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Introduction

At low temperatures, matter exhibits wave-like behaviour, enabling to create interferometers

similar to optical ones. The first atomic interferometers were constructed in the early 1990s

[1919; 3838]. These pioneering devices used microfabricated gratings to divide and recombine

wave packets. A paradigm shift has been using laser pulses to manipulate matter waves. An

atomic beam splitter based on a laser pulse creates a coherent superposition between two

internal atomic states. Due to the conservation of momentum in the interaction process, the

atom undergoing the transition acquires the energy of the photons and their momentum.

This momentum gain allows the atoms to be in a coherent superposition of states that are

spatially separated.

Since the pioneering work of Chu and Kasevich[3737], light pulse atom interferometry

has opened up a huge field of applications. Particularly in precision measurement domain

where applications range from fundamental research and metrology [11; 1010; 4242; 4646; 5050; 6262] to

geophysics and navigation [1313], and have reached a level of maturity sufficient for industrial

exploitation. However, this technology is still far from having reached its full potential.

New concepts and tools are being developed and are still to be investigated in order to push

the boundaries. Among them is the improvement of the efficiency, order and coherence

of large momentum beam-splitters [1717; 2222; 4444], the implementation of optimal control and

squeezing methods which promise a substantial gain in sensitivity.

The next generation of instruments, particularly very large ones, are under development.

They are designed primarily to test fundamental physics (such as the equivalence principle,

atomic neutrality and dark matter detection) and to detect gravitational waves. In these

instruments, the free fall of atoms could last several seconds [88], or the separation between

distant accelerometers could reach several hundred metres [1818], and improvements in atom

flux, temperature reduction and duty cycle are also key issues.

My PhD thesis work is part of this effort. On the one hand, it aims to develop a new

technique to extend atom interferometry to a larger number of atomic species. On the other

hand, by better understanding and controlling the systematic effects that limit the accuracy

of interferometers, with a specific application to the determination of the fine structure

constant.
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6 Introduction

My thesis work focuses on two research projects.

The first part concerns a new experiment that I started during my Master 2 internship:

the implementation of an atom interferometer using a frequency comb laser to drive Raman

transitions. The use of frequency combs opens up new possibilities for atom interferometry.

In fact, due to their high peak intensity, it is possible to reach the UV-XUV region and thus

study new atom species. Our initial idea was to perform a proof-of-concept experiment on

rubidium atoms in the visible. The first interferometer was quickly obtained and the results

were published in Physical Review Letters [5454] one year later. The critical point is to control

the superposition between the atom cloud and the overlap zone of the picosecond pulses.

To increase the sensitivity of our interferometer, we then decided to implement a setup

that would allow dynamic control of this overlap zone without adding phase noise to our

lasers. This new setup also allowed us to create a new type of interferometer where we can

probe each arm of the interferometer independently. Both theoretical and numerical studies

highlighted the technical and fundamental limitations of our technique. We discovered

that an atom interferometer driven by a frequency comb laser would be limited in its

interrogation time by a dispersion in momentum transmitted to the atoms due to the finite

duration of our laser pulses. These results have been published in Physical Review A [2626].

The second part of my thesis focuses on the measurement of the ratio h/m between

the Planck constant and the Rubidium mass. This work is part of a project that started

in 1998 with François Biraben and is a direct continuation of the work of C. Carrez. The

main goal is the accurate determination of the fine structure constant. My work on this

experiment focused on studying and understanding the two systematic effects that limit the

accuracy of the latest h/m measurement carried out by the team in 2020. We first carried

out several studies on the phase shift in the Raman phase-locked loop using a new scheme

for the phase-lock system and a new method to implement the frequency ramp used to

compensate the gravity. We carried out an extensive study of this effect in an attempt to

reduce it. An independent measurement of this effect has been carried out. It corroborates

measurements with atoms. In addition, the group decided to use a colder atom source, a

Bose-Einstein Condensate (BEC), to mitigate numerous systematic effects, mainly related

to the transverse expansion of the atomic cloud. Using a BEC, C. Carrez’s (the previous

PhD student on the experiment [2020]) observed that the value of h/m varies over time. I

had to repeat the measurements with BEC to confirm the explanation for these fluctuations.

When I took over this experiment, I first improved the phase locking of the Raman lasers,

which led to nearly a 2-fold improvement in the statistical uncertainty. I then built new

collimators which I characterized and installed on the experiment. This led to a review of

the optical system at the entrance to the vacuum cell, including the installation of a larger

PBS (polarization beam splitter cube). Measurement with BEC showed unfortunately that

new PBS induces spurious reflections that mask the benefits of the new collimators. A new

type of polarization beam splitter has just been installed on the experiment, and should

significantly reduce these parasitic reflections.



Part I

Frequency Comb Atom Interferometry





Chapter 1

Introduction to Frequency comb

In the 1990s, frequency combs revolutionised frequency measurement by providing a direct

link between optical and radio frequencies. This achievement was rewarded with the 2005

Nobel Prize, which honoured the work of T.W. Hänsch and J.L. Hall [3434] for "contributions

to the development of laser-based precision spectroscopy, including the optical frequency

comb technique". By stabilizing the carrier-envelope offset, the laureates made it possible to

avoid the often heavy and complex frequency chains in frequency measurement. Frequency

combs are now widely used in many laboratories. Primarily used to obtain frequency

references and thus to stabilise lasers, they have quickly found application in spectroscopy

[33; 44; 2727; 2828; 4040; 6060; 6161].

In this chapter, I will introduce the concept of frequency comb lasers and their application

in spectroscopy. I will introduce key ideas for the rest of this thesis. This section draws

heavily on the work of Piqué et al[4949]. This article provides a more detailed and expert

insight into frequency comb spectroscopy.

1.1 Frequency comb basics
We show the time and frequency domain representations of a frequency comb on Figure 1.1Figure 1.1.

The term "frequency comb laser" is derived from the spectral shape of its emission.

In the frequency domain, its spectrum consists of regularly spaced teeth at the repetition

frequency frep, hence the name "comb". The width of this spectrum is called δν. Due to
dispersion in the cavity, there is a pulse-to-pulse phase shift ∆Φce between the envelope

and the carrier.

In the temporal domain, coherent pulses are observed with a pulse duration of τ , where
τ is inversely related to δν with a typical duration in the femtosecond to picosecond range.

Each pulse is separated by a duration Tr, where Tr = 1/frep. This interval corresponds

to the time it takes a pulse to make a round trip in the cavity. Therefore, controlling the

repetition rate involves controlling the cavity length. Frequency combs cover many spectral

regions from the ultraviolet to the far infrared with repetition rates from 500 GHz to less

than 50 MHz.

The control of the carrier envelope offset Φce using the f -2f technique (made possible

by broadening the spectrum over more than a decade) was awarded the Nobel Prize in

9
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frequency

I( )

time

E(t)

Fig. 1.1 Frequency spectrum and time domain representation of a frequency comb
laser. A Fourier transform links the temporal and frequency domain.

2005. A detailed discussion of this technique is beyond the scope of this thesis. Suffice it to

say that without this phase control, the frequency ruler represented by a frequency comb

becomes ineffective, as its reference point is constantly shifting.

The Figure 1.2Figure 1.2 shows the principle of a mode-locked laser. Each longitudinal mode is in

phase in the cavity in which the pulse is. However, to maintain this coherence, it is important

to compensate for the group velocity dispersion. In fact, there are many modes in the cavity,

and as they propagate, they experience a different velocity. Without compensation for this

velocity dispersion, if the modes were in phase, then after propagation through the cavity

some modes would be out of phase, resulting in a loss of coherence.

In femtosecond mode-locked lasers, this dispersion is often compensated by a pair of

prisms. Conversely, for picosecond solid-state lasers, a Gires-Tournois interferometer (GTI)

is often used to compensate for dispersion.
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Fig. 1.2 Principle of a mode-locked cavity. Each longitudinal mode is in phase at a
certain point of the cavity, building up a pulse. If the group velocity dispersion is well
compensated, the pulse will bounce back and forth inside the cavity. Each time the
pulse arrives at the output coupler, a part of the pulse escapes the cavity.

1.2 Frequency comb spectroscopy

We will now present some spectroscopy experiments using pulsed lasers. Frequency comb

spectroscopy takes advantage of the broad spectral range and high resolution of the comb

spectrum (related to frep). The technique of frequency comb spectroscopy is based on

addressing a gas sample of atoms or molecules with the spectrum of a laser consisting of

discrete and narrow frequency modes (frequency comb). The comb is characterised by a

repetition rate frep and by the carrier-envelope frequency offset fceo. The frequencies of

the comb modes can therefore be written as fn = nfrep + fceo with n an integer.

The simplest method of frequency comb spectroscopy, shown on Figure 1.3Figure 1.3, involves

exciting a sample via a single or multi-photon transition using a frequency comb laser.

The spectrum of the frequency comb is then observed with a spectrometer. Depending on

the absorption spectrum of the sample, certain comb teeth will be more or less absorbed.

Therefore, by measuring the intensity of the different spectral components, the absorption

spectrum of the sample can be deduced. This technique uses the broad emission spectrum

of the frequency comb to measure a broad absorption band. In this method, the spectral

resolution of the measurement is linked to the repetition rate. Thus, the laser source is

selected with an emission spectrum that covers the absorption spectrum of the sample and

a repetition rate that matches the desired spectral resolution.

More advanced methods have been developed, such as dual frequency comb spec-

troscopy (DFCS) [2323; 4949]. It involves the use of two optical frequency combs with slightly

different repetition rates. They are used to measure the spectral properties of molecular

samples. When the two combs are combined, they interfere to produce a time-domain

signal. Due to the slightly different repetition rates, the interferogram contains beat fre-

quencies corresponding to the differences between the comb lines of the two combs. By

detecting the interferogram with a photodetector, the beat frequencies can be measured.
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Fig. 1.3 Simplest form of frequency comb spectroscopy. The frequency comb in-
terrogates a sample. At the output, the light is sent to a spectrometer. The sample
spectrum is reconstructed by analyzing the amplitude of the frequency comb teeth at
the output. Extracted from [4949].

This heterodyne detection process translates the high-frequency optical spectrum down to

the radio frequency (RF) or microwave range, making it easier to analyse with standard

electronic equipment. The detected interferogram is then Fourier transformed to extract

the spectral information. The resulting RF spectrum corresponds directly to the optical

spectrum of the sample but is scaled down in frequency.

1.2.1 Two photon direct frequency comb spectroscopy

In the following, I will focus on methods that use a frequency comb to perform a two-photon

transition. This will introduce the concept of Raman diffraction based on a frequency comb,

which I have used to make a matter-wave coherent beamsplitter.

Several spectroscopy experiments use frequency comb lasers to excite two-photon

transitions[3232; 3636; 5353; 5555]. These transitions can be carried out either in a ladder scheme or

in a lambda scheme as shown on Figure 1.4Figure 1.4. In the first case, the atom absorbs two photons.

In the latter, the atom first absorbs a photon and then emits a second photon by stimulated

emission.

1.2.1.1 Ladder scheme

Ladder two-photon spectroscopy allows the measurement of high energy transitions, typ-

ically in the hundreds or thousands of terahertz range [4040]. One of the most notable

experiments is that of Grinnin et al [3232], where they measured the 1S-3S transition of

hydrogen at 2 ×205nm. The spectrum of the comb and the energy levels of the transition

considered are shown on Figure 1.5Figure 1.5.

To excite the transition, the centre wavelength of the frequency comb is set to half the

energy of the transition. In this way, the transition is excited by 2 photons, where the n

tooth is coupled to the n+q tooth to drive the transition. The resonance condition is then
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Fig. 1.4 Left: Two photon spectroscopy in the ladder scheme. Right: In the lambda
scheme.

Fig. 1.5 Principle of two-photon excitation using a frequency comb spectrum. Ex-
tracted from [3232].

given by

fn + fn+q = (2n+ q)frep + 2fceo = feg (1.1)

where n and q are integers and frep is the repetition rate of the frequency comb, fceo the

carrier envelop frequency offset and feg is the frequency of the considered transition. The

scheme of the experiment is shown on Figure 1.6Figure 1.6. The authors quadrupled a picosecond

frequency comb at 820 nm using two successive doubling cavities to generate up to 60 mW

of laser power at 205 nm.

Two-photon spectroscopy of hydrogen was then performed in an optical resonator. The

mode-locked Ti sapphire picosecond laser is referenced to a transfer laser, itself locked to

an ultra-stable cavity, and referenced to a femtosecond frequency comb. Each doubling

cavity length is also finely controlled to match a harmonic of the repetition rate. By driving

the transitions in a counter-propagating geometry, the author suppresses the first-order

Doppler effect. However, to drive these transitions in this configuration, the two pulses

must overlap on the hydrogen atoms simultaneously. This overlapping region is referred

to as the "pulse collision volume" in [3232]. In the rest of this work we will refer to it as the

"overlap zone".

Finally, by combining the 1S-2S and 1S-3S (the work presented here) measurements of
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Fig. 1.6 Scheme of the experimental set-up. The red area in the resonator is the zone
where the sample is interrogated. Extracted from [3232].

the transition frequencies in the atomic transition, Grinnin et al. measure the proton charge

radius of rp = 0.8482(38) femtometers, more than a fourfold improvement compared to the

same measurement performed with continuous-wave lasers[3030]. Notably, this result is in

agreement with the value of the proton radius derived from muonic hydrogen spectroscopy.

1.2.1.2 Lambda scheme

It is also possible to perform lambda transitions, also known as stimulated Raman transitions.

In this case, the atom, ion or molecule absorbs a photon from one comb tooth and then

emits a photon by stimulated emission from another tooth. The resonance condition is

given by

fn − fn+q = qfrep = ν0 (1.2)

With frep the repetition rate of the comb and ν0 the frequency of the transition considered.

The frequency range accessible by this method spans from frep to THz [5252]. To carry out

this type of transition, the laser emission spectrum must be wider than the frequency of

the transition you wish to study. In other words, if you want to find two teeth separated

by ν0, then ∆ν > ν0. In the literature, this condition is called the "impact condition"

[3131]. In the time domain, it implies that the duration of a laser pulse must be shorter than

the characteristic period of the transition under consideration. Figure 1.7Figure 1.7 illustrates the

interpretation of this condition both in the time domain and in reciprocal space. In the

temporal domain (on the right-hand part of the figure), we illustrate in dashed line the case

when the impact condition is not respected,∆τ ∼ T0, and in full line when the condition is

met.

When the lambda transition is performed in a co-propagating configuration, the fre-
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bandwidth condition : condition of impact excitation :

Fig. 1.7 Frequency and time domain representation of the impact condition. Left: if
the spectrum of the emission of the laser is smaller than the frequency of the transition
ν0, it is impossible to fulfill the resonance condition. In the temporal domain, the
excitation by the picosecond laser must be shorter than the period T0 = 1/ν0.

quencies leading to photon emission and absorption are present within the same pulse.

In this case, it is not necessary to servo fceo. In a counter-propagating geometry, if the

transition is performed by two different pulses, fceo must be locked.

This method is very versatile and allows transitions from the repetition rate frequency

to the spectral width of the comb by considering another pair of teeth spaced by q. If a
femtosecond comb is used, transitions up to 50 THz are possible. However, this frequency

range requires a very stable repetition rate and careful compensation of the group velocity

dispersion.

1.3 Context of this work
We have seen that the use of the frequency comb in spectroscopic measurements has

shown great capacity and can even outperform conventional spectroscopic techniques

using continuous wave lasers. In this context, we thought exploring the application of

frequency combs in atom interferometers was worthwhile. The use of pulsed lasers, or more

specifically frequency comb lasers, would allow the extension of light-pulse matter-wave

interferometry to other wavelengths (e.g. deep UV to X-UV) and thus to new species.

Indeed, one can take advantage of the high peak intensity of the ultrashort pulses, which

makes frequency conversion in nonlinear media efficient. In particular, it could be used

in the deep-UV on antihydrogen to measure the free-fall acceleration of antimatter and

test the weak equivalence principle with antimatter [1212; 4747]. A major motivation for this

project was to perform a proof-of-principle experiment by demonstrating the possibility of

splitting, deflecting and recombining atomic wave packets using a frequency comb to drive

the Raman transition in a counterpropagating geometry.

The experiment presented in this part was carried out on
87
Rb using stimulated Raman

transition in a counter-propagating geometry. By using a counter-propagating geometry, we



16 Chapter 1. Introduction to Frequency comb

can transfer a recoil velocity of∼ 11.8 mm/s, whereas the recoil velocity in a co-propagating
geometry is of the order of hundreds of nm/s.

To interrogate the entire atomic sample, a single pulse must encompass it completely.

Thus, we must satisfy c∆τ > σcloud. Since we are using optical molasses, we have σcloud ∼
0.5 mm, and thus, it imposes τ >1 ps. We also need to obey the impact condition. With

87
Rb the hyperfine splitting between the two states that we will address through the Raman

process is equal to νHFS = 6.8 GHz, which means that we have to limit ourselves to pulse

duration of less than 150 ps. In the experiment, we will use a picosecond frequency comb

with a pulse duration from 1 to 2ps, meaning a spectral width from 150 to 300 GHz. The

pulse duration and thus the spectral width will be tuned by changing the slit width in the

laser cavity. This choice of picosecond pulse duration was limited by the available frequency

comb laser source. Furthermore, the picosecond frequency comb laser used was already

available in the Lab.

Furthermore, the use of a frequency comb to drive a counter-propagating Raman tran-

sition requires that the two pulses overlap on the atoms. This is the same constraint as

in the experiment of Grinin et al. [3232]. This condition is satisfied in the experiment by

splitting a pulse into two and retro-reflecting one of the two pulses. The split picosecond

pulse travels in a delay line whose length is finely tuned to fulfil this condition. We have

developed a method based on co-propagating Raman transitions to adjust the length of this

delay line. Also, it is not necessary to lock fceo because the transition is driven by the same

pulse split in two. It might be important to point out that 2 consecutive pulses will not

overlap near the atom sample. Indeed, we will use a laser with a repetition rate of around

76 MHz. Hence, the distance between two consecutive pulses escaping the laser cavity is

on the order of 4 m. The repetition rate of the frequency comb can be tuned by more than

2 MHz by changing the laser cavity size.

In addition, because the atoms are free-falling, the Raman transition must be short

compared to the time (denoted as T in Figure 1.8Figure 1.8) it takes for the atoms to travel in the

overlap zone. For picosecond pulses of the order of 1 ps, this time can be approximated as

T = 10 ms.

It is also important to underline that, due to the broad spectrum of the frequency comb,

the velocity recoil imparted to the atoms during the transition is not well defined, giving rise

to a momentum dispersion called ℏ∆keff in Figure 1.8Figure 1.8. In fact, the recoil velocity transferred

to an atom during a Raman transition is ki − kj , where ki,j is the wave vector of the laser

line i,j. In our case, there are a large number of tooth pairs driving the transition, resulting

in a large number of effective wave vectors kn − km. For two consecutive pairs of teeth, the

difference in effective wave vectors will be on the order of the repetition rate frequency

divided by c. The full-width half maximum of the total dispersion in wave vector (when we

consider all the teeth of the comb) can be approximated as the full-width half maximum

of the emission spectrum of the comb divided by c (on the order of a few hundred GHz).

Furthermore, a spread in detuning noted as∆n, will be a source of coupling inhomogeneity

causing dumping in the Rabi oscillation.
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p

E

Fig. 1.8 Challenges arising from the use of a frequency comb. a) Overlap condition
and restriction on the size of the laser pulse duration. The time T define the time taken
by the atom to free fall through the overlap zone b) momentum energy diagram for a
stimulated Raman transition using a frequency comb. We represent as∆n the spread
in detunning that will affect the coupling inhomogeneity of the Raman transition.
The spread in frequency of the different pair of teeth leads to a momentum dispersion
after one transition.

Conclusion

Frequency comb-driven spectroscopy has shown great potential and can sometimes

overcome the performance of continuous wave lasers in spectroscopy. By taking

advantage of its high peak intensity, we believe it is possible to extend the light-pulse

matter-wave interferometer to other wavelengths. In this introduction, we have

described two spectroscopy experiments and highlighted two important features: the

overlap condition and the impact condition.

In the case of a frequency comb-driven atomic interferometer, we have introduced

two sensitivity limits: one related to the free fall of the atoms through the overlap

zone and the other related to the momentum dispersion.
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1.4 Outlook
This part of my thesis, dedicated to atom interferometry using a frequency comb, is divided

into four chapters.

The second chapter is dedicated to the theory of atomic diffraction by a frequency comb

and shows that this interaction can be perceived by the atoms as a simple interaction with

a continuous laser. We will then theoretically demonstrate the versatility of frequency

comb atom interferometry by considering the possibility of double diffraction and the

interrogation of two different atomic species.

The third chapter describes the experimental setup used to drive the Raman transition

and how we achieved total control of the experimental parameters of the frequency comb. A

method for adjusting the length of the delay line, based on co-propagating Raman transition,

is described in detail. Finally, the counter-propagating Raman transition is driven with a

picosecond laser.

In the fourth chapter we will see the first realisation of an atom interferometer with a

frequency comb laser. We will use a Monte Carlo simulation to study the effect of different

parameters, such as the picosecond pulse duration and the total interrogation time, on the

contrast of the interferometer. Then, we will demonstrate experimentally the versatility of

this method by realising a double diffraction interferometer.

The final chapter of this part shows how we have increased the interrogation time of the

interferometer by using a moving mirror. We will describe in detail the setup, consisting of

a voice coil actuator, an acousto-optic modulator and heterodyne detection, used to achieve

a longer interrogation time without increasing the phase noise of the interferometer. We

will then explore a new interferometer configuration in which we were able to increase the

contrast and investigate the fundamental limitations of this technique.



Chapter 2

Theory of atom-wave diffraction with a
frequency comb

Usually, light pulse atom interferometers use diffraction of the matter wave by a CW laser

to coherently split and recombine atomic wavepackets. Physical processes that induce

atomic wave diffraction are either stimulated Raman transitions [3737] or Bragg diffraction

[4545]. Similarly to the diffraction processes with CW lasers, the theoretical study of the

Raman diffraction with a frequency comb has proven to be crucial for realising an efficient

atomic splitter. Here we present a model to describe how a free-falling atom interacts with

two trains of contra-propagating laser pulses. Light-matter effective coupling depends on

the overlap between the pulses and the atomic wave packet.

First, we will perform a numerical simulation in the case of a co-propagating transition

and show that the interaction of a pulsed laser with a three-level atom can drive the Raman

transition if the repetition rate is well-tuned. This simulation will show that the intermediate

state is only transiently populated.

Second, we will justify the adiabatic elimination of the excited state when using a

picosecond laser.

Then, we will study Raman diffraction induced by counter-propagating picosecond

pulses.

Finally, we will show that using a frequency comb can lead to features of interest such

as a double diffraction scheme.

General consideration

Our goal is to understand andmodel the uses of a frequency comb to drive a Raman transition.

To do so, we will consider a three-level system. Indeed, in the experiment studied in this

part, the Raman process occurs between the |F = 1,mF = 0⟩ and |F = 2,mF = 0⟩ states
of

87
Rb respectively noted |g⟩ and |e⟩. The difference in energy between these two states is

the hyperfine splitting ℏωHFS. Furthermore, the one-photon detuning ∆ is sufficiently large

compared to the energy difference between each excited state to consider only one excited

state denoted as |i⟩. Also, in the experiment, the pulsation ω↓ and ω↑ will only differ by

160 MHz. Thus, for the sake of simplicity, we will consider that the two wave vectors k↓

19
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Fig. 2.1 a) Schematic of a three-level system interacting with two lasers. b) Geometry
of the experiment.

and k↑ are equals.

The laser used to drive the transition is a picosecond frequency comb with a typical

duration of τ =1 ps. The repetition rate frequency of the laser is around 76 MHz and thus

Tr ∼13 ns. For the sake of simplicity, we consider a perfect laser source with no noise on

the repetition rate and a carrier envelop frequency fceo = 0.

2.1 Three-level system and numerical simulation of a
co-propagating transition

This section aims to show that the interaction between a three-level system and a train of

picosecond pulses can lead to a coherent excitation process and that during that process

the intermediate state |i⟩ is only temporarily populated. For this section, we will only

consider one train of picosecond pulses, the orange one on Figure 2.1Figure 2.1. We will show that

this interaction can lead to a co-propagating Raman transition. Because we are studying

co-propagating Raman transition, we neglect the dependency in position, consider an atom

at rest at z=0 and are insensitive to the Doppler effect.

The electric field can be written as:

E⃗(t, z) = E0ϵ⃗ cos(ωct+ kz + ϕ)
N∑

n=1
f(t− nTr + z

c
) (2.1)

where ωc is the carrier frequency, k the wave vector and Tr the time between successive
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pulses. The pulses’ envelope is taken to be Gaussian:

f(t) = e− 1
2

t2
τ2

(2.2)

The field couples both the |g⟩ and |e⟩ states to the |i⟩ state. The total Hamiltonian of

the system is:

H =
∑

s

ℏωs|s⟩⟨s| + V (t,ẑ) (2.3)

where V (t,z) describes the coupling of the atoms with the light pulses:

V (t,z) = − ⃗̂
d · E⃗(t,z) (2.4)

with
⃗̂
d the electric dipole of the atom.

Let’s first consider one pulse. In the |g⟩, |e⟩, |i⟩ basis, the Hamiltonian of the system is :

H =


ℏωg 0 ℏΩ0f(t)

2 eiωct

0 ℏωe
ℏΩ0f(t)

2 eiωct

ℏΩ0f(t)
2 e−iωct ℏΩ0f(t)

2 e−iωct ℏωi

 (2.5)

with Ω0 = µE0
ℏ . Here, we suppose that −e⟨i| r̂ · ϵ⃗ |g⟩ and −e⟨i| r̂ · ϵ⃗ |e⟩ are equal to simplify

the calculation and are written as µ.

The time dependence of the density matrix elements taking spontaneous emission into

account can be calculated from Liouville’s equation:

∂ρ

∂t
= i

ℏ
[ρ,H] + Γ (ρ) (2.6)

where

Γ (ρ) =


Γigρii 0 Γig+Γie

2 ρgi

0 Γieρii
Γig+Γie

2 ρei
Γig+Γie

2 ρig
Γig+Γie

2 ρie −(Γig + Γie)ρii

 (2.7)

Here, we have introduced the spontaneous emission rates Γi,m with m={g,e}

Using the rotating wave frame

ρ̃gi = e−iωctρgi (2.8)

ρ̃ei = e−iωctρei (2.9)

ρ̃ge = e−iωcteiωctρge = ρge (2.10)

(2.11)
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which corresponds to ρ̃ = U †ρU where U is the unitary matrix

U =

1 0 0
0 1 0
0 0 e−iωct

 (2.12)

We have

∂ρ̃

∂t
= i

ℏ
[
ρ̃,H̃RW A

]
+ Γ (ρ̃) (2.13)

with

HRW A =

 0 0 Ω0
2 f(t)

0 ωHF S
Ω0
2 f(t)

Ω0
2 f(t) Ω0

2 f(t) ∆

 (2.14)

and ∆ = ωi − ωg − ωc.

During free evolution, the system of equations becomes:

ρ̇gg = Γigρii (2.15)

ρ̇ee = Γieρii (2.16)

ρ̇ii = −(Γig + Γie)ρii (2.17)

˙̃ρge = iωHF S ρ̃ge (2.18)

˙̃ρgi = i∆ρ̃gi − Γig + Γie

2 ρ̃gi (2.19)

˙̃ρei = −i(−∆+ ωHF S)ρ̃ei − Γig + Γie

2 ρ̃ei (2.20)

... (2.21)

Now, we numerically solve the evolution of the system during a picosecond pulse, let

the atom free evolve during a duration Tr and then apply a second pulse. The sets of

differential equations are solved using the Python package odeint. We checked that the

total population is conserved during the whole computed evolution. The results of the

simulation are shown on Figure 2.2Figure 2.2. For the simulation, we choose parameters consonant

with the experiment: τ=2 ps, a detuning ∆/2π=500 GHz. However, we chose a peak one

photon Rabi frequency Ω/2π=50 GHz for the sake of visualization. In the experiment,

we typically have Ω/2π=100 MHz. In purple, we have plotted for visualization the Rabi

frequency Ω(t) = Ω0f(t). For the simulation, the population is initialized in the |g⟩ state.
First of all, we see on the right-hand plot that after a picosecond pulse, the population

is transferred to the |e⟩ states. Furthermore, we see that the population in the |i⟩ states
is only transiently populated. One can notice that the evolution of the population in the

intermediate state follows the same dynamics as the picosecond pulse.

Then, on the two remaining plots, we study the impact of the repetition rate on the

population transfer. In the centre, we plot the evolution of the populations when we apply
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Fig. 2.2 Evolution of the intermediate state and the excited state. Here,
Ω0/2π =50 GHz, ∆/2π = 500 GHz, T0 = 2π/ωHF S , τ = 2 ps. a) After one
picosecond pulse. b) After two picosecond pulses separated by Tr = qT0. c) After two
picosecond pulses separated by Tr = (q + 1/2)T0

a second picosecond pulse after a free evolution of duration Tr = qT0 with q an integer and

T0 = 2π/ωHF S . The population transfer has increased compared to after only one pulse.

This characteristic is typical of a coherent process. This phenomenon corresponds to a

bright fringe of a Ramsey sequence.

Finally, we plot the population dynamic when the second pulse is applied after a free

evolution duration of (q+ 1/2)T0. Here, we see that the population is transferred back into

the ground state |g⟩. This phenomenon corresponds to a dark fringe of a Ramsey sequence.

2.2 Raman diffraction induced by counter-propagating
picosecond pulses

Here, I will present a theoretical model derived to obtain the analytical expression of an

effective Hamiltonian related to the interaction between N pairs of picosecond pulses and a

three-level system.

The main difference between the usual derivation with CW lasers and this derivation

is related to the dependency in position. When driving Raman transition in a counter-

propagating geometry with CW lasers, one usually writes that the coupling happens

between states |g⟩ =
∣∣∣g,P⃗〉 , |e⟩ =

∣∣∣e, P⃗ + ℏk⃗eff
〉
and |i⟩ =

∣∣∣i, P⃗ + ℏk⃗↑
〉
where keff is

the effective wave vector of the two lasers driving the transition. However, when using

frequency combs, these states are not well defined and the laser pulses couple a continuum

of momentum states.

The derivation presented here aims to show that we can overcome this difficulty by

simply considering that the momentum dependency can be neglected during the evolution

of one pair of counterpropagating pulses.

Here, we will first derive an effective Hamiltonian for one pair of pulses. We will retrieve

the impact condition and show that there is a geometrical dependency in the Rabi coupling.

Then, we will derive an effective Hamiltonian for N counter-propagating pulses
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2.2.1 Description of the problem

We consider a three-level atom interacting with two counter-propagating trains of picosec-

ond laser pulses. We write the electric field as:
E⃗↑(t, z) = E⃗0↑

N∑
n=1

f(t − nTr − z

c
) cos

(
ω↑(t − z

c
)
)

E⃗↓(t, z) = E⃗0↓

N∑
n=1

f(t − nTr + z

c
) cos

(
ω↓(t + z

c
)
) (2.22)

f(t) = e− 1
2

t2
τ2

(2.23)

The total Hamiltonian of the system is:

Ĥ = Ĥ0 + V (t,ẑ) (2.24)

where

Ĥ0 =
∑

s

ℏωs|s⟩⟨s| +
ˆ⃗
P 2

2m (2.25)

and V (t,ẑ) is the coupling Hamiltonian:

V (t,ẑ) = − ˆ⃗
d · (E⃗↑(t,ẑ) + E⃗↓(t,ẑ)) (2.26)

For simplicity, we consider that the field E⃗↑(t,ẑ) couples the lowest eigenstate ofH0, labeled

|g⟩, with the highest one |i⟩ and that E⃗↓(t,ẑ) couples the second lowest one |e⟩ with |i⟩, as
illustrated in Figure 2.1Figure 2.1. The opposite is true as well and, as discussed later, both processes

can happen simultaneously under well-defined conditions.

The coupling can thus be written as :

V (t,ẑ) = Vig(t, ẑ) |i⟩⟨g| + Vie(t, ẑ) |i⟩⟨e| + h.c. (2.27)

with

Vig(t, ẑ) = ℏΩ0

2

N∑
n=1

f(t− nTr + ẑ

c
)e−iω↑(t− ẑ

c
)

(2.28)

and

Vie(t, ẑ) = ℏΩ0

2

N∑
n=1

f(t− nTr − ẑ

c
)e−iω↓(t+ ẑ

c
)

(2.29)

where Ω0 = − d⃗.E⃗0
ℏ . Again, we suppose that −e⟨i| r̂ · ϵ⃗ |g⟩ and −e⟨i| r̂ · ϵ⃗ |e⟩ are equals.
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We write the laser detunings as ∆↑ = ω↑ − (ωi − ωg) and ∆↓ = ω↓ − (ωi − ωe) where
ℏωi is the energy of state |i⟩, and define an average detuning ∆ = (∆↑ +∆↓)/2.

In Appendix AAppendix A, we show that the time-dependence comes from the pulses’ envelop

only and varies over a timescale τ which we assume to be smaller than 1/∆. For small

couplings (V ≪ ℏ∆), the state |i⟩ is only transitory populated during a pulse and an

effective coupling between the states |g⟩ and |e⟩ can be derived using perturbation theory in

the quasi-stationary approximation. Since δ ≪ ∆, these states can be considered degenerate

such that

V eff
eg (ẑ, t) = Vie(t, ẑ)†Vig(t, ẑ)

ℏ∆
(2.30)

Using Equation 2.28Equation 2.28 and Equation 2.29Equation 2.29 we obtain :

V eff
eg (z, t) = ℏ

Ω2
0

4∆e
−i(2kz−ωLt) ∑

n,m

f
(
t− nTr + z

c

)
f
(
t−mTr − z

c

)
(2.31)

In the experiment, ωL, the frequency difference between the two combs, is due to the AOM

placed in the delay line. In order to simplify the calculation, we will first ignore this shift

and set ωL to zero. The sum over n and m is non-zero only when n = m. In the case of

Gaussian pulse, we can separate the position and time. We then obtain:

V eff
eg (z, t) = ℏ

Ω2
0

4∆e
− ẑ2

(cτ)2
∑

n

e− 2(t−nTr)2

τ2 e−i2kẑ
(2.32)

We have introduced k = ω↓+ω↑
2c

We have therefore the following Hamiltonian :

H = P̂ 2

2m + ℏ

 0 Ωi(t,ẑ)†

2
Ωi(t,ẑ)

2 ωHFS

 (2.33)

where

Ωi(t, z) = Ω2
0

4∆e
− z2

(cτ)2
∑

n

e− 2(t−nTr)2

τ2 e2ikz
(2.34)

2.2.2 Effective Hamiltonian

Because the Hamiltonian is periodic, one can write that at time t = NTr, the evolution

operator is given by

U(NTr) = U(Tr)N
(2.35)

Our goal it therefore to calculate the evolution U(Tr) for one period. To perform this
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calculation, we use the interaction frame defined by:

|ψ⟩int = Qint(t) |ψ⟩ (2.36)

with

Qint (t) =
[
1 0
0 eiωHFSt+iϕ

]
(2.37)

where ϕ, which corresponds to a time at which we synchronize the two frames, will be

fixed later. It has no physical meaning.

|ψ⟩int is solution of the Schrödinger equation with the Hamiltonian Hint defined by:

Hint (t) = P̂ 2

2m + ℏ

 0 Ωi(t,ẑ)†

2 e−iωHFSt−iϕ

Ωi(t,ẑ)
2 eiωHFSt+iϕ 0

 (2.38)

In this frame, we can approximate the evolution operator by

Uint(Tr/2,−Tr/2) = 1 − i

ℏ

∫ Tr/2

−Tr/2
Hint(t)dt (2.39)

We define Ω(z) = 1
Tr

∫ Tr/2
−Tr/2 Ωi(t, z)e−iωHFStdt.

The approximation Equation 2.39Equation 2.39 is valid as long as |Ω(z)Tr| is small and that phase

shift due to the kinetic energy is also negligible.

We obtain that :

Ω(z) = Ω̄e−( ẑ
cτ )2

e2ikz
(2.40)

where

Ω̄ = Ω2
0

4∆
√
πτfrepe

−
ω2

HFSτ2

4 (2.41)

This expression contains the impact condition e−
ω2

HFSτ2

4 . When this criterion (ωHFSτ ≪
1) is fulfilled, Ω̄ is given by the average intensity of the laser.

We can now calculate the evolution operator over one period:

Û(Tr) =
 1 − iTr

P̂ 2

2mℏ − iTrΩ(ẑ)†

2 e− iTrωHFS
2 −iϕ

iTrΩ(ẑ)
2 e

iTrωHFS
2 +iϕ

(
1 − iTr

P̂ 2

2mℏ

)
e−iTrωHFS

 (2.42)

As said above, for simplification, we choose ϕ = −TrωHFS
2 .

The key point of the demonstration is the term e−iTrωHFS
. When the hyperfine spitting

is close to a multiple of the repetition rate, there is an integer q such that δ = ωHFS − qωrep

is small compared to ωrep with ωrep = 2π/Tr, i.e. the phase shift e
−iTrωHFS = e−iTrδ

is small.

The number q corresponds to the number of oscillations of the transition during one period
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of the frequency comb.

Û(Tr) =
1 − iTr

P̂ 2

2mℏ − iTrΩ(ẑ)†

2
iTrΩ(ẑ)

2

(
1 − iTr

P̂ 2

2mℏ

)
e−iTrδ

 (2.43)

Assuming that |Ω(z)Tr| ≪ 1 and δTr ≪ 1, to the first order in those terms, we obtain

that

Û(Tr) ≃ e− i
ℏ Ĥeff Tr ≃ 1− i

ℏ
Ĥeff Tr (2.44)

with

Ĥeff = P̂ 2

2m + ℏδ |e⟩⟨e| + ℏΩ̄
2 e−( ẑ

cτ )2 (
e2ikẑ |e⟩⟨g| + e−2ikẑ |g⟩⟨e|

)
(2.45)

This effective Hamiltonian is time independent, and therefore using Equation 2.35Equation 2.35, we

obtain:

U(NTr) = e− i
ℏ Heff NTr

(2.46)

2.2.3 Discussion
First of all, one should remark that even though the two lasers driving the transition have

the same frequency, we can drive the transition between the |g⟩ state and |e⟩ state. This
is impossible in the case of CW lasers. It is made possible here because the coupling is

performed by a short pulse.

The first key point of the demonstration is the use of the interaction frame. Indeed, this

allows us to write Equation 2.39Equation 2.39. It is not possible to write this equation in the original

frame because ωHFSTr ≃ q which is not negligible. By moving into the interaction frame,

we rotate the coupling term phase at the speed ωHFS and are now able to write Equation 2.39Equation 2.39.

This approximation reveals the Fourier transform of the two-photon coupling term. Indeed,

assuming that Tr/2 is much larger than τ , we can consider integrating over ] − ∞,∞[ .
This Fourier transform reveals a key term: e−

ω2
HFSτ2

4 . This term accounts for the impact

condition and shows that two-photon transfer is only possible for short pulses, compared

with ωHFS. In addition, we found Ω̄, which is the Rabi frequency obtained for a CW laser

with the same average power.

In the remainder of the demonstration, we return to the initial frame, going back at a

periodical time Tr. Here, we show the expected resonance condition, taking into account

the number of oscillations of the transition during a period Tr. This ’modulo’ passage

allows us to reduce the phase shift to a small one, and thus proceed to the approximation

Equation 2.44Equation 2.44.

Finally, we obtain an effective Hamiltonian taking into account the atom’s external

states. Note that this calculation is only valid for times t = NTr. It still allows us to estimate

transition probabilities.
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In order to take into account the frequency shift of the combs, it is sufficient to perform

a first frame change, consisting of shifting the energy of the excited state vector |e⟩ by the

same frequency times ℏωL, the value of δ is then given by ωHFS − ωL − qωrep

In the standard treatment of counterpropagating Raman transitions, momentum remains

a good quantum number, in the sense that a state with a well-defined momentumwill always

retain a well-defined momentum. This property allows for straightforward calculations

using the plane wave basis, enabling, for instance, the phase to be computed for any initial

state, even if it is not a plane wave, as it can be easily written as a superposition of plane

waves.

However, in the case of Raman transitions with a picosecond laser, the problem be-

comes significantly more complex: on the one hand, we know that the transition will be

velocity-selective, but on the other hand, the transition will also be position-selective. This

introduces a fundamental difficulty. Nevertheless, a quick calculation shows that there is

no fundamental incompatibility.

One can estimate the velocity selectivity of the transition. As with the usual counter-

propagating Raman transition, it is given by 2kδv = Ω, where k is the wavevector, δv the
velocity spread, and Ω the Rabi frequency. Meanwhile, the position spread is given by

δx = cτ , where c is the speed of light and τ is the pulse duration. This yields the relation:

mδxδv

ℏ
= cτΩ

2ℏk/m = c

vr

Ωτ

where vr is the recoil velocity. Typically,
c

vr
≃ 1010

, and Ωτ ≃ 1
N
, where N is the number

of pulses required to achieve a π-pulse. In our experiment, we typically have N = 105
.

In conclusion,
mδxδv

ℏ ∼ 105 ≫ 1. Therefore, the transition is not at all limited by the

Heisenberg uncertainty principle. One can thus conceive of a wavepacket that has both

a position spread ≪ cτ and a velocity spread ≪ Ω/2k. In such a case, the position and

velocity of the wavepacket can be treated as a classical variable. This allows the transition

probability to be calculated by considering both the intensity at the wavepacket’s position

and its velocity to compute the Doppler shift. This approximation is at the core of the

Monte Carlo simulation that we will perform for our experiment, where the initial atomic

cloud is decomposed into a sum of Gaussian wavepackets.

When considering the velocity and the position as classical quantities, one can show

that the resonance condition becomes

ω↑ − ω↓ − 2πqfrep = ωHF S + k⃗eff · v⃗ + ℏ|⃗keff|2

2m (2.47)

with k⃗eff = k⃗↑ − k⃗↓ and the Rabi Raman frequency is

Ωeff = Γ 2

4∆
I

2Is

e−
ω2

HFSτ2

4 e−( z
cτ )2

(2.48)
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2.3 Excitation schemes

As shown previously, lambda-type two-photon transitions can be driven with a frequency-

comb laser if both the resonance condition and the condition of impact excitation are met.

Given a certain pulse duration τ , one can drive efficiently any transition in which frequency

ω0 lies in the range 0 to 1/τ . More specifically, the transition will be driven with an effective

coupling strength scaled by e−( δτ
2 )2

in comparison to the one obtained with two CW lasers

having the same total average power as the frequency comb. One can thus drive Bragg

transitions where the states |g⟩ and |e⟩ correspond to different momentum states of the

same internal state as well as Raman transitions where states |g⟩ and |e⟩ correspond to

different internal states. The resonance condition for a Bragg transition becomes:

ω↑ − ω↓ − 2πqfrep = Nk⃗eff · v⃗ +N2ℏ|⃗keff|2

2m (2.49)

where k⃗eff ≡ k⃗↑ − k⃗↓ and N is an integer corresponding to diffraction order. The resonance

condition for a Raman transition (N = 1):

ω↑ − ω↓ − 2πqfrep = ω0 + k⃗eff · v⃗ + ℏ|⃗keff|2

2m (2.50)

where ℏω0 is the energy difference between the two lowest internal states at rest.

Looking at the resonance conditions (2.492.49),(2.502.50) one can immediately infer the versa-

tility of using a frequency-comb for driving lambda-type two-photon transitions. Three

parameters can be set experimentally to verify the resonance condition: the repetition

rate frep which can be controlled by tuning the comb resonator, the frequency difference

ω = ω↑ − ω↓ which can be controlled by inserting, e.g., an acousto-optic modulator in the

optical path of one of the two pulse trains [5454], and the integer q, which can not be tuned

strictly speaking but which adds flexibility for driving the transition. Notably, one can

profit from this versatility to drive more than one transition simultaneously.

The first interesting case is two drive simultaneously two transitions with opposite

wavevectors ±k⃗eff. This so-called double-diffraction technique was implemented at SYRTE

and required three CW lasers [3939]. In this case, the two resonance conditionsω↑ − ω↓ − 2πqfrep = ω0 + k⃗eff · v⃗ + ωrec

ω↓ − ω↑ − 2πq′frep = ω0 − k⃗eff · v⃗ + ωrec

(2.51)

Adding this two equations member by member we obtain:

frep = −(ω0 + ωrec)/π(q + q′) (2.52)

In our experiment, the Raman process is driven between the two hyperfine state of

87Rb. The recoil frequency shift ωrec/2π is around 15 kHz and the hyperfine splitting

ω0/2π =6.834 GHz and q=q’=92. Hence, to drive a double diffraction scheme, we have to

detune the repetition rate from the co-propagating transition by only 16 Hz.
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Another interesting application is two drive Raman transitions on two different atomic

species simultaneously. The pair of resonance condition writes:ω↑ − ω↓ − 2πqfrep = ω0,1 + k⃗eff · v⃗ + ωrec,1

ω↑ − ω↓ − 2πq′frep = ω0,2 + k⃗eff · v⃗ + ωrec,2

(2.53)

which gives using the same operation:

frep = − (ω0,1 + ω0,2 + ωrec,1 + ωrec,2) /π(q + q′) (2.54)

This excitation scheme can be used for testing the universality of free-fall [22; 77; 1010; 1414].

In particular, this technique has the advantage of being spatially selective along z, due to
the pulse overlap condition, and could thus mitigate position-dependent systematic effects.

Conclusion

In this chapter we have carried out a theoretical analysis of Raman diffraction induced

by a frequency comb. The impact and overlap conditions have been obtained. Finally,

we demonstrated the possibility of driving different excitation schemes with only

one laser.



Chapter 3

Raman diffraction with a picosecond
laser

This chapter describes the implementation of Raman diffraction with a frequency comb in

a counterpropagating geometry. First, we present the picosecond laser and how we came to

full control and knowledge of the central wavelength, the repetition rate, and the duration

of the picosecond pulses. Then, briefly, we detail the cold atom sources before explaining

the method used to make the picosecond pulses overlap on the cold atomic source. Finally,

I will discuss some results of the Raman diffraction of cold atoms by a picosecond laser.

3.1 Pico-second frequency comb laser and characteriza-
tion

The frequency comb used to drive the Raman transition is a picosecond mode-locked

Ti:sapphire solid-state laser from Coherent Inc (model MIRA 900-P). We choose a picosecond

laser to address the whole atomic sample (overlap condition). Also, this laser was already

available in our laboratory and lent by Francois Nez.

The laser cavity is shown on Figure 3.1Figure 3.1. The pump laser is a Verdi V6 providing 6 W of

light at 532 nm. This laser is focused on a Ti:Al2O3 crystal acting as a gain medium. The

starter is used to start the pulse mode operation. The laser usually works in continuous

wave (CW) mode. Yet, by changing the cavity’s effective length at the proper speed with

the starter, very high-power fluctuations can be induced. Once one of these fluctuations

achieves a high enough power, a Kerr lens will be formed in the gain medium. The Kerr

effect will lead to a smaller beam for the high-power perturbation. As shown on Figure 3.2Figure 3.2,

if the slit is sufficiently closed, only this perturbation will pass through it and begin to

resonate in the laser cavity. Once this soliton pulse is created, the starter stops moving,

passive mode locking is achieved and the laser will now emits pulses.

The Gires-Tournois Interferometer is used to compensate for the group velocity disper-

sion induced by propagation in the cavity. The birefringent filter can be tuned to select

the central wavelength of the laser. Changing the slit width enables to modify the pulse

duration from 1 to 2 picoseconds.

31
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GTI:  Gires-Tournois Interferometer 

BRF:  Birefringent filter 

M:     Mirror

L:      Pump focusing lens

Fig. 3.1 Optical Schematic of the Mira 900-P cavity. The pump laser is a 6W Verdi
laser at 532nm. The gain medium of the laser is the red parallelepiped with Brewster
angles.

Fig. 3.2 Beam cross-section in the laser cavity. When closing the slit, there is more
loss for CW mode which achieves mode-locking.
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The time between pulses escaping the cavity is equal to the time it takes for light to

make one round trip in the cavity. In our case, this time is approximately 13.2 ns, setting

the repetition rate frep = 1/Tr ∼ 76 MHz. The output mirror is mounted on a mechanical

translating stage which enables to roughly change the size of the cavity. By changing the

effective length of the cavity, we can control the repetition rate of the frequency comb and

modify it by more than 2 MHz.
Changing the length of the cavity will be used to stabilize the repetition rate frequency.

We will perform a feedback loop on the size of the cavity by retroacting on a mirror mounted

on 2 piezo transducers (Mirror M2 on Figure 3.2Figure 3.2). At the output of the cavity, we pick up a

small amount of light that will be split in two. A part will go on a photodiode to obtain a

measurement of the repetition rate and the other part to an optical spectrometer to measure

the central wavelength and the duration of the picosecond pulses.

3.1.1 Repetition rate stabilization

We saw in the introduction (Equation 1.2Equation 1.2) that the repetition rate frep needs to be controlled

to drive Raman (also called Lambda) transition. By controlling the length of the laser’s

cavity, we can tune and lock the repetition rate of the laser. To do so, mirror M2 is mounted

(on Figure 3.1Figure 3.1) on two piezo-transducers as shown of Figure 3.3Figure 3.3. A slow, long-range piezo

is used to compensate for long-term drift, and a fast, small-range one is used to follow

high-frequency noise due to vibration. The long-range piezo is coupled to a translating

stage to move the whole mirror mount. The fast piezo is meanwhile glued directly to the

mirror.

The frequency chain of the repetition rate is displayed on Figure 3.3Figure 3.3. The synthesizer is

referenced to a Cesium frequency standard delivered by the SYRTE. The error produced by

mixing the photodiode signal frep and the synthesizer frequency νsynthe is fed to an FPGA

(RedPitaya). The FPGA will perform feedback on the two piezos. The long characteristic

time fluctuation is sent to the slow, long-range piezo whereas the quick characteristic time

constant is sent to the fast, short piezo. The PID parameters are carefully optimized to

minimize the low-frequency phase noise. The repetition rate is controlled by changing the

frequency of the synthesizer which is the command value of the PID.

To decrease the low-frequency noise on the repetition rate, the frequency of the syn-

thesizer is set on a harmonic of the wanted repetition rate. By doing so, we increase by a

factor p, where p the harmonic considered, the sensitivity to any error. To do so, before

mixing frep with νsynthe, the signal goes through a band pass filter centred on the harmonic

wanted. In the experiment, we use the ninth harmonic. The signal-to-noise ratio on higher

harmonic was too low to use them. Also, the repetition rate has a 50 Hz noise because of

unknown sources. To reduce it, the experiment is synchronized on the 50 Hz of the sector

meaning that the experimental sequence always begins at the same defined phase regarding

the sector.
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slow 
piezo

translating
stage

fast
piezo

lowpass 
filter

synthe

Fig. 3.3 Repetition rate feedback loop. The lock of the repetition rate is performed by
changing the length cavity using two piezo transducers connected to mirror M2 (left).
νr is the repetition rate frequency measured by the photodiode, νsynthe the frequency
of the synthesize and ϵ is the residual error. The Proportional Integrator Derivator
(PID) module will drive the two piezos.

3.1.2 Laser pulse characterization set-up

The laser’s wavelength and the picosecond pulse duration must be measured to obtain full

control of the laser. We performed two independent measurements of the picosecond pulse

duration with a spectrometer (frequency domain) and an auto-correlation measurement

(time domain). These two measurements showed that the pulses are close to being Fourier-

limited.

3.1.2.1 Spectrometer measurement

To measure the pulse’s spectral width, a part of the pulse picked at the output of the cavity is

sent to an optical spectrometer, shown on Figure 3.4Figure 3.4. This spectrometer (Jarrell-Ash Model

82-410 Monochromator Spectrometer) was adapted and realigned to match its working

point to the picosecond laser wavelength around 790 nm.

The laser is first sent on a curved mirror. The focal point of the mirror is on a grating.

The light is then collimated by a second curved mirror. We collect the light on a CCD

camera. Typical images are shown on Figure 3.5Figure 3.5.

Calibration

We need to calibrate the spectrometer to obtain a measurement of λ and of the spectral

width of the frequency comb. We therefore need to calibrate the pixel to wavelength

equivalence and the optical transfer function (OTF) of the spectrometer. The OTF of an

optical system specifies how different optical frequencies are transmitted and reflected by

the system. Mainly because of the grating in the spectrometer and because we want to

accurately determine the spectral width of the frequency comb, the determination of the
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laser

curved
mirror

grating

CCD camera

Fig. 3.4 Optical set-up of the spectrometer. The two colours represent the result for
two different wavelengths. By rotating the grating, we adjust the wavelength imaged
on the CCD camera.
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Fig. 3.5 a) Image recovered at the output of the optical spectrometer with a CW
reference laser used to calibrate the spectrometer. b) Image at the output of the optical
spectrometer with the frequency comb. The frequency comb line is larger because of
its spectral width. The red line represents the slice taken for data analysis.

transfer function is critical. To perform the calibration, we use the Mira laser working in

CW mode meanwhile its wavelength is measured with a wave meter.

First, we adjust the grating to centre the signal on the camera. Then, we take the image

shown on Figure 3.5Figure 3.5a) and take a slice of it along the red line. This gives us a measurement of

the transfer function of the spectrometer. Indeed, we assume that the line-width of the Mira

working in CW mode is infinitely narrow compared to the resolution of the spectrometer,

estimated at around 20 GHz.
Then, we Fourier transform the fit function chosen to be a hyperbolic secant according

to the data sheet of the Mira laser and multiply it with the Fourier transform of the transfer

function of the spectrometer obtained previously. Finally, we apply the inverse Fourier

transform to this function and obtain the fitting function.
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Fig. 3.6 Profile of the CCD image along the red line. Left: Experimental data
acquired using a CW laser used to obtain the transfer function. Right: Signal with
the Mira laser working in pulsed mode. Blue line: data for a picosecond pulse. The
orange line is a fit by a hyperbolic secant convolve with the transfer function of the
spectrometer. The fit gives ∆ν = 260.6 ± 1.2GHz and λ0 = 792.74(2) nm.

Measurement

Next, we take an image while the laser is working in pulsed mode and obtain Figure 3.5Figure 3.5b).

The raw signal of the slice along the red axis is shown in blue on Figure 3.6Figure 3.6. By fitting the

blue signal by the fit function defined here before, we obtain the orange curve.

Thanks to the calibration in CW mode and by measuring its wavelength with a wave

meter, the central position of the ray on the CCD camera gives us the central wavelength.

The FWHM of the power spectrum is given by the fit. The fit, shown on Figure 3.6Figure 3.6, gives

∆ν = 260.6 ± 1.2 GHz and λ0 = 792.74(2) nm

3.1.2.2 Intensity auto-correlation measurement

An auto-correlation measurement was performed to confirm the previous measurement of

the picosecond laser power spectrum. This measurement was performed in parallel with

the previous measurement. Indeed, the picosecond pulse duration can drift over time due

to temperature variation for instance. Also, it is important to underline that the picosecond

duration can be easily changed by a factor of two by simply opening or closing the slit. This

is why these two measurements were performed in the same experimental configuration in

a short time-lapse.

The set-up is shown on Figure 3.7Figure 3.7. A pulse is split in two by a beam splitters and the

reflected beam enters a first delay line. Then, the transmitted pulse enters a second variable

length delay line and the other one travels in a fixed length path of the second delay line.

The two paths are then recombined on a PBS before being sent on a photodiode. If the

two pulses arrive at the same time, or at least if they overlap a bit when arriving on the

photodiode, a beating signal can be observed at twice the frequency of the AOM. The

amplitude of the signal on the photodiode is given by
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a) Auto correlation measurement set-up.
The AOM is used to produce a signal at
80 MHz. By changing the size of the

second delay line (grey shaded area), we
obtain a measurement of the temporal

duration of a picosecond pulse.
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b) Auto-correlation measurement. The fit
(orange line) gives τac = 2.4 ps

Fig. 3.7 Auto-correlation set-up and measurement.

I(t) = Asech2
(

1.76(t − tdl)
τac

)
(3.1)

with tdl the delay between the two pulses and τac the FWHM of auto-correlation of the

intensity envelope. The formula demonstrates that an increase in the degree of overlap

between the pulses will result in a corresponding enhancement of the signal amplitude.

Results are shown on Figure 3.7Figure 3.7. tdl is varied by changing the first delay line length. On the

spectrum analyzer, we observe a signal at twice the frequency of the AOM (because of the

double pass scheme). The fit, in orange, gives τac = 2.4 ps. To retrieve the duration τp, the

FWHM of the intensity envelope in seconds, using τac, we use the table below extracted

from the Mira 900-P manual.

τp = FWHM of intensity envelope function in seconds.

τAC = FWHM of auto-correlation function of corresponding intensity envelope.

∆ν = FWHM of power spectrum in units of Hertz.

The coefficient for hyperbolic secant pulses to obtain τp from τac is 0.648. Finally, we

obtain τp = 1.55 ps.

The Time-Bandwidth product is

τp ×∆ν = T (3.2)

where T is the time-bandwidth product limit. For hyperbolic secant, this product is limited
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FUNCTION I(t) τp/τac ∆ντac ∆ντp

Square I(t) =

1; |t| ≤ τp

2
0; |t| > τp

2
1 1 1

Gaussian I(t) = exp
[
−4 ln 2t2

τ2
p

]
0.707 0.624 0.441

Hyperbolic secant I(t) = sech
2
(

1.76t
τp

)
0.648 0.486 0.315

Lorentzian I(t) = 1
1+
(

4t2
τ2

p

) 0.500 0.441 0.2206

Symmetric 2-sided exponential I(t) = exp
(
−2 |t| ln 2

τp

)
0.413 0.344 0.142

Table 3.1: Comparison of different pulse shapes

by the Fourier limit and is equal to 0.315. The two measurements were performed in two

distinct domains: the time domain, using the auto-correlation technique, and the spectral

domain, employing a spectrometer. The same pulse was used for both measurements. We

found ∆ν = 260 GHz and τp = 1.55 ps which gives a time-bandwidth product of 0.403.

The pulses are not Fourier limited but are close to.

3.2 Cold atom source

Now, we will present the experimental setup used to produce the cold atoms source that

will be interrogated by the picosecond laser. This experiment was performed on the old h/m

apparatus used for the fine structure constant measurement in 2011. Here, I will only briefly

explain each building block. More details about the theory and techniques can be found in

each thesis of the groups. Mainly, I would recommend the thesis of [55] as the experiment

presented here-after is performed on the same vacuum chamber and optical set-up.

3.2.1 Ultra high vacuum chamber

We use an ultra-high vacuum chamber illustrated on Figure 3.8Figure 3.8. The vacuum chamber is

composed of two distinct parts: the 2D MOT chamber and the 3D MOT chamber. The 2D

MOT is used to cool down atoms using lasers and magnetic fields in two dimensions. The

3D MOT is fed by the 2D MOT using a push beam. With this apparatus, we can create a

cloud of 108
atoms in less than 500 ms.

3.2.2 Trapping and cooling atoms

As it is routinely done, we use two lasers to trap and cool Rubidium atoms. Both lasers are

generated through laser diodes in Extended Cavity Diode Laser configuration. They are

delivering up to 20 mW. We then amplify their power, using a Tapered Amplifier, up to 1W.

The first one, the cooling, is red detuned from the |5s 2S1/2,F = 2⟩ → |5s 2P3/2,F
′ = 3⟩.

This laser will cycle the transition and cool the atoms.
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Fig. 3.8 Side view of the vacuum cell, including the 2D-MOT, the 3D-MOT, as well as
the coils generating the magnetic field gradient necessary for the 3D-MOT. Extracted
from [55].

The second laser, the repump laser, is at resonance with the |5s 2S1/2,F = 1⟩ →
|5s2P3/2,F

′ = 2⟩ transition. Indeed, after the absorption of one photon from the cooling

laser, the atoms might decay to the |F = 1⟩. Thanks to the repump laser, we repump the

atoms to the excited state and thus create a closed transition.

The atomic levels are represented on Figure 3.9Figure 3.9 as well as the frequency of the lasers

presented here before. The repump’s frequency is locked thanks to a saturated absorption

of Rubidium atoms. The cooling laser is locked on the repump by performing an optical

beating of the two lasers.

After the 3D-MOT sequence, we use optical molasses to achieve a cooling up to a few

µK of around 108
atoms in a cloud of ∼ 1 mm.

3.2.3 Time of flight detection
Below the 3D MOT chamber (also called the science chamber), we have a cubic vacuum

chamber where we use time of flight technique to detect the atoms in each hyperfine

level. This detection system, shown on Figure 3.10Figure 3.10, is composed of two laser light sheets

at resonance with |5s2S1/2,F = 2⟩ → |5s2P3/2,F
′ = 3⟩ retro reflected to create a situation

analogue to an optical molasses enhancing the fluorescence signal. The atoms, free-falling

through these two circularly polarized light sheets, will first encounter the top light sheet.

The atoms in the |F = 2⟩ levels will emit photons collected on a first photodiode. A cache

is positioned at the base of the upper light sheet to circumvent the ’molasses effect’ and

thus will allow atoms to be blown away thanks to radiation pressure. This allows for the

removal of atoms in the |F = 2⟩ level. We thus have a measurement of the number of atoms

in one of the hyperfine levels. Then, the remaining atoms in the |F = 1⟩ are repumped

in the |F = 2⟩ using a repump light sheet. The atoms are then detected in the last light

sheet with a second photodiode, similar to the first sheet setup. This allows us to make a

measurement of the population in the two hyperfine levels.



40 Chapter 3. Raman diffraction with a picosecond laser

384.25THz C
o
o
lin
g

R
e
p
u
m
p

Fig. 3.9 Energy diagram of the D2 line of 87Rb. The frequency of Repump and
Cooling lasers are presented in red.

Fig. 3.10 Side view that shows the counterpropagating circularly polarized light
sheets. The atoms in |F = 2⟩ are detected in the first light sheet and blown away
thanks to the cache placed on the retro-reflecting mirror in order to stop the molasses
effect. The remaining atoms, in |F = 1⟩, are then repumped and detected in the same
way.
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3.3 Fixed length delay line set-up

As mentioned before, if one wants to use stimulated Raman transition to diffract and deflect

atoms, the transition must be driven by counterpropagating beams. Using a frequency

comb, it imposes that the two counterpropagating pulses overlap at the position of the

atoms.

3.3.1 Raman transition with a frequency comb: experimental reali-
sation

To make the picosecond pulses overlap on the atoms, we used a delay line shown on

Figure 3.11Figure 3.11 in the blue zone. A picosecond pulse is split in two by a PBS. The transmitted

beam is coupled to a fiber and sent directly to the vacuum chamber. This pulse will be

retro-reflected by the mirror placed at the bottom of the chamber before arriving at the

atoms. During that, the reflected beam will enter a delay line with an accurately chosen

length so that the distance the pulse travels in the delay line is equal to the distance between

the atoms and the bottom mirror. An experimental protocol, presented hereafter, has been

developed to ensure this condition. Once this condition is achieved, the pulses will overlap

at the position of the MOT release. An acousto-optic modulator (AOM1) on Figure 3.11Figure 3.11 is

placed in the delay line to compensate for the Doppler shift caused by the free fall of the

atoms. AOM-2 is used as a switch to control the interrogation time between the atom and

the laser.

The resonance condition for a counter-propagating Raman transition is

ω1 − ω2 = ωHF S + k⃗eff · v⃗ + ωrec (3.3)

Where ω1 and ω2 are the pulsations of the comb teeth that induce the Raman transition,

ωrec is the recoil shift acquired during the Raman transition, equal to ∼ 2π.15 kHz for Rb87
,

ωHF S is the splitting between the two states the we want to address, equal to 2π.6.834 GHz
and k⃗eff · v⃗ is the Doppler effect induced by the free fall of the atom. Because we split a

picosecond pulse in two, the repetition rate and the carrier envelop frequency offset for

the two pulsations (ω1 and ω2) are the same. Also, the pulses that traveled in the delay line

(pulse 2) acquired twice the frequency of AOM1. All this gives

ω1 = 2π ((n+ q)frep + ffceo)
ω2 = 2π (nfrep + ffceo + 2fAOM) (3.4)

replacing ω1 and ω2 in equation 3.33.3, we obtain

2π(qfrep − 2fAOM) = ωHFS + k⃗eff · v⃗ + ωrec (3.5)
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Fig. 3.11 Experimental set-up. The blue area defines the delay line.

By setting 4πfAOM(t) = 4πfrep − k⃗eff · v⃗ − ωrec, we obtain

(q − 2)frep = νHFS (3.6)

The picosecond laser has a repetition frequency of around 76 MHz and the hyperfine

splitting of Rb
87
is νHFS = 6.834 GHz, it imposes q = 92. In the spectral domain, it means

that the tooth labelled n+ 2 (delayed pulse) will be coupled with the n+ 92 (direct beam)

tooth of the pulse to drive the transition (because of the AOM, all the teeth of the delayed

pulse are shifted by +2frep). In the temporal domain, the atom oscillates 90 times at the

hyperfine frequency between two picosecond pulses. The AOM acts, in the spectral domain,

as an offset of frequency for the delayed pulse resulting in a shift of 2 teeth as shown on

Figure 3.12Figure 3.12b.

3.3.2 Measurement of the delay line
To adjust the delay line’s length and set it up equal to the distance between the initial

position of the cloud and the bottom mirror, we developed a measurement technique

based on co-propagating Raman transition. When driving co-propagating transition, the

resonance condition becomes ν1 − ν2 = νHFS. Thus, to be resonant, we set the repetition

rate equal to frep = νHFS/q with q =90.

Usually, to perform Raman transition with CW laser, we used perpendicular linear

polarization between the two lasers or σ+ − σ−
polarization [2121]. When using a frequency

comb the teeth that induce Raman transitions will be part of the same pulse. This means

that we can not have perpendicular linear polarization between the two frequencies. To

perform co-propagating Raman transition we thus use σ polarization. However, later, when
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Fig. 3.12 Excitation scheme in the case q=92 a) in the temporal domain b) in the
frequency domain.

delay pulse delay pulsea) b)

Fig. 3.13 a) The two pulses interfere constructively. b) The two pulses interfere
destructively. The black sinusoide depicts the oscillation of the atom at νHFS. In red
and blue, we display the trains of picosecond lasers delayed by a time delay pulse.

we drive counter-propagating transition we will use perpendicular linear polarization. This

allows for higher Rabi frequency and also avoids spurious co-propagating transition. In

practice, for this experiment, we place a quarter-wave plate (QWP) at the output of the

collimator.

The method developed here to fix the delay line length uses two trains of picosecond

pulses, with the delay between each pair of pulses being adjustable. In Figure 3.13Figure 3.13, these

two pulse trains are shown in red and blue. We adjust the repetition rates of these two

trains so that they drive copropagating transitions. The principle of the method can be

understood by considering two scenarios, illustrated in Figure 3.13Figure 3.13:

• Case A: when the two picosecond pulses are in phase with the transition dipole, their
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Fig. 3.14 a) First experimental setup. The two delayed pulse trains are here the
direct train and the retro-reflected one. By changing the time at which we start the
interaction between the cloud and the pulse train, we modify the distance Dm−a and
thus the delay between the two trains. b) Second experimental setup. The two trains
are coming from the delay line and the direct beam. By changing the size of the delay
line, we change the delay between the two picosecond pulse trains Dd.

interaction with the atom interfere constructively. This means the combined effect of

the pulses enhances the atomic transition.

• Case B: when the pulses are delayed such that the second pulse arrives out of phase

with the transition dipole, the net transfer between the two hyperfine states is zero.

This experiment can also be viewed as a sequence of Ramsey fringes formed by the interac-

tion of the red and blue pulses [6060]. If the delay between pulses is a multiple of 1/νHFS, the

pulses are in phase, leading to constructive interference. Conversely, if it is a half multiple

of 1/νHFS, the pulses are out of phase, causing destructive interference. These scenarios

were illustrated in chapter 2chapter 2.

Set-up and results

To fix the delay line length, we will perform two different experiments shown in Figure 3.14Figure 3.14.

In the first case, the transitions will be driven by pulses where the delay is due to the

retro-reflection, and we will not use the delay line (beam block). By modifying the time from

the beginning of the free fall at which we perform the transitions, we change the distance

Dm−a (distance mirror-atoms) in Figure 3.14Figure 3.14. Thus, we modify the delay T = 2Dm−a/c
between the two pulses. By scanning the time at which we start the interaction between

the atoms and the laser we obtain the measurement presented in Figure 3.15Figure 3.15a). We observe

interference fringes in the probability of finding the atom in the excited state as a function

of the free fall distance. The oscillation period is approximately 2.2 cm, which agrees

with the theory. Indeed, the bright fringes should be obtained when T = 1/νHFS. In this

configuration, T = 2Dm−a/c, thus giving

Dm−a = c

2νHFS
= 2.2 cm (3.7)
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Fig. 3.15 a) Transition probability as a function of the free-fall distance. The loss
of contrast can be attributed to the fact that for considerable free-fall distances, the
cloud experiences disparate TR during the transition, resulting in a loss of coherence.
b) Transition probability as a function of mirror displacement.

Furthermore, we observe a drop in contrast as we increase the free fall distance. The longer

the atoms fall, the faster they fall. Thus, during a co-propagating pulse with a duration of

approximately 1 ms, the faster the atom moves, the more it will experience a different delay

within the transition, resulting in a drop in contrast.

The second experiment we are going to perform is shown in Figure 3.14Figure 3.14b). The delayed

pulse, shown in grey, comes from the delay line. The time interval between the two pulses

is therefore T = 2Dd/c. By varying the length of the delay line using a motorised mirror,

we scan the delay between the pulses and obtain the results shown in Figure 3.15Figure 3.15b). We

observe the same periodicity as in the previous experiment.

We now need to reconcile the two curves. Experimentally, we look for the delay line

lengths for which we get the same transition rate as at the initial position of the cloud on

the curve in Figure 3.15Figure 3.15a). In other words, it is when Dd is equal to the release position of

the atomic cloud.

We identify two possible options: either around 0.5 cm or close to 2.7 cm. Note that

these two distances are not physical distances as one should take into account the thickness

and index of refraction of every optics on each beam path. Anyway, by attempting counter-

propagating transitions around these two positions, we find the delay line length that allows

the two counter-propagating pulses to overlap with the atomic cloud.

3.3.3 Counter-propagating Raman transition

The quarter-wave plates that were previously installed for the preceding experiment are

now removed in order to achieve orthogonal linear polarisation for the two pulses (see

Figure 3.11Figure 3.11). Using the spectrometer to measure the wavelength of the picosecond laser, we

set the central wavelength to be detuned by∆/2π ∼ 500 GHz from the D1 line of rubidium.

This detuning is chosen to minimise the π pulse duration while avoiding spontaneous

emission. Due to the spectral width of the frequency comb, typically ∆ν ∼ 150 GHz for
picosecond pulses duration of 1ps, it is impossible to further reduce the detuning without
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Fig. 3.16 Space time diagram of the overlap zone shown in the dashed diamond.
The red beam is reflected by the retro-reflecting mirror. The purple beam comes from
the delay line.

spontaneous emission.

On Figure 3.16Figure 3.16, we show the space-time diagram of two overlapping picosecond pulses.

The time Dd/c has been calibrated using the previous experiments so that the dashed

diamond is at the initial position of the MOT. It may also be important to note that thousands

of pairs of picosecond pulses will drive a transition. For example, for π pulse duration

of 0.6 ms, or in other words, for Rabi frequency of Ω = 5.2 kHz, we need 22000 pairs of

picosecond pulses overlapping on the cloud to transfer the atoms from one hyperfine level

to the other.

Figure 3.17Figure 3.17 a) shows a dumped Rabi oscillation. After a π pulse of counterpropagating

Raman transition which acts as a velocity selector, we apply a second Raman pulse and scan

its duration. We observe dumped Rabi flopping. The damping of the oscillation is identified

as a result of coupling inhomogeneity, mainly due to the picosecond pulse duration. Imagine

an atom at the centre of the overlap zone when AOM1 is switched on. An increase in the

duration of the interaction will result in the atom falling and undergoing different Rabi

couplings due to the Gaussian spatial shape of the Rabi coupling, which will dampen the

oscillation.

Figure 3.17Figure 3.17b) shows a Rabi spectrum. We apply a π Raman pulse and scan the detuning

regarding the two photons’ resonance by changing the repetition rate of the Mira laser.

Thus, we address different velocity classes of the atomic cloud. This experiment measures

the velocity distribution of the cloud. The fit gives a temperature of 4.9µK.
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Fig. 3.17 a) Transition probability as a function of the duration of the second pulse.
The π pulse duration is around 0.65ms. b) Measurement of the velocity distribution:
Temperature 4.91 ± 0.18 µK.

Conclusion

In this chapter, we have detailed the experimental setup used to cool rubidium atoms

and shown how to fully control each characteristic of the frequency comb laser

saying; the repetition rate, the central wavelength and the duration of the picosecond

pulses. We then performed two complementary experiments to set the delay line

length so that the picosecond pulses overlap at the initial position of the atomic

cloud. Finally, we drove a counter-propagating Raman transition with the frequency

comb laser. We are now able to create a spatially separated coherent superposition

of an atom using a frequency comb driven Raman transition in a counterpropagating

geometry.





Chapter 4

First atom interferometer driven by a
frequency comb

This chapter is devoted to the development and first demonstration of an atom interferometer

based on stimulated Raman transitions driven by a picosecond laser. We will briefly present

the theory of atomic interferometers using a π/2 − π/2−π/2 − π/2 pulse sequence. Using

a Monte Carlo simulation, we will discuss some subtleties related to frequency comb atom

interferometry.

4.1 Theory of atom interferometry

The key parameter in light pulse atom interferometry is the difference in phase of the two

atomic waves that interfere at the output of the interferometer. Usually, the Feynman path

integral approach is used to derive the phase acquired by an atom along a classical trajectory

[5757]. Here, we will use a formalism presented by Professor W.P. Schleich at the FOMO

summer school and detailed in [5151]. This formalism uses the manipulation of evolution

operators. We consider a Ramsey-Bordé atom interferometer produced by a sequence of 4

π/2 pulses.

General consideration

We consider a two-level atom with level |g⟩ , |e⟩ interacting with a laser, at resonance, of

wavevector k. The energy of the |g⟩ state is chosen to be zero and the one of |e⟩ to be ℏωe. The

momentum kick acquired when performing the transition is ℏk. The interaction between

the lasers and the atoms is considered infinitely short (delta pulses). This approximation

will not impact the phase sensitivity results and will allow for simpler calculations. In

the experiment, the |g⟩ and |e⟩ states are the hyperfine levels addressed through Raman

transition. The system considered here consists then of two quantum degrees: 1) two

internal states |g⟩ , |e⟩ introduced earlier. 2) centre-of-mass motion in state |j⟩ labelled |Ψj⟩.
To obtain the signal at the output of the atom interferometer, we focus on the evolution of

the |Ψ⟩ state defined by

49
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z

Fig. 4.1 Ramsey Bordé interferometer in the lab-frame. In red and blue we represent
respectively the trajectory of the |g⟩ and |e⟩ levels. In black, we represent the Raman
pulses considered as infinitely short.

|Ψ(t)⟩ = |g⟩ |Ψg⟩ + |e⟩ |Ψe⟩ (4.1)

We consider the Ramsey-Bordé interferometer shown on Figure 4.1Figure 4.1. It is performed

using a sequence of four π/2 pulses, each one inducing a Raman transition between the

two internal levels |g⟩ and |e⟩. The interrogated atoms fall freely in the field of gravity. The

corresponding Hamiltonian is

Ĥ = Ĥ0 + Ĥl (4.2)

With:

1. Ĥ0 =
(

P̂ 2

2m
+mgẑ

)
+ ℏωe |e⟩ ⟨e|

2. Ĥl the Hamiltonian of interaction with the laser

The Schrödinger equation is

iℏ
d
dt |Ψ(t)⟩ = Ĥ |Ψ(t)⟩ (4.3)

As long as Ĥ is time independent |Ψ(t)⟩ = U(t,0) |Ψ(0)⟩ = e
−iĤt

ℏ |Ψ(0)⟩. Here, however,
the Hamiltonians are explicitly time-dependent due to the interaction with the laser. Yet,

we can decompose the evolution operator as follow:

1. when not interacting with the laser: Ue(t′,t) = e
− i

ℏ

(
P̂ 2
2m

+mgẑ+ℏωe

)
(t′−t)

if in the |e⟩
state.
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2. when not interacting with the laser: Ug(t′,t) = e
− i

ℏ

(
P̂ 2
2m

+mgẑ

)
(t′−t)

if in the |g⟩ state.

3. when interacting with the laser, assuming δ like pulses Ul±(t) = e±i(kẑ−ωt±ϕ(t))
(see

[5151] appendix A.4). The sign depends if the photon is absorbed or emitted by the

atom. We will consider a plus sign when the atom absorbs a photon.

We denote |Ψup⟩ (resp
∣∣∣Ψdown

〉
) the wave function at the exit port of the interferometer

coming from the upper (resp. lower) arm of the interferometer.

|Ψup⟩ = Uup |Ψ(0)⟩ (4.4)

with

Uup = Ug(t4,t3)Ul−(t3)Ue(t3,t1)Ul+(t1) (4.5)

and ∣∣∣Ψdown
〉

= Udown |Ψ(0)⟩ (4.6)

with

Udown = Ul−(t4)Ug(t4,t2)Ul+(t2)Ug(t2,t1) (4.7)

For now, we will focus on the upper path.

Looking at Figure 4.3Figure 4.3, the atom first interacts with the laser, evolves freely in the |e⟩
state during a time TR1 + TD = TD1 before interacting again with the laser, and to evolve

freely in the |g⟩ state during TR2 . The wave function can be written as:

|Ψup⟩ = N1e
− i

ℏ

(
P̂ 2
2m

+mgẑ

)
TR2e−i(kẑ−ωt3−ϕ3)e

− i
ℏ

(
P̂ 2
2m

+mgẑ+ℏωe

)
TD1e+i(kẑ−ωt1+ϕ1) |Ψ(0)⟩ (4.8)

with ti the times at which we apply the i-th pulse, ω the frequency of the laser, Φi the phase

of the laser at the time ti and N1 a pre-factor linked to the transition probability of each

pulse. This factor only matters when taking care of the contrast which is not the case right

now. For the sake of simplicity, we will not consider these factors in the following part.

We get from the previous equation

|Ψup⟩ = e−iωeTD1e−i(ωt1−ωt3+ϕ1−ϕ3)e−ikẑe
− i

ℏ

(
P̂ 2
2m

+mgẑ

)
TD1e+ikẑ |Ψ(0)⟩ (4.9)

We now want to simplify this expression. First, lets focuses on e−ikẑe
− i

ℏ

(
P̂ 2
2m

+mgẑ

)
T
e+ikẑ

.
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We have:

e−ikẑe
− i

ℏ

(
P̂ 2
2m

+mgẑ

)
T
e+ikẑ = e−ikẑ

+∞∑
n=0

1
n!

(
−i
ℏ

(
P̂ 2

2m +mgẑ

)
T

)n

e+ikẑ

=
+∞∑
n=0

1
n!

(−i
ℏ
T
)n

e−ikẑ

(
P̂ 2

2m +mgẑ

)n

e+ikẑ

(4.10)

We recall the identity

e−ikẑ

(
P̂ 2

2m +mgẑ

)
e+ikẑ =

(
(P̂ + ℏk)2

2m +mgẑ

)
(4.11)

which together with Equation 4.10Equation 4.10 leads to

=
+∞∑
n=0

1
n!

(−i
ℏ
T
)n
(

(P̂ + ℏk)2

2m +mgẑ

)n

= e
− i

ℏ

(
(P̂ +ℏk)2

2m
+mgẑ

)
T

(4.12)

To simplify, we introduce Ĥg = P̂ 2

2m
+mgẑ and Ĥe = (P̂ +ℏk)2

2m
+mgẑ.

One can remark that

Ĥe = Ĥg + ℏk
m
P̂ + (ℏk)2

2m (4.13)

We obtain

|Ψup⟩ = e−iωeTD1e−i(ωt1−ωt3+ϕ1−ϕ3)e
−iĤgTR2

ℏ e
−iĤeTD1

ℏ |Ψ(0)⟩ (4.14)

Simplifying the calculation by assuming that ω = ωe, we have

|Ψup⟩ = ei(ϕ1−ϕ3)e
−iĤgTR2

ℏ e
−iĤeTD1

ℏ |Ψ(0)⟩ (4.15)

If one consider that the laser in detunned from resonance, a phase shift will appear in the

final phase sensitivity of the interferometer. Yet, our goal for now is to study the phase

sensitivity in the simplest case.

The goal is now to merge the two last exponential terms. The issue is that the two Hamilto-
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nians do not commute. However, their commutator is a c-number. Indeed :

[Ĥe,Ĥg] = [Ĥg + ℏk
m
P̂ + (ℏk)2

2m ,Ĥg]

= ℏk
m

[P̂ ,Ĥg]

= ℏkg[P̂ ,ẑ]
= −iℏ2kg (4.16)

Thus, using the Baker-Campbell-Hausdorff formula and we obtain

|Ψup⟩ = e−i(ϕ1−ϕ3)e
−i(ĤgTR2 +ĤeTD1 )

ℏ e− i
2ℏ [Ĥg ,Ĥe]TR2TD1 |Ψ(0)⟩ (4.17)

giving finally

|Ψup⟩ = e−i(ϕ1−ϕ3)e
−i(ĤgTR2 +ĤeTD1 )

ℏ e− i
2 kgTR2TD1 |Ψ(0)⟩ (4.18)

For the lower path, one can show, using the same derivation that

∣∣∣Ψdown
i

〉
= e−i(ϕ2−ϕ4)e

−i(ĤgTR1 +ĤeTD2 )
ℏ e+ i

2 kgTD2 TR1 |Ψ(0)⟩ (4.19)

We can define the phase operator as :∣∣∣Ψup/down
〉

= eiΦ̂up/down |Ψ(0)⟩ (4.20)

The quantum state at the exit port of the interferometer is |Ψ⟩ ∝ (Uup + Udown) |Ψ(0)⟩.
Here, we only have a proportionality because we neglect the pre-factor N1 and N2. The

phase of the interferometer will be obtain computing e =
〈
Ψup

∣∣∣Ψdown
〉
with

e = ⟨Ψ(0)|Uup†Udown |Ψ(0)⟩ (4.21)

= ⟨Ψ(0)| e−iΦ̂upe+iΦ̂down |Ψ(0)⟩ (4.22)

Again, the two operators do not commute. However, the commutator is a c-number and

can be evaluated as:

[−Φ̂up,Φ̂down] = −kg (TR2(TR2 + TD) − (TR1(TR1 + TD)) (4.23)

Using the BCS formula, we obtain

e−iΦ̂upe+iΦ̂down = ei(−Φ̂up+Φ̂down+ 1
2ℏ [−Φ̂up,Φ̂down]) = ei∆Φ̂

(4.24)
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Finally, it leads us to:

∆Φ̂ = ϕ1 − ϕ2 − ϕ3 + ϕ4 + kg

2 (TD2TR1 + TR2TD1) − Ĥg

ℏ
(TR1 − TR2) + Ĥe

ℏ
(TR1 − TR2)

− kg

2 (TR2(TR2 + TD) − TR1(TR1 + TD))

∆Φ̂ = ϕ1−ϕ2−ϕ3+ϕ4+
kg

2 (2TR2TR1 + TD(TR1 + TR2) − TR2(TR2 + TD) + TR1(TR1 + TD))

+
(
k

m
P̂ − ℏk2

2m

)
(TR1 − TR2)

We identify different term in the previous equation:

1.
kg
2 (2TR2TR1 + TD(TR1 + TR2) − TR2(TR2 + TD) + TR1(TR1 + TD)) arises from the

non commutation of the position and momentum operator. This is the phase shift

induced by the earth’s gravitational field in a Ramsey-Bordé interferometer.

2. ϕ1 − ϕ2 − ϕ3 + ϕ4 is linked to the phase of the laser at the atom position. This term

is often written as kβt2. This is as writing that in order to stay resonant with the

free-falling atoms, we chirp the frequency of the laser at a rate kβ. If β = g, for the
free falling atom, the phase of the laser is constant.

3.
ℏk2

2m
(TR1 −TR2) is the nonzero recoil shift linked to the asymmetry in the pulse timing.

4.
k
m
P̂ (TR1 − TR2) is also linked to the asymmetry in the pulse timing. It is related to

the non-closure of the interferometer.

Experimentally, we consider a symmetric interferometer, meaning when TR1 = TR2 = TR.

In that case, we obtain the usual phase sensitivity of a Ramsey-Bordé interferometer[1515]

∆Φ = ϕ1 − ϕ2 − ϕ3 + ϕ4 + kgTR(TR + TD) (4.25)

In the case of a symmetric interferometer, the phase difference is a scalar. Thus, this phase

is independent of the state at the input of the interferometer. From this equation, we see

that if we chirp the frequency of the laser at a rate −β the output phase becomes

∆Φ = k(g − β)TR(TR + TD) (4.26)

First, if one scans β, it is possible to determine the value at which g and β cancels out,

meaning it is possible to determine the Earth gravitational acceleration with a Ramsey-

Bordé interferometer. Second, the sensitivity scales as the square of the interrogation. As

usual, the longer you measure, the more sensitive you are.
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BA BA tMW MW

Fig. 4.2 Temporal sequence used first to prepare the atoms and then to perform
the Ramsey-Bordé interferometer. MW: microwave pulse BA: blow away. In red, we
display the Raman pulses used to split and recombine the atomic wavepacket

| | | |
t

z

Fig. 4.3 Space-time diagram of a Ramsey-Bordé interferometer in the lab frame.
The red Gaussian represents the calculated Rabi frequency from Equation 2.48Equation 2.48. The
trajectories of the atomic wave packet are in full line. The purple dashed lines represent
the Raman light pulses used to split and deflect the wave packets. In yellow, I represent
the blow away pulse applied during the sequence to remove the parasitic atomic path
(in dashed lines). In the end, two spurious trajectories remain (red and blue dashed
lines). These trajectories limit the contrast of a Ramsey Bordé.

4.2 Experimental results

The time sequence of the experiments is shown on Figure 4.2Figure 4.2. After the MOT and the

molasses sequence, we have about 108
atoms in the |F = 2⟩ states. Then, we prepare atoms

in the |F = 2,mF = 0⟩ states with two microwave pulses. In between, we apply a light

pulse to blow away the remaining atoms in |F = 2⟩. The blow away pulse is made using

the cooling laser set at resonance with the |5s 2S1/2,F = 2⟩ → |5s 2P3/2,F
′ = 3⟩ transition.

The radiation pressure will blow the atoms in the |F = 2⟩ away. The pre-selection allows

for the following to start the interferometer with a pure cloud ofmF = 0 atoms. Thus, the
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atoms in the interferometer are insensitive to the first-order Zeeman.

After 5 ms of this cloud preparation, we implement a Ramsey-Bordé interferometer as

shown on Figure 4.3Figure 4.3. On the left, we have shown the overlap zone of size cτ . It is clear from
this drawing that the interferometer must take place within this overlap zone. The red and

blue lines represent respectively the ground and excited state trajectory. The purple dashed

line represents the Raman
π
2 pulse. Each

π
2 pulse is realised by two counter-propagating

trains of about N ∼ τπ
2
frep picosecond pulses. In the experiment, with a Rabi frequency

on the order of 3.5 kHz, a beamsplitter is composed of N ∼ 15000 picosecond pulses that

overlap. Between each pair of
π
2 pulses, the atoms are allowed to freely evolve during TD.

During this time we also apply blow-away pulses to remove the atoms in the |F = 2⟩
state represented by the red dashed line before the blow away pulse. This will increase the

contrast of the interferometer. Indeed, without the blow away pulse, these atoms would

have reach the end of the interferometer, creating a background of atoms not interfering

in the detection. Finally, we record the population in the two hyperfine states using a

time-of-flight setup. By changing the chirp rate β of AOM1, which is used to compensate

for the Doppler effect, we retrieve atomic fringes.

A typical data set obtained at the output of the interferometer is shown in Figure 4.4Figure 4.4.

Each data point corresponds to an average of three repetitions of the experimental cycle.

The inset in Figure 4.4Figure 4.4 shows a fit of the central fringe from which we derive the contrast

of the interferometer. The contrast is defined, as it is commonly done in the community, by

the difference between the maximum and the minimum of the fringes. The uncertainty in

the position of the central fringe allows the gravitational acceleration g to be determined

with a relative uncertainty of the order of 10−5
in 5 min. The sensitivity reached by the

setup is far from being competitive with usual gravimeters working with CW lasers. For

instance, the gravimeters at Syrte using CW lasers can reach a sensitivity of 5.7 × 10−9
in

a second. Yet, the interrogation times are clearly not comparable (4.2ms in the experiment

and around typically 60ms for the Syrte gravimeter) and we will see later how we can

increase the interrogation time in the case of frequency comb atom interferometry. The

orange line represents the result of a Monte Carlo simulation.

4.2.1 Monte Carlo Simulation

I have conducted a Monte Carlo simulation to model the interferometer. The initial position

and velocity ofN atoms are chosen randomly according to a normal distribution of position

(the experimentally measured size of the cloud) and velocity (the temperature of the cloud,

see Figure 3.17Figure 3.17). Then we calculate the classical trajectories during the free fall and evaluate,

using the matrix density formalism, the number of atoms in each internal state after each
π
2

pulse using Equation 2.48Equation 2.48, where the effective Rabi frequency is

Ωeff = Γ 2

4∆
I

2Is

e−( z
cτ

)2
e−2( r

ω
)2

(4.27)

with r the position of the atom in the x,y plan ( the free fall direction is along z), ω is the

waist of the laser, z the position of the atom along the free fall, and τ the picosecond pulse
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Fig. 4.4 Atomic fringes at the output of the interferometer: Fraction of atoms in
|5s 2S1/2,F = 2⟩ state as a function of the frequency chirp used to compensate for
the Doppler effect due to free fall. Experimental data are shown as blue points. The
simulated fringes, obtained from the Monte Carlo simulation, without any adjusted
parameters except the central position are shown as a solid orange line. Here∆/2π =
0.41(5) THz, TR = 1.5 ms, TD = 1.2 ms, τ = 2.00 ps and σcloud = 0.67 mm. Inset
zoom: A fit (solid line) to the central fringe is used to determine the fringe contrast and
the Earth’s gravitational acceleration with a relative statistical uncertainty ∼ 10−5.

duration. The impact condition was neglected as we have ωHFS ≪ 1/τ .
Note that for a CW laser, the Rabi frequency is the same removing the pulse envelop

e−( z
cτ

)2
. Here we assume that the interaction of an atom with a pulsed laser is the same as

the interaction with a CW laser (the atom sees only the average power of the comb and not

the peak power of each pulse) times a term due to spatial coupling. Finally, we calculate the

fraction of atoms in each arm of the interferometer. By changing the frequency chirp rate

in the simulation, we obtain the orange curve on Figure 4.4Figure 4.4. To obtain this curve, we used

all the experimental parameters measured: τπ duration, Rabi frequency, Ramsey time, free

evolution time, cloud size, laser waist and picosecond pulse duration, with no adjustment

except for the central fringe position.

This simulation is in very good agreement with the experimental results. It also allows

us to estimate the fraction of atoms involved in the interferometer. This fraction, ∼15 ‰ of

the initial number of atoms, which was also estimated in the experiment using absorption

imaging of the initial and final atomic cloud, is limited by the initial velocity distribution of

the atomic cloud, but also by the duration of the picosecond pulses. Indeed, the pulse overlap

size is of the order of cτ ∼ 0.5 mm and the cloud size is of the order of σcloud ∼ 1 mm. This

leads to coupling inhomogeneity (loss of contrast) but also to a lower number of atoms at

the ends of the interferometer.
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Fig. 4.5 Contrast of the central fringe as a function of the picosecond pulse duration,
for σcloud = 0.97(1) mm, ∆/2π = 0.87(5) THz, TR = 1 ms and TD = 1.2 ms.
Experimental data are shown as blue points. The simulation without adjusting
parameters is shown as a solid line, while the shaded area corresponds to the simulated
1σ uncertainty due to the uncertainties on the experimental parameters showing
worst and best case scenarios. For short pulse duration, the discrepancy is explained
by the increase of spontaneous emission due to a larger comb bandwidth

4.2.2 Study of the contrast
Figure 4.5Figure 4.5 shows the evolution of the contrast, define as the amplitude of the central

fringe (maximum minus minimum), as a function of the pulse duration. The blue dots

are experimental data. The contrast was estimated by fitting the central fringe of the

interferometer. The orange line corresponds to the Monte Carlo simulation performed

with the measured experimental data. The shaded area corresponds to the simulated 1σ

uncertainty due to the uncertainties in the experimental parameters, showing the worst

and best-case scenarios. The uncertainty on σcloud of 0.01mm was obtained by fitting to an

absorption image of the cloud. The uncertainty on λ, estimated at 0.15nm, is related to the

drift of the central wavelength during data acquisition. The Rabi frequency uncertainty

was obtained by fitting a Rabi spectrum after a first pulse of velocity selection and was

estimated to be 0.44 kHz.

As expected, increasing the pulse duration increases the contrast of the interferometer

because the size of the overlap zone increases, allowing less coupling inhomogeneity and

more atoms to participate in the interferometer. Note that every experimental parameter

was kept constant during the data acquisition even the Rabi frequency (adjusting the power

of the frequency comb). We also observe a discrepancy between the experiment and the

simulation at a small pulse duration. As we decrease the pulse duration, we increase the
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Fig. 4.6 Contrast of the central fringe as a function of TR with TD = 1.2 ms. Here,
τ = 2.00 ps, σcloud = 0.67 mm and ∆/2π = 0.51(5)THz

spectral bandwidth of the comb, which leads to an increase in spontaneous emission and a

decrease in the contrast of the interference.

The evolution of the contrast as a function of the interrogation time was also studied.

Figure 4.6Figure 4.6 shows the evolution of the contrast as a function of TR. We observe a drastic

decrease in contrast as we increase the interrogation time. In fact, the atoms are free-

falling through the overlap zone. Therefore, the interferometer cannot be closed if the total

interrogation time is longer than the time taken for the atom to free-fall through the overlap

zone. The total interrogation time is T = TD + 2TR ∼ 10 ms for TR= 4 ms. This is the time

it takes for the atom to fall out of the overlap zone.

This limitation of the interrogation time due to the finite size of the overlap zone

can also be understood in reciprocal k-space. In fact, only the average phase kcombz(t)
is compensated by the AOM. There remains a dispersion ∆kz(t), where ∆k ≃ 1

cτ
is the

dispersion in the wave vector of the pulsed laser. Due to this dispersion, the contrast

drops to zero when ∆kz(t) ≳ 1, i.e. z(t) ≳ cτ . This also gives a fundamental limit to the

precision of the measurement, since kcomb is not a well-defined quantity. It is not possible

to extend the duration of the interrogation at this time, due to the limitations of the current

setup. The potential for overcoming this limitation will be discussed subsequently. In the

experiment it limits TR to ∼ 4 ms with TD = 2 ms and τ ∼ 2 ps. The orange line is the
Monte Carlo simulation performed with the experimental parameters. Again, it reproduces

the experimental data well.
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4.3 Double diffraction

The output phase of a light pulse interferometer is proportional to the embraced spatio-

temporal region defined by the trajectory of each arm of the interferometer Equation 4.26Equation 4.26.

The sensitivity of these interferometers can therefore be improved by increasing the inter-

rogation time or by using more than one recoil velocity to increase the spatial separation

between the two arms. We have seen in the previous section that the total interrogation

time is limited to 10 ms. To increase the sensitivity of the interferometer, we will drive a

double diffraction transition.

This technique was first developed at the SYRTE laboratory in 2009 [3939]. It has the

advantage of making the interferometer perfectly symmetrical. The internal states of the

two arms are always the same. Systematic effects related to light shift or second order

Zeeman shift are therefore mitigated.

In this experiment, instead of three CW lasers or two modulated lasers, we will use only

one laser, the frequency comb, to perform double diffraction. We recall that the resonance

condition for a counterpropagating Raman transition is

ω1 − ω2 = ωHFS + k⃗eff · v⃗ + ωrec (4.28)

where we consider ω1 is the pulsation of the beam coming from the top of the atoms and ω2
being the one of the retro-reflected beam. In this case, the atom performing the transition

will acquire a recoil velocity along the free fall. In order to transfer a velocity in the opposite

direction, the following condition must be met:

ω2 − ω1 = ωHFS − k⃗eff · v⃗ + ωrec (4.29)

In the experiment, ω2 is the pulsation of the delayed beam, shifted by the frequency of the

AOM and ω1 is the pulsation of the direct beam.

To perform a double diffraction, the two conditions must be fulfilled at the same time.

The set of equations is ω1 − ω2 = ωHFS + k⃗eff · v⃗ + ωrec

ω2 − ω1 = ωHFS − k⃗eff · v⃗ + ωrec

(4.30)

looking at the teeth of the comb it gives(n+ q)ωrep − nωrep − 2ωAOM = ωHFS + k⃗eff · v⃗ + ωrec

nωrep + 2ωAOM − (n+ q′)ωrep = ωHFS − k⃗eff · v⃗ + ωrec

(4.31)

again the AOM frequency is close to the repetition rate and used to compensate for the

Doppler shift, on can be write ωAOM as ωrep + δωAOM − 1
2 k⃗eff · v⃗, where δωAOM correspond

to a frequency shift applied to the pulsation of the AOM.
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Fig. 4.7 A) The spectral domain of the retroreflected comb (L1) and the delayed
comb (L2). The red comb is shifted by twice the AOM frequency. The dashed line
shows the coupled teeth to drive the two Raman transitions. B) Energy momentum
diagram of the double diffraction scheme.

(q − 2)ωrep − 2δωAOM = ωHFS + ωrec

−(q′ − 2)ωrep + 2δωAOM = ωHFS + ωrec

(4.32)

It all boils down to

(q − 2)ωrep − (q′ − 2)ωrep = 2ωHFS + 2ωrec (4.33)

choosing q = −q′
, we obtain

ωrep = (ωHFS + ωrec)/q (4.34)

By detunning the repetition rate by ωrec/q, so by only 150Hz as q= 90 and ωrec ∼ 15kHz,
and by setting the AOM’s frequency at ωrep − 1

2 k⃗eff · v⃗, we are able to conduct a double

diffraction. The visualization of this resonance condition can be seen on Figure 4.7Figure 4.7. A)

shows the frequency domain of the two lasers L1 and L2 with L2 being shifted by 2fAOM.

The dashed lines show the 3 frequencies that will perform the transition. On B) we plotted

the energy momentum diagram of a double diffraction transition. The blue, green, and red

arrows are related to the teeth connected by the dashed line in A)

We are now resonant with the two transitions. It is however important to underline

that for double diffraction the duration of the pulses acting as an atomic splitter should

have a duration τs of [3939]

τs = 1√
2

π

Ωeff

(4.35)

The timing of the interferometer and the trajectories of the atoms are shown on Figure 4.8Figure 4.8.

After the first and third Raman pulses, we apply push beams resonant with the F = 2 state.
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p p

Fig. 4.8 Temporal sequence and trajectories of the atoms in the Ramsey-Bordé type
interferometer with double diffraction. The blue and red lines define the hyperfine. The
red cross shows the impact of the pusher beam applied during the Ramsey sequence
to maximize the contrast.
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Fig. 4.9 Atomic fringes for double diffraction at the output of the interferometer:
transfer probability to the |5s 2S1/2, F = 2⟩ state as a function of the frequency
chirp used to compensate for the Doppler effect due to free fall in a double diffraction
scheme. Experimental data are shown as blue points. Here ∆/2π = 0.39(5) THz,
TR = 2.5 ms, TD = 1.2 ms, τ = 1.25 ps and σcloud = 0.8 mm.
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These push beams are critical as they allow the rejection of other trajectories that would

reduce the contrast of the interferometer fringes.

Typical data are shown on Figure 4.9Figure 4.9. Compared to normal diffraction, the inter-fringes

are divided by a factor of 2 for the same interrogation time, which means that the sensitivity

is increased by a factor of 2. An analysis of the phase noise, performed by computing the

standard deviation of the transfer probability at mid fringe with the double diffraction

scheme and with the usual scheme, shows a drastic reduction of it compared to a simple

diffraction scheme as in Figure 4.4Figure 4.4. Indeed, the phase noise of the laser is imprinted on both

arms due to the use of a single laser source. Consequently, the same noise is imprinted on

both arms, resulting in an overall lack of sensitivity to laser phase noise in this configuration.

It can be observed that the availability of two degrees of freedom, namely the repetition

rate and the frequency of the AOM, allows for the implementation of a multitude of double

transition schemes, in addition to double diffraction schemes. For example, it is possible

to address two atoms with relatively close hyperfine transitions (e.g. isotopes). It is also

possible to drive both Raman and Bragg transitions. This feature has been developed in

chapter 2chapter 2.

Conclusion

In this chapter we have shown that it is possible to drive an atom interferometer using

a frequency comb. We have highlighted the limit of the interrogation time, which in

the time domain is related to the time it takes for the atoms to free-fall through the

overlap zone. A Monte Carlo simulation was performed to understand the effect of

the picosecond pulse duration and the interrogation time on the contrast. Finally,

we have experimentally shown that FCAI is a versatile tool capable of performing a

double diffraction scheme with only one laser source.





Chapter 5

Moving delay line frequency comb
atom interferometer

In the prior chapter, we demonstrated the feasibility of performing atom interferometry

using a frequency comb. However, the sensitivity of such frequency comb-driven atom

interferometers is constrained by the time it takes for atoms to traverse the overlap zone of

the laser pulses driving the Raman transition. To address this limitation, we have devised a

method involving a moving mirror, enabling the overlap zone to track the free fall of the

atomic cloud, as illustrated byFigure 5.1Figure 5.1.

F=1

F=2

z

t

Fig. 5.1 Ramsey-Bordé interferometer with the new apparatus. The two red pulses
represent the picosecond pulses following the free fall of the atomic cloud

The aim of this chapter is to show how we increase the interrogation time by using

moving mechanical parts without increasing the phase noise. We also present a new

interferometer configuration that allows independent interrogation of each arm of the

interferometer. A Monte Carlo simulation was performed to analyze the effect of experi-

mental parameters on the interferometer contrast. In conclusion, we examine a fundamental

65
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constraint on the sensitivity of frequency comb atom interferometry, which is associated

with a dispersion in the momentum of the wave packet.

5.1 Moving delay line apparatus

The new apparatus is shown on Figure 5.2Figure 5.2. The M2 mirror, placed in the delay line, is

mounted on a translation stage that allows the mirror to slide along a rail with a maximum

travel of about 2 cm. Themirror is also mounted on a voice coil actuator (VC250/M Thorlabs).

By applying a current to the voice coil, the mirror M2 is moved. The voice coil consists

of a magnet surrounded by a coil. The Lorentz force is applied to the mirror by driving a

current into the coil. By changing the polarity of the current, we change the direction of

the displacement.

A CW laser (purple beam in Figure 5.2Figure 5.2) of known frequency is added to the setup. The

laser is the cooling laser, phase-locked to a repump laser whose frequency is referenced to

a saturated absorption. It is taken from an unused zero order of an AOM. This laser is used

to measure the displacement of the mirror M2. Using a beam splitter (BS), the laser will

travel in the opposite direction to the picosecond laser and follow the same path into the

delay line. Photodiode-1 (PD1) measures the phase shift on the CW laser induced by the

displacement of M2. To eliminate parasitic beams on the photodiode, an interferometric

filter (IF) is positioned to filter out any spurious picosecond laser beam that might hit the

photodiode and produce a signal at the repetition rate.

The phase shift measured by PD1 is then mixed with a demodulation signal and fed to a

Redpytia FPGA. We now need to detail the phase shift imprinted on the different lasers.

5.1.1 Phase shift calculation

The phase measured by the photodiode noted as Φbeatnote1 is the phase accumulated by the

cw laser (violet in Figure 5.2Figure 5.2) by going through the AOM-2 and by propagating in the delay

line.

This phase shift is composed of two terms: A phase shift coming from the AOM placed

in the delay line and another caused by the displacement of M2.

Φbeat1(t) = 2ΦAOM(t) + kCWxmirror(t) (5.1)

The factor 2 comes from the double pass AOM and xmirror = 2xM2

As mentioned before, we demodulate this signal with a phase ΦDemo giving

Φerror = Φbeat1 − 2ΦDemo (5.2)

The factor 2 comes from a multiplier added to match the factor 2 of the AOM.

We can write the phase of the demodulation as a sum of two phases. One that we

compute ΦDemoSeq and one coming from the open feedback-loop called "phase modulation"
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Fig. 5.2 Overview of the experimental setup. The picosecond laser (red line) is split
in two on the polarizing beam splitter PBS-2. One part is sent directly to the atoms
and will be retro-reflected from the bottom mirror. The other part passes through
two delay lines. The mirror M2 of the second delay line is moved using a voice coil
(Thorlabs VC500/M) with a controllable acceleration, displacing the overlap position
and chirping the frequency of the delayed beam. A CW reference laser, with a known
wavelength (in purple), is used to measure the position of M2 using a heterodyne
detection scheme. An interferometric filtre (IF) is placed in front of the photodiode
(PD1) to filter any spurious reflection.

written here as ΦModFB

ΦDemo = ΦDemoSeq + ΦModFB (5.3)

Similarly, we can write the phase of the AOM as:

ΦAOM = ΦAOMSeq + ΦModFB (5.4)

We now look at the phase of red lasers on Figure 5.2Figure 5.2, the frequency comb laser. We compute

the phase just before the fiber goes to the experiment chamber. The red laser in full line is

the laser not passing by the delay line, we denote its phase ΦL1

The laser in dashed line is the one passing by the delay line, his phase is ΦL2 + 2ΦAOM +
kcombxmirror(t)

The phase difference between the two beams, which I will call Φatom, is the phase

difference printed on the atoms. This phase is the one we want to control to interrogate as

we wish to the atoms.

Φatom = 2ΦAOM + kcombxmirror(t) +∆Φ (5.5)
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Fig. 5.3 Control system implemented using a Redpitaya board. To accommodate
for the relatively low bandwidth of the board (50 MHz), we use frequency mixers
to shift the frequencies from the digital to analog converter to the AOM and from
the photodiodes to the analog to digital converter. The command of the coil driver is
digitally added to the radio frequency in the FPGA and then extracted using a bias T,
to accommodate the limited number of outputs of the board. xM stands for xmirror

with ∆Φ = ΦL2 − ΦL1

The error signal measured after mixing the signal of the photodiode with the demodula-

tion signal is

Φerror = Φbeat1 − 2ΦDemo

= 2ΦAOM + kCWxmirror(t) − 2ΦDemo

= 2ΦAOMSeq + 2ΦModFB + kCWxmirror(t) − (2ΦDemoSeq + 2ΦModFB)
= 2ΦAOMSeq − 2ΦDemoSeq + kCWxmirror(t) (5.6)

and on the atoms we have

Φatom = 2ΦAOM + kcombxmirror(t) +∆Φ

= 2ΦAOMSeq + 2ΦModF B + kcombxmirror(t) +∆Φ (5.7)
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We now need to treat ΦModFB:

ΦModFB = GΦerror (5.8)

where G is a gain factor that we will define hereafter. The phase printed on the atoms

becomes

Φatom = 2ΦAOMSeq + 2GΦerror + kcombxmirror(t) +∆Φ (5.9)

replacing Φerror by its expression given by the equation 5.65.6 we obtain

Φatom = 2ΦAOMSeq + 4GΦAOMSeq − 4GΦDemoSeq (5.10)

+ 2GkCWxmirror(t) + kcombxmirror(t) +∆Φ (5.11)

But we want Φatom independent of xmirror(t) to have total control of the phase on the

atoms without any influence coming from the position of the mirror. This imposes that

2GkCW + kcomb = 0, giving us G = − kcomb

2kCW

Also, when we perfectly control the whole setup, we calculate the displacement of the

mirror xcomputed so that Φerror = 0.

Φatom = 2ΦAOMSeq − 2GkCWxcomputed(t) +∆Φ

kCWxcomputed(t) = 2ΦDemoSeq − 2ΦAOMSeq

(5.12)

Finally, to perfectly control the setup, we need to compute :

2ΦAOMSeq = Φatom −∆Φ+ 2GkCWxcomputed(t)
2ΦDemoSeq = 2ΦAOMSeq + kCWxcomputed(t)

with

G = −kcomb

2kCW

These two formulas will be used to compute the phase plugged in the demodulation and in

the AOM DDS to stay resonant with the atoms. In the case where the lock is perfect (no

error on the position of the mirror), the frequency of the AOM will not be changed over

time and the demodulation will simply make a frequency chirp at gravity acceleration g.

5.1.2 FPGA programming
To control both the acceleration of the mirror and the AOM, we use an FPGA (redpitaya

board). The Figure 5.3Figure 5.3 describes the logic implemented. Two direct digital synthesis (DDS)

cores are implemented in the FPGA. The first DDS is used to control the AOM and the
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Fig. 5.4 Performance of the lock on M2 position and velocity. Top: Residual error on
the position of M2 regarding the atoms’ position. The position of M2 can be controlled
with an accuracy of up to a few hundred nm. Bottom: residual error on the velocity of
M2 regarding the velocity of the atoms. The origin of time corresponds to the release
time of the cloud. We observe at t = 5 ms an oscillation that corresponds to the
change of velocity of the mirror after the first Raman pulse.

second to control the demodulation signal. Because the output frequency of the board is

limited to 50 MHz, the signal is mixed with a constant frequency (ν0 ∼ 30MHz) to shift the
output to the 80 MHz range. The output of each DDS is defined by the phase ϕ (position),

frequency ν (velocity), and linear frequency sweep rate α (acceleration) and controlled

using a digital sequencer.

Assuming that the AOM frequency is constant (and set equal to the repetition rate of

the comb), the beat note of the photodiode will be around 160 MHz. Again, the board is

not fast enough to handle such a signal. The demodulation is performed in two steps: first

using an analog mixer with a demodulation signal at a frequency close to 160 MHz and the

second consists of using an internal I/Q demodulator. All the time-dependent frequency

demodulation is performed in the analogue mixer and the I/Q demodulator works at a fixed

frequency (set at 5 MHz). The output of the I/Q demodulator is fed to a Cartesian to polar

converted based on the CORDIC algorithm. The remaining phase, which can be unwrapped

around many revolutions, is the measure Φerror.

The current in the coil is controlled with a voltage, therefore we have to compensate

for the electromotive force. This is performed using an analogue sequencer that produces

linear ramps. On top of this voltage, we apply feedback to control the mirror. Because we

control the force, proportional feedback will be unstable(the error signal is proportional to

a phase). A derivator is used to convert the phase to a signal proportional to the velocity

error, which is then fed to a PID and added to the analogue sequencer, forming a closed

loop.

On Figure 5.4Figure 5.4 we show the accuracy of the position and the velocity of the translating



5.1 Moving delay line apparatus 71

Fig. 5.5 PCB board used to drive the voice coil actuator.

stagewith respect to the command. ThemirrorM2 canmove up to 60mswith an acceleration

close to g. The gain and the integration constant are chosen to minimize the position error.

With this apparatus, we can make the overlap zone follow the free fall of the atoms for

more than 60 ms and thus reach typical interrogation time used in atom interferometry

with CW lasers. Also, on Figure 5.4Figure 5.4, note that at 5 ms, there is a surge in the error on the

position. This surge arises from a change in the wanted velocity and will be discussed later.

Yet, as for interferometers driven by cw lasers, controlling the phase difference between

the two counterpropagating beams is critical. Because the phase Φatom on the atomic cloud

depends on kcombxmirror(t) and due to residual error in position, shown on Figure 5.4Figure 5.4, the

phase noise on the atom is of the order of 0.5 rad. To compensate for this phase noise

caused by moving mechanical parts, we retro-act on the phase of AOM2. We feedback

on the error in the position shown on Figure 5.4Figure 5.4 into the phase of the AOM. By doing so,

Φatom ∝ kxmirror(t) + 2ΦAOM(t) and the set-up is nearly insensitive to mechanical phase

noise caused by the displacement of the mirror. With the scheme presented on Figure 5.3Figure 5.3,

we are also able to control independently both the position of the mirror and the phase of

the laser on the atoms, a feature of importance that will be used in the following.

5.1.3 Electronic driver of the voice coil

To drive the voice coil actuator, we design a PCB board shown on Figure 5.5Figure 5.5. Because we

control the voltage at the output of the RedPitaya, we want to convert this voltage into

current with both polarities so we can accelerate and decelerate the coil.

With a gain x10, we first amplify the input signal using an OP276 (footprint OP1177 on

Figure 5.5Figure 5.5). Then, the analog signal is split, depending on its polarity, using a diode and sent

to an NPN or PNP junction (BD743C/BD744C) (footprint TIP132 and TIP137) delivering up
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to 15 A. The output current of these junctions depends on the input voltage. Because the

force applied on the mirror is proportional to the current into the voice coil, by adjusting

the input voltage we can thus finely tune the applied force. Then, the two outputs are

merged and sent to the voice coil. The head-to-tail Zener diodes are here to avoid high

voltage at the terminals of the coil when rapid cuts of the current are applied.

5.2 Following the mid-point of the interferometer

Instead of moving simply the mirror with a constant acceleration close to g, we decide to
follow the mid-point of the interferometer. The trajectory, that we will call the midpoint,

and that the overlap zone will follow for this experiment, is shown in purple on Figure 5.6Figure 5.6b).

If not following this trajectory, the coupling inhomogeneity linked to the finite size of the

overlap zone would cause a drop in contrast at the interferometer output. The Rabi coupling

on the arm that received a recoil would decrease by exp (−Vrt/cτ), where Vr is the recoil
velocity transmitted to the atom and τ is the duration of the picosecond pulse. This back of

envelop estimation is obtained by simply taking the Rabi coupling Equation 2.48Equation 2.48 with an

atom shifted from the centre of the overlap by Vrt.

The schematic of the interferometer is shown one Figure 5.6Figure 5.6b). After the first pulse, the

control of the translation stage is changed, i.e. ΦDemo is modified. In this experiment, in the

free-fall frame, the mirror is asked to move at a speed of Vr/2 after the first pulse, then at

Vr after the second pulse, and then at Vr/2 after the 3rd pulse. Looking at Figure 5.6Figure 5.6, it is

easy to see that the trajectory shown in a) is sub-optimal and would lead to a decrease in

contrast.

The computed frequencies of the AOM and Demodulator are shown on Figure 5.7Figure 5.7 in

the case of a Ramsey-Bordé interferometer with a total interrogation time of 20ms with

Tr = 5ms. This figure shows the perfect case, meaning that there is no error in the position

of M2 and thus no feedback. The demodulator frequency, which controls the velocity of the

mirror, is shifted after every Raman pulse (vertical lines). This shift, proportional to the

recoil velocity, is made to follow the midpoint of the interferometer. The AOM frequency

is also shifted by the same quantities but with opposite signs. Indeed, the goal is to stay

resonant with the atoms regardless of the velocity given to the mirror. By shifting the

frequency of the AOM, we cancel out the shift imprinted on the lasers by the displacement

of M2. After the interferometer, the demodulator frequency is swept back and the lock is

turned off to place M2 at its initial position.

5.2.1 Monte-Carlo simulation

I conducted a Monte Carlo simulation to estimate the contrast in both scenarios ( a) and b) of

Figure 5.6Figure 5.6). The simulation determines the number of atoms in each state at one exit port of

the considered interferometer. To do so, we randomly chose the initial velocity and position

of an atom. We then simulate the interaction of this atom with each picosecond pulse along
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Fig. 5.6 Schematic of the Ramsey-Bordé interferometer. The trajectory of the overlap
zone in the shaded area for the interferometer in the case of following with the overlap
zone a) the free-fall of the atoms and b) the mid-point trajectory. The two internal
state trajectories are represented in blue and red full lines.
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Fig. 5.7 Computed frequency for the AOM and the demodulator in the case where
we follow the midpoint of the interferometer. Both frequencies are shifted to follow the
midpoint of the interferometer while staying resonant with the atoms. Each vertical
line represents a Raman pulse of the interferometer.
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Fig. 5.8 Monte Carlo simulation of the contrast of the interferometer. The blue and
orange curves are obtained when we follow respectively the free fall of the cloud and
the midpoint of the interferometer.

the two trajectories of the interferometer. The Rabi coupling is calculated according to

Ω(r, z) = Ω2
0

2∆sech
(

1.78 z
cτ

)
exp

(
−2r2

w2

)
(5.13)

where Ω0 and ∆ are respectively the Rabi frequency and detuning with respect to one-

photon transition, c is the speed of light, τ the duration of a picosecond pulse, z is the

position of the atom with respect to the centre of the overlap zone and r its transverse
position. The pulse shape is chosen to be a hyperbolic secant function according to the

data sheet of the Coherent manual of the picosecond laser (in the previous chapters we

considered Gaussian pulses for calculation convenience). With the simulation, we can also

select the trajectory of the overlap zone and thus simulate the contrast when the mirror

moves with the free fall and when we decide to follow the mid-point of the interferometer.

We then extract the number of atoms a1 and a2 in each internal state at one output port of

the interferometer. The contrast is given by C = 4 ⟨a1a2⟩ / ⟨a2
1 + a2

2⟩.
Figure 5.8Figure 5.8 shows the evolution of the contrast as a function of TR in the two configu-

rations discussed above. The blue line is the evolution of the contrast when the mirror is

accelerated at g. In orange, we display the contrast’s evolution when we follow the midpoint

of the interferometer. We see a small improvement in the contrast when following the

mid-point of the interferometer, which justifies the use of the midpoint configuration. For

this simulation, we took τ = 1 ps, a π pulse duration equal to 0.6 ms, TD = 3 ms, an initial

cloud size of 1 mm. Here TR is the Ramsey time and TD is the spacing time between the

two pairs of π/2 pulses.

5.2.2 Results
The experimental results when following the mid-point trajectory are shown on Figure 5.9Figure 5.9.

We plot the variation of contrast as a function of interrogation time defined as T = 2TR +TD.
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Fig. 5.9 Contrast of the central fringe as a function of the total interrogation time
with τ = 1.47 ps, a π-pulse duration of 0.6 ms and TD of 3 ms. Experimental data
are shown in blue. The Monte-Carlo simulation is shown in the orange full line.
Typical fringes are shown in the bottom inset for T = 39 ms. The contrast is deduced
from a fit of the fringes (blue line). The upper insert shows the interferometer sequence

The blue point is extracted by fitting the atomic fringe pattern by the cosine’s function. The

orange line is extracted from the Monte Carlo simulation presented above. The contrast

drops by 50% after a total interrogation time of 25 ms, this is a 5-fold improvement compared

to the previous chapter where the delay line was fixed, where a 50% drop in contrast was

observed for a total duration of 5 ms (TR = 2 ms).
We performed an interferometer with two CW phase-locked lasers as Raman lasers

(instead of the frequency comb) to test the phase noise induced by the translating stage. On

Figure 5.10Figure 5.10, we show the output fringe with the CW lasers and the translating stage. Each

point is only one repetition rate of the experiment. The comparison of two fringes in the

same experimental condition except for the laser sources ( CW or frequency comb) shows a

drastic difference in phase noise. The phase noise with the CW lasers appears to be lower

than when using the frequency comb.

Firstly, we can say that the translation stage does not produce phase noise at the level of

sensitivity of the experiment on the fringes but also that we are neither limited by vibration

noise nor by the detection. Secondly, we can identify the noise arising from the lock on the

repetition rate of the frequency comb. To reduce the phase noise when using the frequency

comb, one could think of feed-backing the error signal in the repetition rate into the AOM

of the delay line, as we already do with the velocity error of the translating stage.

The fall of the contrast in Figure 5.9Figure 5.9 is due to the finite size of the overlap zone as shown

on Figure 5.11Figure 5.11. If the two arms of the interferometer are separated by a distance larger than

the size of the overlap zone, the Rabi coupling decreases during the second pulse of the

interferometer, and the π/2 criterion is not fulfilled.

In the reciprocal k-space, the momentum dispersion (∆k = 2π∆ν
c

where ∆k is the

FWHM of the momentum distribution of the comb) induces recoil dispersion and therefore
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Fig. 5.10 Fringes obtained with two CW lasers and the moving delay line. Each
point is one repetition of the experiment. Here TD = 2 ms, TR = 20 ms a π-pulse
duration of 0.6 ms and ∆ = 40GHz
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Fig. 5.11 Ramsey-Bordé interferometer when we follow the midpoint of the inter-
ferometer. The zoom shows that if the two clouds (red and blue) are spaced by more
than cτ we can not perform perfect π

2 pulses resulting in a drop of contrast.

a loss of interferometer contrast. After a time T , the phase difference due to recoil for a

pair of blue teeth and a pair of red teeth can be written as:

∆ϕ = ℏkeff
m

T∆keff
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5.3 Atom interferometer using spatially-localized beam
splitters
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Fig. 5.12 Space-time diagram of the Ramsey-Bordé interferometer. The trajectory of
the overlap zone is displayed in a shaded area (optimal trajectory). The two internal
state trajectories are represented in blue and red full lines.

For a Ramsey-Bordé interferometer based on the CW laser, the fact that the two π/2
middle pulses interact with both arms limits the contrast to 50 per cent and leads to a loss

of atoms number. With this technique of moving the mirror, because the interaction is

localized, it is possible to interact with only one part of the coherent superposition of the

atom. By doing so, we eliminate the limitation in contrast and increase the total number

of atoms participating in the interferometer. Indeed, the two middle pulses can now be π
pulses, so nearly all atoms resonant with the first pulse will participate in the interference.

On Figure 5.12Figure 5.12, we display two possible interferometer configurations using localized

atomic beam splitters. The figure shows two possible configurations using the pulse se-

quence {π/2 − π − π − π/2}, depending on whether the first π-pulse catches one or the
other wave packet. In the first configuration, the phase difference at the output of the

atom interferometer is only sensitive to the external degrees of freedom. In contrast, in the

second configuration, it is sensitive to both external and internal degrees of freedom [1515].

From now on, we will only consider the left configuration.

To perform this interferometer, we program the moving mirror as shown on Figure 5.13Figure 5.13.

First, we want the mirror to move at g up to the second
π
2 pulse, then to accelerate up

to a velocity equal to 2Vr(TR + TD)/TD during TD/2 after the second pulse and finally to

decelerate to g during TD/2. The stage accelerates at g after the 3rd pulse for the rest of the

interferometer. Yet, because we can not apply an infinitely high force on the voice coil, we

can not let TD to a few milliseconds when we work at high TR. The balance between TD
and TR is chosen by looking at the error signal in the position of the translating stage. If we

decide on a short TD, meaning that we do not give the time to the translating stage to catch

up with the upper path, we would see a dropout in the error signal. Note that this feature is

not present in the right configuration of Figure 5.12Figure 5.12 where any TD can be chosen.

On Figure 5.14Figure 5.14 top, we display the error in position regarding the command in position.

The red lines highlight the times at which we ask the stage to change its velocity. We see

two surges. One when we accelerate to reach a velocity equal to 2Vr(TR + TD)/TD and the
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Fig. 5.13 Computed frequency for the AOM and the demodulator in the case where
we perform the new type of the interferometer. Both frequencies are shifted to follow
the trajectory shown in purple on Figure 5.12Figure 5.12 left while staying resonant with the
atoms. Each vertical line represents a Raman pulse of the interferometer.
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Fig. 5.14 Performance of the lock on M2 position and velocity when performing the
interferometer shown on Figure 5.12Figure 5.12left. Top: Residual error on the position of M2
regarding the atoms’ position. Bottom: residual error on the velocity of M2 regarding
the velocity of the atoms. The red lines correspond to the change in velocity detailed
previously

second one when we ask to decelerate up to an acceleration of g.
We have plotted in Figure 5.15Figure 5.15 the typical fringes at the interferometer output with the

new interferometer configuration. Each point is an average of over 5 repetitions of the

experiment. The error bars are calculated using the standard deviation of these points. Even
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Fig. 5.15 Atomic fringes at the output of the interferometer: fraction of atoms
in F = 2, the excited state, as a function of the acceleration of the mirror M2.
Experimental data are shown as blue points. Each point is an average of over 5
points, with an error bar given by the dispersion of those points. Here ∆ = 1.1 THz,
τ = 1.23 ps, TR = 15 ms, TD = 25 ms.

with a total interrogation time of 55 ms (TR = 15 ms and TD = 25 ms), we achieve to get up
to 16 per cent of contrast. This is nearly a 5-fold improvement compared with the previous

experiment where we followed the mid-point of the interferometer. The interrogation

time is limited only by the travel range of the voice coil actuator. A fit (continuous orange

line) by a cosine function allows us to determine the frequency of the central fringe with a

relative uncertainty of 10−7
in 5 min of integration, corresponding to a sensitivity of about

1 mrad. Note that this configuration is efficient only if, during the 2nd pulse, the wave

packets are split by a distance larger than the size of the overlap. If we take the example

of the interferometer shown on Figure 5.12Figure 5.12, when the condition is not fulfilled, the second

pulse, which is now a π pulse, will address the upper path, resulting in a loss of atoms and

thus to a loss of contrast.

We can perform the Monte-Carlo simulation discussed in subsection 5.2.1subsection 5.2.1 with the

overlap zone position moving as the purple shaded area on Figure 5.12Figure 5.12 and applying the

sequence {π/2 − π − π − π/2}. The simulation results, with the same parameters as in

the experiment, are shown in Figure 5.16Figure 5.16. The orange point is extracted from Figure 5.15Figure 5.15.

Only one experimental data was taken with these parameters experimental parameters and

mainly with the same TD. The simulation was performed by changing TR. If one wants to

do so in the experiment, then the issue of having a too short time for TD would appear. First,

the contrast drops slightly because we do not respect the condition discussed here before.

Then, as the arms separate further, the contrast rises before falling again. This second drop

in contrast has been studied using the simulation. It is mainly related to the initial velocity

dispersion of the cloud, as the cloud might expand to a size larger than the overlap zone.

Now, if we plug an infinitely cold cloud of atoms into the simulation, we obtain that
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Fig. 5.16 In blue: Monte Carlo simulation of the contrast of the interferometer as a
function of the total interrogation time. Orange dot: Contrast of the fringe extracted
from Figure 5.15Figure 5.15
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Fig. 5.17 Evolution of the atomic wave function (in blue) after a Raman transition
driven by a frequency comb in a counter-propagating geometry. Because of the finite
size of the overlap zone (in red), the wave function will be diffracted with a dispersion
in momentum ∆p = ℏ/(cτ).

the contrast stays still after the increases. However, for very long interrogation times, the

fact that the Raman coupling is spatially localized will eventually limit the contrast of such

an interferometer. Indeed, by diffracting a wave packet with a picosecond laser, we will

measure the position of the atoms. Because of the Heisenberg principle, the wave packet

will spread with uncertainty in momentum given by ∆p = ℏ/∆z with ∆z being the size of

the overlap zone.

Figure 5.17Figure 5.17 illustrate this effect on the interferometer. A back-of-the-envelope calcu-

lation shows that the contrast will be zero if the spread in position relative to the spread

in momentum is greater than the size of the overlap zone. This is when ∆p TR > cτ .
For a picosecond laser, this gives a maximum interrogation time of ten seconds, which is
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much longer than the usual interrogation time used in any atom interferometry experiment.

However, if one wants to use femtosecond lasers to drive Raman transition, the limit of the

interrogation time is only tens of milliseconds.

Also, the confinement of the initial wave packet increases the energy of the selected

wave packet by (∆p2/2m). This change in energy induces a phase shift ℏTR/2m(cτ)2
. This

phase shift is the analogue of the Gouy phase for a Gaussian optical beam. It cancels out in

usual calculations where it is assumed that the two interfering wave packets have the same

size and therefore undergo the same phase shift [5757]. Considering the current experimental

parameters, this phase shift is estimated to be 80 µrad, too small to be observed considering

the current sensitivity of the interferometer.

Conclusion

In this chapter, we presented a method to extend the interrogation time of frequency

comb atom interferometry using a mirror mounted on a translating stage. We have

presented an atom interferometer with beam splitters that are spatially localized and

whose position can be dynamically and precisely controlled during the interferometer

sequence. A Monte-Carlo simulation was carried out to model the effect of the wave

packet separation and showed good agreement with the experimental results. We

have implemented an interferometer configuration where the atomic beam splitters

interact selectively with the wave packets propagating in either arm of the interfer-

ometer and have investigated the fundamental limitations of this interferometer.





Conclusion and outlooks

This part of my thesis presents the development and implementation of a novel method for

atom interferometry using a frequency comb.

Summary of Contributions

• Implementation of an Atom Interferometer with a Frequency Comb: We

demonstrated the use of a frequency comb to realize an atom interferometer with

87
Rb atoms in the visible spectrum.

• Simulation and Experimental Validation: A Monte Carlo simulation was created

and conducted to model the effect of the separation of the interferometer arms,

showing excellent agreement with experimental results. This validation reinforced

the understanding of the underlying mechanisms which enabled the optimization of

experimental parameters to maximize sensitivity.

• Extension of the Interrogation Time: By developing a new method to adjust the

length of the delay line during the interferometry sequence, we were able to track the

free fall of the atoms by moving a mirror with controlled acceleration. This enabled

us to increase the interrogation time of the interferometer up to 50 ms, a five-fold

improvement over previous work.

• New Interferometer Scheme: We demonstrated a new type of interferometer capa-

ble of independently interrogating each arm of the interferometer. This configuration

highlighted a new fundamental sensitivity limit due to the atomic wavefront curvature

acquired by the atoms during diffraction.

• Measurement of gravity acceleration : With the new apparatus, we measured the

Earth’s gravitational acceleration with a relative statistical uncertainty of ∼ 10−7
.

This precision, not competitive with usual gravimeters using CW laser, can still open

doors for new tests in physics by, for instance, allowing to address atomic species in

the far UV.

83
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Future Work and Developments
The results obtained in this thesis demonstrate the potential of frequency combs atom

interferometry. Several avenues for further development can be envisaged:

• Increasing the mirror travel distance: By increasing the travel distance of the

mirror, it would be possible to further extend the interrogation time and improve

sensitivity.

• Exploring other atomic species: The spectral flexibility of frequency combs enables

experiments with other atomic species, paving the way for new applications in

metrology and fundamental tests.

• Applications in fundamental physics: Frequency-comb-driven atomic interfer-

ometers could be used for a test of the universality of free fall on anti-hydrogen.

Unfortunately, the properties of the anti-hydrogen sources produced to date mean

that this experiment is not yet feasible.

Our team is currently building a new experiment on Ytterbium atoms. We already

frequency-doubled the picosecond laser with a bismuth triborate (BIBO) crystal and are

working on producing a MOT of Ytterbium. We plan on using the frequency comb to drive

Bragg transition between the 1S0 → 1P1 transition of
174

Yb. Performing an interferometer

with the frequency comb on this transition at 399 nm brings us closer to the UV-XUV

region. It would also prove that after frequency doubling, it is possible to perform atom

interferometry with a frequency comb.
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Chapter 6

Introduction

The fine-structure constant was introduced in 1916 by Arnold Sommerfeld [5656] to explain

the splitting of atomic lines in hydrogen. This constant, α, is a fundamental dimensionless

constant in quantum electrodynamics (QED), defined as:

α = e2

4πϵ0ℏc
(6.1)

where e is the elementary electric charge, ϵ0 is the permittivity of free space, ℏ is the reduced

Planck constant, and c is the speed of light in vacuum. The modern understanding of α is

that it sets the scale of the electromagnetic interaction. Consequently, many experiments

involving the interaction of charged particles with electromagnetic fields can be used

to determine α. In 1998, the experiments considered by the CODATA task group on

fundamental constants to provide the best estimate of the fine structure constant ranged

from solid-state physics and atomic physics to quantum electrodynamics [5959].

Currently, the most accurate determinations of the fine structure constant come mainly

from two methods. The first method involves combining the measurement of the electron’s

gyromagnetic anomaly, ae, with QED calculations. This allows for the extraction of the

value of α from the following relationship:

ae = A1

(
α

π

)
+A2

(
α

π

)2
+A3

(
α

π

)3
+. . .+ae

(
me

mµ

, α

)
+ae

(
me

mτ

, α
)

+ae(weak)+ae(had)

The coefficientsAi are dimensionless numbers calculated using Feynman diagrams. The

first few coefficients, A1, A2, and A3, are known analytically. The coefficients A4 and A5
are calculated numerically, with the latter involving more than 12,000 diagrams. The terms

ae

(
me

mµ
, α
)
and ae

(
me

mτ
, α
)
account for the effects due to the electron to muon and electron

to tau mass ratios, respectively. Additionally, ae(weak) and ae(had) include contributions
from weak and hadronic interactions.

Alternatively, the constant α can be expressed in terms of the Rydberg constant R∞,

the mass ratio between a rubidium atom and an electron, and the ratio h/mRb between the

Planck constant and the mass of a rubidium atom:

87



88 Chapter 6. Introduction

α2 = 2R∞

c

mRb

me

h

mRb
(6.2)

In this equation, we have

• R∞, the Rydberg constant, known to 1.9 ppt (parts per trillion) by spectroscopy of

the 1S → 2S transition of the hydrogen atom [5959].

• mRb/me, a mass ratio. The precision for the rubidium 87 mass is 69 ppt [3333]. The

mass of the electron is obtained with a precision of 29 ppt by measuring the magnetic

moment of a single electron bound to a carbon nucleus [5858].

• h/mRb, which is obtained by measuring the recoil velocity of an atom absorbing a

photon. This is currently the limiting factor in the precision of α in this equation.

The most precise measurement of h/mat was obtained by the group in 2020 at 142

ppt [4242].

Our team determines α by measuring the ratio h/mRb, which is related to the recoil velocity

of rubidium atoms. Note that now ℏ is a constant; thus, our experiment measured the mass

of a Rubidium atom. However, for the historical question (our group is named h/m), I will

always consider that we measure the ratio between ℏ and the mass of a Rubidium atom.

Our atom interferometer acts as a velocity sensor, providing precise velocity measure-

ments. This capability is combined with the technique of Bloch oscillations in an optical

lattice to transfer a large number, N , of recoils to the atoms, reducing the uncertainty in

the measurement of h/m by 1/N .

Comparing the two methods, saying the direct measurement of ae [2929] and α[4141; 4848],
allows one to perform a test of the standard model. The experiments are so precise that

they enable us to test QED at the tenth order and observe corrections due to muons in

laboratory-sized experiments[1616].
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6.1 Measurement of the ratio h/m

In the group, the ratio h/m is determined using atom interferometry. To do so, we implement

a Ramsey-Bordé interferometer coupled to Bloch oscillation. To grasp the following, we

will first introduce the tool used to split and recombine the atom’s wave packet before

discussing briefly the concept of Bloch oscillation used to enhance the sensitivity of the

measurement.

6.1.1 Stimulated Raman transition

One could think about using one photon transition to create a coherent spatial separation

of an atom. However, the first excited state of the alkaline atom has a lifetime too short to

be used in an atom interferometer.

Therefore, one can use the long lifetime of the hyperfine levels of these atoms. We

use two-photon transitions, and more specifically stimulated Raman transitions, in a coun-

terpropagating geometry to split, deflect, and recombine atomic wave packets. The atom

first absorbs a photon and then emits through stimulated emission a second photon. This

transition allows us to create coherent spatial superposition between these states. The

advantage of this transition is that the final internal state is different from the initial internal

state, making it easier to detect the population of these states.

Some experiments use two-photon Bragg transition, where the final internal state of

the transition is the same as the initial internal state but the external degree of freedom is

shifted by 2ℏk. These transitions have the benefit that it is possible to transfer more than

2ℏk in one transition.

6.1.1.1 General considerations

We consider a three-level atom with two hyperfine states |g⟩ = |F = 1,mF = 0⟩, |e⟩ =
|F = 2,mF = 0⟩ and an excited state |i⟩. Two laser fields (ω1, k⃗1) and (ω2, k⃗2) couple the

excited state to the ground states in a Λ scheme. To avoid spontaneous emission from the

excited state (Γ ∼ 6 MHz) the one-photon laser coupling is far detuned from this transition

(∆ ∼ 60 GHz). Furthermore, because the typical Raman transition coupling is ∼ 5 kHz
and because the Zeeman sub-levels are spaced by more than 50 kHz ( due to a magnetic

field of 30 mG in the experiment) we can consider only two Zeeman sub-levels and restrict

ourselves to themF = 0 hyperfine states. In the experiment, we choose themF = 0 states

to be insensitive to the first-order Zeeman effect.

6.1.1.2 Resonance condition

Stimulated Raman transition is a process in which an atom absorbs a photon from a laser

field 1 with (ω1 ,⃗k1) and emits through stimulated emission a photon in a laser field 2

with (ω2 ,⃗k2). In the lab frame, the resonance condition for an atom in the fundamental

state of energy Eg with initial velocity v⃗i can be found by writing energy and momentum
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a) b)

Fig. 6.1 (a): Three level system for the description of Raman transitions. The excited
state is coupled to the two ground states through two beams that are detuned by ∆
from the one-photon transition. The mismatch between the two-photon frequency
ω1 − ω2 and the atomic internal energy ωHF S is written δ. The scaling with respect
to the experimental conditions is not respected since ∆ ∼ 60 GHz, ωHF S ∼ 6.8 GHz
and δ ∼ 0 − 20 MHz. (b): Example of a geometric configuration where an atom is
subjected to two beams. Extracted from [4141].

conservation:

Eg + 1
2mv

2
i + ℏω1 = Ee + 1

2mv
2
f + ℏω2

mv⃗i + ℏk⃗1 = mv⃗f + ℏk⃗2

(6.3)

where Ee is the energy of the excited state and vf the final velocity. By merging these two

equations, we have

δ = ω1 − ω2 − ωHF S = p⃗i .⃗keff
m

+ ℏk⃗2
eff

2m (6.4)

where ℏωHFS = Ee − Eg is the hyperfine energy splitting, k⃗eff = k⃗1 − k⃗2 is the Raman

transition effective wavevector and δ the two photon detuning. The first term on the right

part of the equation can be identified as the Doppler effect, and the second one is the recoil

frequency shift. We can see that by controlling the frequency difference of the lasers δ
we can select a class of initial velocity that will perform the transition. We also need to

highlight that the internal degree of freedom is associated with the external degree of
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freedom, an important feature of the Raman transition. By scanning δ and looking at the

transition probability, we can also measure the initial velocity distribution of an atomic

sample.

6.1.1.3 Raman coupling

In this section, we aim at modeling the coupling of the two laser fields with a three-level

atom. The field (1) couples the states |g⟩ with the excited state |i⟩, the field (2) couples |e⟩
with |i⟩. Here, it is important that a more realistic model would take into account the action

of field (1) on |e⟩ and the action of (2) on |g⟩. This treatment can be found in [66; 1111; 2121].

For the sake of simplicity, we will not consider these coupling. Yet, they will be taken into

account in the final equation.

We use the dressed atom picture. We consider the following set of states:

|g⟩ =
∣∣∣g, P⃗ , n1, n2

〉
|e⟩ =

∣∣∣e, P⃗ + ℏk⃗eff , n1 − 1, n2 + 1
〉

|i⟩ =
∣∣∣i, P⃗ + ℏk⃗1, n1 − 1, n2

〉 (6.5)

with n1 and n2 being respectively the number of photon in laser 1 and 2. The left part is a

simplified notation used for the rest of the section.

The free Hamiltonian of the subset states consider above is:

H0 =


δ + p⃗2

2m
0 0

0 (p⃗+ℏk⃗eff)2

2m
0

0 0 ∆+ (p⃗+ℏk⃗1)2

2m

 (6.6)

The two first diagonal terms differ by less than few MHz whereas ∆ ∼ 60 GHz as mention

before. As a result, the excited state |i⟩ stays nearly unpopulated. We can consider |g⟩ and
|e⟩ as being nearly degenerated regarding the laser coupling. The coupling can be written

as

V̂i = −d̂ · Êi (6.7)

where d̂ is the dipole operator of the atom and Êi is the electric field operator associated

with the field.

Êi = ξi

(
eikiẑai − e−ikiẑa†

i

)
(6.8)

where ai are the annihilation operators of laser mode i.

We define the Rabi frequencies which describe the coupling strength between the states:

Ω1/2 = 1
ℏ

⟨i|V̂1|g⟩ (6.9)
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Ω2/2 = 1
ℏ

⟨i|V̂2|e⟩ (6.10)

This leads to a total Hamiltonian:

H = ℏ


δ + p⃗2

2m
0 Ω1

2

0 (p⃗+ℏk⃗eff)2

2m
Ω2
2

Ω∗
1

2
Ω∗

2
2 ∆+ (p⃗+ℏk⃗1)2

2m

 (6.11)

As in chapter 2chapter 2, we can apply perturbation theory and constrain ourselves to only two

states with a direct effective coupling between |g⟩ and |e⟩. The formal procedure to reduce

a three-level system to a two-level system is given in [2424].

In the |g⟩,|e⟩ frame, the total Hamiltonian (free Hamiltonian and light atom coupling)

becomes:

He = ℏ
(
δ +ΩLS

f
Ω
2

Ω∗

2 δDoppler +ΩLS
e

)
(6.12)

where

ΩLS
f = −|Ω1|2

4∆ (6.13)

ΩLS
e = −|Ω2|2

4∆ (6.14)

are the lights shift induced by off resonant coupling and

Ω = −Ω1Ω
∗
2

2∆

is the complex two-photon Raman Rabi frequency. Also,

δDoppler(v⃗) = k⃗e.v⃗ + ℏk⃗2
eff

2m (6.15)

highlights the sensitivity of the transition to the Doppler effect. We split the Rabi frequency

in phase and modulus

Ω = Ωe−iΦ
(6.16)

with Φ = Φ2 −Φ1. Φi describes the intrinsic phase of the laser. Using Pauli matrices and by
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choosing an appropriate energy origin, the Hamiltonian goes to

H

ℏ
=
 δR(v⃗)

2 Ω/2
Ω/2 − δR(v⃗)

2


= δR(v⃗)

2 σz + Ω

2 (cos(Φ)σx + sin(Φ)σy)

(6.17)

with

δR(v⃗) = δ − (ΩLS
e −ΩLS

f ) + δDoppler(v⃗) (6.18)

being the extended detuning. From equation 6.176.17, we can compute the transition probability

for an atom starting from the |g⟩ state:

Pa−→b(τ,δR(v⃗)) = Ω2

Ω2 + δR(v⃗)2 sin2(
√
Ω2 + δR(v⃗)2 τ

2) (6.19)

The effective Raman Rabi frequency is

Ωeff =
√
Ω2 + δR(v⃗)2

(6.20)

One should notice that when the duration verifies Ωτ = π
2 the atom is in a coherent

superposition of the initial and final state with a probability of 50 per cent to be in each of

the states. This is what we will call a
π
2 pulse or a beam splitter pulse.

Likewise, when the duration τ of the Raman pulse verifies Ωeffτ = π the probability for

an atom, at resonance, to be in the excited state after the pulse is equal to one, this is what

we will call a π pulse, or a mirror pulse.

In the experiment, for typical detuning of 60 GHz and intensity of 100 mW cm−2
the

Raman π pulse duration is on the order of 50µs.
Also, we need to point out that the detuning of the transition depends on the atom’s

initial velocity. The width of the transition probability scale as

∆v ∼ Ω

keff
(6.21)

where keff is the norm of the effective wavevector which depends on the geometry of the

lasers beams presented thereafter.

6.1.1.4 Co and counter-propagating geometry

We can identify two geometrical configurations of interest when using Raman transition.

The co-propagating is where the two laser fields propagate along the same direction and

the counterpropagating is where they travel in opposite directions.
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Respectively, their effective wavevector are given by :

keff,copro = k1 − k2

keff,counter = k1 + k2
(6.22)

using the resonance condition, we obtain

keff,copro ∼ 0

keff,counter ∼ 2ω1

c

(6.23)

where c is the speed of light.

In the experiment, on
87
Rb, ωHFS ∼ 2π × 6.8 GHz and ω1 ∼ 2π × 384 THz. From this,

we can estimate the recoil velocity given to an atom during the Raman process. The recoil

velocity is ℏkeff/m. With the previous number, we find that the counterpropagating recoil

velocity is ∼ 12mm/s.

Therefore, using counterpropagating Raman transition, an atomic wave-function can

be put in a coherent spatial separation. These transitions are excellent tools for atom

interferometry. Indeed, the sensitivity of the interferometer scale with the enclosed area. A

higher recoil velocity will increase the enclosed area and therefore the sensitivity of the

interferometer.

6.1.2 Representation free approach

Here, we will use the same derivation as in section 4.1section 4.1 to derive the sensitivity of the h/m in-

terferometer. This derivation will differ by the implementation of Bloch oscillation between

the two Ramsey sequences of the interferometer. We will show how this interferometric

configuration can be used to measure the ration h/m.

General consideration

We consider a two-level atom with level |g⟩ , |e⟩ interacting with a laser, at resonance, of

wavevector k. The energy of the |g⟩ state is chosen to be zero and the one of |e⟩ to be ℏωe. The

momentum kick acquired when performing the transition is ℏk. The interaction between

the lasers and the atoms is considered infinitely short (delta pulses). In the experiment,

the |g⟩ and |e⟩ states are the hyperfine levels addressed through Raman transition. The

system considered here consists then of two quantum degrees: 1) two internal states |g⟩ , |e⟩
introduced earlier. 2) centre-of-mass motion in state |j⟩ labelled |Ψj⟩. To obtain the signal

at the output of the atom interferometer, we focus on the evolution of the |Ψ⟩ state defined
by

|Ψ(t)⟩ = |g⟩ |Ψg⟩ + |e⟩ |Ψe⟩ (6.24)
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We consider the h/m interferometer shown on Figure 6.2Figure 6.2. It is performed using a

sequence of four π/2 pulses, each one inducing a Raman transition between the two

internal levels |g⟩ and |e⟩. The interrogated atoms fall freely in the field of gravity. The

corresponding Hamiltonian is

Ĥ = Ĥ0 + Ĥlaser (6.25)

1. Ĥ0 =
(

P̂ 2

2m
+mgẑ

)
+ ℏωe |e⟩ ⟨e|

2. Ĥl the Hamiltonian of interaction with the laser

The Schrödinger equation is

iℏ
d
dt |Ψ(t)⟩ = Ĥ |Ψ(t)⟩ (6.26)

As long as Ĥ is time independent |Ψ(t)⟩ = U(t,0) |Ψ(0)⟩ = e
−iĤt

ℏ |Ψ(0)⟩. Here, however,
the Hamiltonians are explicitly time-dependent due to the interaction with the laser. Yet,

we can decompose the evolution operator as follows:

1. when not interacting with the laser: Ue(t′,t) = e
− i

ℏ

(
P̂ 2
2m

+mgẑ+ℏωe

)
(t′−t)

if in the |e⟩
state.

2. when not interacting with the laser: Uf (t′,t) = e
− i

ℏ

(
P̂ 2
2m

+mgẑ

)
(t′−t)

if in the |g⟩ state.

3. when interacting with the laser, assuming δ like pulses Ul±(t) = e±i(kẑ−ωt±Φ(t)
(see

[5151] appendix A.4). The sign depends if the photon is absorbed or emitted by the

atom. We will consider a plus sign when the atom absorbs a photon.

4. when performing Bloch oscillation, that we will also consider infinitely short Ub(t) =
e+i(Nkẑ)

We denote |Ψup⟩ (resp
∣∣∣Ψdown

〉
) the wave function in the upper (resp. lower) arm of the

interferometer at the lower exit port of the interferometer.

We are considering a symmetrical interferometer. Otherwise, doing so would make the

calculations much more cumbersome, especially as we always use a symmetrical interfer-

ometer in the experiment.

|Ψup⟩ = Ue(TR)Ul−(t3)Ue(TB)Ub(tb)Ue(TR + TB)Ul+(t1) |Ψ(0)⟩ (6.27)

∣∣∣Ψdown
〉

= Ul−(t4)Ue(TR)Ue(TB)Ub(tb)Ue(TB)Ul+(t2)Ue(TR) |Ψ(0)⟩ (6.28)

For the upper path, with the same derivation as in section 4.1section 4.1, one can show that

|Ψup⟩ = e−i(ϕ1−ϕ3)eiNkẑe− i
ℏ ĤN TRe− i

ℏ ĤN+1TBe− i
ℏ Ĥ1(TB+TR) |Ψ(0)⟩ (6.29)
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Fig. 6.2 h/m interferometer. Full line: Atom in the ground state. Dashed line: Atom
in the excited state. In yellow we represent the Raman pulses. The red dashed line
represents the Bloch oscillation applied in-between the two Ramsey sequences.

with

Ĥj = (P̂ + jℏk)2

2m +mgẑ (6.30)

As previously, we want to merge the exponential. Because the commutators are c-

number, we obtain using the Baker-Campbell-Hausdorff formula

|Ψup⟩ = e−i(ϕ1−ϕ3)eiNkẑe− i
ℏ (ĤN TR+ĤN+1TB)e−[ĤN ;ĤN+1] TBTR

2ℏ2 e− i
ℏ Ĥ1(TB+TR) |Ψ(0)⟩ (6.31)

By calculating e[ĤN ;ĤN+1] TBTR
2ℏ2

, one gets

|Ψup⟩ = e−i(ϕ1−ϕ3)eiNkẑe− i
ℏ ĤN TR+ĤN+1TBe− i

ℏ Ĥ1(TB+TR)e− i
2 kgTBTR |Ψ(0)⟩ (6.32)

Repeating the same calculation, we finally have

|Ψup⟩ = e−i(ϕ1−ϕ3)eiNkẑe− i
ℏ (ĤN TR+ĤN+1TB+Ĥ1(TB+TR))

e− i
2 (−(N−1)kgTR(TR+TB)−NkgTB(TR+TB)+kgTBTR) |Ψ(0)⟩ (6.33)

If one performs the same calculation on the lower path∣∣∣Ψdown
〉

= e−i(ϕ2−ϕ4)eiNkẑe− i
ℏ (ĤN+1TR+ĤN+1TB+Ĥ1TB+Ĥ0TR)

e− i
2 (−(N+1)kgTR(TR+TB)−NkgTB(TR+TB)−kgTB1 TR) |Ψ(0)⟩ (6.34)
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We define the operator phase as∣∣∣Ψup/down
〉

= eiΦ̂up/down |Ψ(0)⟩ (6.35)

The phase of the interferometer will be obtain computing e =
〈
Ψup

∣∣∣Ψdown
〉
with

e = ⟨Ψ(0)|Uup†Udown |Ψ(0)⟩ (6.36)

= ⟨Ψ(0)| e−iΦ̂upe+iΦ̂down |Ψ(0)⟩ (6.37)

Again, we need to evaluate [−Φ̂up,Φ̂down]. One can verify that

[−Φ̂up,Φ̂down] = 0 (6.38)

Thus e−iΦ̂upe+iΦ̂down = e−iΦ̂up+iΦ̂down = e−i∆Φ̂
and it all boils down to :

∆Φ̂ = ϕ1 − ϕ2 − ϕ3 + ϕ4 + kg

2 (−(N − 1)TR(TR + TB) −NTB(TR + TB) + TBTR

+(N + 1)TR(TR + TB) +NTB(TR + TB) + TBTR))

+1
ℏ

(ĤNTR + ĤN+1TB + Ĥ1(TB + TR) − ĤN+1TR − ĤN+1TB − Ĥ1TB + Ĥ0TR))
(6.39)

Which, after some simplification gives

∆Φ = ϕ1 − ϕ2 − ϕ3 + ϕ4 + kgTrTdelay − k∆vTr (6.40)

With Tdelay = Tr + 2TB and ∆v = N ℏk
m
.

By scanning ϕ1 − ϕ2 − ϕ3 + ϕ4 and determining the value for which the phase shift is

zero, one measures the velocity difference between the first and second Ramsey sequences

(as long as you know the value of g). Because we can control the number of recoil N given

during Bloch oscillation and by measuring k precisely, a measurement of ∆Φ allows one

to measure h/m. This behavior justifies the denomination of differential velocity sensor

configuration.

6.1.3 Bloch oscillation
We have seen that when transferring a large number of recoil velocities in a Ramsey-

Bordé interferometer, the sensitivity to h/m scales proportionally to the number of recoils

transferred. We use the technique of Bloch oscillations for this purpose. This technique

allows for controlled and precise transfer of a large number of recoil velocities. A more

detailed treatment of the theory of Bloch oscillations can be found in [2121].

At first glance, Bloch oscillations can be interpreted as a succession of counter-propagating

Raman transitions in the same internal state. With each transition, the atom acquires a recoil

velocity. By chirping the frequency of one of the two lasers, we transfer recoil velocities

one by one.
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Another way to view Bloch oscillations is to imagine a lattice generated by two counter-

propagating lasers. When scanning the frequency of one of the lasers, the atom trapped

in this lattice will move with it, acquiring a velocity equal to the chirping of the laser

frequency.

From a more calculative perspective, consider two counter-propagating lasers described

as:

E±(t,z) = E0 exp
[
i
(

±kz − ωt±
∫
δω(t) dt+ ϕ±

)]
(6.41)

where δω(t) is the chirping rate of the lasers’ frequencies. The sign depends on the propa-

gation direction of the laser. Considering a common phase for both lasers, the potential

(related to the light shift) experienced by the atom can be written as [2121]:

V = V0 cos2
(
kz −

∫
δω(t) dt

)
(6.42)

with:

V0 = 3πc2

2ω3
atom

Γ

∆
4I0 (6.43)

where the frequency ωatom is the frequency of the optical transition used to create the

potential and ∆ is the detuning from this transition. Experimentally, we choose a positive

detuning, meaning we are blue-detuned. Thus, the atoms are trapped in the minima of

the intensity or nodes of the optical lattice. This choice of detuning minimizes sponta-

neous emission and, consequently, limits the number of scattered atoms during the Bloch

oscillations.

When we scan the frequency of the lasers, we generate a lattice with an acceleration:

a = λ

2π
dδω

dt
(6.44)

where λ is the wavelength of the Bloch laser. Once the acceleration is known, the Bloch

oscillation period τB can be deduced as ([4141] equation 2.30.20):

τB = 2ℏkB

ma
(6.45)

Typically, in the experiment, τB ∼ 12µs and NB = 500, which means that we can now

transfer 1000 recoil velocities to the atom in around 6 ms. Each Bloch oscillation has a very

high efficiency of 0.9993. This atom accelerator provides an easy and precise way to control

the atoms.
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6.2 2020 measurement
In 2020, the group performed the most precise measurement of the fine-structure constant

to date [4242]. This measurement has allowed us to obtain a new determination of the

fine-structure constant with an unprecedented relative precision of 81 parts per trillion

(ppt):

h

mRb
= 4.591 359 258 90(65) × 10−9

(6.46)

α−1 = 137.035 999 206(11) (6.47)

This corresponds to a 2.5-fold improvement in precision compared to the measurement

by the Berkeley team using cesium. However, a 5.5 σ discrepancy is observed between

the measurement we performed and the one at Berkeley[4848]. The work described in this

section is part of the effort to understand the discrepancy between the values obtained by

determining h/m.

On Figure 6.3Figure 6.3, we show the error budget of the 2020 measurement. We see that the

global systematic effects uncertainty of 6.8 × 10−11
limits the measurement. To mitigate

some of the systematic effects, the group decided to use a colder atomic source: a Bose-

Einstein Condensate (BEC). The first motivation for using a BEC is to reduce the effect

related to the transverse expansion of the cloud during the interferometer (residual light

shift and beam profile) [4343]. Other systematic effects, such as the Gouy phase, will however

be enhanced using a BEC. Indeed, what we denote as the Gouy Phase is related to the

transverse Laplacian of the intensity profile. In the case of a BEC situated at the centre of a

Gaussian beam, this effect will be more pronounced than in the case of molasses, due to the

smaller distance over which averaging can be performed. The use of a BEC would assist in

the mitigation of these effects, thereby facilitating a more comprehensive understanding of

them.
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Source Correction [10−11] Relative
uncertainty [10−11]

Gravity gradient -0.6 0.1
Alignment of thebeams 0.5 0.5
Coriolis acceleration 1.2
Frequenciesof the lasers 0.3
Wavefront curvature 0.6 0.3
Wavefront distortion 3.9 1.9
Gouy phase 108.2 5.4
Residual Ramanphaseshift 2.3 2.3
Index of refraction 0 < 0.1
Internal interaction 0 < 0.1
Light shift (two-photontransition) -11.0 2.3
Secondorder Zeemaneffect 0.1
Phaseshifts inRamanphase lock loop -39.8 0.6
Global systematic effects 64.2 6.8
Statistical uncertainty 2.4
Relativemassof 87Rb : 86.9091805310(60) 3.5
Relativemassof theelectron : 5.48579909065(16) · 10−4 1.5
Rydbergconstant : 10973731.568160(21)m−1 0.1
Total: α−1 = 137.035999206(11) 8.1

Fig. 6.3 Error budget of the measurement conducted in 2020. We have highlighted
the major sources on which we worked during my work (green for chapter 8chapter 8, red for
section 8.2section 8.2

)

6.3 Outlook
A part of my work on the h/m experiment is a direct following of the thesis of C. Carrez

[2020]. Together with C. Carrez, we found that the wavefront distortion systematic effect is

exalted when using a BEC. In the next, we will detail how we investigated and managed

the effect due to wavefront distortions using BEC. Also, we will discuss new setups used to

study the phase shifts in the Raman phase lock loop (highlighted in green on Figure 6.3Figure 6.3).

This part is organized into 3 chapters:

Chapter 8 details the experimental setup, howwe produce the BEC, and the experimental

protocol to measure h/m.

Chapter 9 is dedicated to the study of the phase shift in the Raman phase lock loop.

We present two distinct setups put in place to reduce the phase shift. An in-parallel study,

using a scope, is implemented to measure the impact of our new setups.

In Chapter 10, we begin by explaining the problem related to the uses of a BEC for our
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experiment. Then, newhomemade collimators are studied. They show an improved intensity

wavefront quality with no optical aberration. Even though the improved collimators, we

show that the value of h/m still shifts with the initial velocity given to the BEC.We conclude

that spurious beams are responsible for this shift.





Chapter 7

Experimental set-up and measurement
of h/m

The current experimental setup has been developed over the past ten years. It is mainly

described in the theses of R. Jannin [3535] and C. Courvoisier [2525]. Improvements and

modifications made during my PhD will be presented in the next chapters.

7.1 Vaccum cell

The schematic presentation of the vacuum cell is shown in Figure 7.1Figure 7.1. Our vacuum cell is

L-shaped. The horizontal part contains a 2D MOT which precools the atoms before they

enter the main chamber. The center of the ‘L’ is the main chamber where the 3D optical

molasses is prepared. The vertical part is the interferometry area where we conduct the

atom interferometry measurements.

The vacuum cell must maintain a pressure below 10−9
mbar to ensure that the trapped

atoms have a lifetime of more than 10 seconds. To achieve this, we use NEXTorr pumps and

an ion pump. This setup has allowed us tomaintain a vacuum of 2×10−10
mbar continuously

for almost 4 years. However, in late 2023, the Rubidium cell broke "spontaneously". We had

to wait for the new glassblower, Tom Chevy, of the LKB to make a new one for us. During

this time, we also took advantage of the vacuum break to clean the 2D MOT windows. In

fact, over time, a reaction took place between the windows and the rubidium, and a thin,

opaque film appeared on the windows. We managed to clean them by simply whipping

them carefully with ethanol. After receiving the new rubidium cell and reassembling the

now clean 2D MOT chamber, we were able to achieve the same vacuum as before. Having

clean windows resulted in faster MOT loading and an increase in the overall signal in the

detection.

The vertical part is a tube surrounded by a solenoid that generates a bias field along

the vertical axis. Since the atom interferometer operates in this vertical part, we need a

highly controlled magnetic field that is well isolated from external magnetic disturbances.

A two-layer cylindrical µ-metal magnetic shield is used to reduce the residual rms magnetic

field measured value is ≃ 50 nT. Between the atom interferometer tube and the main

103
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Interferometry area

Detection cell

Atom source
Rubidium cell

2D-MOT Cell

Main chamber:
MOT

Optical molasses

NEXTorr pumps Agilent ion pump

MOT coils
position

z

Fig. 7.1 Schematic of the vacuum cell and main experimental part of the atom
interferometer. The vertical bias field is generated by a solenoid wrapped around the
tube of the interferometry area. It is isolated from the surrounding magnetic field by
a magnetic shield, which is not shown in this picture. Extracted from [4141]

chamber, a square chamber is used to detect the atoms.

Finally, the vacuum cell is enclosed in an aluminium profile system. In 2023, together

with the former PhD student, we built a tiny house around the experiment to protect it

from airflow induced by the air conditioning.

7.2 Cold atom production: from molasses to a BEC

To prepare and cool the atoms, we use analog lasers as in Part IPart I. Here I will only present the

optical setup. At the output of the two lasers, let us say the repump laser and the cooling

laser, we have about 20 mW of optical power.

The repump laser is divided into 4 parts: about 500µWis sent to the saturated absorption,

3.5 mW to the auxiliary repump, 1 mW to the optical beat between the cooling and the
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repump, and the rest to the tapered amplifier. The auxiliary repump is used when a

mechanical shutter cuts off the repump before amplification.

The cooling laser is split into 2. We send 1 mW for the optical beating with the repump

laser and the rest to the tapered amplifier.

The frequency lock of the repump is performed using a saturated absorption and a

heterodyne detection using an EOM operating at 10 MHz.

The two combined beams are sent to the optical table shown on Figure 7.2Figure 7.2. The two

beams are amplified by a tapered amplifier. At the output, we get a total of 1.3 W optical

power with 300 mW repump and 1 W cooling. The amplified beams are then split as shown

Figure 7.2Figure 7.2. We use AOMs as fast shutters and optical power controllers. As the extinction

of an AOM is not perfect, we use mechanical shutters as beam blockers. For more details

see [4242].

7.2.1 Magneto optic trap
A vacuum element (2D MOT chamber) connected to a rubidium cell is placed horizontally

with respect to the main chamber. The 2D MOT chamber is filled with rubidium, creating a

2D MOT. Atoms are then pushed with a push beam into the main chamber. The 3D-MOT is

loaded by an atomic beam produced by a two-dimensional magneto-optical trap (2D-MOT).

After a 6-beam splitter, the 3D MOT laser beams are collimated by a 4-lens system

followed by a quarter waveplate to produce circularly polarised beams. This collimator

produces a large beam (waist around 5 mm) which increases the trapping efficiency of the

MOT. Each beam typically has a power of 20 mW.

The magnetic field is generated by a pair of coils in an anti-Helmholtz configuration,

powered by a fast response power supply. The current through the coils is controlled by an

analogue signal, allowing switching from MOT to optical molasses.

The MOT loading is followed by an optical molasses phase presented hereafter.

7.2.2 Optical molasses
The conversion from a MOT to an efficient optical molasses sequence is performed by

several manipulation steps, as shown Figure 7.3Figure 7.3. The MOT loading takes about 800 ms. The

trapping laser is then detuned to about −1.9Γ with a magnetic field gradient of about 9

G-cm
−1
. For 5 ms, the magnetic field is ramped up to about 15 G-cm

−1
while the laser is

detuned to −3.3Γ . This compression phase lasts for 25 ms and maximises the atomic cloud

density.

Next, the magnetic field is reduced to zero over 20 ms while the laser is detuned to

−6Γ . The molasses phase lasts 20 ms, during which the laser is further detuned to −22Γ
over 5 ms. Finally, the laser power is ramped down to 15% of its maximum value over 10

ms before an abrupt shutdown. The total duration of this phase is approximately 80 ms,

resulting in an optical molasses phase that is completed in approximately 700 ms.

In the end, we obtain a gas at a temperature of about 4µK containing 108
atoms with a

1/e radius of 600µm
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Fig. 7.2 Schematic representation of the MOT tables. This table contains the lasers
used for the MOT preparation but also the lasers for the detection and for BEC
preparation. Extracted from [4141].
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Fig. 7.3 Steps sequence for the optical molasses. Extracted from [4141].

7.3 BEC production

To reduce the transverse velocity of the cloud during the interferometry sequence, the

group decided to use colder, smaller atomic sources. The process of evaporative cooling in

an optical dipole trap and the experimental setup have been extensively discussed in [2525].

Here, we will only present the main features.

7.3.1 Evaporation optical setup

The dipole laser operates at a wavelength of 1070 nm and has an optical power of 50 W.

After exiting the collimator, the beam has a linear polarization, which is refined using a

polarizing beam splitter cube. The beam is then divided into two unequal parts using a

half-wave plate and another polarizing beam splitter cube. The larger part is used to create

the reservoir beam, while the smaller part is used to create the dimple beam.

The power of the reservoir beam is computer-controlled by adjusting the optical power

directed into its first-order beam using an acousto-optic modulator (AOM) (control of the

diffraction efficiency of the AOM). The zero-order beam is removed from the optical system

with a beam blocker that dissipates its power. The beam is then split into two beams

spatially close with equal power. These two beams do not interfere with each other because

their polarizations are crossed. The beam pair is then focused onto the atomic cloud using

a single lens mounted on a translation stage. Thus, the reservoir beam is composed of two

beams with a waist of 100 µm and a maximum power of 12 W.

The dimple beam also passes through an AOM, which controls the power in the -1 order.
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The order used is different from that of the reservoir beam to prevent interference between

the two beams. Consequently, the two beams are separated by approximately 160 MHz.

The dimple beam then passes through a telescope to enlarge its size before being focused

on the atoms by a lens mounted on a translation stage. The dimple beam consists of a single

beam with a waist of 30 µm and a maximum power of 4 W.

7.3.2 Evaporation sequence
The step sequence for evaporation is shown in Figure 7.5Figure 7.5. Starting with molasses in the

|F = 2⟩ state, we increase the magnetic field to compress the cloud (compressed MOT

phase). The repumping light is mechanically shut down, and the dipole beam is switched

on at full power in the reservoir beams without the dimple to avoid high initial density and

three-body losses.

The repump amplitude, controlled through auxiliary channels, is shut down at the

end of the dipole loading stage, causing atoms to fall into the |F = 1⟩ state and become

insensitive to the cooling laser. Without photon diffusion, the cloud becomes colder and

denser, termed ’Dark molasses’. The atoms are then trapped by the dipole beams, with

negligible spontaneous emissions due to far-red detuning.

We slowly sweep down the power in the reservoir and dimple beams to load atoms

into the dimple beam for effective evaporation, as shown in Figure 7.5Figure 7.5. In the middle of the

evaporation, we switch on the magnetic field to implement spin distillation.

After around 1.7 s of evaporation, we obtain a BEC containing 200,000 atoms at 80nK in

a magnetically insensitive state.
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Fig. 7.4 Evaporation optical setup. Extracted from [4141].
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Fig. 7.5 Steps sequence for the efficient loading of the dipole trap. At the end of the
sequence, the trapping and repump lasers are abruptly shut off while the dipole laser
powers are ramped up for the evaporation sequence. Extracted from [4242].

7.4 Raman and Bloch lasers
To manipulate the atoms, we use four different laser beams. The two Raman lasers will

split and recombine the atom wave packet. The two Bloch lasers are used to accelerate (or

decelerate) the atoms.

7.4.1 Amplifier and SHG generation

To obtain a high-power laser at 780 nm for Raman and Bloch lasers, we use Muquans

modules composed of amplifier and doubling module that we seed with narrow bandwidth

lasers at 1560 nm. First, the seed laser is sent to the Erbium-Doped Fiber Amplifier (EDFA).

Then this amplified laser is sent to a Periodically Poled Lithium Niobate (PPLN) crystal

to achieve Second Harmonic Generation, which produces a laser at 780 nm. The whole

process is presented on Figure 7.6Figure 7.6

However, under a high pump, the ions of the EDFA also have non-negligible spontaneous

emissions probability during the amplification. Although this process is supposed to be

random, there are many random photons coupled into the fiber and subsequently amplified.

This process will produce a significant background which we call amplified spontaneous
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Fig. 7.6 The amplifier double frequency module based on a seed laser at 1560nm
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 converter

Freq to Voltage

 converter
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Fig. 7.7 Frequency stabilization system. In purple, we represent optical filter used to
select only few teeth of the comb.

emission (ASE) background. By using a heated Rubidium cell, we can filter out the ASE.

In the end, we obtain around 800 mW output power at 780 nm for each Bloch and Raman

laser. This power allows us to use a larger beam size to reduce the systematic effects in the

experiment.

Absolute frequency lock

The seed lasers at 1560 nm of Raman and Bloch are separated into two parts before the

Muquans module. Most of the optical power is sent to the Muquans module, the rest (around

10%) is sent to a phase lock with a 1560 nm frequency comb. The whole system is presented

on Figure 7.7Figure 7.7. The ultra-sable frequency comb with repetition rate locked at 200 MHz is

delivered by the group of L. Hilico. The 1560 nm frequency comb laser is split half and half

and mixed with the Bloch and Raman laser to obtain a beat note signal. We then remove

the DC component and filter using a low-pass filter to retain only frequencies below 98

MHz. This cutoff frequency was chosen because the beat note between a comb tooth and

the Raman laser is less than 100 MHz. This signal is then amplified and sent to a RedPitaya

to digitally generate an error signal. This error signal is zero when the beat note is at 15

MHz. It is then sent to a PID (proportional, integrative, derivative) controller performing a

feedback on the piezoelectric actuator of the NKT to correct frequency drifts.
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Fig. 7.8 Bloch laser setup.

7.4.2 Bloch Lasers

To generate a stable and moving lattice and implement Bloch oscillations we use the same

laser source: another narrow linewidth NKT laser. We require an extensive frequency

scanning range to implement more Bloch oscillations in the experiment. Instead of using

double-pass AOMs at 780 nm, where power is lost, we perform frequency tuning before the

laser is amplified and doubled in frequency, as shown in Figure 7.8Figure 7.8. This approach allows

for increased power.

With this, we can give up to 1000 photons momenta with an efficiency of around 99.93%
per Bloch oscillation

7.4.3 Raman lasers

Fig. 7.9 Raman laser setup.

The Raman laser setup is presented on Figure 7.9Figure 7.9. The NKT laser is referenced using

the comb lock presented there-before. For the second Raman laser, we use a RIO diode.

The use of this RIO diode allows us to achieve fast feedback on the frequency. We will

implement feedback on this diode using a Phase Lock Loop (PLL). The schematic of the

PLL is presented in Figure 7.10Figure 7.10.

We combine the beams of Raman 1 and Raman 2 and direct a small portion of their

overlap to a fast photodiode to generate a beat note signal at around 6.834 GHz. After

amplifying this signal by 35 dB, a portion is used for monitoring, while the main part

is mixed with a signal at approximately 6.514 GHz and passed through a low-pass filter,
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Fig. 7.10 Phase Lock Loop (PLL) used for fast frequency feedback on the RIO diode.
Extracted from [4141].

resulting in a signal at around 320 MHz. This signal is then divided by 4 and sent to the

Phase Comparator device. The synchronization input of the phase comparator receives an

output from a RedPitaya operating in direct digital synthesizer (DDS) mode, producing a

40 MHz signal that is frequency-doubled to obtain two 80 MHz signals for phase locking.

The phase-locked loop (PLL) is completed with a PID controller to provide feedback to the

RIO diode laser, locking its phase to the first Raman laser. The frequency and phase of

the Raman laser are precisely controlled by the DDS in the RedPitaya. The RedPitaya is

referenced using a synthesizer at 125 MHz, which itself is referenced to the 10 MHz from

the SYRTE.

7.4.4 Beam path of the science lasers
The two Raman beams are combined using a polarization beam splitter. A small portion

of the combined beam is directed to a photodiode to perform the phase lock loop. The

remaining part is sent to the AOM acting as a shutter. Before reaching the AOM, a movable

λ/2 wave plate is placed to allow switching the direction of the Raman beams (Raman 1

from the top and Raman 2 retro-reflected or vice versa). A blow-away beam and a repump

beam are overlapped with the Raman lasers using the 0-order "path" of the AOM.

The Bloch lasers are first sent through a Rubidium cell to filter out amplified spontaneous

emission (ASE). After this, they pass through acousto-optic modulators (AOMs) acting as

shutters. One Bloch laser is directed to the bottom collimator, while the other is coupled

into the same fiber as the two Raman lasers, the repump laser, and the blow-away laser.

For the Bloch lasers, we employ two fast shutters to prevent any spurious light that could

cause a loss of coherence or induce light shifts during the interferometry sequence.

The lasers are then sent onto the experimental chamber as shown on Figure 7.12Figure 7.12.
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Fig. 7.11 Schematic representation of the interferometry table.



7.4 Raman and Bloch lasers 115

The choice of a vertical configuration for the interferometry lasers is guided by the fact

that the atoms are subjected to gravitational acceleration. Any horizontal configuration

would be limited by this acceleration. With vertical acceleration, we ensure that gravity

does not move the atoms out of the laser beams.

Moreover, because Bloch oscillations are implemented during the interferometer, we

should ensure that the Bloch beams induce as little decoherence as possible. Besides the

blue detuning that traps the atoms at the minima of intensity within the lattice, we should

use a configuration that limits residual lattices, as they would translate to a non-zero mean

intensity perceived by the atoms.

Consequently, we use a configuration where each Bloch beam travels only once through

the vacuum cell. The downward-going beam is deflected by a PBS at the output of the

vacuum cell and sent to the upward-going beam collimator to ensure proper alignment.

The beams at the output of the collimators have a Gaussian shape. To approximate a plane

wave, we need to use large beams. We use a commercial collimator that produces a beam

with a 6.25 mm waist.

For the measurement of the recoil velocity, the beam alignments (counter-propagating

condition) need to be controlled within a few µrad. Alignment drifts prevent us from

reaching such precision over an extended period. We use PZT transducers on mirror

mounts and observe the transmitted (or reflected) power through the input fiber. We set

the PZTs at the maximum observed power to ensure the best alignment possible between

the different beams. This procedure is run approximately every 45 minutes, so that the

alignment is continuously optimized.

During the interferometers, Bloch acceleration is applied on both arms of the interfer-

ometer. Because we accelerate both arms of the interferometer, the phase is also imprinted

on both arms. As a result, the phase difference between the upper path and lower path is

insensitive to this phase. Thus, we do not need phase coherence of the two beams. This

is not the case for the Raman beams, as their phase coherence is necessary to run the

interferometer.

If the Raman beams were sent through different fibers, each fiber would induce a

differential phase shift. This phase shift would not be constant over time, as it would depend

on environmental fluctuations such as temperature. In the early stages of the experiments, a

compensation for this phase noise was attempted, but it did not achieve sufficient stability.

Therefore, the two Raman beams should be sent to the vacuum cell through the same

fiber. For the counter-propagating configuration, we need the beams to be retro-reflected.

Due to the selection rules of the Rubidium atom, the polarization of the Raman beams should

be orthogonal. Since we use linear polarization, we split the beams with a PBS. Above the

retro-reflecting mirror, we place a PBS to reflect only one of the Raman beams. This PBS is

also used to send the upward-going Bloch beam and discard the downward-going one, so

the polarization of the Bloch beams should be linear and dictated by the PBS.

The retro-reflecting mirror is placed on an anti-vibration table (Minus-K table). This

retro-reflecting mirror is considered as the phase reference of the two Raman lasers. Any

displacement of this mirror along the z-axis would lead to phase noise directly imprinted on

the atoms during the Raman transition. During my thesis, we re-optimized this table and

observed a reduction in the phase noise at the output of the interferometer. This, coupled
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Fig. 7.12 Scheme of the interferometry lasers’ path. The two Bloch beams are
distinguished by their direction of propagation (Downwards (D) or Upwards (U)).
Each interferometry beam is indicated next to its input fiber with its corresponding
axis of linear polarization. Extracted from [4141].

with a new Raman lock scheme (presented in the next chapter) allowed us to increase the

sensitivity of the interferometer by 30%.

7.5 Measurement of h/m

To measure the change in velocity induced by Bloch oscillations we use a Ramsey Bordé

atom interferometer consisting of two pairs of π/2 Raman pulses. The phase difference ∆ϕ
at the output of the interferometer depends on the velocity change between the two pairs

of π/2. Bloch oscillations allow us to impart NB recoil velocities vr to the atoms (typically

NB = 500), but in the experiment, the atoms are also affected by gravity. The expression of
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Fig. 7.13 Experimental setup. a) Design of the vacuum chamber, featuring a 70-
cm-long magnetically shielded tube housing the atom interferometer in the upper
section. b) Sequence of Bloch oscillations (B.O., red) and Raman pulses (yellow)
used to control the atomic trajectories before initiating the atom interferometer. c)
Atom interferometer light pulse sequence, with atomic trajectories for upward (blue)
and downward (purple) accelerations calculated in advance to mitigate the gravity
gradient effect. The separation between the two paths of each interferometer is
exaggerated for clarity. Extracted from [4242].

the phase difference ∆ϕ is:

∆ϕ = TR

(
ϵRkR

(
ϵB2NBkB

ℏ
m

− gTD

)
− δω

)
+ ΦLS (7.1)

where δω is the frequency detuning shift between the two Ramsey sequences, ϵR = ±1
describes the direction of the Raman beam, ϵB = ±1 describes the direction of the accelera-

tion induced by the Bloch lasers, and ΦLS is the phase shift induced by the light shifts of

the interferometric pulses. Note that depending on ϵR, this phase shift differs as the two

Raman beams might not have exactly the same optical power. Thus, we need to determine

two phase shifts ΦLS .

This formula differs from Equation 6.40Equation 6.40. Indeed, during the derivation, we assumed

delta-like pulses. As a result, the AC stark shift induced by the laser during the transition

was neglected.

The exchange of direction of the Raman beams (ϵR) and Bloch acceleration(ϵB) enables

four determinations of ∆Φ. As we have four unknowns, saying g, the two ΦLS and h/m,

we are able to determine precisely h/m with minimal systematic effects.
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Fig. 7.14 Sequence of Bloch oscillations (B.O), Raman pulses (yellow) and blow away
(BA, green) for one h/m. The 5 first pulses are part of the elevator. The atoms are
placed in the interferometry area. The Raman pulses coupled with the blow away
allow the selection of only the coldest atom of the cloud.

7.5.1 Temporal sequence
Our experiment begins with molasses at a temperature of 4 µK or a BEC. To transfer atoms

into the interferometer area, we use an atomic elevator that consists of two Bloch oscillation

pulses. One pulse accelerates the atoms, and the other decelerates them. By adjusting

the parameters of the elevator (number of Bloch oscillations and delay), we can precisely

control the position z0 and velocity v0 of the cloud inside the interferometer area. The

trajectory of the atoms during one measurement of h/m is shown on Figure 7.13Figure 7.13.

The pulse sequence used for one measurement is shown in Figure 7.14Figure 7.14. Between the

two Bloch oscillation pulses of the elevator, we apply a pair of Raman π pulses coupled to

a blow-away pulse. A blow-away pulse is made using the cooling laser set at resonance

with the |5s 2S1/2,F = 2⟩ → |5s 2P3/2,F
′ = 3⟩ transition, allowing to blow the atoms in

the |5s 2S1/2,F = 2⟩ state. With this sequence, atoms are prepared in the magnetically

insensitive state mF = 0. By controlling the intensity and duration of the first Raman

π pulse, we set the width of the vertical velocity distribution of the atomic cloud. These

steps are the preparation sequence before the atom interferometer. After the preparation

sequence, 500,000 atoms remain in the cloud. The time delay between two π/2 Raman

pulses is TR and the total duration of the interferometer is T . The entire interferometer

sequence occurs in the interferometer area where the magnetic field is well-controlled. After

the end of the interferometer, we let the atoms free-fall into the time-of-flight detection

region and measure the ratio N2/(N1 +N2). Then, we repeat this sequence multiple times.

Each time, we randomly change the δω between the two Ramsey sequences to obtain the

spectras.

7.5.2 Four configurations
As we discussed before, we can cancel gravity and light shifts by inverting the Raman and

Bloch direction. Looking at Equation 7.1Equation 7.1, we can choose ϵR = ±1 and ϵB = ±1. Thus, we
have to measure four different spectra by inverting the direction of the Raman lasers and

Bloch acceleration. These points, totalling 204 for one determination of h/m, are sampled

randomly to avoid systematic effects due to potential drifts during data collection. We use

a sinusoidal function to fit the fringes and extract the estimations of frequency δω at which
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Fig. 7.15 Typical set of four spectra recorded by inverting the directions of the
Raman and Bloch beams for TR = 20 ms and NB = 500. Each spectrum displays
the variation of the relative atomic population with respect to the parameter δfR.
The lines are least-squares fits used to determine the position of the central fringe
displayed at the top of each spectrum.

we are at the center of the fringe. A total acquisition lasts around 5 minutes when using

molasses. For a BEC, because the atom preparation is longer, it lasts around 15 minutes. A

typical data set obtained during the 2020 measurement is presented on Figure 7.15Figure 7.15.
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Phase shift in Raman phase lock loop
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Fig. 8.1 Raman Phase Lock Loop (PLL) frequency chain. Extracted from [4141]

During the 2020 measurement, the group found that the Raman phase-lock loop induced

a phase shift on the Raman phase during the interferometry sequence and thus caused a

systematic effect on the value of h/m. The setup used to control the frequency difference

ωR(t) between the two Raman lasers is presented in Figure 8.1Figure 8.1. It is based on a phase-lock

loop (PLL) that controls precisely the phase of the beat note signal between the two lasers.

To compensate for the Doppler shift induced by gravity, we implement a frequency ramp of

rate β ≈ ±25 MHz s
−1

during the Ramsey sequences of the interferometer, where the sign

of the ramp is dictated by the direction of Raman beams, ϵR. Any delay δt in the PLL system

induces a shift βδt in the frequency seen by atoms. A constant delay cancels over the

interferometer sequence. However, because the frequency shift between the two Ramsey

sequences depends on the direction of Bloch acceleration, this delay varies between related

spectra and a phase error appears. An independent measurement of the beat note signal

was performed to measure this phase shift. The correction on α is highlighted in green on

Figure 6.3Figure 6.3. In this Chapter, we will present how we tried to reduce this effect.
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Fig. 8.2 In blue, the error signal sent by the PID to correct the current of the pho-
todiode; in orange, the signal from a photodiode observing the light pulse in the
interferometer’s time sequence. Data was collected using an oscilloscope.

8.1 AOM set-up

Our initial proposal was to integrate two AOMs into the Raman configuration to execute

the frequency chirps required to correct for the Doppler shift caused by the free-fall and

the velocity boost transmitted via Bloch oscillation. In fact, the system implemented is

analogue to the Bloch lasers one. The AOMs are implemented at 1.5 µm before the frequency

doubling. The key principle of using an AOM to perform the frequency chirp for the Raman

lasers is that it causes the phase-lock loop to not "work" meaning that the error signal is

always around zero. The PLL will only compensate for the noises. The implementation of

this setup is shown on Figure 8.4Figure 8.4 Top left

Each AOM’s frequency, with a central frequency of around 80 MHz, is driven by a

RedPitaya. Because the output frequency of the RedPitaya is limited to 50 MHz, the signal

is mixed with a constant frequency to shift the output frequency to the 80 MHz range. On

Figure 8.2Figure 8.2, we show the error signal of the PLL during an interferometric sequence. The

orange curve shows the interferometric pulses acquired thanks to a photodiode. The data

were acquired using an oscilloscope.

On the left, we plot the response of the PLL when the PLL performs the frequency

chirps. On the right, when we use the new setup. When the frequency chirp is performed

with the AOM, we observe that the PID response is flat without any chirp, confirming that

the setup works.

We performed h/m measurements, shown on Figure 8.3Figure 8.3, while alternating between the

old and new setup (without andwith the AOMs). Themeasurement shows no discrepancy up

to 2×10−10
on h/m. In 2020, the groupmeasured a systematic effect of (−8.2±0.12)×10−10

to h/m. The system appears ineffective at canceling the phase shift in the Raman phase

lock loop.
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Fig. 8.3 h/m measurement. We alternate between the setup where the chirp is
performed through the PLL in blue and in orange when the AOM are used. We
stopped the experiment for around 4 hours explaining the gap in the dataset

Independent phase measurement of the beat note signal

To further investigate the impact of the AOM in the frequency chain, an independent

measurement was conducted. This measurement was performed as shown on Figure 8.4Figure 8.4.

The beat note signal of the two Raman lasers (at 6.8 GHz) is mixed with a microwave

synthesizer to lower its frequency up to tens MHz. We then record this signal on a 1

GHz bandwidth oscilloscope. The signal is then demodulated numerically with the signal

computed to chirp the Raman frequencies. The time base of the oscilloscope is obtained by

recording the 10 MHz reference frequency distributed by the Syrte.

The analysis is divided into two parts detailed below

Time scale calibration:

• The 10-MHz reference signal is sent to one channel of the oscilloscope, described by

S = A cos(ωrtr + ϕ0), where tr = jdtr with j and index and dtr the sample rate that

we want to measure.

• To retrieve tr, we mix S with a digital signal of the same frequency ωr and time

td = j dtd with j being the index and dtd the known digital time step, which is the

acquisition time divided by the number of points.

s1 = S × cos(ωrtd) = A

2 [cos(ωr(tr + td) + ϕ0) + cos(ωr(tr − td) + ϕ0)]

s2 = S × sin(ωrtd) = A

2 [sin(ωr(tr + td) + ϕ0) + sin(ωr(−tr + td) − ϕ0)]
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Fig. 8.4 Top left: laser arrangement used to extract a beat note between the two
lasers. Bottom left: radio-frequency chain for the phase lock. Right: setup used for
the measurement of the phase between the two lasers.

= A

2 [sin(ωr(tr + td) + ϕ0) − sin(ωr(tr − td) + ϕ0)]

We can write ω+ = ωr

(
tr

td
+ 1

)
and ω− = ωr

(
tr

td
− 1

)
. As tr and td are very close,

tr

td
∼ 1 which implies that ω+ ≫ ω−.

s1 = A

2 [cos(ω+td + ϕ0) + cos(ω−td + ϕ0)]

s2 = A

2 [sin(ω+td + ϕ0) − sin(ω−td + ϕ0)]

• We then remove the high-frequency components by averaging the signals, resulting

in

⟨s1⟩ = A

2 cos(ω−td + ϕ0)

⟨s2⟩ = −A

2 sin(ω−td + ϕ0)
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Giving

arctan
(

−⟨s2⟩
⟨s1⟩

)
= ω−td + ϕ0 = ωr(tr − td) + ϕ0

= ωrj(dtr − dtd) + ϕ0

= ωr

(
dtr
dtd

− 1
)

︸ ︷︷ ︸
ωdata

jdtd + ϕ0

(8.1)

• Now, we measure the pulsation ωdata of the reference signal (which is supposed to be

equal to 10 MHz if the sample rate of the oscilloscope is perfect) with the least square

method. As we have

ωdatadtd = ωrj(dtr − dtd) (8.2)

It all boils down to

dtr =
(
ωdata

ωr

− 1
)
dtd (8.3)

Note that this time step dtr is constantly changing along the data acquisition. To compensate

for these shifts, we calibrate every time step jdtr for every index j.

Extraction of the phase ΦPLL

• Now that we have calibrated the oscilloscope’s time scale, we acquire the signal

obtained by mixing the beating between the two Raman lasers and the microwave

detuned from 6.834 GHz by few ten’s of MHz noted as SBN .

• Then, we digitallymixed this signalSBN with two signals in quadrature. The frequency

of these digital signals is the frequency ramp computed during the interferometry

sequence.

S1 = SBN · cos
(
ωi(t− ti) + β

(t− ti)2

2

)
(8.4)

S2 = SBN · sin
(
ωi(t− ti) + β

(t− ti)2

2

)
(8.5)

• As before, we remove the high-frequency part by averaging S1 and S2 and use the

arctan function to retrieve the phase difference between the computed frequencies

and the signal from the Phase Lock Loop

• Finally, we average the computed phase on each Raman pulse of the interferometer

and obtain the phase shift imprinted by the lasers

ΦPLL = Φ1 − Φ2 − Φ3 + Φ4 (8.6)
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Fig. 8.5 Beatnote frequency in blue during the interferometry sequence. In green
and red we plot the computed frequency sent to the Redpitaya of the PLL or the AOM.
The orange dashed line and full line are the Raman and Bloch pulses composing the
interferometer

On Figure 8.5Figure 8.5, we plot the evolution of the beatnote signal during the interferometer.

The orange dashed line depicts the Raman pulses. Finally, we extract the phase error for

each spectra (ϵB = ±1 and ϵR = ±1).
At the end, we can compute the relative correction to h/m with ([4141] eq.6.1.7)

∆h/m

h/m
= −

∑
ϵB ,ϵR

ϵBϵR∆ϕϵB ,ϵR

TR
∑

ϵB ,ϵR
ϵBϵRδωϵB ,ϵR

(8.7)

where∆ϕi are the phase shift measured for the spectrum i, δω the frequency difference

between the two ramps and TR the Ramsey time of the interferometer.

Results

For each chirp configuration, meaning when we are using or not the AOM, we performed

the independent measurement presented here-before on measurements of h/m. We measure

a systematic shift of
∆h/m
h/m

= −2.38 ± 0.3 × 10−9
and no discrepancy between the two

configurations, in agreement with what we measure with the atoms Figure 8.3Figure 8.3. However,

one must highlight that the phase shift measured is nearly 3 times higher than the one

measured in 2020.

8.2 Double lock scheme

It appears that using AOM to perform the frequency chirp instead of the PLL was ineffective

at reducing the phase shift in the Raman phase lock look. To reduce this phase shift, we

implemented a new lock scheme. It consists of a double-stage lock at both 1.5 µm and

780nm. The idea is to obtain a beat note before the AOM at 1.5 µm to obtain a Phase lock
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Fig. 8.6 Double electronic feedback schematic for the stabilization of the Raman
beams. The feedback system derived from the beat note signal of the 780 nm beams
influences the feedback system derived from the beat note signal of the 1560 nm lasers,
to regulate the phase noise δϕ linked to the propagation in the EDFA fibers. The old
lock scheme is represented in purple. The blue boxes depict the added parts. The
RedPitaya which generates the two DDS is represented in red. The dashed line is a
part of the old lock.

loop at a fixed frequency. The lock at 780 nm is used to compensate for phase noise at

low frequency induced by the propagation in the EDFA. This scheme has two advantages.

First, it increases the bandwidth of the Raman feedback loop. Indeed, with the simple lock

at 780 nm, the bandwidth was limited to 0.4 MHz by the 20 meters of fibers of the EDFA

device which limits the retro-action time leading to a lower bandwidth in the feed-back.

Second, because the beat note is picked before the two AOMs, the PLL will work at a fixed

frequency and we hope it will reduce the phase shift induced by the feedback loop. The

electronic scheme of the double lock scheme is presented on Figure 8.6Figure 8.6.

The first beat note at 1.5 µm is obtained via fiber splitters 90/10. The 10% are sent

into a fiber combiner before being connected to a fibered photodiode. On Figure 8.6Figure 8.6, the

purple boxes represent the old lock scheme. The combination of the blue and purple parts

represents the new lock system. The error of the purple phase comparator, ϵ1, which is

directly proportional to the phase noise induced by the EDFA fibers after the AOM, is fed

into the RedPitaya. This signal is added to the DDS2 signal to compensate for the phase

noise. At the end, we obtain the following beat note of the two Raman lasers Figure 8.7Figure 8.7.

We see an increase in the feedback loop bandwidth when we use the new setup. The

bandwidth is now around 0.7 MHz, an increase by a factor two compared with the old

lock scheme. By carefully optimizing the PID parameters in the RedPitaya to minimize the
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Fig. 8.7 Spectra of the signal observed at the photodiode for the beat signals of the
780 nm beams. The stabilization using the beat signal from the 1560 nm sources
allows for a wider bandwidth than the simple stabilization based on the beat signal
of the 780 nm beams (spectral resolution of 3 kHz).

low-frequency noise, we obtained the following measurement of h/m shown on Figure 8.8Figure 8.8.

The relative uncertainty on one measurement of h/m is now of 1.12×10−9
in 5 min. During

the 2020 measurement campaign, the mean uncertainty was 1.52 × 10−9
with the same

acquisition time. With the new lock scheme and careful optimization of each experimental

parameter (vibration table, detection...), we managed to decrease by a factor of 30% the

statistical uncertainty on h/m shot to shot.

We plot on Figure 8.9Figure 8.9, the Allan deviation on σh/m as a function of the integration time

τ . These data were obtained in one night of measurement. The orange line correspond to

σh/m = 4.5 × 10−10/
√
τ . For the previous measurement[4242], the coefficient β = 6 × 10−10

.

confirming that we reduce the uncertainty by a factor of 30%.

To verify the effectiveness of the double lock scheme in reducing the phase shift in the

Raman phase lock loop, we measured h/m with the new (double lock scheme) and old (only

780 locks) apparatus. The result is shown on Figure 8.10Figure 8.10. The two sets of measurements

are acquired one after the other. Indeed, to switch from one configuration to the other, we

need to modify the cable connection of the phase lock loop. However, we were careful not

to change any other parameters of the experiment between the two data sets. Between the

orange and blue points, we observe a discrepancy on
∆h/m
h/m

of
∆h/m
h/m 1560+780

− ∆h/m
h/m 780

=
2.92 ± 0.28 × 10−9

.

Independent measurement with the scope

To confirm or infirmwhat wemeasured with the atoms, we performed the same independent

measurement using the scope. We measure a systematic shift of
∆h/m
h/m 1560

= 5.16 ± 0.34 ×
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Fig. 8.8 Typical set of four spectra obtained with the new lock scheme recorded
by inverting the directions of the Raman and Bloch beams for TR = 20 ms and
NB = 500. The relative uncertainty on h/m is 1.12×10−9, a 30% decrease compared
with the results obtained with the old lock.

Fig. 8.9 b) Allan deviation σh/m of the measurement of the ratio h/m at maximum
sensitivity (TR = 20 ms, NB = 500) as a function of the integration time τ . The line
corresponds to σα(τ) = 4.5×10−10

√
τ

, with τ expressed in hours.
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Fig. 8.10 h/m measurement. In blue we plot the results for the old lock. In orange
for the new lock system

10−9
. Between the two configurations, saying the simple and double lock. The difference

is thus of
∆h/m
h/m 1560+780

− ∆h/m
h/m 780

= 2.78 ± 0.65 × 10−9
. In agreement with what was

measured on the atoms.

Conclusion

In this chapter, we addressed the phase shift in the Raman phase-locked loop. Acousto-

optic modulators (AOMs) were implemented to perform the frequency chirp. Running

the experiment with and without these AOMs, we observed no discrepancy in the

measurement of h/m. As this result was unsatisfactory, we implemented a two-

stage locking scheme. Measurements with the atoms revealed an increase in the

phase shift in the Raman PLL. An independent measurement using an oscilloscope

was conducted to analyze the effect of our new setups on the phase shift. This

measurement confirmed the observation with atoms. Although we were unable to

reduce this systematic effect, we are now able to precisely quantify this phase shift.

Further understanding of the causes of this effect is still required. Additionally, we

have carefully optimized each of the experimental parameters, and using our new

locking scheme, we have been able to reduce the shot-to-shot uncertainty by almost

30%.
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The BEC problem

In 2023, while measuring h/m with a BEC, Corentin Carrez, the previous PhD student on

the experiment, observed that the measured value of h/m drifted with time. With him, we

found that the value of h/m varies with the initial transverse position of the BEC with

respect to the Raman and Bloch beams. The Figure 9.1Figure 9.1 shows the evolution of the relative

value of h/m during a weekend. In orange, the value does not move with the molasses. In

blue, with a BEC, we see that the value drifts. Note that these measurements were made

alternatively and randomly.
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Fig. 9.1 The alternating measurement of the h
m
ratio relative to a reference with

the condensate and the optical molasses is illustrated. The weighted average of the
measurement series is shown as a dashed line. We have xcondensate

mean = 1.02 × 10−9

and xmolasses
mean = 3.15 × 10−9. Extracted from [2020]

We hypothesized that this variation was linked to the spatial fluctuations of the beam’s

intensity profile.
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9.1 The BEC to scan the wavefront
The determination of the h/m ratio relies on the exchange of momentum between lasers

and atoms. However, calculating the momentum of a photon is not a straightforward task.

In the experiment, because the beams are aligned along the z-direction, we will consider
only the component along z of the photon momentum:

pz = ℏkz = ℏ
∂ϕ

∂z
. (9.1)

Let us consider a laser beam propagating along the z axis, of which we know the amplitude

A(x, y, z0) and phase ϕ(x, y, z0) in the plane z = z0. Knowledge of these two quantities

is enough to calculate the complex amplitude of the beam at each position z using the

Helmholtz equation and therefore to calculate kz . Using the paraxial approximation, we

obtain kz = k(1 + δkrel) with

δkrel = − 1
2kplan

∥ ∇⃗⊥ϕ(r⃗) ∥2 + 1
kplan

△⊥I(r⃗)
I(r⃗) (9.2)

where kplan is the transverse wavevector, ∇⃗⊥ϕ(r⃗) is the transverse phases gradient, I(r⃗)
is the intensity of the beam at a given position and δkrel is the correction to the effective

wavevector of the beams. However, in the experiment, the following proportionality

relations hold, where lc is a characteristic length:

∥∇⊥ϕ∥2 ∼ δϕ2

l2c
(9.3)

∆⊥I ∼ δI

l2c
(9.4)

During propagation, the contribution of spatial amplitude fluctuations dominates over

phase fluctuations, with δI being of the first order and δϕ2
being of the second order [99].

Therefore, the correction due to phase fluctuations in Equation 9.2Equation 9.2 is negligible compared

to that due to spatial intensity fluctuations of the beam. The intensity profile of the beams

was analyzed using a CCD camera and found that the characteristic length is of the order

of lc = 100 µm with an amplitude of less than 5%.

Now, let us consider a BEC, with a size of ∼ 0.4 mm during the interferometer and

intensity fluctuation with a correlation length of the order of the BEC size. If the BEC moves

with time, relatively to the beams, then it will experience different effective wave-vector

keff. This would lead to a variation of the expected value of h/m.

So, now we have two hypotheses: whether it is the BEC that moves or it is the beams. To

invalidate the first hypothesis, we look at the central position of the BEC, using absorption

imaging and a CCD camera, during a whole night and saw that the initial position of the

BEC moves by less than 10 µm or that the initial velocity of the BEC changes by less than
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Fig. 9.2 Effect on the h
m
measurement of an initial transverse velocity when using a

BEC. Each point is an average of 7 measurements

0.1 mm/s. If the first hypothesis was true, then the value of h/m would not vary since the

characteristic length of the intensity fluctuation is of 100 µm.

We then decided to measure h/m at different initial transverse positions of the BEC.

In the experiment, it is hard to move the relative position of the BEC by hundreds of

micrometres. We decide to increase the initial velocity of the BEC. We did so by changing

the frequency of the reservoir’s AOM at the end of the evaporation(more detail in [2020]). We

calibrated the transverse velocity given using absorption imaging and got the following

curve. The data acquisition lasted only one night. By doing so, we minimize the effect of the

temporal drift. Figure 9.2Figure 9.2 shows the evolution of h/m regarding the initial velocity given

to the BEC. We observe a systematic effect of the order of 6 × 10−9

9.1.1 Monte Carlo simulation

To analyze the experimental results, a Monte Carlo simulation was conducted by P. Cladé to

understand the effect of wavefront fluctuations on the condensate. The simulation calculates

the phase acquired by an atom’s wave function with initial transverse position, velocity,

phase, and amplitude, considering contributions from Raman transitions, Bloch oscillations,

interferometer path, and free evolution, detailed in [4141]. The simulation is repeated for N
wave packets from the initial cloud distribution for the two interferometer paths. Atoms

are initially at (0,0) with Gaussian velocity distributions v⃗x and v⃗y with σv =
√

kBT
m

(σv ≈ 3mm/s for the condensate and σv ≈ 20 mm/s for the molasses). We then convolve

the h/m ratio with the velocity distribution and beam fluctuation survival probability

and extract the average. The additional transverse velocity is taken along v⃗x. Figure 9.3Figure 9.3

shows these curves for different σv values. The effect is more significant for the condensate

(∼ 1 × 10−9
) than for the molasses (< 1 × 10−10

). The observed fluctuation sizes match the

experimental measurement in Figure 9.3Figure 9.3. However, the wavefront fluctuation coherence

length was increased to lc = 600µm to match magnitudes, indicating a discrepancy with
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Fig. 9.3 Relative value of the ratio h
m

as a function of the final velocity of
the atoms, obtained by Monte-Carlo simulation. The fluctuations are due to
fluctuations in the beam whose parameters are lc = 600µm and σI = 2%.

assumed parameters.

Conclusion

At the current stage of the experiment, it is not possible to determine the value of

h/m using a BEC. In our experiment, we found that the intensity profile of the beam

was not smooth enough and needed to be improved. However, the BEC could be

used to probe the transverse intensity profile of the laser beams.

9.2 New collimators
We built new collimators to improve the intensity profile of the beams. These new collima-

tors are shown on Figure 9.4Figure 9.4. First, the beam free propagates for 50 cm with a waist of 500

µm before a x10 telescope. Then the beam propagate for about 3 metres before reaching

the atoms.

The idea of free propagating a small beam instead of a larger one is based on the fact

that the smaller beam becomes cleaner faster than a larger beam. Also, the correlation

length of the smoothed fluctuation is different.

9.2.1 Propagation of a Noisy Gaussian Beam
To understand how our collimators works, let’s consider a Gaussian beam with waist w0.

Let a(x, y; z) be its amplitude and ã(kx, ky; z) the Fourier transform of this amplitude at

position z. At z = 0, we have

a(x, y; 0) = exp
(

−x2 + y2

w2
0

)
(9.5)
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Fig. 9.4 3D scheme of the new collimators. The laser is expended in the black tube
by the two lenses.

and

ã(kx, ky; 0) = w2
0

4π exp
(

−
w2

0(k2
x + k2

y)
4

)
(9.6)

The norm is chosen so that there is no factor when performing the inverse Fourier transform.

Suppose there is initially noise b(x, y). This noise is characterized by an amplitude (which

we take as 1) and a characteristic correlation length λc. More precisely, we assume that the

auto-correlation function is given by

Γb(x, y) = exp
(

−x2 + y2

2λ2
x

)
(9.7)

The noise density is given by

Sb(kx, ky) = λ2
c

2π exp
(

−
λ2

c(k2
x + k2

y)
2

)
(9.8)

The norm is chosen so that

∫∫
Sb(kx, ky) dkx dky = 1. Let e(x, y; z) denote the amplitude

of the noisy signal: e(x, y; 0) = a(x, y; 0)b(x, y). We can then transform into Fourier space:

e(kx, ky; 0) =
∫∫

ã(kx − κx, ky − κy; 0)b̃(κx, κy) dκx dκy (9.9)

We let the beam propagate over a distance z in the paraxial approximation:

ẽ(kx, ky; z) = ẽ(kx, ky; 0) exp
(

−i
k2

x + k2
y

2k z

)
(9.10)
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Thus,

e(0, 0; z) =
∫∫

ã(kx − κx, ky − κy; 0)b̃(κx, κy)e−i
k2

x+k2
y

2k
z dkx dky dκx dκy (9.11)

The integral over kx and ky is a Gaussian integral, and we obtain:

e(0, 0; z) =
∫∫

exp
(

−zw2
0

4
(κ2

x + κ2
y)

z − izR

)
b̃(κx, κy) dκx dκy (9.12)

where we have introduced zR = kw2
0

2 . We have thus expressed the amplitude of the field as

an integral of the noise in k-space. Its fluctuation is then given by

σ2
e(z) =

∫
| exp

(
−zw2

0
4

(κ2
x + κ2

y)
z − izR

)
| Sb(κx, κy) dκx dκy (9.13)

which can be calculated from the real part of the exponential argument:

σ2
e(z) =

∫
exp

(
−z2w2

0
2

κ2
x + κ2

y

z2 + z2
R

)
Sb(κx, κy) dκx dκy (9.14)

By substituting Sb from Equation 9.8Equation 9.8, we get:

σ2
e(z) = 1

1 +
(

zw0
zRλc

)2 = 1
1 +

(
2z

kw0λc

)2 (9.15)

This is the intuitive result: a spot of size λc will diffract with an angle of
1

kλc
. We will

have an attenuation of the fluctuations when the diffraction spot size is larger than w0,

i.e.,
z

kλc
> w0. By propagating a smaller beam, the large size fluctuation (with a size larger

than the waist) will be flattened out of the beam. However, this method only works if the

intensity fluctuation is linked to the fiber exit and not to the optics. In fact, if the intensity

fluctuation is linked to the optics, then the collimator lenses will induce noise, destroying

any smoothing of the propagation as a small beam. To confirm the hypothesis of noises

linked to the fiber, we analyze the intensity profile at the output of the new collimator

9.2.2 Study of the intensity profile
We tested the performance of the collimators on an optical bench. For the test, we used a

CCD camera and a laser diode below the laser threshold to avoid interference from the glass

in front of the detector. We examined two different configurations. In the first, the collimator

is adjusted so that there is no free propagation of the small beam. This situation is analogous

to that of the old collimators. In the second, the beam is expended after 0.5 metres of free

propagation and imaged as a large beam after 1.5 metres of free propagation. Typical images

are shown on Figure 9.5Figure 9.5. It is immediately apparent that the new configuration, where the

small beam propagates over a longer distance, allows the laser beam to be smoothed.

To obtain a formal characterization of the laser beams, we computed the standard
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a) Intensity profile without free
propagation of the small beam after 2
meters of free propagation with a waist

of 5mm

b) Intensity profile with a free
propagation of the small beam during
0.5 meters and after 1.5 meter of free
propagation with a waist of 5mm

Fig. 9.5 CCD images at the output of the new collimator in two distinct configura-
tions

100 101

Pixel binding

10 2
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d

small beam 
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Fig. 9.6 Standard deviation of the laplacian as a function of the pixel binding

deviation of the 2D Laplacian of the intensity as a function of the pixel binding. By

calculating the Laplacian, we obtain the intensity variation from pixel to pixel. The results

are shown on Figure 9.6Figure 9.6. The orange line is obtained for the situation analogue to the

old collimators. The blue curve is obtained for free propagation of the 500 µm beam at

50 cm. For small pixel bindings, i.e. at a small distance, there is not much difference

between the two setups. However, for pixel bindings above 4 (with a pixel size of ∼
5µm), the new configuration performs better. This means that the intensity fluctuations

with a characteristic length above 20µm have been smoothed out, confirming that the

new collimators produce a flatter intensity wavefront. We also found that the intensity

fluctuations associated with the shift of h/m with a BEC had a correlation length of around

100µm. With the new collimator, we had high hopes of reducing this effect.
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Fig. 9.7 Zernik term and decomposition of the optical aberration. The representation
of the wavefront distortion is presented on the far right. The colour map represents
the peak-to-valley amplitude.

9.2.3 Simulation of the collimators

An Oslo simulation was performed to study the optical aberration induced by the homemade

collimator.

The simulation allows us to obtain the Zernike coefficient of the wavefront. The

decomposition into Zernike polynomials allows the extraction of useful information for the

analysis of the used wavefront. This involves transforming the wavefront surface into a

sum of elementary surfaces, each corresponding to a specific degree and type of optical

aberration. The Zernike decomposition is given in Figure 9.7Figure 9.7. The Zernike terms of interest

in this case are Z8 and Z15, which are responsible for spherical aberration. Since we are

working on the optical axis, other aberrations, such as primary coma, are not taken into

account. Also, the Zernike terms Z0 and Z3 are not really ’optical aberrations’ as they do

not lead to wavefront distortion. The Oslo simulation gives the following coefficient for the

Zernike polynomial:

considered polynom Expression of the Zernike polynom Zernike coefficient

[8] 6R4 − 6R2 + 1 0.000787

[15] 20R6 − 30R4 + 12R2 − 1 -9.2426e-6
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Fig. 9.8 Measured value of h/m with a BEC as a function of the initial transverse
velocity with the considered optical aberration induced by the collimators. For a
molasses, because this effect averages out, the correction on h/m is on the order of
10−15

9.2.4 Numerical simulation

The next step is to see how these aberrations affect the measurement. A Monte Carlo

simulation was performed by a PhD student of the group Rayan Si-ahmed. This simulation

calculates the phase acquired by the atoms, taking into account Raman transitions, Bloch

oscillations, the path in the interferometer and free evolution. By repeating the process for

many wave packets with centred Gaussian initial velocities, the simulation determines the

relative value of the h/m ratio for different spectra. The simulation, shown on Figure 9.8Figure 9.8,

showed a systematic effect up to 5 × 10−12
related to the wavefront distortion induced by

the optical aberration when using a BEC.

9.3 Implementation and new measurement with the
BEC

These collimators, now fully characterised, were implemented in the experiment. We

decided to implement them as shown in Figure 9.9Figure 9.9.

This design was chosen to maximise the free propagation of the beam while minimising

the number of mirrors. In this configuration, each beam travels a minimum of 3 meters.

The beam paths are now tubed to avoid dust on the mirrors and optics. The collimators

were carefully aligned and collimated with a waist of 5.003 and 5.000 mm respectively

using a shear plate. Alignment to centre the beams on the BEC was performed using

a co-propagating Raman transition with a clipped beam to increase the accuracy of the

alignment.
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Fig. 9.9 CAD of the implementation of the collimators.

9.3.1 New BEC measurement

We now have clean beams and want to see the effect on the measurement of h/m using a

BEC. We prepare a BEC of 200 K atoms at 80 nK. By switching the frequency of the reservoir

AOM at the end of the evaporation process, we give a transverse velocity to the BEC. We

ran the experiment for 3 days. The results are shown on Figure 9.10Figure 9.10

Each image was taken in about 10 hours. Firstly, we can see that we still have the

variation of h/m with the initial position. Secondly, it looks like there is a fringe pattern

that moves with time. So it seems that the variation of h/m when using a BEC is not related

to the quality of our collimators. To obtain variations in h/m of this order of magnitude,

variations in the intensity profile of around 5% would be required (according to simulations

carried out in the thesis of C. Carrez [2020]). However, the analysis of our collimators with the

CCD camera gives us variations of about 0.2% of the intensity when using the homemade

collimators. Moreover, the pattern in the variation of h/m leads us to consider parasitic

interference fringes. We can estimate the interfringe by calibrating the velocity kick given

to the BEC. We found that i ∼ 800µm. In the simulation ran by P. Cladé described above,
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Fig. 9.10 Effect on the h
m
measurement of an initial transverse velocity. Each curve

is an average of over 10 Hours. The first measurement is shown on A).

the correlation length of the intensity fluctuation was increased to 600 µm in order to match

the fluctuation pattern. The problem was not the collimators and the noisy intensity profile,

but a fringes pattern.

Fringes in the beam can be observed when beams with the same polarisation and "close

frequency" travel with different wave vectors. Such a situation can be caused, for example,

by parasitic reflections on the vacuum windows. We have therefore studied the different

parasitic reflections from the different optics that could produce an interference fringe

pattern with the main beam.

9.3.2 Parasitic reflection
After some investigation, we discovered that the main source of parasitic beams comes from

the new polarisation beam splitter (PBS) located at the bottom of the vacuum chamber. Note

that this PBS is twice the size of the one we used for the 2020 measurement and appears to

be of poorer quality.

This PBS recombines the two Bloch beams above the reflecting mirror. Each time one
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of the beams passes one of the interfaces of the PBS, a reflection can occur. Because the

cube cannot be perfectly perpendicular to the incoming beam, or because each face of the

cube is not parallel, part of the beam may be reflected at an angle that causes fringes in the

incoming beam.

If one wants to remove the PBS, you have two options. The first option is to send the

two Raman beams in two different fibers. However, due to phase noise during propagation

in different fibers, our two Raman lasers would acquire a phase difference which would

directly affect the phase noise at the output of our interferometer. The second option is

to use a single collimator. The lower Bloch laser can be coupled into the same fiber as the

two Raman lasers and the upper Bloch laser. However, because the two Bloch lasers have

the same polarization, this would create spurious grating, which would lead to atom losses,

new systematic effects, and so on.

With this in mind, we did not want to remove the PBS. However, we have changed the

PBS for a thin film polarizing beam splitter.

Fig. 9.11 Thin film polarization optical scheme. The ghosting is a back reflection of
the transmitted beam on the second surface.

On Figure 9.11Figure 9.11 we show the working principle of a thin film polarising beamsplitter.

The first face of the incident beam is coated with a polarising beamsplitter coating, which

reflects only the S-type polarisation (from the German "senkrecht", meaning perpendicular).

There is a wedge between the two surfaces, typically 30 arcmin, which explains why the

ghost beam is tilted with respect to the red beam. By using this type of polarising beam

splitter, we minimise the number of interfaces encountered by the incident beam for both S

and P polarisation, and thus the number of potential parasitic reflections.

As I write, we have just received the thin film polarisation beamsplitter. Samuel Gaudout

is currently implementing it on the experiment. The first characterization on the experiment

looks promising as no spurious reflection has been observed.
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Conclusion

This chapter presents the progress towards solving the problem related to the mea-

surement of h/m with a condensate. Initially, we thought that intensity fluctuations

caused by the collimator were the source of the drift in the value of h/m when using

a condensate. To address this, we implemented and characterized new homemade

collimators. These collimators showed improved intensity profiles. However, new

measurements of h/m showed the same pattern as when using the old collimators.

Additionally, a fringe pattern appeared in our measurements over time. We hypoth-

esized that these fringes in the value of h/m were due to parasitic reflections. We

concluded that these reflections originated from the polarization beam splitter. A

new type of polarizer is currently being installed in the experiment. At first glance,

we do not observe any spurious beams. We hope that future measurements with

atoms will corroborate this.





Conclusion

In this part, we present our work on the experimental setup dedicated to the measurement

of the ratio h/m. We have investigated two independent systematic effects.

Firstly, we addressed the phase shift in the Raman phase-locked loop. Acousto-optic

modulators (AOM) were implemented to perform the frequency chirp. When running the

experiment with and without these AOMs, we observed no discrepancy in the measurement

of h/m. An independent measurement using an oscilloscope was conducted to analyze

the effect of our new setup on the phase shift, revealing no improvement. As this result

was unsatisfactory, we implemented a two-stage locking scheme. The Raman lasers are

locked at a fixed frequency before frequency doubling, and a second beat note at 780 nm is

used to reduce the phase noise due to propagation in the amplifier. Measurements with

the atoms and with the scope revealed an increase in the phase shift in the Raman PLL.

Although we were unable to reduce this systematic effect, we are now able to precisely

quantify this phase shift. Further understanding of the causes of this effect is still required.

Additionally, we have carefully optimized each of the experimental parameters, and using

our new locking scheme, we have been able to reduce the shot-to-shot uncertainty by

almost 30%.

Secondly, we continued our work on utilizing a colder atomic source to measure h/m.

In the thesis of C. Carrez [2020], it was concluded that local intensity fluctuations affect

the measurement and lead to variations in the measured value of h/m. To improve our

intensity profile, we built new collimators. The characteristics of these collimators have

been extensively studied. The homemade collimators show an improved intensity profile

in amplitude by a factor of 10 compared to the previous ones. We carried out simulations

to quantify the effect of optical aberrations and concluded that the shift in h/m was only

−5 × 10−12
. Using our collimators, we measured h/m with a BEC while varying the initial

position in the beam. We observed no improvement over the old collimators. However,

we noticed a fringe pattern and concluded that parasitic reflections could lead to intensity

fringes in the main beam. A new polarization beam splitter has now been implemented

and is currently being characterized. We hope that this new device will allow (h/m) to be

measured with the BEC without any variation associated with the intensity profile.
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General conclusion

In this thesis, we have implemented the first atomic beam splitter based on a stimulated

Raman transition using a frequency comb. I used this beam splitter to realise an atomic

gravimeter with a relative sensitivity of 10−7
. In particular, I have developed a system for

controlling a delay line length, which enables two picosecond pulses to be superimposed

on the atomic cloud so that both pulses follow the cloud for 60 ms. As Raman diffraction is

localised in the pace where the two laser pulses overlap, I studied a configuration based on

a π/2 − π− π− π/2 sequence where it is possible to talk to each arm of the interferometer,

which is not feasible using a CW laser. I also carried out a detailed theoretical study to

understand Raman transitions stimulated using a pulsed laser and performed numerical

simulations that agreed with the experimental results.

The second part of my thesis was focused on investigating and mitigating the two

systematic effects that limited the accuracy of the previous measurement of the ratio h/m
carried by the team in 2020: the phase shift observed in the phase-lock loop of the Raman

lasers and the effect due to distortions of the laser beams. I first perform measurements

with BEC. This study shows that measurements with BEC are sensitive to local fluctuations

of laser intensity. These fluctuations average when using optical molasses. This means

that by measuring with BEC at different transverse positions one can probe the transverse

profile of the laser beam inside the vacuum chamber.

Because of spurious reflections induced by the new polarization splitter cube (PBS), I

was unable to evaluate the benefits of the two collimators I built and characterized in detail.

The team has recently set up a new type of polarization splitter and studies are in progress.

Secondly, we investigated the phase shifts in the Raman phase-locked loop. We imple-

mented two setups, the first using AOMs to chirp the frequencies and the second using

a double lock scheme. However, both setups appeared to be ineffective in cancelling this

effect, and the double lock scheme actually increased the phase shift. An independent

measurement with a scope confirmed our measurements with atoms. Although we were

unable to cancel out the phase shift, we were able to fully characterise the effect and further

investigations are planned. Furthermore, with the double-lock scheme and careful optimi-

sation of each experimental parameter, I reduced the shot-to-shot uncertainty by almost

30%.

All the necessary components are now in place, and we hope to make a new mea-

surement of α soon, using several atomic sources (from molasses to condensates) with

different transverse velocity distributions. We expect that this study will lead to a better

understanding of the systematic effects associated with the wavefront.
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Appendix A

Effective Hamiltonian, Raman
Transition with a Picosecond Laser

Three-Level System

We consider a three-level system denoted as |1⟩, |2⟩, and |3⟩. In chapter 2chapter 2, these states

correspond to |1⟩ = |g⟩, |2⟩ = |e⟩, and |3⟩ = |i⟩

Let Ĥ0 be the Hamiltonian without coupling, represented by the following matrix:

Ĥ0 =

0 0 0
0 δ 0
0 0 ∆

 (A.1)

The two levels |1⟩ and |2⟩ are nearly degenerate, meaning that ∆ ≫ δ. In what follows, we

will also denote Ei as the energy of state |i⟩ (i.e., Ei = ⟨i|Ĥ0|i⟩).

We introduce the coupling between the states. Formally, let V̂ be the coupling operator,

represented by the matrix:

V̂ =


0 0 Ω1(t)

2
0 0 Ω2(t)

2
Ω1(t)

2
Ω2(t)

2 0

 (A.2)

When the perturbation V̂ is introduced, the eigenstates of the Hamiltonian will be

perturbed. We can evaluate these states to the first order. Let

∣∣∣ψ(0+1)
i

〉
denote the state |i⟩

to the first order. For i ∈ {1, 2}, this state is written as:

∣∣∣ψ(0+1)
i

〉
= |i⟩ + V3i

Ei − E3
|3⟩ (A.3)

151



152 Appendix A. Effective Hamiltonian, Raman Transition with a Picosecond Laser

and ∣∣∣ψ(0+1)
3

〉
= |3⟩ +

∑
i∈{1,2}

Vi3

E3 − Ei

|i⟩ (A.4)

We have introduced the notation Vij = ⟨i|V̂ |j⟩. It is important to note that the term V12 is

zero, which is why there is only one term in

∣∣∣ψ(0+1)
i

〉
for i ∈ {1, 2}.

We can now solve the Schrödinger equation for the Hamiltonian Ĥ = Ĥ0 + V̂ . For this,

we will use the basis of the first-order eigenstates. We denote:

|ψ(t)⟩ =
∑

i

ci(t)
∣∣∣ψ(0+1)

i

〉
(A.5)

We obtain the following equation for ci:

iℏċi =
∑

j

〈
ψ

(0+1)
i

∣∣∣Ĥ∣∣∣ψ(0+1)
j

〉
cj − iℏ

∑
j

〈
ψ

(0+1)
i

∣∣∣ d
dt

∣∣∣ψ(0+1)
j

〉
cj (A.6)

When the intensity evolves slowly, the right-hand term is negligible. The adiabatic

condition is written as:

∑
j

〈
ψ

(0+1)
i

∣∣∣ d
dt

∣∣∣ψ(0+1)
j

〉
≪ |Ei − Ej| (A.7)

For the case i ∈ {1, 2} and j = 3, we obtain a condition of the type
Ω̇
∆

≪ ∆, which in order

of magnitude is
Ω0
∆

≪ ∆× τ . In our experiment, we use pulses of duration on the order

of the picosecond, detunning of 500 GHz and the peak Rabi frequency is around 100 MHz.
We can thus proceed to the adiabatic elimination.

The terms for i = 1 and j = 2 are in
Ω2

0
∆2 ≪ ∆τ , and the adiabatic condition is also

satisfied if the first condition is met.

We thus obtain an equation of the type:

iℏċi =
∑

j

H
(0+2)
ij cj (A.8)

where H
(0+2)
ij = H

(0)
ij +H

(2)
ij is the Hamiltonian corrected to the second order (there is no

first order because Vii = 0).
We can calculate, for example, the term H

(0+2)
i1 . We then use:

Ĥ
∣∣∣ψ(0+1)

1

〉
= E1|1⟩ + V31

E1 − E3
E3|3⟩ + V31|3⟩ +

∑
i∈{1,2}

Vi3V31

E1 − E3
|i⟩ (A.9)

= E1

∣∣∣ψ(0+1)
1

〉
+

∑
i∈{1,2}

Vi3V31

E1 − E3
|i⟩ (A.10)
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We thus find in this example that H
(0)
11 = E1, H

(0)
21 = 0, and that

H
(2)
i1 = Vi3V31

E1 − E3
(A.11)

We have neglected a term due to the fact that in the last term of Equation A.10Equation A.10 we have |i⟩
and not

∣∣∣ψ(0+1)
i

〉
.

In general, we have the following formula for i ∈ {1, 2}:

H
(0)
ij = Eiδij (A.12)

and

H
(2)
ij = Vi3V3j

Ej − E3
(A.13)

A.1 System with More Than Three Levels

In the calculation above, we separated the lower states (1 and 2) from the upper states (state

3). This separation arises because the coupling V̂ occurs only between the lower and upper

states. Thus, at the first order, we couple only with opposite states.

We can generalize this formula: consider multiple states |i⟩ with energy Ei. In what

follows, we will separate the lower states and the upper states. We denote α as the index of

the latter and i or j for the former.

By generalization, we have:

∣∣∣ψ(0+1)
i

〉
= |i⟩ +

∑
α

Vαi

Ei − Eα

|α⟩ (A.14)

and a Hamiltonian given by

H
(0)
ij = Eiδij (A.15)

and

H
(2)
ij =

∑
α

ViαVαj

Ej − Eα

(A.16)
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A.2 System with Three Internal Levels and an External
Variable

We now consider the position/momentum of the atoms. The Hamiltonian is thus written as

Ĥ0 = p̂2

2m +

0 0 0
0 δ 0
0 0 ∆

 (A.17)

where it is understood that the term in p̂ leaves the internal state invariant, just as the
matrix leaves the external state invariant.

The coupling will also change the internal state:

V̂ =


0 0 Ω1(ẑ,t)

2
0 0 Ω2(ẑ,t)

2
Ω1(ẑ,t)

2
Ω2(ẑ,t)

2 0

 (A.18)

The zero-order eigenstates are given by the internal state and plane waves of momentum

p, denoted as |i, p⟩.
Thus, we have:

H
(0)
(i,p)(j,p′) = Eiδij + p2

2mδ(p− p′) (A.19)

and

H
(2)
(i,p)(j,p′) =

∫ ⟨p|V̂i3|p′′⟩⟨p′′|V̂3j|p′⟩
Ej − E3 + p′2−p′′2

2m

dp′′
(A.20)

In this expression, we have kept theˆon V̂i3 to indicate that it is an operator on the external

variables. This expression is the generalization of Equation A.16Equation A.16 to the case where there is

a continuum of excited states. In the case where V corresponds to plane waves (continuous

laser situation), we find the condition that p′′ = p + ℏk, which allows us to simplify the

integral. We cannot do this directly here.

However, in the denominator, the kinetic energy is negligible compared to |Ej − E3|,
so we can eliminate it. We thus obtain:

H
(2)
(i,p)(j,p′) ≃

∫ ⟨p|V̂i3|p′′⟩⟨p′′|V̂3j|p′⟩
Ej − E3

dp′′ = ⟨p| V̂i3V̂3j

Ej − E3
|p′⟩ (A.21)

where we have used the closure relation

∫
|p′′⟩⟨p′′|dp′′ = I. This allows us to define an

operator Ĥ
(2)
ij that acts on the external variables and is given by:

Ĥ
(2)
ij = V̂i3V̂3j

Ej − E3
= Ωi(ẑ, t)Ωj(ẑ, t)

4∆ (A.22)
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To obtain this expression, we made the approximation that

∣∣∣ψ(0+1)
(i,p)

〉
≃ |i, p⟩, which is valid

for calculating the second-order term.

This second-order term is thus diagonal in the position representation. We can also

write it as:

V eff
ij (z, t) = Vi(t, ẑ)†Vj(t, ẑ)

ℏ∆
(A.23)
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Clément DEBAVELAERE 27 septembre 2024

Sujet : Interférométrie atomique utilisant un peigne de fréquences
et progrès sur la mesure du recul atomique

Résumé : Ma thèse s’est concentrée sur deux sujets dans le domaine des mesures de précision utilisant

l’interférométrie atomique : le premier visait à développer un interféromètre atomique utilisant un peigne

de fréquences, et le second visait à améliorer la précision de la mesure du recul atomique pour déterminer la

constante de structure fine, α.
Tout d’abord, j’ai réussi à démontrer pour la première fois un interféromètre atomique basé sur des transitions

Raman stimulées par un laser picoseconde, réalisant un gravimètre atomique avec une sensibilité relative de

10−7
en 5 minutes de temps d’intégration. Pour cela, il a fallu mettre au point un système de contrôle de la ligne

à retard, permettant aux impulsions picosecondes de se superposer au nuage atomique en chute libre pendant 60

ms. Cela a permis la réalisation d’un nouvel interféromètre basé sur des impulsions π/2 − π − π − π/2, où les

atomes peuvent être adressés localement dans chaque bras de l’interféromètre. Les résultats expérimentaux ont

été complétés par des études théoriques et des simulations numériques.

Deuxièmement, j’ai étudié les effets systématiques limitant la précision de la mesure du rapport h/m entre la

constante de Planck et la masse d’un atome de rubidium. Des expériences avec des condensats de Bose-Einstein

(BEC) ont révélé une sensibilité aux fluctuations locales de l’intensité du laser, ce qui a conduit à une nouvelle

méthode robuste pour sonder le profil d’intensité du faisceau laser à l’intérieur de la chambre à vide. J’ai conçu,

fabriqué et caractérisé de nouveaux collimateurs pour les faisceaux Raman et Bloch. Une optimisation minutieuse

des paramètres expérimentaux a permis de réduire l’incertitude d’une mesure de 30 %. De plus, grâce au BEC,

nous avons observé un effet systématique lié à une réflexion parasite.

Différents schémas de verrouillage de phase pour les lasers Raman ont été mis en œuvre et comparés afin de

mieux comprendre l’impact de cet asservissement sur la valeur mesurée.

Mots clés : Atomes froids, Interferometrie atomique, Peigne de fréquence, Métrologie quantique, Transition

Raman

Subject : Atom interferometry using frequency comb and
progress on atomic recoil measurement

Abstract:
My thesis focused on two topics within the field of precision measurements using atom interferometry: the

first aimed to develop an atom interferometer using a frequency comb, and the second aimed to improve the

measurement accuracy of atomic recoil for determining the fine structure constant, α.
Firstly, I successfully demonstrated for the first time an atom interferometer based on stimulated Raman transitions

driven by a picosecond laser, achieving an atomic gravimeter with a relative sensitivity of 10−7
in 5 minutes of

integration time. This involved developing a delay line control system that allowed picosecond pulses to overlap

with the free-falling atomic cloud for 60 ms. This has enabled the realization of a new interferometer based

on π/2 − π − π − π/2 sequence where atoms can be addressed locally in each arm of the interferometer. The

experimental results were complemented by theoretical studies and numerical simulations

Secondly, I investigated the systematic effects limiting the accuracy of the h/m ratio measurement between

Planck’s constant and the mass of a rubidium atom. Experiments with Bose-Einstein Condensates (BEC) revealed

sensitivity to local laser intensity fluctuations, leading to a new robust method for probing the laser beam

intensity profile inside the vacuum chamber. I designed, fabricated, and characterized new collimators for Raman

and Bloch beams. Careful optimization of experimental parameters reduced shot-to-shot uncertainty by 30%.

Additionally, thanks to the BEC, we observed a systematic effect related to a parasitic reflection.

Different phase-locking schemes for the Raman lasers were implemented and compared to better understand the

impact of this locking on the measured value.

Keywords : Cold atoms, Atom interferometry, Frequency comb, Quantum metrology, Raman transition
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