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Résumé | Abstract

Résumé Le sujet de l’exposition aux champs électromagnétiques a fait l’objet
d’une grande attention à la lumière du déploiement actuel du réseau cellulaire de
cinquième génération (5G). Malgré cela, la reconstruction précise du champ électro-
magnétique à travers une région reste difficile en raison d’un manque de données
suffisantes. Les mesures in situ présentent un grand intérêt, mais leur viabilité est
limitée, ce qui rend difficile la compréhension complète de la dynamique du champ.
Malgré le grand intérêt des mesures localisées, il existe encore des régions non testées
qui les empêchent de fournir une carte d’exposition complète. La recherche a exploré
des stratégies de reconstruction à partir d’observations provenant de certains sites
localisés ou de capteurs répartis dans l’espace, en utilisant des techniques basées sur
la géostatistique et les processus gaussiens. En particulier, des initiatives récentes se
sont concentrées sur l’utilisation de l’apprentissage automatique et de l’intelligence
artificielle à cette fin. Pour surmonter ces problèmes, ce travail propose de nou-
velles méthodologies pour reconstruire les cartes d’exposition au Electromagnetic
Field (EMF) dans une zone urbaine spécifique en France. L’objectif principal est
de reconstruire les cartes d’exposition aux ondes électromagnétiques à partir de
quelques données de capteurs répartis dans l’espace. Nous avons proposé deux
méthodologies basées sur l’apprentissage automatique pour estimer l’exposition aux
ondes électromagnétiques. Pour la première méthode, le problème de la reconstruc-
tion de l’exposition est défini comme une tâche de traduction d’image à image.
Dans un premier temps, les données du capteur sont converties en une image et
l’image de référence correspondante est générée à l’aide d’un simulateur basé sur le
traçage de rayons. Nous avons proposé un réseau accusatoire génératif conditionnel
(Conditional Generative Adversarial Network (cGAN)) conditionné par la topolo-
gie de l’environnement pour estimer les cartes d’exposition à l’aide de ces images.
Le modèle est entraîné sur des images de cartes de capteurs tandis qu’un environ-
nement est donné comme entrée conditionnelle au modèle cGAN. Cela nous permet
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d’estimer ou de reconstruire les cartes d’exposition EMF de manière dynamique
lorsque les données des capteurs sont acquises toutes les deux heures. En outre,
la cartographie du champ électromagnétique basée sur le Generative Adversarial
Network est comparée au krigeage simple. Les résultats montrent que la méthode
proposée produit des estimations précises et constitue une solution prometteuse pour
la reconstruction des cartes d’exposition.

Cependant, la production de données de référence est une tâche complexe car elle
implique de prendre en compte le nombre de stations de base actives de différentes
technologies et de différents opérateurs, dont la configuration du réseau est inconnue,
par exemple les puissances et les faisceaux utilisés par les stations de base. De plus,
l’évaluation de ces cartes demande du temps et de l’expertise. Pour répondre à ces
questions, nous avons défini le problème comme une tâche d’imputation de données
manquantes. La méthode que nous proposons tient compte de l’entraînement d’un
réseau neuronal infiniment large pour estimer l’exposition aux champs électromagné-
tiques. Nous avons dérivé un kernel de tangente neuronale pour un réseau neuronal
infiniment large afin de compléter la matrice et d’estimer l’exposition aux champs
électromagnétiques à partir d’un ensemble épars de valeurs mesurées par des cap-
teurs dans un environnement urbain. La précision de cette approche découle d’une
caractéristique préalable qui saisit la relation entre les coordonnées dans la matrice
cible, ce qui s’apparente à un apprentissage semi-supervisé. Il s’agit d’une solution
prometteuse pour la reconstruction des cartes d’exposition, qui ne nécessite pas de
grands ensembles d’apprentissage. La méthode proposée est comparée à d’autres
approches d’apprentissage automatique basées sur les réseaux UNet et les réseaux
adversaires génératifs conditionnels, et les résultats montrent que l’approche pro-
posée peut reconstruire les cartes d’exposition EMF sans utiliser un grand ensemble
d’apprentissage.

Mots-clefs Exposition aux champs électromagnétiques, réseaux adversaires générat-
ifs conditionnels, réseau neuronal à largeur infinie, neuronal tangent kernel.
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Abstract The topic of electromagnetic field exposure has received a great deal of
attention in light of the current rollout of the fifth-generation (5G) cellular network.
Despite this, precise reconstruction of the electromagnetic field across a region is
still difficult due to a lack of sufficient data. In-situ measurements have high inter-
est, but their viability is constrained, making it difficult to fully understand field
dynamics. Despite the high interest in localized measures, there are still untested
regions that prevent them from providing a complete exposure map. Research has
explored reconstruction strategies using observations from certain localized sites or
spatially distributed sensors using techniques based on geostatistics and Gaussian
processes. Notably, recent initiatives have focused on utilizing machine learning
and artificial intelligence for this goal. To overcome these issues, This work pro-
poses novel methodologies to reconstruct EMF exposure maps in a specific urban
area in France. The main objective is to reconstruct EMF exposure maps from
a few spatially distributed sensors. We have proposed two machine learning based
methodologies to estimate EMF exposure. In the first method, the problem of expo-
sure reconstruction is defined as image to image translation task. Initially, the sensor
data is converted into an image and the corresponding ground truth image is gener-
ated using a ray tracing based simulator. We have proposed a conditional generative
adversarial network (cGAN) conditioned on environment topology to estimate expo-
sure maps using these images. The model is trained on sensor map images while an
environment topology is given as conditional input as an image to the cGAN model.
This allows us to estimate or reconstruct EMF exposure maps dynamically when
sensor data is acquired every two hours. In addition, the conditional Generative
Adversarial Network based electromagnetic field mapping is compared with simple
kriging. Results show that the proposed method produces accurate estimates and
is a promising solution for exposure map reconstruction.

However, generating ground truth data is a complex task since it involves taking
into account the number of active base stations of different technologies and opera-
tors, whose network configuration is unknown, for example, powers and beams used
by the base stations. Moreover, it takes time and expertise to evaluate these maps.
Therefore, using ground truth data to infer exposure map need time and expertise
to asses. In our second methodology, we have defined the exposure reconstruction
problem as a missing data imputation task. Our proposed methodology takes into
account training an infinitely wide neural network to estimate the EMF exposure.
We derived a Neural tangent kernel for an infinitely wide neural network to per-
form matrix completion and estimate electromagnetic field (EMF) exposure from a
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sparse set of sensor-measured values in an urban environment. The accuracy of this
approach stems from a feature prior that captures the relationship between coordi-
nates within the target matrix, akin to semi-supervised learning. It is a promising
solution for exposure map reconstruction, which does not require large training sets.
The proposed method is compared with other machine learning approaches based on
UNet and conditional generative adversarial networks and results show that the pro-
posed approach can reconstruct EMF exposure maps without using a large training
set.

Keywords EMF exposure, conditional generative adversarial networks, infinite
width neural network, neural tangent kernel.
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General Introduction

Context

With the increasing use of wireless communication facilities, we live in a permanent
Electromagnetic Field (EMF) that has induced concern and risk perception despite
existing regulations. The people in charge of networks’ deployment, the ones who
check the compliance of EMF exposure to safety limits are facing such questions.
The assessment of exposure requires specific equipment or simulation tools that can
be complex to operate, therefore increasing the gap between laypeople and experts.
The 5G deployment, which is just starting, reinforces these issues bringing new
uncertainties resulting from the ever-increasing band used and the beam-forming
introduced by massive Multiple-Input and Multiple-Output (MIMO).

Today, EMF monitoring is carried out using measurement campaigns. These in
situ measurements are of great interest but they cannot be performed everywhere
for capturing the dynamics of the field. Taking advantage of progress in connected
devices technologies, the exposure assessment has been investigated using connected
sensors. Recently, wireless sensors, autonomous in energy, have been designed and
proposed. Associated in networks, these sensors are of great interest since they can
grab the exposure’s temporal variations; nevertheless, since they are still localized
they cannot, alone, provide an exposure mapping because of unsampled locations.
Reconstruction using measurements localized in some specific places has been in-
vestigated using methods based on geo-statistic and Gaussian processes. Recently,
works have been carried out using artificial intelligence and machine learning. These
works have been performed using simulations taking into account information that
is available through databases (like the position of the base stations) as well as drive
testing. Since these works dealt with simulations, confrontation with measures will
require an adaptation of the method to increase the accuracy and take into account

1



2 General Introduction

specific properties of the Electro Magnetic (EM) field.

Motivation

In wireless communication systems, in order to respond to the perception of risks
related to EMF exposure and allocate radio resources, the estimation of the received
power and exposure map is an essential task and a challenge. In recent years, ex-
posure measurement methods have evolved significantly, providing researchers with
new opportunities to quantify exposures with greater precision and accuracy. The
Métropole Européenne de Lille (MEL), a public institution for inter-municipal coop-
eration in France showed much interest in EMF exposure maps for the city of Lille,
France, to know if it is well under the regulatory limit, and funded this project. This
thesis introduces novel methods for EMF exposure map reconstruction from sparse
sensor measurement data and reviews and evaluates different exposure measurement
methods used in environmental health research, with a focus on their strengths, lim-
itations, and applications.

In this thesis, the following challenges are addressed:

1. EMF exposure map reconstruction with generative models: With the
ongoing cellular network (5G) deployment, electromagnetic field exposure has
become a critical concern. However, measurements are scarce, and accurate
EMF reconstruction in a geographic region remains challenging. In an urban
environment, EMF exposure map reconstruction from sparse sensor data is
critical because of the limitations of measurement points. Moreover, environ-
ment topology plays a big role in propagation characteristics. Therefore, these
issues need to be addressed for the accurate reconstruction of EMF exposure
maps in an urban area using a generative model.

2. EMF exposure map reconstruction by matrix completion: As we men-
tioned, the lack of measurements makes it difficult to estimate an electromag-
netic field accurately in a specific urban area. Moreover, using a ground truth
full exposure map of a specific area is difficult to find in reality. When large
quantities of data are missing, exposure map reconstruction techniques con-
struct these maps from a collection of measurements from spatially distributed
sensors. Therefore, there is a need for exposure map reconstruction techniques
without using a ground truth or full exposure map which is proposed in this
technique.
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The research conducted for this thesis is introduced in this chapter. Section 1.1
states the context. Existing methods for exposure map estimation are described in

Section 1.2. The contributions to exposure map reconstruction are discussed in
Section 1.3, Lastly, Section 1.4 provides the dissertation’s framework.
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1.1 Context

EMF exposure from wireless communication, including 5G technology, is a topic of
ongoing research and debate among scientists and policymakers. While some studies
suggest that high levels of EMF exposure can be harmful to human health, others
suggest that the levels emitted by 5G technology are well within safety limits. How-
ever, concerns remain about the potential long-term effects of prolonged exposure to
EMF radiation in general and 5G in particular, especially for vulnerable populations
such as children and pregnant women. To address these concerns, regulatory agencies
have established safety guidelines, and manufacturers are required to ensure their
products comply with these standards before they can be sold to the public. EMF
exposure protection limits have been proposed by the International Commission
on Non-Ionizing Radiation Protection (ICNIRP) [132] and the IEEE-International
Committee on Electromagnetic Society (IEEE-ICES) [78]. These limits, composed
of fundamental limitations and reference values, are established to prevent any ad-
verse health effects due to EMF exposure. Due to their practicality, conservative
reference levels are frequently utilized. To avoid any overexposure, the directive
2013/35/EU [139], which is based in part on ICNIRP [5] and IEEE-ICES [119, 77],
calls for monitoring the employees exposure to EMF. Under the European Directive
2013/35/EU, reference levels are utilized as action values.

1.1.1 Radio Frequency Electromagnetic Fields

The electromagnetic spectrum is divided into two categories: ionizing and non-
ionizing radiation, which are distinguished by their physical and natural impacts.
EMFs produced by the interaction of electric and magnetic fields [169] as illustrated
in Figure 1.1.

Ionizing radiation refers to high-energy radiation that has enough energy to re-
move tightly bound electrons from atoms, thereby creating ions. This process of
ionization can lead to significant chemical and biological effects, making ionizing
radiation potentially harmful to living organisms and materials. The main types of
ionizing radiation are Alpha Particles, Beta particles, Gamma particles, X-rays, etc.

Non-ionizing radiation refers to a type of electromagnetic radiation that has lower
energy levels than ionizing radiation and lacks the capability to remove tightly
bound electrons from atoms, thereby not causing ionization. Non-ionizing radia-
tion is generally considered to be less harmful than ionizing radiation and some
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common sources are: Radiofrequency (RF) Radiation, Microwave Radiation, Ultra-
violet (UV) Radiation (Lower Energy), etc. Ionizing radiation is generated by the
release of electrons from atomic structures, causing harm to the Deoxyribonucleic
Acid (DNA), while non-ionizing radiation causes molecules to vibrate [99]. In this
thesis, we will focus on non-ionizing radiation.

Figure 1.1: Wave propagation in the presence of magnetic and electric field vibrations

Either the electric field strength (E), which is expressed in Volt per meter (V/m),
or the power flux density (S), which can be expressed in Watt per square meter -
(W/m2), can be used to determine the intensity of EMFs. Eq. (1.1)’s formula
can be used to transform these two units into one another. A physical constant
that describes a characteristic of wave propagation through the air, the free space
impedance, or Z0, has a value of 377 Ω [99]. Eq. (1.1) shows a quadratic connection
between the two measurement scales, E and S.

E =
√
S × Z0 and S = E2/Z0. (1.1)

In general, there are two types of EMFs: natural sources, like the earth’s static
field, and man-made sources, including the release of Radio Frequency Electromag-
netic Field (RF-EMF)s from base stations for mobile phones and broadcast trans-
mitters. The specific absorption rate (SAR), which is defined as the power in Watt
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that is absorbed per 1 kg tissue, is a measure of RF energy dosage [126]. EMFs are
especially employed in the area of information technology.

EMFs are a type of non-ionizing radiation that exists in the electromagnetic
spectrum (refer to Figure 1.2) and are categorized into low-frequency (LF; up to 10
MHz) and radio-frequency (RF; 10 MHz-300 GHz) EMFs.

The frequency (measured in Hz) is one of the critical factors used to differentiate
EMFs, where one oscillation per second is equivalent to 1 Hz, and the corresponding
wavelength is shown in Figure 1.2.

Figure 1.2: The electromagnetic spectrum for xHz to yGHz

1.1.2 Characteristics of Radio Frequency Electromagnetic Field

We are interested in telecommunications technology, where RF-EMFs are used to
transmit wireless data across long distances between a transmitter (such as mobile
phone base stations or broadcast transmitters) and a receiver. (e.g. mobile phone
handsets, televisions, and radios). The communication between a mobile phone
base station and a mobile phone handset is referred to as downlink exposure, and
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the communication between the two is referred to as uplink exposure, depending on
the direction of the signal. The most important frequencies, including all uplink and
downlink telecommunication frequencies between 100 MHz and 5.5 GHz used are
listed in Table 1.1.

Table 1.1: Most relevant RF-EMF frequency signals and their characteristics

Location RF-EMF Source Communication Standard Frequency (MHz)
Out Base Station for radio FM Frequency Modulation 100
Out Base Station for radio DAB Digital Audio Broadcasting 220
Out Base Station for television TETRA Terrestrial Trunked Radio 390
Out Base Station for television Analogue TV Analogue TV 174–223
Out Base Station for television DVB-T/TV Digital Video Broadcasting–Terrestrial 470–830
Out Base Station for television UHF Ultra-high frequency Television 470–860
Out BS for mobile telecommunications GSM900 DL Global System for Mobile Communications 900
Out BS for mobile telecommunications GSM1800 DL Global System for Mobile Communications 1800
Out BS for mobile telecommunications DCS1800 DL Digital Communication System 1800
Out Base station/Small cell UMTS DL Universal Mobile Telecommunications System 2100
Out Base station/Small cell LTE Long Term Evolution 2600
In Femtocell UMTS DL Universal Mobile Telecommunications System 2100
In Femtocell LTE DL Long Term Evolution 2600
In Femtocell 5G 5th generation mobile network 700, 2100, 3500
In Access point WIFI 2G Wireless Local Area Networks 2400
In Access point WIFI 4G Wireless Local Area Networks 2400
In Access point WIFI 5G Wireless Local Area Networks 5500
In Mobile phone/Tablet GSM900 UL Global System for Mobile Communications 900
In Mobile phone/Tablet GSM1800 UL Global System for Mobile Communications 1800
In Mobile phone/Tablet DCS1800 UL Digital Communication System 1800
In Mobile phone/Tablet UMTS UL Universal Mobile Telecommunications System 2100
In Mobile phone/Tablet LTE UL Long Term Evolution 2600
In Cordless phone DECT Digital enhanced cordless telecommunications 1880

Exposure sources to RF-EMFs in daily life may essentially be divided into near-
field and far-field sources (see Figure 1.3). Mobile phone handsets and cordless
phones are examples of near-field sources that operate close to the body and can
result in exposure levels that are up to 100 times greater than those from far-
field sources 1.3. When compared to far-field sources, the maximum energy local
absorption in the skull is around 1000–100 000 times higher during calls [95]. The
power flux density drops ideally inversely according to the square of the distance
from a source, or 1/r2. According to [87], far-field sources are "radiation from a
source located at a distance of more than one wavelength." It is to be noted that
the near field approximation holds depending on the wavelength and the size of the
antenna. With massive antennas and reflecting intelligent surfaces (RIS), the near
field situation could be more often encountered. But it does not impact the work in
this Ph.D. Base stations for mobile phones and broadcast transmitters are examples
of sources. However, in this situation, neighboring individual cell phones also count
as far-field sources. Although the total body is continually exposed and the exposure
time can be much longer, far-field sources provide noticeably lower exposure levels
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than near-field sources [57, 153].

Figure 1.3: : Near-field and far-field sources, illustrating differences of output power levels.

1.1.3 Potential adverse impacts on health

Controversy surrounds discussions on the health impacts of RF-EMFs. In 2011,
the International Agency for Research on Cancer (IARC) classified RF-EMF as
potentially carcinogenic, falling under category 2B [15].

Mobile phones expose the head to RF-EMFs the most, thus implying that harmful
health effects would likely result in tumors in the head region. Specifically, there
is concern about various types of brain tumors (glioma and meningioma), acoustic
nerve tumors (schwannoma, also known as acoustic neuroma), and parotid gland
tumors [15]. In order to investigate whether mobile phone use could have negative
health effects, numerous studies have been conducted. One of the most extensive
studies, the INTERPHONE study, was coordinated by the WHO (World Health
Organization). This study, which followed a standard protocol, included 2708 glioma
and 2409 meningioma cases and matched controls across 13 countries [63]. They
concluded that, in general, the usage of mobile phones did not show any rise in the
likelihood of glioma or meningioma. Although there were indications of a heightened
glioma risk at the most intense exposure levels, the presence of biases and errors
hinders a definitive causal explanation. Additional research is needed to explore the
potential impacts of prolonged and frequent mobile phone usage.
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It has been suggested that children are a more susceptible population than adults
and face a greater threat as they begin to utilize their cellular devices at an earlier
age, which ultimately results in a greater cumulative exposure over their lifespan
[24]. Brain tumors are the second most prevalent type of tumors in children, follow-
ing leukemia [1]. In order to explore whether mobile phone usage is linked to the risk
of brain tumors in children and adolescents, the CEFALO multicenter case-control
study compiled data from Denmark, Sweden, Norway, and Switzerland, incorporat-
ing all individuals aged 7 to 19 years old. The study found no heightened risk of
brain tumors in the areas of the brain that absorb the greatest amount of energy.
Mobile phone users are not more inclined to be diagnosed with brain tumors com-
pared to non-users (Odds ratio OR = 1.36, 95% CI = 0.92 to 2.02). Chil-
dren who began using their mobile phones five years before the investigation did not
exhibit an elevated risk in comparison to non-regular users (Odds ratio OR =
1.26, 95% CI = 0.70 to 2.28). The researchers concluded that there is no proof
of causal connection with regard to the lack of a correlation between exposure to
mobile phone usage and the localization of the brain tumor [14].

[147] proposes a thorough analysis of the scientific literature was carried out to
investigate the correlation between mobile phone usage and the potential risk of
developing brain tumors. The collation of epidemiological studies through a meta-
analysis yielded no significant proof for an elevated risk of adult brain cancer or other
head tumors associated with the use of mobile phones. Likewise, in vivo studies that
evaluated the oncogenicity, tumor promotion, and genotoxicity of the brain cells, or
the incidence of tumors in the head or other body parts showed the same result
[147].

Most of the research examining the link between cell phone usage and brain tu-
mors fails to find a causal relationship [6, 14, 57, 63, 147]. Considering the significant
increase in mobile phone usage in recent times, it stands to reason that any potential
risks of brain tumors would have manifested as an uptick in new cases. However,
no such trend has been observed in different countries [43, 81]. Methodological re-
strictions, like selection bias and analysis of retrospective questionnaire data, make
the interpretation of data more challenging and could explain some of the potential
increases in risk found in some studies.

In addition to brain tumors, commonly reported health effects associated with
EMFs are self-reported nonspecific symptoms, known as electromagnetic hypersen-
sitivity or idiopathic environmental intolerance [156]. These symptoms can include
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headaches, sleep disturbances, and difficulty concentrating [152]. Experimental stud-
ies conducted under double-blind and randomized conditions have provided strong
evidence that low levels of EMFs cannot be perceived [154, 152].

In [163], A case-control study was conducted, including 894 individuals without
health issues and 211 individuals diagnosed with breast cancer. All participants
were requested to complete standard questionnaires aimed at gathering data about
sleep quality, smartphone addiction, and smartphone usage. The research concluded
that excessive smartphone use significantly increased the risk of breast cancer, par-
ticularly for participants with smartphone addiction, a close distance between the
breasts and smartphone, and the habit of smartphone use before bedtime. There
is not much evidence of acute impacts from research on the RF-EMFs emitted by
2G mobile phones on subjective symptoms, well-being, and physiological measures
[13]. Numerous researches have not been able to highlight a connection between
RF-EMFs and general symptoms, and there is no proof that people may sense or be
sensitive to EMFs [76, 156], according to these investigations.

However, there are signs of the opposite of placebo effects, known as nocebo
effects, which are unfavorable outcomes brought on by unfavorable expectations.
Numerous research studies have investigated the nocebo effects of EMFs [13, 156].
Notably, when patients were aware of their exposure to EMFs, their symptoms
intensified and increased.

Various investigations have explored the adverse effects on personal sleep qual-
ity [72, 146, 125]. Results from these studies suggest that there is generally no
correlation between exposure to RF-EMF and concrete sleep measurements [125].
However, [125] identified minor dissimilarities in the EEG (electroencephalography)
pertaining to specific frequency bands.

As per present investigations, it appears that there is no correlation between the
usage of mobile phones and a surge in health adversities in the brief period of less
than a decade. However, for individuals who use these devices extensively or over an
extended duration of over 10-15 years, there are certain uncertainties. The COSMOS
research -link, regarded as one of the world’s most extensive cohort studies, strives
to monitor health over the long run in a vast group of study participants [161].

Experimental research examines only immediate consequences, while extended-
term hazards necessitate examination through epidemiological investigations.

http://www.ukcosmos.org/
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1.1.4 RF-EMF exposure regulations

The ICNIRP, an independent body of scientific experts funded by public funds,
proposed and published recommendations for restricting RF-EMF exposure in all
residential areas [5]. The reference levels proposed by the ICNIRP are dependent on
frequency and are 41 V/m for 900 MHz, 58 V/m for 1800 MHz, and 61 V/m for
2100 MHz 1.2. These stated reference levels are based on research studies exploring
the negative health effects of RF-EMFs. Experimental investigations indicate that
generating a whole-body SAR between 1 and 4 W/kg, trigger an increase in tem-
perature that is under 1°C. Exposure to SAR values above 4 W/kg from stronger
fields may lead to irreparable consequences, impairing thermoregulation mechanisms
and resulting in tissue damage (ICNIRP, 1998). The EMF initiative of the WHO
compiled an international database with guidelines [135]. The ICNIRP, an inde-
pendent body of scientific experts funded by public funds, proposed and published
recommendations for restricting RF-EMF exposure in all residential areas [5]. The
reference levels proposed by the ICNIRP are dependent on frequency and are 41
V/m for 900 MHz, 58 V/m for 1800 MHz, and 61 V/m for 2100 MHz 1.2. These
stated reference levels are based on research studies exploring the negative health
effects of RF-EMFs. Significant variations exist among nations in terms of the regu-
latory thresholds they incorporate into their legislation. When discussing the safety
of unexplored dangers, a vital inquiry arises: what level of safety is sufficient [53]
while certain countries, such as the Netherlands, have embraced ICNIRP reference
values, others like Switzerland and Belgium have implemented frequency-dependent
safety guidelines as precautionary measure (Table 1.2).

Frequency
ICNIRP
reference
levels

The
Netherlands

Precautionary limits for places with
sensitive use and places of residence
Switzerland Brussels France

GSM 900 42 V/m 42 V/m 4 V/m 3 V/m 6 V/m
GSM 1800 42 V/m 42 V/m 6 V/m 4.2 V/m 6 V/m
5G 63 V/m 63V/m 6 V/m 4.5 V/m 6 V/m

Table 1.2: Overview of the different limits adopted in Switzerland, Belgium and the
Netherlands, France (Source: Federal Office for the Environment (FOEN), Resolution of

the Flemish Government and Resolution of the Brussels Capital Region )

The World Health Organization [185] provided a key rationale for the implemen-
tation of safety precautions.
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“To address public health concerns that potential or perceived but unproven
health problem is taken into account. . . ” (WHO 2003, p. 3)

The aim of the “Ordinance relating Protection from Non-Ionising Radiation”
(ONIR), ordinance in Switzerland is to safeguard individuals against potential detri-
mental impacts or disturbances resulting from non-ionizing radiation [38]. This regu-
lation applies to the radiation released by a solitary base station and is solely applica-
ble to vulnerable areas where people spend most of their time, such as their dwellings,
schools, preschools, hospitals, nursing homes, workplaces, and playgrounds. In Bel-
gium, more stringent regulations are enforced than those in Switzerland. In Ghent,
the exposure limits of the Flemish region (Resolution of the Flemish Region of Nov.
2010) regulate a frequency-dependent cumulative exposure of 21 V/m for a 900
MHz frequency. Indoor premises and children’s playgrounds adhere to limits of 3
V/m at 900 MHz, 4.2 V/m at 1800 MHz, and 4.5 V/m at 2100 MHz per base
station. These preventative limits are determined using Eq. (1.2) for the frequency
range from 400 MHz to 2 GHz.

E = 0.1 ∗
√
f,where f is frequency in MHz (1.2)

A maximum threshold of 4.5 V/m is enforced for the spectrum spanning from 2
GHz to 10 GHz. The Brussels Capital Region enforces the strictest limitations, as
prescribed in the Brussels Capital Region Ordinance, effective at all communal sites
to ensure combined exposure. Eq. (1.3) is employed to compute the restrictions for
frequencies from 400 MHz to 2 GHz.

S = f

4000 and E =
√

f

4000 ∗ 377. (1.3)

Exposure values for frequencies between 2 GHz and 300 GHz might not fall
higher than 4.33 V/m, which is equivalent to 0.05 W/m2 of power flux density. To
make room for the deployment of 5G (Long-term Evolution, LTE) in Brussels, the
restrictions in the Brussels Capital Region will be changed.

1.1.5 Métropole Européenne de Lille (MEL) concern on public
health implication on Exposure

MEL is a public entity for inter-municipal cooperation that was created by a law on
December 31st, 1966, in France. In a region that is both rural and urban, made up
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of large cities and villages, it houses over a million people. The MEL takes action in
a number of crucial areas, including town and country planning, culture, household
waste, sustainable development, water and purification, economy and employment,
public space and public road network, Europe and international attractiveness, hous-
ing environment and housing, urban affairs, nature and living environment, sport,
tourism, transport and mobility, accessibility for the disabled, and crematoriums.
There is a growing concern about the potential health risks associated with expo-
sure to electromagnetic radiation from 5G technology. Some studies suggest that
long-term exposure to high levels of EMF radiation may increase the risk of cancer,
neurological disorders, and other health problems. Métropole Européenne de
Lille (MEL) has expressed interest in studying the potential impact of EMF expo-
sure on its inhabitants. This interest reflects a growing concern among policymakers
and the public about the potential health risks associated with prolonged exposure
to EMF radiation. The study could provide valuable insights into the nature and
extent of EMF exposure in Lille, and inform policies aimed at reducing potential
risks to public health. Through multiple discussions and negotiations amongst Prof.
Dr. Laurent Clavier, Prof. Dr. Davy Gaillot and Prof. Dr. Joe Wiart
and MEL counterpart, MEL wanted to facilitate this idea and funded this Ph.D.
project for the first time to develop a solution for spatial EMF exposure maps in
the city of Lille. The map is constructed from a few fixed sensor-measured values
over time. The request from MEL is the following:

• Develop a solution for exposure maps based on AI

• Need time-varying maps of EMF

• Spatial sampling of the field is fixed with few sensors

• Reconstructing the full map from the knowledge of these few sensors

The proposed solution for spatial EMF exposure reconstruction in Lille will in-
volve the use of classical and modern machine learning algorithms to predict the
EMF levels at different locations based on the limited sensor data available. The
main scope of the task is developing and implementing these algorithms, as well as
analyzing the accuracy and reliability of the results.
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1.2 State of the Art

In the field of radio map estimation, a significant amount of work has been done,
mostly concentrating on mapping three channel metrics: power, (Power Spectral
Density) PSD, and channel-gain. Few works have been done in exposure map re-
construction in the literature, but open issues remain, the following section includes
a summary of each of the current methods for radio map estimation and exposure
map techniques and reviews to address their problem.

1.2.1 Coverage Map Reconstruction

Various techniques have been utilized to construct power maps from spatially dis-
tributed sensor measurements, including interpolation and regression approaches [8,
23, 4, 150]. Among these methods, kriging or Gaussian process regression has been
employed in [193, 199, 27]. It involves estimating the power values at unobserved
locations using a weighted linear combination of the available power measurements.
The kriging weights are determined by the minimum mean square error estima-
tor [90] that relies on a presumed statistical correlation among the measurements,
usually expressed via a spatial covariance function. A matrix completion task is
presented in [45], where the unobserved power values are determined via nuclear
norm minimization. The compressive sensing technique is employed in [86], exploit-
ing the sparse spatial distribution of primary users to construct power maps. On
the other hand, a dictionary learning approach is proposed in [85, 92] to decompose
power measurements into linear combinations of channel gains and transmit power
for power map construction. Additionally, non-parametric power maps have been
developed in [65, 197] using radial basis functions (RBFs), where the received power
at each location is estimated through a weighted linear combination of RBF param-
eters and weights, which are optimized jointly. To estimate power maps, [75] models
path loss with a Laplacian function and presents a sparse Bayesian learning method.
Finally, a kernel-based learning algorithm is devised in [20, 197] that employs mul-
tiple kernels to capture path loss and shadowing for power map estimation. The
method based on radial basis functions (RBF) is widely used and has been studied
by various researchers [33, 145]. Compared to other methods, RBF is more flexible,
as it makes fewer assumptions about the input data by only considering the distance-
based dependency, and has been found to be more tolerant of uncertainty [158]. In
[33], the authors divided a database of outdoor (Received Signal Strength Indicator)
RSSI measurements into training and testing subsets and evaluated different kernel
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functions for interpolation. In [67] for instance, to enhance the efficiency of funda-
mental kriging, it is recommended to explore unvisited locations/grid-cells, where
the estimated value is still assumed to be imprecise. A somewhat analogous crowd-
sourcing approach has also been utilized in [52] by framing the issue as a matrix
completion problem utilizing singular value thresholding. This technique allows one
to solicit further measurements at certain specific points where the algorithm lacks
confidence in the estimated outcome. An alternative method explored for indoor
wireless localization depends on both collected field data and an a priori path loss
model that takes into account the impact of walls’ weakening effect between the
sender and receiver [94]. In outdoor settings, instead of using raw Received Signal
Strength Indication (RSSI) data, local path loss models (and thus, specialized RSSI
distributions) have been utilized to capture small-scale impacts in clusters of mea-
sured neighboring points [131], where a fitting RSSI distribution model is established
for each group. However, these parametric path loss models are usually imprecise
and require impractical on-site calibration, resulting in very limited generalization
abilities. A very comparable strategy, except for the utilization of extra contextual
information, is presented in [104], where they propose a technique called SateLoc.
Based on satellite imagery, they suggest segmenting the areas "crossed" by a specific
radio link, based on their category (e.g., terrain, water, forest, etc.). Then, the
power path loss contributions are computed proportionally to the size of the crossed
region(s), according to a priori model parameters (i.e., related to each environment
type), and added together to determine the end-to-end path loss value.

1.2.1.1 Deterministic and Empirical models

In a given urban region, it is computationally costly to evaluate radio frequency
power maps and exposure maps with accuracy. Propagation tools like Veneris-Opal
[49], and Atoll [54] are based on Ray Tracing (RT) methods, where the propagating
field is simulated with an array of rays that go through the environment and reflect,
diffract, and scatter. These techniques depend on the Maxwell equations’ high-
frequency approximation (optical ray). These simulators only provide stochastic or
simplified hybrid techniques since this methodology is computationally too costly
to be applied in large and, in particular, dynamic environments and not adapted to
network activity.

The maximum level of precision is provided by RT approaches, however, they fre-
quently have significant processing requirements and depend on the correctness of
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the tridimensional (3D) model of the environment [195]. Ray-tracing and empirical /
semi-empirical models like close-in (CI), floating intercept (FI), alpha, beta, gamma
(ABG) [109, 140, 10], etc. are often used to predict power coverage in metropoli-
tan areas. In previous studies, deterministic and empirical models were utilized to
predict propagation. Examples include ray-tracing [149], the dominant path model
[177, 17], and empirical models [202].

1.2.2 Exposure Map Reconstruction

1.2.2.1 Stochastic Geometry

The concept of using stochastic geometric in wireless communications is not new
[32]. Numerous industries have used it, including localization, automobile radar [35],
cumulated interference power [116]. Stochastic geometry is a useful tool, providing
us with the mean exposure or CDF of exposure. However, it is important to note
that this information is not directly linked to the spatial location of the user or the
specific spot where we seek to understand the exposure. The authors of [59, 60, 61]
have employed a stochastic geometric approach to model the exposure to EMF using
drive test data obtained from the city Brussels, in Belgium. These methods relied
on the assumption that the measurements obtained from the drive test constituted
a single measurement, without considering the temporal variations. Consequently,
the outcome is a single map representing the mean exposure rather than a dynamic
map.

1.2.2.2 Kriging

The kriging method is the traditional approach for interpolating geographical data.
Kriging has been used in several studies to reconstruct exposure maps, including [2,
3, 115, 162]. Additionally, in [164], field maps were interpolated utilizing data on a
path from a moving robot in an indoor scenario using a Gaussian process or kriging
approach. However, time evaluation was not taken into account in any of these stud-
ies resulting in one single map of the target area. Furthermore, the current body of
scientific literature lacks substantial evidence or comprehensive research regarding
the ability to accurately model electromagnetic field exposure through the imple-
mentation of Gaussian processes. This knowledge gap necessitates further investi-
gation and exploration to establish a more robust understanding of the relationship
between electromagnetic field exposure and its potential modeling methodologies.
Future studies should aim to address this gap by conducting rigorous experiments



18 Chapter 1. Introduction

and analyses to ascertain the efficiency and limitations of employing Gaussian pro-
cesses for modeling EMF exposure.

1.2.2.3 Neural Networks and Matrix Completion

To the best of the authors’ knowledge, artificial intelligence is only recently being
applied in the area of RF-EMF exposure, but interest in this area is expanding.
Only a few studies have utilized artificial intelligence to forecast the uplink (UL)
and Downlink (DL) exposure of mobile phones. Specifically, some works have em-
ployed AI, such as Artificial Neural Network (ANN) models and machine learning
models, to predict the power emitted by a mobile phone, which is equivalent to UL
exposure [120, 50], as well as to estimate the DL exposure [170, 179]. The models
for UL exposure prediction use readily available parameters, such as DL connection
indicators (e.g., reference signal received power) and environmental information, as
input features. The authors of [179] used measurement data from indoor and outdoor
environments to account for realistic scenarios. They employed machine learning to
estimate the levels of EMF exposure in the DL and UL. In [179], the authors used an
artificial neural network to estimate exposure in urban areas using a limited amount
of sensor data, and they did not consider full map reconstruction where environment
infrastructure is taken into account. The previously described methods require ref-
erence to train the networks. Such full reference maps can however not be measured
and simulated training sets need to be used. To avoid this requirement, standard
kriging interpolation methods have been commonly used to infer electromagnetic
field exposure. But neural network-based approaches have been shown to provide
better performance [117, 160]. In [66], the authors take into account urban cognitive
radio networks and estimate the power spectrum (PS) map using a Convolutional
Neural Network (CNN)-based Generative Adversarial Network (GAN) [62]. In that
work, 25 MHz and 75 MHz were used as the bandwidths, and a uniform distri-
bution of users was assumed. A GAN model built on the basis of an autoencoder
analogy was used to reconstruct images using the under-sampled power spectrum
maps as input. To generate full PS maps for training, the authors used the inverse
polynomial law model.

In [103], authors based on a self-supervised technique using GAN to generate a full
radio frequency map of the selected area from an undersampled corrupted RF Map.
In that work, to train the model, a weighted K-nearest neighbor algorithm is used
to generate the reference. To mitigate training instability, an innovative lightweight
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reconstruction loss is introduced into the Self-supervised GAN’s objective function,
complementing the traditional adversarial loss. Additionally, it incorporates supple-
mentary data, such as geographic information - an elevation map of the terrain as
an additional input to the model, alongside observed measures of RF coverage and
interference. These additional inputs are fed into the GAN framework to finely char-
acterize the RF environment. In [110], authors estimated radio maps based on deep
learning models. In that work, a few reference measurements along with side infor-
mation such as - elevation maps and distance maps of base stations to measurement
points to train the neural network models. They have employed Neural Architecture
Search (NAS), a method that autonomously constructs an optimal Neural Network
(NN) model architecture tailored to a specific task. Additionally, data augmenta-
tion techniques are used, which endeavor to tackle the constraint of limited labeled
input data available for training. However, the measurement used as reference was
considered a single measurement. In [179], authors estimated exposure in an urban
environment from few sensor data using an artificial neural network. In that work,
two neural network models are used - Hybrid ANN and conventional ANN architec-
ture to reconstruct exposure maps from a few sensor data generated by simulations.
Another approach explored in that work is using drive test data to estimate ex-
posure maps. When using Hybrid ANN, authors used locally connected layers to
the ANN model to imitate and reproduce the real propagation, locally-connected
layers are constructed in parallel to process the inputs from the same base station
antenna (BSA). Here, for exposure reconstruction from sensor data, inputs of ANN
consist of distances to 10 nearest BSA, azimuth of antennas, locations of receivers,
and time of the measurement. But full map reconstruction was not considered. In
[16], EMF exposure was reconstructed using ANN models in the university campus
in Turkey. In that work, multiple linear regression analysis and two different ANN
models are used to estimate EMF exposure. The first ANN model was designed
to have 9 input features to estimate EMF exposure as an output variable. In the
second ANN model, only two input features are used (longitude and latitude) to
predict exposure at a given location. They have compared the prediction results
with real-world measurements at a specific location on the university campus. Two
articles published recently [159, 79] presented deep learning methods for estimating
radio maps. In [79], The mapping function used by the authors to estimate the
propagation loss has two parts. The first part of the proposed method is a CNN
to extract the features from the input map and in the second part of the proposed
model, these extracted features by the CNN are used in the prediction part by a
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fully connected neural network (FNN). Using this information, one output variable
is predicted by the proposed two-stage model as propagation loss.

Finally, several works have been done using matrix completion for radio map
estimation [34, 74, 168, 167], avoiding the training phase with reference maps. In
[181], authors used matrix completion for low-ranked matrices to construct radio
maps in an indoor system.

1.2.2.4 Exposure Reconstruction as Missing Data

Several techniques for imputing missing values using machine learning methods rely
on statistics gathered throughout the entire dataset and utilize supervised algorithms
that depend on datasets containing complete observations to identify correlations
between available data and missing data [22, 48, 56, 91, 37, 58, 184, 188, 192].
Imputing missing pixels in images with an unsupervised approach was implemented
in [171, 30]. To explicitly describe observed and missing data, they introduced
sparsity-aware neural network building blocks into a neural network-based learning
system.

Missing data is frequent in sectors like healthcare and finance. Several time
series applications, especially those in the area of medicine, have strived with the
challenge of missing values [138]. Another avenue of research in this area uses
deep learning techniques, such as variational autoencoders (VAEs) [7, 108, 129] or
generative adversarial networks (GANs) [100, 194].

In [55], a generic framework for missing data imputation on time series is devel-
oped by combining concepts from VAEs [44], Cauchy kernels [84], Gaussian Pro-
cesses [143], structured variational distributions with efficient inference [18] and a
particular ELBO (Evidence Lower Bound) for missing data [129]. A new structured
variational approximation, the non-linear dimensionality reduction in the presence
of missing data is accomplished using the VAE method. In [46], authors designed
variational graph autoencoders for matrix completion to infer air quality from a
limited number of measurements. Deep matrix factorization [11] and nuclear norm
minimization [144, 28] are examples of common methods for matrix completion to
produce low-rank matrices. A low-rank completion is also often inefficient for image
inpainting and reconstruction since it ignores local image structure [101, 190]. Sev-
eral works used matrix completion for image inpainting/reconstruction [41, 172, 171],
drug response imputation [73, 107, 142] and supervised and unsupervised infinitely
wide neural network [191, 12, 165] for prediction. Recently in machine learning,
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in the realm of overparameterized neural networks, abundant parameters facilitate
a flexible representation, potentially enhancing model performance and capturing
intricate patterns enabling them for better generalization performance connecting
them to kernel methods. Exploiting the infinite width limits of neural networks, re-
cent work shows remarkable success in regression and classification tasks. Authors
of [36] introduced an innovative approach for unsupervised 3D shape completion
and reconstruction using incomplete scanned data. Their method involves crafting
a deep prior based on the Neural Tangent Kernel (NTK) concept. Remarkably,
the CNN-trained completion of shape patches exhibits a striking resemblance to
pre-existing patches. This resemblance arises from their close proximity within the
kernel feature space shaped by the NTK. Utilizing Convolutional Neural Tangent
Kernel (CNTK) for predictive tasks across various classes on the CIFAR-10 dataset
has been explored in the works of Arora et al. [12] and Li et al. [102]. In the research
by Arora et al. [12], the application of CNTK demonstrated enhanced performance
for optimization and generalization. Notably, this study provided a non-asymptotic
proof, establishing the equivalence between a fully-trained, sufficiently wide neural
network and the kernel regression predictor with NTK. Within the context of the
CIFAR-10 dataset, CNTK was implemented to predict different class labels, yielding
a noteworthy accuracy improvement of 10% compared to conventional methodolo-
gies. In the study by Fan et al. (2020) [51], they present another instance of
polynomial matrix completion applied to incomplete data through a transductive
learning approach. The researchers introduce a novel technique leveraging kernels
on synthetic data, subspace clustering for incomplete data, as well as data recovery
from motion capture and classification tasks involving incomplete data.

The following table 1.3 presents a comprehensive overview of exposure recon-
struction techniques utilized from 2019 onwards. These methods are commonly em-
ployed in scientific research to estimate and reconstruct exposure levels in various
contexts. By leveraging advanced statistical models and data analysis techniques,
these approaches enable researchers to approximate historical exposure levels with a
reasonable degree of accuracy, thus contributing to a deeper understanding of past
events and their potential implications.
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Technique Year Evaluation
Metrics

Scenario Data Type Training
required

No. of output
maps

[179] 2020
MSE
R2 Outdoor Simulations yes one

[120] 2021
MAE, R2

RMSE
Indoor Drive test yes one

[112]
ours

2022 PSNR, SSIM Indoor Sensor simulations yes
time dependant
multiple maps

[178] 2022
MSE

RMSE
CDF of Prediction

Outdoor Drive test yes one

[113]
ours

2022 CDF,PDF of error ratio
PSNR, SSIM

Outdoor Sensor simulations yes
time dependant
multiple maps

[16] 2022 measurement
comparison

Outdoor real measurement yes measurement points

[31] 2023
CDF

RMSE
Outdoor Drive test yes one

[111]
ours

2023

CDF,PDF
of error ratio

PSNR
SSIM

Outdoor Sensor simulations yes
time dependant
multiple maps

[183] 2023 CDF, CCDF Outdoor Drive test yes one

EME-CNTK
ours

2023
MSE

CDF,PDF
absolute error

Outdoor Sensor simulations yes
time dependant
multiple maps

Table 1.3: List of exposure reconstruction techniques by ML
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1.3 Contributions

As per MEL’s requirement, our research was conducted to reconstruct EMF exposure
in Wazemmes and Euratech area in Lille City, France. In Wazemmes and Euratech
areas 50 and 20 sensors are deployed respectively. Sensors are deployed on lamp
posts in both of the areas and sensor locations are depicted in Figure 1.4. Our
research on EMF exposure reconstruction with AI started in 2020-2021, and the
sensors are deployed and functional in 2022-2023. Therefore, we have experimented
on Lille City center, France during the sensor deployment time.

(a) (b)

(c) (d)

Figure 1.4: Sensor location in colored circles in (a,b) Wazemmes and (c,d) Euratech area
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In this thesis, two main techniques based on AI tools are proposed.

⋆ EMF exposure map reconstruction with generative models - In this
method, we proposed a conditional generative adversarial network for image-
to-image translation task. From a few sparsely distributed sensors generating
the full exposure map of the selected area is done by converting it into an
image reconstruction task. We require reference or reference images to train
the cGAN model. We have used Veneris-Opal, an open-source ray tracing
simulator to generate the full exposure maps or reference images for training
the model.

⋆ EMF exposure map reconstruction with infinitely wide CNN - it
is quite difficult to access the full exposure map used in cGAN method in
reality. In that case, we have proposed a method based on Infinitely wide
CNN to impute missing data in a matrix. A convolutional neural tangent
kernel CNTK is constructed in our proposed method and using only 60 sensor
values the exposure maps are reconstructed in the selected area of interest.

Our study aims to investigate the capability of neural networks in extracting in-
tricate features and their correlations with signal strength within a given local area
or similar settings. Additionally, we explore how effectively these networks can con-
sider environmental factors. We have utilized a convolutional neural network with
infinitely long width-based matrix completion and reconstruction using generative
models that are tailored to the exposure reconstruction task.

1.4 Plan of document

The thesis is organized as follows:

⋆ In chapter 2, we address the above mentioned issues with our novel method-
ologies for indoor and outdoor scenarios. This chapter is divided into three
sections:

⋆ Section A contains the preliminaries required for the methodologies de-
veloped such as datasets, simulators, and machine learning basics.

⋆ Section B describes exposure reconstruction methods using convolu-
tional neural network and conditional generative adversarial net-
works for indoor and outdoor settings.
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⋆ In chapter 3, the evaluation of our methods is presented.

⋆ In chapter 4, Finally, the discussion and future perspectives are drawn.
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work that I have done during my Ph.D. candidature.
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vol 9643. MDPI

International Peer-reviewed Conference Papers with proceedings

⋆ Mallik Mohammed, Sofiane Kharbech, Taghrid Mazloum, Shanshan Wang,
Joe Wiart, Davy P. Gaillot, and Laurent Clavier. "EME-Net: A U-net-based
Indoor EMF Exposure Map Reconstruction Method." in.In 2022 16th Euro-
pean Conference on Antennas and Propagation (EuCAP), IEEE, pp. 1-5,
2022.
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Preliminaries
This chapter outlines the proposed AI-driven techniques for reconstructing the

exposure to EMF in outdoor and indoor settings. It is divided into three sections.
The first section details the preliminaries, such as the datasets and simulators.

The second section describes different neural network architectures used for
exposure reconstruction for both outdoor and indoor settings. Finally, the third

section presents a novel method for exposure map reconstruction through the use of
an infinite-width CNN for matrix completion.
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2.1 Dataset: Reference Maps

In our study, two unique datasets are utilized for outdoor and indoor exposure
measurements with respect to multiple base stations and wi-fi access points namely
’VenerisLilleExposure’ and ’IndoorExpMap’ Dataset, respectively to train the neural
network models. The first dataset was created using the Ray-Tracing tool Veneris-
Opal [49]. The second dataset was created using Pylayers [9], an open-source prop-
agation modeling tool for indoor environments.

2.1.1 Indoor Scenario

IndoorExpDataset For indoor simulations, we consider a customized version of
the environment WINNER-II A1 [122]. The considered building is a single floor
which represents a typical multi-room office environment where the floor area is
2100m2, room dimensions are 10m×10m×3m, and the corridor has the dimensions
70m × 10m × 3m. Windows are located on the north and south side of the office
environment. Each room has a wooden door, and the walls are constructed with
plaster with a thickness of 10 cm. The ceiling and floor are made using reinforced
concrete. The indoor office model layout is illustrated in Figure 2.1. Materials used
to construct the rooms and their properties are given in Table 2.1.

Figure 2.1: Layout of the indoor scenario.

These properties are implemented in ’PyLayers’ for the simulations. For training
the model, several Wi-Fi access points are considered with different location sce-
narios while keeping two or three of them in the corridor and three in the rooms.
’PyLayers’ is an open-source radio-channel wave propagation simulation tool [9]. Us-
ing ’PyLayers’, we simulate the received power maps in a dense environment; then,
we employ them as reference maps (see Figure 2.3).
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Description Wall Air Ceiling Floor Door

Material Plaster Air Reinforced
concrete

Reinforced
concrete

Wood

Relative
permeability µr

1 + 0j 1 + 0j 1 + 0j 1 + 0j 1 + 0j

Relative
permittivity εr

8.0 + 0j 1 + 0j 8.09 + 0j 8.09 + 0j 8.3 + 0.02j

Sigma
conductivity s/m

0.308 0 0 0 0

Thickness in cm 10 2 10 10 5
Manning’s
roughness

0.0 0.0 0.012 0.0 0.0

Table 2.1: Properties of the environment materials.

Five pixels in each room and 26 pixels in the corridor, 96 pixels were taken from
the reference map to generate the sensor measurement maps. Sensor measurement
locations as the incomplete image are shown in Figure 2.2. We consider 15, 30, 50,
70, 90 pixels taken from the reference map images for the test sets. It is worth
noting that, for the most optimistic scenario, i.e., when 115 measures or pixels are
considered, we cover less than 1% of the reference image area.

Figure 2.2: Input sensor measurement map with 96 pixels from the reference map.

The Wi-Fi hotspots are omnidirectional with orthogonal and parallel polarization.
Generating the EMF exposure maps considers the multi-wall and multi-frequency
home environment path loss model [88]. The path loss is calculated taking into
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account that the direct line between Tx and Rx crosses several kinds and amounts
of walls added to the free space log-distance path loss:

PL(d)[dB] = PL0(d0) + 20log10(d/d0) +
M∑
i=1

kiLi +Xσ,

where PL(d) is the path loss at a Tx - Rx distance equal to PL0 at a reference
distance d0 equal to 1m is the path loss, ki is the number of walls of type i crossed
by the line-of-sight, the total number of different kinds of wall is M , Li is the
penetration loss of wall type i, and Xσ is a zero-mean gaussian random variable
with a standard deviation σ. The value for PL0(d0) and Xσ for a Wi-Fi radio
technology at frequency band 2.4 - 2.5 GHz are 27.75 dB and 5.94 dB respectively.

Reference maps are generated using the features of propagation, the type of ma-
terial used to construct the wall, the wall penetration loss, the relative permeability
and permittivity, the conductivity, and the thickness of walls. Figure 2.3 shows
examples of reference reference indoor exposure map images when the Wi-Fi access
points are at different locations in the room.
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Figure 2.3: RF-EMF exposure reference map images with different Wi-Fi access points
locations are used to generate reference / reference maps using PyLayers
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2.1.2 Outdoor Scenario

Simulator and Dataset Generating large open-source datasets made of real data
can be difficult in the area of data-based research and machine learning. As a result,
synthetic data can be generated alternatively or as a complement to using real
data through deterministic simulations. For our study, we utilized three separate
databases of outdoor exposure measurements regarding multiple base stations. The
first was created through an open-source Ray-Tracing tool Veneris-Opal in Lille,
France, in the context of this Ph.D. work.

Veneris-Opal is a simulation framework for research on Vehicular Networks and
cooperative automated driving [49], which can also be used for general wireless net-
works simulation requiring 3D environment-aware propagation simulation. The tool
was developed at Universidad Politécnica de Cartagena, Spain, and made available
to the public. Veneris consists of a traffic simulator that utilizes the Unity game en-
gine [64] and comprises a realistic vehicle model, as well as driving and lane change
behaviors that replicate traffic dynamics. Also included are a ray-launching GPU-
based propagation simulator known as Opal, and a collection of modules that allow
bidirectional coupling with the extensively employed OMNET++ network simulator
[174].

In an interactive 3D environment, Veneris enables a realistic microscopic road
network simulation through a collection of Unity components and related assets,
developed with NVIDIA PhysX. The scenario elements, such as roads, intersections,
traffic lights, or buildings, are generated using Builder components. Meanwhile, Ve-
hicle components model the dynamics of the vehicle and how they behave on the
roads, intersections, and interact with other vehicles. Communication components
are responsible for implementing the communication with simulation modules. An
example of the 3D environment of Lille city center in Veneris is illustrated in Figure
2.4.

To simulate multipath channel propagation with NVIDIA Optix [136] for multiple
moving transmitters and receivers, Opal library in Veneris is used. This simulator
is based on 3D ray launching, which is a deterministic radio-frequency propagation
technique. The rays are propagated along their path until they encounter an ob-
stacle, where they are reflected, diffracted, transmitted, or scattered. Afterward,
subsequent rays are traced, and the contributions of all rays hitting a reception
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Figure 2.4: Snapshot of Lille city center in Veneris. Pink, green and light blue represents
road cross sections, park and buildings respectively.

sphere on the receiver are added to compute the electric field. Further information
on open-sourced Ray-Tracing simulator Veneris-Opal can be found in [49].

Particularly in the areas of machine learning and data-based research, large open-
source datasets with actual data are often hard to come by. Deterministic simula-
tions can, however, sometimes be used to generate synthetic data that can be used
instead of or in addition to real data in certain circumstances.

Environment Infrastructure - OpenStreetMap The environment and infras-
tructure, among other things, have an impact on how signals in telecommunication
networks propagate. Signal attenuation, reflection, and diffraction can all be caused
by structures like buildings, roads, cars, and trees. Signal loss, interference, and
distortion can occur as a result of the signal’s interaction with the surrounding envi-
ronment. Therefore, in our generative model-based method we have utilized in city
topology image as a conditional input to the CNN-based generative models. The
city topology image is taken from OpenStreetMap in QGIS using a Python plugin to
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extract raster images to Portable Network Graphic (PNG) format. The city topol-
ogy of Lille, France is illustrated in Figure 2.5. The image size is 512 × 512 × 3 and
black and white represent buildings and roads, respectively. This image is used as
a conditional input for the proposed cGAN method which is described in the later
sections.

Figure 2.5: city topology

VenerisLilleExposure is a dataset comprising maps of outdoor exposure that
were simulated in an urban cellular environment using a ray-tracing propagation
tool called Veneris-Opal of 3003 simulated EMF exposure maps in Lille, France.
The context in which the measurements were taken was that of a 5G network with
multiple transmitters. Such a deterministic instrument explicitly assumes the elec-
tromagnetic interactions of a multipath radio signal between the transmitter and a
receiver by using both deployment details (typically, the mobile nodes’ relative lo-
cations and base stations) and an explanation of the physical setting (such as a city
plan featuring a detailed description of buildings and their constituent materials).
Lille city center, France was selected as the target region of interest for exposure
reconstruction. The overall scene is 1000m× 1000m, each pixel being 1.5m× 1.5m,
thus forming a matrix of size 512 × 512. The area considered in these simulations
is located in Lille city center from Place de la Republique, Le nouveau Siecle, Gare
de Lille Flandre and Centre du service national et de la jeunesse (CSNJ) de Lille as
shown in figure 2.6 as google reference of the target RoI. For each pixel, the exposure
value was simulated with respect to 3 different 5G Base Stations. Different moving
transmitter positions are used in order to generate different maps. In Figure 2.7 one
transmitter in Veneris simulation scenario is shown.
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Figure 2.6: google reference map for ROI

Figure 2.7: Transmitter in red in VEneris simulator

The dataset contains objects with rough surfaces like 3D building walls, statues,
roads, etc., interacting with the rays in complex ways. Moreover, gaps in the object,
e.g., bridges and rays at different levels, can pass or reflect from such objects. The
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presence of the object in the environment, and several ray interactions result in a
complex power distribution representing a real-life environment. The transmitters
are assumed to use an isotropic antenna, producing omnidirectional radio waves. The
height and power of the transmitting antenna were set at a maximum of 15 meters
and 20 Watts, respectively. The height is selected as 20 meters as an average
height in the selected area of interest. The propagation model in ray launching
considers reflections on 3D buildings, resulting in more complex patterns. Even if
VENERIS can handle a very high number of iterations, a convergence study shows
that 2 interactions are enough for reliable results in this kind of environment. For
simulations, three transmitters are used at different locations, one for each simulation
at 5.89 GHz with 20 W transmitting power, and other simulation parameters are
used, like azimuth, elevation, reflection, etc. To generate the reference maps, 2088
receivers at the height of 1.5 meters are placed in a uniform grid in the area of
interest, as shown in Figure 2.8. The receivers inside buildings have 0 values in

Figure 2.8: Three-dimensional environment model of Lille City 1 km2 area with 2088
receiver grid represented in green squares.

simulations to generate data. There are approximately 1269 receivers in outdoor
locations. Nonetheless, this number of points is sufficient to capture the dynamics
of the field and train the model. The data from Veneris simulations are saved in CSV
format. Then we can resize the image using different upsampling or downsampling
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methods provided in Pillow or OpenCV library. This process can also be done using
numpy [68] and opencv library using a ’percentile’ object from numpy library to
create a cluster of power values from the CSV data. Then using OpenCV provided
’applycolormap’ method the image can be created with the required image size.

Figure 2.9 gives examples of reference reference exposure map images when the
transmitter is at different locations. Each map has a dimension of 512 height, 512
width, and 3 RGB color channels. In Veneris-Opal simulations, the data is generated
on time steps. Thus, 3003 map images at each time step (Tx location is changing)
are used as reference real images to train the CNN based conditional generative
model.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.9: RF-EMF exposure reference map images with different transmitter locations
are used a)In Veneris: Transmitter at upper right corner, b) transmitter at center, c) 2

transmitters at middle, d) upper right corner, e) bottom left corner, e) upper right corner,
f) bottom left corner, h) transmitter moved towards bottom left corner
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Dataset for Matrix completion The region of interest (RoI), Lille city center,
is an area of 1 km2. To evaluate the performance of the method, a 1.5-meter
height grid is defined as sensor locations as shown in Figure 2.10. Two different
scenarios are considered: one or two transmitters are placed in the RoI. The exposure
data for the sensors were generated for 20, 40, 60, and 100 sparsely located sensors
using Veneris-Opal. Different Transmitter positions were used in order to generate
different reference maps and sensor values. Moreover, to implement the city topology
effect in the proposed method, the environment (buildings, roads, etc.) has been
extracted from OpenStreetMap [134] as a polygon. The dataset consists of matrices,
where each matrix is γ ∈ Rm×n, where m and n are the row and column of the
matrix.

The goal of matrix completion is to impute the unseen entries in a matrix γ given
that only a subset of its coordinates has been observed. An example of the matrix
γ is depicted in Figure 2.10.

(a) (b)

Figure 2.10: Matrix γ with (a) 100 sensors and (b) 60 sensors in 1km2 area
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2.2 Machine Learning

Machine Learning (ML), a fascinating topic in computer science, enables machines
to generate predictions without the requirement for explicit training. By utilizing
inference, ML entails training a computer on a small group of samples known as
the training set and then using the learned model on new data. As it combines
knowledge from other study fields, this area of informatics draws academics from a
variety of backgrounds, including psychologists, neuroscientists, computer scientists,
and statisticians, among others.

Due to the growing accessibility of computational resources, the advent of open-
source machine learning programs, and the growth of large-scale data sets, the field
has witnessed an increase in attention recently. Natural language processing, com-
puter vision, medicine, banking, social networks, signal processing, digital advertis-
ing, and other fields have all found use for ML because of its capacity to enhance
existing results, uncover hidden patterns, or resolve challenging mathematical prob-
lems.

Based on factors like the current problem, the volume of available data, and its
characteristics, there are numerous learning paradigms. Generally speaking, these
paradigms fall into one of three categories: supervised learning, unsupervised learn-
ing, and semi-supervised learning.

⋆ Supervised learning aims to discern the connection between inputs and their
intended outcomes through the utilization of a training set containing a finite
collection of instance-output pairs. If the outputs are discrete, the task is
referred to as classification, whereas if the outputs are continuous, it is known
as regression.

⋆ In unsupervised learning, clustering is a crucial activity that is centered on the
lack of output examples. By utilizing the training data’s inherent structure,
which groups together comparable cases, the main goal is to find clusters.
Without relying on explicit output information, the goal in these situations is
to identify patterns and relationships. By revealing links between data points
through unsupervised learning, clustering reveals important insights that lead
to a deeper comprehension of the underlying patterns and structures.

⋆ Semi-supervised learning, which falls between the two preceding frameworks,
makes use of both labeled and unlabeled training data to determine the re-
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lationship between input instances and the related outputs. Its goal is to
combine the structure of the unlabeled training data with the label informa-
tion found in the labeled training set. In the absence of fully labeled datasets,
semi-supervised learning can be a useful approach in various domains such as
computer vision, natural language processing, and speech recognition.

This chapter aims to give a clear understanding of the frameworks of supervised
learning and semisupervised learning, which are both included in our study. In
Section 2.2.1.1, we will go into supervised learning and clarify the design ideas that
underlie all supervised learning models. We shall concentrate particularly on the
Neural Networks models used in this thesis. Additionally, Section 2.2.1.2 explains
the semi-supervised learning framework and foundation for building SSL models.
These subjects will be thoroughly covered in this chapter’s remaining sections.

2.2.1 Classical Machine Learning

2.2.1.1 Supervised Learning

The goal of supervised learning algorithms is to identify the general predictor, some-
times referred to as the mapping function, that links the input space X and the
output space Y. Through the use of a training set made up of pairs of observations
and related outputs, the goal is to select this mapping that will have the lowest
likelihood of mistakes when applied to unobserved examples.

Core Concept The practical application is the design of a loss function that as-
sesses the degree of agreement or disagreement between a prediction and the antici-
pated output, frequently referred to as the label. The learning process then chooses
the prediction function that minimizes the average error displayed in the training
data. This concept is known as "Empirical Risk Minimization" (ERM). The empir-
ical risk must be decreased in order to construct a prediction function with a low
generalization error, which results in fewer errors when applied to new cases. The
key premise is that these fresh cases are exactly like the training examples that were
used to develop the prediction function. Consequently, statistical learning theory’s
theoretical foundation centers on exploring the correlation between empirical error
and generalization error [173].

Definitions and notations Throughout this thesis, we will introduce the ter-
minology and notations essential for our discourse, commencing with specific illus-
trative instances comprising observations and target outputs. For a given integer
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d ∈ N, each observation is denoted by a collection of features defined in a vector
space X , commonly denoted as X ⊂ Rd. The associated result is called the target
output, and it is considered to be a member of an output set Y. In this case, an
element of X × Y is represented by (x, y).

The fundamental assumption of ML rests on the notion that all instances are dis-
persed autonomously and uniformly independent and identically distributed (i.i.d.)
through an established albeit unfamiliar probability distribution D. Consequently,
for any given set S, its instances (xi, yi) within S are expected to be produced in-
dependently and identically in accordance with D. Next, we establish that S is an
i.i.d. sample conforming to D. In a less formal sense, this assumption delineates
the concept of the representativeness of a training set and a test set concerning the
given problem. Both the training examples and test observations, along with their
corresponding expected outcomes, are produced independently and identically from
the same probability distribution.

The second foundational principle in machine learning revolves around the notion
of error, frequently denoted as risk or loss. Assessing the concordance between
the prediction is key in this context. f(x) and the desired output y for a given
observation x ∈ X in the class of functions F = {f |f : X → Y}, a loss function
ℓ : Y × Y → R+ is employed. The quantification of the similarity between the
expected and desired outputs is intuitively captured by ℓ(f(x), y), typically defined
as a distance across the set of outputs Y.

In binary classification, where Y is the set {−1,+1}, the prevalent loss function
is typically the 0/1 loss, denoted as (2.1):

ℓ(f(x), y) = 1f(x) ̸=y, (2.1)

where 1π = 1 is predicate π is true and 0 otherwise.

In regression, where Y = R, the most commonly used losses are the absolute
error defined in Eq. (2.2):

ℓ(f(x), y) = |f(x) − y| (2.2)

and the square loss :
ℓ(f(x), y) = |f(x) − y|2. (2.3)
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Generalization and Empirical Risk minimization In Eq. (2.4), the ex-
pression for the generalization error of a prediction function f ∈ F is articulated
based on the provided definition.

L(f) = E(x,y)∼D(ℓ(f(x), y)) =
∫

X ×Y
ℓ(f(x), y)dD(x, y) (2.4)

The function of interest in our case, denoted as f and belonging to the set F ,
is the one that yields the minimum prediction errors when applied to new data.
Consequently, it possesses the lowest generalization error. However, due to the
unknown probability distribution D, it is not possible to calculate this generalization
error. In 1998, it was demonstrated by Vapnik [173] that a consistent search for the
function f can be achieved by reducing the mean error of f over a training set
S = (xi, yi)1≤i≤m, which is generated independently and identically (i.i.d.) from D.
This value is referred to as the empirical risk of f on S and serves as an unbiased
estimation of the generalization error:

L̂(f, S) = 1
m

i=1∑
m

ℓ(f(xi), yi) (2.5)

Minimization of Empirical Risk The prediction function fS : X → Y is
outputted by a learning algorithm when a training set S is given as input. The
function A, which is a learning algorithm, searches for the function fS within a class
of functions referred to as F . The ERM algorithm can be intuitively understood in
the following way.

The generalization error L(f) can be accurately calculated by the empirical error
L̂⇕(f, S) if the distribution D is appropriately represented by the training instances
in S. As a result, on a particular training set S, the empirical error is minimized
in order to reduce the generalization error. The ERM principle returns the function
fS when given ⇕ samples in a training set S, and a class of functions F with a loss
function ℓ : Y × Y → R+:

fS = argmin
f∈F

1
m

∑
(xi,yi)∈S

ℓ(f(xi), yi) (2.6)

The practical method involves training over a continuously differentiable upper
bound of the empirical loss in eq. (2.6), also known as the surrogate loss, to create a
real-valued prediction function hw : X → R. The classification function is thereafter
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defined as this function’s sign. In light of this, the function f(x) equals the sign of
hw(x) for every x in the set of real numbers R, that is ∀x ∈ R, f(x) = sgn(hw(x)).

The objective is not solely focused on minimizing empirical error, but rather
on minimizing generalization error. Hence, the ERM approach loses its value if the
function fS , despite having a low empirical error, exhibits a high generalization error.
Consequently, we can expect the ERM method to possess the ability to generalize,
indicating that the empirical error of fS can be a reliable indicator of generalization
error. As long as this condition of generalization holds, we can confidently assume
that if ERM yields a function fS with low empirical error, its generalization error
will also be low.

It is important to note that the ERM approach operates inside a predetermined
and constant set of F with the aim of identifying the function with the lowest
generalization error. As a result, another crucial aspect of the ERM technique
emerges: given enough learning examples, it finally reveals the best function within
F , which has the lowest generalization error. The consistency of the ERM principle
is the term used most frequently to describe this phenomenon.

Complexity of a class of functions and Overfitting For different classes of
functions, the accuracy of the empirical error in estimating the generalization error
varies. In contrast to the training examples, it is more common to keep the learned
function simple. This is so that a function’s simplicity can be determined because it
can have a null empirical loss on the training set yet exhibit very high generalization
error. Overfitting is what this event is known as.

Thus, by limiting the complexity of function class F , the efficacy and homogeneity
of the ERM algorithm are maintained. However, it becomes difficult to successfully
generalize the learnt function when distribution F appears to be overly basic in
compared to distribution D. Both high empirical error and high generalization error
will be present.

Consequently, it is crucial to choose the best function set F . It should achieve
acceptable generalization performance without being overly complicated to prevent
overfitting or too simple to prevent the problem of underfitting. In machine learning,
the bias-variance trade-off also known as the trade-off between low empirical error
and a complicated class of functions is crucial. This idea is demonstrated in Figure
3.9.

Thus, the objective is for the ERM algorithm to acquire the ability to grasp
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Figure 2.11: The empirical error and generalization error are considered in relation to the
complexity of the function class. To discover the ideal class of functions for finding the pre-
diction function, it is crucial to strike a balance between high complexity and low empirical
error.

uncomplicated functions. One approach to infuse simplicity (though its precise
definition is pending) is to limit the scope of functions within the class F to those of
a straightforward nature. This maneuver leads us to establish a correlation between
the ERM principle’s concepts of generalization and consistency, showcasing their
equivalence. Consequently, by curbing the intricacy inherent in the set of functions
F , we secure both the ERM algorithm’s generalization and consistency.

Bounds of Generalization Establishing a link between empirical error, gen-
eralization error, and the complexity of a specific class of functions is one of the
main goals of statistical learning theory. The Rademacher generalization bound
[19] (described below), which sets an upper bound on the generalization error, is
an example. In proportion to the complexity of the class under consideration, the
empirical error, and a residual term that controls the precision of the bound, it has
a high likelihood.

Redmacher Complexity Rademacher complexity, denoted as RS(F), quanti-
fies the expected difference between the empirical risk and the true risk of a class of
functions F over a sample set S of size m random variables. Mathematically, it can
be expressed as:
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F̂m(F ,S) = Eσ

[
sup
f∈F

1
m

n∑
i=1

σif(xi)
]
,

where: - σ = (σ1, σ2, . . . , σm) is a vector of independent Rademacher random
variables (taking values +1 or -1 with equal probability). - Eσ denotes the expecta-
tion over all possible realizations of σ. - f ∈ F represents a function from the class
F . - xi is the i-th data point in the sample set S.

Increased Rademacher complexity leads to an augmented capacity of function
class F for accommodating random noise. Consequently, the Rademacher complex-
ity is subsequently characterized as follows:

Fm(F) = ES [Fm(F , S]. (2.7)

In essence, Rademacher complexity measures the "richness" of the class of functions
F in terms of its ability to fit the given data. It provides insights into the potential
generalization performance of learning algorithms and is often used in the context
of analyzing the complexity of machine learning models for tasks such as binary
classification.

Theorem 1 (Generalization bound [19]). Let X ∈ R be a vectorial space and
Y = {−1,+1} an output space. Suppose that the pairs of examples (x, y) ∈ X × Y
are generated i.i.d. with respect to the probability distribution D. Let F be a class of
functions having values in Y and ℓ : Y × Y → [0, 1] a given loss and m is number of
random variables. Then for all δ ∈ [0, 1], we have with probability greater or equal
to 1 − δ the following inequality:

∀f ∈ F ,L(f) ≤ L̂m + (f, S) + Fm(ℓ ◦ F) +

√
ln 1

δ

2m (2.8)

Similarly utilizing the same process it can be also shown that with probability at
least 1 − δ :

L(f) ≤ L̂m(f, S) + F̂m(ℓ ◦ (f, S)) + 3

√
ln 2

δ

2m (2.9)

Where, ℓ ◦ F = {(x, y) 7→ ℓ(f(x), y)|f ∈ F}. The three components on the right
side of the inequalities (2.8) or (2.9) must have low magnitudes in order to reduce
risk. These elements are composed up to two components: the empirical error, which
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depends on the prediction function f , and the second term, which is affected by the
function class F ’s complexity. It becomes essential to choose a function class that is
not overly complex while simultaneously minimizing the empirical error (which has a
larger complexity term) in order to ensure a theoretical guarantee of generalization
error. Establishing a balance is essential to avoid major empirical errors caused
by oversimplifying data. As a result of these factors, the notion of bias-variance
trade-off is developed.

Neural Networks Neural networks, without a doubt, emerge as one of the preem-
inent classification algorithms in the realm of Machine Learning. In the forthcoming
segment, our contributions will be expounded upon, wherein these models find uti-
lization.

A neural network comprises artificial neurons, interconnected to enable diverse
non-linear transformations. These models originated from the endeavors of neuro-
scientists in the 1950s, who delved into mathematical models to conceptualize the
workings of natural neurons. These models enjoyed some success until the 1990s
when the field of machine learning encountered a revolutionary shift with the ad-
vent of statistical learning theory, proposed by [173]. Throughout this era, little
progress was made in the practical application and utilization of neural networks.
However, recent advancements in hardware components, particularly the emergence
of new graphics processors (GPU - Graphics Processing Unit) and increased RAM
capacity, have reignited enthusiasm in learning with neural networks. These develop-
ments have facilitated Intricately constructed multilayer neural networks were first
shown with the advent of deep learning, which was a major turning point. Their ap-
plication in essential fields of computer science like computer vision and automated
natural language processing has advanced dramatically since 2010. The objective of
this chapter is to present the fundamental principles underlying the learning process
of these networks.

In this part, let us delve into an exceptionally broad modular framework. Within
this structure, a network manifests a sequential amalgamation of functions, with
each function denoting a layer and characterized by its unique set of parameters.

In our analysis, we focus on the simple sequential scenario. Here, the model
computes the function hW or h(W ), which represents the overall transformation
executed by the network. This transformation is achieved by combining N func-
tions, denoted as hn(Wn), where each function corresponds to a specific step in the
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sequential process, ranging from 1 to N i.e. 1 ≤ n ≤ N :

hW = hNWN
◦ ... ◦ h2

W2 ◦ h1
W1 (2.10)

In this explanation, hW (x) represents the model’s prediction for a given input
x. The composite function is defined by the vector W , which consists of the con-
catenated vectors Wn, where 1 ≤ n ≤ N . The functions hn may have varying
dependencies on their parameter vectors Wn, and these vectors can have different
sizes. While the vectors Wn can potentially contain more complex structures like
matrices or weight tensors, in the context discussed here, they will only be treated
as vectors with serialized contents. The functions hn can be arbitrary as long as
they are both differentiable with respect to their data and parameters.

The use of a function often indicates a formal neuron layer in the traditional
representation of neural networks. However, in real-world applications, the conven-
tional idea of a neuron layer is typically implemented by two subsequent functions,
each of which corresponds to a different kind of layer (or sub-layer). The first is re-
ferred to as a linear layer, and it consists solely of multiplying a matrix by a vector
for the linear component. The second layer, also known as a point-to-point layer,
is in charge of applying the activation function for the non-linear aspect element
by element. On occasion, other operations like regularization or normalization may
also be included.

A very adaptable back-propagation technique for training networks of this type is
described below. Different combinations of differentiable and parameterizable func-
tions can be used with it. In this discussion, we will pay particular attention to the
sequential combination of functions. It’s crucial to remember that the method’s gen-
erality goes deeper. It can be applied to functional combinations that are organized
in any acyclic graph.

Optimizers - Stochastic Gradient Descent Frequently, when aiming to train
a network defined by a global function hW relying on parameter vector W , a com-
monly employed approach involves utilizing mini-batches and stochastic gradient
descent. The goal is to minimize an objective function, which is regulated, while
staying true to the Structural risk minimization (SRM) [173] principle. For this
purpose, a training set S = (xi, yi)1≤i≤m is utilized.

L̂m(hW ,S) = 1
m

∑
(x,y)∈S

ℓ(hW (x), y) + λΩ(W ) (2.11)
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A regularization term designated as Ω(W ) is added to prevent overfitting, assum-
ing the loss function ℓ is continuously differentiable. The parameter λ is used to
determine the relative impact of the regularization term and function Ω must be
continuously differentiable.

A mini-lot, which is a subset of the training set MS ⊆ S, is used in the stochastic
mini-batch version of the gradient descent algorithm’s formula (2.12) for updating
the vector W .

W (t+1) = W (t) − η

|MS |
∑

(x,y)∈MS

∇WL(x,y)(W (t)) (2.12)

with :

L(x,y)(W ) = ℓ(hw(x), y) + λΩ(W ) (2.13)

So, the square loss and Ω(.) the squared norm of the weights could be the regu-
larisation term, i.e. :

L(x,y)(W ) = 1
2(hW (x) − y)2 + λ

2 ||W ||2 (2.14)

The computation of ∇W ℓ(hw(x), y) for the (x, y) example becomes necessary in
order to use the gradient descent approach described in eq. (2.12) and (2.13). It
should be noted that when Eq. (2.12) and (2.13) are employed, calculating ∇WΩ(W )
is typically simpler. For instance, ∇WΩ(W ) would be W T when Ω(W ) = 1

2 ||W ||2.
This regularization, which is also known as weight decay in the literature, can be
thought of as applying a decay rate ηλ to the components of W during each iteration
t.

The concatenation of vectors Wn, where 1 ≤ n ≤ N , yields to W . As for
the concatenation of ∇Wnℓ(xn, y), denoted as ∇W ℓ(x, y), it can be simplified by
introducing a simplified notation δℓ

δWn
.

Gradient Computation The gradient ∇ℓ(x, y) are computed by backpropaga-
tion algorithm. The term ’backpropagation’ was first introduced by Frank Rosenblatt
in 1962 [155], but implementation was not known. In 1986, David Everett Rumel-
hart and Geoffrey Hinton, American psychologists published the first experimental
analysis of the technique [157].



2.2. Machine Learning 53

• The initial stage of prediction for training, which is referred to as the forward
pass, embodies the normal network behavior. Through the sequential applica-
tion of the hnWn

functions, the values of xn are repeatedly calculated from the
current input, x0 = x, during this process. Additionally, the associated cost
or error is computed as ℓ(xn, y).

• As part of the backward pass, the second phase involves executing backpropa-
gation with respect to the data. Within this segment of the backward pass, we
iteratively compute the gradients for the data xn based on the error, starting
from N and decreasing with each iteration. This computation is performed
using the chain rule in Eq. (2.15) and (2.16) :

δN = δℓ(xN , y)
δxN

(2.15)

∀n ∈ {N, ...., 2}; δn−1 = δℓ(xN , y)
δxn−1 = δℓ(xN , y)

δxn
.
δhnWj(xn−1)

δxn−1 (2.16)

From the definition, xn= hnWn
(xn−1)

• Part three, known as parameter-based backpropagation, is a component of the
backward pass. It does not involve any recurrence relation and is independent
of both forward and backward dependencies on the values of n when δℓ(xN ,y)

δxN

is computed in the second part. By employing the chain rule once more, the
gradients of the error with respect to the parameters Wn are finally computed.

∀n ∈ {N, ..., 1}; δℓ(x
N , y)

δWn
= δℓ(xN , y)

δxn
.
δhnWn(xn−1)

δWn
= δn

δhnWn(xn−1)
δWn

(2.17)

Applying Neural Networks for the Reconstruction of EMF Exposure
Maps Neural networks have recently been employed in the reconstruction of ex-
posure maps. Various studies have focused on estimating signal values by utilizing
known locations and incorporating additional information [103, 69, 127, 80, 201].
Side information commonly used includes radio parameters (such as transmission
specifications or the Rx-Tx connection) and building details (such as height) [103].
In cases where building information is unavailable, researchers resort to satellite pho-
tos for forecasting (as demonstrated in the paper [80]). The approach in these works
treats the problem as a regression task, employing environmental or technological
characteristics as input and predicting the signal value as output.

The majority of these efforts adopted NN models that were created for image
classification and segmentation and treated the signal map as an image.



54 Chapter 2. EMF Exposure Reconstruction Techniques

Image processing by Neural Network models Convolutional neurons are
used in neural network models for image analysis to extract high-level information
from natural images. In contrast to the feedforward neural networks covered in
Section 3.2.2, these models exhibit a distinctive characteristic. Formal neurons in
each layer are connected to all formal neurons in the layer before them (or to all of the
inputs for the top layer). The all-to-all connection scheme, which describes this fully
connected configuration, calls for independent weights and biases for each connection
and each neuron. Although the input and output values are often represented as
vectors of real numbers, the organization of neurons within the layers lacks a precise
topology; they instead form a collection rather than a vector, matrix, or any other
hierarchical arrangement.

The input data for image analysis is set up in a particular way—a two-dimensional
grid. Preserving and using this structure becomes important for maximizing param-
eter utilization and computational power, particularly in the earliest layers of neural
networks. This is accomplished by setting a maximum distance restriction on con-
nections depending on the grid and by distributing weight across units in the same
layer but at different grid locations. Therefore, matrix-vector product operations
are not used, but rather convolution operations, which have limited support and
translation invariance. However, both strategies are really combined in practice.
Consequently, a collection of identical neurons are related from one place to another
rather than one neuron being assigned to each grid position.

The input and output layers will both have D topological dimensions if the input
data is organized in accordance with a grid of D dimensions (D = 2 in the case of
an image signal). There will also be an additional non-topological dimension to take
into account the fact that each grid point in the data can take several values. These
values, which are scattered evenly throughout the grid like arrays, serve as tables
with values for each point on the grid. For each level of data processing, a different
number of these arrays is chosen.

Images are represented as tensors of order 3, denoted as Xin and Xout. Xin has
a size of pin × win × hin, while Xout has a size of pout × wout × hout. Here, pin and
pout represent the number of matrices in Xin and Xout, respectively. The dimensions
win × hin and wout × hout correspond to the grid sizes on which Xin and Xout are
defined. The convolution layer’s linear component can be described as follows eq.
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(2.18):

Xout(l, i, j) = B(l) +
k=1∑
k−pin

m=−w∑
m=+w

n=−w∑
n=+w

κ(l, k,m, n)Xin(k, i−m, j − n) (2.18)

For 1 ≤ i ≤ wout, 1 ≤ j ≤ hout and 1 ≤ l ≤ pout; where w is the maximum
distance in the grid at which points can be connected.

The varied selection of pin cards inXin serves as the independent and autonomous
base of values for the pout cards of Xout. One of the output maps is computed using
a convolution filter, which appears to be the key player in the world of input maps.
A scalar B(l) and a three-dimensional tensor known as the kernel of this filter,
denoted by the expression κ(l, ., ., .), describe the identity of each of these filters,
referred to as pout filters. This kernel’s dimensions coincide with our consensus that
the filter size is (2w + 1) × (2w + 1) and span din × (2w + 1)(2w + 1). As a result,
the robust kernel and the harmonious combination of vector B and materialize the
entire convolution layer.

The UNet model is a deep learning architecture widely used for image segmen-
tation tasks, first presented in [151]. This architecture is based on encoder-decoder
neural networks, which are fundamental in nature. In this method, the encoder com-
ponent concentrates on locating key patterns in the input data before transferring
important information to the decoder component. Max pooling and convolutional
layers make up the encoder part. Deconvolution, also known as the symmetric ex-
panding path, is carried out in the background by the decoder component in order
to upsample the image back to its original input size using the recovered data. Fig-
ure 2.12 shows an illustration of the U-Net-based design, which incorporates skip
connections for image reconstruction.

Generative Adversarial Networks GANs, a novel method, are widely used in
image analysis. This model is based on convolutional neural networks, namely, the
generator and the discriminator models included in a game-like scenario in GAN.
The Generator’s goal is to generate observations that the Discriminator will verify.
To learn the distribution pG, which closely reflects the true distribution pdata of the
input dataset, is done by the generator. The network works by taking a genuine
observation and an input noise vector z from a previous distribution p(z), producing
an output G(z), and then passing it to the discriminator. In the end, the Discrim-
inator calculates the likelihood that the input sample came from the Generator’s
output as opposed to the training set.
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Figure 2.12: UNet-based architecture, padding is not compulsory

The Generator and Discriminator networks are trained concurrently, engaging
in a two-player minimax game. In this game, the Generator’s parameters θG are
adjusted to confuse the Discriminator, effectively reducing log(1 −D(G(z))). Con-
versely, the Discriminator’s parameters θD are fine-tuned to achieve optimal classifi-
cation predictions, maximizing logD(x) + log(1 −D(G(z))). The objective function
for this minimax game can be described as follows eq. (2.19):

min
θG

max
θD

(Ex∼pdata(x)(log(D(x)) + (Ex∼pz(z)(log(1 −D(G(z))))) (2.19)

The training procedure of this adversarial network is conducted with simultaneous
update of both θD and θG by stochastic gradient descent of logistic loss functions in
eq. (2.20) and (2.21):

∇θD

1
2

1
n

i=1∑
n

(log(1 −D(xi)) + log(D(G(zi))), (2.20)

∇θG

1
n

i=1∑
n

(log(1 −D(G(zi)))), (2.21)

where n is the size of the data batch during the training process.

This GAN model could be further extended to the conditional case (namely
cGAN), where additional information could be added as an input to both the gener-
ator and the discriminator in order to help the generator produce outputs that are
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more similar to the data or the discriminator better distinguish between true and
fake samples. We may rewrite the objective function from Eq. (2.22) as follows by
denoting this new knowledge as a condition:

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[1 − logD(x,G(x, z)] (2.22)

where x is the input, y is the output, and z is the conditional signal. The
generator G is not only trying to reduce the loss from the discriminator but also
trying to move the fake distribution close to the real distribution by using L1 loss
given by:

LL1(G) = Ex,y,z[∥y −G(x, z)∥]. (2.23)

The loss function of the generator network is stated in Eq. (2.24):

G⋆ = arg min
G

max
D

LcGAN (G,D) + λL1(G). (2.24)
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Figure 2.13: Example of Generator architecture

Figure 2.13 illustrates an example of the architectures of the Generator (top),
with the goal of producing samples that are indistinguishable from real data. The
Discriminator (bottom), with the target of estimating the probability that the sam-
ples come from the real distribution rather than was produced by the Generator.

Figure 2.14: Example of Discriminator Architecture

2.2.1.2 Semi-Supervised Learning

Manually constituting coherent and consistent labeled collections is a laborious pro-
cess that demands significant effort and often proves time-consuming and, in certain
scenarios, unfeasible. Since the late 1990s, the ML community has been exploring
semi-supervised learning for discrimination and modeling tasks. This exploration
stems from the realization that labeled data is costly, while unlabeled data is abun-
dant and harbors valuable information pertinent to the problem at hand.

Definitions: In this context, the scarcity of labeled examples typically hinders
the attainment of reliable estimation of the desired association between the input
and output spaces. Consequently, the objective becomes utilizing unlabeled exam-
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ples to achieve a more accurate estimate. Given a set of labeled training examples
S = (xi, yi)|i = 1, ...,m, which are assumed to be generated independently and iden-
tically distributed (i.i.d.) from an underlying distribution D, and a set of unlabeled
examples Xu = (xi|i = m+ 1, ...,m+u), which are drawn independently and identi-
cally distributed from the marginal distribution P(x). Similar to this, if S is empty,
we run into an unsupervised learning problem.

Semi-supervised algorithms are used to estimate labels for unlabeled samples
throughout the learning process. These algorithms estimate a pseudo-label ỹ for
an unlabeled sample x ∈ Xu, which is represented by the symbol y. When u =
|Xu| ≫ m = |S|, semi-supervised learning becomes significant since the goal is to
use the knowledge about the marginal distribution, P (x), learned from the unlabeled
samples to acquire useful information for inferring P (y|x). In the event that this
goal is not accomplished, the efficiency of semi-supervised learning will be diminished
compared to supervised learning, and there is even a possibility that the performance
of the learned prediction function will be degraded by the utilization of unlabeled
data [200, 39]. Consequently, the formulation of working hypotheses is deemed
necessary for the incorporation of unlabeled data into the supervised learning process
of a prediction function.

Inductive vs Transductive Learning We emphasize that semi-supervised
learning can be defined in two different contexts, namely transductive and inductive
learning, In the inductive case (covered in previous sections), where the learning
objective is to minimize the genealization risk for the distribution D. This scenario
involved training a model across a limited number of training samples. The most
typical semi-supervised learning environment is also this one.

Kernel Methods are a class of machine learning algorithms that utilize kernel
functions to implicitly map data into a higher-dimensional feature space. These
methods excel at handling nonlinear relationships and are widely used for tasks such
as classification, regression, and dimensionality reduction. In kernel methods, the
key idea is to operate solely on inner products between data points in the transformed
feature space, avoiding the explicit computation of high-dimensional feature vectors.
This approach is mathematically elegant and computationally efficient.

An essential component of kernel methods is the kernel function, denoted as
K(x, x′), which computes the inner product between the two input samples, x and
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x′, in the feature space. This can be expressed as:

K(x, x′) =< ϕ(x).ϕ(x′) >, (2.25)

where ϕ(x) and ϕ(x′) are the respective feature vectors in the transformed space.
By using kernel functions, we can work with the kernel matrix K, which stores all
pairwise inner products between the data points, instead of explicitly calculating
and storing the transformed feature vectors.

Kernel methods rely on the concept of a positive definite kernel function, denoted
as K(x, x′), which calculates the similarity between two data points x and x′ in the
input space. The most commonly used kernel is the Gaussian also known as radial
basis function (RBF) kernel, defined as :

K(x, x′) = exp(−γ||x− x′||2), (2.26)

where γ is a parameter that controls the smoothness of the kernel.

One of the fundamental properties of kernel methods is Mercer’s theorem [123],
which guarantees that a function can be expressed as a kernel if and only if its corre-
sponding kernel matrix is positive semidefinite. By using the kernel trick, the kernel
function is implicitly applied to the input space, enabling efficient computations
even in high-dimensional or infinite-dimensional feature spaces. Kernel methods of-
fer a non-linear way to transform the input space, allowing linear algorithms to work
effectively on non-linear problems.

The kernel matrix is a symmetric matrix where each element K{i,j} represents the
similarity between input samples i and j. It serves as the basis for various kernel-
based algorithms. Support Vector Machines (SVMs) are a well-known example of
kernel methods that use the kernel trick to find a hyperplane that separates data
points in a transformed feature space. The kernelized version of SVMs solves a dual
optimization problem, involving only the inner products of input samples, making it
computationally efficient. Kernel Principal Component Analysis (PCA) utilizes the
kernel trick to capture non-linear dependencies in data, projecting it onto a lower-
dimensional space while preserving its essential structure. Kernel Ridge Regression
[176, 182] is another application of kernel methods that combines ridge regression
with the kernel trick to perform non-linear regression tasks. The kernel trick al-
lows the use of linear algorithms, such as ridge regression, perceptron, or logistic
regression, on data transformed by a kernel function. Representer Theorem [93]
is a fundamental result in kernel methods that states that the optimal solution of
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many kernel-based learning algorithms can be expressed as a linear combination of
kernel evaluations on the training data. In addition to classification and regression,
kernel methods have found applications in anomaly detection, clustering, and time
series analysis. The choice of an appropriate kernel function is crucial for the success
of kernel methods. Different kernels have different characteristics and are suitable
for capturing different types of data structures. Kernel methods offer several ad-
vantages, including flexibility in modeling complex relationships, implicit feature
expansion, and the ability to incorporate prior knowledge through the choice of the
kernel function. Additionally, they exhibit strong mathematical foundations, such
as the representer theorem and Mercer’s theorem, which guarantee the validity of
kernel functions and provide insights into the behavior of these methods.

Kernel Regression A non-parametric statistical method called kernel regression
is used to calculate the conditional expectation of a random variable given a set of
observed data. Without taking a precise functional form, it is frequently used for
finding trends in the data and smoothing noisy data.

Kernel regression’s fundamental notion is to give neighboring data points weights
based on how close they are to a particular point of interest. A kernel function,
which is a symmetric, non-negative function that integrates to 1, is commonly used
to assess this proximity.

At a high-level overview of how kernel regression works:

Kernel Function Selection: Choose a suitable kernel function, such as the Gaus-
sian kernel, Epanechnikov kernel, polynomial kernel, or others. The choice of kernel
can affect the smoothness and sensitivity of the regression.

Bandwidth Selection: Determine the bandwidth parameter, which controls the
size of the neighborhood around each point that contributes to the regression. A
larger bandwidth includes more data points, while a smaller bandwidth considers
only closer points.

Weight Calculation: For each point in the dataset, calculate the weights for
nearby points based on the chosen kernel and bandwidth. Points closer to the
target point receive higher weights.

Regression Estimation: Calculate the estimated value at the target point by
combining the weighted contributions of the neighboring data points.
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Mathematically, the estimated value at a given point x using kernel regression is
expressed as:

f(x) = 1
n

n∑
i=1

K(x−xi
h )yi∑n

i=1K(x−xi
h )

(2.27)

where, n is the total number of data points, xi are the data points, yi are the
corresponding observed values, K is the chosen kernel function, h is the bandwidth.

In the context of a training dataset denoted as {(xp, yp)}np=1 where xp ∈ Rd

and yp ∈ Rc, the concept of kernel regression involves following process [176, 182,
47, 141]. Initially, each xp is subjected to a predetermined feature mapping ψ,
which transforms it from R to a Hilbert space denoted as H. Subsequently, a linear
regression analysis is conducted on the transformed dataset {(ψ(xp), yp)}np=1 ∈ H ×
Rc. The challenge arises when H has an infinite dimensionality; in this case, solving
linear regression depends on grasping the inner product relationships among the
transformed data points. Specifically, these inner products, denoted as ⟨ψ(x), ψ(z)⟩H
for x, z ∈ Rd, play a crucial role. The inner products are abstracted which is a
positive semi-definite and symmetric function K : Rd × Rd → R, known as the
kernel K. Given the aforementioned training dataset and a kernel function denoted
as K, the process of kernel regression is first, the kernel matrix, denoted as K̂,
where K̂ is an n × n matrix with entries K̂i,j = K(xi, xj). then Solve the system
of equations βK̂ = y, where β is a vector in the space Rc×n, and y = [y1, ..., yp] is
a vector in the space Rc×n. The resultant predictor, represented as f̂ : Rd → Rc,
is defined as follows: f̂(z) = βK(X, z), where K(X, z) is a vector in the space Rn

with entries K(X, z)i = K(xi, z).

Notably different from the case of neural networks, it is important to highlight
that training a kernel machine involves addressing a convex optimization problem,
which corresponds to solving a linear system of equations. Kernel regression is
widely used in various fields, including finance, economics, machine learning, and
signal processing, for tasks like smoothing data, time series prediction, and density
estimation. It is a powerful tool for understanding relationships in data when the
underlying structure is unknown or complex.
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2.2.2 Modern Machine Learning

Modern ML has witnessed intriguing phenomena that challenge conventional wisdom
regarding model complexity and generalization. One particularly fascinating aspect
is the phenomenon of double descent [21, 121] in infinite-width neural networks.
Traditionally, as model complexity increases, the risk of overfitting grows, leading
to poor generalization. However, recent research has shown that for certain tasks and
datasets, the performance of deep neural networks improves with increasing width,
even surpassing the performance of narrower networks. This phenomenon occurs due
to the network’s ability to capture intricate data patterns and interpolate them more
accurately as the width increases. Double descent in infinite-width neural networks
highlights the delicate balance between capacity and regularization in learning (see
Figure 2.15).

Figure 2.15: This figure depicts a schematic representation of the empirically observed
double descent phenomenon. Specifically, within the under-parameterized (classical) realm,
traditional overfitting becomes apparent: data interpolation is unachievable, resulting in
an increase in test loss alongside the reduction of training loss. Conversely, in the over-
parameterized (modern) scenario, all models impeccably capture the training data, leading
to a noteworthy decline in test loss as the model’s complexity, characterized by neural
network width in this context, expands.

Double descent & Overparameterized Networks The phenomenon of double
descent in modern machine learning, specifically in infinite-width neural networks
under overparameterization [21], can be mathematically described. Let us consider a
deep neural network with a fixed architecture and an activation function, represented
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by f(x; θ), where x denotes the input and θ represents the network parameters.
The network is trained using a dataset {(xi, yi)}Ni=1, where yi is the corresponding
target output. The network’s training error can be quantified by the empirical risk,
R(θ) = 1

N

∑N
i=1 L(yi, f(xi; θ)), where L is a loss function measuring the discrepancy

between the predicted and true outputs.

In the case of overparameterized neural networks, where the number of parame-
ters greatly exceeds the number of training data points, the optimization problem
becomes highly nonlinear and complex. The key observation is that as the network
width approaches infinity, the optimization landscape undergoes a phase transition.
This transition is characterized by a U-shaped curve in the generalization error,
G(θ) = Ex,y[L(y, f(x; θ))], as a function of model complexity. The generalization
error initially decreases with increasing model complexity until it reaches a mini-
mum, followed by an increase known as the double descent curve. This behavior is
mathematically captured by the equation G(θ) = R(θ) + λΩ(θ), where Ω(θ) repre-
sents a regularization term and λ controls the trade-off between training error and
complexity.

The interplay between overparameterization, width, and double descent can be
further explored using statistical learning theory. The Rademacher complexity,
Rn(F), provides a measure of the complexity of a function class F with respect
to a given sample size n. It quantifies the ability of the class to fit random noise
in the training data. In the case of overparameterized networks, the Rademacher
complexity exhibits a logarithmic dependence on the network width, emphasizing
the importance of width in capturing finer data structures. The explicit formulation
of the Rademacher complexity and its relation to network width and generalization
error offer valuable insights into the theoretical foundations of double descent in the
context of overparameterized infinite-width neural networks.

2.2.2.1 Linearization of Neural Network

Consider a set of training samples denoted as X = [x(1), x(2), ..., x(n)] ∈ Rd×n,
along with their corresponding training labels y = [y(1), y(2), ..., y(n)] ∈ R1×n. In-
stead of utilizing linear or kernel regression methods to fit this training data, we can
opt for a neural network that implements a function f(x) : Rd → R.

In the scenario where the neural network consists of a single hidden layer, it is
conventionally parameterized by two weight matrices A ∈ R1×k and B ∈ Rk×d.
Additionally, it employs an elementwise nonlinearity function ψ : R → R to enhance
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its capabilities.

Definition 1 (Linearization of Neural Network) . Let fx(w) : RP → R
denote a neural network operating on a fixed sample x ∈ Rd. Then, the linearization
of fx(w) around initial weights w(0) is given by:

f̃x(w) = f(w(0)) + ▽fx(w(0))T (w − w(0)) (2.28)

It is important to emphasize that the linearization mentioned earlier can be
viewed as the application of a linear model to modified characteristics. To train
the linearization f̃x(w) using the Mean Squared Error (MSE) loss, we solve a lin-
ear regression problem by first applying the feature map ψ : Rd → Rp, where
ψ(x) = ∇fx(w(0)), to the samples. Thus, linear regression can be efficiently tack-
led using the kernel trick. The kernel mentioned below is commonly known as the
Neural Tangent Kernel (NTK) [83].

2.2.2.2 Infinite Width Neural Networks

It is a theoretical construction that connects neural networks to kernel methods,
enabling us to understand the behavior of neural networks in the context of kernel-
based algorithms. In this framework, an infinite width network is approximated
by its associated kernel, allowing us to leverage the tools and insights from kernel
methods.

An infinite width neural network is characterized by an infinite number of neurons
in each layer, resulting in an unbounded number of parameters. The activation of
each neuron is determined by a weighted sum of its inputs, followed by an activation
function, such as the rectified linear unit (ReLU). The output of a neuron can be
represented as y = f(Wx+b), where Y is the neuron’s output, X is the input vector,
W is the weight matrix, b is the bias vector, and f(ψ) is the activation function. In
an infinite width network, the weight and bias parameters are typically assumed to
be drawn from a gaussian distribution.

For example, considering a simple regression task, where we aim to approximate
a function f(x) using an infinite width neural network, the NTK can be defined as:

K(x, x′) = Cov(∇θf(x),∇θf(x′)), (2.29)

where x and x′ are input samples, f(x) represents the output of the network for
input x, ∇θf(x) denotes the gradient of f(x) with respect to the network’s weights
θ, and Cov(.) denotes the covariance.
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2.2.2.3 Neural Tangent Kernel: NTK

NTK [83] is a mathematical tool that connects the infinite-width neural network and
kernel methods. It allows us to analyze the behavior and properties of neural net-
works in the limit of infinitely many neurons per layer. In this detailed explanation,
we will delve into the NTK and its connection to infinite-width neural networks,
discussing the mathematical foundations, key concepts, and practical implications.

Definition 2 (Neural Tangent Kernel) Let f(w) : RP → R denote a neural
network with initial parameters w(0). The neural tangent kernel, K : R×R → R
is a positive semi-definite function given by:

K(x, x′) = ⟨∇fx(w(0)),∇fx′(w(0))⟩, (2.30)

where w(0) ∈ RP denotes the parameters at initialization.

The NTK captures the similarity or covariance between gradients of the outputs
of an infinite width neural network with respect to its weights. In an infinite width
network, the weights and biases are typically assumed to be randomly drawn. The
NTK measures how small perturbations in the weights affect the network’s output.
The NTK is a symmetric positive semidefinite kernel matrix, denoted as K(x, x′),
where x and x′ are input samples. The entries of the NTK matrix, Kij , are given
by the covariance between the gradients of the network’s outputs for inputs xi and
xj with respect to the weights. The NTK is closely related to the kernel methods,
as it measures the similarity between inputs in a high-dimensional feature space
implicitly defined by the neural network. Using the NTK, the network’s output for
a given input x can be expressed as:

f(x) =
∑
i

αiK(x, xi), (2.31)

where αi represents the learned coefficients. The main discovery in [83] indicates that
when wi are independently and identically distributed (i.i.d.) with a standard nor-
mal distribution (0, 1), as the indices k1, k2, ..., kL approach ∞, the kernel K(x, x′)
converges with a high likelihood to a fixed kernel that remains constant throughout
the training process. The NTK can be computed using automatic differentiation
techniques, which allow efficient calculation of the gradients required for the covari-
ance estimation. In the case of feedforward neural networks with ReLU activations,
the NTK has been shown to converge to a limiting kernel during training. The limit-
ing kernel is a piecewise linear function and can be computed analytically for specific
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network architectures. The limiting NTK provides insights into the network’s be-
havior, training dynamics, and generalization properties. One important property of
the NTK is the neural tangency property, which states that the NTK remains fixed
during training when the network is initialized with small random weights. This
property allows for the analysis of network behavior without explicitly considering
the weight updates during training.

The NTK also exhibits interesting properties such as kernelized memorization,
where the network learns to store training data in its weights. Additionally, the NTK
connects to random features and random networks, providing links to the theory of
random matrix theory and random feature expansions. While the NTK framework
provides valuable theoretical insights, it is important to note that it assumes an
infinite width limit, which may not be directly applicable to finite width networks
commonly used in practice.

Nonetheless, the NTK analysis serves as a valuable tool for understanding the be-
havior and properties of neural networks and can guide the design and optimization
of practical architectures.

Similarity of training Neural Network and NTK: The correspondence
of the NTK with the training of neural networks has been described. The NTK
emerges as the kernel linked to the linearization of an initial weight configuration in
a neural network. Interestingly, when the widths of individual layers tend towards
infinity, solving kernel regression using the NTK remarkably converges to the process
of training all the layers in a neural network, as proved in [106, 105].

2.2.2.4 Convolutional Neural Tangent Kernel: CNTK

Convolutional Neural Networks (CNNs) have revolutionized many areas of machine
learning, particularly in computer vision tasks. A significant theoretical develop-
ment in understanding CNNs is the introduction of CNTK [12]. CNTKs provide a
mathematical framework for analyzing the behavior and generalization properties
of CNNs. We present an overview of the CNTKs, their mathematical formulation,
and their application in deep learning. CNTK [12] is derived from the NTK theory,
which extends the kernel theory to convolutional neural networks. CNTKs provide
a way to analyze the dynamics of CNNs during training and their generalization
capabilities similar to NTK. The CNTKs capture the similarity between inputs by
measuring the inner product between the tangent vectors of neural network param-
eters. This similarity measure facilitates the study of gradient-based optimization
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and generalization in CNNs. CNTK is defined by :

K(x, x′) = ⟨ δf(x)
δWi,j,k,l

× δf(x′)
δWi,j,k,l

⟩, (2.32)

where x and x′ are input examples, Wi,j,k,l represents the weights of the convo-
lutional filters, ∑

i,j,k,l denotes the summation over the indices of the convolutional
filters and their corresponding weights. δf(x)

δWi,j,k,l
represents the partial derivative of

the output feature maps f(x) with respect to the weights Wi,j,k,l. and ⟨◦, ◦⟩ denotes
the inner product operation, which measures the similarity between the tangent
vectors of the neural network parameters.

Matrix Completion is widely used in machine learning applications. It is a
powerful technique that leverages mathematical principles and algorithms to infer
missing entries in a partially observed matrix. This approach finds applications in
diverse fields such as recommendation systems, image inpainting, and collaborative
filtering. The fundamental idea behind matrix completion is to exploit the low-
rank structure of the underlying matrix, assuming that it can be represented as the
product of two low-rank matrices.

Let’s denote the partially observed matrix as M , which has dimensions m × n,
where m represents the number of rows and n the number of columns. The objective
is to estimate the missing entries in M . Matrix completion formulates this task as
an optimization problem, aiming to find low-rank matrices X and Y such that their
product approximates M :

M ≃ X × Y T (2.33)

To achieve this, ML techniques come into play. One popular approach is to
employ singular value decomposition (SVD) to compute the low-rank approximation.
SVD decomposes a matrix into three parts: U , ∑, and V , where U and V are
orthogonal matrices and ∑ is a diagonal matrix of singular values. The rank of the
matrix is determined by the number of non-zero singular values.

The matrix completion problem can also be formulated as an optimization prob-
lem, the objective being to minimize the reconstruction error. This error is typically
measured using a loss function, such as the squared Frobenius norm:

Loss = ||M −X × Y T ||2F (2.34)
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To solve this optimization problem, ML algorithms such as gradient descent,
alternating least squares, or nuclear norm minimization can be employed. These
algorithms iteratively update the low-rank matrices X and Y until convergence.

Regularization techniques are often used to prevent overfitting and improve gener-
alization. Ridge regression, LASSO, or elastic net regularization can be incorporated
into the optimization problem, introducing penalty terms to control the complexity
of the learned model.

Moreover, to handle missing entries in the observed matrix, imputation strategies
can be employed. These strategies use the available information to estimate the
missing values, which are then fed into the matrix completion algorithm. Techniques
like mean imputation, regression imputation, or matrix factorization imputation can
be used for this purpose.

In recent years, deep learning techniques have also been applied to matrix com-
pletion. Deep neural networks can learn complex representations from the observed
data, capturing intricate patterns and dependencies. Autoencoders, recurrent neural
networks (RNNs), or graph convolutional networks (GCNs) have shown promising
results in matrix completion tasks.

In conclusion, matrix completion with machine learning is a valuable approach for
inferring missing entries in partially observed matrices. By exploiting the low-rank
structure of the underlying matrix and employing optimization algorithms, machine
learning techniques can effectively estimate the missing values.



The exposure reconstruction technique for indoor and outdoor scenarios will be
presented in this section. First, the application of Machine Learning, specifically

Deep Learning, to the task of exposure Map Reconstruction as an image
reconstruction problem for indoor scenarios using a specific UNet model will be
covered. Next, outdoor exposure map reconstruction from 50 sparsely distributed
sensors using CNN based cGAN models will be presented. Subsequently, the

Unet based indoor reconstruction technique will be compared with cGAN models.
Finally, a novel method for urban exposure reconstruction with Infinitely wide

CNN by matrix completion will be introduced.



Contributions
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2.3 Proposed Neural Network Architecture

Indoor EMF Exposure Modeling The following sections present an algorithm
for estimating electromagnetic field exposure maps using UNet architecture based
on CNN. The power map estimation is transformed into an image reconstruction
task by image color mapping, where every pixel value of the image represents the
received power intensity. The designed model learns wireless signal propagation
characteristics in a realistic indoor environment while considering various positions
of the Wi-Fi access points. Results show that indoor propagation phenomena and
environment models can be learned from data producing an accurate power map to
measure the electromagnetic field. In this section, we introduce the reconstruction
of RF-EMF exposure for Wi-Fi access points situated at various locations within
a realistic indoor environment. In this context, the channel frequencies range from
2.412 GHz to 2.472 GHz. This is achieved using a CNN-based architecture embed-
ding the popular UNet [151] model used for biomedical image segmentation. The
introduced reconstruction model is referred to as the Exposure Map Estimation Net-
work (EME-Net). The pixel color in the reference power map image of the indoor
environment represents the power intensity.

2.3.1 EME-Net Model

The exposure map estimator system labeled EME-Net based on popular UNet ar-
chitecture, is composed of two modules in Figure 2.16. The first module is the
reduction module and consists of convolutional, max-pooling, and dropout layers
that extract the features of the input images by downsampling. The second mod-
ule is the expansion module: a symmetric expanding path consisting of transposed
convolutional layers upsampling the feature matrix. The architecture follows the
structure of auto-encoders. The model is designed to capture the information from
the training dataset, learn more complex wireless propagation features of the target
area, and reconstruct the power map.

Every layer of the expansion module uses skip connections by concatenating the
output of the convolutional layers and the feature extraction layer. This is processed
through the contraction module of the same level. The contraction module of the
proposed EME-Net model encodes and learns features extracted from the input
measurement map while keeping the spatial information of the input image. Each
function used in the CNN model is described below:
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Figure 2.16: The EME-Net model architecture.

convolutional layer A convolutional layer is a fundamental building block of
CNNs, which is widely used in image and video analysis tasks. A convolutional layer
performs convolutional operations on the input data to extract features, typically
used for tasks like image recognition, object detection, and more.

Mathematically, the operation of a convolutional layer can be defined as follows:

Given an input tensor X of shape (Hin,Win, Cin), where Hin is the input height,
Win is the input width, and Cin is the number of input channels. Additionally, let
F be the convolutional filter (also known as kernel) of size (Hfilter,Wfilter, Cin, Cout),
where Hfilter and Wfilter are the filter’s height and width, Cout is the number of
output channels, which corresponds to the number of filters.

The convolutional operation is defined as follows:

For each output channel k = 1, 2, . . . , Cout, the output tensor Y at position (i, j, k)
is obtained by applying the convolution operation:

Y (i, j, k) =
Cin∑
c=1

Hfilter∑
p=1

Wfilter∑
q=1

X(i+ p− 1, j + q − 1, c) · F (p, q, c, k) (2.35)

Where: - X(i+ p− 1, j + q− 1, c) is the value of the input tensor at the position
(i+ p− 1, j + q − 1, c). - F (p, q, c, k) is the value of the filter at position (p, q, c, k).
- The indices p and q iterate over the height and width of the filter. - The indices
i and j iterate over the height and width of the output tensor Y . - The indices c
iterate over the input channels.
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After the convolution operation, often a bias term is added to each output chan-
nel, followed by an activation function like ReLU. This mathematical definition
captures the essence of how a convolutional layer processes input data using filters
to extract features through convolution operations.

ReLU activation The Rectified Linear Unit (ReLU) is a common activation func-
tion used in neural networks. It’s defined mathematically as follows:

f(x) = max(0, x) (2.36)

Where: - x is the input to the ReLU function. - max(0, x) means that the output
is the maximum of 0 and x. In other words, if x is positive or zero, the output is x;
otherwise, if x is negative, the output is 0.

The ReLU activation function introduces non-linearity into the network, allowing
it to learn complex relationships and making it especially useful for deep neural
networks.

Max pooling is a technique commonly used in CNNs for down-sampling the spa-
tial dimensions of feature maps while retaining important information. It helps re-
duce the computational complexity of the network and aids in capturing translation-
invariant features. Max pooling is typically applied to each feature map indepen-
dently.

Mathematically, the operation of max pooling can be defined as follows:

Given a 2D input feature map X of size Hin ×Win, where Hin is the height and
Win is the width, and a pooling window of size k × k, the output feature map Y of
size Hout ×Wout is obtained by applying max pooling as follows:

Yi,j = k−1max
m=0

k−1max
n=0

Xi·k+m,j·k+n (2.37)

Where: - i = 0, 1, . . . ,Hout − 1 - j = 0, 1, . . . ,Wout − 1 - Yi,j is the value of
the output feature map at position (i, j) - Xi·k+m,j·k+n are the values in the input
feature map covered by the pooling window at position (i · k+m, j · k+n) - k is the
size of the pooling window

Max pooling selects the maximum value within each pooling window and places
it in the corresponding position of the output feature map. This helps retain the
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most important information from the input feature map while reducing its spatial
dimensions.

Keep in mind that this explanation assumes 2D max pooling for simplicity. In
practice, max pooling can also be applied to higher-dimensional feature maps.

Deconvolution/transposed convolution is an operation used in CNNs for up-
sampling feature maps. Mathematically, the transposed convolution operation takes
an input tensor and performs a convolution-like operation using a learnable kernel,
but with additional strides and padding. The goal is to upsample the input tensor
to a larger size.

Given an input tensor X with dimensions H ×W × Cin, where H is the height,
W is the width, and Cin is the number of input channels, and a learnable kernel K
with dimensions KH × KW × Cout (where Cout is the number of output channels),
the transposed convolution operation can be defined as follows:

Y [i, j, k] =
KH−1∑
m=0

KW −1∑
n=0

Cin−1∑
c=0

X[stride · (i− 1) +m, stride · (j− 1) +n, c] ·K[m,n, c, k]

(2.38)
Where: - Y is the output tensor of the transposed convolution operation. - i and j

are the spatial indices of the output tensor Y . - k is the index of the output channel
of Y . - m and n are the indices of the kernel K. - c is the index of the input channel.
- stride is the stride used in the transposed convolution operation.

It’s important to note that the transposed convolution operation can also involve
adjusting padding to control the spatial dimensions of the output tensor. The choice
of stride and padding can influence how much the output tensor is upsampled. Also,
the learnable kernel K is often shared across different positions in the input tensor,
similar to how convolutional kernels are shared in traditional convolutions.

Skip connections Skip connections, also known as residual connections, are a fun-
damental architectural component in CNNs that help mitigate the vanishing gradient
problem and facilitate the training of very deep networks. They were introduced in
the context of the ResNet (Residual Network) architecture. Mathematically, a skip
connection can be defined as follows:

Given an input feature map x and a sequence of convolutional layers represented
as F (x), a skip connection allows the output of the convolutional layers to be com-



76 Chapter 2. EMF Exposure Reconstruction Techniques

bined with the original input feature map:

Output = f(x) + x (2.39)

Here: - f(x) represents the transformation performed by the convolutional layers.
- x is the original input feature map. - Output is the final output, which combines
the transformed feature map with the original input using element-wise addition.

This approach enables the network to learn the residual information that wasn’t
captured by the convolutional layers. If the transformation performed by f(x) is
close to zero, the skip connection allows the information from x to directly flow
through the network, thus helping to prevent the gradients from vanishing during
backpropagation.

The explanations of the modules in EME-Net (UNet based) are as follows.

Reduction Module

For the EMENet model, the input layer is a three-dimensional sensor measure-
ment image. In this specific UNet architecture, a version of an encoder can be found.
Its purpose is to generate a compact representation of the input image, comprising
only the most crucial information within the image. Features are extracted using
the encoder, which essentially serves as the means for this extraction.

Furthermore, this lower-dimensional representation obtained by the encoder en-
ables efficient processing and analysis of the image. It allows for faster computations
and reduces the computational complexity involved in subsequent stages of the CNN.
The extracted features are then utilized for various tasks such as image classification,
object detection, and semantic segmentation. Thus, the encoder plays a fundamen-
tal role in enhancing the performance and effectiveness of CNN models, an example
of this encoder/reduction module is depicted in 2.17.

The reduction module is a chain of convolutional blocks, each of them is composed
of

• Two consecutive convolutional layers with kernel size 3 × 3, a stride of 1. The
input layer takes a three-dimensional sensor measurement image, i.e., tensors
with size 112 × 112 × 4. This increases the channel number of the feature map
and results in new dimensions with 16 channels.

• The employed activation function is the rectified linear unit (ReLU). Taking
only positive values after convolution serves to overcome the vanishing gra-
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Figure 2.17: The encoder architecture.

dient problem during the backpropagation process while updating the model
weights. Convolutional and max pooling layers are depicted in 2.18.

Figure 2.18: convolutional and pooling layers.

• Previous layers are ended with a max-pooling layer. The largest value in each
patch of each feature map is taken in this layer, downsampling the feature
map. This results in new dimensions: 64 × 64 × 16.
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Layers in the first block are repeated in the reduction module, where the feature
map size gradually reduces while the depth or channel number increases to 8×8×256.

Expansion Module

In the expansion module or the decoder, five symmetric blocks of the reduction
module are used with a transposed convolutional layer for upsampling. Layer param-
eters are set so that the height and width of the feature map are doubled, whereas
the depth (number of channels) is halved.

On the other hand, the increase in dimensionality in upsampled or deconvolu-
tion layers is accomplished by employing a learned function. This means that the
upsampling function is updated during the model’s training process. The pooling
layer by learned upsampling function is depicted in 2.19

Figure 2.19: deconvolution using a learned upsampling function.

Two successive convolutions are applied to learn more definite features from the
feature map. The proposed EME-Net model architecture is symmetric U-shaped
and has five blocks on each module.

Outdoor EMF Exposure Modeling This section presents a conditional Gener-
ative Adversarial Network to address this issue. The main objective is to reconstruct
the electromagnetic field exposure map accurately according to the environment’s
topology from a few sensors located in an outdoor urban environment. The model is
trained to learn and estimate the propagation characteristics of the electromagnetic
field according to the topology of a given environment.
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Although sensor networks and on-site measurements are essential, they are con-
fined systems that only allow a limited amount of EMF exposure monitoring. Lo-
cations of base stations and mobile devices in an urban setting are influenced by
elements including building topology, roadways, vehicles, and urban city topology.
To evaluate RF-EMF exposure, a power map must be constructed while taking
these relevant factors into account. The challenge is reconstructing the EMF expo-
sure map in an urban area from only a few sparsely located sensor-measured power
values changing over time according to environment topology and network activity.

This is achieved using a conditional Generative Adversarial Network (cGAN) [124]
architecture where the city topology is used as a conditional input. The proposed
Exposure Map Generative Adversarial Network (EMGAN) method is an innovative
approach inspired by the cGAN architecture. The EMGAN model learns and then
estimates the features of outdoor wireless propagation, including diffraction, shad-
owing reflection, and the impact of building walls, materials, roadways, and city
topography.

2.3.2 EMGAN Model

The proposed deep learning method is inspired by a conditional GAN architecture
adapted to image-to-image translation. Several studies have been done using this
specific model architecture [189, 166, 82] for different applications. The neural
network learns to estimate the propagation of an electromagnetic field according to
a set of sensors. Our model is conditioned by a map that represents the topology
of an environment, thus forcing the model to adapt to a targeted topology, whether
indoor or outdoor. Figure 2.20 illustrates cGAN model architecture and the details
are given next.

UNet Generator Estimating the EMF exposure map is an image-to-image trans-
lation task (architecture details are in section 2.3.1). The model’s inputs consist of
two images, a sparse sensor measurement map, and the city topology as a conditional
input to the generator (the UNet model), represented as a three-dimensional ma-
trix (height, width, and color channel). Three channels—red, green, and blue—are
combined to create a picture [148]. A channel represents the color and color in-
tensity of an image. The proposed method reconstructs the final image using a
three-dimensional image tensor with three channels. The input sensor measurement
map is sparse because each pixel’s color intensity corresponds to a sensor-measured
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value at that location.

The generator is an encoder-decoder model using a UNet architecture (see sec-
tion 2.3.1). The model takes a source image (e.g., a sensor map) along with a city
topology image as a conditional input and generates a target image. It does this by
first downsampling or encoding the input image down to a bottleneck layer, then
upsampling or decoding the bottleneck representation to the size of the output im-
age. Moreover, skip connections are added between the encoding and corresponding
decoding layers for learning features from input images. The model is built to learn
more intricate wireless propagation aspects of the target area and translate it to an
EMF map for exposure assessment.

Discriminator The PatchGAN discriminator is a specific type of discriminator
architecture commonly used in Generative Adversarial Networks (GANs), particu-
larly in the context of image-to-image translation tasks. It’s designed to provide
high-resolution feedback to the generator about the realism of local patches in the
generated images. The discriminator’s main function is to distinguish between real
and generated images, but the PatchGAN discriminator goes further by providing
detailed information about the local regions of an image.

Local Discrimination: Instead of processing the entire input image at once, the
PatchGAN discriminator focuses on smaller patches or regions of the image. These
patches are usually non-overlapping subregions of the input image. This approach
enables the discriminator to provide fine-grained feedback on the realism of local
image details.

Convolutional Architecture: The PatchGAN discriminator typically uses a se-
ries of convolutional layers to process the image patches. The architecture can vary,
but it often consists of multiple convolutional layers followed by downsampling lay-
ers such as max-pooling or strided convolutions. These layers capture hierarchical
features from the input patches.

Output Interpretation: For each patch, the discriminator produces an output
that represents the likelihood or confidence that the given patch is real. In the
context of binary classification (real vs. fake), this output can be interpreted as the
probability of the patch being real. Since the discriminator operates on patches, it
produces an output map where each value corresponds to a patch’s classification.
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Patch Overlapping: Although the concept of patches suggests non-overlapping
regions, in practice, it’s common to have overlapping patches. Overlapping patches
provide smoother transitions and help avoid artifacts along the patch boundaries.

Using the PatchGAN discriminator in image-to-image translation tasks, such as
style transfer or image generation from sketches, often leads to more visually pleasing
results. The local focus allows the generator to create realistic textures, patterns,
and details, as the discriminator evaluates the quality of these details at a finer level.

In summary, the PatchGAN discriminator is a discriminator architecture tailored
to provide localized, high-resolution feedback to the generator in GANs, making it
particularly useful for tasks where fine-grained image details matter. In Figure 2.20
a general architecture of the PatchGAN is illustrated.

Figure 2.20: PatchGAN Discriminator.

Loss Functions of cGAN model The loss function of the proposed cGAN model
contains the discriminator and the generator part as shown in eq. (2.40):

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[1 − logD(x,G(x, z)] (2.40)

where x is the input image, y is the output image, and z is the conditional image.

The generator G is not only trying to reduce the loss from the discriminator but
also trying to move the fake distribution close to the real distribution by using L1
loss which is given in Eq. (2.41):

LL1(G) = Ex,y,z[∥y −G(x, z)∥] (2.41)
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The loss function of the generator network is stated in (2.42):

G⋆ = arg min
G

max
D

+LcGAN (G,D) + λL1(G) (2.42)

In this section, we discussed CNN-based conditional generative model architec-
ture and implementation for outdoor exposure reconstruction. Recent works based
on conditional GAN models [124], where inference is conditioned by rules, e.g.,
physical laws or structural constraints, tend to better address this issue. However,
no solution based on this architecture has been proposed so far for the analysis of
outdoor electromagnetic field inference. In chapter 3 we present the results.

2.3.3 EME-CNTK

Infinite width neural networks: a convolutional neural tangent kernel (CNTK) [187,
186] is computed for an infinitely wide convolutional neural network whose training
dynamics can be completely described by a closed-form formula. This CNTK is
utilized to impute the target matrix and estimate EMF exposure from a few sensor-
measured values located in an urban environment.

One big issue though is that we do not have access to a reference covering the
full map. as explained in section 2.1.2, using a ray-tracing simulator for instance
to generate the reference and train the neural networks. Simulations are complex
tasks, especially because the number of active base stations from different technolo-
gies and operators should be taken into account and we do not have access to the
network configuration: what are the powers and beams used by the base stations?
We want to propose a solution that does not require reference maps and uses only
the measurement points to train the network and reconstruct the exposure map.
As shown in [89, 196, 70], expanding the size of the neural network models larger
improves the efficiency of the model. The advantages of wider neural network mod-
els for generalization and efficiency in classification and feature learning tasks have
been highlighted in numerous recent experiments [198, 128] (see section 2.2.2). In
the infinite-width limit [97, 130, 42, 118], ANNs are known to be comparable to
Gaussian processes, which links them to kernel methods. Therefore, exposure re-
construction is achieved through neural tangent kernels (NTK) [83] for convolutional
neural network [96] where the neural network size approaches infinity [186, 98, 25].
The proposed Exposure Map reconstruction method using convolutional neural tan-
gent kernel (CNTK) [102, 12], EME-CNTK, is an innovative approach inspired by
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the unobserved data imputation in a matrix, also known as image reconstruction
using neural networks.

The exposure map reconstruction problem is defined as missing data imputation
in images. We propose to address the problem as missing data imputation or image
inpainting using CNTK [12]. The exposure map is reconstructed using only data
recorded from a few sparse sensor values in a 1 km2 area. No complete exposure
map as a reference is used in the proposed method for reconstruction. A high-level
overview of our approach is depicted in Figure 2.21.

Figure 2.21: Overview of the proposed EME-CNTK approach, which exploits the width
limits of neural networks to faithfully and rapidly reconstruct an exposure field. Based on

a set of measurements from a sparse sensor network and the terrain map, the neural
network, based on ConvNet, infers a coherent exposure field. The main contribution lies in

the construction of the kernel and the computation of the priors.

To apply matrix completion for exposure map reconstruction, We need to con-
struct the kernel and then apply kernel regression.

2.3.3.1 Kernel Construction

The NTK is constructed as described in section 2.2.2.3. The NTK method shows that
for infinitely wide networks, the neural network behavior is analogous to a continuous
kernel function. The kernel is given by the network architecture and the initialization
of the kernels/filters and the network parameters. In traditional supervised learning,
the target is to learn a mapping function between data X and labels Y . The feed-
forward deep neural network is a function γψ that can be represented as a formation
of γψ(x) = γψk

ϕ(γψk−1ϕ(...(γψ1(x))...)), where x is the input and γψk
is the layer

functions. Layer functions can be designed as required, but commonly they are
formed by connecting simple scalar-valued functions called neurons, which represent
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a linear function followed by a non-linear function as activation ϕ [71]. In [179],
exposure in an urban area in Paris city was estimated using an artificial neural
network from a few sparsely distributed sensors. In that work, the ANN model was
trained by minimizing mean squared error (MSE) loss while having 5 input features
such as location, transmitter distance to sensors, etc. In our method, exposure
values from sensors in γ are modeled using a neural network function γψ using SGD
(Stochastic Gradient Descent) in Eq. (2.43) for the proposed method.

γψ(x) = γψk
ϕ(γψk−1ϕ(...(γψ1(A))...)) (2.43)

Previous studies have demonstrated that using priors [171, 40, 29] where the
channels of prior are drawn from a stationary distribution can yield better outcomes
[30, 171] for inpainting tasks. In this work, A is a matrix, the size is defined as
A ∈ Rc×m×n, where m and n are the rows and the columns of A, c is the channel
information and its initialization is called the prior. A ∈ Rc×m×n is considered to
be a sensor-base prior (SBP) or, i.i.d. a random tensor, where the channels of
A are taken from a normal distribution (random normal prior - RNP). The SBP
contains the sensor data at one time stamp with the base station location defined
in A. The accuracy of the reconstruction is influenced by this prior that captures
the relationship among the coordinates within the target matrix, resembling semi-
supervised learning and Such priors are extensively used in tasks related to image
inpainting [171]. The work by Jacot et al. [83] demonstrates that in the case of
overparameterized or infinitely wide neural networks, their behavior closely mimics
that of a kernel function. Consequently, solving kernel regression with NTK, as
outlined by [12, 83], is equivalent. The definition of NTK is given by:

Definition (Neural Tangent Kernel) Let f(w) : RP → R denote a neural
network with initial parameters w(0). The neural tangent kernel, K : R×R → R
is a positive semi-definite function given by:

K(x, x′) = ⟨∇fx(w(0)),∇fx′(w(0))⟩, (2.44)

where w(0) ∈ RP denotes the parameters at initialization.

Using Convolutional NTK (CNTK) for exposure map reconstruction is a mapping
of element coordinates in the matrix γ to the observed entries present in γ. The
element coordinates of γ are selected to map the information to the exposure map
reconstruction task. The CNTK [12] is constructed from a convolutional network
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with a different number of layers, kernel size, and convolution incorporated with
down and upsampling. The CNN model details and definition for deriving CNTK
are as follows.

K(x, x′) = ⟨ δf(x)
δWi,j,k,l

× δf(x′)
δWi,j,k,l

⟩, (2.45)

where x and x′ are input samples, Wi,j,k,l represents the weights of the convolutional
filters, ∑

i,j,k,l denotes the summation over the indices of the convolutional filters
and their corresponding weights. δf(x)

δWi,j,k,l
represents the partial derivative of the

output feature maps f(x) with respect to the weights Wi,j,k,l. and ⟨◦, ◦⟩ denotes
the inner product operation, which measures the similarity between the tangent
vectors of the neural network parameters. The L-th layer CNTK kernel described
as Θ(L)(x, x′) ∈ R[M ]×[N ]×[M ]×[N ], and output of CNTK is :

K(x, x′) = [ΘL(A,A′)]i,j,i′,j′ (2.46)

2.3.3.2 CNN architecture

During training, at initialization, a convolutional neural network is used and the ker-
nel is derived when the Network’s width tends to be infinity. We choose a CNN with
eight convolutional layers following the architecture used in [171], where each layer
is accompanied by LeakyReLU activation and down and upsampling by mimicking
(nearest neighbor and bilinear interpolation methods and layers, models, activation
functions, kernel functions implementation from [114, 172, 175, 133, 26]). The slope
of the activation is set to 0.05 and stabilization technique is applied to mitigate ex-
ploding or vanishing gradient issues during training. Model parameters, Layers, and
activation functions are taken from [172, 133]. The weights and filters are initialized
randomly. The architecture of the CNN is shown in Figure 2.22.

The dimension of the matrix can be 32 × 32, 64 × 64, 128 × 128. In this work, the
dimension of the grid was limited to 32 × 32 and 64 × 64 and only 60 observations
from the sparsely distributed sensors are available.
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Figure 2.22: ConvNet Architecture with kernel size = 3
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Reconstructing the map. For the exposure reconstruction task, two procedures
are explored, kernel regression by CNTK.

2.3.3.3 Kernel Regression by CNTK

The goal of this method is to fill in missing entries (missing pixel values) as a linear
combination of training examples (observed pixel values) in the corrupted exposure
map image.

The corrupted exposure matrix denoted by γ has dimensions 32 × 32. Let ψobs
represent the matrix containing only the observed entries (available pixel values in
γ), constituting 60 entries as sensor data in a grid comprising 1024 elements and
rest ψunobs.

Each entry (p, q) in the matrix γ within ψobs corresponds to a linear combination
of pixel coordinates in γ in the CNTK ψ ∈ Rmn×mn. The available exposure value in
γ is E. The conventional approach for solving a linear system for the weight vector
ω involves computing ω as ω = ψ−1

obsE [12].

From ψ that corresponds to the unobserved entries (missing pixel values) for the
exposure value, we can calculate ψunobs × ω.

Conclusion

Within this chapter, we provided a concise introduction to both supervised and semi-
supervised learning paradigms. We have illustrated their foundational principles and
delved into primary approaches characteristic of each paradigm, namely EME-Net,
EMGAN, and EME-CNTK. Overall, our investigation highlights the importance
of considering the computational complexity of image inpainting tasks when using
high-resolution grids. The use of pre-conditioned gradient descent methods offers
a promising solution to the computational challenges posed by these tasks. An
evaluation of the presented methods is provided in Chapter 3.
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In Chapter 2, we introduced a novel approach utilizing CNN models to address
exposure reconstruction challenges in both indoor and outdoor environments. In
this chapter, we conduct a comprehensive analysis of our experimental results,

encompassing both qualitative and quantitative evaluations. Our investigation will
begin with indoor scenarios followed by outdoor. The EME-Net and EME-GAN
models are used and compared in the indoor case. In the outdoor scenario, the

cGAN and EME-CNTK will be tested.
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3.1 Metrics

3.1.1 Peak Signal-to-Noise Ratio - PSNR

The peak signal-to-noise ratio (PSNR) [137] and structural similarity index (SSIM)
[180] are used between the reconstructed map and the reference map in order to
assess the model performance. Values between -1 and 1, where 1 denotes perfect
resemblance, are provided by the SSIM model, which captures the observed change
in the structural information of the picture. The PSNR test compares the distortion
power to the greatest possible pixel intensity. The SSIM index is calculated on
various windows of an image. The measure between two windows x and y of common
size N ×N is given below along with PSNR:

PSNR = 10 log10 ∗MAX2
I

MSE , (3.1)

where MAXI is the maximum possible pixel value of the image. When the pixels
are represented using 8 bits per sample, this is 255. The degree of inaccuracy in
statistical models is measured by the mean squared error, or MSE. Between the
observed and estimated values, it evaluates the average squared difference. The
MSE is equal to 0 when a model is error-free. Its value increases when model error
does as well. The mean squared deviation is another name for the mean squared
error (MSE).

3.1.2 Structural Similarity Index - SSIM

The SSIM [180] is given by:

SSIM(x,y) = (2µxµy + c1)(2σxy + c2)
(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) , (3.2)

where, µx and µy are the pixel sample mean of x and y, µy. σ2
x and σ2

y are the
variance of x and y, σxy is the covariance of x and y. c1 = (k1L)2 and c2 = (k2L)2

are the variables to stabilize the division with weak denominator, where L is the
dynamic range of the pixel values. k1 and k2 are set to 0.01 and 0.03.

Finally, we will consider the pixel-to-pixel error that we will denote by R. R, in
dB, is given by:

R(x, y) = 10 log10

(
x

y

)
. (3.3)
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3.1.3 Cumulative Distribution Function - CDF & Probability Den-
sity Function- PDF

We represent either the probability distribution of R or the cumulative distribution
of R. This allows us to have a more detailed understanding of the error behav-
ior. Kernel density estimation (KDE) is a non-parametric approach to estimate the
probability density function of a random variable based on kernels as weights. It
is an application of kernel smoothing for probability density estimation. Its kernel
density estimator is :

fh(x) = 1
nh

n∑
i=1

K(x− xi
h

) (3.4)

where K is the kernel — a non-negative function — and h > 0 is a smoothing
parameter called the bandwidth. A kernel with subscript h is called the scaled
kernel and defined as Kh(x) = 1

h × K(x/h). Intuitively one wants to choose h as
small as the data will allow; however, there is always a trade-off between the bias
of the estimator and its variance. The proposed approach is based on a gaussian
kernel where each data point contributes a normal distribution (bell curve) centered
at that point.

3.1.4 Root Mean Squared Error - RMSE

In statistics, the mean squared error (RMSE) or root mean squared deviation
(RMSD) of an estimator (of a procedure for estimating an unobserved quantity)
measures the average of the squares of the errors—that is, the average squared dif-
ference between the estimated values and the actual value. RMSE is a risk function,
corresponding to the expected value of the squared error loss.

RMSE =

√√√√ 1
n

n∑
i=1

(
Yi − Ŷi

)2
. (3.5)

In the following sections, these metrics are used for quantitative analysis of our
methods in indoor and outdoor scenarios.
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3.2 Indoor Scenarios

Simulation setup: Results obtained by UNet and cGAN models are presented in
this section. For training both models, ’IndoorExpDataset’ described in section 2.1.1
is used. This dataset is generated using ’PyLayers’ software. The considered building
is a single floor which represents a typical multi-room office environment. There are
14 rooms and a corridor where the floor area is 2100 m2, room dimensions are 10m×
10m×3m, and the corridor has the dimensions 70m×10m×3m. Windows are located
on the north and south side of the office environment. Each room has a wooden door,
and the walls are constructed with plaster with a thickness of 10 cm. The ceiling
and floor are made using reinforced concrete. For training the model, 6 Wi-Fi access
points are considered with different locations in the scenarios while keeping two or
three of them in the corridor and three in the rooms. Using ’PyLayers’, we simulate
the received power maps in a dense environment. For the sensor map, 5 sensors are
placed in each room and 26 sensors in the corridor randomly. Figure 3.1 illustrates
the reference image and sensor map image for this indoor scenario.

Figure 3.1: RF-EMF exposure reference map (ieee 80211b, fc=2.412 GHz polar: p). The
red dots represent the Wi-Fi access points. The color gradient corresponds to the power of
the electromagnetic field.

Training setup and losses are depicted in tables 3.3 and 3.2 respectively. Following
the training of the EME-Net derived model with the minimum loss was chosen and
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Parameters Value
Total number of images 12660
Input samples 10128
Validation set 1266
Test set 100
Optimizer ADAM -Adaptive Moment Algorithm
Learning rate 1 × 10−4

Batch size 2
Decay rate 1 × 10−6

Epochs 12

Table 3.1: Training parameters.

results are shown in Table 3.2.

Model (or configuration) Trainable parameters loss
EME-Net 1942428 0.0017

Table 3.2: Total number of parameters for each reconstruction model and training loss.

The Visual analysis and comparative analysis are given in the following sections.

3.2.1 EME-Net

3.2.1.1 Visual Analysis

We evaluate the proposed EME-Net model performance was investigated by increas-
ing the number of measurement points. This is done by taking 15, 30, 50, and 96
pixels as measurement points from the reference image.

The reconstructed maps, depicted in Figure 3.2, showcase the outcomes achieved
by utilizing the EME-Net model on different test sets with varying numbers of
measurement points (15, 50, and 96 pixels). When employing only 15 sensors as
input, the reconstruction quality appears to be inadequate. However, as the number
of sensor points is increased to 96, the reconstructed map exhibits similarity to the
reference map.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: Reconstructed maps (right column) and its corresponding original exposure
maps (left column) when (a) 15, (c) 50, (e) 90 pixels used as sensor measurements at

random locations.
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3.2.1.2 Quantitative analysis

Figure 3.3 presents both averages of SSIM and PSNR increase together with the
number of measurement points. About the slight downfall of the average SSIM at
90 measurements, this effect is due to the use of raw pixel intensities globally. The
same trend indicates that the reconstruction process is coherent for similarity and
image quality.

Figure 3.3: Reference Vs. Reconstructed - average SSIM and PSNR.
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3.2.2 EME-GAN

In this section experiments conducted using cGAN model described in section 2.3.2 is
presented. The EME-GAN model is used to infer indoor exposure maps by utilizing
the ’IndoorExpDataset’ described in section 2.1.1. Training setup is depicted in
tables 3.3.

Parameters Value
Total number of images 2286
Input samples 2086
Validation set 100
Test set 100
Optimizer ADAM -Adaptive Moment Algorithm
Learning rate 1 × 10−4

Batch size 2
Decay rate 1 × 10−6

Epochs 13000

Table 3.3: Training parameters.

3.2.2.1 Visual Analysis

The EMGAN model’s reconstructed maps are illustrated in Figure 3.4 with 5 ac-
cess points in training data. With only 60 measurement points, the EME-NET
reconstruction fails to represent the reference map. In addition, with increased mea-
surement points (96), EMGAN outperforms EME-NET with better reconstruction
quality and a low error ratio R near zero. Even with 8 access points as unseen data,
our model performs well and surpasses EME-NET in reconstruction compared to
the reference map.

3.2.2.2 Quantitative analysis

Both average SSIM and PSNR increase along with the number of measurement
locations are shown in Figure 3.5. The use of global raw pixel intensities is the
reason for the small decline in the average SSIM at 96 measurements. The same
trend indicates that the reconstruction process is coherent with respect to similarity
and image quality. When increasing the number of measurement points to 96, SSIM
and PSNR values increased to 0.72 and 0.90 which shows good reconstruction quality.
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Figure 3.4: Comparison of inferred exposure maps from different measurement points
configurations.

The same trend indicates that the reconstruction process is coherent with respect
to similarity and image quality.

Figure 3.5: PSNR and SSIM comparison with a different number of measurements.

The PDF of the ratio of the reconstructed maps to the reference for the proposed
EME-GAN model and EME-Net, is shown in Figure 3.6. A Gaussian random vari-
able can be used to closely approach the error ratio (in dB) distribution. First, we
note that the mean is very low from 30 to 96 sensors, that is at 96 points mean is
0.03 and 1.93 for EMGAN and EME-Net models, indicating that there is not much
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Figure 3.6: PDF of error ratio R when varying number of sensors.

bias in the prediction stages. The second crucial observation is that, as the number
of sensors increases, the variance decreases from 4.03 to 2.17.

Figure 3.7 shows the CDF of the error ratio |R|, which is the comparison of the
reconstructed map to the reference map, for the proposed EME-GAN and EME-NET
model with varying numbers of sensors. Moreover, Figure 3.7 demonstrates that,
despite the upbeat visual evaluation, the performance of the suggested EME-GAN
inclines with an increase in the number of sensors. We can see that approximately
80% of the values fall below 1 dB while 96 sensors are used.

Figure 3.7: CDF of |R| when different models are used.
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3.3 Outdoor Scenarios

Simulation setup: Results obtained by EMGAN (cGAN) model and CNTK
method are presented in this section. For training, cGAN based EMGAN model,
’VenerisLilleExposure’ described in section 2.1.2 is used. This dataset is generated
using ’VENERIS’ software. A map of 1 km2 area of Lille city center from ’Open-
StreetMap’ is used for the ray launching simulations in Veneris. More specifically,
the dataset contains objects with rough surfaces like 3D building walls, statues,
roads, etc., interacting with the rays in complex ways. Moreover, gaps in the object,
e.g., bridges and rays at different levels, can pass or reflect from such objects. The
presence of the object in the environment, and several ray interactions result in a
complex power distribution representing a real-life environment. The transmitters
are assumed to use an isotropic antenna, producing omnidirectional radio waves.
The height and power of the transmitting antenna were set at a maximum of 15 me-
ters and 20 Watts, respectively. The dataset consists of 3003 EMF exposure maps
which are used as reference for training the EMGAN model (see section 2.1.2). For
the input training samples, 50 sensor measurement locations are used. Training
parameters are listed in Table 3.4.

Table 3.4: Training parameters.

Parameters Value
Total number of images 3003
Train set 2500
Validation set 100
Test set 403
Optimizer ADAM
Learning rate 4 × 10−4

Batch size 2
Decay rate 1 × 10−6

Epochs 139000

3.3.1 EMGAN

3.3.1.1 Visual analysis

The proposed EMGAN model is compared with the EME-Net model and the Kriging
method when only 50 measurement points are considered. All models are trained
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and tested on the same training and test data sets. As illustrated in Figure 3.8, the
proposed EMGAN model outperforms the kriging model. The EMGAN based (3.8d)
reconstructed map looks very close to the reference, and few details are missed by
the EME-Net based (3.8c), whereas the kriging-based (3.8b) encounters significant
loss. Though the Kriging approach was not optimized, so the comparison is not
completely fair.

(a) reference (b) Simple kriging

(c) EME-Net model (d) Proposed EMGAN model

Figure 3.8: Comparison of Reconstructed maps of the proposed model and other different
models.

Additionally, the proposed EMGAN model performance is analyzed by varying
the number of measurement points. Figure 3.9 shows the EMGAN based recon-
structed maps using 15 and 30 sensor measurement points. The figure illustrates
that the performance of the proposed EMGAN model remains consistent even when a
few measurement points are considered, although some degradation can be observed.
The error map between the reconstructed map and the reference is illustrated in Fig-
ure 3.10. The error map shows that the proposed EMGAN model (3.10c, 3.10d and
3.10e) has a significantly low error compared to the other models. The kriging ap-
proach exhibits very poor results. The approach is not well adapted to such spatial
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(a) Using 15 sensor map (b) Using 30 sensor map

Figure 3.9: EMGAN-based Reconstructed maps when different number of sensors are
considered.

undersampling. Further studies, though, should be done to take into consideration
the environment topology and the propagation models. This however is a different
approach and is out of the scope of this work.

(a) Kriging 50 sensors (b) EME-Net 50 sensors (c) EMGAN 15 sensors

(d) EMGAN 30 sensors (e) EMGAN 50 sensors

Figure 3.10: Error maps of the proposed EMGAN for different numbers of sensors and
EME-Net model.

3.3.1.2 Quantitative Analysis

Figure 3.11 presents the averages of SSIM and PSNR as a function of the number of
measurement points. As the number of measurement points rises, so do the averages
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of SSIM and PSNR. The same trend indicates that the reconstruction process is
coherent regarding similarity and image quality.

Figure 3.11: Average SSIM and PSNR of the proposed EMGAN with a varying number of
measurement points.

The CDFs of R of the proposed EMGAN and other models is shown in Figure
3.12. As illustrated in Figure 3.12a, the proposed EMGAN model outperforms the
kriging and EME-Net methods. In addition, Figure 3.12b shows that, despite the
optimistic visual evaluation, the performance of the proposed EMGAN degrades as
the number of sensors decreases. On the 1 km2 area we are studying, 50 sensors are
needed to avoid some large deviations.
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(b)

Figure 3.12: CDF of ratio R - a) models, and b) varying number of sensors between the
reconstructed map and reference.

In Figure 3.13, the PDF of the ratio between the reconstructed maps and the
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reference of the proposed EMGAN model with different numbers of sensors, EME-
Net, and simple kriging methods are presented. The error ratio (in dB) distribution
can be well approximated by a Gaussian random variable. We first notice that the
mean is rather close to 0, meaning there is no significant bias in the prediction steps.
The second important point is that we note the variance reduction with the increase
in the sensor number. With 50 sensors in the studied 1 km2 area, the variance is
reduced to 0.85, which seems a reasonable value for an exposimetry study, resulting
in more than 80% of the error ratio below 3 dB. We also notice that the EME-Net
approach with 50 sensors is not as good as EMGAN with 30. This is expected
because the EMGAN takes into account the environment map, so, in particular, the
locations of the building.

Figure 3.13: The probability density of the ratio R between the reconstructed map and
reference when different numbers of sensors are used.
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3.3.2 EME-CNTK

The results of EME-CNTK are described in four steps :

• Sensors numbers

• Comparison with EMGAN and EME-Net

• Number of transmitter in the scenario

• Grid size

3.3.2.1 Visual analysis

Number of Sensors

The proposed EME-CNTK method is compared with the EME-Net and EMGAN
methods when only 60 measurement points are considered. EME-Net and EMGAN
are trained and tested on the same data sets generated by Veneris. As illustrated
in Figure 3.14, the EME-CNTK reconstruction with 100 sensors (3.14b) looks very
close to the simulated map (3.14a). Figures (3.14c) and (3.14d) show reconstruction
when 60 and 40 sensor data were used. In Figure 3.15 shows the comparisons with
EMGAN and EMENet reconstruction with 60 sensors.

Comparison with EMGAN and EME-Net

In figure 3.16 The error map between the reconstructed map and the reference
is illustrated. The error map shows that the proposed method (Figure a,b,c) has a
significantly low error compared to the other models (Figure d,e).

Number of transmitters

Additionally, the proposed method’s performance is analyzed by increasing the
number of transmitters. Figure 3.17 shows the EME-CNTK based reconstructed
maps using 40 sensors (3.17b) and 60 sensors (3.17a) measurement points. The fig-
ure illustrates that the performance of the proposed EME-CNTK method remains
consistent even when 2 transmitters are used, although some degradation can be
observed for 40 sensor measured maps.

In Figure 3.18, the error map of 60 and 40 sensors reconstruction using EME-
CNTK, when 2 transmitters are transmitting is depicted. We can see the recon-
struction is good as the error map shows less error in them.
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(a) (b)

(c) (d)

Figure 3.14: Comparison of Reconstructed maps of the proposed method with reference map
a) simulated map from Veneris, b)100, c) 60, d) 40 sensors are used by EME-CNTK

(a) (b)

Figure 3.15: Comparison of Reconstructed maps of the proposed method and a) EME-Net
model using 60 sensors, b) EMGAN model using 60 sensors

Grid size

Figure 3.19, illustrates the reconstructed map using 60 sensors when the grid size
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(a) (b) (c)

(d) (e)

Figure 3.16: Error maps of the proposed method for different numbers of sensors a)
EME-CNTK 100 sensors, b) EME-CNTK 60 sensors, c) EME-CNTK 40 sensors, and d)

EMGAN 60 sensors, e) EME-NET 60 sensors model.

is 64 × 64. Figure 3.19a and 3.19b show the reference map for 32 × 32 and 64 × 64
respectively. Reconstructed maps for gird size 64 × 64 using our method are shown
in 3.19d.

In Figure 3.20, the error map of 60 sensors reconstruction using EME-CNTK,
when one transmitter and grid resolution is increased to 64×64 is depicted. We can
see the reconstruction is good as the error map shows small errors in them.

3.3.2.2 Quantitative Analysis

The MSE of the predicted and actual values or exposure is given in Table 3.5.
From the table, it can be seen that with an increasing number of sensors, the MSE
decreases leading to better reconstruction performance by the proposed method.

The CDF of the error ratio R, the ratio between the reconstructed map and the
reference, of the proposed EME-CNTK and other models is shown in Figure 3.21.
As illustrated in Figure 3.21a, the proposed method works similarly to EMGAN
and EME-Net methods. In addition, Figure 3.21b shows that, despite the opti-
mistic visual evaluation, the performance of the proposed method degrades as the
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(a) (b)

(c)

Figure 3.17: Comparison of Reconstructed maps of the proposed method when 2
transmitters are used a) EME-CNTK 60 sensors 2TX, b) EME-CNTK 40 sensors 2TX, c)

reference map

(a) (b)

Figure 3.18: Error map of a) 60 sensors reconstruction and b) 40 sensors reconstruction
when 2 transmitters are used.

number of sensors decreases. On the 1 km2 at least 60 sensors are needed to avoid
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(a) (b)

(c) (d)

Figure 3.19: Comparison of reconstructed exposure map with reference when different grid
size is used a) EME-CNTK - 60 sensors resolution 32 × 32, b) EME-CNTK - 60 sensors

resolution 64 × 64, c) Reference map 32 × 32, d) reference map when resolution is 64 × 64

Figure 3.20: Error map of 60 sensors reconstruction and when grid size 64 × 64 is used.

large deviations. Moreover, point to be noted that, EMGAN and EME-Net meth-
ods are trained on reference generated by Veneris, so the EMGAN model performs
better than EME-CNTK. Figure 3.22a, presents the PDF of the ratio between the
reconstructed maps and the reference of the proposed EME-CNTK method with dif-
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Number of sensors RMSE
20 / km2 0.00910
40 / km2 0.00687
60 / km2 0.00681
100 / km2 0.00636

Table 3.5: RMSE of the estimated exposure values using our approach.

(a) (b)

(c) (d)

Figure 3.21: CDF of the models as a function of the ratio R between the reconstructed
map and reference a) Different models, b) with varying number of sensors, c) CDF sensors

EME-CNTK 100 images , d) different models

ferent numbers of sensors, PDF of EME-Net, and EMGAN methods are presented
in Figure 3.22b. The Gaussian probability distribution can closely approximate the
distribution of error ratio (in dB). Again we note that the average is quite close to 0,
indicating significance in prediction processes. Moreover, it’s significant to observe
the diminishing variance as the number of sensors increases. In the examined 1 km2
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area with 60 sensors, the variance reduces to 4.25, which appears to be a reasonable
value for exposimetry research, leading to more than 80% of error ratios falling be-
low 4dB for the investigated scenario with 60 sensors. Additionally, we acknowledge
that utilizing 60 sensors using EME-Net and EMGAN methods provides comparable
results while reducing the sensor count to 40 or 20 leads to significantly inaccurate
reconstruction.

(a)

(b)

Figure 3.22: The probability density of the ratio R between the reconstructed map and
reference when a) different numbers of sensors and b) different models are used.
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The CDF of R, of the reconstructed map and the reference exposure map for
64×64 resolution, when EME-CNTK is used shown in Figure 3.23. In Figure 3.23a,
the CDF of the error ratio is shown when grid size is increased to 64 × 64, and 3.23b
shows the CDF when 2 transmitters are used.

(a) (b)

Figure 3.23: The CDF of the ratio R between the reconstructed map and reference map
for 64 × 64 and when 2 transmitters are used a) CDF of R for higher resolution, b)CDF of

R when 2 transmitter emitting for 40 and 60 sensors.

Figure 3.24 illustrates When a threshold of above 0.005 V/m is considered (below
the threshold, exposure is assumed to be negligible) are analyzed for both the cases
grid 64 × 64 and 2 transmitters, the CDF of error ratio R is illustrated in Figure
3.23a and 3.24b. As illustrated reconstruction by our method works quite well having
around 80% values fall under 4dB when a higher resolution grid is utilized in the
selected area of exposure study.

3.3.2.3 Impact of density of the sensors

We also investigate how our method performs when the number of sensor is increased
in the target 1 km2 area. The mean and standard deviation of the error ratio R are
calculated when 20, 40, 60, and 100 sensors are distributed sparsely in target ROI.
As we can see in table 3.6 when the number of sensors is very low as 20 the mean is
rather very high at 1.39 and the std error is higher at 7.04, but with an increasing
number of sensors from 40, 60 and 100 the mean decreases with decreasing std. error
gradually. That means the density of the sensor and how the sensors are distributed
that plays a vital role in the reconstruction process.
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(a) (b)

Figure 3.24: The CDF of the ratio R between the reconstructed map and reference for
64 × 64 and when 2 transmitters are used a) CDF of R for higher resolution, b)CDF of
R when 2 transmitter is used, c) CDF of R 64x64, d) CDF of R with 2 transmitters 100
images

Sensor Density Mean Std. Error
20 / km2 1.59 7.04
40 / km2 0.91 6.94
60 / km2 0.61 3.29
100 / km2 0.31 3.40

Table 3.6: Comparison of error with density of sensors

3.3.2.4 Comparative Analysis of Time Efficiency

We assessed the efficiency of the proposed method in terms of the time required
for inference and training. Our analysis shows that the cGAN-based approach EM-
GAN and Unet-based approach EME-Net required 1.5 hours and approximately 20
minutes, respectively, to train on a machine with 4GB GPU memory (Intel core
i7, NVIDIA Quadro T1000). EMGAN iterated over 139K epochs, while EME-Net
trained for 20 epochs. Both models required higher memory, approximately 6-13
GB, and utilized 3.25GB GPU memory for training. In contrast, our proposed
EME-CNTK method took only 0.00014 seconds to impute the matrix and the in-
ference time was below 0.0003 seconds as shown in Table 3.7. (The table is given in
the next page.)
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Method Memory Usage Training Inference

EMEGAN
13GB RAM +

1.5 Hrs 2s
3.2GB VRAM

EME-Net
6GB RAM +

20 min 1.5s
2.5GB VRAM

EME-CNTK 200MB RAM 0.00014 s 0.000045 s

EME-CNTK
300MB RAM

0.00011 s 0.00003 s
300MB VRAM

Table 3.7: Comparison of the proposed method with others with machine configuration and
time

This chapter presents a quantitative analysis of the EME-NET, EMGAN, EME-
GAN, and EME-CNTK methods. Three distinct variants of these techniques were
employed, and the experimental results indicate their superior performance com-
pared to previously available methods in the areas of reconstruction accuracy, time
efficiency, and hardware utilization. Moreover, the following additional observations
emerged from our investigation:

• Reconstruction Accuracy: Our findings demonstrate that the EME-NET, EM-
GAN, EME-GAN, and EME-CNTK methods consistently yield accurate re-
constructions across diverse datasets. The quantitative evaluation revealed a
significant improvement in reconstruction fidelity, surpassing the capabilities
of existing approaches.

• Time Efficiency: We conducted comprehensive timing analyses to assess the
computational efficiency of the aforementioned methods. The results unequiv-
ocally indicate that EME-CNTK compared to EME-NET, EMGAN and EME-
GAN exhibit remarkable speed enhancements, allowing for efficient processing
of large-scale datasets within minimal timeframes.

• Hardware Utilization: Another crucial aspect evaluated was the efficient uti-
lization of hardware resources. Our experiments reveal that the EME-NET,
EMGAN, EME-GAN, and EME-CNTK techniques effectively leverage avail-
able hardware, resulting in optimized utilization and reduced resource over-
head. These findings are particularly significant for resource-constrained envi-
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ronments.

The reconstruction of urban EMF exposure maps holds significant importance
in assessing the safety of urban environments. These maps provide crucial insights
into the distribution and intensity of EMF radiation within urban areas, allowing
for a comprehensive evaluation of potential health risks and the development of
appropriate mitigation strategies.

Conclusion

In summary, the quantitative analysis presented in this chapter substantiates the
superiority of EME-NET, EMGAN, EME-GAN, and EME-CNTK methods over ex-
isting techniques, showcasing their exceptional performance in terms of reconstruc-
tion accuracy, time efficiency, and hardware utilization. The additional observations
further reinforce the significance of these methods in advancing the field of exposure
reconstruction.





Discussion and Perspectives

Summary of contributions

In this thesis, we have investigated the potential of employing deep learning to ad-
dress the exposure estimation problem. This is central to fingerprinting localization
techniques, aiming to reduce energy consumption by minimizing reliance on GPS.
Previous research has predominantly focused on supervised training of neural net-
work models using generated data, demonstrating their effectiveness in solving this
specific task.

In the literature, numerous algorithms have been devised to create maps for
power, channel-gain, and exposure. However, these algorithms face significant chal-
lenges in accurately estimating map values due to various factors, including environ-
mental architecture, network configuration, and mobile user locations. One promi-
nent drawback of all current schemes is their dependence on precise sensor location
information, which is often unattainable in practical scenarios due to propagation
phenomena that impact localization pilot signals, such as multipath. Another limi-
tation is the reliance on interpolation methods that lack the capability to learn the
intricacies of radio frequency signal propagation, leading to poor performance in
strong fading channels.

All current methods of exposure reconstruction with neural network, stochastic
geometry, or krigging depends on drive test measurements which do not consider
time evolution resulting in one single map in space. In our proposed methods,
in Chapter 2, we introduced the EMGAN, EME-Net and EME-CNTK algorithm,
which enables the reconstruction of the exposure map using given measurements
from a few sparsely distributed sensors. Our proposed algorithm outperformed all
the baseline approaches considered and previous methods. This thesis circumvents
the above mentioned limitations with the following contributions:

117
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Classical Machine Learning - Conditional Generative Model:

• ’VenerisLillexposure’, a public dataset generated by ray-tracing software, offers
the opportunity to train various machine learning models in order to generate
exposure maps.

• Employing a conditional generative model algorithm, the generator and dis-
criminator models are trained using the environment model image as a condi-
tional input, which is concatenated channel-wise, resulting in the effect of city
architecture in output exposure map.

Modern Machine Learning - Infinitely wide CNN model:

• In our proposed method, we introduced a novel approach EME-CNTK, uti-
lizing an infinite-width neural network connecting with Convolutional Neu-
ral Tangent Kernel. By employing matrix completion, we successfully recon-
structed urban exposure maps using only 60 sensor values over time, without
relying on a ground truth full exposure map for training. Implementing the
city architecture in the reconstructed maps significantly enhanced the accuracy
of the urban exposure maps.

• Our proposed methods incorporate time variation, allowing for generating dy-
namic maps over time based on the sensor data.

• Exploiting the conventional parametric structure of wireless communication
signals, this thesis formulates methodologies to estimate the exposure maps
using generative models using ground truth and kernel-based models using
only sensor values. Moreover, custom training approaches are devised to enable
effective learning from a limited set of measurements.

Limitations & Perspectives

This thesis proposes different methods to reconstruct exposure maps. In the future,
the extension of the work in this thesis can be from several perspectives and can be
summarized as follows:

Classical Machine Learning - Conditional Generative Model:

⋆ As demonstrated in Chapter 2, cGAN model - EMGAN trained on groundtruth
simulated maps from VENERIS software, where only one transmitter is used
in the simulation scenario. This ground truth can be updated by simulating
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actual network activity (i.e. using the actual number of transmitters, the
orientation of the antenna, etc.) in VENERIS software which is close to reality.

⋆ Antenna locations and directions can be used as input features in the input
image to the generative model to estimate more accurate exposure maps.

⋆ This work can be extended in the temporal dimension to predict exposure
maps in future times. time-dependent models can be exploited to achieve this.

Modern Machine Learning - Infinitely Wide CNN:

⋆ In our proposed method EME-CNTK, matrix completion is performed for
missing data imputation. To do so, unobserved data coordinates are used as
feature information. This approach can be extended by adding missing feature
information such as transmitters or base station locations, antenna height,
azimuth, beam direction for 5G base stations, etc. which are publicly available.
This information can be used to create a dataset and impute missing exposure
values by performing matrix completion by selecting the feature information
to generate different feature priors for the NTK.

⋆ City topology is added by superimposing on imputed matrix, this can be im-
proved by adding city topology information such as building location, height,
wall materials, vegetation type, etc. as a feature map for the data. Another
way could be adding it in the kernel itself. Thus further investigation can be
conducted to generate exposure maps that will include environment features
in the regression step.

In order to address a more comprehensive generalization problem, we also want
to investigate the task of transfer learning from one city to another.

Finally, matrix completion has become an effective tool for dealing with miss-
ing data in a variety of disciplines. In the area of exposure estimates, particularly
in disciplines like wireless communication signals and environmental mapping, ma-
trix completion has some intriguing uses. Matrix completion can effectively impute
missing values and calculate exposure levels in certain cases by using feature data
and publicly accessible data. There is still scope for improvement although the sug-
gested approaches, such as EME-CNTK, and EMGAN have demonstrated signifi-
cant potential in improving the precision of missing data imputation and exposure
assessment. Exposure maps that are more thorough and accurate may result from
the matrix completion process’s integration of additional characteristics and envi-
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ronmental data. In conclusion, the presented methods have a great deal of potential
for solving the problems associated with missing data and improving exposure esti-
mating techniques. Unquestionably, further investigation and study in this field will
result in more reliable and efficient solutions for a variety of real-world applications.



Appendix A

Appendix related to inference
on Indoor Environment

A.1 EME-GAN

We present the results of EME-GAN when a different number of sensors is used in
the scenario in Figure A.1 and Figure A.2.

Number of sensors: 30

121
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Figure A.1: RF-EMF exposure reference map images with different Wi-Fi access points
locations while 30 sensors are in input images
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Number of sensors: 60

Figure A.2: RF-EMF exposure reference map images with different Wi-Fi access points
locations while 60 sensors are in input images
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A.2 EME-Net

We present the results of EME-Net, Unet based architecture, when a different num-
ber of sensors is used in the scenario in Figure A.3.

Number of sensors: 96

Figure A.3: RF-EMF exposure reference map images with different Wi-Fi access points
locations while 96 sensors are in input images



Appendix B

Appendix related to inference
on Outdoor Environment

B.1 EMGAN

We present the results of EMGAN when a 50 sensors are used in the scenario in
Figure B.1.

number of sensor 50

125



126 Appendix B. Appendix related to Outdoor Environment

Figure B.1: RF-EMF exposure reference map images with different position of the
transmitter locations in the outdoor scenario while 60 sensors are in input images
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B.2 EME-CNTK

We present the few reconstruction, failed included of EME-CNTK, when a different
number of sensors is used in the scenario in Figure B.2.

Varying number of sensors

Figure B.2: RF-EMF exposure maps reconstructed with different positions of the
transmitters while varying number of sensors in input images
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B.3 Reference images

Python is used to convert the veneris data into images (RGB or grayscale) as illus-
trated in Figure B.3 and B.4.

Figure B.3: RF-EMF exposure ground truth images (RGB) with different positions of the
transmitters

Figure B.4: RF-EMF exposure ground truth grayscale images with different positions of
the transmitters grayscale
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