
HAL Id: tel-04834503
https://theses.hal.science/tel-04834503v1

Submitted on 12 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing process planning, layout, and scheduling
problems, in the RMS context

Isabel Barros Garcia

To cite this version:
Isabel Barros Garcia. Optimizing process planning, layout, and scheduling problems, in the RMS
context. Eco-conception. Université de Technologie de Compiègne, 2024. English. �NNT :
2024COMP2811�. �tel-04834503�

https://theses.hal.science/tel-04834503v1
https://hal.archives-ouvertes.fr

 Par Isabel BARROS GARCIA

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Optimizing process planning, layout, and
scheduling problems, in the RMS context

Soutenue le 12 juin 2024
Spécialité : Génie Industriel : Unité de recherche en
Mécanique - Laboratoire Roberval (FRE UTC - CNRS 2012)

 D2811

Thesis submitted to obtain the doctoral degree by

Université de Technologie de Compiègne

Optimizing process planning, layout, and
scheduling problems, in the RMS context

Spécialité : Génie Industriel

Defended on June 12, 2024

By Isabel Barros Garcia
 Jury members:

Directeurs :

Antoine Jouglet, Professor, Université de Technologie de Compiègne
Julien Le Duigou, Professor, Université de Technologie de Compiègne

Rapporteurs :

Catherine Da Cunha, Professor, École Centrale de Nantes
Corinne Lucet-Vasseur, Professor, Université de Picardie Jules Verne

Examinateurs :

Hichem Haddou Benderbal, Assistant Professor, Université d’Aix-Marseille
Dritan Nace, Professor, Université de Technologie de Compiègne David

Rivreau, Professor, Université Catholique de l’Ouest

Co-encadrant :
Joanna Daaboul, Assistant Professor, Université de Technologie de Compiègne

Acknowledgements

I am profoundly grateful to my mother, whose unwavering support and unconditional
love have guided me throughout my academic journey. Despite the distance, she has
been my constant source of encouragement, leading me toward the path of knowledge and
empowering me to pursue my aspirations.

I extend my heartfelt appreciation to all my friends in Brazil, France, and worldwide.
Your presence and companionship have brought immeasurable joy and meaningful reflec-
tions during these past years. Regardless of the geographical distances, your friendship
has made my time in Compiègne more enjoyable and special.

I sincerely thank my supervisors, Antoine Jouglet, Julien Le Duigou, and my co-
supervisor Joanna Daaboul, for their guidance and mentorship throughout this thesis.
Their shared expertise has been instrumental in shaping my research trajectory, and I am
grateful for the knowledge they have imparted to me.

Last but not least, I thank all the professors and colleagues at the UTC, with special
recognition to the SIPP team, Ph.D. students, and colleagues from the two departments
I had collaborated with. Your companionship and valuable contributions have been
instrumental throughout my time at the university. I genuinely appreciate the assistance
and the wonderful moments we have shared together.

i

Abstract

Reconfigurable Manufacturing Systems (RMS) have emerged as a strategic response
to the dynamic and uncertain market conditions driven by the increasing demand for
mass-customized products. Companies are focusing on cost-effective approaches to provide
a diverse product variety efficiently. The effective production in RMS, aimed at lowering
costs, is intricately connected to process planning and layout problems. These optimization
problems are interdependent and might benefit from an integrated approach to increase
the RMS performance, including its efficiency.

This study emphasizes the importance of integrating process planning, layout, and
scheduling problems by proposing and analyzing different models, including sequential, par-
tially sequential, and integrated approaches, to optimize resource allocation and scheduling
for RMS. The objective here is to minimize the system’s total costs, encompassing produc-
tion, material handling, machine reconfiguration, layout reconfiguration, and tardiness.

To tackle this challenge, this research work started with developing three exact
solution methods and assessing their computation time for small instances. Due to the
complexity of the problem, especially for larger instances, we introduced a genetic algorithm
adapted to our specific problem. Additionally, we incorporated into the genetic algorithm
a local search technique also adapted to our problem to enhance results.

Finally, a case study was introduced to extend our investigation. While most of the
work on Reconfigurable Manufacturing Systems (RMS) typically focuses on the production
or assembly of products, we developed a case study to demonstrate that the flexibility of
these systems is also well-suited for disassembly problems. This emphasis on disassembly
directly influences the life cycle of products, highlighting that RMS can play a pivotal role
in addressing environmental concerns. This underscores the idea that RMS can contribute
to environmental sustainability, not only by optimizing gas and waste emissions (as shown
in several works) but also by actively participating in a circular economy.

ii

Résumé

Les systèmes de production reconfigurables (RMS) sont apparus comme une réponse
stratégique aux marchés dynamiques et incertains, motivés par la demande croissante
de produits personnalisés en masse. Les entreprises se concentrent stratégiquement sur
des approches rentables pour fournir efficacement une grande variété de produits. La
production dans les RMS, visant à réduire les coûts, est étroitement liée aux problèmes de
planification des processus et d’implantation d’atelier.

Ce travail de thèse souligne l’importance de l’intégration des problèmes de planifi-
cation des processus, d’implantation d’atelier et d’ordonnancement en proposant et en
analysant différents modèles, y compris des approches séquentielle, partiellement séquen-
tielles et intégrée, afin d’optimiser l’allocation des ressources et l’ordonnancement pour les
RMS. L’objectif ici est de minimiser les coûts totaux du système, englobant les coûts de
production, de transport, de reconfiguration de machines, de reconfiguration d’atelier et
des pénalités de retards.

Pour relever ce défi, notre travail a commencé par le développement de trois méthodes
de resolution exactes, en évaluant leur temps de calcul pour de petites instances. En
raison de la complexité du problème, notamment pour les instances plus grandes, nous
avons introduit un algorithme génétique adapté à notre problème. De plus, nous avons
incorporé à l’algorithme génétique une technique de recherche locale également adaptée à
notre problème pour améliorer encore les résultats.

Enfin, une étude de cas a été introduite pour étendre notre recherche. Alors que
la majorité des travaux sur les systèmes de production reconfigurables se concentrent
généralement sur la production ou l’assemblage de produits, nous avons développé une
étude de cas pour démontrer que la flexibilité de ces systèmes est également bien adaptée
aux problèmes de démontage de produits pour la remanufacture. Le démontage influence
directement le cycle de vie des produits, soulignant que le RMS peut jouer un rôle central
dans la réponse aux préoccupations environnementales. Cela souligne également l’idée
selon laquelle RMS peut contribuer à la durabilité environnementale, non seulement en
optimisant les émissions de gaz et de déchets (comme le montrent plusieurs travaux), mais
également en participant activement à une économie circulaire.

iii

Acronyms

AGV Automated Guided Vehicle.

AI Artificial Intelligence.

AMOSA Archived Multi-Objective Simulated Annealing.

CNC Computer Numerical Control.

CP Constraint Programming.

CPS Constraint Programming with a defined search strategy.

DMS Dedicated Manufacturing Systems.

EA Evolutionary Algorithms.

FMS Flexible Manufacturing Systems.

GA Genetic Algorithm.

ILP Integer Linear Programming.

IoT Internet of Things.

L Layout.

LS Local Search.

MH Material Handling.

MILP Mixed Integer Linear Programming.

MOPSO Multi-Objective Particle Swarm Optimization.

NSGA Non-Dominated Sorting Genetic Algorithm.

PP Process planning.

PSO Particle Swarm Optimization.

iv

RMS Reconfigurable Manufacturing Systems.

RMT Reconfigurable Machine Tools.

S Scheduling.

SA Simulated Annealing.

v

Table of Contents

Acknowledgements i

Abstract ii

Résumé iii

Acronyms iv

Table of Contents vi

List of Figures ix

List of Tables xi

Introduction 1

1 Literature Review 8
1.1 Manufacturing systems . 8
1.2 Reconfigurable manufacturing systems . 11
1.3 Optimization problems in RMS: scheduling, process planning, and layout . 14

1.3.1 Scheduling . 15
1.3.2 Process planning . 20
1.3.3 Layout design . 24
1.3.4 Scheduling and process planning . 28
1.3.5 Scheduling and layout . 30
1.3.6 Process planning and layout . 33
1.3.7 Scheduling, process planning, and layout 34

1.4 Literature gaps . 35
1.5 Conclusions of the chapter . 36

2 Problem Description and Mathematical Models 39
2.1 Problem description . 40
2.2 Modeling approaches . 45
2.3 Integrated model . 47
2.4 Sequential model : PP → L → S . 48

vi

2.5 Partial sequential model : PP → L + S . 56
2.6 Partial sequential model : PP + L → S . 57
2.7 Conclusions of the chapter . 58

3 Complexity 60
3.1 Computational complexity theory . 60

3.1.1 Class P . 61
3.1.2 Class NP . 62
3.1.3 Class NP-Complete . 62
3.1.4 Class NP-Hard . 63

3.2 Scheduling problem complexity with reconfigurable machines 64
3.2.1 Problem description . 64
3.2.2 Properties . 66
3.2.3 The special case of null reconfiguration duration times 69
3.2.4 Solving the total weighted completion time problem 69
3.2.5 Solving the makespan problem . 74
3.2.6 Complexity of the general one-machine problem 75
3.2.7 Parallel machines . 76

3.3 Conclusions of the chapter . 76

4 Solving methods 79
4.1 Exact Methods . 79

4.1.1 Integer linear programming . 80
4.1.2 Constraint programming . 80
4.1.3 Constraint programming with a defined search strategy 82
4.1.4 Conclusions . 85

4.2 Metaheuristics . 85
4.2.1 Genetic algorithm . 86
4.2.2 Genetic algorithm with local search 95
4.2.3 Conclusions . 99

4.3 Conclusions of the chapter . 100

5 Numerical Results 102
5.1 Comparing the models: sequential, partial sequential, and integrated . . . 103

5.1.1 Conclusions . 105
5.2 Exact methods . 106

5.2.1 Conclusions . 107
5.3 Metaheuristics . 107

5.3.1 Genetic algorithm . 107

vii

5.3.2 Genetic algorithm with local search 111
5.3.3 Conclusions . 112

5.4 Industrial applicability . 112
5.4.1 Conclusions . 117

5.5 Conclusions of the chapter . 117

6 Case Study - Disassembly 119
6.1 Problem description . 120
6.2 Problem input data . 126
6.3 Numerical results . 130
6.4 Conclusions of the chapter . 139

7 Conclusion and Perspectives 140
7.1 Conclusion . 140
7.2 Open Issues and Perspectives . 142

Bibliography 144

Appendices 156
7.2.1 Appendice A . 156
7.2.2 Appendice B . 158
7.2.3 Appendice C . 159

viii

List of Figures

1 Summary of all chapters presented in this work. 5
2 Comparing system cost and capacity in manufacturing systems [80]. 9
3 Schematic of RMS research perspectives [12]. 12
4 Categorization of optimization problems in RMS based on [149]. 13
5 Articles found in the databases and selected. 15
6 Category of the reviewed articles. 37
7 Connection between the process planning, scheduling, and layout design

problems. 37
8 Automobile gearbox housing [138]. 40
9 Production precedence example. 42
10 Layout configuration example. 44
11 Sequential model. 49
12 Partial sequential model : PP → L + S. 57
13 Partial sequential model : PP + L → S. 58
14 Classes P and NP . 62
15 Classes P , NP , and NP-Complete. 63
16 Classes if P ≠ NP . 63
17 Classes if P ≠ NP . 63
18 Changing job position when PB

WB
>

pjk
wj

. 68
19 Changing job position when PB

WB
≤ pjk

wj
< pik

wi
. 68

20 Reductions between objective functions [16]. 77
21 Decision point representation. 83
22 Genetic algorithm flowchart. 87
23 Chromosome representation. 87
24 Single-point crossover. 92
25 Crossover. 93
26 Crossover sequence. 94
27 Machine/configuration local search. 96
28 Sequence local search. 97
29 Generated sequences for the LS. 97
30 Genetic algorithm with local search flowchart. 98
31 Main effects on cost minimization for Instance 15 (adjusted averages). . . . 108
32 Main effects on cost minimization for Instance 16 (adjusted averages). . . . 109

ix

33 Optimization diagram for Instance 15. 109
34 Optimization diagram for Instance 16. 109
35 Circular economy system diagram [3]. 120
36 Assembled hand light (normal and section view). 121
37 Hand light’s parts. 121
38 Possible disassembly sequences. 122
39 Possible precedence graphs. 123
40 Illustrated precedence graph 1. 124
41 Illustrated precedence graph 2. 125
42 Illustrated precedence graph 3. 126
43 Layout set . 129
44 Graph of the main effects on cost minimization (adjusted averages). 131
45 Cost optimized diagram. 132
46 Graph of the main effects on time minimization (adjusted averages). 132
47 Cost and runtime optimized diagram. 133
48 Graphical representation of the scheduling found using GA for 12 hand lights.137
49 Graphical representation of the scheduling found using GA with LS for 12

hand lights. 138

x

List of Tables

1 Machine types [36, 86]. 10
2 Comparing system features. 10
3 Comparing RMS main characteristics with DMS and FMS. 12
4 Summary of RMS scheduling articles. 19
5 Summary of RMS process planning articles. 24
6 Summary of RMS layout articles. 27
7 Summary of RMS scheduling and process planning articles. 30
8 Summary of RMS scheduling and layout articles. 32
9 Summary of RMS process planning and layout articles. 34
10 Summary of RMS scheduling, process planning, and layout articles. 35
11 All parameters and decision variables used in this chapter. 41
12 Possible production sequences for the example illustrated in Figure 9. . . . 42
13 Methods applied in this work. 46
14 Parameters and decision variables used for the PP sub-model. 50
15 Parameters and decision variables used for the L sub-model. 53
16 Parameters and decision variables used for the S sub-model. 55
17 Main results found in this chapter. 78
18 Operation time (time unit). 83
19 Job’s due date. 83
20 Main characteristics of random instances. 103
21 Comparison of models. 104
22 Execution time of the exact methods. 106
23 GA parameters and their levels. 108
24 Costs of random method, the GA and GA with local search. 110
25 Execution times of random method, the GA and GA with local search. . . 111
26 Industrial case GA parameters and their levels. 113
27 Results of the GA for the industrial scale example. 114
28 Results of the GA with LS for the industrial scale example. 115
29 Main characteristics of the industrial instances. 116
30 Results of the GA and GA with local search for big instances. 116
31 Distance from GA+LS results to GA for big instances. 117
32 Disassembly resulting from each operation. 123

xi

33 Operations that can be executed by each machine/configuration. 127
34 Operation times (time unit). 128
35 Operation cost (cost unit). 128
36 Machine reconfiguration. 128
37 Layout reconfiguration costs. 129
38 Layout reconfiguration times. 129
39 Material handling times. 130
40 Hand light GA parameters and their levels. 131
41 Results of the GA for the example with 60 hand lights. 134
42 Results of the GA with LS for the example with 60 hand lights. 135
43 Results of the GA for the example with 12 hand lights. 135
44 Results of the GA with LS for the example with 12 hand lights. 136
45 Operation time (time unit). 156
46 Operation cost (cost unit). 156
47 Machine reconfiguration. 156
48 Due dates. 156
49 Material handling times. 157
50 Layout reconfiguration cost. 157
51 Layout reconfiguration time. 157
52 Material handling cost to be multiplied by MH time and tardiness penalty. 157
53 Outputs of example 1. 158
54 Outputs of example 2. 159

xii

Introduction

Context

The demand for continuous changes in products, production technology, and markets
has introduced multiple challenges within the industrial landscape, necessitating enhanced
flexibility, adaptability, and responsiveness from manufacturing systems [37]. Companies
worldwide face the growing demand for customized products, the requirement for high-
quality products at competitive prices, shorter product life cycles, diversification of demand,
and globalization. However, in recent times, additional factors have emerged, significantly
impacting production processes and imposing new obstacles for industries.

The COVID-19 pandemic, geopolitical conflicts such as the Russia-Ukraine war, and
economic crises demonstrated the extreme volatility of the global landscape, leading to
unexpected fluctuations in product demand and market dynamics. While some products
experienced a sudden and explosive increase in demand, others faced a sharp drop due
to inflation and the reduced purchasing power of a significant part of the population.
In addition, growing concerns about environmental sustainability have driven consumer
behavior towards more conscious and environmentally friendly choices, leading companies
to re-evaluate their production and materials strategies.

In response to these challenges, advanced manufacturing systems have attracted
significant attention as potential solutions to meet the demands of a rapidly changing
market. Reconfigurable Manufacturing Systems (RMS) have emerged as a promising
among these systems.

RMS offer a high degree of flexibility and adaptability, allowing companies to respond
to fluctuations in demand and product requirements rapidly. By utilizing machines and
tools designed for specific product families, RMS enable agile production processes that
can quickly reconfigure hardware and software at machine, control, and system levels
[81, 99]. RMS’s cyber-physical capabilities, advanced control mechanisms, and intelligent
decision-making make them a key enabler of Industry 4.0 initiatives. In smart factories,
RMS integrate data, automation, and human expertise, creating highly efficient and
responsive production environments [57, 93].

Moreover, RMS play a crucial role in mass customization. They permit industries
to adapt quickly, offering a wide range of customized products and maintaining the

1

benefits of large-scale production. Nowadays, we can observe a change in paradigm from
traditional manufacturing approaches (mass production) towards flexible manufacturing
approaches [21]. Implementing RMS and Industry 4.0 concepts may require significant
changes to traditional production workflows, making workforce upskilling and reskilling
critical components to leverage the full potential of these advanced manufacturing systems
[47].

In light of these challenges, this research explores the intersection of reconfigurable
manufacturing systems, Industry 4.0, mass customization, and industry challenges.

Research challenges

Industry 4.0 has brought a fundamental transformation in manufacturing, promising
a new level of automation, connectivity, and intelligence. Alongside this digital revolution,
Reconfigurable Manufacturing Systems (RMS) have emerged as a game-changer, allowing
manufacturers to adapt and respond to changing market demands swiftly [111]. However,
successfully integrating Industry 4.0 technologies into existing manufacturing environments
presents a big challenge.

Assessment of capabilities, compatibilities, knowledge-driven infrastructure, data
interoperability, and cybersecurity are some of the biggest obstacles the industries face
while implementing Industry 4.0 technologies [111]. The coexistence of classical and
modern interconnected systems demands careful planning and seamless integration to
ensure a smooth transition. Additionally, providing the secure exchange of data between
diverse systems and protecting manufacturing information from cyber threats have become
critical priorities.

While deploying hardware and software is crucial for enhancing efficiency in industries,
addressing the operational challenges that arise afterward is equally essential. The focus of
this research lies in optimizing RMS for improved operability. Specifically, we concentrate
on the critical areas of process planning, scheduling, and layout optimization, which play
a pivotal role in reducing costs and improving overall system performance.

In any production system, classical resource allocation and scheduling optimization
are essential, which also holds true for Reconfigurable Manufacturing Systems. Nevertheless,
it presents some additional challenges. RMS are more complex as the number of items and
components increases, and considering the capacity of flexible resources becomes harder
[21]. In addition to the classic optimization, another critical question is when and how
they should be reconfigured (machines and system).

To successfully implement mass customization, efficient scheduling, agile process

2

planning, and optimized layout, industries must exploit the potential of Industry 4.0
technologies. The implementation of algorithms can optimize resource allocation, analyze
production data, and handle demand fluctuations, ensuring efficient scheduling and dynamic
process planning. Moreover, advanced analytics can help optimize the layout for material
flow and worker efficiency.

Addressing these challenges requires collaboration among universities, industries, and
technology providers. By combining expertise and leveraging cutting-edge technologies, the
potential for innovative solutions and successful implementation of RMS in the Industry
4.0 becomes tangible. Achieving efficient RMS will empower industries to create highly
adaptable and competitive manufacturing systems that meet dynamic market demands
and drive innovation in the digital age. Through these collective initiatives, we can pave
the way for a future of manufacturing excellence, propelling the industry into new frontiers
of productivity, performance, and sustainability.

Research question and objective

This work’s main objective is to contribute to the successful implementation of RMS
by overcoming some of the main barriers related to process planning, scheduling, and layout
configuration. These three problems are essential to any production system. They get
more complicated in an RMS since the layout can be reconfigured, and the planning and
scheduling incorporate additional parameters and constraints, such as different machine
configuration possibilities.

The main issue is that these three problems are interconnected. Hence, the question
arises for integrating their solving. This research work tries to answer this question, for-
mulated more precisely as follows: How can we best optimize process planning, scheduling,
and layout configuration in an RMS for mass-customized products while reducing manu-
facturing costs? The costs include production, material handling, machine reconfiguration,
layout reconfiguration, and tardiness costs.

Main contributions

Given the research question and objective mentioned above, the main contributions
of this study are outlined as follows:

I - The proposition and validation of four mathematical models for optimizing process
planning, layout, and scheduling problems in RMS. The difference between these
models is in the level of integration of the three optimization problems. The first
completely integrates the three optimization problems. The second does not integrate

3

the problems. Finally, the third and fourth offer a partial integration. For the last
three models, a sequential approach is adopted. Meaning that the results of the first
problem become the input for the subsequent one. To summarize, the four proposed
models are as follows:

• Model 1 concerns the integrated approach. It formulates jointly the three
problems.

• Model 2 concerns the sequential approach. Each problem is formulated individ-
ually and sequentially, which means the results of the first become the input for
the subsequent problem. The order of the optimization problems is as follows:
process planning, layout, and scheduling.

• Model 3 concerns the partially integrated approach. Here, the process planning
problem is formulated individually, and the layout and scheduling problems are
integrated and jointly formulated. The results of the process planning problem
are the input for the joint scheduling and layout problem.

• Model 4 also concerns the partially integrated approach. It integrates the
process planning and layout problems and formulates them jointly. Then, it
formulates, in a sequential way, the scheduling problem. This means the results
of the joint process planning and layout problem are the input to the scheduling
problem.

In all models, the objective is to minimize total costs, including production, material
handling, machine reconfiguration, layout reconfiguration, and tardiness costs.

II - The proposition and comparison of three exact solving approaches. The first is
the resolution of an integer linear programming. The second and third ones use
constraint programming approaches, whether employing a specific research strategy
or not.

III - The proposition and comparison of two solution approaches based on an evolutionary
algorithm. They are appropriate for the large instances found in industries.

The study’s objective is to contribute significantly to research in resource allocation
and machine/system reconfiguration for optimal industrial performance. It aims to inte-
grate essential optimization problems, including process planning, layout, and scheduling,
to reduce manufacturing costs for mass-customized products in modular and reconfigurable
systems.

4

Outline of the manuscript

This research is structured into seven chapters, as depicted in Figure 1. The first
chapter presents the literature review, which begins with an overview of the principal
manufacturing systems, emphasizing the key distinctions between Dedicated Manufac-
turing Systems (DMS), Flexible Manufacturing Systems (FMS), and Reconfigurable
Manufacturing Systems (RMS). Subsequently, we enter into the primary characteristics
and categorization of RMS optimization problems. Furthermore, an exhaustive literature
review of scheduling, process planning, and layout in RMS is conducted. Lastly, this
chapter highlights the literature gaps.

Figure 1: Summary of all chapters presented in this work.

The second chapter begins by describing the studied problem, including the industrial
context, parameters, decision variables, and constraints. This chapter discusses different
modeling approaches and defends the choices made regarding these methods. Further, four
developed mathematical models to address process planning (PP), layout optimization
(L), and scheduling (S) in RMS are detailed. The first model (PP + L+ S) integrates all
three problems and formulates them jointly. The second model (PP → L→ S) follows a
sequential approach, tackling each problem separately and sequentially. The third model
(PP → L + S) adopts a partial sequential strategy, initially formulating the process

5

planning problem individually and then formulating the layout and scheduling problems
jointly. In this model, a sequential approach is also adopted. The outputs of the process
planning problem become the inputs of the joint layout and scheduling problem. The
fourth model (PP +L→ S) also adopts a partial integration approach, addressing process
planning and layout jointly before dealing with scheduling. The chapter concludes by
summarizing its findings and contributions.

The third chapter studies the problem’s complexity. The chapter explains the
classes identified in complexity theory: P, NP, NP-Complete, and NP-Hard. The
NP-hard class is known for its significant difficulty. Although process planning, layout,
and scheduling problems in RMS have already been proven to be NP-hard, the primary
objective of this chapter is not to reiterate the proof but rather to focus on investigating
smaller sub-problems and determining their complexity. Specifically, we concentrate on
scheduling problems involving a single reconfigurable machine. At the end of this chapter,
we present our findings based on the analysis and exploration of problem complexity within
the context of reconfigurable manufacturing systems.

The fourth chapter presents and discusses the problem-solving methods developed
in this research. The chapter starts with an overview of the exact solving techniques
used to ensure optimal results for small-size instances. In this research work, we studied
and compared three exact methods. The first employed Integer Linear Programming
(ILP) through commercial software based mainly on the simplex algorithm. Second, we
explored two Constraint Programming (CP) approaches, one using the standard tools
of the software and the other one integrating a specific search strategy adapted to our
problem. Subsequently, this research explores non-exact methods, opting to work with two
metaheuristics: Genetic Algorithm (GA) and GA with Local Search (LS). The chapter
concludes with an analysis and key findings.

The fifth chapter presents numerical case studies to analyze the performance of
the four mathematical formulations and models presented in Chapter 2 and the solving
methods presented in Chapter 4. This chapter starts through small instances of numerical
examples by comparing the performance of the four mathematical models introduced in
Chapter 2 using Integer Linear Programming (ILP). The results demonstrate a significant
cost superiority of the integrated model, leading us to employ it exclusively for the
remainder of this chapter. Second, this chapter compares the execution time of the
three exact solving methods for the integrated model on small instances. Constraint
programming providing a search strategy had much shorter execution times than the other
methods. Third, this work also compares the constraint programming with search strategy
with the Genetic Algorithm (GA), examining their execution time and total costs for
small instances. These comparisons provide valuable insights into the effectiveness of the

6

different methods. We analyzed the results provided by the metaheuristics, uncovering
their strengths and weaknesses. Finally, in this chapter, we also explore one first industrial
applicability with a large instance. Through this wide analysis, this research contributes
valuable insights for practitioners and researchers seeking efficient and effective resolution
methods for Reconfigurable Manufacturing Systems. This research aims to optimize
manufacturing processes and enhance overall system performance by discerning the most
suitable approaches.

The sixth chapter presents a complete case study for disassembling a hand light. The
chapter starts with the problem description and presents the input data relevant to the
disassembly process. Next, the chapter compares and analyzes the results in terms of total
cost using the two proposed metaheuristics. Exact methods were not employed due to the
size of the problem. The chapter concludes by summarizing the findings and outlining
conclusions from the case study, highlighting the practical implications for the industries.

The final chapter discusses all the conclusions and analyses presented. In this chapter,
we review the key points addressed throughout the thesis and assess the extent to which
they were successfully answered and explored. In addition, we identify any aspects or
issues that remain open for further investigation. This chapter provides an overview of
the contributions made in this thesis and reinforces the importance of the research carried
out. It also highlights the importance of ongoing research and development in the field of
Reconfigurable Manufacturing Systems (RMS).

Through this general analysis, we contribute to the advancement of knowledge in
the area and enrich the understanding of the optimization of RMS.

7

Chapter 1

Literature Review

Contents
1.1 Manufacturing systems . 8

1.2 Reconfigurable manufacturing systems 11

1.3 Optimization problems in RMS: scheduling, process planning,
and layout . 14

1.3.1 Scheduling . 15

1.3.2 Process planning . 20

1.3.3 Layout design . 24

1.3.4 Scheduling and process planning 28

1.3.5 Scheduling and layout . 30

1.3.6 Process planning and layout . 33

1.3.7 Scheduling, process planning, and layout 34

1.4 Literature gaps . 35

1.5 Conclusions of the chapter . 36

1.1 Manufacturing systems

Throughout history, several moments have played a remarkable role in the evolution
of production systems. One of them, and significantly important, was the diffusion
of Dedicated Manufacturing Systems (DMS) to reduce costs and increase production
capacities. DMS is still used worldwide and remains arguably the most suitable for some
products, especially those with low added value and no need for customization. However,
the landscape has changed significantly in many other cases.

With accelerated globalization, consumers now consider not only quality and price
but also variety and product customization when making choices [22]. This scenario led to
the necessity of reducing the production batch sizes and raising flexibility in production

8

systems. New production systems, such as Flexible Manufacturing Systems (FMS), were
developed in response to these needs. The FMS have a high degree of flexibility thanks to
technologies such as Computer Numerical Control (CNC) machines. On the other hand,
the production rate is shallow compared to DMS, making big scalability complex and
varying capacity only possible in a limited range [60].

Despite its notable flexibility, FMS can be unsuitable for many products due to its
high costs, lower throughput, and complex scalability. [35]. Consequently, alternative
solutions were explored, leading to the emergence of Reconfigurable Manufacturing Systems
(RMS). RMS are specifically designed to rapidly change its structure. This may involve
changing the layout of machines within the physical industrial space or modifying machine
configurations, either at the software or hardware level. The goal is to quickly adapt the
system’s production capacity and functionality within a family of parts in response to
sudden changes in the market [81].

RMS seek to combine the high productivity of dedicated systems with the versatility
of flexible systems. It is not as flexible as FMS and produces less than DMS. While it may
not offer the same level of flexibility as FMS or achieve the production output of DMS,
RMS offer an intermediate solution with a higher cost-benefit ratio.

The relationship between system cost and capacity is shown in Figure 2 [80]. DMS
have a constant cost until they reach their maximum capacity. When the production
exceeds this limit, a significant investment is made, even if the need for the capacity
increase is small. In the case of FMS, the capacity increase is in constant steps, small and
costly, since it is done by adding parallel machines to the system. The RMS differential
is that the production rate is adjustable at levels that are not necessarily constant and
can adapt more effectively to manufacturing conditions and market changes, making this
system the most cost-effective in unstable situations [80].

Figure 2: Comparing system cost and capacity in manufacturing systems [80].

The impact between cost and production rates is mainly explained by the machine

9

type used in each system. DMS are composed of dedicated lines and produce only one
product. FMS use CNC machining, which has a high flexibility (more than needed
many times) and a high cost. RMS use Reconfigurable Machine Tools (RMT) machines
specifically designed for a family of parts. Table 1 summarizes the machines most commonly
used in these systems.

System Machine Main feature Scalability
DMS Dedicated ma-

chines
Perform only one type of operation (one
configuration)

x

FMS Computer
Numerical
Control
(CNC)

Automated and numerically controlled ma-
chines with a high degree of flexibility. They
can perform several different operations just
by changing the program being executed and
its tools.

x

RMS Reconfigurable
Machine Tools
(RMT)

Designed for a set of specific operations or
product families

✓

Table 1: Machine types [36, 86].

Table 2 highlights and compares the main characteristics of the three systems
discussed thus far. In general, DMS have high productivity and low costs but almost
no flexibility. FMS are very flexible and very expensive. RMS end up being a balance
between the previous two, as they have limited flexibility (only the needed for a family of
products), moderated costs, and reasonable productivity.

DMS FMS RMS
Demand Low Variable Variable
Cost per part Low Reasonable Medium
Initial investment High High Low to medium
Productivity Very high Low High
Flexibility No General Customised
Machine structure Fixed Fixed Adjustable
System structure Fixed Adjustable Adjustable
Variety No Very high High
System focus Part Machine Family part

Table 2: Comparing system features.

Given the market uncertainties and the increasing demand for greater customization
by customers, mass-customized products are becoming a widely adopted option for indus-
tries. Moreover, due to their balance between flexibility, cost, and productivity, RMS are
well-suited to meet current needs efficiently and competitively. Therefore, this research
focuses on optimizing these systems to utilize them most effectively.

10

1.2 Reconfigurable manufacturing systems

As explained above, RMS are most suited for mass-customized products and an
unstable and highly changing market due to their advantages, such as high responsiveness
to market uncertainties and the ability to meet the varied desires of customers. For these
reasons, among others, RMS have been studied more deeply in recent years. In this work,
the focus will be entirely on these manufacturing systems, which can be described by six
main characteristics [12, 75, 80, 149]:

• Modularity: the use of hardware and software with modular properties to increase
the variety/flexibility of products and systems. It is easier and cheaper to change
modules than to change entire machines.

• Integrability: the ability to easily add or remove modules adhering to a specific set of
system configurations and integration rules. These guidelines must be followed when
designing both the systems and their machines at the software and hardware levels.
This facilitates the incorporation of existing modules and allows for the integration
of potential future technologies that may be introduced over time.

• Customization: the capability and flexibility of hardware and control levels to
manufacture different parts of a family. This feature seeks to balance the system
costs since it allows more than one part to be produced (unlike DMS) but not any
part (unlike FMS).

• Convertibility: the ability to quickly adapt production functionality whenever new
needs arise. Some mechanisms are required that allow quick systems to be converted,
e.g., for calibrating production after change between parts manufacturing.

• Diagnosability: the self-diagnosis machine-failures and causes of unacceptable qual-
ity. Systematic measurement methods and control/statistic techniques to correct
problems efficiently.

• Scalability: the possibility of rapid adaptation of the system production capacity,
increasing or decreasing it. It can be done by replacing, adding, or removing tools or
machines.

All characteristics are interlinked. The design of modular components of a specific
family allows interfaces to be quickly integrated, with customization limited to the family
part, avoiding unnecessary costs. The modularity and integrability make the system easily
convertible to meet changing functionality requests. The fast changeover capability facili-
tates scalability changes. Additionally, diagnosability plays a critical role in a responsive
system, a concept that gained prominence following the emergence of lean manufacturing,

11

even before the advent of FMS and RMS systems.

Table 3 provides a comparative analysis of the key characteristics of RMS in contrast
to DMS and FMS.

DMS FMS RMS
Modularity Low Low High
Integrability No Limited to the system High
Customization No General Limited to part family
Convertibility No High High
Diagnosability Low High High
Scalability No Low to medium High

Table 3: Comparing RMS main characteristics with DMS and FMS.

The field of study regarding RMS is vast. Bortolini et al. [12] categorized research
perspectives on this topic into clusters, as illustrated in Figure 3: (Stream #1) the
examination of reconfigurability, (Stream #2) the analysis of key characteristics, (Stream
#3) performance analysis, (Stream #4) the application of these systems, and (Stream #5)
the relationship between reconfigurability and the goals of Industry 4.0.

Figure 3: Schematic of RMS research perspectives [12].

This work exclusively focuses on the application of RMS in industries to optimize
resources and, therefore, falls within Stream #4. Specifically, among the main tasks
involved in applying RMS, this work targets planning, scheduling, and layout design
– all of which are optimization problems. Yelles-Chaouche et al. [149] classified RMS

12

optimization problems into four distinct categories (Figure 4): (1) RMS design, (2)
production planning and scheduling, (3) layout design, and (4) line balancing and re-
balancing. Figure 4 outlines the components of each category, highlighting the problems
that fall within our scope.

Figure 4: Categorization of optimization problems in RMS based on [149].

The problems of the first category relate to the initial optimization phase, specifically
in the preliminary design. Such systems require substantial investments in technology.
Thus, robust initial planning is imperative, involving stages such as process planning, flow
line configuration selection, reconfigurable cellular manufacturing systems design, and
rotary machining system design.

The problems related to production planning and scheduling (PPS) aim at maximizing
the system’s efficiency within a planning horizon while adapting to customer requirements
as effectively as possible.

The problems of the third category, layout design, aim to achieve an optimized
physical arrangement. What sets RMS apart is its unique ability to swiftly and cost-
effectively reconfigure the layout during the production process, thereby optimizing system
efficiency and responsiveness.

Lastly, the problems of the line (re)balancing category involve allocating tasks to
workstations, primarily on assembly lines. Typically, these problems are associated with
dedicated systems designed for extended periods. Nevertheless, they have been incorporated
into RMS literature to address unforeseen issues and necessary system adaptations.

As shown in Figure 4 and stated above, this work focuses on scheduling, process
planning, and layout design, including material handling and machine arrangement.

13

1.3 Optimization problems in RMS: scheduling, process

planning, and layout

This section concentrates on the three main topics of this research work: process
planning, scheduling, and layout design. It defines the three topics first, then presents a
literature review of the most significant works on each topic separately, and then of the
works that treated them jointly.

The definitions are as follows:

• The process planning stage is the phase where the best operations sequence to
manufacture a product is chosen (respecting the precedence relations), and operations
allocation to machines and configurations is determined [103].

• The scheduling stage is the phase where the sequence of operations for all products
is determined. By the end of this phase, we have a clear understanding of which
action should be performed at what time.[31].

• The layout stage is the phase where the decision for the plant’s physical position
assignment of equipment/machines is made [94]. This decision directly impacts
Material Handling (MH) and system reconfiguration costs and times. It is important
to note that in this work, to fit into this category, the times and costs of MH and/or
layout reconfiguration must be considered.

All the articles reviewed in this section were sourced from Scopus, Science Direct,
and Web of Science. Only articles were analyzed, excluding conference papers. The search
process involved the use of three specific expressions: "Reconfigurable manufacturing
system" AND "scheduling", "Reconfigurable manufacturing system" AND "process plan",
and "Reconfigurable manufacturing system" AND "layout".

Figure 5 shows the number of articles selected for this literature review. The first
dotted square shows how many were found using the three sets of keywords. At first, 298
articles were identified when adding the findings of the three databases. 184 articles have
remained after removing all duplicates. The last refinement excluded conference articles
that were still present, some articles in a language other than English, and articles that
were not related to the studied subject after reading their abstract, i.e., in the abstract
existed the terms searched but were not the article topic. In the end, 107 articles were
selected.

14

Figure 5: Articles found in the databases and selected.

This research aims to answer the following question: How can we best optimize
process planning, scheduling, and layout configuration in an RMS for mass-customized
products while reducing manufacturing costs? This is why the literature review focuses on
how these three problems were modeled and solved individually and jointly. The objective
function is analyzed for the problem modeling to identify the most considered costs and
performance indicators.

The rest of this section is organized into seven sub-sections:

• Scheduling;

• Process planning;

• Layout design;

• Scheduling and process planning;

• Scheduling and layout;

• Process planning and layout;

• And finally, scheduling, process planning, and layout.

Each section discusses the objective functions and the solving methods used in the
literature and ends with a conclusion.

1.3.1 Scheduling

In RMS scheduling related articles, the most common objectives are minimizing
time-related metrics (e.g., tardiness, completion time, makespan) and operation costs,
especially reconfiguration, which is one of the different elements compared to classical
scheduling problems. Metaheuristics and heuristics are the most frequently used solving
methods.

15

The first article reviewed, published in 1990, Liles & Huff [92] did not address a
specific problem with an objective function and solving method. Instead, they introduced
RMS concepts, expanding the focus from product scheduling to encompass manufacturing
processes. The paper emphasized the importance of integrating process design into product
design. They focused on theoretical aspects and proposed a planning and scheduling
architecture for RMS. Only over a decade later, the study of specific scheduling problems
for RMS was started (e.g., [13, 83]).

Below, we analyze separately the revised works’ objective functions and solving
methods.

Objective functions

Regarding objective functions, time-related metrics are predominant, as in scheduling
for other manufacturing systems (e.g., DMS). Some authors only consider time-related
metrics in their works. Hassan & Bright [58] tried to use system flexibility to reduce
waiting times and increase cost-effectiveness. Mokhtari [104] improved the makespan in a
flow shop, while Ruiz-Torres et al. [125] minimized average tardiness in a two-stage hybrid
flow shop, considering worker efficiency (average or bottleneck). Yang et al. [145] also
minimized total tardiness. Fan et al. [38] studied a flexible job shop with reconfigurable
machine tools with limited auxiliary modules, aiming to minimize total weighted tardiness.

Some authors have included other objectives with time-related functions. Bruccoleri
et al. [14] studied the cost-benefit of reconfiguring production in response to machine
failures, analyzing costs and times of repair, reconfiguration, product transfers, and
machine availability. Crawford et al. [26] focused on minimizing completion time in a
reconfigurable printer system and rerouting operations when a problem was detected.
Wang et al. [137] modeled a hot stamping process and analyzed the relationship between
energy consumption and cycle time. Prasad & Jayswal [113] worked on scheduling product
families, aiming to minimize reconfiguration efforts (at the market, system, and machine
levels), prioritize close due dates, and increase profit. Vahedi-Nouri et al. [134] minimized
workers’ COVID-19 health risks, the total workers’ priorities (prioritizing worker arrival
time preferences for increased flexibility), and maximum completion time. Zhan et al.
[151] studied scheduling optimization for a small, complete, and human-centered assembly
unit. They proposed a multi-objective model to minimize completion time and labor
costs. Yang et al. [144] studied an assembly line centered on optimizing production order
and equipment assignment, which required reconfiguration when switching products. The
objective function sought to optimize load balance, assembly/reconfiguration costs, and
lead time.

Some authors focused only on cost objectives, mainly including reconfiguration costs.

16

Deif & Elmaraghy [29] addressed capacity scalability scheduling to balance the capacity
and reconfiguration costs. Galán [39] developed a methodology to minimize functionality
and capacity underutilization, along with system reconfiguration costs when selecting and
sequencing product families. Abbasi & Houshmand [1] used a Mixed Integer Nonlinear
Programming to maximize profit (inventory holding, production, and reconfiguration
costs) by determining the production sequence, configuration, and lot size for product
families. Eguia et al. [35] integrated cell formation and scheduling problems to minimize
reconfiguration and underutilization costs.

A minority of researchers explored problems unrelated to time or reconfiguration
costs. Bruccoleri et al. [13] managed exceptions in a system that did not allow routing
flexibility and was exclusively composed of reconfigurable machines, requiring real-time
scheduling decisions during machine breaks. The decisions involved determining if machines
could be reconfigured for the interrupting operation and the number of parts to transfer
when resuming the suspended process. Kumar et al. [83] proposed a model focused on
information delays and optimizing job flows. Khan [71] examined product quality and
system health, assessing their impact on system’s performance and inventory size.

Solving methods

In terms of solving methods, heuristics are frequently employed for RMS scheduling
problems and for classic (non-RMS) problems. These problems are often tackled with
dispatching rule heuristics like "first come, first served", "shortest processing time", and
"earliest due date". Crawford et al. [26] studied a reconfigurable printing system prototype,
using heuristic evaluation functions for temporal planning, planning algorithms targeting
wall-clock goal achievement time, and a chained best-first-search algorithm. Wang et al.
[137] developed a model based on a finite state machine to represent a hot stamping
process utilizing a multi-chamber furnace. Ruiz-Torres et al. [125] proposed a two-stage
hybrid flow shop with several workstations, where the solution method involved multiple
steps, some of which could be addressed with different scheduling rules. Khan [71] focused
on scheduling, emphasizing on diagnosability. He proposed a model for a single product,
analyzing the system’s ability to identify and replace a unit needing substitution, such as
machine modules or tools. Three heuristics were employed to solve the model, combining
or omitting distinguishability and stochastic settings.

Metaheuristics are the preferred approach for tackling the scheduling problems in
RMS due to their high complexity (NP-hard problems), surpassing the popularity of
heuristics. These problem-solving techniques draw inspiration from biological processes
like natural evolution [64]. Among the widely used metaheuristics, Genetic Algorithm
(GA) stands out. For instance, Deif & Elmaraghy [29] employed GA techniques to address

17

capacity scalability scheduling. They built a computer tool that utilized the GA technique
to decide when and how much to scale. Abbasi & Houshmand [1] proposed a mixed-integer
non-linear programming model considering stochastic parameters and developed a GA-
based method. Fan et al. [38] tackled a flexible job shop scheduling problem by introducing
a Mixed Integer Linear Programming (MILP) model and developed an improved genetic
algorithm using iterated local search, applying a k-insertion approach to critical paths.
Zhan et al. [151] developed an algorithm combining NSGA-II with Differential Evolution,
a population-based evolutionary algorithm.

In addition to genetic algorithms, diverse other metaheuristic methods are employed
in RMS scheduling research. Galán [39] focused on selecting and sequencing product fami-
lies, utilizing product requirements (modularity, commonality, compatibility, reusability,
and demand) to create similarity matrices between products and applying the Analytic Hi-
erarchy Process and Average Linkage Clustering algorithm to group products into families.
Two hybrid approaches, a nearest neighbor heuristic with Tabu Search and an Ant Colony
System with local search, were compared for family selection and scheduling. Eguia et al.
[35] presented a method addressing cell formation and scheduling, using mixed-integer
linear programming for smaller instances and a tabu search algorithm for larger ones.
Mokhtari [104] improved flow shop scheduling using a group search optimizer algorithm
and innovative parameter calculation techniques involving the Euler method, Runge-Kutta
method, quadratic interpolation, and Levy distribution. Yang et al. [144] developed a
variant of multi-objective particle swarm optimization.

In contrast to the works mentioned above, some authors incorporated fuzzy aspects
into their research. Bruccoleri et al. [13] employed multiple agent systems and fuzzy
reasoning to handle exceptions, particularly machine breakdown. Kumar et al. [83]
introduced an expert-enhanced colored fuzzy Petri Net model, considering customer
demands as a fuzzy parameter. Prasad & Jayswal [113] presented a scheduling model for
product families based on fuzzy logic rules, enabling insights into the interplay between
reconfiguration effort, priority, and due date variables. A comparison with the weighted
aggregate sum method revealed that divergence points primarily revolved around priority
considerations.

Other authors adopted alternative solution techniques. Bruccoleri et al. [14] in-
troduced an object-oriented control architecture for error handling. Hassan & Bright
[58] proposed a reconfigurable computer-integrated manufacturing cell to address mass-
customized product manufacturing, outlining both hardware and software aspects and
presenting a simulation. Vahedi-Nouri et al. [134] tackled an integrated workforce planning
and production scheduling problem within the context of COVID-19, utilizing MILP
and Constraint Programming (CP). They identified and integrated two optimal solution

18

properties into both methods. Similarly, Eguia et al. [35] and Fan et al. [38] also explored
exact methods, restricted to small instances. Yang et al. [145] employed deep reinforcement
learning (deep Q-network) to handle a problem with real-time job arrivals. They had
two agents: a reconfiguration agent to assess the need for system reconfiguration and a
scheduling agent to determine which jobs to produce, both using priority dispatching rules.

Conclusions

Table 4 summarizes of solving methods and objectives from the papers covered in
this section. Additionally, some general conclusions emerge. In most cases, the primary
focus revolves around minimizing total production time, as in classical scheduling problems.
However, since the RMS differential is the reconfigurability, reconfiguration time and cost
can also be considered. In addition, each author adds objectives pertinent to their studies,
which can vary depending on the industry’s product, process, or strategic positioning.
Notably, metaheuristics are the dominant methods, followed by sequencing rules heuristics
and exact methods, mainly employed for model validation.

Solving Methods Objectives
Paper GA OM H EM CP FL OS TF RC OC MF ENV OO Year
[92] 1990
[13] x x 2003
[83] x x 2005
[14] x x x x 2006
[29] x x x 2007
[39] x x x 2008
[1] x x x 2010
[58] x x 2012
[35] x x x x 2013
[26] x x x 2013
[104] x x 2015
[137] x x x 2017
[113] x x x x 2017
[125] x x 2021
[38] x x x 2022
[71] x x 2022
[134] x x x x 2022
[151] x x x x 2022
[144] x x x x 2022
[145] x x 2023

GA: genetic algorithm; OM: other metaheuristics; H: heuristics; EM: exact methods; CP: constraint
programming; FL: fuzzy logic; OS: other solving methods; TF: time functions; RC: reconfiguration costs;
OC: other costs; MF: machine failure; ENV: environment; OO: other objectives.

Table 4: Summary of RMS scheduling articles.

In this review, several key points stand out. Scheduling problems typically center
around two main objectives: sequencing product families [1, 35, 39, 113] or sets of

19

products [38, 104, 125]. Notably, the system does not need to be exclusively composed of
reconfigurable machines; even non-reconfigurable systems can benefit from reconfigurable
ones [14]. Genetic Algorithm (GA) emerges as a highly efficient technique, although
the effectiveness of metaheuristics can be enhanced through hybridization with methods
[38, 39, 104] like local search. The reconfigurability offered by RMS is a strong ally in
addressing issues such as machine breakdowns [13, 14, 26]. Examining product quality aids
in identifying system problems [71]. Moreover, an increase in non-conforming products
can drive up demand for stock, making stock costs less significant for products with high
conformity rates [71]. Identifying specific problem properties can significantly enhance the
efficiency of solving methods.

1.3.2 Process planning

Among the articles considered in this review, process planning problems emerge
as the most extensively studied category, representing almost 30%. They gained more
attention over the past decade, in contrast to scheduling, which has been a longstanding
area of investigation. For this problem, the objective functions continue to be mainly
time-related functions and reconfiguration costs. In addition, a new critical factor is being
considered here: material handling costs. The process planning, which involves selecting
the machine for each operation, directly impacts transportation costs and times. Therefore,
MH can significantly influence the efficiency of systems, underscoring its importance in
this context. Regarding solving methods, metaheuristics are by far the most used, much
more than in the previous section.

Objective functions

Regarding objective functions, the primary focus in most works is on minimizing
total costs, including reconfiguration costs [4, 20, 22, 48, 51, 54, 70, 72, 76–78, 88, 96,
106, 107, 131, 132, 143], a significant concern in RMS. While material handling costs are
also noteworthy due to their dependence on machine and system configurations, they are
comparatively less present in the literature [22, 106, 107, 131, 132]. Other cost factors
considered encompass machine and tool usage [11, 22, 54, 70, 78, 96, 106, 107], production
[4, 20, 72, 76–78, 131, 132, 143, 147], idle cost due to unbalanced station workloads [143],
scrap cost of defective operations [72] , rework [72], tolerance [4], and raw material [20,
147] costs.

Time-related functions are recurrent, especially emphasizing minimizing completion
time [53, 54, 70, 76, 77] and lead time [74, 133]. Some studies also targeted minimizing
production [22, 48, 78, 131, 132], reconfiguration [7, 14, 22, 78, 131, 132], material handling
[14, 22, 131, 132], and machine repair [14] times.

20

Environmental concerns are increasingly prominent in process planning, with efforts
to minimize gas emissions [76–78, 131, 147], hazardous waste [76–78, 147], and energy
consumption [98, 133]. Authors have explored various other objectives as well. Shabaka
& Elmaraghy [127] developed an approach for machine and configuration selection based
on machine capabilities. Abellan-Nebot et al. [2] introduced a methodology to minimize
product variability. Xie et al. [143] sought to balance workload and machine accuracy.
Musharavati & Hamouda [107] aimed to maximize throughput. Gupta et al. [51] worked
on minimizing under-utilization. Haddou Benderbal et al. [53] focused on maximizing
the flexibility index. Haddou Benderbal et al. [54] concentrated on maximizing system
modularity. Asghar et al. [7] aimed to maximize machine capabilities. Khan et al. [72]
minimized non-conforming products and modularity effort. Yazdani et al. [147] sought
to maximize social sustainability. Finally, Gonnermann et al. [48] wanted to enhance
monitoring efficiency, among other objectives. Barrera-Diaz et al. [9] tackled a problem
with buffers, aiming to maximize throughput and minimize total buffer capacity.

Solving methods

Metaheuristics are the dominant category of solving methods for process planning,
with Genetic Algorithm (GA) and their variants once again emerging as the most prevalent
choice. Some authors exclusively employed genetic algorithms. Chaube et al. [22] optimized
the process planning for a single product with several parts using an adapted NSGA-II.
Bensmaine et al. [11] tackled an RMS design problem for creating new production systems,
opting for NSGA-II. Haddou Benderbal et al. [53] also worked with NSGA-II. Asghar et al.
[7] introduced a method to optimize part family process planning via a multi-objective
genetic algorithm. Ameer & Dahane [4] explored setup generation and process plans,
developing a two-step hybrid genetic algorithm approach. The first step employed a
heuristic for setup and fixture selection, followed by the use of a GA for process plan
selection. Khettabi et al. [76], on the other hand, addressed their problem using four
distinct genetic algorithms: NSGA-II, NSGA-III, weighted GA, and random weighted GA.

Some authors compared or mixed GA and other metaheuristics. Xie et al. [143]
addressed their problem by employing GA and Simulated Annealing (SA). Touzout &
Benyoucef [132] explored a multi-unit single-product, utilizing three hybrid metaheuristics
that combined NSGA-II, single-unit process plan heuristics, and Iterated Local Search.
In a other work, Touzout & Benyoucef [131] introduced an Archived Multi-Objective
Simulated Annealing and NSGA-II approach. Khezri et al. [78] worked with a single
product, employing NSGA-II and Strength Pareto Evolutionary Algorithm II. Khan et al.
[74] studied a single-machine part problem and proposed two meta-heuristic algorithms
for its resolution: GA and Cuckoo Search. GA demonstrated superior results in terms of

21

both outcomes and execution time. Khan et al. [72] also delved into the impact of product
quality variation on process planning, solving two models through a hybrid metaheuristic
that combined NSGA-II and Multi-Objective Particle Swarm Optimization (MOPSO).
Kazemisaboor et al. [70] tackled a single-unit process planning (PP) problem employing
three evolutionary algorithms (NSGA-II, AMOSA, and MOPSO), with the results serving
as input for a multi-unit process planning scenario with unpredictable demands, solved
using the Designed Periods Algorithm. Khettabi et al. [77] compared Pareto Evolutionary
Algorithm II, NSGA-II, and NSGA-III.

A smaller subset of papers chose not to explore variations of GA. Instead, they
explored other metaheuristics. For instance, Musharavati & Hamouda [107] compared four
Simulated Annealing (SA) methods, some containing alternative algorithmic concepts,
for a multi-part process planning problem. In another study, the same authors extended
their comparison to four different SA methods [106]. Maniraj et al. [96] focused on the
process planning problem within a single-product flow-line RMS, developing a two-part
ant colony optimization approach. Haddou Benderbal et al. [54] created an approach to
address the configuration selection problem, encompassing both system and machine levels,
introducing a method based on AMOSA. Barrera-Diaz et al. [9] developed an improved
simulation-based multi-objective optimization approach that employed customized simula-
tion and optimization components, utilizing discrete-event for simulation and NSGA-II for
optimization.

Some works employed exact methods for validating mathematical models and solving
the proposed problems [72, 78, 131]. Massimi et al. [98] presented an exhaustive heuristic
for determining the sequence of operations involving a single product unit and its associated
machines and modules. Campos Sabioni et al. [20] proposed a model addressing the joint
optimization of product configuration and process planning, employing an exact approach
characterized by an exhaustive search algorithm and integer linear programming. Yazdani
et al. [147] presented a linear multi-objective mixed-integer mathematical model, which
was tackled using an Lp-metric and a Lagrangian relaxation-based heuristic algorithm.
Additionally, Gonnermann et al. [48] developed a methodology comprising four modules
to address PP and process monitoring for assembly lines. The first module generates
assembly plans, the second handles monitoring processes, the third optimizes both, and
the final one conducts simulation to validate collision freedom and feasibility in process
planning. The case studies were still applied to small examples, so the optimization was
done with a MILP.

Several authors explored alternative approaches to address and resolve their prob-
lems. Shabaka & Elmaraghy [127] developed an approach that selects machines and
their configurations based on machine capabilities. Abellan-Nebot et al. [2] proposed a

22

methodology for selecting process plans for new products by analyzing existing data from a
multi-station manufacturing process’s prior productions. Gupta et al. [51] focused on part
family formation, utilizing a clustering approach to construct a dendrogram (a diagram
that shows the hierarchical relationship between objects) and determine the production
order of family parts. Um et al. [133] used the STEP-NC machine control language tool
to select required machine tools, factoring in machine capability, workspace, and tolerance.
Although not exclusively centered on RMS, this article holds substantial value for applying
such systems in industry. Leng et al. [88] introduced a digital twin concept centered
on open-architecture machine tools, Industrial Internet of Things communication, and
digital-twin structures, extending beyond our primary research focus.

Conclusions

Table 5 provides an overview of the key findings in the reviewed process planning
articles. Notably, metaheuristics, particularly GA, emerged as the dominant solving
method. Objective functions covered a wider range of criteria. Material handling has
garnered attention as a crucial factor, given its potential to impact overall costs significantly.
Furthermore, environmental concerns have emerged more strongly in recent years, becoming
an increasing part of the research landscape.

The studies in this context varied, with some focusing exclusively on a single product
[2, 22, 96, 98, 132], while others studying multi-part [106, 107, 127] or part family formation
scenarios [51]. A majority of authors opted for multi-objective functions, necessitating
the use of multi-criteria decision techniques, with the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) method being the most commonly employed
[53, 54, 76, 77]. An exception was noted in Xie et al. [143], where a GA approach
with two objectives was developed, eliminating the need for multi-objective methods like
NSGA-II. The functions were normalized to address different objective dimensions. Hybrid
metaheuristics demonstrated enhanced objective function results [72, 132], although efforts
are required to reduce their time consumption [132]. GA and its variations yield good
results, outperforming other methods [72, 74, 77]. Problem sizes tended to be smaller
compared to scheduling; for example, Khan et al. [74] worked with one part and one
machine. Likely due to this reason, it is possible to find authors who have employed exact
methods not only for validation but also as their primary approaches [20, 48, 98, 147].

23

Solving Methods Objectives
Paper GA OM H EM CP OS TF RC MHC OC ENV OO Year
[127] x x 2007
[22] x x x x x 2010
[2] x x 2011
[143] x x x x x 2012
[107] x x x x x 2012
[106] x x x x 2012
[11] x x x x 2013
[96] x x x 2014
[51] x x x 2014
[133] x x x 2016
[53] x x x 2017
[54] x x x x x 2017
[7] x x x 2018
[131] x x x x x x x x 2018
[132] x x x x x x 2019
[98] x x 2020
[88] x x 2020
[78] x x x x x x x 2020
[74] x x x 2021
[72] x x x x x x 2021
[4] x x x 2021
[76] x x x x x 2021
[70] x x x x x 2021
[20] x x x x 2022
[147] x x x x 2022
[77] x x x x x x 2022
[48] x x x x 2022
[9] x x 2022

GA: genetic algorithm; OM: other metaheuristics; H: heuristics; EM: exact methods; CP: constraint
programming; OS: other solving methods; TF: time functions; RC: reconfiguration costs; MHC: material
handling costs; OC: other costs; ENV: environment; OO: other objectives.

Table 5: Summary of RMS process planning articles.

1.3.3 Layout design

The RMS layout problems aim to optimize the positioning of machines and equipment,
mainly influenced by layout reconfiguration and material handling costs and time. Fewer
research papers are devoted to addressing the layout problem compared to previous
topics. While objective functions still encompass factors like reconfiguration costs, material
handling costs, and time functions, a dominant trend in these studies is incorporating
additional objectives, such as quality, production capacity, and security. In terms of solving
methods, unlike the previous problems, the frequent use of metaheuristics is less common
here, with most studies concentrating on specific techniques.

24

Objective functions

In layout problems, the objective is often to minimize reconfiguration and material
handling costs. Many authors incorporate these goals with additional ones. For instance,
Zhao et al. [153] sought to identify the optimal configuration for family changes, optimizing
profit (reward earned minus reconfiguration costs). Reza Abdi [121] based their decisions
on a combination of reconfiguration cost, quality, layout reconfigurability, operators, and
inventory. Oke et al. [109] searched for a more fluid material handling flow, not necessarily
aiming to optimize time and costs. Guan et al. [49] aimed to reduce both material handling
and workstation reconfiguration costs, while Wei et al. [139] minimized material handling
and equipment replacement costs and maximized the workshop area. Arnarson et al. [6]
focused on minimizing the total MH done by robot platforms.

Time-related functions are not predominant in layout problems but are still present.
Dang et al. [27] focused on determining transport paths to minimize time or energy
consumption, also considering collision avoidance between pallets. Park et al. [112] aimed
to reduce layout reconfiguration times in distributed manufacturing systems. Mo et al.
[102] introduced a framework consisting of three reconfiguration phases. The first phase
involved analyzing the capability match between the current system and the requirements
of a new product. The second phase focused on optimization, including machine placement,
production parameters, and sequence using the selected assets. The final phase involved
configuration updates to implement the reconfiguration. In a small case study, the objective
was to minimize total operating time and collision occurrences.

Additionally, some authors pursued different layout optimization objectives. Han
et al. [55] analyzed the feasibility of storage, transport paths, processing, preparation, and
tool handling. Garbie [42] aimed to increase production capacity via resource, layout,
and material handling analysis. Vavrík et al. [135] evaluated the system’s ability to meet
delivery schedules, product prioritization, product family classification, and determine the
optimal line configuration. Sallez et al. [126] focused on ensuring security, Gašpar et al.
[45] optimized hexapod placement, and Marschall et al. [97] studied mobile robotic system
interaction with reconfigurable modular systems, exploring scenarios where robots could
manipulate platforms with mechanical arms, pallets, batteries, and other components.
Their main objective was to find the number of robots needed in relation to the available
platforms.

Solving methods

In contrast to previous sections where problems were predominantly addressed with
metaheuristics, they played a less prominent role here. Guan et al. [49] tackled a Quadratic
Assignment Problem where each location had pickup and delivery points, employing a

25

revised electromagnetism-like mechanism heuristic to solve it. Wei et al. [139] addressed a
dynamic layout problem across multiple planning periods in a continuous shop floor with
regular and unequal equipment, utilizing a chaotic genetic algorithm with an improved
Tent mapping. Meanwhile, Mo et al. [102] explored optimization methods such as GA,
SA, and PSO for their study. Arnarson et al. [6] utilized NSGA-II for layout optimization
and validated it via digital model simulation.

Some authors opted for heuristics in their approaches. Oke et al. [109] focused on
a scenario only with fixed machines, due to the impossibility of moving them. They
introduced a U-shaped layout system with an intermediary buffer. When a new product
with a different process plan was introduced, their heuristic algorithm suggested a new
material handling routing. In other work, Garbie [42] proposed a three-phase methodology
encompassing production, plant layout, and material handling systems. They employed a
heuristic to readjust the system in response to changes in demand or catalog.

In terms of exact solving methods, Guan et al. [49] employed them for small instances
and to validate the proposed metaheuristic. Zhao et al. made a sequence of four articles
to optimize system configurations through a stochastic model. The first article [154]
introduced a framework with three core components: optimal configurations during design,
optimal selection policies during utilization, and performance metrics during improvement.
Subsequent articles studied each component in depth. Here, we focus only on the first one
[153]. In Zhao et al. [153], products were grouped into families, sharing similar products
for the same system configuration. Reconfiguration occurred when there was a change
in the production family, utilizing an iterative process involving exact calculations for
small instances and simulation approximations for larger instances. Gašpar et al. [45]
addressed production lines for rigidly fixed parts; they tackled the problem using nonlinear
programming.

Some authors used different solving methods. Reza Abdi [121] used a fuzzy Analytical
Hierarchy Process model to choose between three layout configurations (serial, parallel,
and hybrid). Han et al. [55] proposed a simulation-based approach for manufacturing
layout selection, creating a tool with a list of configuration parameters to determine feasi-
bility. Dang et al. [27] explored an Electromagnetic Modular Smart Surface architecture,
investigating pallet movement with path-planning algorithms like the Floyd Warshall
algorithm to find the shortest path and interpolation techniques such as Cubic Hermite
to refine the trajectory. Park et al. [112] introduced an agent communication framework
featuring self-layout recognition through infrared communication, focused on multi-agent
protocols beyond the scope of this work. Vavrík et al. [135] developed an approach to
design reconfigurable manufacturing lines, combining mathematical operations for layout
design with simulation, cluster analysis, and the longest common subsequence algorithm.

26

Sallez et al. [126] tackled safety concerns between robots and operators in a reconfigurable
assembly system, using a two-phase methodology involving offline layout construction on
a multi-agent platform and online implementation and system validation. Marschall et al.
[97] examined interactions between a mobile robotic system and reconfigurable modular
systems, analyzing different layouts and simulating diverse scenarios.

Conclusions

In summary, Table 6 contains the key information regarding layout problems, which
stand out as the most diverse among the individual problems discussed in this review.
Metaheuristics are not the predominant solving methods, and time-related functions
are not the primary considered objective. Moreover, the modeling approaches for these
problems can be quite distinct. Reza Abdi [121] focused on selecting from three layout
options (serial, parallel, and hybrid). Wei et al. [139] addressed a continuous shop floor
scenario with regular and unequal equipment. Guan et al. [49] had predefined locations for
equipment placement. Oke et al. [109] worked with material handling with fixed machines.
Dang et al. [27] concentrated on optimizing pallet transport for material handling. In a
departure from these perspectives, Marschall et al. [97] aimed to balance the number of
robots and platforms, while Gašpar et al. [45] concentrated on positioning a fixed structure.

Solving Methods Objectives
Paper GA OM H EM CP OS TF RC MHC OC ENV OO Year
[154] 2000
[153] x x x 2000
[121] x x x x 2009
[109] x x 2011
[49] x x x x 2012
[55] x x 2012
[42] x x 2014
[27] x x x 2016
[112] x x 2019
[139] x x x x 2019
[135] x x 2020
[126] x x 2020
[45] x x 2021
[97] x x 2022
[102] x x x 2023
[6] x x 2023

GA: genetic algorithm; OM: other metaheuristics; H: heuristics; EM: exact methods; CP: constraint
programming; OS: other solving methods; TF: time functions; RC: reconfiguration costs; MHC: material
handling costs; OC: other costs; ENV: environment; OO: other objectives.

Table 6: Summary of RMS layout articles.

27

1.3.4 Scheduling and process planning

Moving on to the integrated problems, we notice a decrease in the number of
articles in each subsequent subsection compared to the previous ones. The integration of
scheduling and process planning is a widely explored area, particularly in problems without
reconfiguration, where it has shown notable advantages over treating them individually
[129]. Within the RMS context, the focus is on optimizing time-related functions, such as
conventional scheduling problems. Furthermore, several solving methods are employed,
with a predominant emphasis on heuristics and exact methods.

Objective functions

Most authors have focused on time-related objectives, with some exclusively address-
ing these criteria. Doh et al. [30] sought to minimize a range of time-related functions,
encompassing makespan, total flow time, mean tardiness, the number of tardy jobs, and
maximum tardiness. Yu et al. [150] minimized the makespan, mean flow time, and mean
tardiness, while Bensmaine et al. [10] concentrated only on minimizing the makespan.

In other studies, time-related functions have been considered alongside additional
objectives. For instance, Dou et al. [32, 33] addressed cost minimization (capital and
reconfiguration costs) and tardiness. Ivanov et al. [67] sought to minimize production costs
and makespan. Rahman et al. [115], on the other hand, exclusively targeted makespan
reduction. In contrast, Choi & Xirouchakis [23] deviated from time-related functions
and instead focused on minimizing energy consumption, inventory holding costs, and/or
maximizing throughput.

Solving methods

To solve the joint scheduling and process planning, some studies employed sequencing
heuristics. Doh et al. [30] tackled a job scheduling problem with multiple process plans,
applying integer linear programming to instances with up to 10 jobs and 10 machines. For
larger instances, they examined 36 options by comparing three rules for operation/machine
selection and 12 rules for job sequencing. Yu et al. [150] introduced a priority rule-based
heuristic for flexible job shop scheduling with multiple processes. Lastly, Bensmaine et al.
[10] integrated process planning and scheduling problems by deploying a heuristic that
assessed machine availability and then defined a selection index to determine the optimal
operation sequencing and machine assignment.

Evolutionary algorithms are also used in these integrated problems. Dou et al. [33]
introduced a mixed-integer programming model for reconfigurable flow lines, initially
validating it with an exact method and subsequently employing NSGA-II using a hybrid

28

encoding approach to ensure chromosome feasibility. Another study by Dou et al. [32]
employed a multi-objective particle swarm optimization, which outperformed NSGA-II
in the presented examples. Rahman et al. [115] proposed a methodology for predictive
scheduling and reactivity control, considering products with multiple process plans and
using a GA in conjunction with priority dispatching rules for optimization. Before
implementing the instructions in the real system, a simulation was conducted to assess
feasibility and refine the schedule.

Furthermore, Choi & Xirouchakis [23] proposed a linear programming model to opti-
mize process planning and the production quantity while balancing conflicting objectives.
Ivanov et al. [67] developed a control approach incorporating dynamic structural-logical
constraints. These constraints vary based on machine availability, representing dynamic
changes. A dynamic control algorithm, using problem decomposition, was devised. Cas-
tañé et al. [21] introduced the ASSISTANT European project, a decision support system
for agile manufacturing environments. It aims to control process planning, production
planning, scheduling, and real-time operations. This ambitious project advocates for
developing digital twins and using Artificial Intelligence (AI) tools, including machine
learning, Internet of Things (IoT), CP, stochastic timing, and simulation. It integrates
various components like data management, ethical and safety compliance, and an AI-based
controller for real-time decision-making. While this article provides an overview of the
project, in-depth demonstrations, use cases, architectures, algorithms, and code will be
made available upon the project’s completion.

Conclusions

Table 7 provides a summary of the articles jointly addressing scheduling and process
planning in RMS. In general, these studies heavily rely on heuristic and metaheuristic
approaches, primarily targeting time-related objectives, often coupled with other cost
minimization criteria. Additionally, we observed noteworthy points. Doh et al. [30] studied
a problem where process plans have varied types and quantities of operations, contrary
to most works where the quantity of operations per product is fixed. Bensmaine et al.
[10] proposed a heuristic approach that effectively integrated scheduling and process
planning, showcasing its superiority over sequential strategies, as demonstrated in non-
RMS problems. Dou et al. [33] focused on determining the number of stations and identical
parallel machines in each station. It is essential to clarify that while some authors like
Campos Sabioni et al., categorize such problems as layout design, our layout category
emphasizes material handling and equipment displacement costs and times, which do not
apply in this case.

29

Solving Methods Objectives
Paper GA OM H EM CP OS TF RC MHC OC ENV OO Year
[30] x x x 2013
[150] x x 2013
[10] x x 2014
[23] x x x x 2014
[33] x x x x x 2020
[67] x x x 2020
[32] x x x x x 2020
[115] x x 2020
[21] 2020

GA: genetic algorithm; OM: other metaheuristics; H: heuristics; EM: exact methods; CP: constraint
programming; OS: other solving methods; TF: time functions; RC: reconfiguration costs; MHC: material
handling costs; OC: other costs; ENV: environment; OO: other objectives.

Table 7: Summary of RMS scheduling and process planning articles.

1.3.5 Scheduling and layout

Analyzing scheduling and layout together is crucial since system reconfiguration
and material handling times and costs significantly influence these decisions. Therefore,
optimizing equipment positioning and task sequencing can enhance production efficiency.
In this section, we observe a balanced distribution of solving methods and objectives; there
is no predominant solving approach or objective function.

Objective functions

Some authors have concentrated only on optimizing time-related functions. Yang &
Xu [146] and Gao et al. [40] aimed to minimize tardiness penalties, while Naderi & Azab
[108] and Manafi et al. [95] focused on minimizing makespan. Guo et al. [50] sought to
minimize total waiting and setup times with additional setup quantities and tardiness
analyses.

On the other hand, certain works have exclusively targeted cost-related objectives.
Ye & Liang [148] minimized total costs, encompassing production, layout reconfiguration
(both intracellular and extracellular), machine idle time, material handling, and work-
in-process inventory costs. Renna & Ambrico [120] aimed to reduce intercell material
handling, machine reallocation, and machine reconfiguration costs while maximizing profit.
For Xia et al. [141], the goal was to minimize overall maintenance costs.

In other studies, a combined approach has been adopted, considering both time and
cost factors. Prasad & Jayswal [114] developed a methodology incorporating reconfiguration
effort, profit over cost ratio, and due date considerations. Han et al. [56] aimed to minimize
unfulfilled demand within due dates, completion times, reconfiguration costs, and penalty
costs for unfulfilled demands. Notably, Ghanei & Algeddawy [46] addressed sustainable

30

and economic aspects, striving to minimize total energy consumption (intra-day price
fluctuations), system reconfiguration, and material handling costs. Khan et al. [73] aimed
to minimize total time, maximize the line efficiency index, and enhance the customer
satisfaction index.

Solving methods

As expected, some of the authors worked with metaheuristics. Ye & Liang [148]
tackled these problems in reconfigurable cellular manufacturing systems, focusing on
modular products with multiple parts. They initially employed an exact method to validate
the model and subsequently developed a GA. Ghanei & Algeddawy [46] introduced a MILP
and employed a GA. Han et al. [56] explored the integration of IoT sensors into RMS to
enhance reconfiguration (machine and system) decision-making, employing a meta-heuristic
based on a variable neighborhood search algorithm. They also compared three production
scheduling dispatching rules. Gao et al. [40] proposed a linear mathematical model to
optimize machine positioning using Cartesian coordinates and scheduling. Small instances
were evaluated using an exact method in conjunction with the developed genetic algorithm.
Naderi & Azab [108] presented two metaheuristics based on an artificial immune algorithm
to address scheduling challenges in reconfigurable assembly systems. Manafi et al. [95]
addressed scheduling and AGV routing while considering collision avoidance and battery-
related factors. They developed a MILP model and applied a centroid opposition-based
coral reefs metaheuristic for optimization.

Stepping away from metaheuristics, Renna & Ambrico [120] exclusively used exact
methods. They introduced a sequential approach consisting of three distinct mathematical
models for cellular manufacturing: (1) The "main model" conducted an extended analysis
over one year and formulated the initial cell designs. (2) The "sub-model" used the output
data from the previous model, operating over a shorter time horizon (3 months). (3) The
"allocation model" took the previous results and handled weekly production scheduling
without further reconfiguration.

Other authors adopted unique approaches. Xia et al. [141] presented a reconfigurable
maintenance time window method through real-time interactive bi-level scheduling. Prasad
& Jayswal [114] employed an integrated methodology combining Shannon Entropy for
weight assignment and the Reference Ideal Method for multicriteria decision-making in
RMS design and product scheduling. Yang & Xu [146] utilized deep reinforcement learning
techniques for real-time production system optimization. Guo et al. [50] tackled fixed-
position assembly islands, focusing on products that couldn’t be moved during assembly
due to their large size or fragility. The authors introduced a synchronization-oriented
reconfiguration mechanism based on Industrial Internet of Things (IIoT) and digital twin

31

technology to manage resource organization and scheduling on the island to address this.
Khan et al. [73] developed a heuristic employing four different assessments considering
reconfiguration possibilities at both the machine and layout levels.

Conclusions

Table 8 summarizes the articles reviewed in this section. Solving methods are generally
more distributed, and the goals are mainly centered around time-related functions and
costs (mainly reconfiguration).

In a more specific context, it is worth analyzing how the layout problem was ap-
proached in these studies. Gao et al. [40] employed cartesian coordinates to determine
the positioning of machines. Guo et al. [50] addressed the challenge of fixed assembly
islands, where the product remains stationary, and only the resources required for pro-
duction are mobile. Yang & Xu [146] introduced the concept of a system "mode," which
involved predefined layout and production resource configurations that could be selected.
Additionally, Yang & Xu [146] and Xia et al. [141] addressed real-time challenges in
their studies, while Khan et al. [73] demonstrated that reconfigurability enhances system
efficiency. In addressing the layout problem, there is a diversity of available approaches, as
the requirements vary considerably depending on the type of process and the machinery
and products involved. Therefore, selecting the most suitable approach for the particular
study is crucial to avoid unnecessary complexity while ensuring that significant solutions
are not overlooked.

Solving Methods Objectives
Paper GA OM H EM CP OS TF RC MHC OC ENV OO Year
[148] x x x x x 2006
[120] x x x x 2015
[141] x x 2017
[114] x x x x 2017
[46] x x x x x 2020
[56] x x x x x 2020
[146] x x 2021
[40] x x x 2021
[108] x x 2021
[50] x x 2021
[95] x x x 2022
[73] x x x 2022

GA: genetic algorithm; OM: other metaheuristics; H: heuristics; EM: exact methods; CP: constraint
programming; OS: other solving methods; TF: time functions; RC: reconfiguration costs; MHC: material
handling costs; OC: other costs; ENV: environment; OO: other objectives.

Table 8: Summary of RMS scheduling and layout articles.

32

1.3.6 Process planning and layout

The integration of process planning and layout is important due to the influence
of layout configuration on the sequencing of production operations of each job. In this
section, the number of articles is notably smaller than in previous sections (about 8%),
with solving methods and objectives closely aligning with those of the scheduling and
layout section.

Objective functions

Regarding the problems’ objectives, certain works did not incorporate cost-related
considerations into their analyses. Rehman [117] and Rehman & Subash Babu [118, 119]
assessed simulation performance based on machine utilization, throughput time, product
earliness, product lateness, and product block time. Haddou Benderbal & Benyoucef
[52] aimed to maximize the average machine utilization, increase the number of machines
available for replacement when needed, minimize layout evolution effort during production
changeovers within product families, and reduce the penalty associated with machine-
location association constraints in the system.

On the contrary, other researchers incorporated costs into their objectives. Xiaowen
et al. [142] focused on minimizing reconfiguration costs and times. Eguia et al. [34] sought
to minimize the non-use of machines within cells, movement between cells, and inventory
holding costs. Campos Sabioni et al. [18, 19] minimized total costs, which included
raw material costs, operation costs, layout reconfiguration, machine reconfiguration, and
material handling costs.

Solving methods

As expected, metaheuristics were also applied to address these types of problems.
Xiaowen et al. [142] investigated a multi-stage production line, constructing their model
based on graph theory and utilizing a GA for solving. Haddou Benderbal & Benyoucef
[52] developed a two-step method, initially proposing a layout design with an archived
multi-objective simulated annealing approach based on a generated process plan, followed
by an exhaustive search for optimizing non-satisfaction constraints. Campos Sabioni et al.
conducted two studies in this domain, both aimed at selecting the optimal modules to
create a product meeting customer requirements. In the first study [18], they developed a
genetic algorithm, while in the second study [19], they introduced two hybrid approaches:
the Modified Brute-Force Algorithm with integer linear programming and the Modified
Brute-Force Algorithm with a genetic algorithm.

In contrast, some papers did not use metaheuristic methods. Rehman & Subash

33

Babu pioneered exploring PP and layout problems by examining a factory with nine
distinct system configurations. They devised multiple scenarios, each characterized by
unique input data combinations, to facilitate the comparison of simulation results across
all configurations. The distinguishing factor between these articles lies in their methods for
ranking these configurations. While Rehman & Subash Babu [118] relied on a benchmark-
ing model and statistical analysis, Rehman & Subash Babu [119] used a Multiple Criteria
Decision-Making methodology, specifically the Elimination and Choice-Translating Algo-
rithm. A decade later, Rehman [117] introduced further research that shared similarities
with the previous studies, particularly in terms of experimental data. Once more, the
focus was on simulating a production system. The distinguishing feature of this article
was its emphasis on robustness, employing the signal-to-noise ratio method to select the
ultimate optimal solution. From another perspective, Eguia et al. [34] proposed an exact
method to address the cell formation and multi-period machine loading problem within an
industry exclusively equipped with CNC and RMT machines.

Conclusions

Table 9 provides a summary of the articles jointly addressing process planning and
layout. Overall, metaheuristics remain a prevalent approach in this context. Unlike schedul-
ing problems, which frequently employ heuristics based on sequencing rules, heuristics
were not used here. The primary objectives centered around classical criteria associated
with time and cost functions.

Solving Methods Objectives
Paper GA OM H EM CP OO TF RC MHC OC ENV OS Year
[118] x x x 2008
[119] x x x 2009
[142] x x x 2013
[34] x x x x 2017
[117] x x x 2019
[52] x x 2019
[19] x x x x x 2020
[18] x x x x 2021

GA: genetic algorithm; OM: other metaheuristics; H: heuristics; EM: exact methods; CP: constraint
programming; OS: other solving methods; TF: time functions; RC: reconfiguration costs; MHC: material
handling costs; OC: other costs; ENV: environment; OO: other objectives.

Table 9: Summary of RMS process planning and layout articles.

1.3.7 Scheduling, process planning, and layout

In accordance with our initial definitions and research criteria, only two articles
fit into this section. This is understandable, as integrating multiple problems makes

34

the overall study more complex. Integrating two problems already presents significant
challenges, but integrating all three further increases the difficulty.

The first, though not recent, dates back to 2007. [152] employed a multi-agent
architecture to model Dynamically Integrated Manufacturing Systems. This framework
introduced an agent coordination algorithm designed to facilitate interaction among
system agents for optimizing manufacturing system planning, control, and reconfigurations.
Before making any changes to production planning and scheduling, the methodology
involved identifying, simulating, and evaluating several proposed options. Coordination
was achieved using a GA to optimize parameters within a bid distribution system for local
units, leading to a collective resource plan. The algorithm allowed for the relaxation of
constraints when satisfactory solutions could not be found within the existing restrictions,
potentially resulting in a system reconfiguration. The work also addressed cell formation
by considering material handling and buffers, which is why it is categorized as a layout
problem. However, despite spanning all three classifications, the integration and solving
methods employed here differ from those proposed in our research.

More recently, Gao et al. [41] introduced a model that integrates three objective
criteria: minimizing tardiness, total costs, and reducing hazardous waste and greenhouse
gas emissions. This study presented a small example involving two products and two
machines. Initially, they employed a Brute-Force Search method and later compared it
with the NSGA-III algorithm.

Solving Methods Objectives
Paper GA OM H EM CP OS TF RC MHC OC ENV OO Year
[152] x x x x x 2007
[41] x x x x x x x 2021
This work x x x x x x x 2024

GA: genetic algorithm; OM: other metaheuristics; H: heuristics; EM: exact methods; CP: constraint
programming; OS: other solving methods; TF: time functions; RC: reconfiguration costs; MHC: material
handling costs; OC: other costs; ENV: environment; OO: other objectives.

Table 10: Summary of RMS scheduling, process planning, and layout articles.

1.4 Literature gaps

After reviewing the literature on optimization problems within Reconfigurable Man-
ufacturing Systems (RMS), several key observations and gaps were identified. The main
observations are:

• Increased interest in RMS optimization problems due to market demands for greater
flexibility in production.

35

• The majority of the reviewed research work focuses on addressing individual problems
or exclusively integrating two of the three: scheduling, process planning, and layout.

• In the context of RMS, the scheduling problem is the most mature, while the layout
problem is the least studied.

• Metaheuristics are the most used solving methods.

• Objective functions mainly focus on time-related metrics (such as makespan and
tardiness) and total costs (including production and machine reconfiguration).

The main identified gaps are as follows:

• Limited attention has been given to analyzing material handling costs and times in the
context of RMS optimization, particularly outside the layout category. However, this
aspect should not be neglected, as it constitutes a significant portion of production
costs.

• Despite RMS’s distinctive feature of reconfigurable layouts, optimization problems
related to layout remain less explored compared to scheduling and process planning.

• In-depth exploration of exact methods in the literature is lacking.

• Integrated studies involving these problems have yet to present examples at an
industrial scale or based on real-world scenarios.

• No existing integrated work compares a sequential approach to an integrated method-
ology.

To address these literature gaps, this work compares integrated and sequential
models to minimize total costs, encompassing production, machine reconfiguration, layout
reconfiguration, material handling, and tardiness. Additionally, we propose three exact
methods and two evolutionary algorithms to tackle problems of varying scale, from small-
size instances to industrial applications.

1.5 Conclusions of the chapter

This research work tries to answer the following question: How can we best optimize
process planning, scheduling, and layout configuration in an RMS for mass-customized
products while reducing manufacturing costs? From the literature review, it is quite
clear that integrating at least two of the three optimization problems (process planning,
scheduling, and layout problems) could be more effective than solving them individually.
Although most researchers have traditionally addressed these issues individually, there has
been a growing trend towards integrating at least pairs of these problems. This trend is

36

driven by the shared decision variables, which can lead to enhanced global results when
considered jointly. Figure 6 illustrates that over 67% of reviewed articles deal with these
problems separately, about 30% work with two problems, and only around 2% address all
three simultaneously.

Figure 6: Category of the reviewed articles.

Integrating process planning and scheduling has been a well-established practice for
non-RMS problems long before these systems emerged [90, 129], but doing so in the RMS
context introduces new challenges due to reconfigurability. Moreover, RMS allows layout
reconfiguration to be done by moving machines, making layout integration also crucial. All
three problems share resource allocation decisions, as illustrated in Figure 7. Production
and machine reconfiguration costs and times directly affect operation sequencing in process
planning and scheduling. Layout reconfiguration and material handling times are most
relevant to layout and scheduling, while process planning and layout primarily consider
material handling costs and layout reconfiguration. Tardiness penalties are relevant across
all problems.

Figure 7: Connection between the process planning, scheduling, and layout design problems.

Therefore, this thesis aims to study the significance and implications of integrating

37

the discussed problems. Hence, several models and solving methods will be presented.
The proposed mathematical models go from independent problem-solving through partial
integration to finally full integration. Our solving methods were developed with complete
adaptation to our proposed problem, incorporating the most effective techniques identified
in the literature reviewed.

38

Chapter 2

Problem Description and Mathematical
Models

Contents
2.1 Problem description . 40

2.2 Modeling approaches . 45

2.3 Integrated model . 47

2.4 Sequential model : PP → L → S 48

2.5 Partial sequential model : PP → L + S 56

2.6 Partial sequential model : PP + L → S 57

2.7 Conclusions of the chapter . 58

This research proposes a way to best optimize process planning, scheduling, and
layout configuration in an RMS for mass-customized products while reducing manufacturing
costs. The first intuition is integrating these problems since they are interconnected and
interdependent. However, it is still to be proven whether their integration will be the
best way to handle them or whether integrating two of the three problems would be
better. This is why we developed four new mathematical models. The first model fully
integrates the three optimization problems. On the contrary, the second handles the
problems individually, following a sequential approach. The sequence states the order
of solving the problems and means that the outputs of a problem become the input of
the subsequent one. The two final models propose a partial integration (two out of three
problems are integrated) and keep a sequential approach.

These three problems, optimizing process planning, layout, and scheduling within an
RMS, have been extensively studied. Unlike most authors in this field, this work studies
these problems more completely, encompassing factors that are often overlooked, such as
the impact of layout reconfiguration and material handling. Hence, all the proposed math-
ematical models aim to minimize overall costs, including production, material handling,
layout reconfiguration, machine reconfiguration, and tardiness costs.

39

This chapter begins by describing the problem under investigation. Then, it presents
the four proposed mathematical models, followed by a conclusion.

2.1 Problem description

Scheduling operations is crucial for all types of companies, including industries,
commerce, and services. In this work, our focus is on industries, particularly those using
RMS. Beyond resource allocation and scheduling, it is essential to address other aspects
when planning production in these systems. Determining when and how systems should be
reconfigured at machine and system levels becomes equally important. Using the process
planning and layout flexibility that RMS provide can significantly increase results. This
section describes the problem we address, and Table 11 lists all the parameters introduced
here.

Customer orders are considered as jobs Ji ∈ {J1, ..., Jn}, translating required products
into production orders. When a customer demands two identical products, two orders
will be generated, even though the same person/entity requires the same products. Each
job Ji has a due date di before which the job is expected to be fully processed. Where
a job is not completed before its due date, a job penalty cost Wi is incurred per time
unit of tardiness. The tardiness Ti of job i is equal to max{0, Ci − di}, where Ci is the
completion time of Ji. A job Ji is composed of ni operations Ji = {Oi1, ..., Oi,ni

}. They
are specific manufacturing processes (e.g., cutting, welding, assembly, or packaging), and
the set of operations necessary for a job must respect a known partial order of precedence.
For example, to manufacture an automobile gearbox housing (see Figure 8), some of
the operations include rough milling, drilling, reaming, semi-finish milling, finish milling,
tapping, semi-finish boring, and finish boring [138].

Figure 8: Automobile gearbox housing [138].

The precedence relation between operations of Ji is represented as Oij ◁i Oij′ where
operation Oij precedes Oij′ , i.e. operation Oij′ can start only if Oij has been fully processed.

40

Parameters
J = {J1, ..., Jn} the set of jobs
Oi = {Oi1, ..., Oi,ni

} the set of operations of Ji
M = {M1, ...,Mm} the set of machines
Mk = {Mk[1], ...,Mk[qk]} the set of configurations of machine Mk

Λ = {Λ1, ...,Λl} the set of layouts
di due date of job i
πp job with the due date in pth position among the due

dates in ascending order
Wi penalty cost per unit of tardiness for Ji
T time horizon, jobs are scheduled from 0 to T
◁i precedence relation over the set of operations of Ji, Oij ◁i

Oij′ if Oij has to be processed before Oij′

Pij(k, e) Oij processing time on machine Mk in configuration e
P χ
k (e, e

′) machine reconfiguration time of Mk to change from con-
figuration e to e′

P λ(u, u′) layout reconfiguration time to change from layout u to
u′

P τ
u (k, k

′) material handling time associated with a layout u when
an operation of Ji is processed on machine k and its next
operation on machine k′

Kij(k, e) Oij production cost to process Oij with machine Mk in
configuration e

Kχ
k (e, e

′) machine reconfiguration cost of Mk to change from con-
figuration e to e′

Kλ(u, u′) layout reconfiguration cost to change from layout u to u′

Kτ material handling cost per unit of time to move a Ji from
a machine to another

Decision variables
Sij ∈ {0, ..., T} starting time of Oij

Cij ∈ {0, ..., T} completion time of Oij

Si = Si1, Ci = Cini
starting and completion time of Ji

σij ∈ {1, ..., ni} position of operation j in the process sequence among
all operations of Ji

σi[p] ∈ {1, ..., ni} operation executed in pth position among all operations
of Ji

µij ∈ {1, ...,m} machine processing Oij

λ(t) ∈ {1, ..., l} layout used at time t
χ(k, t) ∈ {1, ..., qk} configuration of machine k at time t

Table 11: All parameters and decision variables used in this chapter.

For the gearbox housing, we know, for example, that the semi-finish boring operation
has to be done before (precede) the finish boring operation. Moreover, it is important to
emphasize that here multiple operations from the same job must be executed sequentially;

41

in other words, concurrent processing of two or more operations, even without precedence
constraints, is not allowed.

Figure 9 gives an example involving two jobs (J1 and J2) and a Hasse Diagram
representing their precedence relation. For job J1, O12 and O13 can only be performed
after O11. To start O14, O12 and O13 must already be completed. Finally, all the other
operations must have been completed to start O15. In job J2, manufacturing start with
O21, then can go to O22 or O23. O24 can only be processed after O22 and O23 are finished.
The penultimate and last operations can be either O25 or O26.

J1 J2

O11 O21

O12 O13 O22 O23

O14 O24

O15 O25 O26

Figure 9: Production precedence example.

The potential production sequences are outlined in Table 12, with J1 presenting two
options and J2 presenting four. Specifically, J1 invariably starts with operation O11, while
J2 starts with operation O21.

Possible production sequences
Job 1 O11 −O12 −O13 −O14 −O15

O11 −O13 −O12 −O14 −O15

Job 2 O21 −O22 −O23 −O24 −O25 −O26

O21 −O22 −O23 −O24 −O26 −O25

O21 −O23 −O22 −O24 −O25 −O26

O21 −O23 −O22 −O24 −O26 −O25

Table 12: Possible production sequences for the example illustrated in Figure 9.

For the gearbox housing, two possible operation production sequences are: (1) rough
milling → drilling → reaming → semi-finish milling → finish milling → tapping → semi-
finish boring → finish boring, or (2) rough milling → drilling → reaming → tapping →
semi-finish milling → semi-finish boring → finish milling → finish boring.

42

The selection of a sequence in the process planning problem can differ for identical
jobs, as it depends on the available resources and layout system when each job is produced.
This illustrates how process planning decisions are influenced by scheduling and layout
problems.

The manufacturing system has m machines Mk(k = 1, ...,m) to process operations.
Each machine Mk has qk possible configurations Mk[e](e = 1, ..., qk). A machine con-
figuration is the combination of software and hardware modules. Changing a machine
configuration requires a certain amount of time and incurs reconfiguration costs. For ex-
ample, the same machine can perform drilling and reaming operations, but each operation
requires a different tool, involving a hardware change. Another example of reconfiguration
is modifying the program (software) of a CNC machine. Reconfiguration can involve
changes in both hardware and software. The duration time P χ

k (e, e
′) and cost Kχ

k (e, e
′)

needed to reconfigure the machines depends on the machine Mk in question and on the
initial (e) and final (e′) configurations. When a machine reconfiguration is necessary,
the machine remains unavailable while reconfiguration is occurring. The same reasoning
applies to costs.

Each operation Oij has at least one machine/configuration combination Mk[e] capable
of manufacturing it. Each operation Oij has an associated processing time Pij(k, e) and
a cost Kij(k, e) if that operation is processed by machine k in configuration e. We have
Pij(k, e) = ∞ when a machine k in configuration e cannot produce an operation Oij.
Otherwise, Pij(k, e) is the number of time units needed for performing it. The same applies
to cost, each combination having an associated cost, and where an operation cannot be
performed by a given combination the cost is represented as infinite.

As highlighted in the previous chapter, machines can be separated into dedicated
machines, Computer Numerical Control (CNC) systems, and Reconfigurable Machine
Tools (RMT) [36, 86]. Dedicated machines perform only one type of operation (one
configuration, qk = 1). CNC machines are highly flexible, automated devices capable of
executing various operations by simply altering the program and tools. In contrast, RMT
are specifically designed for particular operations or product families, offering scalability
ideal for RMS applications. Our work encompasses all three machine types: dedicated,
CNC, and RMT. While RMT are theoretically well-suited for RMS, practical industrial
scenarios often involve a mix of machine types. Our models reflect this diversity and can
be used regardless of the type of machines used. Additionally, machines in industrial
contexts can be either fixed or mobile, with full mobility being characteristic of only a few
specific micro-factories. The proposed model takes into consideration fixed and mobile
machines.

43

Concerning the machines, their allocation includes the machine’s physical space,
safety margins, and a buffer area. In the example illustrated in Figure 10, machine one
is fixed, while the others are mobile. The mobile equipment must move avoiding the red
zones.

Figure 10: Layout configuration example.

Regarding physical machine location, the problem considers a set of l possible layouts
Λ = {Λ1, ...,Λl}. The displacement of mobile machines happens when an optimized
system is detected in another layout. A layout reconfiguration from configuration u to
configuration u′ has a price Kλ(u, u′) and an execution time P λ(u, u′). There can be no
changes within the same layout, so ∀u, P λ(u, u) = 0. The other values are equal to the
reconfiguration time. The same applies to layout reconfiguration costs.

The decision to work with a predetermined set of possible layouts from practical
considerations, as real-world constraints imply that machinery cannot be placed arbitrar-
ily. Factors like electrical infrastructure, environmental conditions (e.g., humidity and
temperature), inter-machine vibrations, and other considerations influence layout choices.
Additionally, the physical dimensions of the industrial space and the machines themselves
impose limitations on equipment displacement. Alternative approaches like the Quadratic
Assignment Problem or Cartesian coordinates in open space would unnecessarily increase
the complexity.

Each layout configuration u has corresponding material handling times P τ
u (k, k

′) for
displacement from machine k to machine k′. The material handling times are presented in
a matrix. The leading diagonal equals zero for all layouts because there is no travel time
between a machine and itself. All material handling times between two different machines
are greater than zero.

Also, each layout configuration has corresponding material handling costs for dis-
placement from machine k to machine k′. We multiply the MH times P τ

u (k, k
′) by Kτ , a

material handling cost parameter (constant) to obtain these costs. Longer usage durations

44

result in increased costs. In our analysis, we have utilized a fixed value represented as Kτ ,
but it could also be treated as a variable function depending on specific scenarios.

In summary, the expected outputs are :

• The starting times Sij and completion times Cij of operations, consequently, the Si

and Ci for each job;

• The manufacturing sequence σij of operations within a job Ji;

• The machine µij processing each operation;

• The configuration χ(k, t) of each machine k at each time;

• The layout λ(t) used at each time t.

The problem is subject to the following assumptions:

• The demand is known;

• The due dates of the jobs are known;

• Raw materials, workforce, and material handling (transport of products between
machines) are always available;

• All jobs produced have the required quality.

The main objective is to minimize the total costs, which include production costs,
machine reconfiguration costs, layout reconfiguration costs, material handling costs, and
tardiness costs.

The production cost comprises the sum of processing costs for each operation.
Machine reconfiguration costs arise whenever a machine’s configuration changes. Similarly,
layout reconfiguration costs are incurred when machines are rearranged. Material handling
costs encompass the expenses linked to the movement of operations between machines.
Tardiness costs, on the other hand, are only accrued in cases where a job surpasses its due
date.

2.2 Modeling approaches

This work aims to tackle three interconnected optimization problems: process
planning, layout design, and scheduling. The primary hypothesis is that fully integrating
these problems will yield superior results. However, this assertion remains unproven and
needs to be compared with non-integrated or partially integrated approaches.

Therefore, we propose a total of four models: one fully integrated, one sequential,

45

and two partially sequential. The first model directly integrates all three problems. The
second model addresses each problem individually with a sequential approach, meaning
the output of a problem becomes the input of the following problem. Addressing each
problem individually is not feasible without making certain assumptions due to their
interdependence and mutual influence.

The third model adopts a partially sequential approach, addressing one individual
problem (process planning) and two integrated problems (layout and scheduling). The final
model follows a similar partially sequential approach, addressing two integrated problems
(process planning and layout) and one individual problem (scheduling).

Effectively addressing the sequential model relies heavily on determining the sequence
in which the problems are solved. Therefore, when modeling these three problems, it is
crucial to identify the optimal sequence for solving them. The sequential modeling approach
efficiency is inherently tied to the resolution sequence. Typically, scheduling is deferred
to the final stage as it provides essential timing information (i.e., when each action will
be taken), encompassing production operations, reconfigurations, and material handling.
The order in which process planning and layout are sequenced can vary, depending on the
preferences of the decision-maker.

Starting with layout can be challenging due to a lack of prior information, such
as which machine will handle each operation. This approach could be more feasible in
scenarios with robust historical production data. However, in our case, where this is not
an initial assumption, we opt to commence with process planning. This allows us to have
machine decisions as input for the layout problem. Nonetheless, as the layout has not been
established when solving process planning, we can use the initial layout or an alternative
method, such as calculating a weighted average of distances across all potential layouts.

Hence, our chosen approach starts with Process planning (PP), followed by Layout
(L), and concludes with Scheduling (S). With the sequence established, the options outlined
in Table 13 can be explored.

Methods Description
PP + L + S The three problems are handled together.
PP → L → S Each problem is handled individually and sequentially.
PP → L + S The process planning problem is handled individually, while the

layout and scheduling problems are handled together.
PP + L → S The process planning and layout problems are handled together,

and then the scheduling problem is handled individually.

Table 13: Methods applied in this work.

46

The subsequent sections will describe the mathematical model for each approach.

2.3 Integrated model

The integrated model addresses all problems simultaneously. The parameters and
decision variables utilized in this model are listed in Table 11. The objective function (fc)
minimizes the total costs: production (fp), material handling (fMH), layout reconfiguration
(fl), machine reconfiguration (fm), and tardiness (ft) costs (2.1).

min fc = fp + fMH + fl + fm + ft (2.1)

The production cost depends on the machine and the configuration in which the
operation will be processed (2.2).

fp =
n∑

i=1

ni∑
j=1

Kij(µij, χij(µij, Sij)) (2.2)

The machine reconfiguration costs are counted when the machine changes its config-
uration between two units of time (2.3).

fm =
T−1∑
t=0

m∑
k=1

Kχ
k (χ(k, t), χ(k, t+ 1)) (2.3)

The layout reconfiguration costs are counted every time there is a layout change
between two units of time (2.4).

fl =
T−1∑
t=0

Kλ(λ(t), λ(t+ 1)) (2.4)

The material handling costs depend on the displacement time of jobs between
machines multiplied by a weight per unit of handling time (2.5).

fMH =
n∑

i=1

ni−1∑
p=1

Kτ · P τ
λ(Siσi[p]

)(µiσi[p], µiσi[p+1]) (2.5)

Tardiness costs are applied when the completion time is beyond the due date (2.6).

ft =
n∑

i=1

Wi ·max(0, Ci − di) (2.6)

47

The problem is subject to the following constraints. No operation is allowed during
layout reconfiguration, and reconfiguration is only possible if all jobs initiated before the
reconfiguration have been completed.

∀t λ(t) ̸= λ(t+ 1) ⇒ ∀i (Ci ≤ t) ∨ (Si ≥ t+ P λ(λ(t), λ(t+ 1))) (2.7)

The machine-level reconfiguration can only be executed if no operation is performed,
and the machine under consideration remains unavailable during the configuration change
(2.8).

∀t χ(µij , t) ̸= χ(µij , t+ 1)⇒ (Cij ≤ t) ∨ (Sij ≥ t+ Pχ
µij

(χ(µij , t), χ(µij , t+ 1))) (2.8)

Once an operation is started, it cannot be stopped and restarted later. Consequently,
the operation’s completion time is determined by adding its starting time and its production
time, which depends on the machine and configuration where it will be processed (2.9).

Cij = Sij + Pij(µij , χ(µij , Sij)) (2.9)

An operation can only start after its predecessor in the process sequence has ended
and the material handling time respected (2.10).

σij + 1 = σij′ ⇒ Cij + P τ
λ(Cij)

(µij , µij′) ≤ Sij′ (2.10)

Each machine can process only one operation at a time (2.11).

µij = µi′j′ ⇒ (Cij ≤ Si′j′) ∨ (Ci′j′ ≤ Sij) (2.11)

Constraints 2.12 and 2.13 are used to ensure model consistency. The first constraint
ensures the connection between operations and their execution sequence (position) for
each job, while the second constraint ensures that the precedence order is respected.

σij = p ⇔ σi[p] = j (2.12)

Oij ◁i Oij′ ⇒ σij < σij′ (2.13)

2.4 Sequential model : PP → L → S

The problems are interconnected through shared variables, so we used a sequential
model. It is important to highlight that the input data used for the sequential approaches
(sequential model and the two partially integrated models) may vary from that of the
integrated model discussed in the previous section.

48

As explained previously, our sequential model handles each problem individually but
connects them by using the outputs of the first as the input to the second and the outputs
of the first and second problems as inputs to the third one. Hence, three sub-models
are proposed as presented in Figure 11: process planning, layout, and scheduling. The
modeling proposed depends on the resolution sequence chosen and discussed above. This
resolution is based on a proposed heuristic approach with a chosen sequence. The first
sub-model focuses on process planning. Each job is individually analyzed to determine the
machines and configurations for manufacturing each operation. This information serves
as input parameters for the subsequent sub-model, the layout. Here, jobs are evaluated
together. The layout sub-model selects the layout for processing each job and establishing
the execution sequence of operations. Finally, the outputs from the first two sub-models
are used to generate the final operation scheduling in the scheduling sub-model.

Figure 11: Sequential model.

49

Sub-model 1: Process Planning (PP)

In this sub-model, each job is processed individually. The variables and decision
parameters utilized here are detailed in Table 14, also available in Table 11.

Parameters
J = {J1, ..., Jn} the set of jobs
Oi = {Oi1, ..., Oi,ni

} the set of operations of Ji
M = {M1, ...,Mm} the set of machines
Mk = {Mk[1], ...,Mk[qk]} the set of configurations of machine Mk

Λ = {Λ1, ...,Λl} the set of layouts
di due date of job i
Wi penalty cost per unit of tardiness for Ji
◁i precedence relation over the set of operations of Ji, Oij ◁i

Oij′ if Oij has to be processed before Oij′

Pij(k, e) Oij processing time on machine Mk in configuration e
P τ
u (k, k

′) material handling time associated with a layout u when
an operation of Ji is processed on machine k and its next
operation on machine k′

Kij(k, e) Oij production cost to process Oij with machine Mk in
configuration e

Kτ material handling cost per unit of time to move a Ji from
a machine to another

Decision variables
Sij ∈ {0, ..., T} starting time of Oij

Cij ∈ {0, ..., T} completion time of Oij

σij ∈ {1, ..., ni} position of operation j in the process sequence among
all operations of Ji

σi[p] ∈ {1, ..., ni} operation executed in pth position among all operations
of Ji

µij ∈ {1, ...,m} machine processing Oij

χ(k, t) ∈ {1, ..., qk} configuration of machine k at time t

Table 14: Parameters and decision variables used for the PP sub-model.

The objective function (fpp
c) minimizes production (fpp

p), material handling (fpp
MH),

and tardiness (fpp
t) costs (2.14). The production time and cost data remain the same

as the overall problem input. However, new Material Handling (MH) data is created.
Since no layout decision is made in this sub-model, the MH time between two machines is
considered the average time of all MH layouts (Λ). For example, if a problem includes
three layouts and the MH time between machines 1 and 2 for layout 1 is P τ

1 (1, 2) = 5, for
layout 2 is P τ

2 (1, 2) = 3, and for layout 3 is P τ
3 (1, 2) = 10, the MH time used here between

50

the same machine pair will be P τ
Λ
(1, 2) = 6 (i.e., 5+3+10

3
).

fpp
c = fpp

p + fpp
MH + fpp

t (2.14)

The due dates (dppi) also undergo changes (2.15). They are determined as the smaller
value between the original due date and the average of each job’s worst and best production
times. pwij represents the worst production time of operation Oij of job Ji and pbij represents
the best production time of operation Oij of job Ji.To illustrate, if a job initially has a due
date of 30, with a sum of worst production times equal to 25 and a sum of best production
times equal to 19, the due date used for this job in this sub-model will be 22, calculated
as (min(30, 25+19

2
)).

dppi = min(di,

∑ni

j=0 p
w
ij +

∑ni

j=0 p
b
ij

2
) (2.15)

The production cost (Kij(k, e)) depends on machine k and configuration e in which
the operations are processed. Therefore, it is necessary to define the machine (µij)
responsible for manufacturing Oij and the configuration (χ(k, t)) of the machine µij at
time Sij (2.16).

fpp
p =

ni∑
j=1

Kij(µij, χij(µij, Sij)) (2.16)

The material handling cost depends on the material handling cost per unit of time
(Kτ), a constant parameter. This cost is then multiplied by the MH time (P τ

u (k, k
′))

between operations (2.17). To calculate the material handling time, it is necessary to
consider the layout used by operations (which is the same for all jobs in this sub-model,
denoted as Λ), the machines responsible for producing operations, and the sequence of
operations(µiσi[p] → µiσi[p+1])) (2.17).

fpp
MH =

ni−1∑
p=1

Kτ · P τ
Λ
(µiσi[p], µiσi[p+1]) (2.17)

The tardiness cost is determined by comparing the job completion time (Ci) and the
job’s due date (calculated as explained earlier) (2.18). If Ci is greater than di, then their
difference is multiplied by a penalty cost per unit of tardiness. Otherwise, it remains zero
(2.18).

fpp
t = Wi ·max(0, Ci − dppi) (2.18)

Some constraints restrict the problem. Firstly, operations are non-preemptive. Then,
if the start time (Sij), machine (µij), and configuration (χ(k, t)) have already been chosen,

51

it is possible to know the operation completion time (Cij) (2.19).

Cij = Sij + Pij(µij , χ(µij , Sij)) (2.19)

The production order of operations must respect the job precedence order. In cases
where operation Oij precedes an operation Oij′ (Oij ◁i Oij′), the position of Oij is lower
than the position of Oij′ (σij < σij′) (2.20).

Oij ◁i Oij′ ⇒ σij < σij′ (2.20)

An operation can only start (Sij′) after its previous one in the partial order ◁i has
ended (Cij), and the material handling time (P τ

u (k, k
′)) between the machines that produce

them (µij and µij′) is respected (2.21).

σij + 1 = σij′ ⇒ Cij + P τ
Λ
(µij , µij′) ≤ Sij′ (2.21)

Constraints 2.22 guarantee the link between operations and their execution sequence
position.

σij = p ⇔ σi[p] = j (2.22)

52

Sub-model 2: Layout (L)

This sub-model focuses on the layout configuration to determine simultaneously
the optimal layout for each job and define the sequence in which its operations will be
executed. The output from the PP sub-model, specifically the machine responsible for
each operation, serves as input for this sub-model. The variables and decision parameters
utilized here are detailed in Table 15.

Parameters
J = {J1, ..., Jn} the set of jobs
Oi = {Oi1, ..., Oi,ni

} the set of operations of Ji
M = {M1, ...,Mm} the set of machines
Mk = {Mk[1], ...,Mk[qk]} the set of configurations of machine Mk

Λ = {Λ1, ...,Λl} the set of layouts
πp job with the due date in pth position among the due

dates in ascending order
Wi penalty cost per unit of tardiness for Ji
◁i precedence relation over the set of operations of Ji, Oij ◁i

Oij′ if Oij has to be processed before Oij′

P λ(u, u′) layout reconfiguration time to change from layout u to
u′

P τ
u (k, k

′) material handling time associated with a layout u when
an operation of Ji is processed on machine k and its next
operation on machine k′

Kλ(u, u′) layout reconfiguration cost to change from layout u to u′

Kτ material handling cost per unit of time to move a Ji from
a machine to another

Decision variables
σij ∈ {1, ..., ni} position of operation j in the process sequence among

all operations of Ji
σi[p] ∈ {1, ..., ni} operation executed in pth position among all operations

of Ji
µij ∈ {1, ...,m} machine processing Oij

λ(t) ∈ {1, ..., l} layout used at time t

Table 15: Parameters and decision variables used for the L sub-model.

The objective function (f l
c) minimizes costs, including layout reconfiguration (f l

l),
material handling (f l

MH), and duration (f l
d) costs (2.23). At this point, production times

are already known due to the prior determination of machines and configurations.

f l
c = f l

l + f l
MH + f l

d (2.23)

The layout reconfiguration costs (Kλ(u, u′)) depend on the layout sequence and

53

reconfiguration between them. In this phase, the jobs’ due dates determine the position
sequence (πp). Furthermore, λ(π0) is always the initial system layout, and λ(πp) is the
layout of the job with the pth due date in the ascending order (2.24). Considering two jobs,
J1 with a due date of 30 and J2 with a due date of 20, the layout sequence order appears as
follows: first the initial layout (λ(π0) = initial layout), followed by the layout corresponding
to J2 (λ(π1) = λ(J2)), and finally, the layout corresponding to J1 (λ(π2) = λ(J1).

f l
l =

n∑
p=0

Kλ(λ(πp), λ(πp+1)) (2.24)

The material handling costs here are similar to the function used in PP, with the
key difference being that the layout parameter (λ) is not constant (Λ) but dependent on
the job i (λ(i)) (2.25).

f l
MH =

n∑
i=1

ni−1∑
p=1

Kτ · P τ
λ(i)(µiσi[p], µiσi[p+1]) (2.25)

The duration costs are the sum of the layout reconfiguration (P λ(u, u′)) and material
handling (P τ

u (k, k
′)) times multiplied by a penalty cost (Wi) (2.26).

f l
d = Wi ·

[
p−1∑
p=0

P λ(λ(πp), λ(πp + 1)) +
n∑

i=1

ni−1∑
p=1

P τ
λ(i)(µiσi[p], µiσi[p+1])

]
(2.26)

Only two constraint equations, which were previously employed in the PP sub-model,
are utilized here. Equation 2.27 indicates that precedence order must be respected, and
Equation 2.28 ensures the coherence between variables σij and σi[p].

Oij ◁i Oij′ ⇒ σij < σij′ (2.27)

σij = p ⇔ σi[p] = j (2.28)

Sub-model 3: Scheduling (S)

After obtaining the outputs from the preceding sub-models, the only information
missing is when each operation starts and finishes. These decisions must respect the
machine and layout reconfiguration times, as well as production capacity constraints. The
variables and decision parameters utilized here are detailed in Table 16.

54

Parameters
J = {J1, ..., Jn} the set of jobs
Oi = {Oi1, ..., Oi,ni

} the set of operations of Ji
M = {M1, ...,Mm} the set of machines
Mk = {Mk[1], ...,Mk[qk]} the set of configurations of machine Mk

Λ = {Λ1, ...,Λl} the set of layouts
di due date of job i
Wi penalty cost per unit of tardiness for Ji
P χ
k (e, e

′) machine reconfiguration time of Mk to change from con-
figuration e to e′

P λ(u, u′) layout reconfiguration time to change from layout u to
u′

Kχ
k (e, e

′) machine reconfiguration cost of Mk to change from con-
figuration e to e′

Decision variables
Sij ∈ {0, ..., T} starting time of Oij

Cij ∈ {0, ..., T} completion time of Oij

Si = Si1, Ci = Cini
starting and completion time of Ji

µij ∈ {1, ...,m} machine processing Oij

λ(t) ∈ {1, ..., l} layout used at time t
χ(k, t) ∈ {1, ..., qk} configuration of machine k at time t

Table 16: Parameters and decision variables used for the S sub-model.

All the previous outputs are used as input in this sub-model. The objective (f s
c) is

to minimize machine reconfiguration (f s
m) and tardiness (f s

t) costs (2.29).

f s
c = f s

m + f s
t (2.29)

The machine reconfiguration costs (Kχ
k (e, e

′)) are incurred when machine k changes
from configuration χ(k, t) at time t to a different configuration χ(k, t+ 1) at time t+ 1

(2.30).

f s
m =

T−1∑
t=0

m∑
k=1

Kχ
k (χ(k, t), χ(k, t+ 1)) (2.30)

The tardiness of job Ji is calculated as the maximum of zero and the difference
between the completion time Ci and the due date di, multiplied by the weight Wi (2.31).

f s
t =

n∑
i=1

Wi ·max(0, Ci − di) (2.31)

55

This problem is subject to some constraints. Firstly, manufacturing is not allowed
during layout reconfiguration. Secondly, whenever there is a layout change between
time t and t + 1, operations must either complete before it (Ci ≤ t) or start after the
reconfiguration time (Si ≥ t+ P λ(u, u′)) associated with the transition from layout u to
layout u′ (2.32).

∀t λ(t) ̸= λ(t+ 1) ⇒ ∀i (Ci ≤ t) ∨ (Si ≥ t+ P λ(λ(t), λ(t+ 1))) (2.32)

When a machine configuration changes between t and t + 1, no operations are
executed on that machine during the reconfiguration (2.33). Therefore, all operations
processed on machine k must either complete before the reconfiguration begins (Cij ≤ t)
or start after the machine reconfiguration time (Sij ≥ t+ P χ

k (e, e
′)) associated with the

transition from configuration e to configuration e′ (2.33).

∀t χ(µij , t) ̸= χ(µij , t+ 1)⇒ (Cij ≤ t) ∨ (Sij ≥ t+ Pχ
µij

(χ(µij , t), χ(µij , t+ 1))) (2.33)

Machines can only process one operation at a time (2.34). As a result, operations
allocated to the same machine cannot overlap in time.

µij = µi′j′ ⇒ (Cij ≤ Si′j′) ∨ (Ci′j′ ≤ Sij) (2.34)

In this model, each problem is addressed individually, but certain assumptions are
necessary. We begin with the process planning stage, where material handling costs
influence decision-making. Calculating these costs requires knowledge of the layouts to be
used, information that is not yet available. To address this, we employ an approximation
method. In our case, we calculate material handling costs using the average of the MH
times across all layouts.

In the second stage, to determine the layout, we introduce the minimization of
duration costs into the objective function to handle costs related to a time function. These
duration costs are the sum of layout reconfiguration times and material handling costs,
multiplied by a penalty.

In the scheduling solving stage, no assumptions need to be made.

2.5 Partial sequential model : PP → L + S

In this section, we address first the process planning problem, which yields information
about the machine/configuration responsible for producing each operation. This output
data serves as input for the integrated layout and scheduling problems (Figure 12).

56

Figure 12: Partial sequential model : PP → L + S.

The mathematical model for PP remains identical to the one presented in the previous
section (Sequential model). The model for Layout and Scheduling (L + S) integrates both
of the aforementioned problems. This integration results in equations 2.24, 2.25, 2.30, and
2.31 composing the objective functions, and equations 2.20, 2.22, 2.32, 2.33, and 2.34 as
the constraint set.

In this model, similar to the previous one, an assumption about the layout must
be made for the process planning decision to calculate material handling costs. However,
unlike the previous model, where layout and scheduling were considered as separate
decisions, in this integrated approach, there is no need to incorporate duration costs in
the objective function. The only function directly linked to time is the tardiness costs.

2.6 Partial sequential model : PP + L → S

In this section, we initially solve process planning and layout jointly, generating
output data that includes the machine/configuration for each operation, the layout for
each job, and the operation sequences for each job. This output data subsequently serves
as input for the scheduling stage (Figure 13).

The mathematical model that integrates PP and L combines elements from the
"Sequential model" with some notable modifications. In the previous model, PP dealt
with individual jobs, whereas in this integrated approach, multiple jobs are addressed
simultaneously. The objective function is composed of equations 2.16, 2.18, 2.24, and
2.25, where the first two must be considered for all jobs (∀i). The constraints employed
include 2.19, 2.20, 2.21 (utilizing P τ

Λ(µij, µij′)), and 2.22. The mathematical model for the
scheduling sub-model remains identical to the one presented in the sequential model.

57

Figure 13: Partial sequential model : PP + L → S.

In this model, no assumptions are made about the layout, as it becomes a decision
variable in the integrated problem involving PP and L. Additionally, Equation 2.18 is
used to manage time costs; there is no need to incorporate duration costs in the objective
function.

2.7 Conclusions of the chapter

In the context of RMS, it is essential to address the interconnected problems of
process planning, layout, and scheduling. These problems cannot be entirely separated
because they share common decision variables. For this reason, among the new models
proposed to solve the stated problem, both completely and partially sequential models
are heuristics. Our heuristic strategy aim to divide this complex problem into more
manageable sub-problems. While three specific options have been outlined, it is important
to note that there is flexibility in how these problems can be tackled. For example, we
could opt to initiate the sequence order of problems with the layout, demonstrating the
versatility of the heuristics approaches. Our choice made was due to the way we dealt
with the problem and the inputs we considered.

Before numerically analyzing the difference between the models, it is noticeable
that the sequential and partially sequential (PP → L + S) models present a limitation
in terms of process plan flexibility for identical products with the same due date. This
limitation arises from the fact that these models result in identical operation sequence
orders. In contrast, the integrated model offers more flexibility in that the process plan
for each job takes into account the overall resource situation. This enhanced adaptability

58

is advantageous for achieving the global optimization of the problem.

Furthermore, the approximations and assumptions made in the sequential and
partially sequential models probably lead to higher total costs compared to the global
optimum provided by the integrated model. However, decomposing the global problem
into smaller parts may result in improved execution times. Concrete conclusions will be
drawn in Chapter 5.

59

Chapter 3

Complexity

Contents
3.1 Computational complexity theory 60

3.1.1 Class P . 61

3.1.2 Class NP . 62

3.1.3 Class NP-Complete . 62

3.1.4 Class NP-Hard . 63

3.2 Scheduling problem complexity with reconfigurable machines 64

3.2.1 Problem description . 64

3.2.2 Properties . 66

3.2.3 The special case of null reconfiguration duration times 69

3.2.4 Solving the total weighted completion time problem 69

3.2.5 Solving the makespan problem 74

3.2.6 Complexity of the general one-machine problem 75

3.2.7 Parallel machines . 76

3.3 Conclusions of the chapter . 76

3.1 Computational complexity theory

The theory of computational complexity classifies and helps to understand how
difficult a problem is regarding the computational execution time to solve it and the
memory capacity used [28]. In this work, we will concentrate on the complexity relative to
the execution time, which is mainly discussed in general.

When an algorithm is executed on a computer, the time required to reach a solution
is quantified in seconds, minutes, or other time units. This duration is influenced by
factors like the computer’s processor and software. Therefore, measuring in time units
is not the most suitable for comparing problems. In the complexity theory, the number

60

of elementary operations is estimated based on the instance’s size, which pertains to the
input data. Typically, attention is given to the dominant function, representing the most
significant order of complexity, especially in worst-case scenarios [25].

The complexity of problems allows their classification into P (polynomial time), NP
(non-deterministic polynomial time), NP-complete, and NP-hard [16]. Subsequently, the
distinctions between each class will be delineated.

Moreover, problems can be categorized mainly into decision and optimization prob-
lems. Decision problems seek to determine a binary answer (yes or no) to a specific
question or verify the existence of a given solution [43]. Optimization problems, on the
other hand, aim to find the best solution (minimum or maximum) among the feasible
solutions to the problem.

3.1.1 Class P

Class P encompasses problems decidable in polynomial time by a deterministic
Turing machine. This implies that the number of elementary operations required for their
solution is upper bounded by a polynomial of the instance’s size. For instance, a problem
with complexity is expressed as O(kp), where k is a characteristic of the instance’s size,
and p is a fixed value independent of the input data [16].

The problems within this class are considered "tractable" [43]. They have "efficient"
algorithms to solve them since the execution time is upper-bounded by a polynomial
function dependent on the instance’s size [25]. However, in practice, this is not always
strictly true. More complex algorithms can be more efficient than polynomial ones for
some specific cases. For example, the simplex algorithm (exponential) is more efficient
in linear programming than the ellipsoid method (polynomial) [124]. This fact occurs
because complexity analysis typically considers the worst case, but in this context, the
worst case for the simplex algorithm is not representative of its overall efficiency.

P-class primarily addresses decision problems. Nevertheless, it is feasible to convert
optimization problems into decision problems. When aiming to determine the shortest
path between two points (an optimization problem), it can be reformulated as the question:
"Is there a path between these two points that is less than a given value x?" In this
transformation, each negative response prompts an increase in x, while each positive
response triggers a decrease in x.

61

3.1.2 Class NP

The decision problems of class NP are those for which a non-deterministic Turing
machine can decide it in polynomial time, and a result has a polynomial-size certificate
(solution) that can be verified in polynomial time by a deterministic Turing machine. The
computers used today are based on a deterministic Turing machine, i.e., when we give
them an instruction, there is no doubt which operation they will perform. Conversely, in a
non-deterministic machine, the machine can have a set of possibilities at each calculation
step. These possibilities form a tree structure, where branches represent the different
options of the machine’s operation [61].

An efficient algorithm for solving all problems in this class is not known. However, it
is possible to check the validity of a solution in polynomial time for all of them, placing P
within NP . An open question remains about whether NP is also contained within P [16].
The general belief is that P ̸= NP . Figure 14 illustrates the current division between the
P and NP classes.

Figure 14: Classes P and NP .

3.1.3 Class NP-Complete

NP-complete problems represent the most difficult class within NP . The boolean
satisfiability problem (SAT) was the first to be categorized as NP-complete in 1971 by
Cook [24]. SAT is a decision problem involving boolean expressions composed of logic
operators and variables, and the objective is to determine if an assignment of values exists
to the variables that make the entire expression true. This problem is noteworthy because
any NP problem can be transformed into a SAT problem with polynomial reduction.
Therefore, if an NP-complete problem can be reduced to a P problem in polynomial time,
it implies P = NP .

A problem A is polynomially reducible to problem B if, for any instance of A, we
can construct an equivalent instance of B in polynomial time such that A has a solution if
and only if the equivalent instance of B also has a solution [43]. A problem is proved to be

62

NP-complete using a reduction, starting from a problem already known as NP-complete.
If A belongs to NP-complete, then B also belongs to NP-complete. Figure 15 shows how
it is believed that the P , NP , and NP-complete classes are currently divided.

Figure 15: Classes P , NP , and NP-Complete.

3.1.4 Class NP-Hard

The class NP-hard includes any kind of problem (e.g., decision and optimization
problems). They are as hard as the hardest NP problems. An NP-hard problem does not
have to be in NP since this class covers only decision problems. Moreover, an NP-hard
that is inNP is anNP-complete problem. It can also be said that anNP-hard is generally
an optimization problem whose decision problem corresponds to an NP-complete problem
[43]. Figure 16 shows how it is believed that the P, NP , NP-Complete, and NP-Hard
classes are currently divided, having P ≠ NP . If one day someone proves that P = NP ,
the division of classes would look like in Figure 17.

Figure 16: Classes if P ≠ NP . Figure 17: Classes if P ≠ NP .

The three problems studied in this work are NP-hard: process planning, layout,
and scheduling [49, 78, 104]. However, small sub-problems of our main problem can

63

belong to class P. This chapter will deepen the complexity analysis for some scheduling
sub-problems.

3.2 Scheduling problem complexity with reconfigurable

machines

To the best of our knowledge, there are no studies on the complexity involving
reconfigurable machines and layouts. This motivated us to investigate the behavior
of the complexity for sub-problems of our main problem. Using multiple machines
and configurations, each of our problems (process planning, layout configuration, and
scheduling) is known to be NP-hard [49, 78, 104]. However, what remains uncertain is
the classification of much smaller sub-problems.

The goal is to find some boundaries where a sub-problem is Polynomial and at what
point, by adding components or constraints, it becomes NP-hard. Our exploration focuses
explicitly on machine reconfiguration, which represents a simplified version of the broader
problem defined in Chapter 2 and will be detailed in Section 3.2.1.

Numerous scheduling problems without machine reconfiguration have been proven
to be NP-hard. Notably, this is true for 1||

∑
Ti [87], P ||Cmax [44] (even in the case of 2

machines [89]), P ||
∑

wiCi [15], or 1|ri, pmtn|
∑

wiCi [84]. Considering these problems
as special cases of scheduling problems where machines have only one configuration, it
seems unlikely that polynomial algorithms exist to solve versions of these problems when
machine reconfiguration environments are considered.

In contrast, the problem 1||
∑

wiCi is polynomially solvable using the Smith’s rule
[128]: jobs are scheduled as soon as possible by sequencing them in non-decreasing order
of the pi

wi
values. Similarly, 1||Cmax can be polynomially solved by scheduling jobs as soon

as possible in any order. Polynomial algorithms also exist for solving P ||
∑

Ci (see, for
example, [15, 62]) or 1|ri, ptmtn|

∑
Ci (see [8]). The interesting question arises: can we still

achieve polynomial solutions for these problems when considering machine reconfiguration
environments? In this work, we do not provide a complete answer to this question, but we
aim to make progress on the subject.

3.2.1 Problem description

We focus on the single-machine scheduling problem with machine reconfiguration,
aiming to minimize the total weighted completion time or the makespan. In this problem,
a set J = {1, . . . , n} comprising n jobs needs to be scheduled on a machine that can

64

be configured in one of the m configurations from the set χ = {1, . . . ,m}. Each job is
considered available from time 0 and is associated with a weight wi.

In configuration k ∈ χ, the processing time of a job i ∈ J is denoted as pik. A
transition from configuration j to configuration k, i.e., a reconfiguration from j to k, is
represented as rjk. The duration of this reconfiguration is noted as ∆jk.

At the beginning and end of a valid schedule, the machine is assumed to be in a
resting configuration 0, where no job can be processed. We establish that ∀i ∈ J, pi0 =∞.
The durations ∆0k and ∆k0 can be set to zero or any other relevant value from an industrial
perspective.

A schedule can be represented by a sequence σ comprising jobs and reconfigurations.
It is important to note that this sequence must start with a reconfiguration r0k where
k ∈ χ, must end with a reconfiguration rl0 where l ∈ χ, and must include each job of J
exactly once.

For each schedule/sequence σ, we can associate its cost, representing either its total
weighted completion time f(σ) =

∑n
i=1wiCi or its makespan g(σ) = maxni=1Ci, where Ci

is the completion time of job i in the schedule. Given that all jobs are available from time
0, the jobs are scheduled as soon as possible in the order of the sequence, as only active
schedules are optimal [8]. We start the process at time t = 0, with configuration c = 0,
and a cost f = 0. We iteratively consider each element σ(j) in the sequence order. If σ(j)
is a reconfiguration rkl, we increment t by ∆kl, and replace configuration k by l. If σ(j) is
a job i, we increase t by pic, set Ci = t as the completion time of i, and increase f by wiCi.
If we are analyzing the makespan, g is the completion time of the last job in the sequence.

The problem is to find the sequence σ of jobs and reconfigurations minimizing either
f(σ) =

∑n
i=1 wiCi or g(σ) = maxni=1Ci.

It is worth noting, without loss of generality, that ∀x, y, z ∈ χ, we consider ∆xy +

∆yz ≥ ∆xz. In the other case (if ∆xy + ∆yz < ∆xz), it is always better to use the two
consecutive transitions rxy and ryz to move from configuration x to configuration z, rather
than the reconfiguration rxz alone. Consequently, we can formulate an equivalent problem
in which the reconfiguration rxz implies the combination of the two reconfigurations rxy

and ryz.

In the remainder of this chapter, when we refer to sequences, we specifically mean a
sequence of jobs and reconfigurations as defined earlier (i.e., starting with a reconfiguration
r0k where k ∈ χ, ending with a reconfiguration rl0 where l ∈ χ, and including each job in
J exactly once).

Consider σ as a given sequence. When referring to a subsequence of σ starting at

65

position k and ending at position j, we employ the notation σ[k; j]. It is important to note
that if the first element of a subsequence is a job, we keep in memory the configuration
in which this job and the subsequent jobs are processed until the next reconfiguration is
processed.

In the following, we frequently use the notation σ to refer either to a sequence or
a subsequence. The number of elements in a sequence or subsequence σ is noted as |σ|.
Note that for a sequence σ, we observe |σ| ≥ n + 2 since it encompasses at least one
reconfiguration r0k, one reconfiguration rk0, and the n jobs.

When referring to the cost f(σ) of a specific subsequence σ, this cost is calculated
by scheduling jobs of the subsequence from time 0. The notation f(σ, t) is employed when
discussing the cost of the sequence computed by scheduling jobs from time t.

Finally, we use the notation σ ·δ to denote the subsequence obtained by concatenating
subsequences σ and δ.

3.2.2 Properties

After describing all the necessary notations, some properties can be demonstrated
before starting to analyze the complexity of specific problems.

Proposition 1. The set of sequences in which at least one job is always sequenced between
two reconfigurations is dominant.

Proof. Suppose an optimal sequence σ contains a subsequence rxy ·ryz, i.e., two consecutive
reconfigurations without a job sequenced between them. Recall that ∆xy +∆yz ≥ ∆xz.
Consequently, if we construct the sequence σ′ by replacing the subsequence rxy · ryz with
rxz, we obtain f(σ′) ≤ f(σ) and g(σ′) ≤ g(σ). This is because all jobs sequenced after
reconfiguration rxz will start at the same time or earlier in the sequence σ′ compared to
the sequence σ.

Consequently, in the remainder of the chapter, we will restrain the research of an
optimal solution to the sequences where there is always at least one job between two
reconfigurations.

In this case, observe that we have |σ| ≤ 2 + n + (n − 1) = 2n + 1 since there are
at most n − 1 reconfigurations between jobs in an optimal solution (one between each
job of the sequence). Consequently, the costs f(σ) and g(σ) of such a sequence σ can be
evaluated in O(n) time.

Proposition 2. Let σ be a subsequence and consider two times t and t′. We have
f(σ, t′) = f(σ, t) + (t′ − t)

∑
i∈σ wi

66

Proof. The completion Ci of each job i ∈ σ when the jobs are scheduled from time t is
changed by (t′ − t) (this value being negative or positive) when the jobs are scheduled
from time t′. Consequently, the associated cost with i increases by (t′ − t)wi.

Proposition 3. Every subsequence τ within an optimal sequence σ, which minimizes the
total weighted completion time and consists exclusively of jobs (with no reconfiguration
inside the subsequence), follows the Smith’s rule.[128].

Proof. Each job within a subsequence τ is scheduled in the same configuration k (as there
is no reconfiguration between jobs). Suppose there exists a subsequence i · j in τ with
pik
wi

>
pjk
wj

, meaning two consecutive jobs in the subsequence τ where Smith’s rule is not
satisfied. In such a case, we can construct a new sequence σ′ from σ in which jobs i and j

are interchanged. This leads to f(σ′) < f(σ), contradicting the optimality of σ.

Thus, an optimal solution for the total weighted completion time criterion is neces-
sarily a sequence of subsequences of jobs (scheduled in the same configuration) following
the Smith’s rule, with reconfigurations occurring between these subsequences. It is worth
noting that the Smith’s rule can be applied between all jobs scheduled in the same configu-
ration, even if these jobs are part of two different subsequences, as shown in the following
proposition.

Proposition 4. Let σ be an optimal sequence minimizing the total weighted completion
time, represented as σ = A · τ1 · B · τ2 · C, where A, B, and C are subsequences of jobs
and reconfigurations, and τ1 and τ2 are two subsequences of jobs scheduled in the same
configuration k. In such a case, τ1 · τ2 must follow the Smith’s rule.

Proof. Note that both τ1 and τ2 follow the Smith’s rule. In another case, it contradicts
the fact that σ is optimal because we can build a better solution by simply resequencing
τ1 or τ2 according to the Smith’s rule.

Let i be the last job of subsequence τ1 and let j be the first job of subsequence
τ2. Suppose that τ1 · τ2 does not follow the Smith’s rule. Therefore, we have pik

wi
>

pjk
wj

.
However, since both τ1 and τ2 follow the Smith’s rule, it implies that i has the highest
value of pxk

wx
in τ1, while j has the smallest value of pxk

wx
in τ2.

Let PB be the sum of all processing times and reconfiguration durations of jobs in
subsequence B, and let WB be the sum of all weights of jobs belonging to subsequence B.
Suppose PB

WB
>

pjk
wj

. We can construct a new sequence σ′ by removing job j from sequence
τ2 and inserting it at the end of sequence τ1, just before subsequence B (see Figure 18).
During this process, the cost of j decreases by PBwj , while the cost of sequence B increases
by pjkWB (see Proposition 2). The cost of any other job in σ does not change since their

67

completion time in σ′ is the same as in σ. Thus, f(σ′) = f(σ)− PBwj + pjkWB, and then
f(σ′)− f(σ) < 0 (since PBwj > pjkWB), contradicting the optimality of sequence σ.

Figure 18: Changing job position when PB

WB
>

pjk
wj

.

Therefore, we can assume from now that PB

WB
≤ pjk

wj
< pik

wi
. We construct sequence

σ′′ from σ by removing job i from τ1 and inserting it at the beginning of τ2, just after
subsequence B (see Figure 19). During this insertion, the cost of subsequence B decreases
by pikWB, while the cost of job i increases by PBwi. The cost of any other job in σ remains
unchanged since their completion times in σ′′ are the same as in σ. Consequently, f(σ′′) =

f(σ)− pikWB + PBwi, leading to f(σ′′)− f(σ) < 0 (as pikWB > PBwi), contradicting the
optimality of σ.

Figure 19: Changing job position when PB

WB
≤ pjk

wj
< pik

wi
.

We can that conclude that τ1 · τ2 must follow the Smith’s rule.

In the following, we designate a specific subsequence σ as optimal if there is no other
subsequence with a lower associated cost (either the total weighted completion time or
the makespan), with exactly the same jobs, and such that the initial job of the sequence
starts in the same configuration.

Proposition 5. A sequence σ is considered optimal if and only if every subsequence
σ[k; |σ|], where k ∈ {1, . . . , |σ|}, is optimal.

68

Proof. Assuming that σ is an optimal sequence, if there exists k ∈ {1, . . . , |σ|} such that
σ[k; |σ|] is not optimal, it implies the existence of a subsequence δ with the same jobs as
σ[k; |σ|], starting in the same configuration, and having f(δ) < f(σ[k; |σ|]) (respectively
g(δ) < g(σ[k; |σ|])). Consequently, the sequence σ[1; k−1] ·δ would have f(σ[1; k−1] ·δ) <
f(σ) (respectively g(σ[1; k − 1] · δ) < g(σ)), contradicting the optimality of σ.

3.2.3 The special case of null reconfiguration duration times

In this subsection, we consider a scheduling problem where, for all j, k ∈ χ, ∆jk = 0

to minimize a regular criterion [8]. A regular criterion is an increasing function of the
completion times of the jobs. Examples of such criteria include Cmax and

∑
wiCi. The

following result holds:

Proposition 6. In scheduling problems with machine reconfigurations aiming to minimize
a regular criterion, when the reconfiguration duration times are null, it is always optimal
to schedule each job in a configuration where its processing time is the shortest.

Proof. Suppose we have an optimal schedule for such a problem and a job i is not scheduled
in a configuration with the shortest processing time. We can create a new schedule from
the original one by changing the configuration of job i to one with the shortest processing
time. This modification can result in job i and all subsequent jobs potentially completed
earlier, with no delaying of any other job. Therefore, the revised schedule is optimal, as
the completion times of the jobs can only decrease.

After determining the configuration in which each job has its shortest processing
time, a process achievable in O(mn), we can apply an algorithm designed for solving
the problem without reconfiguration. Since polynomial solutions exist for 1||Cmax and
1||

∑
wiCi, the same is applied to the version of the problem with machine reconfiguration

and null reconfiguration duration times. Note that the result also holds for the versions of
the P ||

∑
Ci and 1|ri, pmtn|

∑
Ci with machine reconfiguration and null reconfiguration

duration times.

3.2.4 Solving the total weighted completion time problem

In this section, we present an algorithm to solve the total weighted completion time
problem. Algorithm 1 systematically explores all possible assignments of jobs in J to
configurations in χ. For it, we build v ∈ χn, where v[i] represents the configuration in
which job i ∈ J has to be processed. The algorithm constructs an array τ consisting
of m lists of jobs. The list τ [k] contains the list of jobs i that need to be processed in

69

configuration k, i.e., {i | v[i] = k}, sorted in non-increasing order of pik
wi

, corresponding to
the reverse order of the Smith’s rule. This sorting process can be done in O(n lnn) time.
The notation |τ [k]| denotes the number of jobs in list τ [k]. The array τ is then passed to
the solvingWithFixedConfiguration subroutine, detailed in Algorithm 2, which is
designed to solve the problem when the configuration of each job is fixed.

Algorithm 1 Solving the single-machine total weighted completion scheduling problem
with machine reconfigurations

1: Data: J = {1, . . . , n}, the set of jobs
2: Data: ∀i ∈ J, wi, the weights of jobs
3: Data: χ = {1, . . . ,m}, the set configurations
4: Data: ∀i ∈ J,∀k ∈ χ, pik, the duration of jobs in each configuration
5: Data: ∀k, l ∈ χ,∆kl, the duration of each possible reconfiguration
6: σ ← ϵ, f ←∞
7: //enumerate all possible assignments of jobs with configurations
8: for all v ∈ χn do
9: //preparation of the data associated with v

10: for k ← 1 to m do
11: build the list τ [k] of the jobs which have to be processed in configuration k

sorted in non-increasing order of pik
wi

12: (σ′, f ′)← solvingWithFixedConfiguration(τ)
13: if f ′ < f then //a better solution has been found
14: σ ← σ′, f ← f ′

15: return (σ, f)

Algorithm 2 is a dynamic programming algorithm that iteratively generates the set
of non-dominated subsequences, verifying Propositions 1, 3, 4, and 5. The subsequences
constructed all along the algorithm represent the end of the sequences obtained by the
algorithm and always add a job or a reconfiguration at the beginning of the sequence.
During the algorithm, when considering a subsequence σ in a current configuration c,
the insertion of a new job at the beginning of the sequence can occur by processing it
in the same configuration c or by processing it in another configuration k ̸= c, followed
immediately by a reconfiguration rkc.

A state of the dynamic programming algorithm is defined by a tuple s = (c, u, σ, f, w)

representing the sequences, where:

• c is the current configuration of the machine,

• u(s) is an array of m indices, denoted as u[k], where k ∈ χ, indicating how many
jobs have already been sequenced in list τ [k],

• σ is one optimal subsequence associated with s, i.e., the cost of an optimal subsequence

70

scheduling all the u[k] first jobs of each list τ [k],

• f is the cost of such an optimal subsequence,

• w =
∑

i∈J∩σ wi is the sum of the weights of already sequenced jobs in σ.

The algorithm begins with the set of states S0 = {(k, u, σ, f, w) | k ∈ χ} where the
current configuration of the machine is k, ∀j ∈ χ, u[j] = 0 (no job has been sequenced),
σ = rk0 (the last operation of the sequence is a reconfiguration from k to 0), w = 0 (no
job has been sequenced), and f = 0 (the cost is zero).

71

Algorithm 2 solvingWithFixedConfiguration: solving the when the configurations
of each job has been fixed
1: Data: τ : an array of m lists where τ [k] is the list of the jobs which have to be

processed in configuration k sorted in non-increasing order of pik
wi

2: //Initialisation of the first states
3: S0 ← ∅
4: for k ← 1 to m do
5: u[k]← 0

6: for k ← 1 to m do
7: u[k]← 0
8: insert (k, u, rk0, 0, 0) in S0

9: for i← 1 to n do
10: // Computing the set of states Si from set Si−1

11: Si ← ∅
12: for all s = (c, u, σ, f, w) ∈ Si−1 do
13: for k ← 1 m do
14: //We try to process a new job in configuration k
15: if u[k] < |τ [k]| then
16: //at least one job to process in configuration k
17: j ← τ [k][u[k] + 1] //the next job to sequence
18: u′ ← u, u′[k]← u[k] + 1
19: if k = c then //process j in the same configuration
20: σ′ ← j · σ
21: f ′ ← f + pjk(wj + w)
22: else//process j in another configuration
23: σ′ ← j · rkc · σ // insert a reconfiguration before σ
24: f ′ ← f + pjkwj + (pjk +∆kc)w

25: w′ ← w + wj

26: s′ ← (k, u′, σ′, f ′, w′)
27: search another state s′′ = (k, u′, σ′′, f ′′, w′′) in Si

28: if s′′ = NIL or f ′ < f ′′ then
29: if s′′ ̸= NIL then
30: remove s′′ from Si // s′′ is dominated by s′

31: insert s′ in Si

32: σ ← ϵ, f ←∞
33: for all s = (k, u, σ, f, w) ∈ Sn do
34: σ′ ← r0k · σ
35: f ′ ← f +∆0kw
36: if f ′ < f then
37: σ ← σ′, f ← f ′ //a better solution is found
38: return (σ, f)

At each step i of the main algorithm loop, we generate the set Si of states, where i

jobs in J have been sequenced. These states are derived from the set Si−1, which contains

72

states generated in the previous step.

Each state s = (c, u, σ, f, w) ∈ Si−1 is considered. For each k ∈ χ, we examine the
first not-sequenced job in τ [k], denoted as j = τ [k][u[k] + 1]. This job is then scheduled
at the beginning of σ, creating a new state s′ = (k, u′, σ′, f ′, w′). Note that this is only
possible if there are remaining jobs in list τ [k], i.e. if u[k] < |τ [k]|. Two scenarios can
happen:

1. If c = k, then the first job j in the new sequence σ′ = j · σ is processed in the same
configuration as the first job in σ.

2. If c ≠ k, a reconfiguration from k to c is inserted between the first job j of the new
sequence and σ, resulting in σ′ = j · rkc · σ.

In all cases, the cost of σ′ can be then computed from f in O(1) times by using
Proposition 2. In case 1, the cost of jobs in σ is increasing from pjk(wj + w) due to the
insertion of j, while in case 2 the cost of these jobs is increasing from pjkwj + (pjk +∆kc)w

because of the reconfiguration duration time.

Note that each built subsequence verifies Propositions 3 and 4 since the jobs are
considered in the order of the lists in τ . The sequences kept in each state Si at the end of
step i are only the optimal ones to verify Proposition 5. To achieve this, the dominated
sequences are discarded. Thus, if two states s′ = (k, u, σ′, f ′, w) and s′′ = (k, u, σ′, f ′, w)

are built during the same step i, i.e., two states starting in the same configuration k and
having exactly the same already sequenced jobs, only the best one is kept.

After scheduling all n jobs, the algorithm adds the reconfiguration r0k at the beginning
of each sequence σ within every state s = (k, u, σ, f, w) ∈ Sn. Subsequently, the associated
cost is updated accordingly. At the end, the algorithm identifies the best sequence among
the generated m sequences and returns it with its corresponding cost.

During the algorithm, since each value u[k] with k ∈ χ in a state s = (c, u, σ, f, w) can
take a value in {0, . . . , |τ [k]|} and since |τ [k]| ≤ n, the cardinal of Si is upper-bounded by
m× nm. States of Si can be recorded in an AVL-tree. Thus, adding or researching a state
runs in O(m ln(n)+ln(m)). Finally, Algorithm 2 runs in O(m×nm+1× (m ln(n)+ln(m))).
It leads to the following result:

Proposition 7. If a constant x bounds the number of configurations m, and the configu-
ration for each job is fixed, then the problem with fixed configurations becomes polynomial
with a complexity of O(nx+1 ln(n)).

Since there are O(mn) possible assignments v enumerated during Algorithm 1, its
complexity is O(mn+1 × nm+1 × (m ln(n) + ln(m)))). Unfortunately, it is not polynomial

73

in n, even if m is considered fixed.

3.2.5 Solving the makespan problem

When analyzing the same problem with a different objective function, specifically
the minimization of makespan, other properties are found:

Proposition 8. The set of sequences in which there is no reconfiguration between jobs
scheduling in the same configuration is dominant.

Proof. Consider an optimal sequence σ minimizing the makespan. Suppose σ can be
expressed as σ = A · τ1 ·B · τ2 ·C, where A, B, and C are subsequences of jobs and reconfig-
urations. Where τ1 and τ2 are subsequences of jobs scheduled in the same configuration k,
and where A, B, and C begin and end with reconfigurations. We can construct a sequence
σ′ = A · τ1 · τ2 ·B · C by grouping all jobs processed in configuration k together without
increasing the makespan of the entire sequence. Since B ends with a reconfiguration rxk and
C begins with a reconfiguration rky, the subsequence rxk · ryk can be replaced by the single
reconfiguration rxy without increasing the makespan, given that ∆xy ≤ ∆xk +∆ky.

Proposition 9. Consider a subset χ′ ⊂ χ representing the configurations used by an
optimal sequence σ. Then, each job j ∈ J is processed in a configuration belonging to χ′

where its processing time is the shortest.

Proof. Consider an optimal sequence σ that minimizes the makespan, and let χ′ be the
subset of configurations used by this solution. Suppose there exists a job i processed in
configuration x ∈ χ′ in σ, while there exists y ∈ χ′ such that piy < pix. In this case, we can
rearrange job i within a subsequence of σ where job i is processed in configuration y. The
resulting sequence σ′ has a makespan g(σ′) < g(σ), contradicting the optimality of σ.

Using the above properties, the problem can be solved as follows:

• Listing all possible partial permutations c of χ, denoted as
∑m

k=1A
k
m =

∑m
k=1

m!
(m−k)!

,
where each configuration is considered at most once.

• For every partial permutation c, assign the configuration from c to each job where
it has the shortest processing time. This process can be executed in O(nm) time.
Subsequently, sequence the jobs following the order defined by c.

Note that if m is considered upper-bounded by a constant, the number of partial
enumerations is a constant. Hence, the subsequent conclusion is valid:

Proposition 10. When the number of machine configurations, denoted as m, is considered
upper-bounded by a constant x, the problem is polynomial in O(n).

74

3.2.6 Complexity of the general one-machine problem

The single-machine scheduling problem with machine reconfiguration shares similari-
ties with the scheduling problem involving families of jobs with setup times [91].

This problem categorizes jobs into m families denoted by χ = {1, . . . ,m}. During the
processing of jobs on a machine, a setup time slk is required whenever there is a transition
from processing a job in family l to a job in family k. The problem is represented as
1|slk, pkj|

∑
k,j wiCi in [91], where pkj represents the processing time of the jth job in family

k.

The problem of scheduling families of jobs with setup times can be seen as a
particular case of the one-machine scheduling problem with machine reconfiguration, where
the configuration in which each job will be processed is predetermined.

When the number m of families is considered to be lower than a given constant, the
problem can be solved in polynomial time [105]. However, for an arbitrary number of
families, Rinnooy Kan has proven that the 1|slk, pkj|

∑
k,j wiCi problem is NP-hard [122],

even when each family contains only one job. His proof holds even in cases where all jobs
have the same processing time [91] or if all weights are equal to 1. Thus, 1|slk, p|

∑
kj Ckj

is also NP-hard. It leads to the following result:

Proposition 11. The single-machine scheduling problem with machine reconfiguration
to minimize the total (weighted) completion time is NP-hard. This holds even in cases
where all processing times are equal.

Proof. Given an instance of the problem 1|slk, p|
∑

kj Ckj, we can build an instance of
the single-machine scheduling problem with machine reconfiguration aiming to minimize
the total completion time. Each family of jobs in 1|slk, p|

∑
kj Ckj is associated with a

configuration of the machine. The jth job in family k has a processing time pkj = p

in configuration k and an infinite processing time in the other configurations. This
reduction is polynomial. Consequently, the single-machine scheduling problem with
machine reconfiguration to minimize the total (weighted) completion time is NP-hard,
even when all processing times are equal.

The 1|slk, p|Cmax problem is also NP-hard, even when each family contains only
one job [91]. Similarly, we can demonstrate that the problem to minimize Cmax is also
NP-hard:

Proposition 12. The single-machine scheduling problem with machine reconfiguration to
minimize the makespan is NP-hard. This holds even in cases where all processing times

75

are equal.

Proof. Given an instance of the problem 1|slk, p|Cmax, we can build an instance of the
single-machine scheduling problem with machine reconfiguration aiming to minimize the
makespan. Similar to the previous proposition, each family of jobs in 1|slk, p|Cmax is
associated with a configuration of the machine. The jth job in family k has a processing
time pkj = p in configuration k and an infinite processing time in the other configurations.
This reduction is polynomial. Therefore, the single-machine scheduling problem with
machine reconfiguration to minimize the makespan is NP-hard, even when all processing
times are equal.

3.2.7 Parallel machines

The parallel machines scheduling problem with machine reconfiguration to minimize
the makespan is NP-hard. This conclusion stems from the fact that the P2||Cmax problem,
which is a sub-problem of the considered one with only two machines and one configuration,
is NP-hard [44]. Hence, even with a constant m, the problem remains NP-hard.

For the problem of minimizing the sum of weighted completion time, it remains
NP-hard irrespective of whether m is constant or not. This is due to the fact that the
sub-problem with only one configuration, P2||

∑
wiCi [17], is NP-hard. The complexity

of the problem, where the number of configurations is constant and the goal is to minimize
the sum of completion time, is still an open question. If we can establish that the problem
with only one machine and a fixed configuration is NP-hard, this directly implies the
same complexity for parallel machines. Conversely, if it can be proven to be polynomial
for one machine, further analysis would be needed for parallel machines.

3.3 Conclusions of the chapter

The scheduling, process planning, and layout problems in Reconfigurable Manufactur-
ing Systems (RMS) are known to be NP-hard. However, to the authors’ best knowledge,
existing studies have not thoroughly analyzed the complexity of sub-problems considering
machine and system reconfiguration. To address this gap, our analysis focuses on smaller
sub-problems where machine reconfiguration is possible. We primarily investigate the
scheduling problem for a single reconfigurable machine, aiming to minimize the makespan
or the sum of completion times. Additionally, we extend our analysis to problems involving
parallel machines.

76

The decision to exclusively analyze these objective functions is driven by the potential
to draw conclusions about other problems through reductions, particularly if they are
NP-hard. Figure 20 shows the reduction graph of scheduling problems according to the
objective function. They are divided into the following categories [16]:

• Cmax : maximum completion time;

• Lmax : maximum lateness (Ci − di, where di is the due date);

•
∑

Ci : total completion time;

•
∑

wiCi : total weighted completion time;

•
∑

Ti : total tardiness (max{0, Ci − di});

•
∑

wiTi : total weighted tardiness;

•
∑

Ui : total unit penalty (0 if Ci ≤ di, otherwise equal to 1);

•
∑

wiUi : total weighted unit penalty;

Figure 20: Reductions between objective functions [16].

Table 17 summarizes our findings. The first row indicates the objective function
under consideration. The second column denotes whether the number of configurations is
treated as constant. The third column specifies whether it is a single-machine problem
or a parallel problem (limited to two machines, the smallest possible number). The last
column indicates the complexity.

77

Objective function m constant Machine type Complexity
Cmax yes one-machine Polynomial∑

Ci yes one-machine Open∑
wiCi yes one-machine Open

Cmax no one-machine NP-hard∑
Ci no one-machine NP-hard∑
wiCi no one-machine NP-hard

Cmax yes P2 NP-hard∑
Ci yes P2 Open∑
wiCi yes P2 NP-hard

Cmax no P2 NP-hard∑
Ci no P2 NP-hard∑
wiCi no P2 NP-hard

Table 17: Main results found in this chapter.

In this chapter, we introduced an algorithm to address the problem of a single
machine minimizing the sum of weighted completion times. However, it is important to
note that the algorithm currently operates at an exponential time complexity. This does
not conclusively indicate that the problem is non-polynomial; it simply means that we have
not demonstrated a polynomial solution or proven the problem to be NP-hard. Therefore,
the question of the problem’s complexity remains open. If it is proven to be NP-hard, it
would directly imply that the open problem for parallel machines is also NP-hard.

78

Chapter 4

Solving methods

Contents
4.1 Exact Methods . 79

4.1.1 Integer linear programming . 80

4.1.2 Constraint programming . 80

4.1.3 Constraint programming with a defined search strategy 82

4.1.4 Conclusions . 85

4.2 Metaheuristics . 85

4.2.1 Genetic algorithm . 86

4.2.2 Genetic algorithm with local search 95

4.2.3 Conclusions . 99

4.3 Conclusions of the chapter . 100

In Chapter 3, we studied the complexity of a simplified problem. This chapter returns
to the general problem outlined in Chapter 2 and presents the solving methods utilized
and applied in this work. The first part is dedicated to three exact methods: integer linear
programming, constraint programming, and constraint programming with a defined search
strategy. After that, two metaheuristics are presented: a genetic algorithm and a genetic
algorithm with local search. Finally, a conclusion summarizes the main findings of this
chapter.

4.1 Exact Methods

One way to get an optimal solution is to go through all the possible combinations of
the variable sets, which is often not feasible in practice because the time required for this
is too long. Therefore, some techniques can reduce the search space and, consequently, the
search time. This section presents the exact methods used to solve the studied problem
without doing an exhaustive search.

79

The methods described are: Integer Linear Programming (ILP), Constraint Pro-
gramming (CP), and Constraint Programming with a defined search strategy (CPS). This
section mainly explains the strategy used in CPS since ILP and CP will be solved by the
standard IBM ILOG CPLEX Optimizer and IBM ILOG CP Optimizer software tools,
respectively. On the other hand, CPS will use the same software as CP but we define
the required search strategy. In the "Numerical results" chapter, we will compare the
execution times using these different methods over a set of instances.

4.1.1 Integer linear programming

Integer linear programming (ILP) stands as one of the classical methods for mathe-
matically modeling and solving optimization problems, where all variables belong to the
set of integers, and all equations (objective function and constraints) are linear [25].

As presented in Chapter 2, our model is inherently non-linear due to using the
max function in constraint 2.6. However, it can be easily linearized. For a constraint
X = max(x1, x2), we introduce a binary variable y, defined as 1 if x1 ≥ x2 and 0 if x1 < x2.
Additionally, we introduce a constant M that is greater than both x1 and x2. The following
constraints enforce the definition of y:

• x1 − x2 ≤My

• x2 − x1 ≤M(1− y)

Consequently, the following constraints enforce X = max(x1, x2):

• X ≥ x1

• X ≥ x2

• X ≤ x1 +M(1− y)

• X ≤ x2 +My

After the linearization, IBM ILOG CPLEX Optimizer standard tool was used to
solve the ILP, which applies different algorithms based mainly on the simplex algorithm
[66].

4.1.2 Constraint programming

To improve the execution time required to obtain the best solution, it was decided
to explore other exact method techniques, in this case, constraint programming.

Constraint Programming (CP) is an approach employed to address combinatorial
search problems by integrating techniques from artificial intelligence, operations research,

80

algorithms, and graph theory. The main components and principles associated with
Constraint Programming are [123]:

• Variables: a set of decision variables, each with values from a predefined domain.

• Domains: the range of potential values a variable may adopt. Variables receive
values from their respective domains during the problem-solving process.

• Constraints: relationships or limitations between variables, expressing conditions
that must be met for a solution to be considered valid.

• Objective Function (Optional): in optimization scenarios, an objective function
minimizes or maximizes some objective. Constraint Programming encompasses
both constraint satisfaction problems (seeking any valid solution) and optimization
problems (identifying the optimal solution based on specific criteria).

• Search: CP typically involves a systematic search process exploring the solution
space. The algorithm seeks to assess various assignments of values to variables,
guided by the constraints, until a valid or optimal solution is attained.

• Propagation: a crucial step that utilizes constraints to enforce local consistency.
This process involves removing inconsistencies within the search space, thereby
eliminating values from variable domains that cannot contribute to a valid solution.
This pruning increases search efficiency.

• Solver: specialized solvers are commonly employed to solve Constraint Programming
problems. These solvers implement diverse algorithms for constraint propagation,
search, and optimization.

Therefore, CP involves exploring the domains of variables, where constraints are
utilized to establish connections between variables and identify solutions that meet all
specified constraints. Efficiently narrowing down potential variable values is crucial for the
effectiveness of CP. While CP is good at finding feasible solutions, it can face challenges
when searching for optimal solutions, especially when refining or confirming them, which
may take considerable time [136].

One of the central CP characteristics is flexibility in the constraints modeling that can
be linear, nonlinear, or use logical operators. That is a significant advantage considering
that certain combinatorial optimization problems are not easily linearized and solved with
traditional mathematical programming methods. A tool like ILOG CP Optimizer provides
a large set of arithmetic and logical constraints and a robust optimizer that brings all the
benefits of a model-and-run development process to these problems [65].

The algorithms used in CPLEX and CP Optimizer are different, so experimentally

81

comparing them is interesting to test which is better adapted to our problem.

4.1.3 Constraint programming with a defined search strategy

The constraint programming method with a defined search strategy CPS uses the
same model as in CP. The difference lies in the used search strategy. In CP, we use the
IBM ILOG CP Optimizer standard tool, and in CPS, we specify how the search should be
done and in what order. This method was applied only for the integrated model (PP + L
+S).

To get a result with CPS, it is necessary to fix six decision variables:

• µij : the machine processing operation Oij;

• χij : the configuration of the machine used to process operation Oij;

• λij : the layout used to process operation Oij;

• σij : the position of operation Oij in the process sequence (in terms of starting
time) among the operations of Ji, σij ∈ {1, ..., ni};

• ϕij : the total position of operation Oij in the process sequence (in terms of starting
time) among all the operations, ϕij ∈ {1, ...,

∑n
i=0 ni};

• Sij : the starting time of operation Oij.

When these decision variables are fixed with CPS we can arrive at a result. For this,
the strategy developed was the following:

1. We simultaneously fix the machines and configurations (µij and χij) used for each
operation, starting with the shortest processing time to the longest.

2. Then, we fix the layout (λij) of each job, starting with their initial layout, which is
always the first index (l = 1), and then in the increasing order of the indices.

3. Next, we fix each operation’s position (σij) concerning the same job, starting with
the smallest possible position for each.

4. After, we fix the positions concerning all operations (ϕij), respecting the previous
step and fixing first the operations with the lowest due date.

5. Finally, we fix the start time to the minimum possible time, respecting the total
position.

The following small example illustrates how it works. Consider two jobs with two
operations each, two machines with two configurations each, and two layouts. Table 18

82

shows the processing times of the operations on each machine/configuration, and Table 19
shows the due date of J1 and J2.

M1 M2

M1[1] M1[2] M2[1] M2[2]
J1 O11 10 ∞ 7 5

O12 ∞ 5 ∞ 6
J2 O21 ∞ ∞ ∞ 12

O22 ∞ ∞ ∞ ∞

Table 18: Operation time (time unit).

Due date
J1 43
J2 24

Table 19: Job’s due date.

First, the machine/configuration of each operation (O11, O12, O21, and O22) are fixed.
At each decision point of the decision tree, two options are possible: to fix the variable
to a specific machine/configuration or to reject it (excluding the machine/configuration
from the set of possibilities). Figure 21 shows a decision point where these two choices
are illustrated, and where the branching continues for both. In the machine/configuration
case, the value taken is the shortest processing time in the set of possibilities. For example,
if we analyze O11, the initial set of possibilities contains M1[1], M2[1], and M2[2], with the
shortest processing time in M2[2]. The search order choice is made by trying to find the
most promising possibilities from the beginning. Of course, a machine/configuration with
a shorter processing time has more chances to be chosen in the final result. In addition,
the selection of the machine and the configuration are made together because this choice
is interconnected according to the processing time.

Figure 21: Decision point representation.

83

Then, the layout of each job (J1 and J2) is fixed. At this decision point, we fix the
variable to a specific value or we reject it (excluding the value from the set of possibilities).
The first tried value is the job’s initial layout (l = 1). When the initial layout is not in
the set of possibilities, we take the one with the lowest index. For our example, we set
λ11 = 1; otherwise, λ11 = 2. Choosing the initial layout first seems to be the best strategy
because the layout reconfiguration incurs high costs that are not interesting in most cases.
Then, it is probably better to continue on the same layout.

Next, the operation position among the operations of each job is fixed for each
operation (O11, O12, O21, and O22 in the example). At the decision point, we fix the
variable to a specific value or we reject it (excluding the value from the set of possibilities).
We chose the position with the smallest index. For example, if no precedence constraint is
associated with job 1, O11 can be sequenced in position 1 or 2 (even for O12). Then, we
will first fix σ11 = 1 and then σ11 = 2. This time, the choice is arbitrary because we have
no element to decide the most suitable or promising order.

Then, the positions of each operation, among all operations, are fixed. We sequence
first the operations with the smallest due date. In our example, the sequence order would
be O21, O22, O11, and O12. At the decision point, we fix the variable to a specific value or
we reject it (excluding the value from the set of possibilities). Once again, we chose to
sequence the operation with the lowest possible index of the set of possibilities for each
operation. In the previous step, we have already defined the position in relation to the
operations of the same job. Now, we must set it in relation to all the operations. There
is no precedence restriction between the operations of different jobs, but it must respect
what was stipulated previously. For example, if the first operation to be fixed (O21) has a
σ21 = 2, then in our example, ϕ21 will first be tested as ϕ21 = 2, then ϕ21 = 3, and finally
ϕ21 = 4. This choice was made because there is a higher probability that jobs with a lower
due date will have their operations processed earlier than those with a higher one.

Finally, we fix the starting times of each operation. The order in which the decisions
are taken is based on the total position. For example, if we are in a node with a total
position equal to [O22, O11, O12, O21], then it is the order in which we will fix the starting
time of the operations. Since all the other variables have already been set, and only the
starting times need to be fixed, semi-active scheduling must lead us to an optimal solution.
A semi-active scheduling is when operations are scheduled the earliest, avoiding any idle
time [68]. We have a dominance rule that reduces the solution space [68], reducing our
variable domains to the lowest value (earliest time). Consequently, we set the shortest
starting time without needing a decision point.

The chosen strategy seemed the most promising. While adjustments, such as altering

84

the sequence in which decision variables are set, are possible. However, our approach finds
optimal solutions respecting dominance rules. Consequently, the starting time is always
the last variable to be fixed (no decision point). Otherwise, the starting time should be
seen as a decision point, which significantly increases computational time.

4.1.4 Conclusions

In this work, three exact solving methods are employed. The first is the ILP, where
we need to linearize the model from Chapter 2. We chose to solve it using commercial
software, which uses various algorithms, mainly the simplex algorithm. While widely
used in combinatorial optimization problems, this method tends to be time-consuming for
large combinatorial problems like the one at hand. For this reason, we decided to explore
alternative exact methods. This is particularly noteworthy as many works in this domain
often skip exact methods, going directly to non-exact approaches.

The second method is Constraint Programming (CP), which explores variable domains
using constraints to identify solutions that satisfy all conditions. Although traditionally
employed to find possible solutions, CP can also be adapted for optimization. However,
this objective may raise time execution due to the difficulty of proving the optimality of a
solution.

To enhance the efficiency of CP, we conducted a detailed study, developing a search
strategy explicitly adapted to our problem. This strategy is designed to be more efficient
than the general approaches used by the software used for CP. The third method is the
most promising. More concrete conclusions will be drawn in the next chapter.

4.2 Metaheuristics

With exact methods, we are sure of the optimal answer to a problem. However,
they are not adapted for solving real instances- of NP-hard problems since they are very
time-consuming. Therefore, other alternatives are needed, such as metaheuristics.

Metaheuristics are solution methods that coordinate local improvement procedures
with higher-level strategies to create a strategy capable of escaping local optima and
performing a robust search in the solution space of a problem [116]. They can deal with
large instances, delivering satisfactory solutions in a reasonable time.

In this work, we study a huge combinatorial problem, so using approaches other than
the exact ones is necessary. There are a wide variety of possibilities within this category
of methods. We decided to work with the genetic algorithm and a version of it with local

85

search. This choice was made because its efficiency was proven in several works in our
field, e.g., in [1, 11, 38, 148].

Although the genetic algorithm is a generic method, it can be adapted to a specific
problem. In the remainder, we explain in detail how we used GA and GA with local search
to solve our integrated problem (PP + L + S).

4.2.1 Genetic algorithm

GA is a particle class of Evolutionary Algorithms (EA) based on Darwin’s theory of
evolution, which states that a population of individuals in a given environment will always
seek to adapt in the best possible way. Thus, more adapted individuals are generated in
each new generation via inheritance, mutation, selection, and crossover [82].

In the development of the genetic algorithm, an initial population is created, com-
prising individuals (also known as chromosomes) that represent potential solutions. Each
individual is composed of several genes representing the decision variables. The fitness
function assesses the quality of the solution, enabling the evaluation of the most promising
individuals. After this, the algorithm makes a partial or complete selection (depending on
the reproduction rate) for reproduction. Pairs of chromosomes are selected to reproduce
and create offspring. Reproduction can happen by applying genetic operators, such as
crossover, mutation, and/or selection. At the end of reproduction, a new generation is
formed, and population control is usually done so that the populations will always have
the same size. Creating new generations continues until a stopping criterion is reached [85,
100].

Figure 22 resumes our GA steps. First, an initial population is created. After, the
individuals are evaluated using the fitness function. Then, we verify if the population
is bigger than the initial population. If the answer is positive, the algorithm makes a
population control, keeping only the n best individuals, n being the number of individuals
in the initial population. After this control, it is verified if the stop criterion (the maximum
number of iterations) is reached. If the answer is positive, the algorithm stops. Otherwise,
after the stop criterion verification, we apply the genetic operators. Alternatively, we can
arrive at this same point directly after the size population verification if the population is
not bigger than the initial population. We apply the crossover operator first and then the
mutation operator. After this, the number of iterations is incremented, and we loop back
to the fitness function evaluation of the individuals.

In the following, some concepts will be discussed in more detail, explaining the
genetic algorithm.

86

Figure 22: Genetic algorithm flowchart.

Encoding

The chromosome is a sequence of values that, when decoded, represents a solution to
one problem. The size, the numerical representation, and the other characteristics of the
chromosomes depend directly on the problem studied. In this work, a chromosome contains
four fields for each job operation. Figure 23 shows that the first part is dedicated to the
information regarding the machines used for each operation. The second part is dedicated
to the machines’ configurations to process operations. The third part is dedicated to the
layouts. Finally, the fourth part is dedicated to the position of each operation in the
schedule. All these variables were introduced previously in the subsection "Constraint
programming with a defined search strategy".

Figure 23: Chromosome representation.

Therefore, the number of chromosome genes (ng) is equal to 4 multiplied by the total
number of operations (4.1). For example, in a problem with two jobs, where the first job
has three operations and the second one has two operations, the chromosome will be a
vector of 20 values (4*(3+2)).

87

ng = 4×
n∑

i=0

ni (4.1)

While in the section "Constraint programming with a defined search strategy", we
used six variables, now in this method, we are only using four, not having to consider the
operation’s position among operations in the same job and the starting time variables.
The position within the job is not required because we already have the total position
among all operations (of all jobs) that gives the necessary information. The starting time
is calculated to be the smallest possible, considering the information during the decoding
processes. More details are provided in the following subsections.

All our chromosomes represent feasible solutions because the machine and configu-
ration can only be chosen from the possible options for each operation, all jobs can be
processed in all layouts, and the operations’ position respects the precedence constraints.

Initialization

The initial population is often randomly generated. However, in some cases, it can be
oriented to probable optimal solutions or randomly generated using techniques to increase
the diversification in the search space [82, 100]. In this work, the initial population is
entirely randomly generated.

In addition, a crucial parameter is the number of individuals belonging to the initial
population. If this number is too small, the search space coverage may be small, which
may cause low-quality solutions. On the other hand, if the population is too large, the
algorithm may take too long in its execution time [69]. The number also depends on the
size of the instance being treated. We utilized a factorial design of experiments technique
to determine the initial population size and other GA input parameters like the number of
generations, crossover rate, and mutation rate. The details of this technique and results
will be explained in the next chapter.

Fitness function

A fitness function allows the performance of each individual to be evaluated. In our
case, we generate a valid schedule from the chromosome information by fixing the start
times like in the exact method using a greedy algorithm (Algorithm 3). The fitness is then
equal to the objective function of this schedule. Since our problem aims to minimize total
costs, the smaller the fitness function, the better the solution.

88

Algorithm 3 Greedy algorithm for our scheduling
1: while a < sequence.size() do
2: if a = 0 then
3: op← sequence[a]
4: if layout[lo] ̸= layout[op] then
5: for all machines do
6: timem[machine]← RLtime

7: if configuration[machine[co]] ̸= configuration[machine[op]] then
8: timem[machine[op]]← timem[machine[op]] +RCtime[machine[op]]

9: Set_time(op, op)
10: else if a > 0 then
11: opm ← last operation in machine[sequence[a]]
12: opj ← last operation in job[sequence[a]]
13: opp ← sequence[a− 1] opc ← sequence[a]
14: RL = RM = MH ← 0
15: Check_actions(opc, opp, opm, opj)
16: switch (RL,RM,MH) do
17: case 1 = (0, 0, 0) Set_time(opc, opp, opm)

18: case 2 = (1, 0, 0) Layout_reconfiguration(opc, opp, opm)

19: case 3 = (0, 1, 0) Machine_reconfiguration(opc, opp, opm)

20: case 4 = (0, 0, 1) Material_handling(opc, opp, opm, opj)

21: case 5 = (1, 1, 0)
22: if RM cannot be done between opm and opc then
23: timem[machine[opc]]← timem[machine[opc]] +RMtime[machine[opc]]

24: Layout_reconfiguration(opc, opp, opm)

25: case 6 = (1, 0, 1)
26: Layout_reconfiguration(opc, opp, opm)
27: Material_handling(opc, opp, opm, opj)

28: case 7 = (0, 1, 1)
29: Machine_reconfiguration(opc, opp, opm)
30: Material_handling(opc, opp, opm, opj)

31: case 8 = (1, 1, 1)
32: if RM cannot be done between opm and opc then
33: timem[machine[opc]]← timem[machine[opc]] +RMtime[machine[opc]]

34: Layout_reconfiguration(opc, opp, opm)
35: Material_handling(opc, opp, opm, opj)

36: end switch
37: end while

As input data, which machines/configuration, layout, and production sequence (total
position) of operations are provided. The sequence vector orders the operations according
to their start time, i.e., if O23 comes before O11 in the sequence, then s[O23] ≤ s[O11]. All
operations must be sequenced. The first operation of the sequence (Algorithm 3: lines

89

2-10) is fixed as follows:

• Check the layout reconfiguration: if the layout of the operation differs from the
initial layout (Algorithm 3: line 4), the reconfiguration time is counted before any
operation is started.

• Check the machine reconfiguration: if the configuration used for the operation differs
from the initial configuration of the machine in question (Algorithm 3: line 9), the
machine reconfiguration time is counted before the operation is started.

After these two examinations, the start and completion times of the operations can
be set (Function Set_time). There is no possibility of material handling for the first
operation since there is surely no preceding operation of the same job that has started
to be produced. For the other operations, it is important to retain the current operation
(opc), the preceding operation in the sequence (opp), the last operation that was done
on the same machine as the current operation (opm), and the last operation produced
from the same job as the current operation (opj) (Algorithm 3: lines 14-16). Three
auxiliary variables are used to check if it is necessary layout reconfiguration (RL), machine
reconfiguration (RM), and/or material handling (MH) between the current operation
and operations already fixed. For this, function Check_actions is used. We have eight
possibilities once we know which actions must be taken to sequence the current operation.
The first (Algorithm 3: line 20) is in the case where there is no reconfiguration or material
handling. The starting time is directly set to the first availability of the machine processing
the operation using the Set_time function. The second to fourth cases are when only
one of the actions is required (Algorithm 3: lines 21-23). In case 2, there is a layout
reconfiguration, so the Layout_reconfiguration function will first set the availability of
all the machines (after the layout reconfiguration is finished) and then set the operation
using the Set_time function. In case 3, the reconfiguration of the machine processing the
operation in question must be considered. Using the Machine_reconfiguration function,
we first check whether there is enough time for reconfiguration between the last operation
processed by the machine (opm) and the lowest time that the current operation can start
(opc). We can set the position directly if there is enough time for RM. Otherwise, we need
to count the RM time and then set the position. In case 4, the only action to be considered
is material handling. As in the previous case, we check whether there is enough time
for the MH between the last operation of the same job that has already been scheduled
and the current operation; if so, we fix the operation directly. If not, we first count the
MH and then fix the operation. The other cases are a combination of RL, RM, and MH
(Algorithm 3: lines 24-40). Each of them will first consider the necessary actions and then
set up the operation using the functions already mentioned.

90

Algorithm 4 Set_time(opc, opp)

1: s[opc]← timem[machine[opc]]
2: if s[opc] < s[opp] then
3: s[opc]← s[opp]

4: c[opc]← s[opc] + Productiontime[opc]
5: timem[machine[opc]]← c[opc]

Algorithm 5 Check_actions(opc, opp, opm, opj)

1: if layout[opp] ̸= layout[opc] then
2: RL← 1
3: if configuration[opm] ̸= configuration[opc] then
4: RM ← 1
5: if opc ̸= fist operation of job[opc] then
6: if machine[opj] ̸= machine[opc] then
7: MH ← 1

Algorithm 6 Layout_reconfiguration(opc, opp, opm)

1: cmax ← max(timem[machine])
2: for all machines do
3: timem[machine]← cmax +RLtime

4: Set_time(opc, opp)

Algorithm 7 Machine_reconfiguration(opc, opp, opm)

1: if RM can be done between opm and opc then
2: Set_time(opc, opp)
3: else if RM cannot be done between opm and opc then
4: s[opc]← timem[machine[opc]] +RMtime[machine[opc]]
5: c[opc]← s[opc] + Productiontime[opc]
6: timem[machine[opc]] = c[opc]

Algorithm 8 Material_handling(opc, opp, opm, opj)

1: if timem[machine[opc]]− c[opj] ≥MHtime[machine[opj]→ machine[opc]] then
2: Set_time(opc, opp, opm)
3: else if RM cannot be done between opm and opc then
4: s[opc]← c[opj] +MHtime[machine[opj]→ machine[opc]]
5: c[opc]← s[opc] + Productiontime[opc]
6: timem[machine[opc]]← c[opc]

91

Population control

The total population increases each time a new generation is formed after the
crossover and mutation. Without population control, the algorithm can become slow.
Therefore, all individuals are sorted in non-decreasing order according to their fitness
after the offspring are generated. The best chromosomes stay in the population, and the
worst ones are excluded. The amount of remaining individuals is the same as the initial
population parameter.

Genetic operators

The genetic operators are the tools to generate new populations (reproduction). In
the implemented GA algorithm, we use crossover and mutation operators.

Crossover

In this operation, two individuals are chosen to give part of their genes (representation
of each decision variable) to their offspring. The crossover can be done in several manners.
The single-point crossover is the most common, as shown in Figure 24. One point in
both chromosomes is selected to divide the chromosome into two parts [100]. The parents’
genetic material is combined: the first part of the first parent is combined with the second
part of the second parent, and the second part of the first parent with the first part of the
second parent, generating the offspring (two children).

Figure 24: Single-point crossover.

After a population generation, chromosomes are sorted by the fitness function, from
the best solution (lowest fitness) to the worst (highest fitness). A crossover rate must
be defined, i.e., the percentage of best chromosomes that will crossover. If the crossover
rate is, for example, 80%, then the best 80% of individuals will be used as parents. The
parents’ pair choice is made by the roulette wheel method [101]. Consequently, the lower
the fitness (better result), the higher the probability that an individual will be selected
first. Whenever a chromosome is chosen, the probabilities used for the roulette wheel
method are recalculated without counting the already chosen chromosomes.

92

The single-point crossover was used as inspiration for our crossover method. Some
adaptations were necessary since our goal is to generate only individuals with feasible
solutions. As the "encoding" section explains, our chromosome comprises four parts for
each operation, corresponding to machine (µij), configuration (χij), layout (λij), and total
position (ϕy). In Figure 25, we represent a possible chromosome with the abovementioned
parts.

After the pairs of chromosomes to be used for the crossover have been chosen, we
randomly choose a value r ∈ {0, ..., y}, where y is the number total of operations. r is the
point where the machine, configuration, and layout parts will be cut for the permutation.
Nevertheless, this logic does not work for the total position since it can generate infeasible
solutions because of the operations’ precedence order.

Figure 25: Crossover.

A conversion is done for the total position part to make it clearer. The term "total
sequence" (Ψy) is introduced, where y ∈ {1, ...,

∑n
i=0 ni}. For the total position, we have

the position p of the operation Oij among all the operations (ϕij = p), and for the total
sequence, we have operation Oij that is in the position p (Ψp = Oij). We use the total
sequence and take the same point chosen for the other variables. After, we copy the first
part of Parent 1 in Child 1 and the first part of Parent 2 in Child 2. However, the second
part of the parents cannot be directly copied to avoid non-feasible solutions caused by a
possible non-respect of the precedence constraints or duplicate operations. Then, Child 1
will follow the same order as Parent 2, excluding the operations already sequenced (the
first part coming from Parent 1). The same occurs for the second part of Child 2, which
follows the same order as Parent 1, excluding the already sequenced operations. Figure 26
shows this, using an example with two jobs (each with three operations). If the crossover
point is r = 2, the first child will have the first two operations from Parent 1 (operations

93

Figure 26: Crossover sequence.

O23 and O13) and the rest from Parent 2, following the original sequence excluding the
operations already sequenced (operations O22, O12, O11, and O21). The same happens with
Child 2. This permutation ensures that no operation is repeated and that the precedence
constraints are necessarily respected since the parents are feasible solutions.

Mutation

A mutation modifies one (or more) chromosome genes to increase the population’s
diversity and avoid the converging of the algorithm8 too early to a local optimum. Never-
theless, the mutation rate can not be too high, so the search does not become random
[100]. In our case, the mutation rate indicates how many percent of the population will be
mutated. Chromosomes can be mutated in four different ways, and this choice is made
randomly:

• Mutation 1: a random gene is selected to change the machine for another one
randomly chosen. The configuration remains the same if it is possible (feasible
solution). Otherwise, a possible configuration is also randomly chosen.

• Mutation 2: a random gene is selected to change only its configuration for another
one randomly chosen.

• Mutation 3: a random gene is selected to change only its layout for another one
randomly chosen.

• Mutation 4: a random gene selected to invert its sequence value with the subsequent
gene. If the precedence order does not allow it (generating an unfeasible solution),
the algorithm continues searching for a subsequent gene that allows the inversion.

94

Stopping criterion

The stopping criterion can be defined by the number of generations created, execution
time, or solution quality. Since evaluating the quality of solutions is not possible, there are
only the other two options. Stop the algorithm according to the number of generations
was the one chosen. This information is given as a problem input parameter.

Thus, all steps of the genetic algorithm were covered. The following section will
analyze numerical examples using all the resolution methods presented in this work.

4.2.2 Genetic algorithm with local search

Local search is a strategic algorithm for optimizing problems, focusing on refining a
single candidate solution by iteratively making small changes to it. Designing a local search
algorithm necessitates defining a structure among feasible solutions, often established by
considering solutions as neighbors if they can be transformed into each other through
small changes known as local transformations [63].

This technique is frequently employed with metaheuristics to enhance the results
of complex problems. In our case, we integrated local search into the genetic algorithm
developed in the previous section.

During the algorithm execution, some individuals are chosen from the population to
undergo the local search process. This search occurs within a small part of the chromosome,
the size of which is specified as input to the problem. The local search can be conducted in
three distinct parts for each individual: machine and configuration, sequence, and layout.
The following sub-sections explain each of them.

Machine and configuration

Initially, we must choose a chromosome and determine the part size for the local
search, which is an input to the problem. Subsequently, an operation is randomly selected
as the starting point of the part for the local search. The ending point is calculated by the
starting point plus the part size. For each of these operations within the specified part, we
systematically explore all possible machine/configuration combinations.

For instance, let us consider a chromosome comprising 10 jobs, each job having 5
operations, and we set the input size to 5. We randomly designate the starting operation
for analysis as Op34. Consequently, we examine it and its consecutive operations Op35,
Op41, Op42, and Op43. Figure 27 shows the machine and configuration of each of the
operations where the local search will be carried out.

95

Figure 27: Machine/configuration local search.

Assuming that each of these operations has the following machine/configuration
possibilities:

• Op34 : M1[3] and M2[1];

• Op35 : M1[3], M2[2], and M3[2];

• Op41 : M2[1] and M3[3];

• Op42 : M1[1], M2[1], M3[1], and M4[2];

• Op43 : M3[2], M4[1];

In this scenario, there are 96 possibilities resulting from the small change in the
machine/configuration of these 5 operations. We evaluated the fitness function for each of
them and retained the best one.

Sequence

The way we have chosen to conduct the local search for the sequence involves
randomly selecting a point on the chromosome and extracting a segment from that point.
The size of the segment where the local search will be executed is determined by an
input parameter. Figure 28 provides an illustration of an example where the chromosome
segment contains the sequence information, indicating the starting point (position 14) for
the local search and the size of this segment (5). Unaltered sections where the local search
will not be applied are not specified since they will remain unchanged. The values within
the local search segment contain the existing values before the local search.

96

Figure 28: Sequence local search.

Taking the values of the part selected for the local search, a tree can be constructed
with all possible combinations of sequences. Each path from the root to a leaf in the
tree represents a potential sequence for the selected part. Only the feasible paths, i.e.,
respecting precedence constraints, are generated. In other words, when constructing the
tree, if the order of an operation violates precedence constraints, it is not included, and
consequently, all possible children are not added to the tree. Returning to the initial
example, assuming that 1 precedes 2 and 8 precedes 5, we end up with Figure 29. In this
figure, all paths that are not feasible have been excluded. Therefore, the root cannot have
2 and 5 as children, and there is no path that allows 1 after 2 or 8 after 5.

Figure 29: Generated sequences for the LS.

Layout

In the context of layout considerations, we observed that for the majority of the
problems we addressed, the most impactful reconfiguration occurs at the beginning of
the scheduling when reconfiguring from the initial layout to another. While other layout
reconfigurations may occur during scheduling in some instances, they typically do not
yield significant improvements in the results.

97

Therefore, we opted to restrict the local layout search only to the same layout for all
jobs. This involves testing all jobs within the same layout for the selected chromosome,
and we repeat this process for all possible layouts within the predefined set.

In this case, the part size is not used as the local search encompasses the entire
layout. The fitness functions are analyzed, and the best result is retained.

Integrating LS and GA

Local search can be integrated into GA in various ways and at different stages. We
have chosen to incorporate it at the beginning of the algorithm, during the execution of
generations, and at the end. Figure 30 illustrates how the GA algorithm appears with LS.
The distinction from GA alone is that immediately after creating the initial population,
we apply local search to enhance the initial population. During the algorithm’s progress,
local search can be utilized; in our case, we incorporate it at specific intervals, such as
every 50 or 100 generations. Finally, local search is applied at the end to try to further
refine the solution.

Figure 30: Genetic algorithm with local search flowchart.

The decision for an initial local search was made because initial populations generally

98

have extremely high fitness, which takes a few generations to reach more reasonable
values. To begin with a more adapted population, we applied all three types of LS
(machine/configuration, sequence, and layout). For machine/configuration and sequence,
it is applied to a part of the operations of each individual (the size of this part being
an input). For layout, it is applied to all operations, as explained above, also for each
individual.

The local search that takes place during the evolution of generations is applied only
to the best individual, and another one is chosen at random. All three types of LS are
applied. This decision was made to try to enhance the best individual and introduce more
variability (applying LS to a random chromosome). The latter is because, as explained
in the upcoming chapters, the mutation rate without local search is high, likely used to
boost variability and avoid getting trapped in local optimal solutions.

The final local search is applied only to the best individual aiming to improve it
further. In this case, we decided to apply it multiple times for machine/configuration
and sequence. Generally, it is applied a number of times equal to the number of jobs,
but this can be considered as another input. The starting point is still random but is
distributed over the chromosome to cover an even larger part. In other words, if we apply
it x times, the starting point for each LS iteration will be within an interval between
[i× totalop, i× totalop + x], where 0 ≤ i < x, and totalop is the total number of operations.

4.2.3 Conclusions

In the search for more robust methods to address our problem, it became imperative
to explore non-exact methods. We opted to develop a Genetic Algorithm (GA) developed
to our specific needs, ensuring that all generated individuals are always feasible. This
adaptation focused particularly on the crossover method, adjusting the part that considers
the sequence of operations to find viable solutions. Additionally, to calculate the fitness
function, we developed a greedy algorithm.

In pursuit of an even more promising approach, we introduced a second method
integrating local search into the GA. Once again, special attention was given to the
sequence of operations to ensure that local search efficiently explores feasible solutions
without wasting time. A proposed algorithm outlines how our local search is executed. This
proposal involves applying the LS in specific generations on both the best individual and
one randomly chosen individual. This choice aims to enhance the current best individual
and potentially escape local optima by exploring new possibilities in further generations.

99

4.3 Conclusions of the chapter

This chapter presented the solving methods developed and applied in this work.
Using at least one exact method is essential to examine and validate the model’s behavior.
Moreover, it helps in the first analysis of non-exact methods since it serves as a comparison
parameter for small instances. We decided to go beyond a single exact method and look for
other alternatives with the potential to improve its performance. This choice was motivated
by three main reasons. First, our combinatorial problem is huge, so even for small instances,
the ILP is very time-consuming to get good solutions (execution time analysis made in the
next chapter). Besides, constraint programming has been considered an efficient way to
solve scheduling problems, so it would be interesting to see its performance in our problem.
Finally, they may have other applications, such as evaluating the metaheuristics’ fitness
function or using these techniques in hybrid methods that could be developed (which was
not the case, but it was a possible clue at the beginning of the thesis).

As seen in the literature review, metaheuristics are frequently used to solve prob-
lems in RMS, mainly for process planning and scheduling. Despite the wide variety of
metaheuristics, most follow the same logic: to generate an initial random population, then
create new generations from the combination of the previous ones and, during the process,
add some variability to avoid local optimums. For this reason, it was considered more
important to focus on the form of implementation, adapting it to the problem being solved,
than the metaheuristic itself. We decided to use the genetic algorithm because its quality
has been demonstrated in several works. An essential point of the implementation of GA,
shown in this chapter, is that only feasible individuals are generated, which for example,
was a difficulty for Gao et al. [41] to deal with the conflicts in the solutions.

Although metaheuristics are efficient, there is place for improvement. One way to
achieve this is hybridizing with other techniques. In our case, we sought to enhance our
GA by incorporating local searches. It is important to note that local search is a "generic"
term for exploring a part of the solution space, and, in our strategy, we have detailed a
specific approach for our algorithm.

The most significant difference between what has been presented in this chapter and
what we find in the literature is the fact that we do not limit ourselves to an exact solution
method, and especially when we use CP, we explore more than the standard tools that
the chosen solving software offers, creating a strategy specially adapted to our problem.
Similarly, while Genetic Algorithms (GA) and Local Search (LS) are commonly employed
methods, we have developed custom-fit algorithms for the nuances of the problem under
study. Nevertheless, it is worth noting that there is the possibility of refining even more
these algorithms in the future.

100

In the following two chapters, we will examine the performance of all the methods
proposed in this chapter, highlighting their respective advantages and disadvantages.

101

Chapter 5

Numerical Results

Contents
5.1 Comparing the models: sequential, partial sequential, and

integrated . 103

5.1.1 Conclusions . 105

5.2 Exact methods . 106

5.2.1 Conclusions . 107

5.3 Metaheuristics . 107

5.3.1 Genetic algorithm . 107

5.3.2 Genetic algorithm with local search 111

5.3.3 Conclusions . 112

5.4 Industrial applicability . 112

5.4.1 Conclusions . 117

5.5 Conclusions of the chapter . 117

In this chapter, the models and methods presented in this thesis are numerically
tested. First, the four models introduced in Chapter 2 are compared. The integrated
one will always obtain the optimal value (using an exact method), and the others can
be as good in the best case. With the examples shown below, it is possible to highlight
the superiority of the integrated version. For this reason, only the integrated model was
considered for the following. In the second part, the three exact methods are compared.
Also, the metaheuristics are compared (with the optimal value and between them). Finally,
a general conclusion is drawn from all the analyses.

A set of 20 small instances are used throughout this chapter. They were created
with jobs, operations, machines, configurations, and layouts between 2 and 3 units. The
other data, such as times, costs, and precedence order, were randomly generated. Table
20 presents their main characteristics. The instances are in the first column (Instance).
The number of jobs (NJ) for each instance is in the second column. Then, the number

102

of operations per job (NO). Next is the number of machines (NM). Then, the number of
configurations per machine (NC). The last column includes the number of possible layouts
(layout set) (NL). All small instances were solved using a laptop computer (16 GB RAM,
Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz 2.11 GHz). The big instances used the
university’s server (80 core, 512 Gb RAM, Linux CentOS) since they require a much larger
memory allocation than a laptop offers.

Instance NJ NO NM NC NL
1 2 2,2 2 2,2 2
2 2 2,2 2 2,2 2
3 2 3,2 2 2,2 2
4 2 3,2 2 2,2 2
5 2 2,2 3 2,2,2 2
6 2 2,2 2 2,2 3
7 2 2,2 3 2,2,2 2
8 2 2,2 2 2,2 3
9 3 2,2,2 3 2,2,2 2
10 3 2,2,2 3 2,2,2 2
11 3 3,2,2 3 2,2,2 2
12 3 3,2,2 3 2,2,2 2
13 3 3,2,2 3 3,2,2 2
14 3 3,2,2 3 3,2,2 2
15 3 3,3,3 3 3,3,3 2
16 3 3,3,3 3 3,3,3 2
17 2 3,2 3 3,3,2 3
18 2 3,2 3 3,3,2 3
19 2 3,2 2 3,2 3
20 2 3,2 2 3,2 3

NJ: number of jobs; NO: number of operations per job; NM: number of machines; NC: number of
configuration per machine; NL: number of layouts.

Table 20: Main characteristics of random instances.

5.1 Comparing the models: sequential, partial sequen-

tial, and integrated

In this subsection, the results of the four models presented above are compared, using
Constraint Programming with a defined search strategy (CPS), for the instances presented
in Table 20. Even before analyzing the results, it was already possible to know that the
integrated model would be the best regarding costs since it treats all parameters together
and does not use assumptions. The central question becomes how far the other models’
results are from the optima and how many seconds they consume for the execution time.

Table 21 shows the results found. The first column lists the instances. The second

103

column to the fifth indicates the costs found using each model, in the following order:
sequential, partially sequential integrating layout and scheduling, partially sequential
integrating process planning and layout, and finally, the integrated (which is marked in
green for always having the best results). The sixth to ninth columns show the execution
times for each model, in the same order as the costs. The last three columns quantify
the difference in percentage between the optimal cost and each sequential or partially
sequential model (% = analyzed model−optimal

optimal
). The values marked in bold are the closest

to the optimum. In some cases, the values for the three models are marked because they
have the same percentage, for example, Instances 2 to 9.

Cost Time(s) % distance(optimum)
Instance S PS1 PS2 I S PS1 PS2 I S PS1 PS2

1 42 42 36 36 0 0 0 1 17% 17% 0%
2 41 41 41 39 0 0 0 1 5% 5% 5%
3 42 42 42 36 0 0 0 1 17% 17% 17%
4 67 67 67 57 0 0 0 1 18% 18% 18%
5 18 18 18 18 0 0 0 1 0% 0% 0%
6 52 52 52 38 0 0 0 1 37% 37% 37%
7 35 35 35 31 0 0 0 1 13% 13% 13%
8 61 61 61 57 0 0 0 1 7% 7% 7%
9 39 39 39 37 0 0 0 2 5% 5% 5%
10 44 44 49 42 0 0 1 10 5% 5% 17%
11 59 59 59 56 0 0 7 6 5% 5% 5%
12 58 58 56 52 0 1 5 19 12% 12% 8%
13 148 140 148 79 0 2 7 35 87% 77% 87%
14 76 76 91 70 0 0 2 8 9% 9% 30%
15 58 56 56 52 1 2 75 164 12% 8% 8%
16 95 90 125 73 0 0 166 3000+ 30% 23% 71%
17 54 54 54 33 0 0 0 4 64% 64% 64%
18 35 35 36 35 0 0 0 2 0% 0% 3%
19 35 35 37 35 0 0 0 1 0% 0% 6%
20 88 84 80 62 0 0 0 1 42% 35% 29%

S: sequential model (PP - L - S); PS1: partial sequential model 1 (PP - L + S); PS2: partial sequential
model 2 (PP + L - S); I: integrated model (PP + L + S).

Table 21: Comparison of models.

Before having the results, we expected that the partially sequential models would
always present the same cost result or better than the sequential one since they integrate
two problems, but that was not the case. The sequential model showed superior results for
five instances (10, 14, 16, 18, and 19) compared to PS2. This discrepancy arises because,
when integrating PP and L, we do not consider the constraint that the machines can
only process one operation at a time; this constraint only appears in S. Consequently, for
some instances, as observed in these five cases, certain machines end up more overloaded

104

with PS2 than when using the sequential model. On the other hand, as anticipated,
the sequential model will never outperform PS1. Both share the same PP outputs, and
PS1 integrates L and S, implying that its costs are equal to or better than those of the
sequential model.

Even if the results were not so good compared to the others in some cases, PS2 was
the best for Instances 1, 12, and 20. Compared to the others, the model with the most
satisfactory results (frequency) was PS1. Generally, it is possible to see that for a few
instances, the three models presented a difference of up to 5%. These were Instances 2, 5,
9, 11, and 18.

The models occasionally present good cost results but can easily deviate from the
optimum (e.g., Instances 6, 13, 17, and 20). PS1 is considered the best because it is more
consistent than the others. PS2 is the most variable, sometimes much worse or better than
the others. However, this analysis was done for small instances. For larger, we believe the
difference in costs can be even bigger due to the number of variables and bigger search
space. Good cost results for each problem individually may induce bad results globally.
The integrated model presents great superiority since it simultaneously considers all the
shared variables and does not need any assumptions.

On the other hand, when analyzing the execution times, the initial expectation was
that the sequential model would perform best, followed by the partially sequential models,
and lastly, the integrated model. This expectation aligned with the observed results.
Specifically, focusing on instances 9 to 18 where the integrated model takes more than
1 second, the superiority of the sequential model concerning computation time becomes
evident. PS1 closely follows, outperforming expressively PS2 and the integrated model
in instances 15 and 16. PS2, despite being surpassed by PS1, still exhibits significantly
better results than the integrated model in these particular instances.

5.1.1 Conclusions

When comparing the models, the integral model exhibited significant cost superiority
over the others, which was already predicted from the beginning. Surprisingly, when
analyzing costs, the sequential model outperformed PS2 in some instances. However,
PS1 consistently outperformed the sequential model due to their shared beginning (PP
problem) and the integration of L and S in PS1’s final stage. This integration allows
PS1 to achieve results equal to or better than the sequential model. In addition, the
integrated model is the most time-consuming, followed by the PS2, PS1, and sequential.
In conclusion, the integrated model emerged as the most efficient, followed by PS1, then
PS2, and finally the sequential model. PS1 was considered better than PS2 due to showing

105

lower cost variability.

5.2 Exact methods

As stated at the beginning of this chapter, due to its superior performance, only the
integrated model is considered for comparing the exact methods. The same 20 instances are
used in this section. Here, only the execution times of the three exact methods presented
in Chapter 4 are compared. The costs are not analyzed because they will always be the
same since all methods find the optimal value.

Table 22 shows the results. When the execution times are longer than 3000 seconds
to reach the optimal result, we stopped the execution in 3000 seconds. These cases are
represented with "3000+". Furthermore, Instances 15 and 16 show considerably longer
execution times than the others due to their larger size, with their main characteristics
detailed in Table 20. In the case of the exact methods, any increase in the input parameters
of instances leads to a substantial rise in execution time. Although Instances 15 and 16
share the same main characteristics, the latter requires more time. This discrepancy can
be attributed to the heightened flexibility of the machines, providing more possibilities
(machine/configuration) to produce an operation and resulting in a larger search space.

Instance CPLEX CP CPS
1 61 44 1
2 26 13 1
3 115 90 1
4 114 102 1
5 105 376 1
6 223 82 1
7 388 297 1
8 159 29 1
9 1630 68 2
10 3000+ 426 10
11 3000+ 518 6
12 3000+ 464 19
13 3000+ 1430 35
14 3000+ 3000+ 8
15 3000+ 3000+ 164
16 3000+ 3000+ 3000+
17 3000+ 3000+ 4
18 1054 312 2
19 439 96 1
20 3000+ 328 1

Table 22: Execution time of the exact methods.

106

When comparing CPLEX and CP, CP shows significant superiority in execution
time in almost all instances. Only in Instance 5 CPLEX was more efficient. The difference
between the computation times is evident when comparing CPS with the other two
methods. Most instances are solved in less than 10 seconds. There was only one instance
not solved in less than 3000 seconds, Instance 16. This fact occurs because, in constraint
programming, sometimes the search gets "blocked" in some search spaces, making it
difficult to improve or prove the optimality of the solution.

5.2.1 Conclusions

We just compared the execution times, given that all three models are exact and
yielded identical results. Constraint programming demonstrated significant superiority,
particularly when incorporating our search strategy (CPS). However, we can note that as
the instance size increases, as observed in Instances 15 and 16, constraint programming
alone (CP and CPS) may not be the most suitable method for real-world cases.

5.3 Metaheuristics

In this subsection, we analyze the metaheuristics (GA and GA with local search)
by first comparing the results found by these methods with the optimal values of the 20
instances used previously. Then, we proceed to test a larger instance.

5.3.1 Genetic algorithm

The genetic algorithm does not necessarily provide the optimal solution to a problem,
but it is expected to get a solution as close to an optimal one as possible. As this method
is not exact, we will analyze the execution time for a given number of iterations and the
quality of solutions according to the cost.

Tuning parameters for small instances

The first step before running GA is to choose an appropriate set of parameters for the
problem since it directly impacts the results’ quality. This work considered four parameters:
the size of the initial population, the number of generations, the crossover rate, and the
mutation rate. Since our 20 instances are of similar sizes, the same parameters were
employed for all. We analyzed the parameter impacts on the two most time-consuming
instances in CP, Instances 15 and 16.

For this, a factorial design of experiments technique was applied, having three levels
for each parameter, resulting in a combination of 81 experiments (34) that were run five

107

times, totaling 405 runs for each instance (81 × 5). Table 23 shows the parameters in
the first column, the nomenclature given to each one in the second column, and then the
tested levels.

LevelsParameters Notation 1 2 3
Initial population pop 10 50 100

Number of generations gen 10 50 100
Crossover rate cross 0.5 0.8 1
Mutation rate mut 0.1 0.2 0.5

Table 23: GA parameters and their levels.

The data were treated by the Minitab software, and the results are presented in
Figures 31 to 34. Figures 31 and 32 show the main effects of each parameter level on cost
minimization. The vertical axis represents the costs, and the horizontal axis represents
the levels of each parameter. Both figures show that a very low initial population and
number of generations considerably decrease the performance of the GA. The mutation
rate also significantly impacts the values, improving the results when it increases. The
crossover rate is the one that presents the most negligible impact, obtaining an almost
horizontal line. Moreover, it is important to analyze the interaction of the parameters
with each other. Figures 33 and 34 show the best set of parameters found, which was the
same for both instances:

• Initial population: 100 individuals;

• Number of generations (stop criterion): 100 generations;

• Crossover rate: 50%;

• Mutation rate: 50%.

Figure 31: Main effects on cost minimization for Instance 15 (adjusted averages).

108

Figure 32: Main effects on cost minimization for Instance 16 (adjusted averages).

Figure 33: Optimization diagram for Instance 15.

Figure 34: Optimization diagram for Instance 16.

After analyzing the graphs, we considered the pertinence of conducting new tests to
observe the behavior of parameters such as ’pop,’ ’gen,’ and ’mut’ when set higher. We
evaluated it unnecessarily because ’pop’ and ’gen’ tend to stabilize quickly, and the current
calibration suffices for method comparison since we are still analyzing small instances.
Nevertheless, this information will not be neglected for larger instances, particularly the
effect of considering higher mutation rates.

109

For the analysis, we also examined the results when generating only random individ-
uals, which is equivalent to creating the initial population in GA without executing any
operations afterward. This approach allows us to check the relevance of GA. To do this,
we analyzed the case of the creation of ten thousand random individuals (R10) and one
hundred thousand random individuals (R100). Table 24 presents the results. In the first
column are the instances; in the second column is the optimal cost of each instance; in the
third column is the average cost of R10; in the fourth column, the average cost of R100;
followed by the average cost of GA; then, the average cost of GA with local search (GA +
LS). For all methods, all mean costs are over ten runs. The last four columns represent the
average distance between the optimal cost and the cost obtained by each method (average
cost - optimal cost) / optimal cost.

Cost % distance
Instance Optimal R10 R100 GA GA+LS R10 R100 GA GA+LS

1 36 36 36 36 36 0% 0% 0% 0%
2 39 39 39 39 39 0% 0% 0% 0%
3 36 36 36 36 36 1% 0% 0% 0%
4 57 57 57 57 57 0% 0% 0% 0%
5 18 19 18 18 18 7% 0% 0% 0%
6 38 38 38 40 38 0% 0% 5% 0%
7 31 31 31 31 31 0% 0% 0% 0%
8 57 57 57 57 57 0% 0% 0% 0%
9 37 42 38 38 37 14% 2% 3% 0%
10 42 45 43 42 42 8% 2% 0% 0%
11 56 73 68 57 57 30% 22% 2% 2%
12 52 63 60 56 53 21% 15% 8% 2%
13 79 103 94 81 81 31% 19% 3% 3%
14 70 104 88 82 74 48% 26% 17% 6%
15 52 105 90 57 54 101% 73% 10% 4%
16 73 205 169 91 79 181% 132% 25% 8%
17 33 36 36 33 33 10% 8% 0% 0%
18 35 48 37 35 35 38% 5% 0% 0%
19 35 36 35 35 35 2% 0% 0% 0%
20 62 66 62 62 62 6% 0% 0% 0%

Table 24: Costs of random method, the GA and GA with local search.

The costs found by the random methods are only good for very small instances. As
the instances grow, even marginally, the results deteriorate significantly, exemplified by
Instance 16, where both methods show over a 100% difference from the optimum. The
costs obtained by GA are either optimal or very close to the optimum in most instances.
Instances 14, 15, and 16 are exceptions, with a distance equal to or greater than 10% from
the optimal.

Table 25 examines only the execution times of the methods. Regarding GA, all
instances yield results in less than 1 second, showcasing significant superiority in execution
time compared to the exact methods. As the instance data increases, the exact methods

110

struggle to solve it in a reasonable time frame (considered here as less than one day) while
the genetic algorithm remains effective.

Time(s)
Instance R10 R100 GA GA+LS

1 2 406 1 2
2 3 408 1 1
3 2 373 1 2
4 3 370 1 2
5 3 394 1 2
6 3 411 1 1
7 3 403 1 1
8 3 398 1 1
9 3 458 1 2
10 3 469 1 2
11 3 463 1 2
12 3 480 1 2
13 3 465 1 2
14 3 451 1 2
15 3 511 1 2
16 3 521 1 3
17 2 386 1 2
18 2 378 1 2
19 2 372 1 1
20 3 374 1 1

Table 25: Execution times of random method, the GA and GA with local search.

5.3.2 Genetic algorithm with local search

To evaluate the GA with local search, we maintained the previously determined GA
parameters and set a local search size of only 1, i.e., each time the local search is applied
to just one operation. We did not conduct a statistical test to determine the size of the
LS because the instance is very small, consisting of only four operations. If we increase
the size, it would encompass at least half of the instance, going against the purpose of the
LS, which is to explore small portions. Additionally, we applied the three local searches
(initial, during the generations, and final). The LS during the generations was set to occur
every 10 generations.

Table 24 shows that this method achieves values very close to the optimum, with
none of the average costs differing by more than 8% from the optimum. When compared
with GA, this method consistently yields better or equal cost results. Notably, instances
14, 15, and 16 show significant improvement, as these were the instances where GA had
the poorest performance.

111

When analyzing the execution times, this method remains highly efficient for small
instances. However, as anticipated, the computational time is longer compared to GA
using the same input parameters, attributed to the additional steps incorporated into the
algorithm.

5.3.3 Conclusions

The first important point highlighted is that generating random solutions is inefficient,
particularly as the size of instances increases. Consequently, employing strategies becomes
imperative. In our case, we opted for the Genetic Algorithm (GA). When applying GA, it
is essential to calibrate parameters such as the initial population, number of generations,
crossover rate, and mutation rate. Calibration is not required for each instance but for
a set with similar characteristics. Given that our test set comprises instances of similar
sizes with values varying within a comparable range, we conducted calibration specifically
for Instances 15 and 16, the largest and with the longest calculation times, using exact
methods.

After the initial calibration, we compared the values obtained by the genetic algorithm
with and without local search. The execution times for both were extremely low using
the parameters chosen in the calibration. Notably, GA tended to deviate further from the
optimum in the larger instances than GA with LS. This initial analysis suggests that LS
can be a valuable ally in enhancing cost results. Regarding the difference in execution
time, we cannot draw more concrete conclusions at this stage, as the instances are very
small.

5.4 Industrial applicability

The model presented in this work can be applied in diverse industries, e.g., assembly
or disassembly lines. Moreover, it is applicable when considering a system composed only
of machines or of machines and humans. In any process where process planning, layout,
and scheduling problems are relevant, their integration will generate at least equivalent
results than when they are treated separately, with prominent chances of being better.
This is a consequence of the sharing of variables between them. The integration of process
planning and scheduling has already been studied. The importance of integrating layout
has not been emphasized yet, probably because when considering production lines that
use large machines, it is not intuitive to consider that moving them can bring any benefit.

The model’s applicability can be extremely important in micro-factories and areas
with equipment that can easily be placed on vehicles or having a vehicle attached, such as
Automated Guided Vehicle (AGV). The previous cases require a high industrial automation

112

degree. However, the applicability can go beyond this. It can be extended to cases where
the workstations are fixed, and the operators and tools are not. In these cases, the
operators are represented by machines in the model, and the reconfiguration times are
associated with the operator and tool displacements.

In this section, an industrial-scale example is presented. Real data inspired it,
despite the times, costs, and precedence graphs were randomly generated for confidentiality
reasons.

In an industry that fabricates large kitchen utensils, two of the products in the
catalog are produced in an area with 20 operators (considered as the machines in the
model presented in section 4). The products have variants, such as color and type of
finishing, but this does not interfere with the fact that Product 1 comprises 12 operations
and Product 2 comprises 8. Each operator can perform different tasks, between 2 and 4,
according to his technical skills. There are five different layout possibilities. A time period
where five products must be manufactured is considered, being two Products 1 and three
Products 2. The main information of the problem can be listed as follows:

• Number of jobs: 5.

• Number of operations per job: 12, 8, 12, 8, and 8.

• Number of machines: 20.

• Number of configuration per machine: 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 4, 2, 3, 3, 4, 4,
2, and 2.

• Number of layouts: 5.

A new factorial design of experiments was made to define the best parameters for
the genetic algorithm in this example. As the problem is bigger this time, new values were
assigned to the levels. Table 26 shows the values used.

LevelsParameters Notation 1 2 3
Population size pop 100 250 500

Number of generations gen 100 250 500
Crossover rate cross 0.5 0.8 1
Mutation rate mut 0.2 0.5 0.7

Table 26: Industrial case GA parameters and their levels.

The results led us to the following parameters:

• Population size: 500 individuals;

• Number of generations (stop criterion): 500 generations;

113

• Crossover rate: 80%;

• Mutation rate: 70%.

The mutation rate is extremely high, especially according to some authors, like
[5], who say this rate should be between 0.01 and 0.1. This high percentage is probably
justified by the relatively small initial population (to avoid increasing execution time) and
the absence of new individuals being inserted during generations. To facilitate escaping
local optima, the factorial design of experiments indicates that higher mutation levels lead
to improved results.

GA was run ten times on the problem using the university’s (UTC) server (80 core,
512 Gb RAM, linux CentOS), obtaining a cost average of 271.4 with an average run time
of 15 seconds. Table 27 indicates the cost and the run time for each run. The standard
deviation of the total cost was less than 5% compared to the average total cost. In the
case of the run time, the standard deviation was about 5%. For this example, GA is stable
in cost and time results.

Total cost Run time(s)
Run 1 273 16
Run 2 261 16
Run 3 273 14
Run 4 266 15
Run 5 262 15
Run 6 292 14
Run 7 253 15
Run 8 267 16
Run 10 280 14
Mean 271.4 15
Standard deviation 12.16 0.82

Table 27: Results of the GA for the industrial scale example.

Another analysis that can be made is comparing with CPS. CPS is not able to reach
the optimum in a reasonable time. Regardless, it is possible to let it run and stop to see
the best answer until a stipulated time. When CPS runs for 15 seconds, GA average time,
it cannot find any solution. When CPS ran for one hour (3600 seconds), the average cost
found was 518.

We can also observe the impact on the results when applying GA with LS. For a first
analysis, we maintained the same parameters previously determined for GA. We employed
the three local searches, all with a size of 3. The results from 10 runs are presented in
Table 28. The average cost experienced a reduction of a little over 5%, which, while not
exceptionally high, reflects a positive trend.

114

Total cost Run time(s)
Run 1 248 421
Run 2 276 423
Run 3 266 424
Run 4 277 417
Run 5 260 420
Run 6 254 425
Run 7 263 422
Run 8 242 420
Run 9 258 426
Run 10 255 419
Mean 259.9 421.7
Standard deviation 11.17 2.83

Table 28: Results of the GA with LS for the industrial scale example.

However, for this specific instance, a more detailed analysis reveals that the gain
cannot be significantly higher due to two specific jobs consistently being late, primarily
because of their small due dates. It was observed that local search reduces their tardiness
but does not eliminate it entirely, as production times and material handling already
surpass the due dates. We will not analyze this example in more detail here because, in
the next chapter, we detail a case study and its analysis.

The execution time surpassed 400 seconds. Although this is notably longer than GA,
it is still a reasonable duration, particularly when considering the scheduling of an entire
shift or production day, being less than 8 minutes of execution.

After the analysis conducted thus far, some questions have been raised. Firstly, we
observed that GA with LS requires significantly more execution time compared to GA
alone. Would run GA for the same duration as GA with LS yield better results? Secondly,
does the proximity of job due dates influence the efficiency of GA with LS compared to
GA alone? For instance, if jobs are distant from their due dates or are sure to be delayed,
can this variability affect the effectiveness of local search?

Six new instances were generated to derive conclusions on these two points, and their
main characteristics are presented in Table 29. The machines and configurations remain
the same as those of the instance introduced at the beginning of this section. This time,
we limited our analysis to three layout possibilities. Furthermore, some input values vary
from instance to instance, including due dates and the number of jobs. For the initial
two instances, job due dates are considered ’normal,’ implying they are neither overly
restrictive nor excessively distant. Instances 3 and 4 have very distant due dates, ensuring
no job will be late. The due dates for the last two instances are close, and we anticipate
that all jobs will be late.

115

Instance NJ NO NM NC NL
1 4 12,8,12,8 20 2,2,2,2,2,2,4,2,2,2,2,4,4,2,3,3,4,4,2,2 3
2 6 12,8,12,12,8,12 20 2,2,2,2,2,2,4,2,2,2,2,4,4,2,3,3,4,4,2,2 3
3 6 12,8,12,8,12,12 20 2,2,2,2,2,2,4,2,2,2,2,4,4,2,3,3,4,4,2,2 3
4 6 12,8,12,8,12,12 20 2,2,2,2,2,2,4,2,2,2,2,4,4,2,3,3,4,4,2,2 3
5 6 12,8,12,8,12,12 20 2,2,2,2,2,2,4,2,2,2,2,4,4,2,3,3,4,4,2,2 3
6 5 12,8,12,8,8 20 2,2,2,2,2,2,4,2,2,2,2,4,4,2,3,3,4,4,2,2 3

NJ: number of jobs; NO: number of operations per job; NM: number of machines; NC: number of
configuration per machine; NL: number of layouts.

Table 29: Main characteristics of the industrial instances.

The results, averaged over ten runs, are presented in Table 1. Each row corresponds
to an instance. The initial columns indicate costs and times obtained using the genetic
algorithm, followed by results from the genetic algorithm with local search (GA+LS), and
finally, results from the genetic algorithm without local search (GA 450) running for 450
seconds. The duration of 450 seconds was chosen as it denotes the average time between
the executions of GA+LS. Given that GA with LS has a considerably longer execution
time than GA alone, we aim to assess whether integrating local search is truly beneficial
or if extending the run time of GA alone could yield similar or better results.

The findings in Table 30 demonstrate the consistent superiority of GA+LS over GA,
even when the latter is allowed a 450-second runtime. Table 31 provides the distance
between GA (alone and running for 450 seconds) and GA+LS. In the first column, the
largest observed difference within the given intervals is 15%, with the smallest being 4%.
Moving to the second column, we note that the largest difference within the intervals
is 8%, while the smallest is 2%. Even if the difference decreases when GA runs for 450
seconds, it is still not superior to using LS. Addressing the second question about the
impact of due dates on the efficacy of LS, the conclusion is that LS remains relevant in all
scenarios. However, for the instances analyzed, the impact of LS is lower when we know
that the jobs will be late. While a more thorough analysis is a perspective for the future,
our current findings confirm the significance of LS in its existing form.

GA GA + LS GA 450
cost time(s) cost time(s) cost time(s)

1 352.6 11.2 320.5 327.8 339.6 450
2 655.4 20 570 505.7 615.8 450
3 511.3 16.8 481 502.1 500.5 450
4 327,7 16.7 315.1 500.5 321.5 450
5 1174.1 20.2 1105.5 496.3 1167.5 450
6 816.5 14.5 752.8 375.8 800.4 450

Table 30: Results of the GA and GA with local search for big instances.

116

% distance to GA+LS
GA GA 450

1 10% 6%
2 15% 8%
3 6% 4%
4 4% 2%
5 6% 6%
6 8% 6%

Table 31: Distance from GA+LS results to GA for big instances.

5.4.1 Conclusions

A new calibration was performed for the larger instances, considering that the inputs
to the problem are entirely different from the set of 20 small instances. This time, a larger
population size, number of generations, and mutation rate were considered. In the case of
large instances, it became evident that incorporating local search consumes significantly
more time than using GA alone. However, it was also demonstrated that even when
equalizing the execution time of the two methods, including local search remains beneficial.
Moreover, this holds irrespective of whether the jobs are close to their due dates or not.

5.5 Conclusions of the chapter

This work presents some modeling versions of process planning, layout, and scheduling
problems, which are sequential, partially sequential, and in an integrated way. Sequential
and partially sequential models can give good results in some cases, but in others, they
are completely far from optimum. This occurs because the problems have shared variables
treated separately in these cases. Also, some hypotheses are taken to manage the three
problems sequentially. Therefore, a good result for an individual problem does not
guarantee a good global result.

After proving the superiority of the integrated model, the following studies were made
only with it. Our combinatorial problem is huge, so the ILP method is time-consuming,
even for small instances. In the search for performance improvement, three exact methods
were compared: ILP, CP, and CPS. CPS was the best among them. The resolution times
were much lower than the others for the presented examples.

In any case, exact methods cannot solve real-size problems in a reasonable time.
Therefore the development of metaheuristics adapted to our problem was proposed. The
metaheuristics results for the small instances compared with the optimal values were
satisfactory.

117

For the industrial case, GA rapidly converges to a result with low variability. On the
other hand, GA with LS takes considerably more time, although it remains more efficient.
We can summarize the findings of this chapter as follows:

• The integrated model significantly outperforms the others when considering costs
exclusively.

• For small instances, regarding costs and distance from the optimum, the rankings
are as follows: integrated model, PS1 (PP → L + S), PS2 (PP + L → S), and
sequential model.

• The execution time of the integrated model is longer than that of the others using
exact methods, but this behavior would most likely not be repeated with metaheuris-
tics.

• Constraint programming with a strategy adapted to our problem is the most efficient
among the three exact methods analyzed.

• Exact methods are sensitive to increases in instance size, as expected.

• Metaheuristics found good results.

• Adding local search to the GA is beneficial in terms of cost and execution time.

118

Chapter 6

Case Study - Disassembly

Contents
6.1 Problem description . 120

6.2 Problem input data . 126

6.3 Numerical results . 130

6.4 Conclusions of the chapter . 139

In this chapter, we present a detailed case study to show the applicability of our
integrated model solved by the proposed genetic algorithm. Many studies in this field
focus on assembly and manufacturing issues. However, RMS are not limited to these areas;
they can also handle disassembly problems. This aspect is crucial for the circular economy,
for instance.

In Figure 35, the difference between the classical linear economy and the circular
economy can be seen. The dark blue line shows the linear model, including resource
extraction, manufacturing, use, and disposal. The circular model, represented by the
light blue arrows, aims to minimize initial extraction and keep products in circulation
through recycling, remanufacturing, or reusing. The goal is to extend, close, and regenerate
resource cycles, reducing the need for new raw materials and reducing waste production.
This approach emphasizes the use of materials that are durable, recyclable, and renewable
[140].

The disassembly process can be used at different stages of the circular economy based
on the product and its condition. Depending on their materials, disassembled product
parts are primarily reused if they are in good condition or recycled.

Many products, especially electronics, are disassembled for recycling at the end of
their life. Effectively managing the reuse or disposal of components has a significant
positive impact on environmental concerns. This fact has prompted global discussions on
introducing new laws and regulations to force reverse logistics in certain sectors. Even
without such laws, it is highly advisable for environmental and economic reasons.

119

Figure 35: Circular economy system diagram [3].

Disassembly operations require careful planning and cost-effective optimization,
similar to assembly problems [110]. Depending on the product and available technology, it
can be executed by human operators, robots, or a combination of both. It is comprehensible
that the responsibility for this process lies with the company, as products from different
companies have varying components and processes. This diversity makes it challenging
for a third party to handle the variability of the disassembly process of many enterprises
simultaneously. A company’s in-depth knowledge of its assembly process facilitates the
knowledge of its disassembly process. Additionally, the flexibility of systems can be a
powerful ally, as Reconfigurable Manufacturing Systems (RMS) can be implemented for
both assembly and disassembly purposes.

The initial section of this chapter focuses on defining the problem. Subsequently, we
will present all the data used and a numerical analysis of the example.

6.1 Problem description

In this section, we examine the disassembly process of a hand light, dividing it into
seven parts. Various process plans for this process are explored based on three different
precedence graphs. This process involves three operators and two robots, all of which can
be reconfigured. Both humans and machines have three possible configurations. These
will be explained hereafter. Additionally, the layout itself is reconfigurable, offering five
different possibilities.

Finding real-world data in the existing literature is challenging, especially regarding

120

detailed aspects like time and cost associated with reconfiguring layouts and material
handling. To address this gap, our analysis combines real and made-up data.

Figure 36 shows the hand light before any operation. The hand light’s structure
and potential disassembly sequences were outlined in a study by Tang et al. [130]. More
recently, He [59] utilized this example in their research. This product comprises seven
parts: battery, bulb, cover, glass, head housing, main housing, and spring, numbered from
1 to 7, as illustrated in Figure 37.

Figure 36: Assembled hand light (normal and section view).

Figure 37: Hand light’s parts.

Figure 38 illustrates the directed graph of feasible disassembly sequences as presented
in Tang et al. [130]. In the original study, the parts of the hand light were labeled with
letters; here, they are enumerated according to Figure 37. The first rectangle in Figure 38
represents the initial state, where the product has not yet been disassembled. Following

121

this, there are two possibilities. In the first scenario, the parts are divided into two sets:
one consisting of the cover, glass, bulb, and head housing, and the other with the battery,
spring, and main housing. The second possibility also separates the parts into two sets:
the first set contains only the cover and glass, while the second set contains the remaining
components. These disassembly options continue until all parts are disassembled, resulting
in seven sets, each containing a single part. It is important to note that the disassembly
needs to follow an order of precedence, e.g., disassembling the bulb before the cover/glass
is not allowed.

Figure 38: Possible disassembly sequences.

In his study, He [59] introduced a decomposition color graph, an alternative represen-
tation of the directed graph illustrating feasible disassembly sequences, building upon the
AND/OR graph outlined in Tang et al. [130]. He [59] identified three potential disassembly
schemes, having ten possible operations. Table 32 outlines the disassembly outcomes for
each operation. The first column lists the operations, the second column specifies the sets
to be disassembled, and the last column shows the result of the disassembly operation.

In the second column, there is always only one set, leading to two sets as each
operation represents a single disassembly step. For instance, Op1 and Op2 are applicable
only when the product has not yet been disassembled. After operation Op1, we have two
sets: one with parts 1, 6, and 7, and another with parts 2, 3, 4, and 5. After operation
Op2, we have one set containing parts 1, 2, 5, 6, and 7, and another set with parts 3 and

122

4. The same reasoning for the others.

Operation Before operation After operation
Op1 {1,2,3,4,5,6,7} {1,6,7},{2,3,4,5}
Op2 {1,2,3,4,5,6,7} {1,2,5,6,7},{3,4}
Op3 {2,3,4,5} {2,5},{3,4}
Op4 {1,2,5,6,7} {1,6,7},{2,5}
Op5 {1,2,5,6,7} {1,5,6,7},{2}
Op6 {3,4} {3},{4}
Op7 {2,5} {2},{5}
Op8 {1,5,6,7} {1,6,7},{5}
Op9 {1,6,7} {1},{6,7}
Op10 {6,7} {6},{7}

Table 32: Disassembly resulting from each operation.

To align the problem with our model, we converted the three potential schemes from
the decomposition color graph in [59] into three precedence graphs, as depicted in Figure
39. Each graph comprises six operations, corresponding to the edges in Figure 38. It is
necessary to traverse all six operations, progressively disassembling the product until it is
completely taken apart. Regardless of the chosen graph, the process always begins with
either operations 1 or 2, which are the initial disassembly possible steps (refer to Table
32).

Figure 39: Possible precedence graphs.

123

Figure 40: Illustrated precedence graph 1.

124

Figure 41: Illustrated precedence graph 2.

125

Figure 42: Illustrated precedence graph 3.

6.2 Problem input data

This section details all the data used in the case study. There is only one type of
hand light, but it can follow three different precedence graphs (Figure 39). For this reason,
we will assume three job types: A, B, and C, one for each graph. They comprise six
operations each.

In the context of this study, the term "machine" encompasses both human operators
and robots. Specifically, our study has three human operators and two robots. The
operators can perform all the required operations using the three distinct configurations.

126

The first configuration is used for operations 2, 3, 5, 6, and 7, during which operators
are required to wear protective gloves due to the involvement of glass (parts 4 and 2 of the
hand light). The second configuration is exclusive to operation 10, necessitating a special
tool to separate the spring from the main housing. The third configuration is employed
for the remaining operations: 1, 4, and 8, which separate the head housing from the main
housing, and operation 9, which removes the batteries.

The two robots used in this study are limited to executing basic operations, specifically
operations 2, 3, 6, and 9. They cannot unscrew components (operations 1, 4, and 8) and
are unsuitable for operations 5 and 7, which involve the light bulb. These operations
require careful inspection to determine if the bulbs are still functional. Additionally, the
robots are not equipped for operation 10.

The time taken by human operators to complete a task can vary, while the time for
the robots remains constant as we consider them to have identical capabilities. Table 33
shows the possible operations in each configuration for each machine. Machines M1, M2,
and M3 are humans, and machines M4 and M5 are robots. The first column indicates the
machine, the second column shows the operations that can be performed on configuration
1, then the operations for configuration 2, and finally the operations for configuration 3.

Machine Configuration 1 Configuration 2 Configuration 3
M1 Op2 Op3 Op5 Op6 Op7 Op10 Op1 Op4 Op8 Op9
M2 Op2 Op3 Op5 Op6 Op7 Op10 Op1 Op4 Op8 Op9
M3 Op2 Op3 Op5 Op6 Op7 Op10 Op1 Op4 Op8 Op9
M4 Op2 Op3 Op6 Op9
M5 Op2 Op3 Op6 Op9

Table 33: Operations that can be executed by each machine/configuration.

Consider disassembling 60 hand lights within a single shift. Due to logistical require-
ments, 15 products must be disassembled every hour. Therefore, the due date of the first
15 products is in the first hour, the next 15 in the second hour, and so forth until the
end of the morning. Failure to meet the due date results in a tardiness penalty of 0.001
monetary units per unit of time, as the parts of these products will need to be reassigned
to other transports.

Each machine has a specific duration for completing each operation. Operators
take longer than robots, but they can be reconfigured much faster than robots. Table 34
provides details about the time each machine takes to perform an operation in different
configurations. The first column lists the ten operations, and the subsequent columns
show the corresponding times. For example, the second column presents the time taken
by machine M1 in configuration 1 for each operation. If a machine or configuration cannot

127

perform a certain operation, we indicate the time as infinite. The processing times for
operators are derived from the data in Kim & Lee [79], while the processing times for
robots are based on He [59].

M1 M2 M3 M4 M5

M1[1] M1[2] M1[3] M2[1] M2[2] M2[3] M3[1] M3[2] M3[3] M4[1] M4[2] M4[3] M5[1] M5[2] M5[3]
Op1 ∞ ∞ 82 ∞ ∞ 70 ∞ ∞ 68 ∞ ∞ ∞ ∞ ∞ ∞
Op2 90 ∞ ∞ 92 ∞ ∞ 85 ∞ ∞ 16 ∞ ∞ 16 ∞ ∞
Op3 78 ∞ ∞ 89 ∞ ∞ 84 ∞ ∞ 16 ∞ ∞ 16 ∞ ∞
Op4 ∞ ∞ 90 ∞ ∞ 82 ∞ ∞ 72 ∞ ∞ ∞ ∞ ∞ ∞
Op5 67 ∞ ∞ 93 ∞ ∞ 78 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Op6 97 ∞ ∞ 82 ∞ ∞ 86 ∞ ∞ ∞ 31 ∞ ∞ 31 ∞
Op7 74 ∞ ∞ 55 ∞ ∞ 54 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Op8 ∞ ∞ 65 ∞ ∞ 55 ∞ ∞ 74 ∞ ∞ ∞ ∞ ∞ ∞
Op9 ∞ ∞ 52 ∞ ∞ 69 ∞ ∞ 72 ∞ ∞ 25 ∞ ∞ 25
Op10 ∞ 95 ∞ ∞ 88 ∞ ∞ 55 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 34: Operation times (time unit).

The processing times are not the only factors to consider; each operation also carries
a specific cost determined by the machine and configuration used. Details of these costs
can be found in Table 35.

M1 M2 M3 M4 M5

M1[1] M1[2] M1[3] M2[1] M2[2] M2[3] M3[1] M3[2] M3[3] M4[1] M4[2] M4[3] M5[1] M5[2] M5[3]
Op1 ∞ ∞ 25 ∞ ∞ 21 ∞ ∞ 20 ∞ ∞ ∞ ∞ ∞ ∞
Op2 27 ∞ ∞ 28 ∞ ∞ 26 ∞ ∞ 48 ∞ ∞ 48 ∞ ∞
Op3 23 ∞ ∞ 27 ∞ ∞ 25 ∞ ∞ 48 ∞ ∞ 48 ∞ ∞
Op4 ∞ ∞ 27 ∞ ∞ 25 ∞ ∞ 22 ∞ ∞ ∞ ∞ ∞ ∞
Op5 20 ∞ ∞ 28 ∞ ∞ 23 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Op6 29 ∞ ∞ 25 ∞ ∞ 26 ∞ ∞ ∞ 93 ∞ ∞ 93 ∞
Op7 22 ∞ ∞ 17 ∞ ∞ 16 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Op8 ∞ ∞ 20 ∞ ∞ 17 ∞ ∞ 22 ∞ ∞ ∞ ∞ ∞ ∞
Op9 ∞ ∞ 16 ∞ ∞ 21 ∞ ∞ 22 ∞ ∞ 65 ∞ ∞ 65
Op10 ∞ 29 ∞ ∞ 26 ∞ ∞ 17 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 35: Operation cost (cost unit).

The reconfiguration of machines involves tool changes. For operators, reconfiguration
times and costs are small, encompassing tasks such as putting on a glove. In contrast, for
robots, reconfiguration is more time-consuming and costly. It entails adjusting the tools
used by the robots or even replacing them. In both cases, this process can necessitate
some tests and adjustments. Table 36 shows the reconfiguration times and costs.

M1 M2 M3 M4 M5

Cost 5 5 5 30 30
Time 10 10 10 60 60

Table 36: Machine reconfiguration.

Regarding the layout, there are five available possibilities, as illustrated in Figure 43.
Reconfiguration occurs when a new layout reduces costs by altering the material handling

128

flow. This effortless adjustment is facilitated by the mobility of workstations and robots,
often utilizing Automated Guided Vehicle (AGV), enabling reconfiguration even midway
through the disassembly process. However, reconfiguring the layout involves additional
costs and time, as outlined in Table 37 and 38.

Figure 43: Layout set

Λ1 Λ2 Λ3 Λ4 Λ5

Λ1 0 17 30 21 24
Λ2 18 0 24 21 32
Λ3 23 23 0 25 19
Λ4 19 20 26 0 23
Λ5 20 23 19 31 0

Table 37: Layout reconfiguration costs.

Λ1 Λ2 Λ3 Λ4 Λ5

Λ1 0 35 67 51 59
Λ2 45 0 58 52 65
Λ3 54 54 0 60 48
Λ4 47 51 66 0 55
Λ5 52 57 47 63 0

Table 38: Layout reconfiguration times.

As a result, the material handling times fluctuate based on the chosen layout. Specific
material handling times are detailed in Table 39. The monetary cost of material handling
is determined by multiplying the distance between machines by a constant of 1 in this
case.

129

Layout 1
M1 M2 M3 M4 M5

M1 0 6 12 18 24
M2 6 0 6 12 18
M3 12 6 0 6 12
M4 18 12 6 0 6
M5 24 18 12 6 0

Layout 2
M1 M2 M3 M4 M5

M1 0 12 6 18 24
M2 18 0 6 6 18
M3 6 6 0 12 18
M4 18 6 12 0 18
M5 24 12 18 6 0

Layout 3
M1 M2 M3 M4 M5

M1 0 9 9 18 6
M2 9 0 21 9 6
M3 9 18 0 9 6
M4 15 9 9 0 6
M5 6 6 6 6 0

Layout 4
M1 M2 M3 M4 M5

M1 0 6 9 21 12
M2 6 0 9 12 24
M3 6 6 0 6 6
M4 18 12 9 0 6
M5 15 21 9 6 0

Layout 5
M1 M2 M3 M4 M5

M1 0 6 6 6 6
M2 6 0 9 18 9
M3 6 9 0 9 18
M4 6 15 9 0 9
M5 6 9 21 9 0

Table 39: Material handling times.

All the information provided in this section will serve as input data for solving the
problem.

6.3 Numerical results

In this section, the established case study is solved first using the GA. Similar to the
approach taken in the previous chapter, the initial step involves tuning the parameters
of the genetic algorithm for this specific problem. Once again, we employ a factorial
design of experiments technique with three levels per parameter. This results in a total
of 81 experiments (34 combinations) conducted ten times, leading to 810 runs for this
instance (81× 10). Table 40 presents the parameters in the first column, followed by their
corresponding nomenclature in the second column, and the tested levels.

130

LevelsParameters Notation 1 2 3
Population size pop 250 500 1000

Number of generations gen 250 500 1000
Crossover rate cross 0.5 0.8 1
Mutation rate mut 0.2 0.6 0.8

Table 40: Hand light GA parameters and their levels.

Figure 44 shows the main effects of each parameter on the cost when varied individ-
ually. Mainly, larger population sizes, numbers of generations, and mutation rates lead
to decreased costs, aligning with the objective function. The most substantial impact is
observed in the number of generations; when this parameter is set to 250, the results are
the poorest. For population and mutation parameters, the costs worsen at the last level.
However, it is important to note that this does not imply that higher values inherently lead
to worse outcomes. Based on the conducted experiments, the average cost was lower with
a population size of 500 and a mutation rate of 0,6 (analyzing each parameter individually).
This suggests that the variation between a population of 500 or 1000 or a mutation rate of
0.6 or 0.8 does not significantly influence the costs observed. Crossover exhibited the least
variability but also demonstrated that increasing this rate enhances the results.

Figure 44: Graph of the main effects on cost minimization (adjusted averages).

However, considering the overall picture is more important than analyzing each
parameter individually. Figure 45 indicates the optimal parameterization. When focusing
only on the cost and analyzing the data obtained, the best choice is:

• Population size: 500 individuals;

• Number of generations (stop criterion): 1000 generations;

• Crossover rate: 100%;

• Mutation rate: 80%.

131

Figure 45: Cost optimized diagram.

In the previous chapter, the application of the design of experiments focused exclu-
sively on cost. In this section, we extend the evaluation to include execution time, ranging
from approximately 20 to 6000 seconds.

Figure 46 illustrates the main effects on the execution time when each parameter
is varied individually. As anticipated, the execution time increases with the increase in
the value of each parameter. The most significant impact is observed with the increase in
population size, followed by the number of generations.

Figure 46: Graph of the main effects on time minimization (adjusted averages).

Undoubtedly, the best scenario involves using the lowest possible values for all
parameters to optimize time. Time assumes a secondary role in this context since the
primary goal is to minimize costs. Nevertheless, we can search for the best balance between
costs and execution time.

In the cost-optimized configuration, a population of 500 is favored over 1000, offering
an advantageous compromise. The number of generations stands as the second parameter
with the most significant impact. If the decision maker deems the calculation time
excessively high, reducing the number of generations can notably enhance execution time
without substantially degrading the cost. In the studied example, when considering the

132

simultaneous minimization of costs and execution times, the optimal parameters are (as
shown in Figure 47):

• Population size: 250 individuals;

• Number of generations (stop criterion): 500 generations;

• Crossover rate: 80%;

• Mutation rate: 60%.

To determine these parameters, we applied a weight of 2 to cost minimization and a
weight of 1 to execution time minimization.

Figure 47: Cost and runtime optimized diagram.

Parameter calibration is done only once for the same production process. It only
becomes necessary when significant variations occur, such as changing machines, introduc-
ing a new product, or designing a new assembly/disassembly line. The chosen parameters
heavily depend on the company’s specific needs, particularly the product family under
consideration. In some cases, calculation time is a critical factor that must be minimized.
In others, longer computation times are acceptable, especially for scheduling a bigger time
window (e.g., a monthly schedule). In our example, we selected parameters that balance
time and cost, considering the short planning period and a process with low added value.

Table 41 presents the results of 10 runs. The second column shows the costs found
in each run, and the last column shows the times. The first ten rows are each dedicated to
a run. The penultimate row shows the average result of the ten runs, and the last row

133

shows the standard deviation. We used the parameters set that balances cost and time
considerations (population = 250, number of generations = 500, crossover rate = 80%,
and mutation rate = 60%). The costs exhibit a standard deviation of around 5%. The
execution time has a standard deviation of approximately 2%. We can conclude that both
standard deviations are low, meaning that we have costs that do not vary much from
the average (no outlier either), and the time using the same parameters does not vary
significantly either.

Total cost Run time(s)
Run 1 17036 86
Run 2 17307 86
Run 3 18533 88
Run 4 17302 87
Run 5 16663 88
Run 6 16849 87
Run 7 16769 85
Run 8 18429 89
Run 9 18333 83
Run 10 19312 86
Mean 17653.3 86
Standard deviation 920.31 1.7

Table 41: Results of the GA for the example with 60 hand lights.

When we apply GA with LS search using the same parameters obtained above
(population = 250, generation = 500, crossover = 1, and mutation = 0.8) and incorporating
the initial local search, the LS during the execution of generations (every 100 generations),
and the final one, we obtain the values shown in Table 42. The values obtained demonstrate
an improvement in the average cost by approximately 10%. Although the execution time
increases by more than 20%, it remains extremely low, at less than two minutes. While
the 10% reduction in costs may not seem substantial, it holds significance for the industry.

134

Total cost Run time(s)
Run 1 15625 107
Run 2 16503 110
Run 3 15723 109
Run 4 16207 111
Run 5 15735 108
Run 6 15076 111
Run 7 16089 108
Run 8 16009 109
Run 9 15489 108
Run 10 16494 103
Mean 15895 108.4
Standard deviation 452.17 2.32

Table 42: Results of the GA with LS for the example with 60 hand lights.

As the example involving 60 hand lights is too large for graphical representation and
to present all the results, we have chosen to illustrate a smaller example with 12 hand
lights. The input values for production times and costs, machine reconfiguration, layout
reconfiguration, due date, material handling, and tardiness have been adjusted for this
more compact example. The updated data is provided in Appendix A.

Utilizing the parameters identified in the previous example with 60 hand lights
(population = 250, generation = 500, crossover = 0.8, and mutation = 0.6), Table 43
shows the results of 10 runs.

Total cost Run time(s)
Run 1 972 7
Run 2 996 7
Run 3 940 7
Run 4 891 7
Run 5 898 7
Run 6 1016 6
Run 7 954 8
Run 8 979 7
Run 9 948 7
Run 10 1030 7
Mean 962.4 7

Table 43: Results of the GA for the example with 12 hand lights.

The resulting scheduling of Run 1 is illustrated in Figure 48 in diagram format. The
figure presents when each operation is manufactured and on each machine/configuration,
with operations from the same job represented in the same color. Table 53, in Appendix

135

B, summarizes the key outputs of each operation, including the machine, configuration,
and layout used, along with their respective start and completion times.

For the GA with local search, we incorporate the three types of local search, and
the segment size is set to 5. Table 44 presents the results for 10 runs. In comparison
to the GA results, there is an improvement of more than 8% in costs, and the average
execution time increases by only 1 second. The resulting scheduling of Run 1 is illustrated
in Figure 49 in diagram format. Table 54, in Appendix C, summarizes the key outputs of
each operation, including the machine, configuration, and layout used, along with their
respective start and completion times.

Total cost Run time(s)
Run 1 818 9
Run 2 851 9
Run 3 920 8
Run 4 880 8
Run 5 849 8
Run 6 860 8
Run 7 898 8
Run 8 890 8
Run 9 966 8
Run 10 921 9
Mean 885.3 8.2

Table 44: Results of the GA with LS for the example with 12 hand lights.

136

F
ig

ur
e

48
:

G
ra

ph
ic

al
re

pr
es

en
ta

ti
on

of
th

e
sc

he
du

lin
g

fo
un

d
us

in
g

G
A

fo
r

12
ha

nd
lig

ht
s.

[H
]

137

F
ig

ur
e

49
:

G
ra

ph
ic

al
re

pr
es

en
ta

ti
on

of
th

e
sc

he
du

lin
g

fo
un

d
us

in
g

G
A

w
it

h
LS

fo
r

12
ha

nd
lig

ht
s.

[H
]

138

6.4 Conclusions of the chapter

In this chapter, a complete case study is analyzed. The first interesting point is that
the case study is not about producing a part family or the product assembly. Here, an
example of disassembly was presented, which makes it adapted to demonstrate that the
applicability of the RMS is vast and goes beyond what is usually found in the literature.
Moreover, it is not necessary to work with a 100% automated system (e.g., micro-factories).
It is possible to use RMS concepts in processes done by operators, making it feasible
to model manual and automatic processes in the same problem, which is common in
industries.

Another critical point is that the genetic algorithm can solve large problems in a
reasonable amount of time. The most time-consuming aspect is the initial calibration of
parameters, which is typically a one-time process. Recalibration becomes necessary only
with significant changes, such as adding or removing machines or introducing new products.
The chosen parameters directly align with the priorities of the studied production line.
For instance, in the automotive sector, cost reduction is the most important in line with
a weekly planning schedule, even if it requires more calculation time. This is due to the
sector’s high value-added nature, where minimizing costs, even by small percentages, holds
a significant economic impact.

Incorporating LS can enhance the obtained solutions, we observe a slightly over
8% improvement. In an industrial context, this percentage can translate into substantial
cost savings annually. Furthermore, adding LS did not lead to a substantial increase in
execution time.

139

Chapter 7

Conclusion and Perspectives

7.1 Conclusion

In today’s dynamic industrial landscape, marked by ever-evolving market demands
and heightened customer expectations, companies must adapt swiftly to sudden changes.
This adaptability is particularly crucial in light of unforeseen events that can disrupt
operations or fluctuations in customer demand. The search for a diverse range of products
at competitive prices, coupled with a growing demand for customized solutions and
shorter product life cycles, contributes significantly to the increasing variability in demand.
Industries must be proactive and responsive to these dynamics, employing strategies that
allow for rapid adjustments to production processes and resource allocation. Adapting
and thriving in a dynamic environment is crucial for staying competitive and meeting
customer expectations.

To adapt to this context, companies are exploring ways to enhance their responsiveness
and flexibility while maintaining cost-effectiveness. Adopting Reconfigurable Manufacturing
Systems (RMS) has emerged as a response to existing needs. These systems are designed
to quickly change their structure, allowing rapid adjustments to their capacity and
functionality. The changes involve reconfiguring both machines and the system as a whole.
One notable difference compared to other systems is the ease of rearranging the layout.

RMS have been extensively studied over the last two decades, primarily focusing on
optimizing production when utilizing these systems. In research on these systems, common
areas of study include planning, scheduling, system configuration, layout, product family
formation, and material handling [12]. Among these topics, product family formation differs
by specifically focusing on designing the system to ensure its suitability for a particular
family. The remaining subjects are interconnected. However, few studies consider these
problems in an integrated way.

Our work proposes an integration of all these interconnected elements, also giving
attention to the less commonly addressed aspects of layout and material handling. The aim
is to optimize resource allocation, considering several factors crucial for effective scheduling

140

in such systems.

Hence, this research aims to underscore the importance of addressing these challenges
globally, optimizing process planning, scheduling, and layout configuration in an RMS for
mass-customized products while reducing manufacturing costs. Additionally, we aim to
demonstrate the development of efficient methods for tackling these intricately connected
issues.

The three problems studied in this work are NP-hard [49, 78, 104]. However, we
observed a gap in the literature regarding the complexity analysis of RMS optimization
problems. To address this gap, we explored the complexity of scheduling problems involving
single and parallel machines, with objectives including minimizing makespan and total
(weighted) completion time. Our findings revealed that the majority of these problems
were NP-hard. However, the problems concerning a single machine minimizing total
(weighted) completion time and parallel machines minimizing total weighted completion
time remain open for further analysis.

To achieve these research goals, the initial phase involved formalizing the problem
of cost minimization, encompassing production costs, layout reconfiguration, machine
reconfiguration, material handling, and tardiness. Subsequently, we developed four new
models to optimize these RMS optimization problems (scheduling, process planning, and
layout). The first model is fully integrated. The second is sequential, with no integration
between the three problems. The last two are partially sequential and, hence, with some
integration. After the model formulation, the next step was studying the performance of
the four models and identifying whether the integrated model performed better than the
sequential model, as expected. We demonstrated the clear superiority of the integrated
model in terms of costs, while the other models were superior in terms of execution time
for small instances. It is important to note that the comparison was made using an exact
solution method, which does not guarantee a similar discrepancy in execution time if we
use other methods, such as metaheuristics. Using an exact method, we can observe that
the integrated model achieves a global optimum while solving the problems simultaneously.
On the other hand, the other models only reach individual optimums for each sub-problem,
which then serve as input for the following sub-problem. As a result, the costs are the
same or frequently worse than those of the integrated method. For this reason, we opted
to employ only the integrated model for the subsequent work, given its better results.

After the problem formulation and choosing the model, the next phase is proposing
efficient solving methods. We proceeded to evaluate some solving methods, beginning
with a comparison of three exact methods: Integer Linear Programming (ILP), Constraint
Programming (CP), and Constraint Programming with a defined search strategy (CPS).

141

Since these methods guarantee optimal solutions, the analysis focused on their computation
times. Notably, CPS demonstrated a marked superiority over the others, highlighting
the potential of employing a well-designed strategy to significantly reduce the search
space. However, despite this advantage, CPS is not the most suitable method for solving
large instances. At the outset of this research, we considered hybridizing CPS with other
methods. For instance, we initially considered incorporating it into the genetic algorithm
to evaluate the fitness function. As the study progressed, we realized it may not yield
good execution times. Instead, we opted to employ a greedy algorithm for this purpose.
Nonetheless, the possibility of integrating CPS with other methods remains open for future
work.

Since the three problems areNP-hard, we created, for large instances, a metaheuristic
specifically designed for our problem. Given the similar population evolution logic shared
by many evolutionary algorithms, we chose to concentrate on Genetic Algorithm (GA),
which has proven effective in various studies within the field. Initially, we developed the
GA, and subsequently, we incorporated Local Search (LS) techniques to enhance the
results. GA exhibited good outcomes in terms of both costs and times, the GA combined
with LS yielding even better results. The improvements achieved with this final method
were approximately 10% of total cost savings for the presented examples. This percentage
can translate into a significant competitive advantage within an industrial context.

To demonstrate the applicability of our algorithms, we created a case study involving
hand light disassembly. This case study is relevant for many reasons. Firstly, it underscores
the capability of RMS and our model to handle the coexistence of human operators and
machines. Secondly, while most authors focus only on parts production or product assembly
problems, we showed our model’s versatility by applying it to disassembly. Thirdly, we
expanded the discussions addressing environmental concerns, which usually center around
optimizing gas and waste emissions. We outlined the importance of RMS in the scope of
product life cycles and the circular economy. Lastly, we have demonstrated the efficiency
of our algorithms in managing large-scale instances.

7.2 Open Issues and Perspectives

In terms of future research, there are several potential avenues to explore. We can
further study the open problems from Chapter 3: the single-machine scheduling problem
with machine reconfiguration to minimize the total (weighted) completion time and the
two parallel machines scheduling problem with machine reconfiguration to minimize the
total completion time.

Regarding the model, new variables can be incorporated, mainly to address the

142

specific needs of each industry. For example, product quality is a critical consideration for
some industries, while others prioritize environmental concerns. Additionally, production
balancing may be a key aspect in specific sectors. The model proposed in this work is
general, allowing adaptations to meet the specific needs of individual industrial applications.

Regarding solving methods, alternative approaches could be developed. One possibil-
ity is to explore hybrid methods, such as combining CPS with other techniques. Depending
on the application, employing new metaheuristics or considering stochastic methods could
also be valuable.

Concerning the undertaken work, certain aspects warrant further development and
examination. In all presented examples, we applied the three proposed types of local search
simultaneously, each with the same size. Similar to how we tuned the parameters of the
genetic algorithm, conducting a statistical study to determine the optimal parameterization
of LS could enhance our performance.

Another consideration is that we retained the parameters determined for the genetic
algorithm when applying it in combination with local search. Local search introduces
more significant variability during the algorithm’s execution, potentially allowing for a
reduction in population size and mutation rate parameters. If such adjustments can be
made without compromising quality and cost, the execution times of the genetic algorithm
with local search could be reduced.

In the case study, adding the local search to the GA did not significantly increase
execution times, which can be attributed to two factors. Firstly, we set the local search
size to a value with a limited impact (the growth in size exponentially increases the
execution time of the local search). Secondly, the system’s flexibility in our example was
not excessively high. Each machine could execute only a few operations, which limits the
search space during the local search. When the system is too flexible, our developed local
search may not be the most suitable and potentially very time-consuming.

Furthermore, an important aspect would be implementing the study in a real-world
system, evaluating its performance, and identifying necessary adaptations, encompassing
both the model and the resolution methods.

143

Bibliography

1. Abbasi, M. & Houshmand, M. Production planning and performance optimization of
reconfigurable manufacturing systems using genetic algorithm. International Journal
of Advanced Manufacturing Technology 54, 373–392 (2010).

2. Abellan-Nebot, J. V., Liu, J. & Romero Subiron, F. Design of multi-station man-
ufacturing processes by integrating the stream-of-variation model and shop-floor
data. Journal of Manufacturing Systems 30, 70–82 (2011).

3. Agarwal, R. Discover the Advantages of Asset Management in enabling Circular
Economy for Boosting Resource Efficiency and Catalyzing Change 2023. blogs.
sap.com/2023/06/08/discover- the- advantages- of- asset- management-

in-enabling-circular-economy-for-boosting-resource-efficiency-and-

catalyzing-change/.
4. Ameer, M. & Dahane, M. Reconfigurability improvement in Industry 4.0: a hybrid

genetic algorithm-based heuristic approach for a co-generation of setup and process
plans in a reconfigurable environment. Journal of Intelligent Manufacturing 34,
1445–1467 (2021).

5. Angelova, M. & Pencheva, T. Tuning genetic algorithm parameters to improve
convergence time. International Journal of Chemical Engineering 2011 (2011).

6. Arnarson, H., Yu, H., Olavsbråten, M. M., Bremdal, B. A. & Solvang, B. To-
wards smart layout design for a reconfigurable manufacturing system. Journal of
Manufacturing Systems 68, 354–367 (2023).

7. Asghar, E., Zaman, U. K. U., Baqai, A. A. & Homri, L. Optimum machine capabili-
ties for reconfigurable manufacturing systems. International Journal of Advanced
Manufacturing Technology 95, 4397–4417 (2018).

8. Baker, K. Introduction to sequencing and scheduling (1974).
9. Barrera-Diaz, C. A., Nourmohammadi, A., Smedberg, H., Aslam, T. & Ng, A. H. C.

An Enhanced Simulation-Based Multi-Objective Optimization Approach with Knowl-
edge Discovery for Reconfigurable Manufacturing Systems. Mathematics 11 (2023).

10. Bensmaine, A., Dahane, M. & Benyoucef, L. A new heuristic for integrated process
planning and scheduling in reconfigurable manufacturing systems. International
Journal of Production Research 52, 3583–3594 (2014).

11. Bensmaine, A., Dahane, M. & Benyoucef, L. A non-dominated sorting genetic algo-
rithm based approach for optimal machines selection in reconfigurable manufacturing
environment. Computers and Industrial Engineering 66, 519–524 (2012).

144

blogs.sap.com/2023/06/08/discover-the-advantages-of-asset-management-in-enabling-circular-economy-for-boosting-resource-efficiency-and-catalyzing-change/
blogs.sap.com/2023/06/08/discover-the-advantages-of-asset-management-in-enabling-circular-economy-for-boosting-resource-efficiency-and-catalyzing-change/
blogs.sap.com/2023/06/08/discover-the-advantages-of-asset-management-in-enabling-circular-economy-for-boosting-resource-efficiency-and-catalyzing-change/
blogs.sap.com/2023/06/08/discover-the-advantages-of-asset-management-in-enabling-circular-economy-for-boosting-resource-efficiency-and-catalyzing-change/

12. Bortolini, M., Galizia, F. G. & Mora, C. Reconfigurable manufacturing systems:
Literature review and research trend. Journal of Manufacturing Systems 49, 93–106
(2018).

13. Bruccoleri, M., Amico, M. & Perrone, G. Distributed intelligent control of excep-
tions in reconfigurable manufacturing systems. International Journal of Production
Research 41, 1393–1412 (2003).

14. Bruccoleri, M., Pasek, Z. J. & Koren, Y. Operation management in reconfigurable
manufacturing systems: Reconfiguration for error handling. International Journal
of Production Economics 100, 87–100 (2006).

15. Brucker, P. Scheduling Algorithms isbn: 9783540205241. https://books.google.
fr/books?id=XO8fRT1yr58C (Springer Berlin Heidelberg, 2004).

16. Brucker, P. Scheduling Algorithms isbn: 9783540695158 (2004).
17. Bruno, J. & Coffman, E. G. Scheduling Independent Tasks To Reduce Mean Finishing

Time. Communications of the ACM 17, 382–387. issn: 15577317 (1974).
18. Campos Sabioni, R., Daaboul, J. & Le Duigou, J. An integrated approach to optimize

the configuration of mass-customized products and reconfigurable manufacturing
systems. International Journal of Advanced Manufacturing Technology, 141–163
(2021).

19. Campos Sabioni, R., Daaboul, J. & Le Duigou, J. Concurrent optimisation of mod-
ular product and Reconfigurable Manufacturing System configuration: a customer-
oriented offer for mass customisation. International Journal of Production Research
60, 2275–2291 (2020).

20. Campos Sabioni, R., Daaboul, J. & Le Duigou, J. Joint optimization of prod-
uct configuration and process planning in Reconfigurable Manufacturing Systems.
International Journal of Industrial Engineering and Management 13, 58–75 (2022).

21. Castañé, G. et al. The ASSISTANT project: AI for high level decisions in manufac-
turing. International Journal of Production Research (2022).

22. Chaube, A., Benyoucef, L. & Tiwari, M. K. An adapted NSGA-2 algorithm based
dynamic process plan generation for a reconfigurable manufacturing system. Journal
of Intelligent Manufacturing 23, 1141–1155 (2010).

23. Choi, Y. C. & Xirouchakis, P. A holistic production planning approach in a recon-
figurable manufacturing system with energy consumption and environmental effects.
International Journal of Computer Integrated Manufacturing 28, 379–394 (2014).

24. Cook, S. A. The complexity of theorem-proving procedures. Proceedings of the
Annual ACM Symposium on Theory of Computing, 151–158 (1971).

25. Cormen, T. H., Leiserson, C. E., Revest, R. L. & Stein, C. Introduction to algorithms
isbn: 9783540241669 (2022).

145

https://books.google.fr/books?id=XO8fRT1yr58C
https://books.google.fr/books?id=XO8fRT1yr58C

26. Crawford, L. S. et al. Online reconfigurable machines. AI Magazine 34, 73–88
(2013).

27. Dang, T. A. T., Bosch-Mauchand, M., Arora, N., Prelle, C. & Daaboul, J. Electro-
magnetic modular Smart Surface architecture and control in a microfactory context.
Computers in Industry 81, 152–170 (2016).

28. Dean, W. Computational complexity theory (2015).
29. Deif, A. M. & Elmaraghy, W. Investigating optimal capacity scalability schedul-

ing in a reconfigurable manufacturing system. International Journal of Advanced
Manufacturing Technology 32, 557–562 (2007).

30. Doh, H. H., Yu, J. M., Kim, J. S., Lee, D. H. & Nam, S. H. A priority scheduling
approach for flexible job shops with multiple process plans. International Journal
of Production Research 51, 3748–3764 (2013).

31. Dou, J., Li, J. & Su, C. Bi-objective optimization of integrating configuration
generation and scheduling for reconfigurable flow lines using NSGA-II. International
Journal of Advanced Manufacturing Technology 86, 1945–1962 (2015).

32. Dou, J., Li, J., Xia, D. & Zhao, X. A multi-objective particle swarm optimisation
for integrated configuration design and scheduling in reconfigurable manufacturing
system. International Journal of Production Research 59, 3975–3995 (2021).

33. Dou, J., Su, C. & Zhao, X. Mixed integer programming models for concurrent
configuration design and scheduling in a reconfigurable manufacturing system.
Concurrent Engineering Research and Applications 28, 32–46 (2020).

34. Eguia, I., Molina, J. C., Lozano, S. & Racero, J. Cell design and multi-period
machine loading in cellular reconfigurable manufacturing systems with alternative
routing. International Journal of Production Research 55, 2775–2790 (2016).

35. Eguia, I., Racero, J., Guerrero, F. & Lozano, S. Cell formation and scheduling of
part families for reconfigurable cellular manufacturing systems using Tabu search.
Simulation 89, 1056–1072 (2013).

36. Eguía, I., Villa, G. & Lozano, S. Efficiency Assessment of Reconfigurable Manufac-
turing Systems. Procedia Manufacturing 11, 1027–1034 (2017).

37. ElMaraghy, H. A. Flexible and reconfigurable manufacturing systems paradigms.
Flexible Services and Manufacturing Journal 17, 261–276 (2006).

38. Fan, J., Zhang, C., Liu, Q., Shen, W. & Gao, L. An improved genetic algorithm for
flexible job shop scheduling problem considering reconfigurable machine tools with
limited auxiliary modules. Journal of Manufacturing Systems 62, 650–667 (2022).

39. Galán, R. Hybrid heuristic approaches for scheduling in reconfigurable manufacturing
systems. Studies in Computational Intelligence 128, 211–253 (2008).

146

40. Gao, S., Daaboul, J. & Le Duigou, J. Layout and scheduling optimization problem
for a reconfigurable manufacturing system. International Journal of Industrial
Engineering and Management 12, 174–186 (2021).

41. Gao, S., Daaboul, J. & Le Duigou, J. Process Planning , Scheduling , and Layout Op-
timization for Multi-Unit Mass-Customized Products in Sustainable Reconfigurable
Manufacturing System. sustainability 13, 13323 (2021).

42. Garbie, I. H. A methodology for the reconfiguration process in manufacturing
systems. Journal of Manufacturing Technology Management 25, 891 –915 (2014).

43. Garey, M. R. & Johnson, D. S. Computers and Intractability: A Guide to the Theory
of NP-Completeness 1979.

44. Garey, M. & Johnson, D. Strong NP-completeness results: motivation, examples,
and implications. J. Assoc. Comput. Mach. 25, 499–508 (1978).

45. Gašpar, T., Kovač, I. & Ude, A. Optimal layout and reconfiguration of a fixturing
system constructed from passive Stewart platforms. Journal of Manufacturing
Systems 60, 226–238 (2021).

46. Ghanei, S. & Algeddawy, T. An Integrated Multi-Period Layout Planning and
Scheduling Model for Sustainable Reconfigurable Manufacturing Systems. Journal
of Advanced Manufacturing Systems 19, 31–64 (2020).

47. Ghobakhloo, M. et al. Identifying industry 5.0 contributions to sustainable de-
velopment: A strategy roadmap for delivering sustainability values. Sustainable
Production and Consumption 33, 716–737 (2022).

48. Gonnermann, C., Hashemi-Petroodi, S. E., Thevenin, S., Dolgui, A. & Daub, R.
A skill- and feature-based approach to planning process monitoring in assembly
planning. International Journal of Advanced Manufacturing Technology 122, 2645–
2670 (2022).

49. Guan, X., Dai, X., Qiu, B. & Li, J. A revised electromagnetism-like mechanism for
layout design of reconfigurable manufacturing system. Computers and Industrial
Engineering 63, 98–108 (2012).

50. Guo, D. et al. Synchronization-oriented reconfiguration of FPAI under graduation
intelligent manufacturing system in the COVID-19 pandemic and beyond. Journal
of Manufacturing Systems 60, 893–902 (2021).

51. Gupta, A., Jain, P. K. & Kumar, D. Part family formation for reconfigurable
manufacturing system using K-means algorithm. International Journal of Internet
Manufacturing and Services 3, 244–262 (2014).

52. Haddou Benderbal, H. & Benyoucef, L. Machine layout design problem under product
family evolution in reconfigurable manufacturing environment: a two-phase-based
AMOSA approach. International Journal of Advanced Manufacturing Technology
104, 375–389 (2019).

147

53. Haddou Benderbal, H., Dahane, M. & Benyoucef, L. Flexibility-based multi-objective
approach for machines selection in reconfigurable manufacturing system (RMS)
design under unavailability constraints. International Journal of Production Research
55, 6033–6051 (2017).

54. Haddou Benderbal, H., Dahane, M. & Benyoucef, L. Modularity assessment in
reconfigurable manufacturing system (RMS) design: an Archived Multi-Objective
Simulated Annealing-based approach. International Journal of Advanced Manufac-
turing Technology 94, 729–749 (2017).

55. Han, K. H., Bae, S. M., Choi, S. H. & Lee, G. Parameter-driven rapid virtual
prototyping of flexible manufacturing system. International Journal of Mathematics
and Computers in Simulation 6, 387–396 (2012).

56. Han, S., Chang, T. W., Hong, Y. S. & Park, J. Reconfiguration decision-making of
IoT based reconfigurable manufacturing systems. Applied Sciences (Switzerland)
10, 4807 (2020).

57. Harrison, R. & Colombo, A. W. Collaborative automation from rigid coupling towards
dynamic reconfigurable production systems 1, 184–192 (IFAC, 2005).

58. Hassan, N. & Bright, G. A Hybrid reconfigurable computer-integrated manufacturing
cell for the production of mass customised parts. South African Journal of Industrial
Engineering 23, 139–150 (2012).

59. He, J. Effective models and methods for stochastic disassembly line problems Thèse
de doctorat PhD thesis (Université Paris-Saclay, 2020).

60. Hees, A. & Reinhart, G. Approach for production planning in reconfigurable manu-
facturing systems. Procedia CIRP 33, 70–75 (2015).

61. Hopcroft, J. E., Motwani, R. & Ullman, J. D. Introduction to automata theory,
languages, and computation. PEARSON Addison Wesley (2006).

62. Horn, W. A. Technical Note—Minimizing Average Flow Time with Parallel Machines.
Operations Research 21, 846–847. issn: 0030-364X (1973).

63. Hromkovič, J. Algorithms for hard problems: Introduction to combinatorial optimiza-
tion, randomization, approximation, heuristics (2013).

64. Hussain, K., Mohd Salleh, M. N., Cheng, S. & Shi, Y. Metaheuristic research: a
comprehensive survey. Artificial Intelligence Review 52, 2191–2233 (2019).

65. IBM. ILOG CP Optimizer - Solve detailed scheduling problems using CP Optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-

cp-optimizer.
66. IBM. What does CPLEX Optimization Studio do? https://www.ibm.com/docs/

en/icos/20.1.0?topic=cplex-what-does-do.
67. Ivanov, D. et al. A control approach to scheduling flexibly configurable jobs with

dynamic structural-logical constraints. IISE Transactions 53, 21–38 (2020).

148

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-cp-optimizer
https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-what-does-do
https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-what-does-do

68. Jouglet, A. & Carlier, J. Dominance rules in combinatorial optimization problems.
European Journal of Operational Research 212, 433–444 (2011).

69. Katoch, S., Chauhan, S. S. & Kumar, V. A review on genetic algorithm: past, present,
and future 5, 8091–8126 (2021).

70. Kazemisaboor, A., Aghaie, A. & Salmanzadeh, H. A simulation-based optimisation
framework for process plan generation in reconfigurable manufacturing systems
(RMSs) in an uncertain environment. International Journal of Production Research
60, 2067–2085 (2021).

71. Khan, A. S. Problem-Specific Heuristics for Diagnosability and Inventory Analysis
in a Reconfigurable Manufacturing System. IEEE Access 10, 70032–70052 (2022).

72. Khan, A. S., Homri, L., Dantan, J. Y. & Siadat, A. Modularity-based quality
assessment of a disruptive reconfigurable manufacturing system-A hybrid meta-
heuristic approach. International Journal of Advanced Manufacturing Technology
115, 1421–1444 (2021).

73. Khan, A. S., Khan, R., Saleem, W., Salah, B. & Alkhatib, S. Modeling and Opti-
mization of Assembly Line Balancing Type 2 and E (SLBP-2E) for a Reconfigurable
Manufacturing System. Processes 10 (2022).

74. Khan, I. S., Ghafoor, U. & Zahid, T. Meta-heuristic approach for the development of
alternative process plans in a reconfigurable production environment. IEEE Access
9, 113508–113520 (2021).

75. Khanna, K. & Kumar, R. Reconfigurable manufacturing system: a state-of-the-art
review. Benchmarking 26, 2608–2635 (2019).

76. Khettabi, I., Benyoucef, L. & Amine, M. Sustainable reconfigurable manufacturing
system design using adapted multi-objective evolutionary-based approaches. The
International Journal of Advanced Manufacturing Technology 115, 3741–3759 (2021).

77. Khettabi, I., Benyoucef, L. & Amine Boutiche, M. Sustainable multi-objective process
planning in reconfigurable manufacturing environment: adapted new dynamic NSGA-
II vs New NSGA-III. International Journal of Production Research 60, 6329–6349
(2022).

78. Khezri, A., Haddou Benderbal, H. & Benyoucef, L. Towards a sustainable recon-
figurable manufacturing system (SRMS): multi-objective based approaches for
process plan generation problem. International Journal of Production Research 59,
4533–4558 (2020).

79. Kim, H.-W. & Lee, D.-H. A sample average approximation algorithm for selective
disassembly sequencing with abnormal disassembly operations and random operation
times. The International Journal of Advanced Manufacturing Technology 96, 1341–
1354 (2018).

149

80. Koren, Y. General RMS Characteristics. Comparison with Dedicated and Flexible
Systems. Reconfigurable manufacturing systems and transformable factories, 27–45
(2006).

81. Koren, Y. et al. Reconfigurable Manufacturing Systems: Introduction. CIRP annals
48, 527–540 (1999).

82. Kumar, M., Husain, M., Upreti, N. & Gupta, D. Genetic Algorithm: Review and
Application. International Journal of Information Technology and Knowledge Man-
agement 2, 451–454 (2020).

83. Kumar, R., Kumar, S. & Tiwari, M. K. An expert enhanced coloured fuzzy Petri
net approach to reconfigurable manufacturing systems involving information delays.
International Journal of Advanced Manufacturing Technology 26, 922–933 (2005).

84. Labetoulle, J., Lawler, E., Lenstra, J. & Rinnooy Kan, A. Preemptive scheduling of
uniform machines subject to release dates. Progress in combinatorial optimization
(Waterloo Ont., 1982), Academic Press, 245–261 (1984).

85. Lambora, A., Gupta, K. & Chopra, K. Genetic Algorithm - A Literature Review.
International conference on machine learning, big data, cloud and parallel computing
(COMITCon), 380–384 (2019).

86. Landers, R. G., Min, B. K. & Koren, Y. Reconfigurable machine tools. CIRP Annals
- Manufacturing Technology 50, 269–274 (2001).

87. Lawler, E. A pseudo-polynomial algorithm for sequencing jobs to minimize total
tardiness. Annals of Discrete Mathematics 1, 331–342 (1977).

88. Leng, J. et al. Digital twin-driven rapid reconfiguration of the automated manufac-
turing system via an open architecture model. Robotics and Computer-Integrated
Manufacturing 63, 101895 (2020).

89. Lenstra, J., Rinnooy Kan, A. & Brucker, P. Complexity of machine scheduling
problems. Annals of Discrete Mathematics 1, 343–362 (1977).

90. Li, J. W. Simulation study of coordinating layout change and quality improvement
for adapting job shop manufacturing to CONWIP control. International Journal of
Production Research 48, 879–900 (2010).

91. Liaee, M. M. & Emmons, H. Scheduling families of jobs with setup times. Interna-
tional Journal of Production Economics 51, 165–176. issn: 0925-5273 (1997).

92. Liles, D. H. & Huff, B. L. A computer based production scheduling architecture
suitable for driving a reconfigurable manufacturing system. Computers and Industrial
Engineering 19, 1–5 (1990).

93. Mabkhot, M. M., Al-Ahmari, A. M., Salah, B. & Alkhalefah, H. Requirements of
the smart factory system: A survey and perspective. Machines 6. issn: 20751702
(2018).

150

94. Maganha, I., Silva, C. & Ferreira, L. The layout design in reconfigurable manufactur-
ing systems: a literature review. International Journal of Advanced Manufacturing
Technology 105, 683–700 (2019).

95. Manafi, E., Tavakkoli-Moghaddam, R. & Mahmoodjanloo, M. A centroid opposition-
based coral reefs algorithm for solving an automated guided vehicle routing problem
with a recharging constraint. Applied Soft Computing 128, 109504 (2022).

96. Maniraj, M., Pakkirisamy, V. & Parthiban, P. Optimisation of process plans in
reconfigurable manufacturing systems using ant colony technique. International
Journal of Enterprise Network Management 6, 125–138 (2014).

97. Marschall, M. et al. Defining the Number of Mobile Robotic Systems Needed for
Reconfiguration of Modular Manufacturing Systems via Simulation. Machines 10,
316 (2022).

98. Massimi, E., Khezri, A., Haddou Benderbal, H. & Benyoucef, L. A heuristic-based
non-linear mixed integer approach for optimizing modularity and integrability in
a sustainable reconfigurable manufacturing environment. International Journal of
Advanced Manufacturing Technology 108, 1997–2020 (2020).

99. Mehrabi, M. G., Ulsoy, A. G. & Koren, Y. Reconfigurable manufacturing systems:
key to future manufacturing. Journal of Intelligent Manufacturing 11, 403–419.
issn: 09565515 (2000).

100. Mirjalili, S. Genetic Algorithms. Evolutionary Algorithms and Neural Networks,
43–55. issn: 21971773 (2019).

101. Mitchell, M. An introduction to genetic algorithms. MIT press (1998).
102. Mo, F. et al. A framework for manufacturing system reconfiguration and optimisation

utilising digital twins and modular artificial intelligence. Robotics and Computer-
Integrated Manufacturing 82, 102524 (2023).

103. Mohapatra, P., Benyoucef, L. & Tiwari, M. K. Integration of process planning and
scheduling through adaptive setup planning: A multi-objective approach. Interna-
tional Journal of Production Research 51, 7190–7208. issn: 00207543 (2013).

104. Mokhtari, H. Research on group search optimizers for a reconfigurable flow shop
sequencing problem. Neural Computing and Applications 27, 1657–1667 (2015).

105. Monma, C. L. & Potts, C. N. On the Complexity of Scheduling with Batch Setup
Times. Operations Research 37, 798–804. issn: 0030364X, 15265463. http://www.
jstor.org/stable/171025 (2022) (1989).

106. Musharavati, F. & Hamouda, A. M. S. Simulated annealing with auxiliary knowledge
for process planning optimization in reconfigurable manufacturing. Robotics and
Computer-Integrated Manufacturing 28, 113–131 (2012).

151

http://www.jstor.org/stable/171025
http://www.jstor.org/stable/171025

107. Musharavati, F. & Hamouda, A. S. M. Enhanced simulated-annealing-based algo-
rithms and their applications to process planning in reconfigurable manufacturing
systems. Advances in Engineering Software 45, 80–90 (2012).

108. Naderi, B. & Azab, A. Production scheduling for reconfigurable assembly systems:
Mathematical modeling and algorithms. Computers and Industrial Engineering 162,
107741 (2021).

109. Oke, A. O., Abou-El-Hossein, K. & Theron, N. J. The design and development
of a reconfigurable manufacturing system. South African Journal of Industrial
Engineering 22, 121–132. issn: 2224-7890 (2011).

110. Ong, S. K., Chang, M. M. L. & Nee, A. Y. C. Product disassembly sequence plan-
ning: state-of-the-art, challenges, opportunities and future directions. International
Journal of Production Research 59, 3493–3508 (2021).

111. Oztemel, E. & Gursev, S. Literature review of Industry 4.0 and related technologies.
Journal of Intelligent Manufacturing 31, 127–182 (2020).

112. Park, J. W., Shin, M. & Kim, D. Y. An Extended Agent Communication Framework
for Rapid Reconfiguration of Distributed Manufacturing Systems. IEEE Transactions
on Industrial Informatics 15, 3845–3855 (2019).

113. Prasad, D. & Jayswal, S. C. Fuzzy logic based scheduling of the product families
in reconfigurable manufacturing systems. Songklanakarin Journal of Science and
Technology 43, 1071–1077 (2021).

114. Prasad, D. & Jayswal, S. C. Reconfigurability consideration and scheduling of
products in a manufacturing industry. International Journal of Production Research
56, 6430–6449 (2017).

115. Rahman, A. A. A., Adeboye, O. J., Tan, J. Y., Salleh, M. R. & Rahman, M. A. A.
An Optimization Approach for Predictive-Reactive Job Shop Scheduling of Re-
configurable Manufacturing Systems. Jordan Journal of Mechanical and Industrial
Engineering 16, 793–809 (2022).

116. Raidl, G. R., Puchinger, J. & Blum, C. Handbook of Metaheuristics (2010).
117. Rehman, A. U. An approach to assess robustness of a reconfigurable manufacturing

system. International Journal of Industrial and Systems Engineering 33, 542–557
(2019).

118. Rehman, A. U. & Subash Babu, A. Manufacturing competitiveness assessment for
business excellence. International Journal of Business Excellence 1, 231–261 (2008).

119. Rehman, A. U. & Subash Babu, A. The evaluation of manufacturing systems using
concordance and disconcordance properties. International Journal of Services and
Operations Management 5, 326–349 (2009).

152

120. Renna, P. & Ambrico, M. Design and reconfiguration models for dynamic cellu-
lar manufacturing to handle market changes. International Journal of Computer
Integrated Manufacturing 28, 170–186 (2015).

121. Reza Abdi, M. Layout configuration selection for reconfigurable manufacturing
systems using the fuzzy AHP. International Journal of Manufacturing Technology
and Management 17, 149–165 (2009).

122. Rinnooy Kan, A. Machine sequencing problem: classification, complexity and com-
putation (The Hague, 1976).

123. Rossi, F., Van Beek, P. & Walsh, T. Constraint programming. Foundations of
Artificial Intelligence 3, 181–211 (2008).

124. Roughgarden, T. Beyond worst-case analysis. Communications of the ACM 62,
88–96. issn: 15577317 (2019).

125. Ruiz-Torres, A. J., Paletta, G. & Adenso-Díaz, B. Hybrid two stage flowshop
scheduling with secondary resources based on time buckets. International Journal
of Production Research 60, 1954–1972 (2021).

126. Sallez, Y., Berger, T. & Bonte, T. The concept of “safety bubble” for reconfigurable
assembly systems. Manufacturing Letters 24, 77–81 (2020).

127. Shabaka, A. I. & Elmaraghy, H. A. Generation of machine configurations based on
product features. International Journal of Computer Integrated Manufacturing 20,
355–369 (2007).

128. Smith, W. E. Various optimizers for single-stage production. Naval Research Logistics
Quarterly 3, 59–66 (1956).

129. Tan, W. & Khoshnevis, B. Integration of process planning and scheduling - a review.
Journal of Intelligent Manufacturing 11, 51–63 (1998).

130. Tang, Y., Zhou, M. C., Zussman, E. & Caudill, R. Disassembly modeling, planning,
and application. Journal of Manufacturing Systems 21, 200–217 (2002).

131. Touzout, F. A. & Benyoucef, L. Multi-objective sustainable process plan generation
in a reconfigurable manufacturing environment: exact and adapted evolutionary
approaches. International Journal of Production Research 57, 2531–2547 (2018).

132. Touzout, F. & Benyoucef, L. Multi-objective multi-unit process plan generation in
a reconfigurable manufacturing environment: a comparative study of three hybrid
metaheuristics. International Journal of Production Research 57, 7520–7535 (2019).

133. Um, J, Suh, S.-H. & Stroud, I. STEP-NC machine tool data model and its applica-
tions. International Journal of Computer Integrated Manufacturing 29, 1058–1074
(2016).

134. Vahedi-Nouri, B., Tavakkoli-Moghaddam, R., Hanzálek, Z. & Dolgui, A. Workforce
planning and production scheduling in a reconfigurable manufacturing system facing
the COVID-19 pandemic. Journal of Manufacturing Systems 63, 563–574 (2022).

153

135. Vavrík, V. et al. Design of manufacturing lines using the reconfigurability principle.
Mathematics 8 (2020).

136. Wallace, M. Practical applications of constraint programming. Constraints 1, 139–
168. issn: 13837133 (1996).

137. Wang, L., Zhu, B., Wang, Q. & Zhang, Y. Modeling of hot stamping process
procedure based on finite state machine (FSM). International Journal of Advanced
Manufacturing Technology 89, 857–868 (2017).

138. Wang, Y., Zhang, G., Wang, J., Liu, P. & Wang, N. Reconfigurable Machine Tool
Design for Box-Type Part Families (2021).

139. Wei, X., Yuan, S. & Ye, Y. Optimizing facility layout planning for reconfigurable man-
ufacturing system based on chaos genetic algorithm. Production and Manufacturing
Research 7, 109–124 (2019).

140. Williams, I. D. & Shittu, O. S. Development of Sustainable Electronic Products,
Business Models and Designs Using Circular Economy Thinking. Detritus 21, 45–54.
issn: 26114135 (2022).

141. Xia, T., Xi, L., Pan, E. & Ni, J. Reconfiguration-oriented opportunistic maintenance
policy for reconfigurable manufacturing systems. Reliability Engineering and System
Safety 166, 87–98 (2017).

142. Xiaowen, X., Beirong, Z. & Wei, X. Configuration optimization method of reconfig-
urable manufacturing systems. Research Journal of Applied Sciences, Engineering
and Technology 6, 1389–1393 (2013).

143. Xie, N., Li, A. & Xue, W. Cooperative optimization of reconfigurable machine
tool configurations and production process plan. Chinese Journal of Mechanical
Engineering 25, 982–989 (2012).

144. Yang, J., Liu, F., Dong, Y., Cao, Y. & Cao, Y. Multiple-objective optimization of
a reconfigurable assembly system via equipment selection and sequence planning.
Computers and Industrial Engineering 172, 108519 (2022).

145. Yang, S., Wang, J., Xin, L. & Xu, Z. Real-time and concurrent optimization of
scheduling and reconfiguration for dynamic reconfigurable flow shop using deep
reinforcement learning. Journal of Manufacturing Science and Technology 40, 243–
252 (2023).

146. Yang, S. & Xu, Z. Intelligent scheduling and reconfiguration via deep reinforcement
learning in smart manufacturing. International Journal of Production Research 60,
373–392 (2021).

147. Yazdani, M. A., Khezri, A. & Benyoucef, L. Process and production planning for
sustainable reconfigurable manufacturing systems (SRMSs): multi-objective exact
and heuristic-based approaches. International Journal of Advanced Manufacturing
Technology 119, 4519–4540 (2022).

154

148. Ye, H. & Liang, M. Simultaneous modular product scheduling and manufacturing
cell reconfiguration using a genetic algorithm. Journal of Manufacturing Science
and Engineering, Transactions of the ASME 128, 984–995 (2006).

149. Yelles-Chaouche, A. R., Gurevsky, E., Brahimi, N. & Dolgui, A. Reconfigurable man-
ufacturing systems from an optimisation perspective: a focused review of literature.
International Journal of Production Research 59, 6500–6418 (2020).

150. Yu, J. M. et al. Input sequencing and scheduling for a reconfigurable manufactur-
ing system with a limited number of fixtures. International Journal of Advanced
Manufacturing Technology 67, 157–169 (2013).

151. Zhan, R. et al. Configuring a seru production system to match supply with volatile
demand. Applied Intelligence, 12–20 (2022).

152. Zhang, D. Z., Anosike, A. & Lim, M. K. Dynamically integrated manufacturing
systems (DIMS) - A multiagent approach. IEEE Transactions on Systems, Man,
and Cybernetics Part A: Systems and Humans 37, 824–850 (2007).

153. Zhao, X., Wang, J. & Luo, Z. A stochastic model of a reconfigurable manufactur-
ing system - Part 2: Optimal configurations. International Journal of Production
Research 38, 2829–2842 (2000).

154. Zhao, X., Wang, J. & Luo, Z. A stochastic model of a reconfigurable manufacturing
system Part 1: A framework. International Journal of Production Research 38,
2273–2285 (2000).

155

Appendices

7.2.1 Appendice A

M1 M2 M3 M4 M5

M11 M12 M13 M21 M22 M23 M31 M32 M33 M41 M42 M43 M51 M52 M53
Op1 ∞ ∞ 27 ∞ ∞ 23 ∞ ∞ 23 ∞ ∞ ∞ ∞ ∞ ∞
Op2 30 ∞ ∞ 31 ∞ ∞ 28 ∞ ∞ 15 ∞ ∞ 15 ∞ ∞
Op3 26 ∞ ∞ 30 ∞ ∞ 28 ∞ ∞ 15 ∞ ∞ 15 ∞ ∞
Op4 ∞ ∞ 30 ∞ ∞ 27 ∞ ∞ 24 ∞ ∞ ∞ ∞ ∞ ∞
Op5 22 ∞ ∞ 31 ∞ ∞ 26 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Op6 32 ∞ ∞ 27 ∞ ∞ 29 ∞ ∞ ∞ 13 ∞ ∞ 13 ∞
Op7 25 ∞ ∞ 18 ∞ ∞ 18 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Op8 ∞ ∞ 22 ∞ ∞ 18 ∞ ∞ 25 ∞ ∞ ∞ ∞ ∞ ∞
Op9 ∞ ∞ 17 ∞ ∞ 23 ∞ ∞ 24 ∞ ∞ 9 ∞ ∞ 9
Op10 ∞ 32 ∞ ∞ 29 ∞ ∞ 18 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 45: Operation time (time unit).

M1 M2 M3 M4 M5

M11 M12 M13 M21 M22 M23 M31 M32 M33 M41 M42 M43 M51 M52 M53
Op1 ∞ ∞ 8 ∞ ∞ 7 ∞ ∞ 7 ∞ ∞ ∞ ∞ ∞ ∞
Op2 9 ∞ ∞ 9 ∞ ∞ 9 ∞ ∞ 11 ∞ ∞ 11 ∞ ∞
Op3 8 ∞ ∞ 8 ∞ ∞ 8 ∞ ∞ 11 ∞ ∞ 11 ∞ ∞
Op4 ∞ ∞ 9 ∞ ∞ 8 ∞ ∞ 7 ∞ ∞ ∞ ∞ ∞ ∞
Op5 7 ∞ ∞ 9 ∞ ∞ 8 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Op6 10 ∞ ∞ 8 ∞ ∞ 9 ∞ ∞ ∞ 15 ∞ ∞ 15 ∞
Op7 7 ∞ ∞ 6 ∞ ∞ 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Op8 ∞ ∞ 7 ∞ ∞ 6 ∞ ∞ 7 ∞ ∞ ∞ ∞ ∞ ∞
Op9 ∞ ∞ 5 ∞ ∞ 7 ∞ ∞ 7 ∞ ∞ 11 ∞ ∞ 11
Op10 ∞ 10 ∞ ∞ 9 ∞ ∞ 6 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 46: Operation cost (cost unit).

M1 M2 M3 M4 M5

Cost 2 2 2 5 5
Time 3 3 3 9 9

Table 47: Machine reconfiguration.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

Due date 500 500 500 500 500 500 500 500 500 500 500 500

Table 48: Due dates.

156

Layout 1
M1 M2 M3 M4 M5

M1 0 2 4 6 8
M2 2 0 2 4 6
M3 4 2 0 2 4
M4 6 4 2 0 2
M5 8 6 4 2 0

Layout 2
M1 M2 M3 M4 M5

M1 0 4 2 6 8
M2 6 0 2 2 6
M3 2 2 0 4 6
M4 6 2 4 0 6
M5 8 4 6 2 0

Layout 3
M1 M2 M3 M4 M5

M1 0 3 3 6 2
M2 3 0 7 3 2
M3 3 6 0 3 2
M4 5 3 3 0 2
M5 2 2 2 2 0

Layout 4
M1 M2 M3 M4 M5

M1 0 2 3 7 4
M2 2 0 3 4 8
M3 2 2 0 2 2
M4 6 4 3 0 2
M5 5 7 3 2 0

Layout 5
M1 M2 M3 M4 M5

M1 0 2 2 2 2
M2 2 0 3 6 3
M3 2 3 0 3 6
M4 2 5 3 0 3
M5 2 3 7 3 0

Table 49: Material handling times.

Λ1 Λ2 Λ3 Λ4 Λ5

Λ1 0 6 10 7 8
Λ2 6 0 8 7 11
Λ3 8 8 0 8 6
Λ4 6 7 9 0 8
Λ5 7 8 6 10 0

Table 50: Layout reconfiguration cost.

Λ1 Λ2 Λ3 Λ4 Λ5

Λ1 0 7 13 13 16
Λ2 9 0 14 12 16
Λ3 14 14 0 16 10
Λ4 11 13 18 0 14
Λ5 13 15 9 18 0

Table 51: Layout reconfiguration time.

MH cost 2
Tardiness penalty 1

Table 52: Material handling cost to be multiplied by MH time and tardiness penalty.

157

7.2.2 Appendice B

Machine Configuration Sequence Layout Stat time Completion Time

J1

O1 1 3 31

2

257 284
O2 2 1 13 398 428
O3 2 1 25 428 455
O4 3 1 14 495 513
O5 2 3 43 372 395
O6 1 2 15 460 492

J2

O1 1 1 7

2

59 89
O2 3 1 44 176 202
O3 1 1 17 89 121
O4 3 3 67 229 254
O5 5 3 9 257 266
O6 3 2 68 350 368

J3

O1 5 1 32

2

13 28
O2 2 3 69 30 57
O3 5 2 49 59 72
O4 2 1 37 149 167
O5 2 3 46 74 97
O6 2 2 70 460 489

J4

O1 3 3 35

2

205 228
O2 4 1 16 287 302
O3 5 2 45 460 473
O4 3 1 51 329 347
O5 4 3 55 428 437
O6 3 2 8 440 458

J5

O1 1 1 26

2

13 43
O2 2 1 50 194 225
O3 2 1 61 257 284
O4 1 3 19 311 333
O5 5 3 62 345 354
O6 3 2 52 414 432

J6

O1 3 1 10

2

13 41
O2 3 3 1 98 122
O3 5 2 11 363 376
O4 3 1 27 287 305
O5 3 3 56 149 173
O6 2 2 47 311 340

J7

O1 3 3 64

2

126 149
O2 4 1 20 311 326
O3 5 2 59 376 389
O4 3 1 34 393 411
O5 4 3 36 414 423
O6 3 2 58 458 476

J8

O1 3 1 53

2

41 69
O2 3 1 38 69 95
O3 2 1 28 167 194
O4 2 3 22 126 144
O5 1 3 48 284 301
O6 1 2 57 336 368

J9

O1 4 1 71

2

126 141
O2 1 3 54 196 226
O3 5 2 29 167 180
O4 1 1 12 229 254
O5 5 3 33 311 320
O6 2 2 65 340 369

J10

O1 1 3 5

2

169 196
O2 3 1 72 257 285
O3 4 2 60 336 349
O4 3 1 39 311 329
O5 5 3 63 287 296
O6 3 2 40 372 390

J11

O1 4 1 2

2

196 211
O2 2 1 41 225 256
O3 5 2 30 389 402
O4 2 3 3 287 305
O5 4 3 23 363 372
O6 1 2 66 428 460

J12

O1 4 1 24

2

74 89
O2 2 3 42 97 124
O3 5 2 21 126 139
O4 1 1 6 141 166
O5 5 3 18 336 345
O6 1 2 4 372 404

Table 53: Outputs of example 1.

158

7.2.3 Appendice C

Machine Configuration Sequence Layout Stat time Completion Time

J1

O1 3 3 67

4

19 42
O2 4 1 37 234 249
O3 2 1 43 396 423
O4 1 1 55 347 372
O5 1 3 1 94 111
O6 2 2 45 426 455

J2

O1 4 1 31

4

219 234
O2 1 1 19 372 394
O3 4 2 69 297 310
O4 1 3 44 440 462
O5 1 3 23 462 479
O6 3 2 13 481 499

J3

O1 5 1 49

4

77 92
O2 1 3 25 189 219
O3 5 2 5 161 174
O4 3 1 33 419 437
O5 2 3 68 252 275
O6 3 2 46 324 342

J4

O1 1 3 32

4

46 73
O2 4 1 27 204 219
O3 2 1 70 369 396
O4 3 1 41 401 419
O5 1 3 56 77 94
O6 3 2 26 440 458

J5

O1 5 1 15

4

92 107
O2 1 1 50 161 183
O3 5 2 42 137 150
O4 1 3 57 401 423
O5 1 3 61 423 440
O6 2 2 14 455 484

J6

O1 4 1 20

4

45 60
O2 3 3 52 137 161
O3 3 1 7 105 134
O4 1 1 38 247 272
O5 1 3 58 292 309
O6 1 2 62 312 344

J7

O1 1 3 2

4

19 46
O2 2 1 34 219 249
O3 2 1 17 324 351
O4 2 1 64 351 369
O5 1 3 71 141 158
O6 3 2 59 188 206

J8

O1 4 1 63

4

19 34
O2 2 1 35 77 108
O3 3 1 9 45 74
O4 1 3 47 111 133
O5 2 3 60 298 321
O6 3 2 51 458 476

J9

O1 3 1 36

4

77 105
O2 3 3 39 161 185
O3 4 2 18 310 323
O4 3 1 65 209 227
O5 4 3 53 341 350
O6 3 2 66 380 398

J10

O1 2 3 4

4

19 42
O2 2 1 40 159 189
O3 2 1 72 189 216
O4 1 1 21 222 247
O5 1 3 8 275 292
O6 3 2 54 298 316

J11

O1 4 1 3

4

189 204
O2 3 1 22 227 253
O3 4 2 28 284 297
O4 3 3 16 256 281
O5 4 3 29 332 341
O6 3 2 6 344 362

J12

O1 5 1 24

4

16 31
O2 2 3 10 111 138
O3 2 1 30 46 73
O4 2 1 48 141 159
O5 2 3 11 275 298
O6 3 2 12 362 380

Table 54: Outputs of example 2.

159

160

	PDT BARROS GARCIA Isabel
	Soutenue le 12 juin 2024

	Manuscrit VD Isabel Barros Garcia
	Acknowledgements
	Abstract
	Résumé
	Acronyms
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Manufacturing systems
	Reconfigurable manufacturing systems
	Optimization problems in RMS: scheduling, process planning, and layout
	Scheduling
	Process planning
	Layout design
	Scheduling and process planning
	Scheduling and layout
	Process planning and layout
	Scheduling, process planning, and layout

	Literature gaps
	Conclusions of the chapter

	Problem Description and Mathematical Models
	Problem description
	Modeling approaches
	Integrated model
	Sequential model : PP L S
	Partial sequential model : PP L + S
	Partial sequential model : PP + L S
	Conclusions of the chapter

	Complexity
	Computational complexity theory
	Class P
	Class NP
	Class NP-Complete
	Class NP-Hard

	Scheduling problem complexity with reconfigurable machines
	Problem description
	Properties
	The special case of null reconfiguration duration times
	Solving the total weighted completion time problem
	Solving the makespan problem
	Complexity of the general one-machine problem
	Parallel machines

	Conclusions of the chapter

	Solving methods
	Exact Methods
	Integer linear programming
	Constraint programming
	Constraint programming with a defined search strategy
	Conclusions

	Metaheuristics
	Genetic algorithm
	Genetic algorithm with local search
	Conclusions

	Conclusions of the chapter

	Numerical Results
	Comparing the models: sequential, partial sequential, and integrated
	Conclusions

	Exact methods
	Conclusions

	Metaheuristics
	Genetic algorithm
	Genetic algorithm with local search
	Conclusions

	Industrial applicability
	Conclusions

	Conclusions of the chapter

	Case Study - Disassembly
	Problem description
	Problem input data
	Numerical results
	Conclusions of the chapter

	Conclusion and Perspectives
	Conclusion
	Open Issues and Perspectives

	Bibliography
	Appendices
	Appendice A
	Appendice B
	Appendice C

