challenges are presented. Some sensors and algorithms that provide CVS measurements are
discussed. Several target location estimators are presented. The methods to search for a target, pur-
sue a target, and keep track of its location when the identified target is not under observation are also
discussed as well as some methods to map an unknown environment. Lastly, some control schemes
are presented.

Chapter 3 formalizes the considered problem. This chapter introduces, in a first time, assump-
tions regarding the structure of the unknown environment. Then, the targets are modeled and their
characteristics and behaviors that are assumed a priori available to the UAVs are detailed. The same
is done with the UAVs. The camera model based on a pinhole model is presented and followed by se-
veral assumptions regarding the interpretation of the CVS measurements (pixel label, bounding box
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related to an identified target, and depth map). These assumptions, even though they do not aim to
model the complexity of the embedded CVS, are instrumental in defining a measurement function
that explains how the acquired CVSmeasurements are obtained from the portion of the environment
monitored by the UAV.

Chapter 4 presents - to the best of our knowledge - the first target location estimator that directly
exploits CVS measurements using a set-membership approach. Target-related CVS measurements
refer to pixels labeled as Target. Then, based on the assumptions and the geometric approach detai-
led in the previous chapter, the estimator characterizes a set containing all the possible points that
may be related to the identified target and, thus, may have contributed to the illumination of those
pixels. A strength of the set-membership approach is when the assumed bounds of themeasurement
noises and other uncertainties are satisfied, then one can prove that this set of points is guaranteed
to contain points belonging to the target. Nonetheless, we have no interest in estimating the location
of a randompoint belonging to an identified target. Instead, wewant to estimate the location of a spe-
cific and invariant point of the target that is denoted as its location. For that purpose, we assume that
the main dimensions of the identified target are a priori available to the UAVs. Consequently, from
the set that is proved to intersect the target, another set is characterized such that it is guaranteed to
contain its location. Such a result is obtained even if the identified target is partially hidden behind an
obstacle. Similarly, and under some assumptions that are detailed in the previous chapter, the esti-
mator exploits CVS measurements related to the obstacles and the ground to characterize other set
estimates that are guaranteed to contain no target location. Finally, through a prediction-correction
process, the set estimates obtained from the CVS measurements are used to update :

• the sets that are guaranteed to contain the location of each identified target
• the set that is guaranteed to contain the location of not yet identified targets

This update step may involve other UAVs if they are within communication range and can broadcast
their set estimates. Lastly, the chapter presents our approach to update from CVS measurements
an occupancy-elevation map that is used as our rough approximation of the shape of the obstacles.
The simulation results presented in this chapter are only done to evaluate the performance of the
proposed target location estimator. Therefore, no control design is considered.

Chapter 5 presents several cooperative control designs, all based on amodel predictive controller.
They aim to solve an optimization problem defined as the search for the best new list of trajectories
allowing the whole fleet to a better cooperative navigation within the environment to search and
track the targets. A criterion reflecting this objective has been proposed for each control design. The
main difference between those criteria is the amount of knowledge that a UAV has about the envi-
ronment during the trajectory update. Three different degrees of available environmental knowledge
are considered :

• No environmental knowledge. The UAV is unable to gain any knowledge regarding the environ-
ment

• No memory regarding the shape of the obstacles. The UAV approximates the shape of the obs-
tacles that are currently under observation and uses this knowledge to look for a better search
and tracking trajectory, but no memory is allocated to store such a knowledge over time

• Mapping of a 3D environment. The UAV embeds the required devices, algorithms, and memory
to update a map of the environment that approximates the shape of the obstacles in order to
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predict during the trajectory update how they would limit its field of view.
The simulation results of this chapter compare the performance of each control design in terms of
map exploration or reduction of estimated target location uncertainty, while using the target location
estimator presented in the previous chapter.

Chapter 6 takes into account the possibility that the state vector of the UAVs is uncertain. This
uncertainty may come from the fact that the UAV dynamic is not perfectly known, and the measure-
ments provided by embedded proprioceptive sensors are corrupted by a bounded noise. Therefore,
the uncertainty regarding the UAV location and attitude directly affects the target location estimator
presented in Chapter 4. This chapter presents an adaptation of how the set estimates introduced
in Chapter 4 are characterized in order to retain their useful properties even with an uncertain UAV
state. Since some of the previously introduced set estimates are 3D, an interval-based approach is
considered. Nonetheless, it is shown that the classic interval analysis is insufficient to efficiently ad-
dress the problem of characterizing 3D set estimates from CVS measurements while accounting for
UAV state uncertainty. Instead, thick-intervals are used. The simulations of this chapter reuse the si-
mulation setup of Chapter 4 in order to illustrate the drop in performances for several examples of
UAV state uncertainties.

Chapter 7 concludes the thesis, and Chapter 8 presents some research directions that come out
of our work such as :

• the addition of an unknown uneven ground
• the relaxation of the assumption regarding the structured environment
• the addition of CVS errors like an imperfect target detection/identification

1.3 . Publications
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• M. Zagar, M. Kieffer, H. Piet-Lahanier, and L. Meyer. “Robust 3D target localization using UAVs
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using UAVs with state uncertainties", in Proc. 22nd IFAC Symposium on Automatic Control in
Aerospace. 2022. Vol. 55, no 22, p. 230-235.

Accepted international conference paper :
• M. Zagar, L. Meyer., M. Kieffer, and H. Piet-Lahanier. “Target Search and Tracking in an Unknown
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Chapter 2 - State of the art

The aim of this thesis is to design a strategy to control a fleet of Unmanned Aerial Vehicles (UAVs)
such that they explore a possibly unknown environment containing obstacles to find and track an
unknown number of targets. The UAVs have to find targets and estimate their locations using em-
bedded sensors that provide measurements related to parts of the environment. The control design
of the robots has to meet a compromise between tracking already identified targets and exploring
parts of the environment that may contain targets not detected yet.

Section 2.1 overviews the target search and tracking problem and the different approaches to
address it. Then, the sensors and computer vision algorithms that can be embedded on a robot are
presented in Section 2.2. Using the measurements provided by these sensors and algorithms, the
robot may update its knowledge regarding the environment by building a map using an approach
presented in Section 2.3. Otherwise, the robot can exploit thesemeasurements to estimate where the
targets can or cannot be by using an approach presented in Section 2.4. Then, Section 2.5 describes
some approaches to address the search and tracking problem. Finally, Section 2.6 presents some
control design approaches.

2.1 . Target search and tracking using mobile robots

The efficient exploration of an environment to search, identify, and track targets is an interesting
and attractive problem due to its numerous applications. This problem, for instance, encompasses
monitoring of a perimeter (Liu et al., 2022b), evasive target search (Olsen et al., 2022), or exploration
of hazardous areas (Zhen et al., 2020). The deployment of robots, also calledmobile sensors or agents
in some surveys (Robin and Lacroix, 2016; Queralta et al., 2020), to supplement or replace human
operators has proved to be an efficient approach to address this kind of problem. This is due to the
efficiency of the robots to evolve within a Region of Interest (RoI), e.g., underwater using submarine
robots or in urban environments using aerial drones. They can reach interesting locations to collect
useful information while keeping the human operator safe. Nevertheless, the deployment of robots
and the design of strategies to address the target search and tracking problemdependon themission,
the available resources, the available knowledge about the RoI or the targets, and the considered
models such as the target dynamic or the sensors embedded in the robots. The survey (Lyu et al.,
2023) presents a variety of recent results regarding the target search and the exploration of an area
after a disaster. For surveys with a broader scope, one may be interested in (Robin and Lacroix, 2016;
Queralta et al., 2020).

Regarding the mission and the available resources, different classes of problems have been poin-
ted out in (Queralta et al., 2020). Section 2.1.1 presents these classes and details their objectives and
assumptions. Section 2.1.2 focuses on the problem considered in this thesis : the cooperative target
search, acquisition, and tracking problem. Then, depending of the available resources (e.g., robots,
sensors) and the available computing power, different levels of knowledge can be gained anddifferent
strategies can be deployed. The target search and tracking problem may be complex to address at
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first glance. Thus, Section 2.1.3 decomposes the target search and tracking problem into several sub-
problems that are easier to handle.

2.1.1 . Mission classification

Themulti-robot target search and tracking problem encompasses a wide variety of situations and
applicationswhich, according to (Khan et al., 2016; Queralta et al., 2020), can be grouped into fourmain
categories : Cooperative Tracking (CT), Cooperative Multirobot Observation of Multiple Moving Tar-
gets (CMOMMT), Cooperative Search, Acquisition, and Tracking (CSAT), andMultirobot Pursuit Evasion
(MPE). The main differences between them rely on the knowledge available to the human operator
about the targets, and on how many robots he/she has access to. For instance, the a priori know-
ledge regarding the targets may be their number, their location, or how they interact with the robots,
i.e., they can be neutral, cooperative, or evasive. The a priori available knowledge regarding the ro-
bots is their dynamics, the sensors and algorithms they embed, their communication capability, their
number compared to the number of targets, et cetera.

Assume the number of targets and their estimated locations are known. A Cooperative Tracking
(CT) mission consists in deploying the robots to pursue the known targets. This type of mission is
often linked with a task of monitoring or perimeter surveillance. The number of known targets is
not constrained. Therefore, if it exceeds the number of robots, then the deployed strategies have to
minimize the time between two observations for each target, e.g., by maximizing the visibility of the
targets (Kim and Crassidis, 2010) or, minimizing the target location uncertainty (Haugen and Imsland,
2015), in order to know when a robot has to switch between targets. Otherwise, some robots may
be - directly (Liu et al., 2022a) or indirectly (Zhou et al., 2021) - partitioned into sub-fleets to pursue a
target from different angles. Hereafter, the notion of target pursuitmeans that a mobile robot should
follow a target in order to keep it within sensing range, whereas the notion of target tracking refers
to the deployment of algorithms and strategies to estimate the state of a tracked target even if it is
not always observable.

When no a priori knowledge about the state vector of the targets is available, i.e., the vector contai-
ning the target location, orientation, or other variables of interest, themission involves a target search.
The CooperativeMultirobot Observation ofMultipleMoving Targets (CMOMMT) approach introduced
in (Parker and Emmons, 1997) is a find-and-pursue approach where the robots switch permanently
from a search mode to a pursuit mode as soon as a target is detected within their field of view. The
aim is to maximize the number of monitored targets at every time instant while having a limited ex-
change of knowledge between the robots. This approach is well-suited when there are fewer targets
than robots, see (Khan et al., 2016; Liu et al., 2022b) and the references therein. Nevertheless, the
CMOMMT approach is not well-suited when the number of targets is unknown and may outnumber
the robots while having a RoI cluttered with obstacles. The reason is when a robot is in the pursuit
mode, it is forbidden to leave the target that it is tasked to pursue in order to explore a neighboring
area that may contain undetected targets.

In Cooperative Search, Acquisition, and Track (CSAT) approaches, robots continuously solve a
trade-off between searching for new targets and maintaining a good accuracy of the estimated state
of those already identified. Therefore, the main difference between CMOMMT and CSAT approaches
is that CMOMMT algorithms maximize the number of currently monitored targets, and thus mini-
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mize the estimation uncertainty of the pursued targets, whereas CSAT algorithms try to maximize the
number of identified targets while maintaining the estimated state of the already identified target as
accurate as possible. For instance, (Dames, 2020) proposes a CSAT algorithm where targets can freely
leave and enter the RoI. When the RoI is an area containing targets to find after a disaster, the term
Search And Rescue (SAR) is preferred, see (Lyu et al., 2023) and the references therein.

The above approaches assume that the targets either cooperate with the robots to help find them,
or are neutral, or move slower than the robots. When the targets are faster or are evasive, i.e., the
targets try to avoid being observed, Multirobot Pursuit Evasion (MPE) approaches have been deve-
loped. In (Vidal et al., 2002; Olsen et al., 2022), MPE algorithms use game theory (Basar and Olsder,
1998) or rely on other strategies such as auction mechanisms (Cai et al., 2008) to design trajectories
minimizing the time needed to either physically or visually capture a target.

Other categories of problems exist such as static surveillance, also named the art gallery pro-
blem (O’rourke and others, 1987), when the robots are static. When the targets are static, then tra-
cking/pursuit steps are not required anymore. Instead, the target search in this scenario is rather
close to an area-covering problem as in (Kuhlman et al., 2017). In addition, one may remark that, as
soon as all targets locatedwithin the RoI are identified and their state is estimated, the initial CMOMMT
or CSAT/SAR problem becomes a CT problem.

2.1.2 . Cooperative Search, Acquisition, and Track

Unlike CT approaches, which assume to already know where the targets are, or MPE approaches,
which consider specific target behaviors, CSAT/SAR approaches can be related to a wide variety of
real-life problems and applications. See (DJI, ) only as an example of a list of situations that can be
encountered in the context of a SAR problem. Traditionally, the CSAT approach only considers mobile
targets whereas the SAR approach may consider either static or mobile targets. For the latter, the
main difficulty of the SAR approach is to deal with an unknown and unstructured RoI, which is the
case after a natural disaster (storm, earthquake). In such a situation, the targets do not or are unable
to move. In the case of a marine rescue, the target may drift away. For the rest of this section, we will
only consider mobile targets for a target search and tracking problem with CSAT/SAR approach. See
(Khan et al., 2016; Lyu et al., 2023) and the references therein for CSAT and SAR algorithms respectively.

As for CMOMMT algorithms, CSAT algorithms consider two modes : a search mode where the ro-
bot explores the RoI to find a target, and a pursuit mode where the robot pursues a target to collect
more information in order to reduce its state estimation uncertainty. Unlike CMOMMT, the robots
controlled by a CSAT algorithm will not be locked in pursuit mode once they have found a target. Ins-
tead, CSAT algorithms are designed to enable a robot to switch between the two operating modes.
CSAT algorithms have been first introduced in (Furukawa et al., 2006) : Four UAVs are deployed to
search for six mobile ground targets. The UAVs are able to communicate with all the other UAVs wi-
thout failures and delay. They exchange information to mutually update their knowledge regarding
the actual possible locations of the targets. Then, each robot individually evaluates its best sequence
of control actions which maximizes an objective function involving both the search and the pursuit
part. The search mode is designed to explore the RoI in order to reduce the uncertainty of the target
location, modeled with a probability density function. A robot switches from search mode to pursuit
mode if it has detected a target. Then, it switches back to search mode when the target is considered
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rescued, meaning that a rescuing helicopter had the time to reach the actual location of the pursued
target to retrieve it. Nonetheless, most of the other CSAT problems do not involve a vehicle that will
remove the pursued target from the RoI. Therefore, as in (Frew and Elston, 2008; How et al., 2009),
the robots explore the RoI to acquire new observations in order to estimate where the targets can or
cannot be. A robot switches from search mode to pursuit mode to reduce the estimated state uncer-
tainty of a detected target. Then, it switches back to search mode if the uncertainty of the pursued
target estimated state is below some threshold. Thus, the robot stops monitoring the targets and
starts searching for new ones. Nevertheless, since the targets move and their dynamics are at least
partially known, their estimated state uncertainty grows until they are re-observed by a robot in the
pursuit mode.

This threshold, and more generally the transition condition between search mode and pursuit
mode, controls the trade-off between searching for new targets and recapturing already identified
targets to reduce the uncertainty regarding their estimated state. An example of transition condition
is described in (Frew and Elston, 2008). The spectral norm of a target state covariance matrix is used
as the metric to evaluate the uncertainty of its estimated location. The evolution over time of this un-
certainty can be predicted. Therefore, as long as a robot has the time to recapture the target before
an uncertainty limit is violated, it remains in search mode. In (How et al., 2009), the mode transition is
managed with a task assignment between the UAVs. However, as highlighted in (Ibenthal, 2022) the
design of the transition condition has to be defined carefully to avoid the estimated state uncertainty
of the identified and non-detected targets growing too fast. Recently, a new approach has been pro-
posed to simultaneously search and pursue targets (Ibenthal et al., 2020; Banerjee and Schneider,
2024; Li et al., 2024). While exchanging information with its neighbors, a robot searches for the best
action it can take to minimize a criterion that accounts simultaneously for the future gain of exploring
areas potentially containing undetected targets and the future gain in recapturing already identified
targets to get a more accurate estimation of their states.

2.1.3 . Problems related to the target search and tracking problem

A target search and tracking problem involves several disciplines - or subproblems - such as the
processing of the information collected by the embedded sensors, a robust target state estimation,
or the design of a controller. For instance, a robot embeds sensors and computer vision algorithms
to gain new measurements regarding the targets or the environment. Measurements related to the
presence of targets are used to estimate their states (Meera et al., 2019), whereas measurements
related to the absence of targets are used to remove some of their potential locations and, thus, re-
duce the uncertainty of the estimated target location (Blanding et al., 2006). Measurements related
to the environment are used to gain some knowledge such as the location of obstacles or the cha-
racterization of pathways (Zhang et al., 2022). This kind of knowledge is dubbed as environmental
knowledge. Such knowledge may take the form of a 2D or a 3D map used as input for exploration
or target search/pursuit strategies. Exploration strategies aim to drive the robot toward unexplored
areas of the RoI formapping purposes (Hardouin et al., 2020). Target search strategies aim to drive the
robots toward areas thatmay contain either a new target to detect or a target to recapture (Tang et al.,
2019). Pursuit strategies aim to evaluate new observation locations to further increase the accuracy
of the estimated state of currently monitored targets (Cichella et al., 2015; Ibenthal et al., 2021).
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To summarize the inherent complexity of a target search problem, this thesis proposes the follo-
wing subproblems :

• Acquisition of information : the embedded sensors collect new information from the monitored
environment. Then, the collected information is processed using computer vision algorithms

• Extraction of knowledge : interpretation of the measurements provided by the sensors and the
computer vision algorithms to gain knowledge about the possible values of the target state as
well as the environment through an estimation process

• Target search : application of strategies to continuously collect new information about where the
targets can and cannot be

• Target pursuit : application of strategies to keep a target within sensing range
• Target tracking : exploitation of a priori knowledge about the targets to predict their evolu-
tion from previously gained knowledge in order to, e.g., evaluate the next best location for re-
observation

• Map exploration : use of either a priori or gained environmental knowledge to design an efficient
robot trajectory within the cluttered area in order to optimize the future gain of information

• Cooperation : deployment of a network architecture (centralized, decentralized, or distributed)
to allow the robots to cooperate, i.e., exchange knowledge, and thus, increase the overall per-
formance of the proposed approach.

These subproblems and the current approaches to solve them are discussed in what follows.

2.2 . Sensors and computer vision algorithms

The first difficulty regarding the target search and tracking problem is how to collect new infor-
mation from the perceived environment and exploit this information to infer the possible values of
the state of each target contained in the RoI. To achieve this goal, the robots embed Computer Vision
Systems (CVS) composed of sensors (there is in general at least one camera) and computer vision algo-
rithms to process the information collected by those sensors. Alternatively, the robots may transmit
the acquired sensor measurements to a robot or a ground unit with a higher computing power, or to
store them for offline processing.

In what follows, we distinguish the information contained in a scene that is under observation,
the measurements provided by the CVS, and the knowledge acquired by the robot. What we call
information is - to put it simply - all that composes an environment. For instance, a building is not
only defined by its shape but by its color and location too, or a target can be defined by a heat signal
or its features such as the license plate for a vehicle. The embedded sensors collect some of this
information to provide raw measurements such as an image, but this collected information can be
processed by embedded computer vision algorithms to provide othermeasurements such as a depth
map or the detection of a target. Inwhat follows, ameasurement provided by either the sensors or the
computer vision algorithms is dubbed as CVSmeasurement. Finally, the available CVSmeasurements
are processed further by an estimator to gain knowledge on what the sensors have perceived : target
location, absence of target, presence of an obstacle, etc. Figure 2.1 illustrates this chain to get new
knowledge from the portion of the environment that is under observation.

Section 2.2.1 presents some examples of sensors. Section 2.2.2 presents some computer vision
35



algorithms that can be used with some of the aforementioned sensors. Lastly, Section 2.2.3 discusses
the accuracy of some computer vision algorithms.

Scene containing information 
that can be collected

CVS Estimation 
process Car 1

Car 2

CVS measurements

Gained knowledge

Figure 2.1 – Illustration of the chain to get new knowledge from an observed scene. A UAV is moni-toring an area with cars and obstacles. Its embedded CVS provides new measurements such as animage, bounding boxes (purple) of the moving objects, a segmentation, or a depth map. Then, theseCVS measurements are used to estimate the location of the cars (green sets) and the location of theobstacles (blue sets).

2.2.1 . Examples of sensors
Exteroceptive and proprioceptive sensors are two categories of sensors that can be embedded in

a robot. Proprioceptive sensors provide measurements of the state of the robot on which they are
embedded whereas exteroceptive sensors provide measurements related to the environment. This
section only presents exteroceptive sensors.

In most cases, a robot embeds an RGB camera to get images of parts of its environment. The
camera may be supplemented by a LiDAR or a sonar to get additional distance measurements to
surrounding obstacles to get a depth map. As in (Williams et al., 2020), a LiDAR can be used to get an
approximation of the environment through a point cloud, i.e., a discrete set of points in space used
as a way to approximate the surface of objects and structures. Figure 2.2 provides a result regarding
this mapping technique. Alternatively, a depth map can be obtained using a stereo camera (Park
and Kim, 2012) through the computation of a disparity map or a monocular camera using structure-
from-motion algorithms (Ranftl et al., 2016). The latter require, however, multiple images from the
same scene and are more time-consuming (Madhuanand et al., 2021). More recently, deep-learning
techniques have been proposed to compute depth estimates frommonocular images. (Madhuanand
et al., 2021) proposes a self-supervised depth estimator trained using a dataset containing videos (RGB
and depth map) generated by a UAV flying in an urban environment at an altitude ranging from 50 to
100 meters. (Shimada et al., 2023) proposes a similar approach with a combination of a CNN and an
Optical Flow algorithm, trainedwith a dataset generated by AirSim. Lenslet light field cameras can also
be used to generate a depthmap as in (Jeon et al., 2015) where the authors propose a stereo-matching
algorithm that has been modified to account for the angular coordinates of the light field.

Other sensorsmay be considered depending on the context, like in (Ji et al., 2022) with a gas sensor,
or in (Van Tilburg, 2017) with a thermal camera, but their utilizationwill not be considered in this thesis.
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Figure 2.2 – Snapshots of the exploration mission presented in (Williams et al., 2020). The magentadots are candidate locations that the robot may choose to reach to continue the exploration. Thewhite line is the trajectory that the robot took. The red line shows the path to the selected candidatelocation. The point cloud represents the portion of the indoor environment that has been mapped.

2.2.2 . Examples of computer vision algorithms
Using computer vision algorithms, other information - dubbed as measurements in what follows

- may be obtained from the information collected by the sensors. Image or point cloud segmentation
(Grilli et al., 2017; Howard et al., 2019; Minaee et al., 2021) can be used to evaluate the category of
the objects perceived in the environment. Then the approach presented in (Jiang et al., 2023) can be
applied to improve image segmentation using the confidence that each pixel has in belonging to a
class. Regarding target detection, one may rely on deep-learning methods such as R-CNN (Girshick
et al., 2014), SSD (Liu et al., 2016), or YOLO (Redmon et al., 2016; Luo et al., 2022; Jiang et al., 2022).
Figure 2.3 provides some results for a target detector embedded on an aerial robot that has been
presented in (Luo et al., 2022) where several vehicles are localized in the image using boxes. In (Arras
et al., 2007), the authors use a point cloud to detect the presence of a human target by detecting its
legs. (Minaeian et al., 2018) propose another target detector specially designed for the low computing
power of UAVs, which combines optical flow for feature tracking with background elimination.

Moreover, depending on the application and the available dataset, more complex measurements
can be obtained such as the current action of a human (Shinde et al., 2018), e.g., handshaking or phone
call. Another example of computer vision algorithms is the 6D-pose detection that relies on a deep-
learning approach. These algorithms can provide an estimation of the position and the orientation
of a static object (Atanasov et al., 2014; Zeng et al., 2018), or a vehicle (Sahin et al., 2020; Fan et al.,
2022). Nonetheless, these algorithms often require strong a priori information such as 3D models of
the target shapes.

Target identification, i.e., the capacity to estimate the identity of a target, strongly depends on the
nature of the target. Some approaches, such as (Goldhoorn et al., 2018; Zhu et al., 2021; Liu et al., 2022c),
use QR codes or ArUco markers attached to the target to simplify their identification. Without such
markers, one can use the Bi-directional Similarity Matching algorithm, presented in (Oron et al., 2017)
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Figure 2.3 – Illustration of the detection results obtained with the YOLOD algorithm developed in (Luoet al., 2022). Red boxes are for detected cars. Purples boxes are for detected pickups. Orange boxesare for detected trucks. Cyan boxes are for detected boats. Green boxes are for detected campingcars.
and used in (Liu et al., 2022a), to detect a target, store inmemory information regarding its shape, and
try to re-identify the target in the future by testing if the newly collected information matches with
that stored, see Figure 2.4. The authors of (Silva et al., 2019) consider a similar approach, but it only
works with the extracted features of a human face.

Figure 2.4 – Illustration from (Liu et al., 2022a) of the detection of human targets using YOLOv3 and theidentification of the correct target to track with the Bi-directional Similarity Matching (BSM) algorithm(Oron et al., 2017).

2.2.3 . Accuracy of computer vision algorithms
Most of the aforementioned CVS are, nowadays, commonly embedded in robots to collect and

process new information before applying estimation and control design algorithms with the newly
obtained CVSmeasurement. Nevertheless, themeasurements provided by these CVS are not perfect,
see (Jamwal et al., 2016) as a survey of the accuracy ofUAV-basedmapping approaches using structure-
from-motion. Outliers, e.g., the detection of a target that is not present or the non-detection of a
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visible target, can occur and have to be correctly managed to avoid failures in the following processes.
Though the generation of outliers is rare for some computer vision algorithms, it is still useful to have
access to somemetrics evaluating their accuracy to know if robust approaches have to be considered
in order to reject those outliers.

Some metrics have already been introduced for target detection. To evaluate the accuracy of the
target detection in one picture, onemay use the Intersection over Union (IoU). The IoU represents how
accurate is the localization of a detected target in the image. The way this metric is evaluated is by
comparing the box representing the ground truth, i.e., what the target detector is aimed to achieve,
with the box representing where in the image a target has been detected. Figure 2.5 provides an
example. Then, to get an estimation of the expected accuracy of a target detection algorithm, the
mean average precision (mAP) may be used. The mAP is obtained by computing the average over
the number of considered categories (car, bus...) of the average of the precision for each considered
category. The precision is defined as the ratio between the true positives, i.e., having an IoU above
some threshold, and the sum of the number of true positives and false positives, i.e., detection of a
target that does not exist. Another metric is the F1 score. It is the harmonic mean of the precision and
the recall of the sensor. The recall is the ratio between the true positives and the sum of the number
of true positives and false negatives, i.e., non-detection.

In (Luo et al., 2022), the mAP of their algorithm designed to detect targets from aerial images is
83.19 %, which is better than YOLOv4 (Bochkovskiy, 2020) (with an mAP of 80.13 %) or Faster R-CNN
(Ren et al., 2016) (with an mAP of 44.39 %). Nonetheless, the probability of bad target detection still
exists and the bounding box provided by the embedded target detector may not or only partially
contain the target.

Ground truth

Target detection

Union

Intersection

Figure 2.5 – Illustration of the IoU metric. A car is visible the image. The blue box is the ground truth,and the orange box is what the target detector (trained to detect cars) returns. The IoU is the ratiobetween the intersection between the two boxes and the area of their union.
Other highly inaccurate measurements may be provided by the CVS when, e.g., target misiden-

tifications or non-detection occur. These outliers are commonly referred to either false positives or
false negatives and can make the entire estimation process fail. (Symington et al., 2010) and (Meera
et al., 2019) have proved that the quality of a deep learning target detection algorithmdepends, among
others, on the observation condition (including the presence of obstacles) and weather conditions.
This is due to the fact that the performance of these algorithms heavily depends on the content of
their training dataset. If the dataset is not consistent enough to encompass all possible situations
encountered by the robot, the provided measurement is biased because it is only obtained after a
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comparison between what has been actually perceived and with what the deep-learning algorithm
has been trained. Consider the 6D-pose detection algorithm proposed in (Mousavian et al., 2017) as
an example. Though the average precision of their approach is 92.98 % , their algorithm can still fail
to provide a correct estimation of the target location and dimensions, as illustrated in Figure 2.6.

Figure 2.6 – Illustration of the performance of a 6D-pose algorithm. Red boxes are for cars and greenboxes are for cyclists. Most of the estimated locations, orientations, and dimensions are correct.Nonetheless, in the top-right figure, the algorithm provided an erroneous pose estimation of thepartially-visible black car. Figure taken from (Mousavian et al., 2017).
The measurements provided by the CVS embedded on a robot can be either used to map the

environment or to characterize areas where a target can or cannot be.

2.3 . Map building

A target search problem involves the navigation of a robot within an environment cluttered with
obstacles whose locations are often unknown. This section considers the problem of gaining know-
ledge about the location and shape of obstacles in some unknown environment using CVS measure-
ments. To achieve this goal, several approaches to map the environment have been proposed in the
context of Simultaneous Localization and Mapping (SLAM) algorithms, see the survey (Placed et al.,
2023). Their differences are mainly related to the choice of the representation used to describe the
environment, i.e., with a point cloud or with a grid map.

A first representation of the environment is by point clouds, i.e., a set of 3D points approximating
the surface of objects. This type of representation is well suited when distance measurements are
acquired by a LiDAR sensor. An example of a point cloud used for the mapping of a city is provided
in Figure 2.10. The point cloud is build progressively. The main difficulty is to put in correspondence
newly acquired measurements with previous knowledge about the point cloud or the model repre-
senting the environment. Iterative Closest Point (ICP) algorithms (Besl and McKay, 1992) compare two
point clouds : one is the data and the other is the model. The aim is to find the best transformation
that makes the data point cloud match the model point cloud. From this method, approaches to ite-
ratively build a map of the environment have been developed. (Tomono, 2009) uses a stereo camera
to generate a point cloud to map a 3D indoor environment. An approach adapted to outdoor envi-
ronments is presented in (Mendes et al., 2016). The authors propose a graph approach in which each
node is related to a scan, i.e., a point cloud. For each newly obtained point cloud, if it does not overlap
too much with previous scans, a new node is created to store the scan. To evaluate the overlap, the
scan is not compared with the entire registered map but only with a local map built from previous
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scans. Nonetheless, to reduce the computational burden of ICP, up to 80% of the dense point cloud is
filtered without losing the structural information of the obstacles. Alternatively, (Williams et al., 2020)
use a grid approach to limit the number of registered 3D points

A second representation of an environment uses a 3D occupancy grid. The authors of (Hardouin
et al., 2020) propose a method to cooperatively reconstruct the surface of a building using an occu-
pancy grid. An occupancy grid consists of cells which are either unknown and need to be explored,
empty and contain no obstacle that may obstruct the path of the robot, or occupied meaning that at
least a part of an obstacle or an object is located in the cell. (Serdel et al., 2023) present two different
approaches to build these 3D gridmaps, i.e., by using either Octomap (Hornung et al., 2013) or Voxblox
(Oleynikova et al., 2017). (Asgharivaskasi and Atanasov, 2023) use a semantic Octomap representation
to explore and map an unknown outdoor environment, see Figure 2.7. The semantic segmentation
has been performed using a neural network that takes RGB images as inputs. See (Andersone, 2019)
and the reference therein for other examples of grid maps.

Figure 2.7 – Figure from (Asgharivaskasi and Atanasov, 2023) illustrating the grid-based representation(via semantic Octomap) of the RoI during its exploration.
The availability of semantic information, such as classification (Grilli et al., 2017), i.e., knowing what

class of object has been detected, or traversability (Stelzer et al., 2012; Liu et al., 2023), i.e., evaluating
the capacity of a robot to cross a mapped terrain, can improve the mapping algorithms (Atanasov
et al., 2014; Zhong et al., 2018; Zhang et al., 2022; Asgharivaskasi and Atanasov, 2023; Serdel et al.,
2023) by, e.g., distinguishing static and mobile objects as in (Zhong et al., 2018). To map an outdoor
environment, (Zhang et al., 2022; Serdel et al., 2023) use semantic information to evaluate the traver-
sability between two locations.

Nevertheless, as pointed out in (Placed et al., 2023), 3D mapping and exploration of large out-
door environments is still challenging, especially for aerial vehicles due to their limited computational
power when they are tasked to map a city-scale environment with a 3D occupancy grid. Using an Oc-
tomap may reduce the complexity as shown in (Asgharivaskasi and Atanasov, 2023), but their study
is limited to the ground exploration of an area of 22500m2 (equivalent to a 150m× 150m2).

For the mapping of a large-scale outdoor environment, alternative 2.5D mapping approaches re-
present less accurately the environment in the third coordinate, i.e., the height. This approximation
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allows the use of simpler geometric representations of the environment at the cost of a decrease in
the quality of the description of complex structures and objects of the RoI. An example is the use of an
elevationmap. This approach consists of a 2D grid where each cell contains the value of themeasured
floor height. In (Fankhauser et al., 2014), the elevation map is updated from the noisy measurement
provided by a ground robot, whereas a UAV is used instead in (Zhang et al., 2022). The authors of
(Du et al., 2018) present a method to get a bounded elevation map with a set-membership approach.
Moreover, (Zhang et al., 2022) use, among others, an elevation map with a traversability map, see
Figure 2.8, to rapidly map the RoI with a UAV in order to provide enough information for a ground
vehicle to find a trajectory that crosses the previously unknown RoI to reach a known target location.

Figure 2.8 – Figure from (Zhang et al., 2022) illustrating themaps that are considered during the explo-ration and mapping of the environment using a UAV. With the elevation map, other properties of theterrrain are evaluated : the slope, the roughness, and the step height. These metrics are evaluatedusing (Stelzer et al., 2012). Once obtained, the traversability map is deduced.
(Dellenbach et al., 2022) also uses an elevation map to solve a SLAM problem in an outdoor envi-

ronment where, instead of applying the ICP algorithm to the newly obtained point cloud, they trans-
form the point cloud into an elevation map and then search the 2D rigid transformation between
the newly obtained elevation map and the stored elevation maps. When a match is obtained, an ICP
refinement is performed with the initial elevation map’s point clouds for the loop closure.

Alternatively, the authors of (Zhang et al., 2023) assume that the buildings located inside the RoI
can be approximated by a pyramidal stacking of parallelepipedic blocks. Therefore, the map repre-
sentation is based on layers, see Figure 2.9 and Figure 2.10. This approximation enables the generation
of fictive point clouds used for vehicle localization which are quite close to the ground truth.

(Souza and Goncalves, 2016; Du et al., 2018; Souza and Goncalves, 2018; Bayer and Faigl, 2019)
combine the elevation map with a 2D occupancy map in order to map the RoI. An occupied cell is a
cell that is at least partially occupied by an obstacle for which its height is either known or has been
estimated using CVSmeasurements. An empty cell of the Occupancy-ElevationMap (OEM) represents
an area where there is no building, and where the robots and the targets are free to move. In (Souza
andGoncalves, 2016; Souza andGoncalves, 2018), at time tk, the cell n of theOEM carries an occupancy
probability, an estimated height µn,k, and the variance σ2n,k of the estimated height. The update of the
occupancy probability relies on a stochastic sensor model that provides an occupancy probability
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Figure 2.9 – Figure from (Zhang et al., 2023). Illustration of the assumption related to the pyramidalstacking of parallelepipedic blocks to model urban buildings.

Figure 2.10 – Figure from (Zhang et al., 2023). Illustration of the building reconstruction approach witha point cloud initially obtained from CVS measurement (in blue) and the fictive point cloud generatedfrom the pyramidal assumption (in red).

for each cell that is flown over by a ray, see Figure 2.11. The update of the estimated height and the
uncertainty of the cell n is

µn,k =
σ2n,k−1ht + σ2kµn,k−1

σ2n,k−1 + σ2k
, (2.1)

σ2n,k =
σ2n,k−1σ

2
k

σ2n,k−1 + σ2k
, (2.2)

where ht and σ2k are the newly estimated height with its uncertainty. A set-membership approach ap-
proach is used in (Du et al., 2018) to build an elevationmap. Their set-membership estimator provides
set estimates that are characterized by ellipsoids. From these set estimates, the authors update the
elevation map. Yet, instead of simply updating the height of each cell, they propagate the bounded
uncertainty of the measured height by obtaining two bounds for each cell of the elevation map, i.e.,
the highest and the lowest elevation.

This approach to approximate the shape of the buildings in an urban environment, as in as in (Hu
et al., 2019; Liu et al., 2020; Wu et al., 2020), can be supported with the main assumption of (Zhang
et al., 2023) which approximates buildings as stacking of parallelepipedic blocks.
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Figure 2.11 – Figure from (Souza andGoncalves, 2016). Illustration of the sensormodel. A beam is cast ina direction. The cells of the OEM that are flown over are detected, and a probability of being occupiedby an obstacle is assigned to them. This occupancy probability accounts for a measured distance.

Regardless of the approach used to build a representation of the environment, such environmen-
tal knowledge can be used to better estimate the location of the targets.

2.4 . Target localization

This section describes relatedwork considering the problemof estimating the target location from
CVSmeasurements. The difficulty and type of approaches to address this problemdepend on the type
of measurements provided by the CVS. It also depends on the assumptions regarding the measure-
ment noises and other uncertainties and, thus, the approach to consider so as to account for those
noises in order to process those measurements.

A deterministic approach is presented in Section 2.4.1. It is then followed by the presentation of
a stochastic approach in Section 2.4.2, and a set-membership approach in Section 2.4.3. Section 2.4.4
introduces the negative information and how it can be used during the estimation process. Lastly,
Section 2.4.5 discusses a simplification of the CVS that can be found in several approaches initially
developed to solve a target search and tracking problem.

2.4.1 . Deterministic approach
In (Liu et al., 2022a), a UAV and a ground robot cooperate to track a human inside a RoI free of

obstacles but containing other humans. The UAV and the ground robot embed a camera, the YO-
LOv3 algorithm for target detection, and the Bi-directional Similarity Matching algorithm for target
identification. The available measurement is the bounding box provided by YOLOv3 which allows the
re-identification of the target using the Bi-directional Similarity Matching algorithm, see Figure 2.4.
From this bounding box, the proposed estimator implemented on the UAV exploits only its bottom-
center pixel because this particular pixel is assumed representative of the target location. Then, the
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algorithm estimates the target location by searching for the intersection between the flat horizontal
ground and the line passing through this pixel and the camera optical center. This is achieved by using
Thales theorem. Similar processes to determine the location of a target from its estimated location
in the image can be found in (Minaeian et al., 2015; Vanegas et al., 2016; Sun et al., 2016; Wang et al.,
2016; Liu et al., 2018). Some of these approaches also assume to know a priori the height of the target.
Nevertheless, compared to approaches like 6D-pose estimation using a CAD model of the target, the
absence of knowledge regarding the target shape may lead to relatively large and unpredictable es-
timation errors, as evidenced by (Di Gennaro and Waldmann, 2023) where estimating the location of
humans evolving in the overlapping FoV of static cameras is achieved by stereoscopy techniques, see
Figure 2.12. In addition, since these estimators are often developed for target pursuit, i.e., the robot is
controlled to keep the target within sight, their estimation algorithm does not provide an evaluation
of the uncertainty regarding the estimated target location.

Figure 2.12 – Figure from (Di Gennaro andWaldmann, 2023) where three detected targets evolving wi-thin the overlapping FoV of static cameras have to be localized using stereoscopy techniques. Target 1has been detected. However, their algorithm has poorly estimated its location.

2.4.2 . Stochastic approach
To evaluate the uncertainty regarding the estimated target location, one has to model the mea-

surement noises and other uncertainties. An approach to model these uncertainties is to rely on a
probability distribution.

CVS-based approaches estimating the location of a target and its related uncertainty have been
proposed in (Goldhoorn et al., 2018; Meera et al., 2019). The authors of (Meera et al., 2019) consider
a UAV that is tasked to find ground targets scattered within a region cluttered with obstacles. These
obstacles are known and modeled using a 3D grid map. A probabilistic model combining the embed-
ded camera and a target detector (YOLO Tiny 2.0) is used. The authors choose a normal distribution
to model the sensor performance, and its parameters are chosen according to an empirical study of
the accuracy of the implemented target detector illustrated in Figure 2.13. Targets are assumed to be
present on a flat ground. The field of target occupancy is modeled using a discretized Gaussian pro-
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cess. After an observation, the FoV of the UAV is projected on the ground to identify which cells have
to be updated using a recursive technique presented in (Popović et al., 2017). This projection accounts
for the part of the RoI masked by obstacles. In (Goldhoorn et al., 2018), the authors consider a ground
robot, evolving in a mapped environment, which embeds a LiDAR for human detection and a camera
for identification. They model what the sensors perceive with the following probabilistic model that
evaluates the probability of seeing a point x2 from a point x1 :

Pvisibility (x1,x2) =


0 if RAY (x1,x2) intersects an obstacle
pobs else if ∥x1 − x2∥ < dmax

max (0, pobs − α (∥x1 − x2∥ − dmax)) otherwise. (2.3)
RAY (x1,x2) is the raytrace function that uses the known map to evaluate when the segment [x1,x2]crosses an obstacle. The parameter pobs represents the probability that the robot seesx2 from its cur-
rent location x1. The third line of (2.3) models the possible occlusions generated by nearby unknown
dynamic obstacles, i.e., other humans.

Figure 2.13 – Empirical study of YOLOTiny 2.0 to detect the presence of a human-like target. The chosenmetric to evaluate the accuracy of the target detector is the F1 score. Figure taken from (Meera et al.,2019).

2.4.3 . Set-membership approach
Instead of considering known probability distributions, the measurement noises and other un-

certainties may be assumed as bounded. Several representations of these bounds exist. The author
in (Schweppe, 1968), who is the first to solve a state estimation problem with a set-membership ap-
proach, used ellipsoids. An interval representation has also been introduced in (Moore, 1979; Jaulin
and Walter, 1993). Unlike stochastic techniques, which provide point estimates with a confidence set,
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set-membership techniques characterize a bounded set denoted as a set estimate. This set estimate
gathers all the values that are consistent with a measurement model and the assumed bounds of
the noises and other uncertainties that perturb the measurement process. Then, if the assumptions
regarding the bounds related to these perturbations are satisfied, the set estimate provided by a
set-membership estimator always contains the true value of the estimated state (Jaulin et al., 2001).

Regarding a target localization problem at time tk, e.g., (Kieffer, 1999; Jaulin, 2009), it is assumed
that the target location at time tk−1 belongs to a set estimate Xt

k−1. Then, with a prediction step
that will be detailed later, a set estimate Xt

k|k−1 is obtained and contains all the possible locations
of the target at tk known to the robot. Xt

k|k−1 can thus be considered as an a priori. Then, at time
instant tk, the CVS embedded in the robot provides a measurement yk of the target location. Thismeasurement has been corrupted by a perturbation denoted bywk ∈ W, withW being the assumed
bounded set where the perturbation can take its values. The goal is to deduce from yk,W, andXt

k|k−1the a posteriori set estimate containing the target location. For that purpose, a measurement function
f modeling the relation between yk and xk is required in order to characterize the set estimate

Xt
k =

{
x ∈ Xt

k|k−1 | ∃w ∈ W,yk = f (x,w)
}
. (2.4)

This set estimate gathers all the possible locations of the target that are consistent with the a priori
Xt
k|k−1, the available measurement y, and the assumed bounded measurement noise W. Assuming

the measurement function f is a reliable representation of the processing performed by the CVS,
and the measurement bounds are not violated, then the solution set Xt

k is guaranteed to contain theactual target location at time instant tk.An application of this approach for the self-localization of an underwater drone in a pool is illus-
trated in (Jaulin, 2009). The drone is equipped with a sonar providing a measure of distance to the
walls of the pool, but the measurement is corrupted by a bounded additive measurement noise. The
authors in (Kenmogne et al., 2019) solve a similar problem involving a cooperative fleet of UAVs. Each
UAV embeds a camera that is described by the simple pinhole model (Faugeras, 1993). The camera is
used to perceive landmarks of known locations in order to estimate its location. The measurement
is an image in which the known landmarks can be identified. The drones are also equipped with a
ranging system antenna in order to get the distance between the drone and its neighbors, and thus
get more constraints regarding the possible locations of the drone. The pinhole model is used to de-
fine the measurement function relating the available measurement to the environment. The noise
related to the measurements provided by the camera depends on the resolution of the image, which
is clearly bounded, but the distancemeasurement is also corrupted with an assumed bounded noise.

2.4.4 . Negative information
A shared characteristic of a target location estimator is that it relies on the exploitation of CVS

measurements which are directly associated with the presence of a detected/identified target. These
CVS measurements can be considered as True Positives when they are related to a correctly detec-
ted/identified target. In addition, one may also exploit True Negative measurements, i.e., CVS mea-
surements concluding in the (true) absence of a target in the FoV of the sensor. The exploitation of
these True Negative measurements, or negative information as introduced in (Blanding et al., 2006),
requires the introduction of other assumptions/models in order to design an estimator that would ex-
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tract from the true negatives new knowledge about possible values that the target state cannot take.
In (Geller and Oshman, 2014), negative information is used to detect the absence of collision during
the landing of a vehicle in order to improve its estimated state. (Allik, 2019) uses negative information
to detect the absence of targets in an area monitored by UAVs in order to reduce the uncertainty
regarding their estimated location. This is achieved during the update of the posterior probability.
Nevertheless, unlike the authors of (Geller and Oshman, 2014) who tell that negative collision, i.e.,
an absence of collision, can be obtained by using an accelerometer, (Allik, 2019) does not explain
where the negative measurements come from. Only a target detection probability is introduced, as
in (Dames, 2020; Hou et al., 2023; Li et al., 2024). Moreover, according to (Symington et al., 2010; Meera
et al., 2019; Bai et al., 2021), the target detection probability is hard to quantify, especially in unknown
environments.

2.4.5 . Idealized CVS

A target state can be composed of its location, its orientation, or its velocity. Regarding the target
location, it may be defined as the coordinates of its center of mass, or its GPS location. Nonethe-
less, these components may be hard to estimate from a measurement provided by a camera. Some
approaches such as (Mousavian et al., 2017) manage to solve this problem with 6D-pose detection
algorithms, but they are not suitable for aerial drones whose computing power is inferior to that of
ground drones. Other approaches, such as (Liu et al., 2022a), rely on the exploitation of a specific pixel,
e.g., the one located at the center of a bounding box provided by YOLO, associated to the detected
target to evaluate a location that is considered representative of the actual target location. Thus, these
approaches, designed for a pursuing problemwhere the target should always remains within the field
of view of the drone, rather approximate the target location than solve an estimation problem. This
may lead to errors that are hard to evaluate. (Goldhoorn et al., 2018; Kenmogne et al., 2019; Meera
et al., 2019) have proposed different approaches tomodel the embedded CVS to solve a detection and
localization problem. Nevertheless, most of the work addressing a target search and track problem
frequently neglects this aspect of the problem by considering an idealized version of the embedded
CVS (Kuhlman et al., 2017; Zhu et al., 2021; Zhao et al., 2022; Ibenthal et al., 2023; Zhang et al., 2024).
Thus, this idealization often leads to assume that the robot gets directly a noisy measurement of the
target state once located within the FoV.

Nowadays, very few approaches developed to solve either a CSAT or a SAR problem consider the
difficulty of estimating the target location from CVS measurements. The more or less complex target
shape, such as a human or a car, is no longer considered. Instead, the target shape is assumed punc-
tual, see (Li et al., 2018; Dames, 2020; Ibenthal et al., 2021; Wei et al., 2024). It is detected only when its
location enters the robot field of view and an estimation of its location - corrupted by some estimation
noise - is directly obtained. This simplification has the advantage of proposing a framework allowing a
simplified evaluation of a control design but at the cost of the introduction of assumptions regarding
the capacity to collect and process new information, e.g., a target detection probability or a model of
the estimation uncertainty. According to (Bai et al., 2021) and (Symington et al., 2010), the choice to
represent - most of the time - the localization uncertainty by a known noise and the capacity to detect
the presence of a target with a probability of detection is not realistic. Therefore, the performance of
the algorithms that use this simplified framework is likely to not be representative of the efficiency of
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their approach once deployed in a real-life context with real CVS.

2.5 . Target search and tracking

The solution of a target search problem consists of three different steps : target search, target
pursuit, and target tracking. The target search step consists of efficiently exploring the RoI to find
targets that have not been previously identified. Once a mobile target is identified, a robot may be
tasked to pursue the target and evolve within the RoI so as to keep the pursued target within range of
its sensors. Additionally, unlike CMOMMT approaches, the robot may be tasked to return to a search
mode and stop pursuing the target. Consequently, the robots must remain capable of recapturing
these left-alone identified targets. For that purpose, the step of target tracking, i.e., being able to track
the target state even if it is not under observation, is to predict the future possible values of the target
state by using previous knowledge of its estimated values with the knowledge the UAV has about the
target dynamic.

Section 2.5.1 presents several approaches to model the presence/location of a target within the
environment. Then, Section 2.5.2 provides some examples to search for a target. Section 2.5.3 explains
how to pursue a target. Finally, Section 2.5.4 presents how a robot may remotely track a target.

2.5.1 . Representation of the target state
The first difficulty in exploring a RoI in order to find the targets is to definehow the estimated target

state is represented. In target localization problems, a commonapproachwith stochastic assumptions
is to rely either on a 2D (Yadav and Meng, 2014; Tang et al., 2019; Wei et al., 2024; Zhang et al., 2024; Li
et al., 2024) or 3D (Li et al., 2018) discretization of the RoI in order to have access to a grid in which each
cell stores the probability that it contains a target. This regular grid is often called a Target Probability
Map (TPM), see Figure 2.14.

The resolution of the TPM is an issue since it has to cover the entirety of the RoI. A low resolu-
tion limits the accuracy of the estimated target location, but a high resolution leads to more storage
and computation requirements. Alternative representations have been considered in (Vo et al., 2008;
Dames, 2020; Banerjee and Schneider, 2024) where the authors model the set containing the location
of all targets that are present within the RoI at some time instant by a Random Finite Set (RFS). It is a
grid-free approach that relies on a set containing a finite and random number of random elements.
As an example, one of the RFS introduced in (Dames, 2020) contains a random number of elements
in which each element may be the value of the state vector related to a target. More specifically, the
authors consider a Poisson RFS, which is defined as a set of independent and identically distributed
elements where the cardinality of the set follows a Poisson distribution. One of the strengths of this
approach is, since the number of elements to track is a variable, it is built to handle the disappearance
of previously identified targets that have left the RoI as well as the appearance of new targets entering
the RoI.

Moreover, as introduced in Section 2.4, set-membership approaches can be used if the measu-
rement noise and other uncertainties are assumed bounded. Such approaches are defined by the
characterization of a certain amount of possibly disconnected sets, their number being related to the
number of identified targets. Each set estimate associated with an identified target contains the true
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Figure 2.14 – Illustration of a 2D TPM which has been taken from the simulation results of (Li et al.,2024).

value of the target location. Such set can be characterized as a list of non-overlapping boxes (Jaulin,
2009; Drevelle and Bonnifait, 2011; Kenmogne et al., 2019), ellipsoids (Lu and Zhou, 2017; Hou et al.,
2021), or polygons (Ibenthal et al., 2020). Figure 2.15 illustrates a polygon representation. These ap-
proaches can be used to determine an area of the RoI which may contain identified or unidentified
targets, or areas that are guaranteed to contain no target location by using negative information.
Such representation clearly defines areas to explore, to either find new targets, or capture previously
identified targets.

2.5.2 . Target search
The most basic approach to explore an area of the RoI which may contain a target is to use a

pre-planned trajectory (Niedzielski et al., 2021; Yanmaz, 2023). The authors in (Niedzielski et al., 2021)
present an approach to explore an unknown cluttered environment to find one lost ill man. The man
is able to move but, due to its illness, it will remain static at some point in time. They address the
search aspect of the problem as follows. Since the target may be anywhere in the neighborhood of
a Polish town, several RoIs are defined (using techniques detailed in the article). Once an area that
may contain the target is defined, a UAV is tasked to explore the area, take photos, and upload the
photos on a laptop for an automatic human detection which is corrected by a human operator. The
exploration is performed using a lawnmower trajectory. Once the exploration of one of the RoIs is
over, the UAV flies toward the next RoI to explore. Some advantages of their approach are (i) it is easy
to deploy and it has been proved enough to save the man’s life, and (ii) the pre-planned trajectory
has been designed to reduce the impact of occlusions by unknown obstacles during the search of
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Figure 2.15 – Illustration from (Ibenthal et al., 2020) of the evolution at 4 different time instants ofthe possible locations of targets (black dots) that have been identified (green sets) and not-identified(yellow sets) by a fleet of 4 UAVs. The white circles are decoys that have not to be localized. The graypolygons represent the obstacles.

the ground target. However, such an approach has been designed for static targets. Therefore, with
mobile targets that can enter an area already explored by the UAV, another search strategy has to be
considered.

Unlike (Niedzielski et al., 2021), other approaches have been designed to actively account for the
presence of obstacles during the target search. The method in (Goldhoorn et al., 2018) considers a
ground robot. It exploits a known map to evaluate if the robot is able to observe a point or if it is
hidden behind an obstacle, see equation (2.3). Then, during the target search, the robot searches for
the cell that solves a trade-off between having a high probability to contain a target and having a
fast reach time, i.e., the path to reach the location must be short. Alternatively, the authors of (Meera
et al., 2019) propose an approach to design a polynomial trajectory that drives the robot toward the
next best observation point while avoiding obstacles. However, these approaches assume to have
access to an accurate representation of the shape of the obstacles located within the RoI, which is
not always ensured. To overcome this difficulty, mapping approaches may be used. The 3D cluttered
environment in (Li et al., 2021) is unknown, but the robot is able to detect an obstacle and approxi-
mate its shape by a sphere. Then, the search problem is addressed with a combination of a TPM and
a potential-field-based path-planning approach where discovered obstacles are used to generate re-
pulsion fields in order to reach a desired location. The unknown environment in (Luo et al., 2023) is
modeled using a 2D grid map. The uncertainty that a target is located within a given cell is modeled
by a TPM. Additionally, some cells contain a static obstacle that the drones have to avoid. These cells
are a priori unknown and detected only when the UAV is nearby. Once detected, they are avoided

51



Figure 2.16 – Illustration of the searching strategy presented in (Niedzielski et al., 2021) where 4 RoIs(not represented) have been defined and explored using a lawnmower trajectory. The orange starand the blue pentagon are two locations that have been used to define the areas where the lost manmay be. The red dot is the location where he has been found by the UAV.

during the path planning step which is based on the Dijkstra’s algorithm (these occupied cells have
an infinite weight). The UAV achieves the target search by cooperatively evaluating the sequence of
actions that maximizes the difference between the current uncertainty of the map and its predicted
uncertainty according to a time horizon defined by an energy constraint. Targets are static and the
uncertainty of a cell is reduced after having been searched by a UAV embedding a sensor modeled
by a coefficient ϵ that represents its accuracy to detect a target, i.e.,

TPMk+1 (r, c) = (1− ϵ) TPMk (r, c) , (2.5)
where r and c are the coordinates of the cell of the TPM that is updated.

(Kuhlman et al., 2017) consider a static target search in an environment with an uneven ground
modeled by an elevation map, see Figure 2.17. A TPM is used with a Beta distribution to model that a
target can appear and disappear from the robot FoV, e.g., due to obstacle occlusion.

An alternative approach to handle the occlusions by unknown obstacles is to rely on a robot for-
mation as in (Ibenthal et al., 2023). The authors assume a structured unknown environment. They
assume that a single robot is unable to know if it has observed the ground where mobile targets are,
or if it has observed an obstacle. To overcome this issue, they propose a geometric approach in order
to evaluate an area on the ground that is proved to have been observed if the area is simultaneously
monitored by several cooperative UAVs from a sufficient number of different points of view. This ap-
proach relies on the evaluation of a list of conic observation subsets used to define these different
points of view. Then, if a point belonging to the ground has been observed by a UAV located in each
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Figure 2.17 – Illustration from (Kuhlman et al., 2017) of an uneven ground generated by an elevationgrid

of these conic observation subsets, and there is no detected target, then the point is proved to not
be a target location. Using this approach, the target search is achieved by splitting the fleet of UAVs
into groups and, then, controlling each group in order to maximize the size of the area that has been
cooperatively observed. See Figure 2.18

Figure 2.18 – Illustration taken from (Ibenthal et al., 2023) which represents the area theoretically cove-red by the 4 UAVs (ligth gray). A point on the ground is guaranteed to be observed only if it has beenobserved simultaneously by 4 UAVs where each one is located within one of the conic observationsubsets represented by the geometrical observation conditions illustrated by the subset C1 (green),
C2 (red), C3 (blue), and C4 (purple). The dark gray set is the area that has been proved to be observedeven in the presence of unknown obstacles.

2.5.3 . Target pursuit
Once a target is identified and visible within the FoV of a robot, one can task the robot to simply

pursue the target until an accurate estimation of its state is obtained. Assume that a bounding box
in the image captured by its embedded camera is provided by a target detection algorithm such as
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YOLO. Then a target pursuit may be achieved by controlling the robot to keep the bounding box close
to the center of the image (Ribaric et al., 2004; Jin et al., 2010; Liu et al., 2022a). Such a technique may
work in cluttered environments (Liu et al., 2018). Otherwise, (Ajmera and Singh, 2020) uses optical flow
techniques to estimate the direction of motion of the pursued target from a sequence of images. The
authors in (Silva et al., 2019) propose an approach of target re-identification based on the extraction
of human features using a deep-learning algorithm. During the process, a bounding box is used to
localize the target in the image. Then, to predict the future target location in the image, they assume
that the target does not move significantly between two frames. Consequently, they dilate the initially
obtained bounding box to get an area where the target would be. To pursue the target, they control
the UAV to keep the target face in front of the camera.

2.5.4 . Target tracking
The strategy to track the state of a target without directly monitoring its evolution is strongly rela-

ted to the representation of the estimated target state andmust use some a priori knowledge. The tra-
cking process usually involves a prediction-correction approach. Prior knowledge about the potential
values of the tracked target state at a previous time instant, and the available information regarding
the dynamics are used to predict its evolution at the current time. Then the prediction is corrected
with the knowledge acquired from newly collected information (including negative information).

With a TPM, the prediction may be done by assuming that the target has a uniform probability to
stay static in the previous cell it is located or to move to one of its neighboring cells (Wei et al., 2024).
The predicted TPM is then evaluated as

TPMk+1|k (r, c) =
1

9

r+1∑
i=r−1

c+1∑
j=c−1

TPMk (i, j) . (2.6)

Then, the correction may be achieved using a Bayesian filter to evaluate the corrected TPM as
TPMk+1 (r, c) =

TPMk+1|k (r, c) .pTP
TPMk+1|k (r, c) .pTP + (1− pTP)

(
1− TPMk+1|k (r, c)

) . (2.7)
where pTP is the probability of the UAV to truly detect a target in the cell.Another approach to represent the probability of presence of a target is to use a particle filter
as in (Wang et al., 2007; Goldhoorn et al., 2018; Xie et al., 2019). Knowing the target dynamic, one is
able to evaluate the probability density function p (xt

k | xt
k−1

) of the current target state, knowing the
previous state xt

k−1. Then, with all the measurements y1:k−1 that have been used since the beginningto evaluate the state of the target at time tk−1, one is able to predict the probability density functionof xt
k,

p
(
xt
k | y1:k−1

)
=

∫
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(
xt
k | xt
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)
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(
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k−1 | y1:k−1

)
dxt

k−1. (2.8)
The posterior probability of the actual target state, assuming the probability to get a measurement
at time tk knowing the target state is p (yk | xt

k

), is then
p
(
xt
k | y1:k

)
=
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)
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(
yk | xt
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)
p
(
yk | y1:k−1

) . (2.9)
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However, the evaluation of such posterior probability may be difficult for nonlinear systems or non-
Gaussian noise. To solve this issue, one can use the Monte Carlo Sampling by approximating the
posterior distribution by N particles, i.e., p (xt

k | y1:k

)
≈
∑N

i=1 ω
(i)
k δ

(
xt
k − x

t,(i)
k

), where x
t,(i)
k , for

i = 1, . . . N , is a particle and ω(i)
k is the weight associated to the particle i. The weight represents

the confidence that the particle x
t,(i)
k is the target state. The particles are obtained using importance

sampling which relies on the introduction of an easy-to-sample distribution q. The weights are obtai-
ned using the update rule

ω
(i)
k = ω

(i)
k−1

p
(
yk | xt,(i)

k

)
p
(
x
t,(i)
k | xt,(i)

k−1

)
q
(
x
t,(i)
k | xt,(i)

k−1,yk

) . (2.10)

The tracking is achieved by predicting the possible new values of the target state using the particles,
followed by a step of resampling.

Another problem arises regarding the tracking of multiple targets with a Bayes filter. To address
a multi-target tracking problem, two RFSs can be used to model a discrete set of targets and mea-
surements. However, the use of RFSs with classic Bayes filters leads to a high computational burden
due to the evaluation of the multiple integrals that have to be considered (Vo and Ma, 2006; Tang
et al., 2015). To avoid this problem, the first statistical moment λ of the probability distribution of the
RFS related to the targets, also named the Probability Hypothesis Density (PHD) or the intensity, is
considered. The integral of the PHD over the region of interest gives the expected cardinality of the
target-RFS. Poisson RFS holds a particular place within this approach since it is entirely defined by its
first moment. Then, with this approach and under other assumptions that are detailed in (Vo andMa,
2006), the PHD filter, which tracks the evolution of the PHD, is

λk|k−1
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k

)
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(
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∫
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where b () and d () are the intensities of birth (a target entering the RoI) and survival (the target staying
in the RoI). p (xt

k | xu
k

) is the detection probability knowing that the robot is located at xu
k. ψy,xu

k

(
xt
k

)
is the probability that the robot at location xu

k would get the measurement yk if the target is at xt
k.

pFP
(
y | xu

k

) is the probability of getting a false positive, i.e., getting a measurement of a target state
that is not present. This filter has been used in (Dames, 2020; Banerjee and Schneider, 2024).

A target tracking algorithmbasedona set-membership approach also involves a prediction-correction
mechanism. Consider thatXt

j,krepresents the set estimate containing the possible locations of target j
at time tk, and Xt

k is the set estimate gathering all the possible locations of still unidentified targets.
Consider that the target dynamics is xt

k+1 = f
(
xt
k,wk

) where wk ∈ W is an unknown but bounded
state perturbation. The prediction step consists in characterizing the possible future locations of the
tracked target Xt

j,k+1|k, and the still unidentified targets Xt
k+1|k, knowing Xt

j,k and Xt
k. Equation (2.14)
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defines how to characterize those sets, with Xk and Xk+1|k instead of Xt
j,k and Xt

j,k+1|k, or Xt
k and

Xt
k+1|k.

Xk+1|k = {x | ∃p ∈ Xk,∃w ∈ W,x = f (p,w)} . (2.14)
Then, using a measurement obtained at time tk+1, (Ibenthal et al., 2023) characterizes two sets. With
negative information, they characterize a setXt,neg

k+1 gathering all the current locations where no target
can be. If target j has been identified at time tk+1, then the UAV gets a set estimate Xt,m

j,k+1 containingall the locations of target j which are consistent with the noisy measurements. Finally, the correction
step consists of an intersection or a difference, i.e.,

Xt
j,k+1 =

(
Xt
j,k+1|k ∩ Xt,m

j,k+1

)
\ Xt,neg

k+1 . (2.15)
If target j is a newly detected target, i.e., Xt

j,k+1|k does not exist, then we rather have
Xt
j,k+1 =

(
Xt
k+1|k ∩ Xt,m

j,k+1

)
\ Xt,neg

k+1 . (2.16)
Finally, the correction of Xt

k+1|k is simply
Xt
k+1 = Xt

k+1|k \ X
t,neg
k+1 . (2.17)

Note that if target j has not been identified at time tk+1, then Xt,m
j,k+1does not exist and should beremoved from equation (2.15).

However, the intersection may be difficult to characterize. Therefore, an inner or outer approxi-
mation can be computed with algorithms such as the Set Inverter Via Interval Analysis (SIVIA) (Jaulin
and Walter, 1993).

2.6 . Control design

Once the information collected by the sensors has been processed by the embedded CVS and an
estimator has been used to get new knowledge about the presence and location of obstacles or tar-
gets, the robot has to update its current control input according to a pre-defined strategy. Section 2.6.1
introduces the different approaches available to coordinate the robots, with their advantages and
drawbacks. Then, Section 2.6.2 presents some examples of control design before presenting in Sec-
tion 2.6.3 the model predictive control.

2.6.1 . Coordination between the robots
There exist three different approaches to address the problem of coordination between the ro-

bots in a team : the centralized approach, the decentralized approach, and the distributed approach.
The centralized approach assumes that all the robots are able to communicate with a central

node. This central node receives from the robots newmeasurements/knowledge that is processed to
evaluate the next best control input for each robot. This list of control laws is defined as the course of
actions of the fleet that is obtained, e.g., by solving an optimization problem reflecting the objectives
to achieve. The central node has access to all the knowledge of the fleet, and usually has enough
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computational power to design the control law for each robot. Nevertheless, themeasurements have
to be gathered at the central node, which may be difficult when the RoI is large, usually due to limited
communication range constraints. Moreover, since each robot relies on the central node, if the central
node fails, the whole fleet is disrupted.

The decentralized approach assumes a heterogeneous fleet of robots where some of them act
as mobile local nodes, i.e., a robot that has access to enough computational power to design the
control input for any robot that is connected to it. Therefore, the fleet is partitioned into groups of
robots. Each group contains one of these mobile local nodes, i.e., a leader, whereas the others, i.e.,
the followers, are only here to collect new information and stay close enough to the associated lea-
der. Consequently, unlike the centralized approach, an advantage of the decentralized approach is
that it solves the problem of limited communication range. However, if the leader has a problem,
all of its followers are disabled. Moreover, since the leader has access, most of the time, only to the
measurements of its followers, the evaluated control laws may be suboptimal.

The distributed approach assumes that each robot has the computing power to evaluate its own
control input by only accounting for the knowledge it has access to and the knowledge broadcast by
its neighbors. Since each robot is assumed autonomous, the lack of communication between robots
is no longer a problem. However, if a robot is isolated from the others, then, even if it is able to
update its control input, it cannot cooperate with the others. Thus the evaluated control laws may be
suboptimal as well.

2.6.2 . Examples of control design approaches
CSAT problems aim to navigate in a RoI to search and identify all targets andmaintain an accurate

estimation of their state. Consequently, the control strategies that have to be deployed to address
these problems to guide the robots toward positions where they would cooperatively maximize the
information they collect. See (Lyu et al., 2023) for a survey of SAR algorithms and the considered
strategies.

In the presence of known obstacles, (Meera et al., 2019) iteratively updates the UAV trajectory by
designing a new polynomial trajectory passing through N − 1 waypoints. At each iteration, a list of
possible future UAV locations is generated by a random sampling of locations in the environment.
To avoid obstacles, each new sampled location must be visible from the previous location. Then, the
possible future location which maximizes a criterion that considers the information collected, the risk
of collision, and the flight time is taken as the next waypoint for the updated polynomial trajectory.
The authors evaluate the information the UAV would collect by comparing the trace of the (prior)
covariancematrix of the Gaussian process with the one obtained (i.e., the posterior covariancematrix)
at the expected location. During the planning, the UAV is assumed to detect no target.

In (Goldhoorn et al., 2018), a ground robot either pursues a target or enters in a search mode if
it has lost it. One of their proposed tracking approaches relies on a particle filter. The search mode
evaluates the list of cells containing the highest density of particles. Then, knowing the map and the
obstacles, it searches for the best cell to reach. The path planning is done with a combination of a
Dijkstra algorithm (for known static obstacles) and a trajectory roll-out planner (for unknown dynamic
obstacles).

The trajectory design for target search and obstacle avoidance in (Li et al., 2021; Zhen et al., 2020) is
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done with attractive and repulsive fields. Both use a TPM. (Zhen et al., 2020) directly use a gradient of
the TPM to evaluate its attraction force, whereas (Li et al., 2021) proceeds to a nonlinear transformation
of the TPM in order to get a map of uncertainty regarding the presence of a target in each cell, see
Figure 2.19. Then, using this evaluated uncertainty, (Li et al., 2021) define a criterion that compares the
gain in going toward an attractive location with the gain in going toward unexplored cells.

Figure 2.19 – Figure from (Li et al., 2021). The nonlinear transformation between the probability that atarget exists in a given cell, i.e., TPMk (r, c), and what they defined as the uncertainty of the cell, i.e.,
µk (r, c) = exp (−k |ln (1/TPMk (r, c))− 1|).

(Dames, 2020) uses a PHD filter with the Lloyd’s algorithm to guide the robots toward areas with
a high density of targets. The Lloyd’s algorithm is defined as the minimization of

J
({

xu
i,k

}
i∈{1,...Nu}

)
=

∫
RoI min

i∈{1,...Nu}
(
d
(
x,xu

i,k

))2
λk (x) dx (2.18)

and is used to update a Voronoi partition. Nu is the number of robots, and d (x,y) evaluates the
distance betweenx andy. A Voronoi cell is associated to each robot, and thebarycenter of the Voronoi
cells is the location the robot has to reach. A similar partition-based approach is used in (Sun and
Tsiotras, 2017; Dang et al., 2019).

When the target is cooperative, (Tang et al., 2019) proposes an approach combining particle swarm
optimization with a fruit-fly optimization algorithm to search and reach a target in an unknown clut-
tered environment. The fruit-fly optimization algorithm (Pan, 2012) is an algorithm where the target
(the fruit) emits some signal with an intensity that decreases with the distance to the robots (the fruit-
flies). Other pheromone-based algorithms exist, e.g., (Cheng et al., 2024; Li et al., 2024), but they are
rather used to enhance the area coverage rather than designed for the search of mobile targets.

Another possible control design is based on the partially observable Markov decision process
(POMDP), see (Astrom, 1965; Lauri et al., 2022) and the references therein. A POMDP is a stochastic
path-planning approach relying on the modeling of a decision process of the robot, also denoted as
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the agent. The environment and what is contained in it are represented with a finite set of discrete
states the agent can have, actions the agent can take, and observations the agent can acquire. The
goal is to find the best sequence of actions that optimizes a criterion. (Zhu et al., 2021) considers
communication problems and uncertain UAV location, and (Zhang et al., 2024) adds a modified multi-
agent reinforcement learning layer to enhance the cooperative behavior of the robots.

Alternatively, the authors of (Wei et al., 2024) propose a control design that searches the trajec-
tory which minimizes the probability of not detecting a target. For that purpose, knowing that the
probability of one robot to detect a target is pTP, they introduce the probability that the fleet fails
to detect a target with pfail = ∏Nu

i=1 (1− pTP), Nu being the number of robots within the fleet. From
that probability, they define a criterion with some constraints related to the robot dynamics. Then,
to solve their proposed optimization problem, the authors use deep reinforcement learning (a com-
bination of Multi-Agent Reinforcement Learning and Proximal Policy Optimization) to search for the
best sequence of control inputs in order to find the targets.

Multi-agent reinforcement learning approaches (Hou et al., 2023; Zhang et al., 2024) aim to emu-
late an interaction between the robot and the environment in order to learn a strategy that optimizes
a criterion. Nonetheless, as pointed out in (Li et al., 2024), multi-agent reinforcement learning ap-
proaches are not considered suitable to solve a target search and tracking problem because the data
base used for the trainingmay be not representative of the actual situation. Similarly, strategies based
on Markov decision processes are not scalable to large and complex outdoor environments.

Potential-field-based strategies, as in (Zhen et al., 2020; Li et al., 2021), enable a natural evaluation
of the direction to follow in order to search for targets while avoiding obstacles. Otherwise, control
designs based on the update of the current long-term trajectory, as in (Meera et al., 2019; Luo et al.,
2023), search for the best new trajectory that optimizes a criterion. The criterion is generally based
on the maximization of the expected gain of information, i.e., information that can be processed to
reduce the uncertainty regarding the estimated state of the targets. Moreover, the criterion can be
completed with other cost functions for obstacle avoidance or incorporate other approaches such as
a pheromone-based methods, see (Li et al., 2024).

2.6.3 . Predictive control

Unlike classical controllers, such as the PID controller, predictive controllers rely on a model of
the system to predict its future behavior when a sequence of control inputs uk:h = {uk, . . . ,uk+h−1}is applied over a control horizon composed of h steps (Christofides et al., 2013; Schwenzer et al.,
2021). This prediction allows to evaluate the distance between the desired reference state and the
expected state of the system over a prediction horizon. Then, the effectiveness of the sequence uk:his evaluated by using a criterion J accounting for that distance and possibly other terms such as the
energy consumption, and the smoothness of the trajectory. Predictive controllers aim to search for
the sequence ûk:h which optimizes J .

According to (Schwenzer et al., 2021) predictive controllers are easier to implement than classi-
cal controllers. The reason is classical controllers involve the definition of explicit control laws which
would become more tedious or even impossible for constrained nonlinear systems. On the other
hand, predictive controllers mostly rely on amodel of the system, that is often well-defined and easily
accessible, and on a criterion J to determine its desired behavior. The price to pay is an increased
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computational burden since the predictive controller has to update at each time step the sequence
of control inputs.

The application ofModel Predictive Control (MPC) for target search and tracking is slightly different
from what is presented in (Schwenzer et al., 2021). Regarding robot i, the MPC still searches for the
sequence of control inputs ûi,k:h which optimizes a criterion J . However, instead of evaluating the
deviation between a reference and future measured state of the system, it evaluates the expected
capacity of the robot to reduce the uncertainty of the estimated target states.

This section presents the MPC by comparing the MPC used in (Li et al., 2024) (stochastic approach)
and in (Ibenthal et al., 2021) (set-membership approach) to solve a CSAT problem.

At time tk, the state of robot i is xui,k, with i ∈ {1, . . . Nu} where Nu is the number of robots. To
search for the optimal sequence of control inputs ûi,k:h, the MPC considers a candidate sequence of
control inputsui,k:h ∈ U×· · ·×U, whereU is a known set of feasible control inputs, evaluates its impact
on the reduction of uncertainty, and reiterates until convergence. For instance, both (Li et al., 2024)
and (Ibenthal et al., 2021) consider a UAV flying at a fixed altitude and speed and the set of feasible
control inputs is a finite set of heading (yaw) angle increments. In this case, the number of possible
candidate sequences of control inputs is finite. Since the dynamics of the UAV is perfectly known, a
sequence of states xui,k:h|k =

{
xui,k+1|k, . . .x

u
i,k+h|k

} is deduced. If the robot dynamics is uncertain or
is affected by some external disturbances, tube MPC can be used (Le et al., 2011; Cannon et al., 2012;
Lopez et al., 2019).

To evaluate the impact of a candidate sequence of control inputs ui,k:h, one has to evaluate the
expected gain of knowledge the robot would acquire at each of its future states, i.e., xui,k:h|k. In (Li
et al., 2024), who use a TPM, the authors identify which cells would be under observation and, if the
probability of target presence is above 0.8, then they assume todetect a target. Then, they evaluate the
reduction of uncertainty for each cell within sensing range by computing the difference of uncertainty
between two time instants, where the uncertainty is defined as

ξk (r, c) =− TPMk−1 (r, c) log2 (TPMk−1 (r, c)) (2.19)
− (1− TPMk−1 (r, c)) log2 (1− TPMk−1 (r, c)) , (2.20)

For a set-membership approach, the reduction of uncertainty is represented by a reduction of the
size of the set estimates after each new observation. Nonetheless, it is often not possible to ensure
that a target will be observed in the future. Therefore, the simplifying assumption that no target will
be observed is considered, as in (Ibenthal et al., 2021). Consequently, with the robot i FoV F

(
xi,k+ℓ|k

),
where ℓ = 1, . . . h, and without obstacles, they update the set estimates by only removing potential
locations that would have been observed, i.e.,

Xt,P
j,k+ℓ = Xt,P

j,k+ℓ|k \ F
(
xi,k+ℓ|k

) (2.21)
where Xt,P

j,k+ℓ is the correction of the predicted set estimate Xt,P
j,k+ℓ|k containing the potential locationsat time tk+ℓ of the previously identified target j, knowing its set of estimated locations at time tk, i.e.,

Xt
j,k. The characterization of Xt,P

j,k+ℓ|k follows a similar set-membership prediction process described
by (2.14), i.e.,

Xt,P
j,k+ℓ|k =

{
f (p,w) | p ∈ Xt,P

j,k+ℓ−1,w ∈ W
}
, (2.22)
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with the difference that if ℓ = 1, then Xt,P
j,k = Xt

j,k. The same approach is applied regarding the set
estimate which may still contain unidentified targets Xt

k.The criterion to evaluate the impact ofui,k:h may be rather simple as in (Ibenthal et al., 2021) where
the impact of ui,k:h is evaluated by computing the area of what remains to explore, i.e.,

J (ui,k:h) =ϕ

Xt,P
k+h ∪

⋃
j∈Li,k

Xt,P
j,k+h

 (2.23)

+ λd

xi,k+h|k,X
t,P
k+h ∪

⋃
j∈Li,k

Xt,P
j,k+h

 (2.24)

where ϕ (X) is the area ofX ⊂ R2, andLi,k is the list known to UAV i that contains the indices of all thetargets that have been identified at time tk. The second part of (2.23) evaluates the closest distance
between the set estimates and the UAV location.

The criterion in (Li et al., 2024) is
J (ui,k:h) = λ1R

i,ktarg + λ2R
i,kuncertainty + λ3R

i,kphero +Ri,kpar +Ri,kcollision (2.25)
whereRi,ktarg evaluates the number of targets that would be detected, according to the assumption that
a target would be detected if its associated probability of presence is above 0.8. Ri,kuncertainty evaluatesthe uncertainty reduction.Ri,kphero is a pheromone-based cost function to encourage theUAV to explore
unexplored areas. Ri,kpar is to keep the UAV within its dedicated area to explore. Ri,kcollision is to avoid
collisions.

Depending on the context, other criteria may be defined, as in (Fei et al., 2022) where the problem
of limited communication range is addressed by introducing a component in the cost function to keep
neighbors close enough to maintain communication, but spread enough to maintain a large covering
area.

For cooperative design, each robot should account for the sequence of control inputs of the other
robots in order to move toward a location that still solves the target search and track problem while
being beneficial for the rest of the fleet. For a fleet composed of Nu robots, the following joint opti-
mization problem can be considered

{ûi,k:h}i∈N u = arg min
{ui,k:h}i∈Nu

∑
i∈N u

J (ui,k:h) . (2.26)
Nonetheless, the resolution of such optimization problems may be difficult and time-consuming.

Therefore, alternative approaches and simplifications have to be considered. For example, U may
be finite. Otherwise, the authors of (Ibenthal et al., 2021) consider a suboptimal cooperative approach
where eachUAV computes its optimal sequence of control inputs only once it has received the optimal
sequence fromall of the other UAVswithin communication range andwith a smaller index. This allows
a simpler update of the trajectory while maintaining some cooperative behavior between the drones
since, except for the first one, each UAV accounts for the trajectory of its predecessors to update its
own.
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2.7 . Conclusion of the chapter

This chapter has presented an overview of some approaches to address the main subproblems
that compose a CSAT problem. The acquisition of new measurements from the embedded CVS and
the exploitation of these measurements to solve a target localization problem. Different approaches
have been presented to represent the potential locations of both unidentified and identified targets.
Then, for each representation some approaches to either explore the RoI to search for the target, or
to remotely track their potential location, are presented. Target pursuing approaches have also been
discussed as well as approaches to map the RoI or to control the robots.

Clearly, the CSAT problem is a complex problem to address. Simplifying assumptions are often
made, such as the idealization of the CVS and the target location estimator. Those assumptions have
the advantage of simplifying the evaluation of a proposed control design. Unfortunately, the perfor-
mance of the proposed control design is strongly related to the reliability of those simplifying assump-
tions that are unjustifiable in most cases. The reason is, CVS measurements and, more importantly,
measurements related to the detection and the identification of a target, are obtained by deep lear-
ning algorithms. The acquisition of these measurements is conditioned by the training data set that
has been used and the observation conditions - which involve the weather conditions and the pre-
sence of obstacles -. Therefore, the approximation of the process to detect a target by a probability of
detection is difficult to justify, even more if unknown obstacles are located within the RoI. Moreover,
since the performance of a target location estimator is strongly related to the CVS measurements
that are used as inputs, the idealization of the estimator with a known estimation noise is also hard
to justify.

The main objective of this thesis is to propose a new approach to take into account the complex
measurements provided by the CVS to maintain the most accurate estimation of the target locations.
Depth-maps, classified images, and bounding boxes related to the detection and identification of a
target are considered. A set-membership estimator is developed to exploit these CVS measurements
in order to characterize set estimates that either contain the true location of a target or are proved to
contain no target location. Then, the tracking algorithm of (Ibenthal, 2022) is adapted to update the
knowledge of a UAV regarding the potential location of both identified and unidentified targets.

Unlike CMOMMT approaches, CSAT approaches aim to determine the exact number of targets
inside an RoI. Therefore, until the fleet of UAVs determines that there cannot be more unidentified
targets within the RoI, the UAVs have to simultaneously track all already identified targets while explo-
ring the RoI to find new ones. Assuming the targets outnumber the UAVs, a trade-off has to be solved
between searching for new targets and pursuing identified targets to keep an accurate estimation of
their locations. To solve this trade of, a MPC is used and a new criterion is defined to account for the
presence of unknown 3D obstacles.

Themotivation behind the design of this new criterion is that there exists fewCSAT algorithms that
consider an unknown and cluttered 3D environment with a mapping approach. On the one hand, the
absence of a 3D mapping approach can be justified since a UAV has a limited storage capacity and
computing power. On the other hand, new and more storage-efficient mapping approaches have
been presented for urban environments. Thus, by using CVS measurements to map efficiently the
unknown environment, a new criterion inspired by (Meera et al., 2019) is proposed to improve the
target search within a cluttered RoI.
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Chapter 3 - Hypotheses and Problem formulation

Consider an unknown number N t of targets spread within a Region of Interest (RoI) containing
an unknown number Noof structured obstacles of unknown location. A fleet of Nu cooperative Un-
manned Aerial Vehicles (UAVs) is deployed to find and identify these targets andmaintain an accurate
estimation of their location. This Cooperative Search, Acquisition, and Tracking (CSAT) problem is for-
malized in this chapter.

The assumptions andmodels to represent the structured environment, the targets, and the UAVs
are detailed. Each UAV embeds a Computer Vision System (CVS) consisting of a camera and compu-
ter vision algorithms to get measurements from the environment. These algorithms process images
collected by the camera. There is, among them, an image segmentation, a depth map evaluation, and
a target detection/identification algorithm. These algorithms are instrumentals in getting measure-
ments related to the presence of an identified target or to assess its absence.

We choose to address the CSAT problem with a set-membership approach. The approach as-
sumes that the measurement noises and other uncertainties are bounded with known bounds. Thus,
we can design a set-membership estimator that characterizes sets that are guaranteed to contain the
location of the targets, provided that the hypotheses on the measurement models and noise bounds
are satisfied. Fewpreviousmethods developed to address a CSAT problemexploit CVSmeasurements
in a set-membership approach. This is mainly because obtaining measurement models for a CVS in-
volving deep learning algorithms is difficult. Thus, the measurement error is hard to characterize. To
address this issue, this chapter introduces assumptions and models to relate the CVS measurements
with the targets and obstacles present in the RoI. With these assumptions and models, the CVS mea-
surements can be exploited by a set-membership estimator to characterize these set estimates that
either are guaranteed to contain the location of a target or, with negative information, are guaranteed
to not contain a target location.

The assumptions introduced here are used to design a new target location estimator in Chapter 4
and a control approach for the UAVs in Chapter 5. The estimator exploits CVS measurements related
to targets and obstacles to update the knowledge the UAV has regarding the potential locations of
both identified andunidentified targets. The proposed estimator is also used to update the knowledge
of the UAV regarding the location and shape of the observed obstacles. Then, a control algorithmuses
this updated knowledge to update the trajectory of the UAV.

3.1 . Environment model

Consider an environment with a frameF attached. In what follows, several other frames are intro-
duced, such as the frames attached to the UAVs. To simplify the notations, vectors with no superscript
related to a frame are implicitly expressed in the reference frame F .

The Region of Interest (RoI) X0 is a bounded subset of the 3D space, i.e., X0 ⊂ R2×R+, containing
the targets, the UAVs, and the obstacles. The bounds of the RoI are assumed to be fixed and known
to the UAVs. The ground of the RoI is assumed to be flat and horizontal, i.e., Xg = {x ∈ X0 | x3 = 0},
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where x3 is the third coordinates of a vectorx, representing the height. The ground of RoImay contain
several elements such as roads, sidewalks, or soils, but, their height is considered negligible. In addi-
tion, their particular nature is assumed irrelevant to the target search. Therefore, they are merged in
Xg.

Nofixed obstacles are spread within the RoI. They are assumed to be indexed with indexes in the
set N o = {1, . . . , No}. The shape of the m-th obstacle, i.e., the part of the RoI occupied by the m-th
obstacle, is denoted Som ⊂ R3. Som is assumed to be Z-convex, i.e.,

∀x ∈ Som,∀λ ∈ [0, 1] , λx+ (1− λ)pg (x) ∈ Som, (3.1)
where pg (x) is the projection of x on the ground Xg. Figure 3.1 illustrates this assumption.

Figure 3.1 – Illustration of different obstacles that may or may not satisfy equation (3.1).
This assumption is relevant for most of the buildings, as pointed out by (Zhang et al., 2023). Ele-

ments of the environment such as trees or streetlights may be present but do not satisfy (3.1) and,
thus no such element is considered present in the environment, see Chapter 8 for an extension. The
footprint of obstaclem ∈ N o is the subset of Xg that belongs to Som, i.e., Som ∩Xg. According to 3.1, thefootprint of an obstacle is also pg (Som).

Figure 3.2 – Illustration of the urban RoI simulated on Webots (Webots, ) used to evaluate the perfor-mance of our approach in Chapter 5. Only buildings satisfying (3.1) are considered.
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3.2 . Target model

Let N t be the unknown but fixed number of ground targets evolving in the RoI X0. Targets areuniquely identified with indexes in the set N t = {
1, . . . , N t} . All targets are assumed to be vehicles

of the same type, and they do not enter or leave X0.The state vector of target j ∈ N t at time tk is xtj,k. This state vector contains, among others, the
vectorxt

j,k of the coordinates of the center of gravity of target j. In this thesis, we only consider groundtargets evolving on Xg. Moreover, we limit the target search to a 2D space. Thus, we consider that the
location of target j at time tk is the projection of xt

j,k on Xg, denoted as xt,g
j,k = pg

(
xt
j,k

), rather than
xt
j,k. We do not try to estimate its orientation.
We consider that the behavior of target j can be modeled by

x
t,g
j,k+1 = f t

(
x
t,g
j,k,v

t
j,k

)
, (3.2)

where f tj is known and vtj,k represents the unknown but bounded target control input as well as thestate perturbations at time k. The vector vtj,k is only assumed to belong to a known box [vt].
The space occupied by target j, i.e., its shape, is the subset St (xtj,k) ⊂ R2 × R+ and depends on

xtj,k. Since the targets are cars, the target shape is rigid and St
(
xtj,k

) depends mainly on the target
position and orientation. If the shape evolves, other components of xtj,k must be considered. We also
assume that the center of gravity of a target is always located inside its shape, i.e.,

∀j ∈ N t,xt
j,k ∈ St (xtj,k) . (3.3)

The target location x
t,g
j,k, however, does not necessarily belong to St

(
xtj,k

), as for cars where x
t,g
j,kis located between the wheels. The shape of the tracked targets is unknown to the UAVs, but their

type (car, truck. . . ) is usually known. Consequently, some information about the target dimensions is
available.
Assumption 1. We assume that a vertical circular right cylinder Ct

(
x
t,g
j,k

)
of known height ht and radius

rt with basis centered in x
t,g
j,k can be defined such that, for any target state xtj,k,

St
(
xtj,k

)
⊂ Ct

(
x
t,g
j,k

)
. (3.4)

Figure 3.3 illustrates Assumption 1. The projection pg
(
Ct (xt,g

j,k

)) of Ct (xt,g
j,k

) on Xg is the disc of
center xt,g

j,k and radius rt.
3.2.1 . Interaction of a target with its environment

This section introduces some assumptions about the interaction of a target and its environment,
including other targets.

The r-neighborhood of a set S ⊂ X0 is defined as
N (S, r) = {x ∈ X0 | d (x,S) ⩽ r} (3.5)
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Figure 3.3 – Illustration of a possible vertical circular right cylinder Ct (xt,g
j,k

) containing the shape
St
(
xtj,k

) of a car-like or truck-like target
with d (x,S) = miny∈S ∥x− y∥ .

We also introduce the r-ground neighborhood of a set S ⊂ Xg
Ng (S, r) =

{
x ∈ Xg | d (x, S) ⩽ r

}
. (3.6)

One can remark that Ng ({x} , r) is a disc of center x ∈ Xg, and radius r. Thus, another way to
express pg

(
Ct (xt,g

j,k

)) is Ng
({

x
t,g
j,k

}
, rt
).

With Obstacles

We assume that a target cannot enter any obstacle. Therefore,
∀j ∈ N t,∀m ∈ N o, St (xtj,k) ∩ Som = ∅. (3.7)

As the shape of targets is unknown, (3.7) is difficult to exploit. Besides, we aim to only determine
the target location x

t,g
j,k. Thus, we assume that the distance between x

t,g
j,k and any obstacle is always

larger than some known safety distance rtos , i.e.,
∀j ∈ N t,∀m ∈ N o,Ng

({
x
t,g
j,k

}
, rtos

)
∩ pg (Som) = ∅ (3.8)

⇔x
t,g
j,k /∈ Ng

(
pg (Som) , rtos

)
. (3.9)

Figure 3.4 illustrates (3.8).
Remark 2. We assumed that the target shape is always contained in the cylinder Ct of radius rt, then a
possible choice for rtos is rtos = rt.

With other targets

We assume also that two targets never collide, i.e.,
∀j ∈ N t, ∀ℓ ∈ N t \ {j} ,St (xtj,k) ∩ St (xtℓ,k) = ∅. (3.10)
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Figure 3.4 – Illustration of the rtos -ground neighborhood (in red) of two obstacles (houses, in gray).Target is in green and its location is the black dot.

However, as in Section 3.2.1, this assumption is difficult to exploit. Alternatively, one considers that
the distance between the location of target j and any other target location is always larger than rtts ,
i.e.,

∀j ∈ N t,∀ℓ ∈ N t \ {j} ,xt,g
ℓ,k /∈ Ng

({
x
t,g
j,k

}
, rtts
)
. (3.11)

Figure 3.5 illustrates (3.11).
Remark 3. Another formulation for (3.11) is

∀j ∈ N t,∀ℓ ∈ N t \ {j} ,Ng

({
x
t,g
j,k

}
, rtts /2

)
∩ Ng

({
x
t,g
ℓ,k

}
, rtts /2

)
= ∅. (3.12)

Thus, since we assumed that the target shape is always contained in the cylinder Ct of radius rt, then a
possible choice for rtts is to take rtts = 2rt.

3.3 . UAV model

A fleet of Nu cooperative UAVs is deployed within X0 to search, find and track the targets. UAVs
are identified with indexes in the setN u = {1, . . . , Nu} . Each UAV embeds a CVS, including a camera,
described and modeled as reported below.

At time tk, the state vector xui,k of UAV i ∈ N u contains, among others, the location of its center of
gravity xu

i,k ∈ R2 × R+∗ and its attitudeΘu
i,k ∈ R3. The vector xui,k evolves as

xui,k+1 = fu (xui,k,uui,k,wu
i,k

)
. (3.13)

The function fu is known; uui,k represents the control input, assumed to belong to a finite set of
feasible control inputsU ;wu

i,k represents some unknown perturbation only assumed to be contained
in the known box [wu] = [wu,wu]. Thus, if wu

i,k ̸= 0 at some time instant, the state vector of UAV i
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Figure 3.5 – Illustration of (3.11). The red sets are the boundaries of the rtts -ground neighborhoods ofthe two target locations (black dots).

becomes uncertain. In Chapters 4 and 5, the UAVs are assumed to perfectly know their state vector,
at each time instant. It is only in Chapter 6 that we consider an uncertain UAV dynamics and, thus,
have to account for the state uncertainty of the UAV in the estimation process.

Each UAV embeds proprioceptive sensors such as Inertial Measurement Units (IMU) or GPS recei-
vers to measure its state. The measurement yui,k of the state of UAV i by those sensors is assumed to
be described as

yui,k = hu (xui,k)+wu,m
i,k , (3.14)

wherewu,m
i,k is somemeasurement noise, unknownbut bounded in the knownbox [wu,m] = [wu,m,wu,m].

The shape of UAV i is Su (xui,k) and is perfectly known. A body frameFb
i,k with originxu

i,k is attached
to UAV i. The rotation matrix from Fb

i,k to F is denotedMF
Fb

i,k

.MF
Fb

i,k

depends onΘu
i,k. To simplify the

notation, the time index is omitted for the frames attached to a UAV.
The coordinates of some vector x ∈ R3, when expressed in Fb

i , are
T

Fb
i

F (x) = M
Fb

i
F
(
x− xu

i,k

)
. (3.15)

3.3.1 . Communication
Data exchange within the fleet is modeled by the undirected graph Gk = (N u, Ek), with N u the

set of vertices and Ek ⊂ N u ×N u the set of edges of the graph. Ek describes the connectivity at time
tk. For two UAVs i ∈ N u and i′ ∈ N u, if (i, i′) ∈ Ek, then both UAVs are able to exchange information
without delay and error. The setNi,k = {i′ ∈ N u | (i, i′) ∈ Ek} contains all UAV indexes to which UAV iis able to communicate at time tk. For simplicity, we consider that i ∈ Ni,k.For more details regarding the various communication protocols that may be used for UAVs, see
(Shi et al., 2021).
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3.4 . Model of the camera and CVS

This section presents a geometric approach to model the way UAVs perceive their environment
and collect information that will be processed by their CVS, see also Section 3.5.

Section 3.4.1 introduces a geometric model for the embedded camera that is used to get images
of the monitored environment. Section 3.4.2 uses this model to characterize the FoV of the camera,
and Section 3.4.3 presents an approach to deduce from this geometric model the coordinates on the
CCD array of any point belonging to the environment.

To simplify the notations in this section, the time index is omitted.
3.4.1 . Camera model

Each UAV of the fleet embeds the same type of camera. An image Ii provided by the camera of
UAV i consists of Nr rows and Nc columns.

A camera frame F c
i is attached to the camera of UAV i. This frame has its origin located at the

camera optical center xc,Fb
i

i , and is oriented such that the positive z-axis represents the optical axis
of the camera, the x-axis is parallel to the pixel rows in the CCD array and the y-axis is parallel to the
columns. The rotation matrix from Fb

i to F c
i is notedM

Fc
i

Fb
i

.
Usually, the camera’s intrinsic parameters such as the dimensions of the CCD cells or the focal

length are known. Table 3.1 gathers all the camera intrinsic parameters that are used in this work.
Notation Relation Definition (unit)

f - camera focal length (m)
αc/αr - camera horizontal/vertical aperture (rad)
Hc/Hr H* = 2f tan

(
α∗
2

) dimensions of the CCD array (m)
fc/fr f* = fN*/H∗ camera focal length (pixels)

Table 3.1 – Camera’s intrinsic parameters. ’c’ is for column, horizontal, or x-axis ; ’r’ is for row,vertical, or y-axis
We consider the pinhole model without distortion presented by (Faugeras, 1993). With this model,

the matrix of intrinsic parameters
K =

(
−fc 0 Nc/2
0 −fr Nr/2

)
. (3.16)

is used to define the projection pFc
i
(.) of some point xFc

i ∈ R3 belonging to the environment onto
the CCD array in order to obtain the 2D coordinates on the CCD array of its image, i.e.,

pFc
i

(
xFc

i

)
= KxFc

i /x
Fc

i
3 , (3.17)

where xFc
i

3 is the third coordinate of xFc
i . See Figure 3.6 for an illustration of the pinhole model.
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Optical axis

Figure 3.6 – Illustration of the pinhole model : c = −fcxF
c
i

1 /x
Fc

i
3 +Nc/2 and r = −frxF

c
i

2 /x
Fc

i
3 +Nr/2.

3.4.2 . Field of view
According to the geometric approach (3.17) to model the camera, each light ray passing through

the optical center of the camera and illuminating the CCD array at (c, r) ∈ [0, Nc] × [0, Nr] can be
modeled by a half-line of direction

vFc
i (c, r) =

1

ν (c, r)

 (
Nc
2 − c

)
/fc(

Nr
2 − r

)
/fr

1

 , (3.18)

where
ν (c, r) =

√((
Nc
2 − c

)
/fc
)2

+
((

Nr
2 − r

)
/fr
)2

+ 1 (3.19)
is a normalization coefficient. See Figure 3.7 for an illustration of some light rays illuminating a pixel
(nr, nc). The set

Vi (nr, nc) =
{
MF

Fc
i
vFc

i (c, r) | c ∈ [nc − 1, nc] , r ∈ [nr − 1, nr]
} (3.20)

gathers the directions, expressed in F , of all light rays contributing to the illumination of the pixel
(nr, nc). The matrixMF

Fc
i
= MF

Fb
i

M
Fb

i

Fc
i
describes the rotation from F c

i to F .
From this geometric representation of the camera, one can represents the FoV of the camera of

UAV i (dubbed as FoV of UAV i in what follows) with the set
F (xui ) =

{
xc
i +

∑4
ℓ=1 aℓM

F
Fc

i
v
Fc

i
ℓ | aℓ ∈ R+

}
, (3.21)

with
v
Fc

i
ℓ = vFc

i (cℓ, rℓ) , ℓ = 1, . . . , 4, (3.22)
where

(cℓ, rℓ) ∈
{

(Nc, 0) , (0, 0) ,
(Nc, Nr) , (0, Nr)

}
. (3.23)
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Figure 3.7 – Some light rays illuminate of the pixel (nr, nc) ; The 4 blue lines are the light rays illumina-ting the corners of (nr, nc) ; The quadrangle Pgi ((nr, nc)) is defined in Section 4.3.1.

The FoV of UAV i denotes the set of points in R3 that are potentially observed in the RoI by a UAV
when its state is xui (ignoring obstacles and targets).In addition, one assumes that the CVS cannot reliably process information related to parts of the
FoV situated too far away from the optical center of the camera. On the contrary, any information
related to some x ∈ F (xui ) at a distance from xc

i smaller than dmax can be reliably processed by theCVS, where dmax is some a known distance. Therefore, the set of points of the FoV that can be reliably
processed by the CVS embedded on UAV i is

F (xui ) = F (xui ) ∩ B (xc
i , dmax) , (3.24)

where B (xc
i , dmax) is the ball of R3 of center xc

i and radius dmax.
3.4.3 . Projection on camera frame

This section introduces the transform to obtain the 2D coordinates in the CCD array of any point
expressed in the reference frame.

First, consider the transform T
Fc

i

Fb
i

(.) expressing in F c
i the coordinates of a point xFb

i (expressed
in the body frame of UAV i)

T
Fc

i

Fb
i

(
xFb

i

)
= M

Fc
i

Fb
i

(
xFb

i − x
c,Fb

i
i

)
. (3.25)

Composing (3.15) and (3.25), one gets the transform
T

Fc
i

F = T
Fc

i

Fb
i

◦TFb
i

F (3.26)
to express in F c

i the coordinates of x, initially expressed in F .
By combining (3.17) with (3.26), one obtains the function pc (xui ,x) which provides the 2D coordi-

nates in the CCD array of UAV i of any point x of the environment
pc (xui ,x) = pFc

i

(
T

Fc
i

F (x)
)
. (3.27)

71



For any pixel (nr, nc) ∈ N I, the notation pc (xui ,x) ∈ (nr, nc) indicates that the projection of x on
the CCD array belongs to that pixel, i.e.,

pc (xui ,x) ∈ ([nc − 1, nc] , [nr − 1, nr])T . (3.28)
Moreover, for any x ∈ F (xui ), there exists a pixel (nr, nc) ∈ N I such that their exists a vector v ∈
Vi (nr, nc) that is colinear with the line (xc

i ,x). Consequently, since xmay have contributed to the illu-
mination of pixel (nr, nc), then theprojection ofxon theCCDmust belong to ([nc − 1, nc] , [nr − 1, nr])T ,
i.e.,

x ∈ F (xui ) ⇒ ∃ (nr, nc) ∈ N I,pc (xui ,x) ∈ (nr, nc) . (3.29)

3.5 . Information provided by the CVS

At time tk, the camera generates the image Ii,k. It is fed into the CVS which provides a depth-map
Di,k, obtained using, e.g., (Park and Kim, 2012; Madhuanand et al., 2021; Shimada et al., 2023). An array
of pixel labels Li,k is also obtained using, e.g., (Grilli et al., 2017; Howard et al., 2019), as well as a list
Dt

i,k of identified targets. For each of these targets, a box [Y t
i,j,k

] in the image Ii,k containing pixels
of the identified targets j ∈Dt

i,k may be obtained using, e.g., (Redmon et al., 2016; Minaeian et al.,
2018; Luo et al., 2022; Jiang et al., 2022; Liu et al., 2022a). We assume that the depth mapDi,k and thearray of labels Li,k have the same size as Ii,k. Besides, at time tk, the RoI, consisting of the ground
Xg, the obstacles Som, m ∈ N o, the targets St (xtj,k), j ∈ N t, and the UAVs Su (xui,k), i ∈ N u, can be
represented as

SRoIk = Xg ∪
⋃

m∈N o
Som ∪

⋃
j∈N t

St (xtj,k) ∪ ⋃
i∈N u

Su (xui,k) . (3.30)

UAV i is only able to collect information from the portion of the RoI that is located within its FoV, i.e.,
F
(
xui,k
)
∩ SRoIk . Information related to obstacles, targets, or parts of the ground in F

(
xui,k
)
\ F
(
xui,k
)

may be reliable, but is not considered as such in what follows.
To keep the notation simple, the time index is again omitted in this section.
In the following sections, assumptions and models are introduced to describe the way measure-

ments provided by the CVS can be related to the environment (ground, obstacles, targets, and other
UAVs) of each UAV. Thesemodels will be instrumental in the estimation algorithms described in Chap-
ter 4.

3.5.1 . Depth map

The CVS provides an array of Nc × Nr depth measurements Di. Each element (nr, nc) of Di isassumed to be an estimation of the distance between the optical center xc
i of the camera of UAV i

and the part of the environment that has reflected light rays illuminating the pixel (nr, nc).
Consider a pixel (nr, nc) ∈ N I. The distance ρ (xc

i ,v) between the optical center of the camera xc
i
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and the environment along a vector v ∈ Vi (nr, nc) is
ρ (xc

i ,v) =min

{
dv
(
xc
i ,Xg

)
, dv

(
xc
i ,
⋃

m∈N o
Som
)
, (3.31)

dv

xc
i ,
⋃

j∈N t
St (xtj)

 , dv

(
xc
i ,
⋃

ℓ∈N u
Su (xuℓ )

) (3.32)
where dv (x,S) is the distance from a point x ∈ X0 to the intersection between the set S and the
half-line of origin x and direction v. If there is no intersection, then dv (x, S) is infinite.We assume that the measured distanceDi (nr, nc) associated to pixel (nr, nc) is such that

∃v ∈ Vi (nr, nc) ,Di (nr, nc) = ρ (xc
i ,v) (1 + w) , (3.33)

where w is some unknown noise assumed to belong to the known interval [w,w]. In what follows,
D0

i (nr, nc) = Di (nr, nc)
1 + w

(3.34)
is used to represent the noise-free distance, i.e., ρ (xui ,v), that would be measured with w = 0.

As w ∈ [w,w], the interval
[Di] (nr, nc) =

[
1

1 + w
,

1

1 + w

]
Di (nr, nc) , (3.35)

containsD0
i (nr, nc).

3.5.2 . Pixel classifier
The CVS provides an array of Nc ×Nr pixel labels Li. In this work, only four classes of pixel labelsare considered, namely Ground, Target, Obstacle, and Unknown. We assume that all pixels labeled by

the CVS as Ground, Target, or Obstacle are reliably labeled. For example, pixels with Ground labels
actually correspond to elements of the RoI such as roads, soils, or sidewalks. When the Target label is
used for some pixels, we assume that they actually correspond to the observation of, at least, parts of
a target. When a pixel is labeled Obstacle, light rays reflected by an obstacle have actually contributed
to the illumination of that pixel. Pixels labeled Unknown correspond to other UAVs, or to elements of
the environment that are too far to be reliably identified by the CVS.

The estimation approaches considered in thiswork aremuchmore sensitive tomisclassified pixels
than to pixels without labels. Usually, the confidence threshold of pixel classifiers may be adjusted to
get a compromise between the proportion of misclassified pixels and not labeled pixels (Jiang et al.,
2023). Here, the threshold should be tuned in such a way to avoid misclassified pixels.

Considering the four classes, four sets of pixel indexes are deduced from Li, namely Yg
i , Y t

i , Yo
i ,and Yn

i gathering coordinates of pixels respectively labeled Ground, Target, Obstacle, and Unknown.
Besides, we assume with (3.24) that any information collected by the camera from F (xui )∩SRoI can be
reliably processed by the CVS. Consequently, we assume that Yg

i , Y t
i , Yo

i are subsets of a set gatheringthe coordinates of reliable pixels defined as
Yi =

{
(nr, nc) ∈ N I | 1

1 + w
Di (nr, nc) ⩽ dmax

}
. (3.36)
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Unknownpixels are related to elements of the environment that cannot be reliably identified. Thus,
the pixels (nr, nc) ∈ Yn

i may not be used to estimate a target location since the UAV does not know
what has been observed. Nonetheless, we propose to exploit Yn

i to approximate the portion of the
ground F (xui ) ∩ Xg that has been hidden by unidentified objects. For that purpose, we assume that
Yn
i ⊂ Yi . Consequently, all pixels (nr, nc) /∈ Yi are, in fact, not labeled and not considered in the

following chapters.
This section introduces three different assumptions relative to the behavior of the classifier when

it processes the information collected by the camera at one time instant. Each of the assumptions
will lead to a variant of the estimation algorithm for the location of targets and obstacles detailed in
Chapter 4 and Appendix A.1.

With Assumption 4 below, we assume that if a pixel belongs to Y t
i , to Yo

i , or to Yg
i , then all light

rays illuminating that pixel come from the same target, from the same obstacle, or from the ground.
Assumption 4. If a pixel (nr, nc) ∈ Y t

i then all light rays illuminating this pixel stem from the same target,
i.e.,

∃j ∈ N t, ∀v ∈ Vi (nr, nc) , ρ (x
c
i ,v) = dv

(
xc
i ,St

(
xtj
))
. (3.37)

Similarly, if (nr, nc) ∈ Yo
i , then all light rays illuminating this pixel stem from the same obstacle

∃m ∈ N o,∀v ∈ Vi (nr, nc) , ρ (x
c
i ,v) = dv (x

c
i ,Som) , (3.38)

and if (nr, nc) ∈ Yg
i , then all light rays illuminating this pixel stem from the ground,

∀v ∈ Vi (nr, nc) , ρ (x
c
i ,v) = dv

(
xc
i ,Xg

)
. (3.39)

Moreover, in the three cases,

∃v ∈ Vi (nr, nc) such thatD0
i (nr, nc) = ρ (xc

i ,v) . (3.40)
According to Assumption 4, if a pixel is illuminated by light-rays stemming from different entities,

it must belong to Yn
i .With Assumption 5 below, we assume that if a pixel belongs toY t

i , toYo
i , or toYg

i , then at least onelight ray illuminating that pixel come from a target, from an obstacle, or from the ground. Moreover,
the noise-free distanceD0

i (nr, nc) corresponds to the distance along that light ray.
Assumption 5. If a pixel (nr, nc) ∈ Y t

i ,then at least one light ray stems from a target, i.e.,

∃j ∈ N t,∃v ∈ V t
i (nr, nc) , ρ (x

c
i ,v) = dv

(
xc
i ,St

(
xtj
))
, (3.41)

with
V t
i (nr, nc) =

{
v ∈ Vi (nr, nc) | ∃j ∈ N t, ρ (xc

i ,v) = dv
(
xc
i ,St

(
xtj
))}

, (3.42)
andD0

i (nr, nc) = ρ (xc
i ,v) along some unknown vector v ∈ V t

i (nr, nc). Similarly, if (nr, nc) ∈ Yo
i , then

∃m ∈ N o, ∃v ∈ Vo
i (nr, nc) , ρ (x

c
i ,v) = dv (x

c
i , Som) , (3.43)

with
Vo
i (nr, nc) = {v ∈ Vi (nr, nc) | ∃m ∈ N o, ρ (xc

i ,v) = dv (x
c
i , Som)} , (3.44)
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Figure 3.8 – According to Assumption 4, if pixel p1 ∈ Yo
i , then all light rays illuminating p1 are assumedto stem from an obstacle. If pixel p3 ∈ Yg

i , then all light rays illuminating p3 are assumed to stem from
Xg. If p2 ∈ Yn

i , then all light rays illuminating p2 are assumed to stem from a different entities. Theorange lines represent the light rays v used to obtain the noise-free distance D0
i (orange dots) foreach of the 3 pixels. The blue dots correspond to Di (pℓ) and the black intervals are [Di] (pℓ), with

ℓ ∈ {1, 2, 3}, see (3.35).

andD0
i (nr, nc) = ρ (xc

i ,v) along some unknown vector v ∈ Vo
i (nr, nc). Finally, if (nr, nc) ∈ Yg

i , then

∃v ∈ Vg
i (nr, nc) , ρ (x

c
i ,v) = dv

(
xc
i ,Xg

)
, (3.45)

with
Vg
i (nr, nc) =

{
v ∈ Vi (nr, nc) | ρ (xc

i ,v) = dv
(
xc
i ,Xg

)}
, (3.46)

andD0
i (nr, nc) = ρ (xc

i ,v) along the corresponding v ∈ Vg
i (nr, nc).

With Assumption 6 below, we assume that if a pixel belongs to Y t
i , to Yo

i , or to Yg
i , then the lightray illuminating the center of its corresponding CCD cell stems from a target, from an obstacle, or

from the ground. In other words, with Assumption 6, the portion of the RoI that is observed by a pixel
is summarized by the entity (target, obstacle, or ground) that has illuminated its center. Moreover,
the noise-free distanceD0

i (nr, nc) corresponds to the distance along that light ray.
Assumption 6. If a pixel (nr, nc) ∈ Y t

i , then

∃j ∈ N t, ρ (xc
i ,v

c (nr, nc)) = dvc(nr,nc)
(
xc
i ,St

(
xtj
)) (3.47)

where vc (nr, nc) is the the light ray illuminating the center of pixel (nr, nc). Similarly, if (nr, nc) ∈ Yo
i , then

∃m ∈ N o, ρ (xc
i ,v

c (nr, nc)) = dvc(nr,nc) (x
c
i ,Som) . (3.48)

Finally, if (nr, nc) ∈ Yg
i , then

ρ (xc
i ,v

c (nr, nc)) = dvc(nr,nc)
(
xc
i ,Xg

)
. (3.49)

Moreover, one hasD0
i (nr, nc) = ρ (xc

i ,v
c (nr, nc)).

75



Figure 3.9 – According to Assumption 5, if pixel p1 ∈ Yo
i , then at least one light ray illuminating p1stems from an obstacle. If pixel p3 ∈ Yg

i , then at least one light ray illuminating p3 stems from Xg.If p2 ∈ Yn
i , nothing can be said about light rays illuminating p2. If p2 ∈ Yo

i or Yg
i , then at least onelight ray illuminating p2 is assumed to stem from an obstacle or the ground respectively. Assuming

p2 ∈ Yo
i , then the purple set represents Vo

i (p2). The orange lines represent the light rays v used toobtain the noise-free distanceD0
i (orange dots) for each of the 3 pixels. The blue dots correspond to

Di (pℓ) and the black intervals are [Di] (pℓ), with ℓ ∈ {1, 2, 3}, see (3.35).

Figure 3.10 – According to Assumption 6, if pixel p1 ∈ Yo
i , then the light ray illuminating the center of

p1 stems from an obstacle. If pixel p3 ∈ Yg
i , then the light ray illuminating the center ofp3 stems from

Xg. If p2 ∈ Yo
i , then the light ray illuminating the center of p2 stems from an obstacle. The red linesrepresent the light rays vc (pℓ) illuminating the center of pℓ that has been used to obtainD0

i (pℓ) (reddots), with ℓ ∈ {1, 2, 3}. The blue dots correspond toDi (pℓ) and the black intervals are [Di] (pℓ), see(3.35).

Each of these assumptions leads to a different way to exploit the information from a labeled pixel.
Therefore, during the target localization process, different variants of the set-membership estimators
have to be considered depending on the adopted assumption.
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Assumptions 4 and 5 appear to be the most realistic, and provide less information related to
distance measurements. In Chapter 4, only Assumption 4 is considered. The estimators exploiting
Assumption 5 and Assumption 6 are presented in Appendix A.1.

3.5.3 . Target detection and identification
The array of pixel labels Li represents a useful source of information to detect the presence of a

target within the FoV of UAV i. If Y t
i is not empty, then there exists at least one target within F (xui ),regardless of the assumption chosen to interpret pixels labeled Target. Nevertheless, the label carries

no information about the identity of the target. Therefore, Y t
i can only be used to describe an area ofthe RoI containing at least one target but whose identity is unknown.

In addition to Ii, Li, andDi, the CVS also provides a list Dt
i ⊂ N t of target indexes relative to the

targets that have been identified. The set Dt
i may be empty when no target is identified in the FoV

of UAV i. For each target j identified by UAV i, i.e., j ∈ Dt
i, , an axis-aligned box [Y t

i,j

] locating the
target in Ii is also provided. Such a box can be obtained by combining a target detection algorithm,
e.g., (Redmon et al., 2016), with target identification approaches as in (Liu et al., 2022a). To model the
behavior of the target detection algorithm in the CVS and exploit the information carried by [Y t

i,j

] for
each j ∈ Dt

i, consider the set Y t
i,j ⊂ Y t

i containing all pixels of Y t
i associated to target j only. Note that

Y t
i,j is not provided by the CVS. We introduce Y t

i,j only to define the following assertions.According to Assumption 4, Y t
i,j can be defined as

Y t
i,j =

{
(nr, nc) ∈ Y t

i | ∀v ∈ Vi (nr, nc) , ρ (xc
i ,v) = dv

(
xc
i ,St

(
xtj
))}

. (3.50)
The above assertion can be easily adapted for Assumption 5 and 6. We assume that if target j is
identified, then Y t

i,j cannot be empty, i.e.,
j ∈ Dt

i ⇒ Y t
i,j ̸= ∅. (3.51)

Moreover, the CVS is assumed to be tuned in such a way that [Y t
i,j

] either contains Y t
i,j , i.e.,

j ∈ Dt
i ⇒ Y t

i,j ⊂
[
Y t
i,j

]
, (3.52)

or intersect Y t
i,j , i.e.,

j ∈ Dt
i ⇒ Y t

i,j ∩
[
Y t
i,j

]
̸= ∅. (3.53)

Assumption (3.53) is relatively mild and may well reflect the behavior of detection algorithms,
which are usually not able to ensure (3.52). Consequently, in what follows, only (3.53) will be conside-
red.

3.6 . Assumption on observed targets

This section introduces anobservation condition that, if satisfied, allows the exploitation ofGround-
labeled pixels as negativemeasurements. To simplify notations, the time index is again omitted in this
section.
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We recall that the location x
t,g
j for a target j does not necessarily belong to its shape (see Figure

3.11). Thus, for a pixel (nr, nc) such that pc
(
xui ,xt,g

j

)
∈ (nr, nc), none of the three assumptions presen-

ted in Section 3.5.2 is useful to predict if (nr, nc) would be labeled Target, if the target is not hidden,
Obstacle, if it is behind an obstacle,Unknown, orGround sincext,g

j belong toXg. Consequently, anotherassumption is needed.
Assumption 7. If a target j is such that xt,g

j ∈ F (xui ), then the half-open segment
[
xc
i ,x

t,g
j

[
intersects

St
(
xtj

)
, i.e.,

x
t,g
j ∈ F (xui ) =⇒

[
xc
i ,x

t,g
j

[
∩ St

(
xtj
)
̸= ∅. (3.54)

The validity of (3.54) depends on the camera orientation and the characteristics of the target shape
St
(
xtj
). This assumption is reasonable for many targets such as cars or trucks, provided that they are

observed from a location sufficiently above the target, with a camera oriented towards the ground.

Figure 3.11 – Illustration of (3.54). The blue dot represents xt
j and the green dot represents xt,g

j . The
dashed-red line is the line-of-sight [xc

i ,x
t,g
j

[. The purple dot represents the part of St (xtj) seen by
the UAV.

Under Assumption 7 and Assumption 4 applied to Ground-labeled pixels, if xt,g
j ∈ F (xui ), then the

pixel (nr, nc) such that pc
(
xui ,xt,g

j

)
∈ (nr, nc) cannot be labeled Ground since there exists at least one

light ray that does not stem from the ground. In addition, one can remark that such a property cannot
be guaranteed with Assumption 5 or 6. Therefore, Assumption 4 must be considered for Ground-
labeled pixels to make use of (3.54).

3.7 . Problem formulation

Assume that the information available to UAV i before time tk is gathered in the set Ii,k−1. Ii,k−1contains, among others, a listLt
i,k−1 of indexes of targets already identified. For each target j ∈ Lt

i,k−1,
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we assume that UAV i has access to a set estimate Xt
i,j,k−1 ⊂ Xg of all possible target locations xt,g

j,k−1

which are consistent with Ii,k−1. It has also access to a set Xt
i,k−1 containing all locations of targetsstill to be identified.

At time tk, the camera and CVS of UAV i provides an image Ii,k, a depth-map Di,k, and an array
of labels Li,k. In addition, the CVS may also provide a list Dt

i,k of identified targets and a list Bt
i,k ={[

Y t
i,j,k

]}
j∈Di,k

of associated bounding boxes. The information available at time tk is then Ii,k|k =

Ii,k−1 ∪
{
Ii,k,Di,k,Li,k,Dt

i,k,Bt
i,k

}
.

Using this information UAV i can evaluate an updated list of identified targetsLt
i,k|k = Lt

i,k−1∪Dt
i,k.Then, for each targets j ∈ Lt

i,k|k, it has to characterize the set Xt
i,j,k|k ⊂ Xg of all possible target

locationsxt,g
j,k which are consistent with Ii,k|k. UAV i has also to update the estimateXt

i,k−1 to getXt
i,k|k.

Then, UAV i broadcasts some updated information such as Lt
i,k|k,

{
Xt
i,j,k|k

}
j∈Lt

i,k|k

and Xt
i,k|k to its

neighbors with indexes inNi,k and receives similar information from them.With this new information,
UAV i can further update its list of identified targets to getLt

i,k, the set estimatesXt
i,j,k for each j ∈ Lt

i,k,
which are gathered in X t

i,k =
{
Xt
i,j,k

}
j∈Lt

i,k

, as well as an updated version Xt
i,k of Xt

i,k|k.
The estimation uncertainty about the localization of both identified and undetected targets may

be defined as
Φ
(
X t
i,k,X

t
i,k

)
= ϕ

Xt
i,k ∪

⋃
j∈Lt

i,k

Xt
i,j,k

 , (3.55)

where ϕ (X) is the area of the set X ⊂ R2.
Our aim is to obtain the smallest set estimates from the available measurements and to design a

trajectory for each UAV in order to minimize (3.55).

3.8 . Conclusion

This chapter formalizes the CSAT problem with ground targets evolving within an unknown but
structured environment. A fleet of cooperative UAVs is deployed to search, identify, and localize those
targets. For that purpose, each UAV embeds a CVS to collect and process information from the envi-
ronment. Similarly to (Goldhoorn et al., 2018; Meera et al., 2019; Kenmogne Fokam, 2019), and unlike
(Kuhlman et al., 2017; Zhu et al., 2021; Zhao et al., 2022; Ibenthal et al., 2023; Zhang et al., 2024), no
idealized CVS is considered to solve our CSAT problem. Instead, each UAV must exploit available CVS
measurements consisting of a labeled image, a depthmap, and a list of bounding boxes associated to
identified targets, to estimate the location of the targets. The target location estimator that exploits
these CVS measurements is presented in Chapter 4. Additionally, the environment is a priori unk-
nown. Thus, each UAV must exploit the CVS measurements to gain knowledge regarding the shape
and location of the obstacles. This environmental knowledge is then used in Chapter 5 with an ap-
proach similar to the one presented in (Meera et al., 2019) to better design the updated trajectory of
each UAV by predicting the portion of the RoI that will be masked by the detected obstacles.
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How these CVS measurements are obtained is often hard to model since, nowadays, they often
involve deep learning algorithms, as in (Cao et al., 2017; Luo et al., 2022). Therefore, in most cases,
there are no simple measurement models to represent the computer vision algorithms. To address
this issue, a camera model is introduced in Section 3.4, and assumptions modeling how the CVSmea-
surements can be related to the RoI are introduced in Section 3.5. The purpose of those assumptions
is to make the available CVS measurements exploitable by the target location estimator presented in
Chapter 4. We use the pinhole model to model the camera. The depth map model (3.31) is consistent
with this camera model. Then, three different assumptions are introduced to relate a labeled pixel
to the RoI. Each of those assumptions has its advantages and drawbacks. If the UAVs are not too far
from the RoI, then assumptions 4 and 6 seem to be the simplest assumptions to consider. Nonethe-
less, Assumption 4 assumes that as soon as a pixel is labeled Target, then that pixel must have been
illuminated by only one target. From an aerial point of view, if the UAVs fly high, the targets are small.
Consequently, this assumption is a bit unrealistic. Regarding Assumption 6, only the light ray illumi-
nating the center of a labeled pixel is considered. This simplification may become unrealistic for the
same reason because a detected target may not be located at the exact center of a Target-labeled
pixel. Assumption 5 appears to be the most realistic. The subsets Vℓ

i , with ℓ ∈ {t, g,o}, model the fact
that if a pixel is labeled, e.g., Target, then some light rays must have stemmed from a target. The sub-
set V t

i , however, is unknown. Consequently, and as explained in Appendix A.1, there is no differencebetween Assumptions 4 and 5 regarding the design of the target location estimator. That is why only
Assumption 4 is considered in the following chapters.

Assumption (3.54) is instrumental in transforming some of the available CVS measurements into
negative information. Besides, this assumption can be easily satisfied.Moreover, Section 3.5.3 reflects
the behavior of detection algorithms that, with the target identification algorithm of (Liu et al., 2022a),
can provide a reliable target identification. Nevertheless, possible bad evaluations of the bounding
box [Y t

i,j,k

] are possible, as it may be the case when the target detector encounters a situation which
has not been well represented in its training data set. In such situations, the Intersection over Union
between the bounding box and the ground truth may be very low. Nonetheless, if Assumption (3.53)
is satisfied, i.e., there is at least one pixel associated to the identified target which is located within the
bounded box, then, a robust target location estimation is still possible with the estimator presented in
Chapter 4. Nonetheless, targetmisidentification, and target non-detection are problems that have not
been considered. The target misidentification problem can be handled by the approach developed
in (Ibenthal et al., 2020), and False Positives, i.e., a Target-labeled pixel that is not illuminated by any
target, could be handled by our approach. Nevertheless, target non-detection or False Negatives, i.e.,
a pixel is labeled Ground even though it has been illuminated by a target, is still a problem that is not
formalized in this chapter, and not addressed in this thesis.
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Chapter 4 - Target localization from CVS measurements

In this chapter, a method to estimate the location of targets from measurements provided by a
Computer Vision System (CVS) embedded in a UAV is presented. Using a set-membership approach,
the aimof the proposed estimator is to characterize sets that are guaranteed to contain the location of
a target, and sets that are guaranteed to contain no target location. For that purpose, the assumptions
introduced in Chapter 3 will be used.

This chapter considers the part of the Cooperative Search, Acquisition, and Tracking (CSAT) pro-
blem devoted to the estimation process and the update of the knowledge of a UAV about the location
targets using the CVS measurements. The design of a trajectory to track those targets is addressed in
Chapter 5.

The notations used in this chapter are first recalled in Section 4.1 before a formulation of the esti-
mation problem studied in this chapter. Then, Section 4.2 presents a method to exploit the measure-
ments provided by the CVS to characterize various set estimates related to the location of identified
targets. Section 4.3 presents a method to characterize set estimates containing no target location.
Section 4.4 proposes an approach to estimate the portion of the ground that has been occluded by
an obstacle. Those sets are then used to update the knowledge each UAV has about the possible
locations of the targets by using a prediction-correction approach that is presented in Section 4.5.
Section 4.6 describes the way CVS measurements are used to build the map of the Region of Interest
(RoI). Then, some simulations and results are presented in Section 4.7 before concluding.

Appendix A.2 describes how one may compute the introduced set estimates.
To simplify the notation, the time index is omitted in the Sections 4.2, 4.3, and 4.4.

4.1 . Problem formulation

A fleet ofNu UAVs is dispatched within an RoI X0 which containsN t mobile ground targets and is
cluttered with No static obstacles of unknown shape and location.

Just before time tk, assume that UAV i ∈ N u has access to some knowledge about somepreviously
identified targets and the environment. This knowledge consists of a list Lt

i,k−1 of indexes of targetsalready identified. For each j ∈ Lt
i,k−1, UAV i has access to a set estimate Xt

i,j,k−1 ⊂ Xg containing
the location xt

j,k−1 of target j at time tk−1. The list of sets X t
i,k−1 =

{
Xt
i,j,k−1

}
j∈Lt

i,k−1

gathers all
the knowledge UAV i has about the identified targets. It has also access to a set Xt

i,k−1 containingall locations where potential unidentified targets may still be present. Lastly, UAV i has access to a
set Xo

i,k−1representing areas around previously observed obstacles where no target can be. Those
previously observed obstacles may also have been mapped through the Occupancy Elevation Map
(OEM)Mi,k−1.

At time tk, UAV i, with state xui,k, observes a subset F
(
xui,k
) of its environment using a camera to

get an image Ii,k. Then, the embedded CVS processes Ii,k to provide a depth map Di,k, an array of
pixel labels Li,k, a listDt

i,k of targets identified at time tk, and a list Bt
i,k =

{[
Y t
i,j,k

]}
j∈Di,k

of bounding
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boxes associated to those identified targets.
The problem addressed in this chapter is the exploitation of the measurements provided by the

CVS using the assumptions presented in Chapter 3 to localize the targets. For that purpose, if j ∈ Dt
i,k,

a set estimate Xt,m
i,j,k containing the location xt

j,k of a target j is evaluated. A set estimate Pgi,k
(
Yg
i,k

)
is also characterized using the pixels labeled Ground such that Pgi,k

(
Yg
i,k

) cannot contain any target
location. Similarly, pixels labeled Obstacles are used in two ways. The first is to characterize a set Xo

i,kthat can never contain any target location due to the proximity of an obstacle. The second is to update
the OEM.

Then, once characterized, these set estimates as well as the information broadcast by potential
neighbors are used to update the list Lt

i,k−1 and the sets X t
i,k−1, Xt

i,k−1 and Xo
i,k−1 to get Lt

i,k, X t
i,k, Xt

i,kand Xo
i,k.

4.2 . Exploiting CVS information to localize an identified target

Consider that a target j ∈ Dt
i is identified by UAV i at time tk. The CVS provides a depth mapDi, a

listY t
i of pixels labeled Target, and a bounding box

[
Y t
i,j

]. According to (3.51), since the target has been
identified, then at least one pixel contained in Y t

i is associated to target j. Therefore, by combining[
Y t
i,j

] with Y t
i andDi, UAV i is able to characterize a set estimate Xt,m

i,j containing the target location
x
t,g
j .
Chapter 3 has introduced three assumptions to describe the way measurements provided by

the CVS can be related to the environment. This chapter only considers Assumption 4. Appendix A.1
presents variants of that estimator that one would obtain by considering the other assumptions.

We start with a preliminary result : Assume that a point x belonging to the shape St
(
xtj
) of a

target j is available, then, using the following proposition, it is possible to characterize a set containing
the location x

t,g
j of target j.

Proposition 8. For all j ∈ N t, if x ∈ St
(
xtj,k

)
, then x

t,g
j,k ∈ Ng

({
pg (x)

}
, rt
)
.

Démonstration. Consider some x ∈ St
(
xtj
). According to (3.4), we have St

(
xtj
)
⊂ Ct (xt,g

j

), where
Ct (xt,g

j

) is a vertical circular right cylinder of height ht and radius rt with basis centered in x
t,g
j .

Thus, we also have have pg
(
St
(
xtj
))

⊂ pg
(
Ct (xt,g

j

)). We recall than pg
(
Ct (xt,g

j

)) is a disc of
radius rt and center xt,g

j . Another notation of this disc is Ng
({

x
t,g
j

}
, rt
). Therefore, we have pg (x) ∈

Ng
({

x
t,g
j

}
, rt
).

Consequently, one has ∥∥∥pg (x)− x
t,g
j

∥∥∥ ⩽ rt. This is equivalent to have ∥∥∥xt,g
j − pg (x)

∥∥∥ ⩽ rt. Conse-
quently, we deduce that Ng

({
pg (x)

}
, rt) contains xt,g

j .
Consequently, if a target j is identified, it suffices to determine x ∈ St

(
xtj
) to be able to build a

set estimate Ng
({

pg (x)
}
, rt) containing xt,g

j . This will be done in what follows.
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If a pixel (nr, nc) ∈ Y t
i , i.e., is labeled Target, then, according to Assumption 4, all light rays contri-

buting to its illumination are stemming from a single target ℓ ∈ N t. Assumption 4 does not provide
any information about ℓ. Using the depth map measurementDi (nr, nc) associated to that pixel, ouraim is to characterize a set Pi ((nr, nc)) intersecting the shape of the observed target ℓ.For any pixel (nr, nc) ∈ Ii, the set

Pi ((nr, nc)) = {x ∈ F (xui ) ∩ X0 | (4.1)
∃v ∈ Vi (nr, nc) , dv (xc

i , {x}) ∈ [Di] (nr, nc)}
contains all points in F (xui )∩X0 that may have contributed to the illumination of (nr, nc) while beingat a distance from UAV i consistent with Di (nr, nc). According to Proposition 9, if (nr, nc) ∈ Y t

i , then
Pi ((nr, nc)) intersects the shape St (xtℓ) of some target ℓ.
Proposition 9. If (nr, nc) ∈ Y t

i , then there exists ℓ ∈ N t such that Pi ((nr, nc)) ∩ St
(
xtℓ
)
̸= ∅.

Démonstration. If (nr, nc) ∈ Y t
i , then according to Assumption 4, there exists a target ℓ ∈ N t such

that for all v ∈ Vi (nr, nc), ρ (xc
i ,v) = dv

(
xc
i ,St

(
xtℓ
)). Therefore, there exist v ∈ Vi (nr, nc) and

x∗ ∈ St (xtℓ) ⊂ X0 such that dv (xc
i , {x∗}) = D0

i (nr, nc). According to (3.35), one has dv (xc
i , {x∗}) ∈

[Di] (nr, nc). In addition, as (nr, nc) ∈ Y t
i ⊂ Yi, see (3.36), then 1

1+wDi,k (nr, nc) ⩽ dmax and dv (xc
i , {x∗}) ⩽

dmax. Therefore x∗ ∈ F (xui ). Finally, from (4.1), one has x∗ ∈ Pi ((nr, nc)), and thus Pi ((nr, nc)) ∩
St (xtℓ) ̸= ∅.

Figure 4.1 illustrates Proposition 9with three pixels labeled Target. The orange sets are thePi ((nr, nc))obtained for each pixel, and they contain a point x∗ (in red) belonging to a target (here, the same tar-
get) for which the noise-free depth measurementD0

i (nr, nc) is assumed to have been obtained.

Figure 4.1 – Illustration of the sets Pi ((nr, nc)) (in orange) for different (nr, nc) ∈ Y t
i,j ∩

[
Y t
i,j

] and for
a target detected and identified by UAV i

According to (3.51), since target j has been identified by UAV i at time tk, the set Y t
i,j of pixels labe-

led Target associated to target j is not empty. Moreover, from (3.53), one has Y t
i,j ∩

[
Y t
i,j

]
̸= ∅. Even if

only the set of pixels Y t
i such that Y t

i,j ⊂ Y t
i is available, see Section 3.5.3, using the following Propo-

sition 10, there exists at least one pixel (nr, nc) ∈ [Y t
i,j

]
∩ Y t

i for which the set Pi ((nr, nc)) intersects
St
(
xtj
).

83



Proposition 10. If j ∈ Dt
i, then ∃ (nr, nc) ∈

[
Y t
i,j

]
∩ Y t

i such that Pi ((nr, nc)) ∩ St
(
xtj

)
̸= ∅.

Démonstration. If j ∈ Dt
i, then Y t

i,j ̸= ∅ and Y t
i,j ∩

[
Y t
i,j

]
̸= ∅. Combining (3.51), (3.53), there exists a

pixel (nr, nc) ∈
[
Y t
i,j

]
∩ Y t

i such that (nr, nc) ∈ Y t
i,j . Then, according to (3.50) and Proposition 9, we

deduce Pi ((nr, nc)) ∩ St
(
xtj
)
̸= ∅.

The pixel (nr, nc) such that Pi ((nr, nc)) ∩ St
(
xtj
)

̸= ∅ exists, but it is only known to belong to
Y t
i ∩
[
Y t
i,j

]. To get a set intersecting St (xtj), one has to consider the union of all sets Pi ((nr, nc)) over
the pixels (nr, nc) ∈ [Y t

i,j

]
∩ Y t

i to obtain a set Pti,j intersecting St
(
xtj
), as reported in Corollary 11 (a

direct consequence of Proposition 10).
Corollary 11. If j ∈ Dt

i, then the set

Pti,j =
⋃

(nr,nc)∈[Y t
i,j]∩Y

t
i

Pi ((nr, nc)) (4.2)

is such that Pti,j ∩ St
(
xtj

)
̸= ∅.

Then, according to Proposition 12, if Pti,j ∩ St
(
xtj
)
̸= ∅, then pg

(
Pti,j
)
∩ pg

(
St
(
xtj
))

̸= ∅.
Proposition 12. Consider the sets A and B. If A ∩ B ̸= ∅, then we have pg (A ∩ B) ⊂ pg (A) ∩ pg (B)

Démonstration. Consider x ∈ A ∩ B. Then, we have x ∈ A, x ∈ B and pg (x) ∈ pg (A ∩ B). As x ∈ A,
we have pg (x) ∈ pg (A). We have the same for B. Consequently, pg (A ∩ B) ⊂ pg (A) ∩ pg (B).

Pti,j is only known to intersect St
(
xtj
). If x ∈ Pti,j ∩ St

(
xtj
) would be available, one would be able

to exploit Proposition 8 to characterize a set estimate Ng
({

pg (x)
}
, rt) for xt,g

j . As x is only known to
belong to Pti,j , using Proposition 13, one obtains a set estimate Xt,m

i,j containing xt,g
j .

Proposition 13. If j ∈ Dt
i, then the set estimate

Xt,m
i,j = Xg ∩

⋃
x∈pg(Pti,j)

Ng
(
{x} , rt

) (4.3)

is such that xt,g
j ∈ Xt,m

i,j .

Démonstration. As j ∈ Dt
i, we have Pti,j ∩ Stj

(
xtj
)
̸= ∅. Then, using Proposition 12, we have pg

(
Pti,j
)
∩

pg
(
St
(
xtj
))

̸= ∅. So, there exists x ∈ pg
(
Pti,j
)
∩ pg

(
St
(
xtj
)). Consequently, from Proposition 8,

one has x
t,g
j ∈ Ng

(
{x} , rt). However, as Pti,j is only known to have a non-empty intersection with

St
(
xtj
), to build a set estimate for xt,g

j , one has to consider all x ∈ pg
(
Pti,j
) and build the union

of Ng
(
{x} , rt) over all x ∈ pg

(
Pti,j
). Then, since x

t,g
j is always within Xg, we deduce that the set

Xt,m
i,j = Xg ∩⋃x∈pg(Pti,j)Ng

(
{x} , rt) contains xt,g

j .
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In practice, the estimate Xt,m
i,j is evaluated as
Xt,m
i,j = Xg ∩

(
pg
(
Pti,j
)
⊕ Ng

(
{0} , rt)) , (4.4)

which, compared to (4.3), only involves the Minkovski sum of the disc Ng
(
{0} , rt) and the projection

of Pti,j on Xg, see Figure 4.2.

Figure 4.2 – Estimation of the location of target j : The set Pti,j is projected on the ground (red set).
Then pg

(
Ct) (horizontal circles represented by the black lines) is used to build Xt,m

i,j (green set). The
green dot represents xt

j .

4.3 . Exploiting CVS information to characterize a target-free area

An approach to characterize a subset of Xg that contains no target location is presented in this
section. This is achieved by processing the pixels labeled Ground, in Section 4.3.1, Obstacle, in Sec-
tion 4.3.2, or Target, in Section 4.3.3.

4.3.1 . Using pixels labeled Ground
This section presents an approach to characterize a subset of F (xui ) ∩ Xg, i.e., the intersection ofthe FoV with the ground, containing no location of any target j ∈ N t.
For that purpose, we first introduce the set

Pgi ((nr, nc)) =
{
x ∈ F (xui ) ∩ Xg | pc (xui ,x) ∈ (nr, nc)

} (4.5)
that contains all points in F (xui )∩Xg whose projection on the CCD array pc (xui ,x) belongs to (nr, nc),see (3.29). Pgi ((nr, nc)), illustrated in Figure 3.7, represents the portion of Xg that would be observedby pixel (nr, nc) in absence of obstacles and targets.According to Assumption 4, pixels in Yg

i , i.e., labeled Ground, are such that only points in Xg havecontributed to their illumination. Consequently, the set
Pgi
(
Yg
i

)
=
{
x ∈ F (xui ) ∩ Xg | pc (xui ,x) ∈ Yg

i

} (4.6)
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of points ofXg whose projection onto the CCD array belongs to a pixel labeled Ground cannot contain
the location of a target, see Proposition 14.
Proposition 14. For all j ∈ N t, xt,g

j /∈ Pgi
(
Yg
i

)
.

Démonstration. First, if xt,g
j /∈ F (xui ), then x

t,g
j /∈ Pgi

(
Yg
i

), by definition of Pgi (Yg
i

). Consider now x
t,g
j ∈

F (xui ). According to (3.29), there exists (nr, nc) ∈ N I such that pc
(
xui ,xt,g

j

)
∈ (nr, nc). Moreover,

according to (3.54), there exists an half-open segment [xc
i ,x

t,g
j

[ such that [xc
i ,x

t,g
j

[
∩St

(
xtj
)
̸= ∅while

having [xc
i ,x

t,g
j

[
∩Xg = ∅. Consider the unit vector v ∈ Vi (nr, nc) such that v is colinear with [xc

i ,x
t,g
j

[
.

Therefore, ρ (xc
i ,v) ̸= dv

(
xc
i ,Xg

) and, according to Assumption 4, pc
(
xui ,xt,g

j

)
/∈ Yg

i . Consequently,
from (4.6), xt,g

j /∈ Pgi
(
Yg
i

).
Figure 4.3 illustrates Proposition 14. Two pixels labeled Ground (highlighted in orange) are consi-

dered. According to (3.54), the pixel p1 (highlighted in blue) containing the projection on the CCD array
of xt,g

j cannot be labeled Ground. Therefore, Pgi (Yg
i

) (in orange) cannot contain x
t,g
j .

Figure 4.3 – Illustration of the setPgi (Yg
i

) (in orange) defined as a set which cannot contain the location
(in green) xt,g

j , for j ∈ N t, of any target

4.3.2 . Using pixels labeled Obstacle
This section presents an approach to use pixels labeled Obstacle to characterize a subset Xo

i,k of
Xg that cannot contain any target location. The proposed approach relies on Assumption 3.8, stating
that, for any target j ∈ N t, the distance between x

t,g
j and any obstacle is always larger than some

known safety distance rtos .For pixels labeled Obstacle, Proposition 15 provides a subset of X0 intersecting some obstacle Som.
Proposition 15. If (nr, nc) ∈ Yo

i , then there existsm ∈ N o such that Pi ((nr, nc)) ∩ Som ̸= ∅.
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Démonstration. If (nr, nc) ∈ Yo
i , then, according to Assumption 4, there exists m ∈ N o such that

for all v ∈ Vi (nr, nc), ρ (xc
i ,v) = dv (x

c
i , Som). Therefore, there exists v ∈ Vi (nr, nc) and there exists

x ∈ Som ⊂ X0 such that dv (xc
i , {x}) = D0

i (nr, nc). This leads to have dv (xc
i , {x}) ∈ [Di] (nr, nc). Inaddition, as (nr, nc) ∈ Yo

i ⊂ Yi, we have 1
1+wDi (nr, nc) ⩽ dmax and dv (xc

i , {x}) ⩽ dmax according to(3.36). Therefore x ∈ F (xui ). Consequently, from (4.1), x ∈ Pi ((nr, nc)). So there exists m ∈ N o such
that Pi ((nr, nc)) ∩ Som ̸= ∅.

If, for some (nr, nc) ∈ Yo
i , x ∈ Pi ((nr, nc)) ∩ Som would be known, then, according to Assump-

tion 3.8, one would be able to prove that there is no target location inNg
(
pg ({x}) , rtos

). Nonetheless,
as Pi ((nr, nc)) ∩ Som is only known to belong to Pi ((nr, nc)), one considers the set

S
(
(nr, nc) , r

tos
)
=

⋂
x∈pg(Pi((nr,nc)))

Ng
(
{x} , rtos

)
. (4.7)

defined as the intersections of the discs Ng
(
{x} , rtos

) for all x ∈ pg (Pi ((nr, nc))). According to Pro-
position 16, S ((nr, nc) , rtos ) is an inner-approximation of the rtos -ground neighborhood of an obstacle,as illustrated in Figure 4.4.
Proposition 16. If (nr, nc) ∈ Yo

i , then there existsm ∈ N o, such that

S
(
(nr, nc) , r

to
s
)
⊂ Ng

(
pg (Som) , rtos

)
. (4.8)

Démonstration. If (nr, nc) ∈ Yo
i , then, according to Proposition 15, there exists m ∈ N o such that

Pi ((nr, nc))∩Som ̸= ∅. Consequently,pg (Pi ((nr, nc)))∩pg (Som) ̸= ∅. Since (pg (Pi ((nr, nc))) ∩ pg (Som)
)
⊂

pg (Som), one has
Ng
(
pg (Pi ((nr, nc))) ∩ pg (Som) , rtos

)
⊂ Ng

(
pg (Som) , rtos

)
. (4.9)

Moreover, one has ⋂
x∈pg(Pi((nr,nc)))

Ng
(
{x} , rtos

)
⊂

⋂
x∈pg(Pi((nr,nc)))∩pg(Som)

Ng
(
{x} , rtos

)
, (4.10)

as well as ⋂
x∈pg(Pi((nr,nc)))∩pg(Som)

Ng
(
{x} , rtos

)
⊂ Ng

(
pg (Pi ((nr, nc))) ∩ pg (Som) , rtos

)
. (4.11)

Finally, one gets S ((nr, nc) , rtos ) ⊂ Ng
(
pg (Som) , rtos

)
.

Consequently, an inner-approximation of the rtos -groundneighborhoodof all the obstacles locatedwithin the FoV of UAV i can be obtained by characterizing the union of all S ((nr, nc) , rtos ) over allpixels (nr, nc) ∈ Yo
i . Therefore, UAV i is able to characterize a set estimate

Xo
i =

⋃
(nr,nc)∈Yo

i

S
(
(nr, nc) , r

tos
) (4.12)

which cannot contain any target location as stated by the following proposition.
Proposition 17. If Yo

i ̸= ∅, then the set Xo
i is such that x

t,g
j /∈ Xo

i , for all j ∈ N t.
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Figure 4.4 – Illustration of Proposition 16 : The obstacle Som and the projection on the ground pg (Som)of its shape Som are represented by the light-green sets. The set Pi ((nr, nc)) associated to a pixel
(nr, nc) labeled Obstacle and its ground projection are represented by the orange sets. Ng

(
{x} , rtos

)
is represented by the black segments. The red set is S

(
(nr, nc) , r

tos
) and the dark-green set is

Ng
(
pg (Som) , rtos

).
Démonstration. Using Proposition 16, for each (nr, nc) ∈ Yo

i , there existsm ∈ N o such thatS ((nr, nc) , rtos ) ⊂
Ng
(
pg (Som) , rtos

)
. Then ⋃

(nr,nc)∈Yo
i

S
(
(nr, nc) , r

tos
)
⊂

⋃
m∈N o

Ng
(
pg (Som) , rtos

)
. (4.13)

Consequently Xo
i ⊂

⋃
m∈N o Ng

(
pg (Som) , rtos

). According to Assumption 3.8, we have
∀j ∈ N t, ∀m ∈ N o,xt,g

j /∈ Ng
(
pg (Som) , rtos

) (4.14)
⇔ ∀j ∈ N t,xt,g

j /∈
⋃

m∈N o
Ng
(
pg (Som) , rtos

) (4.15)
therefore

∀j ∈ N t,xt,g
j /∈ Xo

i . (4.16)

4.3.3 . Using pixels labeled as Target
This section presents amethod to characterize a subsetXt,m

i,j ofXg that cannot contain the locationof any target ℓ ∈ N t \ {j} using the information associated with the identified target j ∈ Dt
i.If target j is identified at time tk, then, with the approach presented in Section 4.2, a set estimate

Xt,m
i,j containing its location is available. Using Assumption (3.11), we have the following proposition.

Proposition 18. If j ∈ Dt
i, then the set estimate

Xt,m
i,j =

⋂
x∈Xt,m

i,j

Ng
(
{x} , rtts

) (4.17)
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is such that for all ℓ ∈ N t \ {j}, xt,g
ℓ /∈ Xt,m

i,j .

Démonstration. If j ∈ Dt
i, then according to Proposition 13, the set estimate Xt,m

i,j is such that xt,g
j ∈

Xt,m
i,j . Consequently, one has ⋂

x∈Xt,m
i,j

Ng
(
{x} , rtts

)
⊂ Ng

({
x
t,g
j

}
, rtts
)
. (4.18)

Therefore, according to Assumption (3.11), xt,g
ℓ /∈ Xt,m

i,j for all ℓ ∈ N t \ {j}.

4.4 . Estimation of the hidden area

Some parts of F (xui )∩Xg may not be seen by UAV iwhen they are hidden by an obstacle, a target,
a UAV, or something that has not been identified.

Consider, for now, a point x ∈ F (xui ) ∩ Xg that is hidden by a detected obstacle, i.e., there existsa (nr, nc) ∈ Yo
i such that pc (xui ,x) ∈ (nr, nc). If this point on the ground has been hidden by an

obstacle, then, there exists an obstacle m, with m ∈ N o such that dv (xc
i ,Som) < dv (x

c
i , {x}), where

v ∈ Vi (nr, nc) is collinear with the segment [xc
i ,x]. Thus, according to (3.31), we have that ρ (xc

i ,v) <

dv (x
c
i , {x}). The set of points belonging to F (xui )∩Xg that are hidden by a detected obstacle is then

Ho
i =

{
x ∈ F (xui ) ∩ Xg |
∃ (nr, nc) ∈ Yo

i ,∃v ∈ Vi (nr, nc) , ρ (xc
i ,v) < dv (x

c
i , {x})} . (4.19)

The same sets can be defined for the points belonging to F (xui ) ∩ Xg that are hidden either by a
detected target or by something not labeled, i.e.,

Ht
i =
{
x ∈ F (xui ) ∩ Xg |
∃ (nr, nc) ∈ Y t

i , ∃v ∈ Vi (nr, nc) , ρ (xc
i ,v) < dv (x

c
i , {x})

}
. (4.20)

Hn
i =

{
x ∈ F (xui ) ∩ Xg |
∃ (nr, nc) ∈ Yn

i ,∃v ∈ Vi (nr, nc) , ρ (xc
i ,v) < dv (x

c
i , {x})} . (4.21)

Consequently, the set
HCVS

i = Ho
i ∪Ht

i ∪Hn
i , (4.22)

represents the portion of the ground that UAV i cannot see. The main difficulty to characterize (4.22)
comes from the fact that ρ (xc

i ,v) cannot be evaluated without a perfect knowledge of SRoI. Never-
theless, UAV i is able to outer-approximate HCVS

i by a set estimate HCVS
i that will be useful in the UAV

exploration process in Chapter 5.
To get this outer-approximation of HCVS

i , we assume that as soon as a pixel (nr, nc) is labeled
Obstacle, Target, or Unknown, i.e., (nr, nc) ∈ Yo

i ∪ Y t
i ∪ Yn

i , then it is not illuminated by the ground.
According to Assumption 4, this assumption is true for pixels labeled Obstacle and Target, but not
necessarily for pixels labeled Unknown. Consequently, we can prove that Ho

i ⊆ Pgi (Yo
i ), and Ht

i ⊆
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Pgi
(
Y t
i

) since, according to Assumption 4, for all v ∈ Vi (nr, nc), with (nr, nc) ∈ Yo
i ∪ Y t

i , one has
ρ (xc

i ,v) ≤ dv
(
xc
i ,Xg

). We have an equality only when the point x ∈ F (xui ) ∩ Xg belongs to the
footprint of an obstaclem ∈ N o, i.e., x ∈ Som ∩ Xg, or if it belongs to St

(
xtj
)
∩ Xg for a target j ∈ N t.

The same can be done with pixel labeled Unknown, i.e., Hn
i ⊂ Pgi (Yn

i ).Consequently, an outer-approximation of HCVS
i is

HCVS
i = Pgi

(
Yo
i ∪ Y t

i ∪ Yn
i

)
. (4.23)

4.5 . Estimation algorithm

This section describes an adaptation of the distributed set-membership target location estimator
introduced in (Ibenthal et al., 2021) to exploit measurements provided by the CVS. Just before time tk,UAV i has access to the possible locations of identified targets, i.e.,Xt

i,j,k−1 for each j ∈ Lt
i,k−1, and the

possible location of the targets still to be identified, i.e., Xt
i,k−1. The UAV has also access to a subset

of Xg that represents an inner-approximation of the rtos -ground neighborhood of all the previously
detected obstacles, i.e.,Xo

i,k−1. At time t0, the set estimates of UAV i are initialized asLt
i,0 = ∅,X t

i,0 = ∅,
Xt
i,0 = Xg, and Xo

i,0 = ∅.
4.5.1 . Prediction step

The predicted set Xt
i,j,k|k−1 of possible future possible locations of the previously identified tar-

get j ∈ Lt
i,k−1 is evaluated from Xt

i,j,k−1 , the target dynamics (3.2), and the known bounds [vt] of its
control input

Xt
i,j,k|k−1 =

{
f t (x,v) ∈ Xg | x ∈ Xt

i,j,k−1,v ∈
[
vt]} (4.24)

= f t (Xt
i,j,k−1,

[
vt]) ∩ Xg. (4.25)

Similarly, the predicted set Xt
i,k|k−1 of all possible locations of targets still to be identified is

Xt
i,k|k−1 = f t

(
Xt
i,k−1,

[
vt]) ∩ Xg. (4.26)

Obstacles being static, the predicted set Xo
i,k|k−1 is
Xo
i,k|k−1 = Xo

i,k−1. (4.27)
4.5.2 . Update using CVS measurements

The CVS of UAV i provides Ii,k, Li,k, Di,k, Dt
i,k, and Bt

i,k. From these CVS measurements, UAV i
has characterized several set estimates. Some of them are guaranteed to contain the location of an
identified target. Others are guaranteed to contain no target location. Using these set estimates, UAV i
updates the knowledge it has about the environment and the possible locations of both identified and
unidentified targets.

Using Proposition 17, the list of pixels labeled Obstacle Yo
i,k is used to characterize the set Xo

i,kthat is guaranteed to contain no target location. This set represents an inner-approximation of the
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rtos -ground neighborhoods of all the obstacles that are detected at time tk. Thus, the update of theregion around the obstacles that cannot contain any target location is,
Xo
i,k|k = Xo

i,k|k−1 ∪ Xo
i,k. (4.28)

Regarding the set Xt
i,k|k−1 which may contain unidentified targets, Propositions 14 and 17 showed

that Pgi,k
(
Yg
i,k

) and Xo
i,k (and therefore Xo

i,k|k) cannot contain the location of any target. In addition,
since Xt

i,k|k−1 should contain only the locations of potential unidentified target, thus, according to
Proposition 18, the set Xt,m

i,j,k for all targets j ∈ Dt
i,k cannot contain the location of an unidentified

target. Consequently, the set Xt
i,k|k−1 is updated to get

Xt
i,k|k = Xt

i,k|k−1 \

Pgi,k
(
Yg
i,k

)
∪ Xo

i,k|k ∪
⋃

ℓ∈Dt
i,k

Xt,m
i,ℓ,k

 , (4.29)

Then, for the target set estimateXt
i,j,k|k−1, we know that Pgi,k

(
Yg
i,k

)
∪Xo

i,k|k cannot contain any tar-get. Furthermore, according to Proposition 18, for any target j ∈ N t, its location cannot be contained
in the union of theXt,m

i,ℓ,k over all identified targets except itself, i.e., xt,g
j,k /∈

⋃
ℓ∈Dt

i,k\{j}
Xt,m
i,ℓ,k. Therefore,for each previously identified target j ∈ Lt

i,k−1 \Dt
i,k which is not identified at time tk, the set estimate

Xt
i,j,k|k−1 is updated to get

Xt
i,j,k|k = Xt

i,j,k|k−1 \

Pgi,k
(
Yg
i,k

)
∪ Xo

i,k|k ∪
⋃

ℓ∈Dt
i,k\{j}

Xt,m
i,ℓ,k

 . (4.30)

For each previously identified target j which has been identified at time tk, i.e., j ∈ Lt
i,k−1 ∩ Dt

i,k,then, Proposition 13 showed that Xt,m
i,j,k is guaranteed to contain x

t,g
j,k. Therefore, the update of the set

Xt
i,j,k|k−1 containing all of its predicted possible locations is

Xt
i,j,k|k =

(
Xt
i,j,k|k−1 ∩ Xt,m

i,j,k

)
\

Pgi,k
(
Yg
i,k

)
∪ Xo

i,k|k ∪
⋃

ℓ∈Dt
i,k\{j}

Xt,m
i,ℓ,k

 . (4.31)

In the case of a newly identified target j ∈ Dt
i,k \ Lt

i,k−1, its possible locations known to UAV i at time
tk are only known to belong to Xt

i,k|k−1. Consequently, UAV i characterizes the set estimate

Xt
i,j,k|k =

(
Xt
i,k|k−1 ∩ Xt,m

i,j,k

)
\

Pgi,k
(
Yg
i,k

)
∪ Xo

i,k|k ∪
⋃

ℓ∈Dt
i,k\{j}

Xt,m
i,ℓ,k

 . (4.32)

Finally, the list of indexes of identified targets becomes
Lt
i,k|k = Lt

i,k−1 ∪ Dt
i,k. (4.33)
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4.5.3 . Update after communication with neighbors
Once UAV i has updated its knowledge using the CVS measurements it has acquired at time tk, itexchanges information with its neighbors. This data exchange consists of broadcasting to the neigh-

bors the sets Xo
i,k|k, Xt

i,k|k, Xt
i,j,k|k for each j ∈ Lt

i,k|k, and the list Lt
i,k|k, while receiving theirs.Each UAV ℓ, with ℓ ∈ N u, broadcasts the list of indexes of identified targets Lt

ℓ,k|k, the rtos -groundneighborhood of obstaclesXo
ℓ,k|k, the set estimatesXt

ℓ,j,k|k, j ∈ Lt
ℓ,k|k and the set of possible locations

of targets still to be identifiedXt
ℓ,k|k. UAV i receives this information from its neighbors with indexes in

Ni,k. We recall that we always have i ∈ Ni,k. As indicated in Section 3.3.1, communication is assumed
perfect and without delay. More practical aspects related to the scheduling of communications are
detailed in Section 5.3.2.

Using the information received from its neighbors, UAV i updates the list of identified targets as
Lt
i,k =

⋃
ℓ∈Ni,k

Lt
ℓ,k|k, (4.34)

the rtos -neighborhood of obstacles as
Xo
i,k =

⋃
ℓ∈Ni,k

Xo
ℓ,k|k, (4.35)

and the set of possible locations of targets still to be identified as
Xt
i,k =

⋂
ℓ∈Ni,k

Xt
ℓ,k|k. (4.36)

Then, for each target j ∈ Lt
i,k, one has

Xt
i,j,k =


⋂

ℓ∈Ni,k

st j∈Lt
ℓ,k|k

Xt
ℓ,j,k|k

 ∩


⋂

ℓ∈Ni,k

st j /∈Lt
ℓ,k|k

Xt
ℓ,k|k

 . (4.37)

The expression (4.37) accounts for the estimateXt
ℓ,j,k|k of the location of target jmadeby the neighbor

UAVs which have already identified target j. It also accounts for the fact that xt
j,k ∈ Xt

ℓ,k|k for all
neighbors of UAV i which have not identified target j up to time tk.

4.6 . Update of the occupancy-elevation map

This section presents an approach to build a map from the CVS measurements available to UAV i.
Section 4.3.2 explains how to obtain an inner-approximation of the rtos -ground neighborhood of thedetected obstacles, i.e.,Xo

i,k ⊂ Ng
(
pg (Som) , rtos

). Nonetheless, the map is used to get a rough approxi-
mation of the location and the 3D shape of the obstacles within the RoI. Thus, Xo

i,k will not be usedsince it provides no information about the height of the obstacles. Additionally, themap is not used to
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estimate the location of the targets. Its main purpose is to improve the update of the UAV trajectories,
as presented in Chapter 5, by predicting HCVS

i,k+τ , with τ ≥ 1.
The proposed approach relies on an Occupancy-ElevationMap (OEM) (Souza and Goncalves, 2016;

Du et al., 2018) introduced in Section 4.6.1. Then, Section 4.6.2 explains the update of the OEM for each
UAV using the CVS measurements. Finally, Section 4.6.3 describes its update with the information
broadcast by the neighbors of each UAV.

4.6.1 . Definition of an occupancy-elevation map
The combination of a 2D-occupancy map with an elevation map results in a 2.5D representation

to map a 3D environment. With this approach, obstacles spread within the RoI are approximated by
a list of parallelepipeds, see Figure 4.5.

The OEM Mi,k managed by UAV i at time tk is a 2D grid composed of non-overlapping square
cells of same dimension. Each cell is uniquely identified with indexes η in the set NM. A cell η ∈ NM,
is characterized by the location of its center c (η) ∈ Xg, its status si,k (η), and its elevation hi,k (η). Thestatus si,k (η) takes its value in the set {U,O, E} where U stands for unexplored, O for occupied, and E
for empty. Then,Mi,k = {c (η) , si,k (η) , hi,k (η)}η∈NM . An unexplored cell represents an area where noinformation has been collected yet. An occupied cell represents an area where an obstacle has been
detected. An empty cell represents an area where there is no obstacle, i.e., only the ground has been
observed.

Initially,si,0 (η) = {U} and hi,0 (η) = 0 for all η ∈ NM.
Figure 4.5 provides an example of OEM where some cells are empty (in green), others contain an

obstacle with a measured height (in red), and the remaining cells are still unexplored (in blue).

Figure 4.5 – Representation of an occupancy-elevation mapMi,k. Green cells represent empty cells ;the portions of Xg covered by those cells are considered free of obstacles. Blue cells are unexploredcells ; no useful information related to the map topology is available. The red parallelepipeds areobtained from the location and size of the occupied cells (an obstacle has been detected on thosecells) and the measured height (related to those detected obstacles).

93



4.6.2 . Update using CVS information
Just before time tk,assume thatUAV ihas access to theOEMMi,k−1 = {c (η) , si,k−1 (η) , hi,k−1 (η)}η∈NM .Obstacles are static. Consequently, no prediction of the evolution of theOEM is required. Thus,hi,k|k (η) =

hi,k−1 (η) and si,k|k (η) = si,k−1 (η) for all η ∈ NM.
At time tk new measurements are provided by the CVS of UAV i. They are used to get an updated

versionMi,k|k of the OEM.
Detection and approximation of an obstacle

Consider a pixel labeled Obstacle (nr, nc) ∈ Yo
i,k. According to Proposition 15, then there exists

m ∈ N o such that Pi,k ((nr, nc)) ∩ Som ̸= ∅. Therefore, Pi,k ((nr, nc)) has a non-empty intersection
with at least one obstacle. Nonetheless, points belonging to this intersection, and consequently to
Som cannot be easily characterized. This is why only an approximation of the obstacles is provided
by the OEM. Then, to characterize the approximation of the shape of the obstacle m ∈ N o that has
illuminated pixel (nr, nc), we consider the following point of Pi,k ((nr, nc))

x (nr, nc) = xc
i,k +

Di,k (nr, nc)
1 + w

vc (nc, nr) , (4.38)
where vc (nc, nr) is the unit vector belonging to Vi,k (nr, nc) which defines the light-ray illuminating
the center of pixel (nr, nc). The point x (nr, nc) of Pi,k ((nr, nc)) is the farthest from xc

i,k that may have
illuminated the center of the pixel (nr, nc). Since the considered obstacles in our structured environ-ment are likely to be buildings, x (nr, nc) is likely to be inside an obstacle m ∈ N o. Consequently, if
the projection on Xg of x (nr, nc), for a (nr, nc) ∈ Yo

i,k, belongs to a cell that is not empty, then that
cell is updated as occupied. Moreover, we choose hmax (Pi,k ((nr, nc))) as the estimated height of the
detected obstacle, where hmax (P) returns the highest third coordinate value over all the elements
contained in P. Thus, one has for all (nr, nc) ∈ Yo

i,k

if ∃η ∈ NM such that pg (x (nr, nc)) ∈ cell (η) (4.39)
and si,k|k (η) ∈ {U,O} ,

then si,k|k (η) = {O} ,
and hi,k|k (η) = max

(
hi,k|k (η) ,hmax (Pi,k ((nr, nc)))

)
,

where cell (η) is the subset of Xg that is included in that cell. Figure 4.6 illustrates this update step.
Detection and approximation of the ground

For all pixels (nr, nc) labeled Ground, i.e., for all (nr, nc) ∈ Yg
i,k, the state of cells whose center

belongs to Pgi,k ((nr, nc)) is updated to empty and their height is set to 0. Consequently, one has for all
(nr, nc) ∈ Yg

i,k if c (n) ∈ Pgi,k ((nr, nc)) then si,k|k (η) = {E} , hi,k|k (η) = 0. (4.40)
Figure 4.6 illustrates this update.
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Figure 4.6 – Illustration of the update of the OEM. The blue pixels are labeled Obstacle. From thosepixels, UAV i characterizes their Pi,k (.) (in orange). The blue and purple dots are their x and hmax. Thegreen pixel is labeled Ground. The green set is the Pgi,k (.) related to this pixel and the green dot is the
center c (η) where the cell η is the only cell that has its center contained in Pgi,k

(
Yg
i,k

). Assuming that
each cell was previously unexplored, the fifth and sixth cells are updated as occupied with the correctelevation. The fourth cell is updated as empty.

4.6.3 . Update after communication with neighbors
UAV i also updates its OEM as follows.
A cell considered as empty by at least one of the UAVs is updated to empty. Thus, for all η ∈ NM,

if there exists ℓ ∈ Ni,k, such that sℓ,k|k (η) = {E} , then si,k (η) = {E} and hi,k (η) = 0.
After this update, for a cell that is not empty, if that cell is considered occupied by at least one of

the UAVs, then it is updated to occupied and the height is set to the maximum observed height. Thus,
for all η ∈ NM, such that there does not exist any ℓ ∈ Ni,k with sℓ,k|k (η) = {E}, but such that there
exists ℓ′ ∈ Ni,k with sℓ′,k|k (η) = {O}, then si,k (η) = {O} and hi,k (η) = maxℓ∈Ni,k

(
hℓ,k|k (η)

).
4.6.4 . Approximation of HCVS

i,k using the OEM
This section presents an approach to approximate HCVS

i,k by using the OEM.
At time tk, the OEM maintained by UAV i can be used to define the set of boxes{

BM
i,k (η) | si,k (η) = {O} , η ∈ NM} . (4.41)

This set is an approximation of the shape of all obstacles that have been detected up to time tk. Foreach BM
i,k (η), using the approach developed in (Reboul et al., 2019), UAV i, with state xui , is able to
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characterize a set HOEM
i,k (xui , η) ⊂ Xg representing the portion of the ground occluded by BM

i,k (η), seeFigure 4.7.

Figure 4.7 – Illustration of the portion of the ground occluded by an obstacle approximated by the
red box BM

i,k (η). The UAV location is represented by the blue star, the set F
(
xui,k
)
∩Xg is delimited in

black, and the set HOEM
i,k

(
xui,k, η

) is delimited in purple. Thus, the portion of F(xui,k) that is occluded
by BM

i,k (η) (the set delimited in green) is the intersection between HOEM
i,k

(
xui,k, η

) and F
(
xui,k
). Figure

taken from (Reboul et al., 2019).
To characterize HOEM

i,k (xui , η) for a UAV with state xui , one has to account for the locations of the
optical centerxc

i of the camera and of the 8 vertices of the boxBM
i,k (η). Since the boxBM

i,k (η) is convex,the portion of the ground hidden by that box is convex too. Then, we evaluate the convex hull of the
intersection of Xg with the 8 lines passing through xc

i and one of the 8 vertices of BM
i,k (η).Then the portion of the ground occluded by all boxes within (4.41) is

HOEM
i,k (xui ) =

⋃
η∈NM,si,k(η)={O}

HOEM
i,k (xui , η) , (4.42)

and the portion of F (xui ) that is hidden by the obstacles approximated by the OEM is HOEM
i,k (xui ) ∩

F (xui ).Figure 4.27 in Section 4.7 illustrates the difference between HOEM
i,k

(
xui,k
)
∩ F

(
xui,k
) and HCVS

i,k .

4.7 . Simulation

This chapter presents a set-membership estimator that exploits CVS measurements to characte-
rize and update a set estimate containing the location of each target that has been identified. This
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estimator is composed of the algorithms that are required to characterize the set estimates Xt,m
i,j,k,

Pgi,k
(
Yg
i,k

), Xo
i,k, and Xt,m

i,j,k from the CVS measurements available at time tk. Sections 4.2 and 4.3 pro-
vide an explanation of how the CVS measurements are exploited to get these set estimates, and
Appendix A.2 details how they are characterized. Then, these set estimates are used to update the
knowledge UAV i has before time tk regarding the potential locations of the identified and unidenti-fied targets, i.e., Xt

i,j,k−1, with j ∈ Lt
i,k−1, and Xt

i,k−1. These set estimates are also used to update the
knowledge UAV i has before time tk regarding the environment, i.e., Xo

i,k−1. This update is explainedin Section 4.5.
This section presents some simulation results regarding the performance of the proposed target

location estimator. Only oneUAV is considered and it only exploits the CVSmeasurements available at
one time instant to estimate the possible locations of the targets and update its previous knowledge.
Consequently, to evaluate the performance of the proposed estimator, we consider that Lt

i,k−1 = ∅,
andXt

i,k−1 = Xg. The tracking of the targets and, thus, the capacity of theUAVs tomaintain an accurate
estimation of their location is studied in Chapter 5.

Simulation results have been obtained using Webots (Webots, ) to generate the targets, the CVS
embedded on the UAV, as well as the measurements it collects. Webots then sends the CVS measu-
rements to MATLAB where the code has been implemented.

4.7.1 . Simulation conditions and metrics

The targets are cars with the following dimensions 4.6m×1.8m×1.5m. The cylinderCt containing
the shape of the cars is chosen with a radius rt = 2.5m, and a height ht = 1.5m.

A single UAV is placed within the RoI. It is equipped with a camera producing images that are
subsampled to get an image of sizeNr ×Nc = 360× 480 pixels in order to reduce the computational
time. The camera has an aperture angle of π/4 rad, and is fixed in the UAV frame. Therefore, the
rotation matrix is

M
Fc

i

Fb
i

=

0 −1 0
0 0 −1
1 0 0

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 , (4.43)

where θ = π/6 is the orientation of the camera in the UAV body frame.
A depth map is provided by the range finder of Webots with the same resolution as the camera.

Its maximal measurement range is set to dmax = 300m. The bounds of the noise w, appearing in
the acquisition of Di (nr, nc) from D0

i (nr, nc) in Section 3.5.2, i.e., Di (nr, nc) = D0
i (nr, nc) (1 + w)

are taken as [w,w] = [−0.01, 0.01]. For example, if D0
i (nr, nc) = 200m, then the depth measure-

ment Di (nr, nc) is obtained by selecting w ∈ [w,w] = [−0.01, 0.01] uniformly at random, to get, for
example, Di (nr, nc) = 201 m. Then, using (3.35), one gets [Di] (nr, nc) = [199.01m, 203.03m]. The
pixel classification and target detection-identification is done by Webots.

Figure 4.8 shows an example of CVS information provided to the UAV.
Most of the outputs provided by the target location estimator are set estimates. Consider that a set

estimate X ⊂ R2 represents the knowledge a UAV has about the location of a target. The uncertainty
regarding its estimated location is measured by the area ϕ (X) ofX. A more intuitive evaluation of the
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Image Segmentation Depth-Map

Figure 4.8 – CVS information provided to a UAV by the sensors simulated by Webots. On the left : theimage Ii with two bounding boxes. At the center : the array of pixel labels Liwith two bounding boxes(Target-labeled pixels in green, Obstacle-labeled pixels in blue, Ground-labeled pixels in brown, and
Unknown-labeled pixels in black). On the right : the depth mapDi.

estimation accuracy of a target location may be obtained by the radius
ϕeR (X) =

√
ϕ (X)
π

, (4.44)
of a disc with an area equal to ϕ (X). In addition, if c (X) represents the barycenter of X, then the
distance between x

t,g
j and c

(
Xt
i,j

), i.e.,
ϕc (Xt

i,j

)
=
∥∥∥c (Xt

i,j

)
− x

t,g
j

∥∥∥ , (4.45)
represents an additional metric to evaluate the estimation uncertainty of the location x

t,g
j of target j

using the set estimate Xt
i,j .The following simulations are performed at a single time instant while assuming no prior know-

ledge regarding the environment and the targets, i.e., the obstacles and the targets are detected and
identified for the first time.

4.7.2 . Location estimation of a fully-visible target
First, we consider the following setup. A UAV is placed at the location (0, 0, 50)T. Its attitude is

(0, 0, 0)T. Then, five targets are placed in front of the UAV. The location of these targets are : (60, 0, 0)T,
(90, 0, 0)T, (120, 0, 0)T, (150, 0, 0)T, and (180, 0, 0)T. Figure 4.9 illustrates some CVS measurements that
UAV i can acquire with this setup. The five targets are identified and the pink rectangle is their as-
sociated bounding box [Y t

i,j

]. No obstacle is considered. Additionally, for the sake of simplicity, we
consider that the targets are sufficiently far apart to avoid characterizing Xt,m

i,j , with j = 1, . . . , 5. The
usefulness of Xt,m

i,j is considered in Section 4.7.3.
Figure 4.10 illustrates the set estimates obtained considering the setuppresented in Figure 4.9. The

black dots in each subfigure represent the location of the targets. The blue set represents Pgi (Yg
i

), i.e.,
the part ofXg containing no target location. It does not contain any black dots. The sets delimited by a
red border are the projection on the ground pg

(
Pti,j
) of Pti,j , i.e., a subset of X0 that has a non-empty

intersection with the shape of target j, for each target. Since the UAV is able to observe the sunroof of
the cars, pg

(
Pti,j
) contains the location of its associated target. Nonetheless, according to Corollary 11,
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Image Segmentation

Figure 4.9 – Illustration of some of the CVSmeasurements that a UAV can acquire in a situationwith noobstacles. The UAV location and attitude is (0, 0, 50, 0, 0, 0)T. The location of the targets is : (60, 0, 0)T,
(90, 0, 0)T, (120, 0, 0)T, (150, 0, 0)T, and (180, 0, 0)T.

Pti,j is only known to intersect the target shape. Therefore, there is no reason that pg
(
Pti,j
) always

contains xt,g
j . The only set that has this property is Xt,m

i,j represented by the sets delimited by a green
border.

Moreover, as Xt,m
i,j is proved to contain x

t,g
j and Pgi

(
Yg
i

) is proved to not contain x
t,g
j , with j =

1, . . . , 5, the part Xt,m
i,j ∩ Pgi

(
Yg
i

) of Xt,m
i,j can be removed because it does not contain x

t,g
j,k, see the

update rule (4.32) in Section 4.5.2.
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Figure 4.10 – Representation of the set estimates Pgi (Yg
i

) (in blue), pg (Pti,j) (in red), andXt,m
i,j (in green)

obtained after the processing of the CVS measurements with the set-membership estimator. Theblack dots are the different target locations.
Since it is the first time these five targets are identified, the set estimate containing their possible

locations is computed using (4.32). Additionally, there is no obstacles and we assumed that Xt
i,k−1 =
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Xg. Therefore, in this case, (4.32) becomes
Xt
i,j =

(
Xg ∩ Xt,m

i,j

)
\ Pgi

(
Yg
i

)
, (4.46)

= Xt,m
i,j ∩

(
Xg \ Pgi

(
Yg
i

))
. (4.47)

One can remark that Xg \ Pgi
(
Yg
i

) are the white sets shown in Figure 4.10.
Figure 4.11 compares ϕeR (Xt,m

i,j

) (in green), and ϕeR (Xt
i,j

) (in black), and ϕc (Xt
i,j

) (in red) obtai-
ned for these five targets. The results have been averaged over 100 independent simulations where
only the measurement noise associated to the evaluation of the depth map changes. As illustrated
in Figures 4.10 and 4.11, the closer the target is to the UAV, the better the accuracy is. This is because,
since the UAV has a better point of view for these close targets, a large portion of Xt,m

i,j is overlapped
by Pgi (Yg

i

).
Regarding ϕeR (Xt

i,j

), one can remark that the standard deviation increases for targets located
more than 130 m away from the UAV. As illustrated with the standard deviation of ϕeR (Xt,m

i,j

), the
measurement noise associated to the evaluation of the depth map affects the characterization of
Xt,m
i,j . This is expected since Pi ((nr, nc)) relies on [Di] (nr, nc), with (nr, nc) ∈

[
Y t
i,j

]
∩Y t

i , and is required
to get Xt,m

i,j . Nevertheless, the characterization of Pgi (Yg
i

) does not rely on the depth map. Pgi (Yg
i

) is
the same for each of the 100 simulations, but Xt,m

i,j varies. Consequently, with (4.46) and Figure 4.10,
one can see that for any small variation of the size of Xt,m

i,j , the set estimate Xt
i,j obtained for the

targets that are located at 78 m and 102 m from the UAV will not change. The reason is because(
Xg \ Pgi

(
Yg
i

))
∩ Pgi

(
Y t
i,j

), where Pgi
(
Y t
i,j

) represents the portion of Xg that is masked by target j,
is included in Xt,m

i,j . In fact, some Unknown pixels have to be considered for the characterization of
Pgi
(
Y t
i,j

), but no notation is introduced for them. Nevertheless, a small variation of the size of Xt,m
i,jfor the targets located more than 130m away from the UAV implies a small variation of Xt

i,j because(
Xg \ Pgi

(
Yg
i

))
∩Pgi

(
Y t
i,j

) is no longer included inXt,m
i,j . The setsPgi

(
Y t
i,j

) are represented by thewhite
set in each subfigure of Figure 4.10.

Moreover, according to ϕc, the error associated with the point estimate c
(
Xt
i,j

) is less than two
meters. Additionally, the curve of ϕc (Xt

i,j

) is rising between 78 m and 130 m, i.e., c(Xt
i,j

) is get-
ting away from x

t,g
j , and stagnates afterward. The reason is, between 78 m and 130 m, we have that(

Xg \ Pgi
(
Yg
i

))
∩ Pgi

(
Y t
i,j

) is included in Xt,m
i,j . Thus Xt

i,j is the portion of the ground that is hidden bythe target, i.e., its shadow, and in our case, this shadow of the target is not under but behind the tar-
get, see the white sets in Figure 4.10. Moreover, the further the target is from the UAV, the wider the
shadow is. Consequently, c(Xt

i,j

) is getting away from x
t,g
j . Nevertheless, between 130m and 186m,

we no longer have (Xg \ Pgi
(
Yg
i

))
∩ Pgi

(
Y t
i,j

) included in Xt,m
i,j . Thus, Xt

i,j no longer grows behind the
target with its shadow along the x axis. Consequently, ϕc (Xt

i,j

) stagnates.
In Figure 4.12, the set estimates Xt

i,j are represented in yellow and the point estimates c(Xt
i,j

)
are represented by a red dot. The circle of center c(Xt

i,j

) and radius ϕeR (Xt
i,j,k

) (in red) provides a
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Figure 4.11 – Mean value and standard deviation over 100 simulations of ϕeR (Xt,m
i,j

) (in green),
ϕeR

(
Xt
i,j

) (in black), and ϕc (Xt
i,j

) (in red).
good approximation of Xt

i,j and of the associated estimation uncertainty.
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Figure 4.12 – Representation of the set estimates Pgi (Yg
i

) (in blue), Xt,m
i,j (in green), and Xt

i,j (in yellow).
The black dots represent the different target locations. The red dots correspond to c

(
Xt
i,j

) and the
circle of center c(Xt

i,j

) and radius ϕeR (Xt
i,j

) is in red.
Figure 4.13 compares the performance of the estimator for different values of the radius rt of the

cylinder Ct. Set apart the vertical translation, the evolution of the ϕeR (Xt,m
i,j

) (the green curves) are
almost the same. A green curve only differs from another one due to a translation that is seemingly
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equal to the difference of rt between the two green curves. Consequently, the larger rt is, i.e., the
larger the uncertainty about the target shape is, the larger the size of the set Xt,m

i,j will be. Nonethe-
less, the value of rt only impacts the size of Xt,m

i,j but not the size of Pgi (Yg
i

). Therefore, as shown by
the solid curves (black curves), most of the additional uncertainty of the estimated target location is
compensated (the black curves are almost identical). This compensation of the additional uncertainty
related to a large value of rt comes from the capacity of eliminating the portions of Xt,m

i,j that cannot
contain the location of the target, i.e., Xt,m

i,j ∩ Pgi,k
(
Yg
i

).
Regarding ϕeR (Xt

i,j

) and ϕc (Xt
i,j

), the larger rt becomes, the more probable Xt,m
i,j contains the

set (Xg \ Pgi
(
Yg
i

))
∩ Pgi

(
Y t
i,j

), as illustrated with ϕeR (Xt,m
i,j

). This is the reason why the standard de-
viation of ϕeR (Xt

i,j

) increases later, and why the distance from the UAV at which ϕc (Xt
i,j

) stagnates
is greater.
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Figure 4.13 – Mean value with standard deviation over 100 simulations of ϕeR (Xt,m
i,j

) (in green),
ϕeR

(
Xt
i,j

) (in black), and ϕc (Xt
i,j

) (in red). The left subfigure is for rt = 2.5 m. The middle subfigure
is for rt = 3m. The right subfigure is for rt = 4m.

The impact on themeasurement noise associated to the depthmap is now analyzed. We consider
three bounded sets [w,w] for that noise : [w,w] = [−0.01, 0.01], [w,w] = [−0.05, 0.05], and [w,w] =

[−0.1, 0.1]. Figure 4.14 compares the different metrics that are obtained for each of these bounded
sets. As expected, the uncertainty regarding Xt,m

i,j , i.e., ϕeR
(
Xt,m
i,j

), increases when we considered a
larger bounded set for [w,w]. Actually, the larger [w,w] is, the larger Pi ((nr, nc)) is for any (nr, nc) ∈[
Y t
i,j

]
∩ Y t

i . Thus, Pti,j is larger which leads to have a larger Xt,m
i,j .

Nonetheless, and as in Figure 4.13, the value of [w,w] only impacts the size of Xt,m
i,j but not the size

of Pgi (Yg
i

). Therefore, most of the additional uncertainty of the estimated target location is compen-
sated by Pgi (Yg

i

). Consequently, ϕeR (Xt
i,j

) and ϕc (Xt
i,j

) are almost unaffected by the measurement
noise associated to the depth map.
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Figure 4.14 – Mean value with standard deviation over 100 simulations of ϕeR (Xt,m
i,j

) (in green),
ϕeR

(
Xt
i,j

) (in black), and ϕc (Xt
i,j

) (in red). The left subfigure is for [w,w] = [−0.01, 0.01]. The middle
subfigure is for [w,w] = [−0.05, 0.05]. The right subfigure is for [w,w] = [−0.1, 0.1].

The impact on the estimation uncertainty of the camera resolution is now analyzed, considering
a camera acquiring images ofNr×Nc = 360×480 pixels and a camera with a resolution ofNr×Nc =
720 × 960 pixels. Figure 4.15 displays the obtained CVS measurements with a camera of resolution
720 × 960 and Figure 4.16 shows the set estimates obtained with that camera. Figure 4.17 compares
the different metrics obtained with the camera of Nr × Nc = 360 × 480 pixels (in blue) and that of
Nr ×Nc = 720× 960 pixels (in green).

Comparing ϕeR (Xt,m
i,j

) (dashed curves) for the two cameras, one observes that a larger resolution
decreases slightly the estimation uncertainty. This is also true for ϕeR (Xt

i,j

) . Besides, since there are
more pixels labeled Ground or Target, the characterization of Pgi (Yg

i

) is more accurate to the ground
truth and Xt,m

i,j is likely to be larger. Consequently, it is more likely to have (Xg \ Pgi
(
Yg
i

))
∩ Pgi

(
Y t
i,j

)
included in Xt,m

i,j . That explains the difference between the two curves associated to ϕc
(
Xt
i,j

).
4.7.3 . Exploiting the minimum distance between targets

A problem with target localization is that, when a target is identified, the UAV gets no information
of what is behind the identified target. Therefore, without Assumption (3.11), the update of Xt

i,k−1,according to (4.29), is
Xt
i,k = Xg \ Pgi,k

(
Yg
i,k

)
. (4.48)

Consequently, during the update ofXt
i,k−1, the portion ofXt

i,k|k−1 (which is equal toXg in (4.48)) that is
hidden by a target, i.e.,Xt

i,k|k−1∩Pgi
(
Y t
i,j

), cannot be removed using Pgi,k
(
Yg
i,k

). Figure 4.18 illustrates
this phenomenon where Xt

i,k ∩ Pgi
(
Y t
i,j

) are represented by yellow sets.
To address this problem, we introduce in Section 3.2.1 an assumption regarding the minimum
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Image Segmentation

Figure 4.15 – Illustration of CVS measurements with a camera of resolutionNr×Nc = 720×960 pixels
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Figure 4.16 – Representation of the set estimates Pgi (Yg
i

) (in blue), pg (Pti,j) (in red), andXt,m
i,j (in green)

that are obtained from themeasurements provided by the embedded CVSwhen the camera providesimages of resolution Nr ×Nc = 720× 960 pixels. The black dots are the different target locations.

safety distance between two targets. This hypothesis has been exploited in Proposition 18 to define a
set Xt,m

i,j that, once a target j has been identified, does not contain any other target locations except
the location of that identified target. This section evaluates the impact of this assumption.

Consider rtts = 6m. This distance represents theminimum distance separating the location of two
vehicles, i.e., xt,g

j,k and x
t,g
ℓ,k with j ∈ N t and ℓ ∈ N t \ {j}. Therefore, by accounting for the dimensions

of the considered targets, i.e., 4.6m× 1.8m, it is as if the vehicles have to maintain at least a distance
between 1.4 m (if they are face to face) and 4.2 m (if they are side by side) between their chassis.
Figure 4.18 shows Pgi,k (Yg

i

) (in blue),Xt
i,k∩P

g
i,k

(
Y t
i,j,k

) (in yellow), and the set estimateXt,m
i,j,k (in green),

that does not contain any target location other than x
t,g
j,k. The set Xt,m

i,j,k (in green) can be used to
remove a portion of the set Xt

i,k (in yellow), as illustrated in Figure 4.18.
To evaluate the percentage of size reduction of the setXt

i,k ∩Pgi,k
(
Y t
i,j,k

) usingXt,m
i,j,k, consider the
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Figure 4.17 – Mean value and standard deviation over 100 simulations of ϕeR (Xt,m
i,j

) (dashed lines -
curves at the top of the figure), ϕeR (Xt

i,j

) (solid lines - curves in themiddle of the figure), and ϕc (Xt
i,j

)
(broken lines - curves at the bottom of the figure). The green curves represent the results obtainedwith a camera of resolutionNr×Nc = 720×960 pixels ; the blue curves represent the results obtainedwith a camera of resolution Nr ×Nc = 360× 480 pixels.
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Figure 4.18 – Representation of the set estimates Pgi,k
(
Yg
i,k

) (in blue), Xt
i,k ∩ Pgi,k

(
Y t
i,j,k

) (in yellow),
and Xt,m

i,j,k (in green). The black dots are the different target locations. Here, rtts = 6m

metric
Φ∆ (X1,X2) = 100ϕ (X1 ∩ X2) /ϕ (X1) (4.49)

to evaluate how much X2 overlaps X1.
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Figure 4.19 showsΦ∆
(
Xt,m
i,j,k,X

t
i,k ∩ Pgi,k

(
Y t
i,j,k

)) for different values of rtts . When rtts = 8m, the set
Xt,m
i,j,k entirely coversXt

i,k∩Pgi,k
(
Y t
i,j,k

) for targets less than 130maway from the UAV. Thus, according
to Proposition 18, Xt

i,k ∩ Pgi,k
(
Y t
i,j,k

) is proved to contain no target. Regarding the other values of rttsthat have been considered for the simulation, one can conclude that Assumption 3.11 can be used to
prove that most of, if not all, the portion of Xt

i,k that is hidden behind a target, i.e., Xt
i,k ∩ Pgi,k

(
Y t
i,j,k

),
can be safely removed.
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Figure 4.19 – Mean value with standard deviation over 100 simulations of
Φ∆
(
Xt,m
i,j,k,X

t
i,k ∩ Pgi,k

(
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i,j,k

)) for different values of rtts .
4.7.4 . Target localization in the presence of obstacles

This section presents some results for the localization of a target in the presence of obstacles.
Figure 4.20 shows the identification of a target that appears close to an obstacle in the image

acquired by the camera of the UAV. This is clear in the bottom-left and bottom-right subfigures, where
the pixels labeled Target (in green) are close to those labeled Obstacle (in blue).

Figure 4.21 shows that because of an obstacle, only a small portion of Xg can be proved to be
target-free using Proposition 14 (the white set in Figure 4.21). To avoid overloading the figure, Xt,m

i,j,k isnot represented here.
In Figure 4.20, the target is fully visible : no part of it is hidden behind an obstacle. We assume

that it is the first time this target is identified. Consequently, the set Xt
i,j,k containing all of its possiblelocations must be characterized using (4.32). Nonetheless, as the target appears to be close to an

obstacle,Xt,m
i,j,k (the set with a pink border) overlaps with the portion ofXt

i,k|k−1\P
g
i,k

(
Yg
i,k

) (the yellow
set) that is hidden behind the obstacle. Consequently, even though the target is fully visible, some of
its possible locations contained in Xt

i,j,k are located behind the obstacle.
4.7.5 . Inner approximation of the rtos -ground neighborhood of an obstacle
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Figure 4.20 – Illustration of the CVS measurements when a target is located close to an obstacle (inthe image).
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Figure 4.21 – Estimation of the location of a target which seems to be close to an obstacle (c.f. Fi-
gure 4.20). The red dot represents the UAV location. Xt

i,k is in yellow, Xt
i,j,k is in green, and Xt,m

i,j,k isrepresented by the set with the pink border. The set Xo
i,k representing an inner approximation of

rtos -ground neighborhood of an obstacle is in gray.

In Section 3.2.1, assumption (3.8) states that the minimum distance between the projection on the
ground of the shape of an obstacle and the location of a target should be at least rtos . This distanceis interpreted as a safety distance between a target and an obstacle to avoid collisions. Using (3.8),
Proposition 17 has introduced the setXo

i which is the inner-approximation of the rtos -ground neighbo-rhood of all obstacles in the environment. In Proposition 17, Xo
i has been shown to target-free. Thus,as indicated by the equations in Section 4.5.2, this set can be used by a UAV to gain new knowledge

about the environment in order to improve the accuracy of the target location estimator. This section
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shows the capacity of a UAV located at (0, 0, 50) to characterize Xo
i from CVS measurements reported

in Figure 4.22.
The considered environment contains towers and houses, as well as a long synthetic building in

light blue used as a test bench. Different values for rtos are considered for the characterization of Xo
i ,see Figure 4.23.
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Figure 4.22 – Illustration of the CVS measurements when numerous obstacles are located within theFoV of the UAV.
Figure 4.23 shows the setsXo

i that are obtainedusing Proposition 17 and thepixels labeledObstacleillustrated in Figure 4.22 for four values of rtos : 2m (in green), 2.5m (in red), 3m (in blue), and 5m (in
purple).

For each rtos , the UAV is able to characterize Xo
i . One can remark that, when rtos is large, the UAV

is unable to characterize an inner approximation of the rtos -ground neighborhood of the obstacles
that are far away from it. This is illustrated Figure 4.23 (right) where the green and red sets start to
disappear. Nonetheless, since the obstacles are statics, the UAV does not need to characterize an
inner-approximation of the rtos -ground neighborhood of far-away obstacles at each time step. During
target search, as illustrated in Figure 5.13 of Chapter 5, the UAVs will explore the RoI in search for a tar-
get. Consequently, they will, at some point, get closer to the obstacles that were far away at a previous
time instant, and be able to characterize an inner approximation of the rtos -ground neighborhood ofthose obstacles.

4.7.6 . OEM construction
As detailed in Section 4.6, the CVSmeasurements are also exploited to update a 2.5Dmap in order

to get an approximation of the location, height, and shape of the obstacles located in the RoI. To show
how the OEM is updated from the CVS measurements available at a given time instant, we consider
a situation where a UAV is currently observing some buildings and houses. Figure 4.24 shows the
environment that is considered for this simulation. Figure 4.25 illustrates the CVSmeasurements that
are available to the UAV.

Figure 4.26 illustrates the OEM Mi,k = {c (η) , si,k (η) , hi,k (η)}η∈NM while assuming that at time
tk−1 we had si,k−1 (η) = {U}, i.e., the cell η is Unexplored, and hi,k−1 (η) = 0 for all cells η ∈ NM.
The resolution of the OEM is 5 m. The CVS measurements related to the detected obstacles and the
CVS measurements related to the ground are exploited by the UAV to find and update some of the
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Figure 4.23 – Illustration of Xo
i obtained for different values of rtos . The red dot represents the UAVlocation and the set with the black border is F (xui ) ∩ Xg.

Figure 4.24 – Example of a scene simulated onWebots where several buildings and houses are locatedwithin the RoI
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Figure 4.25 – CVS measurements available to the UAV when it observes the scene in Figure 4.24. TheUAV state (location and attitude) is (0, 0, 50, 0, 0, 0)T.

cells ofMi,k using (4.39) and (4.40). The cells whose status is updated from Unexplored to Empty are
green in Figure 4.26. Similarly, the cells whose status is updated from Unexplored to Occupied are
red. The height of each parallelepiped is the maximum height measured for an obstacle that could
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be associated with one of the occupied cells. Finally, blue squares represent the cells that are still
Unexplored.

The UAV is able to observe the roof of the blue building on its left, see Figure 4.25. Consequently,
it is able to get a better estimation of its height and shape than with the two obstacles in the back-
ground for which the UAV does only see one face without seeing their roof. The blue building on
the left-hand side is represented in Figure 4.26 by the block composed of 16 parallelepipeds around
the XY -coordinates (100, 50). The buildings in the background are represented by the series of 10
parallelepipeds that are around theXY -coordinates (150,−50).

Figure 4.26 – Representation of an OEM after processing the CVS measurements reported in Fi-gure 4.25. The blue squares represent the Unexplored cells. The green squares represent the Emptycells. The red parallelepipeds result from the Occupied cells and the registered height. The UAV loca-tion is represented by the black dot with a pink outline.
With theOEM reported in Figure 4.26, one can compareHCVS

i , i.e., the approximation of the portion
of the ground hidden by the obstacles, targets, or unknown objects, with HOEM

i (xui ) ∩ F (xui ), i.e., theportion of the ground hidden by the obstacles approximated by the OEM. To evaluate the similarity
between HCVS

i and HOEM
i (xui ) ∩ F (xui ), we consider the metric

IoU (A,B) =
ϕ (A ∩ B)
ϕ (A ∪ B)

, (4.50)
that computes the ratio between the area of the intersection between two sets and the area of their
union. The better B approximates A, the closer IoU (A,B) is to 1.

Figure 4.27 (right) illustrates HCVS
i (in blue) and HOEM

i (xui ) ∩ F (xui ) (in red). Figure 4.27 (left) showsthe black boxes used to approximate the shape and the location of the obstacles that are currently
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under observation, and theHOEM
i (xui )∩F (xui ) that is obtained with these boxes. In Figure 4.27 (right),

HCVS
i overlays HOEM

i (xui ) ∩ F (xui ). By evaluating IoU (HCVS
i ,HOEM

i (xui ) ∩ F (xui )
), we obtain a similarity

between HCVS
i and HOEM

i (xui ) ∩ F (xui ) of 91.7 %. Consequently, from this one-time measurement, an
OEM of resolution 5m can be used to reliably approximate HCVS

i .

Figure 4.27 – Illustration of HOEM
i (xui ) ∩ F (xui ) (in red) and HCVS

i (in blue) when the OEM is built withonly the CVS measurements acquired at time tk. In the left subfigure, the black boxes represent theset of boxes (4.41), and the red set isHOEM
i (xui ), where xui is the black dot. In the right subfigure,HCVS

ioverlaid HOEM
i (xui ) ∩ F (xui ).

4.8 . Conclusion

This chapter presents the first (to the best of our knowledge) set-membership target location
estimator exploiting multiple measurements provided by a CVS. Compared to previous works, the
CVS in (Jaulin, 2009; Ehambram et al., 2022) consists of a sonar or a LiDAR. In (Kenmogne et al., 2019),
the CVS returns an image, and the pinhole model is used to model the camera, but no depth map or
labeled image is considered.

The main difficulty with the CVS is that it is difficult to obtain measurement models because the
CVS often involves deep learning algorithms. To address this problem, we introduced in Chapter 3
several assumptions to relate the CVS measurements (labeled pixels, depth map, bounding boxes
around identified targets) to the environment, the obstacles, and the targets. Under these assump-
tions, we propose several approaches to exploit the CVS measurements in order to solve a target
localization problem.

In this chapter, Section 4.2 presents how the measurements related to an identified target j can
be used to characterize a set estimate Xt,m

i,j,k that is guaranteed to contain the location of that target.
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This is only true if the hypotheses on the model associated with the range measurements, the pixel
labeling, the target identification, and the a priori knowledge the UAV has regarding the dimensions
of the target, i.e., (3.4), are satisfied. The simulation results in Figure 4.13 and Figure 4.14 show that
the larger the uncertainty on the target dimensions or on the depth-map noise, the more inaccu-
rate the set estimate Xt,m

i,j,k. To reduce the target location uncertainty of Xt,m
i,j,k, a UAV can exploit CVSmeasurements related to the ground or the obstacles as negative information in order to characte-

rize two set estimates, i.e., Pgi,k
(
Yg
i,k

) and Xo
i,k, that are guaranteed to contain no target location, see

Section 4.3. Then, Section 4.5.2 details how Xt,m
i,j,k can be combined with Pgi,k

(
Yg
i,k

) and Xo
i,k to get

a set estimate Xt
i,j,k. This set estimate is guaranteed to contain the true location of target j and, as

illustrated in Figure 4.14, the use of Pgi,k
(
Yg
i,k

) contributes to reduce the localization uncertainty. With
assumption (3.11) in Chapter 3 a UAV can also characterize another set estimate that is guaranteed to
contain no target location except one, but this assumption relies on a priori knownminimumdistance
between two targets that may not be always verified in practice. Overall, the performance of the tar-
get location estimator, according to the above simulations, is satisfactory. The point estimation error,
i.e., ϕc (Xt

i,j,k

), for a one-time observation, is about±1.5meter with a point estimate uncertainty, i.e.,
ϕeR

(
Xt
i,j,k

) that looks linear with the distance between the target and the UAV.
Section 4.4 presents how the CVSmeasurements that are not related to the ground can be exploi-

ted to approximate the portion of the ground that is masked by a target, an obstacle, or something
else. The set estimate HCVS

i,k that approximates this hidden ground can be used to approximate the
portion of the ground that is masked by the obstacles at time tk. Nonetheless, it is hard to use this setestimate to get some knowledge about the shape, the height, or the location of the obstacles. The set
estimate Xo

i,k, which approximates a neighborhood around the obstacles, can be used to get an ap-
proximation of the location of the detected obstacles, but their locations only. To get some knowledge
about the shape of the obstacles, we present in Section 4.6 an approach that relies on an OEM. The
OEM exploits the CVS measurements related to detected obstacles to update either the unexplored
or the occupied cells in order to represent locally the detected obstacles using parallelepipeds, see
Figure 4.26. The CVS measurements related to the ground are also exploited to characterize a region
without obstacles.

Chapter 5 will present a control strategy which allows to solve the CSAT problem in an unknown
environment. In this next chapter, each UAV embeds the target location estimator presented in Chap-
ter 4 to determine, from their location at time tk who and where are the targets that are identified
and where the unidentified targets may be. Then, after the update of the set estimates Xt

i,j,k, Xt
i,k,and Xo

i,k, using the prediction-correction approach detailed in Section 4.5.2, the UAVs cooperatively
update their trajectories to keep searching for new targets while maintaining an accurate estimation
of the location of identified targets. We propose to use the OEM to improve the trajectory update step
in this next chapter. Chapter 6 presents an adaptation of the estimator to account for an uncertain
UAV state.
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Chapter 5 - Trajectory design for target search and tracking

This chapter presents several strategies for iteratively designing the UAV trajectories, so that the
fleet can efficiently explore the Region of Interest (RoI) to search and track targets. As the RoI is clut-
tered with obstacles, the UAVs should fly toward areas where targets are more likely to be found.
The main difficulty is that the shapes and locations of those obstacles are a priori unknown and they
might occlude the Field of View (FoV) of the UAVs.

Each UAV runs a target location estimator to exploit CVS measurements to characterize and up-
date set estimates of the location of identified targets and sets that do not contain any target location,
see Chapter 4. This chapter shows how these sets are used to update the trajectory of each UAV. As
will be seen, the target search and tracking efficiency depends on the knowledge each UAV is able to
gain about its environment.

A distributed approach is considered to improve the robustness of the fleet against the loss of
one or several UAVs. The design could be made on each UAV independently of the other UAVs. Ne-
vertheless, to improve the exploration and target tracking efficiency of the fleet, each UAV may take
into account the updated trajectories of its neighbors to design its own trajectory. When the targets
outnumber the UAVs, a trade-off needs to be found between exploration to find new targets, and re-
capture and pursuit of previously identified targets to maintain accurate estimates of their locations.

The trajectory update that solves this trade-off is performed by an adaptation of a distributed
Model Predictive Control (MPC) approach introduced in (Ibenthal et al., 2023). Each UAV searches for
a sequence of control inputs that minimizes a criterion reflecting the goals to achieve. Using a model
of the UAV dynamics (3.13), the sequence of control inputs can be transformed into a sequence of
states representing a trajectory. The trajectory such a the considered criterion serves as a reference
and it is exploited by a low-level controller implemented in each UAV.

The estimator presented in Chapter 4 is used to estimate and update the possible locations of the
targets. Nevertheless, accounting for all sources of information provided by the CVSmay be complex.
Consequently, we first do not consider all hypotheses introduced in Chapter 3. Thus, some of the set
estimates presented in Chapter 4 cannot be characterized, which also affects the trajectory design.
Then,more hypotheses are considered andmore complex trajectory design strategies are introduced.
For example, one ignores that the targets must evolve within the RoI while keeping a minimal safety
distance with the obstacles, see Hypothesis (3.8) in Chapter 3. Consequently, the characterization of
an area free of targets around the detected obstacles is not possible, see Section 4.3.2 of Chapter 4.

Section 5.1 formulates the trajectory design problem. Then, Section 5.2 presents four different
strategies to update the trajectories of the UAVs. Section 5.3 addresses some practical issues related
to the implementation of the MPC approach. Finally, Section 5.4 evaluates the performance of the
presented strategies in a simulated urban-like environment.
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5.1 . Problem formulation

At time tk, UAV iuses the depthmapDi,k, the pixels labeled Target Y t
i,k, and a bounding box

[
Y t
i,j,k

]
associated to an identified target j to characterize, with Proposition 13, a set estimateXt,m

i,j,k that is gua-ranteed to contain the location of that target. Then, UAV i exploits the pixels labeled Ground Yg
i,k and

the Hypothesis (3.54) to characterize with Proposition 14 a set estimate Pgi,k
(
Yg
i,k

) that contains no
target location. Using pixels labeled Obstacles Yo

i,k, the depth map Di,k, and Hypothesis (3.8) (mini-
mum distance between targets and obstacles), UAV i is also able to characterize with Proposition 17
a region Xo

i,k around the detected obstacles that will never contain any target location. Additionally,
from Xt,m

i,j,k and using Hypothesis (3.11) (minimum distance between targets), UAV i can characterize
with Proposition 18 another set estimate Xt,m

i,j,k that cannot contain the location of any target except
the location of target j.

Once these set estimates have been characterized, UAV i can update its knowledge regarding
the environment and the possible location of the identified and unidentified targets. This update is
performed via a prediction-correction process that also exploits the information broadcast by the
neighbors of UAV i within communication range. The update is detailed in Section 4.5 of Chapter 4.
At the end of the prediction-correction process, UAV i has access, at time tk, to a set estimate Xt

i,j,kcontaining the possible locations of an identified target j ∈ Lt
i,k. These set estimates are gathered in

the list X t
i,k =

{
Xt
i,j,k

}
j∈Lt

i,k

. It has also access to a set estimate Xt
i,k containing all possible locations

of targets still to identify as well as a setXo
i,k representing the portion of the RoI that can never containa target location due to the presence of an obstacle.

From pixels that are not labeled Ground, UAV i can also characterize a set estimate HCVS
i,k . This setrepresents an approximation of the part of Xg that UAV i has been unable to observe at time tk dueto the presence of obstacles, targets, or unidentified elements in the acquired image, see Section 4.4

of Chapter 4. Finally, UAV i can exploit pixels labeled Ground or Obstacle to build and update an OEM
Mi,k that provides an approximate representation of the detected obstacles, see Section 4.6 of Chap-
ter 4. From the OEM, UAV i can estimate the part of the environment hidden by obstacles HOEM

i,k , see
Section 4.6.4.

Using part or all of this available knowledge, UAV i has to update its trajectory to explore the RoI
and find new targets while maintaining an accurate estimation of the location of already identified
targets. This update may account for the information broadcast by its neighbors Ni,k to design a
trajectory complementary to that of UAVs in Ni,k.A criterion is introduced to evaluate the efficiency of the designed trajectories. As in (Ibenthal et al.,
2023), the criterion is based on the area of the set estimates Xt

i,j,k, with j ∈ Lt
i,k, and Xt

i,k . The area
of the set Xt

i,j,k provides a measure of the localization uncertainty for target j ∈ Lt
i,k. The area of Xt

i,kdetermines the estimation uncertainty of the location of targets still to be identified.
Consequently, at time tk, the target location estimation uncertainty for UAV i is expressed as

Φ
(
X t
i,k,X

t
i,k

)
= ϕ

Xt
i,k ∪

⋃
j∈Lt

i,k

Xt
i,j,k

 , (5.1)
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where ϕ (X) is the area of the set X ⊂ R2. The target estimation uncertainty for the fleet of UAVs is
then the average of the target location estimation uncertainty for each UAV

Φk =
1

Nu
∑
i∈N u

Φ
(
X t
i,k,X

t
i,k

)
. (5.2)

The minimization of (5.2) leads to a trade-off between tracking already identified targets to maintain
an accurate estimation of their location (by reducing the size of Xt

i,j,k, j ∈ Lt
i,k), and exploring the

RoI to search for unidentified targets (to reduce the size of Xt
i,k). The transition between search and

tracking modes depends on the relative sizes of the sets Xt
i,j,k, j ∈ Lt

i,k and Xt
i,k.Depending on the computing power of the UAVs, it is possible that some of the aforementioned

set estimates cannot be characterized. This limitation affects simultaneously the target location es-
timator and the trajectory update. In Section 5.2 three situations are considered. In Section 5.2.1, we
assume that the UAVs do not have the time to process the pixels labeled Obstacles and, thus, Xo

i,k aswell as HCVS
i,k are not evaluated. In Section 5.2.2, we assume that the UAVs have the computing power

to characterize all the set estimates but are unable to build and update the OEM. This limitation is
not considered in Sections 5.2.3 (and 5.2.4). Thus, the most complex target location estimator and the
most complex trajectory design can be used to search and track the targets. Table 5.1 summarizes
which set estimates are assumed available during each of the proposed trajectory update strategies.

Sections Set estimates provided by the estimator Evaluation of
X t

i,k / Xt
i,k Pg

i,k

(
Yg

i,k

)
Xt,m

i,j,k Xo
i,k HCVS

i,k the OEMMi,k5.2.1 x x x - - -5.2.2 x x x x x -5.2.3 and 5.2.4 x x x x x x
Table 5.1 – Set estimates provided by the set-membership estimator presented in Chapter 4depending on the limitations that are considered in some of the sections of Chapter 5.

5.2 . Trajectory design for cooperative exploration

This section presents several variants of a cooperative trajectory design algorithm for the fleet
of UAVs. Each variant depends on the type of processed information, which impacts the required
computing resources for each UAV.

5.2.1 . Trajectory design ignoring the presence of obstacles
In this section, it is assumed that the UAVs are unable to maintain a map of the RoI. Moreover,

Hypothesis (3.8) related to the minimum distance between a target and an obstacle is not exploited.
Consequently, Xo

i,k is not evaluated and Xo
i,k = ∅.

With such a setup, the trajectory design strategy consists in driving the UAVs toward areas which
may contain targets, i.e., either Xt

i,k or Xt
ℓ,j,k with j ∈ Lt

ℓ,k, so as to minimize (5.2). This strategy is
simple but may be suboptimal in the presence of obstacles. Figure 5.1 illustrates such a situation
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where, starting from the red UAV location, three candidate future locations (in blue) are considered.
Without knowledge of the map, they would theoretically lead to the same reduction of the size ofXt

i,k(in yellow). In practice, the trajectory leading to the left yields a significantly reduced FoV due to the
gray obstacle.

Figure 5.1 – Illustration of the design of a trajectory to explore the set Xt
i,k (in yellow) when the UAV(in red) is not aware of the presence of an obstacle (in gray). The blue UAVs represent three possiblenext UAV locations.

Evaluation of the trajectory

At time tk−1, assume that UAV i has evaluated a trajectory over a prediction horizon of h ⩾ 1

time intervals x̂ui,k−1:h|k−1 =
(
x̂ui,k|k−1, . . . , x̂

u
i,k−1+h|k−1

). With the CVS measurements obtained at
time tk, UAV i updates its set estimates and its trajectory to explore the RoI more efficiently, by taking
the information acquired at time tk into account. This update is done by using a distributed MPC,
see (Christofides et al., 2013), implemented on UAV i. The MPC approach determines a sequence of
h control inputs ûi,k:h = (ûi,k, . . . , ûi,k+h−1) ∈ Uh that minimizes the predicted target localization
estimation uncertainty denoted Φk+h|k at time tk+h, i.e.,

ûi,k:h = arg min
ui,k:h

(
Φk+h|k

) (5.3)
with

Φk+h|k =
1

Nu
∑
ℓ∈N u

Φ
(
X t,P
ℓ,k+h|k,X

t,P
ℓ,k+h|k

)
, (5.4)
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and
Φ
(
X t,P
i,k+h|k,X

t,P
i,k+h|k

)
= ϕ

Xt,P
i,k+h|k ∪

⋃
j∈Lt,P

i,k+h|k

Xt,P
i,j,k+h|k

 . (5.5)

In (5.5),Lt,P
i,k+h|k is the list of target indexes that UAV i predicts to be identified at time tk+h knowing

Lt
i,k. The set estimate Xt,P

i,j,k+h|k contains all the predicted locations of the target j ∈ Lt,P
i,k+h|k at time

tk+h knowing Xt
i,j,k. The set Xt,P

i,k+h|k contains all the predicted locations of the targets still to identify
at time tk+h knowing Xt

i,k. The list X t,P
i,k+h|k gathers all the Xt,P

i,j,k+h|k. The evaluation of (5.5) is achievedwhile accounting for the trajectories broadcast by the other UAVs. Once ûi,k:h is available, an updated
trajectory x̂ui,k:h|k =

(
x̂ui,k+1|k, . . . , x̂

u
i,k+h|k

) for UAV i can be deduced using the dynamic model of the
UAV (3.13). The elements in the sequence of predicted states x̂ui,k:h|k are then used as desired state
vectors to a low-level controller of UAV i, responsible of tracking the desired trajectory x̂ui,k:h|k.UAV i, however, does not have access to all the terms in (5.4). At time tk, UAV i has only accessto its own knowledge and the information broadcast by its neighbors Ni,k. Thus, for all UAV ℓ with
ℓ ∈ N u \ Ni,k, i.e., the UAVs that are not within the communication range of UAV i, UAV i does not
know neither their actual location nor their updated trajectory. Consequently, UAV i cannot predict
with which UAVs it will be able to communicate in the future and what knowledge they will share.
Moreover, other limitations related to the evaluation of (5.5) must be considered. For instance, UAV i
is unable to predict precisely in which state it will observe again target j, and thus it is unable to
predict Xt,m

i,j,k+h introduced in (4.4). It is also unable to predict Pgi,k+h

(
Yg
i,k+h

), see (4.6). To address
these issues, we use the same approach as in (Ibenthal et al., 2021).

Consequently, at time tk, UAV i updates its trajectory by evaluating a sequence of control inputs
ûi,k:h ∈ Uh that accounts only for its own information by minimizing

J0
i (uk:h) = Φ

(
X t,P
i,k+h|k,X

t,P
i,k+h|k

)
, (5.6)

where Φ has been introduced in (5.1). For a candidate sequence of control inputs uk:h ∈ Uh, the
evaluation of J0

i (uk:h) requires an evaluation of Lt,P
i,k+h|k, Xt,P

i,k+h|k, and Xt,P
i,j,k+h|k, with j ∈ Lt,P

i,k+h|kusing the information available at time tk. This is detailed in the next section.
Prediction of estimates using UAV own information

This section describes the evaluation of Xt,P
i,j,k+h|k, for j ∈ Lt,P

i,k+h|k and Xt,P
i,k+h|k with a complexity

manageable in a MPC context.
First, with the known UAV dynamics introduced by (3.13), and for a sequence of control inputs

uk:h = (ui,k, . . . ,ui,k+h−1), one gets for any τ = 1, . . . , h

xui,k+τ |k = fu
(
xui,k+τ−1|k,uk+τ−1

)
, (5.7)

with xui,k|k = xui,k. Once xui,k+τ |k is available, the resulting FoV F
(
xui,k+τ |k

) can be evaluated using (3.21)
and (3.24).
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Then, to evaluate Xt,P
i,j,k+τ |k, for j ∈ Lt

i,k, and Xt,P
i,k+τ |k, for τ = 1, . . . , h, we do not account for any

potential observation of target j. Thus, as in (Ibenthal et al., 2021), we assume that Dt
i,k+τ = ∅, and,

according to (4.33), that Lt,P
i,k+τ |k = Lt

i,k for τ = 1, . . . , h. Moreover, we assume that the FoV during the
evolution of UAV i will not be limited by any obstacle, target, or unknown object, i.e.,

Pgi,k+τ |k

(
Yg
i,k+τ |k

)
= F

(
xui,k+τ |k

)
∩ Xg. (5.8)

To evaluateXt,P
i,j,k+τ |k for τ = 1, . . . , h, fromXt

i,j,k weuse an adaptation of the prediction-correctionprocess presented in Section 4.5 of Chapter 4. The prediction (4.24) is unchanged, but, since we as-
sume Dt

i,k+τ = ∅, Xo
i,k = ∅, and with the simplification (5.8), the correction (4.30) can be adapted to

evaluate iteratively Xt,P
i,j,k+τ |k, for τ = 1, . . . , h, as

Xt,P
i,j,k+τ |k =

(
f t
(
Xt,P
i,j,k+τ−1|k,

[
vt]) ∩ Xg

)
\
(
F
(
xui,k+τ |k

)
∩ Xg

)
. (5.9)

with Xt,P
i,j,k|k = Xt

i,j,k.
The same hypotheses are used to evaluate iteratively Xt,P

i,k+τ |k, τ = 1, . . . , h, from Xt
i,k as follows

Xt,P
i,k+τ |k =

(
f t
(
Xt,P
i,k+τ−1|k,

[
vt]) ∩ Xg

)
\
(
F
(
xui,k+τ |k

)
∩ Xg

)
, (5.10)

with Xt,P
i,k|k = Xt

i,k.
Remark 19. The evaluation of Xt,P

i,j,k+τ |k and Xt,P
i,k+τ |k using (5.9) and (5.10) are similar. Moreover, the cost

function (5.5) involves the union of these sets predicted at time tk+h. Consequently, introducing

XA
i,k = Xt

i,k ∪
⋃

j∈Lt
i,k

Xt
i,j,k, (5.11)

(5.9) or (5.10) can be directly applied to XA
i,k to perform an iterative evaluation of

XA,P
i,k+τ |k = Xt,P

i,k+τ |k ∪
⋃

j∈Lt
i,k

Xt,P
i,j,k+τ |k (5.12)

using

XA,P
i,k+τ |k =

(
f t
(
XA,P
i,k+τ−1|k,

[
vt
])

∩ Xg

)
\
(
F
(
xui,k+τ |k

)
∩ Xg

)
, (5.13)

with XA,P
i,k|k = XA

i,k|k.

Using information from neighbors

Assume that the neighbors of UAV iwith indexes in the setN i,k ⊂ Ni,k\{i} have already evaluatedtheir sequence of control inputs ûℓ,k:h, with ℓ ∈ N i,k and broadcast their sequence of states x̂uℓ,k:h|k.
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After communication, UAV i, during its own control design,may account for the areasF(xuℓ,k+τ |k

)
∩Xg

that will be explored by these neighboring UAVs.
Using the information provided by its neighbors inN i,k, UAV i can anticipate the part of the envi-ronment that will be observed by the other UAVs and evaluate XA,P

i,k+τ |k, for τ = 1, . . . , h, as
XA,P
i,k+τ |k =

(
f t
(
XA,P
i,k+τ−1|k,

[
vt]) ∩ Xg

)
\
((

F
(
xui,k+τ |k

)
∪
⋃

ℓ∈N i,k
F
(
x̂uℓ,k+τ |k

))
∩ Xg

)
, (5.14)

instead of (5.9) and (5.10).
More details related to the organization of communications and computations are provided in

Section 5.3.2.
First criterion

In some cases, it is not possible to determine a trajectory which minimizes (5.6). For instance,
once large parts of the environment have been explored, UAV imay be located too far from other set
estimates to predict that they will be explored in the future h time steps. To address this problem, the
following term can be added to (5.6)

J1a
i (uk:h) =d

(
c
(
F
(
xu,Pi,k+h|k

)
∩ Xg

)
,XA,P

i,k+h|k

) (5.15)
where c (X) is the barycenter of the set X. The idea is to drive the FoV of UAV i toward the closest
predicted set estimate.

Combining (5.6) and (5.15), the first considered strategy aims at minimizing the criterion
JSTR1i (uk:h) = J0

i (uk:h) + λJ1a
i (uk:h) . (5.16)

The parameter λ trades off the reduction of the size of the set estimates via J0
i (uk:h) and future

reductions via J1a
i (uk:h). This parameter can be taken as constant, as in (Ibenthal et al., 2021), or

variable as in (Li et al., 2024). For instance, until J0
i (uk:h) does not remain constant regardless of the

tested sequence, J1a
i (uk:h) can be disabled (and thus it is not computed). Otherwise, J1a

i (uk:h) isenabled in order to fly toward the closest set estimate.
This first strategy is an adaptation of the MPC proposed in (Ibenthal et al., 2021) to address a CSAT

problem with an unknown cluttered environment. The target location estimator in (Ibenthal et al.,
2021) does not consider CVS measurements related to the obstacles. The MPC approach in (Ibenthal
et al., 2021) does not exploitXo

i,k, i.e., the portion of the ground that cannot contain any target locationdue to the presence of an obstacle, see Table 5.1. In the following sections, we consider that pixels
labeledObstacle can be exploited by the UAVs.We propose new strategies, built upon that of (Ibenthal
et al., 2021), to search for trajectories that account for part of the environment that will be occluded
when UAVs move. In (Ibenthal et al., 2023), the obstacles are not explicitly taken into account and the
proposed approach relies on controlling the UAVs to fly in a specific formation in order to explore
the RoI without gaining environmental knowledge. The UAVs will not be forced to stay in a specific
formation in the following sections.
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5.2.2 . Considering obstacles
In this section, the UAVs have the computing power to process the pixels labeled Obstacles at

each time step and, thus, characterize Xo
i,k, with i ∈ N u, i.e., a region that cannot contain any target

location due to the presence of an obstacle. Moreover, using CVSmeasurements at time tk, UAV i hasalso the time to process other CVS measurements to characterize HCVS
i,k , i.e., the part of the groundthat UAV i is unable to observe due to the presence of an obstacle, a target, or an unidentified object,

see Section 4.4. The OEM is again not taken into account in this section.
As in Section 5.2.1, the detection and identification of targets is ignored. Moreover, as UAV i cannot

determine whether new obstacles will be detected in its FoV, the prediction Xo
i,k+τ |k of Xo

i,k+τ will
be taken equal to Xo

i,k, for τ = 1, . . . , h. Similarly, the prediction HCVS
i,k+τ |k of HCVS

i,k+τ is also assumed
constant and equal to HCVS

i,k . This second simplification is coarser than the first, as HCVS
i,k+τ depends

more on the location of UAV i than Xo
i,k+τ .Therefore, by using the simplification HCVS

i,k+τ |k = HCVS
i,k , (5.8) becomes

Pgi,k+τ |k

(
Yg
i,k+τ |k

)
=
(
F
(
xui,k+τ |k

)
∩ Xg

)
\HCVS

i,k . (5.17)
Then, as for (5.9), the prediction (4.24) is used to predict the evolution of the targets and is cor-

rected by an adaption of (4.30). This adaption accounts for the simplifications we made to evaluate
XA,P
i,k+τ |k with a complexity manageable in a MPC context, i.e., Dt

i,k+τ = ∅, Xo
i,k+τ |k = Xo

i,k, and (5.17).
Consequently, with those simplifications, UAV i can adapt (5.13) to evaluate iteratively XA,P

i,k+τ |k from
XA,P
i,k , for τ = 1, . . . , h, as

XA,P
i,k+τ |k =

(
f t
(
XA,P
i,k+τ−1|k,

[
vt]) ∩ Xg

) (5.18)
\
(
Xo
i,k ∪

((
F
(
xui,k+τ |k

)
∩ Xg

)
\HCVS

i,k

))
.

The main difference between (5.13) and (5.18) is that Xo
i,k is used in (5.18) to avoid exploring regions

near obstacles because they are guaranteed to never contain a target location.
Then, as in Section 5.2.1, if some neighbors of UAV i with indexes in N i,k ⊂ Ni,k have already

evaluated their sequence of control inputs ûℓ,k:h, ℓ ∈ N i,k and broadcast x̂uℓ,k:h|k as well as HCVS
ℓ,k , then(5.18) becomes

XA,P
i,k+τ |k =

(
f t
(
XA,P
i,k+τ−1|k,

[
vt]) ∩ Xg

)
\
(
Xo
i,k ∪

((
F
(
xui,k+τ |k

)
∩ Xg

)
\HCVS

i,k

)
∪ (5.19)⋃

ℓ∈N i,k

((
F
(
x̂uℓ,k+τ |k

)
∩ Xg

)
\HCVS

ℓ,k

))
.

A drawback of the simplification HCVS
i,k+τ |k = HCVS

i,k , with τ = 1, . . . , h, is that it does not favor trajec-
tories that turn around obstacles, as illustrated in the left part of Figure 5.2. Consider that the red UAV
represents UAV i at time tk. In this figure, the set HCVS

i,k (delimited by a red hatched set) represents a
coarse estimate of the portion of the ground that will not be observed in the future h time steps. Thus,
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by following the trajectory represented by a blue curve, the next location of UAV i (the purple UAV)
will allow an observation of what is behind the obstacle detected at time tk. Nevertheless, due to theproposed simplification, the portion of XA,P

i,k+τ |k (in yellow) within HCVS
i,k cannot be removed because it

is assumed to remain hidden behind an obstacle, which is false. Thus, XA,P
i,k+h|k is not as reduced as itshould be. Moreover, as HCVS

i,k only considers the obstacles detected at time tk, the obstacles that arenot within the FoV of UAV i at time tk cannot be considered. Thus, since their shapes and locations
are unknown, we still have the same problem as in Section 5.2.1 where, without knowledge of the
map, the reduction of the FoV due to the unknown obstacles cannot be predicted. Consequently, the
predicted reduction of the size of the set XA

i,k is difficult to predict and trajectories which may lead
to reductions will not necessarily be selected. This is illustrated on the right part of Figure 5.2 where
the blue UAVs are two possible future locations of UAV i. From these locations, and since we assume
HCVS

i,k+τ |k = HCVS
i,k , the light-orange sets are portions of XA,P

i,k+h|k that are removed during the prediction
step. Nevertheless, this reduction will not happen because of the presence of unknown obstacles
where the portion of the ground they will occlude, i.e., HCVS

i,k+h, is represented by the purple hatched
sets.

Figure 5.2 – Impact of the simplification HCVS
i,k+τ |k = HCVS

i,k (red hatched set), for τ = 1, . . . , h in the MPC
trajectory design : the UAV location at time tk is in red, the candidate trajectories and final locationsare in blue or purple. Trajectories such that the FoV intersectsHCVS

i,k (left part) will be avoided due to thereduction of the usable part of the FoV in favor of trajectories without intersection between the FoVand HCVS
i,k (right part). The purple hatched sets are the HCVS

i,k+h obtained at each location representedby the blue UAVs.

Second criterion

As in Section 5.2.1, to address situations where all sequences of control inputs do not lead to any
reduction of the localization uncertainty, a variant of J1a

i introduced in (5.15) is proposed to account
for HCVS

i,k :
J1b
i (uk:h) = d

(
c
(
F
(
xui,k+h|k

)
∩ Xg

)
,XA,P

i,k+h|k \H
CVS
i,k

)
. (5.20)
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This avoids leading UAV i towards areas that are likely to be occluded by an obstacle. Then, combining
(5.6) and (5.20), the second considered strategy aims at minimizing the criterion

JSTR2i (uk:h) = J0
i (uk:h) + λJ1b

i (uk:h) . (5.21)
Compared to (5.16), (5.21) is computationally more demanding since (5.21) accounts for HCVS

i,k and
Xo
i,k, even if both sets are constant during the evaluation.

5.2.3 . Exploiting the OEM
In this section, the OEMmanaged by each UAV is exploited to predict the parts of the ground that

will be hidden by obstacles. The aim is to favor trajectories that observe areas that may contain a
target while avoiding occlusions.

At time tk, the OEM of UAV iMi,k contains information regarding the location and the shape of
the obstacles already observed. As in Section 5.2.2, for a trajectory leading to the exploration of partly
uncharted parts of the environment, UAV i is unable to determine whether new obstacles will be
observed. Consequently, in the MPC approach, the predicted mapMi,k+τ |k is taken equal toMi,k forall τ = 1, . . . , h. The main difference with Section 5.2.2 is that here the part of the environment that
will be hidden by obstacles can be predicted, even ifMi,k is not updated during the prediction.The OEMMi,k introduced in Section 4.6, can be used to define a list of boxes (4.41), i.e.,{

BM
i,k (η) | si,k (η) = {O} , η ∈ NM} (5.22)

that approximates the shape of all obstacles that have been detected up to time tk. Using these boxes,UAV i, with state xui , is able to evaluate the set HOEM
i,k (xui ) representing the portion of the ground hid-denby all boxeswithin (4.41), and (F (xui ) ∩ Xg

)
∩HOEM

i,k (xui ) is the portion ofF (xui )∩Xg that is predictedto be hidden by obstacles, see Section 4.6.4. Similarly, to predict for any τ = 1, . . . , h the portion of
the ground that will be hidden by obstacle, i.e., Pgi,k+τ

(
Yo
i,k+τ

), UAV i evaluates (F(xui,k+τ |k

)
∩ Xg

)
∩

HOEM
i,k

(
xui,k+τ |k

).
Therefore, (5.8) becomes

Pgi,k+τ |k

(
Yg
i,k+τ |k

)
=
(
F
(
xui,k+τ |k

)
∩ Xg

)
\HOEM

i,k

(
xui,k+τ |k

)
. (5.23)

Then, as for (5.18), the equation (4.24) is used to predict the evolution of the targets and is corrected
by an adaption of (4.30). This adaption accounts for the simplifications : Dt

i,k+τ = ∅, Xo
i,k+τ |k = Xo

i,k,and (5.23). Consequently, UAV i can adapt (5.13) to evaluate iteratively XA,P
i,k+τ |k from XA,P

i,k , for τ =

1, . . . , h, as

XA,P
i,k+τ |k =

(
f t
(
XA,P
i,k+τ−1|k,

[
vt]) ∩ Xg

) (5.24)
\
(
Xo
i,k ∪

(
F
(
xui,k+τ |k

)
\HOEM

i,k

(
xui,k+τ |k

)))
.

As in Section 5.2.1, if a subset of neighbors N i,k ⊂ Ni,k of UAV i has already evaluated their se-
quence of control inputs ûℓ,k:h, with ℓ ∈ N i,k and broadcast their sequence of states x̂uℓ,k:h|k, then,
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assuming they share the same OEM, UAV i is able to evaluate their HOEM
ℓ,k

(
x̂uℓ,k+τ |k

), with ℓ ∈ N i,k.Therefore, (5.18) becomes
XA,P
i,k+τ |k =

(
f t
(
XA,P
i,k+τ−1|k,

[
vt]) ∩ Xg

)
\
(
Xo
i,k ∪

(
F
(
xui,k+τ |k

)
\HOEM

i,k

(
xui,k+τ |k

))
∪ (5.25)⋃

ℓ∈N i,k

(
F
(
x̂uℓ,k+τ |k

)
\HOEM

i,k

(
x̂uℓ,k+τ |k

)))
.

Third criterion

As in Section 5.2.2, to address situations where all sequences of control inputs do not lead to any
reduction of the localization uncertainty, a variant of J1a

i in (5.15) is introduced to account for HOEM
i,k ,

i.e.,
J1c
i (uk:h) = d

(
c
(
F
(
xui,k+h|k

)
∩ Xg

)
,XA,P

i,k+h|k \H
OEM
i,k

(
xui,k+h|k

))
. (5.26)

This avoids trajectories leadingUAV i towards parts of the environment that are hiddenby anobstacle.
Therefore, by combining (5.6) and (5.26) the following criterion can defined

JSTR3i (uk:h) = J0
i (uk:h) + λJ1c

i (uk:h) . (5.27)
Compared to (5.21), (5.27) is more computationally demanding since the UAV has to evaluateHOEM

i,kfor each prediction-correction process (5.25).
5.2.4 . Promoting the exploration of recently hidden areas

In (5.27), J0
i favors trajectories leading to future reductions of the size of XA

i,k, whereas J1c
i is used

to drive the UAV closer to the set estimates. Neither J0
i nor J1c

i in (5.27) favor trajectories leading to
the exploration of parts of XA

i,k that were previously hidden. This section introduces a term J2
i (uk:h)to complete (5.27) to favor such trajectories and search for previously potentially hidden targets.

Using the approximation of the hidden portion of the ground deduced fromCVS informationHCVS
i,k ,each UAV is able to evaluate the portion of XA

i,k that has not been observed, i.e., XA
i,k ∩ HCVS

i,k . Then,consider the hidden parts of the RoI for UAV i and its neighbors at time tk
HCVS

i,k =
⋃

ℓ∈Ni,k

HCVS
ℓ,k , (5.28)

and the surface of XA,P
i,k+h|k that may be hidden

J2
i (uk:h) = ϕ

(
XA,P
i,k+h|k ∩HCVS

i,k

)
. (5.29)

By introducing (5.29) in (5.27), UAV i can search for trajectories leading to a reduction of the size of
XA,P
i,k+h|k∩HCVS

i,k . Therefore, ifHCVS
i,k = ∅, then one remarks that UAV i can search for trajectories leading

to the exploration of set estimates that were previously hidden for its neighbors. Thus, the term (5.29)
implies a cooperative behavior because two UAVs may explore what the other has not been able to
observe.
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Nevertheless, when UAV i designs a trajectory to explore over the time interval [tk+1, tk+h] whatwas hidden at time tk, it also has to take into account the portion ofXA
i,k that was previously hidden but

has not been explored yet. To explain why it is important to take into account for the HCVS
i,k obtained

at a previous time instant, we consider the following example. Let assume that at time tk−1, UAV idesigned a trajectory to explore XA,P
i,k−1+h ∩HCVS

i,k−1, but the UAV will start the exploration of that area
only at time tk−1+h. Then, during the trajectory update at time tk, ifHCVS

i,k = ∅, then, according to (5.29)
J2
i (uk:h) = 0 regardless of the sequence uk:h. Consequently, UAV i forgets that it was supposed to
explore XA,P

i,k−1+h ∩HCVS
i,k−1.To avoid this issue, we consider the union

HCVS
i,k−h+1:h =

k⋃
t=k−h+1

HCVS
i,t (5.30)

of the h past HCVS
i,t . Using HCVS

i,k−h+1:h instead of HCVS
i,k , (5.29) becomes

J2
i (uk:h) = ϕ

(
XA,P
i,k+h|k ∩HCVS

i,k−h+1:h

)
. (5.31)

Consequently, by combining (5.6), (5.26), and (5.31) to get the criterion
JSTR3i (uk:h) = J0

i (uk:h) + λJ1c
i (uk:h) + κJ2

i (uk:h) , (5.32)
UAV i can favor trajectories leading to the exploration of recently hidden areas that may contain
hidden targets.

The value of κ represents a trade-off between the general target search and the exploration of
specific areas that may contain hidden targets. This valuemay depend on the density of the obstacles
within the RoI, on their structure, and how the UAVs are able to monitor an area.

5.3 . MPC implementation

This section presents how we implemented the MPC on the UAVs. Section 5.3.1 describes some
design choices in the MPC approach such as the determination of the prediction horizon h and how
to simplify the evaluation of XA,P

i,k+τ |k for τ = 1, . . . , h. Then, Section 5.3.2 details the organization of
computations and communications.

5.3.1 . Practical choices
Assuming that the UAVs are flying at a fixed height and with a constant speed, then the sequence

of control inputs ûi,k:h provided by the MPC to the low-level controller is chosen to be a sequence
of yaw angle increments. Each control input ûi,k+τ ∈ ûi,k:h, for τ = 0, . . . , h − 1, is taken from a
set of feasible control inputs U = [−∆ψmax,∆ψmax] where ∆ψmax is the considered maximal angle
increment.

To determine the period TMPC to update the control input with the MPC, we consider the time
response of the quadcopter regarding the evolution of its yaw angle. A step response for a step of
π/3 radian is used to evaluate this time response, see Figure 5.3. By approximating the step response
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to a second-order system, one remarks that the system needs t95% = 1.2 seconds to reach a steady-
state error of less than 5 %. From that measure, we consider that the quadcopter requires TMPC ≈
3t95% to reach the desired angle. Thus, we take TMPC = 3 seconds.
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Figure 5.3 – Evolution of the yaw angle of a UAV in response to a yaw angle step of π/3 radian (or
60 degrees).

Then, consider the trajectory x̂ui,k:h|k of UAV i, updated at time tk. This trajectory has been designedto guideUAV iover the timewindow [tk+1, tk+h]. A trajectory designedby theMPCat some time instant
tk should be designed to guide the UAV until it is re-updated, i.e., at time tk +TMPC. Consequently, we
must have

tk + TMPC ≤ tk+h ⇔ tk + TMPC ≤ tk + hT (5.33)
where T is representative of the time needed for the target location estimator to update the set
estimates from the CVSmeasurements. Therefore, one has h ≥ TMPC/T . Besides, since h is an integer,
one has instead h ≥ ceil (TMPC/T ), where ceil (x) rounds x to the nearest integer greater than or
equal to x. In what follows, we use h′ = ceil (TMPC/T ) as the smallest possible value that can take the
prediction horizon h.

The value ofh can be chosen as high as possible as long ash ≥ h′. The higherh is, themore capable
UAV i is to design a trajectory that will efficiently reduce the localization uncertainty, but the heavier
the computational burden will be, see Figure 5.4. So, one may choose the prediction horizon h such
that the trajectory x̂ui,k:h|k is designed to last for NMPC ≥ 1multiple calls of the MPC, i.e., h = NMPCh′.

Figure 5.4 illustrates two cases of trajectory update, both with h′ = 3. The left part illustrates the
trajectory update withNMPC = 2 , whereas the right part illustrates a trajectory update withNMPC = 1.
Both trajectories explore the green set, but, with NMPC = 2, UAV i is able to design a trajectory that
will lead to a quicker exploration of the yellow set, since the UAV predicts that at time tk+h (h = 6

here) it will start its exploration.
We assume that a UAV requires TMPC to reach the desired angle for a given control input. The-

refore, if TMPC/T > 1 and since the control inputs are angle increments, then the sequence of
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Figure 5.4 – Illustration of two trajectory updates, onewith withNMPC = 2 (left), the other withNMPC =
1 (right), while having h′ = 3. The purple circle is the current location of UAV i (and also x̂u

i,k|k−h′ ). Theblue and black circles are the locations of UAV i according to the sequence of control inputs obtainedat time tk−h′ whereas the red circles are the locations of UAV i according to the sequence obtainedat time tk. The difference between the blue and black circles are that the black circles are actuallyrepresenting the trajectory that UAV i has taken, whereas the blue circles are what remains of theprevious trajectory, i.e., the fragment of x̂ui,k−h′:h|k−h′ , before the trajectory update at time tk. For thesake of simplicity, the targets are not moving here.

control inputs (ûi,k, . . . , ûi,k+h′−1

) is such that ûi,k = ûi,k and ûi,k+τ = 0 with τ = 1, . . . h′ − 1,
i.e., the desired angle must not change until tk+h′ . The same reasoning is applied for each fragment(
ûi,k+nh′ , . . . , ûi,k+(n+1)h′−1

) of the sequence of control inputs ûi,k:h, with n = 0, . . . NMPC − 1.
Consider that the set of feasible control inputs is finite. Then an approach to search for the optimal

trajectory is to test all combinations of control input sequences, i.e., by a tree search. This implies a
computational burden that will slow the MPC.

We have assumed that the time T needed for the target location estimator to update the set
estimates is much smaller than the time TMPC needed for the UAV to reach the desired state. So,
one can assume that the predicted set estimates do not really change between two consecutive time
instants tk+τ and tk+τ+1. Thus, one can lighten the computational burden of the MPC by making the
prediction of the evolution of XA,P

i,k+τ |k T
MPC-periodic instead of T -periodic.

Nevertheless, while this simplification reduces the computational burden required to evaluate all
possible combinations of the sequence of control inputs, it also reduces the quality of the predicted
set estimates and, thus, the predicted reduction of the localization uncertainty. Figure 5.5 illustrates
the pros and cons of the proposed simplification with NMPC = 2 and TMPC/T = 3.

5.3.2 . Task scheduling
Another problem to consider is when the neighbors of UAV i broadcasts their trajectory and other

relevant information.
A first approach is to consider a sequential scheduling where the UAV in the neighborhood of

UAV i with the lower index starts the trajectory update. Once finished, it broadcasts its updated tra-
jectory, and the UAV with the second lower index searches for the best sequence of control inputs
that minimizes one of the aforementioned criteria, i.e., (5.16), (5.21), or (5.32), while accounting for
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Figure 5.5 – Comparison between an approach where the prediction of the set estimates is donewith a period T (right) and (left) an approach where the set estimates are only updated with a period
TMPC = 3T . The light green and light yellow part of the set estimates represent the observed parts.Targets are assumed static.

the trajectory of its predecessor. This scheme is repeated until each UAV has updated its trajectory.
Figure 5.6 illustrates this sequential scheduling with 3 UAVs.

A drawback of this approach is that theUAVwith the highest index has towait for the others before
updating its trajectory, and this delay may be larger than T . Another issue is illustrated in Figure 5.6.
The updated trajectory of UAV 1 is not cooperative since it does not account for any of the trajectories
of its neighbors. A possible approach to solve this issue is that UAV 1waits to receive the trajectory of
UAV 2 and 3 before re-evaluating the best sequence of control inputs. This re-evaluation is performed
by UAV 2 and 3 as well. This loopback is likely to improve the cooperation between UAVs, but at the
cost of doubling the time needed without loop.

Information emission 
(estimates or trajectories)

Information reception 
(estimates or trajectories)

UAV 1

UAV 2

UAV 3

Acquisition of CVS 
information

Estimation from CVS 
information

Low-level controller

Update of estimates

Trajectory evaluation

Figure 5.6 – Succession of tasks performed by three UAVs ; here the trajectory update with the MPCis performed sequentially.
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Another approach is to consider a non-sequential scheduling where the UAVs only work with the
previous trajectory of their neighbors. At time tk, UAV i keeps in its memory the sequence of states
x̂uℓ,k−h′:h|k−h′ of the neighbors it had at time tk−h′ , i.e., ℓ ∈ Ni,k−h′ . For a ℓ ∈ Ni,k−h′ , one can remark that
only the portion (x̂uℓ,k+1|k−h′ , . . . x̂

u
ℓ,k+h−h′|k−h′

) of x̂uℓ,k−h′:h|k−h′ is useful. This is because all predicted
states x̂uℓ,k−h′+τ |k−h′ with τ = 0, . . . , h′ − 1 are actually in the past.

UAV i can use (x̂uℓ,k+1|k−h′ , . . . x̂
u
ℓ,k+h−h′|k−h′

) as an estimate of the trajectory that UAV ℓ is sup-
posed to take. Therefore, one has x̂uℓ,k+τ |k = x̂uℓ,k+τ |k−h′ for τ = 0, . . . , h − h′. One can remark that
this approach only works if we have NMPC > 1. Then, for the future time instants tk+h−h′+τ with
τ = 1, . . . , h′, a possible assumption is to consider that UAV ℓ only flies in a straight line while main-
taining the same orientation as at time tk+h−h′ .

The main advantage of the latter approach is that no UAV has to wait for its neighbors to update
its trajectory.

Figure 5.7 illustrates this non-sequential approach.

Information emission 
(estimates or trajectories)

Information reception 
(estimates or trajectories)

UAV 1

UAV 2

UAV 3

Acquisition of CVS 
information

Estimation from CVS 
information

Low-level controller

Update of estimates

Trajectory evaluation

Figure 5.7 – Succession of tasks performed by three UAVs ; here the trajectory update with the MPCis performed using only the previously known trajectories of the UAV’s neighbors

5.4 . Simulation

The section presents simulation results to compare the performance of the criteria (5.16), (5.21),
or (5.32) designed to update the UAV trajectory to solve a CSAT problem within an unknown and clut-
tered environment. Section 5.4.1 introduces the simulation conditions. Then, Section 5.4.2 describes
the metrics used to compare the control strategies. Section 5.4.3 compares and analyses the criteria
defined for target search and the minimization of the localization uncertainty. Section 5.4.4 focuses
only on the exploration, and Section 5.4.5 provides some results regarding the computing time of the
estimator and the MPC.
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5.4.1 . Simulation parameters
Simulations have been performed using a combination of Webots (Webots, ) to generate UAV and

target displacements as well as the measurements collected by the UAVs, and MATLAB where the
estimation and trajectory design algorithms have been implemented. The communication between
Webots and MATLAB is done via TCP-IP.

The RoI is a simplified urban environment with different types of buildings, all with a height less
than 50 m, see Figure 5.8. One has X0 = [−250m, 250m] × [−250m, 250m] × R+. The ground area
occupied by building represents 5 % of the total area of Xg. The RoI contains N t = 8 targets (cars of
the same shape).

The resolution of the occupancy elevation mapMi,k for all UAVs is taken as 5m.

Figure 5.8 – Simulated urban environment in Webots
Each car has the following sizes 4.6 m × 1.8 m × 1.5 m, and can be included in a cylinder Ct of

radius rt = 2.5 m and height ht = 2 m. The safety distances are taken as rtos = 2.5 m and rtts = 8 m.
The state xtj,k =

(
xtj,1,k, xtj,2,k, xtj,3,k

) of target j ∈ N t consists of the coordinates (xtj,1,k, xtj,2,k) of theprojection on Xg of its center of mass, and of its heading angle xtj,3,k. Its dynamic model, c.f., 3.2, is
xtj,1,k+1

xtj,2,k+1

xtj,3,k+1

 =


xtj,1,k + Tvtj,1 cos

(
xtj,3,k

)
xtj,2,k + Tvtj,1 sin

(
xtj,3,k

)
xtj,3,k + Tvtj,2,k

 , (5.34)

where vtj,1 is the constant target speed and vtj,2,k is the target turn rate. At the start of the simulation
vtj,1 is randomly chosen in the interval [0, vmax] for each target j ∈ N t. At each time instant, vtj,2,k isconstrained to maintain the car on the roads. The UAVs do not exploit any knowledge related to the
roads during the search.

A fleet of 4 identical quadcopters is considered (the DJI Mavic2Pro model in Webots). As in Sec-
tion 4.7 of Chapter 4, these UAVs are equipped with a camera of resolutionNr×Nc = 720×960 pixels,
but the processed image is downsampled to work with a resolution of Nr × Nc = 360 × 480 pixels,
aperture angle of π/4 rad, and orientation in the UAV body frame of θ = π/6 rad. A depthmap is provi-
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ded by the range finder of Webots with the same resolution as the camera. Its maximal measurement
range is set to dmax = 300m and the bounds of the noise w in (3.33) are [w,w] = [−0.01, 0.01].

The CVS provides measurements with a period T = 0.5 s. The set estimates are updated with
the same period using the algorithms presented in Chapter 4. Since only vmax = 1 m/s is known to
the UAVs, the model of the dynamics of the targets used to perform the prediction is (5.34) but we
replace vtj,1 by vmax. Actually, since the UAVs only know vmax, then the prediction of the target-relatedset estimates is simply a dilatation.Regarding the MPC, the value of the prediction horizon is h = 12, i.e., NMPC = 2.. Moreover,instead of using the quadcopter dynamics, see (Bouabdallah, 2007), during the UAV trajectory update,a simpler dynamic model with constant altitude and speed vu, as well as null roll and pitch angles areconsidered 

xui,1,k+1

xui,2,k+1

xui,3,k+1

xui,4,k+1

 =


xui,1,k + Tvu cos

(
xui,4,k + ui,k

)
xui,2,k + Tvu sin

(
xui,4,k + ui,k

)
xui,3,k+1

xui,4,k + ui,k

 . (5.35)

A low-level PID controller is implemented on each UAV to ensure a constant speed of vu = 5m/s
and a constant fly height. This fly height guarantees that the UAVs fly above the obstacles. Moreover,
the fly height of each UAV is different from the others to avoid collisions.

All the components of uk:h are yaw angle increments taken in U = {−π/3,−π/6, 0, π/6, π/3}. As
in (Ibenthal et al., 2021), the first weight parameter of the criteria (5.16), (5.21), or (5.32) is taken as
λ = 10−5. The second weight parameter of the criterion (5.32) is set to κ = 1.

No restriction is considered on the communication range between the UAVs, and we assume that
the communications are done without error or delay. In addition, to organize the computations and
communications between the UAVs, we consider the sequential scheduling, see Figure 5.6, with a
loopback.

All UAVs are launched from the same location outside the RoI.
5.4.2 . Evaluation metrics

To evaluate the performance of the propose approach regarding the accuracy of the set estimates
of identified targets, one considers the average localization error with respect to a point estimate
taken as the barycenter c(Xt

i,j,k

) of the set estimate
eti,k =

1

card(Lt
i,k

) ∑
j∈Lt

i,k

∥∥∥xt,g
j,k − c

(
Xt
i,j,k

)∥∥∥ , (5.36)

as well as the average surface of the set estimates of identified targets
Φt
i,k =

1

card(Lt
i,k

) ∑
j∈Lt

i,k

ϕ
(
Xt
i,j,k

)
, (5.37)

and the average
Φt,eR
i,k =

1

card(Lt
i,k

) ∑
j∈Lt

i,k

ϕeR (Xt
i,j,k

)
, (5.38)

130



where ϕeR (X) is the radius of a disc of area ϕ (X), i.e.,
ϕeR (X) =

√
ϕ (X)
π

. (5.39)
Since there is no restriction on the communication range between the UAVs, we haveNi,k = N u, the
UAVs share the same set estimates and, thus, the values of eti,k, Φt

i,k , and Φt,eR
i,k are the same for all

UAVs i ∈ N u.
The theoretical coverage of the FoV of the UAVs at time k

ΦFoV
k = ϕ

( ⋃
i∈N u

(
F
(
xui,k
)
∩ Xg

)) (5.40)
represents the part of Xg observed at time tk by all UAVs if there is no obstacle nor target. The partof the ground that is actually seen and identified as Ground at time tk is

Φ
g
k = ϕ

( ⋃
i∈N u

Pgi
(
Yg
i,k

))
. (5.41)

The cumulated ground surface observed up to time tk is
Φ
Cg
k = ϕ

(
k⋃

τ=1

⋃
i∈N u

Pgi
(
Yg
i,τ

))
. (5.42)

Most of these metrics may also be expressed relative to the ground surface ϕ (Xg
).

Additionalmetrics of interest are the surfaceϕ(Xt
i,k

)of the setXt
i,k, and the surfaceϕ

(
Xt
i,k ∩ Xh

i,k

)
of the part of Xt

i,k which has been occluded by an obstacle. In this last metric, the set Xh
i,k representsthe portion of Xg that has not been seen by UAV i at a previous time instant due to an occlusion by

an obstacle and has not yet been observed again up to time tk. This set is initialized with Xh
i,0 = ∅ and

is updated as
Xh
i,k|k =

(
Xh
i,k−1 ∪HCVS

i,k

)
\ Pgi,k

(
Yg
i,k

)
. (5.43)

Moreover, using information received from its neighbors, UAV i updates Xh
i,k|k as

Xh
i,k =

( ⋃
ℓ∈N u

Xh
ℓ,k|k

)
\

( ⋃
ℓ∈N u

Pgℓ,k
(
Yg
ℓ,k

))
. (5.44)

To evaluate the quality of the prediction of the hidden areausing the elevationmap, i.e.,HOEM
i,k

(
xui,k
),

when compared with the actual portion of the ground that is hidden, i.e.,HCVS
i,k , one can use themetric

(4.50) introduced in Section 4.7 of Chapter 4, i.e., the intersection over union ofHOEM
i,k

(
xui,k
)
∩F
(
xui,k
)

and HCVS
i,k :

ΦOEM
k =

1

card (N u)
∑
i∈N u

ϕ
(
HCVS

i,k ∩
(
HOEM

i,k

(
xui,k
)
∩ F

(
xui,k
)))

ϕ
(
HCVS

i,k ∪
(
HOEM

i,k

(
xui,k
)
∩ F

(
xui,k
))) . (5.45)
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5.4.3 . Target search and tracking performance
This section compares the strategies associated with the criteria (5.16), (5.21), (5.27), and (5.32).

Their performance is evaluated during cooperative target search and tracking in the unknown envi-
ronment illustrated in Figure 5.8. All of the following results have been averaged over 10 independent
simulations, each lasting 300 s. Table 5.2 contains links to videos illustrating a typical evolution of the
UAVs and their set estimates for each criterion.

Note that, in what follows, we compare (5.21) with (5.21) whenHCVS is not considered. The purpose
of this comparison is to see how the addition of HCVS can improve the target search and tracking.
Thus, when HCVS is not considered, it is as if HCVS

ℓ,k = ∅ in (5.19) and (5.20), with ℓ ∈ N i,k ∪ {i}.
Criterion Evolution set estimates Mapping of the RoI
(5.16) Video_Crit_1 -(5.21) (no HCVS) Video_Crit_2_noH -(5.21) Video_Crit_2 -(5.27) Video_Crit_3 OEM_Crit_3(5.32) Video_Crit_3_bis OEM_Crit_3_bis

Table 5.2 – Videos illustrating a typical evolution of the UAVs during the target search. Xt
i,k isthe yellow set. Xo

i,k is the black sets. Xh
i,k is the blue sets. Xt

i,j,k is the green sets.HCVS
i,k is shownin red.

Figure 5.9 shows the evolution of the number card(Lt
i,k

) of identified targets (left figure) and the
number of targets included in the FoV of at least one UAVs (right figure-black curve) with the number
of targets that are actually identified, i.e., card(⋃ℓ∈N u Dt

ℓ,k

) (right figure-green curve).
The UAVs, in most cases, manage to identify the 8 targets located within the RoI. With the criterion

(5.27) (the magenta curve), the curve remains around 7.2 identified targets : in only 2 out of the 10

simulations, the fleet hasmanaged to find the 8 targets, whereas the UAVs only found 7 targets during
the 8 other simulations.

The UAVs do not know the exact number of targets to identify. Nonetheless, if we disregard the
magenta curve, the UAVsmanage to identify and localize all the targets in less than 150 seconds. With
criterion (5.32) (the black curve), the UAVs manage to identify all targets in less than 100 seconds.
The inclusion of the term (5.31) in the criterion which favors trajectories leading to the exploration of
areas recently occluded and thus ensuring the exploration in the vicinity of a UAV, instead of a general
exploration that leaves unchecked those recently occluded areas.

Regarding the right part of Figure 5.9, the difference between the black and the green curves can
be explained by the fact that a target may be physically located within the FoV of a UAV but either too
far from the UAV to be identified, or hidden behind an obstacle. There is a larger difference between
the black and green curves when the UAV trajectory design is performed based on the criterion (5.16),
than with the criterion (5.32). This is because, unlike criterion (5.32), criterion (5.16) does nothing to
take into account the obstacles. With this criterion, the set estimate Xo

i,k (region around obstacles
that is free of targets) is not characterized, and the OEM is not available. Consequently, when a UAV
updates its trajectory, it cannot design a target search trajectory that minimizes the occlusions and
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may even be attracted toward the obstacles. The reason is, according to the correction equations in
Section 4.5.2 and (5.13), since we have Xo

i,k = ∅ with criterion (5.16), then the portions of XA,P
i,k+τ |k, for

τ = 1, . . . , h, that are too close to an obstacle (or inside an obstacle) are not removed. Consequently,
with that criterion, the UAVs are more likely to have obstacles within their FoV and, thus, have targets
hidden behind by those obstacles. In criterion (5.32), Xo

i,k is characterized and the OEM is exploited to
predict the occluded in the future. Consequently, theUAVs are able to design target search trajectories
that lead them towards regions of the RoI where the targets can actually be (they are not within
the neighborhood of the obstacles) while minimizing the portion of XA,P

i,k+τ |k, for τ = 1, . . . , h that is
hidden behind the obstacles. Thus, with that criterion, the targets are less likely to be hidden behind
an obstacle.
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Figure 5.9 – (Left) Time evolution of card(Lt
i,k

) for each considered criterion. (Right) Evolution of the
number of targets located in the FoV of at least one UAV (black), and of the number of identified
targets, i.e., card(⋃ℓ∈N u Dt

ℓ,k

), (green). Only criterion (5.16) (top-right) (5.32) (bottom-right) are consi-
dered. These curves are average of 10 simulations.

Figure 5.10 illustrates the evolution of eti,k , the evolution ofΦt
i,k, and the evolution ofΦt,eR

i,k for each
criterion. Table 5.3 gathers the average and the standard deviation of thosemetrics between t = 150 s
and t = 300 s, for each criterion.

For all criteria, the average localization error is between 1 m and 1.5 m. Criterion (5.16) provides
the worst results as obstacles are not taken into account. The criteria (5.27) and (5.32) provide the
best results illustrating the benefit provided by the OEM in the trajectory design of the UAVs.

The top-right part of Figure 5.10 shows the evolution of the average localization uncertainty Φt
i,kevaluated as the surface of Xt

i,j,k averaged over each detected target, see (5.37). One has Φt
i,k about

0.3 % of the RoI area. The radius of a disc of equivalent surface is represented in Figure 5.10 (bottom-
right). The obtained radius is between 12 m and 18 m depending of the criterion, showing that even
if the localization error remains small, the uncertainty regarding the estimated location is large.

As shown in Figure 5.9, the UAVs identify the 8 targets in less than 150 seconds. Nevertheless, they
are unable to determine whether all targets have been identified. To evaluate the number of targets
N t, the RoI has to be explored until Xt

i,k = ∅. As long as Xt
i,k ̸= ∅, not yet identified target may still
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Figure 5.10 – Mean value over 10 simulations for each criterion of eti,k (left), Φt
i,k (top-right) and Φt,eR

i,k(bottom-right). To lighten the figure, the standard deviation is not shown.
criterion (5.16) (5.21) no HCVS (5.21) (5.27) (5.32)
eti,k (m) 1.43± 0.59 1.28± 0.45 1.10± 0.40 0.92 ± 0.46 0.95± 0.23

Φt,eR
i,k (m) 18.29± 8.10 16.06± 4.48 13.57± 5.50 11.71 ± 4.63 13.77± 3.76

Table 5.3 –Mean value and standard deviation of eti,k andΦt,eR
i,k between t = 150 s and t = 300 s

belong to Xt
i,k.

Figure 5.11 shows the evolution of ϕ(Xt
i,k

)
/ϕ
(
Xg
) (solid lines) for each criterion. Table 5.4 gathers

the average of those quantities between t = 150 s and t = 300 s for each criterion. Even if ϕ(Xt
i,k

)
decreases quickly during the first time steps, no strategy is able to get ϕ(Xt

i,k

)
= 0 so as to ensure

that all targets have been found. Instead, this area still to explore seems to converge to a value related
to the ability of the fleet to spread themselves and explore the unknown urban environment.

Figure 5.11 also shows the evolution of ϕ(Xt
i,k ∩ Xh

i,k

)
/ϕ
(
Xg
) (dashed lines), where Xt

i,k ∩ Xh
i,k

represents the portion of Xt
i,k that has been occluded by an obstacle and has not yet been observedagain. According to Table 5.4, when the trajectory update is performed using (5.16), almost two thirds

of Xt
i,k remain hidden by an obstacle. The parts of Xt

i,k intersecting Xh
i,k grow until they are observed

from a different point of view. In fact, 42± 4% of Xg may still be a possible location of an unidentified
target. This clearly shows a limitation of this strategy that does not account for any kind of mapping
of the obstacles.

When the UAV trajectory is designed using either the criterion (5.21) or (5.32), thus whenXo
i,k or the

OEM are used, then the exploration of Xt
i,k is largely improved. According to the results, the criterion

(5.32), which involves a strategy favoring the exploration of occluded areas, is proved to be the best
approach to search for unidentified targets.
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Figure 5.11 – Mean value over 10 simulations for each criterion of ϕ(Xt
i,k

)
/ϕ
(
Xg
) (solid lines),

ϕ
(
Xt
i,k ∩ Xh

i,k

)
/ϕ
(
Xg
) (dashed lines). To lighten the figure, the standard deviation is not shown.

criterion (5.16) (5.21) no HCVS (5.21) (5.27) (5.32)
ϕ
(
Xt

i,k

) (%) 42.06± 4.21 29.56± 3.70 26.34± 2.88 23.14± 2.87 22.06 ± 2.35

ϕ
(
Xt

i,k ∩ Xh
i,k

) (%) 26.88± 2.29 17.70± 2.49 17.20± 2.00 14.10± 1.78 13.18 ± 1.94

Table 5.4 – Mean value and standard deviation of ϕ(Xt
i,k

)
/ϕ (Xg) and ϕ

(
Xt

i,k ∩ Xh
i,k

)
/ϕ (Xg)

between t = 150 s and t = 300 s
5.4.4 . Exploration efficiency

The UAV trajectory design strategies are now compared considering their performance regarding
the exploration of the environment.

Figure 5.12 compares the evolution ofΦFoV
k /ϕ

(
Xg
) and ofΦg

k/ϕ
(
Xg
)while only considering criteria

(5.16) (top) and (5.32) (bottom). Table 5.5 gathers the average of those metrics as well as the ratio
Φ
FoV

=
mean (ΦFoV

k

)
−mean (Φg

k

)
mean (ΦFoV

k

)
representing the averaged portion of the ground within the FoV of one UAV that is not monitored due
to the presence of an obstacle. An efficient trajectory design strategy within a cluttered environment
should be such that ΦFoV is small. This is because, the smaller ΦFoV is, the more information from the
ground (observation of a target or the ground) is collected to evaluate the presence or the absence
of a target.

Figure 5.12 and Table 5.5 illustrate the impact of the presence of obstacles within the RoI. Regar-
ding criterion (5.16), the fleet theoretically monitors 30% of the RoI. Nonetheless, due to the presence
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of unknown obstacles, almost one third of this theoretically monitored area is actually occluded. Cri-
terion (5.21) does not really improve the ratio Φ

FoV since, unlike criterion (5.27), it cannot predict effi-
ciently the part of the FoV that will be hidden by obstacles during the future time steps. The inclusion
of HCVS

i,k in (5.21) as the area that UAV i cannot observe during the next h time steps due to the pre-
sence of recently detected obstacles only improves slightly ΦFoV. The criteria involving the OEM and,
thus, the prediction of the hidden areas, proves to be the best approach to reduce the ratio Φ

FoV. The
value of ΦFoV is larger when using criterion (5.27) than with criterion (5.32). This may be explained by
the fact that since (5.32) favors trajectories leading to the exploration of areas near obstacles, the FoV
of the UAVs controlled by this strategy will contain more often an obstacle.

The oscillations of the curves are due to the update of the trajectories with a period of 3 s.
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Figure 5.12 – Mean value ofΦFoV
k /ϕ

(
Xg
) (black) and ofΦg

k/ϕ
(
Xg
) (green) when only criteria (5.16) (top)and (5.32) (bottom) are considered

criterion (5.16) (5.21) no HCVS (5.21) (5.27) (5.32)
ΦFoV

k (%) 30.24 ± 2.24 30.13± 2.25 28.34± 2.00 28.66± 2.17 28.46± 2.12

Φg
k (%) 18.73± 3.27 19.38± 3.39 19.06± 3.35 21.63 ± 3.04 21.04± 3.02

Φ
FoV (%) 38.06 35.68 32.73 24.55 26.07

Table 5.5 – Mean value and standard deviation of ΦFoV
k /ϕ (Xg), Φg

k/ϕ (Xg) and Φ
FoV between

t = 150 s and t = 300 s
Figure 5.13 shows the evolution of the proportion of theXg that has been explored, i.e.,ΦCg

k /ϕ
(
Xg
).

Table 5.6 gathers the average and standard deviation of this metric.
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Remind that no controller presented in this chapter has been designed to simply explore the RoI.
Our main interest is to search and localize the targets, not to map the RoI. Consequently, ΦCg

k /ϕ
(
Xg
)

is more a metric representing the capacity of the UAVs to efficiently evolve within the environment
and explore the RoI than to evaluate the performance of these strategies to map the RoI.

As illustrated in Figure 5.13, ΦCg
k /ϕ

(
Xg
) increases quickly at the beginning but, then, one can

remark 3 distinct tendencies. The criterion (5.16) has the slowest increase since the strategy does
not account for any kind of mapping. Criterion (5.21) leads to a faster exploration because the UAVs
may avoid the obstacles since they are not attracted toward the area Xo

i,k around detected obstacleswhere no target can be. Nevertheless, and as expected, criterion (5.27) leads to the fastest increase of
Φ
Cg
k /ϕ

(
Xg
) since the UAVs are able to predict the portion of the ground that they will not see using the

OEM, and thus efficiently move around obstacles. Moreover, one can have the same remark as for Fi-
gure 5.12, i.e., the criterion (5.27) shows a slightly better performance regarding themetricΦCg

k /ϕ
(
Xg
)

than criterion (5.32). This is because UAVs that update their trajectory by using criterion (5.32) are
likely to stay around their neighbors in order to explore the area they did not observe due to the
presence of an obstacle. Consequently, they explore less.

In addition, since 5% ofXg is occupied by obstacles, the maximum theoretical value ofΦCg
k /ϕ

(
Xg
)

is 95%. This value is almost reached by the criteria at time t = 300 seconds, with 92.7 % with (5.16) to
93.5 % with criterion (5.27).
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Figure 5.13 – Mean value over 10 simulations for each criterion of ΦCg
i,k/ϕ

(
Xg
). To lighten the figure,the standard deviation is not shown.

criterion (5.16) (5.21) no HCVS (5.21) (5.27) (5.32)
ΦCg

k 88.64± 2.01 90.14± 1.19 90.12± 1.56 91.15 ± 1.03 91.14± 1.19

Table 5.6 – Mean value and standard deviation ofΦCg
i,k/ϕ (Xg) between t = 150 s and t = 300 s

Figure 5.14 shows the evolution of ΦOEM
k . At the beginning of the target search, ΦOEM

k increases
quickly but becomes more or less stable around t = 100 seconds. This is consistent with Figure 5.13
since most of the RoI has been explored and, thus, most of the obstacles have been detected. The
mean and standard deviation of this metric when averaged between t = 150 s and t = 300 s is
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74.38 ± 9.25 %. This means that around three quarters of the part of the ground that is predicted to
be hidden by obstacles HOEM

i,k

(
xui,k
)
∩ F

(
xui,k
) is actually hidden when considering CVS information

HCVS
i,k . It is likely that with an OEM of higher resolution, i.e., with a cell dimension smaller than 5m, the

prediction would be of higher quality. Nonetheless, this result shows that a 2.5 D mapping approach
can be used to efficiently predict which portion of the ground the UAV may or may not observe in the
future.
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Figure 5.14 –Mean value and standard deviation over 10 simulations ofΦOEM
k when only criterion (5.32)is considered

5.4.5 . Computing time
Figure 5.15 (left) shows the evolution of the average computing time required by a single UAV to

process the CVS measurements and to update its knowledge. The time includes the characterization
of the set estimates from the CVS measurements and the update of X t

i,k, Xt
i,k, and Xo

i,k (communica-
tion with neighbors included). We recall that we consider the sequential scheduling, see Figure 5.6,
with a loopback to organize the computations and communications between UAVs. Thus, during the
trajectory update, each UAV has to wait a certain amount of time after the first iteration of the MPC
to receive the second updated trajectory of its neighbors. Figure 5.15 (right) does not account for
this delay and only shows the average time required by a single UAV for the last iteration of the
MPC. These results have been obtained on a computer embedding an Intel Core i7-10875H 2.30GHz.
Consequently, they provide only a first idea of the time that would be actually required considering
an implementation on a UAV.

The time that is required to process the CVS information is almost the same for criteria (5.21) (SRT2)
and (5.32) (STR3), i.e., about 2.15 seconds, and is almost three times that required for criterion (5.16)
(STR1), i.e., about 0.81 second, which does not exploit CVS information related to obstacles and does
not characterizeXo

i,k andXo
i,k. The update of the OEM (the main difference between criteria (5.21) and

(5.32)) does not take much time.
The time required by the MPC is almost the same for criteria (5.16) and (5.21), i.e., about 0.90 se-

conds, but is around 1.52 seconds for criterion (5.32) (regardless of the value of κ). This is mainly due
to the evaluation ofHOEM

i,k

(
xui,k+τ |k

), for τ ∈ {1, . . . h}, from the OEM in criterion (5.32). Consequently,
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the improved performance in target search and tracking when we add this 2.5D mapping approach
is counterbalanced by the additional time required to update the trajectories of the UAVs.
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Figure 5.15 – Mean value over 10 simulations of the time required for a UAV to run the set estimatorfrom CVS measurements (left) and the MPC approach (right)

5.5 . Conclusion

This chapter presents several strategies to update the trajectories of a fleet of UAVs in order to
address a CSAT problem within an unknown environment. The targets are assumed to outnumber
the UAVs. Therefore, a trade-off between searching for new targets and pursuing previously iden-
tified targets must be found. For that purpose, the chosen control strategy, based on a distributed
MPC, aims to search for a sequence of control inputs that minimizes a criterion translating the main
objective to achieve : the reduction of uncertainty regarding the estimated location of both identified
and unidentified targets. The performance of the strategy proposed in (Ibenthal, 2022), represented
by criterion (5.16), is evaluated. Nonetheless, this criterion does not take into account any available
knowledge regarding the environment. Consequently, other criteria based on the one proposed in
(Ibenthal, 2022) have been developed to account for different levels of available knowledge about the
environment that the UAV may gain, namely

• No environmental knowledge : the UAVs are unable to gain any knowledge regarding the envi-
ronment

• No memory regarding the shape of the obstacles. The UAVs are able to get some knowledge
regarding the obstacles that are under observation, but no memory is allocated to concatenate
this knowledge over time

• Mapping of a 3D environment. The UAVs embed the required devices, algorithms, and memory
to update a map of the environment that approximates the shape of the obstacles.

The performance of the criteria that are derived considering these hypotheses have been compared.
The more environmental knowledge is available, the better the strategy that exploits this knowledge
is. The reason is during a target search within an unknown and cluttered RoI, a UAV has to design
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a trajectory in order to move around obstacles to explore areas that may contain targets. Thus, the
better the UAV knows about the location and shape of an obstacle, the better it canmove around that
obstacle. The simulations performed for this chapter are clear about this statement, even though the
exploitation of this knowledge related to the obstacles induces a higher computational time for both
the target localization and the trajectory update. Besides, the simulations have been performed in
a idealized situation where the communications between the UAVs are without error and delay. We
considered this idealized situation to evaluate the performance of our approach designed to solve a
CSAT problem before including communication issues or other real-life problems which will undoub-
tedly reduce its target-search-and-track performance.

The main contribution of this chapter is the exploitation of the OEM, in criterion (5.27), to improve
the target search within an unknown and cluttered environment. The OEM approximates the pre-
viously detected obstacles with boxes that are then used by the UAVs to better predict what they
will observe in the future. According to the simulations, criterion (5.27) always provides better target-
search-and-tracking performance than criteria (5.16) or (5.21). Nevertheless, due to the presence of
obstacles, the UAVs cannot observe some portions of the RoI that may contain unidentified targets.
To efficiently explore those unchecked regions, a UAV must circle around an obstacle faster than the
targets. To address this path-planning problem, we added in criterion (5.27) a new term, i.e., J2

i intro-duced in (5.31), to favor trajectories leading to the cooperative exploration of these recently hidden
areas. Even though this new criterion, i.e., (5.32), has shown promising results, the target-search-and-
tracking performance is not fully satisfying. On the one hand, the criterion allows a better reduction
of the hidden regions that may contain unidentified targets. On the other hand, the fact that the UAVs
favor trajectories that lead to the exploration of recently hidden regions disadvantages trajectories
that would allow a UAV to recapture a previously identified target in order to reduce its estimated
location uncertainty.
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Chapter 6 - Target localization with UAV state uncertainties

The approaches presented in Chapter 4 and Chapter 5 to search and localize ground targets as-
sume that each UAV has an accurate knowledge of its state vector. Nevertheless, due to uncertainty in
the dynamics and noise on the measurements provided by their embedded proprioceptive sensors,
the UAVs only have an uncertain estimate of their state, see, e.g. (Vanegas et al., 2019; Zhu et al., 2021),
and (Kenmogne et al., 2019).

In this chapter, it is assumed that each UAV disposes only of an estimation of its state vector and
the uncertainty associated with this estimate is assumed bounded. As the CVS measurements used
for target localization are initially expressed in a frame attached to each UAV and the set estimates
containing the locations of the targets are expressed in a common reference frame, it is necessary
to account for the UAV state uncertainties in the target localization problem. Consequently, the ap-
proaches introduced in Chapter 4 must be adapted to account for the UAV state uncertainty.

The set-membership estimator presented in Chapter 4 exploits the available CVS measurements
to characterize set estimates that either are guaranteed to contain the location of a target Xt,m

i,j,k foreach identified target j ∈ Dt
i,k at time tk, or are guaranteed not to contain a target location at time

tk, e.g., Pgi,k
(
Yg
i,k

). These set estimates used for target localization are built considering the following
sets

• Pi,k ((nr, nc)), see (6.4), used by UAV i to characterize Xt,m
i,j,k for each identified target j ∈ Dt

i,k aswell as Xo
i,k and Xt,m

i,j,k

• Pgi,k ((nr, nc)), see (6.13), used by UAV i to characterize Pgi,k
(
Yg
i,k

) and HCVS
i,k .

The definitions of Pi,k ((nr, nc)) and Pgi,k ((nr, nc)) and the methods used for their characterization
need to be adapted to account for the UAV state uncertainty.

These problems are formalized in Section 6.1. Section 6.2 describes briefly the approach to solve
this problem. Then, Sections 6.3, 6.4, and 6.5 propose a method to characterize Pi,k ((nr, nc)) and
Pgi,k ((nr, nc))while being robust to UAV state uncertainty. These adapted set estimates are then used
to make the target location estimator robust to UAV state uncertainty. Finally, Section 6.6 presents
simulation results to evaluate the performance of the robust estimator.

6.1 . Problem formulation

As in the previous chapters, we consider that a fleet ofNu cooperative UAVs is tasked to find and
localize N t unknown ground targets in a RoI X0. For that purpose, each UAV estimates the possible
locations of the target by using the set-membership estimator presented in Chapter 4, and evolves
within X0 according to a cooperative target search and tracking strategy detailed in Chapter 5.

6.1.1 . UAV state uncertainty
In this chapter, the dynamics of UAV i, with i ∈ N u, is modeled as

xui,k+1 = fu (xui,k,uui,k,wu
i,k

) (6.1)
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wherewu
i,k represents the state perturbations assumed unknownbut bounded in a knownbox [wu] =

[wu,wu]. Consequently, the UAV state vector xui,k is only known to belong to the set estimate Xu
i,k.This set estimate can be obtained with set-membership estimation techniques by using the uncertain

dynamics (6.1) and Xu
i,k−1, i.e., the possible values of the state vector of UAV i known at time tk−1

Xu
i,k|k−1 = fu (Xu

i,k−1,u
u
i,k, [w

u]) . (6.2)
This prediction is then corrected by using the measurement vector yui,k provided by proprioceptive
sensors like an IMU or gyroscope, see (3.14), i.e.,

Xu
i,k|k =

{
xu ∈ Xu

i,k|k−1 | h
u (xu) ∈ ({yui,k}− [wu,m])} , (6.3)

where hu is the measurement function associated to the proprioceptive sensors and [wu,m] is some
known box assumed to contain the measurement noise of those sensors. UAV i can improve the
accuracy of the estimation of its state vector by accounting for information provided by neighboring
UAVs considering a cooperative navigation, see (Vetrella et al., 2016). In what follows, we assume that,
at time tk, Xu

i,k is available and we focus on the impact of the UAV state uncertainty on the target
localization accuracy.

6.1.2 . Exploiting CVS measurements
To lighten the notations, the time index is omitted.
TheCVSmeasurements available for a pixel (nr, nc) ∈ N I at time tk consist of an interval [Di] (nr, nc)containing the depth information and a pixel label, i.e., (nr, nc) ∈ Yℓ

i with ℓ ∈ {t,o, g,n}. A bounding
box [Y t

i,j

] containing (nr, nc)may also be available when a target is identified. In Chapter 4, two sets
have been introduced depending on the label of (nr, nc). If (nr, nc) ∈ [Y t

i,j

]
∩ Y t

i or (nr, nc) ∈ Yo
i , onemay evaluate Pi ((nr, nc)), which has a non-empty intersection with a target or with an obstacle. If

(nr, nc) ∈ Yg
i , one may evaluate Pgi ((nr, nc)) to get a part of the ground free of target. Even though

HCVS
i is not used to localize the target, it is also obtained from Pgi ((nr, nc))when (nr, nc) ∈ Yo

i ∪Y t
i∪Yn

i .Our aim in what follows is to define Pi ((nr, nc)) and Pgi ((nr, nc)) as the solution of set inversion
problems that involves the uncertain UAV state.

Consider first the case of a pixel (nr, nc) ∈ [Y t
i,j

]
∩ Y t

i or (nr, nc) ∈ Yo
i . For a given value xu of the

state vector of UAV i, Pi ((nr, nc)) has been defined in Section 4.2 as
Pi ((nr, nc) ,xu) = {x ∈ X0 | x ∈ F (xu) , ∃v ∈ Vi (nr, nc) , (6.4)

dv (x
c
i , {x}) ∈ [Di] (nr, nc)} ,

where xc
i is the location of the optical center of the camera embedded on UAV i expressed in the

reference frame F . Moreover, since x ∈ F (xu), then x ∈ B (xc
i , dmax) according to (3.24), where

B (xc
i , dmax) is a ball of center xc

i and radius dmax. Consequently, according to (3.29), (6.4) can be re-
defined as

Pi ((nr, nc) ,xu) =
{
x ∈ X0 | pc (xu,x) ∈

(
[nc − 1, nc]
[nr − 1, nr]

)
,

∥xc
i − x∥ ∈ [Di] (nr, nc) ∩ [0, dmax]

}
. (6.5)
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One can remark that ∥xc
i − x∥ =

∥∥∥TFc
i

F (x)
∥∥∥, where T

Fc
i

F (x) is the transform (3.26) introduced in
Chapter 3 that expresses in F c

i the coordinates of x, initially expressed in F . To get a more compact
notation, we introduce the function

hCVS (x,xu) =
( ∥∥∥TFc

i
F (x)

∥∥∥
pc (xu,x)

)
, (6.6)

and the box [
yt/oi,r,c

]
=

[Di] (nr, nc) ∩ [0, dmax]
[nc − 1, nc]
[nr − 1, nr]

 . (6.7)
Thus, we have

Pi ((nr, nc) ,xu) =
{
x ∈ X0 | hCVS (x,xu) ∈

[
yt/oi,r,c

]}
, (6.8)

In 6.5, the dependency of Pi in xui has been made explicit. Evaluating Pi ((nr, nc) ,xu) requires thesolution of a set inversion problem as Pi ((nr, nc) ,xu) is the intersection of X0 with the preimage of
the box [yt/oi,r,c] by the function hCVS, considered as a function of x . Now, if the state of UAV i is only
known to belong to some set Xu

i , one may introduce the set of locations (in the RoI) that have been
observed for at least one value xu ∈ Xu

i while being consistent with the depth measurement,
P∃
i ((nr, nc)) =

{
x ∈ X0 | ∃xu ∈ Xu

i ,h
CVS (x,xu) ∈ [yt/oi,r,c]} , (6.9)

=
⋃

xu∈Xu
i

Pi ((nr, nc) ,xu) , (6.10)

and the set of locations that have been observed for any value of the UAV state xu ∈ Xu
i while beingconsistent with the depth measurement,

P∀
i ((nr, nc)) =

{
x ∈ X0 | ∀xu ∈ Xu

i ,h
CVS (x,xu) ∈ [yt/oi,r,c]} , (6.11)

=
⋂

xu∈Xu
i

Pi ((nr, nc) ,xu) . (6.12)

These two sets can be interpreted as variants of Pi ((nr, nc) ,xu) robust to the UAV state uncertainty.Similarly, for the case of a pixel (nr, nc) ∈ Yg
i , and for a given value xu of the state vector of UAV i,

Pgi ((nr, nc)) has been defined in Section 4.3.1 as
Pgi ((nr, nc) ,xu) =

{
x ∈ Xg | x ∈ F (xu) ,pc (xu,x) ∈

(
[nc − 1, nc]
[nr − 1, nr]

)}
. (6.13)

Thus, (6.13), as with (6.4), can be redefined as
Pgi ((nr, nc) ,xu) =

{
x ∈ X0 | pc (xu,x) ∈

(
[nc − 1, nc]
[nr − 1, nr]

)
, ∥xc

i − x∥ ∈ [0, dmax]

}
, (6.14)

=
{
x ∈ Xg | hCVS (x,xu) ∈

[
y
g
i,r,c
]}

, (6.15)
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with [
y
g
i,r,c
]
=

 [0, dmax]
[nc − 1, nc]
[nr − 1, nr]

 . (6.16)
In (6.13), the dependency of Pgi in xu has again beenmade explicit. Evaluating Pgi ((nr, nc) ,xu) requiresthe solution of a set inversion problem as Pgi ((nr, nc) ,xu) is the intersection of Xg with the preimage
of the box [ygi,r,c] by the function hCVS, considered as a function of x. Now, if the state of UAV i is only
known to belong to some setXu

i , one introduces the set of ground locations thatmay have contributed
to the illumination of pixel (nr, nc) for at least one value xu ∈ Xu

i ,
Pg,∃i ((nr, nc)) =

{
x ∈ Xg | ∃xu ∈ Xu

i ,h
CVS (x,xu) ∈

[
y
g
i,r,c
]}

. (6.17)
=

⋃
xu∈Xu

i

Pgi ((nr, nc) ,xu) , (6.18)

and the set of locations that may have contributed to the illumination of pixel (nr, nc) for any value ofthe UAV state xu ∈ Xu
i ,
Pg,∀i ((nr, nc)) =

{
x ∈ Xg | ∀xu ∈ Xu

i ,h
CVS (x,xu) ∈

[
y
g
i,r,c
]}

. (6.19)
=

⋂
xu∈Xu

i

Pgi ((nr, nc) ,xu) . (6.20)

Again, (6.17) and (6.19) can be interpreted as variants of 6.13 robust to the UAV state uncertainty.
All of the set estimates introduced in Chapter 4 that are used to estimate the location of the

targets are built upon Pi,k ((nr, nc) ,xui ) or Pgi,k ((nr, nc) ,xui ), where xui is the true value of the statevector of UAV i. Thus, by replacing Pi ((nr, nc) ,xui ) with P∃
i ((nr, nc)), then one can be sure to get a setestimate that intersects the detected target or the detected obstacles, i.e., because Pi ((nr, nc) ,xui ) ⊂

P∃
i ((nr, nc)) for any xui ∈ Xu

i . Similarly, by replacing (6.14) with (6.19), then, for a pixel labeled Ground,
one can be sure to get a set estimate that represents the portion of the ground that contributed to
the illumination of pixel (nr, nc), whatever the values of the state of the UAV. This is due to the fact
that Pg,∀i ((nr, nc)) ⊂ Pgi,k ((nr, nc) ,xui ) if xui ∈ Xu

i .
The sets P∀

i ((nr, nc)) and Pg,∃i ((nr, nc)) may also be useful to characterize. Nevertheless, repla-
cing Pi ((nr, nc) ,xui ) with P∃

i ((nr, nc)) and replacing Pgi,k ((nr, nc) ,xui ) with Pg,∀i ((nr, nc)) will make the
characterization of Xt,m

i,j,k, Pgi,k
(
Yg
i,k

), Xo
i,k, and Xt,m

i,j,k robust to the UAV state uncertainty.
Sections 6.3 and 6.4 present a method to characterize Pg,∃i ((nr, nc)), Pg,∀i ((nr, nc)), P∃

i ((nr, nc)),and P∀
i ((nr, nc)).

6.2 . Interval analysis

We want to characterize Pi ((nr, nc) ,xu) and Pgi ((nr, nc) ,xu), for a pixel (nr, nc) ∈ N I while taking
into account the fact that the true value of state vector of UAV i xui is only known to belong to Xu

i .Various approaches are available to evaluate set estimates, e.g., using ellipsoids or zonotopes, (Lu
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and Zhou, 2017; Tang et al., 2020). Most are limited to models with linear measurement functions h
(Merhy, 2019). The set inversion problems Pg,∃i ((nr, nc)), Pg,∀i ((nr, nc)), P∃

i ((nr, nc)), and P∀
i ((nr, nc))involve nonlinear functions. Consequently, we choose to use tools from interval analysis (Jaulin et al.,

2001) and the Set Inverter Via Interval Analysis (SIVIA) (Jaulin and Walter, 1993) to approximate these
sets by unions of non-overlapping boxes.

This section briefly recalls the basis of interval analysis and the way it may be used to characterize
the sets such as Pg,∃i ((nr, nc)) or Pg,∀i ((nr, nc)). More details may be found in Appendices A.3 and A.4.

An interval [x] = [x, x] of real numbers is the subset of R such that
[x] = {x ∈ R | x ≤ x and x ≤ x} , (6.21)

where x and x are respectively the lower and upper bounds of the interval. The set IR contains all the
real intervals. A box, denoted [x], is a Cartesian product of intervals.

6.2.1 . Inclusion functions and set inversion
Consider a function h : X0 × Rn → Rm taking as inputs a vector x and a vector of parameters p.

Assuming x and p are only known to belong to the boxes [x0] ⊂ X0 and [p] ⊂ Rn, we may want to
characterize the set containing the image of h over [x0]× [p], i.e.,

h ([x0] , [p]) = {h (x,p) | x ∈ [x0] ,p ∈ [p]} . (6.22)
This set can be impossible to characterize accurately if h is nonlinear. To approximate h ([x0] , [p]),we may use an inclusion function [h] of h defined by interval analysis. An inclusion function takes
intervals (or boxes) as inputs and returns an interval (or a box) as its output such that

∀ [x] ⊂ X0,∀ [p] ⊂ Rn, one has h ([x] , [p]) ⊂ [h] ([x] , [p]) . (6.23)
Consider now that we want to characterize the set

X = {x ∈ [x0] | h (x,p) ∈ [y]} , (6.24)
for some known vector of parameters p. If an inclusion function of h is available, SIVIA can be used
to get an inner and an outer approximation of X using two unions of non-overlapping boxes (subpa-
vings), see the example (A.21) and Figure A.6 in Appendix A.3. Actually, SIVIA builds iteratively three
list of boxes or subpavings : Bin, Bout, and Bborder. The method to get these subpavings is

• If for a box [x] ⊂ [x0], one has [h] ([x] ,p) ⊂ [y], then [x] ⊂ X and [x] ∈ Bin• If for a box [x] ⊂ [x0], one has [h] ([x] ,p) ∩ [y] = ∅ , then [x] ∩ X = ∅ and [x] ∈ Bout• If none of these two conditions is satisfied
• if the width of [x] is larger than some parameter ε, [x] is bisected and the tests are applied on
the resulting subboxes [x]2 and [x]2• else [x] ∈ BborderWhen the vector of parameters is only known to belong to [p], one may want to characterize one of

the two following sets
X∀ = {x ∈ [x0] | ∀p ∈ [p] ,h (x,p) ∈ [y]} , (6.25)
X∃ = {x ∈ [x0] | ∃p ∈ [p] ,h (x,p) ∈ [y]} . (6.26)
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One has clearly X∀ ⊂ X∃. In our case, the uncertain vector of parameters is the uncertain UAV state
vector.

An approach (that is useful for in the next section) to reformulate these sets is to introduce the
set of functions

H ([p]) = {f ∈ F (X0,Rm) | ∃p ∈ [p] , ∀x ∈ X0, f (x) = h (x,p)} , (6.27)
where F (X0,Rm) is the set of functions from X0 to Rm. Then, one has

X∀ = {x ∈ [x0] | ∀f ∈ H ([p]) , f (x) ∈ [y]} , (6.28)
X∃ = {x ∈ [x0] | ∃f ∈ H ([p]) , f (x) ∈ [y]} . (6.29)

For a box [x] ⊂ [x0], and assuming [h] is available, if [h] ([x] , [p]) ⊂ [y], then, according to (6.23),
one has h ([x] , [p]) ⊂ [y]. Consequently, for all x ∈ [x] and for all p ∈ [p], h (x,p) ∈ [y]. Thus, [x] ⊂ X∀

and [x] ∈ Bin. Similarly, if [h] ([x] , [p])∩ [y] = ∅, then for all x ∈ [x] and for all p ∈ [p], h (x,p)∩ [y] = ∅.
Thus, [x] ∩ X∃ = ∅ and [x] ∈ Bout.Consequently,Bin is an inner-approximation ofX∀ and, sinceBout has no intersection withX∃, and
[x0] \ Bout = Bin ∪ Bborder, Bin ∪ Bborder is an outer-approximation of X∃.

Nevertheless, to approximate either X∀ or X∃ with SIVIA, the algorithm has to characterize Bin,
Bout, and Bborder, but the characterization of Bborder may lead to a heavy computational burden when
the vector of parameters is uncertain, see Figure A.7 in Appendix A.3. The reason is that SIVIA is unable
to evaluate whether a box [x] is such that [x] ⊂ X∃ \ X∀. Besides, if [p] is large, then it is likely that
X∃\X∀grows. Moreover, since [x0]\(Bout ∪ Bin) = Bborder, thenBborder is also an outer-approximation
ofX∃ \X∀. Consequently, the more uncertain [p] is, the larger the number of boxes with width ε there
are in Bborder and, thus, the computational complexity increases.

6.2.2 . Thick intervals
The authors of (Desrochers and Jaulin, 2017) propose an adaptation of SIVIA to address set inver-

sion problems involving an uncertain vector of parameters. Their approach has led to the introduction
of thick intervals. This section briefly recalls thick intervals, thick functions, and how they can be used
to get an inner-approximation ofX∀ or an outer-approximation ofX∃ more efficiently than with SIVIA.
More details may be found in Appendix A.4.

A thick interval JxK is a set of intervals. The lower and upper bounds of the thick interval JxK have
to belong to an interval of lower bounds [x−] and an interval of upper bounds and [x+], i.e.,

JxK =
{
[x, x] ∈ IR | x ∈

[
x−
] and x ∈

[
x+
]}
. (6.30)

A thick box is the Cartesian product of thick intervals.
Consider a thick interval JxK and an interval [x] = [inf ([x−]) ,max ([x+])], where inf ([x−]) is the

lower bound of [x−] and max ([x+]) is the upper bound of [x+]. Then for an interval [a] ∈ JxK, one as
clearly [a] ∈ [x]. Nevertheless, for an interval [a] ∈ [x], we may not have [a] ∈ JxK if the lower bound of
[a] is not in [x−] and the upper bound of [a] is not in [x+]. Figure 6.1 illustrates this property for thick
boxes.
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Figure 6.1 – Illustration of a thick box JxK = [[x−] , [x+]] (not represented) and a box [x] (the dashedbox). The boxes [b1], [b2], and [b3] are included in [x], but [b3] is not included in JxK because its lowerand upper bounds (represented by dots) are not in [x−] and [x+].

To get a thick box for a given function h, one has to evaluate a thick function ⌊h⌉ of h. A thick func-
tion is a set of functions f such that their images, for an inputx, always belong to a box [h− (x) ,h+ (x)]

of known bounds, i.e.,
⌊h⌉ =

{
f ∈ F (X0,Rm) | ∀x ∈ X0,h

− (x) ≤ f (x) ≤ h+ (x)
}
. (6.31)

Then, by evaluating the inclusion functions of h− and h+, one gets a Thick Inclusion Function (TIF) JhK
of h. The image of some [x] ⊂ X0 by the TIF JhK is a thick box, i.e., set of boxes [y,y] ∈ IRm such that
y belong to [h−] ([x]) and y belongs to [h+] ([x]), i.e.,

JhK ([x]) =
{[
y,y

]
∈ IRm|y ∈

[
h−] ([x]) ,y ∈

[
h+
]
([x])

}
. (6.32)

Consequently, if one chooses h− and h+ such thatH ([p]) ⊂ ⌊h⌉, then one can define the sets
X∀ = {x ∈ [x0] | ∀f ∈ ⌊h⌉ , f (x) ∈ [y]} , (6.33)
X∃

= {x ∈ [x0] | ∃f ∈ ⌊h⌉ , f (x) ∈ [y]} . (6.34)
One has X∃ ⊂ X∃ and X∀ ⊂ X∀.

The approach proposed in (Desrochers and Jaulin, 2017) to get more efficiently an inner approxi-
mation of X∀ and an outer-approximation of X∃ consists in using a TIF of h to characterize an inner
approximation ofX∀ and an outer approximation ofX∃. For that aim, the authors of (Desrochers and
Jaulin, 2017) propose the Thick SIVIA algorithm that evaluates two subpavings Bin and Bout using thefollowing tests that involve a TIF JhK of h :
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• If for a box [x] ⊂ [x0], one has JhK ([x]) ⊂ [y], then [x] ⊂ X∀ and [x] ∈ Bin
• If for a box [x] ⊂ [x0], one has JhK ([x]) ∩ [y] = ∅ then [x] ∩ X∃

= ∅ and [x] ∈ Bout
Additionally, if for a box [x] ⊂ [x0], one has JhK ([x]) ∩ [y] ̸= ∅, then one can prove that [x] ⊂ X∃ (see
Sections A.4.3 and A.4.4 in Appendix A.4 formore details for this test). Consequently, a new subpaving
Bpenumbra containing those boxes can be characterized. The method to get Bborder is unchanged, i.e.,if a box [x] ⊂ [x0] does not satisfy the three aforementioned tests, then it is bisected and its resulting
boxes are retested until they are considered too small.

In Appendix A.4, Section A.4.3 presents a version of Thick SIVIA optimized to characterize X∃. In
that section, all boxes [x] ∈ Bpenumbra are such that [x] ⊂ X∃. Section A.4.4 presents another version
of Thick SIVIA to characterize X∃ and X∀. In that section, all boxes [x] ∈ Bpenumbra are such that [x] ⊂
X∃ \ X∀.

This third test, i.e., the one to get Bpenumbra, has been made possible only because thick boxes are
used, see Proposition 30 in Appendix A.4. In fact, for a thick box JxK, this test relies on the upper bound
of [x−] and the lower bound of [x+]. Those bounds are not available with a classic interval. Moreover,
it is this third test that solves the problem of SIVIA because all boxes [x] ∈ Bpenumbra are such that
[x] ⊂ X∃ (or [x] ⊂ X∃ \ X∀ depending of the version of Thick SIVIA that is used). Consequently, the
characterization of X∃ \ X∀ is more efficient.

As illustrated in Figures A.9 and A.10, Thick SIVIA is able to provide more efficiently an outer ap-
proximation of X∃, and thus X∃, as well as an inner-approximation of X∀, and thus X∀, than SIVIA. We
use Thick SIVIA inwhat follows to characterizeP∀

i ((nr, nc)),P∃
i ((nr, nc)),Pg∀i ((nr, nc)), andPgi ((nr, nc)),for any pixel (nr, nc) ∈ N I while taking the uncertain UAV state vector into account.

Besides, since we use interval analysis, we consider that Xu
i can be defined or approximated by a

box [xui ] such that Xu
i ⊆ [xui ].

6.3 . Thick function of hCVS

The setsP∀
i ((nr, nc)),P∃

i ((nr, nc)),Pg∀i ((nr, nc)), andPg∃i ((nr, nc)) can be characterized using SIVIA,see Appendix A.3. Nevertheless, SIVIA is not efficient enough when the set to characterize involves an
uncertain vector of parameters, here it is the uncertain UAV state. The Thick SIVIA algorithm has been
developed to solve the problem of efficiency of SIVIA, but, instead of an inclusion function of hCVS, it
requires a thick inclusion function of hCVS. This section presents a method to get this thick inclusion
function.

According to Appendix A.4.2, a thick function ⌊hCVS⌉ for hCVS is obtained by characterizing two
functions hCVS,− and hCVS,+ such that

∀xu ∈ [xui ] ,∀x ∈ X0,h
CVS,− (x) ≤ hCVS (x,xu) ≤ hCVS,+ (x) . (6.35)

Then, to get a TIF q
hCVSy of hCVSone must get the inclusion functions [hCVS,+] and [hCVS,−] of hCVS,+

and hCVS,−. This can be achieved by evaluating the natural inclusion functions of h+r,c and h−r,c, c.f.,Appendix A.3.2.
This section only presents a method to obtain the upper bound hCVS,+. The approach to obtain

the lower-bound hCVS,− is similar.
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Consider a x ∈ X0 and a xu ∈ [xui ], one has

hCVS (x,xu) =

∥∥∥TFc

i
F (x)

∥∥∥
(pc (xu,x))1
(pc (xu,x))2

 , (6.36)

where (pc (xu,x))ℓ is the ℓ-th coordinate of pc (xu,x). One can remark that, in the transform
T

Fc
i

F (x) = M
Fc

i

Fb
i

(
M

Fb
i

F (x− xu)− x
c,Fb

i
i

)
, (6.37)

= M
Fc

i

Fb
i

M
Fb

i
F

(
x−

(
MF

Fb
i
x
c,Fb

i
i + xu)) , (6.38)

the rotationmatrixMFb
i

Fc
i
andxc,Fb

i
i are assumed to be perfectly known.MF

Fb
i

depends on the uncertain
attitude of UAV i and xu

i is its the uncertain location. Then, according to (3.27), one has pc (xui ,x) =
pFc

i

(
T

Fc
i

F (x)
), where

pFc
i

(
xFc

i

)
=

(
−fc 0 Nc/2
0 −fr Nr/2

)x
Fc

i
1 /x

Fc
i

3

x
Fc

i
2 /x

Fc
i

3

1

 , (6.39)

is a function that returns the 2D coordinates of the projection of some point xFc
i ∈ R3 on the CCD

array
Then, consider a x ∈ X0

hCVS,+ (x) = max
xu∈[xui ]

hCVS (x,xu) , (6.40)

=



max
xu∈[xui ]

∥∥∥MFc
i

Fb
i

M
Fb

i
F

(
x−

(
MF

Fb
i

x
c,Fb

i
i + xu))∥∥∥

max
xu∈[xui ]

(
−fc x

Fc
i

1

x
Fc
i

3

+Nc/2
)

max
xu∈[xui ]

(
−fr x

Fc
i

2

x
Fc
i

3

+Nr/2
)


, (6.41)

=



max
xu∈[xui ]

∥∥∥x−
(
MF

Fb
i

x
c,Fb

i
i,k + xu)∥∥∥

−fc min
xu∈[xui ]

(
x
Fc
i

1

x
Fc
i

3

)
+Nc/2

−fr min
xu∈[xui ]

(
x
Fc
i

2

x
Fc
i

3

)
+Nr/2


. (6.42)

The evaluation of the maximum or the minimum of the norm ∥∥∥TFc
i

F (x)
∥∥∥ and the evaluation of

the maximum or the minimum of the ratio xFc
i

{1,2}/x
Fc

i
3 over the [xui ] is difficult. Instead, we propose
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in Section 6.3.1 and 6.3.2 an approach to obtain a lower and upper bound of these minimum and
maximum and, thus, an upper bound of hCVS,+ and an lower bound of hCVS,−.

Once the upper bound of hCVS,+ and the lower bound of hCVS,− are available, one can characterize
the natural inclusion functions of the upper bound of hCVS,+ and the lower bound of hCVS,− to deduce
a TIF of hCVS.

6.3.1 . Upper bound for the maximum of a norm

Instead of evaluating max
xu∈[xui ]

∥∥∥x−
(
MF

Fb
i

x
c,Fb

i
i,k + xu)∥∥∥, we propose to evaluate an upper bound.

Proposition 20 is introduced to get this upper bound.
Proposition 20. Consider a series of functions gi (p) : R → R, for i ∈ {1, . . .m}. such that

max
p

m∑
i=1

gi (p) ≤
m∑
i=1

max
p
gi (p) (6.43)

min
p

m∑
i=1

gi (p) ≥
m∑
i=1

min
p
gi (p) (6.44)

One has

max
xu∈[xui ]

∥∥∥x−
(
MF

Fb
i
x
c,Fb

i
i + xu)∥∥∥ =

√√√√ max
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(
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MF

Fb
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x
c,Fb

i
i

)
ℓ

)2
)
, (6.45)

where (Mx)ℓ is the ℓ-th coordinate of the vector that results from the matrix-vector product Mx.
Then, with Proposition 20, one has

max
xu∈[xui ]

∥∥∥x−
(
MF

Fb
i
x
c,Fb

i
i + xu)∥∥∥ ≤
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(
xℓ − xuℓ −

(
MF

Fb
i

x
c,Fb

i
i

)
ℓ

)2

. (6.46)

Then, the maximum of this quadratic function can be computed using interval analysis.
6.3.2 . Upper bound for the maximum of a ratio

The maximum of the ratio [y] / [x] between two intervals [x] = [x, x] and [y] =
[
y, y
] lies in the

set { y

x ,
y

x ,
y
x ,

y
x

}. Therefore, the evaluation of max
xu∈[xui ]

(
x
Fc

i
2 /x

Fc
i

1

) is equivalent to compute the extrema
of each coordinates of MFc

i

Fb
i

(
M

Fb
i

F (x− xu
i )− xc,Fb

i

). For that purpose, we introduce the following
proposition
Proposition 21. Consider a function f (p) : R → R and a function g (x) : R → R. We have for all x ∈ R

max
p

(g (x) f (p)) = max

{
g (x)max

p
(f (p)) , g (x)min

p
(f (p))

}
(6.47)

min
p

(g (x) f (p)) = min

{
g (x)min

p
(f (p)) , g (x)max

p
(f (p))

}
(6.48)
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Démonstration. In (6.47),maxp (g (x) f (p)) depends of the sign of g (x). If g (x) ≥ 0, then
max

p
(g (x) f (p)) = g (x)max

p
(f (p)) . (6.49)

Moreover, since minp (f (p)) ≤ maxp (f (p)), then g (x)minp (f (p)) ≤ g (x)maxp (f (p)). If g (x) < 0,
then

max
p

(g (x) f (p)) = g (x)min
p

(f (p)) . (6.50)
Moreover, sinceminp (f (p)) ≤ maxp (f (p)), then g (x)maxp (f (p)) ≤ g (x)minp (f (p)). Consequently,we have for all x ∈ R

max
p

(g (x) f (p)) = max

{
g (x)max

p
(f (p)) , g (x)min

p
(f (p))

}
. (6.51)

The same approach is used to prove (6.48).
According to Proposition 20, one has
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, (6.52)

where [Θu
i ] is a box containing all the possible attitudes of UAV i. The right term is independent of the

UAV state. Therefore, it is constant. The middle term can be obtained using interval analysis. For the
left term, we first introduce the elements of the matrixMFc

i

Fb
i

M
Fb

i
F as follows

M
Fc

i

Fb
i

M
Fb

i
F =

e11 (Θ) e12 (Θ) e13 (Θ)
e21 (Θ) e22 (Θ) e23 (Θ)
e31 (Θ) e32 (Θ) e33 (Θ)

 . (6.53)

Then, we have
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Finally, Proposition 21 can be used to get an upper bound of this maximum.
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6.4 . Characterization of Pi ((nr, nc)) and Pg
i ((nr, nc)) accounting for UAV state uncer-

tainties

With a TIF ofhCVS available, one canuse Thick SIVIA to efficiently characterizePg,∃i ((nr, nc)),P∃
i ((nr, nc)),

Pg,∀i ((nr, nc)), and P∀
i ((nr, nc)).This section explainswhich of these sets canbeused to replacePi ((nr, nc) ,xui ) andPgi ((nr, nc) ,xui ),with xui being the true value of UAV i state vector, to make the target location estimator robust to UAV

state uncertainties.
6.4.1 . Characterization of Pi ((nr, nc))

Assuming the label of the pixel (nr, nc) is either Target orObstacle, then Pi ((nr, nc) ,xu)must inter-
sect the shape of the detected target or the detected obstacle regardless of the UAV state xu ∈ [xui ].According to (6.9), one has Pi ((nr, nc) ,xu) ⊂ P∃

i ((nr, nc)) for all xu ∈ [xui ]. Consequently, if xui ∈ [xui ],where xui is the true value of the state of UAV i, then one will have Pi ((nr, nc) ,xui ) ⊂ P∃
i ((nr, nc)).Therefore, if we manage to characterize P∃

i ((nr, nc)), then we can adapt Propositions 9 and 15 byreplacing Pi ((nr, nc) ,xui ) with P∃
i ((nr, nc)) in order to retain their useful properties even if the UAV

state vector is uncertain.
For that purpose, we can characterize an outer-approximation of P∃

i ((nr, nc)) using the Thick SIVIAdescribed in Appendix A.4.3. Thus, the set P∃
i ((nr, nc)) is the union of the subpavings Bpenumbra and

Bborder.In what follows, when a set X is built using Pi ((nr, nc) ,xu), then, the notation (X)∃means that the
set X is characterized by using an outer-approximation of P∃

i ((nr, nc)) instead of Pi ((nr, nc) ,xu). Thenotation (X)∀would be used to represent that the setX is characterized using an inner-approximation
of P∀

i ((nr, nc)) instead of Pi ((nr, nc) ,xu).
6.4.2 . Characterization of Pgi ((nr, nc))Assuming the pixel (nr, nc) is labeled Ground, then Pgi ((nr, nc) ,xu)must be a subset of Xg that isobserved by UAV i for any possible value of its state vector xu ∈ [xui ]. According to (6.19) , one has

Pg,∀i ((nr, nc)) ⊂ Pgi ((nr, nc) ,xu) for all xu ∈ [xui ]. Consequently, if xui ∈ [xui ], where xui is the true valueof the state of UAV i, then one will have Pg,∀i ((nr, nc)) ⊂ Pgi ((nr, nc) ,xui ).Therefore, if we manage to get an inner-approximation of Pg,∀i ((nr, nc)), then we can adapt Pro-
position 14 by replacing Pgi ((nr, nc) ,xui )with Pg,∀i ((nr, nc)) in order to retain its useful properties evenif the UAV state vector is uncertain.

For that purpose, we characterize an inner-approximation of Pg,∀i ((nr, nc)) using the Thick SIVIAdescribed in Appendix A.4.4. Thus, the set Pg,∀i ((nr, nc)) consists only of the subpaving Bin.As in Section 6.4.1, in what follows, when a set X is built upon Pgi ((nr, nc) ,xu), then, the notation
(X)∀ means that the set X is characterized by using an inner-approximation of Pg,∀i ((nr, nc)) insteadof Pgi ((nr, nc) ,xu). The notation (X)∃ (only useful for HCVS

i ) is used to represent that the set X is cha-
racterized by using an outer-approximation of Pg,∃i ((nr, nc)) instead of Pgi ((nr, nc) ,xu).
Remark 22. One has Pgi

(
Yg
i

)
=
(
F (xui ) ∩ Xg

)
\ HCVS

i . Therefore, assuming that F (xui ) ∩ Xg = F (xui ) ∩
Xg, the characterization of

(
Pgi
(
Yg
i

))∀ can be achieved by characterizing
(
F (xui ) ∩ Xg

)∀
=
(
Pgi
(
N I))∀

and
(
HCVS

i

)∃. The characterization of (Pgi (N I))∀ is easier to obtain than ⋃(nr,nc)∈N I
(
Pgi ((nr, nc))

)∀. It is
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because
(
Pgi
(
N I))∀ implicitly involves all the pixels. Thus, its characterization is less likely to be empty than

with
(
Pgi ((nr, nc))

)∀ (the latter being an inner-approximation of the portion of the ground observed by only
one pixel instead of the camera). The characterization of

(
Pgi
(
N I))∀ can be performed with (6.19) but with

[
y
g
i,r,c

]
=

[0, dmax]
[0, Nc]
[0, Nr]

 . (6.56)

The characterization of
(
HCVS

i

)∃ can be performed by evaluating the union of the outer-approximations of
Pg,∃i ((nr, nc)) over all pixels (nr, nc) ∈ Yo

i ∪ Y t
i ∪ Yn

i .

6.5 . Inverse of the measurement function

This section considers the special case where the function hCVS is bijective, and how the inverse
of hCVS can be used.

6.5.1 . Bijection
Consider a point xFc

i ∈ F (xui ) \ {xc
i}. According to (3.17), the coordinates (c, r) in the CCD array of

the projection of the point xFc
i are
(
c
r

)
=

(
−fc 0 Nc/2
0 −fr Nr/2

)x
Fc

i
1 /x

Fc
i

3

x
Fc

i
2 /x

Fc
i

3

1

 . (6.57)

Therefore, the set of points xFc
i such that pFc

i

(
xFc

i

)
= (c, r)T is

p−1
Fc

i
(c, r) =


(
x
Fc

i
1 , x

Fc
i

2 , x
Fc

i
3

)T
∈ R2 × R+∗ |

(Nc
2 − c

) x
Fc
i

3
fc(

Nr
2 − r

) x
Fc
i

3
fr

 =

(
x
Fc

i
1

x
Fc

i
2

) , (6.58)

which is a half-line starting from theorigin. Similarly, the set of pointsxFc
i such that∥∥xFc

i

∥∥ = D0
i (nr, nc)

is the sphere B
(
(0, 0, 0)T ,D0

i (nr, nc)
) (not the ball B (., .)).

Consider a point x∗ ∈ F (xui ) \ {xc
i} such that hCVS (x∗) =

(
D0

i (nr, nc) , c, r
)T . This point is the

intersection between B
(
(0, 0, 0)T ,D0

i (nr, nc)
) and p−1

Fc
i
(c, r). Consequently, the inverse of hCVS is

hCVS,−1 (y,xui ) = D0
i (nr, nc)
ν (c, r)

MF
Fb

i
M

Fb
i

Fc
i

(Nc
2 − c

)
/fc(

Nr
2 − r

)
/fr

1

+MF
Fb

i
x
c,Fb

i
i + xu

i , (6.59)

with y =
(
D0

i (nr, nc) , c, r
)T and
ν (c, r) =

√((
Nc
2 − c

)
/fc
)2

+
((

Nr
2 − r

)
/fr
)2

+ 1. (6.60)
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6.5.2 . Exploitation of the bijection

According to the Proposition 23, an inclusion function of (hCVS)−1 can be used to characterize an
outer-approximation of P∃

i ((nr, nc)).
Proposition 23.

[(
hCVS

)−1
] ([

yt/oi,r,c

]
, [xui ]

)
⊃ P∃

i ((nr, nc))

Démonstration. According to (6.23), onehas (hCVS)−1
([

yt/oi,r,c
]
, [xui ]

)
⊂
[(
hCVS)−1

] ([
yt/oi,r,c

]
, [xui ]

). Consi-
der xu ∈ [xui ], (hCVS)−1

([
yt/oi,r,c

]
,xu
) is the set of the possible points belonging to the shape of the

detected entity (target, obstacle,...) while assuming that the state of UAV i is xu. Thus, one has(
hCVS)−1 ([

yt/oi,r,c
]
,xu) = {x ∈ X0 | ∃y ∈

[
yt/oi,r,c

]
,x =

(
hCVS)−1

(y,xu)
}
. (6.61)

Since this is true for all xu ∈ [xui ], one deduces(
hCVS)−1 ([

yt/oi,r,c
]
, [xui ]

)
=
{
x ∈ X0 | ∃xu ∈ [xui ] , ∃y ∈

[
yt/oi,r,c

]
,x =

(
hCVS)−1

(y,xu)
}
, (6.62)

= P∃
i ((nr, nc)) . (6.63)

Consequently, [(hCVS)−1
] ([

yt/oi,r,c
]
, [xui ]

)
⊃ P∃

i ((nr, nc)).
Note that a similar property can be deduced for Pg,∃i ((nr, nc)) but, in that case, we recall that the

first component of [ygi,r,c] is [0, dmax] which can be troublesome.
The reason is that [(hCVS)−1

] ([
y
g
i,r,c
]
, [xui ]

) is a subset of X0 (and not Xg) containing all points
whose distance from xc

i is between [0, dmax]. This can result in a set that is too large to be useful.

6.6 . Simulation results

This chapter presents an adaptation of the set-membership estimator introduced in Chapter 4
in order to account for the UAV uncertainty. This section presents simulation results related to the
characterization of set estimates that are guaranteed to contain or to not contain a target location
from CVS measurements obtained at a given time instant. Thus, the time index is omitted in this
section.

6.6.1 . Simulation conditions
The simulation conditions are similar to those presented in Chapter 4. Five cars are placed in

front of a UAV whose actual state vector (position and attitude only) is xui = (0, 0, 50, 0, 0, 0)T. The
locations of each target are (60, 0, 0)T, (90, 0, 0)T, (120, 0, 0)T, (150, 0, 0)T, and (180, 0, 0)T. Figure 6.2
recalls the considered organization of the targets. The camera produces images that are subsampled
to get an image of size Nr ×Nc = 360× 480 pixels. The bounds of the noise associated to the depth
measurement are taken as [w,w] = [−1%, 1%].

To represent the uncertain UAV state, we consider
• (Uncertainty 1) [wx,1] = [±0.1m,±0.1m,±0.1m,±0.1deg,±0.1deg,±0.1deg]T
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• (Uncertainty 2) [wx,2] = [±5m,±5m,±0.1m,±0.1deg,±0.1deg,±0.1deg]T
• (Uncertainty 3) [wx,3] = [±0.1m,±0.1m,±0.1m,±0.1deg,±0.1deg,±5deg]T
• (Uncertainty 4) [wx,4] = [±5m,±5m,±0.1m,±0.1deg,±0.1deg,±5deg]T

and Xu,ℓ
i = xui +

[
wx,ℓ], ℓ = 1, . . . , 4.

The threshold ε for Thick SIVIA is set to 2 meters. The algorithm stops bisecting a box if all its
dimensions are smaller than 2meters. In addition, we assume that F (xui )∩Xg = F (xui )∩Xg, i.e., dmaxis not taken into account.

Image Segmentation

Figure 6.2 – Illustration of some of the CVS measurements that a UAV can acquire in a situation withno obstacles. All targets are identified and the pink boxes represent their location in the image.

6.6.2 . Adaption of the set-membership estimator

This section introduces a change of notation regarding the set estimates Pti,j , Xt,m
i,j , Xt,m

i,j , Xt
i,j , Xt

i,
Pgi
(
Yg
i

),Xo
i ,Xo

i , andHCVS
i tomake a clear distinction between the set estimates that are obtainedwhen

the UAV state vector is perfectly known, and the set estimates that are obtained from P∃
i ((nr, nc)) and

Pg,∀i ((nr, nc)). The set estimates introduced in Section 4.2 are adapted as follow :
• The union of the P∃

i ((nr, nc)) over all the pixels (nr, nc) ∈
[
Y t
i,j

]
∩ Y t

i provides
(
Pti,j
)∃

• The characterization from (
Pti,j
)∃ of the set estimate containing the location of the identified

target j is denoted (Xt,m
i,j

)∃
The set estimates introduced in Sections 4.3 and 4.4 are adapted as follow :

• The union of the Pg,∀i ((nr, nc)) over all the pixels (nr, nc) ∈ Yg
i provides (Pgi (Yg

i

))∀
• The union of the Pg,∃i ((nr, nc)) over all the pixels (nr, nc) ∈ Yo

i ∪ Y t
i ∪ Yn

i provides (HCVS
i

)∃
• The characterization from P∃

i ((nr, nc)) of the an inner-approximation of the rtos -ground neigh-
borhood of all the obstacles is denoted (Xo

i )
∃

• The characterization from (
Xt,m
i,j

)∃ of an set estimate that cannot contain any target location
except xt,g

j is denoted (Xt,m
i,j

)∃
The set estimates introduced in Sections 4.5 are adapted as follow :

• The set estimate containing all the possible locations of an identified target j is denoted (Xt
i,j

)∃
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• The set estimate containing all the possible locations of the targets that are not identified yet is
denoted (Xt

i

)∃
• The set estimate representing an inner-approximation of the rtos -ground neighborhood of all
the obstacles is denoted (Xo

i )
∃

6.6.3 . Characterization of a set estimate containing no target location
In this section, we only evaluate the capacity of the proposed approach to characterize the portion

of the ground that the UAV has observed while accounting for its uncertain state vector.
First, Xu,2

i has been considered for the uncertain state. Figure 6.3 illustrates (Pgi (N I))∃, i.e., the
portion of the ground that UAV imay have seen from at least one possible value of its state xu ∈ Xu,2

i ,
and (Pgi (N I))∀, i.e., the portion of the ground that UAV i has seen whatever its state xu ∈ Xu,2

i .(
Pgi
(
N I))∀ is represented by the green setwhereas (Pgi (N I))∃ is the union of the sets in green, yellow,

and blue.
The set (Pgi (N I))∀ is contained in the true FoV of theUAV (red), i.e.,F (xui )∩Xg. This result was to be

expected, since (Pgi (N I))∀ is an inner-approximation of⋂
xu∈Xu,2

i

(
F (xu) ∩ Xg

). Similarly, it was to be
expected that the set (Pgi (N I))∃ contains F (xui ) ∩ Xg because (Pgi (N I))∃ is an outer-approximation
of ⋃

xu∈Xu,2
i

(
F (x) ∩ Xg

). The main difference between (Pgi (N I))∃ and (Pgi (N I))∀ is that (Pgi (N I))∀
is the portion of the ground that UAV i can guarantee to have monitored. The points belonging to(
Pgi
(
N I))∃ \ (Pgi (N I))∀ may have been observed, but no proof is available.
Therefore, whenUAV i exploits assumption (3.54) and the pixels labeledGround to characterize an

area that cannot contain a target location, it has to characterize two sets. The first one is (Pgi (N I))∀
because it represents the portion of the ground that UAV i can guarantee to have monitored. The
other set is (HCVS

i

)∃ because it represents the portion of the ground that may have been masked by
a target, an obstacle, or something else. Then, according to Remark 22, (Pgi (Yg

i

))∀
=
(
Pgi
(
N I))∀ \(

HCVS
i

)∃.
Figure 6.4 illustrates the set (Pgi (N I))∀ that can be obtained for different UAV state uncertainties.

The true FoV of UAV i, i.e., F (xui ) ∩ Xg, is represented by the set with a black border.
To evaluate the impact of the UAV state uncertainty on the characterization of (Pgi (N I))∀, and

since (Pgi (N I))∀ ⊂
(
F (xui ) ∩ Xg

), we propose to compute the ratio between the area of (Pgi (N I))∀
and the area of F (xui ) ∩ Xg, i.e.,

ϕFoV
(
Xu,ℓ
i

)
=
ϕ
((

Pgi
(
N I))∀)

ϕ
(
F (xui ) ∩ Xg

) . (6.64)

With Uncertainty 1, we have ϕFoV (Xu,1
i

)
= 82.2 %. This means that only 82.2 % of F (xui ) ∩ Xg can

be guaranteed to have beenmonitored. This percentage decreases to 66.2%with Uncertainty 2, then
63.2 % with Uncertainty 3, and 43, 5 % with Uncertainty 4.

6.6.4 . Fully-visible Target location estimation
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Figure 6.3 – Representation of (Pgi,k (N I))∃ where Bin is in green, Bpenumbra is in blue, and Bborder is inyellow. The red set is the true intersection of the UAV FoV with the ground when the state is perfectlyknown.
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Figure 6.4 – Illustration of (Pgi (N I))∀ for different values of UAV state uncertainties. The set with ablack border is F (xui ) ∩ Xg. The black dots represent the 5 target locations.

Figure 6.5 illustrates three different evaluations of the set containing the location of an identified
target j. Here, only the target whose location is (60, 0, 0)T is considered. Uncertainty 4 has been used
to characterize the following sets.

The green set is Xt,m
i,j obtained without UAV state uncertainty. The set with a red border and the

blue set represent (Xt,m
i,j

)∃ where (Pti,j)∃ is obtained as the union of the sets P∃
i ((nr, nc)) over all

pixels (nr, nc) ∈ [Y t
i,j

]
∩Y t

i . The difference between the set with a red border and the blue set is how
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P∃
i ((nr, nc)) is characterized. For the set with a red border, P∃

i ((nr, nc)) is obtained by only evaluating[(
hCVS)−1

] ([
yt/oi,r,c

]
, [xui ]

). Thus,P∃
i ((nr, nc)) is only onebox. For the blue set,

[(
hCVS)−1

] ([
yt/oi,r,c

]
, [xui ]

)
is used as the starting box for Thick SIVIA in order to get a smaller outer-approximation ofP∃

i ((nr, nc)).The green set is only here for the sake of size comparison.
The blue set is (a little) smaller than the set with a red border. This result was to be expected

since we use Thick SIVIA to remove a portion of [(hCVS)−1
] ([

yt/oi,r,c
]
, [xui ]

) that are not in P∃
i ((nr, nc)).Nevertheless, the set with a red border is obtained in 0.08 second, whereas the blue set is obtained

in 119.03± 0.36 seconds 1. This drastic increase in computation time is because UAV i has to run a 3D
Thick SIVIA to get an outer approximation of P∃

i ((nr, nc)) for every pixel (nr, nc) ∈
[
Y t
i,j

]
∩ Y t

i , whichis around 400 pixels in this case.
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Figure 6.5 – Comparison between two different approaches to get an outer-approximation of (Xt,m
i,j

)∃.
The set with a red border is obtained by an approach that does not use Thick SIVIA whereas the blueset is obtainedwith an approach that uses Thick SIVIA. The green set represents the setXt,m

i,j thatwouldbe obtained if there are no UAV state uncertainties. The black dot represents the target location.
Figure 6.6 compares the set estimates that arewould be obtainedwithout UAV state uncertainties,

with the set estimates that are obtained when Uncertainty 1 is considered. The set estimates Pgi (Yg
i

)
and (Pgi (Yg

i

))∀ are represented by the blue sets, pg (Pti,j) and (pg (Pti,j))∃ are represented with by
the sets with a red border, and Xt,m

i,j and (Xt,m
i,j

)∃ are represented with the sets with a green border.
The first line of Figure 6.6 is dedicated to the set estimates obtained without UAV state uncertainty,
and the second line is dedicated to the set estimates obtained while taking into account the UAV state
uncertainty.

One can remark that, even though Xt,m
i,j and (Xt,m

i,j

)∃ look similar, Pgi (Yg
i

) and (Pgi (Yg
i

))∀ are not
1. Those results have been averaged over 10 independent simulations run on a computer equipped with aIntel(R) Core(TM) i7-10875H 2.30GHz

158



the same. The reason lies in the characterization of (HCVS
i

)∃. Due to the UAV state uncertainties, UAV i
must evaluate an outer-approximation of the union of the portions of the ground that may have been
masked by a target for each possible value of its state vector. Thus, (HCVS

i

)∃ is larger. Consequently,
even though Xt,m

i,j and (Xt,m
i,j

)∃ are almost the same, a smaller portion of (Xt,m
i,j

)∃ can be removed by
using (Pgi (Yg

i

))∀ to reduce the localization uncertainty.
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Figure 6.6 – Comparison of the set estimates that would be obtained without UAV state uncertainties(first line), with the set estimates that are obtained while considering an uncertain UAV state vector
(second line). For both lines, Pgi (Yg

i

) and (Pgi (Yg
i

))∀ are represented by the blue sets, pg
(
Pti,j
) and(

pg
(
Pti,j
))∃ are representedwith by the setswith a red border, andXt,m

i,j and
(
Xt,m
i,j

)∃ are represented
with the sets with a green border. The black dots represent the target locations.

Figure 6.7 illustrates the performance of the set-membership estimator to provide an accurate
estimation of the target location while accounting for UAV state uncertainties (Uncertainty 1) (right
part of the figure). This performance is compared with the performance of the same estimator, but
when the UAV state vector is precisely known (left part of the figure).

As we expected with Figure 6.6, ϕeR (Xt,m
i,j

) and ϕeR((Xt,m
i,j

)∃) are almost the same. Nonetheless,
when UAV i characterizes the set estimate (Xt

i,j

)∃ during the correction step, c.f., (4.32) (or (4.46)
for a simplified version of the correction), since (Pgi (Yg

i

))∀ is smaller that Pgi (Yg
i

) , a smaller portion
of (Xt,m

i,j

)∃ is removed. Thus, as indicated by the metric ϕeR
((

Xt
i,j

)∃) (the black curve in the right
subfigure), the localization uncertainty is not reduced as much as with ϕeR (Xt

i,j

) (the black curve
in the left subfigure). For instance, if we only consider the target whose location is (60, 0, 0)T, i.e.,
its distance to the UAV is around 78 m, the localization uncertainty without UAV state uncertainty is
around 2.39mwhereas the localization uncertainty when an uncertain UAV state vector is considered
is 4.66± 0.49m
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Strangely, the distance between the actual target location and the barycenter of (Xt
i,j

)∃, i.e.,
ϕc
((

Xt
i,j

)∃) (in red), is smaller when we consider an uncertain state vector. The reason behind this
phenomenon is that (pg (Pti,j))∃ contains xt,g

j because the UAV is able to get some measurements
from the sunroof of the cars. Consequently, (pg (Pti,j))∃ is likely to be centered aroundx

t,g
j , and since

a small portion of (Xt,m
i,j

)∃ is removed by (Pgi (Yg
i

))∀, (Xt
i,j

)∃ is also likely to be centered around x
t,g
j .
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Figure 6.7 – On the left : Mean value and standard deviation over 100 simulations of ϕeR (Xt,m
i,j

) (in
green), ϕeR (Xt

i,j

) (in black), and ϕc (Xt
i,j

) (in red). The UAV state vector is assumed perfectly known.
On the right : Mean value with standard deviation over 10 simulations of ϕeR

((
Xt,m
i,j

)∃) (in green),
ϕeR

((
Xt
i,j

)∃)(in black), and ϕc((Xt
i,j

)∃) (in red). Uncertainty 1 is considered tomodel the UAV state
uncertainties.

Figure 6.8 illustrates the impact that an uncertain UAV state vector has regarding the usefulness
of assumption 3.11.

With Proposition 18, UAV i can exploitsXt,m
i,j to characterize a set estimateXt,m

i,j that cannot contain
the location of any target exceptxt,g

j . In Chapter 4, wehave shownwith Figure 4.19 that this proposition
can be used to prove that almost all the ground that is hidden behind a target cannot contain the
location of another target. This result is useful to further reduce Xt

i,k.
Nonetheless, as illustrated in Figure 6.8, the characterization of (Xt,m

i,j

)∃ from (Xt,m
i,j

)∃, see Appen-
dix A.2, is almost useless, even with rtts = 8m. There are two reasons for this. The first one is that the
characterization of (Xt,m

i,j

)∃ relies on an inner-approximation of the intersection of all the discs of ra-
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dius rtts which have their center in
(
Xt,m
i,j

)∃. Consequently, since(Xt,m
i,j

)∃ is a little bigger thanXt,m
i,j , then

this intersection is either smaller or empty. The second reason is that (HCVS
i

)∃ is larger. Therefore, if
we have (Pgi (Y t

i,j

))∃
⊂
(
Xt
i

)∃, i.e., the portion of the ground masked by target j may contain an uni-
dentified target, then (Xt,m

i,j

)∃ must be even larger than Xt,m
i,j to safely remove (Pgi (Y t

i,j

))∃
∩
(
Xt
i

)∃.
That will not be the case. In fact Φ∆

((
Xt,m
i,j

)∃
,
(
Xt
i

)∃
∩
(
Pgi
(
Y t
i,j

))∃) would be even smaller than
Φ∆
(
Xt,m
i,j ,X

t
i,k ∩ Pgi

(
Y t
i,j

)), where
Φ∆ (X1,X2) = 100ϕ (X1 ∩ X2) /ϕ (X1) (6.65)

evaluates how much X2 overlaps X1.
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Figure 6.8 – Representation of the set estimates (Pgi (Yg
i

))∀ (in blue), (Xt
i

)∃
∩
(
Pgi
(
Y t
i,j

))∃ (in yellow),
and(Xt,m

i,j

)∃ (in green). The black dots are the different target locations. Here, rtts = 8m

6.6.5 . Inner approximation of the rtos -ground neighborhood of an obstacle
Figure 6.9 provides some results regarding the capacity of a UAV with an uncertain state vector

to obtain an inner-approximation of the rtos -ground neighborhood of an obstacle. Different values of
rtos are considered. The UAV state uncertainties that are considered for that figure are :

• [wx] = [±0.1m,±0.1m,±0.1m,±0.1deg,±0.1deg,±0.1deg]T (Fig A)
• [wx] = [±1m,±1m,±0.1m,±0.1deg,±0.1deg,±0.1deg]T (Fig B)
• [wx] = [±2m,±2m,±0.1m,±0.1deg,±0.1deg,±0.1deg]T (Fig C)

In Figure 6.9-A, the UAV is able to characterize (Xo
i )

∃ for each rtos . Nonetheless, as the UAV state un-certainties increase, the UAV has more difficulties in characterizing the rtos -ground neighborhood of
close obstacles. This is even more the case when we look at Figure 6.9-C. The UAV state uncertainty is
mainly about the UAV location, and we only considered an uncertain location of ±2m. Nonetheless,
even with this relatively small UAV location uncertainty, the UAV is unable to characterize (Xo

i )
∃ for

small values of rtos . This is a problem because, since we cannot assume a too large safety distance
between the targets and the obstacles, if the UAV is unable to characterize (Xo

i )
∃ even for close obs-

tacles, then it cannot gain environmental knowledge during its exploration of the RoI. Consequently,
the performance of the implemented strategy to solve the CSAT problem is reduced, c.f., Chapter 5.
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Figure 6.9 – Comparison of (Xo
i )

∃ for different values of rtos and UAV state uncertainties. The red dotrepresents the actual location of the UAV and the set with a black border represents F (xui ) ∩ Xg.

6.7 . Conclusion

This last chapter considers that the UAVs tasked to search for an unknown number of targets
within an unknown environment no longer have access to an accurate estimation of their state vector.
Thus, when a UAV processes its available CVS measurements to update the set estimates that are
guaranteed to contain the location of a target, it has to account for its uncertain state vector. This
is because the CVS measurements are initially expressed in a frame attached to that UAV whereas
the resulting set estimates are required to be expressed in the reference frame F . Consequently, the
target location estimator introduced in Chapter 4 must be adapted to be robust against the UAV state
uncertainties.

Nonetheless, the set estimates characterized and used by the target location estimator are all
built on the set estimates Pi,k ((nr, nc)) and Pgi,k ((nr, nc)). Consequently, we do not need to adapt
the entire algorithm but only the characterization of Pi,k ((nr, nc)) and Pgi,k ((nr, nc)). This chapter pre-sents an approach to characterize a new version of these set estimates, denoted P∃

i,k ((nr, nc)) and
Pg,∀i,k ((nr, nc)), that carry the same useful properties of their predecessors while accounting for an un-
certain UAV state vector. The method used to characterize P∃

i,k ((nr, nc)) and Pg,∀i,k ((nr, nc)) relies on
interval analysis. The characterization of P∃

i,k ((nr, nc)) and Pg,∀i,k ((nr, nc)) can determined by solving
a set inversion problem. Thus, SIVIA may be used to approximate these set estimates with a paving
of non-overlapping boxes. Nonetheless, since this set inversion problem involves an uncertain vector
of parameters (here : the UAV state vector), SIVIA is too computationally expensive. Instead, we use
Thick SIVIA to solve this problem efficiently. To use Thick SIVIA, we introduce a function that relates
a point of the RoI to a depth measurement and the coordinates of a pixel containing the projection
of that point in the CCD array while making the dependency explicit in the UAV state vector. A me-
thod to obtain the thick inclusion function of the measurement function is presented. Then, Thick
SIVIA uses this thick inclusion function to provide either an inner-approximation of Pg,∀i,k ((nr, nc)) oran outer-approximation of P∃

i,k ((nr, nc))more efficiently than with SIVIA.
Several simulations have been performed to evaluate the performance of the target location es-

timator when it has to be robust to UAV state uncertainties. The approach is still able to characterize
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from CVS measurements a set estimate that is guaranteed to contain the location of an identified
target. Nevertheless, the accuracy of the estimated target location is clearly reduced. There are two
possible reasons for this loss of performance. The first one is, since the UAV state vector is uncertain,(
Xt,m
i,j,k

)∃ is larger than Xt,m
i,j,k. Then, the UAV has some difficulties in exploiting negative information,

i.e., the presence of an obstacle, or the detection of the ground, to characterize set estimates that are
guaranteed never to contain a target location. For instance, in Figure 6.9, the UAV may be unable to
exploit pixels labeled Obstacle to characterize a non-empty set around the detected obstacles such
that it never contains a target location. Additionally, the use of Thick SIVIA to process CVS measure-
ments might be a bad approach. According to Figure 6.5, the characterization of (Xt,m

i,j,k

)∃ involves a
sequential execution of Thick SIVIA in a 3D space to get P∃

i,k ((nr, nc)) for each Target-labeled pixels
(nr, nc) ∈ Y t

i,k ∩
[
Y t
i,j,k

]. Since Y t
i,k ∩

[
Y t
i,j,k

]may contain hundreds or thousands of pixels, the charac-
terization of (Xt,m

i,j,k

)∃ would be too demanding for real-time applications.
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Chapter 7 - Conclusion

This thesis addresses the problem of searching, identifying, localizing, and tracking an unknown
number of mobile ground targets in an unknown and cluttered Region of Interest (RoI) using a fleet
of cooperative UAVs. Each UAV embeds a Computer Vision System (CVS) consisting of a camera and
image processing algorithms. The CVS processes the information collected from the perceived envi-
ronment in order to provide some measurements such as a labeled image, a depth map, or a boun-
ding box when a target is identified. These CVS measurements are related to the presence or the
absence of a target or an obstacle and, thus, can be exploited to solve a localization problem in order
to estimate the possible locations of the targets. Once the CVS measurements available at a given
time have been processed, a UAV exploits the updated knowledge about the possible locations of the
identified and unidentified targets as well as its knowledge about the environment, i.e., the location
and shape of the obstacles, to update its trajectory. Moreover, if the UAV can communicate with its
neighbors, then it can update its own knowledge and its trajectory in a cooperative fashion.

To address this problem, formalized as a Cooperative Search, Acquisition, and Tracking (CSAT) pro-
blem, we consider a set-membership approach. Hence, we model the measurement noise and other
uncertainties as bounded with known bounds. This allows to characterize the set estimates that are
guaranteed to contain the location of the targets, provided that the hypotheses on the measurement
models and noise bounds are satisfied. An alternative approach would be to consider stochastic as-
sumptions on the measurement noises. Nonetheless, these assumptions, i.e., the known bounds for
the set-membership approach or the knowledge of the probability density functions for the stochas-
tic approach, are difficult to justify. Moreover, the CVS embedded in each UAV often involves deep
learning algorithms. Consequently, it is difficult to get measurement models and to characterize the
measurement noise of these algorithms since their performance high depends of the training dataset
on which they were trained.

To address these issues, we proposed in Chapter 3 a formalization of the CSAT problem. This
formalization includes assumptions about the structured unknown RoI, the targets, the UAVs, and the
embedded CVS. For instance, the embedded camera is modeled by a simple and common geometric
model, i.e., the pinholemodel without distortion. Regarding the CVS, several assumptions andmodels
have been introduced to describe how the measurements provided by the CVS can be related to the
environment, the targets, and the obstacles. The validity of these assumptions andmodels is arguable,
depending on specific scenario at hand, but they aremild enough tomodel the information contained
in the CVSmeasurements that can be used to localize the targets. Among the proposed assumptions,
the one that has been favored in this thesis is that if a pixel is labeled either Target,Obstacle, orGround,
then that pixel is assumed to be illuminated by light rays stemming only from a target, an obstacle,
or the ground respectively. Besides, Ground-labeled pixels are used along a reasonable observation
condition between a UAV and a target in order to get a negative measurement, i.e., a measurement
that can be used to prove the absence of a target. Additionally, even though this thesis considers
only an RGB camera to collect information from the environment, the proposed framework can be
extended to include other sensors and algorithms that have not been covered in the thesis, such as
thermal cameras.
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These assumptions andmodels are then used to solve a localization problem. Chapter 4 presents
the first (to the best of our knowledge) set-membership target location estimator exploiting directly
multiple measurements provided by a CVS. The proposed estimator exploits the CVS measurements
related to the presence of an identified target to characterize a set estimate that is guaranteed to
contain the location of that target. The estimator also exploits CVS measurements related to the obs-
tacles and the ground to characterize two set estimates that are guaranteednot to contain the location
of a target. Once a UAV has characterized these sets, it updates its previous knowledge regarding the
potential locations of identified and unidentified targets through a prediction-correction process. Ad-
ditionally, if the UAVs have enough computational power, then the CVS measurements can be used
to map the unknown RoI using a 2.5Dmapping approach, i.e., with an Occupancy-Elevation Map. The
purpose of this map is mainly to get a rough approximation of the location and shapes of the a priori
unknown obstacles. Several simulations have been performed to evaluate the performance of the
target location estimator by only considering measurements obtained at a given time instant, and
without a priori. These simulations show that the estimated target location remains accurate (under
2m), even when the depthmeasurement noise is large, or when the a priori known target dimensions
are inaccurate.

Once a UAV has updated its knowledge by exploiting the CVS measurements and the information
broadcast by its neighbors, it updates its trajectory to keep searching for new targets while main-
taining an accurate estimate of the location of the identified targets. Nonetheless, since the targets
are assumed to outnumber the UAVs, a trade-off between searching for new targets and pursuing
already identified targets to maintain an accurate estimation of their location must be found. To ad-
dress this problem, we consider a control design based on a distributed MPC. Chapter 5 presents this
control strategy. Our aim is to update the trajectory of a UAV such that it minimizes the uncertainty
of the estimated location of both identified and unidentified targets. Thus, a criterion that translates
this objective is introduced, and the MPC searches for the sequence of control inputs that minimizes
this criterion. In this chapter, the proposed control strategy is built upon the one presented in (Iben-
thal, 2022). In fact, the proposed simulations evaluate the performance of the criterion proposed in
(Ibenthal, 2022) but with 3 different levels of knowledge regarding the environment. The first level, i.e.,
the one considered in (Ibenthal, 2022), assumes that no environmental knowledge is available to eva-
luate the impact of a sequence of control inputs on the reduction of uncertainty. This first level leads
to trajectories that do not account for the presence of obstacles and, thus, leads the UAVs towards
locations where obstacles may occupy a huge part of their field of view. The second level considers
that the knowledge acquired from the obstacles that are currently under observation can be used to
better evaluate the impact of a sequence of control inputs on the reduction of uncertainty. This level
enables the UAVs to take the presence of some obstacles into account, while evaluating how theymay
reduce their field of view in the future. Unfortunately, since there is nomapping, this approach cannot
predict the impact of the obstacles that are not currently under observation. To address this problem,
a third level is considered. This level takes advantage of a 2.5D map to predict the portion of the RoI
that a UAV would not observe due to the presence of a previously detected obstacle. This prediction
of the hidden areas is used to search for the sequence of control inputs that lead to interesting points
of view to observe an area that may contain a target while avoiding obstacle occlusions. Simulations
in an urban environment have shown that this third level always provides the best target search and
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tracking performance. In addition, a new criterion is proposed to enhance the target search within
a cluttered environment. Nonetheless, the simulations show that this improvement in target search
comes at the cost of a slight decrease in the capacity of the UAVs to maintain an accurate estimation
of the location of identified targets.

Chapter 6 presents the final work of the thesis. It improves the target location estimator presented
in Chapter 4 in order tomake it robust to the state uncertainty of the UAVs. The formalism introduced
in Chapter 3 is unchanged. Only the method to characterize the set estimates that either are guaran-
teed to contain the location of a target or are guaranteed to not contain a target location is adapted.
This adaptation is done by using interval analysis and thick intervals in order to solve this problem
of robustness as a set inversion problem. Nevertheless, even though the simulations show that the
proposed adaption contributes to robust target location estimates, the proposed method requires
too much time to be used in an on-board system.
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Chapter 8 - Perspectives

This chapter presents some research directions thatmay extend thework presented in this thesis.
Each of the following sections highlights a limit of the assumptions, models, and algorithms that have
been considered. Then, different ideas are proposed to address these problemswhile providing some
insights on the difficulties that may be encountered.

8.1 . Imperfect target detection and identification

In Section 3.5, we introduced some assumptions and models to describe the way measurements
provided by the CVS can be related to the environment. Those CVS measurements consist of a depth
map, an RGB image, a classified image, and a set of bounding boxes locating the identified target in
the image. We assumed that the depth map has the same resolution as the image. This can be the
case depending on the type of CVS used, see Section 2.2.

Regarding the image segmentation, we considered, according to (Jiang et al., 2023), that the pixel
classifier is able to evaluate the confidence it has on attributing one of the three considered labels,
i.e., Ground, Target, or Obstacle, to a pixel. If the confidence is too low, then the pixel is considered
Not-labeled and, thus, not used in most of the presented algorithms.

We also consider that a target detector is used. A part of this information is a bounding box that
correctly localizes the target in the image. Using (3.53), the imperfection of target detectors, i.e., with a
bad IoU (Intersection over Union) score, can be handled. Those imperfections may come from a poor
training dataset regarding the actual scenario, or a target located in a crowded place. Then, based on
the algorithm presented in (Oron et al., 2017), we assumed that as soon as a bounding box is available
the target is identified. Nevertheless, we do not account for target misidentification.

8.1.1 . Proposed approach
Trees have not been considered in this thesis because (i) they are not Z-convex and (ii) Webots

have some issues in generating correct CVS measurements when a tree is within the FoV of a UAV.
Regardless of this problem, one would be interested in using the Tree-labeled pixels Y tree to charac-
terize and predict areas where the UAV would have more difficulties to detect/identify a target. This
additional environmental knowledgemay be represented by a set likeXo

i,k, or another OEM to predict
(and avoid) these areas occluded by a tree during the trajectory update.

Regarding the target identification, two problems can be considered :
• how to model the capacity of a UAV to identify a target, and with which confidence
• how to manage non-identification and misidentification

Regarding the first problem, one may assume to have access to Y t
i,j,k and compute the ratio

card (Y t
i,j,k ∩

[
Y t
i,j,k

])
/card (Y t

i,k ∩
[
Y t
i,j,k

]) (8.1)
to estimate, with a given threshold, if the target has been identified or not. Otherwise, one may use
the geometric approach developed in (Ibenthal et al., 2023), or the stochastic approach presented
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in (Meera et al., 2019). Another possible approach is the following : if the UAV has detected but not
identified target j, with j ∈ Lt

i,k−1, then if F(xui,k) ∩ Xg has a non-empty intersection with Xt
i,j,k|k−1

and an empty intersection with Xt
i,k|k−1 and Xt

i,ℓ,k|k−1 for ℓ ∈ Lt
i,k−1 \ {j}, that one can conclude thatthe only possible target in the sensing range is target j

However, non-identification is not a problem with our approach because, even if target j is not
identified, the projection of its location on the image, i.e., pc

(
xui,k,xt,g

j,k

), cannot belong to a Ground-
labeled pixel, see Section 3.6 of Chapter 3. Therefore, the location of a non-identified target j cannot
be removed from Xt

i,j,k|k−1 or Xt
i,k|k−1 by Pgi,k

(
Yg
i,k

).
For misidentification, one can take inspiration from (Ibenthal et al., 2020) to improve the target

location estimator. Additionally, in (Zagar et al., 2022) a robust approach has been developed (not
presented in this thesis) to estimate the location of a target from a list of set estimates where some
of them are outliers, i.e., there is a target misidentification or the measurement noise bounds have
been violated. This list is the collection of set estimates provided by neighboring UAVs, e.g., Xt

i,j,k|k−1,
Xt,m
i,j,k and Xt,m

ℓ,j,k with ℓ ∈ Ni,k \ {i}. Then, instead of using the basic intersection, as in Section 4.5.3
of Chapter 4, one can use the q-relaxed intersection to obtain a set that has a high chance of contai-
ning the target location while identifying which UAV has generated the outliers. Figure 8.1 illustrates
different set estimate intersections while considering an outlier.

No outlier Soft outlier Hard outlier
Figure 8.1 – Estimation of the location of a target (black dot) from several set estimates. The greensets are the set estimates that are guaranteed to contain the target location. The orange set estimaterepresents an outlier. The left part shows a situation where no outlier is present. The middle partshows a situation with one outlier. However, since the intersection of the 3 sets is not empty, theerror cannot be detected. The right part shows a similar situation but where the intersection of the 3sets is empty. The presence of the outlier can be detected and rejected using q-relaxed intersection.

8.2 . Uneven ground

One of our assumptions regarding the environment was to assume that the ground Xg is a flathorizontal plane of known altitude. This assumption has been used to characterize Pgi,k ((nr, nc)). This
set is used to either characterize portions of the ground that are free of obstacles, i.e., Pgi,k

(
Yg
i,k

)
without accounting for the depth map, or approximate portions of the ground that are hidden be-
hind an obstacle HCVS

i,k . Additionally, Xg allowed to evaluate HOEM
i,k

(
xu,P
i,k+τ |k

), with τ = 1, . . . h. With an
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unknown uneven ground Xg, the UAV is no longer able to get those sets.
8.2.1 . Proposed approach

As illustrated in Figure 8.2, Webots is able to create an uneven ground. Thus, a new challenge is
how the UAVs can gain knowledge regarding the ground from CVS measurements.

One can adapt the proposed approach to approximate the location and shape of the obstacles
using the OEM to approximate the shape of the ground. With this approach, empty cells of the OEM
will no longer have an elevation of 0. Instead, Pi,k ((nr, nc)) can be used for each Ground-labeled pixelto estimate locally the height of the ground, and update the map accordingly. The OEM is then used
to approximate the uneven ground in order to characterize Pgi,k ((nr, nc)) or HOEM

i,k .
Nonetheless, assuming an unstructured uneven ground may lead to situations where Assump-

tion 3.54 is no longer verified. This assumption is mandatory for the proposed target location estima-
tor since it allows to characterize a set that is guaranteed to contain no target location. Consequently,
to apply the target location estimator detailed in this thesis, one may have to assume a structured
uneven ground.

Figure 8.2 – Illustration of the city setup with uneven ground created on Webots for the simulation inChapter 5.

8.3 . Relaxation of the Z-convex obstacle assumption

One of our strong assumptions is (3.1) which, according to (Zhang et al., 2023), considers that all
the obstacles in an urban environment are Z-convex. This assumption strongly limits the possible ap-
plication scenarios since tunnels, bridges, or buildings similar to the Pisa Tower may be encountered.

8.3.1 . Proposed approach
Assumption (3.1) has been made so that UAV i is able to process any Obstacle-labeled pixels to

define an area in the neighborhood of the obstacle footprint, i.e., Som ∩ Xg, that is guaranteed to notcontain any target locations. Besides, we only consider ground targets. Consequently, they only evolve
around the base of the obstacles. Thus, whenUAV i characterizesPi,k ((nr, nc)) for anObstacle-labeledpixel, thenUAV i can evaluate if (nr, nc) is looking at the base of the obstacle. Consequently, by definingthe base of an obstacle as

So,basem = Som ∩
{
x ∈ X0 | x3 ∈

]
−∞, ht]} , (8.2)
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since a target is assumed to never collide with an obstacle, then if the UAV is able to prove that an
Obstacle-labeled pixel is related to the base of an obstacle, this pixel can be used to characterize of
Xo
i,k. This approach allows the presence of T-shape or V-shape obstacles within the RoI since the ’roof’of those obstacles is not taken into account, see Figure 8.3.

Figure 8.3 – Illustration of a T-shape obstacle observed by a UAV. The green area is{
x ∈ X0 | x3 ∈

[
0, ht]}. Pixels p1 and p2 are labeled Obstacle. p1 cannot be related to the base of theobstacle because Pi,k (p1) (purple set) does not intersect with So,basem . p2 can be related to the base ofan obstacle because Pi,k (p2) (orange set) is included in the green area.
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Chapter A - Appendix

A.1 . Alternative target location estimator

This appendix considers how to design the target location estimator presented in Chapter 4 when
either Assumption 5 or Assumption 6 is considered instead of Assumption 4. Since the only modifica-
tion to the estimation process is the change of the assumption used to model how a pixel label can
be related to the environment, only the approaches to characterize the sets Xt,m

i,j,k, Xo
i,k, and Xt,m

i,j,k areadapted. The prediction-correction process is unchanged. To lighten the notations in this appendix,
the time index is omitted.

A.1.1 . Target localization - Assumption 2
Consider that Assumption 5 is used for Target-labeled pixels. This assumption states that if a pixel

(nr, nc) is labeled Target, then there exists at least one light ray v ∈ V t
i (nr, nc) that illuminates the

pixel (nr, nc)while stemming from a detected target. Nonetheless,V t
i (nr, nc) ⊂ Vi (nr, nc) is unknown.Consequently, only Vi (nr, nc) can be considered and, thus, the definition of Pi ((nr, nc)) introduced in(4.1) is unchanged.

Nonetheless, the proof of Proposition 9 must be adapted.
Proposition 24. If (nr, nc) ∈ Y t

i , then there exists ℓ ∈ N t such that Pi ((nr, nc)) ∩ St
(
xtℓ
)
̸= ∅.

Démonstration. If (nr, nc) ∈ Y t
i , then according to Assumption 5, there exists a target ℓ ∈ N t such

that there exists v ∈ V t
i (nr, nc) ⊂ Vi (nr, nc) such that ∃x∗ ∈ St (xtℓ) ⊂ X0 such that dv (xc

i , {x∗}) =
D0

i (nr, nc). This leads to have dv (xc
i , {x∗}) ∈ [Di] (nr, nc). In addition, as (nr, nc) ∈ Y t

i ⊂ Yi, then wehave 1
1+wDi (nr, nc) ⩽ dmax and dv (xc

i , {x∗}) ⩽ dmax according (3.36). Therefore, x∗ ∈ F (xui ). Finally,from (4.1), we have x∗ ∈ Pi ((nr, nc)). So Pi ((nr, nc)) ∩ St (xtℓ) ̸= ∅.
The strong hypothesis in Assumption 5 is that the light ray v that is used to define D0

i (nr, nc) isconstrained to belong to V t
i (nr, nc) (assuming that the pixel (nr, nc) is labeled Target). If we do not

have this strong hypothesis, then we might be in the case where the depth measurement is related
to an entity (ground, obstacle,...) behind the detected target. See Figure A.1 as an illustration of this
issue.

Then, Proposition 10, Corollary 11 and Proposition 13 are unchanged.
A.1.2 . Target localization - Assumption 3

Here, Assumption 6 is considered for the Target-labeled pixels. This assumption states that all the
information associated to a pixel (nr, nc) can be related to the information that is carried by the light
ray illuminating the center of (nr, nc), i.e., vc (nr, nc). Compared to Assumption 4 and 5, Assumption 6
clarifies which direction v ∈ Vi (nr, nc) should be used to describe how a Target-labeled pixel can be
related to the environment. Consequently, the definition of Pi ((nr, nc)) can be adapted into

Pi ((nr, nc)) =
{
x ∈ F (xui ) ∩ X0 | dvc(nr,nc) (x

c
i , {x}) ∈ [Di] (nr, nc)

}
. (A.1)
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Figure A.1 – Illustration of an issue with Pi ((nr, nc)) (in orange) for a target-labeled pixel (nr, nc) ∈ Y t
i ∩[

Y t
i,j

] while considering Assumption 5 but without assuming that the vector v such thatD0
i (nr, nc) =

ρ (xc
i ,v) belongs to V t

i (nr, nc) (the purple set). Without that assumption, even though the pixel islabeled Target, Pi ((nr, nc)) does not intersect with the shape of a target.

Figure A.2 – Illustration of the sets Pi ((nr, nc)) (in orange) for different target-labeled pixels (nr, nc) ∈
Y t
i ∩
[
Y t
i,j

] while considering Assumption 6

Figure A.2 illustrated this new definition of Pi ((nr, nc)) for three pixels labeled Target.Then, the proof of Proposition 9 must be adapted
Proposition 25. If (nr, nc) ∈ Y t

i , then there exists ℓ ∈ N t such that Pi ((nr, nc)) ∩ St
(
xtℓ
)
̸= ∅.

Démonstration. If (nr, nc) ∈ Y t
i , then according to Assumption 6, there exists a target ℓ ∈ N t such that

there exists a point x∗ ∈ St (xtℓ) ⊂ X0, such that dvc(nr,nc) (xc
i , {x∗}) = D0

i (nr, nc). This leads to have
dvc(nr,nc) (xc

i , {x∗}) ∈ [Di] (nr, nc). In addition, as (nr, nc) ∈ Y t
i ⊂ Yi, then we have 1

1+wDi (nr, nc) ⩽
dmax and dv (xc

i , {x∗}) ⩽ dmax according (3.36). Therefore x∗ ∈ F (xui ). Finally, from (4.1), we have
x∗ ∈ Pi ((nr, nc)). So Pi ((nr, nc)) ∩ St (xtℓ) ̸= ∅.

Then, Proposition 10, Corollary 11 and Proposition 13 are unchanged.
A.1.3 . Exploiting CVS information to characterize a target-free area

In addition of the set estimate Xt,m
i,j , with j ∈ Dt

i, Chapter 4 introduced 3more set estimates. The
set estimate Pgi

(
Yg
i

) is characterized from Ground-labeled pixels in order to get an area that cannot
contain any target location. The set estimateXo

i is another set that cannot contain any target locationdue to the presence of an obstacle, and is characterized using Obstacle-labeled pixels. Lastly, the set
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estimate Xt,m
i,j represents an area that cannot contain the location of any target except the location of

target j.
According to 3.54, the set estimatePgi (Yg

i

) cannot be characterizedwith Assumption 5 or Assump-
tion 6. Then, the characterization of Xo

i relies on the characterization of the set Pi ((nr, nc)) for pixelslabeled Obstacle. If Assumption 5 is used for them, then nothing changes. If, instead, Assumption 6 is
considered, then the characterization of S ((nr, nc) , rtos ) is simplified since Pi ((nr, nc))will be a simple
segment instead of a set. Lastly, the characterization of Xt,m

i,j relies on Xt,m
i,j . Thus, nothing changes aswell.

A.1.4 . Simulation
To compare Assumption 4, Assumption 5, and Assumption 6, we consider the simulation condi-

tions as in Section 4.7.2 of Chapter 4. Figure A.3 illustrates the performance of the target location
estimator for each of these assumptions while considering the metrics ϕeR and ϕc. Note that since
Pi ((nr, nc)) is the same for Assumption 4 and Assumption 5, those two assumptions are plotted to-
gether in blue. The performance related to Assumption 6 is plotted in green.

Even though the target location estimation uncertainty, i.e., ϕeR (Xt,m
i,j,k

), is lower with Assump-
tion 6, ϕeR (Xt

i,j,k

) and ϕc (Xt
i,j,k

) are very similar. There is no real advantage to consider Assump-
tion 6 instead of Assumption 4 or Assumption 5.
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Figure A.3 – Mean value with standard deviation over 100 simulations of ϕeR (Xt,m
i,j,k

) (dashed lines
- curves at the top of the figure), ϕeR (Xt

i,j,k

) (solid lines - curves in the middle of the figure), and
ϕc
(
Xt
i,j,k

) (broken lines - curves at the bottom of the figure). The green curves are for Assumption 6.
The blue curves are for Assumption 4 and 5.

A.2 . Practical implementation

This section describes an approach to get an outer-approximation of the set estimate Xt,m
i,j,k intro-duced in Section 4.2, an inner-approximation of Xo

i,k and Xt,m
i,j,k introduced in Section 4.3.2 and 4.3.3,
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an inner-approximation of Pgi,k
(
Yg
i,k

) introduced in Section 4.3.1, and an inner-approximation ofHCVS
i,kintroduced in Section 4.4.

Thedetermination ofXt,m
i,j,k,Xo

i,k andXt,m
i,j,k require the characterization ofPi,k ((nr, nc)) andS ((nr, nc) , r).Thus, their characterization is explained as well.

To lighten the notations, the time index is omitted.
The operations (union, intersection, ...) between 2D sets described as polygons are performed

using the polyshape library of MATLAB.
A.2.1 . Characterization of Pi,k ((nr, nc))

Consider a pixel (nr, nc). The set Pi ((nr, nc)), as defined in (4.1), is the intersection of i) the set ofpoints between the sphere of center xc
i and radius 1

1+wDi (nr, nc) and the sphere of center xc
i and

radius 1
1+wDi (nr, nc) and ii) the half cone with apex xc

i and edges MF
Fc

i
v
Fc

i
ℓ,r,c, with ℓ = 1, . . . , 4. The

vectors vFc
i

ℓ,r,c = vFc
i (xℓ,r,c, yℓ,r,c) for ℓ = 1, . . . , 4, with

(xℓ,r,c, yℓ,r,c) ∈
{
(nc, nr − 1) , (nc − 1, nr − 1) ,
(nc, nr) , (nc − 1, nr)

}
.

See Figure 3.7 where the 4 vectors vFc
i

ℓ are represented by the blue lines.
A truncated pyramidal outer-approximation Pi ((nr, nc)) of Pi ((nr, nc)) is easily built. For that pur-

pose, consider the angle θℓ between the v
Fc

i
ℓ,r,c with vc,Fc

i (nc, nr), the unit vector defining the light-ray
illuminating the center of the pixel (nr, nc). The eight vertices defining Pi ((nr, nc)) are

x
p
ℓ = xc

i +
1

1 + w
Di (nr, nc)MF

Fc
i
v
Fc

i
ℓ,r,c, (A.2)

x
p
ℓ = xc

i +
1

cos (θℓ)

1

1 + w
Di (nr, nc)MF

Fc
i
v
Fc

i
ℓ,r,c, (A.3)

with ℓ ∈ {1, 2, 3, 4}. The set P i (nr, nc) =
{
x
p
1, . . . ,x

p
4,x

p
1, . . . ,x

p
4

} contains the vertices defining
Pi ((nr, nc)).

A.2.2 . Characterization of Xt,m
i,j,k

The evaluation ofXt,m
i,j requires the determination of the projection pg

(
Pti,j
) of Pti,j on the ground

Xg, where Pti,j is the union of the sets Pi ((nr, nc)) over all (nr, nc) ∈
[
Y t
i,j

]
∩ Y t

i , see Proposition 13.
Therefore,pg

(
Pti,j
) is the unionof the setspg (Pi ((nr, nc)))over (nr, nc) ∈ [Y t

i,j

]
∩Y t

i . SincePi ((nr, nc)) ⊂
Pi ((nr, nc)) and Pi ((nr, nc)) is a convex set, an outer-approximation of pg (Pi ((nr, nc))) is obtained bycharacterizing the convex hull of pg (Pi ((nr, nc))

). Finally, an outer-approximation of Xt,m
i,j is obtained

as Xg ∩
(
pg
(
Pi,j

)
⊕ Ng

(
{0} , rt)), with pg

(
Pi,j

) being the union of pg (Pi ((nr, nc))
) over (nr, nc) ∈[

Y t
i,j

]
∩ Y t

i .
SinceNg

(
{0} , rt) is just a disc of radius rt and centered at the origin, theMinkovski sum pg

(
Pi,j

)
⊕

Ng
(
{0} , rt) is a dilatation of pg (Pi,j

) by a distance rt, i.e.,
Xg ∩

(
pg
(
Pi,j

)
⊕ Ng

(
{0} , rt)) = Ng

(
pg
(
Pi,j

)
, rt) .
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A.2.3 . Characterization of S ((nr, nc) , r
tos )

According to (4.7), S ((nr, nc) , rtos ) is the intersection of all discs Ng
(
{x} , rtos

) of radius rtos and
of center x taken in pg (Pi ((nr, nc))). Since Pi ((nr, nc)) ⊂ Pi ((nr, nc)), one has pg (Pi ((nr, nc))) ⊂
pg
(
Pi ((nr, nc))

). Consequently
⋂

x∈pg(Pi((nr,nc)))
Ng
(
{x} , rtos

)
⊂

⋂
x∈pg(Pi((nr,nc)))

Ng
(
{x} , rtos

)
. (A.4)

Therefore, we have ⋂
x∈pg(Pi((nr,nc)))

N
(
{x} , rtos

)
⊂ S

(
(nr, nc) , r

tos
)
. (A.5)

Moreover, as Pi ((nr, nc)) is convex, we have⋂
x∈pg(Pi((nr,nc)))

Ng
(
{x} , rtos

)
=

⋂
x∈pg(Pi(nr,nc))

Ng
(
{x} , rtos

)
, (A.6)

An inner approximation of S ((nr, nc) , rtos ) is then obtained as the intersection of, at most, eight discs
eachwith a center in the set pg (P i (nr, nc)

) and of radius rtos . This inner approximation can be compu-
ted with polyshape by approximating each disc Ng

(
{x} , rtos

), with x ∈ pg
(
P i (nr, nc)

), by a polygon
contained in Ng

(
{x} , rtos

) where each of its vertices is a point belonging to the circle associated to
Ng
(
{x} , rtos

).
A.2.4 . Characterization of Xo

i,k and Xt,m
i,j,k

The set Xo
i , introduced in Proposition 17, is the union of the sets S ((nr, nc) , rtos ), for all (nr, nc) ∈

Yo
i . The characterization of an inner-approximation of Xt,m

i,j can be done by characterizing the convex
hull 〈Xt,m

i,j

〉 of Xt,m
i,j .Since Xt,m

i,j ⊂
〈
Xt,m
i,j

〉, then
⋂

x∈⟨Xt,m
i,j⟩

Ng
(
{x} , rtts

)
⊂

⋂
x∈Xt,m

i,j

Ng
(
{x} , rtts

)
. (A.7)

Therefore, we have ⋂
x∈⟨Xt,m

i,j⟩
Ng
(
{x} , rtts

)
⊂ Xt,m

i,j . (A.8)

Moreover, as 〈Xt,m
i,j

〉 is a convex polygon, instead of evaluating the intersection of all the discs of
radius rtts which have their center taken in

〈
Xt,m
i,j

〉, we rather compute the intersection of the discs of
radius rtts which have their center taken as the vertices of

〈
Xt,m
i,j

〉. The same trick used to characterize
an inner approximation of S ((nr, nc) , rtos ) is used here.
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A.2.5 . Characterization of Pgi,k
(
Yg
i,k

)
and HCVS

i,k

The set Pgi (Yg
i

), introduced in (4.6), is the union of sets Pgi ((nr, nc)) for (nr, nc) ∈ Yg
i . Neglectinghere the limitation of the FoV by B (xu

i , dmax) and asXg is a known horizontal plane, Pgi ((nr, nc)) is theconvex quadrangle defined by the intersection of Xg with the half-cone of apex xc
i and edges relatedto the four unit vector vFc

i
ℓ,r,c, with ℓ = 1, . . . , 4, see Figure 3.7.

Pgi
(
Yg
i

) is then the union of the convex quadrangles Pgi ((nr, nc)) for all (nr, nc) ∈ Yg
i . Similarly,

HCVS
i is the union of the convex quadrangles Pgi ((nr, nc)) for all (nr, nc) ∈ Yo

i ∪ Y t
i ∪ Yn

i .To account for B (xu
i , dmax), one can evaluate the disc defined by the intersection B (xu

i , dmax) ∩{
x ∈ R3 | x3 = 0

}, and then intersect the resulting disc with Pgi
(
Yg
i

) or HCVS
i .

A.3 . Interval Analysis and SIVIA

The appendix presents what is interval analysis and the Set Inverter Via Interval Analysis (SIVIA).
Most of what is presented in this appendix comes from (Jaulin et al., 2001).

A.3.1 . Preliminaries
This section introduces interval arithmetic while recalling some results and properties.
An interval [x] = [x, x] of real numbers is defined as the subset of R such that

[x] = {x ∈ R | x ≤ x and x ≤ x} , (A.9)
where x and x are respectively the lower and upper bounds of the interval. Another definition exists
which does not rely on the bounds x and x of the interval but rather on its center x+x

2 and radius x−x
2 .

The set containing all the real intervals is denoted IR. A box [x] ∈ IRn is a vector of n components
where all of its components are real intervals. In Appendix A.4, the notion of thick interval (and thus
thick boxes) is used. A thick interval JxK = J[x−] , [x+]K ∈ IIR is a set of intervals [x] = [x, x] ∈ IR
where their lower and upper bounds have to be contained in an interval of lower bounds [x−] and an
interval of upper bounds [x+], i.e.,

JxK =
{
[x] = [x, x] ∈ IR | x ∈

[
x−
] and x ∈

[
x+
]}
. (A.10)

Let consider a measurement function h : X0 × Rn → Rm such that
y = h (x,p) +w, (A.11)

where y ∈ Rm is themeasurement ofx ∈ X0, p is an unknown vector of parameters ofh, andw ∈ Rm

is the unknown but bounded measurement noise contained in [w] ∈ IRm. The vector of parameters
is assumed bounded and contained in the known box [p]. One may deduce that the interval [y] =
{y} − [w] contains the noise-free measurement, i.e., h (x,p) ∈ [y].

Assuming that x belongs to the shape of an object S ⊂ X0, then, one may estimate the location
of that object from the noisy measurement [y]. Since the vector of parameters p is uncertain, there
exists two solution sets that result from this localization problem. Either one wants to characterize a
set of locations that are consistent with all possible values of the vector of parameters :

X∀ =
{
x ∈ X0 | ∀p ∈ [p] ,x = h−1 ([y] ,p)

}
, (A.12)
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or one wants to get the set of locations that are consistent with at least one value p ∈ [p], i.e.,
X∃ =

{
x ∈ X0 | ∃p ∈ [p] ,x = h−1 ([y] ,p)

}
. (A.13)

Nonetheless, the function h could be non-linear and, thus, hard to inverse. This is why one prefers to
solve the set inversion problem defined by

X∀ = {x ∈ X0 | ∀p ∈ [p] ,h (x,p) ∈ [y]} , (A.14)
X∃ = {x ∈ X0 | ∃p ∈ [p] ,h (x,p) ∈ [y]} . (A.15)

Figure A.4 illustrates X∀ in green and X∃in blue (and green). The black sets correspond to
X (p) = {x ∈ X0 | h (x,p) ∈ [y]} (A.16)

for three different values of p ∈ [p]. Alternative formulations of A.14 and A.15 are
X∀ =

⋂
p∈[p]

X (p) , (A.17)
X∃ =

⋃
p∈[p]

X (p) . (A.18)

Figure A.4 – Illustration of X∀ and X∃. The black sets are potential solution sets for a specific value ofthe vector of parameters.

A.3.2 . Inclusion function
The image of h for some x ∈ X0 and some p ∈ [p] is defined as h (x,p). Thus, the range of h

over [x]× [p] is defined as the set containing all the images of h for any input (x,p) ∈ [x]× [p], with
[x] ⊂ X0. The expression of this set is

h ([x] , [p]) = {h (x,p) | x ∈ [x] ,p ∈ [p]} . (A.19)
Nonetheless, h ([x] , [p]) may be hard or impossible to evaluate due to non-linearities. To approxi-
mate h ([x] , [p]), one may use interval analysis to get an inclusion function [h] of h. By definition, an
inclusion function [h] of h provides a box [h] ([x] , [p]) that contains h ([x] , [p]), i.e.,

h ([x] , [p]) ⊂ [h] ([x] , [p]) . (A.20)
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Figure A.5 – Illustration of an inclusion function and the pessimism induced by this approximation.

Figure A.5 illustrates a possible box that may be obtained for a possible inclusion function [h] of h.
Natural inclusion functions are obtained by replacing arithmetic operations and elementary func-

tions with their interval counterpart, see (Jaulin et al., 2001) for more details.
Using inclusion functions, several properties can be obtained.

Proposition 26. If [h] ([x] , [p]) ⊂ [y], then [x] ⊂ X∀

Démonstration. If [h] ([x] , [p]) ⊂ [y], then, according to (A.20), one has h ([x] , [p]) ⊂ [y]. Therefore,
for all x ∈ [x] and for all p ∈ [p], h (x,p) ∈ [y]. Consequently, [x] ⊂ X∀.
Proposition 27. If [h] ([x] , [p]) ∩ [y] = ∅, then [x] ∩ X∀ = ∅

Démonstration. If [h] ([x] , [p])∩ [y] = ∅, then, according to (A.20), one has h ([x] , [p])∩ [y] = ∅. There-
fore, for all x ∈ [x] and for all p ∈ [p], h (x,p) /∈ [y]. Consequently, [x] ∩ X∀ = ∅.

A.3.3 . Set Inverter Via Interval Analysis
The Set Inverter Via Interval Analysis (SIVIA) (Jaulin and Walter, 1993) can be used to characterize

X∀ or X∃, assuming that an inclusion function [h] of h is available. This algorithm characterizes an
inner and an outer-approximation of X∀ by building iteratively a list of non-overlapping boxes. SIVIA
relies on the properties 26 and 27. The first one allows to test if the image of [x] by [h] while knowing
[p] is included inside [y] to prove that [x] ⊂ X∀, i.e., [x] only contains solutions of the inverse problem
related toX∀. The second allows to test if the image of [x] by [h]while knowing [p] has no intersection
with [y] to prove that [x]∩X∀ , i.e., [x] does not contain any solution. If none of those tests is satisfied,
then [x] is proved to contain at least one solution x1 such that x1 ∈ X∀ while containing at least a
x2 such that x2 /∈ X∀. Therefore, [x] is bisected, and the resulting boxes, i.e., its children, are tested
with the same process. This scheme continues until the tested box is considered too small regarding
some threshold ε to be bisected again.

Starting with an initial box contained in X0, SIVIA provides• a subpaving of boxes Bin such that all [x] ∈ Bin satisfy Proposition 26• a subpaving of boxes Bout such that all [x] ∈ Bout satisfy Proposition 27• a subpaving of boxes Bborder such that none [x] ∈ Bbordersatisfy Propositions 26 and 27 but aredeemed too small to be bisected again.
Consequently, using SIVIA and a starting box sufficiently large to ensure that it contains X∃, one is
able to get an inner-approximation ofX∀ with Bin and an outer-approximation ofX∃ with Bin∪Bborder.
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Bborder has to be considered for X∃ because each [x] ∈ Bborder contains solutions of the inverse pro-blem (A.15).
Figure A.6 illustrates the application of SIVIA when one tries to characterize the set

X =
{
x ∈ [−5, 5]2 | h (x,p) ∈ [2, 4]

} (A.21)
where p = (0, 0)T and h (x,p) = ∥x− p∥.
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Figure A.6 – Characterization of the set defined by (A.21) using SIVIA. Bin is the 304 green boxes. Boutis the red boxes. Bborder is the 920 yellow boxes.
Unfortunately, the capacity of SIVIA to provide an outer-approximation of X∃ is also what made

the algorithm unfit to solve set inversion problems that involve an uncertain vector of parameters,
see Figure A.7 where the vector of parameters p is only known to belong to [−0.5, 0.5]2.

Due to the recursive approach based on testing and bisecting, the termination of the algorithm
only occurs when all the remaining boxes that do not satisfy 26 and 27 are too small to be bisected.
Therefore, since Bborder is also an outer-approximation ofX∃\X∀, if the uncertainty regarding the vec-
tor of parameters [p] becomes large, then it is likely thatX∃\X∀ grows. This leads tomore boxes of the
minimal size in Bborder and thus a higher computational time to only obtain an inner-approximation
of X∀, i.e., Bin.

Figure A.7 – Characterization of the set defined by (A.21) using SIVIA while considering an uncertainvector of parameters.Bin is the 236 green boxes.Bout is the red boxes.Bborder is the 8672 yellow boxes.
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This problem of efficiency comes from the fact that inclusion functions are unable to determine
whether ∀x ∈ [x] , ∃p ∈ [p] such that h (x,p) ∈ [y]. Thick intervals and Thick-SIVIA address this issue,
see (Desrochers and Jaulin, 2017).

A.4 . Thick intervals & Thick-SIVIA

This appendix presents an approach to improve the performance of SIVIA when one want to cha-
racterize as efficiently as possible sets that are defined by either (A.14) or (A.15). Most of what is pre-
sented in this appendix comes from (Desrochers and Jaulin, 2017).

A.4.1 . Set inversion reformulation
Consider the set of functions

H ([p]) = {f ∈ F (X0,Rm) | ∃p ∈ [p] ,∀x ∈ X0, f (x) = h (x,p)}

where F (X0,Rm) is the set of functions going from X0 to Rm. This set contains all the measurement
functions for a specific value p ∈ [p] of the vector of parameters. FromH ([p]), the set X∃ A.15 may be
redefined as

X∃ = {x ∈ X0 | ∃f ∈ H ([p]) , f (x) ∈ [y]} , (A.22)
Similarly to (A.22), an alternative formulation of X∀ is

X∀ = {x ∈ X0 | ∀f ∈ H ([p]) , f (x) ∈ [y]} . (A.23)
To efficiently characterizeX∃ andX∀, one has to resort to thick intervals and thick inclusion functions.

A.4.2 . Thick sets and thick inclusion function
This section introduces the thick function ⌊h⌉ of a measurement function h as well as its thick

inclusion function JhK. Once introduced, several properties are recalled.
A thick function ⌊g⌉ is a set of functions f for which their image f (x), for an input x, always belong

to a box [g (x)] of known bounds. Thus, to obtain a thick function of h, we define for all x ∈ X0

h− (x) = min
p∈[p]

h (x,p) , (A.24)
h+ (x) = max

p∈[p]
h (x,p) , (A.25)

where the minimization and the maximization are performed component-wise. Naturally, one has
∀p ∈ [p] ,∀x ∈ X0,h

− (x) ≤ h (x,p) ≤ h+ (x) . (A.26)
From h− and h+ the thick function defined as

⌊h⌉ =
[
h−,h+

] (A.27)
=
{
f ∈ F (X0,Rm) | ∀x ∈ X0,h

− (x) ≤ f (x) ≤ h+ (x)
} (A.28)
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is such that one has
∀f ∈ H ([p]) , ∀x ∈ X0,h

− (x) ≤ f (x) ≤ h+ (x) . (A.29)
Consequently, the thick function ⌊h⌉ contains, among others, all the functionsH ([p]), i.e.,

H ([p]) ⊂ ⌊h⌉ . (A.30)
Consider now the set

X∃
= {x ∈ X0 | ∃f ∈ ⌊h⌉ , f (x) ∈ [y]} . (A.31)

From (A.22) and (A.30), one has X∃ ⊂ X∃. Similarly, one as X∀ ⊂ X∀ with
X∀ = {x ∈ X0 | ∀f ∈ ⌊h⌉ , f (x) ∈ [y]} . (A.32)

Consider two inclusion functions [h−] and [h+] of h− and h+. A thick inclusion function (TIF) JhK
associated to ⌊h⌉ is the set of all inclusion functions [f ] such that for all [x] ⊂ X0, its image [f ] ([x]) =[
y,y

] satisfies
y ∈

[
h−] ([x]) and y ∈

[
h+
]
([x]) . (A.33)

The TIF JhKmay also be written as JhK = J[h−] , [h+]K, and the image of some [x] ⊂ X0 by the TIF JhK is
the set of boxes [y,y] ∈ IRm such that y belong to the box of lower bounds [h−] ([x]) and y belongs
to the box of upper bounds [h+] ([x]), i.e.,

JhK ([x]) =
{[
y,y

]
∈ IRm|y ∈

[
h−] ([x]) ,y ∈

[
h+
]
([x])

}
. (A.34)

JhK ([x]) is a thick box. Figure A.8 shows an example of a thick box.
Example

Consider the function f (x, p) = x − p. The input x is uncertain but contained in [x] = [0, 10].
Similarly, one assumes to have p ∈ [p] = [0, 15].

Basic interval analysis gives
[f ] ([x] , [p]) = [x]− [p] (A.35)

=
[
x− p, x− p

] (A.36)
= [−15, 10] (A.37)

If one computes the thick function of f , one obtains
f+ (x) = max

p∈[p]
f (x, p) (A.38)

= x− p (A.39)
f− (x) = min

p∈[p]
f (x, p) (A.40)

= x− p (A.41)
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Then, we deduce a TIF of f
JfK ([x]) =

q[
f− ([x])

]
,
[
f+ ([x])

]y
, (A.42)

= J[x]− 15, [x]− 0K , (A.43)
JfK ([0, 10]) = J[−15,−5] , [0, 10]K . (A.44)

As we can see, JfK ([x]) has more information than [f ] ([x] , [p]) because, as an example, [y] =

[−2,−1] is an output impossible to obtain.

Figure A.8 – Illustration a thick box JhiK ([x]) =
q[
h−
i

]
([x]) ,

[
h+
i

]
([x])

y and boxes such that [b1] ∈
JhiK ([x]) and [b2] ∈ JhiK ([x]) but [b3] /∈ JhiK ([x])

Consider a thick box JaK = J[a−] , [a+]K and a box [b] = [b,b]. The following definitions are dedu-
ced from Proposition 7 introduced in (Desrochers and Jaulin, 2017) :

A thick box JaK is included in a box [b], i.e., JaK ⊂ [b] if and only if for all coordinates i ∈ {1 . . .m}
the thick interval JaiK is included in the interval [bi], where

JaiK ⊂ [bi] ⇔ ∀ [ai] ∈ JaiK =
q[
a−i
]
,
[
a+i
]y
, [ai] ⊂ [bi]

⇔

{
bi −

[
a−i
]
⊂ R− and[

a+i
]
− bi ⊂ R−.

(A.45)
A thick box JaK is not included in a box [b], i.e., JaK ̸⊂ [b] if and only if there exists a coordinate

i ∈ {1 . . .m} such that the thick interval JaiK is not included in the interval [bi], where
JaiK ̸⊂ [bi] ⇔ ∀ [ai] ∈ JaiK =

q[
a−i
]
,
[
a+i
]y
, [ai] ̸⊂ [bi]

⇔

{[
a−i
]
− bi ⊂ R− or

bi −
[
a+i
]
⊂ R−.

(A.46)
A thick box JaK has a non-empty intersection with a box [b], i.e., JaK ∩ [b] ̸= ∅ if and only if for

all coordinates i ∈ {1 . . .m} the thick interval JaiK has a non-empty intersection with the interval [bi],
184



where
JaiK ∩ [bi] ̸= ∅ ⇔ ∀ [ai] ∈ JaiK =

q[
a−i
]
,
[
a+i
]y
, [ai] ∩ [bi] ̸= ∅

⇔

{
bi −

[
a+i
]
⊂ R− and[

a−i
]
− bi ⊂ R−.

(A.47)

A thick box JaK has an empty intersection with a box [b], i.e., JaK∩ [b] = ∅ if and only if there exists
a coordinate i ∈ {1 . . .m} such that the thick interval JaiK has an empty intersection with the interval
[bi], where

JaiK ∩ [bi] = ∅ ⇔ ∀ [ai] ∈ JaiK =
q[
a−i
]
,
[
a+i
]y
, [ai] ∩ [bi] = ∅

⇔

{[
a+i
]
− bi ⊂ R− or

bi −
[
a−i
]
⊂ R−.

(A.48)

From those results, several properties can be obtained.
Proposition 28. For some [x] ⊂ X0, if JhK ([x]) ∩ [y] = ∅, then [x] ∩ X∃

= ∅

Démonstration. For some [x] ⊂ X0, if JhK ([x]) ∩ [y] = ∅, then, according to (A.20) and (A.34), one has
⌊h⌉ ([x]) ∩ [y] = ∅. Therefore, ∀x ∈ [x], ∀f ∈ ⌊h⌉, f (x) /∈ [y] which leads to have [x] ∩ X∃

= ∅

Proposition 29. For some [x] ⊂ X0, if JhK ([x]) ⊂ [y], then [x] ⊂ X∀

Démonstration. For some [x] ⊂ X0, if JhK ([x]) ⊂ [y], then, according to (A.20) and (A.34), one has
⌊h⌉ ([x]) ⊂ [y]. Therefore, ∀x ∈ [x], ∀f ∈ ⌊h⌉, f (x) ∈ [y] which leads to have [x] ⊂ X∀

Proposition 30. For some [x] ⊂ X0, if JhK ([x]) ∩ [y] ̸= ∅, then [x] ⊂ X∃

Démonstration. Let assume that we have JhK ([x]) ∩ [y] ̸= ∅ for a [x] ⊂ X0. Consider a x ∈ [x], thus,
JhK (x) becomes a box. However, according to (A.47), we still have JhK (x) ∩ [y] ̸= ∅. Consequently,
according to (A.20) and (A.34), one has ⌊h⌉ (x)∩ [y] ̸= ∅. Therefore, using (A.27), there exists a f ∈ ⌊h⌉
such that f(x) ∈ [y]. Since this is true for any x ∈ [x], one has [x] ⊂ X∃

Proposition 31. For some [x] ⊂ X0, if JhK ([x]) ̸⊂ [y], then [x] ̸⊂ X∀

Démonstration. Let assume thatwehave JhK ([x]) ̸⊂ [y] for a [x] ⊂ X0. Consider ax ∈ [x], thus, JhK (x)
becomes a box. However, according to (A.46), we still have JhK (x) ̸⊂ [y]. Consequently, according to
(A.20) and (A.34), one has ⌊h⌉ (x) ̸⊂ [y]. Therefore, using (A.27), there exists a f ∈ ⌊h⌉ such that
f(x) /∈ [y]. Since, there exist a x ∈ [x] and a f ∈ ⌊h⌉ such that f(x) /∈ [y], one cannot have [x] ⊂ X∀.
Consequently, [x] ̸⊂ X∀.
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A.4.3 . Thick SIVIA without X∀

Assuming a TIF JhK of ⌊h⌉ is available, one can obtain an outer-approximation of X∃ using the
Thick SIVIA algorithm.

Similarly to SIVIA, the Propositions 30 and 28 are used to test if a box [x] ⊂ X0 belongs to X∃ or
if it contains no solution. If one has JhK ([x]) ∩ [y] ̸= ∅, then, according to Proposition 30, one has
[x] ⊂ X∃. Else, if JhK ([x])∩ [y] = ∅, then, according to Proposition 28, one has [x]∩X∃

= ∅. Otherwise,
the box is bisected and retested.

Consequently, the Thick SIVIA provides :
• a subpaving of boxes Bpenumbra such that all [x] ∈ Bpenumbra satisfy 30• a subpaving of boxes Bout such that all [x] ∈ Bout satisfy 28• a subpaving of boxes Bborder such that none [x] ∈ Bbordersatisfy 30 and 28 but are deemed too
small to be bisected again

where Bpenumbra ∪ Bborder is an outer-approximation of X∃ which is a easier to obtain than an outer-
approximation ofX∃ with the SIVIA algorithm, but at the cost of some additional pessimism. Figure A.9
illustrates the characterization by Thick SIVIA of the set (A.21) when the vector of parameters p is only
known to belong to [−0.5, 0.5]2.
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Figure A.9 – Characterization of the set defined by (A.21) using Thick SIVIA while considering an un-certain vector of parameters. Bpenumbra is the 272 blue boxes. Bout is the red boxes. Bborder is the 912yellow boxes.

A.4.4 . Thick SIVIA with X∀

Other tests can be defined to get an inner-approximation of X∀. According to Proposition 29, if
we have JhK ([x]) ⊂ [y] for some [x] ⊂ X0, then we have [x] ⊂ X∀. Nevertheless, boxes satisfying
Proposition 29 also satisfy Proposition 30. Therefore, to avoid an overlapping of boxes, onemay prefer
to approximate X∃ \ X∀ rather than X∃. For that purpose, one must combine Proposition 30 with
Proposition 31 to obtain the following test : if we have JhK ([x]) ∩ [y] ̸= ∅ while having JhK ([x]) ̸⊂ [y]

for a box [x] ⊂ X0, then we have respectively [x] ⊂ X∃ and [x] ̸⊂ X∀. Otherwise, if a box [x] does not
satisfy any test, then it is bisected and its children are retested using the same process.

Consequently, this Thick SIVIA provides :
• a subpaving of boxes Bin such that all [x] ∈ Bin satisfy 29• a subpaving of boxes Bout such that all [x] ∈ Bout satisfy 28
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• a subpaving of boxes Bpenumbra such that all [x] ∈ Bpenumbra satisfy 30 and 31• a subpaving of boxes Bborder such that none [x] ∈ Bbordersatisfy no test but are deemed too
small to be bisected again

where Bin is an inner-approximation of X∀, and Bin ∪ Bpenumbra ∪ Bborderis an outer-approximation
of X∃. Figure A.10 illustrates the characterization by Thick SIVIA of the set (A.21) when the vector of
parameters p is only known to belong to [−0.5, 0.5]2.
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Figure A.10 – Characterization of the set defined by (A.21) using Thick SIVIA while considering an un-certain vector of parameters. Bin is the 236 green boxes. Bpenumbra is the 1752 blue boxes. Bout is thered boxes. Bborder is the 1752 yellow boxes.
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