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Résumé vii

Analysis of variational quantum algorithms for differential equations in the
presence of quantum noise,
application to the stationary Gross-Pitaevskii equation

Résumé

Variational quantum algorithms (VQAs) have been proposed for solving partial differential equations on
quantum computers. This thesis focuses on analyzing VQAs for the stationary Gross-Pitaevskii Equation
(GPE) both under ideal (noiseless) conditions and in the presence of quantum noise, providing error
bounds, convergence properties, and estimates for the number of samples required.
A central concept, make use of a relationship between the representation of functions and functional
operators on dyadic rationals, through the Walsh basis, and the encoding of functions and operators for
N -qubit quantum systems through the Pauli operators and their eigenstates.
In chapter 1, we link Pauli operators of N -qubit quantum systems with the Walsh basis on N -bit dyadic
rationals, presenting new error bounds for the convergence of the N -bit Walsh series for functions in
H1(0, 1) and presenting some results on the representation of Fourier basis functions in the Walsh basis.
In chapter 2 we analyse VQAs for the GPE without noise, detailing the mathematical setting, discretization,
and a-priori analysis. We introduce new energy estimators, either based on the Walsh decomposition of
operators or obtained through inductive methods, and compare them to direct sampling, in the diagonal
basis of the operators, and the Hadamard-test method. Our results show that in the absence of noise
the most promising methods for energy estimation is direct sampling in the diagonal basis, yielding the
lowest variance and sample requirements.
In chapter 3, we further examine the impact of quantum noise on energy estimation. Depolarizing
noise introduces bias and shifts the variance of estimators. We show that the Pauli estimators proves
least affected by noise, due to their lower circuit size requirement, outperforming others both without
mitigation, due to a lower bias, and with mitigation, as its sample efficiency is less affected.
This research provides a foundation for the use of VQAs to solve partial differential equations on
quantum computers, offering realistic estimates of computational costs of the energy estimation part
of the algorithms. Furthermore, the insights gained may aid in the development of practical quantum
algorithms for block encoding of differential operators, and their associated evolution operators.

Mots clés : quantum computing, differential equations, variational algorithms, gross-pitaevskii
equation

Laboratoire Jacques-Louis Lions – Sorbonne Université – Campus Pierre et Marie Curie –
4 place Jussieu – 75005 Paris – France
Eviden Quantum Lab – Avenue Jean-Jaurès – 78340 Les Clayes-sous-bois – France
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Introduction

Solving differential equations on quantum computers: expec-
tation and challenges on current devices

Differential equations are ubiquitous across the fields of science, engineering, and technology,
ranging from modeling physical systems in quantum mechanics to predicting financial markets.
Classical methods for solving partial differential equations, either for high-dimensional or nonlinear
problems, often run into computational bottlenecks. For linear high-dimensional problems, the
curse of dimensionality causes the size of the linear systems to grow prohibitively fast. A simple
example is to study a quantum N -body problem, where the quantum state of the complete system
is a function of R3N and thus even for relatively small number of particles the dimension of
the space being discretized becomes prohibitively large. This leads to two problems, a runtime
problem, since, if we consider Ndisc discretization points per dimension, the numerical solving
of the linear system has a cost of N9N

disc, and a memory problem due to insufficient memory and
data transfer speeds.

For nonlinear problems, the solving of the equations cannot be achieved through single matrix
inversions at each time step. Indeed, in most cases, nonlinear programming [8] or linearization and
fixed-point methods have to be used to achieve convergence which induce considerable overheads.

Quantum computing may provide alternatives by leveraging quantum mechanics to perform
specific computations which cannot be handled by classical computers. This thesis investigates
quantum computational approaches to solving nonlinear differential equations, with a focus on
noisy intermediate-scale quantum (NISQ) devices, i.e. devices with no error correction, and thus
not suited to most algorithms with known computational advantages.

Why we study what we study

In this thesis, we aim to ascertain to which extent variational quantum algorithms can be
used in practice to solve differential equations and to determine the computational cost of such
algorithms. We studied one of the nonlinear problems present in the literature, the Gross-
Pitaevskii equation studied in [68], and restricted ourselves to the study of one step of VQA, the
energy estimation.

Practicality of solving DEs with NISQ devices efficiently

Our methodology to obtain estimates on the algorithm computational cost can be simplified
as follows.

In Chapter 2, we first consider the performance of the algorithm in the absence of noise.

1



2 Introduction

• First, we determine how the convergence rate of the discretized solution approaches the
exact solution as the number of qubits increases. This enables us to set an upper bound
on the precision required in energy estimation for a given number of qubits, as additional
precision does not further reduce the distance of the minimizer from the exact solution.

• Second, we explore alternative estimators with lower circuit depths than the estimators
proposed in [68] for performance comparison, due to the their high sensitivity to quantum
noise.

• Third, we calculate the variance of the estimators and the number of samples needed to
achieve a specified error, which is dependent on the number of qubits.

• Finally, we analyze the number of samples necessary to achieve the required precision in
energy for convergence and compare the performance of the different estimators.

In Chapter 3, we aim to determine the effect of noise on the performance of the algorithm as
compared to the noiseless case.

• Our methodology in this chapter is to first determine the effect of noise on the estimators.
We show that quantum noise introduces a bias and changes the variance of the estimators
which depends on the number of gates in the associated quantum circuit.

• Then we estimate the number of gates contained in the circuits associated with each
estimator and finally we determine the effect of the noise on the estimators.

• We then provide an analysis of the performance of the algorithm both without, and with,
quantum error mitigation.

Chapter 1 is divided into two sections, one on the basics of quantum computing required for
Chapters 2 and 3 and one on the Walsh functional basis in which we define some new results on
the representation of the Fourier basis functions in the Walsh basis, and on convergence rates for
the Walsh series of periodic H1 functions. The results on the Walsh series is used in Chapter 2,
thanks to its link to the Pauli operators, to obtain alternative Pauli estimators for the estimation
of the energy.

Summary of Chapter 1

Key concepts and formalism in quantum computing

In order to understand the inner workings of variational quantum algorithms, a few prerequisites
are mandatory, and first, and foremost, the nature of the underlying structure of quantum systems.
Quantum systems can be described as normalised vectors, denoted by “kets” |·⟩, in a Hilbert
space H, while the vectors of the dual H∗ are denoted by a “bra” ⟨·|. The kets represent the wave
functions, or probability amplitudes, which describe the state of the quantum system.

For a quantum system composed of N qubits, the state space H is the tensor product of
N two-dimensional Hilbert spaces, each associated to a single qubit. The computational basis
BC(H) of H is given by the set of kets {|i1⟩ ⊗ · · · ⊗ |iN ⟩ , i1, . . . iN ∈ {0, 1}} where each |ik⟩ is
the state of the k-th qubit, 1 ≤ k ≤ N . In this computational basis, we denote a state by |i⟩
and its Hermitian conjugate by ⟨i|, where we set i =

∑N
k=1 ik2

N−k+1, a writing of the integer i
following the so-called most-significant-bit-first convention.

In the context of quantum computation, the operations allowed on a quantum systems are
modelled through unitary operators called gates, which act upon a subset of qubits. In practical
implementations, quantum circuits consists of a restricted set of 1 and 2-qubit gates, as any unitary
operation can be approximated by only involving such gates, according to the Solovay-Kitaev
theorem [73]. Then a set of ordered quantum gates applied to specific qubits is called a quantum
circuit.



Summary of Chapter 1 3

Observables in quantum systems are operators corresponding to physical quantities which
can be measured, and which are represented by Hermitian operators on H. The Pauli operators
are traceless and “local” operators, in the sense that they are tensors of 1-qubit Pauli operators,
and that, when combined with the identity matrix, form a basis of L (H). One of the postulates
of quantum physics is that the quantum measurement of an observable O on a state |ψ⟩ yields
an eigenvalue of O and collapses the system into the corresponding eigenstate of O. In the case
of quantum computers, due to the physical constraints, particularly in qubit systems, direct
measurement is typically restricted to the Pauli-Z operators of the individual qubits. This
implies that direct measurement of operators requires the application of a basis change before
measurement, which may induce long circuits.

The expectation value of a generic observable O can be obtained by diagonalizing O and
sampling it in its eigenvector basis. Alternatively, it can be obtained by decomposing O into
the Pauli basis, sampling the associated Pauli operators and summing the contributions of
each component. Finally, the mean value of unitary operators for a state |ψ⟩ can be obtained
through circuits known as Hadamard-test circuits through the controlled application of the unitary
operator on the state |ψ⟩.

As we shall see, the ability to manipulate the state of the quantum system and measure the
associated mean value of operators will allow to encode discretized values of functions and obtain
estimators for the discretized energy functionals. For the Pauli operators, the link between the
functionals and the quantum states can be seen through the Walsh functions.

Walsh functions, analog of Pauli operators for functions on the dyadics

The definition of the Walsh functions is intricately linked to the notion of dyadic rationals,
which we first describe. The dyadic decomposition of a real number x ∈ [0, 1] consists in the
unique binary sequence (xk)k≥1 ∈ {0, 1}N∗

such that

x =

+∞∑

k=1

xk2
−k

and that the sequence is not stationary at the value 1. A dyadic rational is a real number for
which there exists a dyadic decomposition with a finite number of non-zero terms, i.e. it is a
finite sum of negative powers of 2. In the same way, any integer m ≥ 1 admits a unique finite
sequence (mk)k≥1 ∈ {0, 1}N∗

such that

m =

+∞∑

k=1

mk2
k−1.

Furthermore, we define σm as the highest non-zero index of m. The Walsh functions provide a
link between the integers and dyadic rationals. Indeed, given m ∈ N, and x ∈ [0, 1], the m-th
Walsh function is given by

wm(x) = (−1)⟨m,x⟩bin ,

where ⟨m,x⟩bin =
⊕σm

k=1mkxk and
⊕

denotes the sum modulo 2 in N.
Another useful property of the Walsh functions is that they form a Hilbert basis of L2(0, 1)

[85]. The reason why we are interested in this functional basis is that it allows the representation
of arbitrary functions based on the dyadic decompositions of their input variables. For instance,
as we shall see, this is useful when discretizing a function on a regular subdivision of [0, 1] with
2N elements.
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For now, let us focus on the representation of H1
#(0, 1) functions, that is L2 functions on a

periodic unit lattice with L2 weak derivatives. We aim to prove the L2 convergence of the N -bit
truncated Walsh series, the representation of the function on the set of N -bit Walsh functions.

To do so, we first decompose, in Theorem 1, the Fourier basis functions ek : x 7→ exp(i2πkx),
for any k ∈ Z, into the Walsh basis. That theorem states

Theorem (Walsh series of the Fourier basis functions). Let k ∈ Z∗ and K ∈ N the multiplicity
of 2 in the prime factorization of k. Then, for any x ∈ R, we have

exp(i2πkx) =
∑

m∈2N+1

[sign k]
|m|Ham γm,|k/2K |w2Km(x),

where sign k is the sign of k, |m|Ham is the so-called Hamming weight of m and the coefficients
γm,k′ can be explicitly computed with respect to m and k′.

Since the Fourier basis diagonalises the differential operators, this allows to bound, for any
v =

∑
m∈N ṽmwm ∈ H1

#(0, 1), the L2 norm of the associated N -bit truncated Walsh series

ΘNv =

2N−1∑

m=0

ṽmwm,

by its H1 norm ∥v∥H1 . Indeed, as shown in Theorem 3, the following result holds.

Theorem (Walsh series convergence rate). For any v ∈ H1
#(0, 1) and any N ≥ 1, the N-bit

truncated Walsh series associated to v converges towards v in L2(0, 1), with the error estimate

∥ΘNv − v∥L2 ≤
(
1

π
+

1

2
√
3

)
1

2N
∥v′∥L2 .

To prove this result, we use the explicit formulation of the Walsh series of the Fourier basis
functions to bound their L2 norms and get the result through the Fourier series of v. This
convergence result is then the first step to obtain a new Pauli decomposition for our diagonal
operators in Chapter 2.

Summary of Chapter 2

This thesis focuses on the one-dimensional stationary Gross-Pitaevskii equation, a nonlinear
differential equation that has been previously explored within the framework of variational
quantum algorithms [68]. In this chapter, we determine the performance of variational quantum
algorithms in the absence of quantum noise.

Problem discretization
The variational quantum algorithm we consider requires us to calculate the energy of a

test function v at each optimization step. To do so, we must first encode the function on a
quantum computer. In order to provide a solution to this problem, we are led to consider a
Fourier subspace XN = SpanC

(
{ek,−2N−1 − 1 ≤ k ≤ 2N−1 − 1} ∪ {c2N−1}

)
of X = H1

#(0, 1)

where c2N−1 : x 7→ cos
(
2π2N−1x

)
. For any N ∈ N∗, we consider the regular subdivision

ΩN = {xk = khN | 0 ≤ k ≤ 2N}
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of Ω, of step hN = 1/2N .
For a function v ∈ XN , we denote by vN the vector representing v at each point xk of the

subdivision. To represent v on a quantum system, the values of the vector vN are encoded in the
amplitudes of the quantum state in the following way, known as an amplitude encoding,

|ψ⟩ =
√
hNv

N =
√
hN

2N−1∑

k=0

vNk |k⟩ ,

of vN , where ψk =
√
hNv

N
k for any k, 0 ≤ k < 2N .

For the sake of comparison, we introduce the discretized energies based on the finite difference
approximation used in [68], the discretized minimization problem then reads

∣∣∣∣∣∣∣∣

Find uN ∈ XN such that

EN (uN ) = min
vN∈XN

EN (vN ),

∥uN∥L2
N (Ω) = 1,

with

EN (vN ) = KN (vN ) + PN (vN ) + IN (vN ) = −1

2
⟨v,∆Nv⟩L2

N
+ ⟨V, v2⟩L2

N
+
κ

2
⟨v2, v2⟩L2

N
,

and where ⟨·, ·⟩L2
N

is the so-called discrete L2 scalar product and ∆N = 1
h2
N
(τhN + τ−hN − 2I),

with τa is the translation operator by the constant a ∈ R, is the discretized finite-difference
Laplace operator. Note that the amplitude encoding enforces the L2

N normalisation constraint by
default, i.e. ⟨ψ|ψ⟩ = hN

∑2N−1
k=0 |vNk |2 = 1.

Using a methodology similar to the one of [28], we show, in Appendix A.1, that the solution
uN to the discretized problem converges to the solution in H1 norm as O(1/M), where M = 2N

is the number of points in ΩN . Furthermore, the distance between any v ∈ XN and the solution
is bounded by the energy difference, i.e.

∥v − uN∥2H1
≤ C (EN (v)− EN (uN )) .

This allows to determine the precision which will be required on the energy to achieve
convergence of the solution to be of order of 1/M2.

For the energy measurements, we denote, for any operator A ∈ L (H), by ⟨A⟩ψ = ⟨ψ|A |ψ⟩
the mean value of the operator for the state |ψ⟩. This allows to write

⟨KN ⟩ψ = KN (vN ), ⟨PN ⟩ψ = PN (vN ), ⟨IN ⟩ψ = IN (vN ).

Using this description based on |ψ⟩, we propose new methods for the decomposition of such
operators in the Pauli basis. These decompositions will allow to define Pauli estimators which
we will use to recover the energies. For each term, we provide methods to obtain the Pauli
decomposition of the discretized operator.

Pauli decomposition of the kinetic operator

For the kinetic term, while the Pauli decomposition was already obtained in [19, 54] we provide
the Pauli decomposition of a larger class of matrices the Laplacian of which is a particular case.
We introduce the N -qubit k-bidiagonal matrix BNk and provide its Pauli decomposition through
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a geometrical argument. That leads to rewrite the kinetic term as

KN =
1

h2N
IN − 1

2h2N

(
BN1 +BN2N−1

)
.

Then, using the Pauli decomposition of the bidiagonal matrices, we obtain in Proposition 3 the
Pauli decomposition of KN .

Proposition (Pauli decomposition of the kinetic operator). The Pauli decomposition of KN is
given by

KN = α0I
N +

NK∑

k=1

αkPk,

with NK = 3 · 2N−2, we have α0 = 1
h2
N

and, for any k, 1 ≤ k ≤ NK,

|αk| =
{

1
2h2
N
2−(| Supp(Pk)|−2) if Pk|1 = I,

1
2h2
N
2−(N−2) else.

Pauli decomposition of the harmonic potential operator
The potential term in the finite-difference approximation context is obtained as the mean

value of an N -qubit diagonal operator, as shown in [68],

P̃N = diag




V (x0)
...

V (x2N−1)


 = diag V N .

The Pauli decomposition of such an operator can be obtained through a Walsh-Hadamard
Transform (FWHT) for a O(N logN) classical cost [19]. In order to link the Pauli decomposition
to the Walsh series of the function V , we are led to establish the relationship between Walsh
functions and Pauli operators through the Hadamard vectors. We set, for any N -bit positive
integer k, Pk = Zk11 . . . ZkNN , and notice that Pk = diagwNk . Thiat leads to Proposition 6.

Proposition (Relationship between Pauli operators and Walsh functions). Given a nonnegative
integer k < 2N , let |ψ⟩ =

√
hN
∑2N−1
j=0 v(xj) |j⟩, then,

⟨Pk⟩ψ = ⟨Zk11 . . . ZkNN ⟩ψ = ⟨v2, wk⟩L2
N
.

Finally, this proposition allows us to identify the Pauli decomposition of the operator with its
Walsh interpolant, from Definition 8,

P̃N =

2N−1∑

k=0

⟨V,wk⟩L2
N
Pk, IWN V =

2N−1∑

m=0

⟨V,wm⟩L2
N
wm.

We then introduce an analogous Pauli decomposition which we call the Walsh-Pauli decomposition,
based, this time, on the N -bit truncated Walsh series of V ,

PN =

2N−1∑

k=0

⟨V,wk⟩L2Pk, ΘNV =

2N−1∑

k=0

⟨V,wk⟩L2wk.
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This Walsh-Pauli decomposition has a reduced number of non-zero Pauli terms, and has the
advantage of being obtainable directly from the Walsh series of the function. For V = V0(x− 1/2)2,
we obtain the following proposition using the explicit Walsh series for monomials given in [25].

Proposition (Walsh-Pauli decomposition of the potential operator). For V (x) = (x− 1
2 )

2, we
have

PN =
V0
12


IN + 3

N∑

ℓ1=1,ℓ2>ℓ1

2−(ℓ1+ℓ2−1)Zℓ1Zℓ2


 ,

and NP = N(N − 1)/2.

We also prove, using some other convergence results, that the Walsh-Pauli decomposition
converges fast enough to allow the required accuracy for convergence.

Pauli decomposition of the interaction operator

For the interaction term, using the methods devised for the potential operator we show that
the interaction term admits a “squared Pauli” decomposition. Indeed, recall that, given v ∈ X ,

IN (vN ) =
κ

2
⟨v2, v2⟩L2

N
=

κ

2hN

2N−1∑

i=0

|ψi|4 = ⟨IN ⟩ψ.

Using the Walsh series of v2 =
∑∞
k=0⟨v2, wk⟩L2wk, we obtain

I(v) = κ

2
⟨v2, v2⟩L2 =

κ

2

+∞∑

k=0

|⟨v2, wk⟩L2 |2.

and by identifying the ⟨v2, wk⟩L2 terms with ⟨v2, wk⟩L2
N

, we recover the Walsh-Pauli decomposition
of the interaction term in Proposition 9.

Proposition (Squared Pauli decomposition of the interaction operator). The interaction energy
term can be calculated as the following sum of squared Pauli means,

IN (vN ) =
κ

2

2N−1∑

k=0

⟨Pk⟩2ψ,

where, for any k, 0 ≤ k < 2N , Pk = Zk11 . . . ZkNN .

We also notice that, as it turns out, in the case of the interaction term, the Walsh-Pauli and
Pauli decomposition coincide.

Pauli estimators

Endowed with the Pauli decompositions of the different energy operators, we now need to
clarify how we define our Pauli estimators. To do so, we introduce a new framework, sampling
strategies based on complete set of commuting observables (CSCO), which allows us to formalize
the reconstruction of our three energy terms from samples in different bases.

Indeed, we defined sampling strategies to be general enough to define all our estimators,
including the one associated to the interaction term, which is nonlinear.
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We consider in this work two main types of sampling strategies for our Pauli estimators. On
the one hand, the diagonal sampling consists in a change of basis and a measurement of the Z
Pauli observable for each qubit from which we reconstruct eigenvalues of the observable for each
sample. And on the other hand, for the importance sampling, where we estimate an observable
using its Pauli decomposition, we more specifically sample each Pauli term proportionally to its
coefficient in the decomposition. An important thing to note is that the change of basis requires
an additional circuit. This implies that for non-diagonal operators, a consequential overhead in
the number of gates, and thus a higher sensitivity to quantum noise, may be required for such a
strategy, as we shall see in Chapter 3.

We then provide results concerning the general properties, most notably, the variance, of Pauli
operators, this allows us to define Pauli estimators for each energy term, and determine their
associated variance. For the kinetic term, given Nsh > 0 samples, we consider an importance-
sampling estimator,

KNNsh
= α0 +

NK∑

i=1

αiPi
Nish ,

where each Pi
Nish is the empirical mean of the N i

sh Pauli samples attributed to the operator Pi.
and obtain its variance as a direct application of the variance of an importance-sampling Pauli
estimator Proposition 11 to obtain Theorem 5.

Theorem (Kinetic term Pauli estimator variance). The sampling variance is upper-bounded by

VarKNNsh
= ∥α1:∥1

NK∑

i=1

|αi|
(
1− ⟨Pi⟩2ψ

)

Nsh
≤ ∥α1:∥21

Nsh
=

N2

4h4NNsh
=
N216N

4Nsh
.

For the potential term, as the operator is diagonal for both Pauli decompositions, given
Nsh > 0, we consider a diagonal-sampling Pauli estimator

PNNsh
= α0 +

NP∑

i=1

αiPi
Nsh

,

where each Pi
Nsh is the empirical mean of the Nsh samples. Similarly, we obtain its variance,

using Proposition 12, in Theorem 6.

Theorem (Potential term Pauli estimator variance). The variance of the Walsh-Pauli sampling
estimator for the potential term satisfies, for any N ≥ 1,

VarPNNsh
=

⟨(ΘNV )2, v2⟩L2
N
− (⟨ΘNV, v2⟩L2

N
)2

Nsh
≤ ∥ΘNV ∥2L2 − ∥V ∥2L1

Nsh
.

Finally, for the interaction term, we need to introduce a new estimator P 2
i

Nsh
for the squared

Pauli terms in the diagonal basis of the Pi which is the computational basis. This allows to
introduce the interaction term estimator

INNsh
= α0 +

NI∑

i=1

α0P 2
i

Nsh
,

with α0 = κ/2. We then provide, in Theorem 7, the variance for the nonlinear interaction term
estimator.
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Theorem (Interaction term squared Pauli estimator variance). The Pauli sampling estimator of
the interaction term has a variance given by

Var INNsh
=

α2
0

Nsh(Nsh − 1)

[
(6− 4Nsh)⟨v2, v2⟩2L2

N
+ 4(Nsh − 2)⟨v4, v2⟩L2

N
+ 2N+1⟨v2, v2⟩L2

N

]
.

Direct-sampling estimators

We compare the Pauli estimators to the estimators used in the ’hardware-reduced’ algorithm
defined in [68] which we denote as ’direct-sampling’ estimators. We notice that, in the case of linear
operators, these estimators coincide with the diagonal-sampling Pauli estimators. Furthermore,
we show in Theorem 9 that the variance of diagonal/direct-sampling estimators for operators
that come from discretized integrals can be expressed as follows.

Theorem (Diagonal/direct-sampling estimator bias and variance). Given a diagonal operator
D such that, for any i, 0 ≤ i < 2N , Di = d(i/2N ) for a function d ∈ H1

#(0, 1), the mean of the
sampling estimator for D is

⟨D⟩ψ = ⟨v2, d⟩L2
N
,

and the variance of the estimator is given by

Var ĎNsh =
⟨d2, v2⟩L2

N
− ⟨d, v2⟩2

L2
N

Nsh
.

The variance is bounded by the difference of the discrete L2 and L1 norms of d

Var ĎNsh ≤ 1

Nsh

(
∥d∥2L2

N
− ∥d∥2L1

N

)
,

where the discrete L1 norm is defined, for any v ∈ H1, by ∥v∥L1
N
= hN

∑2N−1
k=0 |v(xk)|.

For the nonlinear interaction term, we provide an unbiased version of the estimator given in
[68] and show in Theorem 10, that the new unbiased estimator is equivalent to the Pauli estimator
we introduced earlier.

Hadamard-test estimators

Lastly, we introduce the Hadamard-test estimators used in [68]. A Hadamard test is a type of
circuit allowing the estimation of the mean value of unitaries through Z Pauli observable of the
circuit’s output qubit. Using this, given Nsh samples, we can define a Hadamard test estimator
for an observable A as

ÂNsh = cH + αH
1

Nsh

Nsh∑

k=1

hk,

where hk is a sample of the associated Hadamard-test such that ⟨A⟩ψ = cH + αH⟨Z1⟩ψ,H-test.
Using such decomposition, [68] provides Hadamard-test estimators for each energy term. We
provide variance estimates for these operators and show that there is a slight error in the variance
of the potential term Hadamard-test estimator provided in [68], which we correct.
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Estimator comparison and algorithmic performance

Using the results presented above, we are now able to provide a comparison between the different
algorithms in the case of noiseless quantum hardware. In order to compare the performance of
the estimators in practice, introduce a metric N ϵ

sh, which is the number of samples required for
the estimator to achieve an error ϵ > 0 in the the worst case. For the linear estimators, this
metric reduces to

N ϵ
sh =

VarA
ϵ2

,

while for the Pauli estimator of the interaction term operator, we obtain that the number of
samples required is given by

N ϵ
sh =

1

2

(
1 +

BV
ϵ2

+

√
(1− BV

ϵ2
)2 + 4

BW
ϵ2

)
.

We provide formulae, as well as upper bounds, for the “sampleless” variance N ϵ
sh · ϵ2 for each

energy term. Using this, we show that the direct-sampling/Pauli diagonal-sampling methods
outperform both other methods in all cases, while the Pauli importance-sampling method for the
kinetic term induces a quadratic overhead in N2.

We consider this metric for ϵ = ϵconv = C/M , where M = 2N is the number of discretization
points, i.e. Card(ΩN ), the accuracy required for convergence in order to estimate practically
how many samples would be required to obtain convergence in the worst case which is shown in
Figure 1. We also provide on the right side of Figure 1 N ϵ

sh for a different discretization where,
instead of considering a finite-difference discretization, we consider a spectral discretization on
XN which allows a O(1/M3/2) convergence of the discretized solution.
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Figure 1 – Minimum number of shots to achieve convergence accuracy, ϵ = ϵconv. For illustration
purposes, we consider the case V0 = 1, κ = 1. Left: finite-difference discretization, right: spectral
discretization.

Summary of Chapter 3

In the third chapter, we study how quantum noise affects our algorithms. To do so, we provide
some background on density matrices

ρ =
∑

s

ps |ψs⟩ ⟨ψs| ,
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which represent statistical distributions of quantum states and are hence able to represent the
statistical uncertainty induced by quantum noise, and quantum channels with which we can
describe the noise effect on a density matrix. We consider in this work a depolarizing noise model
in which a depolarizing channel Dp1 is added after each 1-qubit gate, and a depolarizing channel
Dp2 is added after each 2−qubit gate, where 0 ≤ p1 ≤ p2 ≤ 1 are depolarization probabilities.
Using the current hardware fidelity, we estimate these probabilites to be approximately

p1 = 0.0002, p2 = 0.001.

How noise affects estimators

The effect of the noise model on a quantum circuit is described in Lemma 6 and allows to
determine how the noise affects the mean value of an observable, as we develop in Proposition 14
it introduces a bias.

Proposition (Noise effect on observables). Let a Hermitian operator O, given a unitary Uψ such
that Uψ |0⟩ = |ψ⟩ and a circuit implementing Uψ with NG1

1-qubit gates and NG2
2-qubit gates.

We obtain, for the density matrix ρ,

⟨O⟩ρ = q⟨O⟩ψ + (1− q)
TrO

2N
= ⟨O⟩ψ − (1− q)⟨O⟩ψ + (1− q)λ0.

The noise thus introduces the nonnegative bias

bO = (1− q)|⟨O⟩ψ − λ0|,

where
q = (1− p1)

NG1 (1− p2)
NG2 .

The effect of noise on the mean value of observable can be seen as a contraction with Lipschitz
constant q ∈ (0, 1). This first allows to determine the noise effects on individual Pauli samples,
and eventually the one on Pauli estimators for arbitrary sampling strategies in Proposition 16.

Proposition (Noisy Pauli estimator mean and variance). The mean of a Pauli sampling estimator
A
Nsh of an operator A = α0I +

∑NA
i=1 αiPi under global depolarizing noise is given by

Eρ
[
A
Nsh
]
= (1− q)α0 + q⟨A⟩ψ,

and its variance is given by

VarρA
Nsh

= q2 Varψ A
Nsh

+ (1− q2)

NA∑

i=1

α2
i

|Si|
+ (1− q)q

NA∑

i=1

NA∑

j=1,j ̸=i

|Si ∩ Sj |
|Si||Sj |

αiαj⟨PiPj⟩ψ.

This allows to determine how the kinetic and potential term estimators are affected. Using the
same methods, we find the noise effect on the interaction term Pauli estimator in Proposition 19.

Proposition (Noisy interaction term Pauli estimator variance and bounds). The bias of the
interaction term Pauli estimator using a diagonal-sampling strategy is given by

bP,I = (1− q2)|⟨I − α0I
N ⟩ψ|,
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and its variance by

Varρ IN
Nsh

= q4 Varψ INNsh
+ (1− q4)

2(2N − 1)α2
0

Nsh(Nsh − 1)

+ q3(1− q)
4(Nsh − 2)

Nsh(Nsh − 1)
α2
0

(
⟨v4, v2⟩L2

N
− 3⟨v2, v2⟩L2

N
+ 2⟨v2, 1⟩2L2

N

)

+ q2(1− q2)
4(Nsh − 2) + 2(2N − 2)

Nsh(Nsh − 1)
α2
0

(
⟨v2, v2⟩L2

N
− ⟨v2, 1⟩2L2

N

)
.

We also have the upper bound

Varρ IN
Nsh ≤ BV,q

Nsh
+

BW,q
Nsh(Nsh − 1)

,

for some positive constants BV,q (3.22), BW,q (3.23), only depending on α0, q and N .

Finally, by applying the previous proposition to the Hadamard-test estimators, we describe
how noise affects them in Proposition 20.

Circuit size estimation

As we have seen however, the Lipschitz constant of the noise contraction depends on the
number of gates in the associated circuit of the estimator. We thus provide estimates on the
number of gates required for the estimation circuits. To do so, we consider two ansatz models, the
U2-ansatz based on disentangler methods from [83, 84] which allow to relate the number of ansatz
layers Nlay with the maximum bond dimension of the tensor train of the represented function
v, and the Hardware-Efficient (HE) ansatz which is a staple of VQAs. We provide estimates of
the scaling of the number of one-qubit and two-qubit gates for each ansatz and then go on to
estimate the circuit size of the additional subroutines from the Hadamard-test methods, as well
as that of the QFT required for the diagonal sampling of the kinetic term. These are shown in
Table 1 for the disentrangler ansatz.

Table 1 – Circuit size estimation

Disentangler ansatz K P I

Pauli - D NG1 15Nlay(N − 1) +N 15Nlay(N − 1), 15Nlay(N − 1)

Pauli - D NG2 3Nlay(N − 1) 3Nlay(N − 1) 3Nlay(N − 1)

Direct - D NG1 15Nlay(N − 1) +N 15Nlay(N − 1) 15Nlay(N − 1)

Direct - D NG2
(3Nlay +N/2)(N − 1) 3Nlay(N − 1) 3Nlay(N − 1)

H-test - D NG1
15Nlay(N − 1) + 2 15Nlay(N − 1) + 2 15Nlay(N − 1) + 2

H-test - D NG2
(3Nlay + 5N)(N − 1) + 3N (21Nlay)(N − 1) +N (39Nlay)(N − 1) + 2N
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Bias-induced maximum number of gates
The mean squared error of the estimation can be divided into two parts, a fixed one due to

the bias term and one due to the variance, which decreases with the number of samples. The
fixed error due to the bias implies that we can relate, for a given error ϵ, the bias to a maximum
number of gates in the circuit. This is exemplified in the Figure 2 where we can see that the
number of gates to achieve convergence error decreases dramatically as the number of qubits
increase. As can be seen in Table 1 the number of usable gates is insufficient and prevents the
use of the algorithm. To overcome this difficulty, we explain how to resort to quantum error
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Figure 2 – Maximum number of 2-qubit gates usable under depolarization noise to achieve a bias
under ϵconv = 1/2N .

mitigation to correct the bias term.

Error mitigation
Quantum error mitigation [14] allows to correct the bias of our estimators at the cost of

an increased variance. We show that in the case of depolarization noise increase in variance is
proportional to the squared inverse of the Lipschitz constant q and as such is exponential in the
number of gates in the estimation circuits. This is illustrated in Figure 3, the red line shown in
the figure represents 1

ϵ2conv
=M4 = 16N which is the number of samples required for ϵconv in the

case of a variance of 1. This illustrates that to obtain an effect of noise on the number of samples
of the same order as the increase due to precision, upwards of 200 qubits are required. And, as
we have observed in Figure 1, the number of samples is already prohibitive for N < 30, requiring
more than the age of the universe to estimate the potential energy, the term requiring the least
number of samples.

To summarize, Chapter 1 introduces fundamental quantum computing concepts and the Walsh
functional basis, with new results on Fourier-Walsh representation and convergence rates. Chapter
2 examines the algorithm’s performance without noise, focusing on convergence rates, alternative
estimators with lower circuit depths, and the required number of samples for energy precision.
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Figure 3 – Plot of the mitigation overhead q−2 for different number of layers of the U2 ansatz for
p2 = 0.001.

Chapter 3 assesses the impact of noise, analyzing how it affects estimator bias, variance, and
circuit performance, with and without error mitigation.



Chapter 1

Quantum computing context, Walsh
series

Quantum computation is a field that holds much promise for solving complex problems more
efficiently than classical computers. In this manuscript, we explore a resolution method for
differential equations on noisy quantum computers, a domain at the intersection of quantum
mechanics, computer science, and applied mathematics.

In order to provide a solid foundation for this, the first chapter is dedicated to presenting key
definitions and results which are crucial to understand the topics and methods discussed in the
subsequent chapters. This chapter is divided into two sections, one on the basics of quantum
computation and another one on the Walsh functional basis which is intricately linked to the
Pauli matrices. In the latter part, we focus on our novel contributions in two primary areas: the
representation of Fourier functions within the Walsh basis and an analysis of the convergence
rate of truncated Walsh series for H1 functions.

15
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1.1 Quantum computing for differential equations

Quantum computing (QC) is built upon the principles of quantum mechanics, where quantum
systems serve as the fundamental units of information. Unlike their classical counterparts, quantum
systems can exist in superpositions of states, enabling a form of parallelism in computations
through the interference of superposed states. This difference allows quantum algorithms with
known quantum computational advantage [73] with respect to their classical counterpart, but
at the cost of requiring noiseless or fault-tolerant quantum computers. However, by their very
nature, quantum systems are extremely sensitive and thus require quantum error correction in
order to palliate the effects of quantum noise. Quantum error correction is a field attracting
significant interest and in the last few years has seen steady progress, most notably a first physical
demonstration of error reduction and new methods reducing the number of physical qubits
required to implement an error-corrected logical qubit. While error-correction on a large-scale will
probably not be available in the near future, they offer well defined advantages. Let us, thus, first
consider the case of quantum algorithms for error-corrected hardware and then go into the heart
of our subject, near-term quantum algorithms. In the context of quantum algorithms with error
correction, several avenues have been explored for the resolution of partial differential equations
on quantum computing devices. Quantum algorithms dedicated to solving partial differential
equations can be divided into two types.

The first method consists in using the quantum advantage offered for solving linear systems
of equations. The second consists in encoding the differential equation into a Hamiltonian form
and using the ability of quantum computers to efficiently simulate Hamiltonian evolution.

Quantum linear systems algorithms Quantum linear systems algorithms (QLSA), such as
the HHL algorithm [42], [4, 5, 23, 36], are able to solve linear systems of equations exponentially
faster than classical methods under certain conditions of implementability in terms of circuit.
These algorithms require what is known as Quantum Random Access Memory (QRAM) which
allows the storage of the data over long periods of time. QRAM is for now a theoretical device as
no implementation method currently exists. QLSA-based differential equation solvers [7, 22, 57,
62] consist in solving, thanks to QLSAs, large linear systems resulting from the discretization of
differential equations, generally both in space and time variables. One caveat of this method is
the fact that the resulting solution for all times is encoded in a quantum state and extracting the
information as classical data is an extremely inefficient process, and thus the algorithms are most
useful for the calculation of observables [50].

Hamiltonian simulation Hamiltonian simulation based methods [6, 29, 48, 51, 52] involves
simulating the time evolution of quantum systems as described by the Schrödinger equation

i∂tψ = Ĥψ,

with potentially non-Hermitian Hamiltonians. It is of note however that if the Hamiltonian is not
Hermitian, the evolution operator is not unitary and block-encoding methods [61] are required
to approximate the evolution operator. While QLSA-based algorithms are restricted to digital
quantum computers, there have been proposals to port Hamiltonian simulation methods to analog
quantum computers [49]. Generally, for Hamiltonian simulation methods on digital quantum
computers, the space variables are discretized and the evolution operator is approximated through
Trotterization methods, while in the analog case the space variables do not need to be discretized.
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Nonlinear DEs Both previous methods allow to handle nonlinearities by mapping nonlinear
differential equations into linear forms. This is done either approximately through linearization
procedures, which are limited in their ability to represent nonlinearities, or through exactly
equivalent higher-dimensional linear representation of the equations, which are adapted to
specific equations, such as the Hamilton-Jacobi equations through the level set method [50] or the
Koopman-von Neumann method [53] which allows to map systems of nonlinear ordinary differential
equations to linear transport PDEs. Nonlinearities have been treated, in the case of linearization
procedures, through Carleman linearization methods [64, 65], by solving a truncation of the
resulting infinite-dimensional linear systems of equations, or through "mean-field" methods [66,
90] consisting in encoding the nonlinearity as the mean-field limit of a linear higher-dimensional
system of interacting particles.

Noisy Intermediate-Scale Quantum paradigm The era of error-corrected quantum com-
puting is, however, still far off as even the least qubit-greedy error correcting codes still require
hundreds of physical qubits to encode a single logical qubit, while quantum algorithms often
require on the same order of logical qubits. Current quantum systems are composed of at most
several hundred physical qubits and are thus not suited to error correction or Fault-Tolerant
algorithms.

Noisy Intermediate-Scale Quantum (NISQ) devices, characterized by their limited number of
qubits and susceptibility to noise [81], are the current state of quantum hardware. Despite their
limitations, they present unique opportunities for solving specific problems through innovative
algorithmic techniques tailored to their constraints.

The NISQ paradigm is concerned with such quantum algorithms that may be able to provide
a quantum advantage even in the presence of noise, either directly or through what is known as
error mitigation.

NISQ algorithms [9] typically involve hybrid quantum-classical approaches, where quantum
circuits are used to perform the core computations, and classical optimization techniques are
employed to refine the results. Examples include variational quantum algorithms (VQAs) such as
the Variational Quantum Eigensolver (VQE) [79] and the Quantum Approximate Optimization
Algorithm (QAOA) [30]. These methods leverage the strengths of both quantum and classical
computing to try to achieve results that neither could efficiently accomplish alone.

Error mitigation techniques [14], such as zero-noise extrapolation [37, 55, 56, 59, 89], quasi-
probabilistic error cancellation [24, 67, 89] and subspace-expansion methods [70, 100], are also
crucial in the NISQ era, as they allow the use of certain algorithms even under the influence of
quantum noise. These methods aim to reduce the impact of noise without the overhead of full
error correction, making it feasible [14, 98] to achieve meaningful proof-of-concept results with
current quantum hardware through classical post-processing.

In summary, the NISQ paradigm focuses on maximizing the utility of existing quantum
devices, exploring the boundaries of what can be achieved with imperfect quantum systems. This
approach not only attempts to determine the immediate benefits current hardware could provide
but also paves the way for future advancements in quantum computing as hardware continues to
improve.

NISQ algorithms for differential equations Several types of algorithms have been proposed
to solve differential equations, including Hamiltonian simulation [19, 86], Quantum walks [101]
and Quantum machine learning methods [58, 76, 77] based on quantum circuit learning [72].
However, in this thesis we will take a closer look at a specific type of NISQ algorithms, Variational
quantum algorithms, which originate and have had some success, in quantum chemistry [31, 39,
47, 74, 79, 88].
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Quantum Processing
UnitClassical Computer

Figure 1.1 – Variational quantum algorithms use classical optimization techniques to minimize an
energy estimated on quantum devices.

Variational Quantum Algorithms Variational Quantum Algorithms (VQAs) [18, 71, 79, 91]
are hybrid quantum-classical algorithms which consist in using classical optimisation loops to
minimize an energy E(ψ(θ)) which depends on a parametric ansatz ψ(θ). The quantum part of
the algorithm consists in using parametric quantum circuits to construct an ansatz state |ψ(θ)⟩
and measure observables allowing the estimation of the energy E(ψ(θ)) through a quantum
processor. Based on the energy calculated on the quantum processor, classical methods are used
to update the parameters θ in order to minimize the energy, as illustrated in Figure 1.1. As the
circuits required to obtain those expected values are generally shallower than algorithms designed
for error-corrected QC, requiring only a state preparation circuit and the circuit associated with
the measurement method, this computational paradigm enables the utilization of near-term
NISQ hardware. We can decompose the quantum side of such algorithms into two parts, ansatz
representativity and trainability on the one hand, and energy estimation on the other hand. First,
ansatz representativity is the ability of an ansatz circuit to represent with sufficient accuracy the
manifold of states near the target solution. Ansatz trainability refers to the problem of being
able to find efficiently the set of parameters optimising a given functional. These two points are
intricately related and it has been shown that there is a tradeoff between the two, namely ansatz
with high representativity tend to have ‘barren plateaus’ [43, 82] in their gradient landscape where
the magnitude of the gradient goes to zero in all directions. Furthermore, recent work [17] hints
at the fact that ansatz with good trainability may be efficiently simulated classically and thus
putting into question whether VQAs using such ansatz may offer any computational advantage.
Two things are to be noted however, first while an ansatz may not be efficiently trainable over
its complete set of parameters, starting from a carefully selected set of parameters constructed
using a-priori knowledge of the problem being solved may allow to dodge barren plateaus[2].
Second, using classical simulations to obtain a first approximation and then continuing the
optimization using VQAs with non-efficiently trainable ansatz might allow for some advantage.
Energy estimation for variational quantum algorithms is generally obtained through the empirical
mean of observables measured on the quantum system, although some recent alternatives such as
classical shadows [41, 44, 45] and statistical phase estimation [10, 27, 96] methods may lead to
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better convergence rates.
PDEs can often be reformulated as the Euler-Lagrange equation associated to an energy

functional, i.e. a zero of its functional derivative in the Gâteaux sense. Due to the ubiquity of
variational methods for partial differential equations, several variational quantum algorithms
have been proposed for solving differential equations [2, 34, 63, 68, 80]. Such algorithms appear
to be most promising for nonlinear problems, as for linear ones it is less clear that a quantum
advantage could be obtained without fault-tolerant QLSA. Indeed, the main advantage of quantum
variational methods for solving nonlinear differential equations is that they do not require any
form of linearisation. Their only requirement is the ability to efficiently estimate the energy
functional.

The advantages of VQAs can thus be summarised as follows:
• potential memory advantage;
• no linearization requirement;
• less susceptible to quantum noise.

The main disadvantages on the other hand are the following:
• optimisation procedure and trainability of ansatz;
• representativity of ansatz;
• unknown computational complexity.

In the context of this thesis, we shall study the performance of such variational quantum algo-
rithms in practice, namely, we shall specifically answer the question of computational complexity.
To do so, we now provide some definitions and mathematical context of quantum computation.

1.1.1 Definitions

The state of quantum systems are represented through their wavefunctions or probability
amplitudes which are vectors in a Hilbert space. In the context of quantum computing, we
consider abstractions of quantum systems with two-dimensional Hilbert spaces called qubits. Let
us now give a description of the mathematical formalism behind systems composed of multiple
qubits.

We consider a quantum system composed of N ∈ N∗ qubits. For 1 ≤ n ≤ N , we denote by
Hn the Hilbert space associated to the n-th qubit. Each Hilbert space Hn can be seen as the
complex projective line CP1, also known as the Bloch sphere [73]. Then we name H = ⊗Nn=1Hn

the tensor product of the individual Hilbert spaces Hn, 1 ≤ n ≤ N . The states of the quantum
system are the elements of H. We also denote by H∗ the dual space of the finite-dimensional
space H, and by L (H) the space of linear applications on H, which is isomorphic to H⊗H∗.

The notation |·⟩ is used to represent a (column) vector in the Hilbert space H. Similarly, ⟨·| is
used to represent a (row) vector in H∗.

The notations |i⟩ |j⟩, respectively ⟨i| ⟨j|, are shorthands for the tensor product of |i⟩ and |j⟩,
respectively ⟨i| and ⟨j|. We denote the canonical basis of CP1, respectively (CP1)∗ as

BC(CP1) = (|0⟩ , |1⟩), respectively BC((CP1)∗) = (⟨0| , ⟨1|).

and the canonical basis of H, respectively H∗, as

BC(H) = BC(H1)⊗ · · · ⊗ BC(HN ), respectively BC(H∗) = BC(H∗
1)⊗ · · · ⊗ BC(H∗

N ).

The states in the computational basis are denoted as |i⟩ and their Hermitian conjugate ⟨i|, for
0 ≤ i ≤ 2N − 1. They correspond to the product state of their associated representation in base 2
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using the most-significant-bit-first convention. In other words, writing

i =

N∑

n=1

in · 2N−n, (1.1)

with i1, ...,iN ∈ {0, 1}, we have

|i⟩ = |i1⟩ ⊗ · · · ⊗ |iN ⟩ = |i1⟩ . . . |iN ⟩ .

A useful implication of this notation is that we can also handle linear applications on the
Hilbert space H through their decomposition on the canonical basis of L (H). For instance, the
canonical basis of L (CP1) is given by

BC(L (CP1)) = BC(CP1)⊗ BC((CP1)∗) = (|i⟩ ⟨j|)i,j∈{0,1} .

And, more generally, the canonical basis of L (H) is

BC(L (H)) = BC(H)⊗ BC(H∗) = (|i⟩ ⟨j|)i,j∈{0,...,2N−1} .

|a⟩

G3

G2

G1

|b⟩
|c⟩

Figure 1.2 – Simple quantum circuit with three qubits starting in the state |a⟩ ⊗ |b⟩ ⊗ |c⟩ and
being applied, in succession, gates G3, G2 and G1 with respective arity 3, 2 and 1.

A quantum gate G of arity γ, 1 ≤ γ ≤ N , is defined as a couple (U,S), where S is a γ-tuple of
ascending-ordered elements of {1, . . . , N} without repetition, and U ∈ C2γ×2γ is a unitary matrix.
The gate support S is the subset of qubits of the quantum system which the gate acts on. Then
we denote by S the (N − γ)-tuple of the ascending-ordered elements of {1, . . . , N} which do not
appear in S. The subspaces of H defined by

HS =

γ⊗

j=1

HSj , HS =

N−γ⊗

j=1

HSj

are respectively the Hilbert spaces of the (ordered) subsystem composed of the qubits in S and S.
We observe that HS ⊗HS ≃ H.

Besides, the canonical basis BC(HS) of HS is the tensor product of the canonical bases of its
component Hilbert spaces in the tensoring order, i.e.

BC(HS) = BC(HS1
)⊗ · · · ⊗ BC(HSγ ) = (|i1⟩ ⊗ · · · ⊗ |iγ⟩)i∈{0,...,2γ−1}

where, in the previous equality, the indices in, 1 ≤ n ≤ γ, provide the binary decomposition
of i ∈ {0, 2γ − 1} as i =

∑γ
n=1 in · 2γ−n, following the most-significant-bit first convention (1.1)

for the ordered bits in S. The canonical basis for H∗
S is defined similarly. In the same way, the

canonical basis of L (HS) is given by BC(L (HS)) = BC(HS)⊗ BC(H∗
S), and similarly for S.
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In BC(L (HS)), the gate action on the subsystem is given by the unitary matrix U . Thus the
action of gate G on H in the basis BC(L (HS)) ⊗ BC(L (HS)) becomes U ⊗ IHS

. We denote
by UG ∈ C2N×2N the unitary matrix representing the action of gate G in the canonical basis
BC(L (H)), which coincides with U ⊗ IHS

up to a qubit-reordering basis change.
A quantum circuit is defined as an ordered NG-tuple C = (GC,k)1≤k≤NG of gates, where

NG ∈ N∗ is the number of gates in the circuit. Whenever there is no ambiguity, we shall name Uk
the representative of GC,k in BC(L (H)), and Sk its support. Then the unitary matrix associated
to the circuit is

UC = UNG . . . U1. (1.2)

A set of common quantum gates is illustrated in Table 1.1.
Furthermore, as current quantum hardware is only able to implement one or two-qubit gates,

we limit ourselves to the cases where we only have 1 or 2-qubit gates, i.e. |Sk| ∈ {1, 2}, we thus
set NG1

(resp NG2
) the number of 1 (resp. 2) qubit gates in the circuit. This gate restriction

is not a restriction on the unitaries that we are able to implement. Indeed, the Solovay-Kitaev
theorem [73] states that any unitary matrix can be approximated to an arbitrary precision by a
quantum circuit with a universal set of 1 and 2-qubit gates.

Pauli basis

The set of local observables that can be directly measured on a quantum system are given by
the Pauli operators. The strategy we develop in this thesis involves the Pauli basis of L (H). It
is built from the 1-qubit Pauli basis BP(L (CP1)) = (I,X, Y, Z) of L (CP1), where

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
.

Recall that CP1 is the complex projective line, which is isomorphic to the Hilbert space associated
to a 2-state quantum system. The Pauli basis BP(L (H)) of H is composed of the tensor products
of the Pauli matrices on the qubits composing H. For any Q ∈ {X,Y, Z}, we set

Qj = I ⊗ I · · · ⊗ Q︸︷︷︸
j-th qubit

⊗I ⊗ · · · ⊗ I,

which only acts on the j-th qubit, 1 ≤ j ≤ N .
For a Pauli matrix P ∈ BP(L (H)), its component in the Pauli basis of the qubit i, 1 ≤ i ≤ N ,

is written P |i, and we denote the support of a Pauli observable

SuppP = {i ∈ {1, . . . , N} | P |i ̸= I}.

1.1.2 Quantum measurements

Measuring an observable, i.e. a Hermitian operator O, on a quantum system differs from
classical measurements. Indeed, instead of measuring the value ⟨ψ|O |ψ⟩ of the operator for a
specific state |ψ⟩, the measure of an observable O returns an eigenvalue λ of the observable O and
projects the system into the associated eigenstate |ϕ⟩ ∈ H. More precisely, let us denote by Λ the
ordered spectrum of O with multiplicity. For any λ ∈ Λ, with multiplicity mult(λ), the probability
of measuring λ for a given state |ψ⟩ is given by the sum of squared overlaps

∑mult(λ)
k=1 | ⟨ϕλ|ψ⟩ |2

of |ψ⟩ for the set of orthogonal eigenstates {
∣∣ϕkλ
〉
}1≤k≤mult(λ) associated to λ. Since we only have

access to samples of the eigenvalues distributed following the law given by the squared overlap



22 CHAPTER 1. Quantum computing context, Walsh series

Gate Symbol Matrix Representation Circuit Representation

Identity I

(
1 0
0 1

)

Pauli-X (NOT) X

(
0 1
1 0

)
X

Pauli-Y Y

(
0 −i
i 0

)
Y

Pauli-Z Z

(
1 0
0 −1

)
Z

Hadamard H 1√
2

(
1 1
1 −1

)
H

Phase S

(
1 0
0 i

)
S

π/8 T

(
1 0
0 eiπ/4

)
T

CNOT CX




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 •

Swap SWAP




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ×

×

Toffoli CCX




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




•
•

Table 1.1 – Common quantum gates, their matrix Representations, and circuit representations

with the eigenstates, we cannot directly measure the mean value of the operator⟨ψ|O |ψ⟩ for |ψ⟩.
However, we can obtain an approximation of ⟨ψ|O |ψ⟩ by using Ns ∈ N∗ measurement samples(
sOk
)
1≤k≤Ns

∈ ΛNs and considering the empirical mean estimator

O
Ns

=
1

Ns

Ns∑

k=1

sOk .

Quantum systems are generally restricted to a certain subset of possible observables to measure
due to physical constraints. For qubits, the Pauli observable for which a direct measurement
is possible is defined to be the Z Pauli operator. In practice, we can indeed only measure the
value of the local Pauli Z operator Zk for each individual qubit k, 1 ≤ k ≤ N . This means
that for a N -qubit system, for each 1 ≤ k ≤ N , we measure zk ∈ {1,−1} which corresponds to
the eigenvalues of Z for the k-th qubit. Equivalently, we can consider also the binary samples
sk ∈ {0, 1}, for 1 ≤ k ≤ N , associated with the local eigenvectors |0⟩, and |1⟩ on the k-th qubit
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associated to the eigenvalues of Zk.
To measure the values of the non Z Pauli matrices P ∈ {X,Y }, we apply the suitable local

rotations QX = H,QY = HS which send their respective operators onto the Z axis, where H is
the π rotation about the X + Z axis and S =

√
Z.

Single-qubit observable measurements

To measure the expectation ⟨ψ|O |ψ⟩ on a single-qubit system for a generic observable O we
have two options. The first option is to decompose the observable on a basis which we can readily
measure, the Pauli basis. In the simple case of a single qubit, we can compute the projection of
the operator on each Pauli matrix and recover its decomposition as

O = α0I + α1X + α2Y + α3Z,

with α0, α1, α2, α3 ∈ C. Then the expectation value of the operator writes

⟨ψ|O |ψ⟩ = α0 ⟨ψ| I |ψ⟩+ α1 ⟨ψ|X |ψ⟩+ α2 ⟨ψ|Y |ψ⟩+ α3 ⟨ψ|Z |ψ⟩

Since ⟨ψ| I |ψ⟩ = ⟨ψ|ψ⟩ = 1, we only need to measure the three remaining terms. For ⟨ψ|Z |ψ⟩, we
can directly measure the value of the operator after the application of the the state-preparation
of |ψ⟩, Uψ. For the other terms, we measure the system after the additional application of the
QX = H and QY = HS rotations.

The alternative to the Pauli measurements is to consider the basis change that diagonalises
the operator O and allows a projection onto one of its eigenvectors through the measurements
of the Z Pauli matrix. Indeed, since O is Hermitian there is a unitary U such that O = U†DU ,
where

D = λ0 |0⟩⟨0|+ λ1 |1⟩⟨1| =
λ0 + λ1

2
I +

λ0 − λ1
2

Z.

In the diagonal basis, the quantity we physically measure is thus the observable Z for the state
U |ψ⟩. The projection of the state of the system onto the Pauli Z eigenvectors is equivalently a
projection onto an eigenvector of D. We can thus reconstruct the eigenvalue of O as

ωO = λ0
(1 + ωZ)

2
+ λ1

(1− ωZ)

2
.

where ωO is the eigenvalue of O associated to ωZ , the measured eigenvalue of Z.
Equivalently, we can rewrite the mean value of O as

⟨ψ|O |ψ⟩ = λ0
2
(1 + ⟨ψ|U†ZU |ψ⟩) + λ1

2
(1− ⟨ψ|U†ZU |ψ⟩).

We are thus able to reduce the number of terms to measure from 3, the X, Y and Z Pauli matrices,
to 1, the Z Pauli matrix, by considering a diagonal basis of the operator O. This showcases that
to measure any given observable directly, a basis change into its diagonalization basis is required
to allow the direct sampling on its eigenvalues. Then we can reconstruct the mean value of the
observable for the state |ψ⟩ by considering the empirical mean of the eigenvalues sampled in this
way.

If we take another look at the Pauli measurements with that in mind, the described QX and
QY rotations diagonalize their respective Pauli term and allow the sampling of their eigenvalues
and the reconstruction of their mean value for the state |ψ⟩ through an empirical mean estimator.
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Pauli measurements

For a single qubit system, as we have seen, the problem of diagonalising the observable is
simple, since the dimension of L (H) is 4. For quantum systems with multiple qubits, the problem
of diagonalising an operator O becomes much harder as the dimension of the space of linear
applications L (H) increases exponentially with the number of qubits.

In practice, when dealing with N qubits, the only operators we are able to measure are the
Zk operator corresponding to each qubit k, 1 ≤ k ≤ N . Then we can measure all Pauli operators
with only Z terms, as they all commute with each other. Let us consider a generic N -qubit
Pauli observable P = ⊗Nk=1P

k, where P k ∈ {I,X, Y, Z} for any k, 1 ≤ k ≤ N . Similarly to
the 1-qubit case, the measurement of P only requires a change of basis affecting each qubit
separately, i.e. a tensor product of local 1-qubit basis changes. The basis change unitary matrix
can thus be expressed as Q = ⊗Nk=1Q

k where Qk ∈ {I,QX = H,QY = HS} for any k, 1 ≤ k ≤ N .
The observable P can thus be measured on a quantum state |ψ(θ)⟩ with the circuit shown in
Figure 1.3.

|0⟩

Uψ(θ)

Q1

|0⟩ Q2

...
...

...

|0⟩ QN

Figure 1.3 – Pauli-observable measurement.

In systems with multiple qubits, Pauli operators can commute and thus be measured simulta-
neously in a basis that diagonalises them simultaneously. Indeed, this is a general property of
quantum systems. Given two observables O1 and O2, they can be simultaneously measured if
they commute, i.e. O1O2 = O2O1. This is due to the projection of the quantum system onto an
eigenstate of the measured operator. Indeed, if O1 and O2 commute, their eigenspaces are stable
with respect to both operators and thus share a common eigenbasis and thus can be reconstructed
from Z-Pauli measurements in that basis.

Observable estimation

Now, we can use this decomposition of a generic observable O for such a system in the Pauli
basis BP(L (H))

O =

4N−1∑

k=0

αiPi,

in order to estimate its mean value⟨ψ|O |ψ⟩. That raises two problems. First, the projection of an
arbitrary operator on the Pauli basis becomes prohibitive exponentially fast as N increases, since
the number of operators on which to project is 4N . The cost of this projection can be decreased
either through analytic methods or by using the structure of the operator. Second, we have to
compute the mean value of each non-zero Pauli term in the decomposition through sampling
methods. It results in considering a number of samples proportional to the number of non-zero
Pauli terms, which is exponential in the worst case. To overcome this issue, two methods are at
hand. We can either reduce the number of samples needed per non-zero Pauli by grouping and
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|0⟩ H • H

|0⟩

Uψ(θ) U
|0⟩
...

...

|0⟩

Figure 1.4 – Unitary measurement.

measuring directly commuting terms together in the same local basis. Or we can change the basis
to merge groups of non-commuting terms together, thus reducing the number of Pauli matrices
and increasing the proportion of commuting terms. That can be seen as a partial diagonalisation.
Alternatively, we can also perform, as before, the direct measurement of the observable through
a basis change with unitary U into its diagonal basis such that D = U†OU . The caveat of this
direct measurement is that for such a basis change on a multi-qubit system, deep circuits are
required, which increases sensitivity of the measurements to noise.

Unitary measurement: Hadamard test

An alternative exists for the measurement of unitary operators, it turns out that these
measurements can be done through their implementation as a quantum circuit. Indeed, the
Hadamard test is a quantum circuit (see Figure 1.4) which allows the computation of the real
and imaginary parts of expected values of a unitary operator U for a state |ψ⟩ = Uψ |0⟩. This is
done through an additional qubit, which we index by 0, by considering the mean value of the Z
operator for this qubit, used as the output of a 1-qubit phase estimation circuit of U on the state
|ψ⟩. The unitary matrix associated to the quantum circuit is denoted by UH, and the mean value
of the Z-Pauli for the first qubit after the circuit is

⟨Z1⟩ψ,H-test = ⟨0|U†
HZ1UH |0⟩

=
1

4
⟨0|Z |0⟩ ⟨ψ| (I + U†)(I + U) |ψ⟩+ 1

4
|1⟩Z ⟨1| ⟨ψ| (I − U†)(I − U) |ψ⟩

=
1

4
⟨ψ| (I + U†)(I + U) |ψ⟩ − 1

4
⟨ψ| (I − U†)(I − U) |ψ⟩ = 1

2
⟨ψ|
(
U + U†) |ψ⟩ ,

which gives
⟨Z1⟩Htest(ψ) = Re(⟨ψ|U |ψ⟩). (1.3)

The imaginary part can be computed by addition of a phase gate after the control, making the
interference cancel out the real part instead. However, by its very design, the Hadamard-test
circuit requires the unitaries to be controlled, and thus results in a deeper circuit, more subject
to noise. The main advantage of this method is that it enables the computation of the expected
value of any unitary that can be implemented on a quantum computer providing more freedom
in the decomposition of our target operator than in the observable-basis measurement method,
albeit at the cost of deeper and noisier circuits. Note that the method can be made more general
by considering not only the action of a unitary on |ψ⟩, but on a larger system with additional
ancillary qubits.
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1.2 Walsh series

Figure 1.5 – First two Rademacher functions

As we shall see in Chapter 2, the Pauli decomposition of diagonal operators can be obtained
through their representation in the Walsh functional basis.

Indeed, consider the action of the single-qubit Pauli Z operator acting on its eigenvectors,
Z |0⟩ = |0⟩ and Z |1⟩ = − |1⟩. This can be written as

Z |i⟩ = (−1)i |i⟩ ,

which is very similar to the function shown in Figure 1.5 from which the Walsh basis is constructed.
This similarity allows to relate the Walsh series behind operators acting on functions to the Pauli
decomposition of operators acting on the quantum amplitude encoding of functions on qubits,
which is the main motivation behind this section.

The periodic nature of the problem we shall study in Chapter 2 also leads us to consider
the relationship between the Fourier and Walsh bases. In this section we thus provide some
mathematical context on the Walsh basis, with a focus on the description of the Fourier basis
elements in the Walsh basis.

The Walsh functions, which belong to the space L2((0, 1),C), which we denote L2(0, 1), are
closely related with the dyadic decomposition of a real number in the interval (0, 1). These
functions form an orthonormal basis for L2(0, 1) and own several properties that are particularly
advantageous for computational applications due to their relation to binary numbers. Since
their introduction by Walsh in the 1920s [95], the representation of functions as Walsh series has
garnered significant attention and study[32, 33, 85].

Noteworthy contributions to the understanding of Walsh functions in Sobolev spaces include
results on the decay of coefficients and the convergence of integration schemes for generalized
p-adic Walsh bases, as discussed in [25, 26]. Walsh-based methods for solving differential equations
have been proposed, using variational approaches, in [20], and the numerical analysis of these
methods were presented, more recently, in [92] and [35], showing the uniform convergence of the
discretized solutions.

In this thesis, we focus exclusively on the Walsh basis defined on dyadic rationals. We present
new results on the L2 convergence of Walsh series through their Sobolev norms, using a novel
Walsh series decomposition of Fourier basis elements. These convergence results will allow the
determination of the precision of Walsh-based Pauli estimators we shall define in Chapter 2.
Additionally, we develop formulations for Walsh interpolation and truncation operators that are
analogous to those defined for the Fourier basis, as detailed in [15, 16].
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1.2.1 Dyadic/binary rationals and the Walsh basis

First, let us define dyadic decompositions, or binary fraction representation, of a real x ∈ [0, 1).

Definition 1. We say that x ∈ [0, 1) admits a dyadic decomposition if there exists (xk)k≥1 ∈
{0, 1}N∗

such that

x =

+∞∑

k=1

xk2
−k, (1.4)

the last equality standing as the decomposition itself.

Note that the decomposition exists, and is unique if and only if (xk) does not have an infinite
trail of 1. Second, let us recall the binary decomposition of any integer m ≥ 1.

Definition 2. For any m ≥ 1, there exists a unique sequence (mk)k≥1 ∈ {0, 1}N∗
such that

m =

+∞∑

k=1

mk2
k−1. (1.5)

This sum is in fact finite, up to σm = max {j ∈ N∗ | mj = 1} = 1 + ⌊log2m⌋, so that mσm = 1
and mk = 0 for any k > σm.

Equality (1.5) stands for the binary decomposition of m. Then we need several useful notions
and notations.

• For any a, b ∈ {0, 1}, we denote by a⊕ b the representative of a+ b modulo 2 in {0, 1}.
Obviously, we have 0⊕ 0 = 1⊕ 1 = 0 and 0⊕ 1 = 1⊕ 0 = 1.

• As an extension, for any m, n ≥ 1, using their binary decomposition (1.5), we denote by
m⊕ n the bitwise sum of m and n, i.e.

m⊕ n =

+∞∑

k=1

(mk ⊕ nk)2
k−1,

where the previous sum is finite, up to max(σm, σn) at most.
• For any x ∈ [0, 1), and m ∈ N∗, their binary product is given, in terms of their binary and

dyadic decompositions, by

⟨m,x⟩bin =

+∞⊕

k=1

mkxk,

where the sum is in fact finite, up to σm.
• For any m, n ∈ N∗, their binary product is given, in terms of their binary decompositions,

by

⟨m,n⟩bin =

+∞⊕

k=1

mknk,

where we use the same notation ⟨·, ·⟩bin for the sake of simplicity, and the sum is finite up
to min{σn, σm}.

• The Hamming weight |m|Ham of an integer m ≥ 1, defined by

|m|Ham = ⟨m,m⟩bin,

which allows to count the number of non-zero terms in the binary decomposition of m.
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To define the Walsh functions, we first need the Rademacher functions

Definition 3. For any n ≥ 1, the n-th Rademacher function is defined by,

Rn(x) = (−1)xn = sign(sin(2nπx)), x ∈ [0, 1)

where xn is the n-th coefficient in the dyadic decomposition (1.4) of x. That function can then be
extended on R by 1-periodicity.

That allows to define the Walsh functions (wm)m∈N.

Figure 1.6 – First three Walsh functions

Definition 4. For any m ≥ 1, the m-th Walsh function is given, for any x ∈ [0, 1), by

wm(x) = (−1)⟨m,x⟩bin =

σm∏

k=1

Rk(x)
mk , (1.6)

and is extended to R by 1-periodicity.

Additionally, we set w0(x) = 1 for any x ∈ R. It is worth noticing that equality (1.6) between
wm and the Rademacher functions also holds for any x ∈ R, because of the 1-periodicity of all
the functions involved.

We now go into several useful properties that the Walsh functions own.

Proposition 1 ([85] p. 245). The Walsh family of functions W = (wm)m∈N is a Hilbert basis of
L2 (0, 1).

The series
∑⟨wm, f⟩L2wm is called the Walsh series associated to f ∈ L2(0, 1). Besides, the

product of two Walsh functions remains a Walsh function. More precisely, we have the following

Lemma 1. Let m, n ∈ N∗, then we have, for any x ∈ R,

wm(x)wn(x) = wm⊕n(x).

Proof. For any x ∈ [0, 1), we can write, using (1.6),

wm(x)wn(x) = (−1)⟨m,x⟩bin(−1)⟨n,x⟩bin = (−1)
∑
ℓ xℓ(mℓ⊕nℓ) = (−1)⟨m⊕n,x⟩bin = wm⊕n(x),

which is extended for x ∈ R by 1-periodicity.
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Effect of a power-of-two homothety on the Walsh functions

Let us now consider how scaling the input variable by a power-of-two affects the Walsh
functions. First, we consider the effect of such an homothety on the Rademacher functions.

Lemma 2. Let n ≥ 1. For any m ∈ N and x ∈ R, we have

Rn(2
mx) = Rm+n(x). (1.7)

Proof. Let m ≥ 1 and x ∈ [0, 1). Using the dyadic and binary decompositions (1.4) and (1.5) of
m and x, we write

2mx =

+∞∑

k=1

xk2
m−k = ⌊2mx⌋+

+∞∑

k′=1

xk′+m2−k
′
, (1.8)

the latter term in the right-hand side being an element of [0, 1), which we denote by y. Conse-
quently, by 1-periodicity, we have, for any n ≥ 1,

Rn(2
mx) = Rn(y).

It is then clear, thanks to (1.8), that

Rn(y) = (−1)yn = (−1)xm+n ,

which allows to obtain (1.7).

Lemma 3. For any m,n ∈ N∗, and any x ∈ R, we have

wn(2
mx) = w2mn(x). (1.9)

Proof. Let m, n ∈ N∗, and x ∈ R. On the one hand, we have, thanks to (1.6) and (1.7),

wn(2
mx) =

+∞∏

k=1

Rk(2
mx)nk =

σn∏

ℓ=1

Rk+m(x)nk , (1.10)

remembering that the products are in fact finite, as nk = 0 when k > σn. On the other hand, we
can write the binary decomposition of 2mn

2mn =

+∞∑

k=m+1

nk−m2k−1,

so that, again with (1.6),

w2mn(x) =

+∞∏

k=1

[Rk(x)]
(2mn)k =

+∞∏

k=m+1

Rk(x)
nk−m ,

which, together with (1.10), ensures (1.9)

The properties we explored allow to discuss consider the link between the Fourier and the
Walsh series associated to function.



30 CHAPTER 1. Quantum computing context, Walsh series

1.2.2 Walsh decomposition of H1
# functions through the Fourier basis

In this subsection, we aim to describe the link between the Walsh and Fourier series of a
specific class of functions.

First, let us define the functional spaces Hm(0, 1) which consists of square integrable functions
whose derivatives up to the k-th order are also square integrable.

Definition 5 ([12]). We define the Sobolev space H1(0, 1) on C as the complex Hilbert space

H1(0, 1) = {v ∈ L2(0, 1) | ∃g ∈ L2(0, 1) ⟨ϕ′, v⟩L2 = ⟨ϕ, g⟩L2 , ∀ϕ ∈ C∞
c ((0, 1),C)},

where C∞
c ((0, 1),C) is the set of infinitely differentiable, compactly-supported functions. We also

denote by v′ the weak derivative g ∈ L2(0, 1) associated to v ∈ H1(0, 1).
Setting H0(0, 1) = L2(0, 1) and for m > 0, the Sobolev space Hm(0, 1) is inductively defined

as the complex Hilbert space

Hm(0, 1) =
{
v ∈ Hm−1(0, 1) | v′ ∈ Hm−1(0, 1)

}
.

The Hm norm, for any v ∈ Hm(0, 1), is given by

∥v∥Hm =

(
m−1∑

ℓ=0

∥v(ℓ)∥2L2

) 1
2

.

with v(ℓ) the ℓ-th weak derivative of v.

Similarly, we define the equivalent space in the periodic setting.

Definition 6. The Sobolev space H1
#(0, 1) of periodic functions is defined as

H1
#(0, 1) =

{
v ∈ H1(0, 1) | v(0) = v(1)

}
. (1.11)

We then inductively define, for m > 1,

Hm
# (0, 1) =

{
v ∈ Hm−1

# (0, 1) | v′ ∈ Hm−1
# (0, 1)

}
.

Note that (1.11) makes sense because H1(0, 1) is compactly injected in C0([0, 1]). We aim to
describe a function v ∈ H1

#(0, 1) in the Walsh basis through its Fourier coefficients.
To do so, we need to decompose each ek : x 7→ exp(i2πkx), k ∈ Z, which belongs to H1

#(0, 1),
in the Walsh basis.

Fourier functions in the Walsh basis

Now, to determine the decomposition of each Fourier basis functions ek, let us first find the
coefficients of the Walsh series for an odd k.

Lemma 4. Let k ∈ 2N+ 1. The Walsh series associated to ek : x 7→ exp(i2πkx) is given by

ek =
∑

m∈2N+1

γm,kwm,
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where we set, for any m ∈ 2N+ 1,

γm,k = − 2

kπ
(−i)|m|Ham

σm∏

ℓ=2

tan

(
kπ

2ℓ

)mℓ
.

Proof. First, note that, given k ∈ 2N+ 1, for any x ∈ [0, 1),

exp(i2πkx) =

+∞∏

ℓ=1

exp
(
i2πk

xℓ
2ℓ

)
=

+∞∏

ℓ=1

(
1− xℓ + xℓ exp

(
i2πk

2ℓ

))
.

Using the identity a = 1−(−1)a

2 for any a ∈ {0, 1}, the previous equality becomes

exp(i2πkx) =

+∞∏

ℓ=1

[
1− 1− (−1)xℓ

2
+

1− (−1)xℓ

2
exp

(
i2πk

2ℓ

)]

=

+∞∏

ℓ=1

[
1 + exp

(
i2πk
2ℓ

)

2
+ (−1)xℓ

1− exp
(
i2πk
2ℓ

)

2

]
.

Now, introducing a binary index mℓ for each element ℓ of the product, we obtain

exp(i2πkx) =

+∞∏

ℓ=1

1∑

mℓ=0

(−1)xℓmℓ

(
1 + (−1)mℓ exp

(
i2πk
2ℓ

)

2

)
, (1.12)

Then, involving an integer index m associated to the binary one, and inverting the product and
sum, we get from (1.12)

exp(i2πkx) =

+∞∑

m=1

+∞∏

ℓ=1

(−1)xℓmℓ
+∞∏

ℓ=1

1 + (−1)mℓ exp
(
i2πk
2ℓ

)

2

=

+∞∑

m=1

(−1)⟨m,x⟩bin

+∞∏

ℓ=1

1 + (−1)mℓ exp
(
i2πk
2ℓ

)

2
, (1.13)

noticing that the term corresponding to m = 0 is zero, since 1+eiπ

2 (obtained for ℓ = 1) is zero.
Let us set, for any m ≥ 1,

γm,k =

+∞∏

ℓ=1

1 + (−1)mℓ exp
(
i2πk
2ℓ

)

2
, (1.14)

so that (1.13), thanks to (1.6), for any x ∈ [0, 1),

exp(i2πkx) =

+∞∑

m=1

γm(−1)⟨m,x⟩bin =

+∞∑

m=1

γm,kwm(x).

Let us now obtain an expression of γm, m ≥ 1, handier than (1.14), starting with

γm,k =

+∞∏

ℓ=1

exp

(
i2πk

2ℓ+1

)
exp
(−i2πk

2ℓ+1

)
+ (−1)mℓ exp

(
i2πk
2ℓ+1

)

2
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=

+∞∏

ℓ=1

exp

(
iπk

2ℓ

)
×

+∞∏

ℓ=1

[
cos
(
2πk/2ℓ+1

)
(1−mℓ)− imℓ sin

(
2πk/2ℓ+1

)]

= exp(iπk) ·
+∞∏

ℓ=1

[
cos
(
πk/2ℓ

)
(1−mℓ)− imℓ sin

(
πk/2ℓ

)]

= (−1)k
+∞∏

ℓ=σm+1

cos
(
πk/2ℓ

)
·
σm∏

ℓ=1

(
cos
(
πk/2ℓ

)
(1−mℓ)− imℓ sin

(
πk/2ℓ

))

Then we notice that, for any K ≥ 1, and any θ for which it makes sense,

K∏

k=1

cos

(
θ

2k

)
=

K∏

k=1

sin
(
θ/2k−1

)

2 sin (θ/2k)
=

sin θ

θ
× θ/2K

sin (θ/2K)

K→+∞−−−−−→ sin θ

θ
, (1.15)

which we can definitely use for θ = πk/2 since k is odd here. Eventually, we get, for any m ≥ 1,

γm,k = im1

+∞∏

ℓ=2

cos

(
πk

2ℓ

)
×

σm∏

ℓ=2

[
1−mℓ − imℓ tan

(
πk

2ℓ

)]

= −2m1

πk
(−i)|m|Ham

σm∏

ℓ=2

tan

(
πk

2ℓ

)mℓ
,

since 1−mℓ − imℓ tan
πk
2ℓ

equals 1 when mℓ = 0 and −i tan
(
πk
2ℓ

)
when mℓ = 1. Hence, for any

even m, γm = 0 as m1 = 0, and we can limit the indices in the Walsh series to the odd ones, for
which m1 = 1.

The following proposition is then a straightforward consequence of Lemmas 3–4.

Proposition 2. Let k ∈ N∗ and denote by K the multiplicity of 2 in its prime factorization. For
any x ∈ R, we can write

exp(i2πkx) =
∑

m∈2N+1

γm,k/2Kw2Km(x).

Remark 1. Notice that, for any k′ ≥ 0, the non-zero Walsh coefficients of e2Kk′ have indices
of the form (2p+ 1)2K . Hence, 2 is always a prime factor of the indices of the non-zero Walsh
coefficients with multiplicity k′. That implies two things:

• all odd-indexed ek share the same set of indices of non-zero Walsh coefficients,
• when m and ℓ do not have the same power of 2 in their factorization, then their associated

Walsh series do not share any Walsh function.

Theorem 1. Let k ∈ Z∗, with K ∈ N the multiplicity of 2 in its prime factorization, for any
x ∈ R, we have

exp(i2πkx) =
∑

m∈2N+1

[sign k]
|m|Ham γm,|k/2K |w2Km(x), (1.16)

where sign k is the sign of k, and for any k′ ∈ 2N+ 1, m ∈ 2N+ 1, γm,k′ is given by

γm,k′ = −2m1

πk′
(−i)|m|Ham

σm∏

ℓ=2

tan

(
πk′

2ℓ

)mℓ
.
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Similarly, when k ∈ N∗, we have, for any x ∈ R,

sin(2πkx) =
∑

m∈2N+1,
|m|Ham∈2N+1

(−1)
|m|Ham+1

2 +1|γm,k/2K |w2Km(x), (1.17)

cos(2πkx) =
∑

m∈2N+1,
|m|Ham∈2N

(−1)
|m|Ham

2 +1|γm,k/2K |w2Km(x).

Proof. For k ∈ N, we recover equation (1.16) directly from Proposition 2, for negative frequencies,
we use the fact that ek = e−k to obtain

e−k = ek =
∑

m∈2N+1

γm,k′w2Km(x).

As γm,k′ is real for even m and imaginary for odd m, we obtain

e−k =
∑

m∈2N+1

(−1)|m|Hamγm,k′w2Km(x),

which gives us the result for the remaining k ∈ Z.
For the Walsh series of the sines and cosines, we use the Euler formula and equation (1.16) to

obtain, for any k ∈ N,

exp(i2πkx) = cos(2πkx) + i sin(2πkx) =
∑

m∈2N+1

γm,|k/2K |w2Km(x).

Again using the fact that γm,k is real for even m and imaginary for odd m, we obtain

sin(2πkx) =
∑

m∈2N+1,
|m|Ham∈2N+1

1

i
γm,k/2Kw2Km(x), (1.18)

cos(2πkx) =
∑

m∈2N+1,
|m|Ham∈2N

γm,k/2Kw2Km(x).

For |m|Ham ∈ 2N, we have

sign(γm,k/2K ) = −(−i)|m|Ham = (−1)
|m|Ham

2 +1,

and for |m|Ham ∈ 2N+ 1,

sign

[
1

i
γm,k/2K

]
= −(−i)|m|Ham = (−1)|m|Ham+1 i|m|Ham−1 = (−1)

|m|Ham−1

2 ,

which finally allows to rewrite (1.18) into (1.17).

From the Fourier decomposition to the Walsh decomposition

In this subsubsection, we describe the relationship between the Fourier and Walsh series of
functions in L2(0, 1).
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Theorem 2. Let v ∈ L2(0, 1) and its associated Fourier series
∑

k∈Z
v̂kek.

The Walsh series associated to v, ∑

m∈N
ṽmwm,

can be recovered in terms of the Fourier coefficients of v. Indeed, we have ṽ0 = v̂0 and for any
m ∈ N∗,

ṽm =
∑

k∈2M (2N+1)

(
v̂k + (−1)|m|Ham v̂−k

)
γm/2M ,k/2M , (1.19)

where M ∈ N is the multiplicity of 2 in the prime factorization of m.

Proof. We can successively write

v = v̂0e0 +
∑

k∈N∗

(v̂kek + v̂−ke−k) = v̂0w0 +

+∞∑

K=0

∑

k∈2K(2N+1)

(v̂kek + v̂−ke−k)

= v̂0w0 +

+∞∑

K=0

∑

k∈2K(2N+1)

∑

m∈(2N+1)

(
v̂k + (−1)|m|Ham v̂−k

)
γm,k/2Kw2Km

= v̂0w0 +

+∞∑

K=0

∑

m∈2N+1

∑

k∈2K(2N+1)

(
v̂k + (−1)|m|Ham v̂−k

)
γm,k/2Kw2Km.

In the previous equality, we perform the index change m′ = 2Km to obtain

v = v̂0w0 +

+∞∑

K=0

∑

m∈2K(2N+1)


 ∑

k∈2K(2N+1)

(
v̂k + (−1)|m

′|Ham v̂−k

)
γm′/2K ,k/2K


wm′ .

The first two
∑

symbols eventually provide a unique sum symbol on m ∈ N∗, and, together with
the zero-indexed term, allow to get the Walsh series and the values of the Walsh coefficients.

Remark 2. It is important to note that the only Fourier indices that appear in the expression
for the Walsh coefficients (1.19) are such that, given M > 0, for any m ∈ 2M (2N+ 1) the only
Fourier coefficients in the decomposition of ṽM are multiples of 2M , this gives us a glimpse at the
link between the structures of both series.

1.2.3 Walsh series truncation

In this subsection, thanks to the above results on the Walsh series of the Fourier basis functions,
we can provide a new result on the convergence rate of Walsh series for H1 functions through
their Fourier series.
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Figure 1.7 – Truncated Walsh series of e3, e5 and e3+e5. The truncated Walsh series are obtained
through (1.16) for e3 and e5 and these are summed to obtain ΘN (e3 + e5).

Theorem 3. For any v ∈ H1
#(0, 1) and any N ≥ 1, the N-bit truncated Walsh series

associated to v given by

ΘNv =

2N−1∑

m=0

ṽmwm, (1.20)

converges towards v in L2(0, 1) as

∥ΘNv − v∥L2 ≤
(
1

π
+

1

2
√
3

)
1

2N
∥v′∥L2 . (1.21)

Proof. To study the convergence rate, when N goes to +∞, in L2 of the N -bit truncated Walsh
series of v ∈ H1

#(0, 1), we start again with its Fourier series

v =
∑

k∈Z
v̂kek.

The proof is then divided into four steps.
• Step 1. Behaviour with respect to N of ΘNek for k ∈ Z.
• Step 2. Orthogonality of ΘNek and ΘNej when k ̸= j.
• Step 3. Use truncated Fourier series and provide convergence results for its associated

truncated Walsh series.
• Step 4. Conclusion

Step 1 Thanks to Theorem 1, we can write

ΘNek =

2N−K−1∑

m=0

γm,k/2Kw2Km.

Hence, by orthogonality of ek −ΘNek and ΘNek, we can write

∥ek −ΘNek∥2L2 = ∥ek∥2L2 − ∥ΘNek∥2L2 = 1− ∥ΘNek∥2L2 . (1.22)
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The norm of ΘNek is given by

∥ΘNek∥2L2 =

2N−K−1∑

m=0

|γm,k/2K |2. (1.23)

By setting, for any k′ ∈ 2N+ 1 and n > 0, Sn,k′ =
2n−1∑
m=0

|γm,k′ |2, we have

∥ΘNek∥2L2 = SN−K,k/2K .

Let us now focus on of Sn,k′ . Note that, for any k′ ∈ 2N+ 1,

|γm,k′ |2 =

+∞∏

ℓ=σm+1

cos2(πk′/2ℓ) ·
σm∏

ℓ=1

(
cos2(πk′/2ℓ)(1−mℓ) +mℓ · sin2(πk′/2ℓ)

)
.

Consequently, we have, for any n ≥ 1,

Sn,k′ =

2n−1∑

m=0

+∞∏

ℓ=n+1

cos2(πk′/2ℓ) ·
n∏

ℓ=1

(
cos2(πk′/2ℓ)(1−mℓ) +mℓ sin

2(πk′/2ℓ)
)

=

+∞∏

ℓ=n+1

cos2(πk′/2ℓ)

2n−1∑

m=0

n∏

ℓ=1

(
cos2(πk′/2ℓ)(1−mℓ) +mℓ sin

2(πk′/2ℓ)
)
.

In the same way as in the proof of 4, the previous equation can be rewritten as a sum over the
binary coefficients of m, which ensures

Sn,k′ =

+∞∏

ℓ=n+1

cos2(πk′/2ℓ)

1∑

m1,...mn=0

n∏

ℓ=1

(
cos2(πk′/2ℓ)(1−mℓ) +mℓ · sin2(πk′/2ℓ)

)
.

Then, inverting the sums on mℓ with the product, we have

Sn,k′ =

+∞∏

ℓ=n+1

cos2(πk′/2ℓ)

n∏

ℓ=1

(
cos2(πk′/2ℓ) + sin2(πk′/2ℓ)

)

=

+∞∏

ℓ=n+1

cos2(πk′/2ℓ) = sin2(
πk′

2n
)

(
4n

π2k′2

)
, (1.24)

thanks to (1.15). From (1.24),we obtain the value of (1.23),

∥ΘNek∥2L2 = sin2(
πk

2(N−K)+K
) · 4N−K

π2k2/4K
≥ 1− 1

3

(
πk

2N

)2

. (1.25)

Finally, we bound the convergence rate using (1.25)and (1.22), i.e.

∥ΘNek − ek∥2L2 ≤ 1

3

π2k2

4N
. (1.26)
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Step 2 We now show orthogonality results on the truncated series of ej and ek for −2N−1 <
k < 2N−1 and −2N−1 < j < 2N−1. Their scalar product is given by

⟨ΘNej ,ΘNek⟩L2 =

min(2N−K−1,2N−J−1)∑

m=0

sign(jk)|m|Hamγm,|j|/2Jγm,|k|/2K ⟨w2Jm, w2Km⟩L2 ,

where J , K ∈ {0, . . . N − 2} are the multiplicity of 2 in the prime factorisation of j and k
respectively. Note that if J ̸= K, ⟨ΘNej ,ΘNek⟩L2 = 0 as they share no indices with non-zero
coefficients. Now, let us focus on the terms such that J = K and j ̸= k. For such terms, using
(1.16), we have

⟨ΘNej ,ΘNek⟩L2 =

2N−1∑

m=0

sign(kj)|m|Ham
4m1

π2|kj| (−1)2|m|Ham

×
σm∏

ℓ=2

tan

(
π|k|/2K

2ℓ

)mℓ σm∏

ℓ=2

tan

(
π|j|/2J

2ℓ

)mℓ

=

2N−1∑

m=0

sign(kj)|m|Ham
4

π2|kj|τm,|k/2K |τm,|j|/2J ,

where, for any m, n ∈ 2N + 1 we denote by τm,n =
∏σn
ℓ=2 tan

(
πn
2ℓ

)mℓ . For simplicity we set
J = K = 1 for the following calculations as they do not depend of the value of J or K. We now
show that the above scalar product is equal to zero as for each positive term in the above sum,
an opposite term exists with equal magnitude and opposite sign. Let us now prove that there
exists an n < N , which depends only on j and k, such that for each m ∈ 2N+ 1 the associated
m⊕ 2n is such that

γm,|j|γm,|k| + sign(kj)γm⊕2n,|j|γm⊕2n,|k| = 0. (1.27)

Let us then proceed by equivalence: (1.27) implies

γm,|j|γm,|k| + sign(kj)γm⊕2n,|j|γm⊕2n,|k| =
4

π2kj

(
τm,|k|τm,|j| + sign(kj)τm⊕2n,|k|τm⊕2n,|j|

)
.

That gives
τm,|k|τm,|j| = − sign(kj)τm⊕2n,|k|τm⊕2n,|j|.

As m and m⊕ 2n only differ in their n-th binary coefficient, we can write
(
tan

(
π|k|
2n

)
tan

(
π|j|
2n

))mn
+ sign(kj)

(
tan

(
π|k|
2n

)
tan

(
π|j|
2n

))1⊕mn
= 0.

Since either mn or 1⊕mn equals 1, we necessarily have

tan

(
π|k|
2n

)
tan

(
π|j|
2n

)
= − sign(kj).

We rewrite the previous equation as

sin

(
π|k|
2n

)
sin

(
π|j|
2n

)
+ sign(kj) cos

(
π|k|
2n

)
cos

(
π|j|
2n

)
= cos

(
π
(|k| − sign(kj)|j|)

2n

)
= 0
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which is possible if and only if
|k − j|
2n

π =
π

2
[π],

where we obtain the last line as |k| − sign(kj)|j| = |k − j| as it is equal to |k| − |j| if they share
a sign and |k| + |j| if they do not. Note that |k − j| ∈ 2N∗, as both terms are odd, and that
2 ≤ |k − j| < 2N as k ̸= j and |k|, |j| < 2N−1. Hence, the result holds for the unique 2 ≤ n ≤ N

such that |k−j|
2n ∈ 2N+ 1. That ensures that, for any j, k ∈ {−2N + 1, . . . 2N−1 − 1} such that

j ̸= k,

⟨ΘNej ,ΘNek⟩L2 =
∑

m∈2N+1

γm,|j|/2Jγm,|k|/2K

=
∑

m∈2N+1,mn=0

γm,|j|/2Jγm,|k|/2K + sign(kj)γm⊕2n,|j|/2Jγm⊕2n,|k|/2K = 0.

Step 3 Let us now introduce, for any n ∈ N∗, the truncated Fourier series of any v ∈ H1
#(0, 1),

Πnv =
∑

|k|≤n

v̂kek.

We focus on

∥Π2N−1−1v −ΘN (Π2N−1−1v)∥2L2 =

∥∥∥∥∥∥
∑

|k|<2N−1

v̂k(ΘNek − ek)

∥∥∥∥∥∥

2

L2

.

Using Step 2 for |k| < 2N−1 and (1.26), we obtain

∥Π2N−1−1v −ΘN (Π2N−1−1v)∥2L2 =
∑

|k|<2N−1

|v̂k|2∥ΘNek − ek∥2L2

≤
∑

|k|<2N−1

1

12 · 4N 4π2k2|v̂k|2.

Thus, bounding
∑

|k|<2N−1

1
12·4N 4π2k2|v̂k|2 by ∥v′∥2L2 , we get

∥Π2N−1−1v −ΘN (Π2N−1−1v)∥2L2 =
1

12 · 4N ∥v′∥2L2 .

Step 4 We eventually use Step 3 to obtain the convergence rate. It is clear that, for any
v ∈ H1

#(0, 1),

∥v −ΘNv∥L2 = ∥v −Π2N−1−1v +Π2N−1−1v −ΘN (v −Π2N−1−1v +Π2N−1−1v)∥L2

≤ ∥Π2N−1−1v −ΘN (Π2N−1−1v)∥L2 + ∥v −Π2N−1−1v −ΘN (v −Π2N−1−1v)∥L2 .

Thanks to the orthogonality of the Walsh basis, we have

∥v −Π2N−1−1v −ΘN (v −Π2N−1−1v)∥L2 ≤ ∥v −Π2N−1−1v∥L2 .
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Furthermore, we have the following bound

∥v −Π2N−1−1v∥2L2 =
∑

|k|≥2N−1

|v̂k|2 =
∑

|k|≥2N−1

4π2k2

4π2k2
|v̂k|2 ≤ 1

π24N
∥v′∥2L2 ,

which allows us to get

∥v −ΘNv∥L2 ≤ 1

π2N
∥v′∥L2 +

1

2N+1 ·
√
3
∥v′∥L2 ,

and finally (1.21).

1.2.4 Discussion
In this section, we have described the Walsh functions and provided some results on the

explicit decomposition of the Fourier basis functions as Walsh series. These results allowed to
provide some new results on the convergence of Walsh series for H1 functions through their
Fourier series. As we shall see in the following chapter, the Walsh series have an important role
in the representation of functions on quantum systems and the truncated Walsh series enable
the construction of new operator decompositions in the Pauli basis, with a reduced number of
non-zero terms. The O

(
1
2N

)
convergence rate further allows to show that the energy estimation

methods based on such series provide sufficient accuracy for variational algorithms.
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Chapter 2

Error analysis of VQAs for the
Gross-Pitaevskii equation

Chapter description

In this chapter, we aim to determine the performance in practice of the variational algorithm
for the resolution of the Gross-Pitaevskii equation defined in [68]. We choose the Gross-Pitaevskii
equation because it allows a clear proof of concept for quantum algorithms. It adds a quadratic
nonlinearity to the Schrödinger equation, which is well-adapted to our setting, as it governs the
evolution of quantum devices.

To do so, we first provide a mathematical framework for the study of the convergence of the
discretized solution towards the exact one. This allows to determine the precision required on the
energy terms so as to achieve convergence.

We then exhibit the decomposition of the various energy operators in the Pauli basis. Three
energy terms appear in the variational formulation of the Gross-Pitaevskii equation. A kinetic
energy related to the Laplace operator, a potential one and an interaction one. For the kinetic
term, we propose a new decomposition method for sums of ‘bi-diagonal’ operators, which the
Laplacian is a special case of, and recover the Pauli decomposition obtained in [19, 54](up to a
basis change). For the potential term, we define a new decomposition method through a Walsh
series truncation of the potential function. Finally, for the interaction energy, we provide an
original ‘squared Pauli’ decomposition.

We proceed to define an abstract framework for estimators called sampling strategies, which is
sufficiently broad to allow the description of Pauli estimators based on the above decompositions
as well as the other estimators found in [68]. We go on to define Pauli estimators for two sampling
strategies, namely a diagonal-sampling strategy in which sampling is done in the diagonal basis
of the operator, and the importance-sampling strategy in which each term in the operator’s Pauli
decomposition is sampled separately, through a local basis change, with a number of samples
proportional to the absolute value of its associated coefficient. We then provide explicit formulae
for the variance of estimators following such strategies.

Using this framework, we define the Pauli sampling estimators associated with the energy
terms and we use the above results to obtain their variance explicitly. For the kinetic term, we
consider an importance-sampling strategy which allows for shorter circuits than the methods
in [68] as only local basis changes are required for the sampling of Pauli operators. For the
potential term estimator, we consider the Walsh truncated series of the potential function with

41
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a diagonal-sampling strategy, as it is the only logical choice as the operator is diagonal in the
computational basis. We then provide similar results for the interaction term Pauli estimator.

We then consider the ‘hardware reduced’ estimators of [68], which we denote as direct-sampling
estimators. We remark that for the potential term, the estimator is expressed as the diagonal-
sampling Pauli estimator of the Walsh interpolant. For the interaction term, we notice that the
estimator as defined in the article is biased and provide a modified, unbiased, version of the
estimator which we show to be strictly equivalent to our Pauli estimator.

The QNPU Hadamard-test estimators are then briefly Finally, some results on the variance of
these estimators are given and a comparison of the estimators, the metric used is the number of
samples required to achieve the precision necessary for the convergence of the model for a given
number of qubits.

We show that, while the direct/sampling estimators outperform the other methods, the number
of samples increase exponentially fast and become prohibitive for even dozens of qubits.

2.1 Introduction: Gross-Pitaevskii equation

In this chapter, we are interested in the numerical resolution of the one-dimensional stationary
Gross-Pitaevskii equation (GPE) with periodic boundary condition, denoting by Ω = (0, 1) the
unit cell of a periodic lattice of R. We considera harmonic potential V : Ω → R, x 7→ V0(x− 1/2)2

with V0 > 0. The unknown is the wave function u := u(x) describing the ground state of the
GPE.

The stationary Gross-Pitaevskii equation then consists in a nonlinear eigenvalue problem on
u. More precisely, we look for the solutions in the space X = H1

#(Ω) and where H1
#(Ω) is the

Sobolev space of L2 integrable functions with L2 integrable first derivatives that are 1-periodic,
as already stated in Definition 6. The nonlinear eigenvalue problem reads

∣∣∣∣∣∣∣∣∣∣∣

Find (µ, u) ∈ R×X such that

Auu = µu,

∥u∥L2(Ω) = 1,

(2.1)

where the operator Au in (2.1) is defined, for any wave function v, by

Av = −1

2

d2

dx2
+ V + f(v),

and the nonlinear interaction function f is defined by f(ξ) = κ|ξ|2 for any ξ ∈ C, κ > 0. The
Gross-Pitaevskii equation physically represents the ground state of a system of interacting bosons
sharing the same quantum state. The nonlinear interaction function f arises from the fact that
the bosons interact with each other attractively. The nonlinear term makes solving the equation
harder as linear methods are not directly usable, and finer techniques are required to solve the
nonlinear problem. One method consists in linearizing the equation allows its resolution through
fixed points methods but requires solving the linearized problem multiple times until convergence
is achieved. Another one consists in treating the variational formulation of the equation as a
nonlinear optimisation problem, this is the path we shall follow as it is more suited to near-term
quantum computing and because of its natural link with VQAs.

In order to solve the equation (2.1), we consider its variational formulation and solve (2.1)
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through the following constrained minimization problem
∣∣∣∣∣∣∣∣

Find u ∈ X such that

E(u) = min
v∈X

E(v),

∥u∥L2(Ω) = 1,

(2.2)

where E, the associated energy functional has the following form,

E(v) = K(v) + P(v) + I(v), (2.3)

for any v for which it makes sense. The kinetic, potential and interaction contributions are
respectively given by

K(v) =
1

2

∫

Ω

∣∣∣∣
dv(x)

dx

∣∣∣∣
2

dx, P(v) =

∫

Ω

V (x)|v(x)|2 dx, I(v) = 1

2

∫

Ω

f(|v(x)|)|v(x)|2 dx.

In a way similar to the one explored in [28], we are led to consider the variational formulation on
a Fourier subspace XN of X .

In our case, we take

XN = SpanC
(
{ek : x 7→ ei2πkx,−2N−1 − 1 ≤ k ≤ 2N−1 − 1} ∪ {c2N−1 : x 7→ cos

(
2π2N−1x

)
}
)
,

and seek the solution of ∣∣∣∣∣∣∣∣

Find uN ∈ XN such that

EN (uN ) = min
v∈XN

EN (v),

∥uN∥L2
N (Ω) = 1,

(2.4)

where EN is a discretization of E which arises as we consider discretized energy estimates of
functions v ∈ XN calculated on a quantum computer, and ∥.∥L2

N (Ω) is a discretization of the
L2-norm, the definitions of which will be given later.

As the quantum state a system of N ≥ 1 qubits can be represented by a 2N -sized vector, it can
be used to represent functions in subspaces XN of X , with exponentially increasing dimensions in
N .

A first attempt in using quantum systems for energy estimates to solve the Gross-Pitaevskii
equation was given by [68]. In the article, the authors compute the energy associated to a
variational state |ψ⟩ using deep circuits called quantum nonlinear processing units (QNPUs).
A N -qubit variational state |ψ⟩ is used to represent a discretized version of v ∈ X through
its values on a uniform grid using a finite-difference scheme, analogously, |ϕ⟩ is a discretized
version of the solution u ∈ X . The QNPU circuits involve multiple N -qubit registers as inputs
to a Hadamard-test circuit in order to compute the discretized versions of K, P, I separately.
To be more accurate, the kinetic term QNPU circuit requires a single N -qubit register, the
potential one requires two registers of the same kind, and the nonlinear interaction term three.
However, the performance of these circuits is degraded by quantum noise exponentially with
respect to their depth/number of gates. To remedy this shortcoming, the authors of [68] also
propose direct-sampling estimators for a highly noisy setting consisting of shorter circuits. These
direct-sampling estimators require the implementation of the ansatz circuit for the potential and
interaction term, but also an additional Quantum Fourier Transform (QFT) circuit to diagonalize
the kinetic operator enabling direct measurement.
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In this work, we propose alternative estimators to compute the discretized energy functional
and provide variance comparisons with the existing estimators and provide an a-priori error
analysis of the discretization (2.4) of (2.2).

Our estimators are used to compute the discretized energy functional by involving measure-
ments of Pauli operators on a single register, similarly to the direct-sampling estimators. More
precisely, we decompose each energy term operator into a sum of Pauli operators. For the kinetic
term, we use a well-known finite-induction relationship, similarly to the methods developed in
[19, 54]. For the potential and interaction operators, we propose new estimators obtained by
considering, before discretization, the decomposition of the operators in the Walsh functional
basis which allow their representation on the binary/dyadic rationals, that is, rationals described
using sums of negative powers of 2. Thanks to this representation, we can identify the equivalent
Pauli operators for a N -qubit amplitude encoding by truncating the Walsh basis decomposition
to N -bit binary/dyadic rationals. Thus, instead of discretizing the operators and projecting
them, as in [19], to determine the Pauli decomposition of the discretized potential operator, we
consider a functional projection and truncation method. Indeed, as can be seen in Figure 2.1, our
methodology consists in analytically describing the operator through its Walsh series, to truncate
it, and to identify Walsh functions therein with their Pauli counterpart.

Discretization Projection

Walsh basis
projection

Diagonal
operators

Diagonal
operators

Truncation
and identification

Analytical

Figure 2.1 – Diagonal operator decomposition in the Pauli basis.
Top: The discretization and projection method has a computational cost O(N2N ) through a Fast
Walsh-Hadamard Transform (FWHT) [19]. Bottom: Our method (outlined in blue), through a
functional decomposition, achieves a O(1) cost and reduced numbers of non-zero Pauli terms.

The comparison metric we considered is based on the sampling error associated with each
estimator. For each method, we consider the number of samples N ϵ

sh required to achieve a given
absolute error ϵ for each term. We provide upper bounds on the variance of our estimators
as well as the one of the estimators described in [68]. For the kinetic term, we show that our
method provides reduced circuit depth while only adding a quadratic overhead to the exponential
number of samples required to achieve a given error. In the case of the potential term, we show
that our method performs similarly to the sampling estimator and that both outperform the
Hadamard-test estimator. Finally, we show that in the case of the interaction term, the unbiased
direct-sampling and Pauli estimators are the same and that they consistently outperform the
Hadamard-test estimator.

In Section 2, we provide a description of the problem we want to solve, the discretization
method and present an a-priori convergence analysis. Then, in Section 3, we define how to
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encode the solution into a quantum system through amplitude encoding and provide methods to
decompose the energy term operators for such an encoding onto the Pauli basis. Using the Pauli
decompositions, we describe in Section 4 the Pauli estimators and give formulae and bounds on
their variance and estimation error. In Section 5, we define our comparison metrics and compare
the different estimators. Finally, in the last section, we discuss our results in the context of
variational quantum algorithms for the resolution of differential equations.

2.2 Problem definition

To solve Problem (2.1) through energy estimates obtained by using Noisy Intermediate
Scale Quantum (NISQ) processors, we consider a variational quantum algorithm (VQA). VQAs
consist in using classical minimisation methods to minimize a cost function estimated through
measurements on a quantum system. To obtain those energies, an ansatz quantum state is
constructed through a parametric quantum circuit. The depth and structure of these circuits can
be fine-tuned so as to decrease the total circuit depth of the algorithm albeit at the cost of the
ansatz representativity. The circuit depth of the algorithm can thus be modulated in order to
palliate the noise effects, which are be studied in the second part of this work in Chapter 3. In
order to encode Problem (2.2) onto a quantum system, we first must discretize it. In this section,
we consider the finite-difference approximation, similar to the one defined in [68], of the energy
terms in the context of functions in XN and provide an a-priori analysis of the convergence of the
discretized model.

2.2.1 Discretized problem

Recall that the three operators we wish to discretize are given by

K(v) =
1

2

∫

Ω

|v′(x)|2 dx, P(v) =

∫

Ω

V (x)|v(x)|2 dx, I(v) = 1

2

∫

Ω

f (v(x)) |v(x)|2 dx.

To perform a finite-difference discretization of our problem on Ω we introduce a regular subdivision
of Ω̄ = [0, 1]. Our minimisation problem is then discretized as follows. For any N ∈ N∗, we
consider the regular subdivision

ΩN = {xk = khN | 0 ≤ k ≤ 2N} (2.5)

of Ω, of step hN = 1/2N (note that by definition of the periodic condition x0 = x2N ).

Remark 3. We note here that, given 0 ≤ k ≤ 2N and ℓ ∈ N∗, the k-th element, xk, of ΩN should
not be confused with the ℓ-th bit, xℓ of the dyadic decomposition of an arbitrary x ∈ Ω.

We then denote by vN the vector representing a function v ∈ XN at each point xk of the
subdivision, i.e. for any 0 ≤ k ≤ 2N − 1,

vN =




v(x0)
...

v(x2N−1)


 , (2.6)

and for the sake of convenience, we also set vN2N = vN0 . We now define the discrete L2 scalar
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product ⟨·, ·⟩L2
N

such that, for any v, w ∈ X ,

⟨v, w⟩L2
N
= hN

2N−1∑

k=0

v(xk)w(xk).

The associated norm ∥ · ∥L2
N

on X is known as the discrete L2 norm. Furthermore, for any a,
b ∈ C2N , we define

⟨a, b⟩C2N =

2N−1∑

k=0

akbk,

the usual Hermitian scalar product of C2N , and its associated norm |a|22 = ⟨a, a⟩C2N . Note that,
given v, w ∈ X , the two scalar products are related through vN and wN by the following equation

⟨v, w⟩L2
N
= hN ⟨vN , wN ⟩C2N .

Remark 4. We note that the discrete scalar product result equals the left Riemann sum of the
associated integral, in the periodic case, this is equivalent to a Gaussian quadrature. This result
will be useful for the a-priori error estimation, as we shall see later.

As we have access to the values of vN , we consider a finite-difference approximation of the
energy terms on ΩN .

The discretized energy terms thus read, for any v ∈ X ,

KN (v) =
1

hN

2N−1∑

k=0

∣∣vNk
∣∣2 − 1

hN

2N−1∑

k=0

Re
(
vNk+1v

N
k

)
, (2.7)

PN (v) = hN

2N−1∑

k=0

V (xk)|vNk |2,

IN (v) =
κhN
2

2N−1∑

k=0

|vNk |4. (2.8)

The problem we aim to solve is to find the (discretized) solution uN ∈ XN to the discretized
energy problem, i.e. the unique function in XN satisfying

∣∣∣∣∣∣∣∣

Find uN ∈ XN such that

EN (uN ) = min
vN∈XN

EN (vN ),

∥uN∥L2
N (Ω) = 1,

(2.9)

with

EN (vN ) = KN (vN ) + PN (vN ) + IN (vN ) = −1

2
⟨v,∆Nv⟩L2

N
+ ⟨V, v2⟩L2

N
+
κ

2
⟨v2, v2⟩L2

N
, (2.10)

where
∆Nv : x 7→ v(x+ hN ) + v(x− hN )− 2v(x)

h2N
=
τhN + τ−hN − 2I

h2N
v, (2.11)
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where τa is the translation operator by the constant a ∈ R (with the proper identification for
x+ a in Ω whenever x+ a > 1 or < 0.

2.2.2 Convergence results

From Appendix A.1, which extends the a-priori analysis of the Gross-Pitaevskii equation
problem in [28] to our discretized case, we have the convergence rate of uN to u in H1 norm is
bounded as follows

∥u− uN∥H1 ≤ C

M
,

where we set M = 2N . Furthermore, we have, there exists a constant C > 0 such that, for any
v ∈ XN ,

∥v − uN∥2H1
≤ C (EN (v)− EN (uN )) .

This result implies that a precision on the energy of the order of 1
M2 is required. Indeed, we have

that

2.3 Amplitude encoding and Pauli decomposition

Since we know that our discretized model converges, let us now explain how to obtain the
energy estimates using a quantum system. Amplitude encoding is a method through which
evaluations of functions can be encoded on a quantum system, the implementation of probability
distributions inside quantum states by Grover [40] is probably one of the first instances of
amplitude encoding. It has since been used extensively in quantum computing, in fault tolerant
algorithms such as Quantum Linear systems algorithms [21, 42], as well as in the NISQ context,
for example in the Variational Quantum Linear Solver (VQLS) algorithm [11].

2.3.1 Amplitude encoding

Figure 2.2 – Amplitude encoding on 3-bit dyadic rationals

To estimate EN for v ∈ XN , we choose to represent our functions on a quantum computer,
through the amplitude encoding method. The amplitude encoding consists in representing the
vector vN associated to v in some basis, in the vector of amplitudes associated to the basis
states of our quantum system. To do so, we have to construct a 2N -dimensional vector |ψ⟩
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representation of our function indexed by N bits. Let us now consider the amplitude encoding of
vN on a N -qubit system, which we denote |ψ⟩ (we drop the N exponent in |ψ⟩ for the sake of
simplicity). Given a quantum system composed of N qubits, we define the quantum states of the
computational basis using the most-significant-bit-first convention, i.e.

|k⟩ = |k1⟩ · · · |kN ⟩

where k =
∑N
j=1 2

N−jkj . We consider the following encoding,

|ψ⟩ =
√
hNv

N =
√
hN

2N−1∑

k=0

vNk |k⟩ , (2.12)

of vN , where ψk =
√
hNv

N
k for any k, 0 ≤ k < 2N .

Remark 5. By construction of ΩN , we notice that xk also writes, for any 0 ≤ k < 2N ,

xk = k · hN = 0.k1 . . . kN =

N∑

j=1

kj
2j
.

This corresponds to its representation as a dyadic rational, i.e. a sum of negative powers of 2.
This structure implies that the different scales of the Ω are encoded through the qubits, indeed each
qubit determines where the dyadic rational is located with respect to each scale. More precisely,
the first qubit determines if xk is located in [0, 2−1) or [2−1, 1), the second determines if xk is
located in [0.k1, 0.k1 + 2−2) or [0.k1 + 2−2, 0.k1 + 2−1) and so on, as shown on Figure 2.2. As we
shall see later, this dyadic encoding will enable to relate operators acting on functions to their
equivalent operators acting on the amplitude encoding of functions.

We note that the L2
N normalisation constraint is hence enforced by design by our choice of

amplitude encoding such that hN |vN |22 = 1.
Finally, we can rewrite (2.7)–(2.8) as

⟨KN ⟩ψ = KN (v) =
1

h2N

2N−1∑

k=0

|ψk|2 −
1

h2N

2N−1∑

k=0

Re
(
ψ̄k+1ψk

)
, (2.13)

⟨PN ⟩ψ = PN (v) =

2N−1∑

k=0

V (xk)|ψk|2,

⟨IN ⟩ψ = IN (v) =
κ

2hN

2N−1∑

k=0

|ψk|4. (2.14)

We use the above notation ⟨·⟩ψ, to consider the mean value of Pauli observables on the
quantum state |ψ⟩ and estimate the values of the integrals K,P and I.

2.3.2 Pauli decomposition of operators

In this subsection, we investigate the Pauli decomposition of each operator, in (2.13)–(2.14).
In order to obtain estimators only requiring local Pauli measurements. Let us write the Pauli
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decomposition of an operator O as

O = α0I
N +

NO∑

i=1

αiPi, (2.15)

where IN is the N -qubit identity operator, NO is an integer which is non-zero if O is not pro-
portional to IN , (αi)0≤i≤NO are complex numbers, and (Pi)1≤i≤NO is a subfamily of BP(L (H)).
We first investigate the kinetic term by inductively determining the Pauli decomposition. We
then delve into the decomposition of the potential and nonlinear interaction terms by considering
their representation on the dyadic rationals through the Walsh basis. That allows to identify
Pauli decompositions as the truncated representations of the operators on dyadic rationals, from
Definition 1 of Chapter 1, of at most N -bits.

Kinetic operator decomposition

The discretized kinetic energy term (2.7) for the one-dimensional Gross-Pitaevskii equation
can be written as

KN (vN ) = ⟨ψ| KN |ψ⟩ ,
where we set

KN =
1

2h2N




2 −1 0 . . . 0 −1

−1 2 −1
. . .

. . . 0

0
. . .

. . .
. . .

. . .
...

...
. . . −1 2 −1 0

0 . . . 0 −1 2 −1
−1 0 . . . 0 −1 2




.

The Pauli decomposition of the kinetic energy term is then obtained by induction on N . For a
given N -qubit system, we decompose KN as

KN =
1

h2N
IN − 1

2h2N

(
BN1 +BN2N−1

)
. (2.16)

with

BN1 =




0 1 0 0

1
. . .

. . . 0

0
. . .

. . . 1
0 0 1 0



, BN2N−1 =




0 0 · · · 0 1

0
. . . 0

...
. . .

...

0
. . . 0

1 0 · · · 0 0



.

More generally, we can define, for 1 ≤ k < 2N , BNk the 2N × 2N k-bidiagonal matrix and CNk
the k-antibidiagonal matrix, the matrix BNk , resp. CNk , consisting of 1 on its k-th superdiagonal
and 1, resp. −1, on its k-th subdiagonal and 0 elsewhere.

We have the following result.

Theorem 4. For N ≥ 2, the N -qubit one-dimensional periodic Laplace operator can be decomposed
as a linear combination of at most 3× 2N−2 Pauli matrices only involving tensor products of I,
X and Y .
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For example,

B3
3 =




0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0




, C3
6 =




0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0




.

Example 1 – Bi-diagonal matrices

Proof. This decomposition can be obtained from inductive computation of the Pauli decomposition
of Bnk and Cnk for 1 ≤ n ≤ N and 1 ≤ k ≤ 2n − 1. Indeed, in order to prove Theorem 4, we relate
matrices (Bnk ) and (Cnk ), to Pauli matrices. That is the topic of the following lemma, whose proof
is a straightforward checking and geometrically intuitive.

Lemma 5. For any n ∈ N∗, matrices (Bnk ) and (Cnk ) satisfy

Bn0 = In,

Bnk = I ⊗Bn−1
k +

1

2

(
−iY ⊗ Cn−1

2n−1−k +X ⊗Bn−1
2n−1−k

)
, 1 ≤ k ≤ 2n−1 − 1,

Bn2n−1 = X ⊗ In−1,

Bnk =
1

2

(
iY ⊗ Cn−1

k−2n−1 +X ⊗Bn−1
k−2n−1

)
, 2n−1 + 1 ≤ k ≤ 2n − 1,

Cn0 = 0,

Cnk = I ⊗ Cn−1
k +

1

2

(
iY ⊗Bn−1

2n−1−k −X ⊗ Cn−1
2n−1−k

)
, 1 ≤ k ≤ 2n−1 − 1,

Cn2n−1 = iY ⊗ In−1,

Cnk =
1

2

(
iY ⊗Bn−1

k−2n−1 +X ⊗ Cn−1
k−2n−1

)
, 2n−1 + 1 ≤ k ≤ 2n − 1.

Thanks to Lemma 5, we get, for any n ≥ 1,

Bn1 = I ⊗Bn−1
1 +

1

2

(
−iY ⊗ Cn−1

2n−1−1 +X ⊗Bn−1
2n−1−1

)
, (2.17)

Cn1 = I ⊗ Cn−1
1 +

1

2

(
iY ⊗Bn−1

2n−1−1 −X ⊗ Cn−1
2n−1−1

)
,

Bn2n−1 =
1

2

(
iY ⊗ Cn−1

2n−1−1 +X ⊗Bn−1
2n−1−1

)
,

Cn2n−1 =
1

2

(
iY ⊗Bn−1

2n−1−1 +X ⊗ Cn−1
2n−1−1

)
, (2.18)
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which, given the initial conditions B1
0 = I,B1

1 = X and C1
0 = 0, C1

1 = iY , then provides inductive
relationships on the sequences (Bn1 )n≥1, (Bn2n−1)n≥1 and (Cn2n−1)n≥1.

Thanks to a simple reasoning on (2.17)–(2.18), we obtain that, for any n ∈ N∗, Bn2n−1 and
Cn2n−1 are both linear combinations of at most 2n−1 Pauli matrices, and Bn1 is a linear combination
of at most 2n − 1 Pauli matrices. Going back to (2.16) and then, noticing that, in fact,

KN =
1

2h2N
(2IN − I ⊗BN−1

1 −X ⊗BN−1
2N−1−1

), (2.19)

it is clear that KN is a linear combination of 1+(2N−1−1)+2N−2 = 3×2N−2 Pauli matrices.

From Theorem 4, we can thus write

Proposition 3. We write the Pauli decomposition of KN obtained from (2.19) as

KN = α0I
N +

NK∑

k=1

αkPk,

with NK = 3 · 2N−2, we have α0 = 1
h2
N

and, for any k, 1 ≤ k ≤ NK,

|αk| =
{

1
2h2
N
2−(| Supp(Pk)|−2) if Pk|1 = I,

1
2h2
N
2−(N−2) else.

Furthermore, the following equalities hold,

NK∑

i=1

|αi| =
N

2h2N
,

NK∑

i=1

|αi|2 =
1

2h4N
. (2.20)

Proof. From (2.19), we notice that all Pauli terms inBN−1
2N−1−1

have an absolute value of 1
h2
N
2−(N−2),

and, in the same way, we observe that Pauli terms in BN−1
1 are divided by two for each non-

identity component. Hence, the absolute values of the coefficients αi of the Pauli decomposition
for the kinetic term are of the form

ck =
1

2h2N
· 2−k, 0 ≤ k ≤ N − 2,

and the number of terms nk of Pauli coefficients αi equal to ck for each value of k is

nk =

{
2k if 0 ≤ k ≤ N − 3,

2N−1 if k = N − 2.

Consequently, we have

NK∑

i=1

α2
i =

1

4h4N

N−2∑

k=0

2−2knk =
1

4h4N

(
N−3∑

k=0

2−k + 2−N+3

)
=

1

2h4N
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and, in the same way,
NK∑

i=1

|αi| =
N

2h2N
,

which completes the proof.

Potential operator decomposition

The potential term in our finite-difference approximation context is obtained as the mean
value of an N -qubit diagonal operator

P̃N = diag







V (x0)
...

V (x2N−1)





 = diag(V N ) (2.21)

Indeed, the mean value of P̃N is the left-Riemann sum,
∑2N−1
k=0 v2(xk)V (xk)hN , associated to the

integral ⟨v2, V ⟩L2 we wish to estimate, i.e.

⟨ψ| P̃N |ψ⟩ = ⟨v2, V ⟩L2
N

with v a L2
N normalized function. Thus in order to obtain a Pauli estimator for this term, we are

led to decompose PN in the Pauli basis.

Walsh basis

Figure 2.3 – First three Walsh functions and their associated Hadamard-Walsh vector for N = 2.
As can be seen in the diagram, the N -bit Hadamard-Walsh vector associated with the k-th

Walsh function is the k‡-th, with k‡ the N -bit integer whose binary decomposition is in reverse
order of k, e.g. w1 is associated to H2

2 as 1 is 01 in 2-bit binary and 2 is 10.

The discrete analog of the Walsh basis in C2N is given by the Hadamard-Walsh vectors, i.e.
the column vectors of the N -qubit Hadamard matrix, HN . These can be seen as the evaluation
of their associated N -bit Walsh functions on ΩN (as can be seen in Figure 2.3). Given the binary
decomposition of the integer

k =

N∑

i=1

ki2
i−1 ∈ [0, 2N ),
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H1 =
1√
2

(
1 1
1 −1

)
, H2 =

1

2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 ,

H3 =
1

2
√
2




1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1




Example 2 – First three Hadamard matrices.

and the k-th Walsh function wk, the column vector of HN corresponding to the evaluation of wk
on the N -bit dyadic rationals is the column whose index is

N∑

i=1

kN−i+12
i−1.

This N -bit integer with the previous binary representation is

Definition 7. Let N > 0, and k =
∑N
i=1 ki2

i−1 < 2N (i.e. σk ≤ N). We define the N -bit integer
k‡ as

k‡ =

N∑

i=1

kN−i+12
i−1,

the the N -bit integer whose binary representation is the reverse of k.

Remark 6. This property arises from the order the elements of ΩN are counted in. Indeed, given
j =

∑N
i=1 ji2

i−1,

xj = j/2N =

N∑

i=1

ji2
i−1−N =

N∑

i=1

jN−i+12
−i = 0.jN . . . j1.

This natural way of counting the elements of ΩN works only for fixed N and does not represent
the same point for different values of N . For example, colorbluelet us consider the index of
1
4 = 0.01 for different values of N , for N = 2 its index is j = 2, i.e. j = 01 in 2-bit binary,
in Ω2 = (0, 1/4, 2/4, 3/4), while for N = 3 its index is 2, i.e. j = 010 in 3-bit binary, in
Ω3 = (0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8). This method of counting the N-bit dyadic rational is
shown graphically in Figure 2.4.

The dyadic decomposition offers an alternative way of counting the elements of ΩN which allows
the same indexing of elements for different values of N . Indeed, given a N-bit dyadic rational
y =

∑N
ℓ=1 yℓ2

−ℓ = 0.y1 . . . yN , we can describe it uniquely through the integer η = yN . . . y1,
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whereas its index in ΩN would be given by η‡ = y1 . . . yN . This is shown in Figure 2.5. Indeed,

y =

N∑

i=1

yi2
−i = 0.y1 . . . yN = η‡/2N = xη‡ .

Figure 2.4 – Elements of ΩN for N = 2 (green) and N = 3 (blue), the same points are indexed
differently for different values of N .

Figure 2.5 – Dyadic rationals of Ω3 in dyadic ordering, we see that each dyadic rational is indexed
only once. Each arrow color corresponds to the number of bits in the next dyadic, orange for 1
bit, green for 2 bits and blue for 3 bits.

We can thus formalize this property.
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Proposition 4. Consider two nonnegative integers N ≥ 1 and k ≤ 2N . The N -bit Hadamard-
Walsh vector corresponding to the k-th Walsh function wk is the k‡-th column vector of HN ,
i.e.

HN
k‡ =

√
hNw

N
k =

1

2N/2




wk(0)
...

wk(
j
2N

)
...

wk(1− 1
2N

)



.

In order to relate the scalar product in C2N with the L2
N scalar product, we introduce below

two useful properties of this relationship between wk and HN
k‡ .

Proposition 5. Given N > 0 and g ∈ L2(Ω), the left-Riemann sum of the integral of g ∈ L2(Ω)
and wk (for k ∈ N∗) is given by the scalar product of the vector gN of evaluations of g on ΩN
with the Hadamard-Walsh vector HN

k‡ , i.e.

⟨g, wk⟩L2
N
= hN ⟨gN , wNk ⟩C2N =

√
hN ⟨gN , HN

k‡⟩C2N .

We can hence set, in the Hadamard-Walsh basis,

gN =
1√
hN

2N−1∑

k=0

⟨g, wk⟩L2
N
HN
k‡ . (2.22)

With this description of gN in the Hadamard-Walsh basis, we can show the following property.

Corollary 1. Given g1, g2 ∈ L2(Ω), we can express the Riemann sum of their product as

⟨g1, g2⟩L2
N
=

2N−1∑

k=0

⟨g1, wk⟩L2
N
⟨g2, wk⟩L2

N
. (2.23)

Proof. Since the N -bit Hadamard matrix is unitary, we have

⟨g1, g2⟩L2
N
= hN ⟨gN1 , gN2 ⟩C2N

= hN ⟨gN1 , HN (HN )†gN2 ⟩C2N

= hN ⟨(HN )†gN1 , (H
N )†gN2 ⟩C2N

= hN

2N−1∑

k=0

⟨gN1 , HN
k‡⟩C2N ⟨gN2 , HN

k‡⟩C2N ,

where we obtain the last line by using (2.22) and using the unitarity of H, i.e. by using
⟨HN

k‡ , H
N
(k′)‡⟩C2N = δk,k′ . This allows to recover (2.23).

Equation (2.23) allows to relate the representation of gN on the Hadamard-Walsh basis with
the Walsh interpolants

IWN g1 =

2N−1∑

k=0

⟨g1, wk⟩L2
N
wk, IWN g2 =

2N−1∑

k=0

⟨g2, wk⟩L2
N
wk
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of g1 and g2 respectively. The Walsh interpolation operator is discussed in more details in
Appendix A.2.

Discretized Walsh-Hadamard projection

The decomposition can be obtained by using a fast Hadamard-Walsh transform at the cost
of O(N2N ) classical operations, this was used in [19] to obtain the Pauli decomposition of the
potential term operator for the linear Schrodinger equation. Consider the Hadamard-Walsh
transform of the vector

V N =




V (x0)
...

V (x2N−1)


 = 2N/2

2N−1∑

k=0

⟨V,wk⟩L2
N
HN
k‡ .

By noticing that the diagonal of the Pauli matrix Z is the column vector
√
2H1

1 , we can identify
the N -qubit Hadamard-Walsh vectors HN

k‡ with their associated Pauli operators

Pk = Zk11 . . . ZkNN = 2N/2 diag(HN
k‡).

Hence, we recover the decomposition of our operator in the Pauli basis

P̃N = diag(V N ) = 2N/2
2N−1∑

k=0

⟨V,wk⟩L2
N
diag(HN

k‡) =

2N−1∑

k=0

⟨V,wk⟩L2
N
Pk. (2.24)

Indeed, using (2.23), we can write ⟨|v2|, V ⟩L2
N
=
∑2N−1
k=0 ⟨V,wk⟩L2

N
⟨v2, wk⟩L2

N
, the result is imme-

diate since

⟨ψ|Pk |ψ⟩ = 2N/2
2N−1∑

i=0

|ψi|2(Hk‡)i =

2N−1∑

i=0

|v(xi)|2wk(xi)hN = ⟨v2, wk⟩L2
N
. (2.25)

It is formalized in the following proposition.

Proposition 6. Given a nonnegative integer k < 2N , let |ψ⟩ =
√
hN
∑2N−1
j=0 v(xj) |j⟩, then,

⟨Pk⟩ψ = ⟨Zk11 . . . ZkNN ⟩ψ = ⟨v2, wk⟩L2
N
.

Unfortunately, the Fast Hadamard-Walsh Transform (FHWT) allows to recover the coefficients
⟨V,wk⟩L2

N
of P̃N in the Pauli basis at a prohibitive classical cost.

Using the parallel between the Walsh basis and the Hadamard-Walsh transform, we can
rewrite the potential term, using (2.24)–(2.25), as

⟨P̃N ⟩ψ =

2N−1∑

k=0

⟨V,wk⟩L2
N
⟨v2, wk⟩L2

N
= ⟨v2, V ⟩L2

N
.

We are led to propose another method, the Walsh-Pauli decomposition. It consists in
decomposing the diagonal operator directly in the Walsh basis before discretizing the problem
(and not after), and identifying the Walsh functions with their associated Pauli matrices (instead
of projecting them numerically). We link this to the method proposed in [19] thanks to the
relationship between the Walsh basis and the Hadamard-Walsh vectors. Thanks to this method,
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we bypass the costly computations required for the decomposition and to provide an energy term
estimator with less terms at a O(1) classical cost when N goes to +∞.

Functional Walsh-Pauli decomposition

Let us now consider the decomposition of a generic potential function V in the Walsh basis
and define a new estimator based on its N -bit truncation. Writing V in the Walsh basis gives us

V =

∞∑

k=0

⟨wk, V ⟩L2wk.

In a N -qubit system, the Walsh-Pauli decomposition PN of P is obtained through the
identification of the Walsh functions wk with the associated Pauli matrices Pk = Zk11 · · ·ZkNN in
the truncation

ΘNV =

2N−1∑

k=0

⟨V,wk⟩L2wk.

Hence, the Walsh-Pauli decomposition of the potential term is given by

PN =

2N−1∑

k=0

⟨V,wk⟩L2Pk.

Let us now define the Walsh interpolation operator which is explored in more details in
Appendix A.2.

Definition 8. Set WN = SpanC{wk | 0 ≤ k ≤ 2N − 1}. The Walsh interpolation operator
IWN : L2(0, 1) → WN is defined, for any v ∈ L2(0, 1), by

⟨IWN v, g⟩L2
N
= ⟨v, g⟩L2

N
, ∀g ∈ L2(0, 1).

Equivalently, IWN v is the N -bit Walsh series in WN that takes the same values as v on ΩN . From
Proposition 25, the interpolant can be written as

IWN v =

2N−1∑

m=0

⟨v, wm⟩L2
N
wm =

2N−1∑

m=0

(
ṽm +

+∞∑

ℓ=1

ṽm⊕2N ℓ

)
wm = ΘNv +RW

N v,

where RW
N is known as the Walsh aliasing operator.

Hence, for the Pauli decomposition of the potential operator, we have, on the one hand,

⟨ψ| P̃N |ψ⟩ =
2N−1∑

k=0

⟨wk, V ⟩L2
N
⟨v2, wk⟩L2

N
= ⟨V, v2⟩L2

N
= ⟨IWN V, v2⟩L2

N
.

which corresponds to the L2
N scalar product with the Walsh interpolant IWN V of V , and on the

other hand,

⟨ψ| PN |ψ⟩ =
2N−1∑

k=0

⟨wk, V ⟩L2⟨v2, wk⟩L2
N
= ⟨ΘNV, v2⟩L2

N
, (2.26)

which is associated with its truncation ΘNV , see Chapter 1 Section 1.2.3 for more details.
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We thus obtain the main advantage of our decomposition method, namely that it does not
require any computation, compared with a O(N2N ) cost in the case of the previous method
requiring a Walsh-Hadamard transform. By using the L2-scalar product instead of the L2

N one, we
recover the truncation of the Walsh series instead of the interpolation which contains additional
non-zero terms due to aliasing caused by frequencies higher than 2N in the Walsh series of V .
Hence, we can reduce the number of terms in the Pauli decomposition. Indeed, for instance , we
have the following result when dealing with monomial functions [25].

Proposition 7. Let r ∈ N and consider the monomial xr. The only non-zero Hadamard-Walsh
coefficients are those whose indices in their binary decomposition contain at most r occurrences of
1. Moreover, for any m ∈ N∗, the m-th Walsh coefficient of the Walsh series of xr is inductively
given by

µr,m =





0 if |m|Ham > r,

(−1)rr!

2r

σm∏

ℓ=1

[
1−mℓ +mℓ2

−ℓ] if |m|Ham = r,

(−1)r−1r!

2r

σm∏

ℓ=1

[
1−mℓ +mℓ2

−ℓ] if |m|Ham = r − 1,

−r
2σm+1

µr−1,m−2σm +

+∞∑

ℓ=1

r

2σm+1+ℓ
µr−1,m+2σm+ℓ if 1 ≤ |m|Ham < r − 1,

and the zeroth coefficient is µr,0 =
1

r + 1
.

Applying the previous proposition and (2.26) to our harmonic potential lead to the Walsh-Pauli
decomposition of the potential term.

Proposition 8. For V (x) = (x− 1
2 )

2, we have

PN =
V0
12


IN + 3

N∑

ℓ1=1,ℓ2>ℓ1

2−(ℓ1+ℓ2−1)Zℓ1Zℓ2


 , (2.27)

and NP = N(N − 1)/2.

Walsh truncation convergence The truncated Walsh-Pauli estimator converges in L2 norm
as O(1/2N ) for H1 functions as is shown in Theorem 3. In the case of the potential term estimator,
we successively have

|⟨P̃N ⟩ψ − ⟨PN ⟩ψ| = |⟨V −ΘNV, v
2⟩L2

N
| = |⟨V −ΘNV, v

2 −ΘN (v2)⟩L2
N
|

≤ ∥V −ΘNV ∥L2
N
∥v2 −ΘN (v2)∥L2

N

≤ C∥V −ΘNV ∥L2∥v2 −ΘN (v2)∥L2 ≤ C

4N
∥V ∥H1∥v∥2H1 ,

where we applied Theorem 3 and used the fact that H1 is a Banach algebra. From Section 2.2.2,
the precision required on the energy estimates is of the order of O( 1

4N
) and hence the estimator

can be used without loss of performance.
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Remark 7. If better convergence rates are needed, we can recover the Walsh interpolation of
any function analytically from its Walsh series. Indeed, the Walsh interpolant, from Definition 8,
coincides with the Fourier interpolant for the discrete L2

N scalar product and hence the convergence
rate of the resulting estimator only depends on the regularity of the function considered. Note that
this would be at the cost of an increased number of Pauli terms and would be strictly equivalent to
the direct-sampling methods devised in [68].

Interaction operator decomposition

The finite-difference approximation of the interaction term can be obtained as the sum of the
squared probability distribution of |ψ⟩. Indeed, given v ∈ X , we have, for any N ≥ 2,

IN (vN ) =
κ

2
⟨v2, v2⟩L2

N
=

κ

2hN

2N−1∑

i=0

|ψi|4 = ⟨IN ⟩ψ,

where we recall that v, vN and |ψ⟩ are related through (2.12) and (2.6). By considering the
functional representation of the interaction term (before discretization) in the Walsh basis and
truncating the exact representation of the functional operator, we obtain the decomposition of
this operator as a weighted sum of squared Pauli values

⟨IN ⟩ψ =
κ

2

2N−1∑

k=0

⟨ψ|Zk11 . . . ZkNN |ψ⟩2 .

Let us write the decomposition of v2 on the Walsh functional basis

v2 =

∞∑

k=0

⟨v2, wk⟩L2wk.

From the previous equality, we compute

I(v) = κ

2
⟨v2, v2⟩L2 =

κ

2

+∞∑

k,k′=0

⟨v2, wk⟩L2⟨v2, w′
k⟩L2⟨wk′ , wk⟩L2 =

κ

2

+∞∑

k=0

|⟨v2, wk⟩L2 |2.

By truncating and identifying the Walsh function wk with Pk = Zk11 . . . ZkNN , using equation
(2.25), we obtain the Pauli decomposition of the interaction operator

⟨IN ⟩ψ =
κ

2

2N−1∑

k=0

⟨v2, wk⟩2L2
N
=
κ

2

2N−1∑

k=0

⟨ψ|Pk |ψ⟩2 . (2.28)

In this case, note that the projection of the discretized operator and the truncation of the
functional operator results in the same Pauli decomposition. Indeed, using (2.23) we obtain

IN (v) =
κ

2

2N−1∑

k=0

⟨wk, v2⟩2L2
N
.

We thus have a Pauli decomposition of NI = 2N − 1 squared Pauli terms for the interaction
operator.
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Proposition 9. The interaction energy term can be calculated as the following sum of
squared Pauli means,

IN (v) =
κ

2

2N−1∑

k=0

⟨Pk⟩2ψ,

where, for any k,0 ≤ k < 2N , Pk = Zk11 . . . ZkNN .

Remark 8. Alternatively, we can see this as a decomposition of a linear term on a 2N qubit
system, indeed, |ψi|4 terms can only be obtained as the mean value of two registers in the state
|ψ⟩. We decompose

|ψi|4 = ⟨ψ| ⟨ψ| (|i⟩⟨i| ⊗ |i⟩⟨i|) |ψ⟩ |ψ⟩ ,
thus we have

IN =
κ

2hN

2N−1∑

i=0

|i⟩ ⟨i| ⊗ |i⟩ ⟨i| =
2N−1∑

i=0

|i1⟩ ⟨i1| ⊗ · · · ⊗ |iN ⟩ ⟨iN | ⊗ |i1⟩ ⟨i1| ⊗ · · · ⊗ |iN ⟩ ⟨iN |

for a system with two N-qubit registers in the state |ψ⟩ . We can rewrite |ik⟩⟨ik| = Ik+(−1)ikZk
2

and we obtain

IN =
κ

2

N∏

n=1

(1 + ZnZN+n) =
κ

2

2N−1∑

k=0

Zk11 . . . ZkNN Zk11+N . . . Z
kN
2N ,

thus recovering (2.28).

Having obtained the Pauli decomposition for each of our energy terms, let us now define the
energy estimators based on those decompositions.

2.4 Pauli estimators

In this section, we define Pauli estimators based on the Pauli decomposition of operators.
We provide a framework, sampling strategies, which formalises the method through which the
operators are sampled and reconstructed and allows us to consider different sampling methods
based on the Pauli decomposition of operators. We then obtain formulae for the variance of
Pauli estimators following specific sampling strategies, namely importance-sampling and diagonal-
sampling, and apply the results to our energy terms. Let us start by defining the concept of a
sampling strategy.

2.4.1 Sampling strategy

A complete set of commuting observables (CSCO) of L (H) allows the reconstruction of any
observable commuting with it. Measuring a CSCO is equivalent to measuring in the unique (up to
a permutation) basis where all the terms in the CSCO are diagonal. Given an observable O and a
CSCO Oex, if O commutes with every O′ ∈ Oex, then O is diagonal in the same unique basis and
can be reconstructed as a linear combination of elements of Oex. In practice, we can only measure
quantum systems through their Z-Pauli operators. Thus, measuring a CSCO Oex corresponds to
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For example, consider the CSCO composed of the Z-Pauli matrices for a N -qubit system:

OZ = {Zk | 1 ≤ k ≤ N}.

As each term in the CSCO is diagonal in the computational basis, the measurement of OZ is
equivalent to the measurement in the computational basis, and any diagonal operator can be
reconstructed from the Z-Pauli matrices.

Example 3 – CSCO example

Consider the interaction term IN from (2.28), we can choose

A = {Ak = Zk11 · · ·ZkNN | 1 ≤ k ≤ 2N − 1}.

The associated nonlinear function g is

g(y1, . . . y2N−1) =
κ

2
+
κ

2

2N−1∑

k=1

|yk|2.

Example 4 – Nonlinear reconstruction

measuring the Z-Pauli operators after the application of a unitary UOex that sends the system
into the unique diagonalization basis of Oex. Let us denote by ΛÔ the set of eigenvectors of an
observable Ô. Then we define ΛOex

the set of possible samples from the CSCO Oex, i.e.

ΛOex
= Λ(Oex)1 × · · · × Λ(Oex)|Oex| ,

where we denote by (Oex)k the k-th observable of Oex. A sample of the CSCO Oex is then vector
of ΛOex

.
Given a budget of Nsh samples, Nsh ≥ 1, to estimate the mean value of a potentially nonlinear

operator A for a quantum state |ψ⟩, we proceed in the following way. We first identify an indexed
set of NA observables A = {Ai | 1 ≤ i ≤ NA}, NA ≥ 1, such that the mean value of A can be
expressed as a possibly nonlinear function g of the mean values of the Ai, i.e. we have

⟨A⟩ψ = g(⟨A1⟩ψ, . . . , ⟨ANA⟩ψ).

Next, we select an indexed set of NO CSCOs, O = {Oj | 1 ≤ j ≤ NO}, with 1 ≤ NO ≤ NA,
and the associated basis change circuits (UOj ). Each observable Ak must be reconstructible from
at least one Oj as a linear combination of the observables in Oj . We define the reconstruction set
R ⊂ {1, . . . , NA} × {1, . . . , NO}, such that, for any (i, j) ∈ R, the following equivalent properties
hold:

• Ai can be reconstructed as a linear combination of observables in Oj ,
• every observable in Oj commutes with Ai,
• Ai is co-diagonal with every observable in Oj .

Thus we can write

R = {(i, j) ∈ {1, . . . , NA} × {1, . . . , NO} | AiÔ = ÔAi ∀Ô ∈ Oj}.
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Definition 9. A sampling strategy is described by the tuple (Ξ,Υ), where

Ξ = (Ξk)1≤k≤NO ∈ [0, 1]NO

is the vector representing the proportion of samples allocated to each CSCO in O, and

Υ ⊂ R

indicates the subset of reconstructions which were used. The elements of Υ are the couples of
indices (i, j) specifying whether the samples of Oj are used to reconstruct the term Ai in the
strategy.

Given a sampling strategy (Ξ,Υ) and Nsh samples, we define ξ(Nsh) ∈ {1, . . . , NO}Nsh the
vector of CSCO assignments. The measured samples

s =

{
sk ∈ ΛO

ξ
(Nsh)
k

| 1 ≤ k ≤ Nsh

}

are then used to reconstruct each Ai according to Υ. For a given i, 1 ≤ i ≤ NA, the set of samples
used to reconstruct Ai is denoted by

Si =
{
k ∈ {1, . . . , Nsh} |

(
i, ξ

(Nsh)
k

)
∈ Υ

}
.

2.4.2 Pauli estimator

In what follows, the observables will be the Pauli matrices as we can write the Pauli decompo-
sition (2.15) of any operator A, i.e.

A = α0I +

NA∑

i=1

αiPi, (2.29)

where NA ≥ 1 if A is not a homothethy, (αi)0≤i≤NA are (a priori) complex numbers and
(Pi)1≤i≤NA is a subfamily of BP(L (H)). We recall that, for any i, Si is the set of samples used
to reconstruct Pi, and we denote by N i

sh the cardinality of Si. The reconstructed value of each Pi
is given by

P
Nish =

1

N i
sh

Nish∑

k=1

pki , (2.30)

where pki ∈ {−1, 1} is the reconstructed value of the Pi observable for the k-th sample in Si.
Then (2.29)–(2.30) imply that the Pauli sampling estimator A

Nsh for A is

A
Nsh

= α0 +

NA∑

i=1

αiPi
Nish . (2.31)

Let us now state a general result of the expected value and the variance of such an estimator.

Proposition 10. The expected value of A
Nsh satisfies

E
[
A
Nsh
]
= ⟨A⟩ψ,
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and its variance is given by

VarA
Nsh

=

NA∑

i=1

α2
i

N i
sh

(
1− ⟨Pi⟩2ψ

)
+

NA∑

i=1

∑

j ̸=i

αiαj
|Si ∩ Sj |
N i

shN
j
sh

(⟨PiPj⟩ − ⟨Pi⟩ψ⟨Pj⟩ψ) . (2.32)

Proof. We first have, from (2.31),

E
[
A
Nsh
]
= α0 +

NA∑

i=1

αiE
[
Pi
Nish

]
. (2.33)

Next, for any i, 1 ≤ i ≤ NA, we can write

E
[
Pi
Nish

]
=

1

N i
sh

Nish∑

k=1

E
[
pki
]
= ⟨Pi⟩ψ.

Plugging (2.29) in (2.33), implies that

E
[
A
Nsh
]
= α0 +

NA∑

i=1

αi⟨Pi⟩ψ = ⟨A⟩ψ.

Next, the variance of the estimator is given by

VarA
Nsh

= E
[(
A
Nsh
)2]

− E
[
A
Nsh
]2

=

NA∑

i=1

NA∑

i=1

αiαj

(
E
[
Pi
NishPj

Njsh

]
− E

[
Pi
Nish

]
E
[
Pj

Njsh

])

=

NA∑

i=1

α2
i Var

(
Pi
Nish

)
+

NA∑

i=1

∑

j ̸=i

αiαj Cov(Pi
Nish , Pj

Njsh). (2.34)

The variance terms in the right-hand side of (2.34) are given, for each i, by

VarPi
Nish =


 1
(
N i

sh

)2
Nish∑

k=1

Nish∑

ℓ=1

E
[
pki p

ℓ
i

]
− E

[
pki
]
E
[
pℓi
]



=
1

(N i
sh)

2

Nish∑

k=1

E
[
(pki )

2
]
− E

[
pki
]2

=
1

N i
sh

(
1− ⟨Pi⟩2ψ

)
. (2.35)

The covariance term in (2.34) between the estimators of the i-th and j-th Pauli matrices depends
on the shared samples between both. Indeed, it writes

Cov

(
Pi
Nish , Pj

Njsh

)
=

1

N i
shN

j
sh

Nish∑

k=1

Njsh∑

ℓ=1

(
E
[
pki p

ℓ
j

]
− E

[
pki
]
E
[
pℓj
])
. (2.36)

Each contribution Cov
(
pki ,p

ℓ
j

)
= E

[
pki p

ℓ
j

]
− E

[
pki
]
E
[
pℓj
]

is non-zero if and only if pki and pℓj
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are not independent. Then the only non-zero terms are the ones where the k-th sample of Pi is
the same as the ℓ-th sample of Pj , in which case, we have

Cov
(
pki ,p

ℓ
j

)
= ⟨PiPj⟩ψ − ⟨Pi⟩ψ⟨Pj⟩ψ.

Hence, (2.36) becomes

Cov

(
Pi
Nish , Pj

Njsh

)
=

|Si ∩ Sj |
|Si||Sj |

(⟨PiPj⟩ψ − ⟨Pi⟩ψ⟨Pj⟩ψ) . (2.37)

Using (2.35) and (2.37) in (2.34) allows to conclude.

We now define the two sampling strategies which we consider in the rest of this chapter. First,
we focus on at the importance-sampling strategy, which consists in sampling the Pauli terms in
the decomposition of an operator proportionally to the absolute value of their coefficient. Second,
we discuss the diagonal-sampling strategy which consists in sampling in the diagonal basis of
the operator. These two strategies are at opposite ends of sampling strategies in terms of the
basis-change circuits requirements and thus in terms of sensitivity to noise, as we shall see in
Chapter 3.

Definition 10 (Importance-sampling strategy [99]). Given A = α0I +
NA∑
i=1

αiPi, NA ≥ 1. We set

α1: = (αi)1≤i≤NA ∈ CNA , A = {Pi | 1 ≤ i ≤ NA}. (2.38)

For each Pi, 1 ≤ i ≤ NA, we define a CSCO composed of its local operators and completed by
Z-Pauli operators

Oi = {Pi|k if Pi|k ̸= I else Zk | 1 ≤ k ≤ N},
where we set Pi|k =

⊗N
i=1(Pi|k)δi,k . This allows to define the set of CSCOs to be sampled

OImp = {Oi | 1 ≤ i ≤ NA} .

The importance-sampling strategy for A is the tuple (ΞImp,ΥImp), where

ΞImp = {|αi|/∥α1:∥1 | 1 ≤ i ≤ NA},

with ∥ · ∥1 the 1-norm on CNA , and

ΥImp = {(i, i) | 1 ≤ i ≤ NA}.

Proposition 11. The variance of A
Nsh associated to an importance-sampling strategy is given by

VarA
Nsh

=
∥α1:∥1
Nsh

NA∑

i=1

|αi|
(
1− ⟨Pi⟩2ψ

)
. (2.39)

Proof. We notice that, for any i, j ∈ {1, . . . NA} such that i ≠ j, Si ∩ Sj = ∅ and that
N i

sh = |αi|
∥α1:∥1

Nsh. Using (2.32), it is easy to recover (2.39).

Definition 11 (Diagonal-sampling strategy). Let us denote by UA the basis-change operator into



2.4. Pauli estimators 65

the diagonalization basis of A. We set

O1 = {U†
AZkUA | 1 ≤ k ≤ N}, Odiag = {O1} .

The diagonal-sampling strategy is given by the tuple (Ξdiag,Υdiag), where

Ξdiag = {1}, Υdiag = {(i, 1) | 1 ≤ i ≤ NA}.

Proposition 12. The variance of A
Nsh associated to a diagonal-sampling strategy is given by

VarA
Nsh

=
1

Nsh

(
⟨A2⟩ψ − ⟨A⟩2ψ

)
. (2.40)

Proof. Notice that, for any i, j ∈ {1, . . . NA} such that i ̸= j, Si ∩ Sj = Si = Sj and that
|Si| = |Sj | = Nsh. Hence, using (2.34), we obtain

VarA
Nsh

=

NA∑

i=1

NA∑

j=1

αiαj
Nsh

(⟨PiPj⟩ψ − ⟨Pi⟩ψ⟨Pj⟩ψ)

=
1

Nsh



〈(

NA∑

i=1

αiPi

)2〉

ψ

−
(
NA∑

i=1

αi⟨Pi⟩ψ
)2

 =

1

Nsh

[
⟨(A− α0I)

2⟩ψ − ⟨A− α0I⟩2ψ
]
,

which allows to recover (2.40).

In the next three subsections, we apply Proposition 10 successively to the kinetic, potential
and interaction operators defined in (2.13)–(2.14).

2.4.3 Kinetic energy

Let us consider the Pauli sampling estimator of KN

KNNsh
= α0 +

NK∑

i=1

αiPi
Nish , (2.41)

using the Pauli decomposition of KN from Proposition 3. We consider for this energy term a
naive importance-sampling strategy as the Pauli terms do not commute trivially. That allows to
obtain the following result on the estimator variance.

Theorem 5. The sampling variance is upper bounded by

VarKNNsh
= ∥α1:∥1

NK∑

i=1

|αi|
(
1− ⟨Pi⟩2ψ

)

Nsh
≤ ∥α1:∥21

Nsh
=

N2

4h4NNsh
=
N216N

4Nsh
. (2.42)



66 CHAPTER 2. Error analysis of VQAs for the Gross-Pitaevskii equation

Proof. As an importance-sampling strategy is used, from (2.39) we have,

VarKNNsh
= ∥α1:∥1

NK∑

i=1

|αi|
(
1− ⟨Pi⟩2ψ

)

Nsh
.

We recover the inequality in (2.42) by using the lower bound, for all 1 ≤ i ≤ NK, ⟨Pi⟩2ψ ≥ 0 and
the value of ∥α1:∥1 from (2.20).

Remark 9. In fact, some terms do commute in the Pauli decomposition of KN , and thus a more
relevant sampling scheme may provide a better variance than our naive importance sampling
method. For example, the Gray-encoding basis change as in [19] would allow the sampling of
commuting terms at the cost of a CNOT wall.

2.4.4 Potential energy

We define the Walsh-Pauli sampling estimator of ⟨PN ⟩ψ,

PNNsh
= α0 +

NP∑

i=1

αiPi
Nish , (2.43)

where we have, for any 1 ≤ i ≤ NP , αi and Pi from (2.27).
As the operator P is diagonal, we consider a diagonal-sampling strategy with UP = IN for

which we obtain the following result.

Theorem 6. The variance of the Walsh-Pauli sampling estimator for the potential term
satisfies, for any N ≥ 1,

VarPNNsh
=

⟨(ΘNV )2, v2⟩L2
N
− (⟨ΘNV, v2⟩L2

N
)2

Nsh
≤ ∥ΘNV ∥2L2 − ∥V ∥2L1

Nsh
. (2.44)

Proof. Indeed, we have, from (2.40),

Nsh VarPN
Nsh

=

NP∑

i=1

NP∑

j=1

[αiαj⟨PiPj⟩ψ − αiαj⟨Pi⟩ψ⟨Pj⟩ψ]

=

NP∑

i=1

NP∑

j=1

[αiαj⟨PiPj⟩ψ⟨I⟩ψ − αiαj⟨Pi⟩ψ⟨Pj⟩ψ] . (2.45)

For any j, k such that 0 ≤ j, k < 2N , we set pk = |ψk|2 and P kj = ⟨k|Pj |k⟩, the k-th term on the
diagonal of Pj . As the involved Pauli terms are diagonal, we can further rewrite the mean value
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of each term ⟨PiPj⟩ψ =
∑2N−1
k=0 P ki P

k
j pk and similarly for ⟨Pi⟩ψ and ⟨I⟩ψ. Then (2.45) becomes

Nsh VarPN
Nsh

=

NP∑

i=1

NP∑

j=1

αiαj




2N−1∑

k=0

2N−1∑

ℓ=0

P ki P
k
j pkpℓ −

2N−1∑

k=0

2N−1∑

ℓ=0

P ki P
ℓ
j pkpℓ




=

NP∑

i=1

NP∑

j=1

αiαj




2N−1∑

k=0

2N−1∑

ℓ=0

P ki pkpℓ
(
P kj − P ℓj

)



=

NP∑

i=1

NP∑

j=1

αiαj




2N−1∑

k=0

2N−1∑

ℓ=0

P ℓi pℓpk
(
P ℓj − P kj

)

 .

Noticing that the previous sum is antisymmetric with respect to ℓ and k, we can rewrite it as

Nsh VarPN
Nsh

=
1

2

NP∑

i=1

NP∑

j=1

αiαj

2N−1∑

k=0

2N−1∑

ℓ=0

pℓpk
(
P ki − P ℓi

) (
P kj − P ℓj

)

=
1

2

2N−1∑

k=0

2N−1∑

ℓ=0

pℓpk

NP∑

i=1

αi
(
P ki − P ℓi

) NP∑

j=1

αj
(
P kj − P ℓj

)
. (2.46)

The Pauli decomposition of the potential term PN gives

1

2

NP∑

i=1

αiP
k
i = ΘNV (k/2N )− α0 = ΘNV (k/2N )− ∥V ∥L1 .

Consequently, (2.46) becomes

Nsh VarPN
Nsh

=
1

2

2N−1∑

k=0

2N−1∑

ℓ=0

pℓpk
[(
ΘNV (k/2N )− ∥V ∥L1

)
−
(
ΘNV (ℓ/2N )− ∥V ∥L1

)]2

=
1

2

2N−1∑

k=0

2N−1∑

ℓ=0

pℓpk
[(
ΘNV (k/2N )

)
−
(
ΘNV (ℓ/2N )

)]2
. (2.47)

The last term in (2.47) is the left-Riemann sum associated to the double integral
∫ 1

0

[ΘNV (x)−ΘNV (y)]
2
v(x)2v(y)2dxdy,

where the sum on ℓ is related to the integration on x and the one on k to the integration on y.
Hence, we rewrite (2.47) as

Nsh VarPN
Nsh

=
1

2
⟨(ΘNV (x)−ΘNV (y))

2
, v(x)2v(y)2⟩L2

N

≤ 1

2

(
2∥ΘNV ∥2L2

N
− 2∥ΘNV ∥2L1

N

)
∥v∥2L2

N
= ∥ΘNV ∥2L2 − ∥V ∥2L1 ,

which allows to conclude.
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2.4.5 Interaction term

Recall from (2.28) that the interaction term operator is given by

⟨IN ⟩ψ =
κ

2

NI∑

k=0

⟨ψ|Pk |ψ⟩2 ,

where, for any 0 ≤ k ≤ NI , Pk = Zk11 . . . ZkNN . In order to construct an estimator for the
interaction term based on its ‘squared Pauli’ decomposition, we first need to estimate, for
0 ≤ k < 2N , the terms ⟨ψ|Pk |ψ⟩2. We are thus led to define the unbiased empirical mean
estimator of ⟨Pi⟩2ψ, given Nsh samples, for any 1 ≤ i ≤ NI ,

P 2
i

Nsh
=

1

N i
sh

(
N i

sh − 1
)
Nish∑

k=1

Nish∑

k′=1
k′ ̸=k

pki p
k′

i ,

where, for 1 ≤ k ≤ N i
sh, p

k
i ∈ {−1, 1} is the reconstructed value of the Pi observable for the

k-th sample in Si. As the Pauli operators in the decomposition are all diagonal, we consider a
diagonal-sampling strategy. Let us now look at the covariance between two of these estimators.

Proposition 13. Let 1 ≤ i, j ≤ NI . We have

Cov
(
P 2
i

Nsh
, P 2

j

Nsh
)
=

6− 4Nsh

Nsh(Nsh − 1)
⟨Pi⟩2ψ⟨Pj⟩2ψ

+
4(Nsh − 2)

Nsh(Nsh − 1)
⟨Pi⟩ψ⟨Pj⟩ψ⟨PiPj⟩ψ +

2

Nsh(Nsh − 1)
⟨PiPj⟩2ψ, (2.48)

and
VarP 2

i

Nsh
=

6− 4Nsh

Nsh(Nsh − 1)
⟨Pi⟩4ψ +

4(Nsh − 2)

Nsh(Nsh − 1)
⟨Pi⟩2ψ +

2

Nsh(Nsh − 1)
. (2.49)

Proof. Let 1 ≤ i, j ≤ NI . We first write

Cov
(
P 2
i

Nsh
, P 2

j

Nsh
)
= E

[
P 2
i

Nsh
P 2
j

Nsh
]
− E

[
P 2
i

Nsh
]
E
[
P 2
j

Nsh
]
. (2.50)

Let us look more closely at the first term E
[
P 2
i

Nsh
P 2
j

Nsh
]

over the individual samples

E
[
P 2
i

Nsh
P 2
j

Nsh
]
=

1

(Nsh(Nsh − 1))
2

Nsh∑

k=1

Nsh∑

k′=1
k′ ̸=k

Nsh∑

ℓ=1

Nsh∑

ℓ′=1
ℓ′ ̸=ℓ

E
[
pki p

k′

i pℓjp
ℓ′

j

]
. (2.51)

The value of E
[
pki p

k′

i pℓjp
ℓ′

j

]
depends on the sample associated to each Pauli term, i.e. the indices

k, ℓ, k′, ℓ′. Indeed, if the samples are shared, the terms depend on each other and the expectation
value of the product of the terms is not the product of expectation values. For each case, we now
detail the different possible values of E

[
pki p

k′

i p
ℓ
jp
ℓ′

j

]
depending on the indices.

• If both k and k′ do not equal ℓ or ℓ′, i.e. for Nsh(Nsh − 1)(Nsh − 2)(Nsh − 3) terms of the
sum in (2.51),

E
[
pki p

k′

i pℓjp
ℓ′

j

]
= ⟨Pi⟩2ψ⟨Pj⟩2ψ.
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• If (k∈ {1, . . . , Nsh} \ {ℓ, ℓ′} and k′∈ {ℓ, ℓ′}), or (k∈ {ℓ, ℓ′} and k′∈ {1, . . . , Nsh} \ {ℓ, ℓ′}),
i.e. for 4Nsh(Nsh − 1)(Nsh − 2) terms of the sum in (2.51),

E
[
pki p

k′

i pℓjp
ℓ′

j

]
= ⟨Pi⟩ψ⟨Pj⟩ψ⟨PiPj⟩ψ.

• If (k = ℓ and k′ = ℓ′), or (k = ℓ′ and k′ = ℓ), i.e. for 2Nsh(Nsh − 1) terms of the sum in
(2.51),

E
[
pki p

k′

i pℓjp
ℓ′

j

]
= ⟨PiPj⟩2ψ.

Consequently, the second term in (2.50) becomes

E
[
P 2
i

Nsh
]
E
[
P 2
j

Nsh
]
=

1

(Nsh(Nsh − 1))
2

Nsh∑

k=1

Nsh∑

k′=1
k′ ̸=k

Nsh∑

ℓ=1

Nsh∑

ℓ′=1
ℓ′ ̸=ℓ

E
[
pki p

k′

i

]
E
[
pℓjp

ℓ′

j

]
= ⟨Pi⟩2ψ⟨Pj⟩2ψ,

so that we obtain (2.48). We similarly get (2.49), using the additional fact that, for any 1 ≤ i ≤ NI ,
⟨P 2
i ⟩ψ = 1.

Using the squared Pauli decomposition (2.28) of IN and these new estimators, with Nsh
samples, we define the Pauli sampling estimator of ⟨IN ⟩ψ,

INNsh
= α0 +

NI∑

i=1

α0P 2
i

Nish
, (2.52)

with α0 = κ
2 . We note that, as we estimate the mean of the squared Pauli operators, part of the

variance will decrease quadratically with Nsh as we now explain. Indeed, as can be observed in
the following theorem, the variance of the estimator is equal to a polynomial of order one divided
by a polynomial of order two, and thus the remainder term will decrease quadratically in Nsh.

Theorem 7. The Pauli sampling estimator of the interaction term has a variance given by

Var INNsh
=

α2
0

Nsh(Nsh − 1)

[
(6− 4Nsh)⟨v2, v2⟩2L2

N

+ 4(Nsh − 2)⟨v4, v2⟩L2
N
+ 2 · 2N ⟨v2, v2⟩L2

N

]

The dependence of the interaction term on Nsh(Nsh − 1) comes from the fact that we estimate
the squared value of the Pauli operator.

Proof. We first write

Var INNsh
= E

[
(INNsh

)2
]
− E

[
INNsh

]2
.

Thanks to (2.52), the previous equality becomes

Var INNsh
= α2

0

NI∑

i=1

NI∑

j=1

(
E
[
P 2
i

Nsh
P 2
j

Nsh
]
− α2

0⟨Pi⟩2ψ⟨Pj⟩2ψ
)
.
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Using (2.49) and (2.48), we obtain

Var INNsh
=

α2
0

Nsh(Nsh − 1)

[
(6− 4Nsh)

NI∑

i=1

NI∑

j=1

⟨Pi⟩2ψ⟨Pj⟩2ψ + 4(Nsh − 2)

NI∑

i=1

⟨Pi⟩2ψ

+ 4(Nsh − 2)

NI∑

i=1

NI∑

j=1
j ̸=i

⟨Pi⟩ψ⟨Pj⟩ψ⟨PiPj⟩ψ + 2

NI∑

i=1

NI∑

j=1
j ̸=i

⟨PiPj⟩2ψ + 2NI

]
. (2.53)

Using (2.28), we simplify the above sums into L2
N scalar products of v2. First, we have

α0

NI∑

i=1

⟨Pi⟩2ψ = α0

(
⟨v2, v2⟩L2

N
− ⟨v2, 1⟩2L2

N

)
= ⟨IN ⟩ψ − α0.

This allows to obtain, for the sum of terms ⟨Pi⟩2ψ⟨Pj⟩2ψ,

α2
0

NI∑

i=1

NI∑

j=1

⟨Pi⟩2ψ⟨Pj⟩2ψ = α2
0

(
⟨v2, v2⟩L2

N
− ⟨v2, 1⟩2L2

N

)2
(2.54)

Furthermore, for terms ⟨PiPj⟩2ψ, as all the Z-Pauli operators are contained in the Pauli decompo-
sition of I, we can write

α0

NI∑

i=1

NI∑

j=1
j ̸=i

⟨PiPj⟩2ψ = α0

NI∑

i=1

(
NI∑

k=1

⟨Pk⟩2ψ − ⟨Pi⟩2ψ

)

= α0NI

NI∑

k=1

⟨Pk⟩2ψ − α0

NI∑

i=1

⟨Pi⟩2ψ = (2N − 2)α0

(
⟨v2, v2⟩L2

N
− ⟨v2, 1⟩2L2

N

)
. (2.55)

For terms ⟨Pi⟩ψ⟨Pj⟩ψ⟨PiPj⟩ψ, we are led to consider the Walsh interpolant of v2

IWN (v2) =

2N−1∑

k=0

⟨v2, wk⟩L2
N
wk.

We now use Theorem 16, from Appendix A.2, ensures that

IWN (v4) =
[
IWN (v2)

]2
.

Using this, we obtain

IWN
(
v2 − ∥v∥2L2

)2
=

2N−1∑

i=1

2N−1∑

j=1

⟨v2, wi⟩L2
N
⟨v2, wj⟩L2

N
wi⊕j

=

2N−1∑

i=1

2N−1∑

k=0
k ̸=i

⟨v2, wi⟩L2
N
⟨v2, wi⊕k⟩L2

N
wk.
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Finally, we notice that

〈(
v2 − ∥v∥2L2

)2
, v2 − ∥v∥2L2

〉
L2
N

=

2N−1∑

j=1

2N−1∑

i=1

2N−1∑

k=0
k ̸=i

⟨v2, wi⟩L2
N
⟨v2, wj⟩L2

N
⟨v2, wi⊕k⟩L2

N
⟨wk, wj⟩L2

N

=

2N−1∑

i=1

2N−1∑

j=1
j ̸=i

⟨v2, wi⟩L2
N
⟨v2, wj⟩L2

N
⟨v2, wi⊕j⟩L2

N
=

2N−1∑

i=1

2N−1∑

j=1
j ̸=i

⟨Pi⟩ψ⟨Pj⟩ψ⟨PiPj⟩ψ,

which gives

2N−1∑

i=1

2N−1∑

j=1
j ̸=i

⟨Pi⟩ψ⟨Pj⟩ψ⟨PiPj⟩ψ =
〈(
v4 − 2v2∥v∥2L2 +

(
∥v∥2L2

)2)
,
(
v2 − ∥v∥2L2

)〉
L2
N

= ⟨v4, v2⟩L2
N
− 3⟨v2, v2⟩L2

N
+ 2. (2.56)

Replacing (2.54), (2.55) and (2.56) in (2.53) provides the result.

Since the term ⟨v4, v2⟩L2
N

is not uniquely determined by the interaction energy, we consider
the following bound, obtained thanks to the Cauchy-Schwarz inequality.

Theorem 8. Set

BV = 4α2
0⟨v2, v2⟩3/2L2

N

(
2N/2 − ⟨v2, v2⟩1/2

L2
N

)
, BW = 2α2

0⟨v2, v2⟩L2
N

(
2N/2 − ⟨v2, v2⟩1/2

L2
N

)2
,

(2.57)
which are nonnegative. Then the variance of the interaction Pauli sampling estimator is
upper-bounded by

Var INNsh ≤ BV
Nsh

+
BW

Nsh(Nsh − 1)
.

Proof. Consider again the Walsh interpolant of v4, which, using Theorem 16, can be written as

IWN (v4) =

2N−1∑

i=0

2N−1∑

k=0

⟨v2, wi⟩L2
N
⟨v2, wi⊕k⟩L2

N
wk.

This allows to write, by definition of the interpolant,

⟨v4, v2⟩L2
N
= ⟨IWN (v4), IWN (v2)⟩L2

N

and we thus obtain

⟨v4, v2⟩L2
N
=

2N−1∑

i=0

2N−1∑

j=0

⟨v2, wi⟩L2
N
⟨v2, wi⊕j⟩L2

N
⟨v2, wj⟩L2

N
.
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Since we have

2⟨v2, wi⟩L2
N
⟨v2, wi⊕j⟩L2

N
⟨v2, wj⟩L2

N
≤ |⟨v2, wi⟩L2

N
|
(
|⟨v2, wi⊕j⟩L2

N
|2 + |⟨v2, wj⟩L2

N
|2
)
,

we get

⟨v4, v2⟩L2
N
≤ 1

2

2N−1∑

i=0

2N−1∑

j=0

|⟨v2, wi⟩L2
N
|(|⟨v2, wi⊕j⟩L2

N
|2 + |⟨v2, wj⟩L2

N
|2)

=

2N−1∑

i=0

|⟨v2, wi⟩L2
N
|
2N−1∑

j=0

⟨v2, wj⟩2L2
N
= |β|1|β|22

where we define the 2N -dimensional vector of the Walsh coefficients of v2, β =
(
⟨v2, wi⟩L2

N

)
0≤i<2N

.

From the Cauchy-Schwarz inequality, and since β is 2N -dimensional, we can write

|β|1 ≤ 2N/2|β|2 = 2N/2⟨v2, v2⟩1/2
L2
N
.

Thus we have
⟨v4, v2⟩L2

N
≤ 2N/2⟨v2, v2⟩3/2

L2
N

(2.58)

Plugging (2.58) in (2.53), we obtain

Var INNsh ≤ α2
0

−4(Nsh − 6)⟨v2, v2⟩2
L2
N
+
(
4(Nsh − 2)2N/2⟨v2, v2⟩3/2

L2
N
+ 2 · 2N ⟨v2, v2⟩L2

N

)

Nsh(Nsh − 1)

= 4α2
0⟨v2, v2⟩3/2L2

N

2N/2 − ⟨v2, v2⟩1/2
L2
N

Nsh
+ α2

0⟨v2, v2⟩L2
N

2
(
⟨v2, v2⟩1/2

L2
N
− 2N/2

)2

Nsh(Nsh − 1)
,

which gives us the result.

Var INNsh ≤ 4α2
0

Nsh
⟨v2, v2⟩3/2

L2
N

(
2N/2 − ⟨v2, v2⟩1/2

L2
N

)
+

2α2
0

Nsh(Nsh − 1)
⟨v2, v2⟩L2

N

(
2N/2 − ⟨v2, v2⟩1/2

L2
N

)2

2.5 Estimators

We now compare our method with the two types of estimators defined in [68], the direct-
sampling estimator and the Hadamard-test estimator.

2.5.1 Direct-sampling estimators

In this subsection, we consider the direct-sampling estimators which are used in the ’hardware-
reduced’ version of the algorithm developed in [68]. Given Nsh samples, we denote the direct-
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sampling estimator of an operator A by

ǍNsh =
1

Nsh

Nsh∑

k=0

Dsk , (2.59)

where sk ∈ {0, . . . , 2N − 1} corresponds to the k-th sample in the diagonal basis of A, D is the
diagonal matrix of A in the basis, and for any j, 0 ≤ j < 2N , we denote by Dj the j-th term of
the diagonal of D for simplicity. By definition, the direct-sampling estimator is in fact exactly
the diagonal-sampling estimator. This implies that the method requires knowing the diagonal
basis of the operator and implementing a basis change at the end of the circuit.

In our case, the direct-sampling estimator is used for operators with diagonals corresponding
to function evaluations. This allows to obtain explicit formulations of its mean and variance.

Theorem 9. Given a diagonal operator D such that, for any i, 0 ≤ i < 2N , Di = d(i/2N ) for a
function d ∈ H1

#(0, 1), the mean of the sampling estimator for D is

⟨D⟩ψ = ⟨v2, d⟩L2
N
,

and the variance of the estimator is given by

Var ĎNsh =
⟨d2, v2⟩L2

N
− ⟨d, v2⟩2

L2
N

Nsh
. (2.60)

The variance is bounded by the difference of the discrete L2 and L1 norms of d

Var ĎNsh ≤ 1

Nsh

(
∥d∥2L2

N
− ∥d∥2L1

N

)
, (2.61)

where the discrete L1 norm is defined, for any v ∈ H1, by ∥v∥L1
N
= hN

∑2N−1
k=0 |v(xk)|.

Proof. Given a positive integer k < Nsh, we can write

Dsk =

2N−1∑

i=0

Diδsk,i, (2.62)
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where δ denotes the Kronecker delta. The mean value of the estimator is then given by

E
[
ĎNsh

]
=

1

Nsh

Nsh∑

k=1

E [Dsk ] .

For each sample sk, we thus have

E [Dsk ] =

2N−1∑

i=0

Dipi =

2N−1∑

i=0

d(i/2N )v2(i/2N )hN = ⟨v2, d⟩L2
N
,

where we denote pi = v(i/2N )2hN , the probability of a sample being equal to i. Thus

E
[
ĎNsh

]
=
Nsh

Nsh
⟨v2, d⟩L2

N
= ⟨D⟩ψ.

The variance on the other hand is given by

Var
(
ĎNsh

)
= E

[
(ĎNsh)2

]
− E

[
ĎNsh

]2

=
1

N2
sh

Nsh∑

k=1

Nsh∑

ℓ=1

E [DskDsℓ ]− E [Dsk ]E [Dsℓ ] =
1

N2
sh

Nsh∑

k=1

Nsh∑

ℓ=1

Cov(Dsk , Dsℓ).

As the samples are independent, we only have the resulting variance terms for each Dsk . Using
the decomposition (2.62) for Dsk , we write

VarDsk =

2N−1∑

i=0

2N−1∑

j=0

DiDjE [δskiδsk,j ]−
2N−1∑

i=0

2N−1∑

j=0

DiDjpipj =

2N−1∑

i=0

2N−1∑

j=0

DiDj (δijpi − pipj) .

That ensures

Var ĎNsh =
1

Nsh

2N−1∑

i=0

2N−1∑

j=0

didjδi,jpi − pipj ,

that is (2.60). To obtain the bound (2.61), we write

Var ĎNsh =
1

Nsh

2N−1∑

i=0

d2i pi −
1

Nsh

2N−1∑

i=0

2N−1∑

j=0

didjpipj =
1

Nsh

2N−1∑

i=0

dipi


di −

2N−1∑

j=0

djpj




=
1

Nsh

2N−1∑

i=0

dipi


di

2N−1∑

j=0

pj −
2N−1∑

j=0

djpj


 =

1

Nsh

2N−1∑

i=0

2N−1∑

j=0

dipipj (di − dj) .

Then, we notice that

2N−1∑

i=0

2N−1∑

j=0

dipipj (di − dj) = −
2N−1∑

i=0

2N−1∑

j=0

dipipj (dj − di) = −
2N−1∑

i=0

2N−1∑

j=0

djpipj (di − dj) .

This anti-symmetry ensures that
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Var
(
ĎNsh

)
=

1

2Nsh

2N−1∑

i=0

2N−1∑

j=0

[dipipj (di − dj)− djpipj (di − dj)]

=
1

2Nsh

2N−1∑

i=0

2N−1∑

j=0

pipj (di − dj)
2
.

This previous sum can be identified to the discrete L2 product ⟨v2(x)v2(y), (d(x)− d(y))
2⟩L2

N
,

which allows to obtain

Var
(
ĎNsh

)
=

1

2Nsh
⟨v2(x)v2(y), (d(x)− d(y))

2⟩L2
N

≤ 1

2Nsh

(
∥v∥2L2

N

)2
∥d(x)− d(y)∥2L2

N
,

and the required bound (2.61).

Remark 10. It is important to note that, in the case of a diagonal operator, we have an equivalence
between the direct-sampling estimator and the Walsh-Pauli estimator if the discretization and
truncation approaches provide the same coefficients, i.e. if the truncation and interpolation
of the function coincide. This is the case for example in the context of the interaction term.
Furthermore, the variance of the estimator is optimal in the sense that it is equal to the variance
of the observable divided by the number of samples.

Unbiased direct-sampling interaction term

In the case of the nonlinear interaction term, the estimator defined in [68] can be rewritten as

I̊N
Nsh

=
κ

2Nsh

Nsh∑

k=0

Q̌Nsh
sk

=
κ

2N2
sh

Nsh∑

k=0

Nsh∑

ℓ=0

δsℓ,sk ,

where Q̌Nsh
i = 1

Nsh

Nsh∑
ℓ=1

δsℓ,i is the unbiased estimator of the probability of measuring the compu-

tational state i, i.e. E
[
Q̌Nsh
i

]
= ⟨|i⟩⟨i|⟩ψ = |ψi|2 = pi. If we now look at the mean value of the

above estimator, we have,

1

α0
E
[
I̊N

Nsh
]
=

1

N2
sh

Nsh∑

k=0

Nsh∑

ℓ=0

E [δsℓ,sk ] =
1

N2
sh

Nsh∑

k=0

Nsh∑

ℓ=0

2N−1∑

i=0

E [δsℓ,iδsk,i] ,

Now we separate the cases when k = ℓ and k ̸= ℓ,

1

α0
E
[
I̊N

Nsh
]
=

1

N2
sh



Nsh∑

k=0

2N−1∑

i=0

E [δsk,i] +

Nsh∑

k=0

∑

ℓ ̸=k

2N−1∑

i=0

E [δsℓ,iδsk,i]




As k and ℓ are different samples in the second term, they are independent and thus the previous
equality becomes
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1

α0
E
[
I̊N

Nsh
]
=

1

N2
sh


Nsh

2N−1∑

i=0

pi +Nsh(Nsh − 1)

2N−1∑

i=0

p2i


 = ⟨IN ⟩ψ +

1

Nsh
(1− ⟨IN ⟩ψ) .

This shows that the estimator is thus biased, we are thus led to introduce an unbiased estimator
for the interaction term

ǏN
Nsh

=
κ

2

2N−1∑

i=0

Q̌Nsh
i,2 ,

where the unbiased estimator of p2i is denoted by

Q̌Nsh
i,2 =

1

Nsh(Nsh − 1)

Nsh∑

k=0

Nsh∑

ℓ=0,ℓ̸=k

(δsk,iδsℓ,i) .

As mentioned above, the unbiased direct-sampling estimator is equivalent to the unbiased Pauli-
sampling estimator, an equivalence which we now demonstrate.

Theorem 10. The unbiased direct-sampling estimator ǏN
Nsh for the interaction term equals the

unbiased Pauli sampling estimator IN
Nsh .

Proof. For any given sample sk, if we denote the associated Z-Pauli values for each qubit as
zkℓ ∈ {−1, 1} for any ℓ, 1 ≤ ℓ ≤ N , we have, for any value in the computational basis i, 0 ≤ i < 2N ,
the equalities

δsk,i =

N∏

ℓ=1

1 + (−1)iℓziℓℓ
2

=
1

2N

2N−1∑

n=0

(−1)i1n1+···+iNnNpkn.

Hence we can write

ǏN
Nsh

=
κ

2N+1Nsh(Nsh − 1)

2N−1∑

i=0

Nsh∑

k=0

Nsh∑

ℓ=0,ℓ̸=k

(δskiδsℓ,i)

=
κ

2N+1Nsh(Nsh − 1)

2N−1∑

i=0

Nsh∑

k=0

Nsh∑

ℓ=0,ℓ̸=k

2N−1∑

n=0

2N−1∑

n′=0

(−1)⟨i,n⟩binpkn · (−1)⟨i,n
′⟩binpℓn′

=
κ

2N+1Nsh(Nsh − 1)

Nsh∑

k=0

Nsh∑

ℓ=0,ℓ̸=k

2N−1∑

n=0

2N−1∑

n′=0




2N−1∑

i=0

(−1)⟨i,n+n
′⟩bin


pknp

ℓ
n′ . (2.63)

Note that

2N−1∑

i=0

(−1)⟨i,n+n
′⟩bin =

N∏

ℓ=1

(
1 + (−1)kℓ(nℓ+n

′
ℓ)
)
=

{
0 if n ̸= n′,

(1 + 1)N = 2N else.

Indeed, if n ̸= n′, then there exists ℓ′, 1 ≤ ℓ′ ≤ N , such that kℓ(nℓ′ + n′ℓ′) = 1 and thus one of the
terms of the above product is equal to zero. Hence (2.63) becomes
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ǏN
Nsh

=
κ

2Nsh(Nsh − 1)

Nsh∑

k=0

Nsh∑

ℓ=0,ℓ̸=k

2N−1∑

n=0

pknp
ℓ
n = IN

Nsh
.

This gives the equality between the estimators.

2.5.2 Hadamard-test estimators

A Hadamard-test consists in determining the mean value of a unitary operator U for a given
state |ψ⟩ via the mean value of a 1-bit phase estimation circuit as in Figure 2.6. As shown in
Subsection 1.1.2, we obtain from (1.3), for the Hadamard-test circuit associated to the unitary
matrix U , that

⟨Z1⟩ψ,H-test = ⟨ψ|Re(U) |ψ⟩ .
Let us now define estimators based on this measurement method for arbitrary operators. Given
an operator A, an associated quantum state ψ and a Hadamard-test circuit with unitary UH such
that

⟨A⟩ψ = cH + αH⟨Z1⟩ψ,H-test, (2.64)

where cH and αH are constants. We define the Hadamard-test estimator of ⟨A⟩ψ as

ÂNsh = cH + αH
1

Nsh

Nsh∑

k=1

hk

where, for any 1 ≤ k ≤ Nsh, hk ∈ {−1, 1} is the k-th sample of the Hadamard test. By
construction, ⟨A⟩ψ is encoded as the mean value of a one-qubit Pauli operator. This induces a
‘Paulification’ of the variance, as the variance of the estimator behaves in the same way as the
one of a Pauli operator.

Theorem 11. The variance of the Hadamard-test estimator is given by

Var ÂNsh =
α2
H

Nsh

(
1− ⟨Z1⟩2ψ,H-test

)
, (2.65)

with αH and ⟨Z1⟩ψ,H-test defined in (2.64).

Proof. By definition,

Var ÂNsh =
α2
H

N2
sh

Nsh∑

k=1

Nsh∑

ℓ=1

(E [hkhℓ]− E [hk]E [hℓ]) .

Furthermore, we have
E [hk] = ⟨0|U†

HZ1UH |0⟩ = ⟨A⟩ψ
and that

E
[
h2
k

]
= ⟨0|U†

HZ
2
1UH |0⟩ = 1,

which gives (2.65).

Let us now look at the specific estimators used for each energy term.



78 CHAPTER 2. Error analysis of VQAs for the Gross-Pitaevskii equation

|0⟩ H • H

|0⟩

Uψ(θ) A
|0⟩
...

...

|0⟩

Figure 2.7 – Hadamard-test circuit for the kinetic term as defined in [68].

Kinetic term

In order to describe the Hadamard-test estimator for the kinetic term, we must first define
the N -qubit 1-adder A. It is a unitary operator such that, for any i, 0 ≤ i < 2N ,

A |i⟩ =
∣∣(i+ 1) mod 2N

〉
, A† |i⟩ =

∣∣(i− 1) mod 2N
〉
.

In matrix form, this gives

A =




0 · · · · · · · · · 0 1
1 0 · · · · · · · · · 0

0
. . .

. . .
...

...
. . . 1

. . .
...

...
. . . 1

. . .
...

0 · · · · · · 0 1 0




.

By noticing that A+A† = BN1 +BN2N−1, the kinetic term, as given in (2.16), can then be written
as

KN =
1

h2N
IN − 1

2h2N

(
BN1 +BN2N−1

)
=

1

h2N
IN − 1

2h2N

(
A+A†) . (2.66)

From (2.66), and using the fact that A+A† = 2ReA, the kinetic term writes

⟨ψ| KN |ψ⟩ = cH + αH ⟨ψ|ReA |ψ⟩ ,

with cH = αH = 1
h2
N

.

Hence, we obtain that the Hadamard-test of an 1-adder circuit, shown in Figure 2.7, can be
used to reconstruct ⟨ψ|Re(A) |ψ⟩. We thus define the Hadamard-test sampling estimator as

K̂N
Nsh

= cH +
αH

Nsh

Nsh∑

k=1

hk,

with hk the k-th sample of the Hadamard-test of A. The variance of the estimator thus satisfies

Var(K̂N
Nsh

) =
|αH|2 − |αH|2⟨Z1⟩2ψ,H-test

Nsh
≤ |αH|2

Nsh
=

α2
0

Nsh
.
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|0⟩ H • • H

|0⟩ /N Uψ(θ) •

|0⟩ /N UV

Figure 2.8 – Hadamard-test circuit for the potential term as defined in [68].

Potential term

For this term, let us first consider the Hadamard-test circuit shown in Figure 2.8 which uses
two registers of N qubits. Let us denote |ϕ⟩ = UV |0⟩, then we have, for this circuit,

⟨Z1⟩ψ,H-test = ⟨ψ|diag(|ϕ⟩) |ψ⟩ ,

where diag(|ϕ⟩) = diag







ϕ0
...

ϕ2N−1





 is a 2N × 2N diagonal matrix. Now, the potential term can

be rewritten, using (2.21), as

P̃N = diag(V N ) = |V N |2 diag
(

V N

|V N |2

)
. (2.67)

As V N

|V N |2 is normalised, it can be constructed as a quantum state using a unitary UV , and thus
we can write

|V ⟩ = V N

|V N |2
= UV |0⟩ .

This peculiar form used in in [68] allows the use of the Hadamard-test to calculate the potential
term. Indeed, using (2.67), we can write the potential energy as

⟨ψ| P̃N |ψ⟩ = αH⟨Z1⟩ψ,H-test,

where αH = |V N |2.

The Hadamard-test estimator for the potential term is hence given by

P̂N
Nsh

=
αH

Nsh

Nsh∑

k=1

hk

with hk the k-th sample of the associated Hadamard-test of diag
(

V N

|V N |2

)
. The variance of the

estimator is given by

Var P̂N
Nsh

=
|V N |22

(
1− ⟨Z1⟩2ψ,H-test

)

Nsh
.
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Since the Hermitian norm of V N writes

|V N |22 =

2N−1∑

k=0

V

(
k

2N

)2

= 2N |V |2L2
N
,

then the mean value of the operator is bounded by

|⟨Z1⟩ψ,H-test| =
|⟨v2, V ⟩L2

N
|

2N/2∥V ∥L2
N

≤
∥V ∥L∞∥v∥2

L2
N

2N/2∥V ∥L2
N

≤ C

2N/2
.

The range of the expected value of the Z1 Pauli operator, Range(Z1) ⊆ [− C
2N/2

, C
2N/2

]. Thus its
measure exponentially decreases with the number of qubits. This allows to obtain the following
bounds for the variance, using ∥V ∥2L∞ = V 2

0 /16, and ∥V ∥2
L2
N
= V 2

0 /80 +O(1/4N ),

[
1−O

(
1

2N

)]
2N

V 2
0

80
+O(

1

2N
) ≤ Nsh Var P̂N

Nsh ≤ 2N
V 2
0

80
+O

(
1

2N

)
.

Hence, we have for the potential term an exponentially increasing number of samples for the
Hadamard-test estimator even in the best-case scenarii.

Interaction term

|0⟩ H • • • • H

|0⟩ /N Uψ(θ) • •

|0⟩ /N Uψ̄(θ)

|0⟩ /N Uψ(θ)

Figure 2.9 – Hadamard-test circuit for the interaction term as defined in [68].

The interaction term estimator works on the same principle as the potential term, as illustrated
by their similar circuits, shown in Figures 2.8 and 2.9 respectively. Indeed, since

2N−1∑

k=0

|ψk|4 = ⟨ψ|diag







ψ0

...
ψ2N−1





 diag







ψ̄0

...
ψ̄2N−1





 |ψ⟩ = ⟨ψ|diag(|ψ⟩) diag(⟨ψ|) |ψ⟩ ,

we can use a circuit similar to the one of the potential term to estimate this value. The circuit
shown in Figure 2.9 can be used to obtain

⟨Z1⟩ψ,H-test = ⟨ψ|diag(|ψ⟩) diag(⟨ψ|) |ψ⟩ .

And hence, using (2.14) and the previous equality, we can write

⟨IN ⟩ψ =
κ

2hN

2N−1∑

k=0

|ψk|4 =
κ

2hN
⟨Z1⟩ψ,H-test.
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We thus have the Hadamard-test estimator for the interaction term,

ÎN
Nsh

=
αH

Nsh

Nsh∑

k=1

hk,

with αH = κ
2hN

. For the variance, we have

Var ÎN
Nsh

=
4Nκ2

4Nsh

(
1− ⟨Z1⟩2ψ,H-test

)
.

Remark 11. Note that, while we use the same method for the potential term, as the ket and bra
are normalised vectors for the Hermitian norm | · |2 of C2N , we do not have a contraction of the
range, as we did for the potential term.

Using the above results, we now define the estimation error for our estimators. As all our
estimators are unbiased, the root-mean-squared-error of our estimators only consists of the square
root of the variance and is just simply the sampling error, i.e. given an estimator ANsh ,

RMSE(ANsh) =
√
VarANsh .

Given ϵ > 0, let us now determine the number of samples, N ϵ
sh, required for the sampling error to

be upper bounded by ϵ. To achieve

RMSE(ANsh) ≤ ϵ,

we need
Nsh ≥ VarA

ϵ2
= N ϵ

sh.

As we shall see later, this N ϵ
sh metric needs to be slightly modified for the interaction term

due to the additional term in 1
Nsh(Nsh−1) .

In order to compare our estimators, we consider the upper bounds so as to determine the
worst-case scenario in terms of N ϵ

sh. Now, we study how the different estimators compare for each
energy term.

2.5.3 Estimator comparison

Kinetic term

For the kinetic term, as shown in Table 2.1, the Pauli method with importance sampling
is outperformed by the two other methods, as expected, due to the fact that each sample is
used for the estimation of a single Pauli operator. However, while the number of Pauli terms is
exponential in N , it is interesting to note that the difference in performance is only quadratic
in N2. Furthermore, the circuit size required to implement the Pauli estimator consists in the
implementation of only the ansatz, while for the direct-sampling estimator the implementation of
an additional QFT circuit is required.

Potential term

For the potential term, as can be seen in Table 2.2, the Pauli and direct-sampling estimators
perform similarly, converging to the same variance, whereas the Hadamard-test method suffers



82 CHAPTER 2. Error analysis of VQAs for the Gross-Pitaevskii equation

Table 2.1 – Kinetic term - number of samples to achieve ϵ sampling error, with d = (1−cos(2πx))2

Pauli Direct-sampling Hadamard-test

ϵ2 ·N ϵ
sh |α1:|1

NP∑
i=1

|αi|
(
1− ⟨Pi⟩2ψ

)
⟨v,∆2

Nv⟩L2
N
− ⟨v,∆Nv⟩2L2

N
16N − ⟨v,∆Nv⟩2L2

N

Upper bound 4N216N−1 2 · 16N−1 16 · 16N−1

Circuit size Ansatz Ansatz + QFT 2H + Ansatz + controlled Adder

from an exponential overhead in N as the effective support of the expected value of the Pauli
decreases exponentially with the number of qubits.

In Figure 2.10, we provide a comparison of the variance bounds of the different estimators.
On the left-hand side, we display the limit of bounds for the Pauli/direct-sampling estimator,
which are simply the bounds of the undiscretized operator. We display two bounds, the upper
bound in Table 2.2 and a parametric bound obtained by considering V 2 ≤ ∥V ∥L∞V . On the
second graph, we compare these bounds with those of the Hadamard-test operators for increasing
numbers of qubits. An important note is that the potential term is the only energy term for
which the variance and thus number of samples required for a fixed ϵ converges with N .

Table 2.2 – Potential term - number of samples to achieve ϵ sampling error

Pauli Direct-sampling Hadamard-test

ϵ2 ·N ϵ
sh ⟨(ΘNV )2, v2⟩L2

N
− ⟨ΘNV, v2⟩2L2

N
⟨V 2, v2⟩L2

N
− ⟨V, v2⟩2

L2
N

∥V N∥22
(
1− |⟨ZH0 ⟩|2

)

Upper bound V 2
0

180 +O(1/4N )
V 2
0

180 +O(1/4N ) 2N
V 2
0

80 +O(1)

Circuit size Ansatz Ansatz 2H + Ansatz + C-Ansatz + N CNOTs

Interaction term

Recall that the direct-sampling and Pauli estimators are equivalent in the case of the interaction
term and that their variance can be bounded, using Theorem 8, as

Var INNsh ≤ BV
Nsh

+
BW

Nsh(Nsh − 1)
.

To bound the sampling error by ϵ > 0 , i.e. RMSE
(
INNsh

)
=

√
Var INNsh ≤ ϵ, we consider an

upper bound of N ϵ
sh large enough such that

−ϵ2N2
sh + (BV + ϵ2)Nsh +BW −BV ≤ 0

Given that the squared term is negative and that the maximum (ϵ2−BV )2

4ϵ2 + BW , attained in
N ϵ

sh = BV +ϵ2

2ϵ2 , is positive as BW > 0, there always exists real roots to the above polynomial which
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〈PN〉ψ/V0
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0.006
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0.012
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N
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2
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Parametric bound, V 2 ≤ V0
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L2 − ‖V ‖2

L1
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Non-parametric bound, ‖V ‖2
L2 − ‖V ‖2
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Figure 2.10 – Minimum number of shots to achieve an error ϵ for the potential term. The second
graph shows the relative difference between the exponential dependence of the number of samples
required for the Hadamard-test on the number of qubits.

are given by

r± =
1

2

(
1 +

BV
ϵ2

±
√
(1− BV

ϵ2
)2 + 4

BW
ϵ2

)
. (2.68)

The largest root, which we note N ϵ
sh = r+ for consistency, is shown in Figure 2.11 compared

to the maximum value attained in the Hadamard-test case, α2
0γ with γ = 4N/ϵ2. Indeed, by

factoring out the α2
0γ from the root, we obtain that

N ϵ
shα

−2
0 γ−1 =

1

2

(
γ−1 + 4z3(1− z) +

√
(γ−1 − 4z3(1− z))2 + γ−18z2(1− z)2

)

with z =

√
⟨IN ⟩ψ
2N

∈ [2−N/2, 1]. We note that, as γ becomes large, either through a large N
or small ϵ, the root converges to the solution BV = α2

0γz
3(1 − z) which is bounded by 27

64α
2
0γ.

A summary of the results is found in Table 2.3 and bounds of N ϵ
sh are represented in Figure

2.11, displaying the fact that in all cases, the Pauli/direct-sampling estimator outperform the
Hadamard-test. It is interesting to note that here the ‘Paulification’ of the variance of the
Hadamard-test estimator results in severely reduced performance in the case where z is far from
1.

Table 2.3 – Interaction term - number of samples to achieve ϵ sampling error with z =√
⟨IN ⟩ψ/(α02N ) = ∥v2∥L2

N
/2N

Pauli/ direct-sampling Hadamard-test

ϵ2 ·N ϵ
sh

α2
04
N

2

(
ϵ2

4N
+ 4z3(1− z) +

√(
ϵ2

4N
− 4z3(1− z)

)2
+ 8ϵ2

4N
z2(1− z)2

)
α2
04
N
(
1− z4

)

Upper bound 27α2
0

64 4N α2
04
N

Circuit Size Ansatz 2H + Ansatz + 2 C-Ansatz + 2N CNOTs
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Figure 2.11 – Minimum number of shots to achieve an error ϵ for the interaction term.
Interaction term number of shots to achieve sampling error ϵ for a given number of qubits N ,

γ = 4N

ϵ2 . As can be readily observed, the direct-sampling/Pauli estimators consistently
outperform the Hadamard-test estimator.

Number of samples for convergence

As shown in Appendix A.1, the minimizer of the discretized model converges in H1 norm
in O(1/2N ). Furthermore, using the same reasoning as in Lemma 13, and the fact that CλN is
uniformly bounded with respect to N , there exists C > 0, which does not depend on N , such
that, for any v ∈ XN ,

∥v − uN∥2H1 ≤ C (EN (v)− EN (uN )) .

This implies the following bound through the triangle inequality

∥v − u∥H1 ≤ ∥u− uN∥H1 + ∥v − uN∥H1 ≤ C

2N
+ C (EN (v)− EN (uN ))

1/2
.

Hence, we need to estimate our energy terms with precision ϵ ≤ ϵconv = C2/4N . The effect of this
choice of precision is shown in Figure 2.12 where we set ϵ = ϵconv. As expected from the previous
tables, we observe that for the interaction and potential terms, the direct-sampling and Pauli
estimators have better performances, and that, in the case of the kinetic term, the direct-sampling
estimator outperforms both other methods. Figure 2.12 also shows that even with the best
methods, the number of samples required to obtain an estimate of the energy with the required
precision becomes prohibitive very fast and that the kinetic term dominates both others in terms
of number of samples needed. Indeed, for example, if we target an error of ϵ ≈ 10−8, we can see
that the number of samples required to estimate the kinetic term are of order 2100 ≈ 1030 samples.
Let us now estimate the amount of time needed for a single current-era quantum computer to
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achieve this number of samples. To obtain a lower bound, let us consider only the measurement
time, 500 ns and reset time 160 ns of one of the Google superconducting quantum computers
[1]. This gives us a repetition rate upper bounded by ≈ 1.5 Mhz, to achieve 1030 samples, the
time required is thus greater than 2/3 · 1024s ≈ 2 · 1016 years, i.e. about 106 times the age of the
universe.
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Figure 2.12 – Minimum number of shots to achieve convergence accuracy, ϵ = ϵconv. For illustration
purposes, we consider the case V0 = 1, κ = 1.
In this figure we compare the number of shots required to obtain a precision ϵconv = C/2N on

each energy term for each estimator. The number of qubits displayed for illustration purposes are
in the range {4, . . . , 30}.

2.6 Discussion

In this chapter, we have defined new operators based on the truncation of the analytical
Walsh series of functions, and highlighted a convergence rate of the potential term estimator
to the discretized energy of order 1/M2. We also provided an a-priori convergence analysis of
the discretized model and shown that, due to the ill-discretized kinetic term, we only have a
O(1/M) convergence in H1 norm of the discretized solution uN to the exact solution u. We then
compared the variance of our estimators and each required number of samples to achieve a fixed
error. Through this comparison, we emphasized that our estimators perform similarly to the
direct-sampling one in the diagonal case, and provide the exact same estimator in the case of the
unbiased interaction energy estimator. For the kinetic energy, the corresponding operator being
non-diagonal, a quadratic overhead of the number of samples is induced for the Pauli estimator,
but with the advantage of a shorter circuit, since it does not require the implementation of a
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QFT circuit to measure in the diagonalization basis of the operator. For the potential energy,
the number of samples required to reach an accuracy of ϵ converges in the case of the Pauli
and direct-sampling estimators, while an exponential overhead is induced for the Hadamard-test
estimator due to the restriction of the support of the Pauli term being measured. We have
provided estimates for the number of samples required in order to achieve a sufficient precision
on the energy so as to be able to converge to the discretized solution. These estimates show that
the number of samples required to estimate the energy of a single state are extreme, even in the
case of 30 qubits, and are thus extremely prohibitive in the context of an optimization procedure
even for lower numbers of qubits.

One way to reduce the number of samples required to achieve a given precision on the solution
would be to implement the spectral Laplace operator. Indeed, this would reduce the overhead for
the kinetic and interaction term, significantly, as the number of qubits required for a given error
would be lowered. In the case of the direct-sampling estimator, the use of the spectral Laplace
operator is very simple to implement: it would simply amount to considering a different diagonal
operator in the QFT basis. A comparison of the number of samples for the direct-sampling
estimator for the correct discretization is given in Figure 2.13 and shows that it can heavily
reduce the number of samples required, but not enough to make it viable for higher precisions.

The exorbitant number of samples required even with the spectral Laplace operator can be
attributed to three things. First and most importantly, in the case of unbounded operators on X ,
the norm of the discretized operator diverges with N and so does its variance. For the Laplace
operator, as it is in H−2, it diverges as M2, while for the interaction operator, it only diverges
as M . Thus, the norms of the kinetic and interaction operators diverge exponentially fast with
respect to N and so will the number of samples required to achieve an accuracy ϵ. Secondly,
but to a lesser degree, the statistical nature of the energy estimation implies that the number of
samples required will always be proportional to ϵ−2. Finally, we note that, while the convergence
of the minimizer uN to u in H1 norm is bounded by 1

M , the accuracy ϵ required on the energy is
of order O( 1

M2 ) as ∥v − uN∥2H1 is bounded by the square-root of the energy. Hence, in the end,
we need a number of samples proportional to M4 to achieve a 1/M -order convergence.

There is however one positive take-away from our analysis, the energy estimation in the case
of the potential operator shows that the number of samples required for a given precision on the
energy, even in the large N limit, remains constant.

Finally, we note that, in practice, the additional problem of quantum noise adds a bias to
the estimators which depends exponentially in the number of gates. In this context, the relative
performance of each estimator needs to be reevaluated as the circuit depth of the estimators
heavily impacts their performance. The Pauli-sampling estimators, which only requires the
implementation of an ansatz thus will be the least affected, and, in the large N limit, may
outperform the other estimators. While, for our current case, this might not have much of an
effect, on the overall performance of the algorithm, for the sake of thoroughness, let us now
study the effect of noise on the algorithm. In Chapter 3, we shall explore the additional effects
of depolarization noise and the effects of mitigation techniques on our estimators and their
performance in practice.
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Chapter 3

Error analysis under depolarizing
noise

3.1 Introduction

In this chapter, we look at the effects of quantum noise on the estimation of energy terms
in the case of the amplitude encoding of a function v and determine the change in performance
induced by such effects on the estimation methods defined in the previous chapter. We consider
a depolarization noise model and the effects of such a noise model on a quantum circuit. We
then determine the effects of this noise on the mean values of operators and thus on our different
estimators. Finally, we consider the total effect on each energy term estimator and consider
the impact in terms of performance in two cases, without mitigation techniques and with error
mitigation techniques. We show that, in the unmitigated case, the bias induced by quantum noise
limits severely the number of gates usable while achieving the precision ϵconv > 0 required for
convergence. For the mitigated case, we demonstrate that the number of samples is increased
exponentially with respect to the number of gates, but at a much slower rate than N ϵ

sh ≈ ϵ−2
conv

increases with N . Furthermore, we show that, for a given discretization method, there always
exists a number of qubits after which the Pauli estimator requires fewer samples to achieve a
specified precision on the energy.

3.2 Quantum noise

In order to determine the effect of noise on our energy estimators, let us first provide an
overview on how quantum noise can be modelled and how it affects a quantum system. In this
section, we define the density matrix, the noisy analog of a quantum state, describe how it is
affected by quantum channels, the noisy analog of quantum gates, and provide the noise model
we consider in the rest of this chapter.

3.2.1 Density matrices and quantum channels

Until now, we only worked with noiseless quantum systems and were able to represent the
state of the quantum system using kets |·⟩. As quantum noise introduces classical uncertainty, we
are required to introduce a new tool which allows to describe a statistical distribution of quantum
states.

89
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Definition 12. A statistical distribution of states can be described through a density matrix ρ ∈
L (H), a positive semi-definite operator with trace equal to 1. Given a distribution (ps, |ψs⟩)1≤s≤Nst
of Nst ∈ N∗ states, where ps ∈ [0, 1] and |ψs⟩ ∈ H for any s, 1 ≤ s ≤ Nst, and such that∑Nst

s=1 ps = 1, the associated density matrix is given by

ρ =

Nst∑

s=1

ps |ψs⟩ ⟨ψs| .

The action of noise on a quantum system can be described as linear maps on L (H), with
some additional properties, namely, the maps are completely positive and trace-preserving, which
we now define. Let idk be the identity operator on Ck×k, then

Definition 13 ([73, 97]). Given A and B two C∗-algebras, a map ϕ : A→ B is said to be positive
if any positive element of A is mapped to a positive element of B. A map ϕ : A→ B is said to be
completely positive if, for any k ∈ N∗, idk ⊗ ϕ : Ck×k ⊗A→ Ck×k ⊗B is a positive map.

The physical implication of complete positivity is that such a map preserves the fact that
the partial trace of a density matrix on any subsystem is also a positive semi-definite matrix.
The other physical requirement for describing quantum noise is that it must be trace-preserving.
These two properties allow to define a quantum channel.

Definition 14. A quantum channel E on L (H) is a completely positive and trace-preserving
linear map from L (H) onto itself.

A quantum channel is able to describe the effects of noise, indeed by construction, it sends a
density operator onto a density operator, it can hence be seen as the generalization for density
matrices of unitary operators which send quantum states onto quantum states.

The application of a quantum gate with matrix UG ∈ L (H) in the density matrix formalism is
given by the quantum channel EUG : ρ 7→ UGρU

†
G. This channel preserves the purity of a density

matrix and thus sends the density matrix of a single quantum state onto the density matrix of
another single quantum state.

For gates under the influence of noise, we shall model the effect of noise by considering that,
after the application of the gate, an additional noise channel is applied. Given a gate G associated
to UG, and a noisy channel ENoise, then the quantum channel of the gate under the effect of noise
is given by

EG = ENoise ◦ EUG .

In order to consider the effect of a noisy implementation of a circuit C of size NG ≥ 1 we
define the quantum channel EC associated to the circuit as

EC = ECNG ◦ · · · ◦ EC1 ,

where, for any 1 ≤ k ≤ NG, ECk is the quantum channel associated to the k-th gate of the
circuit C. In the case of a perfect circuit with no noise, we recover ECk (ρ) = UCk ρU

C†
k , and thus

EC(ρ) = UCρUC†, where
UC = UCNG . . . U

C
1 (3.1)

is the matrix of the circuit in the canonical basis BC(H). This is equivalent to the unitary of a
circuit (1.2) as defined in Chapter 1.
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Dp1

•
Dp2
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Figure 3.1 – Noisy gate: insertion of a depolarizing channel after each gate.

3.2.2 Noise model

In order to approximate the effect of noise on quantum gates, we consider the addition of
a depolarizing channel [73, 97] after each gate. The choice of depolarizing channels to model
noise is based on two facts. First, its effects can be seen as a uniform contraction in the Pauli
basis towards the maximally-mixed state IN

2N
, which allows to obtain analytical results. Second,

for any quantum hardware under noise, the noise can be modified to follow a depolarisation
model through Pauli twirling methods[69, 94] wherein random Pauli gates are inserted into the
circuit. A depolarizing channel Dp of probability p ∈ [0, 1] can be defined as a quantum channel
sending, with probability p, the density matrix ρ of the system into the uniform distribution on
all quantum states of the system, i.e.

Dp(ρ) = (1− p)ρ+
p

2N
IH.

We consider a noise model where a global depolarization noise channel is added after each gate,
with a probability p1 ∈ [0, 1] for 1-qubit gates and p2 ∈ [0, 1] for 2-qubit gates. More precisely, for
any gate G of unitary UG and support SG, we consider the following channel

EG : ρ 7→ Dp|SG|

(
UGρU

†
G

)
.

This is illustrated in Figure 3.1 for the simple circuit C = (H ⊗ I,CNOT, X ⊗ I).

We now consider the effect of such a noise model on a circuit C with NG ≥ 1 gates with a
system initialised in the state ρ0 = |0⟩ ⟨0|, where NG1

≥ 0 is the number of 1-qubit gates, NG2
≥ 0

the number of 2-qubit gates and NG = NG1
+NG2

.

This noisy implementation of our circuit corresponds to the noisy circuit channel

EC(ρ0) ≡ ENG
(
UNGENG−1

(
UNG−1 . . . E1

(
U1ρ0U

†
1

)
. . . U†

NG−1

)
U†
NG

)

= ENG ◦ · · · ◦ E1
(
UNG . . . U1ρ0U

†
1 . . . U

†
NG

)

= (1− p1)
NG1 (1− p2)

NG2UNG . . . U1ρ0U
†
1 . . . U

†
NG

+
[
1− (1− p1)

NG1 (1− p2)
NG2

] IH
2N

,

where we define Ek to be either Dp1 if the k-th gate is a 1-qubit gate, or Dp2 if it is a 2-qubit
gate. We hence obtain the following lemma.
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Lemma 6. For a circuit C of NG1 1-qubit gates and NG2 2-qubit gates under a global
depolarizing noise model with probabilities p1 for 1-qubit gates and p2 for 2-qubit gates, the
resulting density matrix at the end of the circuit is

EC(ρ0) = qUCρ0U
C†

+ (1− q)
IH
2Nq

,

with UC as defined in (3.1) and

q = (1− p1)
NG1 (1− p2)

NG2 . (3.2)

Note that q decreases to 0 exponentially with the number of gates in the circuit. Let us now
investigate the effects of such a noise model in practice.

3.3 Quantum noise-induced errors

To determine the effects of our noise model on our algorithm’s performance, we need to
determine its effects on our kinetic, potential and interaction energy estimators. We now consider
the effect of the quantum noise on the different energy estimation methods under study here.
Given an arbitrary operator A ∈ L (H) and a quantum state |ψ⟩, as we have seen in the previous
chapter, in the noiseless case, the direct-sampling, Pauli-sampling and Hadamard-test estimators
provide unbiased estimators of the mean value ⟨A⟩ψ. Let us now consider the circuit C of
NG1

1-qubit gates and NG2
2-qubit gates implementing the above estimators. Under global

depolarizing noise, with respective probabilities p1 and p2 for 1 and 2 qubit gates, we have, as
stated in Lemma 6, the density matrix at the end of the circuit is

ρ = EC(ρ0) = qUCρ0U
C†

+ (1− q)
IH
2N

, (3.3)

where ρ0 = |ψ⟩ ⟨ψ| For any observable O, we thus have ⟨O⟩ρ = q⟨O⟩ψ + (1− q)TrO
2N

. Additionally,
we can rewrite

⟨O⟩ψ =

〈
O − TrO

2N
I

〉

ψ

+
TrO

2N
⟨I⟩ψ =

〈
O − TrO

2N
I

〉

ψ

+
TrO

2N
.

Hence, setting

λ0 =
TrO

2N
,

we obtain the following proposition.

Proposition 14. Let a Hermitian operator O, given a unitary Uψ such that Uψ |0⟩ = |ψ⟩ and
a circuit implementing Uψ with NG1

1-qubit gates and NG2
2-qubit gates. We obtain, for the

density matrix ρ from (3.3),

⟨O⟩ρ = q⟨O⟩ψ + (1− q)
TrO

2N
= ⟨O⟩ψ − (1− q)⟨O⟩ψ + (1− q)λ0. (3.4)

The noise thus introduces a bias

bO = (1− q)|⟨O⟩ψ − λ0| ≥ 0.
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Since the Pauli operators are all traceless, apart from the identity, we obtain the following
simplification of Proposition 14.

Proposition 15. Let P ∈ BP(H), given a unitary Uψ such that Uψ |0⟩ = |ψ⟩ and a circuit
implementing Uψ with NG1 1-qubit gates and NG2 2-qubit gates, we have

⟨P ⟩ρ = q⟨P ⟩ψ. (3.5)

This can be seen as a contraction, with Lipschitz constant q (3.2), of the mean value of the
Pauli operator towards zero, exponentially fast with respect to the number of gates. Hence, the
main effect of noise is to contract the range of the expected value of operators. Endowed with
these properties, we can now investigate the noise effects on our estimators.

3.3.1 Pauli-sampling estimator

Recall, from (2.31), that the the Pauli-sampling estimator for the operator A = α0I
N +∑NA

i=1 αiPi is given by

A
Nsh

= α0 +

NA∑

i=1

αiPi
Nish

with Pi
Nish =

1

N i
sh

Nish∑
k=1

pki . In order to determine the noise effect on this estimator, we first look at

how the noise affects the expectancy of a single sample.

Lemma 7. For a sample p of a Pauli operator P , we have, from Proposition 15,

Eρ [p] = qEψ [p] ,

and
Varρ p = 1− q2Eψ [p]

2
.

Proof. Indeed, from Proposition 15, we obtain

Eρ [p] = ⟨P ⟩ρ = qTr(Pρ0),

and hence the first equality. For the variance, we have

Varρ p = Eρ
[
p2
]
− Eρ [p]2 = ⟨P 2⟩ρ − ⟨P ⟩2ρ

and thus, using the first equality and the fact that P 2 = 1, we obtain the second equality.

We can then compute the noisy mean and variance of A
Nsh .

Proposition 16. The mean of a Pauli sampling estimator A
Nsh of an operator A = α0I +∑NA

i=1 αiPi under global depolarizing noise is given by

Eρ
[
A
Nsh
]
= (1− q)α0 + q⟨A⟩ψ,
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and its variance is given by

VarρA
Nsh

= q2 Varψ A
Nsh

+ (1− q2)

NA∑

i=1

α2
i

|Si|

+ (1− q)q

NA∑

i=1

NA∑

j=1,j ̸=i

|Si ∩ Sj |
|Si||Sj |

αiαj⟨PiPj⟩ψ. (3.6)

Proof. For the mean, we obtain using 7,

Eρ
[
A
Nsh
]
= α0 +

NA∑

i=1

αi
N i

sh

Nish∑

k=1

Eρ[pki ] = α0 +

NA∑

i=1

αi
N i

sh
N i

shq⟨Pi⟩ψ

= α0 + q⟨A− α0I
N ⟩ψ = (1− q)α0 + q⟨A⟩ψ

For the variance we have

VarρA
Nsh

=

NA∑

i=1

NA∑

j=1

αiαj

N i
shN

j
sh


∑

k∈Si

∑

ℓ∈Sj

Eρ
[
pki p

ℓ
j

]
− Eρ

[
pki
]
Eρ
[
pℓj
]



=

NA∑

i=1


 α2

i

|Si|
(
1− ⟨Pi⟩2ρ

)
+

NA∑

j=1,j ̸=i

|Si ∩ Sj |
|Si||Sj |

αiαj (⟨PiPj⟩ρ − ⟨Pi⟩ρ⟨Pj⟩ρ)


 .

Rewriting the previous equality, we make the noiseless variance appear

VarρA
Nsh

=

NA∑

i=1

q2α2
i

|Si|
(
1− ⟨Pi⟩2ψ

)
+

(1− q2)α2
i

|Si|

+

NA∑

i=1

NA∑

j=1,j ̸=i

|Si ∩ Sj |
|Si||Sj |

αiαj
(
q2⟨PiPj⟩ψ − q2⟨Pi⟩ψ⟨Pj⟩ψ

)
+

|Si ∩ Sj |
|Si||Sj |

αiαj(1− q)q⟨PiPj⟩ψ,

which, using (2.32), allows to conclude.

Let us now recall that the estimators we considered in the previous chapter follow two specific
sampling strategies, the diagonal-sampling and importance-sampling ones, from Definitions 11
and 10 respectively. Let us apply Proposition 16 to those cases.

Corollary 2. For an importance-sampling strategy, the variance of a Pauli sampling estimator
A
Nsh of an operator A = α0I +

∑NA
i=1 αiPi under global depolarizing noise is given by

VarρA
Nsh

= q2 Varψ A
Nsh

+ (1− q2)
|α1:|21
Nsh

,

recalling that α1: is given by (2.38) and where we denote the noiseless variance (2.39) by Varψ A
Nsh .

We also have the upper bound

VarρA
Nsh ≤ |α1:|21

Nsh
.
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Proof. The result is straightforward using (3.6) and the fact that, for any i, j ∈ {1, . . . , NA} such
that i ̸= j, Si ∩ Sj = ∅ and that N i

sh = |αi|
∥α1:∥1

Nsh. The bound comes from (2.39).

Corollary 3. For a diagonal-sampling strategy, the variance of a Pauli sampling estimator A
Nsh

of an operator A = α0I +
∑NA
i=1 αiPi under global depolarizing noise is given by

VarρA
Nsh

= q2 Varψ A
Nsh

+
(1− q)

Nsh
|α1:|22 +

(1− q)q

Nsh
⟨(A− α0I

N )2⟩ψ (3.7)

where we denote the noiseless variance (2.40) by Varψ A
Nsh . Furthermore, we have the bound

VarρA
Nsh ≤ q2 Varψ A

Nsh
+

(1− q)

Nsh

(
|α1:|22 + q(∥A∥σ − α0)

2
)
. (3.8)

Proof. Notice that, for any i, j ∈ {1, . . . NA} such that i ̸= j, Si ∩ Sj = Si = Sj and that
|Si| = |Sj | = Nsh. Hence, using (3.6), we obtain

VarρA
Nsh

= q2 Varψ A
Nsh

+
1− q2

Nsh

NA∑

i=1

α2
i + (1− q)q

1

Nsh

NA∑

i=1



NA∑

j=1

αiαj⟨PiPj⟩ψ − α2
i


 ,

which we rewrite as

VarρA
Nsh

= q2 Varψ A
Nsh

+
1− q

Nsh
∥α1:∥22 +

(1− q)q

Nsh
⟨(A− α0I

N )2⟩ψ.

This allows to recover (3.7), and (3.8), thanks to the inequality ⟨(A−α0I
N )2⟩ψ ≤ (∥A∥σ−α0)

2.

Note that, for the importance sampling, we obtain the same bound as for the noiseless case
(2.39), while for the diagonal-sampling, we obtain a variance which is an interpolation between
the noiseless variance and the variance for a uniform distribution.

Thanks to these results, we can determine the noise effect on the kinetic and potential energy
Pauli estimators. For the interaction term, however, we first need to study the noise effect on the
squared Pauli estimator from Definition 2.4.5. Let us now provide some results on the variance,
similar to Proposition 13 for the noiseless case, and bias of such estimators.

Proposition 17. Let 1 ≤ i ≤ NI . With Nsh samples following a diagonal-sampling strategy, we
have

Eρ
[
P 2
i

Nsh
]
= q2⟨Pi⟩2ψ. (3.9)

Moreover, let 1 ≤ j ≤ NI such that i ̸= j. We have

Covρ

(
P 2
i

Nsh
, P 2

j

Nsh
)
= q4

6− 4Nsh

Nsh(Nsh − 1)
⟨Pi⟩2ψ⟨Pj⟩2ψ

+ q3
4(Nsh − 2)

Nsh(Nsh − 1)
⟨Pi⟩ψ⟨Pj⟩ψ⟨PiPj⟩ψ + q2

2

Nsh(Nsh − 1)
⟨PiPj⟩2ψ. (3.10)

Furthermore, we have

Varρ P 2
i

Nsh
= q4

6− 4Nsh

Nsh(Nsh − 1)
⟨Pi⟩4ψ + q2

4(Nsh − 2)

Nsh(Nsh − 1)
⟨Pi⟩2ψ +

2

Nsh(Nsh − 1)
. (3.11)
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Proof. The mean is given by

Eρ
[
P 2
i

Nsh
]
=

Nsh∑

k=1

Nsh∑

ℓ=1,ℓ̸=k

Eρ[pkpℓ]

by independence of pk and pℓ, and then using Proposition 7, we obtain (3.9).
For the variance, we follow the exact same methodology as the proof of Proposition 13 but

with the noisy expected values of the Pauli samples. Let 1 ≤ i, j ≤ NI , we have

Covρ

(
P 2
i

Nsh
, P 2

j

Nsh
)
= Eρ

[
P 2
i

Nsh
P 2
j

Nsh
]
− Eρ

[
P 2
i

Nsh
]
E
[
P 2
j

Nsh
]
. (3.12)

Let us look more closely at the first term Eρ
[
P 2
i

Nsh
P 2
j

Nsh
]

over the individual samples, i.e.

Eρ
[
P 2
i

Nsh
P 2
j

Nsh
]
=

1

(Nsh(Nsh − 1))
2

Nsh∑

k=1

Nsh∑

k′=1
k′ ̸=k

Nsh∑

ℓ=1

Nsh∑

ℓ′=1
ℓ′ ̸=ℓ

Eρ
[
pki p

k′

i pℓjp
ℓ′

j

]
. (3.13)

The value of Eρ
[
pki p

k′

i pℓjp
ℓ′

j

]
depends on the sample associated to each Pauli term, i.e. the

indices k, ℓ, k′, ℓ′. Indeed, if the samples are shared, the terms are not independent of each other
and the expectation value of the product of the terms is not the product of expectation values.
For each case, we now detail the different possible values of Eρ

[
pki p

k′

i pℓjp
ℓ′

j

]
depending on the

indices.
• If both k and k′ do not equal ℓ or ℓ′, i.e. for Nsh(Nsh − 1)(Nsh − 2)(Nsh − 3) terms of the

sum in (3.13),
Eρ
[
pki p

k′

i pℓjp
ℓ′

j

]
= q4⟨Pi⟩2ψ⟨Pj⟩2ψ.

• If k ∈ {1, . . . , Nsh} \ {ℓ, ℓ′} and k′ ∈ {ℓ, ℓ′} or k ∈ {ℓ, ℓ′} and k′ ∈ {1, . . . , Nsh} \ {ℓ, ℓ′}, i.e.
for 4Nsh(Nsh − 1)(Nsh − 2) terms of the sum in (3.13),

Eρ
[
pki p

k′

i pℓjp
ℓ′

j

]
= q3⟨Pi⟩ψ⟨Pj⟩ψ⟨PiPj⟩ψ.

• If k = ℓ and k′ = ℓ′ or k = ℓ′ and k′ = ℓ, i.e. for 2Nsh(Nsh − 1) terms of the sum in (3.13),

Eρ
[
pki p

k′

i pℓjp
ℓ′

j

]
= q2⟨PiPj⟩2ψ.

Besides, the second term in (3.12) becomes

Eρ
[
P 2
i

Nsh
]
Eρ
[
P 2
j

Nsh
]

=
1

(Nsh(Nsh − 1))
2

Nsh∑

k=1

Nsh∑

k′=1
k′ ̸=k

Nsh∑

ℓ=1

Nsh∑

ℓ′=1
ℓ′ ̸=ℓ

Eρ
[
pki p

k′

i

]
Eρ
[
pℓjp

ℓ′

j

]
= q4⟨Pi⟩2ψ⟨Pj⟩2ψ.

All in all, we eventually obtain (3.10). We get (3.11) similarly, using the additional fact that, for
any 1 ≤ i ≤ NI , ⟨P 2

i ⟩ψ = 1.
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3.3.2 Direct-sampling operator estimator

Let us now focus on the noise effect on the direct-sampling estimator. Consider d ∈ H1
#(0, 1)

and the associated diagonal matrix D ∈ C2N × C2N such that the i-th diagonal coefficient
Di equals d(i/2N ) for any i, 0 ≤ i < 2N . Recall, from (2.59), that, given Nsh samples, the
direct-sampling estimator ĎNsh of D is given by

ĎNsh =
1

Nsh

Nsh∑

k=1

Dsk =
1

Nsh

Nsh∑

k=1

2N−1∑

j=0

Djδsk,j , (3.14)

where sk ∈ {0, . . . , 2N−1} corresponds to the k-th sample in the diagonal basis of A. Furthermore,
in the noiseless case, the expected value of the estimator is given by

E
[
ĎNsh

]
ψ
= ⟨D⟩ψ = ⟨v2, d⟩L2

N
,

and the variance of the estimator is given by

Varψ Ď
Nsh =

⟨d2, v2⟩L2
N
− ⟨d, v2⟩2

L2
N

Nsh
.

To determine the effects of noise on this estimator, let us now look at its effect on a single sample
in the computational basis.

Proposition 18. For a sample s in the computational basis, we have, for any j such that
0 ≤ j < 2N , the mean of obtaining j for the sample is given by

Eρ [δs,j ] = qpj +
1− q

2N
. (3.15)

Proof. Using (3.4), we obtain

Eρ [δs,j ] = Tr(|j⟩⟨j| ρ) = qTr(|j⟩⟨j| ρ0) + (1− q) Tr

(
|j⟩⟨j| I

2N

)
= qEψ [δs,j ] + (1− q)

1

2N
,

and thus the result.

These properties allow to investigate the noise effect on ĎNsh .

Lemma 8. The mean of a direct-sampling operator ĎNsh of a diagonal operator D under global
depolarizing noise is given by

EρĎNsh = q⟨v2, d⟩L2
N
+ (1− q)⟨1, d⟩L2

N
,

and its variance by

Varρ Ď
Nsh =

q2

Nsh

[
⟨v2, d2⟩L2

N
− ⟨v2, d⟩2L2

N

]
+

(1− q)2

Nsh

[
⟨1, d2⟩L2

N
− ⟨1, d⟩2L2

N

]

+
q(1− q)

Nsh

[
⟨v2, d2⟩L2

N
+ ⟨1, d2⟩L2

N
− 2⟨v2, d⟩L2

N
⟨1, d⟩L2

N

]
. (3.16)
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Proof. From (3.14), and using (3.15), we obtain the mean value of the estimator

Eρ
[
ĎNsh

]
=

1

Nsh

Nsh∑

k=1

2N−1∑

j=0

DjEρ[δsk,j ] =
1

Nsh

Nsh∑

k=1

2N−1∑

j=0

Dj

(
qpj + (1− q)

1

2N

)

= q⟨v2, d⟩L2
N
+ (1− q)⟨1, d⟩L2

N
,

.
The variance is given by

Varρ Ď
Nsh =

1

N2
sh

Nsh∑

k=1

Nsh∑

ℓ=1

2N−1∑

i=0

2N−1∑

j=0

DiDj (Eρ[δsk,jδsℓ,i]− Eρ[δsk,j ]Eρ[δsℓ,i])

=
1

N2
sh

Nsh∑

k=1

2N−1∑

j=0


D2

jEρ[δsk,j ]−
2N−1∑

i=0

DiDjEρ[δsk,j ]Eρ[δsℓ,i]


 ,

where we used the fact that, for any i, j such that 0 ≤ i, j ≤ 2N − 1 and k such that 1 ≤ k ≤ Nsh,
if i ̸= j, then δsk,iδsk,j = 0. We rewrite this using (3.15), which gives

Varρ Ď
Nsh =

1

Nsh

2N−1∑

j=0

D2
j (qpj + (1− q)hN )

− 1

Nsh

2N−1∑

j=0

2N−1∑

i=0

DiDj

(
q2pipj + q(1− q)(pi + pj)hN + (1− q)2h2N

)

Noticing that, for n ∈ {1, 2}, ⟨v2, dn⟩L2
N

=
∑2N−1
i=0 piD

n
i , and ⟨1, dn⟩L2

N
=
∑2N−1
i=0 hND

n
i , we

obtain

Varρ Ď
Nsh =

q2

Nsh

(
⟨v2, d2⟩L2

N
− ⟨v2, d⟩2L2

N

)

+
(1− q)2

Nsh

(
⟨1, d2⟩L2

N
− ⟨1, d⟩2L2

N

)

+
q(1− q)

Nsh

(
⟨v2, d2⟩L2

N
+ ⟨1, d2⟩L2

N
− 2⟨v2, d⟩L2

N
⟨1, d⟩L2

N

)
,

and hence (3.16).

With these results, we now consider the noise effects on the different energy terms of our
method.

3.4 Errors for the Gross-Pitaevskii energy terms

Having determined the noise effects on generic estimators, let us now apply those pieces of
information to our problem (2.9). For each energy term (2.7)–(2.8), the noise effect implies a bias
in our estimators and changes the variance as a function of the number of gates in the associated
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circuit. We now determine and compare this effect on the bias and variance of the different
estimators.

3.4.1 Kinetic term

Let us first recall, from (2.20), that

∥α1:∥1 =
N

2h2N
, ∥α1:∥22 =

1

2h4N
.

Using these, and the results of Proposition 16, let us investigate the effect of noise on our
estimators.

For the Pauli-sampling estimator (2.41) of the kinetic term, recall that we consider an
importance-sampling strategy. Hence, using Corollary 14 and the fact that

Tr(KN )/2N = 4N , (3.17)

from (2.16), we have the bias

bKP = E
[
KNNsh

]
− Eρ

[
KNNsh

]
= (1− q)(⟨KN ⟩ψ − 4N ),

and, for the variance, using (2.42) and Corollary 2, we get

VarρKN
Nsh

= q2 Varψ KNNsh
+ (1− q2)

16NN2

2Nsh
.

For the direct/diagonal-sampling method, we obtain, through Corollary 3,

bKD = (1− q)(⟨KN ⟩ψ − 4N ).

And for the variance, using (2.60), we obtain

Varρ ǨN
Nsh

= q2 Varψ ǨNNsh
+ (1− q)

16N

2Nsh
+ (1− q)q

⟨(KN − α0I
N )2⟩ψ

Nsh
.

and the associated bound, using the fact that

∥KN∥σ = 4N+1,

we have

Varρ ǨN
Nsh ≤ q2 Varψ ǨNNsh

+ (1− q)
16N

2Nsh
+ (1− q)q

9 · 16N
Nsh

.

Finally for the Hadamard-test method, for the bias we have, using Proposition 20,

bKH = E[K̂N
Nsh

]− Eρ[K̂N
Nsh

] = (1− q)(⟨KN ⟩ψ − 4N ),

and, for the variance, we obtain, through (2.65),

Varρ K̂N
Nsh ≤ q2 Varψ K̂N

Nsh
+ (1− q2)

16N

Nsh
.
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3.4.2 Potential term

For the potential term, we first look at the Walsh-Pauli truncation estimator (2.43), with a
diagonal-sampling strategy. Using Proposition 14, we obtain that the bias term is equal to

bPP = E[PNNsh
]− Eρ[PN

Nsh
] = (1− q)(⟨PN ⟩ψ − ∥V ∥L1

N
),

where
Tr(PN )/2N = ∥V ∥L1

N
=
V0
12
. (3.18)

And, for the variance, using (2.44) and Corollary 3, we have

Varρ PN
Nsh

= q2 Varψ PNNsh
+ (1− q)

V 2
0 +O( 1

4N
)

180Nsh
+ (1− q)q

⟨(V − α0I
N )2⟩ψ

Nsh
.

Furthermore, as ∥V ∥∞ − V0

12 = V0

6 , we obtain

Varρ PN
Nsh ≤ q2 Varψ PNNsh

+ (1− q)
V 2
0

180Nsh
+ (1− q)q

V 2
0

36Nsh
.

Similarly, for the direct-sampling, or Walsh interpolation estimator, we obtain the bias

bPP = E[PNNsh
]− Eρ[PN

Nsh
] = (1− q)(⟨PN ⟩ψ − 4N ).

And, for the variance, using (2.60), we have

Varρ PN
Nsh

= q2 Varψ PNNsh
+ (1− q)

V 2
0 +O( 1

4N
)

180Nsh
+ (1− q)q

⟨(V − α0I
N )2⟩ψ

Nsh
.

Similarly, as ∥V ∥∞ − V0

12 = V0

6 , we obtain

Varρ PN
Nsh ≤ (1− q + q2)(

V 2
0

180
) + (1− q)q

V 2
0

36
+O(

1

4N
).

3.4.3 Interaction term

Due to the non-linearity, the Pauli/direct-sampling estimator (2.52) of the interaction term is
not affected in the same way as the linear operators. Let us now determine how depolarization
noise affects it.

Proposition 19. The bias of the interaction term Pauli estimator using a diagonal-sampling
strategy is given by

bP,I = (1− q2)|⟨I − α0I
N ⟩ψ|, (3.19)

and its variance by

Varρ IN
Nsh

= q4 Varψ INNsh
+ (1− q4)

2(2N − 1)α2
0

Nsh(Nsh − 1)

+ q3(1− q)
4(Nsh − 2)

Nsh(Nsh − 1)
α2
0

(
⟨v4, v2⟩L2

N
− 3⟨v2, v2⟩L2

N
+ 2⟨v2, 1⟩2L2

N

)
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+ q2(1− q2)
4(Nsh − 2) + 2(2N − 2)

Nsh(Nsh − 1)
α2
0

(
⟨v2, v2⟩L2

N
− ⟨v2, 1⟩2L2

N

)
, (3.20)

which are both positive terms. We also have the upper bound

Varρ IN
Nsh ≤ BV,q

Nsh
+

BW,q
Nsh(Nsh − 1)

, (3.21)

where we set

BV,q = q4
27

64
α2
04
N + 4α2

0q
2(2N − 1)

(
1 + (2N − 2)q − q2(2N − 3)

)
, (3.22)

BW,q = q4
α2
04
N

8
+ 2α2

0q
2(2N − 1)(2N − 2)(1− q)2 + 2α2

0(2
N − 1)(1− q2)2, (3.23)

which are both positive terms as well.

Proof. The bias is given by

bP,I =
∣∣∣Eρ

[
INNsh

]
− E

[
INNsh

]∣∣∣ =
∣∣∣∣∣
NI∑

i=1

Eρ
[
P 2
i

Nsh
]
− E

[
P 2
i

Nsh
]∣∣∣∣∣

and thus the result on the bias term is straightforward using (3.9). For the variance, the results
are almost immediate using the same methods as in Proposition 13. We have

Varρ IN
Nsh

=

NI∑

i=1

Varρ P 2
i

Nsh
+

NI∑

i=1

∑

j ̸=i

Covρ(P 2
i

Nsh
, P 2

j

Nsh
)

= q4
6− 4Nsh

Nsh(Nsh − 1)

NI∑

i=1

∑

j ̸=i

αiαj⟨Pi⟩2ψ⟨Pj⟩2ψ + q4
6− 4Nsh

Nsh(Nsh − 1)

NI∑

i=1

α2
i ⟨Pi⟩4ψ

+ q3
4(Nsh − 2)

Nsh(Nsh − 1)

NI∑

i=1

∑

j ̸=i

αiαj⟨Pi⟩ψ⟨Pj⟩ψ⟨PiPj⟩ψ + q2
2

Nsh(Nsh − 1)

NI∑

i=1

∑

j ̸=i

αiαj⟨PiPj⟩2ψ

+ q2
4(Nsh − 2)

Nsh(Nsh − 1)

NI∑

i=1

α2
i ⟨Pi⟩2ψ +

2NIα
2
0

Nsh(Nsh − 1)
.

using (3.10) and (3.11) for the second equation. Using (2.54)–(2.56), from the proof of the
variance formula (2.53) in the noiseless case, we obtain

Varρ IN
Nsh

= q4
6− 4Nsh

Nsh(Nsh − 1)
α2
0

(
⟨v2, v2⟩2L2

N
− 2⟨v2, v2⟩L2

N
⟨v2, 1⟩2L2

N
+ ⟨v2, 1⟩4L2

N

)

+ q3
4(Nsh − 2)

Nsh(Nsh − 1)
α2
0

(
⟨v4, v2⟩L2

N
− 3⟨v2, v2⟩L2

N
+ 2⟨v2, 1⟩2L2

N

)

+ q2
4(Nsh − 2) + 2(2N − 2)

Nsh(Nsh − 1)
α2
0

(
⟨v2, v2⟩L2

N
− ⟨v2, 1⟩2L2

N

)
+

2(2N − 1)α2
0

Nsh(Nsh − 1)
.

By rewriting the equation to make the noiseless variance (2.53) appear, we obtain (3.20).
To obtain the bound (3.21), we use (2.58) and the fact that ∥v2∥2L2 ≤ 2N∥v∥2L2 , and get
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Varρ(IN
Nsh

) ≤ q4BV + 4α2
0(2

N − 1)
(
q2 + (2N − 2)q3 − q4(2N − 3)

)

Nsh

+
q4BW + α2

0(2
N − 1)(2N − 2)(2q2 − 4q3 + 2q4) + α2

0(2
N − 1)(2− 4q2 + 2q4)

Nsh(Nsh − 1)
,

with BV and BW from the noiseless variance (2.57) and where the two terms are shown to be
positive using the fact that q < 1. With the additional bounds

BV ≤ 27

64
α2
04
N BW ≤ 1

8
α2
04
N ,

we get the result.

To obtain a bound on the number of samples required to achieve an error ϵ, using (2.68), we
can choose

N ϵ,q
sh =

1

2

(
1 +

BV,q
ϵ2

+

√
(1− BV,q

ϵ2
)2 + 4

BW,q
ϵ2

)
.

3.4.4 Hadamard-test estimator
As a Hadamard-test consists in the measurement of a Pauli operator, we have using Proposition

15, for a single Hadamard-test sample h,

Eρ[h] = ⟨Z1⟩ρ,H-test = q⟨Z1⟩ψ,H-test,

where NG1
and NG2

the number of 1-qubit and 2-qubit gates respectively, in the Hadamard-test
circuit. This gives us the equivalent of Theorem 11 in the presence of noise.

Proposition 20. The mean value of the Hadamard-test estimator ÂNsh for an operator A under
the effect of noise is given by

Eρ
[
ÂNsh

]
= cH + αH

Nsh∑

k=1

Eρ[hk] = (1− q)cH + q⟨A⟩ψ. (3.24)

Its variance is given by

Varρ Â
Nsh = q2 Varψ Â

Nsh + (1− q2)
α2
H

Nsh
, (3.25)

where we denote the noiseless variance (2.65) by Varψ Â
Nsh . The variance is then bounded by

Varρ Â
Nsh ≤ α2

H

Nsh
. (3.26)

Proof. Equation (3.24) is straightforward from (3.5). For (3.25), we write

Varρ Â
Nsh =

α2
H

N2
sh

Nsh∑

k=1

Nsh∑

ℓ=1

Eρ[hkhℓ]− Eρ[hk]E[hℓ] =
α2
H

Nsh

(
1− q2⟨Z1⟩2ψ,H-test

)
,

where we notice that, for any 1 ≤ k ≤ Nsh, Eρ[h2
k] = 1 in the second equality. Using (2.65), the

previous equation gives (3.25) and (3.26).
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Table 3.1 – Variance bound of estimators under depolarizing noise

ϵ2N ϵ
sh Var Pauli sampling estimator Direct sampling estimator Hadamard-test estimator

K N2

4 · 16N
(
1
8q

2 + (1− q)
(
1
2 + 9q

))
16N 16N

P (1 + 4q − 4q2)
V 2
0

180 +O( 1
4N

) 2N
V 2
0

80 +O( 1
2N

)

I 1
2

(
1 +

BV,q
ϵ2 +

√
(1− BV,q

ϵ2 )2 + 4
BW,q
ϵ2

)
α2
04
N

We now have the mandatory properties to determine the effect of noise on our energy estimators.
However, the value of q depends on the circuit considered. Hence, we now go into more details
on the ansatz models used to represent quantum states, and the number of gates in the circuits
associated to them and to the estimation circuits.

3.5 Circuit size estimation

In this section, we provide rough estimates of the circuit size for the various energy estimation
methods. We consider two ansatz models, one based on tensor trains and able to approximate
any quantum state, and one constructed for its ease of implementation and ability to achieve fast
entanglement in the system. We then estimate the size of the circuits associated to the Quantum
Fourier Transform and the Hadamard-test circuits.

3.5.1 Ansatz models and related circuits

A quantum state |ψ⟩ =∑2N−1
i=0 ψi |i⟩ in a N -qubit system can be represented as a tensor on

each component tensor space as

|ψ⟩ = Ψi1,...,iN |i1⟩ . . . |iN ⟩ .

As for any tensor, Ψi1,...,iN can be represented as a tensor train (TT) [13], also known as a matrix
product state (MPS),

Ψi1,...,iN =

χ1∑

α1=1

· · ·
χN−1∑

αN−1=1

(Ψ(1))α1
i1
(Ψ(2))α2

α1,i2
. . . (Ψ(N−1))

αN−1

iN−1,αN−2
(Ψ(N))αN−1,iN ,

where, for 1 ≤ k < N , χk ∈ N∗ and, for 1 < ℓ < N , Ψ(k) ∈ C2×χℓ×χℓ−1 and Ψ(1) ∈ C2×χ1 ,
Ψ(N) ∈ C2×χN−1 .

The minimum bond dimensions attainable for a given state |ψ⟩ depends on the entanglement
of the system for this state. Furthermore, it can be shown [78], by an inductive argument on the
rank of each tensor Ψ(k) starting from both ends and stopping in the middle, that, for any state,
we can bound the bond dimension χk, for any 1 ≤ k < N , by χk ≤ 2⌈N2 −k⌉. In the context of
quantum computing, 1-qubit gates are local and do not affect the bond dimension of a quantum
state, whereas 2-qubit gates can at most double the bond dimension of a quantum state on the
subsystem on which they act. We now describe two methods that may be used to represent states
achieving a bond dimension χmax at most.
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U2 Disentangler ansatz The first one, proposed in [83] and refined in [84], can approximately
represent any tensor train by applying Nlay successive layers of parametrized (N − 1) universal
2-qubit gates (see Figure 3.3) in a staircase structure as in Figure 3.2. Each layer is parametrized
to maximize the fidelity | ⟨0|U†

D |ψ⟩ |2, hence the moniker disentangler, as it sends |ψ⟩ to |0⟩. By
looking at the circuit as an ansatz, we see that each layer is able, at most, to double the bond
dimension of the resulting state. Consequently, the resulting bond dimension is at most 2Nlay .
The entire circuit is thus composed of Nlay of (N − 1) universal gates. Each gate being composed
of 15 1-qubit gates and 3 2-qubit gates, we have

ND
G1

= 15Nlay(N − 1), ND
G2

= 3Nlay(N − 1).

|0⟩
U1|0⟩

U2|0⟩
...

. . .
...

|0⟩
UN−2|0⟩

UN−1|0⟩

Figure 3.2 – Single layer of universal 2-qubit gates.

RZ RX RZ RZ • RZ RX RZ

RZ RX RZ • RY RY • RZ RX RZ

Figure 3.3 – Universal 2-qubit gate from [93].

Hardware-efficient ansatz Another popular choice of ansatz, the hardware-efficient ansatz
consists of layers of alternating CNOT gates and Pauli rotation gates as in Figure 3.4. For this
ansatz model, we have Nlay + 1 layers of Pauli rotation gates, and Nlay layers of CNOT walls.
This gives us

NHE
G1

= (Nlay + 1)N, NHE
G2

= Nlay(N − 1).

Controlled ansatz For the controlled ansatz, which appears in the Hadamard-test circuits
of the potential and interaction terms, see Figures 2.8 and 2.9, only the 1-qubit gates need to
be controlled, as the ansatz is applied to |0⟩, and thus CNOT leaves the state unchanged if the
control is not set to 1. We shall thus consider that, in the case of controlled ansatz, the number
of 2-qubit gates is the sum of 1-qubit and 2-qubit gates in the regular ansatz.
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|0⟩ RY •

|0⟩ RY •

|0⟩ RY •

|0⟩ RY •

|0⟩ RY

Figure 3.4 – Single layer of Hardware-efficient ansatz for a 5-qubit system.

3.5.2 Energy estimation subroutine circuits

Now, let us provide the number of gates used for the quantum routines involved in the energy
estimation circuits, namely the Quantum Fourier Transform circuit, used for the diagonal-sampling
Pauli estimator of the kinetic term, and Adder circuit, which appears in the Hadamard-test for
the kinetic term.

Quantum Fourier transform circuit

The basis change used to measure the kinetic term in the direct-sampling/diagonal-sampling
strategy is obtained through the quantum Fourier transform. The QFT circuit consists of
N(N − 1)/2 2-qubit gates and N 1-qubit gates, see [73] for more details. An example for 4 qubits
is given in Figure 3.5.

NQFT
G1

= N, NQFT
G2

= N(N − 1)/2

H R2 R3 R4

• H R2 R3

• • H R2

• • • H

Figure 3.5 – Four qubit quantum Fourier transform. We set, for k ≥ 2, Rk = RZ(π/2k) with
RZ(θ) = exp(−iθZ/2) the Pauli Z rotation of angle θ.

Adder circuit

The kinetic term Hadamard-test circuit consists of a controlled 1-adder. While some ripple
carry adders may boast of a number of gates increasing linearly with N , see [87], the prefactor
of N is prohibitively large. We instead consider here a QFT-based adder which consists, in our
case, in using a QFT to change basis, applying N 1-qubit Pauli rotations in the Fourier basis and
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applying an inverse QFT to come back to the computational basis. Then, the total number of
gates is

NAdd
G1

= 3N, NAdd
G2

= N(N − 1).

For a rudimentary implementation of a controlled adder the 1-qubit gates become 2-qubit gates and
the 2-qubit gates become twice-controlled Pauli rotations. This specific type of twice controlled
rotations can be implemented from two CNOT gates and three controlled rotation gates using
half the angle of the original rotation, see [73, pp. 181–182]. Hence, we have

NC-Add
G1

= 0, NC-Add
G2

= 5N(N − 1) + 3N.

Using these circuits, we now estimate the total number of gates for each energy term, ansatz
and estimation method.

3.5.3 Circuit size estimates

For the ansatz circuits, as our quantum states represent functions, we can bound the maximum
bond dimension achieved in our U2 ansatz, and thus limit its number of layers. Indeed, in the
one-dimensional case [3, 38, 75], functions regular enough can be represented through matrix
product states with relatively low bond dimensions. We consider four layers for the U2 ansatz
and eight for the HE ansatz. Using the number of gates estimated in the previous subsections for
each circuit, we show in Table 3.2, the number of estimated gates for each method and ansatz,
for each energy term.

3.6 Minimum achievable error and maximum number of
usable gates

Having obtained the number of gates in each case, we now determine, for a noisy system, the
maximum number of gates usable without mitigation. As we have seen in the previous sections,
the quantum noise adds a bias to our estimators as well as changing their variance.

In this subsection, let us focus on the bias term since, without mitigation, it provides the
lowest bound for the accuracy of the energy estimation methods.

For estimators using observable measurements, in our case the direct/diagonal-sampling and
importance-sampling estimators, from Proposition 18 and Corollary 3 for direct-sampling, and
Corollary 2 for importance-sampling, we can see that the effect of noise on the mean value of the
estimator is to contract its traceless part by the factor

q = (1− p1)
NG1 (1− p2)

NG2 .

Thus the noise-induced bias for the linear energy operators, i.e. if O = KN or O = PN , has the
form

bO,P =
∣∣∣Eρ

[
O
Nsh
]
− Eψ

[
O
Nsh
]∣∣∣ = (1− q)

∣∣∣∣⟨O⟩ψ − TrO

2N

∣∣∣∣ . (3.27)

Let us now denote by ∥O∥σ the spectral norm of O. Since, in these cases, O only has positive
eigenvalues, including ∥O∥σ. Obviously, TrO and ⟨O⟩ψ are subsequently positive too. And we
also have

∥O∥σ − TrO

2N
≥ 0,

because of the definition of ∥O∥σ.
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Table 3.2 – Circuit size estimation

Disentangler ansatz K P I

Pauli - D NG1 15Nlay(N − 1) +N 15Nlay(N − 1), 15Nlay(N − 1)

Pauli - D NG2
3Nlay(N − 1) 3Nlay(N − 1) 3Nlay(N − 1)

Direct - D NG1
15Nlay(N − 1) +N 15Nlay(N − 1) 15Nlay(N − 1)

Direct - D NG2
(3Nlay +N/2)(N − 1) 3Nlay(N − 1) 3Nlay(N − 1)

H-test - D NG1
15Nlay(N − 1) + 2 15Nlay(N − 1) + 2 15Nlay(N − 1) + 2

H-test - D NG2
(3Nlay + 5N)(N − 1) + 3N (21Nlay)(N − 1) +N (39Nlay)(N − 1) + 2N

Hardware-efficient ansatz K P I

Pauli - HE NG1 (Nlay + 2)N (Nlay + 1)N (Nlay + 1)N

Pauli - HE NG2 Nlay(N − 1) Nlay(N − 1) Nlay(N − 1)

Direct - HE NG1 (Nlay + 2)N (Nlay + 1)N (Nlay + 1)N

Direct - HE NG2
(Nlay +N/2)(N − 1) Nlay(N − 1) Nlay(N − 1)

H-test - HE NG1
(Nlay + 1)N + 2 NlayN + 2 (Nlay + 1)N + 2

H-test - HE NG2
(Nlay + 5N)(N − 1) + 3N Nlay(3N − 2) + 3N Nlay(5N − 3) + 5N

All those remarks imply that
∣∣∣∣⟨O⟩ψ − TrO

2N

∣∣∣∣ ≤ max

(
∥O∥σ − TrO

2N
,
TrO

2N

)
.

Then, thanks to (3.17) and (3.18), we notice that

TrO

2N
≤ ∥O∥σ − TrO

2N
,

which eventually leads to the upper bound

bO,P ≤ (1− q)

(
∥O∥σ − TrO

2N

)
. (3.28)

Hence, in the worst case, the bias is obtained through the spectral norm, or Schatten-∞ norm
[97], of O, i.e. its largest singular value.

Lastly, for the interaction term, using (3.19), we get a similar result

bI,P ≤ (1− q2)

∣∣∣∣max
|ψ⟩

(⟨IN ⟩ψ)−
κ

2

∣∣∣∣ =
κ

2
(1− q2)(2N − 1).
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For unitary measurements, for the Hadamard-test estimator, the noise contraction does not
occur on the traceless part of the observable. Instead, the mean value of the measured Pauli
operator is contracted and the mean value of the unitary itself is contracted in the estimator, as
we can see in Proposition 20. This implies that the bias for these estimators is instead given by

bO,H =
∣∣∣Eρ[ÔNsh ]− Eψ[ÔNsh ]

∣∣∣ = (1− q) |⟨O⟩ψ − cH| ,

which depending on the value of ⟨O⟩ψ may provide a lower or higher bias.
The mean squared error of our estimators is given by the sum of the squared bias and the

variance of the estimators
MSEρ(O

Nsh
) = b2O,P +VarρO

Nsh
.

Thus, a hard limit is set on our MSE by the bias term if we do not mitigate its effects (as we
shall see in the next section). We now show that, for a given maximum acceptable error ϵ > 0
and a given depolarizing probabilities p1 and p2, the bias term allows to quantify the maximum
number of gates we can use.

First, we upper bound our mean squared error by ϵ2,

b2O,P +VarρO
Nsh ≤ ϵ2.

Since the variance is always positive, we thus have bO,P ≤ ϵ and, using the formula (3.27) for the
bias

q ≥ 1− ϵ∣∣⟨O⟩ψ − TrO
2N

∣∣ ,

and thanks to (3.28),
q ≥ 1− ϵ

∥O∥σ − TrO
2N

. (3.29)

Let us rewrite the bias term as a function of p2 only by setting, for a constant c > 0, p1 = cp2.
We have

NG1
ln(1− p1) = NG1

ln(1− cp2)

ln(1− p2)
ln(1− p2).

We hence set ζc(p2) =
ln(1−cp2)
ln(1−p2) , which allows to write

q = (1− p1)
NG1 (1− p2)

NG2 = (1− p2)
ζc(p2)NG1

+NG2 .

We set N equiv
G2

= ζc(p2)NG1
+NG2

, and rewrite inequality (3.29) in terms of number of gates

N equiv
G2

≤
ln

(
1− ϵ

∥O∥σ − 2−N TrO

)

ln (1− p2)
.

Hence, for a given observable, the depolarizing noise probability p2 allows to upper-bound the
number of gates usable in our circuit. Let us now estimate the number of 2-qubit gates usable
for near-term devices. For current devices, the best error rates for 1-qubit gates are of the order
of e1 = 0.02% and for 2-qubit gates of the order of e2 = 0.1 [98]. The gate fidelity is defined as
the average fidelity, over input states, of the output of the implemented gate versus its expected
output. For depolarization noise models, all states are equally affected, this implies that the
fidelity of a gate is equal to its fidelity for any input state. For a N -qubit system, a gate with



3.7. Mitigation 109

depolarizing probability p has a fidelity

F (p) = ⟨ψ| ρ |ψ⟩ = ⟨ψ|
(
(1− p) |ψ⟩ ⟨ψ|+ p

IN
2N

)
|ψ⟩ = (1− p) +

p

2N
= 1− p

2N − 1

2N
,

where |ψ⟩ is the ideal state and ρ is the output state of the gate. As gate error rates are defined
as 1− F (p), we thus have our relationship betwen p and the error rate e

p =
2N

2N − 1
e.

The depolarization probability p thus quickly converges to e when N increases. By considering
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Figure 3.6 – Maximum number of 2-qubit gates usable under depolarization noise to achieve a
bias under ϵN = ϵ/2N .

the potential energy term whose norm is the only one to converge with respect to N , we obtain
estimates of the number of usable gates for current hardware and for future hardware with a
tenth of the error rates which are shown in Figure 3.6. We also show the number of required
gates simply for the energy estimation circuits for each ansatz in Figure 3.7.

Obviously, even for the potential term, the number of gates is prohibitively low. Hence, the
only resort is quantum error mitigation.

3.7 Mitigation

Quantum error mitigation [14] is the process of recovering information from the measurement
of noisy quantum circuits through classical post-processing. In the case of zero-noise extrapolation
[37, 55, 56, 59, 89], the aim is to reconstruct a unbiased estimator from noisy samples using
knowledge of the effects of noise on the quantum system, and of the considered circuits. This
mitigated estimator however requires a higher number of samples to achieve an error ϵ. This can
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(a) Hardware efficient ansatz with 8 layers
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(b) 2-qubit universal ansatz with 2 layers

Figure 3.7 – Number of gates in the energy estimation circuits.

be seen as the fact that the effect of noise is to contract the range of our estimators, and thus an
error ϵ on the noisy estimator will be multiplied by the inverse of the contraction coefficient in
the mitigated estimator.

In the general case, as shown in [14] using Hoeffding’s inequality, the sampling overhead
required to compensate the effect of noise is given by

Cq =
Varψ (O)

Varρ (O)
.

This overhead can be upper-bounded by the squared ratio of ranges for the expected values of O
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in the absence and presence of noise, i.e.

Cq ≤
R[⟨O⟩ψ]2
R[⟨O⟩ρ]2

. (3.30)

3.7.1 Mitigated estimators under depolarizing noise

In our case, as we have a noise model and explicit formulae of the variance of our estimators
under noise, we can recover a finer bound. Let us start by noticing that to reconstruct ⟨O⟩ψ from
⟨O⟩ρ, we can proceed as follows. Recall that

⟨O⟩ρ = α0 + q(⟨O⟩ψ − α0).

The effect of noise can be mitigated by reconstructing ⟨O⟩ψ from ⟨O⟩ρ, from the above equality,
i.e.

⟨O⟩ψ =
1

q
(⟨O⟩ρ − α0) + α0.

Our mitigated Pauli estimators can thus be constructed as

O
Nsh
q =

NO∑

j=1

αiPi
Nsh

q
+ α0 =

1

q

(
O
Nsh − α0

)
+ α0.

The effect of this mitigation on the variance of the Pauli estimators is thus

VarρA
Nsh
q =

1

q2
VarρA

Nsh
,

and hence, using (3.6), we obtain the variance of the mitigated estimator

VarρA
Nsh
q = Varψ A

Nsh
+

1− q2

q2

NA∑

i=1

α2
i

|Si|
+

1− q

q

NA∑

i=1

NA∑

j=1,j ̸=i

|Si ∩ Sj |
|Si||Sj |

αiαj⟨PiPj⟩ψ.

On the one hand, in the case of an importance-sampling strategy, we obtain

VarρA
Nsh
q = Varψ A

Nsh
+

1− q2

q2

NA∑

i=1

|αi|∥α1:∥1
Nsh

= Varψ A
Nsh

+
1− q2

q2
∥α1:∥21
Nsh

≤
(
1 +

1− q2

q2

) ∥α1:∥21
Nsh

=
∥α1:∥21
q2Nsh

.

On the other hand, for a diagonal-sampling strategy, we have

VarρA
Nsh
q = Varψ A

Nsh
+

1− q

q2Nsh

NA∑

i=1

α2
i +

1− q

qNsh

NA∑

i=1

NA∑

j=1

αiαj⟨PiPj⟩ψ

≤
(1 + 1−q

q2 )∥α1:∥22
Nsh

+

(1−q)
q (∥A∥σ − α0)

2

Nsh
.
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For the squared Pauli terms, for any i, 1 ≤ i < 2N , we consider the following mitigated
estimator

P 2
i

Nsh

q =
1

q2
P 2
i

Nsh
.

Its variance is thus given by

Varρ P 2
i

Nsh

q =
1

q4
Varρ P 2

i

Nsh
,

and, for any j ̸= i such that 0 ≤ j < 2N , we have

Covρ(P 2
i

Nsh

q , P 2
j

Nsh

q
) = Covρ(P 2

i

Nsh
, P 2

j

Nsh
).

Finally, we set INsh
q = 1

q2 I
Nsh and we obtain that the variance of the mitigated Pauli interaction

estimator is given by

Varρ I
Nsh
q =

1

q4
Varρ I

Nsh
.

Using these results, let us now study the effects of mitigation on the variance of estimators in
practice.

3.7.2 Numerical results for mitigated estimators
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Figure 3.8 – Minimum number of samples to achieve sufficient precision for convergence, ϵ < ϵconv
under depolarization noise for V0 = 1, κ = 1. Left: Nlay = 2. Right: Nlay = N .

Using the results on mitigated estimators obtained in the previous section, the bounds obtained
for the effects of noise, summarized in Table 3.1, and the gate estimates in Table 3.2, we are able
to provide estimates of the number of samples N ϵ

sh required to achieve a precision ϵ on the energy
for convergence. This is illustrated in Figure 3.8 in the case of the U2 ansatz for p2 = 0.001. On
the left, we consider a fixed number of layers equal to 2 and on the right a number of layers equal
to the number of qubits N . As expected, the Pauli method for the kinetic term outperforms the
Hadamard-test for a sufficiently large number of qubits. Recall that the Pauli estimator of the
kinetic term in the noiseless case had a variance which scaled as N2 with respect to the other
estimators, this overhead is compensated in the noisy case due to the number of additional gates
in the circuits of the other estimators scaling with respect to N . Indeed, as all methods share the
state preparation circuit the additional gates imply an exponential growth of the variance and
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thus of N ϵ
sh when compard to the Pauli estimator. This implies that, while not visible in Figure

3.8, the same is true for the diagonal-sampling estimator due to the basis change circuit required
being a QFT, indeed if we look at the ratio of mitigated variances, we get

VarKNNsh

Var ǨNNsh
≈ N2

(1− p2)N(N−1)

When p2 = 0.001, as we can see in Figure 3.9, the number of qubits required for the Pauli
importance-sampling estimator to outperform the diagonal estimator is around 100 qubits.
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Figure 3.9 – Plot of the terms in the ratio of mitigated variances for KNNsh and ǨNNsh .

For the other energy terms, as the Hadamard-test circuits require additional controlled state
preparations, their performance is severely reduced, even more so in the case where the number
of layers is proportional to N . Now, as we have seen in Chapter 2, Figure 2.13, using the spectral
Laplacian for the diagonal-sampling estimator vastly outperforms the other methods as it allows
to obtain better solution convergence for a given number of qubits. This remains true in the
presence of noise as can be seen in Figure 3.10, and even more so, since q explicitly depends on
N even in the case of the potential term.

Another noteworthy result is that, given the exponential dependence of q on the number of
gates (3.2), and the fact that the number of gates in our ansatz is proportional to NNlay, there
exists a number of layers such that the effect of noise is comparable to the variances of the energy
terms. If we set q2 = 16N , i.e. such that the effect of noise is comparable to the variance of the
kinetic term. We obtain that in the case of the U2 ansatz and for p2 = 0.001, this amounts to
Nlay = − 4 log 2

12 log(1−p2) ≈ 231, as is illustrated in Figure 3.11.
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Figure 3.10 – Minimum number of samples to achieve sufficient precision for convergence, ϵ < ϵconv
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Figure 3.11 – Plot of the mitigation overhead q2 for different number of layers for p2 = 0.001.

3.7.3 Discussion

As is readily apparent in the numerical results shown above, when compared to the increase
in the variance of the discretized unbounded operators, the effect of noise on N ϵ

sh is negligible for
values of N less than a hundred.

Furthermore, as the increased precision required to achieve convergence is such that ϵ ≤
O
(

1
M2

)
, the increase in the number of samples due to the increase in precision is vastly greater
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than the increase due to mitigation. Note that the results obtained for any noise model would
be similar to the analytical ones we got in this chapter with a very simple noise model. Indeed,
as shown in [14], the overhead induced by mitigation is related to the contraction of the range
of values of the measured observable (3.30). Any noise model, such as amplitude damping or
de-phasing [73], which induces such a contraction would thus lead to similar results as they also
induce such contractions. In practice such mitigation methods would only allow the enhancement
of precision up to a certain point, mainly due to the fact that the effect of noise cannot be
perfectly captured. These results showcase that the problems found in Chapter 2 still dominate
even in the presence of noise and that even with perfect mitigation, energy estimation is too
costly for any practical use.
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Conclusion

Throughout this thesis, we have explored the potential and challenges of solving differential
equations on noisy quantum computers, with a particular focus on energy estimation, a cornerstone
of many NISQ algorithms. While the energy estimation methods we proposed through the Walsh-
Pauli decomposition are promising, they may not scale well to very large quantum systems due
to the following issues.

Indeed, the results we have obtained imply that NISQ algorithms for the solving of differential
equations need to be engineered differently in order to have a hope at quantum advantage due to
the following caveats of variational quantum algorithms:

1. Sampling error and convergence accuracy: As discussed in Chapter 2, the number
of samples needed to achieve an error ϵ for an energy term A scales as follows:

N ϵ
sh ∝ VarA

ϵ2
.

To ensure convergence, the required accuracy for the energy terms must be of the order
ϵ ∝ 1

M2 = 4−N , where M is the number of discretization points. Consequently, the number
of samples needed scales as N ϵ

sh ∝M4 = 16N . In comparison, for classical calculations of
energy terms, the computational cost does not directly scale with precision. Specifically,
for matrix-vector multiplication, the cost is generally O(M2) in serial computations and
O(M) in parallel ones. However, in our case, the energy operators’ specific structure allows
us to perform vector-vector operations, reducing the cost to O(M). Additionally, since
our operators can be represented as low-rank matrix product operators (MPOs), further
optimization is likely achievable. Nevertheless, regardless of the computational approach,
the main constraint for classical algorithms is the memory required to store a vector of size
2N with sufficient precision. For instance, representing a 32-qubit vector with quadruple
precision (128-bit floating point) necessitates 64 terabytes of RAM.

Table 3.3 compares classical and quantum energy calculations, focusing on the matrix-
vector case for broader applicability. As anticipated, the number of samples required for
quantum algorithms is prohibitively high due to the steep increase in cost associated with
precision requirements.

2. Unbounded variance: In theory, the upper bound of the variance with respect to the
spectral norm ∥A∥σ of an operator should not impact the algorithm’s performance. If
the ansatz states are selected such that their H1 norms remain controlled, the variance
stays bounded, and the exponential scaling due to the diverging norms of the kinetic and
interaction operators should not adversely affect the algorithm. However, current ansatz
circuits often do not constrain the exploration to such controlled manifolds. Consequently,
minor adjustments in ansatz parameters can lead to increased kinetic energies and a
correspondingly spiky energy landscape. Although this issue does not affect the energy
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Quantum
memory requirement:

N = 32 qubits

Classical
memory requirement:

2N float128 = 64 GB of RAM

Number
of samples

N ϵ
sh

Quantum
computation

time

Classical
number of

FLOPs

Classical
computation

time
FD

ϵconv ≈ 10−19 O(M4) ≈ 1038 1017× aotu O(M2) ≈ 1019 ≈ 10 years
Spectral

ϵconv ≈ 10−29 O(M6) ≈ 1058 1036× aotu O(M2) ≈ 1019 ≈ 10 years

Table 3.3 – Computational cost of estimating the energy of a single vector when the variance is
equal to 1 for N = 32. We consider as in Chapter 2 a sample frequency of 1.5 Mhz for the quantum
system and we consider a classical computer with a 1 teraflop/s performance(consumer GPU-level
performance) with 1 terabyte of RAM using float128 to represent the vectors, a sufficient precision
for the energy estimation. ‘aotu’ is used as a shorthand for ‘age of the universe’ ≈ 1010 years.

estimation for the final solution state, it significantly impacts the states encountered during
optimization, often resulting in a dramatic increase in computational cost. A potential
remedy is to develop tailored ansätze that confine the exploration to specific manifolds.
This approach could be facilitated by leveraging the connections between tensor trains
and function representations, as suggested by recent studies on matrix product states and
tensor decompositions [83, 84].

3. Noise-induced bias: As we saw in Chapter 3, the main effect of noise is to introduce a
bias (3.27) which upper-bounds the error of the energy estimation. This severely hinders
the maximum number of gates useable to achieve a minimum error of ϵ as shown in
Figure 3.6 and thus imposes the use of error mitigation methods.

4. Mitigation-induced overhead: Error mitigation introduces a sampling overhead that
grows exponentially with the number of gates in the quantum circuit,

Nsh ≈ VarA

(1− p2)
2Nequiv

G2 ϵ2
.

Given that the circuit size for the ansatz is proportional to N × Nlay, this means the
number of samples needed for mitigated energy estimation increases as (1 − p2)

2NNlay ,
resulting in a sampling overhead exponentially proportional to the number of gates in
the quantum circuit. However, as demonstrated by the numerical results in Chapter 3,
particularly in Figures 3.8 and 3.10, the impact of noise on Pauli estimators remains
minimal compared to other sources of error, even for systems with up to 100 qubits.

Take-away message While it is readily apparent that variational quantum algorithms for
differential equations have limited prospects of achieving any quantum advantage in the high-
precision setting due to the challenges outlined above, there remains hope for such an advantage
within the NISQ regime. For VQAs, this hope may reside in the high-dimensional, fixed-precision
setting, which suffers to a lesser degree from the above argument on sampling error. However,
the other limitations of VQAs remain valid in this setting. Indeed, the fact that multivariate
functions tend to require higher bond dimensions imply that much deeper ansatz would be
needed. Furthermore, the increased depth also induces a need for better hardware to reduce the
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noise-induced overhead. Finally, the problem of ansatz trainability remains an open question in
this case. Further work would thus be needed to investigate this use-case more thoroughly.

By changing the lens through which we represent differential equations and employing innova-
tive techniques, Hamiltonian simulation is another method which offers a glimmer of promise.
Indeed, in the classical context, due to memory considerations it has generally been preferable
to reduce the number of dimensions of a linear problem in order to obtain simulations, even at
the cost of introducing nonlinearities. In the quantum case, it appears that the reverse seems to
apply, encoding nonlinear problems as high-dimensional linear ones may allow for their efficient
quantum simulation [66, 90]. Furthermore, by encoding a nonlinear problem as a Schrödinger
equation, for a larger number of qubits and with a potentially non-Hermitian operator[48, 51, 52],
may provide a quantum advantage for observable measurements, so long as the observable is not
unbounded.

These types of algorithms, however, make use of quantum phase estimation and generally
require fault-tolerant quantum computers to achieve an advantage. To achieve an advantage in
the NISQ context, one promising approach to solve this problem is the statistical phase estimation
algorithm [10, 27, 96] which may allow phase estimation for non-error-corrected quantum devices.

The work presented in this thesis, while showing the problems inherent to VQAs for differential
equations, may allow for new methods for Hamiltonian simulation. Indeed, while the results
we obtained concerning the Walsh series do not lead to an advantage concerning VQAs, they
may allow for an explicit Pauli decomposition of differential and evolution operators through
the representation of the Fourier basis functions. By enabling the exact representation of
evolution operators in the Pauli basis, our results could lead to more efficient implementations of
Trotterization schemes for the evolution of differential equations.

Furthermore, an intriguing avenue for further exploration lies in the encoding of nonlinear
differential equations into higher-dimensional, but finite, linear ones more akin to be solved
on quantum systems. The Gross-Pitaevskii equation, for instance, can be viewed as a 1-body
representation of the ground state of a complex N -body bosonic system. Notably, it has been
established that the ground-state energy of the Gross-Pitaevskii equation for an N -body system
can be reformulated in terms of a k < N body system with rescaled parameters [60]. This raises
interesting questions about the possibility of encoding the wavefunction in the associated k-body
system as well. Moreover, it would be valuable to investigate whether this approach can be
extended to excited states of N-body systems or even to fermionic equivalents.
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A.1 A-priori Analysis

In this section we will provide an a-priori error analysis of 2.4. To do so, we first introduce
some context and provide several results which will allow us to determine the convergence rate of
uN to u.

A.1.1 Context

Let us first set M = 2N = 1
hN

and introduce for any n ≥ 0 the following functional spaces

Xn = SpanC
(
{ek : x 7→ ei2πkx,−n ≤ k ≤ n}

)

Note that dimXn = 2n+ 1, furthermore, we have that XN = XM/2−1 × SpanC(cM/2) where we
recall that cM/2 : x 7→ cos

(
2πM2 x

)
. Hence we have XM/2−1 ⊂ XN ⊂ XM/2. Let us now introduce

a reduced Fourier subspace XMred , with Mred = M/4 − 1 which will allow us to make a link
between the solutions of the (2.2) and our solutions in the discretized case.

Fourier Interpolation and Truncation

First, we define the truncated Fourier series.

Definition 15. For any v ∈ L2(0, 1), its Fourier series is
∑
k∈Z v̂kek. Let n > 0, we define the

projection operator Πn : L2(0, 1) → Xn which to any v ∈ L2(0, 1) associates its the truncated
Fourier series Πnv ∈ Xn,

Πnv =
∑

|k|≤n

v̂kek.

We note the following property:

Proposition 21 ([15, 16]). Let n > 0, given v ∈ Hm(0, 1) for m > 0, we have that

∥Πnv − v∥L2 ≤ CN−m∥v(m)∥L2

We now give the rational behind the introduction of our special interpolation operator,
IN : L2(0, 1) → XN . Given Tn = SpanR{ck|0 ≤ k ≤ n} ∪ {sk|1 ≤ k ≤ n}, where for 1 ≤ k ≤M/2
ck : x 7→ cos(2πkx) and sk : x 7→ sin(2πkx) and where c0 : x 7→ 1. It is readily evident that Tn
is the restriction of real-valued functions of Xn, indeed, as for any 1 ≤ k ≤ n ek and e−k are
elements of Xn, ck and sk can be reconstructed using Euler’s formula. The same however is not
true for the space of trigonometric polynomials SN = {ek | −N ≤ k < N}, indeed the absence of
eN implies that XN ̸⊂ SN . The trigonometric interpolation operator is usually defined on SN [15].
In that case, it corresponds to the operator ISN sending v to the unique function of SN taking the
same values as the function v on ΩN defined in (2.5). As we aim to describe functions that may
be strictly real-valued, we are led to consider the trigonometric interpolant on XN .

Definition 16. Let n > 0, given v ∈ C0([0, 1]) we define the trigonometric interpolation operator
IN : C0([0, 1]) → XN such that

INv(xk) = v(xk), 0 ≤ k < 2N .

For functions of XM/2−1, it is straightforward to note that our interpolation operator and the
interpolation operator on SN coincide.
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First let us note that we have, for any ℓ, k, |ℓ| ≤M/2− 1, |k| ≤M/2− 1 ,

⟨eℓ, ek⟩L2
N
=

2N−1∑

ℓ=0

exp(i2π(ℓ− k)xk)hN = δℓ,khN · 2N = δℓ,k = ⟨eℓ, ek⟩L2 .

Similarly
⟨eℓ, cM/2⟩L2

N
= 0 = ⟨eℓ, cM/2⟩L2

For the norm of the cosine term however, we have that ∥cM/2∥2L2 = 1
2 while its discrete norm is

equal to 1, indeed,

∥cM/2∥2L2
N
= hN ·

2N−1∑

k=0

(−1)2k = 1 = 2∥cM/2∥2L2 .

This implies that given the decomposition v = aM/2cM/2 +
∑M/2−1
k=−M/2−1 akek of an element in

XN , then

∥v∥2L2
N
= |aM/2|2 +

M/2−1∑

k=−M/2−1

|ak|2 = ∥v∥2L2 +
|aM/2|2

2

and thus
∀v ∈ XN , ∥v∥L2 ≤ ∥v∥L2

N
≤

√
2∥v∥L2

Proposition 22. Let N > 0, given v ∈ X , for any w ∈ XM/2−1 we have

⟨v, w⟩L2
N
= ⟨INv, w⟩L2

N
= ⟨INv, w⟩L2 .

Furthermore, we have that for any v, w ∈ XM/2−1,

⟨v, w⟩L2
N
= ⟨v, w⟩L2 .

Definition 17. Given v ∈ H1(0, 1), we denote the Fourier series of its trigonometric interpolant
as

INv =
∑

|k|<M/2

ˆ̂vkek + ˆ̂vM/2cM/2

with ˆ̂vk =
⟨v,ek⟩L2

N

∥ek∥2

L2
N

and ˆ̂vM/2 =
⟨v,cM/2⟩L2

N

∥cM/2∥2

L2
N

and

We now give two lemmas for functions of XN .

Lemma 9. Let N > 0, given v ∈ X , for any w ∈ XN we have

⟨v, w⟩L2
N
= ⟨INv, w⟩L2 +

ˆ̂vM/2ŵM/2

2

and equivalently, ⟨v, cM/2⟩L2
N
= 2⟨v, cM/2⟩L2

Furthermore, we can recover a convergence result for the interpolation operator through the
convergence result on the SN interpolation.

Proposition 23. Let N > 0, given v ∈ Hk(0, 1) for k > 0, then we have

∥INv − v∥L2 ≤ C
1

2Nk
∥v(k)∥L2 = C

1

Mk
∥v(k)∥L2 .
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Proof. Let N > 0, given v ∈ Hk(0, 1) for k > 0, from [16] p. 272, we have the results for ISN ,
namely, there exists constant C > 0 such that,

∥ISNv − v∥L2 ≤ C
1

2Nk
∥v(k)∥L2 = C

1

Mk
∥v(k)∥L2 .

Let us rewrite these norms using Parseval identity,

∥INv − v∥2L2 =
∑

|k|<M/2

|ˆ̂vk − v̂k|2 +
∑

|k|>M/2

|v̂k|2

+ |ˆ̂vM/2 − (v̂M/2 + v̂−M/2)|2∥cM/2∥2L2 + |v̂M/2 − v̂−M/2|2∥sM/2∥2L2

=
∑

|k|<M/2

|ˆ̂vk − v̂k|2 +
∑

|k|>M/2

|v̂k|2

+
|ˆ̂vM/2 − (v̂M/2 + v̂−M/2)|2 + |v̂M/2 − v̂−M/2|2

2
,

on the other hand, for ISN , we have

∥ISNv − v∥2L2 =
∑

|k|<M/2

|ˆ̂vk − v̂k|2 +
∑

|k|>M/2

|v̂k|2

+ |ˆ̂vM/2 − v̂−M/2|2 + |v̂M/2|2.

Notice that

|ˆ̂vM/2 − (v̂M/2 + v̂−M/2)|2 + |v̂M/2 − v̂−M/2|2
2

≤ |ˆ̂vM/2 − v̂−M/2|2 + |v̂M/2|2 + |v̂M/2|2 + |v̂−M/2|2
2

≤ |ˆ̂vM/2 − v̂−M/2|2 + |v̂M/2|2 +
|v̂M/2|2 + |v̂−M/2|2

2
.

This allows us to obtain the following inequality,

∥INv − v∥2L2 ≤ ∥ISNv − v∥2L2 +
|v̂M/2|2 + |v̂−M/2|2

2

= ∥ISNv − v∥2L2 +
(|v̂M/2|2 + |v̂−M/2|2)(π2M2)k

2(π2M2)k

≤ (C +
1

2π2
)

1

M2k
∥v(k)∥2L2

which gives us the result for the L2 norm.

We also have a similar result for the L∞ norm.

Proposition 24. Let N > 0, given v ∈ Hk(0, 1) for k > 0, then we have

∥INv − v∥L∞ ≤ C
N

2Nk
∥v(k)∥L2 = C

logM

Mk
∥v(k)∥L2 .
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Proof. Let us denote generically K = R or C, we denote by T K
N = SpanK{ck | 0 ≤ k ≤

M/2} ∪ {sk | 0 < k < M/2}. As shown in [46], we have the above result for T R
N which can be

immediately extended to any T K
N . Specifically, we extend this result to T C

N which is identical
to XN . Alternatively, we can use a similar methodology as the previous proof for the L2 norm
bound. Indeed, let N > 0, given v ∈ Hk(0, 1) for k > 0, from [16] p. 272, we have the results for
ISN , namely, there exists constant C > 0 such that,

∥ISNv − v∥L∞ ≤ C
N

2Nk
∥v(k)∥L∞ = C

logM

Mk
∥v(k)∥L∞ .

We have

∥INv − v∥2L∞ = ∥ISNv − v − iˆ̂vM/2sk∥2L∞ ≤ ∥ISNv − v∥2L∞ + |ˆ̂vM/2|∥sM/2∥L∞

The value of ˆ̂vM/2 can be recovered from the Fourier series of v, indeed,

ˆ̂vM/2 = ⟨v, eM/2⟩L2
N
=
∑

ℓ∈Z
v̂ℓ⟨eℓ, eM/2⟩L2

N
=
∑

ℓ∈Z
v̂M/2+Mℓ,

the higher frequencies obtained being those with the same value as eM/2 on ΩN . This gives us
the bound

|ˆ̂vM/2| ≤
|v̂M/2|(M2π2)k

(M2π2)k
+ ∥v − πM/2v∥L2 ≤ C

π2M2
∥v(k)∥L2 ≤ C

π2M2
∥v(k)∥L∞ .

Finally,

∥INv − v∥2L∞ ≤ C(logM + C)

Mk
∥v(k)∥L∞ .

Results on discretized Laplacian

For convenience’s sake, we define the following bilinear functions.

Definition 18. Let v, w ∈ X , we define

a(v, w) = ⟨v′, w′⟩L2 , aN (v, w) = ⟨v,−∆Nw⟩L2
N
,

where ∆N = τhN + τ−hN − 2I is the discretized Laplacian operator defined in (2.11).

We also rewrite the energy terms (2.3) and (2.10) as

E(v) =
1

2
a(v, v) + ⟨V, v2⟩L2 +

κ

2
⟨v2, v2⟩L2

EN (v) =
1

2
aN (v, v) + ⟨V, v2⟩L2

N
+
κ

2
⟨v2, v2⟩L2

N

We also introduce the discretized operator

ANv = −1

2
∆N + V + κv2.
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Let us first state

Lemma 10. For vN , wN ∈ XN , we have

aN (vN , wN ) =
∑

|k|≤M/2−1

4v̂kŵ
∗
k sin

(
π
k

M

)2

M2 + 8v̂M/2ŵ
∗
M/2M

2

Proof. We readily note that h2N∆N = τhN + τ−hN − 2I = −(τhN − I)(τ−hN − I). Then, for any
vN , wN ∈ XM/2−1, we have that I−τhN

h vN ∈ XM/2−1, and thus that:

aN (vN , wN ) = ⟨I − τhN
h

vN ,
I − τhN

h
wN ⟩L2

N

=
∑

|k|≤M/2−1

v̂kŵ
∗
k

∣∣∣∣
ei2πkhN − 1

2πkhN

∣∣∣∣
2

4π2k2

=
∑

|k|≤M/2−1

v̂kŵ
∗
k

∣∣∣∣∣e
iπkhN

eiπ
k
M − e−iπ

k
M

2π k
M

∣∣∣∣∣

2

4π2k2

=
∑

|k|≤M/2−1

v̂kŵ
∗
k

∣∣∣∣∣ie
iπkhN

sin
(
π k
M

)

π k
M

∣∣∣∣∣

2

4π2k2

=
∑

|k|≤M/2−1

v̂kŵ
∗
k

sin
(
π k
M

)

π2 k2

M2

2

4π2k2

=
∑

|k|≤M/2−1

4v̂kŵ
∗
k sin

(
π
k

M

)2

M2

For vN , wN ∈ XN , we have an additional term

aN (vN , wN ) =
∑

|k|≤M/2−1

4v̂kŵ
∗
k sin

(
π
k

M

)2

M2 + 8v̂M/2ŵ
∗
M/2M

2

where we the additional term is

4⟨cM/2, vN ⟩L2
N
⟨wN , cM/2⟩L2

N
sin(π/2)

2
M2 = 4(2 · ⟨cM/2, vN ⟩L2)(2 · ⟨wN , cM/2⟩L2) sin(π/2)

2
M2

= 8v̂M/2ŵ
∗
M/2M

2

Lemma 11. For any vN ∈ XN , we have that

1

2π2
a(vN , vN ) ≤ aN (vN , vN ) ≤ a(vN , vN ).

Furthemore, the discretization error a− aN for vN , wN is given by

(a− aN )(vN , wN ) =
∑

|k|≤M/2−1

v̂kŵ
∗
k4π

2k2

(
1− sin

(
π k
M

)2
(
π k
M

)2

)
+ 4π2(M/2)2v̂M/2ŵ

∗
M/2

(
1− 8

π2

)
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Proof. For vN , wN ∈ XM/2−1, we have from Lemma 10,

a(vN , wN ) =
∑

|k|≤M/2−1

v̂kŵ
∗
k4π

2k2

This gives us :

(a− aN )(vN , wN ) =
∑

|k|≤M/2−1

v̂kŵ
∗
k4π

2k2

(
1− sin

(
π k
M

)2
(
π k
M

)2

)

For any vN , wN ∈ XN , we have the additional term

4v̂M/2ŵ
∗
M/2π

2(M/2)2 − 8v̂M/2ŵ
∗
M/2M

2 = 4π2(M/2)2v̂M/2ŵ
∗
M/2

(
1− 8

π2

)

Finally, for any vN ∈ XN

(a− aN )(vN , vN ) =
∑

|k|≤M/2−1

|v̂k|24π2k2

(
1− sin

(
π k
M

)2
(
π k
M

)2

)
+ 4π2(M/2)2|v̂M/2|2

(
1− 8

π2

)

we have that each term
{(

1− sin(π k
M )

2

(π k
M )

2

)
| ∀|k| ≤M/2− 1

}
∪
{(

1− 8
π2

)}
⊂ [ 1

2π2 , 1], hence the

result.

Lemma 12. The discretization error (a− aN )(vN , vN ) for vN ∈ XN can bounded as follows

(a− aN )(vN , vN ) ≤ C

M2
∥vN∥2H2

Furthermore, we also have that for any vN , wN ∈ XN :

|(a− aN )(vN , wN )| ≤ C

M2
∥vN∥H2∥wN∥H2

Proof. If we consider the discretization error from Lemma 11 for vN ∈ XM/2−1, we have that

(a− aN )(vN , vN ) =
∑

|k|<M/2

|v̂k|24π2k2

(
1− sin

(
π k
M

)2
(
π k
M

)2

)

=
∑

|k|<M/2

|v̂k|24
(
π2k2 −M2(

π2k2

M2
− 2

π4k4

6 ·M4
+O(

k6

M6
))

)

=
∑

|k|<M/2

|v̂k|2
(
4π4k4

3 ·M2
−O(

k6

M4
)

)

≤ C
∥vN∥2H2

M2
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The second inequality for vN , wN ∈ XM/2−1is given by

|(a− aN )(vN , wN )| ≤
∑

|k|<M/2

|v̂k||ŵk|
4π4k4

3 ·M2

≤ C
∥v′′N∥L2∥w′′

N∥L2

M2

For any vN , wN ∈ XN , we bound the additional terms as follows:

|(a− aN )(vN , wN )| ≤
∑

|k|≤M/2

|v̂k||ŵk|
4π4k4

3 ·M2

+ π2M2

(
|v̂M/2||ŵM/2| − ⟨vN , cM/2⟩L2

N
⟨wN , cM/2⟩L2

N

sin(π/2)
2

π2(1/2)2

)

=
∑

|k|≤M/2

|v̂k||ŵk|
4π4k4

3 ·M2
+ 4π2(M/2)2|v̂M/2||ŵM/2|

(
1− 8

π2

)

≤
∑

|k|≤M/2

|v̂k||ŵk|
4π4k4

3 ·M2
+

4π4(M/2)4

π2(M/2)2
|v̂M/2||ŵM/2|

(
1− 8

π2

)

≤ C
∥v′′N∥L2∥w′′

N∥L2

M2

A.1.2 Bounding the convergence rate

Let us denote by

u = argmin
v∈X ,∥v∥L2=1

E(v) (A.1)

uN = argmin
vN∈XN ,∥v∥L2

N
=1

EN (vN ) (A.2)

uMred = argmin
vMred∈XMred ,∥v∥L2

N
=∥v∥L2=1

EN (vMred) (A.3)

ũMred = argmin
vMred∈XMred ,∥v∥L2=∥v∥

L2
N
=1

E(vMred) (A.4)

To bound the convergence rate of ∥uN − u∥H1 , we consider the following decomposition

∥uN − u∥H1 ≤ ∥u− ũMred∥H1︸ ︷︷ ︸
(1)

+ ∥ũMred − uMred∥H1︸ ︷︷ ︸
(2)

+ ∥uMred − uN∥H1︸ ︷︷ ︸
(3)

.

To obtain convergence rates, we show that each term converges to zero as N increases. For the
first term, as shown in [28] we have that ũMred , the solution to the non-discretized problem on the
subspace XMred = XM/4−1 converges strongly to the solution u. For the second term, we have
that the distance of the two functions can be bounded by their difference in energy (following
again the same lines as in [28]). We then show that the discretization error on XMred for the
solutions converges to zero and use this to bound the difference of the energies of the solutions.
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For the third term, we develop a discretized analog to [28] and bound the term by the difference of
the discrete energies. As we consider two minimizers, we are able to bound this by the difference
of energies of uN and its normalised projector on XMred .

Term (1)

First, let us look at the term (1): From [28] Theorem 2.3 on page 11, we have that

Theorem 12. Let u be the solution to (A.1) and ũMred the solution to (A.4), the following upper
bound between the two solutions holds

∥u− ũMred∥2H1 ≤ CE(ũMred)− E(u)

in addition there exists a N0 > 0, C1 and C2 such that if Mred ≥ N0:

∥u− ũMred∥H1 ≤ min
vMred∈XMred

C1∥vMred − u∥H1 ≤ C2
∥u(k)∥L2

M
(k−1)
red

.

Term (3)

For the last term, we use the same idea as for term (1) shown in [28] now in the discrete
setting. Under the assumption that the discrete operator ANuN admits λN as a simple lowest
eigenvalue and we denote by λN,2 the next one, we show that

Lemma 13. Let uN be the solution to (A.2) and uMred the solution to (A.3), under the above
assumption, the H1 norm of uMred − uN is bounded by their difference in discretized energies, i.e.

∥uMred − uN∥2H1 ≤ CλN (EN (uMred)− EN (uN )) ,

with CλN =
λN,2−λN

2Cc+λN,2+λN
.

Proof. We proceed in the exact same manner as in the proof of Theorem 3 in [28] pg.12. Indeed
we have

EN (uMred)− EN (uN ) =
1

2
aN (uMred , uMred) + ⟨V, u2Mred

⟩L2
N
+
κ

2
⟨u2Mred

, u2Mred
⟩L2

N

−
(
1

2
aN (uN , uN ) + ⟨V, u2N ⟩L2

N
+
κ

2
⟨u2N , u2N ⟩L2

N

)

+ κ⟨u2Mred
, u2N ⟩L2

N
− κ⟨u2Mred

, u2N ⟩L2
N

− κ

2
⟨u2N , u2N ⟩L2

N
+
κ

2
⟨u2N , u2N ⟩L2

N

=
1

2
aN (uMred , uMred) + ⟨V, u2Mred

⟩L2
N
+ κ⟨u2N , u2Mred

⟩L2
N

−
(
1

2
aN (uN , uN ) + ⟨V, u2N ⟩L2

N
+ κ⟨u2N , u2N ⟩L2

N

)

+
κ

2
⟨u2N , u2N ⟩L2

N
+
κ

2
⟨u2Mred

, u2Mred
⟩L2

N
− κ⟨u2Mred

, u2N ⟩L2
N

= ⟨ANuNuMred , uMred⟩L2
N
− ⟨ANuNuN , uN ⟩L2

N
+
κ

2
∥u2Mred

− u2N∥2L2
N
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Then we have

⟨ANuNuMred , uMred⟩L2
N
− ⟨ANuNuN , uN ⟩L2

N
= ⟨ANuNuMred , uMred − uN ⟩L2

N

+ ⟨ANuNuMred , uN ⟩L2
N
− ⟨ANuNuN , uN ⟩L2

N

= ⟨ANuNuMred , uMred − uN ⟩L2
N
+ ⟨ANuNuMred − λNuN , uN ⟩L2

N

= ⟨(ANuN − λN )uMred , uMred − uN ⟩L2
N
+ ⟨λNuMred , uMred − uN ⟩L2

N

+ ⟨ANuNuMred − λNuN , uN ⟩L2
N

= ⟨(ANuN − λN )uMred , uMred − uN ⟩L2
N

= ⟨(ANuN − λN )(uMred − uN ), uMred − uN ⟩L2
N

where we have used the fact that ∥uMred∥L2
N
= ∥uN∥L2

N
= 1 and ∀vN ∈ XN ,

⟨ANuNuN , vN ⟩L2
N
= λN ⟨uN , vN ⟩L2

N
,

for the the penultimate equality and the last line.
This gives us :

EN (uMred)− EN (uN ) = ⟨(ANuN − λN )(uMred − uN ), uMred − uN ⟩L2
N
+
κ

2
∥u2Mred

− u2N∥L2
N

Now, using the same reasoning as in [28], as ANuN − λNI is a positive linear operator with
kernel uN and lowest nonzero eigenvalue λN,2 − λN , we obtain that for any vN ∈ XN :

⟨(ANuN − λN )vN , vN ⟩L2
N
≥ (λN,2 − λN )∥vN − ⟨vN , uN ⟩L2

N
uN∥2L2

N

= (λN,2 − λN )(∥vN∥2L2
N
− |⟨vN , uN ⟩L2

N
|2)

as a direct result of Parseval’s Theorem. We denote ηN = λN,2 − λN .
On the other hand, we obtain through the coercivity of the discretized Laplacian(from

Lemma11) and the positivity of V and of the L4 norm that for any vN ∈ XN

⟨(ANuN − λN )vN , vN ⟩L2
N
≥ 1

4
∥vN∥2H1 − (λN +

1

2
)∥vN∥2L2

N

We now apply the first inequality to vN = uMred − uN , we have that :

⟨
(
ANuN − λN

)
(uMred − uN ) , uMred − uN ⟩L2

N
= ⟨
(
ANuN − λN

)
uMred , uMred⟩L2

N

≥ ηN

(
∥uMred∥2L2

N
− |⟨uMred , uN ⟩L2

N
|2
)

=
ηN
2

(
∥uMred∥2L2

N
− 2|⟨uMred , uN ⟩L2

N
|2 + ∥uN∥2L2

N

)

=
ηN
2
∥uMred − uN∥2L2

N
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If we now consider the second inequality for vN = uMred − uN , we have :

⟨(ANuN − λN )uMred − uN , uMred − uN ⟩L2
N
≥ 1

2
C∥uMred − uN∥2H1 − (λN + Cc)∥uMred − uN∥2L2

N

where Cc = 1
2π2 is the coercivity constant from Lemma 11. Combining these we obtain:

⟨(ANuN − λN )(uMred − uN ), uMred − uN ⟩L2
N
≥ (1− t)

Cc

2
∥uMred − uN∥2H1

+

(
tηN
2

− (1− t)(λN + Cc)

)
∥uMred − uN∥2L2

N

= (1− t)
Cc
2
∥uMred − uN∥2H1

+ (t(λN + Cc +
ηN
2
)− λN − Cc)∥uMred − uN∥2L2

N

Notably, for t = λN+Cc
λN+Cc+ηN/2

, we have

⟨(ANuN − λN )(uMred − uN ), uMred − uN ⟩L2
N
≥ ηN

2λN + 2Cc + ηN
∥uN − uMred∥2H1

We thus have

EN (uMred)− EN (uN ) ≥ CλN ∥uN − uMred∥2H1 +
κ

2
∥u2Mred

− u2N∥L2
N

≥ CλN ∥uN − uMred∥2H1

with CλN =
λN,2−λN

2Cc+λN,2+λN
> 0 .

Using this result, we show that

Theorem 13. There exists a constant C > 0, independant on N , such that, for any k ≥ 1

CλN ∥uMred − uN∥2H1 ≤ 2C
1

M2k
red

∥V ∥L∞∥uN∥2Hk +
4C2κ

M2k
red

∥uN∥4Hk

Proof. We have for any normalized vMred ∈ XMred .

CλN ∥uMred − uN∥2H1 ≤ EN (uMred)− EN (uN )

≤ EN (vMred)− EN (uN )

≤ EN (
ΠMreduN

∥ΠMreduN∥L2
N

)− EN (uN )

Let us now obtain the convergence rate.

CλN ∥uMred − uN∥2H1 ≤ EN (
ΠMreduN

∥ΠMreduN∥L2
N

)− EN (uN )
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≤ aN (
ΠMreduN

∥ΠMreduN∥L2
N

,
ΠMreduN

∥ΠMreduN∥L2
N

)− aN (uN , uN )

+ ⟨V,
(

ΠMreduN
∥ΠMreduN∥L2

N

)2

− u2N ⟩L2
N

+ κ/2⟨
(

ΠMreduN
∥ΠMreduN∥L2

N

)4

− u4N , 1⟩L2
N

For the discretized kinetic term error, δK,3 =
aN(ΠMreduN ,ΠMreduN)

∥ΠMreduN∥2

L2
N

− aN (uN , uN ) we use

Lemma 11 to bound

δK,3 =
∑

|k|≤M/4−1

|ûk|2
1− ∑

|k′|≤M/4−1

|ûk′ |2
∑

|k′|≤M/4−1

4|ûk′ |2
sin

(
π
k

M

)2

M2

−
∑

|k|>M/4−1

4|ûk|2 sin
(
π
k

M

)2

M2

≤
(
1− ∥ΠMreduN∥2L2

N

)
4π2(M/4− 1)2

− ∥uN −ΠMreduN∥2L2
N
4π2(M/4)2

≤ 0

For the potential term error, δP,3 =

〈
V,

(
ΠMreduN

∥ΠMreduN∥
L2
N

)2

− u2N

〉

L2
N

we have

δP,3 = ⟨V, ( ΠMreduN
∥ΠMreduN∥L2

N

− uN )(
ΠMreduN

∥ΠMreduN∥L2
N

+ uN )⟩L2
N

≤ ∥V ∥L∞

〈∣∣∣∣∣
ΠMreduN

∥ΠMreduN∥L2
N

− uN

∣∣∣∣∣ ,
∣∣∣∣∣

ΠMreduN
∥ΠMreduN∥L2

N

+ uN

∣∣∣∣∣

〉

L2
N

= ∥V ∥L∞

〈∣∣∣∣∣
ΠMreduN (1− ∥ΠMreduN∥L2

N
)

∥ΠMreduN∥L2
N

− (uN −ΠMreduN )

∣∣∣∣∣ ,
∣∣∣∣∣
ΠMreduN (1 + ∥ΠMreduN∥L2

N
)

∥ΠMreduN∥L2
N

+ (uN −ΠMreduN )

∣∣∣∣∣

〉

L2
N

≤ ∥V ∥L∞

〈∣∣∣∣∣
ΠMreduN (1− ∥ΠMreduN∥L2

N
)

∥ΠMreduN∥L2
N

∣∣∣∣∣ ,
∣∣∣∣∣
ΠMreduN (1 + ∥ΠMreduN∥L2

N
)

∥ΠMreduN∥L2
N

∣∣∣∣∣+ |(uN −ΠMreduN )|
〉

L2
N

+ ∥V ∥L∞

〈
|uN −ΠMreduN | ,

∣∣∣∣∣
ΠMreduN (1 + ∥ΠMreduN∥L2

N
)

∥ΠMreduN∥L2
N

∣∣∣∣∣+ |(uN −ΠMreduN )|
〉

L2
N
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= ∥V ∥L∞

(
1− ∥ΠMreduN∥2L2

N
+ ∥uN −ΠMreduN∥2L2

N

)

= 2∥V ∥L∞∥uN −ΠMreduN∥2L2
N

≤ 2C
1

M2k
red

∥V ∥L∞∥u(k)N ∥2L2

For the interaction term error, δI,3 we obtain that

δI,3 = ⟨(ΠMreduN )4, 1⟩L2
N
− ⟨u4N , 1⟩L2

N

=

〈
ΠMreduN

∥ΠMreduN∥L2
N

− uN ,

(
ΠMreduN

∥ΠMreduN∥L2
N

)3 + (
ΠMreduN

∥ΠMreduN∥L2
N

)u2N + (
ΠMreduN

∥ΠMreduN∥L2
N

)2uN + u3N

〉

L2
N

=
1

∥ΠMreduN∥3
L2
N

⟨ΠMreduN − uN , (ΠMreduN )3 −ΠMred

(
ΠMreduN )3

)
⟩L2

N

+
1

∥ΠMreduN∥2
L2
N

⟨ΠMreduN − uN , (ΠMreduN )u2N −ΠMred

(
ΠMreduN )u2N

)
⟩L2

N

+
1

∥ΠMreduN∥L2
N

⟨ΠMreduN − uN , (ΠMreduN )2uN −ΠMred

(
(ΠMreduN )2uN

)
⟩L2

N

+ ⟨ΠMreduN − uN , u
3
N −ΠMred(u

3
N )⟩L2

N

≤ ∥ΠMreduN − uN∥L2
N

(
∥(ΠMreduN )3 −ΠMred

(
(ΠMreduN )3

)
∥L2

N
/∥ΠMreduN∥3L2

N

+ ∥(ΠMreduN )u2N −ΠMred

(
(ΠMreduN )u2N

)
∥L2

N
/∥ΠMreduN∥2L2

N

+ ∥(ΠMreduN )2uN −ΠMred

(
(ΠMreduN )2uN

)
∥L2

N
/∥ΠMreduN∥L2

N

+ ∥u3N −ΠMred

(
u3N
)
∥L2

N

)

≤ C∥ΠMreduN − uN∥L2

(
∥(ΠMreduN )3 −ΠMred

(
(ΠMreduN )3

)
∥L2/∥ΠMreduN∥3L2

+ ∥(ΠMreduN )u2N −ΠMred

(
(ΠMreduN )u2N

)
∥L2/∥ΠMreduN∥2L2

+ ∥(ΠMreduN )2uN −ΠMred

(
(ΠMreduN )2uN

)
∥L2/∥ΠMreduN∥L2

+ ∥u3N −ΠMred

(
u3N
)
∥L2

)

where we obtain the last inequality from the fact that for any v ∈ X3·M/2+1

∥v∥L2
N
= ∥INv∥L2

N
≤ 2∥INv∥L2 ≤ 2∥v − INv∥L2 + 2∥v∥L2

≤ CM−1∥v∥H1 + 2∥v∥L2 = C∥v∥L2

(where the last inequality holds from an inverse inequality between the H1 and the L2 norms for
trigonometric polynomials and the fact that for any v ∈ XMred , ∥vMred∥L2 = ∥vMred∥L2

N
. We note

that for any k > 1/2, and for α ∈ {1, 2, 3}

T (α) = ∥(ΠMreduN )αu3−αN −ΠMred

(
(ΠMreduN )αu3−αN

)
∥L2/∥ΠMreduN∥αL2
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≤M−k
red∥((ΠMreduN )αu3−αN )(k)∥L2/∥ΠMreduN∥αL2

≤ CM−k
red∥uN∥3−α

Hk
∥ΠMreduN∥αHk/∥ΠMreduN∥αL2

≤ CM−k
red∥uN∥3Hk

where we use the fact that

∥ΠMreduN − uN∥L2 ≤ CM−k
red∥u

(k)
N ∥L2 ≤ CM−k

red∥uN∥Hk

for the first inequality. The second inequality arises from the fact that Hk is an algebra for any
k > 1/2. And we use the following lemma for the last inequality:

Lemma 14. Given the normalised truncation of the first n > 0 terms of the Fourier series of a
normalised function vN ∈ XN , we have that

∥ΠnvN∥Hk
∥ΠnvN∥L2

≤ ∥vN∥Hk
∥vN∥L2

Proof. This result comes from the fact that the ratio of Hk to L2 norms is strictly increasing,
which we now show. We have that :

∥ΠnvN∥Hk
∥ΠnvN∥L2

=

n∑

k=−n

|v̂k|2∑n
k′=−n |v̂k|2

(1 + k2)k

Hence :

∥Πn+1vN∥Hk
∥Πn+1vN∥L2

− ∥ΠnvN∥Hk
∥ΠnvN∥L2

=

n∑

k=−n

|v̂k|2(1 + k2)k

(
1∑n+1

k′=−n−1 |v̂k|2
− 1∑n

k′=−n |v̂k|2

)

+
|v̂n+1|2 + |v̂−(n+1)|2∑n+1

k′=−n−1 |v̂k|2
(1 + (n+ 1)2)k

= −
n∑

k=−n

|v̂k|2(1 + k2)k
|v̂n+1|2 + |v̂−(n+1)|2∑n+1

k′=−n−1 |v̂k|2
∑n
k′′=−n |v̂k|2

+
|v̂n+1|2 + |v̂−(n+1)|2∑n+1

k′=−n−1 |v̂k|2
(1 + (n+ 1)2)k

=
|v̂n+1|2 + |v̂−(n+1)|2∑n+1

k′=−n−1 |v̂k|2

(
(1 + (n+ 1)2)k

−
n∑

k=−n

|v̂k|2∑n
k′=−n |v̂k|2

(1 + k2)k

)

> 0

We are thus able to bound the interaction term error as follows

δI,3 ≤ 4C2M−2k
ϵ ∥uN∥4Hk
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Combining the three results, we have

CλN ∥uMred − uN∥2H1 ≤ 2C
1

M2k
red

∥V ∥L∞∥uN∥2Hk +
4C2κ

M2k
red

∥uN∥4Hk

Term (2)

For the term (2), we have that

Theorem 14. Let uMred be the solution to (A.3) and ũMred the solution to (A.4), then, the H2

norm of uMred is uniformly bounded and the H1 norm of ũMred − uMred converges to zero as

∥ũMred − uMred∥H1 ≤ C

M
(∥uMred∥H2 + ∥ũMred∥H2 + ∥V ∥H1).

Proof. Starting again by the bound of the norm of the difference with the difference in energies

C∥ũMred − uMred∥2H1 ≤ E(uMred)− E(ũMred)

= EN (uMred) + (E(uMred)− EN (uMred))− E(ũMred)

≤ (EN − E)(ũMred) + (E − EN )(uMred)

= (a− aN )(uMred , uMred)− (a− aN )(ũMred , ũMred)

+ ⟨V, u2Mred
− ũ2Mred

⟩L2 − ⟨INV, INu2Mred
− IN ũ

2
Mred

⟩L2

+ κ/2⟨u4Mred
− ũ4Mred

, 1⟩L2 − κ/2⟨INu4Mred
− IN ũ

4
Mred

, 1⟩L2

The choice of Mred such that 4 ·Mred ≤M/2− 1, gives us that IN ũ
4
Mred

= ũ4Mred
and INu

4
Mred

=
u4Mred

as well as IN ũ
2
Mred

= ũ2Mred
and INu

2
Mred

= u2Mred
. We thus have that

∥ũMred − uMred∥2H1 ≤ (a− aN )(uMred − ũMred , uMred + ũMred)

+ ⟨V − INV, u
2
Mred

− ũ2Mred
⟩L2

Let us consider the discretization error of the Laplacian term.

(a− aN )(uMred − ũMred , uMred + ũMred) ≤
C

M2
∥uMred − ũMred∥H2∥uMred + ũMred∥H2

≤ C

M
∥uMred − ũMred∥H1∥uMred + ũMred∥H2

the last bound being derived from an inverse inequality between H2 and H1-norms. For the
potential term, we have :
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⟨V − INV, u
2
Mred

− ũ2Mred
⟩L2 ≤ ∥V − INV ∥L2∥uMred − ũMred∥L∞∥uMred + ũMred∥L2

≤ 2C∥V − INV ∥L2∥uMred − ũMred∥1/2H1 ∥uMred − ũMred∥1/2L2

≤ 2C∥V − INV ∥L2∥uMred − ũMred∥H1

≤ 2C

M
∥V ∥H1∥uMred − ũMred∥H1

Hence we have :

∥ũMred − uMred∥H1 ≤ C

M
(∥uMred∥H2 + ∥ũMred∥H2 + ∥V ∥H1)

Note that in the above estimate, the H2-norm of uMred and ũMred are well defined, as norms of
elements in XM , but may depend on M .

Lemma 15. The H2 norm of uN is bounded uniformly in N .

Proof. Given that for any vN ∈ XN ,

⟨AuNuN , vN ⟩L2
N
= λN ⟨uN , vN ⟩L2

N
.

We have in particular that :

⟨∆NuN , ek⟩L2
N
= 2⟨(V +

κ

2
u2N − λN )uN

︸ ︷︷ ︸
fN

, ek⟩L2
N

4 ·M2 sin

(
πk

M

)2

ûk = 2f̂k

|ûk| =
1

2 ·M2 sin
(
πk
M

)2 |f̂k|

≤ 1

π2k2
|f̂k|

Where the last inequality is obtained as sin
(
πk
M

)2 ≥ π2k2

2·M2 . We note that this is also true for
ûM/2 = ⟨uN , cM/2⟩L2

N
as the multiplicative error in the scalar product cancels on both sides.

As we know that uN , V ∈ H1(Ω), we have that V uN is in H1 as Hs is an algebra for s > 1/2
in one dimension. Furthermore, as uN ∈ H1(Ω), we have that u3N ∈ H1(Ω) for the same reason.
Finally, we have that λN > 0 and is uniformly bounded. Hence we have that for any N , fN ∈ H1

and thus that its L2 norm can be uniformly bounded. Thus we have that

∥uN∥2H2 =
∑

k

|ûk|2(1 + 4π2k2)2 ≤
∑

k

|f̂k|2
(1 + 4π2k2)2

π4k4
≤ C∥fN∥2L2
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We now show that ∥fN∥L2 is uniformly bounded. Indeed we have that

∥fN∥2L2 = ⟨|uN |2,
(
V 2 + κu2NV +

κ2

4
u4N + λ2N − 2λN (V +

κ

2
u2N )

)
⟩L2

≤ ∥V 2∥L∞∥uN∥2L2 + κ∥V ∥L∞∥uN∥4L4 +
κ2

4
∥uN∥6L6 + λ2N∥uN∥L2

− 2λN∥V ∥L∞∥uN∥2L2 − 2λN∥uN∥4L4

≤ ∥V 2∥L∞∥uN∥2L2 + κ∥V ∥L∞∥uN∥4L4 +
κ2

4
∥uN∥6L6 + λ2N∥uN∥L2

The uN function is L2 normalised and the Gagliardo–Nirenberg inequality for p = 6, j = 0, r =
2q = 2 gives us :

∥v∥L6 ≤ C∥u′∥1/3L2 ∥u∥2/3L2

And for p = 4, j = 0, r = 2, q = 2:

∥v∥L4 ≤ C∥u′∥1/4L2 ∥u∥2/4L2

This gives us:

∥fN∥2L2 ≤ ∥V 2∥L∞ + κ∥V ∥L∞∥uN∥H1 +
κ2

4
∥uN∥2H1 + λ2N

We now show that

Lemma 16. EN (uN ) and λN are uniformly bounded, namely, there exists a C > 0 such that
∀N > 2,

EN (uN ) ≤ CE(u), λN ≤ 2CE(u)

Proof. To show the above bound, we consider the truncation ΠMredu of u, i.e. its truncation on
XMred , this gives us:

EN (uN ) = argmin
vN∈XN

EN (vN )

≤ EN (ΠMredu)

= E(
ΠMredu

∥ΠMredu∥L2

) + (EN − E)(
ΠMredu

∥ΠMredu∥L2

)

≤ E(
ΠMredu

∥ΠMredu∥L2

)

− 1

2∥ΠMredu∥2L2

⟨∆NΠMredu,ΠMredu⟩L2
N
+

1

2∥ΠMredu∥2L2

⟨∆ΠMredu,ΠMredu⟩L2

+
1

∥ΠMredu∥2L2

⟨V, |ΠMredu|2⟩L2
N
− 1

∥ΠMredu∥2L2

⟨V, |ΠMredu|2⟩L2

+
κ

2∥ΠMredu∥4L2

⟨|ΠMredu|4, 1⟩L2
N
− κ

2∥ΠMredu∥4L2

⟨|ΠMredu|4, 1⟩L2

≤ E(
ΠMredu

∥ΠMredu∥L2

) +
∥ΠMredu∥2H1

2∥ΠMredu∥2L2

+
1

∥ΠMredu∥2L2

⟨INV − ⟨V, |ΠMredu|2⟩L2

≤ E(
ΠMredu

∥ΠMredu∥L2

) +
∥ΠMredu∥2H1

2∥ΠMredu∥2L2

+
1

∥ΠMredu∥2L2

C⟨V, |ΠMredu|2⟩L2
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≤ CE(
ΠMredu

∥ΠMredu∥L2

)

≤ CE(u) + C(E(
ΠMredu

∥ΠMredu∥L2

)− E(u))

≤ CE(u) + C(2(∥u∥H1 + 1)∥u∥H1)

≤ CE(u) + 4C∥u∥2H1

≤ CE(u)

where we use the bound E(
ΠMredu

∥ΠMredu∥L2
)− E(u) ≤ (2(∥u∥H1 + 1)∥u∥H1 from [28] eq. 2.23. The

bound on λN is obtained immediately as

λN = E(uN ) +
κ

2
⟨u4N , 1⟩L4

N
≤ 2E(uN ).

Hence, we have from the lemma that ∥uN∥H1 and λN are uniformly bounded, and so is
∥fN∥L2 . We thus obtain that ∥uN∥H2 is uniformly bounded.

and using the exact same argument, we have that

Corollary 4. The H2 norm of uMred is bounded uniformly in N .

The convergence rate of uN can thus be obtained by combining the three theorems above,
this gives us :

Theorem 15.

∥u− uN∥H1 ≤ C

(
∥u∥Hk1
M (k1−1)

+
∥V ∥H1

M
+

1

M
(∥uMred∥H2 + ∥ũMred∥H2)

+
1

Mk2

√
∥V ∥L∞∥uN∥2

Hk2
+

∥uN∥Hk2
Mk2

)
,

with 0 ≤ k1 <∞, 0 ≤ k2 ≤ 2.

Proof. We have that

1

Mred
=

4

M − 4
≤ 4M

(M − 4)M
=

4

M
+

4

M(M − 4)
≤ C

1

M

We thus bound the 1
Mred

from Theorem 12 and 13 by 1
M , and hence the result.

From this theorem, we see that the discretized Laplacian prohibits us from obtaining a better
convergence rate than 1

M . This discretization is not “standard” in the spectral community and
can be eliminated by taking an alternative definition for aN based on the use of ãN (vN , wN ) =
⟨v′N , w′

N ⟩N . Nevertheless, with this choice of potential V with a discontinuity of the derivative on
the border, the maximum convergence rate is M−3/2.
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A.2 Walsh interpolation

Similarly to the interpolation operator used in the context of a discretized Fourier basis (see
Chapter 5.1 of [15]), we can define an interpolation operator for the Walsh basis. Let N ≥ 1, and
set WN = SpanC{wk | 0 ≤ k ≤ 2N − 1}.
Definition 19. The Walsh interpolation operator IWN : L2(0, 1) → WN is defined, for any
v ∈ L2(0, 1), by

⟨IWN v, g⟩L2
N
= ⟨v, g⟩L2

N
, ∀g ∈ L2(0, 1).

Equivalently, it is the N -bit Walsh series in WN that takes the same values as v on ΩN .

Similarly to the Fourier interpolation, we can decompose the Walsh interpolation operator
as the sum of the truncation operator ΘN and an aliasing operator RN . Indeed, we have the
following

Proposition 25. For any v ∈ L2(0, 1), the Walsh interpolant of v is

IWN v =

2N−1∑

m=0

⟨v, wm⟩L2
N
wm =

2N−1∑

m=0

(
ṽm +

+∞∑

ℓ=1

ṽm⊕2N ℓ

)
wm (A.5)

Furthermore, we can write the N -bit Walsh interpolation operator as

IWN = ΘN +RW
N , (A.6)

where ΘN is the N-bit Walsh truncation operator (1.20), and RW
N the N-bit Walsh aliasing

operator such that, for any v ∈ L2(0, 1),

RW
N v =

2N−1∑

m=0

(
+∞∑

ℓ=1

ṽm⊕2N ℓ

)
wm.

Proof. Let k ∈ N such that 0 ≤ k < 2N , we have

⟨v, wk⟩L2
N
=

+∞∑

ℓ=0

ṽℓ⟨wℓ, wk⟩L2
N
.

If ℓ ̸= k and ℓ ̸= 0, for any x ∈ ΩN , we write

wℓ(x) =

N∏

n=1

Rn(x)
ℓn+kn ·

+∞∏

n=N+1

Rn(x)
ℓn =

N∏

n=1

Rn(x)
ℓn+kn ,

where the infinite product equals 1 as each of its terms is 1 on ΩN . Hence, the L2
N scalar product

reduces to

⟨wℓ, wk⟩L2
N
=

2N−1∑

j=0

Rℓ1+k11 . . . RℓN+kN
N (j/2N ) = ⟨wTruncN (ℓ), wk⟩L2

N
,

where, for any j ∈ N, TruncN (j) =
∑N
n=1 jn2

n−1 is the N -bit truncation of the integer j. We
thus obtain

⟨wℓ, wk⟩L2
N
= δTruncN (ℓ)=k,
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which implies that ⟨wℓ, wk⟩L2
N

= 1 for all terms of the form ℓ = k + 2Nℓ′, with ℓ′ ∈ N, and is
equal to zero otherwise. Hence, we obtain

⟨v, wk⟩L2
N
=
∑

ℓ∈N
⟨v, wk+2N ℓ⟩L2 = ⟨v, wk⟩L2 +

∑

ℓ>0

⟨v, wk⊕2N ℓ⟩L2 = ṽk +

+∞∑

ℓ=1

ṽk⊕2N ℓ

which gives (A.5), and (A.6) by identification of the aliasing of v.

We now provide a useful result on the Walsh interpolant of the square of a function.

Theorem 16. For any function v ∈ L2(0, 1), we have the interpolant of the square of v is the
square of the interpolant of v, i.e.

IWN (v2) = (IWN v)
2

Proof. On the one hand, recall that

IWN v =

2N−1∑

i=0

ṽNi wi.

This gives

(IWN v)
2 =

2N−1∑

i=0

2N−1∑

k=0

ṽNi ṽ
N
i⊕kwk

where we denote ṽNk = ⟨v, wk⟩L2
N

. By replacing the interpolant coefficients ṽNk with their value in
terms of ṽk, namely

ṽNk =

∞∑

ℓ=0

ṽk⊕2N ℓ,

we obtain

(IWN v)
2 =

2N−1∑

k=0




2N−1∑

i=0

∞∑

ℓ=0

∞∑

ℓ′=0

ṽi⊕2N ℓ′ ṽi⊕k⊕2N ℓ


wk. (A.7)

On the other hand, using the definition of v =
∑∞
i=0 ṽiwi, and the property that for a pair

i, j ∈ N, there exists a unique k ∈ N such that i⊕ j = k, we have

v2 =

∞∑

i=0

∞∑

j=0

ṽiṽjwi⊕j =

∞∑

k=0

( ∞∑

i=0

ṽiṽi⊕k

)
wk.

Hence, the interpolant of v2 is given by

IWN (v2) =

2N−1∑

k=0

( ∞∑

ℓ=0

∞∑

i=0

ṽiṽi⊕k⊕2N ℓ

)
wk

=

2N−1∑

k=0




2N−1∑

i′=0

∞∑

ℓ′=0

∞∑

ℓ=0

ṽi′⊕2N ℓ′ ṽi′⊕k⊕2N ℓ⊕2N ℓ′


wk,

where we obtain the second line by setting i = i′ + 2Nℓ.
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Using the fact that, for fixed values of ℓ, ℓ′ ∈ N, there exists a unique ℓ′′ = ℓ⊕ ℓ′, we replace
2Nℓ⊕ 2N ℓ′ by 2Nℓ′′ giving us

IWN (v2) =

2N−1∑

k=0




2N−1∑

i′=0

∞∑

ℓ′=0

∞∑

ℓ′′=0

ṽi′⊕2N ℓ′ ṽi′⊕k⊕2N ℓ′′


wk (A.8)

and we obtain the result as (A.7) and (A.8) are equal.
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Abstract

Variational quantum algorithms (VQAs) have been proposed for solving partial differential equations on
quantum computers. This thesis focuses on analyzing VQAs for the stationary Gross-Pitaevskii Equation
(GPE) both under ideal (noiseless) conditions and in the presence of quantum noise, providing error
bounds, convergence properties, and estimates for the number of samples required.
A central concept, make use of a relationship between the representation of functions and functional
operators on dyadic rationals, through the Walsh basis, and the encoding of functions and operators for
N -qubit quantum systems through the Pauli operators and their eigenstates.
In chapter 1, we link Pauli operators of N -qubit quantum systems with the Walsh basis on N -bit dyadic
rationals, presenting new error bounds for the convergence of the N -bit Walsh series for functions in
H1(0, 1) and presenting some results on the representation of Fourier basis functions in the Walsh basis.
In chapter 2 we analyse VQAs for the GPE without noise, detailing the mathematical setting, discretization,
and a-priori analysis. We introduce new energy estimators, either based on the Walsh decomposition of
operators or obtained through inductive methods, and compare them to direct sampling, in the diagonal
basis of the operators, and the Hadamard-test method. Our results show that in the absence of noise
the most promising methods for energy estimation is direct sampling in the diagonal basis, yielding the
lowest variance and sample requirements.
In chapter 3, we further examine the impact of quantum noise on energy estimation. Depolarizing
noise introduces bias and shifts the variance of estimators. We show that the Pauli estimators proves
least affected by noise, due to their lower circuit size requirement, outperforming others both without
mitigation, due to a lower bias, and with mitigation, as its sample efficiency is less affected.
This research provides a foundation for the use of VQAs to solve partial differential equations on
quantum computers, offering realistic estimates of computational costs of the energy estimation part
of the algorithms. Furthermore, the insights gained may aid in the development of practical quantum
algorithms for block encoding of differential operators, and their associated evolution operators.

Keywords: informatique quantique, équations différentielles, algorithmes variationels, équation de
gross-pitaevskii
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