
HAL Id: tel-04837019
https://theses.hal.science/tel-04837019v1

Submitted on 13 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control of constrained multi-agent systems with
cooperative and antagonistic interactions

Pelin Sekercioglu

To cite this version:
Pelin Sekercioglu. Control of constrained multi-agent systems with cooperative and antagonistic in-
teractions. Engineering Sciences [physics]. Université Paris-Saclay, 2024. English. �NNT : 2024UP-
AST130�. �tel-04837019�

https://theses.hal.science/tel-04837019v1
https://hal.archives-ouvertes.fr


T
H

E
SE

D
E

D
O

C
T

O
R

A
T

N
N
T

:2
02

4U
PA

ST
13

0

Control of constrained multi-agent
systems with cooperative and

antagonistic interactions
Commande de systèmes multi-agents sous contraintes

par des interactions coopératives et antagonistes

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat: Automatique
Graduate School : Sciences de l’Ingénierie et des Systèmes

Référent : Faculté des sciences d’Orsay

Thèse préparée dans le Département Traitement de l’Information et Systèmes
(Université Paris-Saclay, ONERA),

sous la direction d’Antonio LORIA, Directeur de recherche, CNRS, L2S,
le co-encadrement de Julien MARZAT, Directeur de recherche, ONERA, DTIS,

et le co-encadrement de Ioannis SARRAS, Ingénieur de recherche, ONERA, DTIS

Thèse soutenue à Paris-Saclay, le 5 Novembre 2024, par

Pelin SEKERCIOGLU

Composition du jury
Membres du jury avec voix délibérative

Cristina STOICA Présidente
Professeur, CentraleSupélec/L2S,
Université Paris-Saclay
Claudio ALTAFINI Rapporteur & Examinateur
Professeur, Linkoping University
Ming CAO Rapporteur & Examinateur
Professeur, University of Groningen
Maria Elena VALCHER Examinatrice
Professeur, University of Padova



Titre: Commande de systèmes multi-agents sous contraintes par des interactions coopéra-
tives et antagonistes
Mots clés: Véhicules autonomes, automatique, robotique, coordination

Résumé: Dans cette thèse, nous abordons
des problèmes de commande de systèmes
multi-agents sous contraintes, avec des in-
teractions coopératives et compétitives, en
présence de leaders multiples. Certaines
de nos contributions traitent des problèmes
de consensus biparti pour des systèmes
linéaires de premier et de second ordre
sur des réseaux contenant plusieurs lead-
ers ou sous contraintes inter-agents, ainsi
que pour des systèmes non linéaires, par ex-
emple des robots manipulateurs sous con-
traintes et avec des perturbations. Nous
utilisons la théorie des graphes signés pour
traiter la présence d’interactions compéti-
tives.

Concernant les réseaux signés con-
tenant plusieurs leaders ou soumis à des
contraintes, nous étudions le problème de
suivi de confinement biparti pour des sys-
tèmes de premier et de second ordres.
L’originalité de ce travail repose sur le
développement d’une nouvelle analyse de
stabilité pour les systèmes multi-agents
contenant des interactions coopératives et
compétitives, plusieurs leaders et avec des
perturbations. L’analyse de stabilité re-
pose sur la théorie de Lyapunov, et nous

établissons des propriétés de stabilité et
de robustesse, au sens de la stabilité ex-
ponentielle et de la stabilité entrée-sortie,
via la construction de fonctions de Lya-
punov strictes. Nous considérons ensuite
des réseaux signés soumis à des contraintes
d’évitement des collisions et de maintien
d’une distance maximale ou de la connec-
tivité. Tout d’abord, nous concevons un
nouveau contrôleur basé sur le gradient
d’une fonction de Lyapunov barrière garan-
tissant le respect des contraintes imposées
pour les systèmes du premier et du second
ordre afin de résoudre le problème de la
formation bipartie. Ensuite, nous consid-
érons des robots manipulateurs modélisés
par des systèmes d’Euler-Lagrange et nous
traitons le problème de la formation bipar-
tie des effecteurs terminaux sous des con-
traintes inter-agents et des perturbations.
Nous utilisons une approche basée sur le
modèle interne pour compenser les per-
turbations. Nous considérons ensuite un
réseau de satellites soumis à des contraintes
d’évitement des collisions et de maintien
de la connectivité. Dans les deux cas,
nous établissons la stabilité asymptotique
du système en boucle fermée.
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Abstract: In this thesis, we address sev-
eral problems of control of multi-agent sys-
tems with competitive interactions, under
inter-agent constraints, and for the pres-
ence of multiple leaders. Some of our
contributions address problems of bipar-
tite consensus for linear systems, e.g., first-
and second-order systems over networks
containing multiple leaders or under inter-
agent constraints, and for non-linear sys-
tems, e.g., robot manipulators under con-
straints and with disturbance. We use the
signed graph theory to address the presence
of competitive interactions.

Concerning the signed networks con-
taining multiple leaders or under con-
straints, we study the bipartite con-
tainment tracking problem for first- and
second-order systems, and the originality
of this work relies on developing a new
stability analysis for multi-agent systems
containing cooperative and competitive in-
teractions, multiple leaders and with dis-
turbances.

The stability analysis relies on Lya-
punov theory, and we establish strong sta-
bility and robustness properties, in the
sense of exponential stability and input-to-
state stability, via the construction of strict
Lyapunov functions. Then, we consider
signed networks under collision avoidance
and connectivity maintenance constraints.
First, we design a new controller based on
the gradient of a barrier-Lyapunov func-
tion encoding the imposed constraints for
first- and second-order systems to address
the bipartite formation problem. Then,
we consider robot manipulators modeled
by Euler-Lagrange systems and address
the bipartite formation problem of end-
effectors under inter-agent constraints and
disturbances. We use an internal-model-
based approach to compensate for the dis-
turbance. Then, we consider a network
of satellites under collision-avoidance and
connectivity-maintenance constraints. In
both cases, we establish asymptotic stabil-
ity of the bipartite formation manifold.
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PREAMBLE

Coordination control of multi-agent systems consists in making several systems coordinate
their motion according to their mission objective and the constraints imposed between agents
or in the environment. It is used in many engineering applications. For instance, it is used in
Robotics to deploy several autonomous vehicles in an unknown and uncertain environment,
when the objective is to guide the vehicles to a safe zone while avoiding collisions between
agents and obstacles. This problem may also be related to problems addressed in opinion
dynamics, in which the agents’ behavior is studied in a social network, e.g., in a scenario
involving consumers that are influenced by their neighbors and external influential entities,
such as two competing marketers. In these scenarios, unlike the consensus problems widely
studied in the literature, the system may have multiple leaders that are either cooperative
or competitive, and there are distrust/dislike interactions between some agents.

Motivated by the above, the aim of this thesis is to design distributed control laws for
multi-agent robotic systems required to execute coordination tasks under the assumption
that these systems communicate over a network that comprises both collaborative and an-
tagonistic agents. More precisely, the objective is to control a swarm of autonomous vehicles
to gather and advance in formation or to be contained in a safe zone in realistic, constrained
environments. To that end, in the analysis of the control problems and the design of the
control laws, the following challenges are addressed:

• Control in presence of cooperative and competitive interactions among agents.

• Control in presence of multiple leaders in the network.

• Control under inter-agent constraints.

• Disturbance rejection.

ORGANIZATION OF THE THESIS

The dissertation is organized into five chapters addressing the problems posed above. The
first chapter is a brief summary of the state of the art prior to this thesis. The content of
the remaining chapters is explained below.

• Chapter 2: In this chapter we recall elements of graph theory used to model the dynam-
ics of multi-agent systems. Then, by revisiting the classical consensus algorithm for
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cooperative networks, we introduce the basic control law to address networks having
competitive interactions to achieve bipartite consensus. We also introduce important
properties of signed networks through simple examples. At the end of the chapter, we
introduce an alternative representation of the networks, called the edge-based formula-
tion.

• Chapter 3: In this chapter we address the bipartite containment tracking-control prob-
lem over structurally balanced and unbalanced signed networks with multiple cooper-
ative and competitive leaders for first-order and second-order systems. We present a
Lyapunov approach to analyze the exponential stability of the bipartite containment
tracking set by expressing the system in terms of two interconnected dynamical systems
evolving in orthogonal spaces: dynamics of the leaders and synchronization errors rel-
ative to the group of leaders. Thus, the bipartite containment problem is transformed
into one of stability of a set of appropriately defined errors. Then, we establish a bound
for the convergence set of the followers, as well as the limiting set points for all the
agents. Moreover, we provide strict Lyapunov functions. Disposing of strict Lyapunov
functions allows us to establish the system’s robustness with a bounded disturbance.
These results were originally presented in [1, 4].

• Chapter 4: In this chapter we present a BLF-based distributed control law to solve
the bipartite formation-consensus control problem for simple and double integrators
over structurally balanced, connected undirected, and structurally balanced, strongly
connected directed signed networks. The proposed control laws ensure that connectiv-
ity is maintained for all cooperative agents and that both cooperative and competitive
agents do not collide. We analyze the asymptotic stability of the system using Lya-
punov’s direct method.
These results were originally presented in [2, 5].

• Chapter 5: In this chapter we address the problem of constrained bipartite formation
of cooperative-competitive Euler-Lagrange systems. We first study robot manipula-
tors and then flying spacecraft, both modeled by Euler-Lagrange equations, and we
consider structurally balanced and undirected signed graphs. First, we present a bipar-
tite formation control law based on the gradient of a barrier-Lyapunov function that
guarantees that robot manipulators’ end-effectors do not collide and stay within the
maximum distance imposed by the task requirements. Then, in order to deal with per-
turbed robot manipulators, we robustify our controller with an internal model-based
approach to reject disturbances. We establish asymptotic stability of the bipartite
formation manifold in the absence and the presence of disturbance. Next, we consider
networked satellites interconnected over a signed graph and under collision avoidance
and connectivity maintenance constraints. We establish asymptotic stability of the
bipartite formation manifold.
These results were originally presented in [3, 6].

Publications

The following is a list of the publications written during the past three years that are either
accepted for publication or published.
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RÉSUMÉ ÉTENDU EN FRANÇAIS

La commande de systèmes multi-agents permet de coordonner le mouvement de plusieurs
systèmes en fonction de l’objectif de la mission qui leur est donné et des contraintes imposées
entre les agents et/ou par l’environnement. La coordination de systèmes multi-agents est
utilisée dans de nombreuses applications techniques, telles que la robotique, pour déployer
plusieurs véhicules autonomes dans un environnement inconnu et incertain, où l’objectif est
de guider les véhicules vers une zone sûre tout en évitant les collisions entre les agents et
avec les obstacles. Ce problème peut également être lié aux problèmes abordés dans la
dynamique des opinions, où le comportement de chaque agent est étudié dans un réseau
social. Par exemple, dans le cas où des consommateurs sont influencés par leurs voisins ou
par des entités influentes et extérieures, comme deux spécialistes du marketing concurrents.
Dans ces scénarios, contrairement aux problèmes de consensus étudiés dans la littérature,
le système peut avoir plusieurs leaders qui sont soit coopératifs, soit compétitifs, et des
interactions de méfiance ou d’aversion entre certains agents.

Motivé par ces scénarios précédents, le but de cette thèse est de concevoir des lois de
commande distribuées pour les systèmes robotiques multi-agents qui éxecutent des tâches de
coordination en prennant en compte les interactions coopératives et compétitives entre les
agents. Plus particulièrement, l’objectif est de contrôler un essaim de véhicules autonomes
pour qu’ils se rassemblent et avancent en formation ou pour qu’ils soient contenus dans une
zone sécurisée dans des environnements réalistes et contraints. À cette fin, dans l’analyse
des problèmes de commande et la conception des lois de commande, les aspects suivants sont
abordés :

• Interactions coopératives et compétitives entre les agents: La nature des interactions
de deux agents détermine si ces systèmes interconnectés ont les mêmes objectifs ou
non. Les interactions coopératives sont utilisées pour les agents censés collaborer à
l’exécution de la tâche. Les interactions compétitives sont utilisées pour représenter
la présence de groupes d’agents ennemis, de zones dangereuses et d’obstacles dans le
système.

• Présence de multiple leaders dans le réseau: Les leaders sont utilisés afin de définir
les zones dangereuses à éviter et les zones de sécurité vers lesquelles les agents doivent
converger. Les leaders qui sont coopératifs avec les agents définissent la zone de sécurtié
vers laquelle les suiveurs doivent converger, tandis que les leaders compétitifs représen-
tent les obstacles et les zones dangereuses à éviter.
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• Contraintes inter-agents: Dans cette thèse, nous utilisons les distances relatives
pour garantir la sécurité et le succès de la mission du système multi-agents. Cela
signifie que, pour que la mission réussisse, les agents doivent toujours rester à portée de
leurs capteurs afin que l’échange d’informations se poursuive et que la connectivité soit
maintenue. De plus, pour assurer la sécurité du système, les agents doivent également
éviter les collisions avec les obstacles, les agents ennemis présents dans l’environnement,
ainsi qu’avec les autres agents de leur équipe.

• Perturbations: Dans les environnements réalistes des systèmes robotiques, il existe,
par exemple, des perturbations aérodynamiques, qui sont généralement inconnues et
variables, et qui peuvent avoir un impact important sur les performances des véhicules.

Cette thèse se concentre sur les aspects présentés ci-dessus et nous les adressons en
reformulant les problèmes de commande comme des problèmes de stabilisation. A cette fin,
nous utilisons la théorie de Lyapunov et étendons certains travaux récents sur celle-ci pour
les systèmes multi-agents.

L’ORGANISATION DE CETTE THÈSE

Ce mémoire est organisé en cinq chapitres traitant les problèmes posés ci-dessus. Le premier
chapitre est un bref résumé de l’état de l’art avant cette thèse. Le contenu des autres
chapitres est expliqué ci-dessous.

• Chapitre 2 : Dans ce chapitre, nous rappelons les éléments de la théorie des graphes util-
isés pour modéliser la dynamique des systèmes multi-agents. Ensuite, en reconsidérant
l’algorithme de consensus classique pour les réseaux coopératifs, nous introduisons la
loi de commande basique pour traiter les réseaux ayant des interactions coopératives et
compétitives afin que les agents atteignent consensus biparti. Nous introduisons égale-
ment des propriétés importantes des réseaux signés à travers des exemples simples. À
la fin du chapitre, nous rappelons une autre façon de représenter les réseaux, appelée
formulation basée sur les arêtes.

• Chapitre 3 : Dans ce chapitre, nous abordons le problème de suivi de confinement
biparti sur des réseaux signés structurellement équilibrés et déséquilibrés (structurally
balanced et unbalanced, en anglais) qui contiennent multiples leaders coopératifs et
compétitifs pour des systèmes du premier ordre et du second ordre. Nous présentons
une approche de Lyapunov pour analyser la stabilité exponentielle de l’ensemble de
suivi du confinement biparti en exprimant le système en termes de deux systèmes
dynamiques interconnectés évoluant dans des espaces orthogonaux : la dynamique
des leaders et les erreurs de synchronisation relatives aux groupes de leaders. Ainsi,
le problème du confinement biparti est transformé en un problème de stabilité d’un
ensemble d’erreurs. Ensuite, nous présentons une borne de convergence pour l’ensemble
des suiveurs ainsi que les valeurs limites finales pour tous les agents. En outre, nous
généralisons la caractérisation de l’équation de Lyapunov de la propriété de Hurwitz
d’une matrice aux matrices ayant plusieurs valeurs propres nulles, ce qui nous permet
de construire des fonctions de Lyapunov strictes. Disposer de fonctions de Lyapunov
strictes nous permet d’établir la robustesse du système avec une perturbation bornée
en termes de stabilité entrée-état.
Ces résultats ont été initialement présentés dans les publications [1, 4].
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• Chapitre 4 : Dans ce chapitre, nous présentons des lois de commande distribuées basées
sur les fonctions barrières de Lyapunov pour résoudre le problème de la formation bi-
partie pour les simples et doubles intégrateurs sur des réseaux signés structurellement
équilibrés, connectés et non dirigés, ainsi que pour les réseaux structurellement équili-
brés et fortement connectés. Les lois de commande proposées garantissent l’évitement
des collisions entre chaque couple d’agents interconnectés ainsi que le maintien de la
connectivité pour les agents coopératifs. Nous analysons la stabilité asymptotique du
système à l’aide de la méthode directe de Lyapunov.
Ces résultats ont été initialement présentés dans les publications [2, 5].

• Chapitre 5 : Dans ce chapitre, nous abordons le problème de la formation bipartie
des systèmes Euler-Lagrange coopératifs-compétitifs sous contraintes. Nous étudions
d’abord les robot manipulateurs et ensuite les vaisseaux spatiaux volants, modélisés par
des équations d’Euler-Lagrange, et nous considérons des graphes signés structurelle-
ment équilibrés et non dirigés. Tout d’abord, nous présentons une loi de commande
de la formation bipartie basée sur le gradient d’une fonction de Lyapunov barrière qui
garantit que les effecteurs terminaux n’entrent pas en collision et restent dans leurs
régions de portée. Ensuite, afin de considérer les robot manipulateurs perturbés, nous
robustifions notre contrôleur avec une approche basée sur un modèle interne pour re-
jeter les perturbations. Nous établissons la stabilité asymptotique de l’ensemble de
formation bipartie à la fois en l’absence et en présence de perturbations. Puis, nous
considérons un groupe de satellites interconnectés sur un graphe signé et soumis à des
contraintes d’évitement de collision et de connectivité. Nous établissons la stabilité
asymptotique de l’ensemble de formation bipartie.
Ces résultats ont été initialement présentés dans les publications [3, 6].
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CHAPTER 1

CONTEXT

1.1 MOTIVATION

The objective of this thesis is to design distributed controllers for multi-agent robotic
systems required to execute complex tasks. This thesis addresses the general problem
of guiding a swarm of autonomous vehicles required to gather and advance in formation
or to be contained in a safe zone in realistic, constrained environments—see Figure 1.1
for an illustration. Such problems are also relevant in applications, such as collabo-
rative human-robot interactions, where teams of robot manipulators or mobile robots
equipped with manipulators are controlled to perform tasks in constrained workspaces
with safety guarantees—see Figure 1.2.

Safe zoneDangero
us

zone
Obstac

le

Enemy
agents

Figure 1.1: Guiding a group of drones in formation to a safe zone while avoiding collisions
with obstacles, dangerous zones, and other agents.

More precisely, we consider problems of containment and formation for multi-agent
systems in the presence of:

• Cooperative and competitive interactions among the agents: The nature of
the interconnections between two agents defines whether these interconnected
systems have the same objectives or not. Cooperative interactions are used for
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agents expected to collaborate in executing the task. Then, competitive interac-
tions represent the presence of enemy agent groups, dangerous zones, and obsta-
cles in the system.

• Multiple leaders in the network: Multiple leaders can be used to define dan-
gerous zones to avoid and identify the safe zone to which agents should converge.
Leaders that are cooperative towards which followers must converge are illus-
trated in Figure 1.1 determining a safe zone, whereas competitive leaders with
agents represent the obstacles and dangerous zones to avoid.

• Inter-agent constraints: In this thesis, we use relative distances to guarantee
the safety and mission success of the multi-agent system, which means that for
the mission to succeed, the agents should always stay in their sensors’ range
so that the information exchange continues and the connectivity is maintained.
Moreover, for the systems’ safety, agents should also avoid collisions with the
obstacles or enemy agents present in the environment as well as with other agents
of their team.

• Disturbances: In realistic settings of robotics systems, there are, e.g., aero-
dynamic disturbances, which are generally unknown and varying, significantly
impacting the performance of the vehicles.

Figure 1.2: A team of robot manipulators performing tasks in a constrained workspace with
guaranteed safety: (a) collaboration of manipulators to move a product, (b) two groups of
manipulators working on opposite sides of a product.

To address the aspects above, we recast the pertinent control problems as stabilization
ones. In turn, to that end, we use Lyapunov theory and extend some recent work on
Lyapunov theory for multi-agent systems. Such methods are briefly put in perspective
below.

1.2 PRESENCE OF COOPERATIVE AND COMPETITIVE INTERAC-
TIONS

The literature on consensus and synchronization of multi-agent systems is abundant.
Still, it is largely focused on networks containing only cooperative interactions [100],
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such as consensus for first-order [62], second-order [74] and linear high-order dynamics
[100]. In these cases, all the agents may reach a global agreement regarding a certain
quantity of interest through collaboration [75]. However, this excludes several scenarios
where some agents cooperate, while others compete as, e.g., in the context of herding
control [15, 26, 80], in social networks [2, 72], or in aerospace applications [48, 113]. The
cooperative vs competitive nature of the links, which is at the center of attention here,
may be analyzed using the formalism of signed networks [2], also known as coopetition
networks [30], in which the edges may have positive or negative weights. Some of such
networks are called structurally balanced1. For the latter, agreement on a common
value is generally not attainable. However, an achievable goal is bipartite consensus
[95], [2], in which all the agents converge to the same state in modulus but opposite
in signs. There are multiple studies on the bipartite consensus-control problem for
single-integrators [2, 52], double-integrators [104], and linear high-order dynamics [95].

In this thesis, we focus on consensus-like problems, but in which the interconnections
between agents are represented both by positive and negative weights on the edges.
We use the tools introduced in [2, 52], but as we will see, in contrast to [95, 2], even
bipartite consensus may be out of reach, notably due to the presence of multiple leaders.
In this case, we give conditions to achieve bipartite containment.

1.3 PRESENCE OF MULTIPLE LEADERS IN THE NETWORK

In the coordination of multi-agent networks containing a single leader (defined as either
a single root agent or a strongly connected subgraph containing multiple nodes but
without any incoming edges), all the followers adopt the leader’s trajectory or converge
to the leader’s state [58]. However, this so-called leader-follower consensus does not
occur if the network contains more than one leader. In this case, multiple consensus
equilibria may appear [55], and it is more appropriate to speak of containment control
[7]—see Figure 1.3 below. This problem consists of ensuring all followers converge to a
containment set determined by the leaders’ initial conditions and is solvable if, for each
follower, there exists at least one leader from which emanates a directed path to that
follower. There are multiple studies on distributed containment control, e.g., for social
networks [36] or for networks of single-integrators [8, 35], double-integrators [9, 44],
and general linear autonomous systems [41]. However, most of the current research
on the consensus or containment problems for multi-agent systems is on cooperative
networks, i.e., the coordination of nodes is achieved only by cooperative interactions.

To analyze directed signed networks containing multiple leaders, in [49], the notion
of containment control is extended to bipartite containment tracking-control. The lat-
ter consists in having all the followers’ states converge to containment sets determined
by the leaders’ states and their symmetric states, and more than two consensus equi-
libria appear because of the presence of multiple leaders. Succeeding [49], bipartite
containment has also been studied in [110, 53] and [98]. On the other hand, in [50, 30],
the interval bipartite problem is studied for directed signed networks, where multiple

1A signed network is structurally balanced if all the nodes may be split into two disjoint subsets,
where agents cooperative with each other are in the same subset and agents competitive with each
other are in different ones— see Definition 1 in Section 2.3.
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equilibria appear, which is similar to the bipartite containment problem. The differ-
ence is that in [50, 30], multiple equilibria appear because of only one leader and the
structural unbalance property.

Figure 1.3: Containment of a group of robots inside a safe zone defined by the leaders’ states.

In the context of this thesis, we are interested in signed networks containing multiple
leaders. In this setting, a competitive leader may define, e.g., a group of enemy agents
or an obstacle to avoid, whereas a cooperative leader defines the safe final destination
to attain; that is, a leader is not bound to being a single agent. In the case of a
directed signed graph containing a root agent, defining a leader, all agents achieve
leader-follower bipartite consensus. This means that all the agents that cooperate with
the leader node converge to the leader’s state, and the competitive agents converge to
the leader’s symmetric state. In that regard, bipartite containment [49] over multileader
signed networks is similar to the leader-follower bipartite consensus problem. But, in
the context of the containment problem, the equilibrium points are defined by the
leaders’ states and their symmetric states, called containment sets.

In the case where multiple (cooperative and/or antagonistic) leaders appear, a sig-
nificant difficulty that appears in the analysis is that of the properties of the Laplacian
matrix and the construction of the eigenvectors associated with its zero eigenvalues [51].
This is because the Laplacian matrix has multiple zero eigenvalues (as many as the
number of the leader groups in the network) and multiple right and left eigenvectors
associated with each zero eigenvalues. Moreover, since the graph is signed, the ele-
ments of the eigenvectors are also signed, depending on the interaction topology. The
eigenvectors are useful for calculating where the agents’ states converge. For instance,
in [49] and [98], limit points for the followers’ states are given explicitly.

In this thesis, in contrast to [110, 53, 98], where bipartite containment is studied
only over structurally balanced networks, we address the problem regardless of whether
the graph is structurally balanced or unbalanced. Furthermore, in [110], only coop-
erative leaders are considered, and in [98], interconnections between the followers are
assumed to be only undirected. We consider both cooperative and competitive leaders,
with followers interconnected over a directed signed graph. As in [49] and [98], we cal-
culate the explicit limit values of the followers, but regardless of the structural balance
property, and for second-order systems.

For the purpose of analysis, we recast the problem into one of stability of the set
of containment errors, and our analysis relies on Lyapunov theory. More precisely, it
is based on the framework introduced in [67], and we extend the results from [68] to

28



the case of containment. The contributions and innovations of our work on bipartite
containment with respect to the literature are:

(i) the construction of the right and left eigenvectors for both structurally balanced
and unbalanced signed networks containing multiple cooperative and competitive
leaders;

(ii) the extension of the definition of the average system (defining the explicit limit
values of the followers) and the synchronization errors for general multi-leader
signed networks;

(iii) the extension of the well-known Lyapunov equation to the case of matrices having
multiple zero eigenvalues (corresponding to the Laplacian matrix of a multi-leader
signed network);

(iv) the construction of strict Lyapunov functions for multi-leader signed networks
(exponential stability and input-to-state stability).

1.4 COLLISION AVOIDANCE AND CONNECTIVITY MAINTENANCE
FOR SIGNED NETWORKS

In many instances where multi-agent vehicles are used, besides attaining the goal desti-
nation, the safe zone, or following a reference trajectory, autonomous vehicles must also
satisfy other objectives, such as guaranteeing collision avoidance between two agents
or maintaining information exchange between the ones cooperating with each other.
Those objectives are encoded as inter-agent constraints, and various approaches based
on artificial potential functions are exploited in the literature to enforce them—see
e.g., [22, 12, 97, 85, 77, 105] and [66]. The latter uses Lyapunov-like barrier functions
to encode collision avoidance and connectivity maintenance control goals and assures
the convergence to desired destinations for a network of multiple nonholonomic ve-
hicles. Alternative methods that address the constrained consensus-control problem
include those that use repulsive vector fields [4], employ a nonlinear learning error
function [106], or apply various optimization-based approaches such as Voronoi dia-
grams [14, 32, 13, 93] and control barrier functions [3, 87]. However, only a few works
in the literature focus on constrained control problems for networks containing both
cooperative and competitive interactions.

In [15] the multi-swarm herding problem is solved under connectivity constraints
using a mixed integer quadratically constrained program; in [26] a control strategy is
proposed for the non-cooperative herding problem described by first-order dynamics
and control barrier functions are used to prevent some agents from escaping from a
protected zone. Yet, in [15] and [26] the system is modeled by a network in which all
the agents cooperate and the control laws are optimization-based. Moreover, in [26]
only a two-agent scenario is considered. In [24] the bipartite flocking-control problem
is studied, and artificial potential functions are used to guarantee collision avoidance
and connectivity maintenance. The statements rely on LaSalle’s invariance principle
[39]. Collisions are avoided in [24], but a minimal safety distance between agents is not
guaranteed. Thus, only a few works in the literature focus on inter-agent constrained
control problems for coopetition networks.
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One of the goals of this thesis is to address constrained control problems in the
presence of cooperative and competitive interactions. For this purpose, we encode the
constraints using barrier-Lyapunov functions (BLF). Then, the distributed control laws
are designed in terms of the gradient of the BLFs and consequently grow unboundedly
as the agents’ state approaches the boundaries of the set where the constraints hold.
The contributions of this thesis on control of constrained multi-agent systems rely on
providing, for the first time in the literature, barrier-Lyapunov-function-gradient-based
controllers guaranteeing collision avoidance and connectivity maintenance for agents
interconnected over both cooperative and competitive edges for first- and second-order
systems over undirected and strongly connected directed signed graphs.

Compared to [100, 75, 22, 12, 66, 105, 4, 106, 77], which focus on traditional cooper-
ative networks, our results apply to a more general and complex scenario where agents
have both cooperative and competitive interactions. Compared to [2, 30, 104, 95], in
which bipartite consensus-control problem of signed networks is studied, we address
the problem under collision avoidance and connectivity maintenance constraints. The
innovations of our work with respect to related literature reside in the construction of
barrier-Lyapunov functions encoding collision avoidance and connectivity maintenance
constraints for agents interconnected over both cooperative and competitive edges and
the design of a bipartite consensus control law satisfying the control objective while
ensuring inter-agent constraints are respected.

1.5 CONTROL OF COOPERATIVE AND COMPETITIVE EULER-LA-
GRANGE SYSTEMS

The challenge of considering constraints and collision avoidance is most naturally as-
sociated with applications involving mobile robots. However, the aspects previously
described are also pertinent in the context of control of cooperative and competitive
manipulators. In all of the previous references, generic first, second, or higher-order
linear models are used. These are less suitable for robot manipulators, which are most
commonly modeled by the Euler-Lagrange equations. In that regard, the literature
on control of multi-agent Euler-Lagrange systems is also rich, but most often, only
cooperative networks are considered. For instance, in [112, 90], the tracking-consensus
problem for mobile robots with nonholonomic constraints is addressed, in [16] the for-
mation control of flying spacecraft, in [17] the synchronization of multi-Lagrangian
systems, and in [78, 59, 73, 61] the synchronization of multiple robot manipulators.
In all of these references, the synchronization problem is studied in joint coordinates.
Formation of manipulators in end-effector coordinates is considered in [79, 103, 102].
Nonetheless, in all of the previously cited references, only networks of cooperative
agents are considered. For signed networks, the bipartite consensus of networked robot
manipulators is addressed, e.g., in [45, 29, 111, 20, 115], while the leader-follower bi-
partite consensus is studied in [31, 46, 42, 40] (in the latter parametric uncertainty is
also considered). In end-effectors coordinates, the bipartite formation-control problem
is considered in [65].

In the last part of the thesis, we consider the distributed bipartite formation-control
problem of robot manipulators’ end-effectors under relative distance constraints and
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in the presence of disturbances. We consider a networked system of cooperative-
competitive robot manipulators modeled by the Euler-Lagrange equations and inter-
connected over a structurally balanced undirected signed graph. The desired formation
goal is imposed on the manipulators’ end effectors. Such scenarios are motivated, for
example, by applications in industrial robotics’ where robots share the same workspace
but are assigned symmetric tasks by the team. Ideally, the robot manipulators should
occupy the minimum space while evolving with guaranteed safety and increased reac-
tivity. Compared to the literature, we contribute with a robust bipartite formation
control law that ensures that the manipulator’s end effectors achieve the desired for-
mation while avoiding inter-agent collisions and staying within the maximum distance
imposed by the task requirements.

Next, we consider the bipartite formation-control problem of networked satellites
under collision avoidance and connectivity maintenance constraints. In the related
literature, the formation-control problem of cooperative flying spacecraft has been
addressed—see e.g., [64, 16, 70, 1, 47]. In this memoir, we address a group of cooperative-
competitive satellites modeled by the Euler-Lagrange equations, following the devel-
opments in [1], over a structurally balanced undirected signed graph. Such a scenario
is motivated by a group of spacecraft working in cooperation with the objective of ob-
serving objects in space while avoiding competitive space vehicles and debris to achieve
their mission. Compared to the literature, we contribute with a bipartite formation
control law that ensures the satellites achieve the desired formation while avoiding
inter-agent collisions and staying in their sensors’ range. To the best of our knowledge,
similar results are not available in the literature for robot manipulators or for satellites
interconnected over networks containing competitive interactions.

1.6 DISTURBANCE REJECTION

Besides the presence of cooperative/competitive interactions, the existence of multiple
leaders, and the constraints imposed on the agents, another important aspect that
must be considered in the control of multi-agent robot systems is the effect of external
disturbances. Considering that a disturbance may be modeled by a multi-periodic sig-
nal [102], an effective method to compensate for its effect is the internal-model-based
approach, see, e.g., [99, 61, 102, 33, 34] for works on consensus among cooperative
robots, and [20, 31, 115] and [65] for works on coopetitive networks of robot manipula-
tors. Yet, none of the references cited above considers the presence of constraints. One
additional contribution of this thesis is the design of controllers for constrained ma-
nipulators’ end-effectors in the presence of matching disturbances. For that purpose,
we rely on an internal-model-based approach [33]. In the case of this thesis, while
addressing constrained control problems, we reject the disturbances using an internal
model-based compensator.
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CHAPTER 2

CONSENSUS PROTOCOLS FOR ANTAGONISTIC
MULTI-AGENT SYSTEMS

In this chapter we recall elements of graph theory that we use to model the dynamics
of multi-agent systems. Then, by revisiting the classical consensus algorithm for coop-
erative networks, we recall the basic control law to address networks with competitive
interactions for achieving bipartite consensus. We also recall important properties of
signed networks through simple examples. At the end of the chapter, we recall an
alternative representation of the networks, called the edge-based formulation.

2.1 GRAPH THEORY FOR COOPERATIVE SYSTEMS

Under distributed control, multi-agent systems communicate via neighbor-to-neighbor
interactions and only have access to their own measurements. Therefore, a natural way
to model their interaction topology is using elements of graph theory [54], [75]. To that
end, we recall some basic notations and definitions of graph theory.

A graph describes the information exchange, defined as the interaction topology be-
tween a set of agents. A graph is denoted by G = (V , E), where V := {ν1, ν2, . . . , νN} is
the set ofN nodes corresponding to the agents in the system and E := {ε1, ε2, . . . , εM} ⊆
V × V is a set containing M edges, corresponding to the information exchange (inter-
connections) between agents. If there exists an edge between a pair of agents, they
are said to be adjacent. If the information flow between a pair of agents is bidirec-
tional, the graph is said to be undirected. The edge εk = {vi, vj} ∈ E of an undirected
graph denotes that the agents νi and νj can obtain information from each other. Thus,
in an undirected graph, we have the property that εk = {vi, vj} = {vj, vi}. Other-
wise, if the information flow is only in one direction, the graph is said to be directed,
and is commonly referred to as a digraph. The edge εk = {vj, vi} ∈ E of a digraph
denotes that the agent vj, which is the terminal node (tail of the edge), can obtain
information from the agent vi, which is the initial node (head of the edge)—see Fig-
ure 2.1. It is also assumed that the graph is defined in such a way that there are
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no self-loops, i.e., edges of the form εk = {vi, vi} are not included in E . For in-
stance, for the undirected graph at the left of Figure 2.1 we have the following edge
set: E = {{ν1, ν2}, {ν1, ν3}, {ν1, ν4}, {ν2, ν5}, {ν2, ν6}, {ν3, ν4}, {ν5, ν6}}, and for the di-
rected graph at the right of Figure 2.1 we have E = {{ν2, ν1}, {ν3, ν1}, {ν1, ν4}, {ν5, ν2},
{ν2, ν6}, {ν4, ν3}, {ν6, ν5}}.

On the other hand, a weighted graph is denoted by G = (V , E ,W), whereW : E → R
associates a value to each edge εk. For weighted graphs, we define a matrix called the
adjacency matrix that contains the weights of interconnections. The adjacency matrix
is defined as A(G) = [aij] ∈ RN×N . For an undirected graph, we have aij = aji, ∀i 6= j
and aij > 0 if {νj, νi}, {νi, νj} ∈ E and aij = 0 if {νj, νi}, {νi, νj} /∈ E , and aii = 0. For
a digraph, we have A(G) = [aij] ∈ RN×N , where aij > 0 if {νj, νi} ∈ E and aij = 0 if
{νj, νi} /∈ E , and aii = 0.

ν1 ν2

ν3

ν4

ν5

ν6

(a)

ν1 ν2

ν3

ν4

ν5

ν6

(b)

Figure 2.1: Example of two graphs: (a) an undirected graph; (b) a directed graph.

A (directed) path is a sequence of distinct adjacent vertices in a graph. When the
vertices of the path are distinct except for its end vertices, the (directed) path is called
a (directed) cycle. An undirected graph is said to be connected if there exists a path
between every pair of nodes. For instance, the undirected graph on the left of Figure
2.1 is connected. A connected graph without any cycles is called a tree, meaning that
any two vertices are connected by exactly one path. A digraph is said to be strongly
connected if there exists a directed path between every pair of nodes. The directed
graph in Figure 2.1b is not strongly connected, as, for instance, there is no directed
path from node ν2 to nodes ν3 or ν4. A (directed) spanning tree is a (directed) tree
subgraph containing all the nodes of the graph. A (directed) spanning tree of the
(directed) graph in Figure 2.1b is shown with the edges colored in blue. In a directed
spanning tree, every agent has a parent node, except for the root node. A root node
is a node without incoming edges and has a directed path to every other node. Notice
that a directed spanning tree has no cycles, as every edge is oriented from the root
node to the other nodes. For undirected graphs, containing a spanning tree equals a
graph being connected, but for directed graphs, containing a directed spanning tree
does not mean that the digraph is strongly connected.

2.2 THE CONSENSUS-CONTROL PROBLEM

The consensus control problem, loosely speaking, consists in making a team of agents
work in a coordinated fashion and agree on a common value [75]. It may be studied
using different tools, including graph theory and stability theories, both of which are
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+0.5 +2
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Figure 2.2: Example of three vehicles interconnected over an undirected graph.

extensively used in this memoir. For illustration, let us consider a robotic system con-
taining three autonomous vehicles, as illustrated in Figure 2.2. They are interconnected
over an unsigned, undirected, and connected graph with the objective of meeting at
a rendezvous point before beginning their task. Since they all cooperate, they are
interconnected over an unsigned graph, and their interactions are represented by the
positive weights associated with each edge. Each vehicle only communicates with its
neighbors, and if we assume that each node’s dynamics corresponds to a simple inte-
grator in closed loop with a diffusive control law, the multi-agent system dynamics are
described by

ẋ1 = −0.5(x1 − x2)− 2(x1 − x3) (2.1a)
ẋ2 = −0.5(x2 − x1)− 1(x2 − x3) (2.1b)
ẋ3 = −2(x3 − x1)− 1(x3 − x2), (2.1c)

where xi ∈ R is the state of each agent, e.g., the position of each vehicle, and the
factors 0.5, 1 and 2 correspond to the values of the adjancency weights a12, a23 and a13

of the interconnections.

Remark 1 In this chapter, and throughout the whole dissertation, for notational sim-
plicity and without loss of generality, we assume that xi ∈ R, but all contents of this
thesis apply to systems of higher dimension xi ∈ Rn, n > 1, using a Kronecker product
[27]. •

Then, to study the behavior of the solutions of (2.1), we start by rewriting these
equations in the compact form

ẋ = −

(2 + 0.5) −0.5 −2
−0.5 (0.5 + 1) −1
−2 −1 (2 + 1)

x, (2.2)

where x = [x1 x2 x3]> is the vector containing the states xi of all agents and the matrix
in (2.2) is called the Laplacian matrix, which in the N -agents’ case reads L := [`ij] ∈
RN×N . It describes the topology corresponding to the graph in Figure 2.2 and, in
general, is defined as

`ij =

{ ∑
k∈IN

aik i = j

−aij i 6= j.
i, j ≤ N (2.3)

Since the agents are interconnected over a connected undirected graph, the Laplacian
matrix L is symmetric and positive semidefinite. Moreover, the sum of each row of
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L is equal to zero, so L has a unique zero eigenvalue, and all nonzero eigenvalues are
positive, such that,

λ1(G) = 0 < λ2(G) = 2.2 ≤ λ3(G) = 4.8.

Moreover, 13 := [1 1 1]> the eigenvector associated with λ1(G). Also, since L = L>,
we have that L13 = 0 and 1>3 L = 0.

Thus, the system in (2.1) is linear time-invariant, since it has the form ẋ = −Lx.
The Laplacian matrix in (2.2) plays an important role in the analysis of the consensus
problem via tools involving linear systems theory, which we use and extend to address
the problems of bipartite consensus and containment of interest in this memoir. For
clarity and to put our contributions in perspective, we describe below two approaches
to analyze the behavior of the solutions of the otherwise well-known equation ẋ = −Lx
[75, 54, 7].

2.2.1 Limit values for the network solutions over an undirected graph

The solution of the system (2.1) is given by

x(t) = e−Ltx0, (2.4)

where x0 = x(0) is the vector containing the initial conditions of all agents and L ∈
R3×3, which is symmetric and positive semidefinite, is defined in (2.3). Let

U = [vD1 vD2 vD3 ]

be a matrix containing normalized and orthogonal eigenvectors of the Laplacian matrix
associated with its eigenvalues. Using the Jordan decomposition of L such that, L =
UΛ(G)U> and the spectral factorization of the Laplacian matrix [75], we have

e−Lt = e−UΛ(G)U>t = Ue−Λ(G)tU>,

where Λ(G) = diag([λ1(G), λ2(G), λ3(G)]). Then, (2.4) can be decomposed as

x(t) = Ue−Λ(G)tU>x0

= e−λ1(G)tvD1v
>
D1
x0 + e−λ2(G)tvD2v

>
D2
x0 + e−λ3(G)tvD3v

>
D3
x0.

Since λ1(G) = 0, we have that e−λ1(G)t = 1, and for all 1 < i ≤ 3, we have e−λi(G)t → 0
as t→∞. Then,

lim
t→∞

x(t) = vD1v
>
D1
x0 =

1

3
131

>
3 x0. (2.5)

Thus, the trajectories of the system in (2.4) converge to the agreement set

{x ∈ R : x1 = x2 = x3}.

In addition, from the expression in (2.5), we notice that the convergence point is
the average of the initial conditions of all agents. Then, all agents achieve average
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consensus. Indeed, note that here each xi converges to 1
3
1>3 x0, which corresponds to an

average. This is a particular case of consensus, but in the more general coordination
setting, the average is defined as 1

3
1>3 x and not with the initial conditions x0, as the

system may be moving [67].
The above development allowed us to establish the convergence of the network

containing three autonomous vehicles. The same conclusion is obtained after analyzing
the stability of the system using Lyapunov stability tools [38].

2.2.2 Lyapunov stability of the consensus set over an undirected graph

Here, we analyze the stability of the origin in the space of the synchronization errors.
We saw above that three agents interconnected over a connected and undirected graph
achieve average consensus. Then, it makes sense to define the synchronization errors
with respect to the average value of the system. To that end, we use the approach
introduced in [67] and express the system in terms of two interconnected dynamical
systems: the dynamics of the weighted average system xm, which is actually the con-
sensus equilibrium, and of the synchronization errors ei relative to xm. The consensus
equilibrium is calculated by the left eigenvector associated with the zero eigenvalue and
the states of the agents, such that,

xm :=
1

3
1>3 x. (2.6)

Here, xm is scalar since all the agents converge to the same state, which is the ren-
dezvous point. Then, we define the synchronization errors as the difference between
the agents’ states and the average system, that is,

e := x− 13xm. (2.7)

Remark 2 In (2.6), 1
3
13 corresponds to the left eigenvector associated with the zero

eigenvalue. In (2.7), 13 corresponds to the right eigenvector associated with the zero
eigenvalue. In this example, left and right eigenvectors differ only by a scalar factor
because the graph under consideration is undirected. However, this is generally not the
case, as will be demonstrated in Chapter 3 for directed graphs. •

Then, differentiating the errors, and from (2.2), we obtain

ė = ẋ− 13ẋm

= −[1− 1

3
131

>
3 ]Lx.

Since 1>3 L = 0 and L13 = 0, note that ẋm = 0 and the error dynamics can be expressed
as

ė = −Le. (2.8)
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Consider the following Lyapunov function candidate1

V (e) =
1

2
e>e. (2.9)

Its derivative along the trajectories of (2.8) reads

V̇ (e) =
1

2

[
(−Le)>e+ e>(−Le)

]
= −e>Le, (2.10)

which is negative semi-definite. Next, we use Barbashin-Krasovskii’s theorem [5, 38].
On the set {e ∈ R : V̇ = 0}, we have

Le = Lx− L131
>
3 x = Lx = 0,

as L13 = 0. The only solution of (2.10) that remains in the set {e ∈ R : V̇ = 0}, is

xi = xj = xm ⇔ e = 0.

Thus, global asymptotic stability of {e = 0} follows, which means that the agents
achieve consensus. Moreover,

lim
t→∞

x(t) =
1

3
131

>
3 x(0).

Let us now consider the consensus control problem for networks containing N dy-
namical systems modeled by

ẋi = ui, xi, ui ∈ R, i ∈ IN (2.11)

where IN := {1, 2, . . . , N}. Each right-hand-side in (2.1) may be assimilated to a
control input of the generic form

ui = −
N∑
j=1

aij(xi − xj), (2.12)

where aij ∈ R≥0 is the interconnection weight between the nodes νi and νj. More
precisely, aij > 0 if there is a (directed) interconnection between the ith and the jth
nodes, and aij = 0 if there is not. The control law in (2.12) is a well-known consensus
algorithm that ensures that,

lim
t→∞

[xj(t)− xi(t)] = 0 ∀ i, j ≤ N, (2.13)

which is the property that we established to hold for the system (2.1). In general, (2.13)
holds if and only if the underlying (directed) graph contains a (directed) spanning tree

1See Appendix A.2 for the definition of a Lyapunov function.
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[7]. Indeed akin to (2.2), the system (2.11) interconnected via the distributed consensus
algorithm in (2.13) may be analyzed by expressing it in the multi-agent form

ẋ = −Lx, (2.14)

where

L =



N∑
k=2

a1k −a12 . . . −a1N

−a21

N∑
k=1, k 6=2

a2k . . . −a23

· · · · · ·
. . . · · ·

−aN1 −aN2 . . .
N−1∑
k=1

aNk


, (2.15)

is the resulting Laplacian matrix corresponding to the considered graph. Now, the
Laplacian matrix may also be defined as

L := D −A, (2.16)

where D is a diagonal matrix, called the degree matrix and A is the adjacency matrix.
For an undirected graph, D contains the vertex degrees d(νi), such that

D := diag([d(ν1) d(ν2) · · · d(νN)]).

For instance, the degrees of the vertices of the graph in Figure 2.2 are d(ν1) =
2.5, d(ν2) = 1.5, d(ν3) = 3, which also corresponds to the diagonal of the matrix
in (2.2). Then, the resulting Laplacian matrix is symmetric and positive semi-definite,
and all nonzero eigenvalues of L are positive, such that

0 = λ1(G) < λ2(G) ≤ · · · ≤ λN(G),

with 1N the eigenvector associated with the zero eigenvalue. Moreover, since L = L>,
we have that L1N = 0 and 1>NL = 0.

We now move forward with the case of directed graphs.

2.2.3 Limit values for the network solutions over a directed graph

ν1

ν2 ν3

+0.5 +2

+1

Figure 2.3: Example of three vehicles interconnected over a directed graph.

For a directed graph, D contains the in-degree of each vertex on the diagonal, such
that

D := diag([din(ν1) din(ν2) · · · din(νN)]),
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where the in-degree is the sum of the weights of the incoming edges to the node. On
the other hand, the out-degree is the sum of the weights of the outcoming edges. If
the in-degree and out-degree are equal for every vertex, the directed graph is called
balanced. Thus, every undirected graph is naturally balanced. For instance, the in-
and out-degrees of the vertices of the graph in Figure 2.3 are din(ν1) = 0, din(ν2) =
0.5, din(ν3) = 3 and dout(ν1) = 2.5, dout(ν2) = 1, dout(ν3) = 0. Then, the result-
ing Laplacian matrix is generally not symmetric and all its nonzero eigenvalues have
positive real parts, such that,

0 = λ1(G) < Re(λ2(G)) ≤ · · · ≤ Re(λN(G)),

with 1N the right eigenvector associated with the zero eigenvalue. Moreover, if the
digraph is balanced, in addition to having L1N = 0, we also have 1>NL = 0.

Following the steps of the latter example, we now consider the system (2.11) inter-
connected with the control law (2.12) under a directed graph containing a spanning
tree.

The solution of (2.11) is given by x(t) = e−Ltx0, where x0 = x(0) and L 6= L>.
Let L = UJ(Λ)U−1 be the Jordan decomposition of the Laplacian of the digraph,
where U = [vD1 vD2 . . . vDN ] with vD1 = 1N , contains the right eigenvectors and
U−1 = [wD1 wD2 . . . wDN ] contains the left eigenvectors associated with the eigenval-
ues. Moreover, λi(G), 2 ≤ i ≤ N have positive real parts and J(λ1(G)) = J(0) = 0
[54]. Then,

U−1LU = J(Λ(G)) =


0 0 . . . 0
0 J(λ2(G)) ... 0
...

...
...

...
0 0 0 J(λN(G))

 .
We also have LU = UJ(Λ(G)) and U−1L = J(Λ(G))U−1, which implies that 1N and
wD1 are the right and left eigenvectors associated with the 0 eigenvalue such that
L1N = 0N and w>D1

L = 0. In addition, since UU−1 = IN , we also have 1>NwD1 = 1.
Thus,

lim
t→∞

e−Lt = U


e0 0 ... 0
0 eJ(−λ2(G))t ... 0
...

...
...

...
0 0 0 eJ(−λN (G))t

U−1.

Since Re(λi) > 0 for all i > 1, we have limt→∞ e
−J(λi(G))t = 0. Consequently,

lim
t→∞

x(t) = 1Nw
>
D1
x0, (2.17)

Hence, all the agents converge to the agreement set

{x ∈ R : xi = xj, ∀i, j ≤ N}.

Furthermore, if the digraph is balanced, all agents achieve average consensus, i.e.,
limt→∞ x(t) = 1

N
1N1

>
Nx0.

Next, we show how to analyze the stability of the agreement set using Lyapunov-
stability tools.
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2.2.4 Lyapunov stability of the consensus set over a directed graph

Once again, we analyze the stability of the origin in space of the synchronization
errors by using the approach introduced in [67] and express the system in terms of
two interconnected dynamical systems. To that end, we define the weighted average
system as

xm := w>Dx, (2.18)

and the synchronization errors as

e := x− 1Nxm. (2.19)

Then, differentiating the expression above and using ẋm = w>DLx = 0 and L1N = 0,
we obtain

ė = −Le. (2.20)

Next, consider the following Lyapunov function candidate in (2.9) whose derivative
along the trajectories of (2.20) reads

V̇ (e) = −e>(L> + L)e.

Since the graph is directed, the Laplacian matrix is not symmetric, and L> + L is
not positive semi-definite. Therefore, we cannot conclude that V̇ is negative semi-
definite. However, there are some works in the literature on Lyapunov-function design
for balanced or strongly connected digraphs based on M-matrices concepts [69]. For
instance, if the considered digraph is balanced, then L>+L ≥ 0 and the derivative of the
Lyapunov function is negative semi-definite [109]. Then, invoking LaSalle’s invariance
principle [39], we can conclude that the system converges to the invariant set {e ∈ R :
V̇ = 0}, that is, {e = 0}. On the other hand, if the digraph is strongly connected, then
the left eigenvector associated with the zero eigenvalue of L has all positive elements,
and using this property, a quadratic Lyapunov function of the form V (e) := e>Pe,
where P is diagonal and contains the elements of wD1 , may be constructed [109].
However, if the digraph is not strongly connected, the left eigenvector may contain
zero elements, so this construction cannot be used. That is, in general, the analysis of
consensus over general digraphs is more complicated than for undirected graphs. In [68]
a Lyapunov approach for the study of consensus problems for the systems over general
digraphs containing a directed spanning tree is presented. The following statement,
repeated here for convenience, provides a Lyapunov characterization of the necessary
and sufficient condition to achieve consensus over digraphs.

Proposition 1 ([68]) Let G be a directed graph of order N and let L ∈ RN×N be its
associated, non-symmetric, Laplacian matrix. The following statements are equivalent:

1. the graph G contains a directed spanning tree;
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2. for any matrix Q ∈ RN×N , Q = Q> > 0, and any real α > 0, there exists matrix
P (α) ∈ RN×N , P = P> > 0 such that

PL+ L>P = Q− α[P1Nw
>
D + wD1

>
NP ], (2.21)

where wD ∈ RN is the left eigenvector of L corresponding to the zero eigenvalue.

In particular, Proposition 1 gives the guidelines to construct a strict Lyapunov
function for the consensus problem in the space of the synchronization errors defined
in (2.19) [68]. Consider the system (2.20) and the Lyapunov function candidate

V (e) = e>Pe, (2.22)

where P = P> > 0 is to be defined. Its derivative gives

V̇ (e) = −e>(PL+ L>P )e.

Let Q = Q> > 0 and α > 0 be arbitrarily fixed. Under the assumption that the digraph
contains a directed spanning tree, from Proposition 1, there exists P = P> > 0 such
that (2.21) holds. Then, using such P in (2.22) we obtain

V̇ (e) = −e>Qe+ αe>[P1Nw
>
D + wD1

>
NP ]e.

However, from (2.18) and (2.19), and from the fact that w>D1N = 1 we have

P1Nw
>
De = P1Nw

>
D[I − 1Nw

>
D]x = 0,

so

V̇ (e) = −e>Qe,

which is negative definite for all e satisfying (2.19). Thus, the consensus manifold
{e = 0} is globally exponentially stable.

Remark 3 Disposing of strict Lyapunov functions is important as it provides a basis
to establish input-to-state stability (ISS). In Chapter 3, we construct strict Lyapunov
functions to analyze the stability of the synchronization errors, and then we conduct a
robustness analysis of the error set in the sense of ISS. •

The previous developments allowed us to establish convergence and asymptotic or
exponential stability to the consensus set over networks of agents that evolve with
cooperative interactions having the same objectives. They set the basis to consider the
more general case of networks containing both cooperative and competitive interactions
between agents, modeled by signed graphs, which is discussed next.
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2.3 THE BIPARTITE CONSENSUS-CONTROL PROBLEM

In a network with signed interconnections, the agents generally do not have a unique
consensus equilibrium, but at least two equilibria [2], [30], [95]. However, it is not
impossible for them to converge to a consensus equilibrium. This depends on the
structural balance property of the graph [2]—see below.

Definition 1 (Structural balance) Let V denote a set of cardinality N , of vertices
(nodes) νl, let E ⊆ V2 denote the set of cardinality M , of edges (interconnections)
εk := {vi, vj}, and let G(V , E) denote the corresponding graph. Then, a signed graph
is structurally balanced if it may be split into two disjoint sets of vertices V1 and V2,
where V1 ∪ V2 = V ,V1 ∩ V2 = ∅ such that for every vi, vj ∈ Vp, p ∈ {1, 2}, if aij ≥ 0,
while for every vi ∈ Vp, vj ∈ Vq, with p, q ∈ {1, 2}, p 6= q, if aij ≤ 0. It is structurally
unbalanced, otherwise.

ν1

ν2 ν3

( - )

(+)

( - )

(a)

ν1

ν2 ν3

( - )

(+)

(+)

(b)

Figure 2.4: Example of two signed networks: (a) a structurally balanced signed network (b)
a structurally unbalanced network.

An example of two signed networks is given in Figure 2.4, where the cooperative
interactions are represented by solid black lines and the competitive interactions by
red dashed lines. The nodes of the signed graph in Figure 2.4a can be separated into
two disjoint subsets such as V1 = {ν1} and V2 = {ν2, ν3}, so the graph is structurally
balanced. However, the nodes of the signed graph in Figure 2.4b cannot be separated
into two disjoint subsets, so the graph is structurally unbalanced.

We first address undirected and directed graphs that are structurally balanced.

2.3.1 Structurally-balanced undirected signed networks

ν1

ν2 ν3

+0.5 +2

+1

(a)

ν1

ν2 ν3

−0.5

+1

−2

(b)

Figure 2.5: Example of two undirected graphs with three agents: (a) an undirected unsigned
graph; (b) an undirected signed graph.

For the purpose of illustration, consider a robotic system containing three au-
tonomous vehicles interconnected over an undirected and connected graph but with
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cooperative and competitive interactions. Suppose that if two vehicles are cooperative,
they aim to meet at a rendezvous point, whereas if they are competitive, they have the
objective of going in opposite directions. To illustrate these interactions, we consider
a signed graph with both positive and negative signs on its adjacency weights. More
precisely, if the interactions are cooperative for some i, j ≤ N then, aij > 0 whereas if
they are competitive for some i, j ≤ N , then aij < 0—see Figure 2.5. Thus, {νi, νj} ∈ E
if and only if aij 6= 0; otherwise, {νi, νj} /∈ E and aij = 0. Each vehicle only communi-
cates with its neighbors, and each agent’s dynamics correspond to a simple integrator
interconnected with a diffusive control law. Then, the system dynamics are described
by

ẋ1 = −0.5(x1 + x2)− 2(x1 + x3) (2.23a)
ẋ2 = −0.5(x2 + x1)− 1(x2 − x3) (2.23b)
ẋ3 = −2(x3 + x1)− 1(x3 − x2), (2.23c)

where xi ∈ R is the position of vehicle i and the factors −0.5, 1 and −2 correspond to
the values of the adjacency weights a12, a23 and a13. Notice that in equations (2.23a)
and (2.23b), for agents that are interconnected with a competitive edge, i.e., agents ν1

and ν2 or agents ν1 and ν3, we have the sum of the agents’ states whereas in equations
(2.23b) and (2.23c), for agents that are cooperative with each other i.e., agents ν2 and
ν3, we have the difference of the agents’ states, as for the case of unsigned graphs.
Then, by rearranging (2.23), we obtain

ẋ = −

(2 + 0.5) 0.5 2
0.5 (0.5 + 1) −1
2 −1 (2 + 1)

x, (2.24)

where the matrix on the right-hand side corresponds to the signed Laplacian matrix
associated with the signed graph describing the cooperative and competitive interac-
tions, which in the N-agents’ case reads Ls := [`sij ] ∈ RN×N . Its elements are defined
as

`sij =

{ ∑
k∈IN
|aik| i = j

−aij i 6= j.
(2.25)

Moreover, the signed graph in Figure 2.5 is digon sign-symmetric. A signed graph is
said to be digon sign-symmetric if aijaji ≥ 0. It means that the interaction between
two interconnected agents always has the same sign in both directions.

Assumption 1 (Standing assumption) Throughout this manuscript, signed graphs
are assumed to be digon sign-symmetric.

Furthermore, the signed graph in Figure 2.5 is said to be structurally balanced [2]—
see Definition 1. More precisely, we recall the following characterization of structurally
balanced and undirected signed graphs [2, 30, 108].

Lemma 1 (Structural balance for undirected signed graphs) A connected and undi-
rected signed graph G = (V , E) is said to be structurally balanced if and only if one of
the following equivalent conditions holds:
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(i) All the cycles of the graph are positive.

(ii) There exists a matrix D ∈ D such that all off-diagonal elements of DLsD are
negative and is equivalent to the Laplacian matrix of an unsigned graph through
a gauge transformation, where D = {D = diag(σ), σ = [σ1, σ2, . . . , σN ], σi ∈
{−1, 1}, i ≤ N}.

(iii) λ1(Ls) = 0 is a simple eigenvalue of Ls and the rest of the eigenvalues are positive.

The condition (i) of Lemma 1 means that the signed graph is structurally balanced
if the multiplication of the signs of the interconnections on a cycle is positive [10]. The
signed graph in Figure 2.4b is structurally balanced because the cycle is positive, such
that, for one cooperative and two competitive edges, we have 1 × (−1) × (−1) = 1.
On the other hand, the graph in Figure 2.4a is structurally unbalanced because the
cycle is negative, such that, for two cooperative and one competitive edges, we have
1× 1× (−1) = −1.

The condition (ii) of Lemma 1 implies that if the considered graph is structurally
balanced, then the resulting Laplacian matrix of the signed graph Ls is equivalent to the
Laplacian matrix L of an unsigned graph through a gauge transformation. The gauge
transformation consists in a change of coordinates performed by a diagonal invertible
matrix D ∈ D, such that L = DLsD. Consider the signed graph in Figure 2.5. The
corresponding Laplacian matrix is given in (2.24). On the other hand, as there are
three agents in the considered graph, the set D contains 2N = 8 possible matrices, as
shown below.

D1 =

1 0 0
0 1 0
0 0 1

 , D2 =

−1 0 0
0 −1 0
0 0 −1

 , D3 =

1 0 0
0 1 0
0 0 −1

 , D4 =

−1 0 0
0 −1 0
0 0 1

 ,
D5 =

1 0 0
0 −1 0
0 0 1

 , D6 =

−1 0 0
0 1 0
0 0 −1

 , D7 =

1 0 0
0 −1 0
0 0 −1

 , D8 =

−1 0 0
0 1 0
0 0 1

 .

Remark 4 The entries of the matrix D are either +1 or −1. The signs indicate that
agents correspond to two distinct disjoint subsets, as explained in the structural balanced
property in Definition 1. For instance, from matrices D7 and D8, it is clear that agents
ν2 and ν3 belong to the same subset Vp, p ∈ {1, 2}, as the last two diagonal entries have
the same signs. In contrast, agent ν1 belongs to the other subset Vq, p ∈ {1, 2}, where
p 6= q, since the first diagonal entry has the opposite sign. •

Then, there exist 2N−1 = 4 possibilities of gauge equivalent Laplacian matrices
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L(L) = {DLsD,D ∈ D}, as DLsD = (−D)Ls(−D), such that,

L1 = D1LsD1 = D2LsD2 =

2.5 0.5 2
0.5 1.5 −1
2 −1 3

 ,
L2 = D3LsD3 = D4LsD4 =

2.5 0.5 −2
0.5 1.5 1
−2 1 3

 ,
L3 = D5LsD5 = D6LsD6 =

 2.5 −0.5 2
−0.5 1.5 1

2 1 3

 ,
L4 = D7LsD7 = D8LsD8 =

 2.5 −0.5 −2
−0.5 1.5 −1
−2 −1 3

 .
All the matrices above are symmetric and positive semi-definite, and their eigenvalues
are λ(Li) = 0, 4, 4. However, the only matrix corresponding to the Laplacian matrix
of an unsigned graph is L4, as it is the only matrix for which all off-diagonal entries
are nonpositive.

Condition (iii) of Lemma 1 holds if and only if the signed graph is structurally
balanced. This comes from the fact that L and Ls are both square N × N matrices
and Ls → DLD is a similarity transformation as D = D> = D−1 so L and Ls have
the same eigenvalues and the same geometric multiplicities of eigenvalues [2].

Now, we analyze the solutions of the system of three autonomous vehicles intercon-
nected over a signed graph.

2.3.1.1 Limit values for the network solutions

Let us first transform the system in (2.24) into a system of agents interconnected over
an unsigned graph, e.g., the one on Figure 2.5a, using the gauge transformation defined
in Lemma 1 [2], [108]. To that end, we define

z := Dx, (2.26)

where z = [z1 z2, z3]> are the states of agents of the unsigned graph with zi = σixi,
and σi ∈ {1,−1}. Its derivative along the trajectories reads

ż = Dẋ.

Replacing (2.24) in the latter and using (2.26), we obtain

ż = −DLsx = −DLsDz,

which is equivalent to
ż = −Lz, (2.27)
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since L = DLsD, where L is the Laplacian associated with the transformed unsigned
graph. Then, the solution of (2.27) is

z(t) = e−λ1(G)t1

3
131

>
3 z0 + e−λ2(G)tvD2v

>
D2
z0 + e−λN (G)tvD3v

>
D3
z0.

Coming back to the original coordinates corresponding to the signed graph by x = Dz,
since D = D−1, we obtain

x(t) = e−λ1(G)tD
1

3
131

>
3 Dx0 + e−λ2(G)tDvD2v

>
D2
Dx0 + e−λN (G)tDvD3v

>
D3
Dx0.

Since the considered undirected signed graph is structurally balanced, from Lemma 1
we have λ1(G) = 0 and for 1 < i ≤ 3, λi(G) > 0. Then,

lim
t→∞

x(t) =
1

3
D1313

>Dx0.

On the other hand, let
Us = [vr1 vr2 vr3 ]

be a matrix containing normalized and orthogonal eigenvectors of the signed Laplacian
matrix associated with its eigenvalues. Then, we have vr1 = D1N and vl1 = 1

3
D1N,

which means that the right and left eigenvectors associated with the zero eigenvalue of
the signed Laplacian matrix have positive and negative entries. Thus, the trajectories
of the system converge to the set {x ∈ R : σixi = σjxj, ∀i, j ≤ 3}, where σi = ±1.
More precisely, they converge to the disagreement set

{x ∈ R : x1 = −x2 = −x3}. (2.28)

With the above disagreement set (2.28) for the networked system, we established
the convergence of the network. Now, to analyze the stability of the system, we use
Lyapunov stability theory, similar to Subsection 2.2.2.

2.3.1.2 Lyapunov stability of the bipartite consensus set

As in the ordinary consensus problem discussed in Section 2.2, we follow the approach
of [67]. It relies on representing the network dynamics as two interconnected dynamical
systems. One corresponds to average dynamics, and the other to the dynamics of syn-
chronization errors relative to the trajectories of that average system. More precisely,
we define the state of the average system as

xm := v>l1x, (2.29)

where vl1 is the left eigenvector associated with the zero eigenvalue. For instance, for
the example in Figure 2.5b, vl1 = 1

3
[1 − 1 − 1]>. Then, we define the synchronization

errors as

e := x− vr1xm, (2.30)
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where vr1 is the right eigenvector associated with the zero eigenvalue. For instance, for
the example in Figure 2.5b, vr1 = [1 − 1 − 1]>. Then, the error dynamics can again
be expressed as

ė = −Lse, (2.31)

which is equivalent to ẋ = −Lsx, because

Lse = Lsx− Lsvr1v>l1x = Lsx

since Lsvr1 = 0N . Then, we reconsider the Lyapunov function candidate in (2.9). Its
derivative along the trajectories reads

V̇ (e) = −e>Lse, (2.32)

which is negative semi-definite. Next, we use Barbashin-Krasovskii’s theorem [5, 38].
The only solution of (2.32) that remains in the set {e ∈ R : V̇ = 0}, is

x = vr1xm ⇔ e = 0.

Thus, global asymptotic stability of {e = 0} follows.

Remark 5 Here, the right eigenvector vr1 is not a vector of all ones. It also contains
negative valued elements, so the agents converge to two symmetric equilibrium points
xm and −xm. •

The previous arguments apply to generic signed networks containing more than
N = 3 agents. Let us now consider the bipartite consensus-control problem for signed
networks containing N dynamical systems modeled by (2.11). Then, the distributed
consensus control law in (2.12) becomes, for signed networks,

ui = −
N∑
j=1

|aij|(xi − sgn(aij)xj), (2.33)

where we clearly see that the sign of the edge interconnecting two agents νi and νj
appears.

Remark 6 Notice that for the case of a graph with all cooperative interactions, the
control law in (2.33) is equivalent to the consensus control law in (2.12) since aij > 0
for all i, j ≤ N . •

The control law in (2.33) is a well-known bipartite consensus algorithm that solves the
bipartite consensus problem [2], [30], that is,

lim
t→∞

[xj(t)− sgn(aij)xi(t)] = 0 ∀ i, j ≤ N, (2.34)

if and only if the underlying (directed) graph contains a (directed) spanning tree and
is structurally balanced [2]—see Definition 1.
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Indeed akin to (2.23), the system (2.11) interconnected with the bipartite consensus
algorithm (2.33) may be expressed in the multi-agent form

ẋ = −Lsx, (2.35)

where

Ls =



N∑
k=2

|a1k| −a12 . . . −a1N

−a21

N∑
k=1, k 6=2

|a2k| . . . −a23

· · · · · ·
. . . · · ·

−aN1 −aN2 . . .
N−1∑
k=1

|aNk|


, (2.36)

is the resulting signed Laplacian matrix, which can also be defined as

Ls := |D| − A, (2.37)

where D is the degree matrix and A is the adjacency matrix corresponding to the
signed graph.

2.3.2 Structurally-balanced and directed signed networks

The properties of the signed Laplacian matrix depend on the structural balance prop-
erty of the signed graph. Now, for generic directed signed graphs, we have the following
characterization of the structural balance property [2, 30, 108].

Lemma 2 (Structural balance for directed signed graphs) For a digon sign-symmetric
structurally balanced directed signed graph G = (V , E) containing a spanning tree, the
following statements are equivalent:

(i) All directed cycles of the graph are positive.

(ii) There exists a matrix D ∈ D such that DLsD has all nonpositive off-diagonal
entries and is equivalent to the Laplacian matrix of an unsigned directed graph
through a gauge transformation, where D = {D = diag(σ), σ = [σ1, σ2, . . . , σN ],
σi ∈ {−1, 1}, i ≤ N}.

Lemma 3 ([30]). If a signed network G = (V , E) has a spanning tree and is structurally
balanced, then all eigenvalues of its signed Laplacian matrix have nonnegative real parts,
and 0 is a simple eigenvalue.

Corollary 1 ([2]). A (directed) spanning tree is always structurally balanced since no
(directed) cycles are present in the graph.

Following the steps of the analysis for unsigned digraphs, we address a system of
autonomous vehicles interconnected over a structurally balanced signed digraph con-
taining a directed spanning tree.
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2.3.2.1 Limit values for the network solutions

From (2.17) and using the gauge transformation, we obtain

lim
t→∞

x(t) = D1Nw
>
D1
Dx0,

where D1N is the right eigenvector vr1 and w>D1
D is the left eigenvector vl1 associated

with the zero eigenvalue of Ls. This comes from the fact that 1N and wD1 are the
right and left eigenvectors associated with the zero eigenvalue of the Laplacian matrix
of the unsigned graph, as in (2.17), before applying the gauge transformation. Hence,
the trajectories of the system converge to the disagreement set

{x ∈ R : σixi = σjxj, ∀i, j ≤ N},

where σi ∈ {1,−1}. Furthermore, if the signed digraph is balanced, we have

lim
t→∞

x(t) =
1

N
D1N1

>
NDx0.

Remark 7 For the analysis of signed networks, we used the gauge transformation to
show the similarities between the consensus and bipartite consensus problems. However,
the gauge transformation cannot be used in every situation. For instance, it is inef-
fective on structurally unbalanced signed networks (containing multiple leaders)—see
Chapter 3, as well as for bipartite consensus problems with inter-agent constraints—
see Chapters 4 and 5. •

Now, we analyze the Lyapunov stability of the disagreement set.

2.3.2.2 Lyapunov stability of the bipartite consensus set

The weighted average system and the synchronization errors are defined as in (2.29)
and (2.30), where vr1 , vl1 ∈ RN are the right and left eigenvectors associated with
the zero eigenvalue of the signed Laplacian matrix. Then, considering the Lyapunov
function candidate in (2.22), and using Proposition 1, it may be concluded that the
derivative of V is negative definite and the bipartite consensus manifold {e = 0} is
globally exponentially stable.

Next, we look at the case of structurally unbalanced networks.

2.3.3 Structurally-unbalanced and undirected signed networks

Agents in a structurally unbalanced and undirected graph cannot achieve bipartite
consensus because the graph cannot be partitioned into two disjoint subsets. Instead,
the agents’ states converge to the origin. We follow the same steps of analysis of
solutions and Lyapunov stability as before. In the case the undirected signed graph is
not structurally balanced, we have the following.

Lemma 4 (Structural unbalance for undirected signed graphs [2]). A connected undi-
rected signed graph G = (V , E) is structurally unbalanced if and only if one of the
following equivalent conditions holds:
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(i) One or more cycles of G are negative.

(ii) There does not exist a matrix D ∈ D such that DLsD has all nonpositive off-
diagonal entries.

(iii) λ1(Ls) > 0.

If a graph is structurally unbalanced, the resulting Laplacian matrix is positive
definite, and the eigenvalues are all positive. Consequently, we have that e−λi(G)t → 0
as t→∞ for all 1 ≤ i ≤ N . Then,

lim
t→∞

x(t) = 0.

Moreover, for the stability of the agreement set, consider the Lyapunov function
candidate

V (x) =
1

2
x>x.

Its derivative along the trajectories reads

V̇ (x) = −2x>Lsx ≤ −2λ1(Ls)|x|2 < 0,

which is strictly negative since Ls > 0. Then, the origin of the system is globally
exponentially stable, and agents achieve consensus at the origin {x = 0}.

2.3.4 Structurally-unbalanced and directed signed networks

For strongly connected signed digraphs that are structurally unbalanced, we have the
following.

Lemma 5 (Structural unbalance for directed signed graphs [2]). A strongly connected,
digon sign-symmetric signed digraph G = (V , E) is structurally unbalanced if and only
if one of the following equivalent conditions holds:

(i) G has at least one negative directed cycle.

(ii) There does not exist a matrix D ∈ D such that DLsD has all nonpositive off-
diagonal entries.

(iii) λ1(Ls) > 0, i.e., −Ls is Hurwitz.

After Lemma 5, it follows that the state trajectories of all agents interacting over a
strongly connected and structurally unbalanced digraph converge to zero, as for struc-
turally unbalanced and undirected signed graphs. Since the eigenvalues of the signed
Laplacian matrix associated with the digraph are all positive, we have limt→∞ x(t) =
0N . Moreover, considering the Lyapunov function candidate V (x) = 1

2
x>x, we have

that V̇ (x) = −x>(L>s +Ls)x ≤ −λ|x|2 < 0, which is strictly negative since L>s +Ls > 0
and λ > 0 is the smallest eigenvalue of L>s + Ls. Then, the origin of the system is
globally exponentially stable, and all the agents’ states converge to the origin, that is,
{x = 0}.
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On the other hand, several possible scenarios exist for the convergence of agents
interconnected over directed signed networks that are structurally unbalanced, whereas
Lemma 5 only applies to strongly connected digraphs. However, if the structurally
unbalanced digraph contains one root agent (also called as leader), the states of all
agents do not converge to zero, but at least two equilibrium points appear [30]. We
illustrate this by the following example.

ν1 ν2

ν3

ν4

Figure 2.6: Example of a structurally unbalanced signed digraph with a root node.

Example 1 In Figure 2.6, ν1 is the root agent as it is a node without any incoming
edges, meaning its state is not influenced by other agents. The agents ν2, ν3, and ν4 are
interconnected over a strongly connected digraph that is also structurally unbalanced.
As a result, all their states will converge to zero. However, as agent ν2 is also getting
information from the root node ν1, its state will converge to a value between the state of
the root node ν1 and 0. This is because the system has three distinct equilibrium points
but not two symmetric equilibria. Consequently, the agents do not achieve bipartite
consensus, but instead reach multi-consensus. This will be studied and explained in
more detail in Chapter 3. �

2.4 EDGE-BASED FORMULATION

In Sections 2.2 and 2.3, we studied the solutions of the trajectories of the system in node
coordinates, meaning the states were represented using the nodes of the graph. We
represented the networked system in terms of two interconnected dynamical systems:
weighted average and synchronization error dynamics. The synchronization errors e
were defined as the difference between the states of the agents x and the weighted
average xm, so the errors were dependent on the graph topology, as the left eigenvector
associated with the zero eigenvalue was used to define xm.

Another way to address the consensus or the bipartite consensus problems, which
we use in this memoir, relies on the so-called edge-based formulation. In this case, we
also look at the synchronization errors, and the network model is expressed in terms
of its interconnections; that is, the states represent relative differences between pairs
of nodes. This is a natural way, for instance, to address constrained control problems,
where constraints are defined between a pair of interconnected agents. Below, we
recall first some elements of the edge-based formulation, originally proposed in [54]
for unsigned networks; then we recall some material for signed networks [23]. The
edge-based formulation is used in Chapters 4 and 5.
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2.4.1 The edge-based formulation for unsigned networks

The construction of edge-based models of graphs G(V , E) starts with the definition
of the incidence matrix E ∈ RN×M , where N is the cardinality of V and M is the
cardinality of E . According to [54], for an unsigned and arbitrarily oriented graph G
containing N nodes and M edges, the incidence matrix is defined as

[E]ik :=

+1, if vi is the initial node of the edge εk;
−1, if vi is the terminal node of the edge εk;
0, otherwise.

(2.38)

ν1

ν2 ν3

ε1 ε2

ε3

(a)

ν1

ν2 ν3

ε1 ε2

ε3

(b)

Figure 2.7: Example of two undirected graphs with three agents: (a) an undirected unsigned
graph, where all interconnections are cooperative; (b) an undirected and structurally balanced
signed graph, where some interconnections are competitive.

Example 2 Consider the unsigned graph containing three nodes on the left of Figure
2.7. We define the orientations of the edges as follows,

ε1 := x1 − x2, ε2 := x1 − x3, ε3 := x2 − x3.

Then, from the definition in (2.38), the incidence matrix reads

E =

 1 1 0
−1 0 1
0 −1 −1

 .
�

Moreover, using the definition of incidence matrix we can define the edge Laplacian
matrix Le ∈ RM×M as

Le := E>E. (2.39)

It is also useful to remark that the node Laplacian matrix L ∈ RN×N defined in (2.3),
may also be rewritten in terms of the incidence matrix, as

L := EE>. (2.40)

With these definitions, for an undirected connected signed graph, we have the following
linear algebraic properties [107]:

(i) the non-zero eigenvalues of L and Le coincide.

53



(ii) rank(L) = rank(Le) = N − 1.

Now, for digraphs, we recall the definitions of two incidence matrices: the first defines
the incoming edges to a node, and the second defines the outgoing edges from a node.
The so-called in-incidence matrix of an unsigned graph is defined as

[E�]ik :=

ß
−1, if vi is the terminal node of the edge εk;
0, otherwise, (2.41)

whereas the out-incidence matrix is defined as

[E⊗]ik :=

ß
+1, if vi is the initial node of the edge εk;
0, otherwise. (2.42)

Then, the node and edge Laplacian matrices of a digraph can be defined as

L = E�E
>, Le = E>E�, (2.43)

where E is defined in (2.38).
In both node-based and edge-based representations, spanning trees and cycles play

a crucial role in the network. They determine whether the graph is connected, and
the null space of the edge Laplacian characterizes the graph’s cycles [107]. Then, to
simplify the representation of the network, by following the labeling algorithm proposed
in [56], we may partition the incidence matrix as

E = [Et Ec ],

where Et ∈ RN×N−1 corresponds to the incidence matrix of a spanning tree contained
in the graph and Ec ∈ RN×M−N+1 corresponds to the rest of the edges (cycles). Then,
we have the following.

Theorem 1 ([54]) Consider an undirected graph G with cycles, and a tree subgraph
Gt, with corresponding edge Laplacians Le(G) = [Et Ec]

>[Et Ec] and Le(Gt) = Et>Et,
respectively. Then, there exists a matrix R = [IN1 T ], where T = (E>t Et)

−1E>t Ec
such that

Le(G) = R>Le(Gt)R.

The reduced-order edge-based formulation is useful because it allows us to express the
system in terms of the spanning tree and analyze only a part of the graph. This will
be used later in Chapter 4.

2.4.2 The edge-based formulation for signed networks

We recall the edge-based formulation for signed networks. Using the edge-based for-
mulation, we analyze directly the edge states, corresponding to the relative states of
agents. This representation can be very useful and more direct than the node-based
formulation in tackling some linear interconnections between agents and taking into
account some inter-agent constraints. Moreover, using the reduced-order edge-based
formulation has the advantage that it is only needed to analyze the behavior of the
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agents corresponding to the spanning tree graph. This is because all the agents’ be-
havior can be expressed in terms of those corresponding to the spanning tree agents.
This will be used later in Chapters 4 and 5.

In the following definitions [23], we introduce the elements of the incidence matrices
of a structurally balanced signed graph.

Definition 2 Consider a structurally balanced undirected signed network G, organized
into two disjoint sets of vertices V1 and V2, that contains M signed edges and N nodes.
Let l, p, q ∈ {1, 2}. Then, the incidence matrix Es ∈ RN×M of G is defined as

[Es]ik :=



+1 if vi is the initial node of the edge εk;
−1 if vi, vj are cooperative such that vi, vj ∈ Vl,

and vi is the terminal node of the edge εk;
+1 if vi, vj are competitive such that vi ∈ Vp, vj ∈ Vq,

and vi is the terminal node of the edge εk;
0 otherwise,

where εk = {vi, vj}, k ≤M, i, j ≤ N are arbitrarily oriented edges.

To see that the signed incidence matrix is equivalent to the incidence matrix of an
unsigned graph, we use the gauge transformation described in Section 2.3.1. For the
incidence matrix of a structurally balanced signed graph, we may apply the edge gauge
transformation on Es, performed by the matrix D = diag(σ) and De = diag(σe), where
σe = [σe1 , . . . , σen ], i ∈ IM with σei = 1 if vi ∈ V1 and σei = −1 if vi ∈ V2 with vi
being the initial node of the edge, to obtain the incidence matrix E = DEsDe of the
unsigned graph [23, Lemma 4].

Then, the Laplacian matrix Ls and the edge Laplacian matrix Les ∈ RM×M of a
structurally-balanced undirected graph G satisfy

Ls = EsE
>
s , Les = E>s Es. (2.44)

The following defines the in-incidence and out-incidence matrices of a signed net-
work.

Definition 3 Consider a structurally balanced directed signed network G, organized
into two disjoint sets of vertices V1 and V2, that contains M signed edges and N nodes.
Let l, p, q ∈ {1, 2}. Then, the in-incidence matrix Es ∈ RN×M of G is defined as

[Es�]ik :=

−1 if vi, vj ∈ Vl and vi is the terminal node of the edge εk;
+1 if vi ∈ Vp, vj ∈ Vq and vi is the terminal node of the edge εk;
0 otherwise.

(2.45)

Definition 4 The out-incidence matrix Es⊗ ∈ RN×M of a structurally balanced di-
rected signed graph is given as

[Es⊗]ik :=

ß
+1 if vi is the initial node of the edge εk;
0 otherwise. (2.46)
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Then, for directed networks, the incidence matrix may be expressed as the sum of two
incidence matrices: Es = Es� + Es⊗.

The Laplacian matrix of the unsigned directed network was defined as L = E�E
>

in (2.43). Using the edge gauge transformation, we obtain the following.

L = DEs�De(DEsDe)
> = DEs�DeD

>
e E
>
s D

> = DEs�E
>
s D (2.47)

as DeD
>
e = IM×M . The edge Laplacian matrix of the unsigned directed network was

defined as Le = E>E� in (2.43). Applying edge gauge transformation, we obtain

Le = E>E� = (DEsDe)
>DEs�De = DeE

>
s D

>DEs�De = DeE
>
s Es�De (2.48)

as D>D = IN×N .
The Laplacian matrix Ls and the edge Laplacian matrix Les of a signed digraph

are defined as

Ls = Es�E
>
s (2.49)

Les = E>s Es�. (2.50)

With these definitions, for a directed signed graph containing a spanning tree, we have
the following linear algebraic properties:

(i) the non-zero eigenvalues of Ls and Les coincide.

(ii) rank(Ls) = rank(Les) = N − 1.

2.4.3 Edge convergence problems

Let us now address the bipartite consensus problem for a signed network in edge co-
ordinates. Consider N scalar dynamical systems modeled by (2.11) and (2.33) and
interconnected over a directed spanning tree. The states of the edges are given by

ex = E>s x. (2.51)

Then, by differentiating the edge states, we obtain

ėx = E>s (−Lsx), (2.52)

and from the definition of the Laplacian matrices in (2.50), we obtain

ėx = −Lesex. (2.53)

Since the considered graph is a spanning tree, it consists of N − 1 edges, so Les ∈
R(N−1)×(N−1) and the rank of the edge-Laplacian matrix Les is N − 1. Moreover, it
only has eigenvalues with positive real parts, so −Les is Hurwitz. Then, given any
symmetric positive definite matrix Q ∈ RN−1×N−1, there exists a symmetric positive
definite matrix P ∈ RN−1×N−1 such that

PLes + L>esP = Q. (2.54)
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Consider the following Lyapunov function candidate.

V (ex) =
1

2
e>x Pex,

where P = P> > 0. Its derivative along the trajectories yields

V̇ (ex) = −e>xQex < 0,

which is strictly negative. Thus, since V (ex) is a strict Lyapunov function for (2.53),
the origin {ex = 0} is exponentially stable.

Remark 8 In the case of structurally balanced signed graphs containing more than
N − 1 edges, the edge-Laplacian matrix contains M − N + 1 zero eigenvalues. −Les
is not Hurwitz, and the Lyapunov equation (2.54) cannot be used to show the stability
of the origin. The same technical problem appears when a network contains multiple
leaders; the Laplacian matrix Ls associated with the graph also has more than one zero
eigenvalue, so Proposition 1 cannot be used to construct a strict Lyapunov function.
The stability analysis for Laplacian matrices containing more than one zero eigenvalue
will be addressed in Chapter 3. •

2.5 CONCLUSIONS

In this chapter, we presented elements of graph theory and an introduction to the
fundamental coordination algorithms for networks with both cooperative and compet-
itive interactions. The agreement and disagreement of agents depend on the network
topology and on the signs of the interactions between them. In addition, for a class of
signed networks that are structurally balanced, the graph can be transformed into an
unsigned graph, enabling the tools adopted for traditional cooperative networks to be
used. In particular, we saw that as signed networks represent a larger class of networks,
the obtained results remain valid for networks with only cooperative interactions.

In the next chapters, we present our main contributions, which build upon these
previous results.In particular, we present stronger stability results using strict Lya-
punov functions and establishing robustness in terms of input-to-state stability for sets
pertinent in the context of signed networked multi-agent systems. Furthermore, we
also work on more general signed networks containing multiple roots or interconnected
over a graph with nonlinear interconnections.
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CHAPTER 3

BIPARTITE CONTAINMENT TRACKING OVER
MULTI-LEADER SIGNED NETWORKS

In this chapter, we address the bipartite containment tracking-control problem over
structurally balanced and unbalanced signed networks. We consider cooperative or
competitive leaders for first-order and second-order systems. A leader is defined either
as a single root agent or a strongly connected subgraph containing multiple nodes but
without any incoming edges, as in [49]. In this setting, competitive leaders model
enemy agents or obstacles to avoid, whereas cooperative leaders define the safe final
destination. In contrast to [49], however, our results apply both to first- and second-
order systems. Second-order systems better describe mechanical systems and a variety
of feedback linearizable autonomous vehicles [94]. In contrast to [110, 53, 98], our
main statements hold for the general case of signed networks that are either structurally
balanced or unbalanced, and beyond bipartite containment tracking, we provide explicit
estimates of the limit points of the followers.

Furthermore, we provide sufficient conditions for exponential stability of the con-
tainment set. In contrast to all references mentioned previously, our proofs are con-
structive; we provide strict Lyapunov functions regardless of whether the network is
structurally balanced or unbalanced. Exponential stability is important because it is
a stronger result than convergence to the limit points (or to the interior of a convex
hull). In particular, it is equivalent to the existence of strict Lyapunov functions which
in turn are significant because they are a basis for establishing input-to-state stability.
Thus, our main results additionally guarantee the robustness of the containment set
with respect to additive perturbations.

From a technical viewpoint, the contributions of this chapter are based on the
framework introduced in [67]. But, we extend the method of the latter to general
signed graphs containing multiple leaders and consider the multi-leader signed network
in terms of two interconnected dynamical systems evolving in orthogonal spaces: dy-
namics of the leaders and synchronization errors relative to the leader groups. Thus,
the bipartite containment problem is recast into one of stability of a set of appropriately
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defined errors. Then, we generalize a statement in [68] on the Lyapunov characteriza-
tion of exponential stability of sets to linear systems with one pole at zero and others
having negative real parts. The technical results we provide here apply to systems with
several poles at the origin. Then, in addition to exponential stability of the contain-
ment set, we provide the explicit limit values of the followers by a matrix determined
by all eigenvectors associated with the zero eigenvalues in a similar way as explained
in Sections 2.2 and 2.3. We demonstrate a possible form of these eigenvectors both
for structurally balanced and unbalanced networks, and the elements of the eigenvec-
tors are defined in more detail in Lemmata 7 and 8. In particular, as we consider
signed networks, which are a more general representation than the traditional cooper-
ative networks, our bipartite containment tracking results are valid in the context of
containment tracking.

3.1 MOTIVATION AND PROBLEM FORMULATION

As we mentioned earlier, the bipartite containment tracking problem may appear in
the context of herding control [80, 15, 26], in social network theory when deceiving
influencers inject disinformation [2] or in aerospace applications involving the attitude
control of multiple rigid bodies [48], to mention a few.

Marketer 1 Marketer 2

Marketer 3

Consumers Consumers

Leader 1 Leader 2

Leader 3

Followers Followers

Figure 3.1: Presence of multiple cooperative and competitive leaders in two different scenarios:
social networks and robotic applications.

To provide more concrete application scenarios, consider the following examples.
In herding control, the objective is to herd a flock of birds (followers) away from
the air space around an airport, where the air space can be seen as an obstacle to
avoid and can be represented by a competitive agent, and toward a safe zone using
unmanned aerial vehicles acting as cooperative leaders. In aerospace applications, the
objective is to control multiple satellites, represented as cooperative agents, following
one or more leaders. These leaders must navigate while avoiding debris or groups of
enemy agents, which are modeled as non-cooperative agents. In the context of opinion
dynamics within social networks, the behavior of consumers (followers) is influenced by
both their neighbors and external influential entities, e.g., marketers (represented by
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the leaders). These marketers, often in competition, may be modeled as cooperative or
competitive leaders belonging to two distinct disjoint subsets. The consumers’ behavior
is shaped by their level of trust, preference, and susceptibility to the influence of these
marketers. If a consumer distrusts or dislikes one marketer, they may act oppositely,
moving closer to the opposing marketer’s position. Conversely, if a consumer trusts and
favors both marketers, they are likely to position themselves between the two, leaning
closer to the one who exerts a stronger influence.

For the sake of clarity and simplicity, let us first consider a group of N dynamical
systems, containing the leaders and the followers, modeled by simple integrators, i.e.,

ẋi = ui, i ∈ IN (3.1)

where xi ∈ R is the state1 and ui ∈ R is the input, and IN := {1, 2, . . . , N}. Agents
interconnected over a directed signed graph containing a leader or a directed spanning
tree achieve bipartite consensus, under the distributed control law

ui = −
N∑
j=1

|aij|(xi − sgn(aij)xj), (3.2)

if and only if the underlying graph is structurally balanced [2]. As we also explained
in Chapter 2, the Laplacian matrix of a structurally balanced graph has a single zero
eigenvalue [2], and the right eigenvector associated with the unique zero eigenvalue has
all entries equal to either +1 or −1. Thereby, agents converge to the same state in
modulus but with different signs.

In some cases, moreover, there may be several competitive agents, described as com-
petitive leaders, that inject disinformation into the network. In this case, the agents
can no longer achieve bipartite consensus, but instead they can achieve bipartite con-
tainment [49], where followers converge to the bipartite containment set defined by
all cooperative leaders’ trajectories and competitive leaders’ symmetric trajectories.
More precisely, for a multi-leader directed signed network, the achievable objective is
bipartite containment tracking, that is,

lim
t→∞

[|xj(t)| −max
i∈L
|xi(t)|] ≤ 0, ∀j ∈ F , (3.3)

where L and F are sets containing leader and follower nodes, respectively—see As-
sumption 2 below. For a more restrictive case of structurally balanced multi-leader
signed networks, the bipartite containment set in (3.3) is refined to

lim
t→∞

[xj(t)−max
i∈L
{σixi(t)}][xj(t)−min

i∈L
{σixi(t)}] ≤ 0, (3.4)

where j ∈ F , σi = 1 if (i, j) ∈ Vp, p ∈ {1, 2} or σi = −1 if i ∈ Vp, j ∈ Vq with
p, q ∈ {1, 2}, p 6= q. In contrast to the convex hull resulting from (3.3), that is

xj(t) ∈
ï
−max

i∈L
|xi(t)|, max

i∈L
|xi(t)|

ò
, ∀j ∈ F , as t→∞

1The following exposition applies to systems such that xi ∈ Rn with appropriate modifications in
the notation.
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from (3.4), follower nodes in a structurally balanced signed network converge to a
disconnected set composed of two disjoint convex subsets, that is

xj(t) ∈
ï
min
i∈L
{σixi(t)}, max

i∈L
{σixi(t)}

ò
, ∀j ∈ F , as t→∞

—see Section 3.5
In what follows, we analyze the behavior of the networked systems modeled by

simple integrators as in (3.1) in closed-loop with the distributed control law (3.2), and
double integrators interconnected with the control law that will be presented later in
Subsection 3.4. Moreover, we also assume that multiple cooperative and competitive
leaders interfere in the network. Beyond the inequality in (3.3), commonly found in the
literature—cf. [49], we give the explicit limit values of the followers’ states depending
only on the initial conditions of the leaders. To that end, we pose the following.

Assumption 2 [Networks with multiple leaders]

1. The network contains NL leaders, which can be organized into K groups of pi
leader(s), with i ∈ {1, 2, . . . , K}, interconnected over a strongly connected sub-
graph, where 1 ≤ K ≤ NL < N , and

∑K
i=1 pi = NL —cf. [49, Definition 1].

2. Given each follower νj, i.e., with j ∈ F with F := {NL + 1, NL + 2, . . . , N},
there exists at least one leader νi i.e., with i ∈ L := {1, 2, . . . , NL}, such that
there exists at least one path from νi to νj —cf. [49, Condition 1].

In the case of a network containing only one leader, Assumption 2 boils down to the
necessary condition for consensus that requires the existence of a directed spanning tree.
As the networks considered here contain, a priori, more than one leader, the resulting
Laplacian matrix has as many zero eigenvalues as the number of groups of leaders [11],
and right and left eigenvectors associated with each zero eigenvalues. This results in
multiple convergence points for the agents’ trajectories.

In Chapter 2, we showed that under the distributed control law (2.12), the con-
sensus problem (2.13) is solved if and only if the underlying graph contains a directed
spanning tree. Moreover, we defined the consensus equilibrium with the left eigenvector
associated with the zero eigenvalue as xm = v>l x(0). We showed that since the network
contains a directed spanning tree, the Laplacian matrix has a unique zero eigenvalue,
and an associated right eigenvector of all ones, and all agents converge to the same
equilibrium point. Furthermore, as we saw in Chapter 2, a strict Lyapunov function
can be constructed to establish exponential stability of the origin in the space of the
synchronization errors

e := x− vrxm,

where vr is the right eigenvector associated with the zero eigenvalue [68]. Here, because
of the presence of multiple leaders, the asymptotic values of the states of the agents
are determined by all eigenvectors associated with the zero eigenvalues. One of this
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chapter’s contributions is to show that under the control law (3.2) and the Assumption
2, the limit values of the agents are given by

xm := Vx, (3.5)

where V is a matrix determined by all the eigenvectors associated with the NL zero
eigenvalues of the Laplacian matrix and x = [x1 x2 . . . xN ]>. More precisely,

V :=
K∑
i=1


vri,1
vri,2
...

vri,N

 [vli,1 vli,2 . . . vli,N
]
, (3.6)

where vri and vli denote respectively the right and left eigenvectors of the Laplacian
matrix Ls corresponding to the ith 0 eigenvalue and, for each j ≤ N , vri,j and vli,j
denote the jth element of the ith right and left eigenvectors, respectively. In particular,
as we demonstrate further below, a possible form of the right and left eigenvectors
associated with the zero eigenvalues is

vr1 =


1p1
0p2
...

0pK
ξ1

 , vr2 =


0p1
1p2
...

0pK
ξ2

 , . . . , vrK =


0p1
0p2
...

1pK
ξK

 , (3.7a)

vl1 =


ρp1
0p2
...

0pK
0N−NL

 , vl2 =


0p1
ρp2
...

0pk
0N−NL

 , . . . , vlK =


0p1
0p2
...
ρpK

0N−NL

 , (3.7b)

where ξi ∈ RN−NL , 1pi ∈ Rpi is a vector of ones, 0pi ∈ Rpi and 0N−NL ∈ RN−NL are
vectors of zeros, and ρpi ∈ Rpi .

The structure of the right eigenvectors in (3.7a) provides information on the number
of leaders in each leader group as well as the interactions between leaders and followers.
For instance, if p1 = 1, then 1p1 = 1, and all other elements of vr1 up to ξ1 are equal
to zero. This indicates that the first leader group contains only one leader. Similarly,
if p2 = 3, then 1p2 = [1 1 1]>, and all other elements of vr2 up to ξ2 are equal to 0. In
this case, the second leader group consists of three leaders, and so on. The elements
of ξi, where i ≤ K, can be positive, negative, or equal to zero depending on the
follower’s interactions with the leader groups. This will be defined more in detail
in Lemmata 7 and 8 further below. The structure of the left eigenvectors in (3.7b)
provides information about the interactions between the leaders, while the elements
corresponding to the followers are zero. If pi = 1, where i ≤ K, then ρpi = 1, meaning
the corresponding left eigenvector vli has a single non-zero element equal to 1. For
pi > 1, vli has pi elements within (−1, 1), satisfying

∑pi
l=1|ρl| = 1 [83]. The definition of
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the eigenvectors given in (3.7) covers that of [11, Corollary 4.2] and [55, Proposition 3],
which are restricted to unsigned networks. With this under consideration, we establish
bipartite containment of the system (3.1) and, more significantly, that x → xm—as
defined in (3.5)—exponentially.

3.2 ANALYSIS APPROACH

The main results presented in this Chapter are based on original statements for signed
networks with an associated Laplacian having multiple zero eigenvalues. First, follow-
ing the framework laid in [67] and extending it to multi-leader signed networks, we show
how to construct the matrix V in (3.5)-(3.6), to define the average states of the agents
and the synchronization errors. Then, we extend the method of [68] to construct strict
Lyapunov functions for linear systems with one zero eigenvalue to the case of multiple
null eigenvalues. To that end, we first recall certain notations and definitions.

Definition 5 ([83]). For any vertex i, we define the reachable set Ri as the set con-
taining vertex i and all vertices j such that there exists a directed path from vertex i
to vertex j. A reachable set is a maximal reachable set if R = Ri for some i and there
is no j such that Ri ⊂ Rj. The reachable set of vertices R is called a reach if it is a
maximal reachable set, that consists of a leader group and its followers. For each reach
Ri of a graph, we define the exclusive part of Ri as the set Hi = Ri\

⋃
j 6=iRj, i.e., the

set of followers influenced only by the leader group i, and the common part of Ri as
the set Ci = Ri\Hi, i.e., the set of followers influenced by leaders other than the ith
leader group.

The following statements, which lead to the construction of the matrix V in (3.6),
are original contributions of this chapter, and they were presented in [83]. They extend
Corollary 4.2 of [11] and Proposition 3 of [55] to the case of general signed networks.

Lemma 6 ([83]). Let G denote a directed signed graph and let Ls denote the associated
Laplacian matrix. Suppose G has N vertices and K reaches. Then, the algebraic and
geometric multiplicity of the eigenvalue 0 is equal to K.

Proof: Let L := D − |A| denote the Laplacian matrix of the unsigned graph G+,
where G+ is obtained from G by applying a gauge transformation, D is the in-degree
matrix and A is the adjacency matrix of G. G+ and G have identical reaches. Then,
the fact that the algebraic and geometric multiplicity of 0 equals K follows from [11,
Theorem 3.2]. �

Lemma 7 ([83]). Let G denote a structurally unbalanced directed signed graph. Then,
the eigenspace generated by the eigenvectors associated with the null eigenvalues has a
basis defined by the vectors γi ∈ RN , with i ≤ K, whose elements satisfy the following:

(i) γi,j = 0 for j /∈ Ri,

(ii) |γi,j| = 1 for j ∈ Hi,
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(iii) |γi,j| ≤ 1 for j ∈ Ci,

(iv)
∑

i|γi,j| ≤ 1, ∀j ∈ IN ,

where j ∈ IN , and γi,j denotes the jth element of γi.

Proof: For structurally unbalanced graphs satisfying Assumption 2, Items (i) and
(ii), follow from Definition 5. Item (iii) follows from [51], while Item (iv) results from
computing the null space of L, which is generated by γi ∈ RN such that Lsγi = 0 for
each i ≤ K. This gives Ls

∑K
i=1 γi = 0. Then, under Assumption 2, the Laplacian

matrix satisfies
Ls =

ï
Ll 0
−Alf Lf + ∆|Alf |

ò
,

where Ll ∈ RNL×NL represents the interactions between the leaders, i.e., the leader-
leader part of the Laplacian matrix, Alf ∈ R(N−NL)×NL represents the part of the
adjacency matrix corresponding to the interactions between the leaders and the follow-
ers, while Lf + ∆|Alf | ∈ R(N−NL)×(N−NL) denotes the sum of two matrices: Lf , which
corresponds to the interactions between the followers, i.e., the follower-follower part of
the Laplacian matrix, and ∆|Alf |, which is the in-degree matrix corresponding to the
interactions between the leaders and the followers. Then, we have

−Alf
K∑
i=1

γiNL + (Lf + ∆|Alf |)
K∑
i=1

γiN−NL = 0,

where γi = [γiNL γiN−NL ]>, γiNL ∈ RNL is the vector containing the first NL elements of
γi and γiN−NL ∈ RN−NL is the vector containing the last N −NL elements of γi. This
yields

(Lf + ∆|Alf |)
K∑
i=1

γiN−NL = Alf

K∑
i=1

γiNL ,

where
∑K

i=1 γiNL = 1NL from (3.7). Therefore, the sum of the remaining rows of γis
gives the following,

K∑
i=1

γiN−NL = (Lf + ∆|Alf |)
−1Alf1NL

and it follows that
∑K

i=1|γiN−NL | ≤ 1N−NL from Lemma 6 of [49]. Thus, we conclude
that γi,j = 0 for j /∈ Ri, |γi,j| = 1 for j ∈ Hi, |γi,j| ≤ 1 for j ∈ Ci, and

∑
j|γi| ≤ 1N . �

In the more restrictive case that G is structurally balanced, we have the following.

Lemma 8 ([83]). Let G denote a structurally balanced directed signed graph. Then,
the eigenspace generated by the eigenvectors associated with the null eigenvalues has a
basis defined by the vectors γi ∈ RN , with i ≤ K, whose elements satisfy the following:

(i) γi,j = 0 for j /∈ Ri

(ii) γi,j =

®
1, if (νj, νi) ∈ Vl
−1, if νj ∈ Vp, νi ∈ Vq,

for j ∈ Hi
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(iii) γi,j ∈
®

(0, 1), if (νj, νi) ∈ Vl
(−1, 0), if νj ∈ Vp, νi ∈ Vq

for j ∈ Ci

(iv)
∑

i|γi,j| = 1, ∀j ∈ IN ,

where l ∈ {1, 2}, p, q ∈ {1, 2}, p 6= q, V1 and V2 are the two disjoint sets of vertices,
i ∈ IK, j ∈ IN , and γi,j denotes the jth element of γi.

Proof: Since the graph is structurally balanced, we apply the gauge transformation,
which consists in a change of coordinates performed by the matrix D = diag(σ),
where σ = [σ1, . . . , σN ], σj ∈ {1,−1}, j ∈ IN [2]—see Chapter 2. Let L = DLsD
denote the unsigned Laplacian matrix of the transformed network. Then, we may
express the Laplacian L in Jordan canonical form, as Ls = DLD = DPDΛP−1

D D,
where PD = [vD1 , . . . , vDK , PD1 ] ∈ CN×N , P−1

D =
î
w>D1

, . . . , w>DK , P
†
D1

ó>
∈ CN×N , and

Λ ∈ CN×N , with vDi and wDi , i ≤ NL are the right and left eigenvectors associated
to K zero eigenvalues of L. From the Jordan decomposition, we can see that the
basis of the null space of Ls is given by LsDγDi = LsDvDi = 0, i ≤ K and has
a basis defined by the columns of γ = DγD, where γD = [γD1 · · · γDK ] and the
columns {γDi} constitute the basis of the associated eigenspace of L. Then, using
[11, Corollary 4.2], we obtain the following for a structurally balanced signed network:
γi,j = σjγDi,j = 0 for j /∈ Ri, γi,j = σjγDi,j = σj for i ∈ Hi, γi,j = σjγDi,j ∈ σj(0, 1) for
j ∈ Ci and

∑
j γi =

∑
j DγDi = D1N , which gives

∑
j|γi| = 1N . Items (i) to (iv) follow.

�

In general, for signed networks, after Lemma 7 and setting vri,j = γi,j, we obtain the
form given in (3.7a) for the K right eigenvectors associated to the K zero eigenvalues,
such that for each j ≤ NL, vri,j is either equal to 1 or to 0, because the jth leader can
only be in the exclusive part of its corresponding reach. The remaining rows ξi,j of vri
belong, either to {−1, 1} or to (−1, 1), depending on the network’s topology and signs
of the interconnections. Moreover, under Assumption 2 and the given form in (3.7a)
for right eigenvectors, as the Laplacian matrix has all entries equal to 0 for its first NL

rows, we obtain (3.7b) for K left eigenvectors associated to zero eigenvalues. Notice
that, because of the form of the left eigenvectors, each column of the matrix V has the
same properties as the basis defined in Lemma 7. Therefore, we may split V in four
blocks, as follows:

V =
K∑
i=1

vriv
>
li

=

 Vl 0NL×(N−NL)

Vf 0(N−NL)×(N−NL)

 , (3.8)

where Vl ∈ RNL×NL is a matrix that represents the interactions among the leaders and
Vf ∈ R(N−NL)×NL represents those between leaders and followers.

If the leaders in the considered directed network are only single nodes, we have that
NL = K, and we have the following form for the NL left eigenvectors associated with
the zero eigenvalues:

vli,j =

ß
1 i = j
0 i 6= j

∀i ≤ NL, ∀j ≤ N. (3.9)
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More precisely,

Vl =

 vr1,1vl1,1
. . .

vrNL,NLvlNL,NL

 = INL×NL , (3.10a)

Vf =

vr1,NL+1
. . . vrNL,NL+1

...
...

...
vr1,N . . . vrNL,N

 , (3.10b)

so V has the following particular form

V =

 INL×NL 0NL×(N−NL)

Vf 0(N−NL)×(N−NL)

 . (3.11)

It is also important to remark that the elements of Vf have the properties stated
in Lemma 7. This is significant because, owing to the fact that x → xm where xm is
defined by (3.27), it is clear that Vf is the matrix that defines the limit point for the
followers. Such limit points are determined purely by the leaders’ initial conditions, as
reflected by the columns of zeros in V—see (3.8).

Now, similarly to the case of networks with one leader, where the error is defined
as e := x− vrxm, with xm := v>l x, for multi-leader coopetition networks, we define the
consensus errors as

e := [I − V]x. (3.12)

Then, to establish that xi → xm for all i ≤ N and, consequently, that the bipartite
containment objective defined by (3.3) is achieved, we prove the stronger property of
global exponential stability of the set {e = 0}. For that, we show how to construct
strict—in the space of e— Lyapunov functions, based on the following proposition.
Proposition 2 is another original contribution of this chapter and was originally pre-
sented in [83] and [18]. It extends Proposition 1 of [68] to the case of signed networks
with multiple leaders.

Proposition 2 ([83]). Let G be a directed signed network with multiple leaders. Then
the following are equivalent:

(i) The graph has NL leaders organized in K groups and, given each follower νj, with
j ∈ F , there exists at least one leader νi, with i ∈ L, such that there exists at
least one path from νi to νj.

(ii) For any Q ∈ RN×N , Q = Q> > 0 and for any {α1, α2, . . . , αK} with αi > 0, there
exists a matrix P (αi) ∈ RN×N , P = P> > 0 such that

PLs + L>s P = Q−
K∑
i=1

αi(Pvriv
>
li + vliv

>
riP ), (3.13)

where vri, vli ∈ R are the right and left eigenvectors of Ls associated with the ith
eigenvalue equal to 0.
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Proof of Proposition 2: (i)⇒ (ii): By assumption, the graph G has K leader groups
and is connected. Then, from Lemma 6, it follows that Ls has K zero eigenvalues, and
the rest of its eigenvalues have positive real parts:

0 = λ1 = · · · = λK < Re(λK+1) ≤ · · · ≤ Re(λN).

Following the lines of proof as for Lemma 2 in [68], we can write the Jordan decompo-
sition of L as

Ls = UΛU−1 =
K∑
i=1

λi(Ls)vriv
>
li + U1Λ1U

†
1

with Λ1 ∈ CN−K×N−K , U = [vr1 , . . . , vrK , U1] ∈ CN×N and U−1 =
î
v>l1 , . . . , v

>
lK
, U †1
ó>
∈

CN×N . For any {α1, α2, . . . , αK} with αi > 0 define R = Ls +
∑K

i=1 αivriv
>
li . From this

decomposition and the properties of Λ1, Re{λj(R)} > 0 for all j ≤ N . −R is Hurwitz,
therefore for any Q = Q> > 0 and αi > 0, i ≤ NL, there exists P = P> > 0 such that

−PR−R>P = −Q,

−P (Ls +
K∑
i=1

αivriv
>
li )− (Ls +

K∑
i=1

αivriv
>
li )
>P = −Q,

−PLs − P
m∑
i=1

αivriv
>
li − L>s P −

m∑
i=1

αivliv
>
riP = −Q

PLs + L>s P = Q−
K∑
i=1

αi(Pvriv
>
li + vliv

>
riP ).

(ii)⇒ (i): Let statement (ii) hold and assume that the Laplacian matrix has K+1 zero
eigenvalues and the rest of its eigenvalues have positive real parts. In view of Lemma
6, the assumption that the system has K groups of leaders does not hold. Now, the
Jordan decomposition of Ls has the form

Ls = UΛU−1 =
K+1∑
i=1

λi(Ls)vriv
>
li + U1Λ1U

†
1

with U =
[
vr1 , . . . , vrK+1

, U1

]
and U−1 =

î
v>l1 , . . . , v

>
lK+1

, U †1
ó>

. Next let us consider
R(αi) = Ls +

∑K
i=1 αivriv

>
li which admits the Jordan decomposition R := UΛRU

−1,
where

ΛR :=


α1

. . .
αK

0
Λ1

 .
Clearly, R is not positive definite because one of its eigenvalues is equal to zero. Then,
there exists a matrix Q = Q> for which there does not exist a matrix P = P> such
that −PR−R>P = −Q, which contradicts statement (ii). �

Remark 9 Proposition 2 provides a Lyapunov characterization of the second part of
the Assumption 2. •
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3.3 FIRST-ORDER SYSTEMS

Exploiting the tools of the previous section, we now study exponential bipartite containment-
tracking for first-order systems. In particular, we establish robustness in the sense of
input-to-state stability with respect to external bounded perturbations.

3.3.1 Exponential stability

Consider the system (3.1), interconnected with the bipartite containment control law
(3.2). Then, consider the errors defined in (3.12). Differentiating those, we get

ė = [I − V]ẋ (3.14)

and using (3.1), (3.2) and the fact that LsV = 0, we obtain

ė = −[I − V]Lsx

= −[I − V]Ls[I − V]x

and since VLs = 0, the closed-loop error dynamics read

ė = −Lse. (3.15)

This is a familiar equation, but in the present context, stability of the origin for (3.15)
implies bipartite containment and not consensus. Accordingly, the bipartite contain-
ment problem is now recast as a problem of stability analysis of the dynamical system
(3.15). Thus, relying on Proposition 2, the next statement provides sufficient condi-
tions to achieve global exponential stability of the set {e = 0}, which is equivalent to
the bipartite containment tracking objective (3.3).

Proposition 3 ([18]). Consider the system (3.1) with the bipartite containment con-
trol law (3.2). Under the Assumption 2, for any Q = Q> > 0 there exists P = P> > 0
such that

V (e) = e>Pe, V̇ (e) = −e>Qe. (3.16)

Hence, the containment set {e = 0} is exponentially stable for all initial states x(0) ∈
Rn.

Proof: Let Q = Q> > 0, let α > 0 be arbitrarily fixed, and let Proposition 2
generate P = P> > 0, such that (3.13) holds. Then, consider the Lyapunov function
candidate V (e) := e>Pe. The total time derivative of V along the trajectories yields

V̇ (e) = −e>Qe+ e>
K∑
i=1

αi(Pvriv
>
li + vliv

>
riP )e.

On the other hand, replacing (3.12) we obtain
K∑
i=1

αiPvriv
>
li e =

K∑
i=1

αiPvriv
>
li [I −

K∑
i=1

vriv
>
li ]x

=
K∑
i=1

αi(Pvriv
>
li − Pvriv>li )x = 0,
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for which we used the identity v>li vri = 1, i ≤ K. Similarly, we obtain

e>
K∑
i=1

αivliv
>
riP = 0.

It follows that,

V̇ (e) = −e>Qe ≤ −qm|e|2, (3.17)

where qm > 0 is the smallest eigenvalue of Q, so the statement of the proposition
follows. �

The following statement provides explicit expressions for the limit values of the
followers’ states.

Proposition 4 ([18]). Consider system (3.1) with the bipartite containment control
law (3.2). Under Assumption 2, the bipartite containment objective is achieved; that
is, inequality (3.3) holds. Furthermore, if the leaders are static (i.e., ẋl = 0) , the final
states of the followers satisfy

lim
t→∞

xf (t) = Vfxl, (3.18)

where xl and xf are the leaders’ and the followers’ states respectively and Vf is given
in (3.10b).

Proof: Differentiating the weighted average of the system (3.5), we obtain the
dynamical equation below

ẋm = Vẋ = −VLsx = 0, (3.19)

with v>liLs = 0 for each i ≤ K. Its solution gives xm(t) = xm(0). From Proposition
3, we have limt→∞ e(t) = 0, which gives limt→∞ x(t) = xm(t) = xm(0). Then, using
(3.11), we obtain the relation in (3.18). Under the Assumption 2 and from Item 4 of
Lemmata 7 and 8, we have

lim
t→∞
|xfj(t)| =

∣∣∣∣ NL∑
i=1

vNL+j,ixli

∣∣∣∣ ≤ NL∑
i=1

|vNL+j,i| max
1≤i≤NL

|xli|

≤ max
1≤i≤NL

|xli |,

where vi,j are the elements of the matrix V in (3.8) and 1 ≤ j ≤ N −NL. Then, the
bipartite containment objective in (3.3) is achieved. �

It is worth noting that for unsigned networks, the achievable objective is contain-
ment [7], that is,

lim
t→∞

[xj(t)−max
i∈L

xi(t)][xj(t)−min
i∈L

xi(t)] ≤ 0. (3.20)

Then, for such networks, we recover the following statement from Proposition 4.

Corollary 2 . Consider the system (3.1) with the bipartite containment control law
(3.2) and let the associated digraph be unsigned. Under the Assumption 2, the contain-
ment objective is achieved; that is, the inequality (3.20) holds.

The advantage of disposing of a strict Lyapunov function is that the robustness of
the bipartite containment set with respect to matching perturbations is also guaranteed.
We discuss this in the following subsection.
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3.3.2 Robustness analysis

Consider the perturbed first-order systems

ẋi = ui + di(t), (3.21)

where the disturbances di : R≥0 → Rn are assumed to be locally integrable functions.
Under the control law (3.2), the system (3.21) becomes

ẋ = −Lsx+ d(t). (3.22)

Differentiating the errors in (3.14) on both sides, and using (3.22) we obtain

ė = −Lse+ [I − V]d(t). (3.23)

Then, we have the following.

Proposition 5 ([18]). Under Assumption 2, the closed-loop system (3.23) is ISS.

Proof: Consider the Lyapunov function candidate in (3.16). Its derivative gives

V̇ (e) =
∂V

∂e
[−Lse] +

∂V

∂e
[I − V]d.

From (3.17), we have

V̇ (e) ≤ −e>Qe+
∂V

∂e
[I − V]d

≤ −qm|e|2 + 2λP |e||[I − V]||d|.

We know that 0 ≤ |[I − V]| ≤ |I|+ |V| ≤ 2, because all eigenvalues of I are equal to 1

and all eigenvalues of |V| are either 1 or 0. Let δ > 0 be such that c := qm − 2λP
δ
> 0.

Then,

V̇ (e) ≤ −c|e|2 + 2δ|d|2.

So V is an ISS Lyapunov function [88]. The statement follows. �

3.4 SECOND-ORDER SYSTEMS

We now proceed with the extension of our analysis to more realistic agent dynamics.
In particular, we consider a group of N second-order dynamical systems modeled by

ẋ1i = x2i , x1i , x2i ∈ R (3.24a)
ẋ2i = ui, ui ∈ R, i ∈ IN . (3.24b)

The system (3.24) is a simple representation of an autonomous vehicle, in which x1i

represents position and x2i denotes velocity—cf. [71]. More generally, such a model
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may represent feedback-linearizable nonlinear systems that include a large class of
systems.

To put our contributions in perspective, let us first recall that the consensus problem
for (3.24), that is, to ensure that (2.13) holds, where xi =

[
x1i x2i

]>, via distributed
control, is completely solved under various conditions on the interconnections and the
resulting network’s topology. For instance, for static directed networks, it is well-known
that under the consensus-control law—cf. [7, Section 8],

ui = −k1

N∑
j=1

aij(x1i − x1j)− k2

N∑
j=1

aij(x2i − x2j)− k3x2i , (3.25)

with k1, k2 > 0 and k3 ≥ 0, the expressions in (2.13) hold if and only if the underlying
graph contains a directed spanning tree [75]. The first two terms in (3.25) ensure
position and velocity consensus respectively, i.e., that (2.13) holds, but the latter does
not necessarily imply that the systems stabilize at a common set-point, for which it is
required, in addition, that x2i → 0. Indeed, we show in Section 3.4.1 that x2i → 0 is
possible only if k3 > 0. If k3 = 0 the closed-loop solutions may grow unboundedly, but
this is not necessarily nocuous; e.g., the goal may be for a group of vehicles to continue
advancing in formation at equal velocity without ever stopping, i.e., achieve flocking
[89, 24]. Thus, the gain k3 may be freely chosen to be positive or null, depending on
whether it is required that x2i → 0 or not, respectively—see Proposition 7 on p. 75.

For networks in which some of the nodes are competitive, the distributed consensus
control law (3.25) may be replaced with

ui = −k1

N∑
j=1

|aij|(x1i − sgn(aij)x1j)− k2

N∑
j=1

|aij|(x2i − sgn(aij)x2j)− k3x2i , (3.26)

where k1, k2 > 0, and k3 ≥ 0. The first two terms result from a natural modification
of (3.25), to take into account the signs of the interconnections—cf. [104]. Under the
distributed control law (3.26), agents on a directed connected signed network containing
a directed spanning tree achieve bipartite consensus if and only if the underlying graph
is structurally balanced [2].

In this memoir, we consider bipartite containment protocols for second-order sys-
tems, with and without absolute velocity damping, i.e., k3 > 0 and k3 = 0. We show
that under the control law (3.26) and the Assumption 2, the agents’ states converge to

xm := (V⊗ I2)x, (3.27)

where V is defined in (3.6) and the synchronization errors are given as

e := ([I − V]⊗ I2)x, (3.28)

where e =
[
e1 e2

]>. Then, to establish beyond the convergence statements that
x1 → x1m and x2 → x2m and, consequently, the bipartite containment objectives
defined by (3.3), we prove the stronger property of global exponential stability of the
set {x ∈ R2N : (e1, e2) = (0, 0)}. For that, we construct strict—in the space of (e1, e2)—
Lyapunov functions, based on Proposition 2. Furthermore, we establish robustness of
the bipartite containment tracking in the sense of input-to-state stability with respect
to external bounded perturbations.
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3.4.1 Exponential stability

Consider the system (3.24), interconnected with the bipartite containment control law
(3.26) and the errors defined in (3.28). Differentiating the errors along closed-loop
trajectories, we obtain

ė = ([I − V]⊗ I2)ẋ

and using (3.24) and (3.26), we obtain the closed-loop dynamical equations

ė1 = e2 (3.29a)
ė2 = −k1Lse1 − k2Lse2 − k3e2. (3.29b)

Guaranteeing the bipartite containment problem is now recast as a problem of stabil-
ity analysis of the dynamical system (3.29). Thus, relying on Proposition 2, our next
statement provides sufficient conditions on the controller gains to achieve global expo-
nential stability of the set {(e1, e2) = (0, 0)}, which covers the bipartite containment
tracking objective (3.3).

Proposition 6 ([83]). Consider the system (3.29) and let P be generated by (3.13)
with Q = IN . Then, under the Assumption 2, the set {(e1, e2) = (0, 0)} is exponentially
stable if

k1 > 0, (3.30a)

k2 > 2
»
k1λP , (3.30b)

k2

k3

≥ λP , k3 ≥ 0, (3.30c)

where λP ≥ |P | is the largest eigenvalue of P .

Proof of Proposition 6: Let Q = Q> > 0 and α > 0 be arbitrarily fixed. Since
by the Assumption 2 and Proposition 2, ∃P = P> > 0 such that (3.13) holds. Then,
consider the following Lyapunov function candidate

V (e) =
1

2
|e1|2 + εe>1 Pe2 + µe>2 Pe2, (3.31)

which is positive definite (for all e as in (3.28)), under the condition ε ≤
»

2µ
|P | , µ > 0.

This can be shown by rewriting the Lyapunov function in vector form

V (e) =
1

2

ï
e1

e2

ò> ï
I εP
εP 2µP

ò ï
e1

e2

ò
. (3.32)

For the matrix in (3.32) to be positive definite, the Schur complement condition requires
2µP − ε2P 2 > 0, which simplifies to 2µ − ε2|P | ≥ 0. This is satisfied when ε ≤

»
2µ
|P |

and µ > 0.
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The total time derivative of V along the trajectories yields

V̇ (e) =− k1εe
>
1 PLse1 − e>2 [k2µ(PLs + L>s P ) + 2k3µP − εP ]e2

+ e>1 (I − k2εPLs − 2k1µL
>P − k3εP )e2.

Let µ > 0 be such that 2k1µ = k2ε = 1. Using (3.13) with Q = IN and the identity

P
K∑
i=1

vriv
>
li
e1 = P

K∑
i=1

vriv
>
li
e2 = 0

we obtain the following:

−k1εe
>
1 PLse1 =− k1εe

>
1 (PLs + L>s P )e1

= −1

2
k1ε|e1|2,

−e>2 µk2(PLs + L>s P )e2 =− µk2e
>
2 e2,

e>1 [I − (L>s P + PLs)]e2 =− e>1 [I − I]e2

= 0.

Hence, in compact form, we have

V̇ (e) = −1

2

ï
e1

e2

ò> ï
k1εI k3εP
k3εP 2µk2I + 4k3µP − 2εP

ò ï
e1

e2

ò
(3.33)

or, equivalently,

V̇ (e) =− 1

2
e>
ï

1
2
k1εI k3εP
k3εP 4k3µP

ò
e− 1

4
k1ε|e1|2 − e>2 [k2µI − εP ]e2. (3.34)

That is, V̇ is negative definite if the matrix in (3.34) is positive semi-definite and
[k2µI−εP ] is positive definite. The latter holds, in view of the fact that 2k1µ = k2ε = 1,
if and only if

k2I − 2
k1

k2

λP I > 0.

In turn, the previous inequality holds if k2 >
√

2k1λP , that is, under condition (3.30b).
Then, computing the Schur complement [28], the condition for the matrix in (3.34) to
be positive semi-definite, is 4k3µP − (k3εP )> 2

k1ε
k3εP ≥ 0. If k3 = 0 the latter holds

trivially. Otherwise, considering k3 > 0, and using 2k1
k2

= ε
µ
, we see that the latter

inequality is equivalent to

2
µ

µ
I − k3

k1

ε

µ
P = 2

µ

µ
I − k3

k1

2k1

k2

P

= 1− k3

k2

λP ≥ 0,
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which is satisfied under (3.30c). We conclude that

V̇ (e) ≤ −1

4

[
εk1|e1|2 + [k2µ− ελP ]|e2|2

]
, (3.35)

so the statement of the proposition follows. �

Remark 10 For conciseness, we consider in one statement the two interesting and
distinct cases evoked previously, that k3 = 0 or k3 > 0. Note that if k3 is chosen to be
null (3.30c) trivially holds, but if it is positive (3.30c) defines a condition on k2 and
k3, relative to λ̄P , which depends on the Laplacian Ls—see (3.13). •

From the proof of Proposition 6 it is clear that the value of k3 ≥ 0 is inconsequential
to the exponential stability of the containment set. Nevertheless, as mentioned above,
it plays a role in the solutions’ behavior. This is stated next.

Proposition 7 ([83]). Consider the system (3.24) and the bipartite containment con-
trol law (3.26). Under the Assumption 2, the bipartite containment objective is achieved,
that is, the inequalities (3.3) hold. Furthermore, if k3 > 0, the final states of the fol-
lowers satisfy

lim
t→∞

x1f (t) = Vfx1l(0) +
1

k3

Vfx2l(0), (3.36a)

lim
t→∞

x2f (t) = 0. (3.36b)

On the other hand, if k3 = 0,

lim
t→∞

x1f (t) = Vfx1l(0) + tVfx2l , (3.37a)

lim
t→∞

x2f (t) = Vfx2l , (3.37b)

where xl and xf are leaders’ and followers’ states respectively and Vf ∈ R(N−NL)×NL is
given in (3.8).

Proof: Differentiating the weighted average of the system (3.27), we obtain the
dynamical equations below

ẋ1m = Vẋ1 = Vx2 = x2m , (3.38a)
ẋ2m = Vẋ2

= V(−k1Lsx1 − k2Lsx2 − k3x2)

= −k3x2m , (3.38b)

with v>liLs = 0 for i ≤ K. Their solutions yield

x2m(t) = x2m(0)e−k3t, (3.39a)

x1m(t) = x1m(0) + x2m(0)

∫ t

0

e−k3sds. (3.39b)
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Now, from Proposition 6, we have limt→∞ e(t) = 0, which results in

lim
t→∞

x(t) = xm(t).

On the other hand, from (3.39), we obtain

lim
t→∞

x2(t) = 0

and
lim
t→∞

x1(t) = x1m(0) +
1

k3

x2m(0).

Then, using (3.8), we obtain the relations in (3.36). Under the Assumption 2 and from
Item (iv) of Lemmata 7 and 8,

lim
t→∞
|x1fj(t)| =

NL∑
i=1

|vNL+j,ix1li(0) +
1

k3

vNL+j,ix2li(0)|

≤
NL∑
i=1

|vNL+j,i||x1li(0) +
1

k3

x2li(0)|

≤
NL∑
i=1

|vNL+j,ix1li(0)|+ | 1
k3

vNL+j,ix2li(0)|

≤
NL∑
i=1

|vNL+j,i||x1li(t)| ≤ max
1≤i≤NL

|x1li(t)|,

where 1 ≤ j ≤ N −NL and vi,j are the elements of the matrix V in (3.8). In the case
when k3 = 0, (3.38) becomes

ẋ1m = x2m ,

ẋ2m = 0,

so

x2m(t) = x2m(0), (3.40a)
x1m(t) = x1m(0) + tx2m(0). (3.40b)

From (3.40), we obtain limt→∞ x2(t) = x2m(0) and limt→∞ x1(t) = x1m(0) + x2m(0)t.
Then using (3.8), we obtain the relations in (3.37). Under the Assumption 2 and from
Items (iv) of Lemmata 7 and 8, we have

lim
t→∞
|x2fj(t)| =

NL∑
i=1

|vNL+j,ix2li| ≤
NL∑
i=1

|vNL+j,i| max
1≤i≤NL

|x2li |

≤ max
1≤i≤NL

|x2li |,

lim
t→∞
|x1fj(t)| =

NL∑
i=1

|vNL+j,ix1li(0) + tvNL+j,ix2li |

≤ max
1≤i≤NL

|x1li(0)|+ t max
1≤i≤NL

|x2li|

≤ max
1≤i≤NL

|x1li(t)|,
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so (3.3) follows. �

On the other hand, we recover the following statement from Proposition 7.

Corollary 3 ([83]). Consider the system (3.24) with the containment control law
(3.26) and let the associated digraph be unsigned. Under the Assumption 2, the con-
tainment objective is achieved, that is the inequality (3.20) holds.

Next, we use the strict Lyapunov functions constructed above to conduct a robust-
ness analysis of the control law (3.26), in the sense of input-to-state stability of the
bipartite containment tracking.

3.4.2 Robustness analysis

Consider the perturbed second-order systems

ẋ1i = x2i (3.41a)
ẋ2i = ui + di(t), (3.41b)

where the disturbances di : R≥0 → RN are assumed to be essentially bounded locally
integrable functions, di(t) ≤ d̄ := ess supt≥0|d(t)|. Under the action of the control law
(3.26), the system (3.41) becomes

ẋ1 = x2 (3.42a)
ẋ2 = −k1Lsx1 − k2Lsx2 − k3x2 + d(t), (3.42b)

where d := [di] ∈ RN . Differentiating the errors in (3.28) on both sides and using (3.42)
we obtain

ė1 = e2 (3.43a)
ė2 = −k1Lse1 − k2Lse2 − k3e2 + [I − V]d(t). (3.43b)

Then, we have the following.

Proposition 8 ([83]). The closed-loop system (3.43), under the Assumption 2, is
input-to-state stable with respect to essentially bounded, locally integrable external dis-
turbances if the conditions in (3.30) hold.

Proof: Consider the Lyapunov function (3.31) which is positive definite, under the
condition ε ≤

»
2µ
|P | , µ > 0. The total time derivative of V along the trajectories of

(3.43) yields

V̇ (e) =
∂V

∂e1

e2 +
∂V

∂e2

[−k1Lse1 − k2Lse2 − k3e2] +
∂V

∂e2

[I − V]d. (3.44)

Then, from (3.35), we obtain

V̇ (e) ≤ −1

4
[εk1|e1|2 + (k2µ− ελP )|e2|2] +

∂V

∂e2

|[I − V]||d|

≤ −1

4
εk1|e1|2 −

1

4
(k2µ− ελP )|e2|2

+ελP e
>
1 |[I − V]|d+ 2µλP e

>
2 |[I − V]||d|. (3.45)
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Now, we know that 0 ≤ |[I − V]| ≤ |I|+ |V| ≤ 2, because all eigenvalues of I are equal
to 1 and all eigenvalues of |V| are either 1 or 0. Let δ > 0 be such that

c1 :=
1

4
(εk1 −

4

δ
ελP ) > 0

and
c2 :=

1

4
(k2µ− ελP −

8

δ
µλP ) > 0.

Then, since |I − V| ≤ 2, it follows from (3.45) that

V̇ (e) ≤ −c1|e1|2 − c2|e2|2 + c3|d|2,

with c3 = λP δ(ε+2µ) > 0. Thus, V is an ISS Lyapunov function for the system (3.43),
and the latter is input-to-state stable with respect to matched disturbances. �

In the case of cooperative systems, Proposition 8 boils down to the following corol-
lary.

Corollary 4 ([83]). The system (3.43), under the Assumption 2 and over an unsigned
network, is input-to-state stable with respect to an essentially bounded, locally integrable
external disturbance if the conditions in (3.30) hold.

3.5 NUMERICAL EXAMPLES

To illustrate our theoretical findings, we present a numerical example of a system of
multi-wheeled mobile robots modeled as unicycles over both structurally balanced and
unbalanced networks. As mentioned in Remark 1, we apply our results presented for
one-dimension systems to systems of higher dimensions.

3.5.1 First-order systems

Figure 3.2: Schematic representation of a unicycle
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Consider a unicycle vehicle as the one illustrated in Figure 3.2. Let

ri = [rxi ryi ]
> ∈ R2

be the inertial position, θi the orientation, si the linear speed, and ωi the angular speed
of the ith robot. The objective of the team of unicycles is to make the follower unicycles
converge to a safe zone defined by the cooperative leader unicycles and away from the
competitive leader unicycles—see the bipartite containment set defined in (3.3). Then,
the dynamics of such a wheeled mobile robot can be modeled as [94]ṙxiṙyi

θ̇i

 =

si cos θi
si sin θi
ωi

 . (3.46)

To apply the consensus control law (3.2)—designed for (3.1)—to this system we
apply a preliminary feedback linearizing control. To that end, we rewrite the sys-
tem’s dynamics in terms of the position of a point located at a distance δi from the
axis connecting the wheels. This allows us to control the system’s position using the
coordinates of this reference point. We choose the reference point pi

pi = ri + δi

Å
cos θi
sin θi

ã
located at a distance δi = 0.1m ffrom the axis connecting the wheels, along a direction
perpendicular to the wheels’ axis. Now, to achieve bipartite containment on the ref-
erence points pi, we look at its dynamics. Differentiating pi with respect to time, we
obtain ï

ṗxi
ṗyi

ò
=

ï
si cos θi − δiωi sin θi
si sin θi + δiωi cos θi

ò
. (3.47)

Since we can control the velocity, letï
si
ωi

ò
=

ï
cos(θi) sin(θi)
− 1
δi

sin(θi)
1
δi

cos(θi)

ò ï
uxi
uyi

ò
, (3.48)

so (3.47) becomes ï
ṗxi
ṗyi

ò
=

ï
uxi
uyi

ò
,

which is a simplified kinematic equation in the form of first-order dynamics. For the
simulations examples, we implemented (3.46) with ui as in (3.2), where xi = [pxi pyi ]

>.

3.5.1.1 Structurally balanced networks

We consider a coopetition network containing N = 7 agents with three leaders νi, i ≤ 3
and four followers νj, 4 ≤ j ≤ 7, communicating over a structurally balanced directed
graph as the one depicted in Figure 3.3. The competitive leader ν3 represents an
obstacle in the system. For clarity, we stress that, in this example, we consider a
leader node to be one that has no incoming edges, and we assume them to be static.
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Figure 3.3: A network of seven mobile robots with 2 cooperative and 1 competitive leaders.

According to (2.25), the Laplacian matrix corresponding to the graph is

Ls =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−3 0 0 5 −1 −1 0
0 0 0 −1 2 0 −1
0 −5 0 −1 0 7 −1
0 0 3 0 −1 −1 5


and its eigenvalues are λL = 0, 0, 0, 1.38, 4.80, 7.81, and 5. The network may be
bipartitioned into two subgroups as

V1 = {ν1, ν2, ν4, ν5, ν6, ν7}, V2 = {ν3}

so it is structurally balanced. Then, the right and left eigenvectors associated with
each zero eigenvalue are given by

vr1 =
[
1 0 0 0.7038 0.4038 0.1154 0.1038

]>
, vl1 =

[
1 0 0 0 0 0 0

]>
vr2 =

[
0 1 0 0.1923 0.1923 0.7692 0.1923

]>
, vl2 =

[
0 1 0 0 0 0 0

]>
vr3 =

[
0 0 1 −0.1038 −0.4038 −0.1154 −0.7038

]>
, vl3 =

[
0 0 1 0 0 0 0

]>
.

The matrices Vl and Vf in (3.8) are then calculated to be

Vl =

 1 0 0
0 1 0
0 0 1

 , Vf =


0.7038 0.1923 −0.1038
0.4038 0.1923 −0.4038
0.1154 0.7692 −0.1154
0.1038 0.1923 −0.7038

 .
Notice that since in the graph considered above, the leaders have no neighbors, Vl

has the form as in (3.11). We also remark that Vf has the properties stated in Items
(i)–(iv) of Lemma 8. Since each follower is influenced by the three leaders, 0 is not an
element of Vf (Item (i)). Moreover, none of the followers corresponds to the exclusive
part of a reach, so Vf does not have an element equal to ±1 (Item (ii)). From the
structural-balance property, all elements corresponding to leaders ν1 and ν2 (the first
two columns) are positive and less than one, whereas the elements corresponding to
leader ν3 (on the last column) are negative and greater than −1 (Item (iii)). We also
remark that the sum of the absolute values of the terms on each row is equal to 1 (Item
(iv)).
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Figure 3.4: Bipartite containment tracking of system (3.50) with control input (3.48),
[uxi uyi ] =: ui and ui as in (3.2). The filled dots are the final states of the mobile robots, and
the dotted lines represent the trajectory of the four followers. The yellow diamond represents
the symmetric state of the antagonistic leader x3.
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Figure 3.5: Bipartite containment tracking of system (3.50) under the same conditions as in
Figure 3.4 and under the effect of the perturbation in (3.49).

Let P be generated by (3.13) with Q = IN and α = 20, then we obtain λP = 0.6247.
Consider the system (3.50) and the bipartite containment law (3.2). The respective
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initial states of the robots are

rx(0) =
[
3.5 4 −2 −6.5 5.5 −3.5 6

]>
,

ry(0) =
[
2 3.5 −3 −1 −3 −3 −2.5

]>
,

and θi(0) = π
2
for all i ∈ IN . Figure 3.4 depicts the simulation results. The followers

converge to the convex hull spanned by cooperative leaders’ states and competitive
leader’s ν3 symmetric state. Using (3.18) and the coordinate transformation, we obtain
the following limit values for the followers’ states:

lim
t→∞

rxf (t) =
[
3.44 2.99 3.69 2.54

]>
, lim

t→∞
ryf (t) =

[
2.37 2.61 3.25 2.85

]>
.

We now perform simulations for the system (3.50) with the bipartite containment
law (3.2), with di(t) = σi(t)

[
1 1

]> where σi(t) is given as below

σi(t) =


tanh(t− 10)− 1 + 1

(t+10)
i ∈ {5, 6}

− tanh(t− 10) + 1− 1
(t+10)

i = 4

0 i ∈ {1, 2, 3, 7}.
(3.49)

Figure 3.5 depicts the simulation results. During the first 10s, the perturbation d(t)
prevents the achievement of bipartite containment tracking, and the followers reach
a stable state with a steady-state error. However, as the perturbation vanishes, after
10s, the trajectories of the followers move towards the convex hull, spanned by the
cooperative leaders’ states and the antagonistic leader’s symmetric state. We obtain
the same limit values for the followers as before.

3.5.1.2 Structurally unbalanced networks

We consider now a coopetition network containing three leaders νi, i ≤ 3 and four
followers νj, 4 ≤ j ≤ 7, communicating over a structurally unbalanced directed graph
as the one depicted in Figure 3.6. The competitive leader ν3 represents a static obstacle
in the system. For clarity, we stress that, in this example, we consider a leader node
to be one that has no incoming edges, and we assume them to be static.

ν4 ν5

ν7ν6

ν1

ν2 ν3

1

11
1

3

5 -3

Figure 3.6: A network of seven mobile robots with 3 leaders over a structurally unbalanced
signed graph.
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According to (2.25), the Laplacian matrix corresponding to the graph is

Ls =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
−3 0 0 5 −1 1 0
0 0 0 −1 2 0 −1
0 −5 0 1 0 7 −1
0 0 3 0 −1 −1 5


and its eigenvalues are λL = 0, 0, 0, 1.44, 4.27, 5.56, and 7.73. The network may not
be bipartitioned into two subgroups so is structurally unbalanced. Then, the right and
left eigenvectors associated with each zero eigenvalue are given by

vr1 =
[
1 0 0 0.6932 0.3750 −0.0909 0.0568

]>
, vl1 =

[
1 0 0 0 0 0 0

]>
vr2 =

[
0 1 0 −0.1515 0 0.7576 0.1515

]>
, vl2 =

[
0 1 0 0 0 0 0

]>
vr3 =

[
0 0 1 −0.0568 −0.3750 −0.0909 −0.6932

]>
, vl3 =

[
0 0 1 0 0 0 0

]>
.

The matrices Vl and Vf in (3.8) are calculated as below.

Vl =

 1 0 0
0 1 0
0 0 1

 , Vf =


0.6932 −0.1515 −0.0568
0.3750 0 −0.3750
−0.0909 0.7576 −0.0909
0.0568 0.1515 −0.6932

 .
Notice that, as in the considered graph, leaders have no neighbors, Vl has the form

as in (3.11). We also notice that Vf has the properties stated in Items (i)–(iv) of Lemma
7, since the network under consideration is structurally unbalanced. Since each follower
is influenced by the three leaders, there are no agents corresponding to the exclusive
part of a reach, and as a result, Vf does not have an element equal to ±1. Moreover,
the sum of the absolute values of the terms on each row is less than 1.

Let P be generated by (3.13) with Q = IN and α = 20, then we obtain λP = 0.5161.
Consider the system (3.50) and the bipartite containment law (3.2). The respective
initial states of the robots are

rx(0) =
[
1.5 −0.5 −0.5 −6.5 5.5 −3.5 6

]>
,

ry(0) =
[
1 1.5 −1 −1 −3 −3 −2.5

]>
,

and θi(0) = π
2
for all i ∈ IN . Figure 3.7 depicts the simulation results. The followers

converge to the convex hull spanned by the leaders’ states and their symmetric states.
Using (3.18) and the coordinate transformation, we obtain the following limit values
for the followers’ states:

lim
t→∞

rxf (t) =
[
1.20 0.81 −0.39 0.42

]>
, lim

t→∞
ryf (t) =

[
0.49 0.67 1.14 0.85

]>
.

We now perform simulations for the system (3.50) with the bipartite containment
law (3.2), with di(t) = σi(t)

[
1 1

]>, where σi(t) is in (3.49). Figure 3.8 depicts the
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Figure 3.7: Bipartite containment tracking of system (3.50) with control input (3.48),
[uxi uyi ] =: ui and ui as in (3.2). The filled dots are the final states of the mobile robots, and
the dotted lines represent the trajectory of the four followers. The diamonds represent the
symmetric states of the leaders.
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Figure 3.8: Bipartite containment tracking of system (3.50) under the same conditions as in
Figure 3.7 and under the effect of the perturbation in (3.49).

simulation results. The trajectories of the followers move towards the convex hull,
spanned by leaders’ states and their symmetric states. We obtain the same limit
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values as before for the followers.

3.5.2 Second-order systems

Let us consider next a group of force-controlled unicycles, hence modeled by the second-
order equations ṙxiṙyi

θ̇i

 =

si cos θi
si sin θi
ωi

 , ï
ṡi
ω̇i

ò
=

ñ
1
mi

0

0 1
Ji

ô
ηi, (3.50)

where mi the mass, Ji the moment of inertia, Fi the applied force and τi the applied
torque, and ηi :=

[
Fi τi

]>. To apply the consensus control law (3.26)—designed for
(3.24)—to the system (3.50), we apply a preliminary feedback linearizing control. To
that end, we rewrite the system’s dynamics in terms of the position of a reference point
located at a distance δi from the axis connecting the wheels, as before. We define

ζ :=


rxi + δi cos θi
ryi + δi sin θi

si cos θi − δiωi sin θi
si sin θi + δiωi cos θi

θi

 . (3.51)

In transformed coordinates, with pi = [ζ>1i ζ
>
2i

]>, we haveñ
ζ̇1i

ζ̇2i

ô
=

ï
ζ3i

ζ4i

ò
, (3.52a)ñ

ζ̇3i

ζ̇4i

ô
=

ï
−siωi sin θi − δiω2

i cos θi
siωi cos θi − δiω2

i sin θi

ò
+

ñ
1
mi

cos θi − δi
Ji

sin θi
1
mi

sin θi
δi
Ji

cos(θi)

ô
ηi, (3.52b)

ζ̇5i = − 1

2δi
ζ3i sin ζ5i +

1

2δi
ζ4I cos ζ5i . (3.52c)

The feedback linearizing control ηi is given by

ηi =

ñ
1
mi

cos θi − δi
Ji

sin θi
1
mi

sin θi
δi
Ji

cos(θi)

ô−1

×
ï
ui −

ï
−siωi sin θi − δiω2

i cos θi
siωi cos θi − δiω2

i sin θi

ò ò
, (3.53)

which gives [ζ̇1i ζ̇2i ]
> = [ζ3i ζ4i ]

> and [ζ̇3i ζ̇4i ]
> = ui. Thus, we implemented (3.53) with

ui as in (3.26), x1i = [ζ1i ζ2i ]
>, x2i = [ζ3i ζ4i ]

>, mi = 8kg and Ji = 0.12kg/m2 for each
i ∈ IN .

Remark 11 Nonholonomic systems, such as unicycles, are constrained in their move-
ment, typically unable to move in certain directions, like sideways. Feedback lineariza-
tion is used above to transform the nonlinear dynamics of the unicycles into linear ones,
simplifying control design by placing the control point at an offset from the robot’s cen-
ter, allowing it to control the system while ignoring its exact orientation. This can make
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the robots behave like a holonomic system, simplifying trajectory tracking but introduc-
ing errors due to the robot’s nonholonomic nature, such as tracking errors, especially
during sharp turns. Moreover, in feedback linearization, the parameters of the robot
are assumed to be perfectly known, so modeling errors or uncertainties in parameters
and unmodeled dynamics, such as friction, may lead to control errors. On the other
hand, the choice of considering nonholonomic systems in the first place is because they
are more practical for many real-world applications. •

We provide some numerical examples of a system of nonholonomic unicycle mobile
robots over both structurally balanced and unbalanced networks.

3.5.2.1 Structurally balanced networks

Consider a network of N = 9 agents with five leaders νi, i ≤ 5, organized in three leader
groups {ν1, ν2, ν3}, {ν4}, {ν5}, and four followers νj, 6 ≤ j ≤ 9, communicating over a
directed graph as the one depicted in Figure 3.9, below.

ν1ν3 ν6

ν8ν2 ν4 ν9 ν5

ν7

11

1 3 1

-1
1

-1
5 -3

Figure 3.9: Network 1: A network of nine mobile robots

The Laplacian matrix corresponding to the graph is

L =



1 0 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−3 0 0 0 0 4 0 1 0
0 0 0 0 0 −1 2 0 1
0 0 0 −5 0 1 0 6 0
0 0 0 0 3 0 −1 0 4


and its eigenvalues are λL = 0, 0, 0, 1.5 ± 0.86i, 2, 3.59, 4, and 6.41. The network may
be bipartitioned into two subgroups,

V1 = {ν1, ν2, ν3, ν5, ν6, ν7}, V2 = {ν4, ν8, ν9},

so is structurally balanced, and

Vl =


0.33 0.33 0.33 0 0
0.33 0.33 0.33 0 0
0.33 0.33 0.33 0 0

0 0 0 1 0
0 0 0 0 1

 , Vf =


0.26 0.26 0.26 −0.22 0
0.14 0.14 0.14 −0.22 0.37
−0.04 −0.04 −0.04 0.87 0
−0.01 −0.01 −0.01 0.22 −0.75

 .
(3.54)
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Figure 3.10: Bipartite containment tracking of (3.50) with the control (3.26) on the plane.
The filled dots are the final states of the agents. The diamonds represent the mirrored final
states of the leaders. The rectangles represent the containment set.
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Figure 3.11: Bipartite containment tracking of (3.50) with (3.26) on velocity.

We notice that Vl and Vf have the properties stated in Items (i)-(iv) of Lemma
8, as the network is structurally balanced. For Vl, we have two elements equal to
one, corresponding to isolated leaders ν4 and ν5, as they are in the exclusive part
of the reaches. Leaders ν1, ν2, and ν3 are in the exclusive part of a reach, so the
corresponding elements of the right eigenvector are equal to one. Thus, as they are
interconnected within a strongly connected graph, the absolute value of the elements
of the left eigenvector is less than one. Vf does not have an element equal to ±1 since
all the followers are influenced by more than one leader. Followers ν6 and ν8 are not
influenced by the leader ν5, so the corresponding elements on the fifth column are equal
to zero. We also remark that the sum of the absolute values of the terms on each row
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is equal to 1.
Now, to compute P in (3.13) we proceed as follows. We set Q = IN and αi = 20.

Then, in Matlab, we use lyap(-R,Q) with Q = IN to obtain the solution of −PR −
R>P = −Q with R := L+

∑K
i=1 αivriv

>
li
. We obtain λP = 0.5193. Consider the system

(3.50) and the bipartite containment law (3.53) with k1 = 0.8, k2 = 1.5, and k3 = 1.2,
which satisfy the conditions in (3.30). The respective agents’ initial states are

rx(0) = [3.5 1 −0.5 −1.6 1 −6.5 5.5 −3.5 6]>,

ry(0) = [3 2.5 −1.5 1.3 −3 −1 −3 −3 −2.5]>,

θ(0) = [0.25 0.61 −1.27 0.32 1.42 0.46 0.98 1.19 1.03]>,

s(0) = [1.2 1.2 −1.4 −1.6 1.3 −2.2 0.4 −1.1 1.2]>.

The simulation results are shown in Figures 3.10 and 3.11. The followers converge to the
bipartite containment set spanned by cooperative leaders’ final states and competitive
leaders’ mirrored final states and all agents’ velocities converge to zero. Using the
relations in (3.36) and the coordinate transformation, we obtain the following limit
values for followers’ states,

lim
t→∞

rx(t) = [1.99 1.89 −2.68 −1.46]>, lim
t→∞

ry(t) = [1.31 −0.15 0.44 1.44]>,

and
lim
t→∞

s(t) = [0 0 0 0]>.
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Figure 3.12: Bipartite containment tracking of (3.41) on the plane.

In a second run of simulations, we tested the bipartite-containment control law
(3.53) on the system (3.50), using the same initial conditions and controller gains
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Figure 3.13: Bipartite containment tracking of (3.41) on velocity.

as above. Therefore, in the simulations we consider that the system is subject to a
disturbance di = σi(t)

[
1 1

]> , where σi(t) is given by

σi(t) =


tanh(t− 10)− 1 + 1

(t+10)
i ∈ {7, 9}

− tanh(t− 10) + 1− 1
(t+10)

i = 6

0 i ∈ {1, 2, 3, 4, 5, 8}.

The simulation results can be appreciated in Figures 3.12 and 3.13. During the first
10s, the perturbation d(t) prevents the achievement of bipartite containment tracking,
the trajectories of the followers 6, 7, and 9 shift because of the presence of the per-
turbation, but, after the perturbation vanishes, the trajectories of the followers stop
shifting and converge towards the bipartite containment set spanned by cooperative
leaders’ final states and competitive leaders’ mirrored final states and all agents’ ve-
locities converge to zero. We obtain the same limit values as before for the followers.

In a third run of simulations, we tested the bipartite-containment control law (3.53)
on the system (3.50), using the same initial conditions and controller gains as above.
Therefore, in the simulations we consider that the system is subject to a disturbance
di = σi(t)

[
1 1

]> , where σi(t) is given by

σi(t) =


− tanh(t− 5)− 1 + 1

(t+5)
i = 5

tanh(t− 10)− 1 + 1
(t+10)

i ∈ {4, 7, 9}
− tanh(t− 10) + 1− 1

(t+10)
i = 6

0 i ∈ {1, 2, 3, 8}.

The simulation results can be appreciated in Figures 3.14 and 3.15. During the
first 5s and 10s, leaders 5 and 4 are influenced by the perturbation, respectively, which
prevents the velocity from converging to zero. However, after the perturbation van-
ishes, the velocities of the leaders stop increasing and converge to zero. On the other
hand, during the 10 seconds, the perturbation d(t) prevents followers 6, 7, and 9 from
achieving bipartite containment tracking and their trajectories shift but after the per-
turbation vanishes, the trajectories of the followers stop shifting and converge towards
the bipartite containment set spanned by cooperative leaders’ final states and compet-
itive leaders’ mirrored final states and all agents’ velocities converge to zero.
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Figure 3.14: Bipartite containment tracking of (3.41) on the plane.
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Figure 3.15: Bipartite containment tracking of (3.41) on velocity.

3.5.2.2 Structurally unbalanced networks

Now, consider a network of N = 9 agents containing five leaders νi, i ≤ 5, three leader
groups {ν1, ν2, ν3}, {ν4}, {ν5}, and four followers νj, 6 ≤ j ≤ 9, provided in Figure 3.16.
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Figure 3.16: Network 2: A network of nine mobile robots

The Laplacian matrix corresponding to the graph is

Ls =



1 0 −1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−3 0 0 0 0 4 0 −1 0
0 0 0 0 0 −1 2 0 1
0 0 0 −5 0 −1 0 6 0
0 0 0 0 3 0 −1 0 4


and its eigenvalues are λL = 0, 0, 0, 1.5 ± 0.86i, 2, 3.59, 4, and 6.41. The network may
not be bipartitioned into two subgroups, so is structurally unbalanced. The matrix Vl
is calculated as in (3.54) and Vf is calculated as

Vf =


0.26 0.26 0.26 0.22 0
0.125 0.125 0.125 0 0.375
0.04 0.04 0.04 0.87 0
0.01 0.01 0.01 0.22 −0.75

 .
We notice that Vf has the properties stated in Items (i)-(iv) of Lemma 7 since the

network is structurally unbalanced. Since all followers are influenced by more than
one leader, there are no agents corresponding to the exclusive part of a reach, and as
a result, Vf does not have an element equal to ±1, but the absolute values of each
element is less than one. We also remark that the sum of the absolute value of the
terms on each row is less than 1.

Now, let P be generated by (3.13) with Q = IN and α = 20, then we obtain
λP = 0.4839. Consider the system (3.50) and the bipartite containment law (3.53)
with the same controller gains as before. The respective agents’ inertial positions and
linear speeds are the same as before, while the orientations are

θ(0) = [0.25 0.61 − 1.27 0.32 1.42 0.46 0.98 1.19 1.03]>.

The simulation results are depicted in Figures 3.17 and 3.18.
Note that all followers converge to the convex hull spanned by leaders’ final states

and mirrored final states and all agents’ velocities converge to zero. Using relations
in (3.36) and the coordinate transformation, we obtain the following limit values for
followers’ states,

lim
t→∞

rx(t) = [1.5 1.1 0.01 −0.94]>, lim
t→∞

ry(t) = [1.79 − 0.01 0.89 1.54]>,
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Figure 3.17: Bipartite containment tracking of (3.24) on position. The filled dots are the final
states of the agents. The diamonds represent the mirrored final states of the leaders.
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Figure 3.18: Bipartite containment tracking of (3.24) on velocity.

lim
t→∞

s(t) = [0 0 0 0]>.

We remark that for structurally balanced signed networks, the followers’ final states
converge to the bipartite containment set spanned by cooperative leaders’ final states
and antagonistic leaders’ mirrored states. However, in the case of a structurally unbal-
anced network, this cannot be observed because the agents cannot be partitioned into
two disjoint subsets.

In a second run of simulations, we tested the bipartite-containment control law
(3.53) on the system (3.50), using the same initial conditions and controller gains
as above. Therefore, in the simulations we consider that the system is subject to a
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disturbance di = σi(t)
[
1 1

]> , where σi(t) is given by

σi(t) =


− tanh(t− 5)− 1 + 1

(t+5)
i = 5

tanh(t− 10)− 1 + 1
(t+10)

i ∈ {4, 7, 9}
− tanh(t− 10) + 1− 1

(t+10)
i = 6

0 i ∈ {1, 2, 3, 8}.
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Figure 3.19: Bipartite containment tracking of (3.41) on the plane.

The simulation results can be appreciated in Figures 3.19 and 3.20. During the
first 5s and 10s, leaders 5 and 4 are influenced by the perturbation, respectively, which
prevents the velocity from converging to zero. However, after the perturbation vanishes,
the velocities of the leaders stop increasing and converge to zero. All followers converge
towards the bipartite containment set spanned by cooperative and competitive leaders’
final states and symmetric final states. Moreover, all agents’ velocities converge to zero.

3.6 CONCLUSIONS

In this chapter, we presented a Lyapunov approach to analyze the exponential stability
of the bipartite containment tracking problem of simple and double integrators over
structurally balanced and unbalanced multi-leader signed networks. Via a change of
coordinates, we have shown a bound for the convergence set of the followers, as well as
the limiting set points for all the agents. This is significant because the construction
of a Lyapunov function may serve to extend our study to cover bipartite containment
for complex non-linear systems, such as Lagrangian systems. Moreover, we have gen-
eralized the Lyapunov equation characterization of the Hurwitz property of a matrix
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Figure 3.20: Bipartite containment tracking of (3.41) on velocity.

to matrices having more than one zero eigenvalue, which allowed us to construct strict
Lyapunov functions. Disposing of strict Lyapunov functions allowed us to establish the
robustness of the system with respect to a bounded disturbance.
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CHAPTER 4

BIPARTITE FORMATION-CONSENSUS WITH COLLISION
AVOIDANCE AND CONNECTIVITY MAINTENANCE

In this chapter, we address the bipartite formation-consensus problem for a group of
vehicles over structurally balanced signed networks described by first- and second-order
systems under inter-agent distance constraints. Bipartite formation in multi-agent
systems is relevant, for example, when a group of autonomous vehicles operates amidst
hostile conditions alongside enemy vehicles and gathers around a desired point or a
safety zone. Distance constraints concern restrictions on the distance between two
agents to avoid collision and, at the same time, to avoid losing communication if it
does occur.

To address this problem, we propose a distributed barrier-Lyapunov-function-gradient-
based bipartite formation control law that prevents inter-vehicle collisions and keeps
vehicles in their sensors’ range. First, we present our control laws and analysis in node
coordinates expressed for each agent. Then, we use the edge-based representation for
signed networks [23], where the control law is expressed for each edge interconnecting a
pair of agents. The edge-based formulation corresponds well to the study of our prob-
lem as a stability problem and allows us to recast the bipartite formation-consensus
problem into the space of the error coordinates.

The bipartite consensus problem has already been studied in the literature, e.g., in
[2, 30, 104, 95]. However, in contrast to the latter references, we address the bipartite
consensus problem under collision avoidance and connectivity maintenance. The con-
strained non-cooperative herding problem has been studied in [15] and [26] but with
optimization-based approaches, and the constrained bipartite-flocking problem is stud-
ied in [24], using artificial potential functions. In our work, compared to [15], [26], and
[24], we encode the inter-agent constraints using barrier-Lyapunov functions, and our
controller is based on the gradient of a barrier-Lyapunov function. Moreover, contrary
to [24], a minimal safety distance is guaranteed between any two agents.
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Thus, compared to the literature, we contribute with a distributed control law
that solves the bipartite formation-consensus-control problem for structurally balanced
signed networks. We consider, in particular, undirected signed networks and strongly
connected directed signed networks described by first and second-order systems. Fur-
thermore, we establish asymptotic stability of the bipartite formation-consensus man-
ifold by applying Lyapunov’s direct method and, in some cases, employing edge-based
formulation for signed networks.

4.1 PROBLEM FORMULATION

Consider N physical systems with non-negligible dimensions, and let xi ∈ Rn be a
state of interest, typically, a position of a point in the physical space of the agent i.
Let them be modeled by

ẋi = ui,

where ui ∈ Rn is the control input. Consider the problem of ensuring all systems
achieve formation consensus, meaning they converge to configurations around a non-
predefined rendezvous point. Then, for each agent let bi ∈ Rn denote the relative
displacement of agent i with respect to the rendezvous point and define

x̄i = xi − bi.

Then, the agent dynamics take the form

˙̄xi = ui. (4.1)

Now, consider the group of agents (4.1) interconnected through inputs ui, forming
a communication network with a signed, undirected, connected, and structurally bal-
anced graph. Here, we address two kinds of problems: leaderless bipartite consensus
and leader-follower bipartite consensus. In the first case, the final states of the agents
are defined by their initial conditions, and they converge to two opposite equilibria. In
the second case, all the agents still converge to two symmetric equilibria, but the final
states are defined by the leaders. The study of these problems is important because
their solutions form a basis for addressing more realistic and complex problems. First,
we are interested in the conditions under which the following is achieved.

Definition 6 (Leaderless bipartite consensus) The systems (4.1)-(2.33) are said
to achieve bipartite position consensus if

lim
t→∞

ēxk = 0, (4.2)

where
ēxk := x̄i − sgn(aij)x̄j, (4.3)

are the synchronization errors in position for each pair of communicating agents with
k ≤ M , the index of the interconnection between the ith and jth agents, and M , the
total number of edges interconnecting agents in the network.
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That is, for agents i and j cooperative with each other, bipartite consensus implies
that x̄i → x̄j while for agents competitive with each other we have x̄i → −x̄j.

Thus, bipartite consensus is achieved for cooperative agents if x̄i − x̄j = 0, or equiv-
alently if

xi − xj = b̄ij,

where b̄ij = bi − sgn(aij)bj. For competitive agents, bipartite consensus is attained if
ēxk = x̄i + x̄j = 0, that is, if

xi + xj = b̄ij.

In the case of leader-follower bipartite consensus, as mentioned before, the final
states of the agents depend on the leader’s states. Then, to address the leader-follower
bipartite consensus problem, a natural and widely used approach in the literature is to
add a virtual leader in a group of agents that communicate over an undirected graph—
cf. [60, 89, 6] and [7, Chapter 4]. Assume that the dynamics of the virtual leader are
described by

ẋ0 = 0, x0 ∈ Rn. (4.4)

Next, to account for the nature of the interaction between the virtual leader and
the followers, let φi describe the interaction between the virtual leader and the agents
νi, i ≤ N , such that φi = 1 if the leader is cooperative with the agent i and φi = −1
otherwise. Then, we define

êi := x̄i − φix0, i ≤ N. (4.5)

So, in compact form, we have

ê = x̄− Φx0, (4.6)

where

Φ = [φ1, φ2, · · · , φN ]>, φi ∈ {1, −1}. (4.7)

That is, the leader-follower bipartite consensus is achieved when both synchronization
errors in (4.2) and the errors with respect to the leader defined in (4.5) converge to
zero. Then, we can formally define the leader-follower bipartite consensus problem as
follows.

Definition 7 (Leader-follower bipartite consensus) Let x0 ∈ Rn be the position
of the virtual leader ν0, whose dynamics is given in (4.4). The leader has a direct
interconnection with at least one follower. Then, the systems (4.1)-(2.33) are said to
achieve leader-follower bipartite position and velocity consensus if (4.2) and

lim
t→∞

êi(t) = 0, i ≤ N (4.8)

hold.
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That is, for agents labeled i that are cooperative with the virtual leader, bipartite
consensus implies that x̄i → x0 while for agents competitive with the virtual leader we
have x̄i → −x0.

Remark 12 In this chapter, we are interested in the problem of stabilization at a point,
whence the assumption on the dynamics of the leader. This can be seen, e.g., as part of
a more complex maneuver requiring the robots to gather statically around a rendezvous
point before starting a scouting mission—cf. [21, 43]. •

In the context of the problem studied in this chapter, the agents are asked to
achieve (leader-follower) bipartite consensus while satisfying inter-agent constraints
to ensure collision avoidance and connectivity maintenance. Then, for each pair of
communicating nodes νi and νj ∈ V , labeled k ≤ M , let δk := xi − xj be the physical
distance. The distance between positions remains in certain constraint sets, which are
defined as follows. Let Em denote the set of indices k corresponding to edges containing
pairs of cooperative agents, i.e., i, j ∈ Vl with l ∈ {1, 2}. In addition, for each k ≤M ,
let Rk > 0 and ∆k > 0. Then, we define the set of proximity constraints Ir and the
set of collision-avoidance constraints Ic as

(Proximity constraints) Ir := {δk ∈ Rn : |δk| < Rk, k ∈ Em} (4.9a)
(Collision-avoidance constraints) Ic := {δk ∈ Rn : |δk| > ∆k k ≤M}. (4.9b)

Under these conditions, it is required to design a distributed bipartite consensus control
law ui such that the synchronization errors ēxk in (4.3) satisfy (4.2) and the agents’
trajectories satisfy the proximity and collision-avoidance constraints. That is, it must
hold that δ(t) ∈ I for all t ≥ 0, with δ := [δ1 δ2 · · · δM ]>, I := Ir ∩ Ic for cooperative
agents and I := Ic for competitive agents.

Remark 13 Proximity constraints are only imposed on agents interconnected by a
cooperative edge. They are not imposed on competitive interactions since it is assumed
that the competitive agents have different objectives, so they do not stay close to each
other. •

In the next section, we explain how we design the control law using the gradient of
a nonlinear function to solve the constrained bipartite formation-consensus problem.

4.2 ANALYSIS AND CONTROL APPROACH

In the control approach, we are inspired by the classical bipartite consensus problem
without constraints to design the control law that achieves the bipartite consensus
of agents while guaranteeing the inter-agent constraints encoded in (4.9). The control
design and stability analysis both rely on the ability to construct appropriate Lyapunov
functions. For the purpose of guaranteeing the satisfaction of the constraints, we use so-
called barrier Lyapunov functions (BLFs). We study four cases depending on whether
the topology is directed or undirected and whether the individual dynamics are of first
or second order. For technical reasons, for second-order systems interconnected over
undirected networks, we use edge coordinates, and for the other cases, we use node
coordinates. Hence, we start by showing how we construct BLFs with domain in either
coordinate space.
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4.2.1 Barrier-Lyapunov functions in node coordinates

To put our contributions in perspective, let us consider first the systems modeled by
(4.1) without constraints in the multivariable form

˙̄x = u,

i.e., with x̄ = [x̄1 x̄2 . . . x̄N ]> and u = [u1 u2 . . . uN ]>, and interconnected via the
control law

u = −Lsx̄, (4.10)

where Ls is the resulting signed Laplacian matrix associated with the considered undi-
rected signed network—see Section 2.3. Then, the closed-loop system is

˙̄x = −Lsx̄,

which has been abundantly studied in the literature—see also Chapter 2. For the
purposes of this chapter, we remark the other evident fact that we can express the
control law (4.10) in the form of the gradient of a function, i.e.,

−Lsx̄ = −∇x̄V,

where

V (x̄) :=
1

2
x̄>Lsx̄

so
∇x̄V :=

∂V

∂x
= Lsx̄.

The latter follows from the fact that

V (x̄) =
1

4

N∑
i,j=1

|aij|(xi − sgn(aij)xj)
2,

which is the commonly used Lyapunov function candidate (LFC) in the literature, e.g.,
[2, 109].

Similarly, to address the problem of bipartite consensus under inter-agent con-
straints, for the first-order systems (4.1), the control input takes the general form

u = −∇V, (4.11)

where V is a nonlinear function encoding the control objective and the constraints,
whereas its gradient makes the synchronization errors in (4.3) converge to zero and
guarantees the collision-avoidance and connectivity maintenance constraints defined in
(4.9) between agents.

Following the works in [66, 77, 22, 91, 92], we choose to encode the constraints using
a barrier-Lyapunov function, and define our control law as a set of its gradient. Thus,
we first define a barrier-Lyapunov function (BLF)—cf. [54], [66], [76].
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Definition 8 Consider the system ẋ = f(x) and let I be an open set containing the
origin. A BLF is a positive definite function W : I → R≥0, x 7→ W (x), that is
C1, satisfies ∇W (x)f(x) ≤ 0, where ∇W (x) := ∂W/∂x, and has the property that
W (x)→∞, and ∇W (x)→∞ as x→ ∂I, where ∂I denotes the border of I.

Now, for each agent ˙̄xi = vi, we consider the BLF Vij : R→ R≥0,

Vij(s) =
1

2

[
|s|2 +Bij(s)

]
, (4.12)

where the first term is used to encode the control objective defined in (4.2) so that its
gradient achieves the bipartite formation objective, and Bij(s) encodes the constraints
in (4.9). More precisely, Bij(s) consists of two functions Bcij(s) and Brij(s) satisfying
Definition 8, and is defined as

Bij(s) = Bcij(s) +
1

2
(1 + σij)Brij(s), (4.13)

where Bcij(s) encodes the inter-agent collision avoidance constraints of agents inter-
connected over each edge. Brij(s) encodes the connectivity maintenance constraints
of agents interconnected over each cooperative edge, such that σij = 1 if the agents i
and j are cooperative and σij = −1 otherwise. Furthermore, let Brij(s) and Bcij(s) be
such that Brij(s) → ∞ as |s| → Rk and Bcij(s) → ∞ as |s| → ∆k. Thus, Bij(s) is
non-negative and satisfies Bij(0) = 0 and Bij(s)→∞ as |s| → ∆k for all edges and as
|s| → Rk for cooperative edges. A particular choice for these functions is given by

Brij(s) = ln

Å
R2
k

R2
k − |s|2

ã
, Bcij(s) = ln

Å |s|2

|s|2 −∆2
k

ã
. (4.14)

Remark 14 The barrier-Lyapunov functions in (4.14) are tailored to deal with sym-
metric constraints, but our results also apply to asymmetric constraints. For this, Brij

and Bcij may be redefined as

Brij(s) =
1 + γ

2
ln

Ç
R2
ka

R2
ka
− |s|2

å
+

1− γ
2

ln

Ç
R2
kb

R2
kb
− |s|2

å
,

Bcij(s) =
1 + γ

2
ln

Ç
|s|2

|s|2 −∆2
ka

å
+

1− γ
2

ln

Ç
|s|2

|s|2 −∆2
kb

å
,

where γ = −1 when s > 0 and γ = 1 when s ≤ 0, as in [86, 91, 92]. •

Now, after (4.12), we see that if we define Bij in function of the errors ēxk , Bij(ēxk)
has a minimum at {x̄i − sgn(aij)x̄j = 0} as desired, but Bij(ēxk) → ∞ as |x̄i −
sgn(aij)x̄j| → ∆k or |x̄i − sgn(aij)x̄j| → Rk, which is not the objective. Indeed, the
constraints are defined with respect to the relative quantities δk = xi−xj and not with
respect to the synchronization errors ēxk = x̄i − sgn(aij)x̄j defined in (4.3). Therefore,
the barrier function must be defined to satisfy the control objective in (4.3) expressed
in terms of ēxk while guaranteeing the constraints in (4.9) imposed on δk. To this end,
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for agents that are interconnected with cooperative edges, we define a weight-recentered
barrier function [25]. We define, for a pair of cooperative agents,

Ṽij(xi, xj) =
1

2
|x̄i − x̄j|2 + B̃ij(xi − xj) (4.15)

with

B̃ij(xi − xj) = κ1ij

[
Brij(xi − xj)−Brij(b̄ij)

]
+ κ2ij

[
Bcij(xi − xj)−Bcij(b̄ij)

]
, (4.16)

where Brij(·) and Brij(·) are defined in (4.14) and

κ1ij =
1

2

∆2
k

|b̄ij|2[|b̄ij|2 −∆2
k]
, κ2ij =

1

2

1

R2
k − |b̄ij|2

. (4.17)

The weight-recentered BLF in (4.15) combines a quadratic term and barrier functions to
enforce constraints on the relative positions and penalizes deviations within constrained
regions defined by ∆k and Rk. The recentering and weighting adapt the barrier’s
influence dynamically based on b̄ij and constraint parameters. Moreover, the weight-
recentered BF in (4.16) satisfies B̃ij(b̄ij) = 0 and ∇xiB̃ij(b̄ij) = 0, and we also have
B̃ij(xi − xj)→∞ as either |xi − xj| → ∆k or |xi − xj| → Rk, as desired.

On the other hand, for agents that are interconnected with competitive edges, we
use gradient recentered barrier functions [101], and we define“Vij(xi, xj) := Vij(xi − xj)− Vij(−2xj + b̄ij)−

∂Vij
∂s

(−2xj + b̄ij)(x̄i + x̄j), (4.18)

where Vij(·) is defined in (4.12). In this case, Bij(s) only contains the function Bcij

since connectivity constraints are not imposed on competitive edges (σij = −1). The
gradient recentered BF in (4.18) modifies the original barrier function defined in (4.12)
by subtracting a reference term Vij(−2xj+b̄ij) and a linear correction term based on the
gradient of Vij at the recentering point −2xj + b̄ij. Moreover, it satisfies “Vij(xi, xj) = 0

and ∇xi
“Vij(xi, xj) = 0 as ēxk = x̄i + x̄j = 0, and “Vij(xi, xj)→∞ as |δk| → ∆k for all

k ≤M .
We define different BLFs to address cooperative and competitive edges because

there are two inter-agent constraints for cooperative edges: connectivity and collision
avoidance, whereas there are only collision avoidance constraints for competitive ones.
The weight-recentered BLF allows us not to impose conservative conditions on the ini-
tial conditions of the agents while dealing with two constraints. On the other hand, in
the case of agents interconnected with competitive interactions, we use gradient recen-
tered barrier functions to shift the minimum of the function at the desired equilibrium
while dealing with the competitive edges. Thus, for the system in (4.1), we define the
BLF for each edge as the sum of BLFs in (4.15) and (4.18), i.e.,

V̄ij(xi, xj) :=
1 + σij

2
Ṽij(xi, xj)−

σij − 1

2
“Vij(xi, xj), (4.19)

where σij = 1 if the agents i and j are cooperative and σij = −1 otherwise.
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Notice that V̄ij in (4.19) has the desired properties by the definition of Ṽij in
(4.15) and “Vij in (4.18), since when x̄i − sgn(aij)x̄j = 0 it satisfies V̄ij(xi, xj) ≡ 0,
∇xiV̄ij(xi, xj) ≡ 0, and V̄ij(xi, xj)→∞ as |δk| → ∆k for k ≤ M , and as |δk| → Rk for
all k ∈ Em. Also, we note that {x̄i−sgn(aij)x̄j = 0} is a minimum of V̄ (xi, xj) and, as a
matter of fact, it is also a unique minimum even though V̄ (xi, xj) has a second critical
point, which we denote s∗ij—see Appendix A.3.1. Then, we define W̄ := ∪i,j≤NW̄ij,
where

W̄ij := {ᾱij, s∗ij},
ᾱij = b̄ij if agents i and j are cooperative and ᾱij = −2xj + b̄ij, otherwise, for any
k ≤M . Then, we define

V̄ (x) :=
N∑
i=1

∑
j∈Ni

V̄ij(xi, xj), (4.20)

where V̄ij(xi, xj) is defined in (4.19) and Ni corresponds to the set of the neighbors of
agent i. We remark for further development that

κ2

2
|δ|2W̄ ≤ V̄ (x), (4.21)

where |δ|W̄ := min{|δ − ᾱ|, |δ − s∗|}, α := [α1 α2 · · · αM ]> and s∗ := [s∗1 s
∗
2 · · · s∗M ]>.

In addition, we assume the following:

Assumption 3 The gradient of the barrier-Lyapunov function V̄ in (4.20) satisfies
the bound

1

2
|δ|2W̄ ≤ κ1|∇xV̄ |2,

where κ1 is a positive constant.

The domain of V̄ (x) in (4.20) is the nodes’ state space, which is appropriate for con-
trol design. In particular, the BLF in (4.20) encodes collision-avoidance constraints for
each edge and connectivity constraints for cooperative edges and is used to design the
gradient-based control law, which is used for first-order systems and directed networks.
For the other case studies, we use edge coordinates. Therefore, we recall below some
facts and notations related to consensus analysis in edge coordinates, and we show how
to redefine the BLF given in (4.20), in edge coordinates in graph theory [54, 23].

4.2.2 Barrier-Lyapunov functions in edge coordinates

Using the incidence matrix defined in Definition 2, we may express the synchronization
errors in (4.44) in the form

ēx =
[
E>s ⊗ In

]
x̄, ēv =

[
E>s ⊗ In

]
v. (4.22)

Then, for the purpose of analysis, we proceed to redefine the BLF in (4.20) in these
new coordinates. To that end, we note that the constraints, which are imposed on
the relative distances between the nodes, may be expressed in function of the edge-
coordinates ēxk as

δk = ēxk + b̄k, i, j ∈ Vl, l ∈ {1, 2}, (4.23)
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while for a pair of agents competitive with each other, the synchronization errors are

δk = ēxk + d̄k − 2xj, i ∈ Vp, j ∈ Vq, p, q ∈ {1, 2} p 6= q, (4.24)

with b̄k = bi − sgn(aij)bj. Then, from (4.23) and (4.24), the constraints sets in (4.9)
may be rewritten as

Ir = {ēxk ∈ Rn : |ēxk + αk| < Rk, k ∈ Em}, (4.25a)
Ic = {ēxk ∈ Rn : ∆k < |ēxk + αk|, k ≤M}, (4.25b)

and αk is defined as
αk := δk − ēxk . (4.26)

Then, for each cooperative edge, we define the weight recentered barrier function [25]
in edge coordinates as

W̃k(αk, ēk) =
1

2
|ēk|2+ κ1k

ï
ln

Å
R2
k

R2
k − |ēk + αk|2

ã
− ln

Å
R2
k

R2
k − |αk|2

ãò
+ κ2k

ï
ln

Å |ēk + αk|2

|ēk + αk|2 −∆2
k

ã
− ln

Å |αk|2

|αk|2 −∆2
k

ãò
, (4.27)

where

κ1k =
1

2

∆2
k

|αk|2(|αk|2 −∆2
k)
, κ2k =

1

2

1

R2
k − |αk|2

. (4.28)

and αk = bk. The weight recentered BLF in (4.27) satisfies W̃k(αk, 0) = 0 and
∇ēxW̃k(αk, 0) = 0, where∇ēxk

W̃k = ∂W̃k

∂ēxk
. Moreover, we also have that W̃k(αk, ēk)→∞

as either |δk| → ∆k or |δk| → Rk. On the other hand, for agents that are interconnected
with competitive edges, we define the gradient recentered barrier function [101] as

Ŵk(αk, ēxk) := Wk(ēxk + αk)−Wk(αk)−
∂Wk

∂s
(αk)ēxk . (4.29)

The gradient recentered barrier function in (4.29) satisfies Ŵk(αk, 0) = 0, ∇ēxk
Ŵk(αk,

0) = 0 and Ŵk(αk, ēxk)→∞ as |δk| → ∆k for k ≤M , and as |δk| → Rk for all σk = 1.
Now, for the system in (4.1), we define the BLF for each edge as the sum of the

BLFs in (4.27) and (4.29), i.e.,

W̄k :=
1 + σk

2
W̃k(αk, ēxk)−

σk − 1

2
Ŵk(αk, ēxk), (4.30)

with σk = 1 if agents i and j are cooperative and σk = −1 otherwise. Notice that W̄k

in (4.30) has the desired properties by the definition of W̃k in (4.27) and Ŵk in (4.29),
since it satisfies W̄k(αk, 0) ≡ 0, ∇ēxk

W̄k(αk, 0) ≡ 0, where ∇ēxk
W̄k = ∂W̄k/∂ēxk , and

W̄k(αk, ēxk)→∞ as |δk| → ∆k for k ≤ M , and as |δk| → Rk for all k ∈ Em. Also, we
note that {ēxk = 0} is a minimum of W̄ (αk, ·). As a matter of fact, it is also a unique
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minimum even though W̄ (αk, ·) has a second critical point, which we denote by e∗k—see
Appendix A.3.2—and we define W := ∪k≤MWk, where

Wk := {0, e∗k}

for any k ≤M . Then, let

W̄ (α, ēx) :=
M∑
k=1

W̄k(αk, ēxk), (4.31)

where W̄k(αk, ēxk) is defined in (4.30). Thus, to solve the constrained bipartite for-
mation problem, we provide below control laws of the generic form (4.11) in edge
coordinates, that is,

u = −k1 [Es ⊗ In]∇ēxW̄ + . . . ,

where W̄ is the nonlinear function defined in (4.31), in edge coordinates and encoding
the inter-agent distance constraints and the bipartite consensus objective in position.
The dots represent additional terms depending on the control objective and due to the
presence of competitive interactions and collision avoidance constraints.

For the purpose of analysis, we use another artifice, which consists in splitting the
state variables and which applies to structurally balanced signed graphs containing a
spanning tree (sufficient and necessary condition for bipartite consensus), is to distin-
guish the state-variables related to an underlying-tree graph Gt, from the rest of states,
corresponding to the graph Gc := G\Gt. Then, the consensus problem may be addressed
as that of the stabilization of the origin for a reduced-order system—see Appendix A.1
for an example. To better see this, let the incidence matrix Es be partitioned as [23, 54]

Es = [Ets Ecs ], (4.32)

where Ets ∈ RN×N−1 is the incidence matrix representing the edges of the spanning tree
of and Ecs ∈ RN×M−(N−1) is the incidence matrix representing the remaining edges. In
the Proposition 9 below we define Es in terms of Ets . Then, after (4.22) and (4.32) we
have

ēx = [(E>ts x̄)> (E>csx̄)>]>,

so we may define ēx =: [ē>xt ē>xc ]
>. The indices t and c refer to states of the graphs Gt

and Gc respectively. Proposition 9 establishes a relation between the consensus errors
ēx and the spanning-tree errors ēxt , from which it follows that the objective (4.2) is
attained if ēxt → 0.

Proposition 9 ([84]). For a structurally balanced signed graph, there exists a matrix
Rs such that

Es = EtsRs, (4.33)

where
Rs := [IN−1 Ts], Ts := (E>tsEts)

−1E>tsEcs . (4.34)
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Proof: Applying the edge-gauge transformation and using the partition of Es as in
(4.32) we express the incidence matrix of an unsigned graph E as

E = D[Ets Ecs ]De = [DEtsDet DEcsDec ], (4.35)

where De = diag([σet , σec ]) with σetj = {±1} and σecl = {±1} for j < N − 1 and l ≤
M −N + 1, Det = diag(σet) and Dec = diag(σec) are the parts of the edge-gauge trans-
formation matrix corresponding to the spanning tree and the remaining edges, respec-
tively. For an unsigned network, the columns of the incidence matrix representing the
remaining edges, Ec, are linearly dependent on the columns of the incidence matrix
representing the spanning tree, Et, and this can be expressed using a matrix T by
Ec = EtT [54, Theorem 4.3]. So, replacing Ec and Et by the expressions in (4.35) and
left multiplying it by (DEtsDet)

>, we obtain

(DEtsDet)
>DEcsDec = (DEtsDet)

>DEtsDetT

T = Det(E
>
tsEts)

−1E>tsEcsDec .

Then, we define Ts := DetTDec and Rs := [IN−1 Ts], and the statement in (4.33)
follows. �

The utility of Proposition 9 resides in the fact that

ēx = [(EtsRs)
> ⊗ In]x̄ = [R>s ⊗ In]ēxt . (4.36)

Therefore, the bipartite consensus problem may be addressed as that of stabilizing the
origin of a reduced-order system in terms of the spanning-tree errors. In particular, the
objective (4.2) is attained if ēxt → 0. We use this fact in what follows.

4.3 CONTROL OVER UNDIRECTED SIGNED NETWORKS

Now that we have modeled the dynamics and imposed constraints accordingly, we
address the constrained bipartite consensus problem for first- and second-order systems
interconnected over undirected signed networks.

Assumption 4 The signed undirected graph is connected and structurally balanced.

We consider agents under inter-agent constraints and interconnected over undirected
signed networks that are connected and structurally balanced, as stated in Assumption
4.

We know from Chapter 2 that in the case of an undirected and structurally unbal-
anced graph, all of the agents’ states converge to zero. Thus, if we relax the structural
balance property assumption on the undirected signed graph, the resulting Laplacian
matrix would not have a zero eigenvalue but only positive eigenvalues, making all
agents converge to zero. In the considered problem, as it is required to design a con-
trol law that guarantees inter-agent collision avoidance, making them converge to the
same state does not respect the imposed constraint. Thus, we only consider undi-
rected signed networks that are structurally balanced, both for first- and second-order
systems.
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4.3.1 First-order systems

Consider a group of N dynamical systems modeled by (4.1) over an undirected and
structurally balanced signed graph and subject to inter-agent distance constraints en-
coded by (4.9). Then, for the purpose of making them achieve bipartite consensus,
consider the BLF-gradient-based bipartite consensus control law,

ui = −k1

∑
j∈Ni

∇xiV̄ij, (4.37)

where V̄ij is defined in (4.19) and encodes the inter-agents constraints defined in (4.9).
Thus, the control can be written in vector form as

u = −k1∇xV̄ . (4.38)

Replacing (4.38) in (4.1), the closed-loop system reads

˙̄x = −k1∇xV̄ . (4.39)

For this system, we have the following.

Proposition 10 (Leaderless bipartite formation-consensus). Consider the system (4.1)
in closed loop with the control law (4.38), where V̄ (x) is defined in (4.20), and un-
der Assumptions 3 and 4. Then, the closed-loop system achieves bipartite formation-
consensus, that is (4.2) holds, while the collision-avoidance and connectivity-maintenance
constraints are maintained for almost all initial conditions such that δ(0) ∈ I, |αij(0)| >
∆k for any i, j ≤ N . Moreover, the set I defined in (4.9) is rendered forward invariant.

Proof: Consider the function V̄ (x) defined in (4.20). V̄ (x) is such that V̄ (x) = 0 for
∀x ∈ {ēx = 0} and its total derivate yields

˙̄V = ∇xV̄
>ẋ

= ∇xV̄
>(−k1∇xV̄ ) = −k1|∇xV̄ |2. (4.40)

Then, under the Assumption 3, we also have

˙̄V ≤ − k1

2κ1

|δ|2W̄ ≤ 0, (4.41)

where we recall that W̄ = {ᾱ, s∗} and s∗ are the saddle points of V̄ .
Now, for any ε > 0, let us define Iε, where Iε := Irε ∩ Icε for cooperative agents

and Iε := Icε for competitive agents, while Irε := {δk ∈ Rn : |δk| < Rk − ε, k ∈ Em}
and Icε := {δk ∈ Rn : ∆k + ε < |δk|, k ∈ Em}. Then, from the second inequality in
(4.41) and (4.21), δ(0) ∈ Iε ⇒ δ(t) ∈ I ′, where

I ′ :=

{
δ ∈ I : V (x) ≤ sup

δ∈Iε

 
2
V (x)

κ2

}
.
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Moreover, from the latter and the first inequality in (4.41), |δ|W̄ → 0 as t → ∞.
Furthermore, this holds for ε > 0 arbitrarily small, which implies asymptotic stability
of W̄ for all initial conditions, such that δ(0) ∈ I. However, since s∗ is a saddle
point of V̄ , the set of initial conditions generating solutions that converge to s∗ has
zero Lebesgue measure. Thus, almost all initial conditions generate trajectories that
converge to {δ = ᾱ}, which corresponds to {ēx = 0}, or equivalently, {xi − xj = b̄ij}
if the agents i and j are cooperative and to {xi + xj = b̄ij} if the agents i and j are
competitive. Thus, the statement follows. �

Remark 15 ([84]). The condition in Proposition 10 on αij(0) is not restrictive. For
cooperative agents, αij = b̄ij, so |αij(0)| > ∆ij means that the formation must respect
the collision-avoidance constraints (the formation must be “safe”). For competitive
agents, |αij(0)| > ∆ij means that | − 2xj(0) + b̄ij| > ∆ij, which restricts the initial
conditions in absolute coordinates, i.e., with respect to a fixed frame. However, in the
scenario considered in this section, the measurements are relative (edge coordinates).
That is, absolute positions are irrelevant, so xj(0) may be conveniently redefined by
replacing the origin of the fixed frame, if needed. •

In the next subsection, we extend the results from first-order systems to second-
order systems.

4.3.2 Second-order systems

Consider now a network of N dynamical systems having the following dynamics.

˙̄xi = vi, (4.42a)
v̇i = ui, x̄i ∈ Rn, i ≤ N, (4.42b)

where x̄i = xi − bi, xi is the agent’s position, and bi is a relative displacement defining
the desired geometric shape of the formation. In the absence of constraints, bipar-
tite consensus within a network of second-order systems over a signed graph may be
achieved via the control law—cf. [104],

ui =−
N∑
j=1

|aij|
[
k1[x̄i − sgn(aij)x̄j] + k2[vi − sgn(aij)vj]

]
, k1, k2 > 0. (4.43)

In (4.43), the first term of the control law guarantees the bipartite consensus on po-
sition, and the second term guarantees the bipartite consensus on velocity. Moreover,
as for first-order systems, we may define the synchronization errors

ēxk := x̄i − sgn(aij)x̄j, ēvk := vi − sgn(aij)vj, k ≤M, (4.44)

where k denotes the index of the interconnection between the ith and jth agents. Then,
we formulate the following problem of interest.

Definition 9 (Leaderless bipartite consensus for 2nd-order systems)
The systems (4.42)-(4.43) are said to achieve bipartite position and velocity consensus
if

lim
t→∞

ēxk(t) = 0, lim
t→∞

ēvk(t) = 0, k ≤M. (4.45)
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That is, for agents i and j cooperative with each other, bipartite consensus implies
that (x̄i, vi)→ (x̄j, vj) while for agents competitive with each other we have (x̄i, vi)→
(−x̄j,−vj).

Definition 10 (Leader-follower bipartite consensus for 2nd-order systems) Let
x0 ∈ Rn be the position of the virtual leader ν0, whose dynamics is given in (4.4) and is
accessible to at least one follower. Then, the systems (4.42)-(4.43) are said to achieve
leader-follower bipartite position and velocity consensus if (4.45) and

lim
t→∞

êi(t) = 0, i ≤ N. (4.46)

That is, for agents i cooperative with the static virtual leader, bipartite consensus
implies that (x̄i, vi)→ (x0, 0) while for agents competitive with the static virtual leader
we have (x̄i, vi)→ (−x0, 0).

Under these conditions, it is required to design a distributed bipartite consensus
control law ui such that the synchronization errors in position and velocity, as defined in
(4.44), satisfy (4.45) and the agents’ trajectories satisfy the connectivity maintenance
and collision-avoidance constraints, that is, δ(t) ∈ I—see (4.9).

As we explained before, for second-order systems interconnected over undirected
networks, for technical reasons, we choose to work in edge coordinates. Let k1, k2 > 0
and k3 ≥ 0. Then, we introduce the BLF-gradient-based bipartite formation-consensus
control law,

ui :=− k1

M∑
k=1

[Es]ik∇ēxk
W̄k − k1

M∑
k=1

[E]ik∇αkW̄k − k2

M∑
k=1

[Es]ikēvk − k3vi, (4.47)

where W̄ is defined in (4.31) and E := E − Es, where E corresponds to the incidence
matrix of the unsigned version of the signed network —See Definition 2.38.1 From its
definition, E is a matrix containing only the information of competitive interactions in
the network. Thus, the control law in (4.47) is given in the vector form as

u = −k1 [Es ⊗ In]∇ēxW̄ − k1 [E⊗ In]∇αW̄ − k2 [Es ⊗ In] ēv − k3v, (4.48)

where the first two terms in (4.48) ensure bipartite position consensus while the third
guarantees velocity bipartite consensus, i.e., that (4.45) holds. The second term
is needed specifically to cope with competitive agents; technically, it stems from a
Lyapunov-control redesign—elucidated in the proof of Proposition 11. In the last
term, if k3 > 0, the velocities v → 0. Therefore, this gain may be set to a positive
value or zero, depending on the control goal, be that the vehicles continue to advance
(v 6→ 0) or that they converge to two rendezvous points in formation (v → 0), one for
cooperative and one for competitive agents—see Section 4.3.3 for an example.

1A structurally balanced signed network can be transformed into an unsigned one using the gauge
transformation —see Subsection 2.3 and [2, 23].
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Remark 16 In [19], the authors propose a bipartite formation control law for multi-
agent systems over undirected signed networks and under inter-agent distance con-
straints. This control law is given by

ui :=− k1

M∑
k=1

[Es]ik∇ēxk
Ŵk − k1

M∑
k=1

[B]ik∇αkŴk − k2

M∑
k=1

[Es]ikēvk − k3vi, (4.49)

where B = (1 + β)(βI + EtsL
−1
etsE

>
ts)
−1(E − Es), β > 0. Note that to compute B, global

knowledge of the network is needed. This renders the control law (4.49) centralized. In
contrast to this, the control law proposed in (4.47) is distributed and solves leaderless
and leader-follower bipartite formation control problems. •

We perform the stability analysis of the system (4.42) in closed loop with the
bipartite formation control law (4.48), in terms of spanning-tree coordinates. To that
end, using the definitions of the edge-based formulation, we express the control law
(4.48) in terms of the spanning tree errors ēxt—see equations (4.36)—by introducing
a function W̃k defined as W̃ (α, ēxt) = W̄ (α,

[
R>s ⊗ In

]
ēxt), with W̄ defined in (4.31).

Then, after (4.36), the gradient of W̃ with respect to ēxt yields,

∇ēxt
W̃ =

∂W̃ (α, ēxt)
>

∂ēx

∂ēx
∂ēxt

= ∇ēxW̄
> [Rs ⊗ In]> . (4.50)

After (4.33) and (4.50), the control law in (4.48) may be wirtten in spanning-tree
coordinates as

u = −k1 [Ets ⊗ In]∇ēxt
W̃ − k2

[
EtsRsR

>
s ⊗ In

]
ēvt − k3v − k1 [E⊗ In]∇αW̃ . (4.51)

Then, differentiating (4.22) on both sides and using v̇ = u, with u defined in (4.51),
we obtain the following in terms of the errors corresponding to the spanning-tree:

˙̄ext = ēvt (4.52a)
˙̄evt =− k1 [Lets ⊗ In]∇ēxt

W̃ − k1

[
E>tsE⊗ In

]
∇αW̃

− k2

[
LetsRsR

>
s ⊗ In

]
ēvt − k3ēvt , (4.52b)

where E>tsEts = Lets corresponds to the edge Laplacian associated with a spanning tree
and hasN−1 edges. This can be easily seen by using the edge-gauge transformation and
obtaining the edge Laplacian matrix corresponding to a spanning tree of an unsigned
network, i.e., Let = DeLetsDe. Also, we have De = D>e = D−1

e so DeLetsDe is a
similarity transformation, which implies that the spectra of Let and Lets coincide.
Consequently, as Let has the same N − 1 non-zero eigenvalues of the Laplacian matrix
L, and so does Lets—see [19, Remark 3].

In what follows, we present two statements on leaderless and leader-follower bipar-
tite consensus, using control laws of the form (4.48).
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4.3.2.1 Leaderless bipartite formation-consensus-control problem

For the closed-loop system (4.52), in spanning-tree coordinates, we have the following.

Proposition 11 (Leaderless bipartite formation-consensus [84]). Consider the system
(4.42) in closed loop with the distributed control law (4.48), with W̄ (α, ēx) as defined
in (4.31). Assume that the resulting network is structurally balanced and contains a
directed spanning tree. Then, the set {(ēx, v) = (0, 0)} is asymptotically stable for
almost all initial conditions such that (ēx(0), v(0)) ∈ I×RnN and |αk(0)| > ∆k for any
k ≤M .

Proof: First, employing (4.36), we express the inter-agent distance constraints in
(4.25) in terms of the errors corresponding to the spanning tree. Let It := Irt ∩ Ict for
cooperative agents and It := Ict for competitive agents, where

Irt := {ēxt ∈ Rn(N−1) : |[rsk ⊗ In]> ēxtk + αk| < Rk, k ∈ Emt}, (4.53)

Ict := {ēxt ∈ Rn(N−1) : ∆k < |[rsk ⊗ In]> ēxtk + αk|, k ≤ N − 1}, (4.54)

rsk is the kth column of Rs and Emt denotes the set of indices k corresponding to the
N − 1 edges of the spanning-tree graph interconnecting pairs of cooperative agents.

Next, we proceed to analyze the system (4.52). To that end, consider the Lyapunov
function candidate

V (α, ēxt , v) = k1W̃ (α, ēxt) +
1

2
|v|2, (4.55)

where W̃ (α, ēxt) is defined in (4.31), and k1 > 0. Therefore, V in (4.55) is positive
definite with respect to the state variables ēxt and ēvt . In addition, by its construction,
V (α, ēxt , v) → ∞ as ēxt approaches the boundary ∂It of the set It in (4.53), for a
given ēvt and v. We also remark that the positivity of V holds uniformly in α. More
precisely, there exists µ > 0 such that µ[|ēxt |2 + |v|2] ≤ V (α, ēxt , v) and V (α, ēxt , v)→ 0
as |ēxt | → 0 and |v| → 0.

Next, we compute the total derivative of V . For (4.42b) and (4.51), we have

v̇ = −k1 [Ets ⊗ In]∇ēxtW̃ − k2

[
EtsRsR

>
s ⊗ In

]
ēvt − k3v − k1 [E⊗ In]∇αW̃ . (4.56)

Then,

V̇ (α, ēxt , v) = k1∇ēxtW̃
> ˙̄ext + k1∇αW̃> [E⊗ In]> v + v>

î
−k1 [Ets ⊗ In]∇ēxtW̃

−k2

[
EtsRsR

>
s ⊗ In

]
ēvt − k3v − k1 [E⊗ In]∇αW̃

ó
,

so using (4.33) and (4.36), we obtain

V̇ (α, ēxt , v) =− k2|ēv|2 − k3|v|2, (4.57)

which is negative semidefinite for all (ēxt , v) ∈ It × RnN .
Next, we use LaSalle’s invariance theorem. On the set {(ē, v) : V̇ = 0} we have

ēv = 0 and v = 0. We also remark that from the definition of α in (4.26), we have
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α = [E ⊗ In]> x− [Es ⊗ In]> x̄, so α̇ = [(E − Es)⊗ In]> v = [E⊗ In]> v. Consequently,
α̇ = 0 meaning that α is constant. Furthermore, after (4.56), we have

− k1 [Ets ⊗ In]∇ēxtW̃ = k1 [E⊗ In]∇αW̃ , (4.58)

and after (4.29), we also have

∇αW̃ = ∇ēxt
W̃ − ∂

∂α

ß
∂W

∂α
(α)

™
ēxt . (4.59)

Since α remains constant on {V̇ = 0}, the last term on the right-hand-side of (4.59)
equals to zero. Thus, (4.58) holds if and only if −k1 [(Ets + Et − Ets)⊗ In]∇ēxt

W̃ = 0.
Now, since Et is full rank (because it corresponds to the incidence matrix of a spanning
tree) it follows that ∇ēxt

W̃ = 0, which holds if and only if ēt ∈ W t, whereW t = {0, e∗t}
and e∗t is the saddle point of W̃ . Therefore, the solutions converge to the setW t×{0}.
However, since e∗t is a saddle point of W̃ , the set of initial conditions generating solutions
that converge to (e∗t , 0) has zero Lebesgue measure. Thus, almost all initial conditions
generate trajectories that converge to the origin. Asymptotic stability follows.

Next, we show that asymptotic stability holds for almost all initial conditions in
It ×RnN . Referring to (4.53), ēt ∈ It implies ē ∈ I, so we must show that It ×RnN is
forward invariant. To that end, for any r and ε ≥ 0, let us define

Dr,ε := {v ∈ Br, ēt ∈ Iε},

where Iε := Icε ∩Irε for cooperative agents and Iε := Icε for competitive agents, while

Iεr := {ēxtk ∈ Rn : |ēxtk + αk| < Rk − ε, k ∈ Emt}, (4.60a)

Iεc := {ēxtk ∈ Rn : ∆k + ε < |ēxtk + αk|, k ≤ N − 1}. (4.60b)

From the definition of W̃ (α, ēt), V (α, ēxt , v) is positive definite on Iε for all ēxt ∈ Iε,
v ∈ RnN and for all ε. From (4.57), we have

|ēxt(t)|2 + |v(t)|2 ≤ 1

µ
V (α(0), ēxt(0), v(0)).

Then,

(ēxt(0), v(0)) ∈ Dr,ε ⇒ (ēxt(t), v(t)) ∈ D′, (4.61)

where

D′ :=
ß

(ēxt , v) ∈ It × RnN : V (α, ēxt , v) ≤ γr,ε

™
,

and

γr,ε := sup
(ēxt ,v)∈Dr,ε
α∈RnN

 
V (α, ēxt , v)

µ
.
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Note that γr,ε is well defined because V is uniformly bounded in α and Dr,ε is bounded.
After LaSalle’s invariance principle, we conclude that all the trajectories contained in
D′ converge to the set W t × {0}. After (4.61), that is all the trajectories starting in
Dr,ε. This holds for any r > 0 arbitrarily large and ε > 0 arbitrarily small. Thus,
again because W t = {0, e∗t}, and e∗t is a saddle point, we conclude that the origin is
asymptotically stable for almost all trajectories ēxt(t), v(t) starting in It × RnN , or
equivalently for almost all trajectories ēx(t), v(t) starting in I × RnN . �

We now address the problem of leader-follower bipartite formation.

4.3.2.2 Leader-follower bipartite formation-consensus-control problem

Proposition 11 addresses the leaderless bipartite consensus problem. As in previous
sections, it takes simple modifications to our control law to address the leader-follower
bipartite problem. To that end, we introduce now a virtual leader to the system, and
we modify the BLF-gradient-based bipartite formation-consensus control input as

ui :=− k1

M∑
k=1

[Es]ik∇ēxk
W̄k − k1

M∑
k=1

[E]ik∇αkW̄k − k2

M∑
k=1

[Es]ikēvk

− k3vi − k1ali êi, (4.62)

where ali = 1 if there is an information exchange between the virtual leader and the
agent i and ali = 0 otherwise, E := E − Es, and the BLF is redefined as

W̄ (α, ēx, ê) =
M∑
k=1

Å
1 + σk

2
W̃k(αk, ēx)−

σk − 1

2
Ŵk(αk, ēx)

ã
+

1

2

N∑
i=1

ali |êi|2. (4.63)

Thus, the control law in (4.62) can be written in the vector form as

u = −k1 [Es ⊗ In]∇ēxW̄ − k1 [E⊗ In]∇αW̄ − k2 [Es ⊗ In] ēv − k3v − k1∇êW̄ . (4.64)

We analyze the stability of (4.42) and (4.4) in closed loop with the bipartite formation
control law (4.64). Now, after (4.36), (4.33) and (4.50), the control law in (4.64)
becomes

u =− k1 [Ets ⊗ In]∇ēxt
W̃ − k2

[
EtsRsR

>
s ⊗ In

]
ēvt − k3v

− k1 [E⊗ In]∇αW̃ − k1∇êW̃ , (4.65)

where the last term ensures that all agents cooperative with the virtual leader converge
to the virtual leader’s position and to its symmetric states if they are competitive,
and k3 should be greater than zero. The new closed-loop system, in spanning-tree
coordinates, is

˙̄ext = ēvt (4.66a)
˙̄evt =− k1 [Lets ⊗ In]∇ēxt

W̃ − k2

[
LetsRsR

>
s ⊗ In

]
ēvt − k3ēvt

− k1

[
E>tsE⊗ In

]
∇αW̃ − k1 [Ets ⊗ In]>∇êW̃ (4.66b)

For the latter, we have the following.
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Proposition 12 (Leader-follower bipartite formation-consensus [84]). Consider the
system (4.42) and (4.4) in closed loop with the distributed control law (4.65), with
W̄ (α, ēx) as defined in (4.63), and assume that the resulting network is structurally
balanced and contains an underlying spanning tree. Then, the set {(ēx, v, ê) = (0, 0, 0)}
is asymptotically stable for almost all initial conditions such that (ēx(0), v(0), ê(0)) ∈
I × RnN × RnN and |αk(0)| > ∆k for any k ≤M .

Proof: We consider the Lyapunov function candidate in (4.55). In this context, a
virtual leader is considered in the network, so the Lyapunov function also depends on
ê, defined in (4.6), that is

V (α, ēxt , v, ê) = k1W̃ (α, ēxt , ê) +
1

2
|v|2, (4.67)

where W̃ (α, ēxt , ê) is defined in (4.63). Therefore, V is positive definite with respect to
the state variables ēxt , ēvt and ê. In addition, by its construction, V (α, ēxt , v, ê)→∞
as ēxt approaches the boundary ∂It of the set It in (4.53) and |ê| → ∞, for a given ēvt
and v. We also remark that the positivity of V holds uniformly in α. More precisely,
there exists µ > 0 such that µ[|ēxt |2 + |v|2 + |ê|2] ≤ V (α, ēxt , v, ê) and V (α, ēxt , v, ê)→ 0
as |ēxt | → 0, |v| → 0 and |ê| → 0.

Next, we compute its total derivative along the trajectories of

˙̂e = v (4.68a)

v̇ = −k1 [Ets ⊗ In]∇ēxtW̃ − k2

[
EtsRsR

>
s ⊗ In

]
ēvt − k3v

− k1 [E⊗ In]∇αW̃ − k1∇êW̃ . (4.68b)

We obtain

V̇ (α, ēxt , v, ê) = k1∇ēxtW̃
> ˙̄ext + k1∇αW̃> [E> ⊗ In] v + k1∇êW̄

> ˙̂e+ v> [−k3v

−k1[Ets ⊗ In]∇ēxtW̃ − k2[EtsRsR
>
s ⊗ In]ēvt − k1[E⊗ In]∇αW̃ − k1∇êW̃

ó
,

so using (4.68a), (4.33) and (4.36), we obtain

V̇ (α, ēxt , v) =− k2|ēv|2 − k3|v|2, (4.69)

which is negative semidefinite for all (ēx(0), v(0), ê(0)) ∈ I × RnN × RnN so the origin
is stable.

Next, we use LaSalle’s invariance theorem. On the set {(ē, v, ê) : V̇ = 0}, we have
ēv = 0 and v = 0, which means that α is constant. In turn, after (4.68), we have

− k1 [Ets ⊗ In]∇ēxtW̃ − k1∇êW̃ = k1 [E⊗ In]∇αW̃ . (4.70)

On the other hand, since α ≡ const on {V̇ = 0}, and with (4.59), it follows that

− [Et ⊗ In]∇ēxt
W̃ −∇êW̃ = 0 ⇔ −

[
Et IN

]ñ∇ēxt
W̃

∇êW̃

ô
= 0.
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Et corresponds to the incidence matrix of a spanning tree, so it is full rank, and IN is
also full rank. The matrix

[
Et IN

]
has linearly independent columns, so is also full

rank. It follows that ∇ēxt
W̃ = 0 and ∇êW̃ = 0, which holds if and only if ēt ∈ W t and

ê = 0. Therefore, the solutions converge to the set W t × {0} × {0}. However, since e∗t
is a saddle point of W̃ , the set of initial conditions generating solutions that converge
to (e∗t , 0, 0) has zero Lebesgue measure. Thus, almost all initial conditions generate
trajectories that converge to the origin. Asymptotic stability follows.

The rest of the proof follows similar lines as in the proof of Proposition 11. We
show that asymptotic stability holds for almost all initial conditions in It × RnN ×
RnN . Referring to (4.53), ēt ∈ It implies ē ∈ I, so we must show that It × RnN is
forward invariant. To that end, for any r1, r2 and ε ≥ 0, let us define Dr1,r2,ε := {v ∈
Br1 , ê ∈ Br2 , ēt ∈ Iε}, where Iε is defined in (4.60). From the definition of W̃ (α, ēxt , ê),
V (α, ēxt , v, ê) is positive definite on Iε for all ēxt ∈ Iε, v ∈ RnN , ê ∈ RnN and for all ε.
From (4.69), we have

|ēxt(t)|2 + |v(t)|2 + |ê(t)|2 ≤ 1

µ
V (α(0), ēxt(0), v(0), ê(0)).

Then,

(ēxt(0), v(0), ê(0)) ∈ Dr1,r2,ε ⇒ (ēxt(t), v(t), ê(t)) ∈ D′, (4.71)

where

D′ :=
ß

(ēxt , v, ê) ∈ It × RnN × RnN : V (α, ēxt , v, ê) ≤ γr,ε

™
,

and

γr,ε := sup
(ēxt ,v,ê)∈Dr1,r2,ε

α∈RnN

 
V (α, ēxt , v, ê)

µ
.

Note that γr,ε is well defined because V is uniformly bounded in α and Dr,ε is bounded.
After LaSalle’s invariance principle, we conclude that all the trajectories contained in
D′ converge to the setW t×{0}×{0}. After (4.71), that is all the trajectories starting
in Dr1,r2,ε. This holds for any r > 0 arbitrarily large and ε > 0 arbitrarily small. Thus,
again because W t = {0, e∗t}, and e∗t is a saddle point, we conclude that the origin is
asymptotically stable for almost all trajectories starting in It × RnN × RnN . �

4.3.3 Numerical examples

We present some numerical examples to show the performance of our control laws (4.48)
and (4.64). We consider a structurally balanced signed network of nonholonomic mobile
robots. Let ri = [rxi ryi ]

> be the inertial position, θi the orientation, vi the linear speed,
ωi the angular speed, mi the mass, Ji the moment of inertia, Fi be the applied force
and torque, and ηi := [Fi τi]

>. Then, the robot’s model is given by the equations
in (3.50). Then, defining sθi := sin θi and cθi := cos θi and choose the reference point
pi = ri+δi

[
cθi sθi

]> located at a distance δi = 0.1m along the line that is perpendicular
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to the wheels’ axis and we express the system in terms of new coordinates defined in
(3.51). Then, differentiating on both sides of the latter and using (3.50), we obtain
(3.52). The feedback-linearizing control ηi is given by (3.53), which yields[

ζ̇1i ζ̇2i

]>
=
[
ζ3i ζ4i

]>
, (4.72a)[

ζ̇3i ζ̇4i

]>
= ui. (4.72b)

4.3.3.1 Leaderless bipartite formation-consensus

We first provide a numerical example to show the performance of our control law (4.48)
with k1 = 1, k2 = 1.2, k3 = 1 and the barrier-Lyapunov function in (4.31). To that
end, we implement (3.53) with ui as in (4.48), xi = [ζ1i ζ2i ]

>, vi = [ζ3i ζ4i ]
>, mi = 8kg

and Ji = 0.12kg/m2, ∀i ≤ N .

ν1 ν2
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e8
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Figure 4.1: Network 1: A structurally balanced, leaderless, and undirected signed network of
10 mobile robots. The black lines represent cooperative edges, and the red lines represent the
competitive ones.

We consider an undirected signed network of 10 agents and 10 edges as the one de-
picted in Figure 4.1, subject to inter-agent collision avoidance and connectivity main-
tenance restrictions. We define the orientation of the edges as follows:

e1 = ν1 + ν2, e2 = ν1 − ν3, e3 = ν1 − ν4, e4 = ν2 − ν5, e5 = ν2 − ν6,

e6 = ν2 − ν7, e7 = ν3 − ν8, e8 = ν5 − ν9, e9 = ν6 + ν10, e10 = ν3 + ν5.

The incidence matrix corresponding to the graph is

Es =



1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 1 0 0 0 0
0 −1 0 0 0 0 1 0 0 1
0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 1 0 1
0 0 0 0 −1 0 0 0 1 0
0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 1 0


.
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Figure 4.2: Bipartite formation of system (4.42) with control input (4.48). The asterisks
are the inertial positions of the robots. The reference points pi of the mobile robots, on the
black circles around the asterisks, of the two disjoint subgroups form a formation around two
symmetric consensus points.

The set of nodes may be split into two disjoint subsets, such as

V1 = {ν1, ν3, ν4, ν8, ν10}, V2 = {ν2, ν5, ν6, ν7, ν9}

so the network is structurally balanced.
From the decomposition in (4.32), edges ei, i ≤ 9 correspond to Gt and the remain-

ing edge e10 corresponds to Gc. Since the considered network has the same number of
edges as the number of nodes, the eigenvalues of Ls and Les are

λLs = λLes = 0, 0.33, 0.58, 0.67, 0.79, 2, 2.5, 3.41, 4, 5.7.

The respective agents’ initial states are

rx(0) =
[
3.5 3.7 −2.5 3.5 −2 5 5 8 6 −4

]>
,

ry(0) =
[
2 1.7 −6 2.5 1 2.3 1.8 −3 5.5 −4

]>
,

v(0) =
[
0.2 0.45 0.32 0.32 1.12 0.3 0.4 0.22 0.42 −0.14

]>
,

θ(0) =
[
0 −0.46 −1.25 0.32 −0.46 0 0 −1.11 −0.79 −0.79

]>
,

and the relative displacements are

dx =
[
−0.8 −0.8 −0.4 0.4 −0.4 0.4 −0.4 0.4 0.4 −0.4

]>
,

dy =
[
0 0 0.4 0.4 0.4 0.4 −0.4 −0.4 −0.4 −0.4

]>
.
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Figure 4.3: Bipartite formation of system (4.42) with control input (4.48) on position.
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Figure 4.4: Bipartite formation of system (4.42) with control input (4.48) on velocity, where
k3 > 0. The velocities of all agents converge to zero.

The constraint sets are ∆k = 0.2 for all k ≤ M and Rk = 11 for all k ∈ Em. The
paths of each agent up to bipartite formation are depicted in Figure 4.2. The reference
points of the mobile robots reach the desired formation around two symmetric consen-
sus points. The velocities of mobile robots are depicted in Figure 4.4, and velocities
converge to zero. Moreover, it is clear from Figures 4.3, and 4.5 that the inter-agent col-
lision avoidance and connectivity maintenance constraints in (4.9a)–(4.9b) are always
respected.
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Figure 4.5: Trajectories of the norm of the inter-agent distances with control input (4.48).
The dashed lines are the minimum, and the dotted lines are the maximum distance constraints
for agents. All inter-agent safety proximity constraints are respected.

4.3.3.2 Leader-follower bipartite formation-consensus
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Figure 4.6: Network 2: A structurally balanced undirected signed network of 10 mobile robots
with a virtual leader ν0.

We then provide a numerical example to show the performance of our control law
(4.64), in the presence of a virtual leader ν0, with k1 = 1, k2 = 1.2, k3 = 1 and the
barrier-Lyapunov function in (4.63). We consider the same undirected signed network
in Figure 4.1 with a virtual leader ν0 giving information to agent ν1, depicted in Figure
4.6. The virtual leader’s position is

x0 = [−2 − 3]>,

and

Al = diag(1, 0, . . . , 0), Φ =
[
1 −1 1 1 −1 −1 −1 1 −1 1

]>
.

The respective agents’ inertial positions, velocities, and orientations are the same as
before, while the relative displacements are

dx =
[
−0.8 0.8 −0.4 0.4 −0.4 0.4 0.4 0.4 −0.4 −0.4

]>
,
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Figure 4.7: Bipartite formation of system (4.42) with control input (4.64). The asterisks
are the inertial positions of the robots. The reference points pi of the mobile robots, on the
black circles around the asterisks, of the two disjoint subgroups form a formation around two
symmetric consensus points.
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Figure 4.8: Bipartite formation of system (4.42) with control input (4.64) on position.

dy =
[
0 0 0.4 0.4 0.4 0.4 −0.4 −0.4 −0.4 −0.4

]>
.

The constraints are also set as before. The paths of each agent up to leader-follower
bipartite formation are depicted in Figure 4.7. Agents in V1 converge around the
virtual leader’s position, while agents in V2 reach formation around the virtual leader’s
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Figure 4.9: Bipartite formation of system (4.42) with control input (4.64) on velocity, where
k3 > 0. The velocities of all agents converge to zero.
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Figure 4.10: Trajectories of the norm of the inter-agent distances with control input (4.64).
The dashed lines are the minimum, and the dotted lines are the maximum distance constraints
for agents. All inter-agent safety proximity constraints are respected.

symmetric position. The velocities of mobile robots are depicted in Figure 4.9, and
velocities converge to zero. Moreover, it is clear from Figures 4.8 and 4.10 that the inter-
agent collision avoidance and connectivity maintenance constraints in (4.9a)–(4.9b) are
always respected.

4.4 CONTROL OVER DIRECTED SIGNED NETWORKS

In this section, we extend our previous results to the case of directed topology networks.
The results of this section on a class of directed signed graphs are new to the literature.
In particular, we address the constrained bipartite consensus problem for first- and
second-order systems interconnected over directed signed networks and we do so in
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node coordinates.
As we explained in Chapter 2, in the case of a directed and structurally unbalanced

graph, there are many possibilities for the behavior of the agents, depending on the
presence of a root node. For instance, if the structurally unbalanced digraph is strongly
connected, which rules out the presence of a root node, then all the agents’ states
converge to zero. Technically, this can be inferred from the fact that, in this case, the
resulting Laplacian matrix does not have a zero eigenvalue but only positive ones. Note
that having all the agents converging to the origin (or any other common equilibrium)
is an undesirable behavior because that implies that they collide. In contrast, if the
digraph contains a root node and is structurally unbalanced, multiple equilibria may
appear. This, in turn, prevents achieving bipartite consensus, which necessarily implies
the existence of only two equilibria. Thus, we only consider directed signed networks
satisfying the following.

Assumption 5 The signed directed graph is structurally balanced and contains a di-
rected spanning tree.

4.4.1 First-order systems

Consider a group of N dynamical systems modeled by (4.1) over an undirected and
structurally balanced signed graph and subject to inter-agent distance constraints en-
coded by (4.9). Then, for the purpose of making them achieve bipartite consensus,
consider the BLF-gradient-based bipartite consensus control law (4.38), where V̄ij is
defined in (4.19) and encodes the inter-agents constraints defined in (4.9). Thus, the
closed-loop system reads

˙̄x = −k1∇xV̄ . (4.73)

For this system, we have the following.

Proposition 13 Consider the system (4.1) in closed loop with the control law (4.38),
with V̄ (x) as defined in (4.20), under Assumptions 3 and 5. Then, the closed-loop
system achieves bipartite formation-consensus, that is (4.2) holds, while the collision-
avoidance and connectivity-maintenance constraints are satisfied, for almost all initial
conditions such that δ(0) ∈ I and |αk(0)| > ∆k for any k ≤M .

Proof: Consider the Lyapunov function candidate V̄ (x) defined in (4.20). Its total
derivate reads

˙̄V = −k1|∇xV̄ |2 ≤ −
k1

2κ
|δ|2W̄ . (4.74)

As in the proof of Proposition 10, from (4.74) we conclude that W̄ is asymptotically
stable so this statement of Proposition 13 follows using similar arguments as for Propo-
sition 10. �

We wrap up the technical contents of this chapter by addressing the bipartite con-
sensus problem with collision avoidance and connectivity maintenance for networks of
second-order systems.
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4.4.2 Second-order systems

We consider a group of N dynamical systems modeled by (4.42) over a structurally
balanced digraph, as in the previous section, but for technical reasons, we strengthen
Assumption 5 to the following.

Assumption 6 The signed directed graph is strongly connected, weight-balanced, and
structurally balanced.

Then, for the purpose of making the agents achieve bipartite consensus, as we did in
Section 4.3.2, we consider a BLF-gradient-based bipartite consensus control law defined
as

u = −k1∇xV̄ − k2 [Ls ⊗ In] v − k3v, (4.75)

where, in this case, V̄ij is defined in node coordinates in (4.19). This function encodes
the inter-agents constraints defined in (4.9), and Ls is the resulting Laplacian matrix
associated with the directed graph under Assumption 6. Thus, the closed-loop system
reads

˙̄x = −k1∇xV̄ − k2 [Ls ⊗ In] v − k3v, (4.76)

For this system, we have the following.

Proposition 14 Consider the system (4.42). Under Assumption 6, the controller
(4.75), with V̄ (x) as defined in (4.20), guarantees bipartite formation-consensus, that is
(4.45) holds, and the inter-agent collision avoidance and connectivity maintenance con-
straints are respected for almost all initial conditions such that (δ(0), v(0)) ∈ I ×RnN ,
where I is defined in (4.9), and |αk(0)| > ∆k for any k ≤M .

Proof: Consider the following Lyapunov function.

V (x, v) = k1V̄ (x) +
1

2
|v|2,

where V̄ (x) is defined in (4.20). More precisely, there exists µ̄ > 0 such that µ̄[|δ −
α|2 + |v|2] ≤ V (x, v) and V (x, v)→ 0 as |δ| → α and |v| → 0. Its derivative gives

V̇ = k1∇xV̄
>ẋ+ v>v̇

= k1∇xV̄
>v +

1

2
v>(−k1∇xV̄ − k2 [Ls ⊗ In] v − k3v)

+
1

2
(−k1∇xV̄ − k2 [Ls ⊗ In] v − k3v)>v

= − 1

2
k2v
> [(Ls + L>s )⊗ In

]
v − k3v

>v.

In view of Assumption 6, Ls + L>s is a symmetric positive semidefinite matrix with a
single zero eigenvalue so Ls + L>s ≥ 0—see [54, 2]. Then V̇ ≤ 0, which is negative
semi-definite for all (δ, v) ∈ I × RnN .

Next, we use LaSalle’s invariance theorem. On the set {V̇ = 0} we have v = 0
and Lsv = 0, which gives vi − sgn(aij)vj = 0. Then from (4.75), we have ∇xV̄ = 0,
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which holds if and only if δ ∈ W̄ , where W̄ = {ᾱ, s∗} and s∗ are the saddle points
of V̄ . Therefore, the solutions converge to the set W̄ . However, since s∗ is a saddle
point of V̄ , the set of initial conditions generating solutions that converge to (s∗, 0)
has zero Lebesgue measure. Thus, almost all initial conditions generate trajectories
that converge to (ᾱ, 0), (i.e., xi − xj = b̄ij if the agents i and j are cooperative and
xi + xj = b̄ij if the agents i and j are competitive and v = 0). Asymptotic stability
follows. The rest of the proof follows similar arguments as in the proof of Proposition
11. �

4.4.3 Numerical examples

We present some numerical examples to show the performance of our control laws (4.73)
and (4.75). We consider a structurally balanced signed network of mobile robots. We
first consider the constrained bipartite consensus problem of first-order systems, then
that of second-order systems.

4.4.3.1 First-order systems

We present a numerical example to show the performance of our control law (4.73),
where k1 = 1, and the barrier-Lyapunov function V̄ (x) as defined in (4.20). We consider
a structurally-balanced directed signed network of 6 nonholonomic mobile robots, with
a competitive leader, as the one illustrated in Figure 4.11. The competitive leader
represents a static obstacle that other mobile robots should avoid. The robot’s model
is given by the equations in (3.50).

ν1 ν2 ν4

ν3

ν5

ν6
e5

e3

e4

e1

e2

Figure 4.11: A structurally-balanced and directed signed network of 6 mobile robots. The
black lines represent cooperative edges, and the red line represents the competitive one. The
competitive leader represents a static obstacle.

The incidence and the in-incidence matrices corresponding to the graph are

Es =


1 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 , Es� =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 .

123



-4 -3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

Figure 4.12: Bipartite formation of system (4.73). The asterisks are the inertial positions of
the robots. The mobile robots avoid the obstacle, represented by agent 1 in red, and form a
formation around the obstacle’s symmetric state.
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Figure 4.13: Trajectories of the norm of the inter-agent distances of system (4.73). The dashed
lines are the minimum, and the dotted lines are the maximum distance constraints for agents.
All inter-agent safety proximity constraints are respected.

The set of nodes may be split into two disjoint subsets, such as

V1 = {ν1}, V2 = {ν2, ν3, ν4, ν5, ν6}

so the network is structurally balanced. The respective agents’ initial states are

rx(0) =
[
−2 −3 −4 1 3.5 −1.3

]>
, ry(0) =

[
−2 −4 −3 2.1 2 1

]>
,
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and the relative displacements are

dx =
[
0 0 0 −0.4 −0.4 −0.8

]>
, dy =

[
0 −0.4 0.4 −0.4 0.4 0

]>
.

The constraint sets are ∆1,1 = 0.8 and ∆3,4,5 = 0.2 and Rk = 10 for all k ∈ Em.
The paths of each agent up to bipartite formation are depicted in Figure 4.12. The
mobile robots avoid the obstacle and reach the desired formation around the obstacle’s
symmetric position. It is clear from Figure 4.13 that the inter-agent collision avoidance
and connectivity maintenance constraints in (4.9a)–(4.9b) are always respected.

4.4.3.2 Second-order systems

We present a numerical example to show the performance of our control law (4.75),
where k1 = 1, k2 = 1.2, k3 = 1 and the barrier-Lyapunov function in (4.20). We con-
sider a strongly connected, weight-balanced, and structurally-balanced directed signed
network of 6 nonholonomic mobile robots, as the one illustrated in Figure 4.14. The
robot’s model is given by the equations in (3.50).

ν1 ν6ν3

ν5 ν2 ν4

e1

e2

e3 e4

e5

e6

Figure 4.14: A strongly connected, weight-balanced, and structurally-balanced directed signed
network of 6 mobile robots. The black lines represent cooperative edges, and the red lines
represent the competitive ones.

The incidence and the in-incidence matrices corresponding to the graph are

Es =


1 0 0 0 0 1
0 1 0 0 1 0
−1 0 1 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 −1 0 1

 , Es� =


0 0 0 0 0 1
0 0 0 0 1 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0

 .

The set of nodes may be split into two disjoint subsets, such as

V1 = {ν1, ν3, ν5}, V2 = {ν2, ν4, ν6}

so the network is structurally balanced. The respective agents’ initial states are

rx(0) =
[
3.5 −3.6 −2.5 −5.3 −2 0.5

]>
, ry(0) =

[
−2 1.7 −0.6 2 1 2

]>
,

v(0) =
[
0 0 0 0 0 0

]>
,

and the relative displacements are

dx =
[
−0.6 −0.6 0.6 0 0 0.6

]>
, dy =

[
0.6 −0.6 0.6 0.6 −0.6 −0.6

]>
.
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Figure 4.15: Bipartite formation of system (4.42) with control input (4.75). The asterisks
are the inertial positions of the robots. The mobile robots form a formation around two
symmetric consensus points.
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Figure 4.16: Bipartite formation of system (4.42) with control input (4.75) on velocity, where
k3 > 0. The velocities of all agents converge to zero.

The constraint sets are ∆k = 0.1 for all k ≤ M and Rk = 8 for all k ∈ Em. The paths
of each agent up to bipartite formation are depicted in Figure 4.15. The mobile robots
reach the desired formation around two symmetric consensus points. The velocities of
mobile robots are depicted in Figure 4.16, and velocities converge to zero. Moreover,
it is clear from Figure 4.17 that the inter-agent collision avoidance and connectivity
maintenance constraints in (4.9a)–(4.9b) are always respected.

4.5 CONCLUSIONS

We presented a BLF-based distributed control law to solve the constrained bipartite
formation-consensus control problem for first- and second-order systems over struc-
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Figure 4.17: Trajectories of the norm of the inter-agent distances with control input (4.75).
The dashed lines are the minimum, and the dotted lines are the maximum distance constraints
for agents. All inter-agent safety proximity constraints are respected.

turally balanced signed networks that are undirected and directed. Compared to the
literature, the proposed control laws are based on the gradient of a BLF and guar-
antee inter-agent collision avoidance for every agent in the networks and connectivity
maintenance for two cooperative agents. We performed the stability analysis of the sys-
tems, first in terms of the node coordinates and then in terms of the synchronization
errors, using Lyapunov’s direct method. We also illustrated the practical application
of our results through numerical simulations involving the formation-consensus control
of nonholonomic vehicles. In the next Chapter, we will use the results presented here
to address nonlinear systems, i.e., robot manipulators, satellites, etc.
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CHAPTER 5

FORMATION CONTROL OF EULER-LAGRANGE SYSTEMS
WITH INTER-AGENT CONSTRAINTS

In this chapter, we first address the bipartite formation-control problem of robot ma-
nipulators’ end-effectors under relative-distance constraints and in the presence of dis-
turbances. Next, we tackle the bipartite formation problem of a flying spacecraft con-
taining competitive satellites under collision avoidance and connectivity maintenance
constraints. In both cases, we model the networked system of cooperative-competitive
agents, interconnected over a structurally balanced undirected signed graph, using the
Euler-Lagrange equations.

We consider first a networked system of cooperative-competitive robot manipula-
tors. The formation goal is imposed on the manipulators’ end-effectors. Such scenarios
are motivated, for example, by applications in industrial robotics in which the robots
share the same workspace but are assigned symmetric tasks by the team. Ideally, the
robot manipulators should occupy the minimum space while evolving with guaranteed
safety and increased reactivity.

The study of this problem has a solid precedent. Compared to the related literature—
see e.g., [79, 103, 102], our results apply to networks of robot manipulators having
both cooperative and competitive interactions. Then, in contrast to the literature on
the bipartite consensus problem of robot manipulators over signed networks—see e.g.,
[45, 29, 111, 20, 115, 31, 46, 42, 40, 65], we address the problem under inter-agent con-
straints. We consider inter-agent constraints on the end-effectors to keep a minimum
safety distance between any pair of interconnected end-effectors to avoid collisions and a
maximum distance maintenance to make certain the task requirements for cooperative
end-effectors are guaranteed. Compared to [15, 26], in which the control strategies rely
on optimization techniques, and to [24], in which artificial potential functions are used,
we base our controller on the gradient of a barrier-Lyapunov function. In contrast to
[15, 26], our controller applies to signed networks, and contrary to [24], a minimal safety
distance between agents is ensured. Our results follow up on our findings described
in Chapter 4, but here we consider robot manipulators modeled by Euler-Lagrange
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equations, not simple integrators, and we establish robustness with respect to external
perturbations. To that end, we follow the frameworks of [99, 61, 102], to use an internal
model to reject the disturbances, but contrary to these references, our work considers
signed networks. Compared to [20, 115, 31] and [65], in which the presence of distur-
bances is considered, we also address minimum and maximum distance constraints on
the end-effectors.

Then, we consider the bipartite formation-control problem of a network of flying
spacecraft under collision avoidance and connectivity maintenance constraints. Such
a scenario is motivated by aerospace applications, in which the spacecraft has the ob-
jective to recognize objects in space while avoiding enemy satellites or other obstacles
during the mission. We address the problem by using the relative translational dynam-
ics developed in [1]. Compared to the related literature—see e.g., [64, 16, 70, 1, 47], our
results apply to networks of satellites having both cooperative and competitive inter-
actions. Moreover, in contrast to [64, 16, 70, 1, 47] and the literature on the bipartite
consensus problem of flying spacecraft over signed networks—see e.g., [114, 113], we
address the problem under inter-agent constraints.

Our control design and analysis, to address both problems described above, rely on
the edge-based formulation for signed networks [23] described in Section 2.4.2, which
allows to recast the problem into one of stabilization of the origin in error coordinates.
We establish asymptotic stability of the bipartite formation manifold using Lyapunov’s
direct method. To the best of our knowledge, similar results are not available in the
literature for robot manipulators or satellites interconnected over networks containing
competitive interactions.

5.1 LAGRANGIAN FORMULATION

We consider a network of N systems with n-degrees-of-freedom, modeled by the Euler-
Lagrange equations

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +
∂

∂qi
Ui(qi) = τ ∗i , i ≤ N, (5.1)

where qi, q̇i, q̈i ∈ Rn are the generalized joint position, velocity, and acceleration re-
spectively, Mi(qi) ∈ Rn×n is the inertia matrix, U : Rn → R is the potential energy
function and τ ∗i ∈ Rp is the control input. As it is customary, we assume the following.

Assumption 7 The following properties hold.

1. There exist ci and c̄i > 0 such that, ciI ≤Mi(qi) ≤ c̄iI for all qi ∈ Rn.

2. The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.

3. The Coriolis matrix Ci(qi, q̇i) is uniformly bounded in qi. Moreover

|Ci(qi, q̇i)q̇i| ≤ kci |q̇i|2

for kci > 0.
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We first address the bipartite formation of cooperative-competitive robot manipu-
lators with inter-agent end-effector constraints. This work was carried out during my
research stay at the University of Groningen. Then, we study the constrained bipartite
formation of a network of cooperative and competitive satellites. For both of the ad-
dressed problems, we consider a structurally balanced and undirected signed network,
and the agents are modeled by the Euler-Lagrange equations in (5.1).

5.2 ROBUST FORMATION OF ROBOT MANIPULATORS WITH
INTER-AGENT END-EFFECTOR CONSTRAINTS

The study of the bipartite formation-control problem of robot manipulators’ end-
effector under constraints is motivated, as mentioned before, by applications in in-
dustrial robotics for robots working on opposite surfaces or on opposite corners of a
product without collisions. It can also be used for robot manipulators that are placed
at opposite sides of a conveyor with the mission of placing the products on the conveyor
with antisymmetric movements. By placing signs on certain edges, we force one group
of manipulators to perform the task on one side and the other group to perform its task
on the other (symmetric) side. In such applications, the realistic objective is for coop-
erative manipulators either to follow a leader who may be interacting with a human
operator, or to execute a predefined task and follow a trajectory. One way to tackle
this type of problem is to solve the basic problem of signed networks, i.e., the bipartite
consensus or bipartite formation problem, as are the consensus and leader-tracking
control problems for traditional cooperative agents.

5.2.1 Problem statement

Let
xi = xi0 + hi(qi), (5.2)

denote the position of the end-effector of the ith manipulator, where xi0 is the position
of the manipulator’s base and hi : Rn → Rp is the mapping from joint-space to the task
space [57]. Differentiating (5.2) with respect to time, we obtain the relation between
the task-space velocity and joint velocity [57]

ẋi = Ji(qi)q̇i, Ji(qi) :=
∂hi(qi)

∂qi
q̇i, (5.3)

where Ji(qi) ∈ Rn×p is the Jacobian matrix of the forward kinematics.
The bipartite-formation-control problem consists in the end-effectors’ positions of

the cooperative agents reaching a desired geometric shape around a consensus value,
while the end-effectors’ positions of non-cooperative agents converge to another spatial
configuration. The characteristics of the formation shape are defined through the
relative biases bi and bj with respect to the consensus points. Formally, we can thus
define the bipartite formation control objective as

lim
t→∞

x̄i(t)− sgn(aij)x̄j(t)→ 0, i, j ≤ N, (5.4)
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where

x̄i := xi − bi, (5.5)

and aij ∈ R is the adjacency weight between the two agents.
In an all-cooperative-agents setting, consensus means that all x̄i converge to the

same value, but in this case, since some robot manipulators are cooperative and others
are competitive, all the end-effectors reach two symmetrical consensus values. For the
purpose of control design and analysis, this boils down to making certain synchroniza-
tion errors to converge to zero. Akin to Chapter 2 these errors correspond to the edges
on the graph and are defined as

ēxk := x̄i − sgn(aij)x̄j, k ≤M, (5.6)

where x̄i is defined in (5.5) and k denotes the index of the interconnection between the
ith and jth end-effectors. As described in Section 2.3, since aij is either positive or
negative, the resulting network is modeled by a signed graph.

Now, as mentioned in Chapter 4, in view of the constraints imposed on the end-
effectors, considering the structurally unbalanced case for undirected signed networks
is not interesting since making all end-effectors converge to the origin does not respect
the collision-avoidance objective. Therefore, we impose the following.

Assumption 8 The systems described in (5.1), which are interconnected via inputs τi,
form a structurally balanced (see Definition 1), undirected, and connected signed graph.

In addition, it is imposed that the controller τ ∗i ensures that the end-effectors do not
collide and remain within their sensing ranges. Akin to the previous chapter, this comes
to ensuring that for any pair of communicating nodes νi and νj ∈ V , the corresponding
positions remain in certain constraint sets, which are defined as follows. Let Em denote
the set of indices k corresponding to edges containing pairs of cooperative agents, i.e.,
i, j ∈ Vl with l ∈ {1, 2} and δk := xi− xj. In addition, for each k ≤M , let Rk > 0 and
∆k > 0. Then, we define

(Task requirement constraints) Ir := {δk ∈ Rn : |δk| < Rk, k ∈ Em} (5.7a)
(Collision-avoidance constraints) Ic := {δk ∈ Rn : |δk| > ∆k k ≤M}, (5.7b)

where Ir is the set of task requirement constraints and Ic is the set of collision-avoidance
constraints. Under these conditions, it is required to design a distributed bipartite
formation dynamic controller of the form

τ ∗i = fi(ēxk , qi, q̇i),

that ensures that,

lim
t→∞

ēxk(t) = 0, lim
t→∞

q̇i(t) = 0, k ≤M, i ≤ N, (5.8)

and the manipulators’ end-effector’s trajectories satisfy the proximity and collision-
avoidance constraints. That is, it must hold that δ(t) ∈ I for all t ≥ 0, with δ :=
[δ1 δ2 · · · δM ]>, I := Ir ∩ Ic for cooperative manipulators and I := Ic for competitive
manipulators.
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5.2.2 Control in the absence of disturbance

The control approach follows the developments in Chapter 4. That is, we address the
considered problem as one of stabilization of the origin in edge coordinates, which in
this case correspond exactly to the synchronization errors in (5.6). Then, in order to
respect the inter-agent constraints, the control input is designed as the gradient of a
so-called barrier-Lyapunov function. Next, we discuss in more detail each aspect of the
control design.

5.2.2.1 Control design

For the purpose of analysis, we define the BLF in edge coordinates corresponding to the
synchronization errors, defined in (5.6). On the other hand, as was the case in Chapter
4, the constraints are imposed on relative distances δk whereas the control objective for
the end-effectors is defined in terms of ēxk . Then, we can express the relative distance
between two end-effectors in terms of ēxk as in (4.23) if they are cooperative, and as in
(4.24) otherwise. Then, considering the constraints as defined in (4.25) in function of
the synchronization errors and the definition of αk in (4.26), we define

W̄k(αk, ēxk) :=
M∑
k=1

Å
1 + σk

2
W̃k(αk, ēxk)−

σk − 1

2
Ŵk(αk, ēxk)

ã
, (5.9)

where σk = 1 if end-effectors i and j are cooperative and σk = −1 otherwise, W̃k

is defined in (4.27) for cooperative edges and Ŵk is defined in (4.29) for competitive
edges. The BLF in (5.9) encodes collision-avoidance constraints for each edge between
end-effectors and connectivity constraints for cooperative edges and is used to design
the gradient-based control law. Moreover, it satisfies W̄k(αk, 0) = 0, ∇ēxk

W̄k(αk, 0) = 0

and W̄k(αk, ēxk)→∞ as |δk| → ∆k for all k ≤ M , and as |δk| → Rk for all σk = 1.
Also, we note that {ēxk = 0} is a minimum of W̄ (αk, ·) and, as a matter of fact, it
is also a unique minimum even though W̄ (αk, ·) has a second critical point, which we
denote e∗k. Then, as in Chapter 4, defining W := ∪k≤MWk, where

Wk := {0, e∗k}

for any k ≤M , we have
κ1

2
|ēxk |2Wk

≤ W̄k(αk, ēk) (5.10)

for all αk ∈ Rn and ēk such that ē ∈ I, where |ēk|Wk
:= min{|ēk|, |ēk − e∗k|}.

Thus, using the BLF above, we define the BLF-gradient-based bipartite formation
control law as

τ ∗i =− k1iJi(qi)
>

[
M∑
k=1

[Es]ik∇ēxk
W̄k +

M∑
k=1

[E]ik∇αkW̄

]
− k2i q̇i +

∂

∂qi
Ui(qi), (5.11)

where k1i > 0, k2i > 0 for all i ≤ N ,

E = E − Es, (5.12)
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E is the incidence matrix of the cooperative version of the considered network, and Es
is the incidence matrix of the considered signed network.

The control law in (5.11) is reminiscent of the one in (4.47), but includes extra
terms proper to the nonlinear model of robot manipulators. The first two terms in the
control law in (5.11) are needed to ensure the bipartite formation of end-effectors while
respecting the inter-agent constraints imposed on the task space. The second term is
needed specifically because of the use of the gradient recentered barrier function and the
presence of competitive interactions between agents. These two terms are multiplied
by the elements of the Jacobian matrix since the torque enters from the joint levels, but
the bipartite formation objective and the constraints are imposed on the end-effectors.
The rest of the control law is the usual passivity-based control. The third term is
needed to control the joint velocity. It corresponds to a damping injection to steer the
joint velocity at zero. The last term compensates for the gravitational force.

5.2.2.2 Stability analysis in the absence of disturbances

We analyze the stability of the bipartite formation manifold in (5.6) for the closed-loop
system (5.1) interconnected by the control law (5.11). To that end, using the definition
of the incidence matrix, we represent the synchronization errors in (5.6) and αk defined
in (4.26), in vector form

ēx =
[
E>s ⊗ In

]
x̄, (5.13a)

α =
[
E> ⊗ In

]
x−

[
E>s ⊗ In

]
x̄. (5.13b)

Let

W̄ (α, ēx) =
M∑
k=1

W̄k(αk, ēxk) (5.14)

where W̄k is defined in (5.9). Then, we write the closed-loop system (5.1)–(5.11) in the
compact form

q̈ =−M(q)−1
[
C(q, q̇)q̇ +K1J(q)>[Es ⊗ In]∇ēxW̄ (α, ēx)

+K1J(q)>[E⊗ In]∇αW̄ (α, ēx) + [K2 ⊗ In]q̇
]
, (5.15)

where q = [qi], M(q) = blkdiag[Mi(qi)], C(q, q̇) = blkdiag[Ci(qi, q̇i)], K1 = diag(k1i),
K2 = diag(k2i) and J(q)> = blkdiag[Ji(qi)

>], ∀i ≤ N . For this system, we have the
following.

Proposition 15 ([81]) Consider N robot manipulators modeled by (5.1), with di = 0
and satisfying the Assumptions 7 and 8, in closed loop with the distributed control
law (5.11), with k1i, k2i > 0, for all i ≤ N and W̄k as defined in (5.9). Then, for
any given formation shape reachable by the end-effectors, the set {(ēx, q̇) = (0, 0)} is
asymptotically stable for almost all initial conditions such that (ēx(0), q̇(0)) ∈ I ×RnN

and |αk(0)| > ∆k for any k ≤M .
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Proof: After Assumption 8, the considered graph is undirected and connected, so
it contains a spanning tree. Then, as for the more ordinary scenario of consensus,
the result may be assessed by analyzing the dynamics of the agents that belong to the
spanning-tree—see [23], [54], [76]. To obtain the closed-loop equations in spanning-tree
coordinates, following the latter, we first recall that

Es = [Ets Ecs ], (5.16)

where Ets ∈ RN×N−1 is the incidence matrix representing the edges of the spanning tree,
corresponding to the spanning-tree graph Gt, and Ecs ∈ RN×M−(N−1) is the incidence
matrix representing the remaining edges, corresponding to Gc := G\Gt. Consequently,
after (5.13a) and (5.16), the errors can be expressed as ēx = [(E>ts x̄)> (E>csx̄)>]>, which
gives ēx := [ē>xt ē>xc ]

>. Furthermore, for a structurally balanced signed graph, there
exists a matrix Rs such that

Es = EtsRs, (5.17)

where Rs := [IN−1 Ts] and Ts := (E>tsEts)
−1E>tsEcs—see Proposition 1 in [19]. No-

tably, the following relationship between the synchronization errors ē and the spanning-
tree errors ēxt holds:

ēx = [(EtsRs)
> ⊗ In]x̄ = [R>s ⊗ In]ēxt , (5.18)

so the bipartite formation objective (5.8) is achieved if ēxt → 0 and q̇ → 0. On the
other hand, a similar relation holds for α defined in (5.13b):

α = [E> ⊗ In]x+ [E>s ⊗ In]b, (5.19)

where E is defined in (5.12), b := [b1 b2 · · · bM ]> with bk := bi− sgn(aij)bj and k ≤M .
The matrix E corresponds only to competitive edges. Thus, akin to (5.16), we can
write E = [Et Ec] and α = [α>t α>c ]>. Thus,

E = EtRs (5.20)

and

α = R>s
[
[E>t ⊗ In]x+ [E>ts ⊗ In]b

]
= [R>s ⊗ In]αt. (5.21)

Next, to express the control law in spanning-tree coordinates, we introduce

W̃ (αt, ēxt) := W̄ (R>s αt, R
>
s ēxt). (5.22)

That is, in view of (5.18) and (5.21), W̃ (αt, ēxt) denotes the same quantity as the right-
hand-side of (5.14), but in spanning-tree coordinates, so W̃ maps It × RnN → RnN

≥0 ,
where It := Irt ∩ Ict for cooperative agents and It := Ict for competitive agents, and

Irt := {ētxk ∈ Rn : |[r>sk ⊗ In][ētxk + αtk ]| < Rk , k ∈ Emt}, (5.23)

Ict := {ētxk ∈ Rn : ∆k < |[r>sk ⊗ In][ētxk + αtk ]|, k ≤ N − 1}, (5.24)

Emt denotes the set of indices k corresponding to the N − 1 edges of the spanning-tree
graph containing pairs of cooperative agents, and rsk is the kth column of Rs. The
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set It defines the constraints in spanning-tree coordinates. Using W̃ , we define the
gradient-based control terms

∇ēxt
W̃ ≡ ∂W̄ (α, ēx)

>

∂ēx

∂ēx
∂ēxt

= ∇ēxW̄
>[R>s ⊗ In],

∇αtW̃ ≡
∂W̄ (α, ēx)

>

∂α

∂α

∂αt
= ∇αW̄

>[R>s ⊗ In]. (5.25)

Thus, in spanning-tree edge coordinates, Eq. (5.15) becomes

q̈ =−M(q)−1
î
C(q, q̇)q̇ +K1J(q)>[Ets ⊗ In]∇ēxt

W̃ (αt, ēxt)

+ K1J(q)>[Et ⊗ In]∇αtW̃ (αt, ēxt) + [K2 ⊗ In]q̇
ó
. (5.26)

The rest of the proof consists in establishing asymptotic stability of the origin
{(ēxt , q̇) = (0, 0)} and forward invariance of the set It × RnN , for the trajectories of
(5.26). First, consider the Lyapunov function candidate

V (αt, ēxt , q̇) = W̃ (αt, ēxt) +
1

2
q̇>M(q)q̇, (5.27)

where M(q) = M(q)>. Also, we remark that V is positive definite in ēxt and q̇, and
bounded from above uniformly in αt. More precisely, there exist µ1 > 0 such that
µ1 [|ēxt|2 + |q̇|2] ≤ V (αt, ēxt , q̇), and V (αt, ēxt , q̇)→ 0 as |ēxt | → 0 and |q̇| → 0.

Now, its derivative satisfies

V̇ =∇ēxt
W̃>[Ets ⊗ In]>Jq̇ +∇αtW̃

>[Et ⊗ In]>Jq̇

+
1

2
q̇>Ṁ q̇ − q̇>C(q, q̇)q̇ − q̇>[K ⊗ In]q̇

− q̇>J(q)>[Ets ⊗ In]∇ēxt
W̃ − q̇>J(q)>[Et ⊗ In]∇αtW̃

=− 1

2
q̇>
î
Ṁ − 2C(q, q̇)

ó
q̇ − q̇>[K ⊗ In]q̇.

But since Ṁ − 2C(q, q̇) is skew-symmetric, we obtain

V̇ (αt, ēxt , q̇) =− q̇>[K ⊗ In]q̇ ≤ 0, (5.28)

for all (ēxt , q̇) ∈ It×RnN so the origin is stable and the solutions are uniformly bounded.
Next, we use LaSalle’s invariance theorem. To that end, we first note that on the set
{q̇ ∈ RnN : V̇ = 0}, we have q̇ = 0, and consequently, q̈ = 0. In view of (5.3), it follows
that ẋ = 0 because ẋ = J(q)q̇. In turn, since all the functions on the right-hand-side
of (5.26) are continuous, we have

J(q)>[Ets ⊗ In]∇ēxt
W̃ + J(q)>[Et ⊗ In]∇αtW̃ = 0. (5.29)

On the one hand, we have

∇αtW̃ = ∇ēxt
W̃ − ∂

∂αt

ß
∂W

∂αt
(αt)

™
ēxt , (5.30)
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and, because α = [E> ⊗ In]x− [E>s ⊗ In]x̄, then α̇ = [E⊗ In]>ẋ and α̇t = [Et ⊗ In]>ẋ.
Thus, α̇t = 0, which is equivalent to αt ≡ const on {V̇ = 0}. In turn, the last term
of the right-hand-side of (5.30) equals to zero. Then, from (5.29) and using (5.12),
J(q)>[(Ets + Et − Ets)⊗ In]∇ēxt

W̃ = J(q)>[Et ⊗ In]∇ēxt
W̃ = 0. Now, since Et is full

rank (because it corresponds to the incidence matrix of a spanning tree) it follows that
∇ēxt

W̃ = 0, which holds if and only if ēxt ∈ W t, where W t = {0, e∗t} and e∗t is the
saddle point of W̃ . Therefore, the solutions converge to the set W t × {0}. However,
since e∗t is a saddle point of W̃ , the set of initial conditions generating solutions that
converge to (e∗t , 0) has zero Lebesgue measure. Thus, almost all initial conditions
generate trajectories that converge to the origin. Asymptotic stability follows. The
rest of the proof follows similar arguments as in the proof of Proposition 11. �

Remark 17 The workspace of a manipulator is the total volume or area within which
the end-effector can move, determined by joint configurations and link lengths. The
reachable set is a subset of this workspace, representing the specific points the end-
effector can access while satisfying certain constraints. The reachable set is always
smaller than or equal to the workspace, as it includes only those points achievable
under specific conditions. •

Remark 18 The statement of Proposition 15 goes beyond the control of manipulators’
end-effectors. This analysis may also serve as a basis for solutions to other problems,
such as the control formation of cooperative-competitive satellites under inter-agent
constraints. The latter is addressed at the end of the chapter. •

5.2.3 Control in the presence of disturbances

Consider now a network of N robot manipulators with n-degrees-of-freedom, in the
presence of disturbances, i.e., modeled by

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +
∂

∂qi
Ui(qi) = τi + di, i ≤ N, (5.31)

where di ∈ Rn represents an external disturbance generated by an exosystem. As in
[61] and [102], we consider that the external disturbances are modeled by

di = dM,i + Ji(qi)
>dE,i, (5.32)

where dM,i ∈ Rn , dE,i ∈ Rp and Ji(qi) ∈ Rn×p is the Jacobian matrix. The disturbance
di is generated by an exosystem of the form

ẇM,i = SM,iwM,i, dM,i = CM,iwM,i, (5.33a)
ẇE,i = SE,iwE,i, dE,i = CE,iwE,i, i ≤ N (5.33b)

where wM,i, wE,i ∈ Rli , SM,i, SE,i ∈ Rli×li and CM,i, CE,i ∈ Rn×li . As in [99], we assume
the following.

Assumption 9 The exosystems SM,i and SE,i are assumed to be neutrally stable, that
is, all the eigenvalues of SM,i and SE,i are different and lie on the imaginary axis, and
they are nonsingular. Moreover, they are assumed to be known.
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Such an assumption is satisfied in various scenarios involving human-robot-environment
interactions because the disturbance is expressed as a sum of sinusoidals—cf. [99],
which is a truncated finite Fourier approximation of general external bounded distur-
bances.

The control design for perturbed systems as in (5.31) builds on the control law
τ ∗ in (5.11), which is effective to achieve bipartite formation among the end-effectors
while respecting the imposed constraints. To cope with the disturbances, however, the
controller is endowed with its own dynamics. That is, let

χ̇i = f1i(ēxk , qi, q̇i, χi)

τi = f2i(ēxk , qi, q̇i, χi).

The dynamical system χ̇i is designed to estimate the disturbances, and the control law
τi is defined by redesigning τ ∗i to contain a disturbance-rejection term that depends on
χi.

5.2.3.1 Robust control redesign

The disturbance estimator is designed based on an internal model-based approach
[61, 102, 99]. Let

χ̇1i = AM,iχ1i −BM,iui, (5.34a)
χ̇2i = AE,iχ2i −BE,iJi(qi)ui, (5.34b)

where χ1i ∈ Rli , χ2i ∈ Rli , AM,i ∈ Rli×li , AE,i ∈ Rli×li , BM,i ∈ Rli×n, BE,i ∈ Rli×n, ui ∈
Rn is the input to the internal model dynamics, which is defined later, AM,i+A>M,i = 0,
AE,i + A>E,i = 0 and the pairs (B>M,i, AM,i) and (B>E,i, AE,i) are observable. We also
assume, as in [61] and [102], that the eigenvalues of the matrix SM,i in (5.33) and AM,i

and the eigenvalues of SE,i in (5.33) and AE,i are identical. Under these conditions,
there exist transformation matrices TM,i ∈ Rli×pi and TE,i ∈ Rli×pi , such that—cf. [33,
Section 4.2]

TM,iSM,i = AM,iTM,i, B>M,iTM,i + CM,i = 0 (5.35a)

TE,iSE,i = AE,iTE,i, B>E,iTE,i + CE,i = 0. (5.35b)

Then, we can rewrite (5.34) in the compact form as

χ̇i = Aiχi −Bi(qi)ui, (5.36)

where

χi =
[
χ1i χ2i

]>
, Ai =

ï
AM,i 0

0 AE,i

ò
, Bi(qi) =

[
BM,i Ji(qi)

>BE,i

]
.

Next, the control law is redesigned using χi, and the input ui will be defined later,
using the internal model. Then, we define the following estimation error coordinates:
χ̃i, for the estimate of the disturbance, and d̃i, for the disturbance, that is

χ̃i = χi − Tiwi (5.37a)

d̃i = B>i (qi)χi + di, (5.37b)
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where Ti =
[
TM,i TE,i

]
and wi =

[
wM,i wE,i

]>. Next, taking the derivative of (5.37a)
and using (5.33) for (5.37b), we obtain

˙̃χi = χ̇i − Tiẇi
d̃i = Bi(qi)

>χi + Ciwi.

Now, replacing (5.36) and (5.33) then using (5.37a) in the first equation and using
(5.35) and (5.37a) in the second equation, we obtain the estimation-error dynamics.

˙̃χi = Aiχi −Bi(qi)ui − TiSiwi
= Aiχ̃i −Bi(qi)ui (5.38a)

d̃i = Bi(qi)
>χi −Bi(qi)

>Tiwi

= Bi(qi)
>(χi − Tiwi) = Bi(qi)

>χ̃i. (5.38b)

The equations in (5.38) are important because they define a passive map from ui
to d̃i. To see that, consider the storage function Hi(χ̃i) = 1

2
|χ̃i|2. Its derivative gives

Ḣi(χ̃i) = χ̃>i ˙̃χi

=
1

2
χ̃>i (Ai + A>i )χ̃i − χ̃>i Bi(qi)ui

= χ̃>i (Aiχ̃i −Biui)

= −χ̃>i Bi(qi)ui = u>i d̃i.

In the previous computations, we used Ai + A>i = 0. Thus, the system in (5.38) is
lossless from the input ui to the output d̃i = B>i χ̃i. This observation guides our choice
to redesign the control law in (5.11) as

τi = τ ∗i +B>i (qi)χi. (5.39)

5.2.3.2 Stability analysis in the presence of disturbance

We analyze the system (5.31) in the presence of disturbances and driven by the control
law (5.39), where χi is defined by (5.36), with ui = q̇i. We have the following.

Proposition 16 ([82]) Consider N robot manipulators modeled by (5.31) and satis-
fying the Assumptions 7 and 8 in closed-loop with the distributed controller defined by
(5.39), (5.11), and (5.36), with ui = q̇i and k1i, k2i > 0, for all i ≤ N . Then, for
any given formation shape reachable by the end-effectors, the set {(ēx, q̇) = (0, 0)} is
asymptotically stable for almost all initial conditions such that (ēx(0), q̇(0)) ∈ I ×RnN

and |αk(0)| > ∆k for any k ≤M .

Proof: As for Proposition 15 the statement follows if we establish asymptotic stability
of the origin in spanning-tree coordinates and forward invariance of It × RnN .

First, proceeding as in Section 5.2.2.2, we obtain that the closed-loop equations
now read

q̈ =−M(q)−1
î
C(q, q̇)q̇ +K1J(q)>[Ets ⊗ In]∇ēxt

W̃ (αt, ēxt)

+K1J(q)>[Et ⊗ In]∇αtW̃ (αt, ēxt) + [K2 ⊗ In]q̇ − [B(q)⊗ In]>χ− d
ó
, (5.40)
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where d := col[di], i ≤ N .
Next, we consider the Lyapunov function candidate

V (αt, ēxt , q̇, χ̃) = W̃ (αt, ēxt) +
1

2

[
q̇>M(q)q̇ + |χ̃|2

]
, (5.41)

whose derivative yields

V̇ =∇ēxt
W̃>[Ets ⊗ In]>J(q)q̇ +∇αtW̃

>[Et ⊗ In]>J(q)q̇

+
1

2
q̇>Ṁ q̇ − q̇>C(q, q̇)q̇ − q̇>[K ⊗ In]q̇

− q̇>J(q)>
î
[Ets ⊗ In]∇ēxt

W̃ + [Et ⊗ In]∇αtW̃
ó

− χ̃>[B(q)⊗ In]u+ q̇>[B(q)⊗ In]>χ+ q̇>d. (5.42)

Then, we use (5.37), the skew symmetry of Ṁ − 2C(q, q̇) and u = q̇ to obtain

V̇ =− χ̃>[B(q)⊗ In]u+
1

2
q̇>
î
Ṁ − 2C(q, q̇)

ó
q̇

+ q̇>[B(q)⊗ In]>χ− q̇>[K ⊗ In]q̇ + q̇>
î
d̃− [B(q)⊗ In]>χ

ó
=− χ̃>[B(q)⊗ In]u+ q̇>[B(q)⊗ In]>χ− q̇>[K ⊗ In]q̇

+ q̇>[B(q)⊗ In]>χ̃− q̇>[B(q)⊗ In]>χ

=− q̇>[K ⊗ In]q̇ ≤ 0.

Note that on the set {q̇ ∈ RnN : V̇ = 0}, we have q̇ = 0 and q̈ = 0. In turn, after
(5.40), we have

K1J(q)>[Ets ⊗ In]∇ēxt
W̃ +K1J(q)>[Et ⊗ In]∇αtW̃ − [B(q)⊗ In]>χ− d = 0. (5.43)

As in the Proof of Proposition 15, on {V̇ = 0}, we have ẋ = 0 and α̇t = 0. Consequently,
αt is constant. Then, from (5.43) and using (5.12), we obtain

K1J(q)>[Et ⊗ In]∇ēxt
W̃ − [B(q)⊗ In]>χ− d = 0,

after (5.37b), we get

K1J(q)>[Et ⊗ In]∇ēxt
W̃ − [B(q)⊗ In]>χ−

î
d̃− [B(q)⊗ In]>χ

ó
= 0,

that is, K1J(q)>[Et ⊗ In]∇ēxt
W̃ − d̃ = 0. Then, replacing (5.38b) in the previous

equation, we obtain

K1J(q)>[Et ⊗ In]∇ēxt
W̃ = [B(q)⊗ In]>χ̃. (5.44)

Next, we differentiate on both sides of the latter to obtain

K1J(q)>[Et ⊗ In]
∂2W̃

∂ē2
t

˙̄ext +K1J̇(q)>[Et ⊗ In]∇ēxt
W̃ = [B(q)⊗ In]> ˙̃χ+ [Ḃ(q)⊗ In]>χ̃,
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but since ˙̄ext = E>tsJq̇ = 0, J̇(q) = ∂J(q)
∂q

q̇ = 0, and Ḃ(q) = ∂B(q)
∂q

q̇ = 0, it follows that

[B(q)⊗ In]> ˙̃χ = 0.

Then, we replace (5.36) in the latter to obtain

[B(q)⊗ In]> [[A⊗ In]χ̃− [B(q)⊗ In]u] =
[
[B(q)>A]⊗ In

]
χ̃ = 0.

The last identity comes from using u = q̇ = 0. Differentiating on both sides of this
identity, we have

[
[B(q)>A]⊗ In

]
˙̃χ =

[
[B(q)>A2]⊗ In

]
χ̃ = 0[

[B(q)>A2]⊗ In
]

˙̃χ =
[
[B(q)>A3]⊗ In

]
χ̃ = 0

...[
[B(q)>Ali−1]⊗ In

]
˙̃χ =

[
[B(q)>Ali ]⊗ In

]
χ̃ = 0.

(5.45)

On the other hand, consider the characteristic polynomial of A:

p(λ) = λli + cli−1
λli−1 + · · ·+ c1λ+ c0. (5.46)

After Cayley-Hamilton’s Theorem, p(A) = 0. Therefore,

1

c0

B(q)>[p(A)⊗ In]χ̃ = 0,

that is,

1

c0

[
B(q)>

(
Ali + cli−1A

li−1 + · · ·+ c1A
)
⊗ In

]
χ̃+

1

c0

B(q)>[c0 ⊗ In]χ̃ = 0,

or, equivalently,

− 1

c0

[
B(q)>

[
Ali + cli−1A

li−1 + · · ·+ c1A
]
⊗ In

]
χ̃ = [B(q)⊗ In]>χ̃. (5.47)

The last identity is useful in view of the fact that the equations in (5.45) continue to
hold if the left-hand sides are multiplied by the coefficients ck of p(λ) in (5.46) with
k ≤ li. Therefore, since cli = 1,[

B(q)>
[
Ali + cli−1

Ali−1 + · · ·+ c2A
2 + c1A

]
⊗ In

]
χ̃ = 0.

From the latter and (5.47), we conclude that [B(q) ⊗ In]>χ̃ = 0. In turn, from (5.44)
we have J(q)>[Et ⊗ In]∇ēxt

W̃ = 0, which holds if and only if ∇ēxt
W̃ = 0. The rest of

the proof follows as for Proposition 11. �
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5.2.4 Numerical example

We provide a numerical example to show the performance of our control laws, first the
one in (5.11) in the absence of disturbance and then the one in (5.39) in the presence
of disturbance. For that, we consider a system of N = 6 two-link robot manipulators
interconnected over a structurally balanced undirected signed network, modeled by a
graph as the one depicted in Figure 5.1. For the corresponding graph, we define the
orientation of the seven edges as

e1 = ν1 + ν2, e2 = ν1 − ν3, e3 = ν1 + ν4, e4 = ν2 + ν5,

e5 = ν2 − ν6, e6 = ν3 + ν4, e7 = ν5 + ν6.

ν1 ν2

ν3

ν4

ν5

ν6
e1

e2

e3

e4

e5

e6 e7

Figure 5.1: An undirected signed network of 6 robot manipulators. The black lines (e2 and
e5) represent cooperative edges, and the red lines the competitive edges.

The set of nodes may be split into two disjoint subgroups as

V1 = {ν1, ν3, ν5}, V2 = {ν2, ν4, ν6},

so the network is structurally balanced. From (4.32), the edges ei, i ≤ 5 correspond to
the edges of the spanning tree, and the remaining edges, e6 and e7, correspond to the
cycles. The corresponding incidence matrix is given by

Es =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 −1 0 0 0 1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 1
0 0 0 0 −1 0 1

 .

Each manipulator is modeled by the Euler-Lagrange equations in (5.1), with inertia
and Coriolis matrices given by

Mi(qi) =

ï
αi + 2βi cos(q2i) δi + βi cos(q2i)
δi + βi cos(q2i) δi

ò
,

Ci(qi, q̇i) = δi

ï
− sin(q2i)q̇2i − sin(q2i)(q̇1i + q̇2i)
− sin(q2i)q̇1i 0

ò
,

where αi = l22im2i + l21i(m1i + m2i), βi = l1il2im2i and δi = l22im2i with l1i , l2i and
m1i ,m2i are the length and the mass of links 1 and 2. The physical parameters are
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m1 = 1.2kg, m2 = 1kg, and l1 = l2 = 1m for all i ≤ N . The kinematic model for each
manipulator is given by

xi =

ï
l1 cos(qi1) + l2 cos(q1i + q2i)
l1 sin(qi1) + l2 sin(q1i + q2i)

ò
+ xi0 ,

and the Jacobian matrix

Ji(qi) =

ï
−l1 sin(qi1)− l2 sin(q1i + q2i) −l2 sin(q1i + q2i)
l1 cos(qi1) + l2 cos(q1i + q2i) l2 cos(q1i + q2i)

ò
.
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Figure 5.2: Bipartite formation of system (5.1) with control input (5.11) on joint trajectories.

First, consider the system (5.1) interconnected with the bipartite formation control
law (5.11), where k1i = 20, k2i = 15 for all i ≤ N . The bases of six robot manipulators
are located at

x10 =
[
0 0.5

]>
, x20 =

[
2.5 0

]>
, x30 =

[
−1 0

]>
,

x40 =
[
0 −2

]>
, x50 =

[
−3 0.5

]>
, x60 =

[
2 −2

]>
.

The initial conditions for each agent are

q1(0) =
[
π π/3

]>
, q2(0) =

[
2π/3 π/3

]>
, q3(0) =

[
−π π/3

]>
,

q4(0) =
[
−π/2 0

]>
, q5(0) =

[
π π/3

]>
, q6(0) =

[
0 π/3

]>
,

q̇1(0) = q̇2(0) = q̇3(0) = q̇4(0) = q̇5(0) = q̇6(0) =
[
0 0

]>
,

with q =
[
q1 q2

]> and q̇ =
[
q̇1 q̇2

]>. The relative displacements of the end-effectors
are

b1 =
[
0 0.4

]>
, b2 =

[
−0.4 0

]>
, b3 =

[
0.4 0

]>
,

b4 =
[
0 −0.4

]>
, b5 =

[
−0.4 0

]>
, b6 =

[
0.4 0

]>
,
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Figure 5.3: Bipartite formation of system (5.1) with control input (5.11) on joint velocities.
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Figure 5.4: Evolution of the manipulators’ end-effector from the initial positions (o) to the final
positions (*). Each group of end-effectors forms a triangle around the symmetric equilibrium
points.

with b =
[
bx by

]>. The constraint sets are set to ∆k = 0.2m for all edges, and the
connectivity constraints for the two cooperative edges e2 and e5 are given as R2 = 2.5m
and R5 = 3.5m.

The joint positions and velocities are depicted in Figures 5.2 and 5.3, respectively,
and all velocities converge to zero. The paths of each end-effector up to bipartite
formation are depicted in Figure 5.4, and their final configuration is depicted in Figure
5.61. Moreover, it is clear from Figure 5.5 that the minimum safety distance between

1A video of the simulation is available at: http://tinyurl.com/simulationRM.
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Figure 5.5: Trajectories of the norm of inter-agent distances with control input (5.11). The
black dashed line is the minimum distance constraint for a pair of end-effectors corresponding
to each edge, and the red and green dashed lines are the maximum distance constraints for
the edges e2 and e5, respectively.
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Figure 5.6: Final positions of the manipulators and their end-effector.

each pair of end-effectors is respected. In addition, for the two cooperative edges, e2 and
e5, the maximum distance between the end-effectors is also respected. Thus, collision
avoidance and connectivity maintenance among the manipulators’ end-effectors are
both guaranteed.

In a second run of simulations, we consider the system (5.1), where di 6= 0 and
with the robust bipartite formation control law in (5.39). We take the same initial
conditions as before. Let k1i = 200 and k2i = 300 for all i ≤ N . The matrices in (5.33)
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Figure 5.7: Bipartite formation of system (5.1) with control input (5.39) on joint trajectories.
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Figure 5.8: Bipartite formation of system (5.1) with control input (5.39) on joint velocities.

of the exosystem generating the disturbance are given as

SMi
= SEi =

ï
0 1
−1 0

ò
, CMi

= CEi =

ï
1 0
0 1

ò
.
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Figure 5.9: Evolution of the manipulators’ end-effector from the initial positions (o) to the final
positions (*). Each group of end-effectors forms a triangle around the symmetric consensus
points.
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Figure 5.10: Trajectories of the norm of inter-agent distances with control input (5.39). The
black dashed line is the minimum distance constraint, and the red dashed line is the maximum
distance constraint for end-effectors.

The matrices of the internal model in (5.36) are given as

AMi
=

ï
0 1
−1 0

ò
, AEi =

ï
0 π/2
−π/2 0

ò
,

BMi
=

ï
1 0
0 1

ò
, BEi =

ï
1 0
0 1

ò
.

The joint positions and velocities are depicted in Figures 5.7 and 5.8, respectively,
and all velocities converge to zero. The paths of each end-effector up to bipartite
formation are depicted in Figure 5.9. Their final configuration is the same as in Figure
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5.6. Moreover, it is clear from Figure 5.10 that collision avoidance and connectivity
maintenance are guaranteed among the manipulators’ end-effectors.

5.3 FLYING SPACECRAFT FORMATION WITH INTER-AGENT
CONSTRAINTS

We wrap up this chapter with a brief presentation of the constrained bipartite formation-
control problem of a network of flying spacecraft, using our previous results. Loosely
speaking, the problem that we address consists in having all the satellites achieve for-
mation under the assumption that some of them may be competitive. This study is
motivated, as mentioned before, by aerospace applications. A network of spacecraft
works in cooperation with the objective of providing unprecedented image resolution
for astronomy purposes or to recognize planets or objects in space [16]. On the other
hand, during their mission, they should avoid collisions with other satellites, or debris
in space. Moreover, the network of spacecraft must also avoid collisions with each other
and stay within a certain distance to stay within their sensors’ range and be able to
communicate.

5.3.1 Problem statement and translational equations of motion

We model a network of satellites by the relative translational dynamics developed in
[1]. To that end, we first consider N satellites with n-degrees-of-freedom in low earth
orbit in the Earth-Centered Inertial (ECI) frame F l. We assume that the attitude
dynamics of the satellites have a weak influence on the translational dynamics, so it
is ignored. First, following [1], we write the dynamics of the translational motion in
the (ECI) frame to address a satellite formation orbiting the Earth. The ECI frame
is defined to have its origin at the center of the Earth, its x-axis pointing towards the
vernal equinox, z-axis pointing towards the celestial north pole [1]—see Figure 5.11.
This frame does not rotate with the Earth but moves as the Earth orbits around the
Sun.

Figure 5.11: Geometry of different reference frames [1].

For each satellite, let qi ∈ R3 be the position of the ith satellite in the ECI frame,
where qi = [qxi qyi qzi ]

> and bi ∈ R3 denote the relative displacement with respect to
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the rendezvous point and define

q̄i = qi − bi. (5.48)

Then, the kinetic energy of the satellite Ti(q̇i), and the sum of the potential energy of
the satellite Vi(qi) are calculated as

Ti(q̇i) =
1

2
miq̇

>
i q̇i, Vi(qi) = V g

i (qi) + V m
i (qi), (5.49)

where q̇i is the velocity of satellite i. V g
i is the potential energy of the satellite i in

Earth’s gravitational field and is given by

V g
i (qi, φ) = −µemi

Ri

[
1−

∞∑
k=2

Jk

Å
Re

Ri

ã2

Pkcos(φ)

]
,

where φ is the angle between Earth’s North Pole direction and the direction of qi, Jk
is the kth zonal harmonic of Earth (J2, J3, J3), and Pk Legendre polynomials. Note
that the J2 term is dominant with respect to other Jk terms, so

V g
i (qi) = −µemi

Ri

ñ
1− J2

Å
Re

Ri

ã2
Ç

3

Å
qzi
Ri

ã2

− 1

åô
, (5.50)

where we used cos(φ) =
qzi
Ri

in the ECI reference frame. V m
i is the total magnetic

potential energy of satellite i due to the magnetic field of other satellites and Earth’s
magnetic field and is given by

V m
i (qi, qj) = −µi

[
N∑

j=1 j 6=i

Bij(qi − qj) +Be(qi)

]
, (5.51)

where µi is the dipole strength of the ith satellite, Bij is the magnetic field strength at
the position of the ith satellite due to satellite j, and Be is the Earth’s magnetic field
vector at the position of the ith satellite.

Then, using the Lagrangian equations [63]

d

dt

∂Li
∂q̇i

(qi, q̇i)−
∂Li
∂qi

(qi, q̇i) = τ̄i, (5.52)

where

Li(qi, q̇i) =
N∑
i=1

Ti(q̇i)−
N∑
i=1

(V g
i (qi) + V m

i (qi)) ,

the dynamics of the satellite i in the ECI reference frame is given by

miq̈xi −
∂Vi
∂qxi

= τ̄xi (5.53a)

miq̈yi −
∂Vi
∂qyi

= τ̄yi (5.53b)

miq̈zi −
∂Vi
∂qzi

= τ̄zi , (5.53c)
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where mi is the mass of the satellite i and is constant, and τ̄i = [τ̄xi τ̄yi τ̄zi ]
> is the

vector containing the sum of the external disturbance forces acting on satellite i. Using
(5.50), the gradient of the gravitational potential energy gives

∂V g
i

∂qi
= −µemi

R3
i

qxiqyi
qzi

+
3µeR

2
eJ2mi

2R7
i

 qxi(5q2
zi
−R2

i )
qyi(5q

2
zi
−R2

i )
qzi(5q

2
zi
− 3R2

i )

 , (5.54)

where Re is the equatorial radius of Earth, Ri is the distance between the Earth’s
center and the ith satellite, defined as

Ri =
»
x2
i + (yi +R0)2 + z2

i ,

and R0 is the radius of the formation’s center of mass orbit. Using (5.51), the gradient
of the magnetic potential energy gives

∂V m
i

∂qi
= τ̃i(qi, µi). (5.55)

Then, replacing (5.54) and (5.55) in (5.53) and ignoring the external disturbances
τ̄i, we obtain

miq̈xi +
µemi

R3
i

qxi −
3µeR

2
eJ2mi

2R7
i

(5q2
zi
− R2

i )qxi = τ̃xi (5.56a)

miq̈yi +
µemi

R3
i

qyi −
3µeR

2
eJ2mi

2R7
i

(5q2
zi
− R2

i )qyi = τ̃yi (5.56b)

miq̈zi +
µemi

R3
i

qzi −
3µeR

2
eJ2mi

2R7
i

(5q2
zi
− 3R2

i )qzi = τ̃zi , (5.56c)

where τ̃i = [τ̃xi τ̃yi τ̃zi ]
> are the control forces.

Now, using (5.53), we develop the relative translational dynamics in the orbital
frame FRO. FRO is defined with its origin attached to the center of mass of the
formation, where its y-axis is defined by the vector ~RRO, which represents the position
of the formation center of mass in the ECI frame [1]—see Figure 5.11. Then, the
translational dynamics of the ith satellite in the ECI frame is given by

miq̈i +
µemiqi
R3
i

− 3µeR
2
eJ2mi

2R7
i

(5q2
zi
− pR2

i )qi = τ̃i, (5.57)

where qi = [qxi qyi qzi ]
> is the position of the satellite i, τ̃i = [τ̃xi τ̃yi τ̃zi ]

> is the control
force and p = [1 1 3]>. Similar to (5.57), the translational dynamics of the kth satellite,
is given by

mkq̈k +
µemkqk
R3
k

− 3µeR
2
eJ2mk

2R7
k

(5q2
zk
− pR2

k)qk = τ̃k, (5.58)

where qk = [qxk qyk qzk ]
> is the position of the satellite k, Rk is the distance between

the Earth’s center and the kth satellite and τ̃k = [τ̃xk τ̃yk τ̃zk ]
> is the control force.
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Then, subtracting (5.57) from (5.58), we obtain

q̈i − q̈k +
µeqi
R3
i

− µeqk
R3
k

+
3µeR

2
eJ2mi

2R7
i

(pR2
i − 5q2

zi
)qi

− 3µeR
2
eJ2mk

2R7
k

(pR2
k − 5q2

zk
)qk =

τi
mi

− τk
mk

,

or equivalently, defining qik = qi − qk as the position of satellite i with respect to
satellite k and rik is the distance of satellite i with respect to satellite k, we have

q̈ik +
µe(qk + qik)

(Rk + rik)3
− µeqk

R3
k

− 3µeR
2
eJ2mk

2R7
k

(
pR2

k − 5q2
zk

)
qk

+
3µeR

2
eJ2mi

2(Rk + rik)7

(
p(Rk + rik)

2 − 5(qzk + qzik)
2
)

(qk + qik) =
τi
mi

− τk
mk

.

Following the works of [1, 16], we assume a circular reference orbit for the formation
center of mass, and its angular velocity with respect to the ECI frame is

ω0 =

…
µe
R3

0

, (5.59)

where µe is the gravitational constant of the Earth. Let the relative position qik in
the ECI frame be expressed by qik,ECI . Then, using the transport theorem [37], the
velocity and the acceleration in the orbital frame FRO can be expressed as

q̇ik,ECI = q̇ik,FRO + ω0 × qik,FRO ,
q̈ik,ECI = q̈ik,FRO + 2ω0 × q̇ik,FRO + ω0 × ω0 × qik,FRO .

Then, defining
qik,FRO = [xi yi zi]

>,

the relative dynamics of the ith satellite with respect to kth satellite, attached to a
body frame with its origin at the center of mass of formation, in the orbital frame FRO,
is given as

ẍi − 2ω0ẏi − ω2
0xi +

µexi
R3
i

+
3µeR

2
eJ2

2R7
i

(
R2
i − 5z2

i

)
xi =

τxi
mi

(5.60a)

ÿi + 2ω0ẋi − ω2
0yi +

µe(R0 + yi)

R3
i

+
3µeR

2
eJ2

2R7
i

(
R2
i − 5z2

i

)
(R0 + yi) =

τyi
mi

(5.60b)

z̈i +
µezi
R3
i

+
3µeR

2
eJ2

2R7
i

(
3R2

i − 5z2
i

)
zi =

τzi
mi

. (5.60c)

Then, the relative translational dynamics of satellites in (5.60) can be written in a
Lagrangian form as

Miq̈ik,FRO + Ciq̇ik,FRO +
∂

∂qik,FRO
Ui(qik,FRO) = τi + dJ2,i, (5.61)
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where

Mi =

mi 0 0
0 mi 0
0 0 mi

 , Ci =

 0 −2miω0 0
2miω0 0 0

0 0 0

 , qi =

xiyi
zi

 , τi =

τxτy
τz

 ,
∂

∂qik,FRO
Ui(qik,FRO) =

 −m
Ä
ω2

0 −
µe
R3
i

ä
xi

m
Ä
µeR0

R3
i
− µe

R2
0

ä
−m

Ä
ω2

0 −
µe
R3
i

ä
yi

µe
R3
i
zi

 ,
dJ2,i = −3µeR

2
eJ2

2R7
i

 (R2
i − 5z2

i )xi
(R2

i − 5z2
i ) (R0 + yi)

(3R2
i − 5z2

i ) zi

 . (5.62)

Here, as opposed to the case of robot manipulators, the matrices Mi and Ci are con-
stant, but Ṁi − 2Ci is still skew-symmetric for all i ≤ N . Moreover, if the difference
between Ri and R0 is reasonably small, then replacing (5.59) in ∂

∂q
ik,FRO

Ui(qik,FRO), we
obtain

∂

∂qik,FRO
Ui(qik,FRO) =

 −m
Ä
ω2

0 −
µe
R3
i

ä
xi

m
Ä
µeR0

R3
i
− µe

R2
0

ä
−m

Ä
ω2

0 −
µe
R3
i

ä
yi

µe
R3
i
zi

 ≈
 0

m
Ä
µeR0

R3
i
− µe

R2
0

ä
ω2

0

 ,
(5.63)

which is constant.
Now that the network of satellites is expressed in Lagrangian form, we can use our

result from Section 5.2 to address the bipartite formation-control problem of satellites.
For simplicity, we express the relative distance qik,FRO as qi. We consider the problem
of making N satellites, modeled by (5.61) and interconnected over an undirected and
structurally balanced graph, achieve bipartite formation consensus, that is, converge
around two symmetric rendezvous points, i.e.,

lim
t→∞

ēqk(t) = 0, lim
t→∞

q̇i(t) = 0, ∀k ≤M, i ≤ N (5.64)

where
ēqk := q̄i − sgn(aij)q̄j, (5.65)

and q̄i is defined in (5.48), under the connectivity-maintenance and collision-avoidance
constraints, as defined in (5.7).

Remark 19 At this point, we were unable to establish that the disturbance dJ2,i due
to the J2 term could be generated by an internal model. However, since the effect of
this perturbation is crucial for applications, it was necessary to address its influence.
Instead of making some unjustified ad-hoc assumptions on this disturbance, we chose
to include it in our simulations and evaluate the robustness of our closed-loop system
in its presence. •
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5.3.2 Formation control of flying spacecraft under constraints

The control design follows the lines of Section 5.2.2 as the network of satellites is also
modeled by the Euler-Lagrange equations. The only distinction for the case of satellites
is the absence of the Jacobian matrix, as we control the position q̄ of the satellites,
rather than with robot manipulators where a Jacobian matrix maps the joint-space
to the end-effector’s task space. Then, we introduce the BLF-gradient-based bipartite
formation-consensus control law, which is very similar to the control law in (5.11), as

τi :=− k1i

M∑
k=1

[Es]ik∇ēqk
W̃k − k1i

M∑
k=1

[E]ik∇αkW̃k − k2i q̇i +
∂

∂qi
Ui(qi), (5.66)

where W̃ is defined in (5.9), E := E − Es, and

αk := δk − ēqk . (5.67)

Next, we analyze the stability of the bipartite formation manifold in (5.65) for the
closed-loop system (5.61) interconnected by the control law (5.66). To that end, using
the definition of the incidence matrix, we represent the synchronization errors in (5.65)
and αk defined in (5.67), in vector form

ēq = [E>s ⊗ In]q̄, (5.68a)
α = [E> ⊗ In]q − [E>s ⊗ In]q̄. (5.68b)

Then, the closed-loop system (5.61)–(5.66) in the compact form

q̈ =−M−1
[
Cq̇ +K1[Es ⊗ In]∇ēqW̃ (α, ēq) +K1[E⊗ In]∇αW̃ (α, ēq) + [K2 ⊗ In]q̇

]
.

(5.69)

For this system, we have the following statement, whose proof is omitted because it
follows the proof of Proposition 15.

Proposition 17 Consider N satellites modeled by (5.61), where di = 0 for all i ≤ N ,
and satisfying the Assumptions 7 and 8, in closed-loop with the distributed control law
(5.66), with k1i, k2i > 0, for all i ≤ N and W̃ as defined in (5.9). Then, the set
{(ēq, q̇) = (0, 0)} is asymptotically stable for almost all initial conditions such that
(ēq(0), q̇(0)) ∈ I × R3N and |αk(0)| > ∆k for any k ≤M .

5.3.3 Numerical example

We consider an undirected signed network of 4 satellites interconnected by 4 edges
over a structurally balanced undirected signed network, modeled by a graph as the one
depicted in Figure 5.12. We define the orientation of the edges as follows:

e1 = ν1 − ν2, e2 = ν1 + ν3, e3 = ν2 + ν4, e4 = ν3 − ν4.
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Figure 5.12: A structurally balanced undirected signed network of 4 satellites. The black lines
represent cooperative edges, and the red lines represent the competitive ones.

The incidence matrix corresponding to the graph is

Es =


1 1 0 0
−1 0 1 0
0 1 0 1
0 0 1 −1

 .
The set of nodes may be split into two disjoint subsets, such as V1 = {ν1, ν2},
V2 = {ν3, ν4} so the network is structurally balanced. From (4.32), edges ei, i ≤ 3
correspond to Gt and the remaining edge e4 corresponds to Gc.

5.3.3.1 In the absence of J2 effects

Each satellite is modeled by the Euler-Lagrange equations in (5.61), where dJ2,i = 0 for
all i ≤ N . The internia and Coriolis matrices are given in (5.62), where mi = 2000kg
for all i ≤ N and µe = 398600 × 109m3/s2. Moreover, the radius of the Earth is
Re = 6000× 103m, and the radius of the orbit is R0 = Re + 2000× 103m [1].
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Figure 5.13: Bipartite formation of system (5.61), where dJ2,i = 0, interconnected with the
control input (5.66) on position, in the orbital frame FRO.
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Figure 5.14: Bipartite formation of system(5.61), where dJ2,i = 0, interconnected with the
control input (5.66) on velocity, in the orbital frame FRO. The velocities of all satellites
converge to zero.
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Figure 5.15: Trajectories of the norm of the inter-agent distances with control input (5.66).
The dashed lines are the minimum, and the dotted line is the maximum distance constraints
for satellites. All inter-agent safety and connectivity constraints are respected.

The network of satellites is interconnected via the control law (5.66), where k1 = 30
and k2 = 25, and subject to inter-agent collision avoidance and connectivity mainte-
nance restrictions. The respective agents’ initial states are

x(0) =
[
100 30 180 −100

]>
, y(0) =

[
40 24 −120 160

]>
,

z(0) =
[
120 40 −120 100

]>
, vx(0) = vy(0) = vy(0) =

[
0 0 0 0

]>
,

and the relative displacements are

dx = dy =
[
0 0 0 0

]>
, dz =

[
80 −80 40 −40

]>
.

The constraint sets are defined as ∆k = 40m for all k ≤M and Rk = 550m for k ∈
Em. The paths of each agent up to bipartite formation are depicted in Figure 5.13. The
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center of satellites reach the desired formation around two symmetric consensus points.
The velocities of the satellites are depicted in Figure 5.14, and velocities converge to
zero. Moreover, it is clear from Figure 5.15 that the inter-agent collision avoidance and
connectivity maintenance constraints in (5.7) are always respected. The oscillations
in the Figures are due to significant distances between satellites, their considerable
masses, and the relatively weak values chosen for k1 and k2.

Figure 5.16: Evolution of the satellites from the initial positions to the final positions, in
the ECI frame at t = 50 minutes. Each group of satellites gathers around two symmetric
equilibrium points and advances with the orbit.

5.3.3.2 In the presence of J2 effects

In a second run of simulations, we consider the system (5.61), where dJ2,i 6= 0, intercon-
nected over the control law (5.66). We take the same initial conditions as before. The
constraint sets are defined as ∆k = 35m for all k ≤M and Rk = 550m for k ∈ Em. The
paths of each agent up to bipartite formation are depicted in Figure 5.17. The center
of satellites reach the desired formation around two symmetric consensus points. The
velocities of the satellites are depicted in Figure 5.18, and velocities converge to zero.
Moreover, it is clear from Figure 5.19 that even in the presence of J2 perturbations,
the inter-agent collision avoidance and connectivity maintenance constraints in (5.7)
are always respected.
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Figure 5.17: Bipartite formation of system (5.61), where dJ2,i 6= 0, interconnected with the
control input (5.66) on position, in the orbital frame FRO.
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Figure 5.18: Bipartite formation of system (5.61), where dJ2,i 6= 0, interconnected with the
control input (5.66) on velocity, in the orbital frame FRO. The velocities of all satellites
converge to zero.

5.4 CONCLUSIONS

We addressed the problem of constrained bipartite formation of cooperative and com-
petitive robot manipulators modeled by Euler-Lagrange equations over structurally bal-
anced and undirected signed graphs under inter-agent end-effector constraints. First,
we presented a bipartite formation control law based on the gradient of a barrier-
Lyapunov function that guarantees that manipulators’ end-effectors do not collide and
stay within their maximum distance imposed by the task requirements. Then, in or-
der to deal with perturbed robot manipulators, we robustified our controller with an
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Figure 5.19: Trajectories of the norm of the inter-agent distances with control input (5.66).
The dashed lines are the minimum, and the dotted line is the maximum distance constraints
for satellites. All inter-agent safety and connectivity constraints are respected.

Figure 5.20: Evolution of the satellites, under J2 effects, from the initial positions to the final
positions, in the ECI frame at t = 50 minutes. Each group of satellites gathers around two
symmetric equilibrium points and advances with the orbit.

internal model-based approach to reject disturbances. Compared to the literature, we
contributed with a robust bipartite formation control law that ensures that the manipu-
lator’s end-effectors achieve the desired formation while avoiding inter-agent collisions.
We established asymptotic stability of the bipartite formation manifold and robustness
with respect to external perturbations.

We believe that the utility of our results goes beyond the case of collision avoidance
and maximum distance maintenance for cooperative-competitive robot manipulators’
end-effectors. It may also apply to other Lagrangian systems. In that regard, we con-
sidered a network of cooperative-competitive satellites. We presented BLF-gradient-
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based control laws that solve the constrained bipartite formation problem for satellites
subject to collision avoidance and connectivity maintenance constraints. Not only the
extension is direct, but it is another contribution since, to the best of our knowledge,
there are no results on the constrained bipartite formation of satellites interconnected
over a signed graph. This being said the significant problem of bipartite formation in
the presence of disturbance remains open.
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CONCLUSIONS AND FURTHER RESEARCH

SUMMARY

In this work, we addressed multiple control problems for multi-agent systems over
networks containing cooperative and competitive interactions, with the purpose of ad-
dressing relevant robotic application scenarios. We considered signed networks with
multiple leaders under inter-agent constraints and subject to disturbances. To this end,
we proposed multiple contributions in terms of stability analysis and control design for a
variety of linear and nonlinear systems. These contributions are summarized as follows.

Networks with cooperative and antagonistic interactions. In this work, we
considered the presence of both cooperative and antagonistic interactions among the
agents in each problem that we addressed. Thus, our results are more general than
those of the literature focusing only on all-cooperative networks. Moreover, competi-
tive interactions are representative of multi-objectives in the multi-agent system, where
agents converge to two symmetric equilibria or realize symmetric tasks. On the other
hand, competitive edges are used to represent the presence of groups of enemy agents
and static obstacle(s) to be avoided in the system or to define dangerous zones from
which agents should stay away.

Bipartite containment tracking control over signed networks containing
multiple leaders. We addressed the problem of bipartite containment tracking for
first- and second-order systems over structurally balanced and unbalanced signed net-
works containing multiple cooperative and/or competitive leaders. With respect to
the literature, we contributed with a novel stability analysis approach of the bipartite
containment set. First, we contributed by giving a possible form of the right and left
eigenvectors associated with the zero eigenvalues of the Laplacian matrix of a struc-
turally balanced or unbalanced signed network. Then, we calculated the explicit limit
values of the followers by extending the definition of the average system and synchro-
nization errors to the case of multileader signed networks. We also constructed strict
Lyapunov functions by extending the results on the Lyapunov characterization of the
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necessary and sufficient condition of having a directed spanning tree in the network
to the case of signed networks with multiple leaders. We also established exponential
stability and robustness of the systems in the sense of input-to-state stability via strict
Lyapunov functions. The latter cannot be ascertained if the Lyapunov functions are
not strict.

Bipartite consensus with collision avoidance and connectivity mainte-
nance. We addressed the problem of constrained bipartite formation-consensus for
first- and second-order systems. We first considered first- and second-order systems
over structurally balanced undirected signed graphs. Then, we studied first-order sys-
tems over directed signed networks containing a spanning tree and second-order systems
over strongly connected and weight-balanced directed signed graphs. For both cases,
we contributed by proposing a control law based on the gradient of a BLF, guarantee-
ing inter-agent collision avoidance and connectivity maintenance. We conducted the
stability analysis of the systems using Lyapunov’s direct method, both in terms of the
node coordinates and the synchronization errors.

Control of cooperative and competitive Euler-Lagrange systems. We
addressed the problem of constrained bipartite formation of cooperative-competitive
Euler-Lagrange systems. We first addressed the bipartite formation robot manipula-
tors’ end-effectors with inter-agent end-effector constraints and subject to external dis-
turbances. To deal with perturbed robot manipulators under constraints, we presented
a bipartite formation control law based on the gradient of a barrier-Lyapunov function
and then robustified the controller with an internal model-based approach to reject dis-
turbances. Then, we addressed the bipartite formation of a network of satellites with
inter-satellite collision avoidance and connectivity maintenance. For both problems, we
established the asymptotic stability of the bipartite formation manifold. Compared to
the literature, our contributions include, first, a BLF-based robust bipartite formation
control law that ensures the manipulator’s end-effectors achieve the desired formation
while avoiding inter-agent collisions and remaining close to each other as imposed by
the task requirements, and second, a BLF-based bipartite formation control law that
guarantees satellite formation with collision avoidance and connectivity maintenance
constraints.

FURTHER RESEARCH

The contributions of this thesis successfully addressed some of the important challenges
related to the aspects presented at the beginning of the memoir. These aspects included
the presence of both cooperative and antagonistic interactions, multiple leaders, control
under inter-agent constraints, and dealing with disturbances. Still, there are a number
of open problems to be addressed to be able to consider the general problem of guiding
a swarm of robots required to advance in formation or to be contained in a safe zone
in realistic and constrained environments. Some of these problems arise directly from
the contributions presented in this thesis and are as follows.
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General directed signed graphs. One of the original contributions of this mem-
oir is to address the bipartite containment problem for signed networks containing
multiple cooperative and/or competitive leaders, as shown in Chapter 2. On the other
hand, another contribution is to address the constrained bipartite consensus problem
for some classes of directed signed networks. However, we stress that the results ob-
tained for the latter problem apply only to two classes of directed topologies. For
first-order systems, we solve the problem over a structurally balanced directed graph
containing a spanning tree, and for second-order systems, we address the problem
over a strongly connected, weight-balanced, and structurally balanced directed graph.
Nonetheless, for the general problem that is addressed in this memoir, an interesting
direction of research is to study the constrained bipartite consensus problem for multi-
leader signed networks, as we do in Chapter 3. A possible starting point for considering
general directed signed graphs with inter-agent constraints may be to follow the ap-
proach introduced in [67] and used in Chapter 3 to express the system with constraints
in terms of two interconnected dynamical systems and then construct strict Lyapunov
functions to deal with general directed signed graphs.

Open multi-agent systems and collision-avoidance for all agents. In Chap-
ter 4, we address the bipartite formation with collision avoidance, but only agents that
are interconnected with each other avoid collisions. But in realistic scenarios, the col-
lision should be avoided by all agents. For instance, for the network represented in
Figure 4.11, only agents 2 and 3 are interconnected with the competitive leader, repre-
senting the obstacle. These two agents are also the only ones able to avoid the obstacle,
as shown in Figure 4.12. If the other agents were close to the obstacle, obstacle avoid-
ance would not be possible for those. A natural way to address this problem is for the
agents to take into account all other agents within their sensing ranges. If an agent
comes close to an obstacle, it will detect it and be able to avoid it. On the other hand,
when the agent moves away from the obstacle and is no longer in a dangerous zone
where a collision is likely, it will cease to detect the obstacle and will not be influenced
by its state. This means that interconnections will be added to and removed from
the network. Furthermore, this also implies that for the bipartite consensus problem,
groups of cooperative agents will stop being influenced by competitive agents, and their
final positions will not be affected.

Collision-avoidance of robot manipulators. In Chapter 5, we address the
bipartite formation of robot manipulators’ end-effecter under collision avoidance con-
straints. More precisely, in this memoir, collision avoidance is only guaranteed for
end-effectors and not for the links. To the best of our knowledge, guaranteeing inter-
link collision avoidance in multi-agent systems is an open problem. As a matter of fact,
so is the problem that we solved: the constrained bipartite formation for the manipu-
lators’ end-effectors. Collision avoidance for the link has been addressed, e.g., in [96],
but not for cooperative and competitive agents. In future research, collision avoidance
between the links of the manipulators may be addressed, e.g., by considering each link
as an agent, so as a node of the graph, and the links can be modeled using the 2D
or 3D ellipsoidal agent approach. For instance, in [96], each agent is modeled by an
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ellipsoid approximation, and the inter-agent collisions are represented as two planar
ellipsoids that intersect with each other.

Control redesign via strict Lyapunov functions. In Chapters 4 and 5, we
address the bipartite formation-consensus problems for linear and non-linear systems.
In both of the chapters, we construct non-strict Lyapunov functions, and we design our
controllers based on the gradient of these non-strict Lyapunov functions. An interesting
direction of research may be to figure out how to render these BLFs strict and modify
the controller using the gradient-based term to take care of the disturbances. The
analysis given in Chapters 4 and 5 is promising because it may be a first step to
construct strict Lyapunov functions to deal with disturbances, especially to tackle the
formation-control problem of satellites under J2 effects.
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APPENDIX A

APPENDICES

A.1 GRAPH THEORY

Example Consider the undirected signed network depicted in Figure A.1.

ν1 ν2

ν3

ν4

ν5

ν6

e1

e2

e3

e4

e5

e6 e7

Figure A.1: An undirected signed network of 6 agents. The black lines represent cooperative
edges and the red line represents the competitive edge.

The graph has N = 6 nodes and M = 7 edges. We can split the nodes into two
disjoint subgroups, such as

V1 = {ν1, ν3, ν4}, V2 = {ν2, ν5, ν6},

so the graph is structurally balanced. We define the orientation of the edges as

e1 = ν1 + ν2, e2 = ν1 − ν3, e3 = ν1 − ν4, e4 = ν2 − ν5,

e5 = ν2 − ν6, e6 = ν3 − ν4, e7 = ν5 − ν6.

We define the gauge transformation matrix D ∈ RN×N as

D = diag([1, −1, 1, 1, −1, −1]).

For the edges e1, e2 and e3, the initial node is ν1 ∈ V1 and for the edge e6, the initial
node is ν3 ∈ V1 so σei = 1, i ∈ {1, 2, 3, 6}. For the edges e4 and e5 the initial node
is ν2 ∈ V2 and for the edge e7, the initial node is ν5 ∈ V2 so σej = −1, j ∈ {5, 6, 7}.
As a result, the matrix De ∈ RM×M for the edge-gauge transformation is defined as

De = diag([1, 1, 1, −1, −1, 1, −1]).
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The incidence matrix E ∈ RN×M of the unsigned graph is given below.

E =


1 1 1 0 0 0 0
−1 0 0 1 1 0 0
0 −1 0 0 0 1 0
0 0 −1 0 0 −1 0
0 0 0 −1 0 0 1
0 0 0 0 −1 0 −1

 .
Applying the gauge transformations on the incidence matrix E, we obtain

Es = DEDe =


1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 −1 0 0 0 1 0
0 0 −1 0 0 −1 0
0 0 0 −1 0 0 1
0 0 0 0 −1 0 −1

 ,

which corresponds to the incidence matrix of a signed graph, given in (2.38). Then, the
Laplacian matrix Ls = EsE

>
s ∈ RN×N and the edge Laplacian matrix Les = E>s Es ∈

RM×M associated to the undirected signed graph are calculated as

Ls =


3 1 −1 −1 0 0
1 3 0 0 −1 −1
−1 0 2 −1 0 0
−1 0 −1 2 0 0
0 −1 0 0 2 −1
0 −1 0 0 −1 2

 , Les =



2 1 1 1 1 0 0
1 2 1 0 0 −1 0
1 1 2 0 0 1 0
1 0 0 2 1 0 −1
1 0 0 1 2 0 1
0 −1 1 0 0 2 0
0 0 0 −1 1 0 2


.

The eigenvalues of the Laplacian matrix and the edge Laplacian matrix are

λLs = {0, 0.4384, 3, 3, 3, 4.5616}, λLes = {0, 0, 0.4384, 3, 3, 3, 4.5616}.

The Laplacian matrix Ls has exactly one zero eigenvalue and is positive semi-definite.
As the graph has 7 edges, which is more than the number of nodes, the edge Laplacian
Les has exactly M −N + 1 = 2 zero eigenvalues.

On the other hand, since the undirected graph is structurally balanced and contains
a spanning tree, it can be decomposed into the union of two subgraphs: the first
subgraph consists of the edges corresponding to the spanning tree, while the second
subgraph contains the remaining edges, as depicted in Figure A.2.

Then, the incidence matrix Es is partitioned into [Ets Ecs ] as in (4.32), where
Ets ∈ RN×N−1 is the incidence matrix representing the spanning tree of the graph, and
Ecs ∈ RN×M−(N−1) is the incidence matrix representing the remaining edges

Ets =


1 1 1 0 0
1 0 0 1 1
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 , Ecs =


0 0
0 0
1 0
−1 0
0 1
0 −1

 .
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⋃
e6 e7

Figure A.2: Partition of the undirected structurally balanced signed graph on Figure A.1 into
a spanning tree and the remaining edges.

From (4.34), we obtain

Ts = (E>tsEts)
−1E>tsEcs =


0 0
−1 0
1 0
0 −1
0 1

 , Rs = [IN−1 Ts] =


1 0 0 0 0 0 0
0 1 0 0 0 −1 0
0 0 1 0 0 1 0
0 0 0 1 0 0 −1
0 0 0 0 1 0 1

 ,
which satisfy (4.33).

A.2 LYAPUNOV FUNCTIONS AND STABILITY THEOREMS

Theorem A.2.1 (Lyapunov’s stability theorem [38]) Let x = 0 be an equilibrium point
for

ẋ = f(x), (A.1)

where f : D → Rn, and D ⊂ Rn is a domain containing x = 0. Let V : D → R≥0 be a
continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D\{0} (A.2)

V̇ (x) ≤ 0 in D (A.3)

Then, x = 0 is stable. Moreover, if

V̇ < 0 in D\{0} (A.4)

then x = 0 is asymptotically stable.

Consider the general nonlinear systems of the form

ẋ = f(x, u) (A.5)

where x(t) ∈ Rn is the state, u ∈ Um denotes an external input, and f : Rn × Rm is
continuously differentiable satisfying f(0, 0) = 0.

Definition A.2.1 (K andK∞ functions [38]) A continuous function α : [0, a)→ [0,∞)
is said to belong to class K if it is strictly increasing and α(0) = 0. It is said to belong
to class K∞ if a =∞ and α(r)→∞ as r →∞.
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Definition A.2.2 (KL function [38]) A continuous function β : [0, a) × [0,∞) →
[0,∞) is said to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to
class K with respect to r and, for each fixed r, the mapping β(r, s) is decreasing with
respect to s and β(r, s)→ 0 as s→∞.

Definition A.2.3 (Input-to-state stability [88]) The system (A.5) is (globally) input-
to-state stable if there exist a KL-function β : R≥0×R≥0 and a K-function γ such that,
for each input u ∈ L∞ and each ξ ∈ Rn, it holds that

|x(t, ξ, u)| ≤ β(|ξ|, t) + γ(||u||) (A.6)

for each t ≥ 0.

Definition A.2.4 (ISS-Lyapunov function [88]) A smooth function V : Rn → R≥0 is
called an ISS-Lyapunov function for system (A.5) if there exist K∞-functions α1, α2,
and K-functions α3 and χ, such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|) (A.7)

for any ξ ∈ Rn and

∇V (ξ) · f(ξ, u) ≤ α3(|ξ|) (A.8)

for any ξ ∈ Rn and any µ ∈ Rm so that |ξ| ≥ χ(|u|).

A.3 CRITICAL POINTS OF THE BARRIER-LYAPUNOV FUNCTIONS

A.3.1 Barrier-Lyapunov functions in node coordinates

For cooperative agents, the BLF in node coordinates is defined as

W̃ij(xi, xj) =
1

2
|x̄i − x̄j|2

+
1

2

∆2
k

|b̄ij|2(|b̄ij|2 −∆2
k)

ï
ln

Å
R2
k

R2
k − |xi − xj|2

ã
− ln

Å
R2
k

R2
k − |b̄ij|2

ãò
+

1

2

1

R2
k − |b̄ij|2

ï
ln

Å |xi − xj|2

|xi − xj|2 −∆2
k

ã
− ln

Å |b̄ij|2

|b̄ij|2 −∆2
k

ãò
. (A.9)

Its gradient may be written as

∇W̃ij =

ñ
∇xiW̃ij

∇xjW̃ij

ô
,

where

∇xiW̃ij =

ï
1 +

∆2
k

|b̄ij|2(|b̄ij|2 −∆2
k)
· 1

R2
k − |xi − xj|2

− 1

R2
k − |b̄ij|2

· ∆2
k

|xi − xj|2(|xi − xj|2 −∆2
k)

ò
(xi − xj)− b̄ij. (A.10)
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and ∇xjW̃ij = −∇xiW̃ij. Then, the Hessian of the function reads

H(W̃ij) =

∂2W̃ij

∂x2i

∂2W̃ij

∂xixj
∂2W̃ij

∂xixj

∂2W̃ij

∂x2j

 ,
where

∂2W̃ij

∂x2
i

=

ï
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∆2
k

|b̄ij|2(|b̄ij|2 −∆2
k)
· 1
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− 1
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· ∆2
k

|xi − xj|2(|xi − xj|2 −∆2
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ò
In

+ 2

ï
1

R2
k − |b̄ij|2

· ∆2
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k)
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|b̄ij|2(|b̄ij|2 −∆2
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(R2
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2

ô
(xi − xj)(xi − xj)>, (A.11)

∂2W̃ij

∂x2i
=

∂2W̃ij

∂x2j
and ∂2W̃ij

∂xixj
= −∂2W̃ij

∂x2i
. The eigenvalues of the Hessian are

λl(sk) = 1 +
∆2
k

|b̄ij|2(|b̄ij|2 −∆2
k)
· 1

R2
k − |xi − xj|2

− 1
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, l ∈ {1, 2, · · · , n− 1} (A.12a)

λn(sk) = 2

ï
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∆2
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ò
. (A.12b)

Now, we look at the critical points, where ∇xiW̃ij = 0 and ∇xjW̃ij = 0. Looking at
the form of the BLF, it has two critical points with opposite signs. The first one is
xi − xj = b̄ij, that is,

∆2
k

|b̄ij|2(|b̄ij|2 −∆2
k)
· b̄ij
R2
k − |b̄ij|2

− 1

R2
k − |b̄ij|2

· ∆2
kαk

|b̄ij|2(|b̄ij|2 −∆2
k)

= 0.

To prove that it is a minimum, we show that λl(0) > 0, that is,

λl(0) = 1 +
∆2
k

|b̄ij|2(|b̄ij|2 −∆2
k)
· 1

R2
k − |b̄ij|2

− 1

R2
k − |b̄ij|2

· ∆2
k

|b̄ij|2 −∆2
k

= 1.
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The other critical point s∗k is aligned with b̄ij. Then, there exists a > 0 such that
s∗ = −ab̄ij. So,ï

1 +
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ò
= −1

a
< 0.

Then, λl(−ab̄ij) < 0 and s∗ = −ab̄ij is a saddle point.
On the other hand, for competitive agents, the BLF in node coordinates is defined

as
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Its gradient may be written as
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and

∇xjŴij = −
ï
1 + ∆2 1

|xi − xj|2(|xi − xj|2 −∆2)

ò
(xi − xj)

+

ï
4− 4∆2 1

|−2xj + b̄ij|2(|−2xj + b̄ij|2 −∆2)

ò
[−2xj + b̄ij]. (A.14)

Then, its Hessian reads

H(W̃ij) =
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Let s = xi − xj. The eigenvalues of its Hessian are

λl(sk) = 1 + ∆2 1

|sk|2(|sk|2 −∆2)
, l ∈ {1, 2, · · · , n− 1} (A.16a)
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First, we look at the critical points, where ∇xiŴij = 0 and ∇xjŴij = 0. Looking at
the form of the BLF, we see that there are two critical points with opposite signs. The
first one is sk = −2xj + b̄ij, that is,ï
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To prove that it is a minimum, we show that λl(−2xj + b̄ij) > 0, where
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The other critical point s∗k is aligned with sk = −2xj + b̄ij. Then, there exists a > 0
such that s∗ = −a(−2xj + b̄ij). So,ï
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As λl(sk) > 0, we have that λl(s∗k) < 0, so s∗ = −a(−2xj + b̄ij) is a saddle point.

A.3.2 Barrier-Lyapunov functions in edge coordinates

For cooperative agents, the BLF in edge coordinates is defined as
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where αk = bk. Its gradient may be written as
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Then, the Hessian of the function reads

∂2W̃k

∂ē2
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The eigenvalues of the Hessian are

λl(sk) = 1 +
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k

|αk|2(|αk|2 −∆2
k)
· 1

R2
k − |ēxk + αk|2

− 1
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|ēxk + αk|2 −∆2
k

, l ∈ {1, 2, · · · , n− 1} (A.20a)
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ô
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For all |ēxk + αk| > ∆k, |αk| > ∆k, |ēxk + αk| < Rk and |αk| < Rk, we have that

λn(sk) = 1 +
1
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2 > 1.

Now, we look at the critical points, where ∇ēxk
W̃k = 0. Looking at the form of the

BLF, it has two critical points with opposite signs. The first one is ēxk = 0, that is,
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To prove that it is a minimum, we show that λl(0) > 0, that is,
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For the other critical point e∗k, we haveï
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In original relative distance coordinates, we have e∗k + αk = s∗k, which is aligned with
the other critical point αk = bk, so there exists a > 0 such that s∗k = −aαk.ï
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Then, λl(s∗) < 0 and s∗ = −aαk is a saddle point.
On the other hand, for competitive agents, the BLF in edge coordinates is defined

as

Ŵk(ēxk , αk) =
1

2

ï
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−
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ò
ēxk , (A.21)

Its gradient with respect to the synchronization errors ēxk , may be written as
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Its Hessian, with respect to the synchronization errors, reads
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(ēxk + αk)(ēxk + αk)
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Let sk = ēxk + αk. The eigenvalues of the Hessian are

λl(sk) = 1− ∆2
k

|sk|2(|sk|2 −∆2
k)
, l ∈ {1, 2, · · · , n− 1} (A.24a)
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For all |sk| > ∆k, we have that

λn(sk) = 1 +
∆2(|sk|2 −∆2) + 2∆2|sk|2

|sk|2(|sk|2 −∆2)2
> 1.

Now, we look at the critical points, where ∇ēxk
Ŵk = 0. Looking at the form of the

BLF, it has two critical points with opposite signs. The first one is ēxk = 0 and
αk = −2xj + bk sinceï
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Then, to prove that it is a minimum, we show that λl(−2xj + bk) > 0, that is,
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if

∆2 <
|−2xj + bk|4

1 + |−2xj + bk|2
. (A.25)

The condition (A.25), which restricts the initial conditions in absolute coordinates, i.e.,
with respect to a fixed frame. However, in the scenario considered in this paper, the
measurements are relative (edge coordinates). That is, absolute positions are irrelevant.
So, xj(0) may be conveniently defined by replacing the origin of the fixed frame if
needed. Then, we have that λl(−2xj + bk) > 0 and sk = −2xj + bk is a minimum.
There exists another critical point ēxk = e∗k, so the gradient of the BLF givesï

1−∆2 1
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ò
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In original relative distance coordinates, we have e∗k−2xj+bk = s∗k, which is aligned with
the other critical point −2xj + bk, so there exists a > 0 such that s∗ = −a(−2xj + bk).
As the BLF has only two critical points with opposite signsï

1−∆2 1
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As λl(−2xj +bk) > 0, we have that λl(s∗k) < 0, so s∗ = −a(−2xj +bk) is a saddle point.
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