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Résumé substantiel (Français) VI
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Résumé substantiel (Français)

Si vous n’aimez pas la mer, si vous
n’aimez pas la montagne, si vous
n’aimez pas la ville...

À bout de souffle, 1960

Dans les années 1990, une découverte fondamentale est faite grâce aux observations
de la luminosité des Supernovæ de type Ia en fonction de leur distance : non seulement
l’Univers est en expansion, mais cette expansion s’accélère les derniers 6 milliards d’années
quand on estime l’âge de l’Univers à 13,8 milliards d’années. Cette expansion accélérée
peut être décrite par une constante cosmologique, Λ, dans les équations de la Relativité
Générale décrivant la dynamique de l’Univers. Toutefois, la nature de cette expansion
accélérée est toujours un mystère et on appelle ”énergie noire”, le constituant inconnu
responsable de cette accélération qui représente presque 70% du contenu énergétique actuel
de l’Univers. Cette découverte a déclenché plusieurs générations de vastes programmes
d’observation du ciel afin de sonder la nature de l’énergie noire, mais aussi de tester la
validité de la Relativité Générale elle-même comme théorie de la gravitation aux échelles
cosmologiques.

DESI (Dark Energy Spectroscopic Instrument, i.e. l’Instrument Spectroscopique de
l’Énergie Noire) est un instrument spectroscopique attaché à un téléscope de 4m à
l’observatoire Kitt Peak aux États-Unis. En collectant les spectres de plus de 40 millions de
galaxies, on peut calculer leur distance radiale et ainsi créer une carte tri-dimensionnelle
des grandes structures de notre Univers. Puisque la gravité est la force dominante à
ces échelles, en mesurant la vitesse à laquelle la matière s’agglomère pour former des
structures comme les galaxies, on peut contraindre les théories de la gravité. En même
temps, en regardant assez loin dans l’Univers, on peut voir son passé distant, et cela nous
permet de retracer l’évolution et l’histoire de l’expansion de l’Univers. Pour cela, on
cherche à décrire les corrélations spatiales entre galaxies aux moyens d’outils statistiques
comme la fonction de corrélation à deux points ou le spectre de puissance, qui sont reliés
entre eux par une transformation de Fourier. Ces statistiques sont souvent appelées les
statistiques d’agglomération, ou clustering statistics en anglais, d’où vient aussi le nom
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Résumé substantiel (Français)

d’analyse: analyse clustering. Grâce au développement de la théorie des perturbations
cosmologiques, on sait prédire analytiquement ces quantités en fonction de paramètres
cosmologiques que nous ajustons sur les données pour les déterminer. Dans le cadre de
cette thèse, on s’intéresse en particulier autaux de croissance des structures, une quantité
prédite par la théorie de la gravité et qui est directement liée à la nature de l’énergie noire.

DESI observe 4 types de traceurs: Bright Galaxy Survey ou BGS (le relevé de galaxies
brillantes), Luminous Red Galaxies ou LRG (les galaxies lumineuses rouges), Emission
Line Galaxies ou ELG (les galaxies à raie d’émission) et Quasi-Stellar Objects ou QSO
(les objets quasi-stellaires). Cette thèse se concentre sur le relevé de galaxies brillantes
(BGS), qui est l’échantillon de données le plus dense de DESI et qui est composé des
galaxies les plus proches de nous (𝑧 < 0.4) et lesplus lumineuses (avec une coupure en
magnitude apparente dans la bande 𝑟 à 𝑟 < 19.5).

Un problème avec une densité de galaxies aussi élevée à bas redshift est que l’information
qu’on peut extraire d’un volume d’espace limité est aussi très limitée. Cela veut dire que
les contraintes sur les paramètres cosmologiques ne sont pas dominées par la statistique de
l’échantillon mais par une limite fondamentale liée à la quantité d’information accessible
appelée ’variance cosmique’. Et pourtant, il y a une technique qui permet de contourner
cet obstacle. On appelle cette technique l’analyse multi-traceur (ou ”multi-tracer analysis”
en anglais). Elle consiste à diviser le catalogue de données en deux (ou plusieurs) sous-
catalogues différents avec des propriétés de clustering différentes et de prendre en compte
les corrélations spatiales croisées entre les différents traceurs qui ajoutent une information
supplémentaire, et permettent ainsi d’améliorer les contraintes sur certains paramètres
cosmologiques.

Un autre problème qui se pose à cause de la densité élevée du BGS est celui de
l’estimation des erreurs de mesure au moyen d’une matrice de covariance. Habituellement,
pour estimer la matrice de covariance, on crée des milliers de simulations cosmologiques
qui doivent imiter la relevé, en créant ainsi plusieurs réalisations de différents univers
observables et en nous permettant d’estimer les erreurs sur la mesure de statistiques de
2-point. Pour le BGS, il faut produire des simulations avec une très bonne résolution
en masse couvrant un volume cosmologique jusqu’à 𝑧 = 0.4 suffisant pour inclure tout
le relevé. Produire ce millier de simulations est très coûteux en temps de calcul et en
mémoire. A ce jour, il n’en existe que 25, ce qui est insuffisant pour obtenir une matrice
de covariance suffisamment précise. S’offrent à nous au moins deux options: (a) reduire
les données considérées dans l’analyse (ce que la collaboration DESI a choisi de faire pour
l’analyse des premières données collectées pendant 1 an); (b) trouver un moyen d’obtenir
la matrice de covariance avec moins de simulation numériques. Dans cette thèse, nous
proposons une nouvelle méthode, appelée FitCov, qui est une combinaison hybride entre la
méthode d’estimation de covariance “jackknife” basée sur un échantillonnage des données,
et la méthode classique basée sur des simulations.
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Résumé substantiel (Français)

Un troisième problème que nous avons rencontré au cours de cette thèse concerne
plus généralement les analyses clustering. Dans l’approche standard, on compresse
l’information sur les paramètres cosmologiques contenue dans la statistique à deux-points
sous la forme de paramètres intermédiaires tels que le taux de croissance des struc-
tures déjà mentionné et les paramètres géométriques d’Alcock-Paczynski qui permettent
de mesurer le taux d’expansion de l’univers par exemple. Cette compression nous fait
perdre de l’information cosmologique lorsque l’analyse des grandes structures sondant
l’Univers récent n’est pas combinée avec celle du fond diffus cosmologique qui sonde
l’Univers primordial, mais elle accélère significativement la détermination des paramètres
cosmologiques. Dans cette thèse, nous présentons un moyen d’accélerer l’inférence des
paramètres cosmologiques directement à partir de la statistique à deux points, sans passer
par les paramètres compressés. Pour cela, nous avons développé un réseau de neurones qui
remplace la partie du modèle analytique qui prend beaucoup de temps à prédire l’évolution
non-linéaire de la statistique à deux-points et nous avons montré que notre modèle hybride
est aussi précis que le modèle analytique.

La structure de ce manuscrit de thèse est décrite ci-dessous. Dans l’introduction, je
présente les bases de la cosmologie et comment extraire l’information cosmologique à
partir des statistiques à deux-points des cartes tri-dimensionnelles de DESI.

Chapitre 1 est dédié à la présentation de l’instrument DESI et des données utilisées
par la suite dans ce travail de thèse.

Dans le 2ème Chapitre, j’approfondis l’introduction à la théorie des perturbations, et je
présente l’approche pour modéliser les statistiques à 2-points avec un réseau de neurones,
que j’ai developpée.

Chapitre 3 décrit les méthodes de simulations numériques existantes pour simuler un
relevé spectroscopique de galaxies. C’est aussi dans ce chapitre que je décris l’effort que
j’ai mené afin de générer des simulations du BGS pour obtenir une matrice de covariance
dans le cadre de l’analyse officielle avec un échantillon réduit.

Chapitre 4 détaille les moyens d’estimer la matrice de covariance pour une analyse
clustering, et c’est aussi dans ce chapitre que je présente FitCov, la méthode hybride que j’ai
développée pour l’estimation de covariance nécéssitant beaucoup moins de simulations.

Chapitre 5 présente le travail de thèse mené sur l’inférence cosmologique et les résultats
obtenus avec les données 1 an duBGS en utilisant les techniques et les outils conçus pendant
ma thèse. Je montre comment, au final, ils permettent d’augmenter la précision de près
de 40% par rapport à l’analyse standard.

Enfin, dans la conclusion je décris quelques interprétations cosmologiques préliminaires
que j’ai faites avec les résultats du Chapitre 5 et je termine avec des pistes d’amélioration
et de nouvelles applications pour de futurs travaux sur le domaine.
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Résumé court (Français)

DESI (Dark Energy Spectroscopic Instrument, i.e. l’Instrument Spectroscopique de l’Énergie
Noire) est un instrument spectroscopique attaché à un téléscope de 4m à l’observatoire
Kitt Peak aux États-Unis. En collectant les spectres de plus de 40 millions de galaxies, on
peut calculer leur distance radiale et ainsi créer une carte tri-dimensionnelle des grandes
structures de notre Univers. Puisque la gravité est la force dominante à ces échelles, en
mesurant la vitesse à laquelle la matière s’agglomère pour former des structures comme
les galaxies, on peut contraindre les théories de la gravité. Cette thèse se concentre sur le
relevé de galaxies brillantes (BGS), qui est l’échantillon de données le plus dense de DESI
et qui est composé des galaxies les plus proches de nous (𝑧 < 0.4) et les plus lumineuses
(avec une coupure en magnitude apparente dans la bande 𝑟 à 𝑟 < 19.5). Un problème avec
une densité de galaxies aussi élevée à bas redshift est que l’information qu’on peut extraire
d’un volume d’espace limité est aussi très limitée. Cela veut dire que les contraintes sur
les paramètres cosmologiques ne sont pas dominées par la statistique de l’échantillon mais
par une limite fondamentale liée à la quantité d’information accessible appelée ’variance
cosmique’. Et pourtant, il y a une technique qui permet de contourner cet obstacle. On
appelle cette technique l’analyse multi-traceur (ou ”multi-tracer analysis” en anglais). Elle
consiste à diviser le catalogue de données en deux (ou plusieurs) sous-catalogues différents
avec des propriétés de clustering différentes et de prendre en compte les corrélations spa-
tiales croisées entre les différents traceurs qui ajoutent une information supplémentaire, et
permettent ainsi d’améliorer les contraintes sur certains paramètres cosmologiques. Un
autre problème qui se pose à cause de la densité élevée du BGS est celui de l’estimation des
erreurs de mesure au moyen d’une matrice de covariance. Habituellement, pour estimer
la matrice de covariance, on crée des milliers de simulations cosmologiques qui doivent
imiter la relevé, en créant ainsi plusieurs réalisations de différents univers observables et
en nous permettant d’estimer les erreurs sur la mesure de statistiques de 2-point. Pro-
duire ce millier de simulations est très coûteux en temps de calcul et en mémoire. A ce
jour, il n’en existe que 25, ce qui est insuffisant pour obtenir une matrice de covariance
suffisamment précise. Dans cette thèse, nous proposons une nouvelle méthode, appelée
FitCov, qui est une combinaison hybride entre la méthode d’estimation de covariance
“jackknife” basée sur un échantillonnage des données, et la méthode classique basée sur
des simulations. Un troisième problème que nous avons rencontré au cours de cette
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Résumé substantiel (Français)

thèse concerne plus généralement les analyses clustering. Dans l’approche standard, on
compresse l’information sur les paramètres cosmologiques contenue dans la statistique à
deux-points sous la forme de paramètres intermédiaires tels que le taux de croissance des
structures déjà mentionné et les paramètres géométriques d’Alcock-Paczynski qui permet-
tent de mesurer le taux d’expansion de l’univers par exemple. Cette compression nous fait
perdre de l’information cosmologique lorsque l’analyse des grandes structures, mais elle
accélère significativement la détermination des paramètres cosmologiques. Dans cette
thèse, nous présentons un moyen d’accélérer l’inférence des paramètres cosmologiques
directement à partir de la statistique à deux points, sans passer par les paramètres com-
pressés. Pour cela, nous avons développé un réseau de neurones qui remplace la partie du
modèle analytique qui prend beaucoup de temps à prédire l’évolution non-linéaire de la
statistique à deux-points et nous avons montré que notre modèle hybride est aussi précis
que le modèle analytique.
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Résumé substantiel (English)

In the 1990s, a fundamental discovery was made thanks to observations of the luminosity
of type Ia supernovae as a function of their distance: not only is the Universe expanding,
but this expansion is accelerating over the last 6 billion years, when the age of the Universe
is estimated at 13.8 billion years.

This accelerated expansion can be described by a cosmological constant, Λ, in the
equations of General Relativity describing the dynamics of the Universe. However,
the nature of this accelerated expansion is still a mystery, and the unknown constituent
responsible for this acceleration, which accounts for almost 70% of the Universe’s current
energy content, is known as ‘dark energy’. This discovery triggered several generations
of large-scale sky surveys to probe the nature of dark energy, but also to test the validity
of General Relativity itself as a theory of gravitation at cosmological scales.

DESI (Dark Energy Spectroscopic Instrument) is a spectroscopic instrument attached
to a 4m telescope at Kitt Peak Observatory in the United States. By collecting the spectra
of more than 40 million galaxies, we can calculate their radial distances and thus create a
three-dimensional map of the large-scale structures of our Universe. Since gravity is the
dominant force at these scales, by measuring the speed at which matter clumps together
to form structures such as galaxies, we can constrain theories of gravity. At the same
time, by looking far enough into the Universe, we can see its distant past, enabling us
to trace the evolution and history of the expansion of the Universe. To do this, we try
to describe the spatial correlations between galaxies using statistical tools such as the
two-point correlation function or the power spectrum, which are linked together by a
Fourier transform. These statistics are often referred to as clustering statistics, hence the
name of the analysis: clustering analysis. Thanks to the development of cosmological
perturbation theory, we know how to predict these quantities analytically as a function of
cosmological parameters that we fit to the data in order to determine them. In this thesis,
we are particularly interested in the growth rate of structures, a quantity predicted by the
theory of gravity and which is directly linked to the nature of dark energy.

DESI observes 4 types of tracers: Bright Galaxy Survey (BGS), Luminous Red
Galaxies (LRG), Emission Line Galaxies (ELG) and Quasi-Stellar Objects (QSO). This
thesis focuses on the Bright Galaxy Survey (BGS), which is DESI’s densest data sample
and is composed of the galaxies closest to us (𝑧 < 0.4) and the most luminous (with an

XI
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apparent magnitude cut-off in the 𝑟 band at 𝑟 < 19.5).
One problem with such a high density of galaxies at low redshift is that the information

that can be extracted from a limited volume of space is also very limited. This means
that the constraints on the cosmological parameters are not dominated by the statistics
of the sample but by a fundamental limit linked to the amount of accessible information
called the ‘cosmic variance’. However, there is a technique that allows us to bypass
this limitation. This technique is known as multi-tracer analysis. It consists of dividing
the data catalogue into two (or more) different sub-catalogues with different clustering
properties and taking into account the spatial correlations between the different tracers,
which add extra information and thus make it possible to improve the constraints on certain
cosmological parameters.

Another problem that arises because of the high density of the BGS is that of estimating
measurement errors by means of a covariance matrix. Usually, to estimate the covariance
matrix, we create thousands of cosmological simulations that must mimic the survey, thus
creating several realisations of different observable universes and allowing us to estimate
the errors in the measurement of 2-point statistics. For the BGS, we need to produce
simulations with very good mass resolution covering a cosmological volume up to 𝑧 = 0.4
sufficient to include the entire survey. Producing thousands of simulations is very costly
in terms of computing time and memory. To date, only 25 of such simulations exist,
which is not enough to obtain a sufficiently accurate covariance matrix. At least two
options are open to us: (a) reduce the data considered in the analysis (which the DESI
collaboration chose to do for the analysis of the first data collected over 1 year); (b) find a
way of obtaining the covariance matrix with fewer numerical simulations. In this thesis,
we propose a new method, called FitCov, which is a hybrid combination of the ‘jackknife’
covariance estimation method based on data resampling, and the classical method based
on simulations.

A third problem we encountered during the course of this thesis relates more generally
to clustering analyses. In the standard approach, the information on the cosmological
parameters contained in the two-point statistic is compressed in the form of intermediate
parameters such as the growth rate of the structures already mentioned and the Alcock-
Paczynski geometric parameters that allow us to measure the expansion rate of the universe,
for example. This compression means that we lose cosmological information when the
analysis of the large structures probing the recent Universe is not combined with that of
the cosmic microwave background probing the primordial Universe, but it significantly
speeds up the determination of cosmological parameters. In this thesis, we present a way of
accelerating the inference of cosmological parameters directly from the two-point statistic,
without going through the compressed parameters. To this end, we have developed a neural
network that replaces the part of the analytical model that takes a long time to predict the
non-linear evolution of the two-point statistic, and we have shown that our hybrid model
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is as accurate as the analytical model.
The structure of this thesis manuscript is described below. In the introduction, I present

the basics of cosmology and how to extract cosmological information from the two-point
statistics of three-dimensional DESI maps.

Chapter 1 is devoted to the presentation of the DESI instrument and the data used
subsequently in this thesis work.

In Chapter 2, I give a more in-depth introduction to perturbation theory, and present
the approach for modelling the 2-point statistics using a neural network, which I have
developed.

Chapter 3 describes existing numerical simulation methods for simulating a spectro-
scopic survey of galaxies. It is also in this chapter that I describe the effort I made to
generate BGS simulations to obtain a covariance matrix for the more traditional analysis
with a reduced sample.

Chapter 4 details the means of estimating the covariance matrix for a clustering
analysis, and it is also in this chapter that I present FitCov, the hybrid method I developed
for covariance estimation requiring far fewer simulations.

Chapter 5 presents the thesis work on cosmological inference and the results obtained
with 1-year BGS data using the techniques and tools developed during my thesis. I show
how, in the end, they enable us to increase the accuracy by almost 40% with respect to the
official DESI standard analysis.

Finally, in the conclusion I describe some preliminary cosmological interpretations
that I have made with the results of Chapter 5 and I end with some ideas for improvement
and new applications for future work in the field. .

XIII



Résumé court (Anglais)

DESI (Dark Energy Spectroscopic Instrument) is a spectroscopic instrument installed on
a 4m telescope at Kitt Peak Observatory in the United States. By collecting the spectra
of more than 40 million galaxies, we can calculate their radial distances and thus create
a three-dimensional map of the large-scale structures of the Universe. Since gravity
is the dominant force at these scales, by measuring the speed at which matter clumps
together to form structures such as galaxies, we can constrain theories of gravity. This
thesis focuses on the Bright Galaxy Survey (BGS), which is DESI’s densest data sample
and is composed of the galaxies closest to us (𝑧 < 0.4) and the most luminous (with
an apparent magnitude cut-off in the 𝑟 band at 𝑟 < 19.5). One problem with such
a high density of galaxies at low redshift is that the information that can be extracted
from a limited volume of space is also very limited. This means that the constraints
on the cosmological parameters are not dominated by the statistics of the sample but by
a fundamental limit linked to the amount of accessible information called the ‘cosmic
variance’. However, there is a technique that allows us to bypass it. This technique is
known as multi-tracer analysis. It consists of dividing the data catalogue into two (or
more) different sub-catalogues with different clustering properties and taking into account
the spatial correlations between the different tracers, which add extra information and thus
make it possible to improve the constraints on certain cosmological parameters. Another
problem that arises because of the high density of the BGS is related to the estimation of
measurement errors by means of a covariance matrix. Usually, to estimate the covariance
matrix, we create thousands of cosmological simulations that must mimic the survey, thus
creating several realisations of different observable universes and allowing us to estimate
the errors in the measurement of 2-point statistics. Producing this thousand simulations
is very costly in terms of computing time and memory. To date, only 25 such simulations
exist, which is insufficient to obtain a sufficiently accurate covariance matrix. In this thesis,
we propose a new method, called FitCov, which is a hybrid combination of the jackknife
covariance estimation method based on data resampling and the classical method based
on simulations. A third problem that we attempt to tackle in this thesis is related the most
optimal way of extracting information from a two-point galaxy clustering analysis. In the
standard approach, the information on the cosmological parameters contained in the two-
point statistics is compressed in the form of intermediate parameters such as the growth
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rate of the structures that allows us to test gravity and the Alcock-Paczynski geometric
parameters that allow us to measure the expansion rate of the universe, for example. This
compression means that we lose cosmological information when analysing large scale
structures without combining with cosmic microwave background, but it significantly
speeds up the determination of cosmological parameters. In this thesis, we present a
way of accelerating the inference of cosmological parameters directly from the two-
point statistics, without going through the compressed parameters. To this end, we have
developed a neural network model that replaces the part of the analytical model that takes a
long time to predict the non-linear evolution of the two-point statistics, and we have shown
that our hybrid model is as accurate as the analytical model. Eventually, we put both the
hybrid covariance method and the neural network model that we have developed together
to analyse the full DESI BGS Bright sample from 1 year of observation (BGS DR1).
We perform both single- and multi-tracer analyses and we show that we can improve the
cosmological constraints of the BGS DR1 sample by 40% with respect to the official DESI
analysis.
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Introduction

Полночных солнц к себе нас
манят светы. . . В колодцах
труб пытливый тонет взгляд.
Алмазный бег вселенные
стремят:
Системы звёзд, туманности,
планеты,

M. Voloshin, Translation

The study of the Universe as a whole from a physical perspective is a surprisingly new
discipline. Evading mentioning myths of elephants and turtles, we will reserve ourselves
to give an introduction to the basics of modern cosmology, focusing only on the most
crucial components that are directly related to this PhD work.

General Relativity

We shall start this introduction by noticing a simple fact: according to modern beliefs, the
Universe on large scales is dominated by gravity. Electromagnetic interaction is weak, as
the Universe is on average electrically neutral and weak and strong forces are dominant at
much smaller scales.

Therefore, we will shortly describe the most tested theory of gravity to this day: General
Relativity. The basis for it is the common description of acceleration and gravitation. A
good example of such a principle called the equivalency principle is a simple lift, in which,
when moving upwards, we are getting ourselves heavier, and vice versa. From here we
jump to the mathematical description of gravity by assuming that gravity is not a classical
force but rather an effect caused by the deformation of space-time, such that an object
standing still on Earth would feel the same effect as if it was moving up in a lift.

Now that we have decided on that, we can attempt to describe the curved space-
time and its reaction to the presence of matter. For that, we will need a wide range of
tools and concepts from differential geometry. Describing them here would make this
section too lengthy and this is beyond the scope of this introduction chapter, so instead
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INTRODUCTION

we will direct you towards the wonderful book of [1]. As we are working with a physical
system with infinite degrees of freedom, we will also employ the rich framework of
theoretical mechanics [2] and classical field theory [3]. We will assume that the concepts
of covariant derivative ∇𝜇, Riemann tensor 𝑅𝜇

𝜈𝜅𝜆
, metric space, Ricci tensor 𝑅𝜇𝜈 and scalar

𝑅, Christoffel symbols Γ𝜇
𝜈𝜆

and minimal action principle are familiar to the reader, as we
will use those intensively in our presentation of Einstein’s General Relativity equations.
Otherwise, you can also go directly to the Friedmann equations (equations 15 and 16).

Einstein-Hilbert action

Let us assume a physical system with an action 𝑆. This system consists of some very
generalised purely physical content with action 𝑆𝑚, and the geometrical part with action
𝑆𝑔, both parts comprising an overall action 𝑆 = 𝑆𝑔 + 𝑆𝑚.

We will try to postulate the form of 𝑆𝑔. First of all, following Ostrograsky’s theorem
[4], we need to ensure that the resulting equations of motion, do not contain second
derivatives. Secondly, we need to ensure that the assumed symmetries are preserved, and
corresponding transformations do not change the form of the action. Thirdly, we need to
choose which quantity we treat as a field. We will answer these questions starting from
the end.

As a field, we choose the metric 𝑔𝜇𝜈, describing the metric 4-space, where we have
merged the usual 3d space and time into one 4d manifold. We can also characterise the
metric by writing the interval as:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 (1)

Where 𝑑𝑥𝜇 is a coordinate interval.
The traditional Minkowski metric space can be then characterised by 𝑑𝑠2 = −𝑑𝑡2 +∑3

𝑖=0 𝑑𝑥
2
𝑖

where 𝑑𝑡 is a time interval, and 𝑑𝑥𝑖 is a spatial interval. Therefore, the indices 𝜇
and 𝜈 can take values from 0 to 3. Remembering that for metric spaces any infinitesimal
local region can be presented under some transformation as a space with Euclidian or
pseudo-Euclidian local metric, we choose a local 𝑆𝑂 (1, 3) 1 symmetry, imposing special
relativity on any such region, however, it should be noted, that in general Einstein’s
equations can be (and sometimes actively are) applied also to metrics with other local
symmetries. This choice of ours will not have any effect on the derivation of the action
but will restrict us to the specific choices of ansatzes used when trying to get the answer
for the metrics.

As for the symmetries, as we work with the non-flat non-homogeneous and non-
isotropic space, as well as we might want to describe the behaviour of the system for all
possible observers, not just the inertial ones, we will need the action to be invariant with

1𝑆𝑂 (1, 3) is a group of orthogonal matrices leaving the Minkowski interval 𝑑𝑠2
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Figure 1: An illustration of the dog being smoothly transformed into a spherical shape.
Taken from[5].

respects to diffeomorphisms, a set of all possible smooth transformations of the space (an
example of such an action applied to a dog, whilst neglecting its internal structure and
assuming all the holes to be closely shut, can be seen on Figure 1). We will then need to
choose between different topological invariants as the basis for the action.

We need to also ensure that the volumes will be properly transformed under the
diffeomorphisms, therefore we need to adjust the measure in each of the integrals

∫
𝑑4𝑥 →∫

𝑑4𝑥
√−𝑔, where 𝑔 = 𝑑𝑒𝑡 (𝑔𝜇𝜈).

Following classic Hilbert’s suggestion, we will choose Ricci scalar 𝑅, or to be more
precise, its integral over the whole given space-time as our action. Defining the Lagrangian
for matter as L𝑚, and adding a constant for the gravitational action, we can write:

𝑆 =
𝑐4

8𝜋𝐺

∫
𝑑4𝑥

√−𝑔(𝑅 − 2Λ) +
∫

𝑑4𝑥
√−𝑔L𝑚 (2)

Where 𝑐 is the speed of light and G is the gravitational constant, Λ is a constant, which
we add now for generality, but which will become important as we proceed to solving the
equations of motion. Note how gravity does not couple to the matter directly but rather
through the √−𝑔 term, responsible for the volume changes.

As it will be shown later, the given action does not yield any higher-order derivatives
in the equations of motion.

It can be also shown, that any other possible combination of purely geometrical terms
in the action will be equivalent [6].
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Einstein equations

Following the minimal action principle, we need to require the variation of the action to
be 0, to be able to find its minima 𝛿𝑆 = 0. First, we will vary the gravitational part of the
action:

𝛿𝑆𝑔

𝛿𝑔𝜇𝜈
=

𝑐4

16𝜋𝐺

∫
𝑑4𝑥

√−𝑔
[
𝛿𝑅

𝛿𝑔𝜇𝜈
+ 𝑅 − 2Λ

√−𝑔
𝛿
√−𝑔
𝛿𝑔𝜇𝜈

]
(3)

Varying the Ricci scalar might be the most complicated part of the derivation.
We start by reminding that 𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈.
We will then remind, that even though connection Γ is not a tensor on its own, the

difference of two Γ’s is one (the proof is trivial). This gives access to Palatini identity:

𝛿𝑅𝜇𝜈 = ∇𝜌
(
𝛿Γ

𝜌
𝜈𝜇

)
− ∇𝜈

(
𝛿Γ

𝜌
𝜌𝜇

)
(4)

We will then note a useful property of covariant derivatives when multiplied by √−𝑔:

√−𝑔∇𝜇𝐴𝜇 = 𝜕𝜇
(√−𝑔𝐴𝜇) (5)

That will imply, that the terms containing Γ will simply disappear from the action
being full divergences.

Last problem we need to overcome is the variation of the √−𝑔. Using the Jacobi
formula 𝛿√−𝑔 = 𝑔𝑔𝜇𝜈𝛿𝑔𝜇𝜈

Then we get:

𝛿
√−𝑔 = −1

2
√−𝑔𝑔𝜇𝜈𝛿𝑔𝜇𝜈 (6)

We have every component now to expand the Eq. 3 as follows:

𝛿𝑆𝑔

𝛿𝑔𝜇𝜈
=

𝑐4

16𝜋𝐺

∫
𝑑4𝑥

√−𝑔
[
𝑅𝜇𝜈 −

1
2
(𝑅 − 2Λ)𝑔𝜇𝜈 + 𝑔𝜅𝜆

(
∇𝜌
𝛿Γ

𝜌

𝜆𝜅

𝛿𝑔𝜇𝜈
− ∇𝜅

𝛿Γ
𝜌

𝜌𝜆

𝛿𝑔𝜇𝜈

)]
=

=
𝑐4

16𝜋𝐺

∫
𝑑4𝑥

√−𝑔
[
𝑅𝜇𝜈 −

1
2
(𝑅 − 2Λ)𝑔𝜇𝜈 +

(
∇𝜌
𝛿Γ

𝜌𝜆

𝜆

𝛿𝑔𝜇𝜈
− ∇𝜆

𝛿Γ
𝜌

𝜌𝜆

𝛿𝑔𝜇𝜈

)]
=

=
𝑐4

16𝜋𝐺

∫
𝑑4𝑥

√−𝑔
[
𝑅𝜇𝜈 −

1
2
(𝑅 − 2Λ)𝑔𝜇𝜈

]
(7)

Remembering the classical definition of the momentum-energy tensor as:

𝑇𝜇𝜈 =
−2
√−𝑔

𝛿(√−𝑔L𝑚)
𝛿𝑔𝜇𝜈

(8)

We immediately notice that it will be the result of varying the matter density.

𝛿𝑆𝑚

𝛿𝑔𝜇𝜈
=

∫
𝑑4𝑥

𝛿
√−𝑔L𝑚

𝛿𝑔𝜇𝜈
= −1

2

∫
𝑑4𝑥𝛿

√−𝑔𝑇𝜇𝜈 (9)
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Now we can gather our equations of motion:

0 =
𝛿𝑆

𝛿𝑔𝜇𝜈
=

𝑐4

16𝜋𝐺

∫
𝑑4𝑥

√−𝑔
[
𝑅𝜇𝜈 −

1
2
𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 −

8𝜋𝐺
𝑐4 𝑇𝜇𝜈

]
(10)

In the more common form these equations of motions are known as Einstein’s equa-
tions, and are the main governing equations of the General Relativity:

𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 =

8𝜋𝐺
𝑐4 𝑇𝜇𝜈 (11)

What we see here is that the geometric configuration of the space-time is intricately
connected to the configuration of energy-matter inside. It can be shown, that as long as
no non-trivial degrees of freedom are present, the Einstein equations are guaranteed to
appear no matter the configuration of the geometrical action [6].

Friedman equations

The Einstein equations give us a framework to study the gravitational interactions, with
respect to the matter-energy content. When applying it to the study of the Universe on
large scales, we make several ”common sense” assumptions.

First of all: the Universe is homogeneous. Of course, galaxies and stars exist, but if
we look at very large scales, they become nothing but cosmic dust, similar to how tiny
particles form the liquid.

Secondly, we assume that the Universe is isotropic, meaning that no matter the direction
we are looking at, the laws of physics are the same.

Therefore, we need a metric, which will solve Einstein’s equations, which depends
on time only and not on spatial coordinates and which satisfies global 𝑆𝑂 (3) (rotational)
symmetry. It thus makes sense to work in the spherical coordinates for the spatial part
and it gives the classical Friedman-Lemaitre-Robertson-Walker (FLRW) ansatz[7] for 𝑑𝑠2

which is defined by:

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)
(∑︁ 1

1 − 𝑟2

𝐾2

𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2sin2𝜃𝑑𝜙2

)
(12)

where 𝐾 is the curvature of the corresponding spatial hypersurface, 𝐾 = 0 corresponds to a
flat Universe, while 𝐾 > 0 and 𝐾 < 0 stand for spherical (closed Universe) and hyperbolic
(open Universe) spaces. 𝑎(𝑡) is the scale factor, and we put it to be 𝑎(𝑡now) = 1, which will
serve nicely as a boundary condition when we will solve the corresponding equations.

The coordinates in which the FLRW-metric takes form are called the comoving coor-
dinates and correspond to:

𝑑𝑠2 = −𝑎2(𝜏)
[
𝑑𝜏2 +

(∑︁ 1
1 − 𝑟2

𝐾2

𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2sin2𝜃𝑑𝜙2

)]
(13)
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Now we need to parameterise the energy content. We will assume the content of
the Universe to be a perfect fluid, therefore giving us the following expression for the
energy-momentum tensor 𝑇𝜇𝜈:

𝑇𝜇𝜈 = (𝜌(𝑡) + 𝑝(𝑡))𝑢𝜇𝑢𝜈 + 𝑝𝑔𝜇𝜈 (14)

where 𝑢𝜇 is defined as the macroscopic speed of the medium, 𝜌(𝑡) is the energy density,
and 𝑝 is the isotropic pressure of such a perfect fluid.

Being generous to the reader, we allow them to perform the process of solving the
Einstein’s equations with the above ansatzes themselves, and we will not spoil this joyful
experience.

In the end, the system is reduced to two equations, coming from the 𝑡𝑡 and 𝑟𝑟 compo-
nents of Einstein’s equations, where we see that the scale factor of the Universe is defined
by the energy density in the Universe:(

¤𝑎(𝑡)
𝑎(𝑡)

)2
=

8𝜋𝐺
3

𝜌(𝑡) + Λ

3
− 1
𝐾2𝑎2(𝑡)

(15)

¥𝑎(𝑡)
𝑎(𝑡) = −4𝜋𝐺

3
(𝜌(𝑡) + 3𝑝) + Λ

3
(16)

We should also mention, that often 𝜌species is presented in the dimensionless form of
Ωspecies, which is defined as:

Ωspecies =
𝜌species

𝜌critical
(17)

where the critical overdensity corresponds to the overall energy density of the flat Universe
for a given and is thus defined by:

𝜌critical =
3 ¤𝑎2(𝑡)

8𝜋𝐺𝑎2(𝑡)
(18)

Equations 15 and 16 are called the Friedman equations, they govern the evolution of the
isotropic homogeneous Universe[8]. We can accompany these equations with an equation
of continuity for a perfect fluid, obtained by covariantly derivating the energy-momentum
tensor such that it gives:

¤𝜌 + 3
¤𝑎
𝑎
(𝜌 + 𝑝) = 0 (19)

If we assume a constant equation of state of the form 𝑤 =
𝑝

𝜌
, we obtain the following

relation between the scale factor 𝑎(𝑡) and the energy density 𝜌(𝑡):

𝜌(𝑡) ∝ 𝑎(𝑡)−3(1+𝑤) (20)

We can further modify this equation by adding several fluids, representing different
particle types in the Universe. For now, let us assume that the Universe is full of non-
relativistic (𝑤 = 0) matter. Under the assumption of flatness 𝐾 = 0, and the absence of Λ,
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Figure 2: Velocity of the Cepheids as a function of the distance from the observer. The
proportionality is the sign of the expansion of the Universe. Taken from [9].

the solution of the Friedman equations scales such that:

𝑎 ∝ 𝑡 2
3 (21)

That means that, as long as the Universe is dominated by non-relativistic matter, it is
going to expand. We should note that this model is called CDM, an acronym for Cold
Dark Matter.

The cosmic ladder and LCDM

Distance measurements

When we look at the Universe, what we usually see are the stars, galaxies, and other bright
objects. If we assume that the Universe expands, naively speaking, we would expect them
to move away from the observer on each point at least on average. Edwin Hubble in his
outstanding discovery in 1929 measured the dependence of the velocity of Cepheides on
the distance from Earth. The results are seen in Figure 2.

The result was... surprising to say the least. The velocities and distances were
correlated! What does our model described in the previous section say about this?

Let us have a look at the interval 𝑑𝑠2 in our FLRW-metric (Eq. 12). We remind the
reader that for light-like curves, or in other words, for trajectories of relativistic particles
including photons, 𝑑𝑠2 = 0. Assuming a ray of light coming from an object to an observer
in the centre of coordinates we get:

𝑑𝑡 = 𝑎(𝑡) 1
√

1 − 𝑘2𝑟2
𝑑𝑟 (22)
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We will also try to look at a kind of a Doppler’s law. Let us assume the frequency
of the incoming wave 𝜔received and introduce the concept of redshift 𝑧 with the help of
transmitted frequency 𝑤transmitted:

𝜔transmitted
𝜔received

=
𝛿𝑡received
𝛿𝑡transmitted

= 1 + 𝑧 (23)

Now, assuming 𝑑𝑡 ≈ 𝛿𝑡, we get:

1 + 𝑧 = 𝑎(𝑡transmitted)
𝑎(𝑡received)

(24)

We can try expanding the 𝑎(𝑡transmitted) into Taylor series around 𝑡received, and after
some simplifications and multiplying by 𝑐 to connect to distances instead of times, we get
at first order,

𝑐𝑧 =
¤𝑎(𝑡received)
𝑎(𝑡received)

𝑐(𝑡transmitted − 𝑡received) = 𝐻𝐷 (25)

where 𝐷 is the distance traversed by the light, and H is the Hubble parameter that is related
to the scale factor 𝑎(𝑡) as:

𝐻 (𝑡) = ¤𝑎(𝑡)
𝑎(𝑡) (26)

What we see is that the redshift, which can be associated with the velocity of the
galaxy escaping from Earth, is directly correlated with the distance to it with the Hubble
expansion rate as a proportional factor!

In that manner, Hubble discovered the ongoing expansion of the Universe, which was
completely predicted by General Relativity with the FLRW metric.

Cosmic history

Suddenly getting more and more data from the past of the Universe allowed humanity to
discover many fascinating things about its history! Here we will only shortly present the
commonly accepted scenario in a very compact version, as a detailed examination would
require at least a separate book. An illustrative recap is shown in Figure 3.

The consensus model on the origins of the Universe is the hot Big Bang model, which
postulates that the Universe was very small and extremely hot at the beginning [7]. This
model has quite a few implications.

One of the first thing that is believed to have happened is inflation. It is an expansion
of the Universe, which happened very rapidly, to the point where gaussian quantum
fluctuations in the matter and energy distribution got ”frozen” and formed the density
fluctuations we are seeing in today’s Universe, after which it continued cooling. For more
information we refer the reader to [10].

Some seconds after that, the Universe cooled enough for the first atomic nuclei to be
formed, mostly those of hydrogen and helium-4. This process is called the Big Bang

8
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Figure 3: Illustration of the evolution of the Universe from the Big Bang until today. Taken
from ESA.

nucleosynthesis [7]. However, it is still too early for the atoms to form, as the photons are
too strongly coupled to the matter.

The Universe will need some thousands of years of additional cooling before reaching
the matter-radiation decoupling. Once the photons decouple from the baryonic matter, the
Universe finally becomes transparent, as the photons are able to travel through it freely.
The first hydrogen atoms can be formed, a period which we call recombination, and
from that epoch the Cosmic Microwave Radiation comes from, an isotropic black-body
radiation, consisting of freely traveling photons. The moment when the baryons decouple
as well and start travel freely is called the drag epoch. Additionally, the pressure waves
within the electron-baryon plasma propagated until they got frozen sound horizon at drag
epoch. They get embedded in the distribution of condensing matter until today. We
call these waves the Baryon Acoustic Oscillations (BAO). As we will later see, with the
continuation of the Universe growth, the fluctuations given by inflation and from BAO
will not disappear but will continue to grow as well, allowing us to track the growth of
Universe with time. And, finally, hundreds of millions of years after this the first galaxies
start to form in the matter-dominated era.

Dark Energy

Until relatively recently, the consensus was held that the CDM model (with the addition
of some baryonic effects) was the most accurate model of the Universe. However, in 1998
and 1999 that view was crushed by the evidence coming from type Ia supernova [12, 13].
Some of the high-redshift supernovae turned out to be further away than expected from a
CDMmodel.

9
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Figure 4: Temperature variations in the CMB sky from Planck. Taken from [11].

Figure 5: Illustration of the Baryon Acoustic Oscillations spreading in space, artistic view.
Created by BOSS collaboration, adapted from here.
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Figure 6: (a) Hubble diagram for 60 type Ia supernovae. (b) Magnitude residuals from
the best fit cosmology for Ω𝑚 = 0.28, ΩΛ = 0.72. The dashed curves are for a range of the
cosmological models. (c) uncertainty normalised results for the best-fit flat cosmology.
Taken from [13].
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They found a deviation of > 5𝜎 with CDM, and the best fit value of cosmological
parameters turned out to be Ω𝑚 = 0.28 and ΩΛ = 0.72. The latter is the term responsible
for the ”energy density” of the Λ constant, which originally appeared in the Einstein’s
equations as the integration constant, which is back in the equations in order to explain the
acceleration of the cosmic expansion. This mysterious energy is called the Dark Energy.
But, what does it mean physically? Are we sure that we are not missing something in our
understanding of the nature of gravity?

That is one of the main questions of modern cosmology. It is towards answering
these questions that my work throughout the past years has been dedicated to. Numerous
collaborations around the world, all tooled up with various probes. Table 1 summarises
some of the experiments working towards this goal.

Project Dates Area/𝑑𝑒𝑔2 Methods Reference
BOSS 2008-2014 10000 BAO/RSD [14]
KiDS 2011-2019 1500 WL/CL [15]

eBOSS 2014-2018 7500 BAO/RSD [16]
SuMIRE 2014-2024 1500 WL/CL/BAO/RSD [17]
HETDEX 2017-2023 450 BAO/RSD [18]

DESI 2020-2025 14000 BAO/RSD [19]
LSST 2022-2032 20000 WL/CL/SN/BAO [20]
Euclid 2022-2028 15000 WL/CL [21]

WFIRST 2025-2030 2200 WL/CL/SN/BAO/RSD [22]
ACT 2008-2022 19000 CMB/CL [23]

Planck 2009-2013 41253 CMB/CL [24]
ZTF 2018-2023 20000 SN [25]
DES 2013-2019 5000 WL/CL/BAO/SN [26]

Table 1: Different dark energy facilities with information from [27] and some additional
updates with more recent experiments. WL stands for weak lensing, SN for Type Ia
Supernovae and CL for clusters

Supernovae Type Ia (SN Ia)

Working on the same principle as the original Hubble observations, the SN Ia experiments
build a cosmic ladder. However, instead of using Cepheids, supernovae of Type Ia are used.
These are the thermonuclear explosions of white dwarfs. Calibrated on the low-redshift
samples with high precision, by adding the information from the higher redshifts one can
track the history of expansion of the Universe[28]. It is with this probe that the dark
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energy was originally discovered, and it still plays a big role in unravelling the mysteries
of Universe expansion. Examples of such experiments are the ongoing ZTF[25] and the
upcoming Vera Rubin of LSST[20].

Cosmic Microwave Background (CMB)

Originating during recombination, this background radiation has been travelling in the
Universe since then, thus serving as our main source of information about the primordial
Universe, thus defining the starting conditions for the latter formation of large-scale
structure. Though it is hypothesized to be isotropic and homogeneous, due to the circular
movement of the observer, lensing from heavy objects, like galaxy clusters, as well as
scaterring effects (Sunyaev-Zeldovich effect [29]) the anisotropies appear, therefore giving
not only the information of the recombination era, but also about the later epochs as well.
Such experiment include, but are not limited to Planck[24] and ACT[23].

Weak lensing (WL)

Light passing to the Earth from distant objects is deflected by other massive objects lying
on its way. Often enough, this distortion of the image of source galaxies is too small to be
detected from one image, however, with more emitters situated in a close enough region
and passing near the same massive bodies, we can statistically notice the change. This
effect is called the weak lensing (strong lensing is reserved for the distortions big enough to
be detectable from a single source). Using that information we can infer information about
the underlying matter distribution, and thus constrain the parameters of our cosmological
theories such as ΛCDM [30]. Notable surveys using this probe are the previous generation
survey DES[26] and the new generation surveys Euclid[21] and Vera Rubin of LSST[20].
An illustration of such an effect is shown in figure 7.

Galaxy clusters (CL)

The galaxy clusters are the most massive gravitationally-bound structures of the Universe.
One can estimate their mass in the X-ray and with weak lensing surveys. The galaxy
clusters are sensitive not only to the expansion of the Universe but also to the growth of
structures, and serve as a unique prove for the hierarchical large-scale structure formation.
By inferring the distribution of the underlying dark matter distribution over different
redshifts, obtained thus from the positions and masses of the galaxy clusters, we can track
the evolution of the Universe [31]. Notable surveys using that technique are Planck[24]
and the new generation surveys Euclid[21] and Vera Rubin of LSST[20].
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Figure 7: An illustration explaining the effect of lensing of images from distant galaxies.
Taken from here, Copyright: NASA, ESA L. Calçada.

Ly-𝛼 forests

Light coming from the distant quasars on its way encounters hydrogen clouds. It should
be noted, that by the time it reaches the clouds, the original 𝛼-peak from the hydrogen
quasar emission becomes shifted, meaning that the absorption process creates a new one.
Thus, on Earth what we see in the spectra is a multitude of absorption peaks which
happened at different redshifts, thus allowing for another probe of the matter distribution,
and as such, a possibility to infer the cosmological parameters[32]. An illustration of the
process is shown in Figure 8. Notable surveys using this probe are the previous generation
spectroscopic surveys BOSS[14] and eBOSS[16] and the new generation spectroscopic
survey DESI[19].

Galaxy clustering

Galaxies are a natural way to track the matter density distribution. By estimating how
the galaxies cluster and tracking the evolution of their clustering over time, we can infer
the parameters of the cosmological models and the evolution of the Universe. This is the
main probe for the DESI[19] experiment, and it is the probe we will be focusing on in this
thesis.
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Figure 8: Illustrations of the process leading to the formation of the Lyman-𝛼 forest. As
the light travels from the quasar to Earth, it gets the absorption peaks from the intervening
gas. Courtesy of J. Webb and M. Murphy

Not so homogeneous Universe

As we have just mentioned, this thesis focuses on using galaxy clustering to estimate the
cosmological parameters. However, one of the first assumptions we made when obtaining
the Friedmann equations was the homogeneity of the Universe, with which galaxies do
not really match. We are going to relax that assumption. Let us assume, that the most
dominant part of the matter is distributed homogeneously, such that the inhomogeneities
can be treated as perturbations. We therefore define these perturbations, also known as
overdensities, by:

𝛿(𝜏, 𝒙) = 𝜌(𝜏, 𝒙) − 𝜌
𝜌

(27)

where 𝜌 is the average matter density of the Universe.
Given that matter is non-relativistic (and pressureless), the equations of motion look

like the traditional Newtonian ones. To achieve that, we modify the metric in the following
manner, in the comoving coordinates:

𝑑𝑠2 = −𝑎2(𝜏)
[
(1 + 2Ψ)𝑑𝜏2 + (1 + 2Φ)

(∑︁
𝑖

𝑑𝑥2
𝑖

)]
(28)

This is called the Newtonian gauge, and it includes all the perturbations represented as
scalars. We refer the reader to[7] for a more complete description which includes vector
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and tensor perturbations, why they are all independent from each other, why we can treat
them separately, and why are they important, especially so for the other probes than galaxy
clustering.

The classical way to derive the equations of motion for a perfect fluid in the given
space usually starts with imposing the conservation of the particles law, resulting in the
Vlasov equation. Combined with the gravitational equations derived earlier, it gives us
the necessary set of equations. We will skip this derivation (which can be found here [7],
and just write the Poisson equation directly:

∇2Φ(𝜏, 𝒙) = 4𝜋𝐺𝑎2𝜌𝛿(𝜏, 𝒙) = 3
2
H(𝜏)2Ω𝑚𝛿(𝜏, 𝒙) (29)

where H is Hubble constant in comoving coordinates, defined as:

H = 𝑎𝐻 (30)

The fluid is also characterised by its velocities, which we define as 𝒖(𝒙) (still in
comoving coordinates). This requires us to also write the Euler equation:

𝒖′(𝒙) + H𝒖(𝜏, 𝒙) + 𝒖(𝜏, 𝒙) · ∇𝒖(𝜏, 𝒙) = −∇Φ(𝜏, 𝒙) (31)

where 𝑓 ′ = 𝜕 𝑓

𝜕𝜏
, and we assume that the stress inside the fluid is negligible.

Finally, we can write the equation of continuity:

𝛿′(𝜏, 𝒙) + ∇ · [(1 + 𝛿(𝜏, 𝒙))𝒖(𝜏, 𝒙)] = 0 (32)

Now we have all the components to proceed to more accurate computations. These
are the basic equations of Eulerian perturbation theory. For a review, see [33].

Liner order perturbations

We focus on small, with respect to the background, perturbations of matter density,
meaning that𝛿(𝒙) and 𝒖(𝒙) are considered to be small. Having that in mind, let us take
the simplest possible approach for the moment and write the equations in a linear order.

𝛿′(𝜏, 𝒙) + ∇ · 𝒖(𝜏, 𝒙) = 0 (33)

𝒖′(𝜏, 𝒙) + H (𝜏)𝒖(𝜏, 𝒙) = −∇Φ(𝜏, 𝒙) (34)

Let us focus a bit on the equation 34. We apply ∇· and ∇× to it, to see what happens.
Somewhere on the way, we notice that in the first case the right-hand side becomes Eq.
29, which we immediately substitute, ending up with the following:

(∇ · 𝒖(𝜏, 𝒙))′ + H (𝜏)∇ · 𝒖(𝜏, 𝒙) + 3
2
Ω𝑚H(𝜏)2𝛿(𝜏, 𝒙) = 0 (35)
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(∇ × 𝒖(𝜏, 𝒙))′ + H (𝜏)∇ × 𝒖(𝜏, 𝒙) = 0 (36)

We see, that due to the expansion of the Universe, the ∇ × 𝒖 decays quickly with the
expansion of the Universe. This quantity is called the vorticity, and in the lienar regime
we can neglect it such that the velocity field becomes a gradient field.

We can use equation 33 to substitute ∇ · 𝒖(𝜏, 𝒙) with the time derivative of 𝛿(𝜏, 𝒙),
leading to:

𝛿′′(𝜏, 𝒙) + H (𝜏)𝛿(𝜏, 𝒙)′ = 3
2
Ω𝑚H𝛿(𝜏, 𝒙) (37)

Note how there is no dependence on the spatial coordinates. That implies that the
evolution of the perturbations is homogeneous, at least in the linear order.

We can introduce the linear growth function𝐷 (𝜏), which carries all the time-dependence
of 𝛿(𝜏, 𝒙) = 𝐷 (𝜏)𝛿(𝒙). Presenting the two solutions of the equation as 𝐷+(𝜏), repre-
senting the faster growing mode, and 𝐷−(𝜏), representing the slowest growing mode, we
assume the solution to be of form:

𝛿(𝜏, 𝒙) = 𝐷+(𝜏)𝐴(𝒙) + 𝐷−(𝜏)𝐵(𝒙) (38)

As for the ∇ · 𝒖(𝒙), we obtain:

∇ · 𝒖(𝒙) = −H [ 𝑓 𝐴(𝒙) + 𝑔𝐵(𝒙)] (39)

where 𝑓 , 𝑔 = 1
H
𝑑log𝐷+,−

𝑑𝜏
. 𝑓 is usually called the linear growth rate of structure. Now let

us have a look at the most relevant cases.
For a matter-only Universe Ω𝑚 = 1 we obtain

𝐷+(𝜏) = 𝑎(𝜏) (40)

𝐷−(𝜏) = 𝑎− 3
2 (𝜏) (41)

So, the density fluctuations grow as the scale factor.
For a Universe with dark energy with Λ > 0, there is an integral representation, which

is not solvable analytically but can be approximated as [7]:

𝐷+ =
5
2

𝑎Ω𝑚

Ω
4
7
𝑚 −ΩΛ + (1 + 1

2Ω𝑚) (1 + 1
70ΩΛ)

(42)

𝐷− =
H
𝑎

(43)

It is necessary to notice, that it is possible to go beyond the linear order in the Eulerian
framework, and one can read more on that for example here [33, 34]. In chapter 2
we will however explore higher-than-linear terms in the Lagrangian Perturbation theory
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framework, which is equivalent to the Eulerian Perturbation theory but whose quantity
of interest is no longer the density and velocity fields but instead the displacement field
[35–38].

Observables

As we aim at exploring the properties of a statistical distribution, we need to find a good
quantity to observe. As we assumed the Universe to be mostly homogeneous, the mean of
perturbations 𝛿 will be thus 0. We also assume that the density fluctuations are Gaussian,
being the remnants of ancient quantum fluctuations frozen during inflation[10]. The most
classical manner to deal with it is using the autocorrelation function. For the density field
𝛿(𝒙), it can be defined as:

𝜉 (𝒓) = ⟨𝛿(𝒙)𝛿(𝒙 + 𝒓)⟩ (44)

Its Fourier counterpart is given by Fourier transform such that the density field 𝛿(𝒌)
in Fourier space is defined by:

𝛿(𝒌) =
∫

𝑑3𝑥𝑒−𝑖𝒌·𝒙𝛿(𝒙) (45)

The power spectrum 𝑃(𝒌) is therefore defined as:

𝑃(𝒌) = ⟨𝛿(𝒌)𝛿(𝒌)⟩ (46)

Let us derive a simple model of the linear power spectrum, assuming that the fluctu-
ations originated during the inflationary epoch. We can define the transfer function 𝑇 (𝒙)
as the measure of the evolution of the potential from that epoch until today, and define,
following [39], as:

Φ(𝜏, 𝒌) = Φ(𝜏0, 𝒌)𝑇 (𝜏, 𝒌) (47)

In this context, the starting point is usually taken at the drag epoch, when baryon’s
optical depth reaches unity . An example of the computation of such a transfer function
can be found for example in [39]. Some more advanced solutions like class[40] and
camb[41], include the baryonic, BBN and neutrino effects even better.

In order to estimate the initial power spectrum at the drag epoch, we assume purely
adiabatic scalar perturbations, which can be parameterised [39] as:

𝑃(𝑘) = 2𝜋2

𝑘3 𝐴𝑠

(
𝑘

𝑘0

)𝑛𝑠−1+ 1
2

𝑑𝑛𝑠
𝑑ln𝑘 ln

(
𝑘
𝑘0

)
(48)

where 𝐴𝑠 is the initial power spectrum normalisation, 𝑛𝑠 is the spectral index, and 𝐴𝑠, 𝑛𝑠,
𝑘0 and 𝑑𝑛𝑠

𝑑ln𝑘 are taken to be constant.
In order to get the power spectrum at the given redshift we just need to multiply the

transfer function and account for the effect of the growth of structure:

𝑃(𝜏, 𝑘) = 𝑃(𝑘)𝑇2(𝜏, 𝑘) (49)
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Figure 9: Real-space power spectrum with and without the BAO effect. The lower panel
shows the difference between the two. Generated using the Eisenstein-Hu model[42].

A similar computation can be performed for the linear correlation function 𝜉 (𝑠), or one
can obtain it by performing a Fourier transform. Note however, that the power spectrum
obtained is that of the overall matter distribution, not galaxies.

An important effect to be included in the linear power spectrum is the Baryon Acoustic
Oscillations as introduced earlier. Those oscillations cause wiggles in the power spectrum
that are shown in Figure 9. An example of computation of the transfer function with this
effect included can be seen in [42].

In the radial mass profile, this effect appears as a peak which moves with time, as
can be seen on Figure 10. As the peak appeared in the early times, when photons and
baryonic matter were still coupled, the peak for both species appeared identical but as the
decoupling between the two happened, the two shapes diverged. However, at the same time
the baryonic matter starts collapsing inducing the peak on the dark matter distribution, as
we can notice from the behaviour of the dark matter correlation function for the later times.
As the peak from baryon acoustic oscillations is ”frozen” into the matter distribution, and
only chnages due to an expansion of the Universe, providing us with a standard ruler that
can be measured as a function of redshift.

Galaxy clustering

Now that we have figured out the clustering statistics for the overall matter distribution, we
need to connect it to the observed density field of galaxies. It should be noted, that most
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Figure 10: Evolution of the radial mass profile of initially point-like matter overdensities
of various types of matter. Taken from [43].
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of the matter in the Universe is actually non-observable dark matter [7], and only 20%
is observable. Meaning that we need to connect the two, parametrising various effects
specific to galaxies.

Galaxy bias

Despite the fact that the dark matter and galaxy distributions are different, we assume
them to be gravitationally coupled, and thus, dependent. Thus, we will assume the bias
expansion of the general form, assuming that it will depend on the underlying matter
density field, to be:

𝛿𝑔 (𝜏, 𝒙) =
∑︁
𝑖

𝑏𝑖 (𝜏)O𝑖 [𝛿] (𝜏, 𝒙) (50)

where O[𝛿] (𝜏, 𝒙) is an operator of the underlying matter distribution 𝛿(𝜏, 𝒙), relevant at
a given order. If we continue describing the early linear stages of structure formation, the
linear order bias relation becomes:

𝛿𝑔 (𝜏, 𝒙) = 𝑏1(𝜏)𝛿(𝜏, 𝒙) (51)

We will cover more extensive bias expansion models in the chapter 2 of this thesis.
Therefore the galaxy 2-point statistics (power spectrum or correlation function) is

related to the matter 2-point statistics in the following manner:

𝑃𝑔 (𝒌) = 𝑏2
1𝑃(𝒌) (52)

𝜉𝑔 (𝒓) = 𝑏2
1𝜉 (𝒓) (53)

where the bias 𝑏1 is also called the linear bias, or linear Eulerian bias, as we follow the
Eulerian approach to describe the matter distribution dynamics.

Redshift Space Distortions

The galaxies do not really form a smooth density field, but rather are seen by us as a
myriad of point-like objects. The issue is that they have their own peculiar velocities, with
respect to the underlying matter density. Moreover, the distance to galaxies is measured
using the redshift, which accounts for the line of sight component of the galaxy peculiar
velocity. Therefore, our estimation of distance diverges from the real one. The space in
which galaxies have these ”shifted” coordinates is called the redshift space, and the galaxy
clustering in this redshift space appears distorted or anisotropic due to the galaxy peculiar
velocities. The effect itself carries the name of ”Redshift Space Distortions” (RSD).

Inferring the peculiar velocities from galaxies, though possible, is a complex task [44].
We will therefore go from the other side. We will try to get a correction in linear order,
which simulates the RSD effect in the power spectrum.
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We define the line of sight of the observer as 𝑧, and we further define the directional
cosine as 𝜇 = 𝑘̂ · 𝑧.

That modifies the observed redshift 𝑧obs as:

𝑧obs = 𝑧 + ¤𝑥 · 𝑧 = 𝑧 + 1
𝑎
𝒖 · 𝑧 (54)

where 𝒖 is the velocity of the density elementin the comoving frame.
Assuming the redshift-space distance to be 𝑠, and the real space one 𝑟, we can write

the law for the preservation of the density of matter:

𝑑3𝑠(1 + 𝛿𝑠 (𝒔)) = 𝑑3𝑟 (1 + 𝛿(𝒓)) (55)

We will also have the following transformation law between the two:

𝒔 = 𝒓 + 1
H 𝒖 · 𝑧 (56)

where H is a conformal Hubble factor defined as H = 𝑎𝐻.
We can go to Fourier space, simultaneously using our results from the previous sectio-

nand get the following derivation, assuming distant observer and plane-parallel approxi-
mations:

𝛿𝑠 (𝒌) =
∫

𝑑3𝑠𝛿(𝒔)𝑒𝑖𝒌·𝒔 =
∫

𝑑3𝑥𝑒𝑖𝒌·𝒔 (1 + 𝛿(𝒙)) −
∫

𝑑3𝑠𝑒𝑖𝒌·𝒔 =

=

∫
𝑑3𝑥𝑒𝑖𝒌·𝒔 (1 + 𝛿(𝑥)) −

∫
𝑑3𝑥

���� 𝑑3𝑠

𝑑3𝑥

���� 𝑒𝑖𝒌·𝒔 = ∫
𝑑3𝑥𝑒𝑖𝒌·𝒔 (1 + 𝛿(𝑥))−

−
∫

𝑑3𝑥𝑒𝑖𝒌·𝒔
(
1 + 1

H
𝜕𝑢𝑧 (𝒙)
𝜕𝑧

)
=

∫
𝑑3𝑥

(
𝛿(𝒙) − 1

H
𝜕𝑢𝑧 (𝒙)
𝜕𝑧

)
𝑒𝑖𝒌·𝒙+𝑖𝑘𝜇

𝑢𝑧
H (57)

We then note, that in Fourier space we have, remembering that we have discarded
∇ × 𝒖 due to a quick decay:∫

𝑑3𝑥𝑒𝑖𝒌·𝒙∇ · 𝒖 = 𝑖𝒌 · 𝒖 = −𝒌 · 𝒌𝜃 (𝒌) (58)

such that:
𝒖 = 𝑖𝒌𝜃 (𝒌) (59)

Once again we take the linear order, in which the second term in the exponent disappears,
in order to obtain:

𝛿𝑠 (𝒌) = 𝛿𝑚 (𝒌)−
∫

𝑑3𝑥𝑒𝑖𝒌·𝒙
1
H
𝜕𝑢𝑧 (𝒙)
𝜕𝑧

= 𝛿𝑚 (𝒌)−
1
H (𝒌 ·𝑧)2𝜃 (𝒌) = 𝛿𝑚 (𝒌)−𝑘2 1

H 𝜇2𝜃 (𝒌)
(60)

Then we can get the final answer:

𝛿𝑠 (𝒌) = 𝛿𝑚 (𝒌) − 𝑘2 1
H 𝜇2𝜃 (𝒌) = 𝛿𝑚 (𝒌) + 𝑓 𝜇2𝛿𝑚 (𝒌) (61)
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If we repeat this computation taking the linear bias into account, we will get:

𝛿𝑔,𝑠 (𝒌) = 𝑏1𝛿𝑚 (𝒌) + 𝑓 𝜇2𝛿𝑚 (𝒌) (62)

where 𝑓 is called a growth rate.
This modifies the linear power spectrum such that we obtain the Kaiser formula [45]:

𝑃𝑠𝑔 (𝑘, 𝜇) = (𝑏1 + 𝑓 𝜇2)2𝑃𝑚 (𝑘) (63)

The same can be done for the correlation function. We see that RSD creates anisotropy
in the observed power spectrum. What is of the outmost importance for us, is that
the growth rate of structure 𝑓 contains plenty of physical information regarding the
gravitational collapse that drives the structure formation. We can, through a convenient
approximation [46] relate it to the Ω𝑚, as well as to the equation of state of Dark Energy
𝜔Λ as:

𝑓 ∝ Ω
𝛾
𝑚 ∝ Ω

3(1−𝜔DE )
5−6𝑤DE
𝑚 (64)

We note that in the case of the cosmological constant Λ taken as Dark Energy, we have
𝑤DE = −1 and thus 𝛾 = 0.55. We also note, that in case of alternative gravitational
theories, 𝛾 might differ.

Alcock-Paczynski effect

As already mentioned, we are measuring the distances to observed galaxies using their
redshifts, and converting them to coordinates. Same goes for the estimation of parameters
like growth rate: a fiducial cosmology is required. However, in order to do it we need to
assume some cosmology. What if we get the cosmology wrong? (Which is what is going
to happen, anyway). Can we quantify how far from the truth we got?

For that we can use the BAO peak. Assuming the sound horizon scale 𝑟𝑠 at the redshift
of decoupling 𝑧𝑑 , angular diameter distance 𝐷𝐴 (𝑧) = 𝑟 (𝑧)

1+𝑧 =, where 𝑟 (𝑧) is the comoving
distance to the object, and Hubble parameter 𝐻 (𝑧).

We can then use the 𝑟𝑠 as our main scale to look at its change with time. Assuming it
to be isotropic, let us have a look at the transverse component as seen from Earth. It will
have a small angular size of 𝜃:

𝜃 =
𝑟𝑠

𝐷𝐴 (𝑧)
(65)

Assuming the scaling to be small, we can define the transverse Alcock-Pasczynski
(AP) parameter:

𝛼⊥ =
𝐷𝐴 (𝑧)𝑟fid

𝑠 (𝑧𝑑)
𝐷fid
𝐴
(𝑧)𝑟𝑠 (𝑧𝑑)

(66)
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Looking at the parallel component, we can assume that the distance change over time
passed from the drag epoch to be 𝐻 (𝑧)𝑟𝑠 (𝑟𝑑), which we can use for the parallel AP
parameter:

𝛼∥ =
𝐻fid(𝑧)𝑟fid

𝑠 (𝑧𝑑)
𝐻 (𝑧)𝑟𝑠 (𝑧𝑑)

(67)

This will also imply, that the wavelengths in the Fourier space, transforming as the
inverse of the separation, will be scaled as

𝑘′∥ =
𝑘 ∥
𝛼∥
, 𝑘′⊥ =

𝑘⊥
𝛼⊥

(68)

(69)

We will then convert the parallel and perpendicular components of the wavevector to
our usual angular form in terms of 𝑘 and 𝜇:

𝑘′ =
𝑘

𝛼⊥

[
1 + 𝜇2

(
𝛼2
⊥
𝛼2
∥
− 1

)] 1
2

(70)

𝜇′ = 𝜇 · 𝛼⊥
𝛼∥

[
1 + 𝜇2

(
𝛼2
⊥
𝛼2
∥
− 1

)]− 1
2

(71)

That will allow us to get the power spectrum in the ”wrong” cosmology, accounting
also for the difference in volume between the two cosmologies, as:

𝑃(𝑘, 𝜇) =
(
𝑟fid
𝑠

𝑟𝑠

)3 1
𝛼2
⊥𝛼∥

𝑃fid(𝑘′(𝑘, 𝜇), 𝜇′(𝜇)) (72)

That allows for a powerful agnostic cosmological test of ΛCDM, as now our presump-
tion of the fiducial cosmology is fixed and serves as the reference point on how far what
we observe is from what we have assumed, and carries the name of Alcock-Paczynski test
[47].

It was shown that via a process called reconstruction [43], we can make the BAO peak
and its estimation more precise, by trying to ”reverse” the RSD effects, but this technique
is unfortunately out of the scope of this thesis.

Clustering statistics in practice

After introducing the basic theoretical concepts of galaxy clustering and describing some
of the effects that affect the power spectrum or correlation function, in this section we will
describe how to estimate them in practise. We should also note that despite correlation
function and power spectrum being configuration and Fourier space counterparts of each
other, the way to estimate them is very different.
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Correlation function estimation

Let us start with a set of coordinates 𝒙𝑖 of galaxies with their respective weights (to account
for potential sources of systematic effects)𝑤𝑖. Intuitively we would assume, that the higher
is the number of galaxies in a given space-time region, the higher is the overdensity 𝛿(𝒙)
in this region.

We separate our survey volume into a grid with 𝐾 cells, such that each cell contains
either 0 or 1 galaxies, of which we have 𝑛. We then can write the expectation of finding
an object in any of the cells:

⟨𝜈⟩ = 𝑛

𝐾
(73)

We look at two cases: correlated and uncorrelated. We start with the uncorrelated
scenario where, for a given uncorrelated sample, the probability that two of the chosen
cells contains a point is, for 𝑖 ≠ 𝑗 by construction:

⟨𝜈𝑖𝜈 𝑗 ⟩ =
𝑛(𝑛 − 1)
𝐾 (𝐾 − 1) (74)

We then write the expectation value for what we call the paircounts 𝑅𝑅(𝒓): how many
pairs separated by a separation 𝒓 can be found in this uncorrelated sample:

⟨𝑅𝑅(𝒓)⟩ =
𝐾∑︁
𝑖< 𝑗

⟨𝜈𝑖𝜈 𝑗 ⟩Θ𝒓
𝑖 𝑗 =

𝑛(𝑛 − 1)
𝐾 (𝐾 − 1)

𝐾∑︁
𝑖< 𝑗

Θ𝒓
𝑖 𝑗 (75)

where Θ𝑖 𝑗
𝒓 is unity if cells 𝑖 and 𝑗 are separated by 𝒓 ± 𝑑𝑟

2 , and 0 otherwise. Therefore,
we define a geometry function 𝐺 𝑝 (𝒓) such that:

𝐺 𝑝 (𝒓) =
2

𝐾 (𝐾 − 1)

𝐾∑︁
𝑖< 𝑗

Θ𝒓
𝑖 𝑗 (76)

The uncorrelated paircounts thus become:

⟨𝑅𝑅(𝒓)⟩ = 𝑛(𝑛 − 1)
2

𝐺 𝑝 (𝒓) (77)

Now let us look at the correlated scenario. We define the correlation function of
galaxies (so far, only statistically) as:

⟨𝜈𝑖𝜈 𝑗 ⟩ =
𝑛(𝑛 − 1)
𝐾 (𝐾 − 1) (1 + 𝜉 (𝒓)) (78)

Following the same reasoning as for the uncorrelated case, and taking in mind that the
normalisation changes, which can be shown to be𝐶𝑛 = 1+

∫
𝑑3𝑟𝐺 𝑝 (𝒓)𝜉 (𝒓), we can obtain

for the correlated paircounts 𝐷𝐷 (𝒓):

⟨𝐷𝐷 (𝒓)⟩ = 𝑛(𝑛 − 1)
2

𝐺 𝑝 (𝒓)
1 + 𝜉 (𝒓)
𝐶𝑛

(79)
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We immediately see that to get rid of all the geometric effects, we can renormalise the
paircounts by the corresponding 𝑛(𝑛 − 1), and write therefore:

𝐷𝐷norm
𝑅𝑅norm

=
1 + 𝜉 (𝒓)
𝐶𝑛

(80)

Assuming the linear order in 𝜉 (𝒓) we get 𝐶𝑛 = 1 and:

𝜉 (𝒓) = 𝐷𝐷norm
𝑅𝑅norm

− 1 (81)

This is the original Peebles estimator of the correlation function [48]. Remembering
that galaxies are biased tracers of the matter field, we can connect the two-point correlation
function of galaxies with the underlying matter density correlation function 𝜉𝑚 (𝒓) such
that:

𝜉 (𝒓) = 𝑏2
1𝜉𝑚 (𝒓) (82)

where 𝑏1 is called the linear galaxy bias as defined in equation 53. A more complicated
but also accurate bias model will be described later in Chapter 2.

It should be noted, that following [49] the Peebles estimator is not the most optimal
one in terms of variance but instead the Landy-Szalay estimator performs better and is
written as:

𝜉 (𝒓) = 𝐷𝐷norm(𝒓) − 𝐷𝑅norm(𝒓) + 𝑅𝑅norm(𝒓)
2𝑅𝑅norm(𝒓)

(83)

where𝐷𝑅norm(𝒓) are the normalised paircounts between the uncorrelated catalogue, called
also the randoms, and the correlated catalogue, which represents the galaxies in the survey
and therefore is called data.

We note that the 3D-correlation function (and power spectrum as well) are usually not
computed in Cartesian coordinates, but rather in spherical ones. To be more precise, as we
assume a natural symmetry around the line of sight of the observer, we describe the pair by
the distance (also called separation) 𝑠 between two objects and by their angular separation
𝜇 as seen by the observer. In case of the isotropic picture, the angular dependence would
not be present, but in realistic scenarios it can be seen from equation 72 that galaxy peculiar
velociies make the clustering anisotropic through the RSD effect. We can therefore expand
our 2-point correlation function into Legendre multipoles as following:

𝜉ℓ (𝑠) =
2ℓ + 1

2

∫
𝑑𝜇𝜉 (𝑠, 𝜇)Lℓ (𝜇) (84)

where Lℓ (𝜇) = 1
2ℓℓ!

𝑑ℓ

𝑑𝜇ℓ
(𝜇2 − 1)ℓ is the Legendre polynomial. It can be shown that due

to quadratic dependence in equation 72, the only relevant multipoles will be those with
ℓ = 0, 2, 4. In general case, one can complexify the model, showing that the information
will also leak to odd and higher orderℓ, but so far the effect has been shown to be negligible
[50, 51]. 𝜉0 is called the monopole, 𝜉2 - quadrupole, 𝜉4 - hexadecupole.
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Figure 11: An example of the correlation function multipoles 𝜉ℓ (𝑠) multiplied by a square
of separation 𝑠2 and plotted against separation 𝑠, with also best-fit model prediction.
Shaded regions represent the errorbars. This specific measurement is actually a mean of
25 measurements from 25 Abacus mocks, which we will describe in Chapter 3. The lower
panel shows the difference of measured multipoles from the best-fit values.
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We present the mean of 25 measurements of such multipoles taken from the DESI
reference cosmological simulations (described in more detail in Chapter 3) in Figure 11.
Note the presence of the BAO peak at ∼ 100 Mpc/h separation, as well as a very prominent
quadrupole, resulting from the RSD. It is those two features that are highly important for
the inference of the cosmological data.

Power spectrum estimation

The estimation of the power spectrum, Fourier space counterpart of the correlation func-
tion, is computed very differently from the correlation function.

At some point we will need to go to the Fourier space, which is usually done com-
putationally via the use of the Fast Fourier Transform(FFT). The method works on grids.
Therefore, we start by ”painting” the galaxies onto a cubic grid of chosen size with 𝑁𝑔
points, or defining a correspondence between the point of the grid and the averaged value
of the field around that point. We will be approximately following [52].

Let us assume a regular grid of points 𝒙𝑖, which are linearly spaced by Δ𝑥 in all
directions. The simplest way to paint the density is to sum up the points around each of
the points in a cubic volume around the point and divide by the volume. This carries the
name as the Nearest-Grid-Point (NGP) assignment scheme. However, that is not the most
accurate way to do it. In a general case, we can define the contribution of each point for
𝑖-th cell 𝐷𝑖, such that, assuming 𝑁𝑝 number of objects:

𝐷𝑖 =

𝑁𝑝∑︁
𝑗=1
𝑊 (𝑥𝑖 − 𝑥 𝑗 ) (85)

We can see now, that NGP scheme would correspond to the following definition of
𝑊 (𝑠):

𝑊 (NGP) (𝑠) =


1 if |𝑠 | < 1
2Δ𝑥

0 otherwise
(86)

From here, we can introduce other interpolation windows commonly used: Cloud-
in-Cell (CIC) and Triangular-Shape-Cloud (TSC), such that their windows are defined
as:

𝑊 (CIC) (𝑠) =


1 − |𝑠 | if |𝑠 | < 1
2Δ𝑥

0 otherwise
(87)

𝑊 (TSC) (𝑠) =


3
4 − 𝑠2 if 1

2Δ𝑥 < |𝑠 | < 3
2Δ𝑥

1
2 (

3
2 − |𝑠 |2) if |𝑠 | < 1

2Δ𝑥

0 otherwise

(88)
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Now we need to connect the following to the 𝛿(𝒙). Let us assume that the object
density is presented by 𝜌(𝒙), such that:

𝜌(𝒙) =
𝑁𝑝∑︁
𝑖=1

𝑚𝛿𝐷 (𝒙 − 𝒙𝑖) (89)

where 𝑚 is the mass of the object, which we assume to be the same for simplicity for all
of the objects present. We will then connect it to the overdensity as following:

𝛿(𝒙) = 1
𝑛

𝑁𝑝∑︁
𝑖=1

𝛿𝐷 (𝒙 − 𝒙𝑖) − 1 (90)

where 𝑛 = 𝑁𝑝

𝑉
is the global object density.

It can be shown [53] that we can relate the two as:

𝛿(𝒙𝒊) =
1
𝑛
𝐷𝑖 − 1 (91)

But, we need also to ensure that when transitioning to Fourier space, our estimator still
gives the correct value. Going back to our idealised version of the discrete estimator 90,
and performing a Fourier transform, we obtain:

𝛿(𝒌 𝑗 ) =
1
𝑛

𝑁𝑝∑︁
𝑖=1

𝑒−𝑖𝒌 𝑗 ·𝒙𝑖 −
𝛿𝑐 (𝒌 𝑗 )
Δ𝑘3 (92)

where Δ𝑘 is the fundamental frequency Δ𝑘 = 2𝜋
𝐿

, L is the size of the box, and 𝛿𝑐 (𝑥) is a
Kronecker delta function, which is 1 with 𝑥 = 0, otherwise 1.

Going to the power spectrum we obtain:

⟨𝛿(𝒌𝑖)𝛿(𝒌 𝑗 )⟩ =
𝛿𝑐 (𝒌𝑖)𝛿𝑐 (𝒌 𝑗 )

Δ𝑘3

[
𝑃(𝒌𝑖) +

1
𝑛

]
(93)

The term 1
𝑛

is called a shot noise term, and is the consequence of the discreteness of the
tracer of the matter density.

However, it is not as simple as with 91, because the smoothing window function we
have introduced affects the Fourier transform, so it needs to be corrected, resulting in:

𝛿(𝒌𝑖) +
∑︁
𝑛≠0

𝑤𝑛 (𝒌𝑖)𝛿(𝒌𝑖 − 𝒏𝑘𝑠) (94)

where 𝒏 is an integer vector, 𝑘𝑠 = 2𝜋
Δ𝑥

and 𝑤𝑛 is defined such that:

𝑤𝑛 (𝒌) =
𝑊 (𝒌 − 𝒏𝑘𝑠)
𝑊 (𝒌) (95)

where𝑊 (𝒌) is a Fourier-space counterpart of the smoothing window function𝑊 (𝒙).
In order to fix that, a technique called interlacing is applied, whose details can be found

in [54].
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The approach we described might work for a cubic box, but assuming a realistic
survey, we end up with two problems. First of all, the survey shape is not a cube, but has
an irregular shape, and might even have a non constant 𝑛.

We will intuitively do something similar to what we did for the correlation function,
and compare a catalogue with correlations to the uncorrelated one, meaning randoms with
density 𝜌𝑟 (𝒙), such that there are 1/𝛼 object more in random catalog that in the data,
assuming the two cover the same volume.

We define the FKP estimator, defined in [55] as:

𝐹 (𝒙) = 𝑤(𝒙) [𝜌(𝒙) − 𝜌𝑟 (𝒙)][∫
𝑑3𝑥𝑛2(𝒙)𝑤2(𝒙)

] (96)

where 𝑤(𝒙) is a weight function to be described later. Following [55], we get an estimator
for the power spectrum to be:

𝑃(𝒌) = 1∫
𝑑3𝑥𝑛(𝒙)𝑤2(𝒙)

∫
𝑑Ω

4𝜋

[
𝑑3𝑥1𝑑

3𝑥2𝐹 (𝒙1)𝐹 (𝒙2)𝑒𝑖𝒌·(𝒙1−𝒙2)
]
− 𝑃shot (97)

where 𝑃shot =
(1+𝛼)

∫
𝑑3𝑥𝑛(𝒙)𝑤2 (𝒙)∫

𝑑3𝑥𝑛(𝒙)𝑤2 (𝒙) is a shot noise term.
This estimator is unbiased with a small variance, however, there is a computational

difficulty. As with the correlation function, power spectrum is also presented in the form
of Legendre multipoles. With the problem, that the decomposition is presented in the
configuration space, which is written using the FKP estimator as:

𝑃ℓ (𝑘) =
2ℓ + 1∫

𝑑3𝑥𝑛(𝒙)𝑤2(𝒙)

∫
𝑑Ω

4𝜋

[
𝑑3𝑥1𝑑

3𝑥2𝐹 (𝒙1)𝐹 (𝒙2)𝑒𝑖𝒌·(𝒙1−𝒙2)Lℓ ( 𝑘̂ · 𝑥ℎ)
]

(98)

where 𝒙𝒉 =
𝒙1+𝒙2

2 and Ω is the solid angle. However, one can approximate 𝑥ℎ ≈ 𝑥1, and
then define an FKP field with the Legendre multipole directly such that:

𝐹ℓ (𝑘) =
∫

𝑑3𝑥

(2𝜋)3 𝑒
−𝑖𝒌·𝒙𝐹 (𝒙)Lℓ ( 𝑘̂ · 𝑥) (99)

The last step is to decompose the Legendre polynomials into spherical harmonics 𝑌ℓ𝑚
such that:

Lℓ ( 𝑘̂ · 𝑥) =
4𝜋

2ℓ + 1

ℓ∑︁
𝑚=−ℓ

𝑌ℓ,𝑚 ( 𝑘̂)𝑌 ∗ℓ,𝑚 (𝑥) (100)

It allows us to decouple the term with configuration space component into a separate
multiplier. Meaning that we will need to paint the density once on the mesh, and then
Fourier transform it once for the monopole, and 2ℓ + 1 times for each ℓ-th multipole, one
time for each of the corresponding harmonic. Then we will just need to multiply the result
by the Fourier space harmonic. The final integration over the angles to get to the power
spectrum multipole estimator can be performed already in Fourier space:

𝑃ℓ (𝑘) = (2ℓ + 1)
∫

𝑑Ω

4𝜋
𝐹ℓ (𝑘)𝐹0(−𝑘) (101)
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where 𝐹0 = 𝐹𝑙=0. The obtained estimator carries the name of Yamamoto estimator[56].
Another important topic to be mentioned when talking about power spectrum estima-

tion is the window function. Before, we have assumed the negligible geometric effects,
roughly corrected by the introduction of the randoms to compare to. However, as the
power spectrum is computed with a box encompassing the survey, in the Fourier space the
so-called window effects (do not mix up with the smoothing window) arise once again.

There are two ways to correct them. One would be to estimate the window function
and apply it to the output from the modelling, or deconvolve the power spectrum [57].
However, this is out of the scope of this thesis as we will mainly focus on configuration
space analysis, so we will not discuss it much further.

FKP weights

One of the important effects needed to be taken into account when analysing spectroscopic
surveys is the non-homogeneity of the average number density. In general, the 𝑛 in the
actual observed data would not be constant over the volume, but would rather depend on
various factors, most importantly, redshift, which will make different subvolumes give
different contributions to the variance of the measured statistics. This is the case both for
the correlation function and the power spectrum. As it was shown in [55], this can be
accounted for by using the weights 𝑤(𝒙) = 𝑤FKP(𝒙) such that:

𝑤FKP =
1

1 + 𝑛(𝑧)𝑃0
(102)

where 𝑛(𝑧) is the number density evolving with redshift 𝑧, and 𝑃0 is the value of the
fiducial power spectrum, which is usually taken to be constant. We will discuss more in
Chapter 5 how to generalise this expression to the situation of several species of objects
present in the survey.

General inference scheme

In the previous sections we have presented a way to model the large-scale structures of
the Universe analytically, as well as a way to predict the behaviour of matter density
perturbations and their connection to the formation of galaxies. At the same time, we have
defined the two-point clustering statistics, namely the two-point correlation function and
the power spectrum from the realistic 3D maps of galaxies.

How do we properly compare the modelling and the measurements of the galaxy
two-point clustering statistics?

Let us assume that the data, for example the correlation function multipoles can be
described as a multivariate random vector 𝜉𝑖 of size 𝑛, where we concatenated all the
multipoles taken as non-negligible (usually ℓ = 0, 2, 4) into one data vector.

31



INTRODUCTION

Then, we define the probability of our data sample being described by a theoretical
model 𝜉 th

𝑖
(𝜽) with parameters 𝜃𝑘 (which can be a set of cosmological and nuisance

parameters, such as galaxy biases and additional theoretical terms, needed to model the
correlation function) as 𝐿 (𝜽 |𝝃), which we will call the likelihood. It should be noted, that
likelihood represents a conditional probability, thus Bayes theorem can be applied, which
in the more general case of events A and B states [58]:

𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵 |𝐴)𝑃(𝐴) (103)

Where 𝑃(𝑋) is the probability of 𝑋 , and 𝑃(𝐴|𝐵) is the probability of 𝐴 happening
provided 𝐵 is true. We can rewrite this equation, under the assumption that none of the
probabilities is zero, as 𝑃(𝐴|𝐵) = 𝑃(𝐵 |𝐴)𝑃(𝐴)/𝑃(𝐵). In this analogy, 𝑃(𝐴|𝐵) is called
the posterior probability, 𝑃(𝐵 |𝐴) is the likelihood in this case, 𝑃(𝐴) and 𝑃(𝐵) are the
unconditional probabilities of observing A and B respectively, and are known as prior
probability and marginal probability.

Assuming that 𝝃 is distributed as a multivariate Gaussian distribution with a covariance
matrix Σ it can be shown [59] that:

log𝐿 (𝜽 |𝝃) = −1
2

𝑛∑︁
𝑖, 𝑗=1

(𝑥𝑖 − 𝑥th
𝑖 (𝜽))

(
Σ−1

) 𝑖 𝑗
(𝑥 𝑗 − 𝑥th

𝑗 (𝜽)) + const (104)

We introduce also the quantity of 𝜒2 such that:

𝜒2 =

𝑛∑︁
𝑖, 𝑗=1

(𝑥𝑖 − 𝑥th
𝑖 (𝜽))

(
Σ−1

) 𝑖 𝑗
(𝑥 𝑗 − 𝑥th

𝑗 (𝜽)) = −2log𝐿 (𝜽 |𝝃) + const (105)

which is a test statistic, describing how well does the given distirbution with the given set
of parameters describe the obtained random values [60].

We can see now, that in order to maximize the likelihood, we need to find the values
of 𝜽 that minimize 𝜒2. The uncertainties are obtained by finding the surface such that
if we define 𝜒2

best fit as the minimal value of 𝜒2, we search for a hypersurface such that
𝜒2 = 𝜒2

best fit + 1, which will represent the 1𝜎 confidence interval for the value [59]. There
are various ways to do that. One can go with the Frequentist approach, assuming the
existence of the exact ”true” values of parameters of the distribution, and by descending
following the gradient in a smart way [61], get to the minimum. We will use iminuit[61]
in order to perform that type of inference. Another commonly approach is to employ the
Bayesian inference and in particular Markov chain Monte Carlo (MCMC), which consists
in building such a Markov chain that its equilibrium distribution (where equilibrium is
when of values on each step are identical to the ones on the previous step) matches the
target distribution, meaning that once the chain reaches equilibrium, it will emulate the
target distribution allowing us to obtain an estimate of the distribution by sampling enough
events. One of the classic algorithms to perform such inference is Metropolis-Hastings
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algorithm[62, 63], for example. Throughout this thesis we will use however a more
complex approach provided by the emcee package [64].

Cosmic variance

Following the classical definition, first we quantify the amount of information obtained
from a specific measurement with probability of the model parameters 𝑝𝑖 describing the
data 𝑦𝑖 as 𝐿 (𝑦𝑖 |𝑝𝑖):

𝐹𝑖 𝑗 = −
〈
𝜕2log𝐿
𝜕𝑝𝑖𝜕𝑝 𝑗

〉
(106)

This quantity is often called the Fisher information.
It was shown that for single tracer analysis (where we analyse one single 2-point

correlation function or power spectrum) modelled by the Kaiser formula for RSD (72),
the Fisher matrix can be expressed as [65]:

𝐹𝑖 𝑗 =

∫
𝑑3𝑘𝑑3𝑥

(2𝜋)3
𝑑logP
𝑑𝑝𝑖

𝑑logP
𝑑𝑝 𝑗

1
2

(
P

1 + P

)2
(107)

where P is the effective power defined by P = 𝑛(𝒙)
[
𝑏 + 𝑓 (𝑧)𝜇2

𝑘

]2
𝑃(𝑧, 𝑘), 𝑏 is the linear

bias and 𝑓 is the linear growth rate. We can look at the Fisher information density 𝐹 (𝒌, 𝒙),
defined as:

𝐹 (𝒌, 𝒙) = 1
2

(
P

1 + P

)2
(108)

We can notice that 𝐹 (𝒌, 𝒙) < 1
2 , which means that the Fisher information per volume

of the phase-space is therefore limited.
The Rao-Cramer theorem states that [66, 67]:

𝜎2(𝑝𝑖) ≥
1
𝐹2
𝑖𝑖

(109)

where 𝜎2(𝑝𝑖) is the uncertainty on the parameter 𝑝𝑖. The theorem means that this
uncertainty is therefore limited by the information content of the survey. So there is an
upper limit on how much information can be contained in a limited volume, such that
even with increasing statistics inside the volume, at some point we will reach the limit
of allowed information from single tracer analysis based on the 2-point statistics. It thus
represents a fundamental limit in the precision we can achieve on a given parameter for
single tracer standard analysis. This limit is also called cosmic variance in the literature.

Multitracer analysis

As was discussed earlier in the, one of the very fundamentals constraints on the standard
full-shape analysis is cosmic variance. However, it was discovered recently, that it can
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Figure 12: Information density plot for three tracers, their cross-correlations and a com-
bined tracer taken from [69]

be circumvented by a multitracer analysis. It consists of using several tracers of varying
clustering properties. We will start with showing where does the information come from.

Assume having two tracers, and correspondingly two autospectra from those. How do
we define the most optimal estimator for those?

One can go back and generalise the Fisher matrix for the multi-tracer estimator,
following [68]:

𝐹𝜇𝜈;𝑖 𝑗 =
∑︁
𝛼𝛽𝛾𝜎

∫
𝑑3𝑥𝑑3𝑥′𝑑3𝑥′′𝑑3𝑥′′′𝐶−1

𝛼𝛽 (𝑥, 𝑥′)
𝜕𝐶𝛽𝛾 (𝑥′, 𝑥′′)

𝜕𝑃𝜇,𝑖
×

×𝐶−1
𝛾𝜎 (𝑥′′, 𝑥′′′)

𝜕𝐶𝜎𝛼 (𝑥′′′, 𝑥)
𝜕𝑃𝜈, 𝑗

(110)

We can then proceed in the same way as we did earlier to obtain the Fisher information
density in terms of the power spectrum:

F𝜇𝜈 (𝑥, 𝑘) =
1
4
𝛿𝜇𝜈P𝜇P(1 + P) + P𝜇P𝜈 (1 − P)

(1 + P)2 (111)

From here one can already notice how can cosmic variance be beaten by this approach.
It can be further illustrated by the plot on Fig. 12.

Moving on in the same fashion as we derived the FKP estimator for the power spec-
trum we can now also figure out the multitracer weights, which maximize the obtained
information:

𝑤𝜎𝛼 (𝑥, 𝑘) =
[
𝛿𝜎𝛼 −

P𝜎 (𝑥, 𝑘)
1 + P(𝑥, 𝑘

]
𝑛̄𝛼𝑏𝛼 (𝑥, 𝑘) (112)

With 𝑏𝛼 (𝑥, 𝑘) being the effective bias. Such that the weighted density contrast be-
comes:

34



INTRODUCTION

Figure 13: A diagram representing different parts of the analysis pipeline for the inference
of the cosmological parameters from data with corresponding chapters of this thesis
indicated.

𝑓𝜎 (𝑥, 𝑘) =
∑︁
𝛼

𝑤𝜎𝛼 (𝑥, 𝑘)𝛿𝛼 (𝑥) (113)

One might notice that essentially tracers interact with each other, as they actually
exist in the same volume of space-time and are not completely independent, and that it is
represented in the weighting scheme. In practice, we used the 𝑛̄ of one tracer stretched
over the counts of the other tracer to generate the corresponding tracers, with the addition
of a normalization factor in order to input the data into the usual Yamamoto estimator.

Objectives of the thesis

Now we can build a scheme of the work needed to measure the cosmological parameters
from a general survey, which is presented in a diagrammatic form in figure 13.

In Chapter 1 we will discuss shortly the instrument needed to obtain the positions of the
galaxies to create a 3D map of the Universe: the Dark Energy Spectroscopic Instrument
(DESI), and we will present our target dataset of bright galaxies: Bright Galaxy Survey
(BGS).

In Chapter 2 we will go deeper into the theoretical modelling of the two-point statistics,
introduce further order terms and significantly speed up the practical computation using
machine learning techniques.

In Chapter 3 we will present different techniques for the numerical simulations of the
Universe, which will allow us to study systematics and will serve us as realizations of the
Universe for error estimation, and we will explain why the massive mock production for
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BGS was unfeasible.
In Chapter 4 we will dive further into the errorbar estimation, where we will go

over different approaches to obtain the covariance matrix, including the Fitcov approach
developed specifically for the complicated case of BGS and we will explain the problem
of cosmic variance and why it is so present for BGS. Finally, we will present different
covariance matrices created by us for the analysis of the data,

Finally, in Chapter 5 we will present in more detail the 2-point full-shape analysis,
we will discuss the problems of compression and present the multitracer approach, which
allows to bypass the cosmic variance. Then we will present the results of massive tests of
various tools (covariances, models, simulations) created by us, and we will finally reach
the last point: we will present the results of the multi tracer analysis of the BGS DR1
data with FitCov covariance and NN-powered theoretical modelling, and compare it to the
more traditional approach.
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Chapter 1

DESI

О, пыль миров! О, рой
священных пчёл!
Я исследил, измерил, взвесил,
счёл, —
Дал имена, составил карты,
сметы. . .

V. Voloshin, Translation

Introduction

There are two categories of optical galaxy surveys: photometric and spectroscopic ones.
The former observe the objects in the sky with a given magnitude limit, that depends on
the depth of the survey, with different filters. However, the redshifts obtained for such
galaxies are less precise than spectroscopic ones[1]. The spectroscopic surveys measure
the spectra of observed objects. That does take longer, and as a result, the spectroscopic
surveys feature less objects. However, for each galaxy observed we have a much more
precise redshift, which allows us to build accurate 3D maps of the observable Universe.

The Dark Energy Spectroscopic Instrument (DESI, [2, 3]) is a fourth-generation spec-
troscopic survey, which I have been working on during this thesis work. It is a robotic
fibre-fed highly multiplexed spectroscopic instrument. It is installed on the 4-meter Mayall
telescope at Kitt Peak National Observatory in Arizona. Each of 5000 fibres is able to
observe a separate spectrum, thus allowing the instrument to gather 5000 spectra at a time,
covering for one exposure around 3deg2 part of the sky. Currently, DESI aims to cover
14000deg2 with 40 million objects observed within 5 years of observation. It started its
survey operations in May 2021 and 2 more years of active survey data acquisition is left by
the time of writing this thesis. This thesis work uses 1-year of DESI observation, called
the Data Release 1 (DR1) hereafter.
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1.1. INSTRUMENT OVERVIEW AND OBSERVATIONS DESI

Figure 1.1: Model of the Mayall Telescope with the DESI instrumentation. Taken from
[4].

1.1 Instrument overview and observations

1.1.1 Technical details

The DESI instrument is very complex, with a lot of technical details worth many papers
on their own. An overview of the DESI instrument can be found in [4]. In this section,
we will just briefly present the instrument. An illustration of the different components of
the DESI instrument is presented in Figure 1.1.

The most important innovation of DESI is the 0.8 m diameter focal plane with 5000
robotically-positioned fibres. DESI’s predecessor survey, SDSS eBOSS[5] which used
SDSS[6], had its 1000 fibres positioned manually, which took much longer than DESI.
Eash positioner has its own microcontroller and set of motors, thus coordinating the
movement to evade collisions becomes an important task. More about them can be found
here:[7].

The focal plane is composed of 10 ”petals” (equal sized sectors of the round focal
plane), each with a Guide Focus Alignment camera, which maintains optical alignment
between the primary mirror and the optical corrector.
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Figure 1.2: Schematic of one of the spectrographs of the DESI instrument. Taken from
[2].
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Channel Spectral Range (Å) Spectral resolution
Blue (B) 3600-5930 2000-3200
Red (R) 5600-7720 3200-4100

Near Infrared (Z) 7470-9800 4100-5100

Table 1.1: Spectral range and resolutions for each channel of the spectrographs. Taken
from [3].

Each petal is connected to a single three-arm spectrograph, which covers a wavelength
range from 3600 to 9800 Å. The scheme of the spectrograph is shown in Figure 1.2.
The light is therefore divided into three wavelength channels: Blue(B), Red(R) and Near
Infrared(Z), depending on the spectral range. The spectral resolution (which is defined
as 𝑆𝑅 = 𝜆

Δ𝜆
, where Δ𝜆 is the smallest difference of wavelength that can be resolved

at wavelength 𝜆) of each of arms is shown in Table 1.1. This configuration optimises
throughput, increases spectral coverage, with the resolution enough to resolve, for example,
the [OII] doublet of ELGs and other fine spectral features.

Finally, the light is collected by CCD (charge-coupled device) sensors installed inside
the vacuum cryostats, with the blue CCDs (4096 × 4096 STA4150) kept at ∼ 163𝐾 and
the others (4114 × 4128 produced by LBL for DESI with wafers from Dalsa) kept at
∼ 140𝐾[3].

1.1.2 Observations

Target selection

Target selection is the process of choosing the objects in the sky based on their photometric
properties from which we want to measure the spectra. In case of DESI, the data from
the Data Release 9 of the Legacy Imaging Surveys program was used[8], which covered
∼ 19700deg2 of the sky in the three optical bands 𝑔, 𝑟 and 𝑧. Additional optical bands
were collected by different independent surveys[9–11].

Using the photometric data, the Target Selection algorithm is specific to each tracer
but with a common strategy: 1) apply a morphological cut to select extended objects that
correspond to galaxies or point-source objects, 2) apply a colour selection to select the
required number density of a given type of galaxies in a given redshift range. The Target
Selection pipeline for DESI is described in [12].

The main survey

Once the targets are selected, DESI performs the spectroscopic survey of the selected
targets. There are two programs: the dark time program, which observes galaxies in the
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Figure 1.3: Bright galaxies observed by DESI throughout the first year of operations. The
color indicates the number of tiles a galaxy could have been observed in. The footprint is
comprised of round patches (tiles), which are often intersecting.

redshift range of 0.4 < 𝑧 < 4 typically and the bright time program, which observes bright
galaxies and Milky Way stars. The second program is used when the observing conditions
(typically the moon brightness) are not good enough for the dark program. There is also
a backup program, which is considered when the observational conditions are too poor to
observe the bright program. The combination of bright and dark programs is the main
survey. The observational strategy for DESI is described in great detail in [13].

During the operations, the telescope is never completely shut down. The vacuum and
the temperature have to be maintained to keep away the condensation from the CCDs, for
example. The night usually starts with the verification of the correct functionality of all the
components. Each night, the calibration is performed to subtract the background noise of
CCDs, which is done by exposing with the dome being shut down, and ensuring there are
no light sources inside. The calibration lamps inside the dome are then lit with a smooth
spectrum, ensuring that each pixel of the spectrograph is illuminated with the same flux.
After that, the procedure is repeated but now with a light with clearly defined emission
lines. This is also how the spectral resolution is measured. Then, the observation starts.

A part of the sky observed by DESI with a single exposure is called a tile. The whole
DESI footprint is in fact divided into such tiles, meaning that some targets can be inside
several tiles, as they can overlap (Figure 1.3). The icohasedral tiling was chosen following
[14], such that, taking into account the shape of the focal plane, there is no area inside
the footprint which will be left uncovered through several passes, as every pass shifts and
rotates the tile with respect to the previous one. For more detail on the tiling strategy we
refer to [2].

At the end of each exposure, which usually lasts around 20 minutes, the raw CCD
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spectra are obtained. It should be noted that the exposure time is dynamically allocated
and varies from tile to tile and current sky conditions. Each of the exposures is manually
verified by a support observer (a role which the author fulfilled for several dozens of
nights), to ensure nothing went wrong, the noise on the CCDs stayed negligible and the
guidance of the telescope was not compromised.

Redshift determination

Once the exposures are saved, the pipeline reduces, classifies and measures redshifts for
all the targets. The details on the spectroscopic pipeline can be found in [15]. The
spectra are classified by a software called Redrock1, based on a template fitting method.
The minimisation relies on a linear combination of spectral templates over the set of
training templates. Depending on the class of a target, templates are constructed from
previously observed objects of the same class. The parameters inferred through such
a maximum likelihood fit are the redshift, uncertainty on it, the spectral class and the
nuisance parameters. In figure 1.4 one can find an example of an Emission Line Galaxy
spectra with some of the emission lines indicated, as well as the images from the DESI
Legacy Imaging Surveys with the corresponding galaxies indicated.

1.2 DESI tracers

As mentioned earlier, the main survey of DESI consists of two parts: the dark and bright
time surveys. The dark time survey can be further separated into three types of objects
observed: Luminous Red Galaxies (LRGs), Emission Line Galaxies (ELGs), and Quasars
(QSOs). The bright time is primarily dedicated to the follow up of bright galaxies with the
Bright Galaxy Survey (BGS) and stars through the Milky-Way Survey. Each subsample
has a different selection procedure, and constitutes a separate catalogue of objects for
analysis. The DESI footprint is further separated into two galactic caps, disconnected
regions on the sky usually defined by a 𝐷𝐸𝐶 ∼ 30deg line, and called the northern and
the southern galactic caps (NGS and SGC respectively).

Bright Galaxy Survey

The Bright Galaxy Survey (BGS) [17] is a flux-limited sample of galaxies, which comes
in two flavours: BGS Bright, with an apparent magnitude limit of 𝑟 < 19.5, and BGS
Faint with 19.5 < 𝑟 < 20.175.To discriminate between stars and galaxies the Gaia G-band
magnitude is used [18], otherwise, if the object is not present in the Gaia catalogue, it is
considered as a galaxy[17]. Due to their bright magnitudes, these are the galaxies which

1https://github.com/desihub/redrock
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Figure 1.4: Examples of the ELG spectra (left panel) ordered by their quality, where quality
goes from 0, represnting useless spectra with no signal detectable to quality 4 being the
highest, representing two or more well resolved spectral features, and the corresponding
target images from the photometric surveys (right panel). We can see that as the quality
decreases, less and less features are observed in the spectrum. Adapted from [16].
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are situated the closest to us. We will discuss this sample in more detail in a separate
section as it is the dataset of interest for this thesis.

Luminous Red Galaxies

Luminous Red Galaxies (LRGs) are old elliptical galaxies in which the star formation
process has already stopped. They are recognised by a 4000𝐴̊ break in their spectra in the
rest frame [19]. We expect to collect 8 million LRGs in 0.4 < 𝑧 < 1.0. The details for the
target selection of LRGs can be found here:[20].

Emission Line Galaxies

Emission Line Galaxies are typically the younger spiral galaxies with star-formation still
going on. Thus, the noticeable emission lines in the galaxy spectra [21, 22], which gives
the name to this tracer. We expect to collect 16 million ELGs in 0.6 < 𝑧 < 1.6. The details
of the target selection for this tracer can be found in [23]. The ELG dataset is subdivided
into two parts, ELG VLOP and ELG LOP, which tend to occupy different redshift ranges,
0.6 < 𝑧 < 1.1 and 1.1 < 𝑧 < 1.6 respectively, and have been assigned different priorities
during the fibre assignment process (see [24] for more details).

Quasars

Quasi-stellar objects, often denoted as quasars (QSOs), are a type of active galactic nuclei
(AGN), which can produce long jets of gas. The luminosity of a quasar powered by the
accretion onto the Super Massive Black Hole at its centre therefore exceeds the luminosity
of the host galaxy, and makes them as one of the brightest visible objects in the Universe,
allowing to detect them even at high redshifts. We expect to collect 3 million QSOs in
0.9 < 𝑧 < 4: quasars between 0.9 < 𝑧 < 2.1 are used as direct tracers of the matter field in
a similar fashion as the other tracers, while quasars at 𝑧 > 2.1 are used for their Lyman-𝛼
forests. The latter correspond to the absorption of neutral hydrogen along the LOS by the
intergalactic medium. The details on the quasar target selection can be found in [25].

1.3 Galaxy catalogues for clustering analysis

1.3.1 Systematics

Imaging systematics

The target density over the sky is not uniform, due to varying quality and depth of the
photometry. Those inhomogeneities are due to many factors: presence of the Milky-
Way, varying level of galactic extinction, contamination from stars biases the clustering
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Figure 1.5: Fluctuations of the galaxy number density with respect to stellar density,
i-band depth and z-band flux for eBOSS LRG data, for NGC (Upper panel) and SGC
(Lower panel). Red points indicate the fluctuations before the correction, while the blue
indicate those after. The green histograms show the distribution of the quantities. Taken
from [26].

of obtained galaxies, imperfect star-galaxy separation that can bias the clustering signal
of galaxies... In DESI we mitigate these imaging systematics by computing weights that
minimise the dependency of the target selection density with those photometric conditions.
For BGS and LRG targets, we use weights, obtained by creating a linear regression model
accounting for non-cosmological density fluctuations, as described in [26]. They are not
as affected by the imaging systematics as other fainter tracers [27]. An example of the
effect of such weights on the density with respect to various photometric quantities can be
seen in Figure 1.5, where the number density fluctuations are shown for the eBOSS LRG
data before and after the corrections as red and blue points respectively. We can notice a
noticeable improvement before and after the corrections, especially for the regions with
high stellar density. Uncorrected, it otherwise impacts clustering on larger scales [26].

A package called regressis, based on random forests regression and observational
feature templates has been developed for QSOs to mitigate those systematics and compute
the corresponding photometric weights. It can also be used for ELGs, with more details
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Figure 1.6: A Legacy Survey image annotated with specific DESI targets (white circles)
and with the patrol radius of each fibre superimposed in light blue for a specific tile. One
fibre can target only one galaxy in a given tile, thus in this example three passes are needed
to cover the three targets reachable by one fibre only in the centre. Taken from [24].

in [28]. Another package called Sysnet2[29] based on neural networks also does the
same and is used as default imaging weights for ELG. More details about the imaging
systematics and their mitigation for DESI DR1 data can be found in [27].

Spectroscopic systematics

Similarly to imaging systematics, some contamination can arise from redshift uncertainty
and/or spectroscopic failure. The corresponding weights are also generated, which are
based on the redshift determination success rate, which is measured with respect to the
redshift and flux (as we would expect fainter galaxies to have worse redshifts). The
methodology is described in more detail in[23, 30–32]. Moreover, the impact of those
spectroscopic systematics (redshift failure, redshift uncertainty and the dependence on the
observation conditions of the redshift success rate) on the clustering statistics has been
studied in detail in [31, 32].

Fibre assignment systematics

One of the most important systematics of DESI concerns the fiber assignment procedure.
For a given tile, each fiber is able to observe only one target within its patrol radius,
meaning that for the dense regions in the sky, some targets might remain unobserved if
not enough passes have been made (an illustration of this is shown in Figure 1.6). Thus,

2https://github.com/mehdirezaie/SYSNet
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Figure 1.7: Spatial distribution of the systematic weight for DESI BGS DR1, with colour
representing the mean weight value in the bin.

one needs to either pass multiple times over the dense region to obtain the spectra from
all targets, or estimate the targeting incompleteness. This can be done by simulating
the assignment of the fibers to the galaxies multiple times, generating the ”alternative”
observations, allowing for the estimations of the probability of the pair of objects to be
observed (more details available in [33]). When computing clustering statistics, one way
to account for this effect is to ignore the pairs with small angle separation when computing
clustering statistics, which is the way DESI DR1 will deal with fibre collisions [34].

Systematics weights

The weights previously introduced (i.e. completeness 𝑤comp, imaging 𝑤im and spectro-
scopic 𝑤zfail weights) are combined by multiplication, to produce the final weights 𝑤:

𝑤 = 𝑤im𝑤zfail𝑤comp (1.1)

These weights allow to achieve a less biased estimate of the 2-point clustering statistics
[27]. The spatial distribution of systematic weights for BGS DR1 is presented in Figure 1.7.

Veto masks

Some parts of the footprint are removed all together from the clustering catalogues, due
to the presence of bright objects like stars, or due to hardware issues during observations.
Thus, ∼ 5% of the footprint is removed using a veto mask. The veto mask is defined based
on the tracer, for example for BGS it is based on the Legacy Surveys[8] and cuts the Milky
Way stars. More details on that procedure can be found in [27].
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1.3.2 Random catalogues

An important part of the clustering products for the analysis of any DESI galaxy data is the
random catalogue, which, as shown in the introduction,accounts for the geometry of the
survey. The random catalogue is created by generating a uniformly distributed footprint
in RA and DEC first, which is then cut to the area observed by the DESI survey. Once
that is done, the generated points are randomly assigned redshifts and other associated
quantities from the observed galaxies, thus automatically matching the required number
density. This approach is also known as shuffling and was used for SDSS as well [35, 36].
It has been shown that such shuffling method introduces a radial integral constraint [37].
More details about this effect and how to deal with it for DESI is described in [38]. Finally,
the weights are normalised such that for each of the galactic caps the ratio of random data
counts to observed data counts is the same. Additionally, the same veto masks are applied.

1.4 BGS specificities

This thesis focuses primarily on the Bright Galaxy Survey. Taking into account all the
sub-selections combined (BGS Bright + BGS Faint + BGS Active Galactic Nuclei (AGN)),
the BGS is more than ten times higher density of objects than that of the LOWZ SDSS-III
BOSS sample ([39, 40]. It should be mentioned, that even though there are slightly denser
surveys with comparable targets, like GAMA[41–43], the DESI BGS features a much
larger area ( 50 larger than GAMA). The final target selection procedure for the BGS is
described in [17]. As mentioned above, the star-galaxy separation uses GAIA magnitude
which results in a stellar contamination being negligible (<1%). A fibre-magnitude cut is
applied to remove spurious objects which are imaging artefacts or fragments of galaxies.
For cosmological analysis, we restrict the analysis to the BGS Bright which will contain
13.5 million galaxies brighter than 𝑟 ≲ 19.5 over 5 years of observation. The target
selection for the BGS bright was first described in [18] and the clustering properties of the
BGS targets for cosmological analysis were first studied in [44]. The BGS catalogue also
features many galaxy properties (apparent and absolute magnitudes, observed and rest-
frame colours, ...) allowing for the multi-tracer analysis which is discussed in Chapter 5).

As we are interested in the galaxy clustering, we will be focusing on BGS Bright,
which features a very high redshift success rate (Figure 1.9), and no additional physical
cuts beyond the apparent magnitude one and the systematical ones, thus making it highly
complete.

In this thesis, we will be interested in separating galaxies into a red and a blue sample.
Hence we will need to convert their apparent colours to rest-frame colours. This can
be done by using the k-correction between bands Q and R, 𝐾𝑄𝑅, which is often defined
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Figure 1.8: Distribution of BGS Bright DR1 galaxies in the redshift and rest-frame color
plane, with an overall rest-frame color distribution on the left. The red line indicates the
cut between red and blue galaxies, and the color indicates the number of galaxies in the
bin.

Figure 1.9: Binned redshift success rate (represented by color) as a function of observed
(g-r) and (r-z) colors for DESI BGS Bright.
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following [45] as:
𝑚𝑅 = 𝑀𝑄 + 𝐷𝑀 + 𝐾𝑄𝑅 (1.2)

where 𝑚𝑅 is the apparent magnitude in band R, 𝑀𝑄 is the absolute magnitude of a
source in band Q, DM is a distance modulus, defined by the luminosity distance 𝐷𝐿 as:

𝐷𝑀 = 5log10
𝐷𝐿

10pc
(1.3)

Thus, the k-correction 𝐾𝑄𝑅 connects the observed apparent magnitude 𝑚𝑅 in a band-
pass 𝑅with an absolute magnitude (magnitude, which the source would have if the observer
was 10 pc away from it), with a filter 𝑄, all of that in the rest-frame of the source (thus,
not redshifted). [45] provides:

𝐾𝑄𝑅 = −2.5log10

[
1

1 + 𝑧

∫
𝑑𝜆𝑜𝜆𝑜 𝑓𝜆 (𝜆𝑜)𝑅(𝜆𝑜)

∫
𝑑𝜆𝑒𝜆𝑒𝑔

𝑄

𝜆
(𝜆𝑒)𝑄(𝜆𝑒)∫

𝑑𝜆𝑜𝜆𝑜𝑔
𝑅
𝜆
(𝜆𝑜)𝑅(𝜆𝑜)

∫
𝑑𝜆𝑒𝜆𝑒 𝑓𝜆 ( [1 + 𝑧]𝜆𝑒)𝑄(𝜆𝑒)

]
(1.4)

where 𝑓𝜆 (𝜆) is the source flux density, 𝑔𝑅
𝜆
(𝜆) and 𝑔𝑄

𝜆
(𝜆) are the standard-source flux

densities, the bandpass function are 𝑅(𝜆) and𝑄(𝜆), 𝜆 is a wavelength and 𝑧 is the redshift
of the source. The flux densities can be related to apparent magnitudes as:

𝑚𝑅 = −2.5log10

∫
𝑑𝜆𝑜𝜆𝑜 𝑓𝜆 (𝜆𝑜)𝑅(𝜆𝑜)∫
𝑑𝜆𝑜𝜆𝑜𝑔

𝑅
𝜆
(𝜆𝑜)𝑅(𝜆𝑜)

(1.5)

For AB magnitudes, such as the ones used in DESI, the standard source is taken to be
a hypothetical constant source such that for all wavelengths 𝑔𝐴𝐵 = 3631 × 10−26𝑊𝑚−2𝑠.

In DESI there are three photometric bands provided: 𝑟, 𝑔 and 𝑧 [17]. For each band
the k-correction thus will be different, therefore separate k-corrections for 𝑔 and 𝑟 bands
are needed to compute the rest-frame color. They can be inferred from the data following,
for example, [46].

Another correction to be included is called an e-correction, and accounts for the
evolution of the intrinsic luminosity of the galaxy. The form taken is usually the following,
assuming the density does not evolve:

𝐸 (𝑧) = −𝑄0(𝑧 − 𝑧ref) (1.6)

where for r-band magnitudes 𝑄0 was empirically found to be 𝑄0 = 0.97[46]. It is
substracted from the absolute magnitude.

This gives us all the tools needed to obtain rest-frame colors from observed fluxes.
Figure 1.8 shows the plane 𝑔 − 𝑟 colour vs 𝑧 for the BGS DR1 data, with the indication
of the cut between the red and blue galaxies. The example spectra of red a blue galaxies
from BGS Bright are also shown in Figure 1.10.

The presence of colors is what will allow us later to attempt to bypass the cosmic
variance in the otherwise overly dense catalogue.
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Figure 1.10: Optical spectrum of a blue (top panel) and a red (bottom panel) galaxy from
BGS Bright DR1 in grey. The orange line represents the uncertainty, the black line is a
spectra rebinned to a coarser wavelength, and the blue line represents the best-fit value
from the Redrock template used to measure the redshift.

References

[1] Jeffrey A. Newman and Daniel Gruen. “Photometric Redshifts for Next-Generation
Surveys”. In: Annual Review of Astronomy and Astrophysics 60.Volume 60, 2022
(2022), pp. 363–414. issn: 1545-4282. doi: https://doi.org/10.1146/
annurev-astro-032122-014611. url: https://www.annualreviews.org/
content/journals/10.1146/annurev-astro-032122-014611.

[2] DESI Collaboration et al. “The DESI Experiment Part I: Science,Targeting, and Sur-
vey Design”. In: arXiv e-prints, arXiv:1611.00036 (Oct. 2016), arXiv:1611.00036.
arXiv: 1611.00036 [astro-ph.IM].

[3] DESI Collaboration et al. The DESI Experiment Part II: Instrument Design. 2016.
arXiv: 1611.00037 [astro-ph.IM].

[4] B. Abareshi et al. “Overview of the Instrumentation for the Dark Energy Spectro-
scopic Instrument”. In: The Astronomical Journal 164.5 (Oct. 2022), p. 207. issn:
1538-3881. doi: 10.3847/1538-3881/ac882b. url: http://dx.doi.org/10.
3847/1538-3881/ac882b.

[5] Kyle S. Dawson et al. “The SDSS-IV Extended Baryon Oscillation Spectroscopic
Survey: Overview and Early Data”. In: 151.2, 44 (Feb. 2016), p. 44. doi: 10.3847/
0004-6256/151/2/44. arXiv: 1508.04473 [astro-ph.CO].

57

https://doi.org/https://doi.org/10.1146/annurev-astro-032122-014611
https://doi.org/https://doi.org/10.1146/annurev-astro-032122-014611
https://www.annualreviews.org/content/journals/10.1146/annurev-astro-032122-014611
https://www.annualreviews.org/content/journals/10.1146/annurev-astro-032122-014611
https://arxiv.org/abs/1611.00036
https://arxiv.org/abs/1611.00037
https://doi.org/10.3847/1538-3881/ac882b
http://dx.doi.org/10.3847/1538-3881/ac882b
http://dx.doi.org/10.3847/1538-3881/ac882b
https://doi.org/10.3847/0004-6256/151/2/44
https://doi.org/10.3847/0004-6256/151/2/44
https://arxiv.org/abs/1508.04473


REFERENCES DESI

[6] James E. Gunn et al. “The 2.5 m Telescope of the Sloan Digital Sky Survey”. In:
The Astronomical Journal 131.4 (Apr. 2006), pp. 2332–2359. issn: 1538-3881.
doi: 10.1086/500975. url: http://dx.doi.org/10.1086/500975.

[7] Joseph Harry Silber et al. “The Robotic Multiobject Focal Plane System of the
Dark Energy Spectroscopic Instrument (DESI)”. In: 165.1, 9 (Jan. 2023), p. 9. doi:
10.3847/1538-3881/ac9ab1. arXiv: 2205.09014 [astro-ph.IM].

[8] D. Schlegel et al. “DESI Legacy Imaging Surveys Data Release 9”. In: AAS Meeting
Abstracts. Vol. 237. AAS Meeting Abstracts. Jan. 2021, 235.03, p. 235.03.

[9] R. M. Cutri and et al. VizieR Online Data Catalog: WISE All-Sky Data Release
(Cutri+ 2012). Apr. 2012.

[10] Gaia Collaboration et al. “The Gaia mission”. In: AA 595 (2016), A1. doi: 10.
1051/0004-6361/201629272. url: https://doi.org/10.1051/0004-
6361/201629272.

[11] Edward L. Wright et al. “The Wide-field Infrared Survey Explorer (WISE): Mission
Description and Initial On-orbit Performance”. In: 140.6 (Dec. 2010), pp. 1868–
1881. doi:10.1088/0004-6256/140/6/1868. arXiv:1008.0031[astro-ph.IM].

[12] Adam D. Myers et al. “The Target-selection Pipeline for the Dark Energy Spectro-
scopic Instrument”. In: The Astronomical Journal 165.2 (Jan. 2023), p. 50. issn:
1538-3881. doi: 10.3847/1538-3881/aca5f9. url: http://dx.doi.org/10.
3847/1538-3881/aca5f9.

[13] E. F. Schlafly et al. Survey Operations for the Dark Energy Spectroscopic Instru-
ment. 2024. arXiv: 2306.06309 [astro-ph.CO].

[14] R.H Hardin et al. Tables of Spherical Codes with Icosahedral Symmetry. 2021.

[15] J. Guy et al. “The Spectroscopic Data Processing Pipeline for the Dark Energy
Spectroscopic Instrument”. In: The Astronomical Journal 165.4 (Mar. 2023), p. 144.
issn: 1538-3881. doi: 10.3847/1538-3881/acb212. url: http://dx.doi.
org/10.3847/1538-3881/acb212.

[16] Ting-Wen Lan et al. “The DESI Survey Validation: Results from Visual Inspection
of Bright Galaxies, Luminous Red Galaxies, and Emission-line Galaxies”. In: The
Astrophysical Journal 943.1 (Jan. 2023), p. 68. issn: 1538-4357. doi: 10.3847/
1538- 4357/aca5fa. url: http://dx.doi.org/10.3847/1538- 4357/
aca5fa.

[17] ChangHoon Hahn et al. 2022. doi: 10.48550/ARXIV.2208.08512. url: https:
//arxiv.org/abs/2208.08512.

58

https://doi.org/10.1086/500975
http://dx.doi.org/10.1086/500975
https://doi.org/10.3847/1538-3881/ac9ab1
https://arxiv.org/abs/2205.09014
https://doi.org/10.1051/0004-6361/201629272
https://doi.org/10.1051/0004-6361/201629272
https://doi.org/10.1051/0004-6361/201629272
https://doi.org/10.1051/0004-6361/201629272
https://doi.org/10.1088/0004-6256/140/6/1868
https://arxiv.org/abs/1008.0031
https://doi.org/10.3847/1538-3881/aca5f9
http://dx.doi.org/10.3847/1538-3881/aca5f9
http://dx.doi.org/10.3847/1538-3881/aca5f9
https://arxiv.org/abs/2306.06309
https://doi.org/10.3847/1538-3881/acb212
http://dx.doi.org/10.3847/1538-3881/acb212
http://dx.doi.org/10.3847/1538-3881/acb212
https://doi.org/10.3847/1538-4357/aca5fa
https://doi.org/10.3847/1538-4357/aca5fa
http://dx.doi.org/10.3847/1538-4357/aca5fa
http://dx.doi.org/10.3847/1538-4357/aca5fa
https://doi.org/10.48550/ARXIV.2208.08512
https://arxiv.org/abs/2208.08512
https://arxiv.org/abs/2208.08512


DESI REFERENCES

[18] Omar Ruiz-Macias et al. “Characterizing the target selection pipeline for the
Dark Energy Spectroscopic Instrument Bright Galaxy Survey”. In: MNRAS 502.3
(Feb. 2021), pp. 4328–4349. issn: 0035-8711. doi: 10.1093/mnras/stab292.
eprint: https://academic.oup.com/mnras/article-pdf/502/3/4328/
39112755/stab292.pdf. url: https://doi.org/10.1093/mnras/stab292.

[19] B. M. Poggianti and G. Barbaro. “Indicators of star formation: 4000 Å break and
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Chapter 2

Theory of galaxy clustering

Мы шепчем всем ненужные
признанья,
От милых рук бежим к
обманным снам,
Не видим лиц и верим именам,
Томясь в путях напрасного
скитанья.

M. Voloshin, Translation

Introduction

We will start this section with an obvious statement: the data does not carry any value
without comparing it to the theory, which serves as a mathematical representation of our
beliefs about the Universe. A brief overview of the current theoretical framework used for
studying the expansion of the Universe is needed. I will also share some new techniques
I have used in order to use that framework to compare it to the data, with the potential
of pushing our theoretical predictions even further in terms of accuracy using the recent
developments in the area of machine learning.

Equipped with an intuitional understanding given by the Eulerian perturbation theory
developed in the Introduction, I will start with a shift in formulation of the theory already
presented to a Lagrangian perturbation theory framework (LPT), a bit more convenient in
actual calculations but slightly less intuitive from a naive point of view, in terms of which
I will formulate the redshift space distortions and present the different ways of expanding
the non-linear power spectrum into a perturbative series. I will conclude by presenting the
effort that I and other people have done in order to push further the speed and accuracy
of the theoretical frameworks using the latest developments in data science techniques,
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including the presentation of the neural network emulator for 2-point clustering statistics,
presented in [1].

2.1 Lagrangian perturbation theory

Lagrangian perturbation theory is an approach developed in [2–12]. It is characterised by
the fact that, instead of trying to follow the naive approach of following the positions of
the fluid elements 𝒙(𝜏), it instead tracks the displacement field 𝚿(𝒙0, 𝜏) with respect to
the starting position 𝒙0, which can be defined as:

𝒙(𝜏) = 𝒙0 + 𝚿(𝒙0, 𝜏) (2.1)

That fully defines the evolution of the fluid elements. The density field then can be
formulated in configuration and Fourier space as follows:

1 + 𝛿(𝒙, 𝜏) =
∫

𝑑3𝒙0 𝛿𝐷 (𝒙 − 𝒙0 − 𝚿(𝒙0, 𝜏)) (2.2)

(2𝜋)3𝛿𝐷 (𝒌) + 𝛿(𝒌, 𝜏) =
∫

𝑑3𝒙0 𝑒
−𝑖𝒌·(𝒙0+𝚿(𝒙0,𝜏)) (2.3)

where 𝛿𝐷 (𝑥) is the Dirac delta-function.
The evolution equations for 𝚿(𝒙0, 𝜏) can be then written (following [11]) as:

¥𝚿(𝒙0, 𝜏) + H ¤𝚿(𝒙0, 𝜏) = −∇Φ(𝒙0 + 𝚿(𝒙0, 𝜏)) (2.4)

Where Φ(𝒙) is the gravitational potential from Introduction.
From now on, we will attempt the perturbative solution of these equations. However,

it should be noted that the small scales are unfortunately unsolvable. So, following the
traditional approach [11] we will first filter them out, and deal with them in a different
manner (ex. Equation 2.10).

We therefore introduce a filter𝑊𝑅 (𝒙, 𝒙′), and separate the displacements into 𝚿𝑆 and
𝚿𝐿 for short-wavelength and long-wavelength components correspondingly, such that:

𝚿𝐿 (𝒙0, 𝜏) =
∫

𝑑3𝒙′0𝑊𝑅 (𝒙0, 𝒙
′
0)Ψ(𝒙′0, 𝜏) (2.5)

𝚿𝑆 (𝒙0, 𝜏) = 𝚿(𝒙0, 𝜏) − 𝚿𝐿 (𝒙0, 𝜏) (2.6)

We can see, that defined in such a manner
∫
𝑑3𝒙′0𝑊𝑅 (𝒙′0, 𝒙0)Ψ𝑆 (𝒙′0, 𝜏) = 0.

By analogy we also define the long-wavelength density contrast 𝛿𝐿 and Ψ𝐿 , which
allows us [11] to rewrite the equation 29 for long-wavelength components:

∇2Φ𝐿 =
3
2
H2Ω𝑚𝛿𝐿 (2.7)

We can then rewrite the equation 2.4 as:
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¥𝚿𝐿 (𝒙0, 𝜏) + H ¤𝚿𝐿 (𝒙0, 𝜏) = −
∫

𝑑3𝒙0𝑊𝑅 (𝒙′0, 𝒙0)∇Φ(𝒙′0 + 𝚿(𝒙′0, 𝜏))

= −
∫

𝑑3𝒙0𝑊𝑅 (𝒙′0, 𝒙0)∇Φ𝑆 (𝒙′0 + 𝚿(𝒙′0, 𝜏)) −
∫

𝑑3𝒙0𝑊𝑅 (𝒙′0, 𝒙0)∇Φ𝐿 (𝒙′0 + 𝚿(𝒙′0, 𝜏))

= −∇Φ𝐿 (𝒙0 + 𝚿(𝒙0, 𝜏)) + 𝛼𝑆 (𝒙0 + Ψ𝐿 (𝒙0, 𝜏)) (2.8)

We have added the term 𝜶𝑠 (𝒒,𝚿𝐿 (𝒒, 𝝉)) to represent the sources of displacement
from the small-scale modes, which may not be well captured by the perturbation theory,
following [11].

The solution to such an equation can be written in a perturbative form, where an
𝑛𝑡ℎorder contribution in the long-wavelength regime can be represented as:

𝚿(𝑛)
𝐿

(𝒌) = 𝑖𝐷
𝑛

𝑛!

∫
𝑑3𝑘1

(2𝜋)3 ...
𝑑3𝑘𝑛

(2𝜋)3 𝛿𝐷 (
∑︁
𝑗

𝒌 𝑗 − 𝒌)𝑳𝑛 (𝒌1, ..., 𝒌𝑛)𝛿0(𝒌1)...𝛿0(𝒌𝑛) (2.9)

where 𝐷 is the linear growth rate and the perturbative kernels 𝑳𝑛 can be found in [6].
Additional contributions come from the 𝜶𝑠 term we will parameterize by a number

of the counter-terms, which will govern the small-scale mode evolution. This way of
modelling the smaller scales is called Effective Field Theory(EFT). Accounting for only
the lowest order contributions, the displacement is then written perturbatively as:

𝚿(𝒙0, 𝜏) = 𝚿(1)
𝐿

(𝒙0, 𝜏) + 𝚿(2)
𝐿

(𝒙0, 𝜏) + 𝚿(3)
𝐿

(𝒙0, 𝜏) + ... +
1
2
𝛼1∇𝛿0 + S + ... (2.10)

where S is a term uncorrelated with 𝛿0, leading to the shot noise term for the power
spectrum.

If we define now the quantity𝐾 (𝒙0, 𝒌) =
〈
𝑒𝑖𝒌·𝚫

〉
, where𝚫(𝒙0, 𝜏) = 𝚿(𝒙0, 𝜏)−𝚿(0, 𝜏),

then following[6] the power spectrum 𝑃(𝑘) and the correlation function 𝜉 (𝑟) can be
presented as:

𝑃(𝑘) =
∫

𝑑3𝑥0 𝑒
𝑖𝒙0·𝒌 (𝐾 (𝒙0, 𝒌) − 1) (2.11)

1 + 𝜉 (𝑟) =
∫

𝑑3𝑥0 𝑑
3𝑘

(2𝜋)3 𝑒𝑖𝒌·(𝒙0−𝒓)𝐾 (𝒙0, 𝒌) (2.12)

𝐾 (𝒙0, 𝒌) can be expanded using the cumulant theorem [7] as:

log𝐾 (𝒙0, 𝒌) = −1
2
𝑘𝑖𝑘 𝑗 𝐴𝑖 𝑗 (𝒙0) +

𝑖

6
𝑘𝑖𝑘 𝑗 𝑘 𝑙𝑊𝑖 𝑗 𝑙 (𝒙0) + ... (2.13)

with:
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Figure 2.1: The terms entering into the cumulants of Ψ, divided into contributions from
different orders and the counter-terms, assuming 𝛼𝑛 = 1 and 𝑧 = 0. Taken from [11].

𝐴𝑖 𝑗 (𝒙) = 2⟨Ψ𝑖 (0)Ψ 𝑗 (0)⟩ − 2⟨Ψ𝑖 (𝒙1)Ψ 𝑗 (𝒙2)⟩ ≡ 2(Σ2𝛿𝑖 𝑗 − 𝜂𝑖 𝑗 ) = ⟨Δ𝑖Δ 𝑗 ⟩ (2.14)

𝑊𝑖 𝑗 𝑙 (𝒙) = ⟨Ψ{𝑖 (𝒙1)Ψ 𝑗 (𝒙2)Ψ𝑙} (𝒙2)⟩ − ⟨Ψ{𝑖 (𝒙2)Ψ 𝑗 (𝒙1)Ψ𝑙} (𝒙1)⟩ = ⟨Δ𝑖Δ 𝑗Δ𝑙⟩ (2.15)

where 𝒙 = 𝒙1 − 𝒙2, and Δ𝑖 = Ψ𝑖 (0) − Ψ𝑖 (𝒙)
Given that𝑊𝑖 𝑗 𝑘 contains the product of two displacement fields evaluated at the same

point, it adds additional counter-terms, which we can obtain using symmetry arguments
[13], so we can write the expansion of the product of two displacements as:

Ψ𝑖 (𝒙)Ψ 𝑗 (𝒙) = Ψ
(1)
𝑖

(𝒙)Ψ(1)
𝑗
(𝒙) + Ψ

(1)
𝑖

(𝒙)Ψ(2)
𝑗
(𝒙) + Ψ

(2)
𝑖

(𝒙)Ψ(1)
𝑗
(𝒙) + ...

+ 1
3
𝛼0𝛿𝑖 𝑗 + 𝛼2𝛿𝑖 𝑗∇𝑙Ψ(1)

𝑙
+ 𝛼3

[
∇𝑖Ψ(1)

𝑗
+ ∇ 𝑗Ψ

(1)
𝑖

]
+ ... (2.16)

Following [11] and using their notation and the integrals they have defined as Ξℓ, we
can decompose 𝐴𝑖 𝑗 and𝑊𝑖 𝑗 𝑘 as:

𝐴𝑖 𝑗 =
2
3
𝛿𝑖 𝑗 (Ξ0(0) + 𝛼0 − Ξ0(𝑞)) +

(
𝑞𝑖𝑞 𝑗 −

1
3
𝛿𝑖 𝑗

)
Ξ2(𝑞) (2.17)

𝑊𝑖 𝑗 𝑘 (𝑞) =
2
5
𝑞{𝑖𝛿 𝑗 𝑘}Ξ1(𝑞) +

3
5
(5𝑞𝑖𝑞 𝑗𝑞𝑘 − 𝑞{𝑖𝛿 𝑗 𝑘})Ξ3(𝑞) (2.18)

Using this decomposition, we can estimate the contributions from different orders and
magnitudes in the final expression, which can be seen in Figure 2.1.

Eventually, we can separate the terms 𝐴𝑖 𝑗 into a linear part coming from the linear
order contributions and a non-linear part, e.g.:

𝐴𝑖 𝑗 (𝒙) = 𝐴lin
𝑖 𝑗 (𝒙) + 𝐴nonlin

𝑖 𝑗 (𝒙) (2.19)

The matter power spectrum 𝑃(𝑘) then can be shown to be, gathering everything we
have so far:
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Figure 2.2: Comparison of the power spectra to the N-body simulations at various redshifts.
Open circles: N-body simulations, black line: LPT power spectrum, red(dotted) line:
linear theory, green theory(dashed) theory: EPT similar to that used in [14]. Taken from
[6]

𝑃(𝑘) =
∫

𝑑3𝑞𝑒𝑖𝒌·𝒒−(1/2)𝑘𝑖𝑘 𝑗 𝐴lin
𝑖 𝑗

[
1 − 1

2
𝑘𝑖𝑘 𝑗 𝐴

nonlin
𝑖 𝑗 + 𝐼

6
𝑘𝑖𝑘 𝑗 𝑘𝑘𝑊𝑖 𝑗 𝑘 + ...

]
(2.20)

This gives us all of the ingredients to obtain a 1-loop corrected matter power spectrum
in real space. You can find more details on the computation in [7, 11]. We can see the
performance of such a model of a power spectrum in Figure 2.2.

2.2 Galaxy clustering

2.2.1 Lagrangian biases

Cosmological surveys observe discrete tracers such as galaxies rather than the underlying
matter distribution. Therefore, one has to take that into account when trying to match
the clustering of galaxies to that of the matter field. One of the ways to describe such a
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connection would be a bias model, which will describe the connection between the two.
In Lagrangian framework first we need to include the so-called bias functional 𝐹 [𝛿0(𝒒)]
in the initial conditions:

(2𝜋)3𝛿𝐷 (𝒌) + 𝛿𝑔 (𝒌) =
∫

𝑑3𝑞𝐹 [𝛿0(𝒒)]𝑒−𝑖𝒌·(𝒒+Ψ(𝒒)) (2.21)

which can be further expanded as the polynomial of overdensity 𝛿0(𝑞) as:

𝐹 [𝛿0(𝒒)] = 1 + 𝑏1𝛿0 +
1
2
𝑏2(𝛿2

0(𝒒) − ⟨𝛿2
0⟩) + 𝑏𝑠 (𝑠

2
0(𝒒) − ⟨𝑠2

0)⟩ + 𝑏3𝑂3(𝒒) (2.22)

where 𝑠0 = (𝜕𝑖𝜕𝑗/𝜕2 − 𝛿𝑖 𝑗/3)𝛿0 is the initial shear tensor, 𝑏1 can be connected to the linear
Eulerian bias as 𝑏1,𝑒 = 1 + 𝑏1. We follow the notation of [15].

We can therefore write the real-space power spectrum, repeating steps of the previous
section as:

𝑃biased(𝑘) =
∫

𝑑3𝑞
〈
𝐹 [𝛿0(𝒒1)]𝐹 [𝛿0(𝒒2)]𝑒𝑖𝑘 ·Δ

〉
(2.23)

We should note, however, that the presence of the galaxy biases modifies the original
expansion of eq 2.20. In order to describe it in a more concise manner, we will define
some new cumulant quantities:

𝑈𝑚𝑛
𝑖 = ⟨𝛿𝑚 (𝒙0)𝛿𝑛 (𝒙0Δ𝑖⟩ (2.24)

𝐴𝑚𝑛𝑖 𝑗 = ⟨𝛿𝑚 (𝒙0)𝛿𝑛 (𝒙0)Δ𝑖Δ 𝑗 ⟩ (2.25)

Together with quantities Υ, 𝑉𝑚𝑛
𝑖
, 𝜃, 𝜁 etc., expressions for which can be found in, for

example, [15], we can write an expression for the real-space biased power spectrum:

𝑃biased(𝑘) =
∫

𝑑3𝒒 𝑒𝑖𝒌𝒒𝑒−
1
2 𝑘𝑖𝑘 𝑗 𝐴

𝑙𝑖𝑛
𝑖 𝑗

{
1 − 1

2
𝑘𝑖𝑘 𝑗 𝐴

loop𝑖 𝑗 + 𝑖

6
𝑘𝑖𝑘 𝑗 𝑘𝑘𝑊𝑖 𝑗 𝑘

+ 𝑏1

(
2𝑖𝑘𝑖𝑈𝑖 − 𝑘𝑖𝑘 𝑗 𝐴10

𝑖 𝑗

)
+ 𝑏2

1

(
𝜉lin + 𝑖𝑘𝑖𝑈11

𝑖 − 𝑘𝑖𝑘 𝑗𝑈lin
𝑖 𝑈

lin
𝑗

)
+

+ 1
2
𝑏2

2𝜉
2
lin + 2𝑖𝑏1𝑏2𝜉lin𝑘𝑖𝑈

lin
𝑖 − 𝑏2

(
𝑘𝑖𝑘 𝑗𝑈

lin
𝑖 𝑈

lin
𝑗 + 𝑖𝑘𝑖𝑈20

𝑖

)
+

+ 𝑏𝑠
(
−𝑘𝑖𝑘 𝑗Υ𝑖 𝑗 + 2𝑖𝑘𝑖𝑉10

𝑖

)
+ 2𝑖𝑏1𝑏𝑠𝑘𝑖𝑉

12
𝑖 + 𝑏2𝑏𝑠𝜒 + 𝑏2

𝑠 𝜁+

+2𝑖𝑏3𝑘𝑖𝑈𝑏3,𝑖 + 2𝑏1𝑏3𝜃 + 𝛼𝑃𝑘2 + ...
}
+ 𝑅3

ℎ (2.26)

2.2.2 Redshift space distortions in LPT

Another important component in the power spectrum of galaxies are redshift space distor-
tions, that we introduced in Introduction. We can model them by boosting the displacement
field along the line of sight 𝑧, using the definition of the displacement 2.1 as follows:
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𝚿𝑠 = 𝚿 + 𝑧(𝒗 · 𝑧)H = 𝚿 + 𝑧 ·
¤𝚿

𝐻
𝑧 (2.27)

where 𝒗 = 𝑎 ¤𝒙 is the galaxy peculiar velocity.
Following the time-independent approximation, where ¤𝚿(𝑛) ∝ 𝐷𝑛, one can notice that

the time derivative of the perturbative kernels becomes:

¤𝚿(𝑛)
= 𝑛𝐻 𝑓𝚿(𝑛) (2.28)

that allows us to express the redshift-space kernels without time derivatives as:

𝚿(𝑛)
𝑠 = 𝚿(𝑛) + 𝑛 𝑓 (𝑧 · 𝚿(𝑛))𝑧 (2.29)

This transformation is therefore nothing more than a linear mapping of the displacement
vector of each order. We can further express it using the n-th order redshift space distortion
tensor 𝑅(𝑛)

𝑖 𝑗
, defined as:

𝑅
(𝑛)
𝑖 𝑗

= 𝛿𝑖 𝑗 + 𝑛 𝑓 𝑧𝑖𝑧 𝑗 (2.30)

that allows us to rewrite Eq. 2.29 as:

𝚿(𝑛)
𝑠 = 𝑅(𝑛)𝚿(𝑛) (2.31)

Therefore, the redshift-space density contrast in Fourier space 𝛿𝑠 (𝒌) becomes:

(2𝜋)3𝛿𝐷 (𝒌) + 𝛿𝑠 (𝒌) =
∫

𝑑3𝑞 𝐹 (𝒒)𝑒𝑖𝒌·(𝑞+𝚿(𝒒)+𝑧· ¤𝚿𝑧/𝐻) (2.32)

Eventually, we define the pairwise displacement field in redshift space as Δ𝑠 = Ψ𝑠 (1) −
Ψ𝑠 (2), and we can obtain the redshift-space galaxy power spectrum [15] as:

𝑃𝑔,𝑠 (𝒌) =
∫

𝑑3𝒒
〈
𝑒𝑖𝒌·Δ𝑠𝐹 (𝒒1)𝐹 (𝒒2)

〉
𝒒=𝒒1−𝒒2

. (2.33)

where 𝐹 (𝒒) = 𝐹 [𝛿0(𝒒)].
We have now almost all of the components necessary to build the galaxy power

spectrum in redshift space.

2.3 Moment expansion

Having built the foundation in section 2.1, and adding descriptions of some galaxy-related
effects for LPT in section 2.2, we can obtain the non-linear redshift-space galaxy power
spectrum.

We will then define the generating functional 𝑀 (𝑱, 𝒌) as:

𝑀 (𝑱, 𝒌) = 𝑘3

2𝜋2

∫
𝑑3𝑞 𝑒𝑖𝒌·𝒒 ⟨𝐹 (𝒒1)𝐹 (𝒒2)𝑒𝑖𝒌·Δ+𝑖𝑱·

¤Δ⟩𝒒=𝒒1−𝒒2 (2.34)
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One can immediately notice that if we set 𝑱 = 0, we get:

𝑀 (0, 𝒌) = 𝑘3

2𝜋2

∫
𝑑3𝑞 ⟨𝐹 [𝛿0(𝒒1)]𝐹 [𝛿0(𝒒2)]𝑒𝑖𝑘 ·Δ⟩ =

𝑘3

2𝜋2𝑃biased(𝒌) (2.35)

Even more so, we can notice that some other quantities describing the behaviour of the
density field can be obtained from the generating functional. For example, one can obtain
the velocity auto-spectrum by simply taking a derivative of 𝑀 (𝑱, 𝒌) and setting 𝑱 = 0:

𝒏̂
𝜕𝑀 (𝑱, 𝒌)

𝜕𝑱

����
𝑱=0

=
𝑖𝑘3

2𝜋2

∫
𝑑3𝑞 𝑒𝑖𝒌·𝒒 ⟨ ¤Δ𝐹 (𝒒1)𝐹 (𝒒2)𝑒𝑖𝒌·Δ⟩𝒒=𝒒1−𝒒2 =

𝑘3

2𝜋2 𝒏̂𝒗12(𝒌) =

= 𝑛̂𝑖
𝑘3

2𝜋2

∫
𝑑3𝒒𝑒𝑖𝒌𝒒𝑒−

1
2 𝑘𝑖𝑘 𝑗 𝐴

𝑙𝑖𝑛
𝑖 𝑗

{
𝑖𝑘 𝑗 ¤𝐴 𝑗𝑖 −

1
2
𝑘 𝑗 𝑘𝑘 ¤𝑊 𝑗 𝑘𝑖 +

+ 2𝑏1

(
¤𝑈𝑖 − 𝑘𝑘𝑈lin

𝑘 𝑘 𝑗
¤𝐴lin
𝑗𝑖 + 𝑘 𝑗 ¤𝐴10

𝑗𝑖

)
+

+ 𝑏2
1

(
2𝑖𝑘 𝑗𝑈lin

𝑗
¤𝑈lin
𝑖 + 𝑖𝜉lin𝑘 𝑗 ¤𝐴lin

𝑗𝑖 + ¤𝑈11
)
+

+ 𝑏2

(
¤𝑈20 + 2𝑖𝑘 𝑗𝑈lin

𝑗

)
+ 2𝑏1𝑏2𝜉lin ¤𝑈lin

𝑖 + 2𝑏𝑠
(
¤𝑉10
𝑖 + 𝑖𝑘 𝑗 ¤Υ𝑗𝑖

)
+

+2𝑏1𝑏𝑠 ¤𝑉12
𝑖 + 2𝑏3 ¤𝑈𝑏3,𝑖 + 𝛼𝑣𝑘𝑖+

}
... + 𝑅4

ℎ𝜎𝑣 (2.36)

This quantity is often called the first moment, while the real-space power spectrum
corresponds to the zeroth moment. This way of computing the non-linear power spectrum
using the momentum functional and its expansions in terms of 𝑱, which we will later use
to add the redshift-space distortions into the mix, is called Moment Expansion. We will
also show here the second moment, which is called the velocity dispersion, as it is also an
important ingredient for the model we use in this thesis:

𝜎12,𝑖 𝑗 (𝒌) =
∫

𝑑3𝒒 𝑒𝑖𝒌𝒒𝑒−
1
2 𝑘𝑖𝑘 𝑗 𝐴

𝑙𝑖𝑛
𝑖 𝑗

{
¥𝐴𝑖 𝑗 + 𝑖𝑘𝑛 ¥𝑊𝑛𝑖 𝑗 − 𝑘𝑛𝑘𝑚 ¤𝐴lin

𝑛𝑖
¤𝐴lin
𝑚 𝑗 +

+ 𝑏1

(
2𝑖𝑘𝑛𝑈lin

𝑛
¥𝐴lin
𝑖 𝑗 + 2𝑖𝑘𝑛

[
¤𝐴lin
𝑛𝑖

¤𝑈lin
𝑗 + ¤𝐴lin

𝑛 𝑗
¤𝑈lin
𝑖

]
+ 2 ¥𝐴10

𝑖 𝑗

)
+

+ 𝑏12
(
𝜉lin ¥𝐴lin

𝑖 𝑗 + 2 ¤𝑈lin
𝑖

¤𝑈lin
𝑗 +

)
+ 2𝑏𝑠 ¥Υ𝑖 𝑗+

+𝛼𝜎𝛿𝑖 𝑗 + 𝛽𝜎𝜉2
0,𝐿

(
𝑞𝑖𝑞 𝑗 −

1
3
𝛿𝑖 𝑗

)
+ ...

}
+ 𝑅3

ℎ𝑠
2
𝑣𝛿𝑖 𝑗 (2.37)

The expression can be decomposed into transverse and longitudinal components as:

𝜎𝑖 𝑗 = 𝜎0(𝑘)𝛿𝑖 𝑗 +
3
2
𝜎2(𝑘)

(
𝑘̂𝑖 𝑘̂ 𝑗 −

1
3
𝛿𝑖 𝑗

)
(2.38)

Finally, we can notice that, by setting 𝑱 = 𝒌 the factor in the exponent in 2.34 becomes
a redshifted displacement difference Δ𝑠 [16], same one as in Eq 2.33.
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Figure 2.3: Convergence of the moment expansion at 𝑧 = 0.8 for the monopole(blue),
quadrupole(orange) and hexadecupole(green) of the power spectrum with 𝑛-th order of
expansion being used. Dots are representing the results from N-body simulation. Taken
from [15].

The last thing which is left to do, is to expand the generating moment functional, which
becomes, for 𝑱 = 𝒌, an expression of the redshift space galaxy power spectrum, in terms
of 𝑧𝒌. Grouping the counter-terms 𝛼𝑖, stochastic terms and the FOG effect 𝜎2

𝑣 , the total
galaxy redshift-space power spectrum obtained using the Moment Expansion 𝑃ME

𝑔,𝑠 (𝒌) is
therefore given by:

𝑃ME
𝑔,𝑠 (𝒌) =

(
𝑃(𝑘) + 𝑖(𝑘𝜇)𝑣12,𝑛̂ (𝒌) −

(𝑘𝜇)2

2
𝜎2

12,𝑛̂𝑛̂ (𝒌)
)
+

+
(
𝛼0 + 𝛼2𝜇

2 + 𝛼4𝜇
4 + ...

)
𝑘2𝑃lin,Zel(𝑘) + 𝑅3

ℎ (1 + 𝜎2
𝑣 (𝑘𝜇)2 + ...)

(2.39)

The performance of such a model in comparison with simulations can be seen on
Figure 2.3

There exist other ways of computing the redshift-space galaxy power spectrum, such
as streaming models [17], as well as more recent approaches such as the one presented in
[18]. However, for the scope of this thesis, we have used the Moment Expansion approach.

In this thesis, we consider the public state-of-the-art Effective Field Theory (EFT)
code named velocileptors 1 [15, 18] as our reference theory. This model is one

1https://github.com/sfschen/velocileptors
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of the EFT models used in DESI for the Full-Shape analysis of the DR1 galaxy sam-
ples. More precisely, we focus on the moment expansion model as implemented in the
MomentExpansion module of velocileptors.

2.4 An emulator for clustering

Despite the high advancements in analytic evaluation of the redshift-space galaxy 2-point
statistics, unfortunately, many of the integrals in the formulas presented in the previous
sections require numerical integration or lots of cumbersome Fourier Transforms, which
often take significant computational time.

For the needs of cosmological inference (which we will describe in more detail in
Chapter 5) hundreds of thousands of spectra have to be computed, with different cosmolo-
gies and nuisance parameters marginalised over (biases, counterterms, stochastic terms).
To make that feasible from the computational point of view, different techniques have been
developed in order to accelerate the theoretical predictions or the inference itself or both.

We should also point out that the perturbative approach to modelling that I described
in the previous sections is still limited to large scales the quasi-linear regime. With the
growth of the wavenumber 𝑘 , the power spectra from any perturbative approach start to
deviate from those obtained in simulations and are not able to describe the observed data.
We will also discuss how techniques developed for the speedup of the analytic codes can
be used to boost the accuracy of the original theory.

The most natural choice of the quantity to emulate will be the statistic itself [19].
However, this approach shows its limitations when it comes to reusing the same emulator.
Usually, the existing codes struggle with redshift evolution and need to be retrained for
each given redshift, thus limiting their reusability. Plus, usually, the increase in the number
of parameters harms precision, so complicated models with lots of nuisance parameters
might experience difficulties in reaching the expected level of accuracy, as the growth
of the complexity of the model makes it harder for the neural network of a fixed size to
retrain.

One can also emulate a 2-point statistics in the linear order, or some other simplified
form, and add certain features by multiplying the output of the emulator with that ap-
proximate version [20]. That approach is sometimes used when specific features from,
for example, beyond ΛCDM models [21], are necessary, however, it often exhibits similar
problems.

We decided to take a slightly different approach, when developing our emulator [1].
In practice, generating a non-linear power spectrum consists of several steps. First, the
cosmological parameters are used to create the linear power spectrum in real space. There
are many pieces of software which achieve that, most notably class[22] and camb[23,
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Table 2.1: Definitions and ranges of the parameters of the training set for the emulator.

Parameter Interpretation Prior range
𝜔cdm Physical cold dark matter density parameter [0.05, 0.30]
𝜔b Physical baryon density parameter [0.01, 0.04]
log

[
1010𝐴𝑠

]
Normalization of the matter power spectrum [2, 4]

𝑛𝑠 Spectral index of the primordial power spectrum [0.8, 1.1]
ℎ Normalized Hubble constant at 𝑧 = 0 [0.5,0.8]
𝑤0 Static part of the Dark Energy equation of state [-2, -0.5]
𝑤𝑎 Dynamic part of the Dark Energy equation of state [-3, 0.3]
𝑧 Redshift [0.0, 1.4]

24]. That can also take some significant time. We have decided to use cosmoprimo
package with class, to achieve that. After that, we have used the velocileptors tool[15,
18], to compute the bias invariant terms for moment expansion. Finally, the multiplication
with the nuisance parameters is a simple arithmetic operation, which does not require any
specific software to be used.

Looking at equations 2.26, 2.36, 2.37, we can see that the nuisance parameters enter
the equations multiplied with perturbation theory cumulants defined in 2.18, 2.17. These
terms do not depend on biases or counterterms. So, we chose to emulate them instead
from the input cosmological parameters.

2.4.1 Architecture

Having identified the possible candidates for emulation, we can assemble them in a format
suitable for emulation. In total that gives us 30 quantities, which we emulate in 50 k-bins.
What helps is that the angular dependence is also multiplicative, which decreases the
number of degrees of freedom potentially needed for emulation. That gives us a data-
vector of 1500. We use 6 cosmological parameters as an input for the model, which are
summarised in Table 2.1.

We have chosen to go for the neural network approach to replace the generation of the
linear power spectrum and the bias-invariant terms. The two approaches are summarised
in a diagram in Figure 2.4

Usually a fully connected neural network (which is the one we are using) can be used
to approximate a function 𝑓 such that y = 𝑓 (x|𝜽), where x represents the features of
the data set, y the desired outputs, and 𝜽 the free parameters of the network which also
can be referred to as trainable parameters. The optimal function 𝑓 is defined by the set
of parameter values 𝜽 that minimises the loss function (the form of which is discussed
below). The loss function provides a measure of the performance of the model when
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Figure 2.4: Schematic of the theory module in the analysis pipeline: the classical approach
consists in first predicting the linear power spectrum and then computing the non-linear
power spectrum with an EFT model such as velocileptors. We propose to replace the
computation of the linear power spectrum and of the bias-invariant terms in the PT
model by a neural-network emulator. These bias-invariant terms that depend only on the
cosmological model are combined with the a set of bias and nuisance parameters, common
to the velocileptors and NN pipeline, to predict the non-linear redshift-space galaxy power
spectrum.

evaluated on the data set.
Fig. 2.5 presents the architecture of our neural network. The input parameters of the

ΛCDM model are C =
{
𝜔cdm, 𝜔b, log

[
1010𝐴𝑠

]
, 𝑛𝑠, ℎ

}
and the redshift 𝑧. The training set

comprises of 3000 samples drawn from a Latin hypercube featuring the six cosmological
parameters, and the redshift in the range 0 < 𝑧 < 1.4. All the datasets are generated using
MomentExpansion module of velocileptors. Table 2.1 summarises the very broad
flat un-informative priors used for the cosmological parameters when defining the Latin
hypercube. We group the training data into a 31 × 50 matrix, where 31 is the number
of bias-independent terms described in Section 2.3 and 50 is our fiducial choice for the
number of 𝑘 bins.

A feed-forward fully-connected model based on the machine learning framework
pytorch2 is created for each such matrix. We use 2 hidden layers of 16 328 neurons
and the Gaussian Error Linear Units (GELU) activation function [25], which can be
represented as

GELU(𝑥) = 0.5𝑥
[
1 + erf

(
𝑥
√

2

)]
. (2.40)

The outputs and the inputs 𝑥𝑖 are normalised 𝑥𝑖 ∈ [−1, 1].
The training is done in batches of 128 for 1000 epochs, meaning that the training

dataset is divided into groups of 128, where the elements of each group are then simulta-
neously passed through the neural network, and after that the weights are adjusted using

2https://github.com/pytorch/pytorch
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Figure 2.5: Architecture of the neural network emulator: The 6 ΛCDM cosmological
parameters and the redshift 𝑧 are used as input parameters of a fully-connected neural
network model composed of 2 hidden layers. The output of the neural network emulator
are the predicted 31 bias-invariant terms that enter the PT predictions, binned in 50 bins
of 𝑘 = [0.0, 0.3]

backpropagation. These groups are called batches, and we do this until all of the possible
groups have been used. That constitutes an epoch. This procedure is therefore repeated
1000 times. The validation dataset consists of 1000 samples, constituting a hypercube
with the same parameters as the training data. We minimise the L1 norm loss function
(ref here) defined by:

L =
1
𝑁

𝑁∑︁
𝑖=0

|𝑦𝑖true − 𝑦𝑖predicted |, (2.41)

with optimisation performed using pytorch realisation of the Adam optimiser [26]. The
learning rate is set to 4 × 10−7. We stop the training after 100 epochs when the validation
loss is not improving.

2.4.2 Testing the emulator performance

First, we assess the performance of the emulator in predicting the Legendre multipoles of
the power spectrum defined as:

𝑃ℓ (𝑘) =
(2ℓ + 1)

2

∫ 1

−1
𝑑𝜇 𝑃(𝑘, 𝜇)Lℓ (𝜇) (2.42)

where 𝐿ℓ (𝜇) is the Legendre polynomial of order ℓ. In this work, we consider the monopole
ℓ = 0, the quadrupole ℓ = 2 and the hexadecapole ℓ = 4.
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Table 2.2: Ranges of the parameters used for the multipole testing.

Parameter Range
𝜔cdm [0.10, 0.14]
𝜔b [0.01, 0.03]
log

(
1010𝐴𝑠

)
[2.5, 3.5]

𝑤0 [-2, -0.5]
𝑤𝑎 [-3, 0.3]
ℎ [0.64, 0.72]
𝑛𝑠 [0.9, 1.0]
𝑏1 [-1, 3]
𝑏2 [-10, 10]
𝑏𝑠 [-20, 20]
𝑏3 [-20, 20]

In order to assess the performance of the emulator at the level of the multipoles,
we generate 𝑁 = 10 000 sets of the cosmological and nuisance parameters taken from
the ranges given in Table 5.5. Then, we produce the multipoles using both the original
velocileptors code and our emulator. Fig. 2.6 shows the ratio of the neural network
LPT emulator multipole 𝑃𝑙,NN to the theoretical prediction from velocileptors 𝑃𝑙,th for
the monopole (top), quadrupole (middle) and hexadecapole (bottom). The dashed curves
show the 3𝜎 scatter. Up to = 0.25, the overall multipoles computed from the emulator
agree with the ones from the reference analytic version at below 0.5% at 3𝜎, which means
below 0.2% at 1𝜎.

Fig. 2.7 shows the same information as Fig. 2.6 but for 𝑤𝑜𝑤𝑎CDM model. We recover
a similar accuracy even for this extended cosmological model with the emulator predicting
the multipoles at a precision below 0.2% at 1𝜎 up to = 0.25.

We test the improvement in speed to compute the power spectrum multipoles by
generating 50 batches of multipoles with the variable number of multipoles in each
𝑛𝑏 = [0, 10, 25, 50, 100, 200], such that we can estimate the performance boost as a
ratio between the elapsed time for their production with the original code to the time
taken by the emulator. The corresponding proportion is then plotted against the number
of multipoles in a single batch in Fig. 2.8. We attribute most of the speed growth with
increasing the batch size as due to the parallelisation over Graphics Processing Units
(GPU), a feature that the original velocileptors software does not support due to the
very sequential nature of its code.

As was mentioned earlier, the main usage of our emulator was in cosmological infer-
ence. That is why the most important test we did was on how well the pipeline using it as
a theory yields the expected results, and how much can we trust the output. The additional
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Figure 2.6: Comparison between the galaxy redshift space power spectrum multipoles of
the emulator 𝑃ℓ,NN and of the theoretical version 𝑃ℓ,th for ℓ = 0 (top), ℓ = 2 (middle)
and ℓ = 4 (bottom). The dashed curves represent the 3𝜎 scatter and the red curves the
individual realisations.
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Figure 2.7: Same as for Fig. 2.6 but for 𝑤𝑜𝑤𝑎CDM. We recover a performance slightly
worse than that for the ΛCDM case, due to the 2 additional parameters, but still ∼ 0.5%
in precision at 3𝜎.
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Figure 2.8: Speed performance of the neural network emulator with respect to the original
code as a function of the number of simultaneously computed multipoles. The ratio of
computation time for the time with original code to that of our emulator is plotted against
the batch size: number of simultaneously computed non-linear power spectra.

tests on the cosmological inference will be described in Chapter 5.
Having all those tests done, we managed to obtain an instrument which will make

some of the analyses previously too demanding computationally viable. It will be used
extensively for different types of analysis performed in Chapter 5.
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Chapter 3

Simulations

И пусть кругом грохочут
глухо громы,
Пусть веет вихрь сомнений и
обид, —
Явь наших снов земля не
истребит!

M. Voloshin, Translation

Introduction

Despite major progress in the development of the cosmological theoretical framework,
there are still many processes which can not be properly described analytically. Pertur-
bation theory has its limits, and breaks down on small scales. Hence the conventional
analytical ways to model the behaviour of the matter clustering start to fall drastically in
accuracy, as presented in the previous chapter. However, we are not restricted to only
analytical means.

That is where the cosmological simulations come into play. They serve many functions
besides modelling the clustering of the matter field, as they can also capture the noise
caused by the statistical uncertainty in the survey, thus making them crucial for the error
estimation of the cosmological parameters inferred. Moreover, simulations are used as a
benchmark to test the analysis pipelines.

In this chapter we will describe different types of cosmological simulations for galaxy
clustering, starting with the most accurate N-body ones and then slightly simpler variants
using particle meshes. After that, we will describe the ways of populating the obtained
dark matter distributions with galaxies, together with several features required for the
analysis of the DESI BGS such as magnitudes and optical colours. We will then present
the simplified mock generation techniques, which generate the galaxies directly, bypassing
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the necessity for modelling the galaxy-halo connection, before concluding with an overall
comparison of the mock generation techniques. In particular, I will present the mocks I
have worked with and developed for different purposes that mimic the clustering of the
DESI BGS.

3.1 N-body simulations

An N-body simulation is a simulation which treats the matter density as a set of particles
gravitationally interacting with each other, making it a numerical solution to an N-body
problem, hence the name. This makes them, compared to other approaches, the most
accurate when it comes to the modelling of the density field evolution. They are usually
run with periodic boundary conditions to simulate the infinite size of the Universe, when
used for cosmology. Eventually, the density is obtained by averaging over the distribution
of the simulated particles. The evaluation of the forces acting upon the particles and
solving their equations of motion are the two principal components of the simulation.

3.1.1 Equations of motion

The equations which govern the evolution of the particles are usually obtained by starting
with the standard Newtonian equations of motion in their comoving coordinates. Coupled
with the gravitational potential 𝜙 which characterises the gravitational field, we get the
following set of expressions:

¥𝒙 + 2
¤𝑎
𝑎
¤𝒙 = − 1

𝑎2∇𝜙 (3.1)

And the Poisson equation for the gravitational potential:

∇2𝜙 = 4𝜋𝐺𝜌(𝑡)𝑎2𝛿 =
3
2
𝐻0Ω0

𝛿

𝑎
(3.2)

where 𝒙 denotes the position of the particle. They describe the behaviour of the non-
relativistic matter at scales smaller than the Hubble radius [1].

We can notice, thanks to the first derivative term ¤𝑥, that the expansion of the Universe
acts as a viscous force, which opposes gravitational infall, and results in a slower growth
of density perturbations in an expanding Universe. The equations are usually solved in
steps, the size of which decreases as we get close to 𝑧 = 0.

One should recall, however, that due to the discrete nature of the particles, we obtain
certain granularity artefacts. The way to deal with it is usually by assigning a certain
volume to a particle, thus blurring the mass in the volume around it. The procedure is
characterised by the smoothing kernel 𝑊 (𝑟, ℎ), where ℎ is a characteristic length of the
particle volume, also known as the softening length, and 𝑟 is the distance from the particle
The most commonly used form of such function used is the cubic spline of [2]:

82



SIMULATIONS 3.1. N-BODY SIMULATIONS

𝑊 (𝑟, ℎ) = 8
𝜋ℎ3
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ℎ
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ℎ

(3.3)

This modifies the gravitational force between two particles of masses 𝑚 to be approx-
imately:

𝑭 = −𝐺 𝑚2

(𝑟2 + ℎ2) 3
2
𝒓 (3.4)

This introduces a bias into the interaction on small scales but also smooths the inter-
action. At the same time, the softening length ℎ can not be made arbitrarily small, as it
will reintroduce the discreteness effects. Therefore, a certain compromise is usually made
when choosing this quantity.

One can immediately notice, that for the simulations to have a combination of a good
resolution, hence enough particles, and large volume one will have to deal with evaluating
the forces, which will be very heavy computationally. There exist many ways of dealing
with or bypassing this problem.

3.1.2 N-body approaches

Particle-particle approach

If we decide to treat every particle pair as we are supposed to, we are soon to notice that
the pairwise summation is of complexity O(𝑁2), where 𝑁 is the number of particles.
One of the ways to deal with that problem was implemented in the Abacus code [3], and
originally developed in [4]. It relies on separating the given volume into a 3-D cartesian
grid, and computing the force for a given particle depending on whether the other particle
is closer than a chosen threshold, and is called the near-field computation. Otherwise, the
multipole decomposition is used for the gravitational potential. It is computed for each
cell up to a given order 𝑝. As the Cartesian grid features discrete translational symmetry,
the summation of forces from cells further than the chosen threshold can be performed as
a convolution using discrete Fourier transforms, which significantly speeds up the process,
and also allows to painlessly introduce periodic boundary conditions [3, 4], which used to
be a problem before [5]. Another notable code using the multipole decomposition for the
far region is SWIFT[6].

Near-field force kernel is a simple ∼ 1
𝑟2 law that is easily computed, given the repeated

geometric structure of the near-field domain, allowing for a great acceleration due to
co-processing potential. Overall, the combination of those two tricks and the usage of
modern GPUs allows for a viable solution for Particle-Particle N-body simulations, which
were rarely used for cosmology before. The illustration on how the particle interactions
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Figure 3.1: Left panel: a schematic illustration of the exact near-field/far-field separation
of the force computation in Abacus. The grey lines represent other schemes, like particle
mesh, where the far-field is compensated by the near field on the smaller scales. As for
the Abacus the force is given by one of the near field and far field, represented by the
shaded lines. Right panel:The domain decomposition. Forces for the particles in the black
cell are computed in the near-field mode from the particles in the white cells, and with a
far-field approximation for the particles in the grey cells.

are separated into the far-field and near-field regimes, and how does the force looks like
with respect to the pure particle mesh approach is in Figure 3.1.

Particle Mesh approach

In order to escape the detailed computation of the individual pair-wise forces, one can
build the mesh to estimate the gravitational potential in a given point. The particles are
painted onto the mesh using a given window function 𝑊 (𝑟). Then, the Poisson equation
for gravitational potential is solved on it 3.2. The computation can be additionally fastened
by the use of Fast Fourier Transforms. More on that can be found in [7]. An example of the
application of such an approach can be the GLAM code, which will be used and presented
in more details later in this chapter.

The use of FFTs also enables to implement the periodic boundary conditions straight-
forwardly. One of the drawbacks from such an approach is the dependence of the simulation
on the mesh size. However, it does allow to create simulation with the largest number of
particles with respect to other approaches.

The mesh can be additionally optimised by using the adaptive mesh refinement, where
the mesh is refined in the domains of larger density, allowing for more accurate results.
That is the case, for example, for the RAMSES code [8]. An example of such a refined mesh
from a cosmological N-Body simulation is shown in Figure 3.2, where different degrees
of refinement are marked by different colors.
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Figure 3.2: Example of an adaptive mesh grid, obtained during a cosmological simulation,
where each color corresponds to a given level of refinement. Taken from https://irfu.
cea.fr/Phocea/Vie_des_labos/Ast/ast_sstechnique.php?id_ast=904

𝑃3𝑀 approach

To solve the problem of computational efficiency, sometimes, similarly as for the approach
used in Abacus simulations, the simulation volume is divided into cubic cells, and the
far-field interactions are treated differently, often with a particle mesh approach instead.

Such an approach provides a hybrid treatment, ensuring accuracy on small scales by
exactly solving the near-field interactions, yet still ensuring faster computing times than
that of Particle-Particle analogues by relying on Particle Mesh for far-field interactions
[9].

Tree approach

Another way to ease the computational costs of the Particle-Particle approach is by using
the tree structures [10]. The simulation volume is recursively divided into cubic regions
until each of the regions contains only one particle. The largest cells are used to define
the groups of particles, and serve for the calculation of the interactions. The groups are
based on cell acceptance criterion [10].

One can combine the tree approach with 𝑃3𝑀 approach by employing it for the near-
field computations in dense regions. That is for example the case for the GreeM code [11,
12], which is the code used to create the Uchuu simulation [13], which will be also used
and presented in more detail later in this chapter. Another very popular code used for
modelling of dark matter clustering is Gadget[14].
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Figure 3.3: Left panel: The matter density field in a 25 × 25 × 5(ℎ−1𝑀𝑝𝑐)3 region of
an N-body simulation, centered on a massive halo at 𝑧 = 0. Central panel: The matter
density field represented by identified spherical halos. Right panel: An example on how
galaxies could populate the given halo distribution. Taken from [15].

3.2 Halo model

N-Body simulations typically yield as an output a collection of particles, which represent
the dark matter density field. However, to further process the simulation into a realistic
replica of the Universe, one needs to reduce the complexity of the simulated data. This
can be achieved by approximating the cosmic structures by dark matter halos. The study
of those resulting halos and their connection to the observable matter, which is called halo
model, allows to connect them to the galaxy distribution, allowing for a powerful tool of
studying the matter distribution.

The halo model is based on the assumption that the complex structure of the cosmic
web can be described by separating it into massive clumps (halos) with given properties,
such as the halo profile, mass distribution, and bias with respect to the underlying matter
distribution. We will also use the halo model later in order to populate the dark matter
simulations with galaxies. An example of the halos representing cosmic structure using
the N-body simulation is shown in Figure 3.3.

3.2.1 Halo formation

If we consider a Universe with Λ = 0, the spherical overdensity can be described in a pure
Newtonian framework.

¥𝑟 = −𝐺𝑀
𝑟2 (3.5)

where 𝑟 is the radius of the sphere and 𝑀 is the enclosed mass. We can solve this equation
parametrically:

𝑟 = 𝐴(1 − 𝑐𝑜𝑠𝜃) (3.6)
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𝑡 = 𝐵(𝜃 − 𝑠𝑖𝑛𝜃) (3.7)

The solution can also be presented in the form of 𝑟 (𝑡) as a series:

𝑟 (𝑡) = 𝐴

2

(
6𝑡
𝐵

)2/3
[
1 − 1

20

(
6𝑡
𝐵

)2/3
+ ...

]
(3.8)

where A and B are integration constants.
The overdensity within the sphere will be:

𝛿(𝑡) = 3
20

(
6𝑡
𝐵

)2/3
(3.9)

Initially the sphere grows as the Universe expands, however the overdensity enclosed
within the sphere slows down that process. At the turnaround point when 𝜃 = 𝜋, the
sphere reaches its maximum size 𝑟 = 2𝐴, stops growing and starts to collapse. At the end
of the collapse time of 𝑡 = 2𝜋𝐵 (corresponding to 𝜃 = 2𝜋), the collapse can be assumed
complete, and the critical overdensity becomes 𝛿𝑐 = 1.69, following equation 3.9. This
model is called the spherical collapse model [16, 17].

In the real Universe, of course, the collapse never leads to the overdensity contracting
to a point (𝑟 = 0 for 𝜃 = 2𝜋). Rather, the sphere reaches a virial equilibrium called
virialisation, where the kinetic energy and potential energy are related through 𝑉 = −2𝐾 .

3.2.2 Halo finding

Thanks to the spherical collapse model, we know have an idea about how dark matter
halos form overdense gravitationally bound systems. We can now attempt to identify them
using different halo finder techniques (an extensive review can be found here: [18]). Here
I will only mention and discuss some of them.

Spherical overdensity

Historically the first halo-finding algorithm was presented in [19]. It is based on finding the
spherical regions in a simulation having a certain mean overdensity, with the assumption
that the mass inside the region spehircally collapsed. First the local density is computed
for each particle by finding the distance 𝑟𝑁 to the Nth nearest neighbour. Then, the density
𝜌𝑖 of 𝑖-th particle is defined as:

𝜌𝑖 =
3(𝑁 + 1)

4𝜋𝑟3
𝑁

(3.10)

The particles are sorted by density. The particle with the highest density is assumed to
be at the centre for the first sphere, whose radius is increased until the mean overdensity
falls lower than a certain limit. The centre of mass of particles is then taken as the new
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centre of a potential halo, and the process is repeated until the centre shift reaches a
certain allowed minimum. The particles in the sphere are then removed, and the process is
repeated for the particles left in the simulation volume until all of the halos are found. The
halos can intersect in the case of this approach, and therefore the halo-merging procedure
has to be performed. Usually, if the centre of a smaller sphere is inside a larger sphere,
the smaller sphere is then merged with the larger sphere, leaving the larger radius intact.

Friends-Of-Friends

The Friends-of-Friends algorithm [20] (often denoted as FoF) is based on connecting the
neighbouring particles in a simulation. Two particles are linked if they are closer than a
certain linking length 𝑏 in units of the mean inter-particle separation. This creates a net
of linked particles which are then assigned to be in the same halo. By construction, this
ensures that the particles are uniquely assigned to a halo, and no halo-merging is needed.
However, when two structures are too close, they can form a ”FoF bridge”, that might
result in unusual shapes.

CompaSO

Developed as a group-finding algorithm for Abacus N-Body code, CompaSO[21] (COM-
Petitive Assigment to Spherical Overdensities) runs on-the-fly. It is using a combination
of the previous two approaches. First, it measures the local density using a kernel of the
form 𝑊 = 1 − 𝑟2

(0.4𝑏)2 , where 𝑏 is the linking length defined in the previous section about
FoF. The so-called L0 halos are then created with FoF from particles with a density higher
than a given threshold. Inside those L0 halos, the main L1 halos are formed. The parti-
cle with the highest density becomes the first halo nucleus, and following the Spherical
Overdensity method, the sphere with radius 𝑅𝐿1 is formed. The particles inside 80% of
𝑅𝐿1 are removed from further consideration. The remaining particles of the L0 group are
then used to potentially form other halos using the same principle. In case one particle
can be assigned to more than one halo, the competitive assignment is performed, which
only allows the reassignment of the particle to the new halo if its enclosed density with
respect to that particle is at least twice that of the old one. The halo-merging algorithm is
also present, though works slightly differently than in the original approach.

ROCKSTAR

ROCKSTAR[22] (Robust Overdensity Calculation using K-Space Topologically Adaptive
Refinement) is a halo-finding algorithm which uses both the position and velocity of the
particles.

It starts by creating FoF groups in real space, using a slightly larger linking length than
usual. The phase-space metric is then computed in 6D-phase space for particles in each
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of the FoF groups, which is defined as:

𝑑 =

(
|𝒙1 − 𝒙2 |2

𝜎2
𝑥

+ |𝒗1 − 𝒗2 |2

𝜎2
𝑣

)
(3.11)

where 𝑥𝑖 is the position of i-th particle, 𝑣𝑖 is its velocity, and 𝜎2
𝑥 , 𝜎2

𝑣 are the dispersions
of the corresponding positions and velocities inside the given group. The particles are
then linked with a phase-space linking length, which is chosen depending on the standard
deviation of the particle positions and velocities, forcing 70% of them to form a subgroup.
The process is repeated inside each subgroup until a minimum size of particles in the
subgrouop (usually 10) is achieved and a hierarchical set of structures is achieved. The
final level will contain the halo-seeds, and each particle will be assigned to their closest
seed. Once all particles are distributed, the user can optionally remove all of the particle
which are not considered gravitationally bounded. The code defines halo masses using
the Spherical Overdensity criteria, with virial mass as default, and only the subset of the
innermost particles is used to compute centres and velocities.

3.2.3 Halo Occupation Distribution

Once we have approximated the complex structure of the cosmic web with halos, and
we have managed to identify them in the simulations, there is still one step left for our
simulation to be physical. As we observe not the dark matter distribution, but the galaxies
in the sky, we need to somehow connect the two. It will be more natural for the bigger halos
to have more baryons, thus, meaning that we can assume a higher probability of having
more galaxies in more massive dark matter halos. The probability 𝑃(𝑁 |𝑀) of having
𝑁 galaxies in the halo of mass 𝑀 is called the Halo Occupation Distribution, which we
will further denote as HOD. It is usually divided into two parts: one for so-called central
galaxies, which occupy the centre of the halo and share its peculiar velocity (there can be
no more than one per halo), and another one is for the number of satellite galaxies.

A popular form of the HOD [23], using the division into central and satellite galax-
ies[24] which was used to populate the LRG galaxies [25], can be given by the following
empirical formula:

⟨𝑁𝑐𝑒𝑛 (𝑀)⟩ = 𝐴𝑐

2

[
1 + erf

(
log𝑀 − log𝑀𝑚𝑖𝑛

𝜎log𝑀

)]
(3.12)

⟨𝑁𝑠𝑎𝑡 (𝑀)⟩ = ⟨𝑁𝑐𝑒𝑛 (𝑀)⟩
(
𝑀 − 𝑀0
𝑀′

1

)𝛼
(3.13)

where 𝑀𝑚𝑖𝑛 can be interpreted as the mass of the haloes for which only a half will be
populated with a central galaxy, 𝜎log𝑀 becoming the step-size, 𝑀0 is the cutoff mass scale,
whereas 𝑀′

1 is considered as a normalisation term, whilst 𝛼 is there to introduce the power
law slope. 𝐴𝑐 is the constant used to set the height of the step function. It should be
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Figure 3.4: The best-fit HOD using the 6-parameter HOD model presented in equation
3.34 for LRG sample of DESI in the redshift range 0.4 < 𝑧 < 0.6, where the shaded
regions correspond to 1𝜎 and 2𝜎 posteriors. Taken from [25].

noted, that 𝜎log𝑀 is also assumed to describe the Gaussian scatter of the in the logarithm
of galaxy baryonic masses, which is not always the case [26]. An example of such HOD
model with uncertainties for the DESI LRG Abacus mocks is shown in Figure 3.4. We can
see that there can be no more than 1 central galaxy and that they dominate the numbers
when it comes to low-mass halos.

These formulas can be extended by making their parameters dependent on redshift,
luminosities, and other quantities, allowing for the creation of more realistic mocks with
photometric quantities. That was done, for example, for the BGS MXXL mock [27] and
later on for other BGS mocks. The details on that extension for BGS will be presented in
[28].

It should also be noted, that other HOD prescriptions exist. For example, for the ELG
sample a modified High Mass Quenched model[29] (mHMQ) was developed and used,
which provides the following expressions for central and satellite galaxies:

⟨𝑁𝑐𝑒𝑛 (𝑀)⟩ = 𝐴𝑐√
2𝜋𝜎𝑀

𝑒
− (log10 𝑀−log10 𝑀𝑐 )2

2𝜎2
log 𝑀

[
1 +

(
𝛾(log10 𝑀 − log10 𝑀𝑐)√

2𝜎log𝑀

)]
(3.14)

⟨𝑁𝑠𝑎𝑡 (𝑀)⟩ = 𝐴𝑠
(
𝑀 − 𝑀0
𝑀1

)𝛼
(3.15)

The HOD is obtained by fitting the clustering statistics from the data to the one in
the mocks by varying the HOD parameters. The process can be significantly sped up by
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using emulators, for example based on Gaussian processes for modelling the likelihood
for the fitting, instead of generating the galaxies for each step and computing the 2-point
statistics from the resulting simulation [30]. The process can also be sped up by the
employment of the tabulated HOD method, developed in [31], which consists of dividing
the halos by a given property (halo mass for example) in narrow bins, after which the
pair counts are computed. It allows for the on-fly changing of the HOD, as the only thing
needed to be changed are the weights resulting from the employed HOD. Convolving the
halo occupation with this clustering can significantly speed up the computation of the
correlation functions with different HODs.

It was shown, using N-Body simulations by [32] that the distribution of mass in a halo
is in fact characterised only by the halo mass 𝑀 and the concentration parameter 𝑐, while
the central density 𝜌𝑠 and the scale radius 𝑟𝑠 can be derived. Therefore the mass density
profile of halos 𝜌(𝑟) follows a Navarro-Frenk-White (NFW [32]) profile:

𝜌(𝑟) = 𝜌𝑠

(𝑟/𝑟𝑠) (1 + 𝑟/𝑟𝑠)2 (3.16)

𝑉𝑐 (𝑟) = 𝑉𝑣𝑖𝑟

√︄
𝑓 (𝑐𝑟/𝑟𝑣𝑖𝑟)
𝑟/𝑟𝑣𝑖𝑟 𝑓 (𝑐)

(3.17)

where 𝑓 (𝑥) = ln(1 + 𝑥) + 𝑥
1+𝑥 and 𝑉𝑐 (𝑟) is the circular velocity.

An example of the performance of such a density profile can be seen in Figure 3.5 where
𝑡 = 0 and 𝑡 = 40 represent the time of the formation of the halo and 40 crossing times,
which is the time of circular velocity reaching its maximum at the radius of 𝑟𝑚𝑎𝑥 = 2.163𝑟𝑠
[33].

Once the halo profile is obtained, we can position the satellite galaxies following the
density profile and assign their velocities randomly, which is drawn from a distribution
with a velocity dispersion 𝜎2

𝑣 (𝑀) = 𝐺𝑀
2𝑟𝑣𝑖𝑟 , such that they follow the NFW profile. The

central galaxies however, inherit the position and the velocity of the host halo.
That procedure allows us to place the galaxies on top of the halos obtained from our

simulations, and create in such a manner a realistic simulation volume with galaxies that
cluster in a similar statistical way as the one seen in galaxy surveys.

3.2.4 Abundance matching

There is another way to connect galaxies to their host halos. It starts with an assumption
that one particular galaxy property is monotonically related to a halo property (for example,
𝑀) by matching their abundance[24, 26, 34–36]. One of the galaxy properties often used
to perform such a technique is galaxy luminosity. A major strength of such an approach is
that it can also use the infromation the properties of substructures inside the halos. There
is a version of it, which performs such a matching on subhalos instead of halos, and is
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Figure 3.5: The density profile of the NFW halo. The solid curve shows the density profile
after 40 crossing times, where the circular velocity reaches the maximum at the radius of
𝑟𝑚𝑎𝑥 = 2.163𝑟𝑠, the dashed line shows the profile at the forming time of the halo, and the
dotted line shows the NFW profile. Taken from [33], there the details on the simulations
where this halo was produced can be found
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called SHAM (Sub-Halo Abundance Matching)[37–39], which is what has been used for
the DESI BGS Uchuu mocks[40].

3.3 Mocks without halos

For certain tasks, such as the conventional covariance matrix generation for clustering
analysis, thousands of mocks are required. Given that modern surveys probe unprece-
dented high number densities of objects and large volumes, producing accurate N-Body
simulations which match the observations becomes a very challenging task, even with
modern computational resources and all the advancements in generating N-Body simula-
tions. However, other techniques were developed to produce approximate mocks, which
are often precise enough to build a precise covariance matrix for certain summary statistics
(we will discuss that in more detail in the next chapter), or to perform certain tests where
large statistics are needed.

3.3.1 Lognormal mocks

One of the simplest ways to create a galaxy survey mock is to assume a pure Gaussian field
to model the density field. Mocks, produced using that approach are called the lognormal
mocks.

The lognormal distributed density contrast 𝛿(®𝑥) is related to a Gaussian field 𝐺 (®𝑥) =
ln[1 + 𝛿(®𝑥)] − ⟨ln[1 + 𝛿(®𝑥)]⟩ as:

𝛿(®𝑥) = 𝑒−⟨𝐺2⟩+𝐺 (®𝑥) − 1 (3.18)

The two-point correlation function 𝜉 (𝑟) is related to the correlation function of the
Gaussian field 𝜉𝐺 (𝑟) as:

𝜉𝐺 (𝑟) = log[1 + 𝜉 (𝑟)] (3.19)

So, a fiducial power spectrum 𝑃(𝑘) can be transformed into the correlation function
𝜉 (𝑟), which is then converted to the correlation function of the Gaussian field using
eq. (3.19). We Fourier transform it to the power spectrum 𝑃𝐺 (𝑘) and eventually generate
the Fourier space Gaussian field 𝐺 (𝑘) as:

𝐺 (𝑘) =
√︂
𝑃𝐺 (𝑘)𝑉

2
(𝜃𝑟 + 𝑖𝜃𝑖) (3.20)

where 𝜃𝑟 , 𝜃𝑖 are Gaussian random variables with unit variance and zero mean, and𝑉 is the
volume of the simulation [41]. After simulating the Fourier space Gaussian field 𝐺 (𝑘) on
the grid, we then use Fast Fourier Transform (FFT) to transform it and obtain the regular
configuration space Gaussian field 𝐺 (𝑥). This is then transformed into the over-density
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field using eq. (3.18). The expectation value for the number of galaxies in a particular cell
is computed given a fixed mean number density 𝑛̄, and galaxies are then drawn using the
Poisson distribution and placed randomly in the cell. Velocities are then assigned using
the linearised continuity equation33, but in proper coordinates:

𝑎(𝑡) 𝜕𝛿(®𝑥)
𝜕𝑡

+ ®∇ · ®𝑣(®𝑥) = 0 (3.21)

where 𝑎(𝑡) is a scale factor. This equation is solved using Zeldovich approximation [42].
Eventually, the RSD effect is modelled at a chosen redshift using the velocity informa-

tion by affecting the coordinates of the galaxy 𝑥𝑖 as:

𝑥𝑖rsd = 𝑥𝑖 + 𝑓 (𝒏 · 𝒗)𝑛𝑖 (3.22)

where 𝑥𝑖rsd are the redshift-distorted coordinates, 𝑓 is the linear growth rate of structure, ®𝑣
is the velocity of the galaxy, and 𝑛𝑖 is the line of sight.

The main advantage of such a modelling technique is that it is extremely cheap com-
putationally, compared to other approaches, which enables the creation of thousands of
independent mocks with different galaxy number densities using relatively low computa-
tional costs. However, the small-scale accuracy is very poor, as basically no small-scale
computations or physics are accounted for in the process of their creation.

3.3.2 Effective Zeldovich mocks (EZmock)

We can add a bit more complexity to the mock creation and try to include more physical,
less linear effects while keeping the process relatively cheap computationally, using an
approach developed in [43, 44].

Following LPT, we consider the first-order solution, which is given by the Zeldovich
approximation as:

𝚿(𝒒) =
∫

𝑑3𝑘

(2𝜋)3 𝑒
𝑖𝑘 ·𝑞 𝑖𝒌

𝑘2 𝛿(𝒌) (3.23)

The Zeldovich density field is then painted on a mesh of a selected size. Once the
density field is simulated, the simulation volume is populated with galaxies. In order to
do that, we define a general bias function 𝐵 which connects the density of galaxies 𝜌𝑔 to
the dark matter density 𝜌𝑚:

𝜌𝑡 = 𝐵(𝜌𝑚) (3.24)

Then, we notice that to form gravitational bound systems, a minimum local density 𝜌𝑐
is required to overcome the background expansion. That corresponds to the first term in
our bias function 𝜃 (𝜌𝑚 − 𝜌𝑐), where 𝜃 (𝑥) is a step function. One can then introduce the
density saturation 𝜌𝑠𝑎𝑡 , and an exponential term with 𝜌𝑒𝑥𝑝 responsible for the exponential
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cut-off of the halo bias relation, and therefore, for the galaxies as well. Equation 3.24 then
becomes:

𝜌𝑔 = 𝜃 (𝜌𝑚 − 𝜌𝑐)𝜌𝑠𝑎𝑡
[
1 − 𝑒−

𝜌𝑚
𝜌𝑒𝑥𝑝

]
𝐵𝑠 (3.25)

where 𝐵𝑠 stands for the stochastic bias term, which serves as a random rescaling factor.
This bias is defined as:

𝐵𝑠 =


1 + 𝐺 (𝜆), 𝐺 (𝜆) ≥ 0;

exp(𝐺 (𝜆)), 𝐺 (𝜆) < 0.
(3.26)

where 𝐺 (𝜆) stands for a random number drawn from a Gaussian distribution centred
at 0 and with a standard deviation of 𝜆. The exponential form is used to avoid negative
bias values.

In order to further correct the galaxy number density 𝜌𝑔 and map it to the number
of galaxies per grid cell, we model the probability distribution function for them by a
power-law relation:

𝑃(𝑛𝑔) = 𝐴𝑏𝑛𝑔 (3.27)

This will serve as an additional bias description.
Of course, one of the important components of every galaxy mock is the velocity

distribution, which will govern the redshift-space distortions. In this approach, the peculiar
velocity of the galaxy 𝒖𝑔 is generated with the help of the velocity of the interpolated densty
field 𝒖𝑚 as:

𝒖𝑔 = 𝒖𝑚 + 𝐺 (𝜈) (3.28)

Where 𝐺 (𝜈) is a random number taken from a Gaussian distribution with a variance
of 𝜈.

Thus, we come to the scheme with 6 parameters, where in practice 𝜆 and 𝜌𝑠𝑎𝑡 are fixed
due to their degeneracy with others. This leaves 4 parameters left. These parameters are
calibrated using the survey data or the N-body simulations by eye. Once the matching
parameters are found, the last additional step is to ensure the correct variance of the
Alcock-Paczynski by adjusting the parameter responsible for the amlitude of the BAO
peak.

EZmock has been shown to provide a fast and efficient manner to obtain thousands
of mocks for precise covariance matrices, which have higher accuracy than lognormal
mocks. An example of such mocks performance for BOSS/eBOSS data is presented in
figure 3.6.
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Figure 3.6: Correlation function multipoles of the BOSS/eBOSS data and the correspond-
ing EZmock catalogues in the Southern Galactic Cap. The shaded regions and solid/dashed
envelopes indicate 1𝜎 regions evaluated from 1000 realisations, with different systematic
effects applied. Taken from [44].

3.4 Mock species for DESI BGS

Several mock species were produced in order to mimic the DESI BGS, each one with
different purposes in mind and using various techniques. In this section we will start with
the common features of those mocks that they need to have, and then we will discuss each
mock variety in detail. The summary of mocks basic parameters can be seen in Table 3.1.

Mock Technique Sample №mocks Main use

Uchuu TreePM, SHAM BGS Bright 1 Systematics, Halos, Small scales
Abacus PP, HOD BGS Bright 25 Systematics, Halos, Test fits
GLAM PM, HOD 𝑀𝑟 < −21.5 only 1000 Covariance, Test fits
EZmock Effective Zeldovich 𝑀𝑟 < −21.5 only 1000 Covariance

Table 3.1: Summary table of 4 different mock species used to model BGS for different
purposes. PP stands for N-body particle-particle approach and PM stands for N-body
particle mesh approach.

3.4.1 BGS specificities

The DESI BGS presents several specificities that make this sample particularly challenging
to simulate:
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• as mentioned in Chapter 1, it is an extremely dense sample with 𝑛 ∼ 10−2ℎ3/𝑀𝑝𝑐−3,
which is at least 2 orders of magnitude denser than the LRGs and ELGs.

• The mass range spanned by the dark matter halos that host BGS galaxies is very
broad from roughly 1010 to 1015𝑀⊙/ℎ , which put also tight constraints on the mass
resolution of the simulation.

• eventually, given that we aim at performing a multi-tracer analysis between blue and
red galaxies of the BGS, we also need to assign some photometric properties to the
dark matter halos that host BGS galaxies, such as magnitude and colour. We will
describe how to perform this assignment in the following when describing each type
of BGS mocks.

Systematics

Once we have the simulations whose footprint matches the data survey and which are
populated with realistic galaxies, we are still missing one last step to properly mimic the
data sample. We need to take into account the observational systematics that affect the
data. In particular, we need to simulate the fibre-assignment in order to account for fibre
incompleteness as discussed into more details in Chapter 1.

In order to do that, DESI uses a tool called fast-fiberassign, which is an emulator
of the fiber collisions on the mocks. It uses Friend-of-Friends algorithm to detect the
nearby lying galaxies. Then it uses the data of the placements from different fibres and
the detected blobs of galaxies to simulate the effect. More on that can be found here:[45].

3.4.2 Abacus

AbacusSummit suite of simulations was created specifically for DESI, in order to meet
our scientific requirements. It uses the PP approach, described in the beginning of this
chapter. The suite is composed of 150 simulation boxes, covering 97 cosmological models.
The base simulations feature 69123 particles with a mass of ∼ 2 · 109𝑀⊙/ℎ in a 2 Gpc/h
box. The fiducial cosmology for the 25 of them is Planck2018. More details about the
AbacusSummit suite of simulations and the other cosmologies featured can be found here
[46]. The plot presenting all of the Abacus cosmologies can be found in Figure 3.7. We
note that for the BGS modelling we have used 25 boxes with box size of 2000𝑀𝑝𝑐/ℎ and
Planck2018 cosmology[47]

Realistic BGS mocks are produced using AbacusSummit boxes by [28], where HODs
are fitted to the clustering of MXXL mock[27]. In order to properly infer the information
on photometric quantities, such as magnitudes, the HOD parameters are made dependent
on the magnitude. The HOD fits are then performed separately for magnitudes 0.1𝑀𝑟 =

[−22,−18] with the step of Δ0.1𝑀𝑟 = 0.5. The HODs for such a bestfit, performed for
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Figure 3.7: The distribution of cosmological parameters of different Abacus simulations.
Taken from [46].
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Figure 3.8: Different HODs with magnitude dependence measured with simulations with
various phases and cosmologies. Taken from [28].
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mocks with varying phase and cosmology are shown in Figure 3.8. It should be noted
that the fitted parameters are actually 17 meta-parameters, introducing dependence for the
HOD parameters on the magnitude 𝑀𝑟 in the following fashion:

log𝑀min = 12 + 𝐴min + 𝐵min𝑀
′
𝑟 + 𝐶min𝑀

′
𝑟

2 + 𝐷min𝑀
′
𝑟

3 (3.29)

𝜎log𝑀 = 𝐴𝜎 + 𝐵𝜎 − 𝐴𝜎
1 + exp(𝐶𝜎 (𝑀′

𝑟 + 𝐷𝜎))
(3.30)

log𝑀0 = 11 + 𝐴0 + 𝐵0𝑀
′
𝑟 (3.31)

log𝑀1 = 12 + 𝐴1 + 𝐵1𝑀
′
𝑟 + 𝐶1𝑀

′
𝑟

2 + 𝐷1𝑀
′
𝑟

3 (3.32)

𝛼 = 𝐴𝛼 + 𝐵−𝑀 ′
𝑟+𝐶𝛼

𝛼 (3.33)

where 𝑀′
𝑟 = 0.1𝑀𝑟 + 20. The resulting evolution of the best-fit HODs is shown in

Figure 3.9.
The resulting HOD describes the number of galaxies brighter than a given magnitude.

The change however is introduced to the HOD of the central galaxies, in order to prevent
the crossing of HODs from different magnitudes, such that:

⟨𝑁𝑐𝑒𝑛 (𝑀, 𝐿)⟩ =
1
2

[
1 + 𝑆

(
log𝑀 − log𝑀𝑚𝑖𝑛

𝜎log𝑀

)]
(3.34)

with,

𝑆(𝑥, 𝜇, 𝜎) = 4
3
√

12𝜎
spline

(
𝑥 − 𝜇
√

12𝜎

)
(3.35)

Where spline is defined as:

spline(𝑥) =


1 − 6|𝑥 |2 + 6|𝑥 |3 |𝑥 | ≤ 0;

2(1 − |𝑥 |)3 0.5 ≤ |𝑥 | ≤ 1;

0 |𝑥 | > 1.

(3.36)

For each halo, a random number 𝑥 is drawn from the spline kernel distribution
𝑆(𝑥, 𝜇, 𝜎), defined in equation with 𝜇 = 0 and 𝜎 = 1, which introduced the scatter
in the luminosity of the central galaxy. The luminosity 𝐿 required to produce such scatter
is given by solving [27]:

𝑥𝜎log𝑀 (𝐿)
√

2
= log𝑀 − log𝑀min(𝐿) (3.37)
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Figure 3.9: The evolution of the HOD parameters as a function of magnitude for the
best-fit fitted meta-parameters. Taken from [28].
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We remind that luminosity 𝐿 can be connected to the absolute magnitude 𝑀𝑟 in
approximation as:

𝐿 = 10
(𝑀𝑠−𝑀𝑟 )

2.5 (3.38)

where 𝑀𝑠 = 4.76 is the nominal solar luminosity, following the convention used in the
literature.

When generating the satellite galaxies, the minimum luminosity 𝐿min is chosen, such
that it corresponds to an apparent magnitude slightly fainter than 𝑟 = 20.175. The number
of satellites is then drawn from a corresponding HOD. A random number 0 < 𝑢 < 1 is
then drawn, and the luminosity assigned to the galaxy is such that:

𝑢 =
𝑁sat(> 𝐿)
𝑁sat(> 𝐿min)

(3.39)

Then, the galaxies are positioned and velocities are assigned according to the NFW
profile following the standard procedure described earlier. This allows us to obtain the
catalogue of galaxies with assigned absolute magnitudes. The resulting box catalogues
are then cut into spherical layers and combined to form a full-sky catalogue, creating a
cutsky mock, if only one snapshot on a given redshift is used, or a lightcone, if for each
spherical layer, a snapshot with the corresponding redshift is used. Using the redshift of
the galaxy and its absolute magnitude, we can then assign the rest-frame colors[48], by
mimicking the GAMA color-magnitude diagram [27] and apparent magnitude, using the
k-correction 𝑘 (𝑧), which also depends on colors:

𝑟 = 𝑀𝑟 + 5 log10 𝐷𝐿 (𝑧) + 25 + 𝑘 (𝑧) (3.40)

In case of Abacus BGS mocks, the GAMA[49] k-correction was used.
The Abacus BGS mock is a cutsky mock produced using 𝑧 = 0.2 box catalogues. No

replications were needed for the sample until 𝑧 = 0.4, as the volume the box provides
is enough to cover the entirety of the BGS DR1 footprint. The clustering of BGS DR1
Abacus mocks with the magnitude limit 𝑀𝑟 < −21.5 in redshift range of 𝑧 = [0.1, 0.4]
compared to a similarly chosen sample of data with the same cuts is shown in Figure 3.10.

3.4.3 Uchuu

Uchuu simulation is run using the GreeM simulation software with 128003 particles and
a particle mass resolution of 3.27 · 108𝑀⊙/ℎ, making it the best resolved simulation
from those presented here. Rockstar halo finder is used for halo-finding. The cosmology
employed is Planck2015[50].

The production of the galaxy catalogue based on Uchuu starts with employing SHAM.
In this case, the matching is done between the peak circular velocity𝑉peak (peak maximum
circular velocity over the history of subhalo) with luminosity. The algorithm goes as
follows:
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Figure 3.10: The mean of power spectrum multipoles ℓ = 0, 2, 4 measured from fully-
processed (footprint-cut and systematics modelled) Abacus BGS mock and their corre-
spondence to those obtained from the DESI DR1 data, both with 𝑀𝑟 < −21.5

1. The subhalos are sorted by 𝑉peak in descending order to get the cumulative number
density 𝑛ℎ (𝑉peak).

2. The fiducial, “unscattered” value of magnitude 𝑀𝑟unscat is assigned to each halo
such that 𝑛ℎ (𝑉peak) = 𝑛ℎ (𝑀𝑟unscat)

3. The magnitude is then scattered by adding a random number from a normal distri-
bution 𝑀𝑟 = 𝑀𝑟unscattered + N(0, 𝜎), where 𝜎 is measure from the data.

4. The subhalos are once again sorted but now by scattered magnitude 𝑀𝑟

5. The galaxies are then placed in subhalos based on the ranking of the unscattered
magnitudes.

Once the catalogue with assigned absolute luminosities is obtained, the same procedure
as for Abacus follows in order to obtain colours and apparent magnitudes. We highlight
that it is the same procedure as the one first used for the production of SDSS-Uchuu
lightcones presented in [51] and for which I performed the standard RSD analysis at the
beginning of my PhD, which validated my pipeline for single-tracer analysis.

The big difference from Abacus mocks arises from the fact, that Uchuu is a proper light-
cone, for the generation of which boxes with redshifts 𝑧 = 0, 0.093, 0.19, 0.3, 0.43, 0.49
have been used, thus better modelling the redshift evolution of the clustering. More on the
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Figure 3.11: Correlation function multipoles for the Uchuu mocks mimicking 1-percent
DESI in comparison to the data for various cuts in absolute magnitude 𝑀𝑟 . Left panel:
monopole ℓ = 0. Right panel: quadrupole ℓ = 2. Taken from [40].

production of the Uchuu mock can be found in [40]. Unfortunately, by the time of writing
of this thesis, Uchuu has not been passed through the LSS pipeline, so despite remaining
a formidable mock, it will not be used in the comparison presented later.

In Figure 3.11 one can see the comparison of the clustering of the correlation function
multipoles from Uchuu with those from 1-percent DESI data for the BGS split into different
absolute magnitude thresholds.

3.4.4 GLAM mock

GLAM is a particle-particle mesh code, which was created for the massive production of
medium-quality N-body mocks, written in Fortran, and whose detailed description can be
found in [52].

When I started my PhD, only the BGS Abacus mocks were created and they are not
enough to obtain a precise mock-based covariance matrix as further explained in the next
chapter. Therefore, my supervisor and I have started a collaboration with Francisco Prada
(University of Granada) and Anatoly Klypin (University of New Mexico State) and I have
been in charge of creating and testing the BGS GLAM mocks.

In order to model the DESI BGS, I have tested several simulation settings (box sizes
and associated mass resolutions) for the boxes created by Anatoly Klypin, all using
Planck2015 cosmology[50]. In what follows, I will focus on two settings. The first
one, internally called the E1 series, has a high resolution which allows us to tackle
the modelling of the full BGS Bright with its high number density, even with colour
and magnitude information. However, the limited box size of 500 Mpc/h, which was
a necessary compromise, did bring unwanted effects on the covariance, which we will
describe in more detail in the next chapter. The second series of the GLAM simulations
that I created are denoted as F3 series. They featured a much poorer resolution, allowing
however for a much bigger box size of 2𝐺𝑝𝑐/ℎ, which was more than enough to simulate
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Figure 3.12: A diagram illustrating the production of GLAM BGS mocks with a pipeline
that I have developed.

the entire BGS DR1 footprint. However, that came with the price of being able to model
only a version of BGS with a severe absolute magnitude cut of 𝑀𝑟 < −21.5. In order to
produce those mocks, I have created a pipeline, which can be summarised in Figure 3.12.

First, the GLAM boxes are cut into spherical shells, and combined in a halo lightcone.
We use the boxes with redshifts 𝑧 = 0, 0.03, 0.09, 0.2, 0.31, 0.49. They are then populated
with galaxies using HODs measured directly from Uchuu. This allows us to avoid using
any parameterization as for the Abacus mocks, but directly measure them as a function of
redshift and magnitude. Once that is done, additional properties are added such as colours
and apparent magnitudes, using the same technique as for the Abacus mocks, described
earlier. That leaves us with a very agnostic w.r.t. parameterizations mock, which preserves
all of the quantities featured of the “parent” Uchuu mock, such as absolute and apparent
magnitudes and colors, although we had to find a compromise in terms of box size vs
resolution. At the time of writing this thesis, I was able to produce xx BGS GLAM mocks.
More boxes are currently being produced by Anatoly Klypin such that we obtain 1000 in
total in order to use them for covariance estimates (see next chapter).

The comparison of the power spectrum from the produced mock and the BGS DR1
data is presented in figure 3.13.

3.4.5 EZmock

The EZmocks for the DESI BGS are created by calibrating the EZmock parameters
described in subsection 3.3.2 by comparing the clustering of the output mocks to that of
the mean of 25 Abacus BGS boxes. The same compromise was made as with F3 series
of the GLAM mocks, meaning that in order to have a sufficiently large box size, the
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Figure 3.13: The mean of power spectrum multipoles ℓ = 0, 2, 4 measured from fully-
processed (footprint-cut and systematics modelled) GLAM BGS mock and their corre-
spondence to those obtained from the DESI DR1 data, both with 𝑀𝑟 < −21.5

resolution had to be lowered, with respect to what would be needed to model a full BGS
Bright without absolute magnitude cut.

The EZmock for BGS are calibrated on the mean clustering of 25 Abacus mocks. I
performed the first tests and settings and Cheng Zhao who produced those mocks for the
other DESI galaxy samples, produced the final version. As expected, the mocks perform
well on the large scales, while deviating on the smaller scales as seen in Figure 3.14, where
the multipoles of the power spectrum for the 100 EZmocks and the data are shown.

Overall, 1000 EZmocks for BGS DR1 are produced in order to obtain a mock-based
covariance matrix, and they have been used in the BAO analysis presented here [53].

3.4.6 Comparison of mocks for BGS DR1

In the end, of the 4 mock species presented, 3 reached the final stage: they were cut to the
footprint of the survey andpassed through the LSS pipeline of DESI, which simulates the
fibre-assignment and compute completeness weights. We have computed 2-point statistics
both in Fourier and configuration spaces.

For the tests presented below,we consider the BGS DR1 sample with 𝑀𝑟 < −21.5,
as EZmock could not be produced with the full BGS Bright number density due to
computational difficulties, and GLAM mocks could only reproduce the full number density
of the BGS if the box size is reduced to 500𝑀𝑝𝑐/ℎ. However, EZmock and GLAM mocks

106



SIMULATIONS 3.4. MOCK SPECIES FOR DESI BGS

Figure 3.14: The mean of power spectrum multipoles ℓ = 0, 2, 4 measured from fully-
processed (footprint-cut and systematics modelled) EZmock BGS mock and their corre-
spondence to those obtained from the DESI DR1 data with 𝑀𝑟 < −21.5

are planned to be used for the covariance matrix estimation, and therefore the limited
boxsize creates the replication effects, which we will discuss in more detail in the next
chapter.

In figure 3.15 we present the clustering of 3 mock species compared to the data in
configuration space. The data is quite noisy. We see that GLAM and Abacus mocks are
providing fully consistent between themselves clustering on the small scales, and start to
deviate slightly on the larger scales. EZMock however deviates quite noticeably in the
separation range of [25, 75] from the Abacus mocks, on which it was calibrated. The
conclusion is consistent in the Fourier space picture presented in Figure 3.16.

On figure 3.16 we present the clustering of 3 mock species compared to the data in
Fourier space. We plot additionally here a hexadecapole, where it becomes obvious that,
unfortunately, that part of the power spectrum EZmock is not able to reproduce properly.
The monopole is successfully reproduced by all the mock species up to 𝑘 = 0.3ℎ/𝑀𝑝𝑐,
however after this limit, EZmock starts to deviate from the others.

As mentioned earlier, Abacus mocks are the only ones from the species presented,
which can mimic full BGS Bright. The comparison of BGS Bright clustering in con-
figuration space with the one from the mean of 25 Abacus mocks is presented in figure
3.15.
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Figure 3.15: The mean of correlation function multipoles ℓ = 0, 2, 4 measured from
fully-processed (footprint-cut and systematics modelled) GLAM, EZmock and Abacus
BGS mock and their correspondence to those obtained from the DESI DR1 data, all with
𝑀𝑟 < −21.5. The respectively colored shaded regions correspond to uncertainties, orange
for GLAM and green for EZmock.
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Figure 3.16: The mean of power spectrum multipoles ℓ = 0, 2, 4 measured from fully-
processed (footprint-cut and systematics modelled) GLAM, EZmock and Abacus BGS
mock and their correspondence to those obtained from the DESI DR1 data, all with
𝑀𝑟 < −21.5
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Chapter 4

Covariance

Не замкнут круг. Заклятья
недопеты. . .
Когда для всех сапфирами
лучей
Сияет день, журчит в полях
ручей, —
Для нас во мгле слепые бродят
светы,!

M. Voloshin, 75

Introduction

The last component that is required for having a complete inference pipeline of the
cosmological parameters, and which we have not covered yet is the error estimation.
Throughout this thesis, as well as in the overwhelming majority of cosmological inference
literature, we intrinsically assume the data vectors, meaning the values of multipoles
for different scales of the correlation functions and power spectrums to be distributed
according to multivariate Gaussian distributions. This assumption allows us to describe
the nature of our statistical errors in the form of the covariance matrix, which also enable
cross-correlation terms between different scales and multipoles. In this chapter, we will
focus on the standard single-tracer analysis, assuming that our data vector is composed of
the multipoles of a single correlation function or power spectrum. In the next chapter we
will also discuss the multitracer analysis and the covariance for such a kind of analysis.
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4.1 Analytic covariance

In this section, we present the derivation of the analytic covariance for the power spectrum
in the Gaussian approximation following the approach in [1]. For the derivation of the
analytic covariance in configuration space please refer to [2] and to [3] for its application
to DESI DR1. The reason for that is mainly that I was mostly working with analytical
covariances for the power spectrum, and has no direct experience producing those for
correlation function, thus creating such an exception for this section.

Before we start, we will introduce some new notation, which will facilitate the deriva-
tion.

Assuming that our survey is covering only a part of the sky, and we use a set of weights
𝑤𝑖 (𝒙) to correct for systematics, we introduce the window matrix𝑊𝑖 𝑗 as:

𝑊𝑖 𝑗 (𝒙) = 𝑛𝑖 (𝒙)𝑤 𝑗 (𝒙) (4.1)

The normalization factors for these windows will then become:

𝐼𝑖 𝑗 =

∫
𝑑3 𝑛𝑖 (𝒙)𝑤 𝑗 (𝒙) (4.2)

We then estimate the density perturbation at the survey level 𝛿𝑁𝑔
as:

𝛿𝑁𝑔
=

∫
𝒙
𝛿(𝒙)𝑊10(𝒙)

𝐼10
(4.3)

We can then rewrite the FKP estimator, previously defined in eq. 96, following [1] as:

𝛿FKP(𝒙) = 𝐹 (𝒙) = 1
√
𝐼22

𝛿𝑊 (𝒙)
(1 + 𝛿𝑁𝑔

) 1
2

(4.4)

where,
𝛿𝑊 (𝒙) = 𝑊11(𝒙)𝛿(𝒙) (4.5)

4.1.1 Real space

In the real space we can write the expression for the power spectrum as:

𝑃(𝒌) =
∫

𝑑3𝑥𝑒𝑖𝒌𝒙 ⟨𝛿(𝒙1)𝛿(𝒙2)⟩𝑥=𝑥2−𝑥1 (4.6)

We can also transfer the overdensities to the Fourier space obtaining:

⟨𝛿(𝒌1)𝛿(𝒌2)⟩ = (2𝜋)3𝛿𝐷 (𝒌1 + 𝒌2)𝑃(𝑘1) (4.7)

Going further, assuming the isotropy of the real-space and integrating over angles,
while substituting the FKP overdensity, we end up with:
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𝑃̂𝐹𝐾𝑃 (𝑘) = 1
𝐼22

∫
1
𝑉𝑘
𝑑2 𝑘̂

|𝛿(𝒌) |2

1 + 𝛿𝑁𝑔

(4.8)

We would want to obtain the covariance matrix𝐶 (𝑘1, 𝑘2) = ⟨𝑃(𝑘1)𝑃(𝑘2)⟩−⟨𝑃(𝑘1)⟩⟨𝑃(𝑘2)⟩,
so the main components we will need will be the expectation value for the power spectrum
and the correlator of the two of them [1]:

⟨𝑃̂(𝑘)⟩ = 1
𝐼22

∫
𝑑2 𝑘̂

∫
𝑑3𝑘′|𝑊11(𝒌′) |2𝑃(𝒌−𝒌′) =

1
𝐼22

∫
𝑑2 𝑘̂𝑃(𝒌)

∫
𝑑3𝑘′|𝑊11(𝒌′) |2 = 𝑃̂(𝑘)

(4.9)

⟨𝑃̂(𝑘1)𝑃̂(𝑘2)⟩ =
1
𝐼2
22

∫
𝑑2 𝑘̂1

∫
𝑑2 𝑘̂2⟨𝛿𝑊 (𝒌1)𝛿𝑊 (−𝒌1)𝛿𝑊 (𝒌2)𝛿𝑊 (−𝒌2)⟩

=
1
𝐼2
22

∫
𝑑2 𝑘̂1

∫
𝑑2 𝑘̂2

∫
𝑑3𝑝1

∫
𝑑3𝑝′1

∫
𝑑3𝑝2

∫
𝑑3𝑝′2𝑊11(𝑘1 − 𝑝1)𝑊11(−𝑘1 − 𝑝′1)×

×𝑊11(𝑘2 − 𝑝2)𝑊11(−𝑘2 − 𝑝′2)⟨𝛿( 𝒑1)𝛿( 𝒑′1)𝛿( 𝒑2)𝛿( 𝒑′2)⟩ (4.10)

From this we can now assemble our analytic covariance matrix for 1D power spectrum
in real space.

4.1.2 Redshift space

However, we will need to infer the parameters from the data located in the redshift space.
The redshift space analytic covariance is significantly more nontrivial that in the real
space. First, we can not enjoy the isotropy anymore, as RSD does introduce LOS-angle
dependent clustering. Therefore, the 3D power-spectrum will not be fully described by
the 1-dimensional part anymore.

Denoting the redshift-space distorted overdensity as 𝐹𝑊 (𝒙) =
∫
𝑑3𝑥𝑒−𝑖𝒌𝒙𝑊11(𝒙)𝛿(𝒙),

we can write the expression for the power spectrum multipoles as:

𝑃ℓ (𝑘)
(2ℓ + 1)
𝐼22

∫
𝑑2 𝑘̂𝐹𝑊,ℓ (𝒌)𝐹𝑊,0(−𝒌) (4.11)

where
𝐹𝑊,ℓ (𝒌)

∫
𝑑3𝑥𝑒−𝑖𝒌𝒙𝑊11(𝒙)𝛿(𝒙)Lℓ ( 𝑘̂ · 𝑥) (4.12)

Now that we have divided the power spectrum into angular components, we can write
the the expectation value of the power spectrum multipole ⟨𝑃ℓ (𝑘)⟩:

⟨𝑃ℓ (𝑘)⟩ =
(2ℓ + 1)
𝐼22

∫
𝑑2 𝑘̂

∫
𝑑3𝑥

∫
𝑑3𝑥′𝑒−𝑖𝒌·(𝒙−𝒙

′) ⟨𝛿(𝒙)𝛿(𝒙′)⟩𝑊11)𝒙)𝑊11(𝒙′)Lℓ (𝑥 · 𝑘̂)
(4.13)

Remembering that ⟨𝛿(𝒙)𝛿(𝒙′)⟩ = 𝜉 (𝒔, 𝒙+), where 𝑠 = 𝒙′ − 𝒙 and 𝑥+ = (𝒙′ + 𝒙)/2, we
can rewrite the expectation value as:
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⟨𝑃ℓ (𝑘)⟩ =
(2ℓ + 1)
𝐼22

∫
𝑑2 𝑘̂

∫
𝑑3𝑥

∫
𝑑3𝑠𝑒−𝑖𝒌𝒔𝜉 (𝒔, 𝒙+)𝑊11(𝒙 − 𝒔)𝑊11(𝒙)Lℓ (𝑥 · 𝑘̂)

(4.14)
We will now introduce the redshift-space local power spectrum:

𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌, 𝒙) =
∫

𝑑3𝑠𝜉 (𝒔, 𝒙)𝑒−𝑖𝒌·𝒔 (4.15)

The integral can be then rewritten as:∫
𝑑3𝑠𝜉 (𝒔, 𝒙)𝑊11(𝒙−𝒔) =

∫
𝑑3𝑠

∫
𝑑3𝑘′

∫
𝑑3𝑞𝑒−𝑖𝒌·𝒔𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌′, 𝒙)𝑊11(𝒒)𝑒𝑖[𝒔·𝒌

′+(𝒙−𝒔)·𝒒] =

=

∫
𝑑3𝒒𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌 + 𝒒, 𝒙)𝑊11(𝒒)𝑒𝑖𝒙·𝒒 = [assuming 𝑘 ≫ 𝑞 ] = 𝑊11(𝒙)𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌, 𝒙)

(4.16)

Now, substituting 4.16 into 4.14 gives us the desired answer for ⟨𝑃𝑊,ℓ (𝒌)⟩, where one
needs to also assume the limit of 𝑘𝑑 → ∞, where 𝑑 is the distance to the galaxy, which
is equivalent to the plane-parallel approximation, and we will expand the local power
spectrum implicitly in multipoles 𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌, 𝒅) =

∑
ℓ′ 𝑃ℓ′ (𝑘)Lℓ′ (𝑑 · 𝑘̂) +O(𝑘𝑑)−2, yielding

in the end:

⟨𝑃𝑊,ℓ (𝒌)⟩ =
(2ℓ + 1)
𝐼22

∫
𝑑2 𝑘̂

∫
𝑑3𝑥Lℓ (𝑥 · 𝑘̂)𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌, 𝒙)𝑊22(𝒙) = 𝑃ℓ (𝒌) (4.17)

Now we need to find the correlator of two power-spectra ⟨𝑃𝑊,ℓ1 (𝒌1)𝑃𝑊,ℓ2 (𝒌2)⟩ in order
to obtain the covariance matrix. Using Wick’s theorem we obtain:

⟨𝑃𝑊,ℓ1 (𝒌1)𝑃𝑊,ℓ2 (𝒌2)⟩ =

=
(2ℓ1 + 1) (2ℓ2 + 1)

𝐼2
22

∫
𝑑2 𝑘̂1

∫
𝑑2 𝑘̂2⟨𝐹𝑊,ℓ1 (𝒌1)𝐹𝑊,0(−𝒌1)𝐹𝑊,ℓ2 (𝒌2)𝐹𝑊,0(−𝒌2)⟩ =

=
(2ℓ1 + 1) (2ℓ2 + 1)

𝐼2
22

∫
𝑑2 𝑘̂1

∫
𝑑2 𝑘̂2

[
⟨𝐹𝑊,ℓ1 (𝒌1)𝐹𝑊,0(−𝒌1)⟩⟨𝐹𝑊,ℓ2 (𝒌2)𝐹𝑊,0(−𝒌2)⟩+

+⟨𝐹𝑊,ℓ1 (𝒌1)𝐹𝑊,ℓ2 (−𝒌2)⟩⟨𝐹𝑊,0(𝒌1)𝐹𝑊,0(−𝒌2)⟩ + ⟨𝐹𝑊,ℓ1 (𝒌1)𝐹𝑊,0(−𝒌2)⟩⟨𝐹𝑊,ℓ2 (𝒌2)𝐹𝑊,0(−𝒌1)⟩
]

(4.18)

We can now expand the terms in the expression using 4.12:

⟨𝑃𝑊,ℓ1 (𝒌1)𝑃𝑊,ℓ2 (𝒌2)⟩ =

=
(2ℓ1 + 1) (2ℓ2 + 1)

𝐼2
22

∫
𝑑2 𝑘̂1

∫
𝑑2 𝑘̂2

∫
𝑑3𝑥1

∫
𝑑3𝑥′1

∫
𝑑3𝑥2

∫
𝑑3𝑥′2×

× 𝑒−𝑖𝒌1·(𝒙1−𝒙′1)−𝑖𝒌2·(𝒙2−𝒙′2) ⟨𝛿(𝒙1)𝛿(𝒙′2)⟩⟨𝛿(𝒙
′
1)𝛿(𝒙2)⟩𝑊11(𝒙1)𝑊11(𝒙′1)𝑊11(𝒙2)𝑊11(𝒙′2)×

× Lℓ1 (𝑥1 · 𝑘̂1)
[
2Lℓ2 (𝑥2 · 𝑘̂2) + Lℓ2 (−𝑥′2 · 𝑘̂2)

]
(4.19)

118
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Intoducing relative coordinates 𝒔1 and 𝒔2, approximating LOS as before and substitut-
ing 4.16, we obtain:

⟨𝑃𝑊,ℓ1 (𝒌1)𝑃𝑊,ℓ2 (𝒌2)⟩ =

=
(2ℓ1 + 1) (2ℓ2 + 1)

𝐼2
22

∫
𝑑2 𝑘̂1

∫
𝑑2 𝑘̂2

∫
𝑑3𝑥1

∫
𝑑3𝑥2×

× 𝑒−𝑖(𝒌1−𝒌2)·(𝒙1−𝒙2)𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌1, 𝒙2)𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌2, 𝒙1)𝑊22(𝒙1)𝑊22(𝒙2)×
× Lℓ1 (𝑥1 · 𝑘̂1)

[
2Lℓ2 (𝑥2 · 𝑘̂2) + Lℓ2 (−𝑥′2 · 𝑘̂2)

]
(4.20)

Using the multipoles expansion and, as earlier, cutting to leafing order in (𝑘𝑑)−1, and
substracting ⟨𝑃𝑊,ℓ1 (𝒌1)⟩⟨𝑃𝑊,ℓ2 (𝒌2)⟩ we obtain the Gaussian covariance:

𝐶ℓ1,ℓ2 (𝑘1, 𝑘2) =
(2ℓ1 + 1) (2ℓ2 + 1)

𝐼2
22

∑︁
ℓ′1,ℓ

′
2

𝑃ℓ′1 (𝑘1)𝑃ℓ′2 (𝑘2)
∫

𝑑2 𝑘̂1

∫
𝑑2 𝑘̂2

∫
𝑑3𝑥1

∫
𝑑3𝑥2×

× 𝑒−𝑖(𝒌1−𝒌2)·(𝒙1−𝒙2)𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌1, 𝒙2)𝑃𝑙𝑜𝑐𝑎𝑙 (𝒌2, 𝒙1)𝑊22(𝒙1)𝑊22(𝒙2)×
× Lℓ′1

(𝑥2 · 𝑘̂1)Lℓ′2
(𝑥1 · 𝑘̂2)Lℓ1 (𝑥1 · 𝑘̂1)

[
Lℓ2 (𝑥2 · 𝑘̂2) + Lℓ2 (−𝑥′2 · 𝑘̂2)

]
=

=
∑︁
ℓ′1,ℓ

′
2

𝑃ℓ′1 (𝑘1)𝑃ℓ′2 (𝑘2)Wℓ1ℓ2ℓ
′
1ℓ

′
2

(4.21)

However, there is one component which we have not yet mentioned, but which becomes
very important for realistic surveys. It is accounting for the finite nature of the observed
objects. This contribution to the covariance is often called the shot noise. There are dif-
ferent approaches to tackle that contribution, for analytic computation of it we recommend
taking a look at [1]. In practice analytic approach to the computation of the covariance
matrix allows, as seen from the 4.21 a covariance matrix with not so much computational
effort, requiring for the input the computed kernels Wℓ1ℓ2ℓ

′
1ℓ

′
2

and the target power spectra.
However, the non-gaussian contributions to the covariance, as well as contributions

coming from higher-dimensional statistics start to play a bigger role for bigger values
of 𝑘 , meanwhile being quite tricky to figure out, as can be seen on Fig 4.1, comparing
the signal-to-noise ratio for monopole and quadrupole of the power spectrum with and
without the non-gaussian terms. Adding to this a certain challenge in properly accounting
for instrumentation effects in such covariances makes them of relatively limited use.

Starting from the next section we will switch back to correlation function as our target
statistics.

4.2 Mock covariance

There is only one Universe that we can observe, which unfortunately limits the observable
samples of our data to 1. Nevertheless, we can try to simulate other universes, and we
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4.2. MOCK COVARIANCE COVARIANCE

Figure 4.1: The signal to noise ration for the power spectrum multipoles in the redshift
space for the covariance matrix produced in Gaussian approximation and beyond (Full
matrix). We can see that the contribution of the non-Gaussian terms becomes more and
more significant as we go to the higher 𝑘’s. Taken from [1].

120
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presented the cosmological simulations in the previous chapter. Thanks to those simula-
tions, we can have as many independent realisations of the survey as our computational
resources enable. We can write the estimator for the covariance matrix from 𝑁𝑚 mocks
as:

𝐶𝑖 𝑗 =
1

𝑁m − 1

𝑁m∑︁
𝑘=1

[
𝑋

[𝑘]
𝑖

− ⟨𝑋𝑖⟩
] [
𝑋

[𝑘]
𝑗

− ⟨𝑋 𝑗 ⟩
]
, (4.22)

where 𝑋 [𝑘]
𝑖

is the 𝑖th bin of either the correlation function or power spectrum of the 𝑘 th

mock, and ⟨𝑋𝑖⟩ is the mean over the 𝑁m mocks of the 𝑖th bin of the correlation function
or power spectrum. The datavector assumed, in case of clustering analysis, to be a
concatenation of several multipoles of power spectrum or correlationf function. It should
be noted however, that first of all, the number of mocks 𝑁𝑚 has to be larger than the
length of the data-vector, leading to at least hundreds of mocks needed for a non-singular
covariance. Furthermore, as we will see in the following chapter, covariance matrix is used
in its inversed form in the likelihood estimation. That is where an additional caveat arises.
The inverse of a statistical unbiased estimator is not unbiased on its own. Therefore, [4]
showed that by rescaling the inverse covariance matrix 𝐶−1

∗ , we can obtain an unbiased
estimator of the inverse covariance matrix 𝐶−1

ℓ1ℓ2
as:

𝐶−1
ℓ1ℓ2

=
𝑁𝑚 − 𝑝 − 2
𝑁𝑚 − 2

𝐶−1
∗ ℓ1ℓ2 (4.23)

where p is the number of independent degrees of freedom in the analysis, usually
the number of bins in the data-vector minus the number of fitted parameters (both the
cosmological and nuisance parameters).

Therefore, it is straightforward to see that the accuracy of such a covariance matrix
depends on the number of simulations produced and on the accuracy of the simulations
themselves. Usually, in the surveys [5] thousands of mocks are used for covariance
production, which is a big challenge for the DESI BGS, given its extremely high density
of galaxies in the survey volume.

4.3 Jackknife covariance

Having mock covariance can be very expensive, while analytic covariance can not capture
all of the necessary details such as non-linearities and observational systematics. We can
try to resample the data itself in a smart way to capture the covariance from the deviations
inside the survey volume itself, and maybe to apply some scaling to fix potential bias.
This data resampling approach is called the jackknife [6].

Jackknife is a data resampling approach that involves creating multiple sub-samples
of the same dataset by systematically excluding regions of the data. When applied to the
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cosmological surveys, the footprint is divided into regions of similar area and it is these
that are systematically excluded to make the multiple sub-samples.

This approach has the advantage of making no assumptions regarding non-linear
evolution and non-standard physics, and at the same time is extremely cheap from the
computational perspective, as it does not require expensive production of thousands of
mocks. Assuming we have cut our dataset into 𝑁jk pieces, the covariance matrix is:

𝐶𝑖 𝑗 =
𝑁jk − 1
𝑁jk

𝑁jk∑︁
𝑘=1

[
𝜉
[𝑘]
𝑖

− ⟨𝜉𝑖⟩
] [
𝜉
[𝑘]
𝑗

− ⟨𝜉 𝑗 ⟩
]
, (4.24)

where 𝜉 [𝑘]
𝑖

is the 𝑖th bin of the correlation function of the 𝑘 th jackknife region, and ⟨𝜉𝑖⟩
is its mean over all the 𝑁jk jackknife regions. The coefficient on the right-hand side is
larger than the corresponding factor in Eq. 4.22 as it compensates for the reduction in the
covariance due to the overlap between the subsamples.

In practice, we consider the galaxy 2-point correlation function and the 𝐷𝐷, 𝐷𝑅 and
𝑅𝑅 pair counts mentioned in the Landy-Szalay estimator defined in Eq. 83.

4.3.1 Standard approach

We will assume the number of sub-samples is 𝑁jk and work in terms of pair counts rather
than correlation functions. For simplicity, we will denote as 𝐴𝐴𝑘 the auto-counts that are
contributed by pairs of galaxies that both reside in the 𝑘 th area of the survey (the areas that
are systematically excluded to form the jackknife sub-samples) and 𝐶𝐶𝑘 the cross-counts
between galaxies in this 𝑘 th area and those in the jackknife sub-sample that is made by
excluding this area. The counts in the jackknife sub-sample 𝑇𝑇𝑘 are related to the overall
number of counts in the full survey 𝑇𝑇tot and the above quantities by

𝑇𝑇𝑘 = 𝑇𝑇tot − 𝐴𝐴𝑘 − 𝐶𝐶𝑘 , (4.25)

where in defining each of these pair counts we count each unique pair only once. The total
number of auto- and cross-pairs can be related to their means over the jackknife samples
by

𝐴𝐴tot = 𝑁jk𝐴𝐴 (4.26)

and, as we account for double counting with the cross-pairs only while looking at the full
sample, we need to divide the obtained estimate by 2 to be consistent with the auto-pairs:

𝐶𝐶tot =
𝑁jk

2
𝐶𝐶, (4.27)

where 𝐴𝐴 = 1
𝑁jk

∑𝑁jk
𝑘=1 𝐴𝐴𝑘 and 𝐶𝐶 = 2

𝑁jk

∑𝑁jk
𝑘=1𝐶𝐶𝑘 .
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Following [7], we choose to define an estimator of the normalised auto-pairs 𝜃a,𝑘 in a
specific realisation, such that 𝜃a = 𝐴𝐴 by

𝜃a,𝑘 =
1

𝑁jk − 1

(
𝑁jk𝐴𝐴 − 𝐴𝐴𝑘

)
(4.28)

and the estimator of the normalised cross-pairs 𝜃𝑐,𝑘 such that 𝜃c = 𝐶𝐶 by

𝜃𝑐,𝑘 =
2

𝑁jk − 2

(
𝑁jk

2
𝐶𝐶 − 𝐶𝐶𝑘

)
, (4.29)

where it was taken into account that the cross-pairs contribute to the total estimate twice,
while the auto-pairs only once.

We can then further compute for each jackknife realization the deviation from the
mean value of the auto paircounts

𝜃𝑎,𝑘 − 𝜃𝑎 =
1

𝑁jk − 1

(
𝐴𝐴 − 𝐴𝐴𝑘

)
(4.30)

and cross paircounts

𝜃𝑐,𝑘 − 𝜃𝑐 =
2

𝑁jk − 2

(
𝐶𝐶 − 𝐶𝐶𝑘

)
. (4.31)

We can now express how the covariance of each type of pair count can be represented
in terms of the estimators above, if we assume the following definition for the covariance,
where 𝐷𝐷𝑡 are just some pair counts of type 𝑡:

cov(𝐷𝐷1, 𝐷𝐷2) =

√︄
𝐷𝐷1𝐷𝐷2

𝐷𝐷tot
1 𝐷𝐷

tot
2

1
𝑁jk − 1

𝑁jk∑︁
𝑘=1

(𝐷𝐷1𝑘 − 𝐷𝐷1) (𝐷𝐷2𝑘 − 𝐷𝐷2) (4.32)

By replacing (𝐷𝐷1, 𝐷𝐷2) by (𝐴𝐴, 𝐴𝐴) or (𝐶𝐶,𝐶𝐶) or (𝐶𝐶, 𝐴𝐴) in Eq. 4.32 and
using Eqs. 4.30 and 4.31, one obtains:

cov(𝐴𝐴, 𝐴𝐴) =
𝑁jk − 1
𝑁jk

𝑁jk∑︁
𝑘=1

(
𝜃a,𝑘 − 𝜃a

)2 (4.33)

cov(𝐶𝐶,𝐶𝐶) =
(𝑁jk − 2)2

2𝑁jk(𝑁jk − 1)

𝑁jk∑︁
𝑘=1

(
𝜃c,𝑘 − 𝜃c

)2 (4.34)

cov(𝐶𝐶, 𝐴𝐴) =
(𝑁jk − 2)
√

2𝑁jk

𝑁jk∑︁
𝑘=1

(
𝜃c,𝑘 − 𝜃c

) (
𝜃a,𝑘 − 𝜃a

)
(4.35)

This gives all the components needed to compute the covariance of 𝑇𝑇 , using its
definition in Eq. 4.25:
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cov(𝑇𝑇,𝑇𝑇) = cov(𝐴𝐴, 𝐴𝐴) + cov(𝐶𝐶,𝐶𝐶) + 2cov(𝐴𝐴,𝐶𝐶)

=
𝑁jk − 1
𝑁jk

𝑁jk∑︁
𝑘=1

(
𝜃a,𝑘 − 𝜃a

)2 +
(𝑁jk − 2)2

2𝑁jk(𝑁jk − 1)

𝑁jk∑︁
𝑘=1

(
𝜃c,𝑘 − 𝜃c

)2 +

+
√

2(𝑁jk − 2)
𝑁jk

𝑁jk∑︁
𝑘=1

(
𝜃c,𝑘 − 𝜃c

) (
𝜃a,𝑘 − 𝜃a

) (4.36)

Note how the terms scale differently with the number of the jackknife regions. [7]
argue that this inconsistent scaling is the source of the bias that arises with the standard
jackknife approach. In the next sections, we will see how adjusting this scaling can enable
one to recover an unbiased covariance estimator and demonstrate the need for going beyond
the Mohammad-Percival correction to get unbiased covariance estimators in all regimes
of galaxy number density.

4.3.2 Mohammad-Percival correction

[7] proposed to weight the cross-pairs 𝐶𝐶 in order to fix the mismatch in the scaling, as
seen in Eq. 4.36. With this weight 𝛼 multiplying all the 𝐶𝐶 pair counts, the expression
for 𝑇𝑇𝑘 becomes

𝑇𝑇𝑘 = 𝑇𝑇tot − 𝐴𝐴𝑘 − 𝛼𝐶𝐶𝑘 . (4.37)

The definition of 𝜃𝑐,𝑘 is then generalised to:

𝜃𝑐,𝑘 (𝛼) =
2𝛼

𝑁 − 2𝛼

(
𝑁

2
𝐶𝐶 − 𝛼𝐶𝐶𝑘

)
, (4.38)

which also changes slightly the mean of this quantity as 𝜃𝑐 (𝛼) = 𝛼𝐶𝐶.
Following the steps from equations (4.29), (4.31) and (4.34), the modified expression

for the covariance of the 𝐶𝐶 paircounts weighted by 𝛼 is

cov(𝛼𝐶𝐶, 𝛼𝐶𝐶) =
(𝑁jk − 2𝛼)2

2𝛼2𝑁jk(𝑁jk − 1)

𝑁jk∑︁
𝑘=1

(
𝜃𝑐,𝑘 − 𝜃𝑐

)2 (4.39)

We see that for 𝛼 = 1 we recover the ordinary jackknife, as it will remove the
cross-pairs in the same way as it removes the auto-pairs. Alternatively, by choosing
𝛼 = 𝑁jk/

[
2 +

√
2(𝑁jk − 1)

]
we can achieve equal scaling for the first two terms. Therefore,

under the assumption of cov(𝐶𝐶, 𝐴𝐴) = 0 we indeed have all the terms scaling with 𝑁jk

in same manner, which can be seen by rewriting the expression for cov(𝑇𝑇 (𝛼), 𝑇𝑇 (𝛼)) as

cov(𝑇𝑇 (𝛼), 𝑇𝑇 (𝛼)) = cov(𝐴𝐴, 𝐴𝐴) + cov(𝛼𝐶𝐶, 𝛼𝐶𝐶) =

=
𝑁jk − 1
𝑁jk

𝑁jk∑︁
𝑘=1

(
𝜃a,𝑘 − 𝜃a

)2 +
(𝑁jk − 2𝛼)2

2𝛼2𝑁jk(𝑁jk − 1)

𝑁jk∑︁
𝑘=1

(
𝜃𝑐,𝑘 − 𝜃𝑐

)2 (4.40)
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Figure 4.2: Comparison of the accuracy in the estimate of the diagonal elements of the
covariance matrix for the real-space correlation functions as a function of scale obtained
from 1000 cubic box independent mock catalogues. The ratio is the mean of the diagonal
elements obtained using different jackknife approaches to those obtained directly from the
ensemble of mocks. The noticeable scale-dependent bias that is visible for the standard
jackknife estimate is absent when the Mohammad-Percival correction is employed.

In order to illustrate the effect of introducing the 𝛼 weighting of [7], we create 1000
Poisson random catalogues in a box with a size of 1 Gpc/h, divide them into 125 cubic
regions and then compute the covariance matrices of the real-space correlation function.
We do this for both the standard jackknife and jackknife with the Mohammad-Percival
correction. The results are presented in Fig. 4.2. We show the ratio of the mean of the
diagonal elements, 𝜎2 ≡ 𝐶𝑖𝑖, of the covariance matrix between jackknife-based 𝜎jk and
mock-based 𝜎 (estimated directly using Eq. 4.22), where the blue curve uses the standard
jackknife and the orange one includes the Mohammad-Percival correction. The standard
jackknife is over-estimating the covariance with respect to that from the mocks, while
introducing the 𝛼 weighting of [7] for the cross-pairs removes this bias.

4.4 Fitted covariance

The real galaxy density has physical correlations and so galaxy distributions are not
Poisson distributions. Therefore, the assumption of cov(𝐶𝐶, 𝐴𝐴) = 0 is not valid. With
the 𝛼 weighting of the cross-pairs that was introduced in Section 4.3.2, Eq. 4.35 becomes

cov(𝛼𝐶𝐶, 𝐴𝐴) =
(𝑁 𝑗 𝑘 − 2𝛼)
√

2𝛼2𝑁 𝑗 𝑘

𝑁 𝑗𝑘∑︁
𝑘=1

(
𝜃𝑐,𝑘 − 𝜃𝑐

) (
𝜃𝑎,𝑘 − 𝜃𝑎

)
. (4.41)

We can see that adopting any general fixed value of 𝛼 unfortunately leaves the scaling
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4.4. FITTED COVARIANCE COVARIANCE

of cov(𝐶𝐶, 𝐴𝐴) different from those of cov(𝐴𝐴, 𝐴𝐴) and cov(𝐶𝐶,𝐶𝐶), so, in order
to try to recover the benefits of the Mohammad-Percival approach, we treat 𝛼 as a free
parameter. We propose therefore to augment the jackknife method with 𝛼weighting where
the value of 𝛼 is tuned by fitting the covariance estimate from a limited number of mocks.
A scheme that represents the approach is shown in Fig. 4.3. First, let us assume we have
a set of 𝑁𝑚 mocks 𝑆 = {𝑆1...𝑆𝑁𝑚

}. Then, 𝑆/𝑆𝑘 denotes the set of mocks with the 𝑘 th

mock removed. Then, we refer to the mock covariance from such a set 𝑆/𝑆𝑘 as 𝐶𝑖 𝑗 [𝑆/𝑆𝑘 ].
We also introduce the 𝛼-dependent jackknife covariance obtained from a mock 𝑆𝑘 with
a chosen 𝛼 weighting as 𝐶𝑖 𝑗 [𝑆𝑘 ] (𝛼), from correlation functions constructed with counts
following eq. (4.37).

Having that in our possession, we are able to estimate the uncertainty on the diagonal
elements of the covariance Ξ𝑖 𝑗 (diag(𝐶)). First, we resample the given set of mocks
and produce 𝑁𝑚 covariances 𝐶𝑖 𝑗 [𝑆/𝑆𝑘 ]. Then we compute the covariance matrix of the
diagonals Ξ𝑖 𝑗 (diag(𝐶)), where we limit ourselves to the diagonal elements as there are
not enough degrees of freedom to build a covariance of matrices [8]:

Ξ𝑖 𝑗 (diag(𝐶)) = cov(𝐶𝑖𝑖, 𝐶 𝑗 𝑗 ) =

=
𝑁m − 1
𝑁m

𝑁m∑︁
𝑘=1

(𝐶𝑖𝑖 [𝑆/𝑆𝑘 ] − 𝐶𝑖𝑖 [𝑆]) (𝐶 𝑗 𝑗 [𝑆/𝑆𝑘 ] − 𝐶 𝑗 𝑗 [𝑆]) (4.42)

In general 𝑁m should be greater than the number of elements in the fitted part of the
covariance. However, in the case of a small 𝑁m, one can restrict this to just the diagonal
elements of Ξ𝑖 𝑗 , to ensure that covariance matrix stays non-singular. The next step consists
of finding which specific 𝛼 is needed to obtain a realisation of the covariance matrix to
describe 𝐶𝑖 𝑗 [𝑆]. First, we can write the 𝛼 dependent estimator of the covariance 𝐶𝑖 𝑗 (𝛼)
based on the mean of 𝑁m 𝛼 dependent jackknife covariances:

𝐶𝑖 𝑗 (𝛼) =
1
𝑁m

𝑁m∑︁
𝑘=1

𝐶𝑖 𝑗 [𝑆𝑘 ] (𝛼) (4.43)

Then, the 𝜒2 of the 𝐶𝑖𝑖 (𝛼) describing the 𝐶𝑖𝑖 [𝑆] can be written as:

𝜒2
𝐶 (𝛼) =

∑︁
𝑖 𝑗

(𝐶𝑖𝑖 (𝛼) − 𝐶𝑖𝑖 [𝑆])
(
Ξ−1

)
𝑖 𝑗
(𝐶 𝑗 𝑗 (𝛼) − 𝐶 𝑗 𝑗 [𝑆]) (4.44)

Following that, we minimise 𝜒2
𝐶

by varying 𝛼, such that we obtain 𝜒2
𝐶
(𝛼min) =

min(𝜒2
𝐶
(𝛼)). To justify using the Gaussian likelihood in this procedure, we first notice

that we are using only the diagonals of the covariance matrix. That allows us, with
sufficiently large 𝑁m, to approximate the distribution of the separate bins of the diagonals
𝐶𝑖𝑖 with a Gaussian.
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Figure 4.3: Schematic describing the procedure to obtain the fitted covariance 𝐶𝑖 𝑗fit as
defined in Eq. (4.45) and discussed in Section 4.4.
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Figure 4.4: Number density dependence on redshift for different datasets used. The
lognormal mock samples were chosen to have a constant density selection function, to
simplify the matters, while LRG and ELG mock samples follow the expected values from
the corresponding DESI survey subsets.

Therefore, our proposed estimator of the 𝛼 dependent covariance matrix 𝐶 (fit)
𝑖 𝑗

can be
defined as:

𝐶
(fit)
𝑖 𝑗

= 𝐶𝑖 𝑗 (𝛼min) =
1
𝑁m

𝑁𝑚∑︁
𝑘=1

𝐶𝑖 𝑗 [𝑆𝑘 ] (𝛼min) (4.45)

While only the diagonal of 𝐶 (fit)
𝑖 𝑗

are used when fitting for 𝛼, all the elements of 𝐶 (fit)
𝑖 𝑗

are
consistently adjusted with the value of 𝛼 that is found. In the original Mohammad-Percival
approach, the contribution of the cross-pairs to the covariance is adjusted to match that of
the auto-pairs. Our hybrid approach allows us to adjust the cross-pair contribution on the
𝛼 weighted covariance so that the covariance matches the one obtained from the limited
set of mocks. We will show in the next section that by doing so, we can greatly reduce the
bias that can appear for dense samples when using the fixed 𝛼 weighting of [7]. However,
the hybrid approach does require more than a single mock to create a covariance estimate,
but in the next section we will also show that the number of mocks needed is significantly
reduced compared to a purely mock-based approach.

We test the performance of the fitted jackknife method with respect to other covari-
ance matrix estimation methods on different sets of mocks that include RSD and some
geometrical effects that we will describe in subsequent sections. For each specific set of
mocks we also generate a set of matching random synthetic catalogues.

In section 5.4.3 we present the methodology of the tests that we perform on our
mocks. In section 4.4.1, a set of tests is performed on lognormal mocks produced by
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the MockFactory code1 with three number densities to explore shot noise-dominated and
sample variance-dominated regimes, but also to mimic the DESI LRG and ELG samples.
In section 5.4.3 approximate EZmocks mimicking the DESI LRG and ELG samples are
used to provide a mock-based covariance matrix which has the level of statistical precision
of expected from the DESI Year-5 data. The corresponding number densities can be seen
in Fig. 4.4 for LRG EZmocks in red, ELG EZmocks in purple and the different lognormal
mocks at 𝑛̄ = (2, 5, 15) × 10−4 [Mpc/h]−3 in blue, orange and green respectively. We
use 1500 lognormal mocks for each space density, and 1000 ELG and LRG EZ mocks
respectively.

Both the random and data samples are divided into 𝑁jk = 196 jackknife regions (the
results, shown in Sec. 4.4.1, are not sensitive to 𝑁jk). The FKP weights are also applied.

4.4.1 Dependence on number density

We create 3 sets of lognormal mocks, each set containing 1500 realisations, for number
densities 𝑛̄ = 2 × 10−4, 5 × 10−4 and 15 × 10−4ℎ3Mpc−3 at 𝑧 = 1. Each of the realisations
is made from a cubic box with a volume of (2Gpc/ℎ)3 with grid of size 3843 and fiducial
cosmology with ℎ = 0.674, 𝜎8 = 0.816 and Ω

(0)
m = 0.31. The CLASS code [9] is

used to generate the initial power spectrum. Redshift space distortions are then added,
and each box is cut to have a footprint that covers 15% of the full sky. Each mock is
then analysed in the redshift range from 0.8 to 1.2, and the corresponding randoms are
generated, which are about 4 times denser than the data mocks. The procedure to obtain
the fitted jackknife covariance is summarised in Fig. 4.3 and explained in the previous
section. Here, we use 𝑁m = 50 mocks. We measure correlation functions from the mocks
in bins of 5ℎ−1Mpc. Fig. 4.6 presents the 𝛼 parameter value distribution, obtained from
the fits of the covariances.

Fig. 4.5 shows a measure of the relative bias Δ𝜎2(𝜉ℓ)/𝜎(𝜎2
Mock) between a jackknife-

based covariance matrix and the mock-based covariance as a function of pair separation 𝑠.
For simplicity we only consider the diagonal elements of each covariance matrix estimate.
This relative bias is defined as

Δ𝜎2(𝜉ℓ)
𝜎(𝜎2

Mock)
=
𝜎2(𝜉ℓ) − 𝜎2

Mock(𝜉ℓ)
𝜎(𝜎2

Mock(𝜉ℓ))
, (4.46)

where 𝜎(𝜉ℓ) is the variance on a given multipole 𝑙 obtained from the jackknife method,
𝜎Mock(𝜉ℓ) is the variance on the same multipole obtained from the 1500 lognormal mocks
and 𝜎(𝜎2

Mock) is the uncertainty on the mock-based error bar, determined by applying
the classical jackknife delete-one mock estimator to the set of mocks from which the
covariance is estimated.

1https://github.com/cosmodesi/mockfactory
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Figure 4.5: The average of the quantity defined in Eq. (4.46) representing the bias of the
specific covariance estimation approach plotted as a function of separation, 𝑠, for various
number densities.
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Figure 4.6: Histogram of the 𝛼 parameter fitted from 50 mocks for lognormal mocks with
𝑛 = 2 × 10−4, 5 × 10−4and 15 × 10−4 ℎ3Mpc−3. The vertical black line shows the value of
𝛼 = 𝑁jk/(2 +

√
2(𝑁jk − 1))

The left panel of Fig. 4.5 shows this relative bias of the jackknife method with the
Mohammad-Percival correction while the right panel shows the result for our fitted jack-
knife method. In both cases, the monopole, 𝜉0, is displayed in the top panel, the quadrupole,
𝜉2, in the middle and the hexadecapole, 𝜉4, in the bottom. The coloured lines show different
number densities and the solid lines are the baseline configuration of 196 jackknife regions
while the dashed lines show the test of using 100 jackknife regions instead. As expected,
the underestimation slightly worsens with the increase in the number of jackknife regions,
as predicted by eq. (4.35).

However, as the number density 𝑛̄ increases, the underestimation of the jackknife
method with the Mohammad-Percival correction becomes more and more significant,
especially for 𝑛̄ = 15×10−4 ℎ3Mpc−3. This underestimation is not visible on the jackknife
covariance matrix estimates produced from the random catalogues as shown in Fig. 4.2.
As explained in the previous section, the clustering of the data leads to higher covariance
due to additional covariance coming from cross-correlations between 𝐶𝐶 and 𝐴𝐴 pair
counts.

Additionally, there is no strong dependence on the number density for the fitted jack-
knife method which makes it more robust whatever the density regime of the galaxy
sample of interest. It should be noted that for low-density regimes optimal 𝛼 seems to be
closer to the default value of Mohammad-Percival approach, and its fitted estimation in
our method introduces additional uncertainty, which makes our method more imprecise
as 𝑛(𝑧) decreases.

We also use a set of 1000 EZmocks generated from N-body simulations with 6 Gpc/h
box size. The fiducial cosmology employed is Planck 2018 [10], and the boxes are
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Figure 4.7: Comparison of the deviation of jackknife and fit covariances from the mock
covariance multiplied by a square of separation for multipoles ℓ = 0, 2, 4 for the EZ LRG
mocks.

generated at 𝑧 = 0.8 for the LRGs and 𝑧 = 1.1 for the ELGs. We use the redshift range
of 𝑧 = [0.8, 1.1] and the mocks are cut to a footprint that reproduces that planned for
the 5-year DESI data in order to match the expected final precision of the mock-based
covariance matrix. The comparison of the difference with the mock covariance for the
single realisation of the jackknife covariance and the fitted covariance is presented in
Fig. 4.7.

On Fig. 4.8 the relative bias of the diagonals of jackknife-based vs mock-based covari-
ances as defined by eq. 4.46 are shown for the LRG sample on the left and for the ELG
sample on the right, in a similar way to Fig. 4.5. First, The same trend is seen for the
Mohammad-Percival jackknife as we found with the lognormal mocks: the bias of the
jackknife method with the Mohammad-Percival correction tends to increase with number
density, so from LRG to ELG, and the fitted jackknife is still able to mitigate it. However,
we can also notice that the differences are less pronounced in the case of the EZmocks
which is due to a bigger volume being probed by the same number density.

Given that for the same number density we see a bigger discrepancy between the
jackknife method with Mohammad-Percival correction and the mock-based covariance
matrix in the case of the lognormal mocks than with the approximate mocks, we also
explore the effect of varying the size of the footprint. We consider the LRG EZmocks and
compute the covariance matrix for the three methods (jackknife with Mohammad-Percival,
fitted jackknife and mock-based) for the Southern Galactic Cap separately and compare
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Figure 4.8: The quantity defined in Eq. (4.46) representing the bias of the specific covari-
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Figure 4.9: Relative bias in the estimate of the variance as defined in equation (4.46) for
the fitted jackknife method (dashed) and for the Mohammad-Percival approach (solid) as
a function of pair separation for LRG EZ mocks. The orange curves are the results for the
SGC while the blue curves are for the larger full footprint.

the results with the ones for the full Y5 footprint. We keep the same number of jackknife
regions in all cases.

The results are displayed in Fig. 4.9 where we plot the relative bias as defined by
equation (4.46) between a jackknife method and the mock-based covariance as a function
of pair separation for the monopole (top), quadrupole (middle) and hexadecapole (bottom).
The results for the SGC are shown in orange and the ones for the full footprint in blue.
Indeed, we see that the bias associated with the Mohammad-Percival approach is higher
when a smaller footprint is used. We also confirm the same effect for the ELG dataset.
Therefore, it makes the fitted jackknife covariance method even more useful when the
footprint considered is relatively small. We believe that this effect might be related to
super-sampling covariance, and if it is indeed the case, it would mean that our approach
can successfully take it into account.

Overall, throughout all of the tests for varying number densities, different types of
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Figure 4.10: The correlation function multipoles multiplied by separation squared 𝑠2

are plotted for three different mock species produced from different GLAM simulation
boxes with periodic boundary conditions. We see that the clustering of all three is almost
identical, with certain differences appearing for example on the quadrupole only after a
scale of 100 Mpc/h

mocks and number of fitted mocks, the fitted jackknife approach shows a considerable
improvement over the correction for standard jackknife proposed by [7]. The fitted
jackknife approach can achieve an unbiased estimate of the covariance matrix with similar
precision to a mock-based covariance but with the major advantage of requiring a much
smaller number of mocks.

4.5 Replications

Sometimes producing even a limited number of mocks with both the volume and the
resolution required can be a problem. In this case, what is done is replication of the
simulation boxes: thanks to the presence of periodic boundary conditions, we can stack
into a larger box until the point where we reach the required target volume. The clustering
of such mocks will be equivalent to those produced with a sufficient box size for scales
smaller than the size of the replicated box and the larger-scale coupling to non-linear scales
is negligible.This is illustrated in Figure 4.10, where the averaged multipoles from GLAM
boxes with different box sizes.

When looking at the covariances with the boxes with periodic boundary conditions,
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the ratio of covariances will be inversely proportional to the ratio of the volumes. That
is illustrated in Figure 4.11, where the standard deviations of the multipoles 𝜎(𝜉ℓ) for
different GLAM boxes with varying sizes are presented, with some of them scaled by
𝜎(𝜉𝑉1

ℓ
)/𝜎(𝜉𝑉2

ℓ
) = 𝑉2

𝑉1
.

Testing the effect of replications on two different mock sizes (2 Gpc/h and 1 Gpc/h)
such that one of them needs replications to mimick BGS, we find that (Figure 4.12) the
scaling of the uncertainty is non-trivial, as only the monopole ℓ = 0 is affected, while
as the quadrupole and hexadecupole are negligiably biased, at least for the mock in our
posession. The FitCov method described earlier (Section 4.4), as well as jackknife in
general, seems to stay untouched by the replication, as long as the replication does not
affect one of the multipoles, as can also be seen in Figure 4.12, which might make the
production of accurate covariances even cheaper than thought previously, as simulated
volumes can be made smaller. The only modification which was done to the original
version of the algorithm is not including the monopole part into the fitting procedure, such
that only quadrupole and hexadecupole were used in fitting 𝛼. Having discovered this
effect, we plan to further investigate it with more details in the future.

4.6 Covariance for the DR1 BGS sample

Having described all of the different approaches to producing the covariance matrices, we
can try to apply them to the production of the DESI DR1 BGS covariance matrix.

Analytic covariances for the DESI BGS DR1 were created by Misha Rashkovetskiy
in configuration space ([3]) and by Otavio Alves in Fourier space (Alves et al. in prep).
As the computation of the analytic covariances required a detailed computation of the
window function kernels in order to take into account the geometrical effects, the analytic
covariances were restricted to the sample with 𝑀𝑟 < −21.5 for computational reasons.
The codes used are public, the one for the configuration space being RascalC [2, 11] and
the one for the Fourier space - thecov [12–14]2. Both analytic covariances use the 2-
point statistics from the observed DR1 BGS dataset as an input, while the window kernels
are computed using the corresponding randoms. Additionally, RascalC calibrates a shot
noise term using the jackknife estimator[2]. Two types of BGS mocks are used to produce
mock-based covariances, which I described in Chapter 3: EZmock and GLAM mocks,
where we have used 1000 of each. Lastly, I computed the fitted covariance (FitCov) using
25 Abacus mocks.

The comparison of standard deviation 𝜎 from different BGS DR1 covariance matrix
estimations is shown in Figure 4.13 for the monopole, quadrupole and hexadecapole
correlation function, and for the power spectrum in Figure 4.14, where in the lower panels

2https://github.com/cosmodesi/thecov
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Figure 4.11: Standard deviation 𝜎 multiplied by separation 𝑠 is plotted for three different
mock species produced from different GLAM simulation boxes with periodic boundary
conditions. The dashed lines represent those from smaller boxes, but rescaled with respect
to the simulation volume. We can see, that this simple scaling is able recover 𝜎 pretty
consistently.
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Figure 4.12: Standard deviation 𝜎 multiplied by separation 𝑠 is plotted for three different
mock species produced from different GLAM simulation boxes, replicated and cut to
the footprint of BGS DR1. We see that the monopole is affected , however quadrupole
and hexadecupole stay untouched. The dashed black line represents the FitCov results,
produced from 50 mocks with simulated volume of 1 Gpc/h, and fitted in the separation
range of [40, 160] Mpc/h.
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Figure 4.13: The standard deviation computed with different approaches in configuration
space.

Figure 4.14: The standard deviation computed with different approaches in Fourier space.

we present residiuals with respect to the reference EZmock covariance. We can see that
the analytic covariance for the power spectrum tends to underestimate the uncertainty at
large 𝑘 , while the one for the correlation function seems to overestimate the monopole at
intermediate scales, and the quadrupole at large scales. For both statistics, EZmock and
GLAM covariances are fully consistent. FitCov, developed for the correlation function, is
also consistent with the mock covariances.

This gives us a set of covariances we use extensively in Chapter 5 for cosmological
inference. Having several of them allows us to cross-verify them, thus ensuring the validity
of our approaches to error estimation. Additional tests of the cosmological parameters
inferred with the different covariance matrix estimates are presented in Chapter 5.
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Chapter 5

Clustering analysis and its application
to DESI BGS

Тому, кто зряч, но светом дня
ослеп, —
Смысл голосов, звук слов,
событий звенья,
И запах тел, и шорохи
растенья, —
Весь тайный строй сплетений,
швов и скреп
Раскрыт во тьме.

M. Voloshin, 126

Introduction

During the course of the previous chapters we have discussed the different components
needed for obtaining the data from the observed Universe: how to obtain the data, how
to model it and how to estimate the uncertainties on it. Now, there is only one last step
left: getting the cosmological parameters themselves. In this chapter, we will discuss the
various ways to obtain the cosmological parameters from the 2-point clustering statistics.
We will start with discussing the most classic approaches: BAO-only and RSD analysis,
before moving on to the full-shape analysis employed in DESI instead of the classic RSD
and we will discuss the question of compression. Then, we will test the tools we have
created for the full-shape analysis using realistic mocks. Eventually, we will present the
results of the analysis of the DESI BGS DR1 sample, both single- and multi-tracer.
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5.1 Clustering analysis

5.1.1 BAO analysis

The BAO analysis starts with the choice of fiducial cosmology, and generation of the
linear power spectrum, which is usually separated into the broadband part without the
characteristic BAO wiggle, 𝑃fid

𝑛𝑤 = 𝑃fid
lin − 𝑃fid

wig and the wiggle 𝑃fid
wig itself. The following

model is then often adopted [1–3]:

𝑃BAO(𝑘, 𝜇) = 𝐵2𝑃fid
𝑛 𝑤(𝑘)

[
1 +

(
𝑃fid

lin

𝑃fid
𝑛𝑤

− 1

)
𝑒
− 1

2

(
𝜇2𝑘2Σ2

∥+(1−𝜇
2)𝑘2Σ2

⊥

) ]
(5.1)

where 𝐵 is responsible for the general amplitude, while Σ∥ and Σ⊥ are responsible for
the non-linear BAO dumbping, and are usually estimated from simulations.

Additionally to that, one usually marginalises broadband part by adding to each mul-
tipole of the power spectrum a following term 𝑔ℓ (𝑘):

𝑔ℓ (𝑘) =
𝑁∑︁
𝑖=1

𝐴ℓ𝑖 𝑘
2−𝑖 (5.2)

where 𝐴ℓ are marginalised over. The last thing to do will be to modify the power
spectrum to account for the Alcock-Paczynski effect, as for example in eq.69. The
configuration space multipoles are produced by Hankel transformations, as for example,
was done in [4]. Various prescriptions exist, however, including isotropic BAO fitting,
such as used here [5], for example.

Non-linear gravitational evolution, however, broadens the BAO peak in the correlation
function, or damps the corresponding oscillations in the power spectrum. Plus, the
location of the peak can also be shifted due to galaxy biasing [6, 7]. These effects in total
degrade the BAO measurements. There is however a technique to reverse those effects,
thus improving the constraints on the BAO, called reconstruction [8]. This modifies the
equation 5.1 to be[3]:

𝑃BAO(𝑘, 𝜇) = 𝐵2(1 + 𝑏
𝑓
𝜇2𝑅)2𝑃fid

𝑛 𝑤(𝑘)
[
1 +

(
𝑃fid

lin

𝑃fid
𝑛𝑤

− 1

)
𝑒
− 1

2

(
𝜇2𝑘2Σ2

∥+(1−𝜇
2)𝑘2Σ2

⊥

) ]
(5.3)

where 𝑅 is the reconstruction smoothing scale, which is set to 0 for the prereconstructed
catalogues. For DESI BAO analysis the model was modified further however, for additional
details see [9]. Furthermore, reconstruction has been shown to be effective in removing
the shifts of the acoustic peak, and reducing the systematic errors in BAO measurements
[10–13]. An example of the effect on the BAO measurement is shown on Figure 5.1.

Thus, reconstruction has become a standard technique to use in the galaxy surveys
when making BAO measurements, recent DESI results not excluded [4, 9]. However, in
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Figure 5.1: Left: The dots shown the monopole of the two-point correlation function before
and after reconstruction averaged over 25 realisations of Abacus LRG mocks, measured
in 0.4 < 𝑧 < 0.6. The error bars are taken from a semi-analytic covariance matrix [14].
The solid lines correspond to the best-fit model. Right: Δ𝜒2 as a function of the isotropic
BAO scaling parameter 𝛼iso. Solid and dashed lines show results from the models with
and without BAO included. Taken from [15].

this thesis we will not perform the BAO-only measurements, so the interested reader is
advised to learn more, for example, from [15].

5.1.2 RSD and full-shape analysis

As in the previous section, we start by the choice of the reference cosmology. In this
approach, the cosmology is not varied throughout the posterior exploration. Thus the
linear power spectrum is created only once. The generation of the non-linear power
spectrum is then performed in two steps in case of the clustering analysis, which were
explained in detail in Chapter 2: 1) computation of the perturbation theory kernels, 2)
multiplication of those with the nuisance parameters such as biases. Then, using the
statistical machinery explained in Introduction, we obtain the values of 𝑓 and fiducial
parameters such as biases. However, we should note that the difference between the
fiducial and the observed cosmology is not taken into account at this stage. We can take a
look at smaller scales around 30− 50 h/Mpc , where the RSD effect happens. Let us leave
aside the difference between observed and fiducial cosmologies for now. We can note that
one of the parameters, usually‘ computed from theory, but which can be easily varied in
a fashion similar to biases is the growth rate of structures 𝑓 . Given its direct connection
to the equation of state of dark energy (equation 64), we get a powerful probe. We
can add a modification to the modelling of the non-linear power spectrum by accounting
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Figure 5.2: Growth rate from various outdated surveys with RSD part inferred only, taken
from [19].

for the difference in cosmologies by scaling the resulting statistics as 𝑘⊥ = 𝑘̃⊥/𝛼⊥ and
𝑘 = 𝑘̃ ∥/𝛼∥ , following [16], which will account for the difference between the fiducial and
real cosmology. This type of analysis is called the RSD analysis.

There is caveat, though. 𝑓 is highly correlated with 𝜎8, to the point where one can
write 𝑓 =

𝑑𝜎8 (𝑎)
𝑑ln𝑎 . Thus, what is usually reported is 𝑓 𝜎8 measurement, keeping in mind

the unresolved differences between the cosmologies, which is usually valid for smaller
redshifts [17]. This is for example one of the methodologies explored in [18].

Once the growth rate is measured, usually at several redshifts (for which the data of
different surveys can be used), we can explore the evolution of the growth of over time and
compare it with different cosmological models. A classical example of such a plot can be
seen in Figure 5.2.

We can now see that by measuring the evolution of 𝑓 𝜎8 , we can later fit the curve
resulting from the equation 64, thus, getting an estimate of Ω𝑚 if we assume ΛCDM, or
even 𝛾.

Both the RSD and BAO analysis provide information on cosmological parameters. It
should be kept in mind though, that the two use the different parts of the target clustering
statistics to obtain information: RSD is usually more present on the smaller scales, while
BAO dominates large scales. Thus, it is possible to infer information from them simul-
taneously, thus accounting for the difference in cosmology during the RSD measurement
[20]. It should be noted that the AP effect and the RSD effect are degenerate. However,
with precise enough measurements, they can be disentangled, and thus this is the reason
why it was not used earlier. This technique is called the full-shape clustering analysis, and
is the one used throughout this thesis.
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5.2 The question of compression

The methods described earlier are examples of methods employing the so-called template
compression, meaning that the template linear power spectrum is kept fixed during the
inference and the cosmological parameters are not inferred directly, but rather through
compressed parameters, such as 𝑓 𝜎8, 𝛼⊥, 𝛼∥ , that control the late-time dynamics of the
Universe. However, what would happen if we would attempt to use the cosmological
parameters directly?

As was detailed in Chapter 2, the computation of the perturbation theory clustering
statistics from scratch takes considerable time, if emulators are not used. But, it was shown
that a considerable amount of information is lost when performing the fixed-template
compressed analysis[21], if not combined with the CMB data and when compared with a
direct fitting of the cosmological parameters from the 2-point statistics. This is illustrated
on Figure 5.3 where the grey curve shows the constraints from RSD alone, orange from
BAO+RSD and blue from Full-Modelling (or direct fitting).

It should be noted, that the template compression can be extended in order to include
the information otherwise missing. This is done by introducing the parameter 𝑚 which
controls the slope of the linear power spectrum. This method is called ShapeFit[21] and
the linear power spectrum is modified such that:

𝑃′lin(𝑘) = 𝑃lin(𝑘)exp
{
𝑚

𝑎
tanh

[
ln

(
𝑘

𝑘 𝑝

)]
+ 𝑛ln

(
𝑘

𝑘 𝑝

)}
(5.4)

where 𝑎 is a fixed parameter that controls the large and small scale limits and how they
are reached, while 𝑚 is variable and controls the slope itself, representing the maximum
slope at scale 𝑘 𝑝. 𝑘 𝑝 is usually chosen to correspond to the location where the baryon
impression is the strongest and kept fixed. More on this approach can be found in [21, 23],
and its application to DESI in [maus2024] for the theoretical model we are using in this
work, velocileptors[24, 25]

In preparation of the DESI DR1 Full-Shape analysis, the three methods (classic RSD,
ShapeFit and Full-Modelling) have been compared, and, as can be seen in Figure 5.4, the
ShapeFit and Full-Modelling approaches indeed yielded much tighter constraints on the
cosmological parameters of ΛCDM, when tested on the AbacusSummit cubic boxes[26].

5.3 Projection effects

One of the problems appearing with posteriors from high-dimensional likelihoods in
Bayesian inference is often our inability to present and imagine the results in the ways
other than projections with 1D and 2D projections. Thus, for these types of likelihoods
the same posteriors might be very misleading. A good example is shown in Figure
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Figure 5.3: Posteriors inferred from various setups for BOSS DR12 data[22], where the
compressed parameters have been converted to corresponding cosmological parameters,
for 68% and 95% confidence intervals. We see that the full modelling fit considerably
improves the constraints. Taken from [23].
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Figure 5.4: A comparison of different analysis approaches (classic RSD, ShapeFit and Full-
Modelling) using AbacusSummit cubic boxes[26] in Fourier space with 𝑘max = 0.2 with
velocileptors for inference of standard ΛCDM parameters. Taken from [maus2024].

148



CLUSTERING ANALYSIS 5.3. PROJECTION EFFECTS

Figure 5.5: An example of the posterior from the likelihood of three parameters 𝑥, 𝑦 and
𝑧. We can see that under a specific linear transformation, the posteriors fully compatible
on the left panel, become completely incompatible (right panel). Taken from [27].

5.5, where two posteriors are plotted with and without a linear transformation applied,
showing how two seemingly compatible distributions become fully incompatible under a
linear transformation.

It was shown that the analysis of DR1 data can be susceptible to these effects (e.g.
[maus2024]), usually called projection effects. It is also shown there that the projection
effects might present themselves in the increased sensitivity of the resulting posteriors to the
starting values and priors used. That is the reason why only the monopole and quadrupole
will be used in the official DESI DR1 full-shape analysis, as additional degrees of freedom
coming from counterterms responsible for accurate modelling of the hexadecapole increase
the sensitivity on priors.

For DR1 we observe two kinds of projection effects: 1) prior weight effect, which
manifests itself when the center of the prior of the nuisance parameter is shifted with respect
to its true value, which can potentially shift the most likely value of the cosmological
parameters and 2) prior volume effect, which arises from the marginalisation over the
nuisance parameter prior volumes, thus potentially shifting the mean of the cosmological
parameters’ posterior away from the most likely value. Both effects depend on how
constraining the dataset is. The effects are illustrated in Figure 5.6, where one can see the
prior volume effect manifesting in the shifts of the maximal likelihood points with respect
to the means, while the prior weight effect can be seen in the configuration-dependent
shift of the maximal likelihood point.

149



5.4. TESTS OF TOOLS AND METHODOLOGY CLUSTERING ANALYSIS

Figure 5.6: Tests on the mean of the LRG cutsky mocks with 0.4 < 𝑧 < 0.6 using different
priors on the nuisance parameters, with solid lines and points representing the intervals and
means obtained my MCMC sampling, while crosses represented the maximal likelihood
points. The percentage corresponds to the uncertainty in the Gaussian prior of the nuisance
parameter as a proportion of the nuisance parameter. V25 corresponds to the covariance
matrix with the precision of 25 mocks. Credit: Ruiyang Zhao.

5.4 Tests of tools and methodology

In this section, we present the various tests performed on different sets of simulations
tailored to assess the robustness of the tools being tested and their impact on the cosmo-
logical parameters of interest. We will start with testing the classic compressed full-shape
pipeline we have developed, then we will make extensive tests of the neural network-based
emulator for the 2-point statistics from Chapter 2. After that we will present the tests
performed to validate the Fitcov approach for covariance matrix from Chapter 4 and its
comparison with mock-based and analytic covariance matrices from Chapter 3. We will
finish the section with the tests of the single- and multi-tracer approaches on BGS DR1
mocks.

5.4.1 General full-shape pipeline

We have started our tests with the classic compressed full-shape inference pipeline in
order to constrain 𝛼∥ , 𝛼⊥ and 𝑓 𝜎8. The results were published in [5], and here we briefly
summarise the methodology and the results.

We fit our RSD model to the correlation function multipoles from the three datasets:
SDSSbao the dataset obtained from the SDSS survey[28] with redshifts below 𝑧 = 0.3,
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Figure 5.7: The monopole, quadrupole, and hexadecapole of the two-point correlation
function measured in our three SDSS BAO data set: SDSSbao (filled symbols), GLAM-
SDSSbao (blue lines) and Uchuu-SDSSbao (pink lines). Errors have been estimated from
the covariance matrix of the 5100 GLAM-SDSSbao lightcones. For Uchuu (GLAM) the
errors correspond to the error on the mean of the 32 (5100) mocks. Following the same
colour code, we also plot the best-fit RSD model (dashed lines) for each data set.
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described in more detail in [29], and two sets of simulations created to mimick this cata-
logue, Uchuu-SDSSbao, produced using the Uchuu simulation[30] and GLAM-SDSSbao
produced with GLAM[31]. Both are described in more detail in [5]. in the separation
range [25, 145] h/Mpc, with bins of width 5 h/Mpc using velocileptorspackage [24,
25], the publicly available EFT model described in Chapter 2. In addition to the cos-
mological parameters 𝑓 𝜎8, 𝛼∥ and 𝛼⊥, we also estimate the Lagrangian biases 𝑏1, 𝑏2,
as defined in Chapter 2 and the Fingers-of-God parameter 𝜎FOG. Unphysical values of
parameters are avoided by setting the priors to 𝑓 𝜎8 > 0, 𝑏1 > −1, and 𝜎FOG > 0. The
first Lagrangian bias is related to the Eulerian bias by 𝑏1,Eulerian = 1 + 𝑏1. The effective
redshift of the SDSS sample is computed to be 𝑧eff = 0.15, and is given by the following
formula [32, 33]:

𝑧eff =

∑
𝑖, 𝑗 𝑤𝑖𝑤 𝑗 (𝑧𝑖 + 𝑧 𝑗 )/2∑

𝑖, 𝑗 𝑤𝑖𝑤 𝑗

(5.5)

, where 𝑧𝑖 are the redshifts of the galaxies in the survey and 𝑤𝑖 are the attributed weights
responsible for targeting and observing systematic effects.

The correlation function multipoles corresponding to our best-fit models can be seen in
Fig 5.7. We observe good agreement with Uchuu-SDSS and GLAM-SDSS measurements.
The RSD model predicts a position of the BAO peak in the monopole that is too low
compared with the observed position of the peak. However, this disagreement is within
the noise limits.

The minimum of 𝜒2 is found using iminuit [34], which achieves convergence near
the minimum using the first and approximate second derivatives. Errors are estimated
from the region of Δ𝜒2 = 1 of the marginalized 𝜒2 distribution, and they are allowed to be
asymmetric. We also run Monte Carlo Markov chains (MCMC) with the emcee package
[emcee] in order to compute the likelihood surface of our set of fitted parameters. Their
convergence is checked with the Gelman-Rubin convergence test [35, 36].

We first test our RSD pipeline on the GLAM-SDSS and Uchuu-SDSS lightcones. The
best-fit results of the parameters 𝑓 𝜎8, 𝛼∥ and 𝛼⊥ are summarised in Fig. 5.8. We confirm
that the theoretical model recovers the fiducial Planck values within 1𝜎.

We then apply the pipeline to the SDSS sample. Our results are listed in Table 5.1.
Both 𝜒2 minimization and MCMC sampling methods provide consistent results, and
the small difference in the errors and parameter values are attributed to more accurate
treatment of the posteriors with MCMC chains. The parameter distributions for 𝜎FOG are
non-Gaussian, as it is restricted to positive values, but the best-fit value is consistent with
0. Additionally, we compare our obtained 𝑓 𝜎8 and 𝑏1 with Howlett et al. [17], finding
a good agreement, but we obtain a ≳ 30% increase in precision on 𝑓 𝜎8 which can be
attributed to our better estimate of the covariance matrix (see Table 5.1).

The distribution of parameter values and their uncertainties can be seen in Fig. 5.8,
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Parameter 𝜒2 minimization MCMC Reference

𝑓 𝜎8 0.65+0.14
−0.15 0.60+0.15

−0.16 0.63+0.24
−0.27

𝛼∥ 1.00+0.08
−0.06 1.04+0.14

−0.09 N/A

𝛼⊥ 1.18+0.07
−0.09 1.16+0.08

−0.09 N/A

𝑏1,Eulerian 1.53+0.19
−0.19 1.59+0.22

−0.20 1.36+0.29
−0.26

𝑏2 −1.8+2.7
−1.1 −0.8+1.7

−1.5 N/A

𝜎FOG [h/Mpc] 0+7.4
−0.0 4.0+2.8

−2.7 N/A

Table 5.1: RSD fitted parameters from the SDSS data, obtained by 𝜒2 minimization and
using Bayesian MCMC inference. The first two columns correspond to the results from
this paper, while the last column shows the values from Howlett et al. [17] for comparison.
Only 𝑓 𝜎8 and 𝑏1,Eulerian estimated values from Howlett et al. [17] are found in the literature.

Parameter Uchuu GLAM Expected value

𝑓 𝜎8 0.44+0.02
−0.02 0.420+0.002

−0.002 0.46

𝛼∥ 0.98+0.03
−0.03 0.991+0.002

−0.002 1.00

𝛼⊥ 0.98+0.02
−0.01 0.985+0.001

−0.001 1.00

𝑏1,Eulerian 1.44+0.03
−0.03 1.430+0.003

−0.003 N/A

𝑏2 −0.8+0.2
−0.2 −0.641+0.03

−0.03 N/A

𝜎FOG [h/Mpc] 0.0+1.5
−0.0 3.73+0.08

−0.08 N/A

Table 5.2: RSD fitted cosmological parameters from the means of Uchuu and GLAM
correlation functions, obtained using 𝜒2 minimization in comparison with the values
predicted by the fiducial cosmology.
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Figure 5.8: Top row: Parameter values of 𝑓 𝜎8, 𝛼∥ and𝛼⊥ measured from the GLAM-SDSS
(blue contours) and Uchuu-SDSS (green points) lightcones, together with SDSS data (red
cross). Dashed black lines represent the expected values for the fiducial cosmology.
Bottom row: The corresponding parameter errors.
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where the results from the SDSS sample together with those from GLAM and Uchuu are
shown in blue, orange, and red respectively, and the black lines show the expected values
of the parameters for the Planck fiducial cosmology. The results from GLAM- and Uchuu-
SDSS are consistent with each other and with the SDSS data, meaning that the mocks are
a fair statistical representation of the data. We confirm that the fits we have performed are
valid and have an acceptable 𝜒2/dof, for GLAM mocks being 𝜒2/dof = 1.00 ± 0.18, for
Uchuu mocks being 𝜒2/dof = 1.07± 0.18 and for the SDSS sample being 𝜒2/dof = 0.98.
It should be noted, however, that due to a very high number of GLAM mocks, the results
from the fits of the mean were expected to be slightly biased due to the precision becoming
larger than the systematic uncertainty from our model, which is designed for the analysis
of only one realisation.

Finally we use our best-fit values of the BAO-inferred 𝛼∥ and 𝛼⊥ parameters to provide
a measurement of the Hubble distance and the (comoving) angular diameter distance
at the effective redshift of the SDSSbao sample, i.e. 𝐷H(𝑧 = 0.15)/𝑟𝑑 = 27.9+2.2

−1.8,
𝐷M(𝑧 = 0.15)/𝑟𝑑 = 5.1+0.3

−0.4. These results are valuable since they constitute the first
two-dimensional distance measurements from SDSS data.

5.4.2 Theoretical modelling

We assess the performance of the neural network emulator in inferring the cosmological
parameters with respect to the original code by fitting the mean of the 25 Abacus mocks
for the three datasets: DESI LRG-like at 𝑧 = 0.5, DESI LRG-like at 𝑧 = 0.8 and DESI
ELG-like at 𝑧 = 0.8. Fig. 5.9 shows the cosmological constraints obtained from full
modelling using either the neural network emulator (red) or MomentExpansion module
of velocileptors (green). The dashed curves represent the 1𝜎 error from each model.
Both models yield very consistent results, both for the best-fit values and the uncertainty.

We summarise the results of the comparison between the neural network emulator
(triangles) and the analytic code (circles) in Fig. 5.10 where we show the best-fit values
and 1𝜎 error for the three main cosmological parameters that are well constrained with
Full-Shape analysis. We can see that both methods yield very consistent and similar results
with less than 0.3𝜎 for the largest difference seen on ℎ.

We also want to assess the performance of the emulator with respect to the expected
values given the cosmological model that was used for the simulations. In order to do
that, we fit the 25 individual realisations for each case and in Fig. 5.11, we show the
results for the cosmological parameters by plotting the difference between measured and
truth divided by the error on the measured parameter as a function of mock number. Blue
triangles represent the results for LRG at 𝑧 = 0.5, green ones for LRG 𝑧 = 0.8 and orange
ones for ELG at 𝑧 = 0.8. All the results are consistent with the expected truth values
within 1-2 𝜎, which further validates the ability of the emulator to recover precise and
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Figure 5.9: Comparison of cosmological constraints obtained with the neural network
emulator (red) and with MomentExpannsion (green) when fitting the mean of the 25
Abacus mocks for the three configurations.
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𝑛̄(𝑧) (ℎ3Mpc−3) Mock Mohammad-Percival Fit

2 × 10−4 1.03 1.40 1.05
5 × 10−4 0.99 1.42 1.05

15 × 10−4 1.00 1.56 1.08

Table 5.3: For each of the estimation methods we tabulate the standard deviation 𝜎 of
( 𝑓 𝜎8𝑖 − 𝑓 𝜎8)/𝜎𝑖 ( 𝑓 𝜎8), over independent fits, 𝑖. For the mock covariance method 𝜎 ≈ 1
(as expected when all the fits are performed consistently with the same covariance), for
the fitted covariance method it is also quite close to unity, but for the jackknife method
𝜎 > 1.4, which shows a much higher degree of deviation from the truth.

unbiased cosmological constraints.

5.4.3 FitCov

To test the performance of different covariance estimation techniques we infer 𝑓 𝜎8, 𝛼∥ and
𝛼⊥ by fitting the theoretical predictions of the multipoles to the ones from the mocks using
covariances from the estimators reviewed earlier. The theoretical power spectrum 𝑃FOG

is obtained using the MomentumExpansion module of the velocileptors package [for
more details, see 24, 25], which is generated using a 6-parameter model and we follow the
classic full-shape approach by fitting the linear growth rate 𝑓 𝜎8 and the Alcock-Paczynski
parameters [16] 𝛼∥ and 𝛼⊥. The model also includes first- and second-order biases 𝑏1, 𝑏2

and the effective Fingers Of God parameter (FOG) 𝜎FOG.
We use a likelihood maximisation method to find the 𝜒2 minima using iminuit [34].

Errors are estimated from the region of Δ𝜒2 = 1 of the marginalized 𝜒2 distribution, and
they are allowed to be asymmetric. The choice of a frequentist method of analysis is
motivated by its low computational cost.

In Fig. 5.12, the first row shows the distributions of reduced 𝜒2 for different choices
of 𝑛̄, and the other rows show the marginalised 2D-distributions of parameters and their
uncertainties for respectively 𝑓 𝜎8, 𝛼∥ and 𝛼⊥. The distributions of reduced 𝜒2 show the
goodness of the individual fits for the three methods. The contours in the bottom panel
show how, for all the parameters, the spread from the Mohammad-Percival jackknife
in green is in general much wider than the one from the mock covariance in red both
in terms of uncertainty and parameter values. While in case of the fitted jackknife
covariance, the blue contours are very similar to the mock covariance ones. Presumably,
this improvement comes from using 50 realisations rather than one. In Fig. 5.13 we also
show in the same form the performance from the standard jackknife in comparison with
the Mohammad-Percival corrected jackknife and mock-based covariance. As expected,
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Figure 5.11: The deviation of different cosmological parameters in terms of the error 𝜎
from the expected theoretical value obtained from the individual mock fits for three mock
types: blue for LRGs with 𝑧 = 0.5, green for LRGs with 𝑧 = 0.8 and orange for ELGs with
𝑧 = 0.8.
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Figure 5.12: The summary of the results from the cosmological fits from the lognormal
mocks with varying density (one for each column and with density in (Mpc/h)−3 indicated
at the top) for the three covariance matrix estimation methods: jackknife covariance with
Mohammad-Percival correction in green, fitted jackknife covariance in blue and mock
covariance in red. The top panels show the histograms of the reduced 𝜒2, while the three
bottom ones show the marginalised 2D-distributions of parameters and their uncertainties
for 𝑓 𝜎8, 𝛼∥ and 𝛼⊥, obtained from the set of fits.
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Figure 5.13: The summary of the cosmological fits from the lognormal mocks with a
varying density. Similar to Fig. 5.12 but withdifferent methods of estimating the covariance
matrix: jackknife covariance with the Mohammad-Percival correction in green, mock
covariance in red (the same contours as on Fig. 5.12) and standard jackknife covariance in
blue.
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the standard jackknife produces slightly larger contours, which are noticeably shifted with
respect to the mock covariance, especially for 𝑓 𝜎8.

To additionally test the validity of our inference approaches, we will define the quantity

𝑥 =
𝜂 − 𝜂
𝜎(𝜂) , (5.6)

where 𝜂 is an inferred parameter from a specific fit, 𝜂 is the mean from all the fits, and
𝜎(𝜂) is the error estimation from a specific fit. The distribution of quantity 𝑥 is called
a pull distribution. If 𝜂 follows a Gaussian distribution, the distribution of 𝑥 will form a
normal distribution with 𝑥 = 0 and 𝜎(𝑥) = 1.

For the mock covariance, we fit the 1500 available samples, while for the Mohammad-
Percival jackknife and for the fitted jackknife 50 random mocks are fitted using 30 reali-
sations of the covariance, under the assumption that all of the covariance estimators are
probing the same underlying likelihood.

Pull distributions for 𝑓 𝜎8, 𝛼∥ and 𝛼⊥ are presented in Fig. 5.14 for each number density
of the lognormal mocks. The fitted jackknife and mock covariance pull distributions have
Gaussian-shape with 𝜎 = 1 normal distributions as expected, while the pull distributions
obtained when using Mohammad-Percival jackknife are slightly wider, which is due the
covariance being less precise. We can see it quantitatively in the Table 5.3, where the
standard deviations of the distributions from Fig. 5.14 are presented. That is due to various
shifts of the distributions obtained from fitting to different jackknife covariances. This is
not the case for the fitted approach, however.

Overall, for all the number densities, the performance of the fitted jackknife method
using 50 mocks is much better than that of the standard jackknife with the Mohammad-
Percival correction, and, most importantly, it gives similar performance as the covariance
matrix created from 1500 mocks.

We also test the performance of the approach when varying the number of mocks used
for producing the fitted covariance. We test using 10, 25 and 50 mocks and report the
results on the cosmological fits in Fig. 5.15, following the same methodology as explained
before for 50 mocks. The precision on the marginalised 2D contours of the cosmological
parameters of interest starts to drop noticeably when 10 mocks are used, while it remains
stable between 25 and 50 mocks.

For LRG- and ELG-like EZMocks we also infer the values of the cosmological pa-
rameters 𝑓 𝜎8, 𝛼∥ and 𝛼⊥, using the same methodology as for the lognormal mocks. The
results of the fits are shown in Fig. 5.16 where the first row shows the 𝜒2/dof distribution
and the other rows show the marginalised 2D contours for best-fit values and uncertainties
on the cosmological parameters. We confirm the findings with the lognormal mocks that
the fitted jackknife method provides results which are in much better agreement with the
mock-based method while the jackknife method with the Mohammad-Percival correction
clearly over-estimates the uncertainties on all the cosmological parameters. The effect is
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Figure 5.14: Pull distributions for different covariance estimation techniques with results
from fits on various lognormal mocks, shown for 3 different number densities indicated at
the top in (Mpc/h)3. Line colors follow those in Fig. 5.12

also stronger as the number density of the galaxy sample increases. Moreover, as we have
fewer mocks than for the tests with the lognormal mocks, we can notice that the fitted
covariance based on 50 mocks actually produces smaller contours overall than the mock
covariance which uses 1000 EZmocks.

In Fig. 5.17, we show the pull distributions as defined by eq. 5.6 for various cosmo-
logical parameters. The standard deviations of the 𝑓 𝜎8 pull distributions are presented on
Table 5.4. The results are also similar to the ones obtained with the lognormal mocks: both
the fitted jackknife and mock covariances produce a Gaussian shape with 𝜎 = 1, while
the standard deviation of the pull distribution obtained using the Mohammad-Percival
correction for the jackknife method is larger (𝜎=1.5, 1.8 for LRG and ELG respectively).

Survey Mock Mohammad-Percival Fit

LRG 1.04 1.49 1.07
ELG 1.08 1.80 1.07

Table 5.4: Standard deviation 𝜎 of ( 𝑓 𝜎8,𝑖 − 𝑓 𝜎8)/𝜎𝑖 ( 𝑓 𝜎8), where 𝑖 is a separate fit for
each of the methods. We can see, that for the mock covariance, it is close to 1 (as it is
supposed to be when all of the fits share the same covariance.), for fitted covariance it is
quite close to 1, but for the jackknife estimate it usually takes values > 1.4, which shows
a much higher degree of deviation from what we assume to be the truth.
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Figure 5.15: The summary of the cosmological fits when using different numbers of mocks
to obtain the fitted jackknife covariance: the default number of 50 mocks in red, 25 mocks
in blue and 10 mocks in green. The figure is organised like Fig. 5.12.
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Figure 5.16: The summary of the cosmological fits for the EZ mocks for LRGs and ELGs
(left and right column respectively), similar to layout of Fig. 5.12.

This quantitative test thus demonstrates that the fitted jackknife method performs better
in estimating an unbiased and accurate covariance matrix for the two-point correlation
function.

Overall, throughout all of the tests for varying number densities, different types of
mocks and number of fitted mocks, the fitted jackknife approach shows a considerable
improvement over the correction for standard jackknife proposed by [37]. The fitted
jackknife approach can achieve an unbiased estimate of the covariance matrix with similar
precision to a mock-based covariance but with the major advantage of requiring a much
smaller number of mocks.

5.4.4 Covariances for DR1 standard analysis

Most of the mocks created in the context of this PhD work aim at modelling the covariance.
As FitCov is only applicable to the configuration space, and the official DESI DR1 Full-
Shape analysis is performed in Fourier space, mock-based covariance estimates remain a
necessity.

I have participated in the production of the EZmocks, and developed a pipeline for
the production of the GLAM mocks, thus these two varieties will be investigated. More
details can be found in Chapter 3. Here we present the final versions of the covariances
for DR1 analysis in Figure 5.18, for analytic, EZmock and GLAM covariances, where
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Figure 5.17: Pull distributions for different covariance estimation techniques with results
from fits on LRG and ELG mocks with line colours as in Fig. 5.14
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Figure 5.18: Upper: Ratio of standard deviation obtained by various methods(GLAM
mocks, EZmocks, analytic covariance thecov[38–40]) to the power spectrum of the
corresponding multipoles averaged over 25 Abacus realisations plotted together. Lower:
Difference of standard devsiation obtained from mocks with the analytic covariance divided
by the analytic standard deviation. We can see that the analytic covariance overestimates
the variance by ∼ 10%.

the top panels show the signal to noise ratio, while the lower one is a deviation of mock
covariances from the analytic one, for ℓ = 0, 2, 4. The analytic covariance was created
using thecov[38–40], and was calibrated on the DR1 sample.

In order to test them for BGS DR1 standard analysis, we have performed two tests. In
the first one, we fit the 25 Abacus mocks to three covariance matrices in our possession.
The results of the comparison are seen in Figures 5.19 and Figure 5.20, where each point
on the figure has as coordinates values and errors from fits with different covariances. It
should be noted, that GLAM mocks are still in production as of writing this thesis, thus
the results here can be considered as preliminary. The fits are performed using MCMC
sampling with emcee[41]. The parameter 𝑑𝑓 is defined as 𝑑𝑓 = 𝑓best-fit/ 𝑓fid. We can see
on these plots that the results of GLAM and EZmock are very consistent with each other,
however analytic covariance tends to slightly overestimate the errorbars for 𝑞⊥.

Then, we perform the same test but using 500 GLAM mocks and using likelihood
minimisation with iminuit[34] instead of Monte-Carlo sampling. The results are pre-
sented in Figures 5.21 and 5.22. The results are consistent with those obtained when
fitting the Abacus mocks. Meanwhile GLAM and EZmock covariances for both tests are
fully consistent.

To additionally test the performance of Fitcov with respect to the traditional mock-
based covariance (EZmock), we perform the fit on the mean of 25 Abacus BGS DR1
mocks with 𝑀𝑟 < −21.5 in configuration space for the ShapeFit approach. The results on
the compressed parameters showing the consistency between two methods are presented
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Figure 5.19: Comparison of the fits performed with analytic and EZmock covariance
matrices on 25 Abacus DR1 realisations. On the upper panel the best-fit values of the
parameters are shown, where the y-axis corresponds to values obtained using analytic
covariance, while on x-axis the same values but obtained with EZmock covariance. The
lower panel compares the errors from the fits. On each of the plots the thick red line
corresponds to the line 𝑦 = 𝑥, blue line is 𝑦 = 𝑘𝑥 + 𝑏 and orange line is 𝑦 = 𝑘 𝑓 𝑥, where
𝑘, 𝑏 and 𝑘 𝑓 are obtained via least-squares method. These values are presented in yellow
boxes on each plot.

Figure 5.20: Same as in Figure5.19, but for the GLAM mock covariance instead of
analytic.
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Figure 5.21: Same as in Figure5.19, but instead of 25 Abacus mocks, 500 GLAM mocks
are being fitted, where the inference is done by likelihood minimization with iminuit[34].

Figure 5.22: Same as in Figure5.21, but for the GLAM mock covariance instead of
analytic.
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Figure 5.23: The compressed parameters obtained from the mean of 25 Abacus BGS DR1
mocks with 𝑀𝑟 < −21.5 with covariance matrix scaled accordingly.

in Figure 5.23.
We also perform the same test but using our full-modelling pipeline, and the results

ar also very consistent between using FitCov and the traditional EZmock covariance. The
results are presented in Figure 5.24.

5.4.5 BGS Bright single tracer tests

Having everything ready for the offical DESI DR1 analysis of BGS with 𝑀𝑟 < −21.5, we
can attempt to use the techniques developed earlier to tackle the full DESI BGS Bright
sample. We recall that the main reason for not analysing the full BGS Bright sample is
the lack of enough simulations to build a mock-based covariance. Therefore, we use the
Fitcov method to obtain a covariance matrix that we calibrated on the 25 Abacus mocks.
We then fit the mean of 25 Abacus mocks using FitCov.

We will now use the NN emulator model described in Chapter 2 in order to perform
a Full Modelling analysis. We infer 4 cosmological parameters (𝜔𝑐𝑑𝑚, ℎ, log1010𝐴𝑠, 𝜔𝑏),
with 𝜔𝑏 restricted by a BBN prior[42], as well as well as additional nuisance parameters
with second-order bias and corresponding counter-terms as well as a FOG parameter:
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Figure 5.24: The cosmological parameters obtained from the mean of 25 Abacus BGS DR1
mocks with 𝑀𝑟 < −21.5 with covariance matrix scaled accordingly with full-modelling

(𝑏1, 𝑏2, 𝛼0, 𝛼2, 𝜎𝑣). We use the monopole and quadrupole in our setup in the separation
range of [26, 150]Mpc/h. The priors for these parameters are described in table 5.5 (note
that some of them are defined by the ranges of validity of our emulator).

We can see in Figure 5.25, where the averaged over 25 realisations multipoles from
Abacus mocks have been sucessfuly modelled by the emulator, with almost all of the
residuals between the modelled and the measured ones remaining within 1𝜎 uncertainty
on the mean.

As seen in Figure 5.26, our pipeline manages to yield the correct values of the cos-
mological parameters, with full sample being slightly less biased than the one with
𝑀𝑟 < −21.5. The results between the two also seem to be much more compatible
than the ones obtained using ShapeFit.

5.4.6 BGS Bright Multitracer tests

As for the single-tracer analysis, we test the multi-tracer pipeline using the 25 Abacus
mocks. If we look at the rest frame 𝑔 − 𝑟 colour distribution in DESI BGS DR1 shown
in Figure 5.27, we see two peaks that correspond to two separable populations of galaxie.
The vertical line indicates the separation between red and blue galaxies that we define for
the multi-tracer analysis.

In order to check whether the clustering of those two populations of galaxies is
indeed different, we compute the corresponding correlation functions with weights from
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Table 5.5: Parameters used for the full-modelling inference and their priors

Parameter Range/Prior
𝜔cdm [0.10, 0.2]
𝜔b N(0.02237, 0.00037)
log

(
1010𝐴𝑠

)
[2.5, 3.5]

ℎ [0.6, 0.8]

𝑏1 [-1, 5]
𝑏2 N(0, 5)
𝑏𝑠 N(0, 10)
𝛼0 N(0, 30)
𝛼2 N(0, 50)
𝜎𝑣 [0,50000]

Figure 5.25: Upper: Averaged over 25 realisations correlation function multipoles with
shaded values representing the error on the mean, and the dashed line being the modelled
multipoles for the best-fit values of parameters. Lower: The deviation of the given
multipoles from the best-fit ones divided by the uncertainty. We can see, that for all of the
scales, the deviation does not exceed 2.5𝜎.
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Figure 5.26: The posteriors obtained from the parameter inference on the mean of 25
Abacus mocks with full sample and with the magnitude limited one. The blue line
represents the expected values of parameters.

Figure 5.27: Distributions of rest frame 𝑔− 𝑟 colour for Abacus mocks and DR1 data. We
can see a well defined bi-variate Gaussian distribution. The thin vertical line indicates the
cut chosen throughout this thesis to separate the galaxies into red and blue populations.
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Figure 5.28: The monopoles (solid), quadrupoles (dashed) and hexadecupoles (dotted)
of the correlation function averaged over 25 realisations for various tracers taken from
the BGS DR1 Abacus mocks: red, blue, cross-correlations between the two, and the two
tracer populations combined (full).

Chapter 1. The mean multipoles from 25 Abacus mocks are presented in Figure 5.28 for
the auto-correlation of the full sample, the red galaxies, the blue galaxies and their cross-
correlation. We clearly see the difference in the galaxy bias by noticing the difference
in the correlation functions amplitudes between red and blue galaxies. Red galaxies are
older, more massive galaxies, thus they are clustered more strongly than blue ones, which
are usually younger and reside in less massive halos [43].

As for the single-tracer analysis of the BGS Bright Full sample, the only mocks
available are the 25 Abacus mocks which are not enough to build an accurate mock-
based covariance. Therefore, for multi-tracer, we again rely on FitCov to estimate the
covariance matrix. The algorithm stays the same, with the exception that 𝛼-parameter is
estimated for each correlation function (blue and red autocorrelation ones, as well as the
crosscorrelation one) separately. Figure 5.29 shows the variance of the three multipoles
of three afforementioned correlation functions from 25 Abacus mocks and from FitCov.
We see that Fitcov managed to get compatible estimations of the variances for all three.

In order to validate the multi-tracer Full-Shape pipeline, we first perform a test of
consistency between red and blue galaxies to ensure that the two populations indeed
trace the same underlying matter density field. We fit the mean of the 25 Abacus mocks
following the same methodology as in section 5.4.5 with the same cosmological and
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Figure 5.29: Variances on monopole, quadrupole and hexadecupole of the correlation
function for various tracers for DR1 estimated from 25 Abacus mocks, with Fitcov in blue,
and without in orange.
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Figure 5.30: The posteriors obtained from the parameter inference on the mean of 25
Abacus mocks for red, blue and single tracer separately. Lines represent the expected
values.

nuisance parameters. The results on the ΛCDM parameters can be seen in Figure 5.30 for
the blue and red galaxies, together with the full BGS Bright sample. They are all consistent
with each other and with respect to the expected values. The fact that the uncertainties
between them are comparable as well, is a good representation of the cosmic variance,
we introduced in the Introduction: combining the subsets in a traditional way does not
improve the constraints

Then, we proceed to test the multitracer inference. The same methodology was
used, with the nuisance parameters being fitted separately for each of the tracer in the
multitracer case, while the cosmological parameters are common. We should note that
the cross correlation function is treated as a separated tracer and thus has the same set of
biases and counterterms marginalised over as for the blue and red tracers.

The resulting posteriors are shown in Figure 5.31.

The results between single and multi-tracer are consistent with each other and with
respect to the expected values. Moreover, we can see that the multitracer allows us to
obtain a∼ 15% improvement in the precision of log1010𝐴𝑠 compared to single-tracer. This
validates the full set of the tools necessary for performing a multitracer Full-Modelling
analysis of the DESI BGS DR1 data. The summary of the full-modellin tests in con-
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Figure 5.31: The posteriors obtained from the parameter inference on the mean of 25
Abacus mocks for multi- and single tracer analysis.

figuration space using our pipeline on different versions of DESI BGS Abacus mocks is
presented in Figure 5.32.

5.4.7 Systematic error budget

One of the important test of the pipeline for the clustering analysis is the estimation of
the systematic error budget. For DR1 2-point clustering analysis, the collaboration has
looked at 7 different potential sources of systematic effects, all summarised in ?? with the
corresponding error estimates obtained from the tests on the realistic mocks from Chapter
3.

Theoretical systematics come from the deficiencies in the chosen theoretical mod-
elling. Three different EFT models in Fourier space have been tested against Abacus
simulations:velocileptors[maus24b, 24, 25], folps[44] and pybird[45, 46] and they
also have been compared with each other in [47]. A fourth EFT model based in configura-
tion space (EFT-GSM has also been tested and compared against the other models which can
be used for correlation function as well (except FOLPS) in [48],Throughout these tests, we
decided to use 𝑘max = 0.2h/Mpc and 𝑠min = 26Mpc/h such that no significant systematics
for DR1 are detected. Credit: Mark Maus, Hernan Noriega, Yan Lai, Sadi Ramirez.

Additionally, one needs to estimate the effect of the HOD prescription on the cosmo-
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Figure 5.32: Constraints on different cosmological parameters obtained using mean of 25
Abacus mocks with rescaled covariance with full-modelling.

logical parameters of the analysis. For that purpose, mocks with varying HOD have been
created for each tracer. Before unblinding, the HOD systematics for LRG and ELG have
been studied leading to up to 0.3𝜎 contribution to the systematic error budget. How-
ever, we realise that the HOD effect can be easily distinguished from prior weight effect,
therefore both effects are currently studied together in order to estimate a systematic error
budget that reflects both. The study for BGS and QS0 is also ongoing. Credit: Nathan
Findlay and the mock team.

The choice of the fiducial cosmology can also affect our fits, as the computation of
comoving distances and fiducial linear power spectra for approaches like ShapeFit would
rely on it. It was found out that the choice of cosmology for conversion of redshifts
is not producing any significant biases. However, that was not the case for the fiducial
cosmology for the initial linear power spectrum generation, yielding a 0.45𝜎 contribution
on 𝑓 𝜎8 for ShapeFit analysis into the error budget. The impact of varying the fiducial
cosmology is still ongoing for Full-Modelling. Credit: Rafaela Gsponer, Fanny Arlin
Rodriguez, Hernan Noriega and Sadi Ramirez.

The systematics related to the fibre-assignment and the collisions it can lead to are
tested as well. To mitigate for that effect, we employ a 𝜃-cut, a technique described in
[49] which consists in removing angular scales below 0.05 deg. The tests on the realistic
mocks with simulated fibre-assignment and the comparison of their performance to the
ones without, yielded an additional 0.2𝜎 contribution to the systematic budget. Credit:
Ruiyang Zhao, Mathilde Pinon and the KP3 team.

Imaging systematics due to the inhomogeneities in the target selection can also affect
the cosmological measurements. The BGS corresponding to bright objects which do
not hint the limit depth of the imaging surveys, it doesn’t suffer strong variations of its
galaxy density with observing conditions, contrary to other faint targets such as the ELG.
Therefore, a linear combination to determine weights that correct for any remaining trend
in the target density is enough to mitigate the effect and lead to no significant contribution
to the systematic error budget. For ELG and QSO, additional correction beyond imaging
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weights (which are estimated using deep learning techniques) are needed to account for
remaining systematics. Credit: Ruiyang Zhao and the KP3 team.

The spectroscopic systematics can come from three effects: catastrophic failures
of redshift measurements, redshift uncertainty and redshift success rate dependence on
observing conditions. These effects have been studied using realistic Abacus mocks,
yielded up to 0.2𝜎 contribution to the systematic error budget for ELG which are the most
sensitive to spectroscopic systematics. For the other tracers, including BGS, the effect
is less and thus considered as negligible. Credit: Jiaxi Yu, Alex Krolewski and the KP3
team [50, 51].

The systematics related to the covariance estimation are tested by comparing two
types of covariance matrix estimates: analytic and mock-based. The details of the tests
for BGS were presented in the previous subsection. We estimate the contribution to the
systematic budget to be up to 0.2𝜎. Credit: Daniel Forero-Sanchez, Otavio Alvez, Misha
Rashkovetskyi and Svyatoslav Trusov.

Table 5.6: Summary of the individual systematic errors obtained when running the pipeline
using ShapeFit or Full-Modelling for various realistic mocks and blinded data. Note that
this table provides a non-detailed estimate and that in some cases, the recession of our
mocks is not sufficient to quote any statistically significant detection of a systematic.
Credit: DESI Collaboration

Systematic Error estimate (DR1 error) Comment
Theoretical Not detected for DR1
HOD Not estimated yet for BGS Up to 0.3𝜎 for DR1 ELG
Fiducial cosmology Not estimated yet for BGS Up to 0.45𝜎 on 𝑓 𝜎8 for DR1 LRG
Fibre-collisions Up to 0.2𝜎 of DR1 error
Imaging Not detected for DR1 BGS Up to 0.25𝜎 for ELG and QSO
Spectroscopic Not detected for DR1 BGS Up to 0.2𝜎 on 𝑓 𝜎8 for DR1 ELG
Covariances Up to 0.2𝜎 for DR1 BGS Similar for the other tracers

It should be noted, that the final systematic error budget has not been determined
yet as some systematic effects are still investigated. Moreover, the systematic error
propagation has not yet been performed on the results presented further, thus only
statistical errors are considered for now.
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Figure 5.33: Measurements of the ratio of the growth rate to the fiducial ones with different
setups performed on the blinded DR1 data for all of the clustering catalogues of DESI.
Credit: Ruiyang Zhao

5.5 DESI BGS DR1 analysis

5.5.1 DESI DR1 official Full-Shape analysis: blinded tests

In order to validate the analysis on the data, and avoid confirmation bias the data is first
blinded. The redshifts of the galaxies in the catalogues are modified with two distinct shifts,
first obtaining comoving coordinates with one fiducial cosmology, and then converting
them back to redshifts with a different one, thus creating an effect similar to the AP effect,
thus called an AP-shift, and biasing the measurements of AP parameters, and the shift
based on the gradient of the reconstructed galaxy density field, thus mimicking the RSD
effect, hence blinding the growth of structures and which is referred to as RSD-shift. More
on the procedure can be found in [52]. The blinding procedure allows us to do intensive
tests on the data while avoiding the possibility of confirmation bias. An example of some
consistency tests performed on the DR1 blinded data can be seen on Figure 5.33.

5.5.2 DESI BGS 𝑀𝑟 < −21.5

As was mentioned previously, the official BGS DR1 analysis is based on Full-Modelling in
Fourier space [53] in the range of 𝑘 = [0.02, 0.2] h Mpc−1 in bins of Δ𝑘 = 0.005h Mpc−1.
The BGS sample has also a cut in absolute magnitude 𝑀𝑟 < −21.5 and an effective redshift
𝑧eff = 0.295.

We perform the same analysis in configuration space using the official DESI tools (aka
’desilike’) and with our pipeline that relies on Fitcov and on the neural-network emulator.
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Table 5.7: Parameters used for the ShapeFit inference and their priors

Parameter Range/Prior
𝑓 / 𝑓 𝑓 𝑖𝑑 [0, 2]
𝛼∥ [0.8,1.2]
𝛼⊥ [0.8, 1.2]
𝑚 [-3, 3]

𝑏1 [-1, 5]
𝑏2 N(0, 5)
𝑏𝑠 N(0, 10)
𝛼0 N(0, 30)
𝛼2 N(0, 50)
𝜎𝑣 [0,50000]

We use the separation range 𝑠 = [26, 150]h Mpc−1 with bin of width 4 Mpcℎ−1. The
multipoles of the data with uncertainties and the best-fit theoretical ones are shown in
Figure 5.35. In all 3 cases the EZmock covariance is used. We have also performed the
ShapeFit analysis with the parameters fitted and their priors specified in Table 5.7. The
summary of the results are shown in Figure 5.34.

We observe that, in configuration space for BGS, the uncertainty on ℎ and Ω0,𝑚 are
much tighter, which could be a representation of projection effects propagating into the
cosmological parameter estimation. We notice that for Ω0,𝑚, Full-Modelling seems to
give tighter constraints. We see as well that the Fourier space Full-Modelling tends to
underestimate Ω0,𝑚 compared to other two techniques, while configuration space does
the same with log1010𝐴𝑠. We note that the ShapeFit results remain consistent but the
error bars are significantly larger in Fourier space for some parameters. That can be
due to the projection effects, and thus the reason the baseline DESI analysis using Full-
Modelling, which was also our focus as well. When comparing to their Full-Modelling
counterparts in Fourier space, the Full-Modelling constraint acquires a ∼ 1.𝜎 tension on
the ℎ. For the configuration space, the tension of the same magnitude appears for the
𝑙𝑜𝑔1010𝐴𝑠. Comparing Full-Modelling in configuration space (red) to the one in Fourier
space (brown), we see that they acquire ∼ 1𝜎 tension on both Ω0,𝑚 and log1010𝐴𝑠.

5.5.3 DESI BGS Bright

As mentioned in the previous section on mocks, thanks to the development of a hybrid
covariance with FitCov, we can analyse the full BGS Bright, trying to bring back as much
precision as possible on the cosmological parameters. We perform a Full-Modelling
inference from the full BGS Bright dataset using the same s-binning as in the previous
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Figure 5.34: Constraints on different cosmological parameters obtained using DR1 with
𝑀𝑟 < −21.5 with different approaches.The pink point represents the analysis with ShapeFit
in Fourier space, the brown point is the same but using full-modelling instead of ShapeFit,
the blue point represents the ShapeFit analysis in configuration space and the red point is
the full-modelling results obtained with our custom pipeline.

subsection and with an effective redshift 𝑧eff=0.275. The BGS Bright DR1 multipoles with
the best-fit multipoles as well as the residuals are shown in Figure 5.36.

Figure 5.37 shows the constraints on the cosmological parameters for BGS Full (or-
ange) compared to the volume-limited BGS sample with 𝑀𝑟 < −21.5. We can see that
the results are consistent, with Full BGS Bright bringing noticeably smaller contours. For
Ω0,𝑚 the improvement is 24%, and for the log1010𝐴𝑠 we see an improvement of 22% in
precision. The errorbars for ℎ are only 4% smaller for Full BGS Bright.

The last step is to perform the multitracer analysis of the BGS DR1 Full. First we
compute the red, blue and cross- correlation functions. The monopole and quadrupole
of the auto correlation functions are plotted in Figure 5.38. We note a strange feature
in the quadrupole of the blue tracer that we are still investigating at the time of writing
this manuscript. It can be related to untreated imaging systematics, thus the cosmological
results presented starting from here should not be treated as final and must be taken
with a grain of salt.

Using the pipeline we covered in more detail in the previous section, we can finally
perform the multitracer analysis of DESI BGS. The results are presented in Figure 5.39.

We can see a shift, for example, with respect to ℎ, which is driven by the afforemen-
tioned feature in the quadrupole of the correlation function of the blue tracer. This is
especially evident looking at the results obtained from fitting the individual tracers (Figure
5.40).

With respect to other analysis approaches presented earlier, we can notice (Figure
5.41) that in configuration space the constraints tend to be in general more stringent,
which might be attributed to the absence of need to marginalise over the shot noise. We
also note that the constraints from various approaches tend to be consistent with each
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Figure 5.35: Upper: Correlation function multipoles of the BGS 𝑀𝑟 < −21.5 DR1 with
shaded values representing the errorbar, and the dashed line being the modelled multipoles
for the best-fit values of parameters. Lower: The deviation of the given multipoles from
the best-fit ones divided by the uncertainty. We can see, that for most of the scales, the
deviation does not exceed 1𝜎.

183



5.5. DESI BGS DR1 ANALYSIS CLUSTERING ANALYSIS

Figure 5.36: Upper: Correlation function multipoles of the BGS Bright DR1 with shaded
values representing the errorbar, and the dashed line being the modelled multipoles for
the best-fit values of parameters. Lower: The deviation of the given multipoles from
the best-fit ones divided by the uncertainty. We can see, that for most of the scales, the
deviation does not exceed 1𝜎.
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Figure 5.37: The posterior distributions of cosmological parameters obtained using BGS
DR1 with a cut on 𝑀𝑟 < 21.5 and the full BGS Bright obtained with Full-Modelling.

Figure 5.38: Monopoles and quadrupoles of the correlation functions of red and blue
tracers of DESI BGS DR1 (markers) and of the Abacus BGS DR1 mocks (solid and
dashed lines).
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Figure 5.39: The posterior distributions of cosmological parameters obtained using DESI
BGS DR1 with various analysis configurations, where blue lines correspond to Planck2018
best-fit values[54].

Figure 5.40: The posterior distributions of cosmological parameters obtained using DESI
BGS DR1 with various tracers.
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Figure 5.41: Constraints on cosmological parameters ℎ, Ω0,𝑚 and 𝐴𝑠 from various ways
of analysing DESI BGS DR1

other, with multitracer ones moving away from Planck[54] the most. The constraints are
also summarised in table 5.8.

Table 5.8: Summary of the cosmological parameters obtained using full-modelling on
DESI BGS in various configuration

h Ω0,𝑚 𝑙𝑜𝑔1010𝐴𝑠

Custom Mr-21.5 0.710+0.028
−0.027 0.293+0.015

−0.015 2.322+0.359
−0.355

desilike PS Mr-21.5 0.707+0.027
−0.027 0.272+0.025

−0.024 2.734+0.308
−0.303

Custom Full 0.706+0.028
−0.028 0.296+0.017

−0.017 2.606+0.295
−0.302

Custom MT 0.737+0.023
−0.022 0.285+0.015

−0.016 2.261+0.229
−0.230

Custom Blue 0.730+0.032
−0.031 0.280+0.019

−0.021 2.814+0.345
−0.341

Custom Red 0.704+0.031
−0.030 0.300+0.017

−0.018 2.435+0.325
−0.325

Custom Cross 0.704+0.026
−0.026 0.298+0.017

−0.017 2.511+0.320
−0.311

We can further compare our results to the rest of the DESI tracers, and these are shown
in Figure 5.42, for ℎ, Ω0,𝑚 and 𝐴𝑠. All of the results other than the multitracer one have
been obtained using Full-Modelling in Fourier space. We see that DESI BGS DR1 with
multitracer becomes mostly an outlier when it comes to the 𝐴𝑠, however, the nature of this
deviation, as mentioned earlier, is in investigation, as of writing this section.
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Conclusions

Все!

Eralash

DESI cosmological constraints

As it was mentioned in the Introduction, usually the results of one survey are combined
with other cosmological probes in order to achieve the maximal constraining power. This
is the final stage of the cosmological analysis, and also where many effects are taken into
account, and should be treated with great care.

However, I would still like to share some, even though very preliminary, constraints,
which, however, should be treated as very preliminary. Thus, I will restrain from
quoting any tensions. The combinations were done under the assumption that all of
the likelihoods are Gaussian (which is a far-fetched assumption for some of them), and
then sampling with emcee[1] from the combined likelihood, using the posterior from the
combined fit of all other data (DESI except BGS, Planck[2], DES[3]) as Gaussian prior.
Thesystematic error budget has not been added to the covariances matrices from DESI
yet. The results in terms of ΛCDM are shown in Figure 5.43. They are mostly consistent
with each other, with Planck2018 [2] dominating. Using the multitracer analysis of the
BGS, however, reduces the constraints slightly with respect to other tracers and shifts the
central value a bit further away from the Planck values, as expected given the differences
we highlighted in the previous Chapter and that we are still investigating.

We also look at the constraints for 𝑤0𝑤𝑎CDM, trying to constrain the dynamic Dark
Energy model. 𝑤0𝑤𝑎CDM is a parametrisation of Dark Energy with an additional term
𝑤𝑎, which is responsible for the dynamic behaviour of Dark Energy, and in the ΛCDM
model will be equal to zero. The overall equation of state then reads[4]:

𝑤(𝑧) = 𝑤0 +
𝑤𝑎𝑧

1 + 𝑧 (5.7)

Using the 𝑤0𝑤𝑎CDM version of the emulator presented in Chapter 2, we unfortunately
were not able to reach enough constraining power to produce reasonable estimations of
𝑤0𝑤𝑎 with BGS DR1 alone. However, combining it with data from Planck[2], DES[3]
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Figure 5.43: Constraints on cosmological parameters provided by combination of DESI
data with various types of analysis with Planck2018[2] and DES data[3] .

and other tracers of DESI, we can put constraints on 𝑤0𝑤𝑎CDM. The preliminary results
are shown in Figure 5.44.

We see that the inclusion of the Full-Shape constraints in general improves by almost
a half the constraints on the equation of state of dark energy, with multitracer analysis
improving them even slightly further with the data favouring the Dark Energy model with
the decaying expansion.

That’s all, folks!

In this manuscript we started with describing the basics of General Relativity and cosmol-
ogy in the Introduction, where we also covered various basics of observational cosmology
and clustering analysis. In Chapter 1 we have discussed the DESI experiment, the largest
spectroscopic survey yet, the technical details related to the data acquisition and the data
itself used in this work. In Chapter 2 we have presented the modern approaches to mod-
elling the 2-point clustering statistics, and presented the neural network emulator tool
that we developed, which significantly speeds up the computation of the 2-point statistics
model. In Chapter 3 we have discussed the techniques of simulating the large-scale galaxy
surveys using N-body simulations, and we also presented the effort to create mocks for
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Figure 5.44: Constraints on cosmological parameters provided by combination of DESI
data with various types of analysis with Planck2018[2] and DES data[3] in 𝑤0𝑤𝑎CDM.

the DESI BGS that we led. In Chapter 4 we have discussed the error estimation and
covariance production for the DESI BGS, in particular we presented a hybrid approach
for accurate covariance matrix that requires about 40 times less simulations than the
traditional method. In Chapter 5, we have introduced various techniques of analysing
the 2-point clustering statistics, from BAO-only to Full-Shape analysis, both single- and
multi-tracer. We presented all the tests we performed on realistic mocks to validate and
assess the performance of the tools we have developed in order to analyse the BGS DR1
data, and showing that these techniques allow to squeeze tighter constraints on a dataset
plagued by many difficulties, from computational to statistical (cosmic variance), and we
presented how those can be circumvented. Eventually, we showed that some cosmological
constraints can be improved by almost 40% with respect to the official DESI DR1 BGS
analysis. From the preliminary results, we can see that the improvement achieved can also
affect the constraints on cosmological parameters when combined with other tracers and
probes, thus being valuable assets for the large-scale cosmological analysis that aims at
shedding light on the nature of dark energy and gravity.
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Future prospects

Many of the techniques developed throughout this thesis can be generalised and improved
further.

The emulator modelling approach we showed in Chapter 2 has a potential of going
beyond the perturbation theory by employing N-body simulations for the computation of
the expansion terms, and not relying on the analytical ones as it is done now. It could also
be used for other clustering statistics, following the same expansion ideology. Additionally,
the precision can be potentially raised by using alternative types of neural networks, like
KANs[5].

The FitCov covariance approach has a potential to be generalised beyond 2-point
correlation function to Fourier space, and maybe even to approaches like density split [6].
And of course, it has a potential to be further used for DESI BGS, both for DR2 and the
final 5-year DESI BGS catalogue.

The set of GLAM simulations, beside being used for covariance modelling, thanks to
its N-body nature, can be used for extensive n-point statistics tests, as well as covariances
for those. Being produced with the same methods as the DESI high-fidelity mocks, gives
it a possibility to be used for extensive tests of systematic effects. And the volume of the
BGS boxes is enough in order to be used even for the final 5-year, DESI BGS catalogue
if magnitude cut is taken into accout. Additionally to that, the smaller GLAM boxes,
reproducing the full BGS Bright can also be of use, especially if the replication issues are
figured out.

Finally, the multitracer analysis showed that it does improve constraints on the cosmo-
logical parameters. When it comes to inference beyond ΛCDM, however, more tests are
required to get to a conclusion, but the preliminary results are very optimistic. When it
comes to the data itself, the peculiar feature of the blue tracer quadrupole has to be studied,
in order to eliminate as much as possible the possibility of the unwanted systematics effects
affecting the cosmological results. We will focus on that goal and publish the multitracer
analysis of the DESI BGS DR1 in coordination with the official DESI DR1 Full-Shape
analysis.

In the future, more optimal data splits of the BGS data than a split in optical colour
should be investigated, such as the density-split technique based on local density which is
expected to provide tighter constraints on the cosmological parameters. In the meantime,
DESI continues to take data, and more results are going to arrive from new methods that
aim at efficiently and optimally extract robust cosmological information.
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Corona Astralis

A poem by Maximillian Voloshin, translated to English by Alex Romanovsky

To realms of love we are delusive comets
Locked out of the trusted orbits’ path.
The truth of dreams escapes the earthly wrath,
The voices of the suns of midnight call us.

Evaded holy bath in Lethe’s cold course,
Our spirit’s poisoned, recollections tough,
We take the extraanimary scuff
Of the expelled, the strangers, the uncommons.

The sighted one, but dazzled by the day,
Who is alive but born for prison stay,
Who praises earth as holy relegation,

Who visions dreams and recollects the names,
Not pleasure of reunion he gains
In love, but secret joys of separation.

1.

To realms of love we are delusive comets,
An axis dashed through crystal sphere keys.
From fire clouds, heavenly unease,
From cosmic storms we bring our glimmer covert -

And spread it further... Let the skies of cobalt
Depict us as a sword to earthly peace, -
To sun we run, like Icarus of Greece,
Unraveling our wind and flare coat,

And touch it - but, surprising, run away,
To night eternal from the light of day
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In our one-way parabolic departure.

Our spirit rides us - not a rim’s enough -
Through the unsetting sunsets’ purple parcher,
Locked out of the trusted orbits’ path.

2.

Locked out of the trusted orbits’ path,
Unmatched in prayer books of perfect order -
Deprived of earth we’ll be at earthly border
By earthly servants of the earthly math.

Insane’s our incense, and our ship’s a lath,
Like bees gone stray, we seek our swarm by odor.
We passed between our warder and rewarder
And city fire fills our sail with laugh.

For breath of storms’ mysterious appeal,
By scrolls of trails, by tangled road turns
We hasten, and our way is hard and stern.

Epigraph for Chapter 3

So let the thunders ring the clouds’ peal,
Let doubts swirl embittering and tough!
The truth of dreams escapes the earthly wrath.

3.

The truth of dreams escapes the earthly wrath,
In the brocade of rays, the dawns retire,
The purl of mornings joins the daylight choir
The wane of moon will molder and burn off.

The braids of light, the olive of the dove
Old ripple grinds to beads in gentle gyre,
But Tabor nights we worship and aspire
Will outlive the lower solar craft.
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Our eyes resist to noonday aspirations
Of desert stiffness, topaz constellations,
Or resin streams, or rays of golden shine.

The day of night unfading is our compass.
In moonlight silk, like servants of the shrine,
The voices of the suns of midnight call us.

4.

Epigraph for Introduction

The voices of the suns of midnight call us...
Our eyes are lost in telescopes’ wells.
The stars’ and planets’ diamonds constell
In nebulae’s and clusters’ whirls and corals.

From Alpha Canis to the Capricornus
To Seven Sisters to the Argo’s Sail
They cross the heavens telling their tale,
The seekers, perseverers and owners.

Epigraph for Chapter 1

Oh dust of planets! Swarm of holy bees!
I measured, weighed and totaled all of these,
I gave them names, and balances, and contours..

But knowledge made not stellar fear fade.
Our memories of darkest ages stayed,
Evaded holy bath in Lethe’s cold course!

5.

Evaded holy bath in Lethe’s cold course,
We left the bleach to calmness of the night.
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The wellspring of amnesia we denied,
We pledged no vow. We have not been collared.

Epigraph for Chapter 4

The circuit’s cut. The binding spells are quartered.
When, to the rest, the day is turquoise bright
And shining creeks in meadows never hide,
We see the lights astray on every corner.

The rustle of cane, the will-o’-wisp of swamps
The useless wind entangles, and stomps, and romps,
And brooms the helpless flock of Kore’s kingdom,

Pelides guards, as if his eyeballs starve...
No honey cures us, no scent of linden;
Our spirit’s poisoned, recollections tough. 6.

Our spirit’s poisoned, recollections tough.
Our spirit grew from darkness, herb-resembling.
It bears venom of the tomb-resenting
And time-resenting womb of undercroft.

But such on earth impenetrable raft
No porphyry, no marble can assemble
That would delay the fury, bound, settle
The lava flows in our vessels pathed.

Oh graves o’ worlds! Of suns forever set urn!
The corpse of moon, the lifeless face of Saturn
The brain remembers, heart retains the snuff.

The mind developed in the stellar crashes,
But spirit’s buried in the heap of ashes;
We take the extraanimary scuff!

7.

We take the extraanimary scuff,

D



Publications

The weight of dolor, poison of the fire.
The waving flag of all the griefs’ empire
Is rustling in the yearning, mourning puff.

But still, despite the wounds, the fire gruff,
The flesh that lets us barely respire,
Laocoön pulls snakes like strings of lyre
Yet not a word he’s saying; not a half.

We’ll give up not the glory of the pain,
Nor joys of prison, nor pride of bitter chain,
Nor elevation of the doom and jail

For Lethe’s peace and all the worldly romance!
We bear to the world the Holy Grail
Of the expelled, the strangers, the uncommons.

8.

Of the expelled, the strangers, the uncommons,
Who longed for being but could not become,
The heritage of song is never calm.
Bird’s is the nest, beast’s lair, ours scorn is.

Debts never paid, gifts wasted, eggs uncoddled,
Path never stepped surrendered us to harm
From all trails’ mists, from waves of any palm -
The honey spilt, confessions unrecorded.

Resurge to strive, to seek, to find yourself,
To love your shame, its humble, bitter scent,
Fall to the ground, search for desert dew,

Come to the strangers’ settlements and pray
For broken bread; become a rhapsode new,
The sighted one, but dazzled by the day.

9.

Epigraph for Chapter 5

The sighted one, but dazzled by the day,
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Conceives the voices, words and chains of reasons,
The body odors, rustle of trees arisen,
The secret lace beside and far away,

As Phoebes leaves them never in dismay
But serves to them the wisdom of the lizard.
The manger holds the God. The cave of prison
Becomes the Christmas cave, the Holy Tray.

Great Mother Night, in her dark womb a-bearing
The precious Fruit the Father did return,
Bestows treasures on the one in turn

Who was, by jealous Sun, expelled to dreary
And lifeless land, and heartless forces’ play,
Who is alive but born for prison stay.

10.

Who is alive but born for prison stay,
Can see the edges of the painted coffin,
The Sun’s canoe, Anubis’s muzzle scoffing,
And fields of corn in orderly array.

Bulls plough, sickles harvest, flail in play,
Rafts slide along, birds nest, beasts nap as often;
That’s what he sees as shroud wrinkles soften
In flips of days and flips of people’s way.

Without joy, without grief and tears
He sees the people’s vain and restless fears,
No second thought, nor even question ’why’.

Without being, will and aspiration
He savors peace the other would deny
Who praises earth as holy relegation.

11.

Who praises earth as holy relegation,
Rejects the spacious meadows’ remit.
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He meets in every instant, every beat
The distant planets’ sparks of relivation,

As if the dead demand commemoration
And he is scraping glyphs on stone crypt;
The holy letters on the scratched concrete
Of known look can’t form a combination.

He raises dust of earthly roadways,
Apostate priest, a deity free from praise,
In all the things old ornaments revealing,

The one who puts decay to knees and tames,
Who sees the Death - and lowers eyes revering,
Who visions dreams and recollects the names.

12.

Who visions dreams and recollects the names,
Who hears grass stalks’ interrupting speeches,
He who conceives the knocking future’s breaches,
To whom the sea is singing when inflames;

Who bears thought, like coat, on the frames,
Who with the soil his own soul bleaches,
Who lit his candles to the holy teachers,
Who pulled the cover from adored remains,

Who did not turn his feet to earthly pleasure
Of sisters’ dance, or lunacy divine,
Who to the wine press wasted no vine,

Who, Orpheus-like, not a single measure
Held off from crossing, but returned in vain,
Not pleasure of reunion he gains.

13.

Not pleasure of reunion he gains
Who scorned the sweet oblivion from passion,
Who never knew the bodily concession,
Who drank no wine that places deadly stains.
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From hope and achievement he restrains
His busy shoulders, turning to recession,
And takes no bonds, and quenches the compassion
The Moon ignites to forge our lively chains.

His own grief that he cannot divide,
Like ripple of seascape desolate and wide,
Will not be shared. Vinegar to him

Is dew. He chooses not alleviation
By peaceful waters at the final rim
In love, but secret joys of separation.

14.

In love, but secret joys of separation,
Daydreaming cinder, meeting pain we hold.
We shall not tread the moonlit linen fold,
Nor lock our lips in silent decoration.

Epigraph for Chapter 2

We treasure not our needless revelations,
Escape from precious arms to visions cold,
Face-blind, but in the names our trust is bold
On twisted trails of our peregrination.

From all degrees of darkness we are seen
By eyes of foes full of rage and sin,
With stars and sun no joy we share common,

But strain our path to stretches ever dark
Remembering our inner exile mark;
To realms of love we are delusive comets!
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