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Résumé : L'augmentation toujours plus importante de données génomiques et métagénomiques
appelle de nouveaux développements méthodologiques et bio-informatiques, afin de caractériser avec
davantage de précision les phénomenes évolutifs dans leur ensemble. En particulier, certaines des méthodes
usuelles pour étudier I'évolution des (familles de) génes s’averent inadaptées lorsque la parenté entre
séquences n’est que partiellement supportée. Ainsi, la définition et la reconstruction de familles de génes se
heurtent a I'obstacle de 'homologie distante, qui passe sous le seuil de détection des alignements de
séquences. De méme, les mécanismes d’évolution combinatoire, tels que les fusions et fissions de génes,
remettent en cause les représentations purement arborescentes de I'évolution des familles de génes.
L'application de méthodes complémentaires basées sur les réseaux de similarité de séquences permet de
contourner certaines de ces lacunes, en proposant une représentation holistique des similarités entre genes.
La détection et I’'analyse d’homologues trés divergents de familles de genes fortement conservées dans des
jeux de données environnementaux est notamment facilitée par la recherche itérative d’homologie fondée
sur les réseaux. Cette fouille itérative de métagénomes révele une immense diversité de variants
environnementaux dans ces familles, qui divergent de la diversité connue tant par leur séquence que par la
structure des protéines qu’ils encodent, et elle permet de suggérer des pistes pour guider de futures
explorations de la matiére noire microbienne. En outre, en prenant en compte des liens d’homologie partielle
entre séquences génétiques, les réseaux de similarité de séquences permettent une identification
systématique des évenements de fusion et de fission de genes. Il devient ainsi possible d’évaluer I'impact de
ces processus au cours de I'évolution de lignées biologiques d’intérét, permettant de comparer le réle qu’ils
ont joué lors de I'’émergence de phénotypes multicellulaires complexes dans plusieurs telles lignées. Plus
généralement, ces approches basées sur les réseaux illustrent I'intérét de prendre en compte une pluralité de
modeles pour étudier une plus grande variété de processus évolutifs.
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Abstract: The ever-increasing accumulation of genomic and metagenomic data calls for new
methodological developments in bioinformatics, in order to characterise evolutionary phenomena as a whole
with better accuracy. In particular, some of the canonical methods to study the evolution of genes and gene
families may be ill-suited when the relatedness of sequences is only partially supported. For instance, the
definition and reconstruction of gene families face the hurdle of remote homology, which falls beneath the
detection thresholds of sequence alignments. Likewise, combinatorial mechanisms of evolution, such as gene
fusion and gene fission, challenge the purely tree-based representations of gene family evolution. The use of
complementary methods based on sequence similarity networks allows us to circumvent some of these
shortcomings, by offering a more holistic representation of similarities between genes. The detection and
analysis of highly divergent homologues of strongly conserved families in environmental sequence datasets,
in particular, is facilitated by iterative homology search protocols based on networks. This iterative mining of
metagenomes reveals an immense diversity of environmental variants in these families, diverging from the
known diversity in primary sequence as well as in the tertiary structure of the proteins they encode. It is thus
able to suggest possible directions of future explorations into microbial dark matter. Furthermore, by
factoring in relationships of partial homology between gene sequences, sequence similarity networks allow
for a systematic identification of gene fusion and fission events. It thus becomes possible to assess the effects
of these processes on the evolution of biological lineages of interest, enabling us for instance to compare the
role that they played in the emergence of complex multicellular phenotypes between several such lineages.
More generally, these network-based approaches illustrate the benefits of taking a plurality of models into
account, in order to study a broader range of evolutionary processes.
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Over the course of my doctoral studies, | have developed and applied several network-based
methods that aim to reconstruct the evolutionary history of gene families. In particular, my research
focused on those families that present one of two types of exacerbated divergence, typically
exceeding the levels of variation that can be retrieved by sequence alignments. The first focus of this
thesis consists in the retrieval of remote homologues of ancient, core gene families, which have
diverged from the known diversity beyond detectability by canonical methods despite the marked
evolutionary conservation of their known counterparts. In particular, we mined environmental
metagenomic data for gene variants that could suggest the existence of uncharacterised lineages
branching deep in the tree of life. These results are detailed in Chapter Il of this thesis. The second
research focus, which we develop in Chapter lll, is the identification of gene remodelling events, in
particular gene fusion and fission. We applied a systematic detection approach that aims to go beyond

the scope of domain-centred analyses. By quantifying gene remodelling in two distinct lineages that



acquired complex multicellular phenotypes, we can draw comparative insights into the effect of
combinatorial gene and genome dynamics on emergent multicellularity. The common thread of this
thesis is thus the use of sequence similarity networks to investigate ‘non-canonical’ relationships of
homology. In this introductory Chapter, we discuss the notion of homology in a broader sense, as well
as the way in which it relates to sequence similarity, and therefore the relevance of methods based

on sequence similarity networks in this context.

1. The ever-growing abundance of biological sequence data

Charles Darwin’s On the Origin of Species, first published in 1859, is inarguably the seminal text
of evolutionary biology as we understand it today. In it, Darwin introduced the central concept of
natural selection: living organisms must compete for access to limited resources necessary to their
survival, leading the fittest individuals to prevail over their less well-adapted counterparts, thus
producing more offspring in the next generation. Offspring inherit many characteristics of their
ancestors, but not always with exactly identical fidelity: slightly shorter legs, or lighter wings, or wider
leaves. Hereditary traits are passed down across generations with some variation, a notion Darwin
called descent with modification. In turn, these variations may turn out beneficial or deleterious for

survival, and therefore may be passed down, or lost, in further generations.

One weakness in Darwin’s theory at the time was the absence of a known physical support for
heredity, as he observed himself in the first chapter of Origin. The first half of the 20th century saw
more and more mechanistic advancements to the understanding of vertical heredity, most
prominently the re-discovery of Gregor Mendel’s work on inheritance and the development of
mathematical population genetics, which were unified with Darwinian theory in the 1940s under the
name of Modern Synthesis. However, it was only in the early 1950s that the DNA molecule, which had
been discovered nearly a century earlier, was confirmed to be the physical template onto which

hereditary genetic information is encoded.

The DNA molecule consists of two polynucleotide strands, coiled together to give DNA its classic
double-helix structure. Each strand is a succession of nucleotides, each containing one of four
nucleobases: adenine (A), cytosine (C), guanine (G) or thymine (T). In addition, the two strands of a
DNA molecule are complementary: adenine and thymine always face each other, as do cytosine and

guanine. The genetic information is therefore encoded redundantly by each strand, as the contents of



one strand dictates the contents of the other!. What this linear polynucleotidic structure of DNA
means, for the bioinformatician, is that any DNA molecule can be abstractly represented textually, by
a simple string of A, C, G and Ts mirroring the sequence of nucleotides along a strand. This
representation encapsulates all the genetic information encoded by the molecule, in a data format
that can be easily read, stored and processed by humans or computers. Similarly, RNA and proteins
(the functional products of biological processes encoded by DNA) are also linear polymeric molecules.
RNA is a single-strand molecule that has the same sequence as its coding gene, with the exception of
thymines that are substituted by uracils (U). Proteins, on the other hand, are chains of residues from
a canonical set of 20 amino-acids (Figure 1A). Each block of three nucleotides (called a codon) along a
messenger RNA dictates one amino-acid in the resulting peptide chain, following a correspondence
known as genetic code (Figure 1B). In other words, not only can the support of heredity and template
for biological function (DNA) be represented and studied from its sequence, but its functional products
(mRNAs, proteins, non-coding RNAs) can too. Accessing the genome of organisms thus grants a unique

window into their evolution and the ways in which they function.
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Figure 1: The central dogma of molecular biology.

(A) The biological instructions encoded by genes are transcribed into messenger RNAs by RNA
polymerase, and mRNAs are then translated into proteins by ribosomes.

(B) Translation follows the codon-to-amino acid correspondence of the genetic code.

The first major breakthrough in DNA sequencing came with Frederick Sanger’s chain-
termination method in 1977, and the publication of the first full genome sequence, that of
bacteriophage ¢X174. At first fully manual, the Sanger method was progressively refined and
automated throughout the end of the 20th century, with improvements to time and cost requirements
as well as reading accuracy. This allowed the first draft of the full human genome to be published in

2001 after over a decade of work by the Human Genome Project and an estimated cost of $2.7 billion.

! This is precisely the crux of the DNA duplication process, which allows singular cells to duplicate into
multiple copies carrying the same genetic baggage: the DNA strands are separated, and each strand functions
as a template for the creation of its new complementary strand, resulting in two copies of the initial molecule.



Sequencing costs remained high in the early 2000s, until the irruption of Next Generation Sequencing
(NGS) on the DNA sequencing market, which made genome sequencing dramatically more affordable
(Figure 2A). In mid-2007, where NGS was just starting to replace Sanger sequencing in laboratories,
raw sequencing costs were of roughly $500 per million base pairs (Mbp); a year later, NGS had dropped
costs to $8/Mbp, and $0.35/Mbp by mid-2010. Recent estimates place the cost of sequencing one
Mbp at $0.006 in 2022, a drop by five orders of magnitudes in just 15 years.
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Figure 2: NGS methods provide access to unprecedented amounts of sequence data.

(A) In the early 2000s, Sanger sequencing became exponentially more affordable, in line with the
predictions of Moore’s law on the exponential increase of computing power over time. In the 15 years
since NGS technologies entered the market, sequencing costs have decreased even more rapidly.
Data from: Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing
Program (GSP) Available at: www.genome.gov/sequencingcostsdata. Accessed in October 2024.

(B) Public sequence databases such as GenBank contain more and more records each year, making
necessary the development of new bioinformatic methods to address this ongoing informational
torrent.

Data from: https://www.ncbi.nlm.nih.gov/genbank/statistics.

The democratisation of mass DNA sequencing has resulted in a genuine torrent of new genomic
data (Figure 2B). Furthermore, beyond whole genome sequencing, other ‘omics’ developments have
allowed access to many other kinds of biological data, such as RNA transcripts (transcriptomics),
proteins (proteomics), or metabolites (metabolomics) [Hollywood, Brison, and Goodacre 2006, Aslam
et al. 2017, Lowe et al. 2017, Stricker, Koferle, and Beck 2017]. New methods in metagenomics also
make it possible for the genomic contents of whole environments to be sequenced at once, thus
bypassing the constraining requirements of cultivation and isolation, and provide new insights into
the inter-species interactions that sustain ecological systems. This massive influx of biological data is
an unparalleled trove of information for the scientific community, and allows us to investigate
evolutionary processes from many new angles. The magnitude of this genomic torrent also raises

practical and computational challenges. Automated methods are now vital to produce, process and
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analyse this biological information in an efficient and reliable way, and continued progress in

bioinformatics is required to keep up with sequence datasets of ever-increasing sizes.

2. Comparing sequences to infer evolutionary relationships

2.1 - Understanding the evolution and function of biological

sequernces

Rendering the genomic information from nanoscopic DNA molecules in a ‘language’ convenient
for humans and computers allows for further characterisation of this sequence dataset. From this
point, and as is the case in any other scientific field, the new data must be interrogated in the light of
already established knowledge. A biologist may glean a certain amount of information from a gene
sequence itself, by looking into specific features such as CG-content and codon usage bias. Establishing
the genomic signature of this sequence with such metrics can provide insights into its taxonomy,
function and ecology [Coutinho, Franco, and Lobo 2015]. However, to understand the evolutionary
history and the biological function of that gene with better certainty, its analysis will usually include
comparing its sequence to other genes, with features that have already been characterised and
validated. This is not so different from a historian who happens upon an unknown ancient text for the
first time: if the contents of the text may already provide some information about its nature or its
purpose, it is only within its greater historical context that the origin, importance and significance of
the document can be truly evaluated. Over the past decades, dozens of generalist and specialised
sequence databases, hosting billions of public DNA sequences, have been assembled to facilitate
sequence comparisons for such purposes [Quast et al. 2013, Benson et al. 2013, Jolley, Bray, and

Maiden 2018, The UniProt Consortium 2023].

The most common way to recontextualise a novel gene (or protein) sequence is to ascribe it to
a known gene family, i.e. a set of homologous genes sharing a common evolutionary ancestor. Gene
families are one of the main organisational principles of the global genetic space and are meant to
represent coherent units of gene evolution. Comparing gene sequences to reconstruct homologous
gene families can therefore help us understand the evolution and divergence of this family, following
the expectation that more distantly related genes will have less similarity between their sequences.
Moreover, for certain genes in particular that are known to be remarkably conserved (meaning that
mutations in their sequences are particularly rare), evolutionary information at the gene level can be
used to infer evolutionary relationships between their hosts. The prime example of such a marker

gene is the one coding for 16S ribosomal RNA (Figure 3), present in all prokaryotic life forms. The



sequence of this gene consists of a succession of highly conserved regions, interspaced by nine more
variable regions (humbered V1-V9). This allows the representation of evolutionary relationships with
a large range of granularity, from strain identification to reconstructions of the overall tree of life?

[Yang, Wang, and Qian 2016].
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Figure 3: The prokaryotic 16S rRNA gene.

(A) Site-specific sequence identity between bacterial 16S rRNA genes, with the nine hypervariable
regions indicated by shaded ranges in the graph. The degree of variability differs between V1-V9
regions, such that different subsets of those regions are well-suited for different taxonomic
resolutions.

(B) Secondary structure of the 16S rRNA molecule, with the positions of V1-V9 regions indicated.
Adapted from: [Wensel et al. 2022].

The functional aspect of gene sequence annotation also relies on comparisons with known
genes. Indeed, the nucleotide sequence of a gene that codes for a protein dictates its amino-acid
sequence (see Figure 1), which in turn influences its three-dimensional conformation. Many features
of a protein’s spatial conformation, such as its flexibility or rigidity, or which of its residues are exposed
at its surface, can be essential for a protein to perform its ‘intended’ function by interfacing and
interacting with other biomolecules. As such, some functional information about an unknown gene
sequence can be extracted in a number of ways. If a gene has clear homology with another sequence
that has already been functionally annotated, then this likeness in sequence may extend to a likeness
in function. However this is not automatically true, as relatively small changes in a protein’s sequence
can result in much greater structural variation [Tokuriki and Tawfik 2009]. For this reason, other
approaches prefer to look directly for structural features in the sequence to annotate. In particular,
the computational prediction of 3D protein structures from their primary sequence, which has long
been considered a major challenge for bioinformatics, has seen dramatic advances in the last few

years with the emergence of deep-learning methods (with DeepMind’s AlphaFold at the forefront).

2 Carl Woese and George E. Fox notably pioneered the use of 165 rRNA to reconstruct phylogenies,
leading to their discovery of the archaeal Domain [Woese and Fox 1977].



Nearly all proteins in the UniProt sequence database now have AlphaFold-predicted structures, greatly
improving inferences of functional features for unknown sequences. At a more granular level, specific
structural features can also guide functional inferences. Protein domains, in particular, are structural
units that are encoded by one contiguous region in the coding sequence and translate to a contiguous
region of the protein’s polypeptide chain that folds onto itself independently from the rest of the
protein. Because these domains often correspond to specific functions, identifying domain-coding
regions in a gene sequence can also provide indications about the functional role of its protein.
Nonetheless, the functional annotation of gene and protein sequences is far from a solved issue. Many
predicted protein domains, for instance, are not associated with known functions (as of October 2024,
domains of unknown function (DUFs) appear in approximately four thousand Pfam protein families),
and some proteins are not covered by domains at all [Paysan-Lafosse et al. 2023]. Likewise, as we
discuss in more detail in a following chapter, large numbers of detected protein families have no

functional labels, especially in metagenomic data.

As a contextual note: because protein-coding DNA sequences (CDS) can be deterministically
translated to amino-acids (see Figure 1), it is common to use protein sequences for evolutionary
comparisons at larger taxonomic scales and, likewise, to assimilate gene families and protein families.
This offers an immediate computational advantage, because sequences are then three times shorter
(since each codon is encoded in one character instead of three). Moreover, sequences of amino-acids
are better conserved than nucleic ones, meaning that more ancient relationships between sequences
can be detected. This omits information about synonymous mutations in CDS, i.e. substitutions that
occur in a codon without changing the corresponding amino-acid, due to the redundancy in the
genetic code. Synonymous substitutions are likely to be selectively neutral, but they can also affect
gene expression and protein folding [Bailey, Alonso Morales, and Kassen 2021] and thus be adaptive.
Still, the approximation of ignoring synonymous mutations is acceptable for the larger-scale studies
that we focus on, especially in light of the gain in computational efficiency. On the other hand, indel
mutations inside a gene can result in a translational frameshift (if their length is not a multiple of
three), which will greatly alter the resulting amino-acid sequence. Using translated sequences to
compare genomic data can therefore potentially lead to erroneous results, because related sequences
that differ by a frame-shifting indel will then not be recognised as similar. In the case of protein-coding
genes however, this is highly likely to produce a dysfunctional protein, which may be abnormally short
or long because the initial stop codon is now out-of-frame. In a way, this could be assimilated to a
gene loss, since the well-formed protein is not encoded anymore. Here, because we are mostly

focused on studying the evolution of protein-coding families, we predominantly use amino-acid



sequences for our computations, as the drawbacks mentioned here are only of minor concern for our

purposes.

2.2 - Comparison of biological sequences with pairwise alignments

By ‘comparing’ pairs of sequences, what is generally meant is that we try to identify common
regions between the two sequences that have many identical or similar letters at the same positions.
This practice makes sense when comparing sequences that derive from a common ancestry: the
sequences were initially identical, then modifications appeared over time in one or the other (a letter
could have been lost by one but kept by the other, or have appeared in only one of them, or changed
for a different letter), but enough positions may have stayed unchanged to recognise a common root.
Aligning these sequences then consists in matching their corresponding positions two by two, to

represent which positions are conserved and which ones have diverged.

Let us look, as an example, at the English name Peter, and its Spanish equivalent Pedro. Both
come from the Greek Petros (Métpoc), and from this root they share a similar consonant structure p-
[t/d]-r, as well as an -e- in the leading syllable. On the other hand, the terminal -s has disappeared in
both, and the Spanish version of the name turned the -t- into a -d-, whereas the English one lost an -
o- and gained another -e-. These positional similarities and differences can be summarised by writing

one name above the other, in a way that matches pairs of corresponding letters vertically:

D - (0]

P E R
[ I
PETER -

Alignments are by far the most common way to compare sequences together, and are routinely
performed for a wide range of biological studies. Aligning two sequences relies on the hypothesis that
they share some level of homology, such that their differences can be attributed to an accumulation
of mutations since their divergence, rather than a convergent acquisition of the same features. Each
insertion, deletion or substitution of a letter in the sequence is considered to happen with a given
probability. For instance, when comparing DNA sequences, transition mutations (A<>G or C<>T) are
more likely than transversions (A/G ¢<> C/T) because of the two different molecular classes of
nucleotides (purines, A and G; pyrimidines, C and T). Likewise, in protein sequence alighments, the
frequency of each substitution is estimated from sets of sequences with known homology. Based on
these probabilities, a numeric score can be assigned to a sequence alignment, using a substitution
matrix (PAM and BLOSUM matrices being the most common ones) and a gap penalty function:

matches between identical positions or frequent substitutions increase this score, whereas rare

mismatches and insertions or deletions that add gaps to the alignment are penalised negatively. The
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score of an alignment between two sequences is then obtained by adding up the scores at each
position. In these scores, the penalties assigned to gaps generally follow a linear function, where the
first position ‘opening’ a gap is more severely scored than following positions that ‘extend’ the gap

(Figure 4).
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Figure 4: Process of scoring a pairwise sequence alignment.

Top left: An extract of the BLOSUMG62 substitution matrix, computed from sets of proteins with less
than 62% of identical positions. Top right: The gap scoring system, which penalises gap openings more
than extensions, to reflect that a single indel event may produce gaps over more than one position.
Bottom: The alignhment between two amino-acid sequences is scored by adding up the score of each
position, according to the chosen substitution matrix.

2.3 — Alignment algorithms, BLAST, and the speed-accuracy trade-off

The theoretical number of possible alignments between two sequences grows extremely large
as soon as sequences exceed a few dozen letters in length. Algorithmic methods have therefore been
developed to identify the optimal alignments of two input sequences efficiently. Some of those
algorithms are designed to provide the exact solution to this problem (i.e. the highest-scoring
alignment possible), but this optimality results in a higher complexity that greatly slows computations.
Notable exact algorithms include the Needleman-Wunsch algorithm, which uses dynamic
programming to identify the optimal global alighment between two sequences [Needleman and
Wunsch 1970], and the Smith-Waterman algorithm, which adapts the Needleman-Wunsch process to
find local alignments between subregions of the sequences [Smith and Waterman 1981]. Probabilistic
algorithms that rely on heuristics and approximations, on the other hand, can run much more

efficiently to find alighnments that get close to, but not always exactly on, the optimal solution. Most
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notable among them is BLAST (Basic Local Alignment Search Tool), which has become a veritable staple
to anyone working with sequence data [Altschul et al. 1990]. Most modern sequence databases
published online now integrate some BLAST implementation to let users search an input sequence
within the database records, leading to BLAST being sometimes presented as the ‘search engine’ for
DNA and protein sequences. Perhaps unsurprisingly, the work we present here made extensive use of

BLAST alignments too, and warrants a few explanations about the way it functions.

Query sequence
l ‘wn-—— [—— o_Lum- |

HSP HSP HSP

h‘m__‘_
Target 1 Target 2 Target 3 Target 4

Figure 5: Seed-and-extend search of local alignments using BLAST.

BLAST identifies short segments of (near-)perfect identity between the query sequence and the targets
(yellow points). These seeds are then extended into High-scoring Segment Pairs (HSPs), highlighted in
red. Notice that more than one HSP can exist between the same sequences.
From: [Jachiet 2014].

Like Smith-Waterman, BLAST belongs to the family of local aligners, which implement the notion
that sequences can be similar for only some portion of their length, instead of their full span. It uses a
particular heuristic called ‘seed-and-extend’, which assumes that high-scoring alignments must
contain short segments of identical or near-identical letters (Figure 5). The first step of a BLAST
alignment thus consists of finding ‘seeds’, i.e. identical or nearly identical segments between the two
sequences (typically three letters long for protein alignments, and 11 letters for nucleotide
sequences). Local matches called HSPs (High-scoring Segment Pairs) are then extended from each
seed, towards the left and the right, until dropping significantly in quality, and the highest scoring
alignment encountered during this extension is retained. HSPs from two consecutive seeds can
sometimes overlap, in which case BLAST merges them together when beneficial. BLAST then returns
all HSPs with a better score than a user-defined threshold. This output can be provided in a variety of
formats, which can either make the exact alignment explicit or only specify the endpoints of each HSP

along each sequence.

Due to the rapid growth of the amount of sequence data now available and of the increased
computing power of modern processors, BLAST is now generally used to align many sequences
together at once, rather than simply two. In its implementation, there is therefore a distinction

between query and target sequences. Typically, if one has obtained new gene sequences and wants
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to check if they are any similar to genes already published in a database, the new sequences form
together the query set, and sequences from the database are the targets. A single execution of BLAST
can then search for alignments between any query sequence and any target. On the other hand, if one
wants to compare between all pairs of sequences in a single set (in what we refer to as an all-against-
all alignment), then every sequence is both a query and a target. Each pair of sequences will then be
compared twice (once in each ‘direction’), and it should be noted that results of bidirectional
alignments can sometimes differ slightly, due to algorithmic optimisations that improve calculation

times but disrupt the symmetry of the comparison.

2.4 - Understanding an alignment output: what are the relevant

metrics?
gqseqid sseqid evalue pident qstart qend sstart send C
seql  seql  6e-222 100 1 293 1 293
seql seq3 le-53 32.7 1 293 1 279 Query= seq2
seql seq2 4e-49  31.7 8 287 6 274 >seq3
seql seq4 2e-32  28.1 9 267 1 239 A
seql  seqs  2e-25 29.0 1 293 1 276 Score = 174 bits (442), Expect = 2.65e-57
seq2 seq2 le-214 100 1 282 1 282 Identities = 107/287 (37%), Positives = 166/287 (57%), Gaps = 15/287 (5%)
seq2 seq3 2e-57 37.3 14 280 1 279
seq2  seql  4e-49 31.7 6 274 8 287 Query [ CKCSKDLDPIYSTDYKVPTVGDKPEGCITKLDKGGEE -DFKYFNREVLNKKGLGESEYIE 59
seq2  seq5  6e-32 30.8 5 281 7 277 CKSD P+S + + PEG KL+K + DK+ ++ K + EV++
Sbjct 4| CKFSDDWQPLHSLEAPLDICGDIPEGARAKLEKANAQADIKHSTTKFVPGKVFADVEYVD 60
Query 60 DGPGSPQYKTKIKFELLGLIIQSPMIELLLEGAPWRLSLRCEWWFGRNVDFADNGEHQQP 119
= R D PG QY+ + +E +GLI Q+P +EL+ + +PW L++R EW R+ +F D H QP
B | gseqid| query sequence id Sbjct 61 DFPGKAQYEYGV-YESIGLIFQNPELELVRDASPWGLTVRSECWSDRSGNFFDGAAHAQP 119
sseqid| subject sequence id Query 120 SPVILEALSVRFTKSLSRNDFS--DVPPASSQKPHYVEGVDTVIPYSDKDRTDIELWINQ 177
1 1 +P L FT++L + D + ++P A4S+ P++++ ++ +PYSD D +I LWI+
evalue | E-value Sbjct 120 TPWAL------ FTRALVKYDIACNEMPHANSKTPNF IKVLNNGLPYSDFDNLEITLWISD 173
pident | percentage of identical positions Query 178 NSESVSCRSF-LAFSRLGPESLTAAPLTYYSESKPS-SADETP--GSVSFFQRVAVYMFA 233

N + SCRSF L S +GPE+LT A + Y SES PS SADE GS +FF  +AV++

gstart|start position of alignment on query Sbjct 174 NGRTASCRSFSLDLSHIGPEALTLA-IKYTSESDPSQSADEAGEMGSTAFFLHMAVFIMC 232

gend | end position of alignment on query Query 234 MRKLGKEDRAQRKDKETNTGVEQTYVLYHDKDAAEVKGRQUNNERKR 288

M+ ++ K N GV +YWL ++ KG QUN+ +R
Sbjct 233 MKTRNFGRFEPKEAKWANQGVPNSYVLLATRERIAAKGSQVNHSNER 279

sstart|start position of alignment on subject

send | end position of alignment on subject

Figure 6: Example of a protein sequence alignment with BLAST.

(A) Tabular BLAST output of an all-against-all alignment between a toy set of 5 sequences. (B)
Alignment descriptors used in a typical BLAST output. Note that these only qualify the aligned region:
for instance, the pident column only counts the positions within each HSP. (C) Detailed output of BLAST
showing the explicit alignment between seq2 and seq3. Highlighted areas of text show the
correspondence between fields in the tabular and the full alignment outputs.

Raw alignment score values intrinsically depend on the choice of a scoring matrix and gap
penalties, making it impossible to compare between search results that used different scoring
systems. Other scoring metrics that can be applied more uniformly are therefore preferred when it
comes to comparing alignments. In particular, the E-value is very frequently used to assess the validity
of BLAST outputs (Figure 6). The E-value of an alignment quantifies how many hits of similar or better
quality could be expected (hence, E) by chance between two random sequences of similar sizes. More

precisely, an alignment between two sequences of length m and n with a raw score S (computed as
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above) will be assigned an E-value of E = K-m-n-e™ — here K and A, called the Karlin-Altschul
parameters, normalise the influence on the E-value of the selected scoring system and its underlying
assumptions about amino-acid frequencies in the protein space [Karlin and Altschul 1990]. The E-value
thus decreases exponentially with the raw alignment score, with lower values indicating more reliable
alignments that are less likely to come from a spurious similarity between sequences. When the target
set is not a single sequence but a larger database, its size is factored into the E-value calculation, which

then represents the expected number of similar hits against a random database of comparable size.

The influence of the selected scoring system on raw alignment scores disappears when
converting to E-values, but the resulting values are still a function of the query and target sizes. This
means that comparing alignments based on E-values only formally makes sense when they are
performed against the same target: looking up two genes in a same database can tell us which one
‘fits’ the database the most, but looking up the same gene in two different databases (of different
sizes) should not inform us on which one it fits best. In practice, an E-value grows proportionally with
the size of the target, but since it decreases exponentially with the raw alignment score, that score
remains the main deciding factor in expected values. Comparing across databases can thus be

permissible with a proportional adjustment of E-values to take unequal database sizes into account.

Choosing an E-value threshold under which to consider alignments as significant depends on
the stringency that is required for the specific purposes of each analysis. The limit of 107 is commonly
used, with sometimes even lower orders of magnitude for stricter filters. Even at E-values of 107,
similarities between two sequences are sometimes difficult to discern visually, and the E-value
threshold is often coupled with other criteria to evaluate alignments. The percentage of identical
positions within the alignment, and the fraction that it covers on the entire length of each sequence,
are in particular often used in tandem with an E-value threshold. Again, the choice of a threshold here
depends on what kind of sequence similarities we are looking to find. Strict limits on alignment
coverage will help identify full-length similarities between sequences, but lower thresholds are more
adapted to local similarities, for instance when looking for common domains between complex multi-
domain proteins. Likewise, looking for near-identical sequences can warrant percentages of identity
above 90% or even 95% (for instance, two organisms are generally considered to belong to the same
species when their 16S rRNA genes have more than 97% identical nucleotides), whereas lower values
are relevant for finding more distant similarities. There is, however, a lower limit of sequence similarity
that can be detected in practice by sequence aligners. For amino-acid sequences, in particular,
proteins that have less than 25-30% of identical positions (a range known as the “twilight zone” of

protein alignment) are aligned by BLAST only with some difficulty [Rost 1999], meaning that distantly
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related homologues may be missed by alignment searches. This issue of remote homology detection

is discussed in further detail in a subsequent chapter, as it is one of the focuses of this thesis.

2.5 — Different kinds of homology and sequence similarity

Establishing significant similarities between the sequences of different genes or proteins usually
serves to answer one question: do these genes/proteins stem from the same ancestor, i.e. are they
homologous. Indeed, modern genomes are close to the only source of information at our disposal to
study evolution, so we must rely on contemporary data to infer past events in the history of life3. The
similarity between two sequences is thus used as a proxy to infer their homology, based on the
strength of the alignment between the two (according to the metrics discussed above). In this
subsection, we briefly review the different types of homology and their significance in the study of

evolution.

The perhaps ‘canonical’ scenario for sequence homology is that in which a gene, present in an
ancestor organism, perpetuates itself in multiple extant organisms following a chain of speciation
events. The term orthology was coined to describe such homology relationships in 1970, in opposition
to the then-new concept of evolution by gene duplication, which was in turn called paralogy [Ohno,
Wolf, and Atkin 1968, Fitch 1970] (Figure 7). Orthology is a particularly important notion for
evolutionary studies, because the divergence of a set of orthologous genes presumably reflects the
divergence of their hosts, and therefore an accurate definition of orthologous families is crucial to
reconstruct phylogenies between species. Moreover, orthologues generally fulfil identical (or
biologically equivalent) functions in different organisms, whereas paralogues are more likely to
diverge in function after duplication? (a process known as sub- or neo-functionalisation). Although this
“orthology-function conjecture” is more a statistical genomic trend than an immutable law [Gabaldén

and Koonin 2013], orthology is nevertheless an important resource for the functional annotation of

3 Of course this is not strictly true: evolution was already studied before the advent of genetics, e.g. by
analysing fossils (i.e. paleontology). However, fossils only provide morphological data, and are thus mostly
relevant for animal and plant evolution, de facto overlooking microorganisms. Another source of evolutionary
data is ancient DNA (aDNA), sampled in preserved specimens: naturally or artificially mummified remains,
paleofeces, frozen material, etc. Because aDNA is subject to degradation, we can only sequence samples up to
2 million years old [Willerslev et al. 2004, Kjeer et al. 2022], meaning that aDNA will mostly be able to yield
insights into comparatively recent evolution.

4 When gene duplication was first described, its ability to produce functional innovations at a faster rate
than local mutations led some scientists to view duplication as the driving force of evolution (see Introduction
of [Ohno, Wolf, and Atkin 1968]: “Gene duplication now emerges as the prime factor of evolution”). Although
duplications are clearly an important factor of evolution, further investigations have found that neo-
functionalisation was not the main outcome for duplicated genes [Shakhnovich and Koonin 2006].
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new genetic sequences and is the basis for numerous databases of functional clusters (including

eggNOG and OMA, to name but a few).
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Figure 7: Different kinds of sequence homology.

(A): A hypothetical scenario of evolution for one gene family. Successive events of speciation, gene
duplication, and horizontal gene transfer give rise to paralogues, orthologues and xenologues in three
extant species. As a result, the phylogenetic tree of the gene family (B) is incongruent with the species

phylogeny (C).

The two main types of homology, orthologues and paralogues, both represent ‘internal’
processes of gene inheritance that follow an arborescent model of divergence. However, genomes
also evolve by more reticulate mechanisms, and horizontal gene transfer (HGT), wherein a gene from
one organism is recruited into the genome of another one, is another significant process driving
evolution. Two genes that are related in this manner are termed xenologues (Figure 7). Far from
marginal, this process is actually ubiquitous in prokaryotes, which routinely exchange genetic
information with their counterparts, even when only very distantly related. Several mechanisms
contribute to HGT in prokaryotes, including gene transductions mediated by viruses, exchanges of
plasmids between cells in membrane-to-membrane contact, and direct uptakes of extra-cellular

genetic material from the environment (Figure 8A). As a result, the prokaryotic world is often
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described as one huge interconnected gene pool, sub-compartmentalised by genomes of distinct
lineages but with little to no rigid barriers [Bapteste et al. 2009]. This process is essential for microbial
adaptation and survival: due to their asexual mode of reproduction that does not involve genetic
admixture, other sources of genetic innovation are vital to prevent a gradual accumulation of
deleterious mutations that eventually leads to extinction®. In eukaryotic lineages, HGT is a far less
frequent occurrence, partly because of the existence of the nucleus that segregates chromosomes
from the rest of the cellular milieu. Still, multiple cases have been documented, including gene uptakes
from bacteria, but also between plants and fungi. Another particular case concerns the transfer of
genetic material between the nucleus of a eukaryotic cell and its organelles. Mitochondria, present in
all eukaryotes, and chloroplasts, responsible for the photosynthetic ability of plant and algal lineages,
both result from endosymbiosis events with bacteria, and thus possess genomes. The ‘protection’
offered by an endosymbiotic lifestyle allowed major reductions in the gene content of mitochondria
and plastids, and instances of gene flow between organelles and the nucleus have been recorded in
just about every direction (Figure 8B). In all these instances, from the prokaryotic ‘web of life’ to
eukaryotes and their organelles, gene transfers result in homology relationships that challenge the

strictly tree-like view of evolution.
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Figure 8: Horizontal gene transfer between prokaryotes and within eukaryotic cells.

(A) Prokaryotic organisms can exchange genetic material in a variety of ways: direct environmental
intake (a), cell-cell conjugation (c), mediation by mobile genetic elements (b, d). From: [Brito 2021].
(B) Gene flow routes between organelles and nuclei in eukaryotic cells. The thickness of arrows
represents the frequency of each exchange route. From: [Kleine, Maier, and Leister 2009].

5 This process, known as Muller’s ratchet, was first introduced by the American geneticist Hermann Muller
in a 1932 talk titled “Some genetic aspects of sex” [Muller 1932]. The term itself was coined by Joseph Felsenstein
in his 1974 paper “The evolutionary advantage of recombination” [Felsenstein 1974].
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When discussing homology relationships thus far, we have mostly focused on genes and
proteins as units, and considered sequence similarities that span the majority of the length of each
sequence. However, sequences may also resemble each other only in some part of their length — this
is, for instance, implicitly stated by the design of local sequence aligners. Two proteins can share the
same domain, but can each have a second domain that is absent in the other. In this case, should we
consider these proteins to be homologues, if some part of them descends from a common ancestor
but others do not? To clarify this relationship, we can say that the shared regions are homologous,

IM

and that the two proteins as a whole are partial homologues — here “partial” does not qualify the
strength or the quality of the homologous region, but rather that it is indeed only a subregion of the
whole sequence. This also implies that gene sequences can be composites of different subunits from
different origins: in the same way that HGT introduces mosaicism to genomes, genetic remodelling
introduces mosaicism to genes. This is far from a fringe phenomenon, as multi-domain proteins are
estimated to represent 65-80% of the proteome in Eukaryotes, as well as 40-60% in prokaryotes [Apic,
Gough, and Teichmann 2001, Ekman et al. 2005]. Along with remote homology, partial homology and

gene recombination is the second focus of this thesis, and we return to these notions in greater detail

in a future chapter.

In summary, sequence similarity is an extremely important descriptor to infer homology, but it
is not an infallible one. First, distantly homologous sequences can be difficult to align past a certain
point of divergence; second, several evolutionary processes (e.g. gene duplication, HGT, gene
remodelling) can result in incongruences between the evolution of a gene family and that of its hosts.
Additionally, gene families can take complex evolutionary trajectories involving processes that are
sometimes incompatible with the usual arborescent representation of its history. As such, other
modelisations of a gene family can complement this tree-centric view in a useful way. The present
work, in particular, relies heavily on sequence similarity networks, which attempt to provide a more
holistic representation of the gene-to-gene (or protein-to-protein) relationships within families.

Networks in general, and sequence similarity networks in particular, are the focus of the next section.

3. Sequence similarity networks

3.1 — What do we talk about when we talk about networks

The term “network” is a recurring buzzword that has permeated common parlance around a
broad variety of topics. The word is perhaps most frequently used in relation to technology and
telecommunications (as in social networks, neural networks, and implicitly in internet), but also

appears in interpersonal contexts (attending networking events, for instance, is often recommended
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to people looking to grow their professional network). Under this jargon lies a specific approach to
model certain types of data, which is extensively studied by mathematicians and computer scientists,
and applied to numerous scientific areas such as biology, physics, sociology or economics. Networks
provide intuitive visual representations of relationships between data points, backed by a robust

theoretical framework that provides quantitative ways to describe these relationships.
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Figure 9: Using the network view to represent a list of social interactions.

(A) A list of all friendly interactions represented on screen in the first series of The Office (US) (subject
to personal interpretation).

(B) The same interactions represented as a network: each node corresponds to a character, and edges
are drawn between characters that have an interaction listed in (A). Note that Jan is absent from the
list in (A), as she is never shown to be more than neutral with any other character despite appearing
in 4 out of 6 episodes.

Let us take advantage of this visual quality to introduce some basic notions of network science
with an example, based on one of the most popular comedy TV series of recent years: the American
sitcom The Office (2005-2013). This TV show follows the day-to-day lives of employees in the Scranton
regional branch of the (fictional) paper distribution company Dunder Mifflin. Over nine series, viewers
can follow the evolution of interpersonal relationships between all the employees, ranging from
romantic to friendly or cordial, all the way to hostile. As the series goes on, the overall social structure
of the Scranton office is heterogeneous and dynamic. To represent the current state of relationships
at a given point in the show, we could for instance list all the friendships and all the animosities that
the relevant characters entertain with one another. This would, of course, be a slightly reductive
depiction of the more complex social dynamics that the authors portray on screen, but could still give

a fairly accurate idea of affinities between characters. However, this list would perhaps be ineffective
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at depicting the global office relationship picture in a convenient visual way, given the cast of 18
recurring characters in the first series alone. This is where the network view comes in, providing a
descriptive figure that depicts the same information as the friendships list in a perhaps clearer way

(Figure 9). In this figure, each character in The Office is represented by a node, and links (or edges)

connect characters that are friends, or at least friendly, in the pilot series.
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Figure 10: Visual representation of different characteristics of a dataset.

(A) The Office network with nodes coloured according to their degree, indicating how many other
nodes they are connected to.

(B) The same network with nodes coloured according to their betweenness centrality, indicating the
importance of each character for the overall cohesion of the social structure.

(C) The same network with nodes coloured according to the department each character works in. This
shows both the size of each department, and the fact that coworkers form relationships with people
across specialisms.

Structural features and patterns of connectivity in the resulting network reflect certain features
of the social community. Some people concentrate many positive relationships, such as Jim the
friendly salesman or Pam the quirky receptionist, while others seem generally disliked; secondary
characters, usually working in a different place to the main office (e.g. Todd and Katy), only relate to
a small number of employees in the main cast, and are mainly indifferent to the rest. In network terms,
popular characters are represented by nodes with a high degree (the number of adjacent edges), and
less popular ones with lower degree nodes (Figure 10A). Distinct social groups can also be identified

as disconnected clumps, i.e. connected components: the largest component gathers most characters
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depicted rather positively, whereas four ‘antagonists’ are grouped separately, and Jan the upper

manager forms a singleton (an unconnected node) as she is not shown to be friendly with anyone.

Other network properties can illustrate other social dynamics in interesting ways. For instance,
we can test whether “the friend of my friend is my friend” holds true, by looking at trios of nodes: Jim
is friends with Pam, who is friends with Roy, but Jim and Roy do not seem to be friends (we can say
that they form a non-transitive triplet). This notion of (in)transitivity also suggests that if people can
belong to the same social group only because of common friends, or even friends-of-friends, then
some people (intuitively among the more popular ones) may act as ‘social glue’, centralising the
cohesion of their group that would perhaps be more fragmented in their absence. Such people are
represented by nodes with a high betweenness centrality, also called hubs, in the social network
(Figure 10B). For instance, Dwight has a betweenness of 0.67 because he is in the middle of two out
of three interactions between other people in his social cluster (he mediates Angela-Michael and

Angela-Todd interactions, but not Michael-Todd).

Analysing the topology of a network, i.e. the structure of its nodes and edges, can therefore
provide significant quantitative information about the underlying data. But another strength of
network analyses is that this information can be conveyed visually by different graphical features of
the network’s image representation. Playing with specific visual properties, such as node size, colour,
or shape, can help to highlight specific properties. Making nodes bigger when they have higher
degrees, for instance, is a common way to bring attention to the most ‘active’ agents of a network.
Qualitative information can also be mapped to the network representation, to enrich the image with
additional data. For instance, colouring nodes in the Office network based on the department of their
character (sales, accounting, customer service, management, etc.) shows that these departments vary
in size, and that bonds between coworkers are not necessarily restricted to one’s own job type (Figure

10C).

The layout of a network (i.e. the spatial distribution of nodes in the 2D plane) is also an
important visual vector of information. Because our minds rely on pattern recognition for visual cues,
we intuitively expect co-located nodes to be strongly connected (and vice-versa), with central nodes
in the middle of the grouping and peripheral nodes closer to the edge. This visual proximity bias can
sway our understanding of the data being depicted: artificially placing the node representing Angela
at the centre of the network, for instance, could fool us into thinking that she is unanimously liked by
her coworkers. Selecting an appropriate layout algorithm that accurately depicts the information we
wish to convey from a network analysis is therefore essential. Most network layouts used for large

datasets try to minimise the distance between closely connected nodes, usually by mimicking the
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stabilisation of a physical system: edges are modelled as springs that can pull together nodes or push

them away, and the layout algorithm simulates this system until reaching a stable conformation.

The graphical depiction of a network can be a useful tool to guide the analysis of a dataset, as
it offers visual support to make hypotheses based on observed trends. It can reveal patterns that were
not initially anticipated and that may not have been considered in the initial collection of data. Still,
for large datasets, the visual representation of a network may not be able to convey the full complexity
of the data: in a similar way to a principal component analysis, a network layout is only a 2D projection
of a dataset with a potentially much higher dimensionality. In many cases, the qualitative approach
must be complemented by computational and statistical work to draw more objective conclusions
from the network. The underlying paradigm is that relationships between elements of a dataset are
relevant to the characteristics of these elements, and contribute to shaping the data itself. Therefore,
more than being simple surface-level descriptors of a dataset’s contents, network representations can
provide pertinent insights into its specificities and dynamics. This is the conceptual basis of network
science, which is the quantitative study of relational data, as well as the main lens through which we
approach biological data in this work, primarily by constructing and analysing sequence similarity

networks [Watson et al. 2019].

3.2 - Constructing sequence similarity networks

As we have established in previous sections, sequence comparisons are now ubiquitous in
modern biology. Whenever a new set of sequences is generated, for instance, one of the first steps of
analysis usually consists of comparing them in an all-against-all pairwise alignment. This is generally
done in order to pool sequences into groups of high similarity [Zou et al. 2020]. This is allows data
inspection at a higher level of abstraction, for instance by constructing Operational Taxonomic Units
to work at the level of species (or higher) rather than individual sequences [Blaxter et al. 2005]. This
clustering can also be useful to minimise the computational load by dereplication: groups of identical
or near-identical sequences are reduced to a single representative, under the assumption that the

informational loss of removing this redundancy is negligible [Fu et al. 2012].

Underlying each of the examples above is the issue of the general organisation of a sequence
dataset: how are sequences similar and distinct from one another? Am | working with a mere handful
of major archetypes, or a constellation of small unrelated sequence groups? These questions pertain
to the overall structure of the data at hand, and as we have argued earlier, network representations
are well suited to address these — and specifically, because we are talking about pairwise comparisons

between biological sequences, sequence similarity networks.
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Sequence similarity networks (SSNs) consist of nodes representing sequences from a given
dataset, and of edges linking pairs of sequences that meet a predetermined criterion for similarity.
This criterion can in theory be anything, but will most frequently correspond to thresholds on one or
more metrics that can be applied to pairwise sequence alignments (e.g. E-value, alignment identity,
alignment coverage). Indeed, SSNs are usually constructed by performing an all-against-all BLAST
alignment on the dataset (using the same set as both query and target sequences). This produces a
list of pairs of sequences that were successfully aligned (Figure 11A), with (if specified prior to
execution) the corresponding metrics for each alignment. Any alignment reported by BLAST that fails

to meet the thresholds determined for the specific purpose of the SSN is then discarded.
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Figure 11: Constructing a sequence similarity network from a tabular BLAST output.

(A) An example tabular BLAST output, as in Figure 6, with added columns representing the coverage
of each alignment (in %) on the query (qcov) and subject (scov) sequences.

(B) Taking the raw BLAST output as a list of edges produces a network with duplicate edges
(bidirectional hits) and self-loops (self-hits).

(C) The network in (B) is filtered to remove self-loops, bidirectional edges and hits with less than 30%
amino-acid identity, resulting in a ‘clean’ sequence similarity network.

At this stage, all remaining alignments correspond to pairs of sequences that we do wish to be
linked in the SSN, with a couple of caveats. First, because the entire sequence dataset is used as both
query and target by BLAST, each sequence will be compared to itself once in the process, resulting in

self-alignments with perfect scores that obviously pass any criterion for similarity (Figure 11B). These
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‘self-loops’ in the BLAST output are entirely uninformative from a biological standpoint, and should
therefore be discarded. Second, because the BLAST alighment process is asymmetrical, each pair of
(distinct) sequences is actually compared twice: when sequence X is used as query, it is compared to
all other sequences including sequence Y, and conversely when Y is the query it is also compared to X.
This produces, in the ‘unfinished’ SSN, two directed edges between X and Y, one in each direction if
raw alignment outputs are read as being oriented query-to-target. These two alignments can have
slight differences of E-value or base identity due to the nature of the BLAST algorithm —in rare cases,
the similarity criteria can even retain one edge but not the other, when the gap between their scores
overlaps the thresholds considered. Again, this does not have any biological meaning, as we intuitively
want similarity relationships to be reciprocal, and so duplicate edges should also be removed, usually

by keeping the highest-scoring alignment out of the pair (Figure 11C).

In short, the construction of a SSN from a raw BLAST output can be carried out following three
main steps once the similarity criteria have been set: (i) apply the criteria to remove alighments of
insufficient quality, (ii) delete self-loops, and (iii) remove duplicate edges by discarding the weakest
alignment of a bidirectional alignment pair. Of course, the key step in this process is the definition of
similarity criteria that are suitable for the eventual purpose of the SSN, as their stringency or leniency
dictate entirely the density of edges in the network as well as their signification. Extremely strict
thresholds on sequence identity, for instance, will create sparser networks (possibly with many
connected components) where edges represent remarkable similarities between closely related
sequences, whereas more relaxed thresholds will yield dense networks connecting sequences more
distantly related. In real-world biological data, there is rarely a clear-cut threshold of sequence identity
or E-value guaranteeing that all sequences above the threshold, and only those, are homologous. It is
therefore for the biologist to decide how strict the criteria for constructing the SSN should be, to best
mitigate the risks of including false-positive similarities, and of excluding tenuous but real homologies

(Figure 12).
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Figure 12: Selection of a threshold for filtering sequence alignments.
The overlap in sequence similarity between homologues and non-homologues makes the choice of an
appropriate threshold crucial.

3.3 - Similarity networks and sequence families

In an earlier section, we discussed the connection between sequence similarity and sequence
homology, and we came to the conclusion that although one does not necessarily imply the other,
similarities between sequences could generally be considered as a sign of homology provided they
rely on adequate thresholds of alignment quality. Therefore, under this assumption, by constructing
similarity sequence networks, are we then not constructing sequence homology networks too? In that
case, if we apply criteria coherent with sequence homology when constructing a SSN, what can it then

tell us about evolutionary relationships between the sequences it represents?

The implicit expectation behind the definition of homologous gene families (as sets of genes
that share a common ancestor) is that all genes in a family should have the same evolutionary history.
In other words, those genes should all be homologous to each other even if they cannot be aligned
together directly: the similarity network of that family might not be a fully connected clique, but the
underlying, hypothetical homology network is. Even if two homologous genes have diverged too much
to be readily aligned, they might both still have some similarity with a common neighbour, a sort of
intermediate sequence bridging the gap between the distant homologues. Taking this idea further,
distant homologues might not even have a direct common neighbour but may be linked by a longer
chain of intermediate homologues. Thus, in an SSN, any two sequences connected by either a direct
edge or a longer path would be considered homologous: connected components of the SSN therefore

delineate exactly the different gene families in the dataset. This approach to reconstructing gene
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families is called single-linkage, and aims to permit the identification of homology relationships

beyond the detection scope of sequence alignment.

In practice, applying a single-linkage protocol to reconstruct sequence families is likely to
connect sequences that are barely homologous, if at all. A number of pathological patterns can emerge
from chains of sequence alignments that do not conform to the expectation stated above for a
common evolutionary history (Figure 13). This is true even with strong constraints on the proportion
of each sequence that must be covered by an alignment, such that this mode of reconstructing gene
families is only really suitable for strongly conserved, evolutionarily stable families. Indeed, we used
this compatibility with conserved sequences to expand gene families with distant homologues, by
applying additional constraints to link together sequences in SSNs. This is the object of the next

chapter of this thesis.

(a) “Finger” effect : strong but narrow (b) “Staircase” effect : no similarity
signal detected. between reference and final target
sequences.

Figure 13: Anomalous patterns in chained sequence alignments.

Each black line represents a sequence, and the aligned regions between two adjacent sequences are
shaded in blue.

(A) Sequences can align over different regions, such that only a narrow portion of each sequence is
really common to all.

(B) Successive alignments can result in a sliding or staircase pattern, connecting distant sequences
without any actual correspondence between them.

The aforementioned imposition of a high mutual coverage in sequence alignments (and, even
before that, the definition of gene families as sequences with the same evolutionary path) de facto
excludes partial homology relationships: if two gene families share a portion of their length but are
otherwise unrelated, then the single-linkage approach to constructing gene families will simply not
reflect this partial homology information. A part of the evolutionary history of these gene families is
therefore overlooked, assuming that this shared region (e.g. a common protein domain) is indeed
descended from the same ancestor in both families. To take into account such relationships, the

method of constructing SSNs must be adapted to reflect the plurality of sequence similarities, with
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partial or full coverage of the aligned sequences. Using such similarity networks that account for
partial homology, in order to study the dynamics of gene remodelling and combinatorial evolution, is

the focus of the third chapter of this thesis.

Figure 14: A sequence similarity network representing the SMC protein family.

Nodes in the network are coloured according to their Domain of life. Pale green indicates sequences
of CPR bacteria, and other bacterial sequences are shown in dark green. Similarly, DPANN and other
Archaea are represented in pale and bright yellow respectively. Lastly, shades of red correspond to
four different SMC paralogues in Eukaryotes.

The topology of the network reflects the evolution of SMC proteins: CPR and non-CPR bacteria are
grouped separately, reflecting the divergence between these two bacterial groups; eukaryotic
sequences clearly cluster with the same paralogous copies; the small clump of green near Archaea
represents sequences from Cyanobacteria, which are suspected to have acquired their SMC gene in a
HGT event of archaeal origin.

As discussed earlier (in the context of OTUs and sequence dereplication), analysing large
amounts of data will often call for a reduction of the complexity and dimensionality of the dataset in
order to operate at higher levels of abstraction. With the massive accumulation of biological data in
the past few years, SSNs (like any other bioinformatic tool) are now being used to handle large sets of
sequences that can contain tens of thousands of nodes, and thus edges numbering in the (tens of,
hundreds of) millions. A higher-order view of relationships in the dataset is therefore imperative,
which brings us back to the importance of identifying highly cohesive groups of sequences in the
network. The single-linkage principle is one such approach, but it can often fail to reach the necessary
level of granularity, especially because large SSNs frequently contain a ‘giant’ connected component
that concentrates a majority of the nodes [Newman, Strogatz, and Watts 2001, Halary et al. 2010].
Therefore, less blunt methods can also be fruitful, by recognising that attachment within connected
components is not random, such that several tightly knit groups of sequences can exist in the same

component. In this way, the overall structure of an SSN reflects the underlying organisation of its gene
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set, beyond simple connectivity (Figure 14). Clustering algorithms can identify coherent groups of
preferential attachment in large networks, allowing the subdivision of SSNs into clusters of similarity
that can, for instance, distinguish between gene families that were connected together in a giant
component. In later chapters of this thesis, we discuss several uses of network clustering in SSNs, in
particular to identify divergent variants within gene families, and to delineate families in networks of

partial homology.

4. Reconstructing the evolutionary history of poorly

characterised proteins

Uncultured phyl

\
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Figure 15: Proportion of uncultured cells in natural and human-associated environments.

Only 19% of Earth’s microorganisms belong to cultivated lineages, with 25% being from phyla with no
cultured representative. In human and human-associated microbiomes, more than 80% of cells are
from cultivated genera.

Data from [Lloyd et al. 2018], illustration from [Hug 2018].

Although the genomics revolution that ushered in a boom in the number of gene and genome
sequences available allowed unprecedented insights into the diversity and evolution of living
organisms and their function, it also revealed a perhaps unsuspected complexity of the gene universe.
In particular, vast amounts of gene sequences remain poorly characterised to this day, even in the
core genomes of intensively studied organisms such as the Escherichia coli K12 strain that is used in
countless microbiology labs [Cummins et al. 2022]. In addition to ORFans, i.e. genes encoded in only
one genome with no apparent orthologue, sequence databases are rife with hypothetical proteins
that have been predicted by computational methods in several genomes but never confirmed
experimentally, often containing DUFs that hinder attempts to understand their function. Even more

striking is the abundance of uncharacterised sequences in environmental metagenomes. While host-
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associated microbiomes (such as the human gut microbiome that is highly popular in the media) are
relatively well understood, at least in their composition, studies of microbiomes in natural
environments paint a different picture, in which genes of unknown taxonomical origin and/or

biological function make up the overwhelming majority of the microbial genetic space (Figure 15).

These uncharacterised genes, performing undescribed functions in microorganisms well known
or otherwise, constitute a major lacuna in our understanding of the diversity of life and its molecular
processes. The difficulties encountered by canonical annotation methods (generally based on
sequence orthology inferences) to qualify these sequences suggest that maybe their divergence stems
from unusual evolutionary trajectories beyond the scope of those methods. If that hypothesis is true,
then alternative approaches targeted to address specific causes of sequence divergence may be well

suited to complement more general models.

4.1 - Distant homologues fly under the radar of sequence alignment

In previous sections, we discussed the links between sequence similarity and homology, and in
particular how sequence alignments are the main empirical data used to infer evolutionary
relationships between genes. However, we also mentioned that genes can have low sequence

similarity (resulting in failed or low-scoring alignments) but still be distantly homologous.

Perhaps one of the best ways to illustrate distant homology is to consider the case of ancestral
gene families that appeared early in the history of life on Earth, typically prior to LUCA (the Latest
Universal Common Ancestor) and the separation of Archaea and Bacteria, some 3.5 billion years ago
(to use a conservative estimate). A large portion of these genes are present in all major lineages of
cellular life, and involved in fundamental biological processes such as information processing
(transcription, translation) and DNA maintenance. Sequences of such key genes generally evolve
under strong forces of purifying selection and consequently diverge more slowly than the average of
gene families. Yet, because of their remarkable evolutionary age, the gradual accumulation of
mutations in their sequences can diminish the sequence similarity between ancestral genes in

distantly related organisms, beyond the scope of detection by sequence alignment.

The erosion of sequence similarity within a gene family can also occur when genes on a specific
branch of the family develop faster rates of mutation than their counterparts. This is commonly
observed, for instance, in the aftermath of a gene duplication event, where the increase in copy
number relaxes the purifying pressures on a gene sequence, allowing one of the paralogues to

accumulate mutations and develop a new function while the other copy retains its original role. This
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rapid divergence in primary sequence can also appear between orthologues present in different

lineages, e.g. when changes in selective pressure can quickly favour beneficial adaptive mutations.

Remote homology can be problematic when trying to explore a new sequence dataset that is
yet to be annotated. Most annotation processes in biology rely on previous knowledge, e.g. a
reference database of functionally resolved genes, and target genes are compared directly against
references. Direct homologues of reference genes are easily identified and given an annotation, but
the target database may also contain genes that are only distant homologues of the reference set —
for instance, because they correspond to unknown paralogues or come from divergent lineages. These
indirect homologues might not be picked up by simple alignment-based searches from the reference
database, despite their evolutionary connection to them. This is especially problematic when
considering that our current knowledge of the extant diversity of genomes and life forms on Earth is
far from complete. In most environmental metagenomes, for instance, sequences that can confidently
be mapped back to well-characterised lineages and functions only represent a small fraction of the
entire microbial diversity. Many important discoveries have come from exploring this “microbial dark
matter” [Marcy et al. 2007, Rinke et al. 2013], but many unknowns remain about the full nature of
microbial life on Earth [Bernard et al. 2018]. Therefore, if this partial knowledge is our basis for
studying and understanding the biological world, then the insights we gain from it may not be fully
comprehensive. Methods that are able to address this distant homology in an efficient and reliable
way could therefore improve biological knowledge, by providing a comprehensive picture of the

diversity of gene families.

4.2 - Remodelled genes and the combinatorics of evolution

In addition to tree-like evolutionary processes that occur within the boundaries of gene families,
such as vertical modifications, duplications or horizontal transfers, genes can also undergo more
combinatorial processes that involve ‘subunits’ of several genes from unrelated families. In particular,
genes can merge with others, split into several independent genes, or recombine regions of their
sequence into new arrangements during the course of evolution. When thinking about genes as
assemblages of protein domains [Forslund, Kaduk, and Sonnhammer 2019], for instance, this idea of
cross-combination between the contents of different genes can help to explain the modular nature of
multi-domain proteins as well as the sometimes patchy phyletic distribution of domains in distantly
related proteins. In this work, we focus specifically on gene fusions and gene fissions, which we group
together under the term of gene remodelling events, although we recognise that other kinds of

combinatorial processes exist in gene and protein evolution.
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Events of gene remodelling can occur in different ways following a change in genomic
organisation [Marsh and Teichmann 2010, Leonard and Richards 2012]. The loss of a stop codon
and/or a larger intergenic region, for instance, can merge the sequences of two adjacent genes that
will now be transcribed as one (an event called gene fusion). Conversely, the emergence of a stop
codon and a new transcription initiation sequence inside a gene can split it into two new distinct genes
(gene fission). In addition to these ‘local’ events, gene fusions and fissions can also result from broader
scale chromosomal rearrangements, such as translocations that can bring together genes that were

formerly sitting at distant places in the genome.

The primary lens through which gene fusions and fissions are perceived is that of protein
domain rearrangements. Indeed, multi-domain proteins represent the majority of proteins both in
Eukaryotes and prokaryotes, and their functional coherence allows for many insights into the role that
those proteins play in different biological processes. On the other hand, domains do not represent the
full extent of biological sequences, and many CDS are not covered by any domain [Mistry et al. 2021].
For this reason, they provide a good but only partial picture of the evolutionary significance of gene
remodelling. More comprehensive models, taking a more systematic approach to the characterisation
of partial homology, can complete this picture and describe in further detail the dynamics of
combinatorial processes as a whole. There also exists another source of bias in a number of gene
remodelling studies, which consists in a heavy focus on gene fusion events, sometimes to the
detriment of gene fission. Genes that have partial homology to two separate gene families are
sometimes automatically considered as fused, even though in reality some may have been split by a
gene fission event, which gave rise to the other two families. Avoiding this pitfall is necessary in order

to present an accurate view of combinatorial evolutionary processes.
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5. Aims of this doctoral thesis
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Figure 16: Canonical, remote and partial homology.
The three main types of homology that we discuss in this thesis produce different alignment patterns
and therefore different motifs in sequence similarity networks.

During the three years of my doctoral research, | have developed and applied new methods,
based on network science and in particular sequence similarity networks, to study two main types of
evolutionary relationships between genes: distant homology, and partial homology from gene

remodelling events.

In Chapter Il of this thesis, | detail the work that we conducted on using sequence similarity
networks to identify and describe distant homologues of known gene families in an environmental
dataset. We sought to measure the genetic and phylogenetic diversity of highly conserved gene
families, typically as old as cellular life, when uncultured organisms are taken into account. In
particular, we were interested in finding divergent groups of sequences compatible with new
microbial lineages branching near the root of the tree of life. To that end, we performed iterative
homology searches, from a set of reference ancestral gene families, in a large oceanic metagenome.
We showed that many of these families have important groups of divergent homologues in the global

ocean microbiome, and that new major discoveries remain possible from microbial dark matter. We
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found, in particular, a new putative paralogue of SMC proteins in Actinobacteria, with divergent
structural features that are likely to indicate an alteration of the way this protein interacts with DNA.
We also identified vast amounts of uncharacterised genetic diversity in DNA clamp-loading subunits,
as well as in recombinases. In addition to reporting these results, we also prepared the publication of

the computer programme that performs these distant homology searches.

Furthermore, we used sequence similarity network analyses to detect gene fusions and fissions,
which is detailed in Chapter Ill of this thesis. We studied these remodelling events in two different
lineages of eukaryotes that independently evolved a multicellular life (brown algae and animals), and
we sought to understand the effects of gene remodelling on the emergence of complex
multicellularity. In both of these studies, we combined network information and phylogenetic signal
to ‘polarise’ the inferred remodelling events, distinguishing between gene fusion and fission. We
found that fusions were slightly more frequent than fissions in brown algae, and that the majority of
these events occurred in the early stages of their evolution. The genetic products of fusions and
fissions only represented a small portion of all brown algae genes, but they tended to be more retained
than non-remodelled genes in extant genomes. In animals, we found that fusions were significantly
more prevalent than fissions, and that bursts of gene fusions occurred at key nodes of animal
evolution. Additionally, many gene fusions appeared convergently in several places of the animal
phylogeny, in a pattern of repeated evolution of successful innovations. These results on gene
remodelling in two different lineages allow us to draw comparisons between how remodelling might

have contributed to each of their independent emergences of multicellularity.

Overall, this research highlights the multifactorial nature of evolutionary processes beyond
conventional models of gradual and arborescent evolution, and demonstrates the importance of
taking this diversity of processes into account when trying to understand biological sequences in a

more comprehensive manner.
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Chapter II. Remote environmental

homologues of conserved protein families
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Figure 17: Uncultivated lineages enrich the modern Tree of life.

(A) Phylogenetic tree of all known major lineages, with CPR bacteria and DPANN archaea highlighted,
constructed from a concatenated set of 14 ribosomal proteins.

(B) Reconstructing a phylogenetic tree with only archaeal sequences restores the monophyly of the
DPANN clade, which was not monophyletic in the full tree.

From: [Castelle and Banfield 2018].
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1. The great unknowns of environmental genomics

1.1 - Microbial dark matter: the unseen majority

Microbial life forms are virtually everywhere, populating just about every single corner of Earth,
from our own bodies to the deepest waters of the oceans. Despite their extremely low individual mass,
microbes as a whole (which includes archaea, bacteria, viruses and unicellular eukaryotes) represent
the second largest share of global biomass, far behind plants but far ahead of animals and fungi [Bar-
On, Phillips, and Milo 2018]. The tree of life is also dominated by microbial lineages, relative to which

multicellular organisms only represent a tiny fraction of the overall phylogenetic diversity.

Our knowledge of microorganisms still, to this day, derives primarily from strains that can be
isolated and grown in laboratory conditions. The historical reasons for this are numerous, starting with
the fact that the precursors to modern microbiology were largely concerned with the study,
prevention and healing of infectious diseases. In the late 19th century, Robert Koch formulated a
series of principles for establishing a causal link between a microbe and a disease, in which he
stipulated the need to isolate and grow the microbe in pure cultures [Koch 1877]. Unquestionably,
microbial cultures remain entirely relevant to today’s biology, as they provide unparalleled insights
into the functioning of microorganisms. However, the advent of environmental genomics, starting in

the 1990s, revealed a strikingly large diversity outside the scope of culture-based studies, and led to
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the realisation that traditional cultivation techniques are only compatible with a small minority of
microbial life forms [Staley and Konopka 1985, Whitman, Coleman, and Wiebe 1998]. Surveys of 16S
rRNA diversity in natural environments have repeatedly found large numbers of OTUs that could not
be confidently assigned to any of the known bacterial and archaeal phyla. From the early 2000s, the
improvements and democratisation of cultivation-independent shotgun sequencing and high-
throughput sequencing allowed biologists to sequence the entire DNA contents of an ecosystem at
once, rather than single-gene amplifications. In these metagenomes too, the vast majority of genes
proved difficult to annotate, taxonomically and/or functionally. This is especially true of sequences
derived from natural environments, although host-associated and man-made microbiomes also
harbour significant amounts of genes of unknown origin and function [Lloyd et al. 2018]. This colossal
repertoire of untapped microbial diversity is collectively referred to as “microbial dark matter” (MDM),
in direct analogy to the dark matter of the cosmological kind. The term is somewhat loosely defined,
and can refer either to the set of microorganisms that do not belong to any well-established lineage
(MDM in the cellular sense), or to the set of genome sequences with elusive taxonomical origin and
biological function (MDM in the molecular sense). Still, microbial dark matter is a useful shorthand for
the vast diversity of unknown microbes and microbial genes that may contribute to ecosystems in

unsuspected ways.

The genomic content of MDM can be unravelled to access the genes and genomes that are at
play in microbial ecosystems. From raw metagenomic reads (typically 100-500 bases long), the
sequencing data is filtered and processed in order to discard low-quality sequences, as well as possible
contaminant DNA (e.g. host DNA in human gut microbiomes). The remaining sequences are then
assembled into longer contigs, based on overlapping regions between reads. Coding DNA sequences
(CDS) can be detected from these contigs to gain insights into the ecological composition and function
of the sequenced microbial community. The accuracy of this assembly step is therefore of particular
importance, especially to avoid producing chimeric contigs that merge sequences from different
organisms. The identified CDS can then be curated into a clean metagenome that contains all microbial
genes detected® in the sample. Although already informative in itself, the gene pool of a sampled
biome can be further studied by binning contigs in order to reconstitute the genomes of sequenced
organisms. In addition to bringing additional hierarchy to otherwise unstructured metagenomes,
these metagenome-assembled genomes (or MAGs) allow for a deeper understanding of in situ

microorganisms and their diversity, for instance by enabling phylogenetic reconstructions from

® This generally represents an underestimation of the genetic diversity present in the sample: genes of
low-abundance organisms can go undetected if the sequencing coverage is insufficient, and assembly algorithms
can blend intraspecific variations in gene sequence.
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concatenated gene sets. MAGs of uncultured microbes are of particular significance for MDM
research, as they represent (along with single-cell amplified genomes) one of the only ways to bypass

the prerequisites of cultivation for genomic analysis.

1.2 — The tree of life in the light of uncultured organisms

With the developments of environmental genomics, MDM is now far from entirely inscrutable,
and has proven to be a formidable source of biological discovery in the past two decades. By turning
MDM from a data-poor to a data-rich field of research [Jiao et al. 2021], cultivation-free sequencing

has allowed for new major perspectives on our fundamental knowledge of life on Earth (Figure 17).

Some twenty years ago, it was largely undisputed that the range of prokaryotic cell sizes hardly
overlapped that of viral capsids [Koonin and Yutin 2019]. This assumption, however, was disproved by
the discovery of CPR bacteria [Brown et al. 2015] and DPANN archaea[Baker et al. 2010, Rinke et al.
2013], two novel prokaryotic lineages with ultra-small cell diameters of around 0.2 um. Although they
belong to different Domains of life, CPR and DPANN share a number of common features in addition
to their nanoscopic sizes [Castelle and Banfield 2018]. Both are remarkably diverse, and are largely
accepted as forming distinct superphyla in their respective kingdoms (although the monophyly of
DPANN is somewhat less evident than that of CPR), with CPR representing somewhere between 15-
50% of all bacteria. The genomes of both CPR and DPANN have undergone significant reduction, and
are typically only 0.5 to 1 Mbp long, in line with other prokaryotes that live obligate symbiotic or
parasitic lifestyles [Castelle et al. 2018]. In comparison, the alphaproteobacterium “Candidatus
Pelagibacter communis”’ has one of the smallest known genomes of free-living organisms at 1.3 Mbp,
which is already considered an advanced level of genome streamlining [Giovannoni et al. 2005]. In this
genome reduction, most CPR and DPANN have lost metabolic pathways that are essential for self-
sufficient lifestyles, including de novo biosynthesis of amino-acids, nucleotides, and fatty acids (key
components of cellular membranes). The extent of loss in metabolic capacity varies between different
groups, but it is expected that most CPR and DPANN are reliant on other microorganisms for a number
of essential biochemical resources, mediated via episymbiotic lifestyles (i.e. an attachment to the

outer membrane of a host) (Figure 18A-B).

" Incidentally, “Ca. P. communis” also has some of the smallest cell dimensions for non-symbionts, with
a rod-like shape of roughly 0.8 um in length and 0.2 um in diameter. It is alternatively known as “Ca. P. ubique”
due to its extreme abundance in both salt and freshwater environments worldwide, making up 25% to 50% (in
summer) of all microbial cells in temperate ocean surface layers.
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Figure 18: Electron microscopy images of CPR bacteria, DPANN archaea and Asgard Archaea.

(A) CPR bacterium Nanosynbacter lyticus parasitising its bacterial host Actinomyces odontolyticus.

(B) DPANN archaeon Candidatus Nanohalobium constans parasitising its archaeal host Halomicrobium
sp.

(C) Asgard archaeon Ca. Lokiarchaeum ossiferum showing multiple membrane protrusions.

On all images, the scale bar indicates a size of 500 nm.
From: [Lopez-Garcia and Moreira 2021] (A, B) and [Rodrigues-Oliveira et al. 2023] (C).

The overlap between prokaryotic and viral sizes is further amplified by the discovery of giant
viruses that can reach up to 1 um in diameter in the phylum Nucleocytoviricota, or NCLDV
(nucleocytoplasmic large DNA viruses) [lyer et al. 2006]. These include the Poxviridae, responsible for
multiple human and animal diseases such as smallpox and mpox, though by far the largest viruses are
found in the families Mimiviridae, Pandoraviridae and Pithovidirae, mainly infecting amoebae. NCLDV
viruses have remarkably large genomes that can exceed those of free-living archaea and bacteria, with
the record being held by Pandoravirus salinus and its 2.5 Mbp genome. Moreover, these genomes
were found to encode multiple proteins that are universal to cellular organisms but rarely present in
other viruses, including key proteins of the translational apparatus — although ribosomes are notably
absent from known giant viruses genomes [Schulz et al. 2017]. These virus-encoded cellular genes
were initially thought to branch between bacterial and eukaryotic clades, leading to hypotheses about
NCLDV possibly representing either a fourth domain of life [Colson et al. 2012] or a degraded variant
of some reduced eukaryotic lineage [Claverie and Abergel 2013], but it has since been shown that
these genes were instead acquired from eukaryotic hosts. The horizontal acquisition of genetic
material between virus and host is commonplace in the virosphere, especially in double-stranded DNA
viruses, but even within these NCLDV viruses stand out as particularly frequent vectors of HGT, both
as donors and receivers [lrwin et al. 2022]. The breadth and frequency of these exchanges likely
contributed to the expansion of NCLDV genomes and viral particles, and suggest remarkable co-
evolutionary relationships between NCLDV and eukaryotes. The viral acquisition of eukaryotic genes
promotes infection via the development of new host-manipulation strategies, for instance by
alleviating the reliance on host machinery that can be shut down by immune responses. Conversely,

some important transitions in the evolution of eukaryotes may have been facilitated by genes acquired
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from giant viruses, including the development of cell wall structures in algae and cellular aggregation

in opisthokonts [Irwin et al. 2022].

Environmental genomics can also help to shed light on our own origins. The identification of a
new superphylum of archaea, the Asgard archaea, was a groundbreaking discovery for the research
done on eukaryogenesis. Genomes of these archaea, first assembled from metagenomic surveys of
deep-sea sediment samples, formed a monophyletic group with eukaryotes in phylogenomic analyses
[Spang et al. 2015]. This indicates that the first eukaryotic cell likely evolved from an archaeal ancestor,
with features similar to those of extant Asgard archaea. In accordance with this phylogenetic
placement, Asgard genomes encode many eukaryotic signature proteins, previously thought to be
exclusive to eukaryotes. These include functions related to information processing and regulation,
such as a ubiquitin-based system for post-translational protein regulation and modification. Asgards
also encode an actin-based cytoskeleton system that is highly analogous to that of eukaryotes.
Although these close relatives of eukaryotes are predominantly known from environmental MAGs,
two strains of Asgard have recently been successfully isolated in cultures (namely, Ca.
Prometheoarchaeum syntrophicum and Ca. Lokiarchaeum ossiferum) [Imachi et al. 2020, Rodrigues-
Oliveira et al. 2023]. Microscopy imaging performed on these isolates revealed a rather intricate
cellular architecture, with multiple tentacle-like protrusions budding from the membrane of Asgard
archaea cells, supported by the actin filaments of their cytoskeleton (Figure 18C). If eukaryotic cells
did evolve from an Asgard-like ancestor, these membrane protrusions may have played a role in the
recruitment of the alphaproteobacterium that would eventually become the mitochondrion. Indeed,
such extrusions could have mediated trophic interactions by direct cell-cell contact between an Asgard
(obligate anaerobe) and an aerobic partner, and led to the progressive engulfment of that bacterium
within the Asgard host. This proposed entangle-engulf-endogenise model [Imachi et al. 2020] provides
a mechanistic explanation for the revived eocyte hypothesis [Archibald 2008] on the origin of

eukaryotes, in opposition to the once-preferred three-domain system.

1.3 - Challenges facing the exploration of microbial dark matter

If the past couple of decades have been particularly prolific in major discoveries from
cultivation-independent genomic surveys, this trend seems to have slowed down somewhat in the
past few years. Gradually, new conjectures emerged, predicting that we may soon have discovered all
the major divisions of life that were unknown to us before cultivation-free sequencing came of age
[Castelle and Banfield 2018]. After all, as more and more metagenomic projects are undertaken over
time, covering an increasing share of the world’s ecosystems, it appears logical that we would

eventually exhaust all the possible ecological niches for divergent life forms. In 2020 for instance, a
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large meta-survey has been performed on a broad collection of metagenomes, and “found little
evidence of new deep-branching lineages representing new phyla” in prokaryotes [Nayfach et al.
2020]. Despite this, metagenomes still harbour vast amounts of predicted genes that lack taxonomical
and/or functional annotations to this day [Bernard et al. 2018]. There is therefore still a great potential
for biological discovery in the microbial world, certainly at least in sub-phylum taxonomic scales. Many
of these elusive genes, for instance, could be specific to bacterial lineages that are incompatible with
lab growth requirements, but nonetheless belong to well-documented taxa. Still though, one could
argue that if such large portions of metagenomes escape characterisation attempts, then entirely
ruling out the possibility of discovering new highly divergent life forms in the future is perhaps a
pessimistic perspective. More generally, this vast pool of elusive environmental sequences remains a
major blind spot in our understanding of the microbial world, both its inhabitants and their internal

and collective processes.

This discrepancy between, on one hand, the massive amount of environmental sequences that
remain uncharacterised and, on the other, the apparent ebb of biological discoveries that are made
from them, is reflective of a number of challenges that MDM research is currently facing. The first,
and perhaps the most fundamental, is the fractal-like structure of the space of microbial unknowns®,
At every stage of unravelling the MDM of an ecosystem, only a portion of it is effectively addressed:
rarely occurring organisms may not be accurately represented in a metagenome, only a fraction of
any metagenome can be assembled into MAGs, MAGs often fail to cover the entirety of an organism’s
actual genome, and most MAGs contain many genes that cannot be assigned to known families.
Methodological developments are thus required to improve the reconstruction and annotation of
metagenomes and MAGs, in order to increase their descriptive and discovery power. A second
challenge resides in the inference of metabolic and ecosystemic functions from MAGs. Genomic
information can provide only limited insight into the internal function of a microorganism or its
interaction within an ecological community, and complementary methods used in tandem with
metagenomics have proven useful to lift these limitations. These include other meta-omics methods
(metatranscriptomics, metaproteomics, metabolomics), as well as bioimaging and mass spectrometry
techniques [Jiao et al. 2021]. Lastly, improvements to cultivation protocols could lead to new microbial

strains being grown and studied in lab conditions, which would provide biologists a much more

8 This is an analogy to Koonin’s “fractality of the prokaryote gene space-time” in The Logic of Chance (p.
75) [Koonin 2012]. He describes prokaryotic pangenomes as having a distinct structure consisting of a reduced
core, a larger shell and an even larger cloud. He then goes to show that this structure exists at all levels of
prokaryotic lineages, from the pangenome of a single multi-strain bacteria to that of prokaryotes as a whole:
zooming in or out on prokaryotic evolution does not affect the core-shell-cloud picture of the current lineage’s
pangenome.
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detailed knowledge of their physiology. To achieve this goal, functional information gained from meta-
omics studies could be leveraged towards the production of specifically well suited growth strategies.
Co-cultivation strategies could also be devised for pairs or groups of microbes that form obligate
syntrophic partnerships, similar to the two successful isolations of Asgard archaea mentioned above.
The different challenges listed here are naturally interconnected, which highlights the benefit of a

plurality of complementary approaches to improve our understanding of the microbial world.

In this chapter, we present the work we conducted in an attempt to address the persistent issue
of unravelling the uncharacterised fraction of metagenomes. In particular, we sought to measure the
diversity of ancient, highly conserved gene families in natural environments. Our hypothesis was that
identifying divergent homologues of genes that evolve notoriously slowly, and are recorded in most
(if not all) extant lineages, would result in particularly interesting candidates for potential biological
novelty. Highlighting these potential sources of novelty could guide further MDM investigations,
especially in the search for new basal groups of microbial lineages. We opted for the OM-RGC (Ocean
Microbiome Reference Gene Catalog) metagenome as the target environmental dataset for our
analyses, due to its highly comprehensive sampling of marine environments across the planet
[Sunagawa et al. 2015]. Starting from a reference dataset of highly conserved gene families, we
performed iterative alignment-based searches in the OM-RGC database to gather increasingly distant

homologues around the references.

In the following section, we explain the motivations for implementing an iterative process to
retrieve remote homologues, as well as the specific method we developed and how it performs on a
benchmark dataset. We then return to the real-world analysis mentioned above, and detail the

datasets we used to explore the marine microbiome.

2. Iterative detection of distant homologues

2.1 - What motivates a propagative approach?

Sequence alignment algorithms, such as BLAST, perform best above a certain threshold of
similarity between sequences. For protein sequences, in particular, the accuracy of aligners remains
high above the 30% mark for sequence identity, but drops drastically once the identity dips below
25%, defining a critical range of sequence similarity known as the “twilight zone” for protein alignment
[Rost 1999]. Below this range, the homology signal between proteins is increasingly blurred by
fortuitous local matches, making the detection of distant homology a persistent challenge in

bioinformatics, which calls for a change in strategy. Instead of relying on a single alignment search
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with over-relaxed similarity cut-offs to identify remote homologues, some of these strategies attempt
to establish this homology indirectly, in a propagative approach. Starting from a “seed” sequence (or
group of sequences), for which we want to identify distant homologues, successive search steps are

performed, each time updating the search criteria to reflect the newly retrieved homologues.

Z

7
fis il

4
Befo
Z 3000 :c

R MELANESIAN
S, ISLANDS

AUSTRALIA

Figure 19: Migration routes of Polynesians from mainland Asia to the Pacific Islands.
From: [Eccles, n.d.].

The underlying assumption is that gaps that are too big to be cleared by a single step (of search)
could still be crossed with a series of shorter steps. Consider, for the sake of comparison, the
indigenous population of Easter Island, one of the most remote inhabited locations in the world. The
first humans to settle on the island could likely not have reached it directly from mainland Eurasia.
Instead, it is believed that the Rapa Nui people descend from Polynesians, and that the spread of
Homo sapiens in the Pacific islands of Oceania followed a chain of shorter migrations, from South East
Asia to New Guinea, then to the Islands of Salomon, Vanuatu, Fiji, Polynesia and eventually Easter
Island [Hunt and Lipo 2006] (Figure 19). Had Melanesia and Polynesia been sparser, with fewer islands
separated by longer distances, H. sapiens may have never been able to settle on Easter Island.
Similarly, the iterative approach to detecting remote homology presupposes that between two

sequences that cannot be aligned directly, there exists a chain of intermediate sequences placed at
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regular enough intervals that each can be reached from the previous one, collectively bridging the

evolutionary gap between the start and end sequences.

2.2 - Different classes of iterative algorithms

The main algorithm implementing such a strategy to identify remote homologies is PSI-BLAST
[Altschul et al. 1997]. From an initial set of query proteins, PSI-BLAST constructs a position-specific
scoring matrix (PSSM), which represents a statistical profile of the input sequences. This matrix is then
used to identify similar proteins in a database, which are then taken into account to update the
weights of the profile, prior to the next search phase. The iterations end when no new sequence has
been found by the last search step. This allows the retrieval of more homologues than a regular BLAST
search, and reduces the variability of the results based on the initial choice of query proteins. The time
performances, however, can make the use of PSI-BLAST cumbersome on larger sequence datasets, as

all target sequences are queried at each step of the procedure.

Some methods for sequence comparison rely on other approaches than sequence alignments.
Several algorithms based on hidden Markov models (HMMs), in particular, have been developed as
alternatives to BLAST. Fundamentally, these methods consist in using HMMs as statistical descriptors
to condense the information contained in a multiple sequence alignment (MSA), in a similar way to
PSSMs but allowing for a finer level of detail by taking into account insertions and deletions. Sequences
can then be scored against a HMM to check their similarity with the underlying MSA, and HMMs can
even be compared together by pairwise HMM-HMM alignments [S6ding 2005]. These comparisons
are usually more sensitive than those based on profiles or direct sequence alignment, simply because
Markov models are finer descriptors of sequence data that can take into account more parameters
than PSSMs (e.g. by implementing site-specific gap penalties, rather than uniform values). As a result,
a single HMM-based search is generally able to identify some homologues beyond the twilight zone
of protein similarity. An iterative version of HMM search has been developed for detecting remote
homologies, dubbed HHblits, which relies on pairwise HMM alignment [Remmert et al. 2012]. Simply
put, the query sequences are abstracted into a query HMM, and sequences in the target database are
clustered by similarity, before constructing one target HMM per cluster. The query HMM is then
compared to each target HMM, and target HMMs with hits below a certain E-value threshold are
retained. A new query HMM is then built using query sequences as well as those of matched target
HMMs. This protocol leverages the statistical power of Markov models to produce fast and sensitive
searches, but it does come with the requirement of having queries and databases already formatted

as HMMs, or paying the computational cost of formatting them de novo.
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We developed an alternative approach to PSI-BLAST and HMM-based models that also relies on
iterative searches to identify distant homologues, this time based on chains of direct sequence
alignments. We called our implementation of this method SHIFT, for Sequence Homology Iterative
Finding Tool. From an initial set of seed sequences, a target database is queried by a BLAST alignment,
and the direct homologues of seed sequences (above given thresholds of E-value, sequence identity
and alignment coverage) are retained. This group of first-degree homologues are then used in a
second round of search against the remainder of the target dataset, and their homologues (thus
second-degree homologues to the initial seeds) are retained. A new cycle of search then begins, and
so on, each time using as queries the sequences newly retrieved at the previous step (Figure 20A-B).
The resulting set of homologues is therefore layered around the initial queries, like the layers of an
onion: the seed sequences occupy the central position, and are direct homologues to the first layer of
target sequences, which are themselves homologous to sequences in the second layer, and so on. As
with PSI-BLAST, the execution is interrupted once no new match is found at a given search step

(HHblits, on the other hand, requires its user to specify a priori the number of iterations to perform).
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Figure 20: Iterative aggregation of remote homologues with SHIFT.

(A) From a set of seed sequences belonging to a given protein family, a first search iteration finds
environmental homologues (dark blue) for some of the seeds. A second search iteration then uses
these environmental sequences as queries to find more homologues (medium blue, red outline), which
are themselves used as queries for a third search iteration finding further environmental homologues
(light blue, yellow outline).

(B) Schematic representation of the main steps of SHIFT. Taking a FASTA file for a reference family as
input, sequences are repeatedly alighed against the target database to find increasingly distant
homologues. A sequence similarity network with reference sequences and homologues is then
produced.

(C) At each iteration of the search, newly found homologues are only retained if their aligned region
can be mapped back onto a seed sequence in a way that ensures at least 80% coverage on all
sequences along the chain of aligned sequences.

When creating chains of direct pairwise alignments, two opposite kinds of anomalies can occur

and challenge the validity of the inferred distant homology between connected sequences. Both of
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these pitfalls come from the fact that slightly different regions of a sequence can be aligned to

different homologues, even if each resulting alignment covers a sufficient portion of each sequence.

Firstly, consecutive alignments can extend each other to the left or the right seemingly
randomly, such that only a small interval is shared by all sequences, with a strong but narrow
homology signal (Figure 13A). This can arise, for instance, if all sequences in the alignment chain share
a short and frequently occurring protein domain, but are otherwise largely unrelated. Conversely,
each aligned region along a chain of alignments can extend the previous one horizontally in the same
direction, which produces a sliding or ‘staircase’ pattern, wherein the aligned parts of the start and
end sequences are eventually completely mismatched (Figure 13B). To avoid both of these pitfalls,
SHIFT imposes a significant reciprocal coverage between all sequences: after each step that retrieves
new potential homologues, all candidates are checked to map back onto a seed sequence, typically
with at least 80% of coverage on each. All sequences along a valid alignment chain thus have >80% of

their length indirectly aligned to the seed sequence set (Figure 20C).

2.3 - Stringent models are required to preserve valid results

To test the reliability of SHIFT for retrieving distant homologues, we performed a benchmark on
a set of 3402 simulated protein families. We generated a collection of toy phylogenies, with a balanced
binary topology on 64 leaves, but with asymmetrical branch lengths on opposing sides of the root.
Thus, in each phylogeny, branches on one side all had a uniform unit length, whereas some internal
branches on the other side were elongated by a multiplicative factor between 1 and 8. To generate
our artificial protein families, each tree was assigned a randomly generated protein sequence of 300
amino-acids, which was numerically evolved along the tree, resulting in 64 different sequences, half
of which had diverged faster than the rest (in accordance with the elongated internal branches on one
side of the tree). ‘Slow-evolving’ sequences (at the tips of non-elongated branches) within the same
toy family shared together an average of 42.7% amino-acid identity. We then conducted SHIFT
searches for each family, each time using the 32 slow-evolving sequences to retrieve their 32 fast-
evolving homologues among all the sequences of all other protein families (64 sequences from each

of 3401 other families, i.e. 217,664 non-homologous sequences to filter through).

The performance of SHIFT in retrieving these homologues was evaluated against two metrics:
precision and recall. A high precision indicates a low rate of erroneous positive calls, meaning that
reported homologues can be trusted to indeed belong to the seed protein family, whereas a high recall
indicates low rates of false negative calls, meaning that most of the existing homologues for that family

were successfully retrieved. In general, there is a trade-off between precision and recall for
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classification tasks, and increasing one at the expense of the other can be relevant depending on the
relative severity of false positive or false negative errors. In our case, a false positive error would be
to include as homologue a sequence that is unrelated to seeds. When this happens in SHIFT, an
unrelated sequence that is mistakenly retained will then be used to further query the target database
for its own homologues, which might eventually result in the inclusion of many more sequences that
are not actually homologous to the starting sequences. There is therefore a risk of a snowballing effect
for false positives, due to the very nature of iterative searches. This problem is also well-documented
in PSI-BLAST, known as “model corruption”: once an unrelated sequence is retained, it will skew the
weights of the PSSM in a way that enables other unrelated sequences to be matched as well [Schaffer
et al. 2001]. For all iterative methods, this model corruption not only undermines the reliability of the
search results by creating incorrect outputs, but can also inflate the time and memory costs of their
execution with irrelevant and unnecessary computations. Limiting the frequency of false positives is
therefore highly desirable, as long as some recalling power is preserved, including for non-trivial cases
(i.e. still being able to detect some non-direct homologues). In our simulations, we observed a perfect
precision score across all instances, meaning that unrelated sequences were never marked as
homologues erroneously. The recall strength of SHIFT, on the other hand, varied based on the rapidity
at which fast-evolving sequences diverged from their regular counterparts (quantified by the
elongation factor applied to internal branches). When the divergence speed was up to 2.5 times the
regular rate, distant homologues were nearly systematically retrieved; then the recall power gradually
fell, down to a near-zero for six- and eight-fold branch length increases. The method implemented in
SHIFT thus retrieves remote homologies rather conservatively, minimising the risk of model corruption
from spurious homology calls, although this comes at the expense of an inability to retrieve many

homologues in cases of extreme divergence.

3. Distant homologues of ancestral gene families in the ocean

microbiome

3.1 - Highly conserved gene families

The speed of sequence evolution and the phyletic distribution across taxa are both highly
variable properties of gene families. In practice, evolutionary biologists are often predominantly
interested in families that are well-distributed across the tree of life and show a relative stability in
their sequence, as they preserve a greater amount of phylogenetic signal than fast-evolving genes.
These genes can be called highly conserved, both in the sense that their sequences accumulate

mutations at a slower pace, and that they are rarely lost from genomes altogether. This latter part is
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of particular significance, because genomes have a higher plasticity than genes, and the gene content
of a genome can evolve much more rapidly than the actual sequence of most genes. In fact, many
genes in any given genome can be relatively ancient (typically, as old as their host’s domain of life),
but only a very narrow set of core genes are reliably found across taxonomic scales with limited
exceptions [Wolf et al. 2009]. Many of the gene families among the most conserved are involved in
fundamental molecular processes that are shared by all forms of cellular life and likely originated at
the time of LUCA or before. These include, for instance, numerous functions related to transcriptional
and translational machineries (such as ribosomal RNAs and proteins, frequently used as phylogenetic
markers), as well as transporter proteins that mediate the import and export of biochemical products
across cellular membranes. In a sense, those core genes can be thought of as the most basic
prerequisites for sustaining cellular life, a hypothesis that can be confirmed by gene knockout
experiments to observe the consequences of their loss on the survival of their host. As such, it can be
reasonably expected of any undiscovered lineage to also rely on these core genes for the same
functions as observed in known organisms. In other words, detecting divergent variants of universally
conserved genes in the microbial dark matter could potentially be indicative of new groups of currently
undescribed organisms, or at least suggest divergent modes of operation in the fundamental

processes of cellular life.

We thus sought to explore the environmental diversity of highly conserved gene families, as
well as the potential evolutionary implications that divergent variants of these families may have. We
assembled an initial dataset of gene families, and from this we extracted a small selection of
particularly conserved families to use as seeds for our distant homology search. The initial dataset was
constructed by Romain Lannes, former PhD candidate in the lab, by gathering a representative sample
of public genomes across all major groups of life, and performing a large all-against-all BLAST search
of all genes present in these genomes. The resulting SSN consisted of hundreds of thousands of
connected components, and we extracted a subset of 53 clusters corresponding to the most
evolutionarily conserved families in the dataset. These included 12 families of ribosomal proteins, as
well as a number of families involved in transcription, chromosome stability, amino-acid biosynthesis,

and protein translocation.

3.2 - The Tara Oceans metagenome

Natural aquatic environments across the globe harbour an unparalleled diversity of
microorganisms. Each millilitre of water can contain between 10* and 10° microbes, which account for
up to two thirds of total oceanic biomass [Bar-On, Phillips, and Milo 2018]. As the primary contributors

of organic carbon to the marine food web, microorganisms are an essential component of aquatic
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ecosystems, sustaining the larger occupants of higher trophic levels. The marine microbiome also plays
a vital part in the capture of carbon dioxide and the release of oxygen into the atmosphere, equalling
terrestrial forests and wetlands. In the current context of anthropogenic climate degradation,
understanding the composition, organisation and function of the marine microbial biosphere is

therefore extremely important for the preservation of biodiversity and ecosystems at large.
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Figure 21: Sampling sites of the Tara Oceans expedition.
From: [Sunagawa et al. 2015].

Global-scale efforts to sequence the oceanic microbiome have been carried out in the last few
decades. One of these projects, conducted by the Tara Oceans foundation and scientific consortium,
collected hundreds of water samples in 68 marine locations around the Earth, at varying depths and
times of day (Figure 21). Metagenomic sequencing of these samples led to the constitution of the
Ocean Microbiome Reference Gene Catalog, a considerable dataset of over 40 million genes from
marine microorganisms, and an unprecedented window into the diversity of the microbial world
[Sunagawa et al. 2015]. One of the first discoveries made from this genetic record, for instance,
highlighted the central role of temperature in shaping microbial community composition in the sunlit
layer, more so than geographical distance. Gene rarefaction analyses showed that almost no new
genes were detected by the end of the sampling, suggesting that this dataset constitutes a virtually
exhaustive picture of the microbial gene space in the ocean, at least in the locations sampled. In this
Tara Oceans metagenome, at time of initial publication, 45% of sequences lacked a taxonomical

annotation at or below the Domain level, and 43% were unassigned to a functional orthologous group.
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A large part of the genetic diversity in the global ocean is therefore still undercharacterised, and
unravelling this mysterious fraction could thus be an abundant source for discoveries of exciting new

biology.

In the following article, we used SHIFT to mine the OM-RGC metagenome in order to measure
the environmental diversity of our selected protein families. This resulted in a seven-fold increase of
their sequence content once environmental homologues are identified. We found that a fifth of those
sequences diverged more from any gene in the entire diversity of well-characterised organisms than
bacterial and archaeal homologues diverged on average in our reference dataset. These highly
divergent variants were present in comparable proportions in all sampling sites, suggesting that MDM
still persists in many marine environments. In particular, we investigated the significance of divergent
environmental homologues in three key protein families. In DNA polymerase clamp loaders, we found
groups of divergent variants spread throughout the phylogenetic diversity of the family, suggesting
that a diversity of uncultivated marine organisms replicate DNA using various unusual proteic
machineries. We also detected a new variant of SMC proteins, responsible for chromosome
conformation and stability in all Domains of life [Hirano 2002, Cobbe and Heck 2004], with unusual
structure and domain architecture in Actinobacteria. Specifically, this divergent SMC clade has lost the
hinge domain responsible for interfacing with DNA to initiate DNA binding [Gruber et al. 2006], which
indicates that these proteins may either perform a different function than usual SMC, or use a
different mechanism to achieve this function. These hinge-less SMC could be encoded by known
members of Actinobacteria (which would be the first description of a duplication of SMC in
prokaryotes), or by a novel lineage within this phylum with a unique SMC variant. Lastly, we identified
clusters of divergent recombinases that were enriched in super-small cell size fractions, typical of CPR
and DPANN but phylogenetically distinct from recombinases of those phyla. These recombinases
might belong to unknown bacteriophages, or perhaps to unknown groups of ultra-small organisms,
and in any case highlight this size fraction as a particular source of potential biological novelty.
Together, these results support the notion that significant gaps remain in our understanding of
microbial life, and provide examples of possible discoveries to be made regarding new types of biology

in the ongoing unravelling of microbial dark matter.
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Abstract

Background: Metagenomics has considerably broadened our knowledge of microbial diversity,
unravelling fascinating adaptations and characterising multiple novel major taxonomic groups, e.g.
CPR bacteria, DPANN and Asgard archaea, and novel viruses. Such findings profoundly reshaped the
structure of the known tree of life and emphasised the central role of investigating uncultured
organisms. However, despite significant progresses, a large portion of proteins predicted from
metagenomes remain today unannotated, both taxonomically and functionally, across many biomes

and in particular in oceanic waters, including at relatively lenient clustering thresholds.

Results: Here, we used an iterative, network-based approach for remote homology detection, to
probe a dataset of 40 million ORFs predicted in marine environments. We assessed the
environmental diversity of 53 gene families as old as cellular life, broadly distributed across the Tree
of Life. About half of them harboured clusters of environmental homologues that diverged
significantly from the known diversity of published complete genomes, with representatives
distributed across all the oceans. In particular, we report the detection of environmental clades with
new structural variants of essential genes (SMC), divergent polymerase subunits forming deep-
branching clades in the polymerase tree, and variant DNA recombinases of unknown origin in the

ultra-small size fraction.

Conclusions: These results indicate that significant environmental diversity may yet be unravelled
even in strongly conserved gene families. Protein sequence similarity network approaches, in
particular, appear well-suited to highlight potential sources of biological novelty and make better

sense of microbial dark matter across taxonomical scales.

Keywords: Microbial dark matter, Sequence similarity networks, Distant homology, Microbiome
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Background

Over the last decades, novel sequencing methods have allowed microbiologists to appreciate the
ubiquity and abundance of uncultured organisms [1-5], and access microorganisms’ genomes
beyond the isolation-cultivation dogma issued from the Koch principles [6] that underpinned
microbiological studies for decades. Metagenomic studies [7] have led to an unprecedented
broadening of our knowledge of microbial diversity [8], from the unravelling of microbial adaptations
and interactions in numerous environments [9-12] to the characterisation of multiple novel major
taxonomic groups [13—-17] — most notably CPR bacteria [13, 18, 19], DPANN archaea [18, 20, 21] and
Asgard archaea [22-24], profoundly reshaping the structure of the tree of life. Large groups of novel
viruses [25-27] and mobile elements [28] have also been unearthed. Together, these major
discoveries emphasise the central role of investigating yet uncultured organisms, believed to
constitute the majority of overall microbial lineages [3, 29], in addressing many fundamental

guestions of biology and evolutionary biology.

Over time, as cultivation-independent sequencing efforts are carried out in an increasing range of
ecosystems, discovery events of novel branches near the base of the tree of life are predicted to
become less frequent [8, 17]. In accordance with this perspective, an extensive study of over 50,000
MAGs, assembled from a vast ensemble of metagenomes and including 12,556 novel candidate
species-level OTUs, found no reliable evidence of novel prokaryote phylum content [30]. It may
therefore seem that whatever biodiversity remains to be discovered should yield few more “major

unknowns”.

However, contrasting with these observations, it still persists that across most biomes, large portions
of environmental metagenomes remain taxonomically and functionally unannotated, even at
relatively permissive clustering thresholds [31]. This vast pool of uncharacterised sequences remains
a significant blind spot in our grasp of the extant biological diversity on Earth. Some may yet belong

to genomes of unknown organisms that have so far escaped detection efforts, for instance due to
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accelerated evolution rates or an ancestral divergence from known organisms. Novel genes of well-
characterised organisms with “open” pangenomes, divergent paralogues of known genes, and
unusual mobile elements may also be expected to contribute to this “microbial dark matter” [4]. In
any case, the persistence of those biological unknowns highlights the need for novel approaches

complementing the current techniques to mine metagenomes for highly divergent groups.

Various network-based approaches [32], in particular, have been developed to address these
concerns. Co-occurrence networks, for instance, can help assessing ecological roles of unknown taxa
[33]. Sequence similarity networks, wherein pairs of primary sequences are connected according to
set similarity criteria, can also be employed to compare sequences from cultured and uncultured
organisms [34, 35]. In 2012, Lynch et al. used sequence similarity networks to identify several
candidate new lineages from environmental 16S rRNA [36]. In 2015, Lopez et al. designed a network-
based exploratory analysis to probe metagenomes for distant homologues of well-distributed gene
families [37]. 86 clusters of genes broadly distributed across Domains of life were used as seeds for a
two-step BLAST search inside a metagenome collection. Seed sequences were then gathered in
sequence similarity networks together with their direct and indirect environmental homologues, and
environmental sequences gathered in the second alignment step were more divergent from their
cultured relatives than those gathered in the first round. The authors found several hundred groups
of highly divergent environmental variants, some of them potentially compatible with novel major
divisions of life. Consequently, (i) iterative explorations of environmental datasets may allow the
retrieval of increasingly divergent variants (Fig. 1A), and (ii) network-based methods may be well-
suited to handle this type of data, by integrating sequences with various levels of divergence within
homologous gene families. Sequence similarity networks have also been used recently to assess how
the deep-learning breakthrough in protein structure prediction may be leveraged to shed light into

“functionally dark” regions of the natural protein space [38].
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In this work, we conducted an exploratory search of ocean metagenomic data to identify potential
sources of novel diversity in highly conserved, near-universal gene families. Our search mined the
environmental diversity of the Ocean Microbial Reference Gene Catalog (OM-RGC) dataset [39]. This
extensive, non-redundant record contains sequences for over 40 million bacterial and archaeal
genes, predicted from metagenomic sequencing of a large variety of marine environments across the
world. At the time of initial publication, around 45% of these sequences lacked taxonomical
annotation at or below the Domain level, and 43% lacked functional annotation to an eggNOG
orthologous group (OG), highlighting the existence of a vast, undescribed diversity in the global
oceanic microbiome, as well as the necessity of additional efforts to improve its characterisation. To
perform this search, we further developed the iterative explorative strategy of environmental
datasets initiated by Lopez et al. [37], by allowing distant homologue search iterations to continue
indefinitely until convergence. Specifically, we focussed our search on ancestral gene families that
showed particular conservation across their taxonomic distribution in the face of evolution.
Retrieving highly divergent variants in such families could indeed carry an increased biological
significance, given their stability in primary sequence for many reference genomes, and potentially
guide future searches for novel putative taxonomical groups or biological functions involving these
nearly universal gene families. We thus used a custom dataset of 53 ancient, conserved gene families
with key biological functions to initiate our iterative probing of OM-RGC. We identified highly
divergent variants of multiple gene families, uncovering new putative structural and sequence

variants of biologically essential proteins across taxonomical scales.

57



104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Results and Discussion

Oceanic metagenomes harbour distant homologues of highly conserved protein families

We developed an iterative mining procedure to accumulate highly divergent environmental variants
for families of genes or proteins of interest. From an initial set of nearly ten million protein
sequences gathered from prokaryotic, eukaryotic, viral and plasmidic complete genomes (Table SI-1),
we selected a set of 53 protein clusters, highly conserved and at least as old as cellular life. Most
clusters corresponded to single protein families, though a few of them comprised proteins from two
or more closely related families (we hereafter refer to those clusters as families for simplicity, and
will make multiplicity cases explicit when discussing such clusters specifically). These families
spanned a total of 125,774 sequences and included 12 families of ribosomal proteins (Table SI-2). On
average, bacterial sequences in these families had 34.9% amino-acid identity to their closest archaeal
homologue (and vice-versa), roughly illustrating the level of divergence to expect between sequences

from different Domains of life.

Each selected family was used as the seed for a deep homologue-mining procedure in the OM-RGC
dataset [39]. This iterative search aimed at aggregating around each seed family the diversity of its
environmental homologues, including variants too divergent to produce a significant direct alignment
to any seed sequence. For each family, direct oceanic homologues of seed sequences were identified
in a first round of search. The OM-RGC dataset was then further queried for homologues of those
homologues, and so forth until the procedure converged to find no additional environmental

homologues (See Fig. 1A-E and Methods for details).

We tested the performance of our method by conducting homology searches on a simulated dataset,
and found that our protocol was particularly resistant to false-positive homology calls. More
specifically, we sought to evaluate (i) how reliably our iterative procedure successfully retrieved

distant homologues of seed sequences, and (ii) whether this retrieval was prone to false-positive
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calls, where sequences would be attained from seeds that did not share a homologous origin. To that
end, we generated a collection of phylogenetic trees, based on a common balanced binary tree
structure, where branches along the path from the root to another given node (internal or terminal)
were elongated to represent various levels of divergence. Each tree was then assigned a randomly
generated amino-acid sequence, which was evolved numerically along its branches, resulting in some
slow- and some fast-evolving terminal sequences. Slow-evolving sequences within the same “family”
shared an average of 42.7% sequence identity. Finally, the slow-evolving subsets were each used as
seeds for iterative homology searches to retrieve their own fast-evolving homologues amongst all
sequences generated from all phylogenies. Across the 3402 test cases that were performed in total,
we detected no instance of false-positive homology hit, i.e. homology searches only ever retrieved
sequences genuinely related to the seeds. In cases where fast-evolving sequences diverged up to 2.5
times faster than their slow counterparts, the search procedure was nearly systematically able to
retrieve all divergent sequences (Fig. SI-1). When the evolution rate difference was four-fold, about
half of the test instances successfully retrieved all divergent homologues. Finally, above a six-fold
increase, seed sequences were largely unable to retrieve any divergent sequence at all. These results
on simulated data show that the procedure we developed to identify remote homologies aggregates
new sequences in an efficient but conservative manner that resists spurious homology calls, although
the higher complexity of real-world biological sequence data may be expected to yield aberrant

results on occasion.

Our iterative metagenome mining procedure expanded the selected 53 seed families by a total of
826,717 environmental sequences from OM-RGC (Fig. SI-2). All seed families had their own set of
environmental homologues, requiring an average of 7 rounds of iterative search before exhaustion.
Despite metagenomic sequencing sometimes yielding shorter gene sequences than what is
anticipated from genomes in culture, sequences retrieved from OM-RGC were only marginally
shorter than their reference counterparts (Pearson r=0.96, p-value 3.5x1073°), further confirming that

their divergence was not related to a systematic bias associated with sequence size.
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OM-RGC homologues of the 53 selected seed families were then compared against proteins from the
NCBI non-redundant (nr) database to find their closest relative amongst all published sequences with
taxonomically resolved annotations (Fig. 1F; Supplementary Text Sl-1). Only 6.7% of all retrieved
environmental sequences were >90% similar to their closest characterised relative, implying that a
large majority of environmental proteins cannot be accurately represented by genomes captured by
current cultivation or isolation techniques. Furthermore, 20.5% of environmental variants had less
than 34.9% similarity with their closest nr relative, i.e. they diverged more from any proteins of well-
characterised organisms than bacterial and archaeal homologues diverged from one another on
average in the reference dataset. Environmental homologues of ribosomal protein families had
generally higher similarity to their closest characterised relative than non-ribosomal environmental
sequences (one-sided Kolmogorov-Smirnov test, p-value <1.6x102%; Fig. SI-3), possibly owing to their
reputedly high evolutionary conservation. Still, even ribosomal protein families included very
divergent oceanic variants (Fig. SI-3). Moreover, all sampled oceanic sites revealed similar
proportions (but uneven absolute numbers) of divergent and highly divergent prokaryotic sequences
(Fig. SI-2). Any location in the global ocean could therefore be a prolific reserve of new microbial
gene variants, including temperate surface-layer habitats. Some of the retrieved environmental
sequences show levels of divergence to the known diversity that are comparable with the difference
between archaeal and bacterial homologues. These variants could potentially belong to
uncharacterised lineages that branched away from well-known taxa long ago, although alternative
hypotheses can be offered: divergent environmental homologues could, for instance, be distant
paralogues of seed sequences, that evolved faster than their known counterparts due to relaxed
selective pressure after duplication, and appear environmentally conserved but not described in

cultured organisms.
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Highly divergent clusters of environmental variants expand the diversity of multiple

universal protein families

Seed sequences and their (direct and indirect) oceanic homologues were then gathered in family-
specific sequence similarity networks (SSNs). Similar sequences in these networks are expected to
gather in coherent, well-connected groups, thus reflecting the structure of protein families in the
network topology. Sequences within each SSN were therefore partitioned into network communities
using Louvain clustering [40] (Fig. 1G). This higher-level view of network structures allows an easier
assessment of the environmental diversity, including identifying potential sources of biological
novelty in these protein families. In particular, clusters consisting exclusively or predominantly of
environmental sequences (>90% of environmental sequences), with little similarity to published
sequence records (<40% sequence identity to any non-environmental sequence in the nr database),
and containing enough proteins to be unlikely the result of sequencing inaccuracies, are intuitively

the most likely to correspond to genuinely novel groups of environmental homologues.

691 clusters of sequences were inferred in total across the 53 SSNs, of which we retained 80 clusters
of proteins fitting the above criteria for significant novelty potential. These 80 clusters of highly
divergent sequences were distributed across 25 ancient, conserved protein families. Remarkably, no
cluster with such a high level of divergence was found in networks of ribosomal proteins, possibly
due to a superior level of conservation or a higher coverage of their diversity in public sequence
databases. Still, the fact that clusters of divergent environmental homologues were identified in
nearly half of our selected protein families suggests that numerous key biological processes are
carried out by a currently underestimated diversity of protein primary structures. In other words, the
“functional dark matter” of proteins likely consists of both unknown functions and unknown actors of

known functions [31, 41] .

To assess how these groups of divergent sequences may relate to their reference counterparts, we

reconstructed phylogenetic trees regrouping seed and environmental sequences from each of the 80
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selected highly divergent clusters. This selection exposed an additional phylogenetic diversity in
conserved protein families when environmental contributions are considered. In particular, in some
families, sequences representative of certain divergent network clusters branched between or beside
the main groups of archaeal and bacterial sequences. Such phylogenetic placements indicate
substantial potential for novelty in the sequence space of those protein families. We detail findings

of particular interest for three families in the following subsections.

High environmental diversity in oceanic DNA polymerase clamp loaders

One of the selected seed families in our study consisted of several AAA+ ATPases [42], mostly
involved in clamp-loading systems for DNA replication. In the environmental diversity of this family,

we identified large contingents of highly divergent variants across the phylogeny of the family.

In a mechanism conserved across all cellular life forms, DNA polymerases process and replicate DNA
by binding onto circular clamps that encircle and slide along the template DNA strand. Sliding clamps
are embedded onto DNA by a pentameric clamp-loading system, which exhibits a universally
conserved structure in archaea, bacteria and eukaryotes despite differences in subunit composition
[43]. All clamp loaders consist of one “large” subunit (6 in bacteria, RfcL in archaea, Rfcl in

|”

eukaryotes) complemented by four “small” subunits: three y and one & subunits in bacteria (also
respectively called DnaX and HolB), four RfcS subunits in archaea, one each of Rfc 2-5 subunits in

eukaryotes. All subunits are homologous to one another within and across all three Domains of life

[44-47).

Our seed family consisted of sequences for the clamp loader “small” subunits (CLSSUs) described
above (i.e. bacterial DnaX and HolB, archaeal RfcS, and eukaryotic Rfc 2-5), as well as sequences for
the bacterial replication-associated recombination protein RarA. This protein, present in bacteria and
eukaryotes but not in archaea [48], is involved in homologous recombination and DNA repair, both in

the context of DNA replication and outside [49]. The RarA protein sequence is highly conserved and
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also substantially homologous to DnaX, and as such was grouped alongside it in the construction of

our seed families.

The iterative retrieval of environmental homologues for this protein family resulted in a nearly five-
fold increase of its sequence content (Table SI-2). In particular, the resulting SSN harboured 10 new
clusters of highly divergent environmental homologues (Fig. SI-4). Owing to their high divergence in
primary sequence, not all clusters translated to perfectly monophyletic groups in the phylogeny we
produced (Fig. 2), though they still generally maintained some level of coherence. Amongst the ten
environmental clusters, one had its representative sequences branch within reference archaeal and
eukaryotic Rfc sequences (cluster 26), and another translated to a new clade within reference
HolB/DnaX bacterial sequences (cluster 23). Additionally, one environmental cluster branched next
to bacterial RarA sequences (cluster 27), and its sequences were annotated as belonging to the B
subunit of the Holliday junction resolving complex RuvABC, already shown to cluster near clamp-
loading proteins in sequence networks [50]. Finally, sequences from seven divergent clusters resulted

in groups outside the bacterial and archaeal/eukaryotic seed sequence clans [51] in the phylogeny

(clusters 2, 14, 15, 16, 19, 24, 25). Eggnog annotations for these sequences mapped them
predominantly to HolB (COG0470), though it should be noted that one particular cluster contained

96% of functionally unassigned sequences (cluster 24).

Protein structures were predicted for representatives of seed and divergent environmental CLSSUs
using ColabFold [52, 53], and gathered in a dendrogram depicting their similarities (Fig. 3). Most seed
proteins used for this comparison showed similar structures, although HolB, DnaX, RarA and
archaeal/eukaryotic Rfc still formed distinct groups in the structure dendrogram. Structures inferred
from environmental variants followed a pattern similar to the sequence phylogeny, with
representatives from clusters 2, 15 and 23 branching near HolB references, and most other clusters

translating to structures sitting outside of the main reference groups. In other words, the
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environmental HolB variants that we identified on the basis of primary sequence divergence also

exhibited a divergence in 3D structure consistent with their phylogenetic placements.

Oceanic homologues of CLSSUs therefore diverge from their known counterparts in primary
sequence, and exhibit tertiary structures comparable, but not identical, to canonical CLSSU
structures. Such structural differences and sequence-based phylogenetic placements for these highly
divergent environmental CLSSU homologues could reflect the existence of undetected divergent
paralogues in these gene families, which would raise interesting questions about their possible
contribution in such a conserved subprocess of DNA replication. These could also hypothetically be
indicative of some unknown microbial lineage(s), though much more conclusive data would be
required before firmly asserting this. In any case, these results hint at a diversity of uncultivated
marine organisms replicating DNA using various unusual proteic machineries, possibly resulting in

unusual replication mechanisms operating in the ocean.

Novel abundant clade of SMC proteins with unusual structure in Actinobacteria

Another remarkable seed family consisted of SMC (structural maintenance of chromosomes)
proteins, and we identified a small but abundant group of environmental SMC variants with strikingly

singular structures within Actinobacteria.

SMC proteins are present in all Domains of life and act (as part of the SMC complex) as regulators of
high-order chromosome organisation [54]. Eukaryotic genomes encode six paralogous SMC proteins
(SMC1-6), due to a sequence of duplications around the time of the last eukaryotic common
ancestor. Indeed, a single copy of the smc gene is present in nearly all archaea and bacteria, with a
few exceptions. In some y-proteobacteria a different proteic complex, MukBEF, is responsible for
these functions instead [55]. Bacteria from various phyla can also harbour another complex, MksBEF,
alongside their SMC or MukBEF machinery [56]. MksBEF is believed to be evolutionarily related to
MukBEF, and both are structurally analogous to the SMC complex, but primary sequence

comparisons have ruled this structural similarity as convergent rather than due to distant homology
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[54]. SMC complexes are also notably absent from Crenoarchaeota, resulting in distinctive

chromosomal dynamics and cell cycle logics [57, 58].

A typical SMC protein consists of five domains: an N-terminal domain containing a Walker A motif; a
first helical chain of roughly 300 amino-acids; a central “hinge” domain; a second a-helix of
comparable length to the first; a C-terminal domain containing a Walker B motif [59, 60]. This linear
structure self-folds by linking the N- and C-terminal motifs into an ATPase “head”, with the two a-
helix domains forming an antiparallel coiled-coil between this head and the hinge domain. This hinge
then serves as a dimerisation site for a second SMC monomer, with accessory proteins binding to the
ATPase heads to complete the ring-shaped SMC complex [54]. The hinge region of the SMC complex
subsequently plays the essential role of mediating DNA binding, and allows the loading of SMC rings

onto chromosomes [61, 62].

From seed sequences in this family, we retrieved a rather limited amount of environmental
homologues (0.97 environmental homologue per seed sequence in this family, compared to a
median value of 2.6 across all families, see Table SI-2), but one small cluster of distant environmental
homologues was still identified (cluster 9 in Fig. SI-5). In the phylogeny produced from seed SMC
sequences and oceanic variants from this cluster (Fig. 4), environmental sequences formed a
monophyletic clade branching close to the base of seed actinobacterial sequences. These divergent
environmental sequences were functionally annotated as SMC proteins (COG1196), and were
strikingly abundant in the sequencing data, nearly seven times more so than other OM-RGC SMC
homologues. Moreover, this novel oceanic clade harbours SMC-related proteins that are critically
different in structure from canonical SMC proteins (Fig. 5A; average TM-score between two proteins
in the divergent cluster: 0.828; average TM-score between a protein in the divergent cluster and a
reference SMC protein: 0.440). Namely, these oceanic variants lack the hinge domain which is
normally essential to SMC assembly and function (Fig. 5B). As such, they may be considered more

similar to bacterial SbcC and archaeal and eukaryotic Rad50 proteins, thought to be distant
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evolutionary relatives of SMC [54]. Indeed, proteins from this ancestral family also consist of an SMC-
like head and an antiparallel coiled-coil with no hinge domain, dimerising instead through a zink-hook
structure induced by a CXXC motif [63]. However, FoldSeek structural comparisons clearly
discriminate between reference Rad50/SbcC proteins on one side, and SMC proteins (reference or
divergent OM-RGC variants) on the other (Fig. SI-6). The zink-hook CXXC motif conserved in
Rad50/ShcC is also absent from our environmental cluster sequences, confirming them as divergent

variants within the SMC diversity rather than beside it.

Several evolutionary scenarios could explain this new bacterial cluster of “hinge-less” SMC. Firstly, it
could be indicative of some paralogue of SMC existing in Actinobacteria. This would then be, to the
best of our knowledge, the first description of SMC duplication in prokaryotes [64]. Alternatively, this
divergent cluster could indicate the existence of an unknown lineage, supposedly branching within
Actinobacteria, where the SMC hinge domain would have been lost. In any case, the substantial
divergence of these environmental sequences to any gene published from a well-characterised
organism, together with the loss of the essential hinge domain and their remarkably high abundance
in the sampling data, suggests that we identified a new kind of biology within the SMC family. By the
absence of their expected interaction site with DNA, one would speculate that these hinge-less SMC-
related proteins must either perform a different function than known SMC or bind DNA through
different mechanisms. The broad distribution of hinge-less SMC variants across the oceans, their
monophyly and their relative abundance in the ocean microbiome suggest that they play an

important, underappreciated function in this oceanic clade.

Divergent recombinases from potentially novel groups in sub-micrometre size fractions

In a third family, consisting of RecA/RadA DNA recombinases [65], we identified other possible

sources of novel diversity, including within ultra-small cell size fractions.

During the course of DNA replication, accidental double-strand breaks (DSBs) in the DNA molecule

can have detrimental effects on genome stability and cell viability [66]. Recombinase proteins in the

14

66



325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

RecA/RadA family are central to homologous recombinational repair, a key replicative stress-
reduction pathway that can correct DSBs as well as other types of DNA damage. This family contains
the extensively studied bacterial recombinase RecA (also present in eukaryotic organelles) as well as

its archaeal and eukaryotic homologues, respectively RadA and Rad51 [65, 67—-69].

Identifying distant environmental homologues of this seed family increased its total size five-fold
(Table SI-2). Amongst this added diversity, four clusters of environmental sequences were retained as
highly divergent, totalling 1700 sequences. A phylogenetic tree was produced from seed sequences
as well as representative sequences for these divergent environmental clusters (Fig. 6). In this
phylogeny, sequences from a first cluster branched near the root of archaeal seed sequences, and
was functionally categorised as RadA (COG1066) in accordance with this placement (cluster 20 in Fig.
SI-7). A second cluster of divergent environmental sequences (cluster 12) branched within the
environmental ultra-small cluster in Bacteria. Interestingly, this cluster was predominantly annotated
as ArlH (COG2874), an archaeal protein involved in the biogenesis of the archaellum, a cellular
motility structure analogous to bacterial flagella [70]. Structure and sequence similarities between
ArlH and bacterial RecA have previously been described [71] but, to the best of our knowledge, no
evolutionary hypothesis has yet been put forth to explain this surprising homology. Finally, one
cluster of distant environmental RecA homologues (COG0468) branched within bacterial sequences
(cluster 5), and a final cluster, also annotated as RecA, saw its representative sequences sit between
the archaeal and bacterial references (cluster 19). Interestingly, both of these clusters were

|II

composed of >50% of sequences from the “ultra-small” size fraction of cells with diameters <0.2 um.
Such cellular sizes are akin to those of CPR bacteria and DPANN archaea [72]; however, seed
sequences from these ultra-small superphyla branch clearly within the clans of their respective
Domains of life. Additionally, environmental sequences from these ultra-small clusters bore no
remarkable similarity to viral sequences recorded in the NCBI Virus sequence database (accessed in

February 2023) and just 11 of them (out of 1700) matched to a single oceanic virus from the GVMAG

database [73].
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The origin of these divergent RecA proteins therefore remains open: they could, for instance, belong
to unknown bacteriophages or mobile elements populating the global ocean. They might also result
from a duplication and divergence of the recA gene in CPR bacteria, although they should in that case
be expected to appear in published genomes for members of this lineage. They may yet genuinely
belong to new uncharacterised, deep-branching cellular lineages of sub-micrometre cell size, though
significantly more evidence would again be required to support this hypothesis. Nevertheless, our
finding of new very deep-branching groups related to RecA is consistent with the description of new
basal groups of metagenomic RecA sequences formerly proposed [74], and highlights the ultra-small
size fraction as a notable source of novelty in this essential protein family. Uncovering divergent
forms of RadA in metagenomes is also exciting, because even some forms of RadA previously
described as inactivated have been demonstrated to be functionally relevant for their host cells, and
putatively attached to an alternative mechanism of replication initiation or in the regulation of origin
recognition [75]. Moreover, sequence divergence, typically in the non conserved region of intein-
containing RadA, may be functional, as it may affect the temperature-induced splicing of the intein of

RadA, a phenotype that has been described in Thermococcus sibericus [76].
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Conclusion

The prevalence of biological unknowns in environmental metagenomes remains, to this day, vast;
vast indeed to the extent that “known unknowns” and “unknown unknowns” constitute a relevant
distinction to address genes, organisms, processes and interactions at play in the uncultured
microbial world. With our network-based, multi-marker iterative approach, we sought to understand
the structure of environmental genetic variation for a range of ancient, conserved gene families with
functions essential to cellular life. We found that environmental variants for those gene families
could exist in marine microbiomes with considerable divergence to the known diversity. Moreover,
these highly divergent sequences organised in (sometimes vast) cohesive groups of homology,
supposedly harboured in (sometimes vast) groups of related genomes, as illustrated by the oceanic
variants of DNA polymerase clamp loaders, hinge-less SMCs, and deep-branching divergent

RecA/RadA variants from the ultra-small size fraction.

A common issue surrounding metagenomic data is to know whether predicted genes and proteins
actually exist in the sampled environment or result from aberrations in the assembly process. To
avoid this pitfall, we purposefully limited our analyses to larger clusters of (similar but non-identical)
sequences, from the already non-redundant OM-RGC dataset. Furthermore, the nature of our
retrieval process imposes at least 80% of the length of any retrieved sequence to map back to at
least 80% of a seed sequence (Fig. 1B-C). As such, recombined proteins mixing sequence fragments
from several protein families are unlikely to be matched to our “canonical” seed families if
exogenous regions cover more than 20% of their length. Lastly, the benchmarks we performed on
simulated protein families show that sequences unrelated to the search seeds are seldom retrieved
by erroneous homology calls. For these reasons, we believe that the groups of oceanic variants we
discussed correspond to genuine environmental homologues of reference sequences, rather than

assembly artifacts, protein recombinants, or non-homologous proteins from unrelated families.

17

69



390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

Still, various competing scenarios of evolution and diversification could explain highly divergent
homologues such as those we detected. We list some of them here, understanding that a single

“one-size-fits-all” explanation to all the divergent groups we identified is highly unlikely.

A first hypothesis could be that an environmental cluster represents deep paralogues resulting from
an ancestral duplication in the gene family. Though not impossible, this hypothesis does require an
explanation as to why these paralogues do not appear more broadly in the wide range of public
genomes currently available, save for some unlikely event of widespread parallel gene loss across the
tree of life. Alternatively, these divergent sequences could have been spawned by more recent gene
duplications at narrower taxonomic scales, after which they would have diverged rapidly from their

III

“original” copy. This is entirely possible, predominantly for clusters clearly branching inside the
phylogenetic clade of established taxa. The divergent SMC proteins we identified within
Actinobacteria are perhaps an example of this (this would then be the first description of an SMC
duplication in prokaryotes), though once again it would leave unexplained why most actinobacterial
genomes do not seem to carry these “hinge-less” variants. Cases like this are also interesting from a

functional standpoint, as the rapid divergence in primary sequence following gene duplication raises

guestions of neo- or subfunctionalisation for the novel paralogue.

Divergent homologues of highly conserved, ancestral families could also stem from uncharacterised
genomes bearing these variants. Marine viruses, or other mobile elements, could be carrying such
variants, especially those identified in smaller organism size fractions, such as the divergent forms of
recombinase A we reported. It is possible that the divergence of these homologues could then point
to radical gene changes, driven by specific selective pressures associated with non-cellular organisms.
Conversely, unknown cellular lineages that diverged recently (e.g. from known genera or families)
could also harbour unusual gene variants. In the functions we specifically targeted, strong constraints
on sequence evolution are expected, meaning that drastic changes in intracellular processes or

external selective pressure may have prompted those high levels of sequence divergence over short
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evolutionary timeframes. Lastly, the levels of divergence observed from some environmental groups
could be compatible with novel major taxonomic groups that diverged from the established diversity
some hundreds of millions, or even billions of years ago. This last hypothesis would, of course,
require a lot more evidence to substantiate such a claim, and full genomes with high levels of
divergence across their length would have to be produced and analysed thoroughly. Still, however
remote, the possibility for new basal branches in the tree of life should not be fully discarded in the

absence of conclusive evidence favouring other hypotheses.

All in all, the detection of divergent variants in key protein families, that have likely existed since
cellular life began, supports the notion that major gaps remain in our knowledge of biological
diversity, and that various forms of exciting new biology may be expected from unravelling this
microbial world. To that end, future methodological extensions that rely less on primary sequence
comparisons still appear warranted to address the whole natural diversity. The recent breakthroughs
in protein structure prediction, in particular, could greatly benefit microbial dark matter analyses, as
3D structures tend to be more conserved than primary sequences during evolution. As such, the
development of 3D similarity networks, connecting protein structures from cultured organisms to
structures predicted from metagenomes, could offer unprecedented insights into the evolution and
the functional landscape of environmental microbiomes, with possible applications to fields such as

ecological, biotechnological or biomedical sciences.
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Materials & Methods

Constitution of a conserved protein families dataset

We constituted a dataset of 9,737,821 proteins, from 4403 bacterial (including CPR), 567 archaeal
(including DPANN and Asgard), 120 eukaryotic, 18,020 viral and 1586 plasmidic genomes, acquired
from public NCBI databases [77] (Table SI-1). The sequence similarity network (SSN) of this protein
collection was reconstructed by an all-against-all DIAMOND blastp alignment [78] (version 2.0.9,
thresholds: E-value <107°, sequence identity =30%, mutual coverage >80%). This SSN contained
891,459 protein clusters (connected components). The assortative mixing between Domains of life
within each cluster was computed using the Python package networkx [79] (version 2.8.8). We
retained 53 protein clusters meeting thresholds of (i) Domain assortativity 20.65 and (ii) 150 or more
sequences from both archaea and bacteria. These 53 protein families comprised a total of 125,774

sequences.

Iterative retrieval of environmental homologues

40,154,822 gene sequences from the Ocean Microbial Reference Gene Catalog (OM-RGC v1) [39]
were collected, alongside corresponding sampling metadata and eggNOG [80] annotations, and
translated into amino-acid sequences. An iterative search for environmental homologues in the OM-
RGC dataset was conducted for the selected 53 protein families independently (building upon [37]).
For each family, seed sequences were aligned against the OM-RGC protein sequences with DIAMOND
(thresholds: E-value <10°, sequence identity >30%, mutual coverage >80%). Environmental
sequences retrieved were used as a base for a new round of DIAMOND alignment (identical
parameters) against OM-RGC. This procedure was iterated, each round using as queries the
environmental sequences retrieved in the previous round, until no additional sequence was found
(Fig. 1A). At each step, the aligned regions of matched sequences were checked to project back to a

region covering at least 80% of a seed sequence, to maintain the plausibility of distant homology
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between indirectly linked sequences (Fig. 1B-C). Sequences not meeting this criterion were discarded
before the next search iteration. 826,717 sequences in the OM-RGC dataset were assigned to the

selected protein families in this way (Table SI-2).

Precision and accuracy of our iterative retrieval protocol on simulated protein families

From a balanced binary tree with 64 leaves, we generated a collection of toy phylogenies. For each
non-root node in the starting tree, new trees were created by elongating branches between the root
and this node, by a factor of 1 (“null” case), 1.5, 2, 2.5, 3, 3.5, 4, 6 or 8, yielding 126 non-root nodes x
9 possible elongation factors = 1134 (non-unique) tree instances. Random sequences of 300 amino-
acids were then generated and numerically evolved along the branches of these trees using pyvolve
[81] (version 1.0.3, LG model). Doing three replicates per tree instance, we thus simulated a total of

3402 artificial protein families with 64 members each.

In each tree we generated, branches were only elongated from the root to one target node, and
therefore only on one side of the root, leading to leaf nodes on that side being further away from the
root than the leaves on the opposite side. Sequences simulated along those trees could therefore be
classified as slow- or fast-evolving depending on their side in the tree. 3402 iterative homology
searches (same parameters as for real-world data) were thus conducted, each time using the slow-
evolving sequences from one simulated family to find their fast-evolving homologues within the
entire set of generated sequences. The precision (percentage of true positive homology calls
amongst all retrieved sequences) and recall (percentage of fast-evolving homologues successfully
retrieved) of the search protocol were determined from these results, for each possible factor of
divergence, and each possible depth in the tree this divergence spanned (from 1, stopping at a node

directly under the root, to 6, all the way to a leaf node).
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Comparison of retrieved environmental sequences to cultured diversity

Environmental sequences retrieved for each of the 53 selected seed families were compared to
published sequences from taxonomically-resolved organisms in the NCBI nr database (downloaded in
March 2020) via a DIAMOND alignment search (E-value <107%). Similarity values between
environmental sequences and their closest published relative were calculated as the product of the

amino-acid identity in the aligned region times the alighment coverage on the shortest sequence.

Sequence similarity network reconstruction and analysis

SSNs were computed for each environmentally expanded protein family by conducting all-against-all
DIAMOND blastp alignments of seed and environmental sequences (E-value €10, sequence identity
>30%, mutual coverage >80%). We then inferred, using Louvain clustering (implemented in networkx,
v2.8.8) [40], node communities in those networks, i.e. groups of sequences tightly connected by
homology links. This clustering defined 691 communities across the 53 families in our dataset. We
further selected clusters containing at least 30 sequences, of which at least 90% were from the
environmental dataset, and with environmental sequences averaging 40% identity or less with their

closest published counterpart. 80 such clusters were identified across 25 families.

SSNs were rendered using Cytoscape (version 3.9.1) [82]. However larger networks, typically with
millions of edges, made visualisations intractable. Synthetic “meta-networks” of those SSNs were
created instead (Fig. SI-4, SI-5, SI-7). Rather than showing interconnections between all sequences,
these represented connections between sequence clusters (as defined above): each Louvain cluster
inferred in an SSN was condensed to a single “meta-node”, and two meta-nodes were linked by a
“meta-edge” if the corresponding clusters were adjacent in the SSN. Meta-edges were also given a
numeric weight representing the proportion of edges between clusters, relative to the total possible

number of edges if the clusters had been fully connected together.
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Phylogenetic analysis of divergent clusters

Sequences from divergent clusters were gathered in phylogenetic trees along with seed sequences.
We used CD-HIT (90% identity threshold, version 4.8.1) [83] to dereplicate sequences from each of
the 80 selected clusters, as well as seed sequences from each of the 25 corresponding families. Up to
100 sequences per environmental cluster and 200 seeds per family were selected as representatives.
We then first computed cluster-specific maximum likelihood phylogenies. Sequences from each
divergent cluster were aligned with corresponding seed sequences using Mafft (version 7.520, 1000
iterative refinement cycles) [84]. These alignments were then trimmed using trimAl (version 1.4.1)
[85], and phylogenies were produced using IQ-TREE (version 1.6.12, 1000 bootstrap replicates) [86—
88]. Next, we inferred family-wide alignment-free phylogenies, grouping together (representatives
of) seed sequences and all divergent clusters from each family [89, 90]. k-mer-based distance
matrices were computed between all representative sequences of a family using jD2Stat (version 1.0,
k=7) [91], and used to infer Neighbour-Joining trees with RapidNJ (version 2.3.2) [92]. All trees were

rendered and annotated in iTOL (version 6.9) [93].

Inference and comparison of protein tertiary structures

3D structures were inferred for a selection of representative sequences in the SSNs of SMC proteins

and DNA clamp-loading subunits.

For clamp loaders, one sequence was selected as representative for each cluster in the SSN.
Divergent environmental clusters were represented by the environmental sequence with the highest
degree (number of edges in the SSN) to other environmental sequences within the cluster; other
clusters were represented by the reference sequence with the highest degree to other references in
the cluster. For SMC proteins, which have a significantly longer primary sequence (around 1200
amino-acids), we sought to reduce the number of structures to infer de novo. Six sequences from the
divergent cluster of environmental SMC variants were chosen arbitrarily (all had maximal degree,

because the cluster was fully connected), and public AlphaFold structures [53, 94] were acquired
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from UniProt [95] to represent reference SMC sequences (UniProtKB accessions: POWGF2, Q5NOD?2,
A3PMS2, A9BZW2, P51834, Q69GZ5, Q8TZY2) and their Rad50/SbcC homologues (UniProtkB

accessions: AOA717YPX7, A5GLL1, 068032, AOA210VWK9, AOA640HOH1, P62134, P58301).

Structures were inferred for selected clamp loaders and environmental SMC sequences using
ColabFold (v1.5.2, default parameters) [52]. Then, reference and environmental clamp loader
structures were compared using FoldSeek (version 7-04e0ec8, all-against-all, easy-search mode, no
pre-filter, alignment by TM-Align) [96]. Inferred environmental SMC structures were compared with
UniProt reference SMC structures following the same protocol. For both protein families, these
comparisons were used to construct dendrograms with RapidNJ [92], taking as distance metric
between two structures the average local distance difference test (IDDT) score of the corresponding
bidirectional structural alignment. Dendrograms were plotted in iTOL [93] and annotated with 3D

models of the protein structures rendered by PyMOL (version 2.5.5).
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Figure 1: Iterative homologue search procedure. (A) lterative aggregation of environmental
homologues around seed sequences in a similarity network. From a set of seed sequences belonging
to a given protein family (green and orange nodes), a first search iteration finds environmental
homologues (dark blue nodes) for some of the seeds. A second search iteration then uses these
environmental sequences as queries to find more homologues (medium blue nodes, red frame),
which are themselves used as queries for a third search iteration finding further environmental
homologues (light blue nodes, yellow frame). (B) At each iteration of the search, newly found
homologues are only retained if their aligned region can be mapped back onto a seed sequence in a
way that ensures >80% coverage on all sequences along the chain of aligned sequences. (C) Left:
sequence D is found after three search iterations from seed A, and its alignment with sequence C can
be mapped back to A in a way that preserves 80% coverage on all sequences along the “alignment
chain”. Sequence D is therefore retained and will be used as query for the next iteration of the
search. Right: sequence D’ is found after three search iterations from seed A, but its aligned region
cannot be mapped back to A without breaking the 80% coverage requirement. D’ is thus not retained
as a distant homologue of A in this round of search. (D-G) Sequence similarity networks for SMC
proteins. (D) shows seed sequences only, (E-G) show seed and environmental sequences. In (D-F),
nodes representing seed sequences are coloured according to their taxonomic origin (yellow: non-
DPANN archaea; orange: DPANN archaea; light green: CPR bacteria; dark green: non-CPR bacteria;
shades of red: four eukaryotic SMC paralogues). In (E), environmental nodes are coloured in blue,
with darker shades for sequences retrieved in earlier iterations of the search, and lighter shades for
sequences retrieved later. In (F), environmental nodes are coloured in blue, with darker shades for
sequences with higher similarity to the known cultured diversity, and lighter shades for sequences
with less similarity. In (G), all nodes are coloured according to Louvain clusters inferred in the SSN

(one arbitrary colour per cluster).
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Figure 2: Alignment-free phylogeny of the DNA clamp loader subunits: HolB/DnaX/RarA/RFC
sequences and environmental homologues from significantly divergent clusters. Seed sequences
are coloured according to the Domain of life of their host organism (green: Bacteria, yellow: Archaea
and Eukaryotes). Groups of environmental sequences are coloured according to the network cluster
they belong to in the family SSN, and outlined in red. Numerical cluster labels are inherited from Fig.
SI-4 and shared with Fig. 3. Note: environmental network clusters 19 and 25 are both split into two

groups in this phylogenetic tree.
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19a

593

594 Figure 3: Dendrogram of tertiary structures of DNA clamp loader subunits: HolB/DnaX/RarA/RFC
595 sequences and environmental homologues from significantly divergent clusters. Protein structures
596 were inferred with AlphaFold and compared (all against all) using Foldseek. Leaves and structures are
597 boxed according to the Domain of life of their host organism (green: Bacteria, yellow: Archaea,
598 magenta: Viruses). Environmental leaves and structures are boxed in red, with numerical labels
599 corresponding to the SSN cluster they belong to, in accordance with Fig. 2 and Fig. SI-4.
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Environmental sequences are coloured in blue and outlined in red. Red dots indicate environmental
sequences for which 3D structures were inferred. Black dots indicate branches with >85% bootstrap

support.
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Figure 5: Environmental SMC homologues with divergent tertiary structure. (A) Dendrogram of
tertiary structures of SMC sequences and selected environmental homologues from significantly
divergent clusters. Protein structures were inferred with AlphaFold and compared (all against all)
using Foldseek. Leaves and structures are boxed according to the Domain of life of their host
organism (green: Bacteria, yellow: Archaea). Environmental leaves and structures are highlighted in
red. (B) Schematic structure of SMC monomers. Left: canonical SMC protein with N- and C-terminal
ATP-binding motifs, linked to a central hinge domain by two coiled-coil regions. This linear structure
folds (grey arrow) by joining the two terminal motifs into an ATPase domain, forming a helical coiled-

coil with the arm regions between the ATPase and hinge domains. Right: “hinge-less” environmental

38

90



617

618

619

620

621

622

623

624

SMC homologue lacking a hinge domain. The folded protein still features the ATPase domain at one

end of the coiled-coil helix, without the hinge at the opposite end.

19 (RecA/RadA)

Archaeal RarA &
Eukaryotic Rad51

12 (FlaH)

—

Bacterial & Eukaryotic
(organellar) RecA

20 (RadA)

5 (RecA/RadA)

Figure 6: Alignment-free phylogeny of RecA/RadA sequences and environmental homologues from
significantly divergent clusters. Seed sequences are coloured according to the Domain of life of their
host organism (green: Bacteria and eukaryotic organelles, yellow: Archaea and eukaryotic nuclei).
Groups of environmental sequences are coloured according to the network cluster they belong to in

the family SSN, and outlined in red. Numerical cluster labels are inherited from Fig. SI-7.
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1. Combinatorics of genes and gene parts

1.1 - Homologous and non-homologous genetic recombination

Gene duplication, sequence divergence, and recombination are generally understood as the
three main forces of gene evolution. Among these, genetic recombination stands out conceptually
because, unlike duplication and divergence, it goes against the historical model of evolution as a
predominantly tree-like process based on clonal replication. The term “recombination” actually
encompasses a variety of evolutionary mechanisms that all share a common characteristic: they depict
the gene space not as a collection of isolated, atomic units, but rather as a mosaic of compartments
that can be arranged and rearranged with some flexibility. Combinatorial processes of gene evolution
that involve this mosaicism of genes are fundamentally not tree-like, and therefore (tautologically)
gene families that evolved from such processes cannot be accurately described with canonical
phylogeny methods. Consequently, remodelled genes can sometimes be overlooked by evolutionary
analyses that focus mainly on phylogenetic trees. This is not because of a lack of awareness or
consensus on the prevalence of recombination in gene evolution; it is not disputed, for instance, that

the majority of protein-coding genes can be decomposed into distinct domains that can be arranged
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in a multitude of different architectures [Forslund, Kaduk, and Sonnhammer 2019]. Domains are even
the basis for several popular methods of protein function annotation, but investigations into the
evolutionary dynamics around domain rearrangements, and more generally around gene remodelling
as a whole, are less frequent. In this chapter, we show that network-based approaches can help to
detect and analyse these remodelling events, with a particular focus on gene fusions and gene fissions.
We studied how these mechanisms have affected the evolution of two different lineages, both
characterised by the emergence of complex multicellularity from unicellular ancestors: brown algae

and animals.

Processes of genetic recombination are further split in two main categories. The first one is
called homologous recombination, which is when DNA is exchanged between two corresponding loci
on homologous chromosomes. This is a common source of genetic diversity that occurs in all Domains
of life and is facilitated by a variety of mechanisms, including double-stranded DNA breaks repair
(Figure 22), and chromosomal crossover between non-sister chromatids during meiosis in eukaryotes
[Zickler and Kleckner 2015]. Prokaryotic organisms, which reproduce asexually, can particularly benefit
from recombinations with homologous genes acquired horizontally to avoid the deleterious effects of
Muller’s ratchet [Vos 2009]. Homologous recombination thus contributes to shuffling genetic
polymorphisms within populations but does not contribute to the creation of new gene forms. In this
way, it is defined in opposition to non-homologous recombination, which encapsulates all other types

of combinatorial processes of gene evolution.
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Figure 22: Mechanisms of homologous recombination following a double-stranded break.

A double-stranded break in DNA can be repaired with a homologous sequence (here in orange), for
instance a homologous chromosome. Several mechanisms can fix these breaks, including double-
stranded break repair (DSBR) by the formation and resolution of Holliday junctions (HJ), and synthesis-
dependent strand annealing (SDSA). Once the double-stranded break is fixed, the repaired
chromosome contains a portion of the homologous template.

Adapted from: [Sung and Klein 2006].

Non-homologous mechanisms of genetic recombination involve the movement of genetic
material between non-homologous (in the stricter sense of homology) gene families. They are
sometimes referred to as “illegitimate recombination”, a rather pejorative term that depicts these
processes as undesirable and deleterious. While it is true that, locally, most recombination events
have adverse effects on their hosts (as is the case for most mutations), many gene families have been
created through combinatorial processes, contributing to important adaptations and transitions in the
evolution of all organisms [Apic, Gough, and Teichmann 2001, Ekman et al. 2005]. Although various
types of non-homologous recombination have been described, each facilitated by specific molecular
mechanisms, we focused in particular on gene fusions and fissions, through which organisms can
develop new proteins with innovative functions [Pasek, Risler, and Brézellec 2006, Dohmen et al. 2020,

Padalko, Nair, and Sousa 2024].
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1.2 - Gene fusions and gene fissions

Gene fusion is the process in which a novel gene sequence is created by the merging of two
genes (or parts of genes) that previously existed as separate entities. The word “merging” here is to
be understood in the sense of concatenation: the resulting fused gene® is composed of distinct regions
that correspond to each “donor” gene sequence. A variety of mechanisms can give rise to gene fusions.
The first one, which is common to all Domains of life, consists in the loss of the intergenic region
between two adjacent open reading frames (ORFs), such that the transcription goes on uninterrupted
between the two genes. This is the main way for prokaryotes, in particular, to obtain fused genes,
whereas the intron-exon gene structure of eukaryotes allows for more modularity: gene fusions can
for instance happen by the gain of an exon from a different gene [Marsh and Teichmann 2010]. Larger-
scale rearrangements of chromosomes can also produce fusion genes, this time regardless of the

relative distance between two genes along the genome?.

The inverse process, wherein a single gene sequence becomes split in two new distinct genes,
is coherently called gene fission. Likewise, gene fissions can arise from various different processes,
both locally (e.g. the emergence of a new stop codon and intergenic region) and globally (e.g. genome
rearrangements). Gene fissions are usually less frequent than fusions, although relative rates of
fusion/fission events vary between different organisms [Kummerfeld and Teichmann 2005, Leonard
and Richards 2012]. This can be explained, at least in part, by the relative complexity of evolving a
novel intergenic sequence within an existing ORF (which requires the concurrent emergence of a new
stop codon, promoter and start codon), compared to the disappearance of the intergenic space
between two ORFs (feasible in a single event of stop codon loss or interstitial deletion). Split genes
may also be more restricted than fused genes in their function, e.g. if both split genes resulting from
a fission must be coexpressed and interact to fulfil the same role as the unit gene pre-fission, which

may lead to a counter-selection of gene fissions relative to fusions.

9 Some authors make a distinction between the fusion of whole genes, for which they reserve the term
“fused gene”, and the merging of only some parts of genes, called “chimeric genes”. For our purposes, we choose
to overlook this distinction, and we use the terms interchangeably.

10 Chromosome rearrangements are often deleterious, and in humans are associated with many types of
tumours and cancer [Mitelman, Johansson, and Mertens 2004]. The first detected instance of a fusion gene was
actually found in cancer cells, and oncogenic gene fusions are often targeted during diagnostics of these
pathologies. This can perhaps explain the use of “illegitimate recombination” in a human health, rather than
evolution, context.
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Figure 23: Gene fusions and fissions can occur through diverse mechanisms.

(A) The exon-intron structure of eukaryotic genes enables gene fusions via a number of processes.
Adapted from [Marsh and Teichmann 2010].

(B) Three mutational processes that may result in the fission of a gene with two conserved regions
(e.g. domains) A and B. From [Leonard and Richards 2012].

The genetic novelty created by gene fusions and fissions can generate new protein functions. In
both cases, however, there exists a general trend to favour recombination between genes performing
similar, or associated, functions [Yanai, Derti, and DelLisi 2001]. A number of reasons for this fact can
be put forward, both upstream and downstream from natural selection. First, co-functioning genes
have a higher chance of also being co-localised within genomes. This is especially true of prokaryotes,
in which proteins that function together are frequently encoded by ORFs belonging to the same
operon. In this context, local recombination events are more likely to involve genes with similar
functions when they occur within the boundaries of an operon. From a structural perspective,
furthermore, ‘homofunctional’ remodelling events may happen with less deleterious consequences.
If two genes that code for proteins involved in a same complex are fused, for instance, the resulting
fusion protein has a chance of adopting a structure that reflects the two ancestral proteins, which can
reduce the risk of destabilising the complex and impeding its normal function. Such events can thus
occur in a relatively transparent manner with respect to natural selection. Still, even remodelling

events that involve functional partners can lead to variations in function.

1.3 - Protein domains: the Swiss Army knife of protein annotation

Protein domains indubitably constitute the best acknowledged framework for discussions of
gene modularity and combinatorial evolution processes [Buljan and Bateman 2009]. Several databases
coexist that map the diversity of these domains, all differing in how they recognise, classify and
annotate these domains. Despite their differences, all of these databases provide an important

ontological basis for the study of non-homologous recombination: an explicit collection of basic
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building blocks for protein-coding genes that connect structural, functional and evolutionary aspects
of the protein space. Protein domains are thus highly versatile descriptors of protein composition,
because they represent good approximations of structural units, functional units and evolutionary
units all at once, and they consequently lend themselves to a wide array of studies. Looking at proteins
through the lens of domain architecture has produced numerous insights into the evolution of
organisms throughout the tree of life. First and foremost is the prevalence of multi-domain proteins
in all genomes, representing up to 80% and 60% of all eukaryotic and prokaryotic proteins respectively
[Apic, Gough, and Teichmann 2001] — in other words, a majority of proteins derives, at least partly,
from gene remodelling events. Domain rearrangements have been associated with some important
evolutionary changes, including environmental adaptation in plants, multicellularity in animals, and

eusociality in insects [Kersting et al. 2012, Cromar et al. 2014, Dohmen et al. 2020].
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Figure 24: Coverage of UniProtKB by Pfam domains over the last five Pfam releases.

The number of sequences in UniProtkKB has more than tripled between 2016 and 2021. In the same
time, successive releases of Pfam have maintained approximately the same coverage of UniProtKB:
~77% of sequences have at least one Pfam annotation, and Pfam domains cover on average ~53% of
a protein’s length.

From: [Mistry et al. 2021].

Despite their undeniable value, however, protein domains fall short of representing the entire
protein universe with perfect exhaustivity (Figure 24). Out of all the protein sequences in the
comprehensive UniProtKB database, for instance, roughly 23% of them do not contain a single Pfam

domain®! [Mistry et al. 2021]. Furthermore, Pfam domains only cover 53% of a protein sequence’s

11 When also taking into account the 12 other domain databases hosted by InterPro, this figure only goes
down to 18% [Paysan-Lafosse et al. 2023].
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length on average, meaning that nearly half of the total known proteome cannot be currently
described on the sole basis of protein domains. These figures have been remarkably stable over time,
in line with the successive updates of both protein sequence and protein domain databases. This
suggests that the non-domain-like portions of proteins are not unannotated because our sampling of
domains is incomplete, but rather because domains are defined towards a specific archetype of
protein sequence, which is in no way meant to be exhaustive. Intrinsically disordered regions, for
instance, have no fixed 3D conformation, and although some annotations do exist for disordered
domains, most fall outside the scope of what domains are meant to represent. Speaking more
generally, domains describe the organisation of proteins rather than genes, and consequently, gene
remodelling events do not necessarily operate strictly along the same lines. As an example, many
protein domains roughly correspond to exons or groups of exons [Liu and Grigoriev 2004], but this
view ignores that intronic sequences may be affected by remodelling too. A domain-centric approach
to characterise gene fusions and gene fissions thus has some limitations, and cannot account for all

the combinatorial processes that contribute to gene evolution.

2. Using similarity networks to identify remodelled genes

Although gene fusion and gene fission are mechanistically different, they still cannot be fully
dissociated because in terms of gene evolution, they are structurally opposite processes: a fission
event splitting a gene X into two genes X; and X, could hypothetically be ‘reverted’ by a fusion of X;
and X; into X, and vice versa (Figure 25A). Gene fusions and gene fissions both involve a ‘long form’
gene which contains two distinct (i.e. non-overlapping) regions that also occur independently in
separate ‘split form’ genes. Identifying these patterns can point to putative gene fusions or fissions,
but it does not allow us to distinguish between the two, precisely because both can result in this same
motif. An analysis of gene fusion and fission thus requires two distinct steps, to first identify putative
events of fusion/fission, and then to classify each event into one of these two categories, for which
other types of information about these genes must be leveraged. Before the fusion/fission decision is
made, we will therefore adopt the terminology of composite and components [Enright et al. 1999]:
the central ‘long form’ gene, which has partial homology to both the ‘split form’ genes, is called a
composite gene, and the others are called components. This allows for a more neutral description of
sets of genes that are involved in remodelling events, reflecting the a priori ignorance of which are
fusions and which are fissions. We will also prefer “gene remodelling” over “recombination”, as the

latter has many different uses beyond our specific scope of fusion and fission events.

99



Component A
A B P
Component A Component B Component B
M —————

Fusion lT Fission Composite AB

Composite AB

C

o o | @GO
\/—»'
- 5SS

Figure 25: Gene fusions and fissions can result in the same sequence similarity patterns.

(A) The ‘composite/component’ terminology reflects the fact that gene fusion and gene fission are
structurally inverse processes.

(B) Either of gene fusion and gene fission can produce an intransitive similarity pattern where the
composite is similar to both components, which themselves are not similar to one another.

(C) In a fusion between two components that are already partly homologous, the resulting similarity
pattern may not be an intransitive triplet.

2.1 - A first approach: intransitive homology triplets

Early computational methods for detecting fusion and fission events relied on non-transitive
relationships of homology between genes [Jachiet et al. 2013]. The base assumption for this type of
approach is that while a composite gene is homologous to each of its components, in general there
should not be any homology between different components!. The composite gene therefore sits at
the centre of an intransitive homology triplet, with components at each end (Figure 25B). This is an
easy enough pattern to check for, giving a conceptually simple recipe for identifying putative
remodelling events within a given pool of genes: enumerate all possible trios of genes, and retain
those forming intransitive triplets. This approach has proven fruitful in past investigations of gene
fusions, but it does suffer from a few shortcomings. First, the number of possible triplets to enumerate
grows cubically in relation with the number of genes considered, which complicates the analysis of
large datasets. Second, while many remodelling events do produce intransitive homology triplets,
these patterns can also reflect other sequence relationships, including distant homologies — it is, after

all, what we based SHIFT upon (see previous chapter). In practice, however, these anomalistic cases

2 This is perhaps influenced by an understanding of gene fusion in the stricter sense, i.e. two whole genes
being fused into one, as opposed to gene chimerism that merges subparts of genes instead (see section 1.2 of
this chapter).
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can be eliminated by checking whether components correspond to non-overlapping regions of the
composite, which would not correspond to distant homologues. But conversely, intransitive triplets
may not represent all fusion or fission events, especially if some genes have undergone several
remodelling events in succession (Figure 25C). To detect remodelling events comprehensively,

therefore, it might be necessary to take more general approaches.

2.2 - Detecting a broader spectrum of remodelled genes

As we discussed in the Introduction, a sequence similarity network can be viewed as a proxy for
the homology relationships between a set of genes. To infer putative fusion/fission events from
relationships of homology, therefore, one can build and analyse SSNs that reflect these homologies.
However, unlike in the previous chapter where gene similarities were only considered when covering
large parts of each sequence (typically >80%), here we must account for partial-length similarities as
well. In a way, this amounts to creating SSNs with two different types of edges, in order to distinguish
between full-length and partial alignments. Several methods based on SSNs for gene remodelling have
been developed in our lab, including FusedTriplets, which implements a gene-based intransitive triplet
search [Jachiet et al. 2013]; MosaicFinder, which transposes this idea at the level of gene families
(using clique minimal separators to represent composite families) [Jachiet et al. 2013]; and
CompositeSearch, which takes a slightly more general approach that does not rely explicitly on
intransitive homology relationships [Pathmanathan et al. 2018]. This last programme is the one we
used in particular to analyse the effects of gene remodelling events on the evolution of animals and

of brown algae.

CompositeSearch relies on the ab initio constitution of gene families in the SSN, by clustering
the network into modules using the Louvain community detection algorithm [Blondel et al. 2008]. At
this step, only edges corresponding to full-length alignments are considered, so that the resulting
clusters reflect coherent groups of full homology. Partial-length alignments are then factored in to
detect putative composite genes, which is any gene with partial homologues in two different families
that align on distinct regions of the composite sequence (in practice, small overlaps between those
regions can be tolerated, to compensate for overextensions in BLAST alignments). Finally, once
composite genes are called, the families that contain them are themselves reported as composite
families. From a conceptual standpoint, this approach differs from those relying on intransitive triplets
in that it centres directly around the intrinsic definition of a composite gene, rather than identifying
connectivity patterns that are associated with this definition. In that regard, CompositeSearch allows
for a more global description of gene remodelling dynamics than previous methods. The distinction

between composites and components is also blurred, as gene families can now be simultaneously
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composite and components, e.g. when a gene created by fusion is then involved in another fusion

event.

2.3 - Fusion, fission, other? Polarisation of gene remodelling events

Despite its improvements over previous methods, CompositeSearch still cannot address the
issue of classifying different types of remodelling events: composite families are reported as
composites, but other steps are required to understand what this reflects from their evolutionary
trajectory. To tackle this issue, we have developed a post-treatment method that works from the
output of CompositeSearch to infer cases of gene fusion and fission within the set of reported
composite families. This process of investigating remodelling events to decide in which direction the
remodelling occurred (from composite to components, i.e. fission, or from components to composites,
i.e. fusion) is sometimes called “polarising” the events, as it amounts to picking an orientation for the

arrow of time.

The polarisation approach that we adopted uses evolutionary relationships between the host
organisms of composite genes. Based on the phylogenetic tree of species that are represented in the
dataset, the presence/absence of each gene family in extant species is used to infer the moment of
emergence of that gene (Figure 26A), in accordance with the Dollo parsimony method [Rogozin et al.
2006]. In other words, a gene family present in the genomes of a number of species is considered to
have originated no later than in the last common ancestor of those species. We can then apply a
simple heuristic to label composite families as fused (i.e. originated in a fusion event) or split
(underwent a fission event). If the components of a composite family existed prior to the composite’s
origin, then it is classified as a fusion event (Figure 26B); conversely, when a composite predates the
emergence of its components, then it is considered as a gene fission (Figure 26C). Many intermediate
cases also arise in practice, where the relative order of evolution between composite and components
is not as clear-cut. A particularly frequent pattern consists of the composite point of origin being
‘sandwiched’ between a component that emerged earlier, and a second component that only evolved
in a branch below the composite origin. In such cases, we reasoned that the composite must have
originated by gene fusion, because at least one building block of its sequence was already present in
its ancestral lineage; however, a single fusion event is insufficient to explain the seemingly later
emergence of the other component, and subsequent events of gene fission or loss could have

occurred to produce this phylogenetic distribution.

102



(@)
O
..O. O ..... | (D
@] @
—— {2
o0 —
QOO0 ®O00
L so0 000
_L: ° -
_Q_O o0 QOO

Figure 26: Polarisation of remodelling events from composite and component presence/absence.

(A) Using Dollo parsimony, the points of emergence of a composite family and its components are
inferred on the species tree, according to the phyletic distribution of each family in extant genomes.
Circles (plain yellow and purple for two components, and dual-tone for the corresponding composite)
indicate the extant distribution (at the tips of the tree) and the points of origin (on internal branches)
of each family.

(B) The order of emergence between components and composite is used to classify each remodelling
event as fusion or fission. Here, the components appeared before the composite gene, suggesting a
gene fusion event.

(C) In this other case, the composite gene predates the component forms, which is suggestive of gene
fission.

This is a relatively simple model to infer fusion and fission events, and it relies on a few
assumptions. First of all, it is highly reliant on the phylogenetic tree of species represented in the
dataset and is therefore only well-suited for studying gene remodelling in lineages that evolve in a
tree-like fashion. The lineages of eukaryotes that we applied this method to largely conform to this
expectation, but alternative techniques may be preferred when working with bacterial genomes for
instance, given their extensive use of horizontal gene transfer [Bapteste et al. 2009, Soucy, Huang, and
Gogarten 2015]. Second, the Dollo parsimony model that is used to infer points of origin for each gene
family is also based on a fairly restrictive set of hypotheses: each gene can only emerge once, and once
lost it cannot be acquired again. This is only really appropriate when the gene families considered are
orthogroups. This is another complication for using this method on prokaryotic genomes, again due
to HGT which will make patterns of homoplasy emerge in presence/absence data. Even in the absence
of HGT, inaccurate detection of orthologous gene families in the dataset can lead to erroneous results.
Moreover, there is no reason why some remodelling events could not happen convergently in
unrelated lineages, as indeed we observed in metazoans. In both the research projects for which we
conducted analyses of remodelling events, we tried to account for this limitation, albeit in different
ways. In the brown algae study, another team had already performed a detection of orthologous gene
families in the genome dataset, and we therefore used their results to define the gene families in the
SSN, instead of performing Louvain clustering. In the case of metazoans, on the other hand, the

families defined by CompositeSearch (based on SSN topology) were used for the composite
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annotation, but then those families were checked to correspond to mono- or polyphyletic groups in
the species phylogeny, prior to the polarisation step which treated sub-families of polyphyletic clusters
independently. With those caveats in mind, we found that our method was able to label most of the
composite families as either fusions or fissions, although some problematic cases persisted, e.g. in
cases where the origins of a composite and its components were inferred in unrelated branches of the
species phylogeny. Such cases could not be assigned to gene fusion or fission with our methods, and

were considered undecided.

3. Important role of remodelled genes in the early evolution

of brown algae

We conducted a gene remodelling analysis as part of our contribution to a broad study on the
biology and evolution of brown algae. This study was the fruit of the Phaeoexplorer project, a research
consortium involving more than 100 collaborators that produced and analysed a large resource of
novel genomes for this lineage. An article presenting the main outcomes of this project has been
submitted and accepted for publication in Cell, and is reproduced below. Our specific analysis of
remodelled genes is featured in this article, but it only represents a small part of all the work done
with these new genomes, and thus only a small part of the article is centred specifically on our results.
We therefore describe and discuss our contribution in more detail in this present section, before the

reproduction of the article as a whole.

Along with some green and red algae, brown seaweeds are one of the three types of
macroscopic algae populating coastal seawaters on Earth. They constitute an abundant and central
component of those ecosystems, as exemplified by the forests of kelp that serve as habitats and food
sources for many marine species. Brown algae (Phaeophyceae) form a class within the larger group of
photosynthetic stramenopiles that acquired a chloroplast following a secondary endosymbiosis with
ared alga [Keeling 2009], and they emerged around 450 million years ago during the Great Ordovician
Biodiversification Event (GOBE) [Choi et al. 2024]. They are notable for their acquisition of complex
multicellularity, in contrast with sister clades that are either unicellular or form simple multicellular

filaments!. Over the course of their evolution, brown algae have developed a broad diversity of cell

13 “Simple” multicellularity, or pluricellularity, typically consists of intercellular aggregations in “one
dimension” (filaments) or two (biofilms), where most cells keep a direct interface with the environment, have
limited exchanges with their neighbours and do not differentiate into specialised cell types. Complex
multicellular organisms, on the other hand, develop different tissue types with high levels of cell-cell
communication and gene regulation, and display three-dimensional organisations requiring complex systems of
biomolecule transportation [Knoll 2011].
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cycles and morphological plans, in adaptation to diverse coastal ecosystems, including fully
submerged or intertidal seawater, brackish waters, and on a few occasions freshwater [Dittami et al.
2017]. Interestingly, the GOBE has previously been cited as having created favourable conditions for
the evolution of multicellularity in algae, due to the emergence of marine herbivores that grazed on
algae [LoDuca et al. 2017]: in that context, growing in size and developing different tissues could help
reducing the detrimental effect of herbivores on the alga’s survival, for instance by directing the

grazing action toward leaf-like structures® that are relatively easy to regrow.

The Phaeoexplorer group produced 60 genomes of brown algae and closely related species,
covering all the major orders of brown algae. Among these genomes, 17 were acquired from long-
read sequencing, and were part of a high-quality subset of 21 genomes (with the inclusion of four
quality genomes already published) on which most analyses were focused. The general trend that was
observed from analysing those genomes consisted in a marked gain of new gene families and functions
early in the evolution of brown algae, contributing to the development of novel metabolic pathways
central to the transition to complex multicellularity. Gene loss and gene family amplification (the
increase in copy number of a gene within a genome), on the other hand, were much more prevalent
later in the diversification of the lineage, and supposedly drove the emergence of a diverse range of

morphological and physiological phenotypes.

14 called blades, laminae or fronds based on their morphology.
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Figure 27: Emergence and retention of fused and split genes in the evolution of brown algae.
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Phylogenetic distribution of fused (red), split (blue) and non-remodelled (grey) gene family originations
across the evolution of brown algae. Pie charts on each branch of the phylogeny indicate the relative
contribution of gene fusion and fission to the overall emergence of novel gene families, quantified by
the area of the circle. Bars on the right indicate the percentage of gene families retained in extant
genomes among all gene families that emerged during the evolution of our species set. Brown algae
species are indicated in brown, and other stramenopiles in black. Note that only the topology of the
species tree is displayed here, without specific branch lengths.
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Figure 28: Functional enrichment of certain COG categories in Phaeophyceae remodelled genes.
Distribution of gene families in COG functional categories for fused, split, and non-remodelled
orthologous groups. Orthogroups with no annotation or annotated as ‘S (unknown function)’ were
discarded, so that only orthogroups with known functions were taken into account. Asterisks above
bars indicate a statistically significant divergence from non-remodelled gene families (p-value < 0.05,
two-sided Chi-squared test with Yates correction).

Our gene remodelling analysis also focused on the high-quality subset of 21 genomes, because
misassemblies of reads in low quality genomes can result in artefacts such as gene chimeras that could
be picked up by CompositeSearch as composite genes. To produce results that were compatible and
interoperable with those of other working groups, we based our search on orthologous gene families
(orthogroups) that had previously been defined from those genomes. We found that 12.6% of all
orthogroups (excluding singletons) were potential composites. In particular, 6.7% of orthogroups were
formed in gene fusion events, whereas 4.8% had undergone fission events!>. We thus observed more
gene fusions than fissions, in line with most of the previous literature on fusion/fission events in other
lineages, but the disparity between the two was markedly less than the four-to-one ratio that is
generally documented [Kummerfeld and Teichmann 2005]. As with other gene family gains, the
majority of fusion and fission events occurred in the early stages of Phaeophyceae evolution, and were
less frequent in more recent branches of the phylogeny (Figure 27). An analysis of retention rates
showed that the gene families created in remodelling events were less frequently lost than non-

remodelled genes in extant genomes and, importantly, this preferential retention was much more

15 Of the remaining 1.1% of orthogroups that were detected as composites, 0.7% could not be called
because composites and components all originated before the emergence of brown algae, and 0.4% had an
unresolved polarisation due to incongruent phyletic patterns between composites and components.
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pronounced in brown algae than in other species of stramenopiles (Figure 27). These results suggest
that gene fusions and gene fissions played an important role in the initial emergence of brown algae,
and that they mainly contributed to processes that were critical for this lineage, such that their loss
was markedly selected against. Indeed, orthogroups that resulted from remodelling events were
enriched in a few specific functional categories (Figure 28), particularly related to cell wall and
signalling (COG categories G - Carbohydrate transport and metabolism, M - cell wall biogenesis, T -
signal transduction) and transcription (COG category K). These functional classes may have
contributed to the development of complex phenotypes, including the brown algal cell wall and
extracellular matrix (ECM) that are both composed of algin, a polysaccharide specific to members of
the Phaeophyceae class [Mazéas et al. 2023]. Remodelled genes in those functional categories may
have also facilitated the emergence of complex multicellularity, thanks to innovations in signalling

pathways and cell-cell communication.

In summary, our results indicate that gene remodelling events played a substantial role, along
with other routes of novel gene family foundation, in the emergence and the early evolution of brown
algae from unicellular stramenopiles. Gene fusion and fission may have contributed, in particular, to
functions that helped the onset of complex multicellularity, as well as metabolic adaptations to
intertidal and subtidal ecosystems (e.g. thanks to the flexibility provided by alginate-based cell walls
and ECMs, which helps resist the push-pull forces of seawater movement). In the later stages of
Phaeophyceae diversification, remodelling events seemingly became less frequent (or less frequently
fixed), but early remodelled genes were preferentially conserved, which suggests that they may be of
particular importance for the success of their hosts. Other collaborators in the Phaeoexplorer
consortium have noted that brown algal genes are also more intron-rich than genes of other
stramenopiles, due to a rapid period of intron acquisition just before Phaeophyceae diverged from
their closest sister class, Schizocladiophyceae. Interestingly, this increase of intron content in the
genes of the common ancestor of brown algae may have set the stage for the subsequent wave of
gene remodelling events that contributed to the emergence and the diversification of Phaeophyceae,

acting as a sort of precursor event to the development of increasing biological complexity.

108



Cell

Evolutionary genomics of the emergence of brown
algae as key components of coastal ecosystems

Graphical abstract

Great Ordovician Pangea

Biodiversification Event rifting

-~

Gene acquisition

Emergence of the
Brown Algae

T
Horizontal Gene Transfer

(EREIRINE

Marine forests

e

Gene family amplifications = ===

Intercalary meristem m

Diversification of the
Brown Algae

~.

W

T &

==
1r

—
e |

=

[T

Raphidophyceae
Chfy§oparadoxophyceae
Schizocladiophyceae

3V3IOAHdJO3VHd

Widespread viral
genome insertions

Gene flow between
Ectocarpus species

E. species 7
E. species 5

E. species 6

E. species 9

E. siliculosus
E. species 3

E. species 1

E. species 2

E. crouaniorum

E. subulatus
E. fasciculatus

Highlights
An intense period of genome evolution during early
emergence of the brown algae

Gene family amplifications linked to diversification of the
brown algae

Extensive gene flow between species at the genus level in
Ectocarpus

Insertions of diverse Phaeovirus genomes are widespread in
brown algae

o
.......

Denoeud et al., 2024, Cell 187, 6943-6965
November 27, 2024 © 2024 The Authors. Published by Elsevier Inc.
https://doi.org/10.1016/j.cell.2024.10.049

109

Authors

France Denoeud, Olivier Godfroy,
Corinne Cruaud, ..., Patrick Wincker,
Jean-Marc Aury, J. Mark Cock

Correspondence

kawai@kobe-u.ac.jp (H.K.),
akirapeters@gmail.com (A.F.P.),
hsyoon2011@skku.edu (H.S.Y.),
cherve@sb-roscoff.fr (C.H.),
yenh@ysfri.ac.cn (N.Y.),
epbapteste@gmail.com (E.B.),
valero@sb-roscoff.fr (M.V.),
gabriel.markov@sb-roscoff.fr (G.V.M.),
corre@sb-roscoff.fr (E.C.),
susana.coelho@tuebingen.mpg.de
(8.M.C)),
pwincker@genoscope.cns.fr (P.W.),
jmaury@genoscope.cns.fr (J.-M.A.),
cock@sb-roscoff.fr (J.M.C.)

In brief

Comparative genomics charts the
evolutionary history of the brown algal
lineage, identifying an early period of
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a major impact of continuous,
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SUMMARY

Brown seaweeds are keystone species of coastal ecosystems, often forming extensive underwater forests,
and are under considerable threat from climate change. In this study, analysis of multiple genomes has pro-
vided insights across the entire evolutionary history of this lineage, from initial emergence, through later
diversification of the brown algal orders, down to microevolutionary events at the genus level. Emergence
of the brown algal lineage was associated with a marked gain of new orthologous gene families, enhanced
protein domain rearrangement, increased horizontal gene transfer events, and the acquisition of novel
signaling molecules and key metabolic pathways, the latter notably related to biosynthesis of the alginate-
based extracellular matrix, and halogen and phlorotannin biosynthesis. We show that brown algal genome
diversification is tightly linked to phenotypic divergence, including changes in life cycle strategy and zoid
flagellar structure. The study also showed that integration of large viral genomes has had a significant impact
on brown algal genome content throughout the emergence of the lineage.
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INTRODUCTION

The brown algae (Phaeophyceae) are a lineage of complex
multicellular organisms that emerged about 450 mya' from
within a group of photosynthetic stramenopile taxa (derived
from a secondary endosymbiosis involving a red alga®) that
are either unicellular or have very simple filamentous multicel-
lular thalli (Figure 1). The emerging brown algae acquired a
number of characteristic features that are thought to have

6944 Cell 187, 6943-6965, November 27, 2024

111

contributed to the evolutionary success of this lineage,
including complex polysaccharide-based cell walls that confer
protection and flexibility in the highly dynamic intertidal environ-
ment,®> complex halogen” and phlorotannin® metabolisms that
are thought to play important roles in multiple processes
including defense, adhesion and cell-wall modification, and a
remarkable diversity of life cycles and developmental body ar-
chitectures adapted to diverse marine environments.® As a
result of these attributes, many brown algae have become
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established as key components of extensive coastal ecosys-
tems. These seaweed-based ecosystems provide high value
Earth-system-scale services, including the sequestration of
several megatons of carbon per year globally, comparable to
values reported for terrestrial forests,” but this important role
of seaweed ecosystems is threatened by climate-related de-
clines in seaweed populations worldwide.® However, appro-
priate conservation measures, coupled with the development
of seaweed mariculture as a highly sustainable and low impact
approach to food and biomass production, could potentially
reverse this trend, allowing seaweeds to play a significant
role in mitigating the effects of climate change.9 To attain this
objective, it will be necessary to address important gaps in
our knowledge of the biology and evolutionary history of the
brown algal lineage. For example, these seaweeds remain
poorly described in terms of genome sequencing due, in part,
to difficulties with extracting nucleic acids. The Phaeoexplorer
project (https://phaeoexplorer.sb-roscoff.fr/) has generated a
large dataset of genome sequences, spanning all the major or-
ders of the Phaeophyceae.'® This extensive genomic dataset
has been analyzed here to study the origin and evolution of
key genomic features during the emergence and diversification
of this important group of marine organisms.

RESULTS

In-depth sequencing of brown algal genomes

Until now, good quality genome assemblies have been obtained
for only five brown algal species,’’'® together with about 46
draft genome assemblies.’?° Here, we report work that
has significantly expanded the genomic data available by
sequencing and assembling 17 good quality genomes using
long-read technology (Table S1), plus an additional 43 draft
genome assemblies. These 60 genomes correspond to 40
brown algae and four closely related species, covering 16
Phaeophyceae families providing a dense coverage of this line-
age (Figures S1A and S1B; Table S1A). The sequenced species
include brown algae that occur at different levels of the intertidal
and subtidal and are representative of the broad diversity of this
group of seaweeds in terms of size, levels of multicellular
complexity, biogeography and life cycle structure (Figures 1,
S1C, and S1D). The analyses carried out in this study have
focused principally on a set of 21 good quality reference ge-
nomes, which include four previously published genomes
(Table S1B).

Marked changes in genome content and gene structure
during the emergence of the Phaeophyceae lineage
Recent evidence indicates that the brown algae emerged about
450 mya during the Great Ordovician Biodiversification Event
(GOBE)," a conclusion that is supported by a fossil-calibrated
tree built with a nuclear-gene-based phylogeny constructed
using the Phaeoexplorer genome data (Figures 1 and S2A).
An increase in atmospheric oxygen at the time of the GOBE,
which coincided with the emergence of herbivorous marine
invertebrates,”' is likely to have created conditions conducive
to the observed transition toward increased multicellular
complexity during early brown algal evolution.

To investigate genomic modifications associated with the
emergence and diversification of the brown algae, we first car-
ried out a series of genome-wide analyses aimed at identifying
broad trends in genome evolution over evolutionary time (Fig-
ure 2). Dollo analysis of gain and loss of orthogroups (i.e., gene
families) indicated marked gains during early brown algal evolu-
tion followed by a broad tendency to lose orthogroups later as
the different brown algal orders diversified (Figures 2B and S2).
Similarly, a phylostratigraphy analysis indicated that 29.6% of
brown algal genes cannot be traced back to ancestors outside
the Phaeophyceae, with the majority of gene founder events
occurring early during the emergence of the brown algae
(Figures 2E and S3A; Table S2), again indicating a burst of
gene birth during the emergence of this lineage. Both the Dollo
analysis and the phylostratigraphy approach indicated that the
gene families acquired during early brown algal evolution were
significantly enriched in genes that could not be assigned to a
cluster of orthologous genes (COG) category, suggesting a burst
in the acquisition of genetic novelty (Figure 2G).

One of the factors underlying the marked burst of gene gain
during the emergence of the brown algae was an increase in
the rate of acquisition of new genes via horizontal gene transfer
(HGT). A phylogeny-based search for genes potentially derived
from HGT events indicated that they constitute about 1% of
brown algal gene catalogs and that the novel genes were princi-
pally acquired from bacterial genomes (Figures 2F and S3B). The
proportion of class-specific HGT events compared with more
ancient HGT events was greater for the brown algae (33.5% of
HGT events) than for the closely related taxa Xanthophyceae
(Tribonema minus) and Raphidophyceae (Heterosigma aka-
shiwo; mean of 17.1% for the two taxa, Wilcoxon p = 0.021), indi-
cating that higher levels of HGT occurred during the emergence
of the brown algae than in closely related taxa (Figure 2F).
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The marked increase in the rate of gene gain appears to have
been a key factor in the emergence of the brown algal lineage but
this was not the only process that enriched brown algal genomes
during this period. Domain fusions and fissions (composite
genes) were prevalent during the early stages of brown algal
emergence (Figures 2D and S3C), affecting about 7% of brown
algal gene complements. In contrast, gene family amplifications
were most prevalent at a later stage of brown algal evolution,
corresponding to the diversification of the major brown algal or-
ders during the Mesozoic (Figures 2C, S3D, and S3E; Table S3).
However, the amplified gene families were significantly enriched
in genes that had been gained during the emergence of the
brown algae (x® p = 1.04e—15; Table S1C), indicating that
gene gain during the early evolution of the lineage nonetheless
played a crucial role by establishing the majority of the gene fam-
ilies that would later undergo amplifications.

Analysis of the predicted functions of the three sets of gene
families identified as having been amplified, derived from domain
fusions/fissions or derived from an HGT event (Figure 2G) indi-
cated that they were enriched in several functional categories,
notably carbohydrate metabolism, signal transduction, and tran-
scription. These functional categories may have been important
in the emergence of the complex brown algal cell wall or corre-
spond to a complexification of signaling pathways as multicel-
lular complexity increased. Interestingly, many of the genes
acquired at, or shortly after, the origin of the Phaeophyceae
encode secreted or membrane proteins (Figure S3A), suggesting
roles in cell-cell communication that may have been important
for the emergence of complex multicellularity or as components
of defense mechanisms. The acquisition of plasmodesmata by
brown algae directly after their divergence from their sister taxon
Schizocladia ischiensis®® (Figure 1) underlines the importance of
cell-cell communication from the outset of brown algal evolution.

The emergence of the brown algae also corresponded with
changes in gene structure. On average, brown algal genes
tend to be more intron-rich than those of the other stramenopile
groups,”® including closely related taxa (Figure S4A), with the
notable exception of Chrysoparadoxa australica (Figure S4A). A
comparison of orthologous genes indicated a phase of rapid
intron acquisition just before the divergence of the Phaeophy-
ceae and the Schizocladiophyceae, followed by a period of rela-
tive intron stability up to the present day (Figure S4B). This phase
of accelerated intron acquisition coincided approximately with
the periods of marked gene gain and domain reorganization dis-
cussed above and may have been an indirect consequence of
increased multicellular complexity (Figure 1) due to a concomi-
tant decrease in effective population size.?* Once established,
increased intron density may have facilitated some of the
genome-wide tendencies described above, such as increased
reorganization of composite genes, for example, and thereby
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played an important role in a context of increasing develop-
mental complexity.”* ¢

Acquisition of key metabolic and signaling pathways
during the emergence of the Phaeophyceae
The success of the brown algae as an evolutionary lineage has
been attributed, at least in part, to the acquisition of several
key metabolic pathways, particularly those associated with
cell-wall biosynthesis, and both halogen and phlorotannin meta-
bolism.> Large complements of carbohydrate-active enzyme
(CAZYme) genes (237 genes on average) were found in all brown
algal orders and in their sister taxon S. ischiensis, but this class of
gene was less abundant in the more distantly related unicellular
alga H. akashiwo (Figures 3A, S5A, and S5B; Tables S4A and
S4B). The evolutionary history of carbohydrate metabolism
gene families was investigated by combining information from
the genome-wide analyses of gene gain/loss, HGT and gene
family amplification (Figure 3B). This analysis indicated that
several key genes and gene families (mannuronan C5 epimerase
[ManC5-E] and polysaccharide lyase 41 [PL41]) were acquired
by the common ancestor of brown algae and S. ischiensis,
with strong evidence in some cases that this occurred via HGT
(PL41). Moreover, marked amplifications were detected for
several families (AA15, ManC5-E, GH114, GT23, and PL41), indi-
cating that both gain and amplification of gene families played
important roles in the emergence of the brown algal carbohy-
drate metabolism gene set. Alginate is a major component of
brown algal cell walls, and it plays an important role in conferring
resistance to the biomechanical effect of wave action.® It is
therefore interesting that ManC5-E, an enzyme whose action
modulates the rigidity of the alginate polymer, appears to have
been acquired very early (Figures 3B and 3C). The acquisition
of ManC5-E, together with other alginate pathway enzymes
such as PL41 (Figures 3A, 3B, and 3D), was probably an impor-
tant evolutionary step, enabling the emergence of large, resilient
substrate-anchored multicellular organisms in the highly dy-
namic and stressful coastal environment (Figure 1).
Vanadium-dependent haloperoxidases (vHPOs) are a central
component of brown algal halogen metabolism, which has
been implicated in multiple biological processes including de-
fense, adhesion, chemical signaling, and the oxidative stress
response. All three classes of brown algal vHPO (algal types
| and Il and bacterial-type®®") appear to have been acquired
early during the emergence of the Phaeophyceae (Figures 3A,
S5C, and S5D; Tables S4C and S4D). Closely related strameno-
pile species do not possess any of these three types of haloper-
oxidase, with the exception of the sister taxon, S. ischiensis,
which possesses three intermediate algal type (i.e., equidistant
phylogenetically from class | and class Il algal types) haloperox-
idase genes (Figures 3A, S5C, and S5D). Algal type | and Il vHPO

Figure 1. Ecology, diversity, and evolutionary features of the brown algae

The upper panel indicates approximate positions in the intertidal of key species whose genomes have been sequenced by the Phaeoexplorer project. The lower
panelillustrates the diversity of brown algae (maximal values for each taxa) and indicates a number of key evolutionary events that occurred during the emergence
of the Phaeophyceae. Some lineages may have secondarily lost a characteristic after its acquisition. Note that members of the genus /shige (Ishigeaceae) also
exhibit desiccation tolerance (not shown). ECM, extracellular matrix; asterisk (*), these orders were not analyzed in this study; Cr, Cryogenian; Ed, Ediacaran; Ca,
Cambrian; O, Ordovician; S, Silurian; D, Devonian; C, Carboniferous; P, Permian; T, Triassic; J, Jurassic; K, Cretaceous; Pg, Paleogene.

See also Figures S1, S2, S4, and S5.
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genes probably diverged from an intermediate-type ancestral
gene similar to the S. ischiensis genes early during Phaeophy-
ceae evolution. It is likely that the initial acquisitions of algal-
and bacterial-type VHPOs represented independent events
although the presence of probable vestiges of bacterial-type
VvHPO genes in S. ischiensis means that it is not possible to
rule out acquisition of both types of vHPO through a single event.

Gene gain may not, however, have been the proximal factor
responsible for all the key metabolic innovations that occurred
in the emerging brown algal lineage. Phlorotannins are charac-
teristic brown algal polyphenolic compounds that occur in all
Phaeophyceae species, with the exception of some members
of the Sargassaceae. Phlorotannins are derived from phloroglu-
cinol and brown algae possess three classes of type Il polyke-
tide synthase, two of which (PKS1 and PKS2) were acquired
prior to the emergence of the Phaeophyceae and the third
(PKS3) evolving much later within the Ectocarpales (Figures 3A
and 4A; Table S4E). Interestingly, PKS1 proteins from different
brown algal species have been shown to have different activities
leading to the production of distinct metabolites,**** indicating
that the acquisition of novel functions by this class of enzymes
may have played an important role in the emergence of the
brown algal capacity to produce phlorotannins. Moreover,
many stramenopile PKS type Il genes encode proteins with
signal peptides or signal anchors (Table S4E). For the brown
algae, this feature is consistent with the cellular production site
of phlorotannins and the observed transport of these com-
pounds by physodes, secretory vesicles characteristic of brown
algae.®® Cross-linking of phlorotannins, embedded within other
brown algal cell-wall compounds such as alginates, has been
demonstrated in vitro through the action of vHPOs*®~*® and indi-
rectly suggested by in vivo observations colocalizing vHPOs with
physode fusions at the cell periphery.***° Consequently, vHPOs
are good candidates for the enzymes that cross-link phlorotan-
nins and other compounds, perhaps even for the formation of
covalent bonds between phloroglucinol monomers and oligo-
mers, which could occur via activation of aromatic rings through
halogenation. These observations suggest that the acquisition
of vHPOs by the common ancestor of brown algae and
S. ischiensis, together perhaps with modifications of the existing
PKS enzymes, triggered the emergence of new metabolic path-
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ways leading to the production of the phlorotannin molecules
characteristic of the Phaeophyceae lineage.

The acquisition of increased multicellular complexity and
adaptation to new ecological niches during the early stages of
brown algal evolution (i.e., during and immediately following
the GOBE) is expected to have required modification and elabo-
ration of signaling pathways. Membrane-localized signaling pro-
teins (Figure 3A) are of particular interest in this context not only
as potential mediators of intercellular signaling in a multicellular
organism but also because of potential interactions with the
elaborate brown algal extracellular matrices (cell walls).>** A
detailed analysis of the brown algal receptor kinase (RK) gene
family, revealed that it actually includes two types of receptor,
the previously reported leucine-rich repeat (LRR) RKs'' and a
newly discovered class of receptors with a beta-propeller extra-
cellular domain (Figure 3A; Table S4F).

Major changes in epigenetic regulation also appear to have
occurred during the emergence of the brown algae (see also
supplemental information). DNA METHYLTRANSFERASE 1
(DNMTT) genes were identified in Discosporangium mesarthro-
carpum and two closely related outgroup species (S. ischiensis
and C. australica) but not in other brown algal genomes, indi-
cating that the common ancestor of brown algae probably
possessed DNMTT1 but that this gene was lost after divergence
of the Discosporangiales from other brown algal taxa (Figure 3A;
Table S4G). This is consistent with the reported absence of DNA
methylation in the filamentous brown alga Ectocarpus'' and a
very low level of DNA methylation in the kelp Saccharina
japonica™® (which is thought to be mediated by DNMT2). Our
analysis indicates that most brown algae either lack DNA methyl-
ation or exhibit very low levels of methylation and that this feature
was acquired early during brown algal diversification.

Impact of morphological, life cycle, and reproductive
diversification during the Mesozoic on brown algal
genome evolution

A second major step in the evolutionary history of the Phaeophy-
ceae was the rapid diversification of the major brown algal
orders, which began after the origin of the Fucophycidae/
Dictyotales/Ishigeales (FDI) clade, here estimated at 235.97 Ma
(95% highest posterior density region [HPD]: 158.88-312.48

Figure 2. Genome-wide analyses of brown algal genome and gene content evolution
(A) Time-calibrated cladogram based on Figure S2A. The gray hatched area, which indicates key nodes corresponding to the origin and early emergence of the

brown algae, is mirrored in (B)-(F).

(B) Gene family (orthogroup) gain (green) and loss (red) during the emergence and diversification of the brown algae based on a Dollo parsimony reconstruction

(Figure S2B).

(C) Upper: timing of gene family amplification and reduction during the evolutionary history of the Phaeophyceae (CAFE5 analysis). Lower: time of origin (or-
thogroup gain, based on the Dollo parsimony reconstruction) of the 180 most strongly amplified gene families.

(D) Composite gene analysis. Proportions of gene families showing domain fusion (orange) or domain fission (yellow) at different age strata.

(E) Inferred gene family founder events after accounting for homology detection failure.

(F) Horizontal-gene-transfer-derived genes in orthologous groups and across species. The black trace represents the percentage of genes resulting from HGT
events per species. Pie charts summarize the predicted origins (donor taxa) of the HGT genes. The right-hand bar graph indicates the proportions of ancestral
(i.e., acquired before the root of the phylogenetic class, in gray) and class-specific (i.e., acquired within the phylogenetic class, in blue) HGT genes.

(G) Enrichment of COG categories in sets of gene families identified as being (1) gained at the four indicated early nodes by the Dollo analysis, (2) gene founder
events at the four indicated phylostrata, (3) amplified in the Phaeophyceae (180 most strongly amplified families), (4) domain fusions or fissions, and (5) HGT
derived. Asterisks indicate significantly enriched categories.

FDI clade, Fucophycideae/Dictyotales/Ishigeales; PS clade, Phaeophyceae plus Schizocladiophyceae; PX clade, Phaeophyceae plus Xanthophyceae.

See also Figure S3.
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mya, broadly consistent with previous work’; Figures 1 and S2A).
This diversification closely followed the Permian-Triassic mass
extinction event (which dramatically impacted marine ecosys-
tems in which red and green algae played dominant roles) and
was facilitated by Triassic marine environments that favored
chlorophyll-c containing algae (e.g., high phosphate and low
iron concentration), along with the appearance of new coastal
niches created by Pangea rifting (Figure 1). This context would
have facilitated the diversification of the brown algal lineage,***°
resulting in organisms that now exhibit a broad range of morpho-
logical complexity (ranging from filamentous to complex paren-
chymatous thalli), different types of life cycle and diverse repro-
ductive strategies and metabolic capacities®®“®*” (Figure 1).
The Phaeoexplorer dataset was analyzed to identify genomic
features associated with this diversification of phenotypic char-
acteristics and to evaluate the impact on genome evolution
and function.

We found indications that the diversification of life cycles, in
some cases linked with the emergence of large, complex body
architectures, impacted genome evolution through population
genetic effects. Most brown algae have haploid-diploid life cy-
cles involving alternation between sporophyte and gametophyte
generations, the only exception being the Fucales, which have
diploid life cycles. The theoretical advantages of different types
of life cycle have been discussed in detail,*® and one proposed
advantage of a life cycle with a haploid phase is that this allows
effective purifying counter-selection of deleterious alleles. When
the brown algae with haploid-diploid life cycles were compared
with species from the Fucales, increased rates of both synony-
mous and non-synonymous mutation rates were detected in
the latter, consistent with the hypothesis that deleterious alleles
are phenotypically masked in species where most genes func-
tion in a diploid context (Figure S5E). Comparison of non-synon-
ymous substitution rates (dN) for genes in brown algae with
different levels of morphological complexity, ranging from simple
filamentous thalli though parenchymatous to morphologically
complex, indicated significantly lower values of dN for filamen-
tous species (Figure S5E). This observation suggests that the
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emergence of larger, more complex brown algae may have re-
sulted in reduced effective population sizes and consequently
weaker counter-selection of non-synonymous substitutions.”*

The diversification of the brown algae in terms of develop-
mental complexity and life cycle structure was associated with
modifications to reproductive systems, including, for example,
partial or complete loss of flagella from female gametes in ooga-
mous species and more subtle modifications such as loss of
the eyespot in several kelps or of the entire posterior flagellum
in Dictyota dichotoma.*®*° Interestingly, these latter modifica-
tions are correlated with loss of the HELMCHROME gene,
which is thought to be involved in light reception and zoid photo-
taxis,”! from these species (Figures 3A and 4B). In addition, an
analysis of the presence of genes for 70 high-confidence flagellar
proteins®’ across eight species with different flagellar character-
istics identified proteins that correlate with presence or
absence of the eyespot or of the posterior flagellum (Figure 4B;
Table S4H).

Brown algal diversification and the emergence of

marine forests was also associated with genomic
changes affecting metabolic and signaling pathways
Forests of brown algae (i.e., Laminariales, Desmarestiales, Tilop-
teridales, and Fucales®') are a key aspect of the modern marine
biosphere. One of the pivotal innovations related to their emer-
gence was a new developmental tissue, an intercalary meristem
situated in the zone between the stipe and the lamina. The pres-
ence of this tissue is an ancestral state of the brown algal crown
radiation (BACR) clade, and this study indicates that the interca-
lary meristem was acquired as early as 190 mya (Figure 1). This
type of intercalary meristem would have facilitated the transition
from annual to perennial life history and would, therefore, have
been important for the establishment and maintenance of marine
forests, particularly when upper parts of thalli are subjected to
heavy grazing pressure.'® Our results indicate that the Desmar-
estiales, Tilopteridales, and Fucales were all present by the early
Cretaceous (Figure 1). Thus, it is possible that brown algal for-
ests, at least at a small scale, provided both nutrients and shelter

Figure 3. Gene family evolution during the emergence of the brown algal lineage and a focus on carbohydrate metabolism

(A) Variations in size for a broad range of key gene families in the brown algae and closely related taxa. Numbers indicate the size of the gene family. Note that the
S. ischiensis algal-type HPOs appear to be intermediate between classes | and Il. Brown tree branches, Phaeophyceae.

(B) Overview of information from the orthogroup Dollo analysis, the phylostratigraphy analysis, the horizontal gene transfer analysis and the gene family
amplification analysis for a selection of cell-wall active protein (CWAP) families. Dots represents functional family/orthogroup couples, with the size being
proportional to the number of proteins annotated in the orthogroup (OG), and the color representing the proportion of the functional annotation that falls into this
OG. Phaeophyceae plus Schizocladiophyceae (PS) and FDI clade, identified as gene innovation stages, are highlighted in brown. Functional categories with
interesting evolutionary histories are highlighted in red.

(C) Phylogenetic tree of mannuronan C5-epimerases (ManC5-E). The phylogeny on the left, with three clusters indicated, is representative of the global view on
the right.

(D) Phylogenetic tree of the polysaccharide lyase 41 (PL41) family. Green squares, biochemically characterized proteins. Brown algal sequences are color-coded
in relation to their taxonomy, as indicated in (C). Schizocladiaphyceae sequences are shown in red and with a red circle.

P, present; A, absent; CAZYmes, carbohydrate-active enzymes; HPO, vanadium haloperoxidase; PKS, type Ill polyketide synthase; TAPs, transcription-
associated proteins; EsV-1-7, EsV-1-7 domain proteins; DNMT, DNA methyltransferase; GTs, glycosyltransferases; GHs, glycoside hydrolases; ARF, auxin
response factor-related; bHLH, basic-helix-loop-helix; HMG, high mobility group; Zn-clus, zinc cluster; C2H2, C2H2 zinc finger; GNAT, Gcn5-related
N-acetyltransferase; SNF2, sucrose nonfermenting 2; LRR, leucine-rich repeat; QAD, B-propeller domain; RK, membrane-localized receptor kinase; HK, histidine
kinase; CHASE, cyclases/histidine kinases associated sensory extracellular domain; EBD, ethylene-binding-domain-like; MASE1, membrane-associated sensor
1 domain; DEK1, defective kernel1; MCU, mitochondrial calcium uniporter; GLR, glutamate receptor; pLGIC, pentameric ligand-gated ion channel; TRP, transient
receptor potential channel; IMM, IMMEDIATE UPRIGHT; H3, histone H3; MAS, mastigoneme proteins; AA, auxiliary activity; ECT, Ectocarpales; LAM, Lami-
nariales; FUC, Fucales; DES, Desmarestiales.

See also Figure S5.
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Figure 4. Evolution of key gene families during the emergence of the brown algal lineage

(A) Evolution of type Ill polyketide synthase (PKS) genes in the stramenopiles (left). Right: condensed view of a phylogenetic reconstruction tree of stramenopile
PKS Il and closely related sequences. In brackets: number of sequences identified in each phylogenetic group. Bootstrap values are indicated.

(B) Loss of orthogroups corresponding to flagellar proteome components”’ in eight brown algal species from five orders. For the zoid drawings: gray, nucleus;
yellow, chloroplast; blue, anterior flagella with mastigonemes; red, eyespot. The posterior flagellum is shown either in green to indicate the presence of green
autofluorescence correlated with the presence of the eyespot or in blue in species without an eyespot. Bars below the heatmap indicate gene losses associated

with loss of just the eyespot (orange) or of the entire posterior flagellum (blue).

for the marine herbivorous animals that became common during  in kelp forest ecosystems originated toward the end of the Creta-
the Cretaceous Period (e.g., algae-eating echinoids, sea turtles,  ceous Period, or later.”® Currently, our understanding of Meso-
and euteleostean fish®>>%), zoic marine noncalcified macroalgae on the basis of fossils®®°°

While our estimates of kelp antiquity are earlier than those of is too poor to provide much guidance in this regard, but docu-
Starko et al.,” they are consistent with their suggestion that mentation by Kiel et al.”” of fossil holdfasts indicates that kelp
Cenozoic cooling facilitated the geographic expansion of the forests were present by the late Paleogene period (~32 mya).
kelp forest ecosystem. Indeed, many of the animals foundtoday = The highly complex, multi-layered, and canopy-forming kelp
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forests of today, however, seem to have emerged only relatively
recently, during the mid-Neogene, following the expansion of
cooler water shelf environments.**°

Comparative analysis of the Phaeoexplorer genome dataset
identified a number of gene family expansions that potentially
played important roles in the adaptation of the brown algae to
their diverse niches and, more particularly, in the emergence of
large, forest-forming species such as the kelps. For example,
the ManC5-E family expanded markedly in the Laminariales
and Fucales (Figure 3C), the two main orders that constitute
extant phaeophycean forests. The capacity of ManC5-E to
modify organ ﬂexibili’(y3 may therefore have been an important
factor for large organisms coping with the harsh hydrodynamic
conditions of coastal environments.?® In addition, five different
orthogroups containing proteins with the mechanosensor wall
stress-responsive component (WSC) domain were identified as
having increased in size during the diversification of the brown
algal lineage (Table S3), indicating that metabolic innovations
affecting cell walls may have been concomitant with a complex-
ification of associated signaling pathways.

Haloperoxidase gene families expanded independently in
several brown algal orders, again with expansions being partic-
ularly marked in the Fucales and the Laminariales (Figures 3A
and S5C). In the Laminariales, the algal type | family are special-
ized for iodine rather than bromine,®° and this may have been an
innovation that occurred specifically within the Laminariales, re-
sulting in a halogen metabolism with an additional layer of
complexity.

One of the proposed roles of halogenated molecules in brown
algae is in biotic defense” and, clearly, an effective defense sys-
tem would have been an important prerequisite for the emer-
gence of the large, perennial organisms that constitute marine
forests. Additional immunity-related families®' that expanded
during the diversification of the brown algae include five or-
thogroups that contain either GTPases with a central Ras of
complex proteins/C-terminal of Roc domain tandem (ROCO
GTPases) or nucleotide-binding adaptor shared by apoptotic
protease-activating factor 1, R proteins, and CED-4 tetratrico-
peptide repeat (NB-ARC-TPR) genes (Table S3).

Finally, one of the most remarkable gene family amplifications
detected in this study was for proteins containing the EsV-1-7
domain, a short, cysteine-rich motif that may represent a novel
class of zinc finger.®® EsV-1-7 domain proteins are completely
absent from animal and land plant genomes and most strameno-
piles either have just one member (oomycetes and eustigmato-
phytes) or entirely lack this gene family.®” Analysis of the
Phaeoexplorer data (Figure 3A; Table S4l) indicated that the
EsV-1-7 gene family started to expand in the common ancestor
of the brown algae and the raphidophyte H. akashiwo, with
31-54 members in the non-Phaeophyceae taxa that share this
ancestor. Further expansion of the family then occurred in
most brown algal orders, particularly in some members of the
Laminariales (234 genes in Saccharina /atissima) and the Fucales
(335 genes in Ascophyllum nodosum), with the genes tending to
be clustered in tandem arrays (Tables S3 and S4l). These obser-
vations are consistent with the previous description of a large
EsV-1-7 domain family (95 genes) in Ectocarpus species’®
and with recent observations by Nelson et al.”° One member
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of this family, IMMEDIATE UPRIGHT (IMM), has been shown to
play a key role in the establishment of the elaborate basal fila-
ment system of Ectocarpus sporophytes,®” suggesting that
EsV-1-7 domain proteins may be novel developmental regula-
tors in brown algae. Orthologs of the IMM gene were found in
brown algal crown group taxa and in D. dichotoma but not in
D. mesarthrocarpum (Figure 3A; Table S4l), indicating that this
gene originated within the EsV-1-7 gene family as the first brown
algal orders started to diverge.

Recent evolutionary events within the genus Ectocarpus
The above analyses focused on deep-time evolutionary events
related to the emergence of the Phaeophyceae and the later
diversification of the brown algal orders during the Mesozoic.
To complement these analyses an evaluation of relatively recent
and ongoing evolutionary events in the brown algae was con-
ducted by sequencing 22 new strains from the genus Ectocar-
pus, which originated about 19 mya (Figure S2C).

A phylogenetic tree was constructed for 11 selected Ectocar-
pus species based on 261 high-quality alignments of 1:1 ortho-
logs (Figure 5A). The tree indicates substantial divergence
between E. fasciculatus and two well-supported clades, desig-
nated clade 1 and clade 2. Incongruencies between the species
tree and trees for individual genes indicated introgression events
and/or incomplete lineage sorting across the Ectocarpus genus.
D-statistic analysis, specifically ABBA-BABA tests, detected in-
congruities among species quartets, indicating potential gene
flow at various times during the evolution of the Ectocarpus
genus. Evidence for gene flow was particularly strong for clade
2 and there was also evidence for marked exchanges between
the two clades (Figure 5B), suggesting that gene flow has not
been limited to recently diverged species pairs. These findings
suggest a complex evolutionary history involving rapid diver-
gence, hybridization, and introgression among species within
the Ectocarpus genus, with evidence for hybridization occurring
between 10.5 (for clades 1 and 2) and 3.3 mya (for Ectocarpus
species 5 and 7) based on the fossil-calibrated tree (Figure S2C).
A similar scenario has been reported for the genus Drosophila,®®
suggesting that recurrent hybridization and introgression among
species may be a common feature associated with rapid species
radiations. Major environmental changes such as the expansion
of cold-water coastal areas following the green-house/cold-
house Eocene-Oligocene transition (~30 mya®"), and particularly
the rapid climate destabilization and temperature drop associ-
ated with the end of the mid-Miocene thermal maximum (~15
mya®”), may have created many new opportunities for the rapid
expansion and diversification of the Ectocarpus genus.

Brown algal genomes contain large amounts of inserted
viral sequences

A particularly striking result of this study was the identification of
extensive amounts of integrated DNA sequence corresponding
to large DNA viruses of the Phaeovirus family (Figure B6A;
Table S5), which integrate into brown algal genomes as part of
their lysogenic life cycles.®® Analysis of 72 genomes in the
Phaeoexplorer and associated public genome dataset identified
a total of 792 viral regions (VRs) of Nucleocytoviricota (NCV)
origin in 743 contigs, with a combined length of 32.3 Mbp.
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Figure 5. Evidence for gene flow within the genus Ectocarpus
(A) DensiTree visualisation of gene trees (gray lines) for 261 orthologs shared by 11 Ectocarpus species and the outgroup species S. promiscuus, together with the
consensus species tree (black lines). All nodes of the species tree have posterior probabilities greater than 0.99.

(B) Boxplot reporting D-statistic (Patterson’s D) values between P2 and P3 species. Within-lineage comparisons (i.e., within clades 1 and 2) and between-lineage
comparisons are distinguished on the x axis. The annotation of each dot indicates species that were designated as P2 and P3. Ectocarpus fasciculatus was
defined as the outgroup.
See also Figure S2.

Individual VRs ranged in size from two to 705 kbp, but the major-
ity (81.3%) were between two and 50 kbp, while only 9% were
longer than the expected minimum size (100 kbp) for an NCV
genome. At least one flanking region could be identified for
40.8% of the VRs, providing direct evidence for insertion of the
sequence in the algal genome (Table S5C). Figure 6B shows
three examples of long VRs. Most genes in VRs are monoexonic
and transcriptionally silent, as previously observed for the
310 kbp VR in the Ectocarpus species 7 strain Ec32 genome. "

On average, each of the 72 analyzed genomes contained
469 kbp of VR (with a maximum of 5,614 kbp) and only two ge-
nomes contained no VRs (both from the Discosporangiales).
There were a number of outlier genomes that contained
more than 1 Mbp of VRs (T. minus, S. latissima, S. japonica,
P. fluviatile, and Myriotrichia clavaeformis male and female). At
least one partial provirus (a VR possessing several key NCV
marker genes) was present in 39 genomes, 29 of which had at
least one full provirus with a complete set of seven key NCV
marker genes (Figure 6A; Table S5). In addition to the previously
known infections in Ectocarpales®® and Laminariales,® inte-
grated NCV proviruses were found in all Phaeophyceae orders
screened, except the Discosporangiales and Dictyotales,
and were also detected in T. minus (Xanthophyceae). Moreover,
NCV marker gene composition indicated that multiple integrated
proviruses were present in 16 genomes from multiple Phaeophy-
ceae orders (Ectocarpales, Desmarestiales, Sphacelariales,
Tilopteridales, and Laminariales), and the Xanthophyceae
(Figure 6A; Table S5). Phylogenetic analysis of the major capsid
protein (MCP) and DNA polymerase genes indicated that the ma-
jority of the integrated NCVs belonged to the genus Phaeovirus,
the sole viral group known to infect brown algae (Figures S6A
and S6B). However, this analysis also revealed integrated se-
quences corresponding to other viral groups. Viral sequences
in T. minus belonged to a putative novel genus closely related
to Phaeovirus, for which we propose the name Xanthovirus.
Finally, mimiviridae-related VRs were identified in S. fatissima
and Pelvetia canaliculata, but since they are partial proviruses
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and do not appear to possess integrase genes, they may have
originated from ancient endogenization events, similar to those
described in chlorophytes.®”

The identification of integrated NCVs across almost all brown
algal orders and in closely related outgroup taxa suggests that
the lysogenic life cycle strategy of phaeoviruses is ancient and
that giant viral genomes have been integrating into the genomes
of brown algae throughout the latters’ evolutionary history. This
conclusion was supported by the phylostratigraphic analysis,
which detected the appearance of many novel virus-related
genes dating back to the origin of the Phaeophyceae
(Figure S3A). Marked differences were detected in total VR
size and NCV marker gene presence across the brown algal
genome set, and large differences were even detected between
strains from the same genus (between 24 and 992 kbp of VR in
different Ectocarpus spp. for example; Figure 6A; Table S5).
These differences indicate dynamic changes in VR content
over evolutionary time, presumably due, at least in part, to differ-
ences in rates of viral genome integration, a process that can
involve multiple, separate insertion events,’® and rates of VR
loss due to meiotic segregation.®® In addition, the abundant
presence of partial proviruses and NCV fragments in brown algal
genomes indicates that inserted VRs can degenerate and frag-
ment, probably also leading to VR loss over time. The identifica-
tion of large-scale viral genome insertion events over such a long
timescale (at least 450 mya') suggests that NCVs may have
had a major impact on the evolution of brown algal genomes
throughout the emergence of the lineage.

The widespread presence of large quantities of viral genes in
brown algal genomes creates a favorable situation for recruit-
ment of this genetic information by the algal host via HGT (pro-
vided the acquired genes confer a selective advantage’®), but
clear evidence of this type of HGT event can be difficult to obtain.
However, phylogenetic evidence indicates that several Ectocar-
pus species 7 histidine kinases (HKs) were derived by HGT
from viral insertions”’ and analysis of the Phaeoexplorer ge-
nomes supported this hypothesis. HKs are widespread in the
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stramenopiles but several classes of membrane-localized HK
were either only found in brown algae (cyclases/histidine
kinases associated sensory extracellular [CHASE] domain HKs
and HKs with an extracellular domain resembling an ethylene
binding motif’") or only in brown algae and closely related
taxa (membrane-associated sensor 1 [MASE1] domain HKs"")
and appear to be absent from other stramenopile lineages (Fig-
ure 3A; Table S4J). These classes of HK all exhibit a patchy
pattern of distribution across the brown algae and are often
monoexonic suggesting possible multiple acquisitions from vi-
ruses via HGT following integration of viral genomes into algal
genomes (Figures 3A and S6C). Phylogenetic analysis provided
further support for a HGT origin for these classes of HK
(Figure S6C).

DISCUSSION

Comparative analysis of the genome resource presented in this
study has provided insights into genome evolution across the
entire evolutionary history of the brown algae. A period of
marked genome evolution concomitant with the emergence of
the brown algal lineage during the GOBE was correlated with
an increase in multicellular complexity, possibly driven, at least
in part, by increases in atmospheric oxygen and herbivory. Dur-
ing this period, the brown algae acquired key components of
several metabolic pathways, notably cell-wall polysaccharide,
phlorotannin, and halogen metabolisms, that were essential for
their colonization of intertidal and subtidal environments. The ca-
pacity to synthesize flexible and resilient alginate-based cell
walls’® allows these organisms to resist the hydrodynamic
forces of wave action,”® whereas phlorotannins and halogen de-
rivatives are thought to play important roles in defense.”® There is
also evidence that cell-wall cross-linking by phlorotannins may
be important for strong adhesion to substrata, another important
characteristic in the dynamic intertidal and subtidal coastal envi-
ronments.”* The capacity to adhere strongly and resist both
biotic and abiotic stress factors would prove essential for the
success of large, sedentary multicellular organisms in these
intertidal niches over evolutionary time.

The period of increased gene gain during the emergence of the
brown algae was followed by a period of overall gene loss that
extended up until the present day (Figure S2B). Interestingly,
similar periods of ancestral gene gain followed by gene loss
have also been observed for both the animal and land plant lin-
eages,’” indicating that this may be a common feature of multi-
cellular eukaryotic lineages.

Cell

About 220 mya after the emergence of the brown algae, the
aftermath of the Permian-Triassic mass extinction event and
the initiation of Pangea rifting appear to have created favorable
environments for rapid diversification of the main brown algal or-
ders,*"*° resulting in the emergence of a diversity of develop-
mental, life cycle, and reproductive strategies, with correlated ef-
fects on genome evolution. During this period some orders, such
as the Laminariales and Fucales, acquired characteristics such
as an intercalary meristems and modified metabolic, defense,
and developmental processes that are predicted to have been
important prerequisites for the emergence of marine forests.

Analysis of the genomes of multiple Ectocarpus species
demonstrated that genomic modifications, including gene gain
and gene loss have continued to occur up until the present
time and indicated that these modifications can potentially be
transmitted between species as a result of gene flow occurring
within a genus due to incomplete reproductive boundaries and
introgression.

Finally, one of the most surprising observations was that
brown algal genomes contain many inserted viral sequences
corresponding to large DNA viruses of the Phaeovirus family.
Inserted viral sequences are widespread in eukaryotic ge-
nomes’®’” and insertions corresponding to nucleocytoplasmic
large DNA viruses have been found in green algal genomes®”"®
but the brown algal Phaeovirus VRs are remarkable because
they are nearly ubiquitous in this lineage (being present in 67 of
69 brown algal genomes analyzed) and because individual ge-
nomes can contain several phylogenetically diverse Phaeovirus
insertions and insertions of a broad range of different sizes.
The near ubiquitous occurrence of these elements may be attrib-
uted to the capacity of phaeoviruses to insert into their hosts’ ge-
nomes as part of their life cycle.

The above observations illustrate how the Phaeoexplorer
genome dataset, along with the various analyses carried out in
this study, can be used to link the gene content of brown algal
genomes to biological processes and characteristics that have
played fundamental roles during the evolution of this lineage.
The establishment of this genome resource represents animpor-
tant step forward for a key lineage that has remained poorly char-
acterized at the genome level. The Phaeoexplorer dataset not
only provides good quality genome assemblies for many, previ-
ously uncharacterized brown algal species but also represents a
tool to explore genome function via comparative genomics ap-
proaches, adding an important evolutionary dimension to efforts
to understand gene function in this lineage. The identification
and analysis of key metabolic and signaling genes implicated

Figure 6. Inserted viral regions in brown algal genomes

(A) Annotated phylogeny summarizing key statistics of the presence of Nucleocytoviricota (NCV) sequences in the genomes of brown algae and closely related
taxa. Eight genomes sourced from public databases are labeled with an asterisk. Outer layers around the tree are as follows (1) NCV genotypes in each genome,
(2) NCV core gene count indicates the number of copies of each viral core gene (A32, A32 packaging ATPase; D5/D5p, D5 helicase/primase; MCP, major capsid
protein; POLB, DNA polymerase B; SF2, superfamily 2 helicase; VL3, very late transcription factor 3; RNR, ribonucleotide reductase; inC, integrase recombinase;
inS, integrase resolvase), (3) count of viral regions is the number of viral regions within each size range category as indicated, (4) count of proviruses is the
estimated number of complete or partial integrated viral genomes in a genome, (5) total viral region length is the sum of the lengths in kbp of all viral regions within a
genome. The outermost layer indicates the taxonomic class or order of the host clades.

(B) Three examples of contigs containing large viral insertions (pink shading). Genes (colored boxes) were classified as viral, cellular (i.e., cellular organism),
known proteins of unclear origin (viral or cellular) or unknown (ORFan) based on comparisons with viral and cellular protein databases (see STAR Methods).
Transcript abundances are shown with a locally estimated scatterplot smoothing (LOESS) plot. Exons, exons per gene.

See also Figure S6.
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in a broad range of brown algal biological functions represents
an important resource for future research programs aimed at
optimizing brown seaweed production in a mariculture context
or at preserving and protecting natural seaweed populations in
the context of climate change. Both of these approaches could
potentially contribute to mitigation of the effects of climate
change via multiple positive effects in terms of carbon capture,
ecosystem services, and the promotion of highly sustainable
cultivation practices.

To facilitate future use of this genome dataset, the annotated
genomes have been made available through a website portal
(https://phaeoexplorer.sb-roscoff.fr). The existing genome data-
set provides very good coverage of the phylogenetic diversity of
the Phaeophyceae and reasonably complete gene catalogs for
each species, but future work is needed to improve further the
quality of the genome assemblies described here and to add ge-
nomes for additional species, particularly members of the minor
brown algal orders that are not represented in the dataset. The
large proportion of genes with no predicted function in brown
algal genomes is also a limitation that needs to be addressed.
The recent development of CRISPR-Cas9 methodology for
brown algae,”®® together with the other tools and resources
currently available for the model brown alga Ectocarpus,®' pro-
vide the means to deploy the functional genomics approaches
necessary to address this question.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be
directed to and will be fulfilled by the lead contact, J. Mark Cock (cock@sb-
roscoff.fr).

Materials availability

All the laboratory-cultivated strains grown to provide material for genome
sequencing can be accessed via the Roscoff Culture Collection (https://
www.roscoff-culture-collection.org).

Data and code availability

e All sequence data, including DNA and RNA sequencing data, genome
assemblies, and annotations, have been deposited in the European Bio-
informatics Institute/European Nucleotide Archive (EBI/ENA) database
under the project accession PRJEB76691 and are publicly available.
Additional data and results have been deposited in the CNRS Research
Data depository (https://doi.org/10.57745/9U1J85) and are publicly
available.
This paper does not report original code.
Any additional information required to reanalyze the data reported in this
paper is available from the lead contact upon request.
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STARX*METHODS

Detailed methods are provided in the online version of this paper and include
the following:
o KEY RESOURCES TABLE
o EXPERIMENTAL MODEL DETAILS
Ascophyllum nodosum
Chordaria linearis strain ClinC8C
Choristocarpus tenelfus strain KU-1152
Chrysoparadoxa australica strain CS-1217
Cladosiphon okamuranus strain S-strain
Desmarestia dudresnayi strain DdudBR16
Desmarestia herbacea strain DmunF
Desmarestia herbacea strain DmunM
Dictyota dichotoma strain KBO7f IV
Dictyota dichotoma strain ODC1387m
Dictyota dichotoma strain KBO7m IV
Dictyota dichotoma strain KBO7sp VI
Discosporangium mesarthrocarpum strain MT17-79
Ectocarpus crouaniorum strain Ec861
Ectocarpus crouaniorum strain Ec862
Ectocarpus fasciculatus strain Ec846
Ectocarpus fasciculatus strain Ec847
Ectocarpus fascicuiatus strain EfasUO1
Ectocarpus fasciculatus strain EfasU02
Ectocarpus siliculosus strain Ec863
Ectocarpus siliculosus strain Ec864
Ectocarpus species 1 strain Ec sil Puy CHCH Z9 G5f

o
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Ectocarpus species 1 strain Ec sil Puy CHCH Z9 G3m
Ectocarpus species 1 strain Ec03

Ectocarpus species 12 strain Ec fas CH92 Nie 2f
Ectocarpus species 12 strain Ec fas CH92 Nie 3m
Ectocarpus species 13 strain ECNAP12-S#4-19m
Ectocarpus species 2 strain Ec06

Ectocarpus species 3 strain Ec10

Ectocarpus species 3 strain Ec11

Ectocarpus species 5 strain Ec13

Ectocarpus species 5 strain Ec12

Ectocarpus species 6 strain ECLAC-371f
Ectocarpus species 7 strain Ec32

Ectocarpus species 8 strain ECLAC-412m
Ectocarpus species 9 strain ECSCA-722f
Ectocarpus subulatus strain Bft15b

Feldmannia mitchelliae strain KU-2106 Giff mitch BNC GA
Fucus distichus

Fucus serratus

Fucus serratus

Halopteris paniculata strain Hal grac a UBK
Hapterophycus canaliculatus strain Oshoro5f
Hapterophycus canaliculatus strain Oshoro7m
Hapterophycus canaliculatus strain Oshoro 3F x 9M
Hapterophycus canaliculatus strain Oshoro 4F x 9M
Hapterophycus canaliculatus strain Oshoro 6F x 6M
Heribaudiella fluviatilis strain SAG. 13.90
Heterosigma akashiwo strain CCMP452
Himanthalia elongata

Laminaria digitata strain LdigPH10-18mv
Laminarionema eisbetiae strain ELsaHSoW15
Macrocystis pyrifera strain P11A1

Macrocystis pyrifera strain P11B4

Myriotrichia clavaeformis strain Myr cla04
Myriotrichia clavaeformis strain Myr cla05
Myriotrichia clavaeformis strain Myr cla12

Pelvetia canaliculata

Phaeothamnion wetherbeei strain SAG 119.79
Pleurocardia lacustris strain SAG 25.93
Porterinema fluviatile strain SAG 2381

Pylaiella littoralis strain U1.48

Pylaiella littoralis strain F24

Saccharina japonica strain Ja

Saccharina latissima strain SLPER63f7

Saccorhiza dermatodea strain SderLi1190fm
Saccorhiza polyschides strain SpolBR94f
Saccorhiza polyschides strain SpolBR94m
Saccorhiza polyschides

Sargassum fusiforme

Schizocladia ischiensis strain KU-0333

Scytosiphon promiscuus strain 000310-Muroran-5-female
Scytosiphon promiscuus strain Ot110409-Otamoi-16-male
Scytosiphon promiscuus strain SXS107
Sphacelaria rigidula strain Sph rig Cal Mo 4-1-68b
Sphacelaria rigidula strain Sph rig Cal Mo 4-1-G3b
Sphacelaria rigidula strain Sph rig Cal Mo SP
Sphaerotrichia firma strain ET2f

Sphaerotrichia firma strain Sfir13m

Tribonema minus strain UTEX B 3156

Undaria pinnatifida strain Kr2015

e METHOD DETAILS

Biological material

DNA extraction

lllumina library preparation and sequencing

Oxford Nanopore library preparation and sequencing
RNA extraction, lllumina RNA-seq library preparation and
sequencing

Assembly strategies
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o Assembly decontamination
o Transcriptome assembly
o De novo transcriptomes
o Detection and masking of repeated sequences and transposons
o Gene prediction
o Annotation decontamination
o Analyses aimed at deducing functional characteristics of predicted
proteins
Detection of tandemly duplicated genes
Relative orientation of adjacent genes and lengths of intergenic
regions
Detection of long non-coding RNAs
Intron conservation
Phylogenomic tree of the Phaeophyceae
Bayesian divergence time estimation for the brown algae
Detection of orthologous groups
Dollo analysis of orthogroup gain and loss
Phylostratigraphy analysis
Detection of gene family amplifications
Composite genes
Horizontal gene transfer (HGT)
Gene codon usage, functional annotation and expression
Comparative analysis of gene sets identified by genome-wide ana-
lyses of evolutionary history
o Detection of viral genome insertions and viral regions in algal
genomes
Phylogenetic analysis of viral genes
Metabolic networks
CAZymes
Sulfatases
Haloperoxidases
lon channels
Membrane-localised proteins
Transcription-associated proteins
EsV-1-7 domain proteins
Histones
DNA methyltransferases
Spliceosome
Flagella proteins
Detection of Porterinema fluviatile genes differentially expressed in
freshwater and seawater
Identification of genes with generation-biased expression patterns
Life cycle and thallus architecture
Assembly and analysis of organellar genomes
Analysis of Ectocarpus genome synteny
Analysis of Ectocarpus gene evolution
Phylogenetic analysis of Ectocarpus species
o Ectocarpus introgression analysis
o QUANTIFICATION AND STATISTICAL ANALYSIS
o ADDITIONAL RESOURCES
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Deposited data

The sequence data generated by this
project is described in Table S1.

CNRS Research Data dataset "Data for
Phaeoexplorer publication: Evolutionary
genomics of the emergence of brown algae
as key components of coastal ecosystems"

This study.

This study.
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CNRS Research Data: https://doi.org/10.
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Experimental models: Organisms/strains

The strains used for genome and
transcriptome sequencing are
listed in Table ST1A.
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See strain names and culture
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Software and algorithms
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MetaGene version 2008.8.19
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SPAdes assembler version 3.8.1
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Li et al.??

Noguchi et al.®®
Altschul et al.®*

Li and Durbin®®

Langmead and Salzberg®®

Bankevich et al.®’

Wick, R.

Liu et al.®®
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Redbean Ruan and Li®*° N/A

Flye
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Racon

Hapo-G
Metabat 2

SortMeRNA
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Oases version 0.2.08
TransDecoder

CDDsearch
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and version 0.39

Trinity version version 2.6.5
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Chen et al.”’
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Aury et al.”
Kang et al.”*

Kopylova et al.”®

Zerbino and Birney®

Schulz et al.””

Haas, B.J.

Marchler-Bauer et al.”®

Bolger et al.”®

Grabherr et al.’®®

Bushmanova et al.'®"
Smit et al.’®?

Benson et al.'%®

Flutre et al.'%*
Kent'*®

Birney et al.'%®
Buchfink et al."®”
Mott'%®

Dubarry et al.’®®

Debit, A.
Larsson''?

Stamatakis'""

Rambaut et al.'"?

Emms and Kelly'"®

Cslios'™*

Edgar''®
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OD-Seq version 1.0 Jehletal.'"® https://bioconductor.org/packages/
release/bioc/manuals/odseqg/man/
odseq.pdf

HMMERS package versions 3.1b1 and Mistry et al.""” RRID:SCR_005305 http://hmmer.

3.3.2 janelia.org/

GenEra Barrera-Redondo et al.''® N/A

MCL Enright et al."? RRID:SCR_024109 https://micans.org/mcl/

Foldseek Kempen et al.'?® https://search.foldseek.com/search

CleanBlastp Pathmanathan et al."*’ N/A

SEED Overbeek et al.'?” RRID:SCR_002129 http://www.theseed.
org/wiki/Home_of_the_SEED

IPR2GO Paysan-Lafosse et al.'*® http://www.ebi.ac.uk/interpro/search/
sequence-search

eggNOG Huerta-Cepas et al.'** RRID:SCR_002456 http://eggnog.embl.de

eggNOG-mapper

Spearman’s rank correlation analysis tool
version 1.1.23-r7

Prodigal version 2.6.3

ViralRecall version 2.0
esl-translate version 0.48

bedtools version 2.29.2

MMsegs cluster version 13.45111

MAFFT v7

MEGA

NGphylogeny platform
TrimAl

TAPscan version 4

Expasy web translator

Geneious versions 11.0.5 and 11.1.5
Interproscan 94.0

Clustal 2.1

Gblocks

Kallisto version 0.44.0.

Deseq2

Cantalapiedra et al.'*®

P. Wessa, Free Statistics Software,
Office for Research Development

and Education
Hyatt et al.*®

Aylward et al.’?”

Rivas, E.

Quinlan and Hall'?®

Hauser et al.’?

Katoh and Standley'*°
Tamura et al.'®’

Lemoine et al.'®
Capella-Gutiérrez et al.'®®

Petroll et al.’®*"%

Duvaud et al.’®®

Geneious

Jones et al.'®”
Thompson et al.’*®
Castresana'®®

Bray et al.'*®

Love et al.’*"

e3  Cell 187, 6943-6965.e1-e29, November 27, 2024

135

RRID:SCR_021165 http://eggnog-mapper.
embl.de

https://www.wessa.net/

RRID:SCR_011936 https://github.com/
hyattpd/Prodigal
https://github.com/faylward/viralrecall
https://github.com/EddyRivasLab/easel/
blob/master/miniapps/esl-translate.man.in
RRID:SCR_006646 https://github.com/
argbx/bedtools2

RRID:SCR_008184 https://github.com/
eturro/mmseg#mmseq-transcript-and-
gene-level-expression-analysis-using-
multi-mapping-rna-seq-reads
RRID:SCR_011811 http://mafft.cbrc.jp/
alignment/server/

RRID:SCR_023017 https://www.
megasoftware.net/
https://ngphylogeny.fr/.
RRID:SCR_017334 http://trimal.
cgenomics.org/
https://plantcode.cup.uni-freiburg.de/
tapscan/

RRID:SCR_024703 https://web.expasy.
org/translate/

RRID:SCR_010519 http://www.
geneious.com/

RRID:SCR_005829 http://www.ebi.ac.uk/
Tools/pfa/iprscan/

RRID:SCR_001591 http://www.ebi.ac.uk/
Tools/msa/clustalo/

RRID:SCR_015945 http://molevol.cmima.
csic.es/castresana/Gblocks_server.htmi
RRID:SCR_016582 https://pachterlab.
github.io/kallisto/about
RRID:SCR_015687 https://bioconductor.
org/packages/release/bioc/html/DESeq2.
html
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FastQC Andrews'*? RRID:SCR_014583 http://www.

Trim Galore version 0.6.5

HISAT2 version 2.1.0

featureCounts

PAML version 4.9i (including MCMCTree)

phytools R package

VHICA package
NOVOPIlasty version 3.7

SAMtools version 1.5
GeSeq version 2.03

ARAGORN version 1.2.38

ModelFinder
UFBoot2

SynMap
DAGChainer
CodeML

nwalign

BEAST version 2.7

StarBEASTS version 1.1.7
bModelTest

LogCombiner version 2.4.7
TreeAnnotator version 2.4.7
SplitsTree 4 version 4.14.6

Hectar

RShiny
IQ-TREE 2

Computational analysis of gene family
evolution 5 (CAFE5)

clusterProfiler

Krueger et al.’*®

Kim et al.™**

Liao et al.'*”

Yang'“®

Revell™*”

Wallau et al.'#®

Dierckxsens et al.'*®

Lietal.'™°

Tillich et al.’"
Laslett and Canbac

Kalyaanamoorthy et al
Hoang et al."**
Haug-Baltzell et al.’*®
Haas et al.’®®

Yang et al.'*®
Pedersen, B

Bouckaert et al.”®’

Douglas et al.’®
Bouckaert et al.'*®
Bouckaert et al.”®’

Bouckaert et al.”®”

Kloepper and Huson'®°

Gschloessl et al.'®’

R Core Team'®”
Minh et al.’®®

Mendes et al.'®*

Yuetal.'®®

kT 52

bioinformatics.babraham.ac.uk/projects/
fastqc/

RRID:SCR_011847 http://www.
bioinformatics.babraham.ac.uk/projects/
trim_galore/

RRID:SCR_015530 http://ccb.jhu.edu/
software/hisat2/index.shtml

RRID:SCR_012919 http://bioinf.wehi.edu.
au/featureCounts/

RRID:SCR_014932 http://abacus.gene.ucl.
ac.uk/software/paml.html

RRID:SCR_015502 https://cran.r-project.
org/web/packages/phytools/index.html

https://github.com/cran/vhica

RRID:SCR_017335 https://github.com/
ndierckx/NOVOPIlasty

RRID:SCR_002105 http://htslib.org/

RRID:SCR_017336 https://chlorobox.
mpimp-golm.mpg.de/geseq.html

RRID:SCR_015974 http://mbio-serv2.
mbioekol.lu.se/ARAGORN/

http://www.igtree.org/ModelFinder/
N/A
https://genomevolution.org/SynMap.pl
https://dagchainer.sourceforge.net/
N/A

https://pypi.org/project/nwalign/

RRID:SCR_010228 http://beast.bio.
ed.ac.uk/

https://github.com/rbouckaert/starbeast3
N/A
N/A
N/A

RRID:SCR_014734 http://www.
splitstree.org/

https://webtools.sb-roscoff.fr/root?tool_
id=abims_hectar
https://github.com/rstudio/shiny
https://github.com/igtree/igtree2
https://github.com/hahnlab/CAFE5

RRID:SCR_016884 http://bioconductor.
org/packages/release/bioc/html/
clusterProfiler.html

ggplot2 Wickham et al."®® RRID:SCR_014601 https://cran.r-project.
org/web/packages/ggplot2/index.html

tidyverse Wickham et al.'®” RRID:SCR_019186 https://CRAN.R-
project.org/package=tidyverse

Other

Benchmarking universal single-copy
orthologue (BUSCO) analysis version 5,
eukaryota_odb10

Manni et al.’®®
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RRID:SCR_015008 http://busco.ezlab.org/

(Continued on next page)
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Continued
REAGENT or RESOURCE SOURCE IDENTIFIER
UniRef90 Suzek et al.'®® RRID:SCR_010646 http://www.uniprot.org/

AlphaFold protein structure database

NCVOG database
VOGDB database
SulfAtlas database
Pfam

Panther 17.0

Simple Modular Architecture Research Tool
(SMART)

Varadi et al.'”°

Yutin et al.’”"
Trgovec-Greif et a
Barbeyron et al.'’?; Stam et al.'”®

|172

Mistry et al.'”*

Thomas et al.'”®

Letunic et al.'”®

help/uniref

RRID:SCR_023662 https://alphafold.ebi.
ac.uk/

N/A

https://vogdb.org/
https://sulfatlas.sb-roscoff.fr/
RRID:SCR_004726 http://pfam.xfam.org/
RRID:SCR_004869 http://www.pantherdb.
org/

RRID:SCR_005026 http://smart.embl.de/

EXPERIMENTAL MODEL DETAILS

Ascophyllum nodosum

Species: Ascophyllum nodosum
Strain: field collected sperm cells
Genotype: diploid
Sex: male
Maintenance: N/A

Chordaria linearis strain ClinC8C
Species: Chordaria linearis

Strain: ClinC8C

Genotype: haploid

Sex: monoicous

Maintenance: Maintained in culture

Choristocarpus tenellus strain KU-1152

Species: Choristocarpus tenellus
Strain: KU-1152
Genotype: unknown
Sex: unknown
Maintenance: Maintained in culture

Chrysoparadoxa australica strain CS-1217

Species: Chrysoparadoxa australica
Strain: CS-1217
Genotype: unknown
Sex: unknown
Maintenance: Maintained in culture

Cladosiphon okamuranus strain S-strain

Species: Cladosiphon okamuranus
Strain: S-strain
Genotype: diploid
Sex: n/a
Maintenance: N/A

Desmarestia dudresnayi strain DdudBR16

Species: Desmarestia dudresnayi
Strain: DdudBR16
Genotype: haploid

e5  Cell 187, 6943-6965.e1-e29, November 27, 2024

137



Cel ¢ CellPress

OPEN ACCESS

Sex: monoicous
Maintenance: Maintained in culture

Desmarestia herbacea strain DmunF
Species: Desmarestia herbacea

Strain: DmunF

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Desmarestia herbacea strain DmunM
Species: Desmarestia herbacea

Strain: DmunM

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Dictyota dichotoma strain KBO7f IV
Species: Dictyota dichotoma

Strain: KBO7f IV

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Dictyota dichotoma strain ODC1387m
Species: Dictyota dichotoma

Strain: ODC1387m

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Dictyota dichotoma strain KBO7m IV
Species: Dictyota dichotoma

Strain: KBO7m IV

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Dictyota dichotoma strain KBO7sp VI
Species: Dictyota dichotoma

Strain: KBO7sp VI

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Discosporangium mesarthrocarpum strain MT17-79
Species: Discosporangium mesarthrocarpum

Strain: MT17-79

Genotype: unknown

Sex: unknown

Maintenance: Maintained in culture

Ectocarpus crouaniorum strain Ec861
Species: Ectocarpus crouaniorum

Strain: Ec861

Genotype: haploid

Sex: female

Maintenance: Maintained in culture
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Ectocarpus crouaniorum strain Ec862
Species: Ectocarpus crouaniorum

Strain: Ec862

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Ectocarpus fasciculatus strain Ec846
Species: Ectocarpus fasciculatus

Strain: Ec846

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Ectocarpus fasciculatus strain Ec847
Species: Ectocarpus fasciculatus

Strain: Ec847

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Ectocarpus fasciculatus strain EfasUO1
Species: Ectocarpus fasciculatus

Strain: EfasUO1

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Ectocarpus fasciculatus strain EfasU02
Species: Ectocarpus fasciculatus

Strain: EfasUO2

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Ectocarpus siliculosus strain Ec863
Species: Ectocarpus siliculosus

Strain: Ec863

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Ectocarpus siliculosus strain Ec864
Species: Ectocarpus siliculosus

Strain: Ec864

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Ectocarpus species 1 strain Ec sil Puy CHCH Z9 G5f
Species: Ectocarpus species 1

Strain: Ec sil Puy CHCH 79 G5f

Genotype: haploid

Sex: female

Maintenance: Maintained in culture
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Ectocarpus species 1 strain Ec sil Puy CHCH Z9 G3m
Species: Ectocarpus species 1

Strain: Ec sil Puy CHCH Z9 G3m

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Ectocarpus species 1 strain Ec03
Species: Ectocarpus species 1
Strain: Ec03
Genotype: haploid
Sex: male
Maintenance: Maintained in culture

Ectocarpus species 12 strain Ec fas CH92 Nie 2f
Species: Ectocarpus species 12

Strain: Ec fas CH92 Nie 2f

Genotype: diploid

Sex: female

Maintenance: Maintained in culture

Ectocarpus species 12 strain Ec fas CH92 Nie 3m
Species: Ectocarpus species 12

Strain: Ec fas CH92 Nie 3m

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Ectocarpus species 13 strain ECNAP12-S#4-19m
Species: Ectocarpus species 13

Strain: ECNAP12-S#4-19m

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Ectocarpus species 2 strain Ec06
Species: Ectocarpus species 2
Strain: Ec06
Genotype: haploid
Sex: male
Maintenance: Maintained in culture

Ectocarpus species 3 strain Ec10
Species: Ectocarpus species 3
Strain: Ec10
Genotype: haploid
Sex: female
Maintenance: Maintained in culture

Ectocarpus species 3 strain Ec11
Species: Ectocarpus species 3
Strain: Ec11
Genotype: haploid
Sex: male
Maintenance: Maintained in culture
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Ectocarpus species 5 strain Ec13
Species: Ectocarpus species 5
Strain: Ec13
Genotype: haploid
Sex: female
Maintenance: Maintained in culture

Ectocarpus species 5 strain Ec12
Species: Ectocarpus species 5
Strain: Ec12
Genotype: haploid
Sex: male
Maintenance: Maintained in culture

Ectocarpus species 6 strain ECLAC-371f
Species: Ectocarpus species 6

Strain: ECLAC-371f

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Ectocarpus species 7 strain Ec32
Species: Ectocarpus species 7
Strain: Ec32
Genotype: haploid
Sex: male
Maintenance: N/A

Ectocarpus species 8 strain ECLAC-412m
Species: Ectocarpus species 8

Strain: EcLAC-412m

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Ectocarpus species 9 strain ECSCA-722f
Species: Ectocarpus species 9

Strain: EcCSCA-722f

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Ectocarpus subulatus strain Bft15b
Species: Ectocarpus subulatus

Strain: Bft15b

Genotype: haploid

Sex: male

Maintenance: N/A

Feldmannia mitchelliae strain KU-2106 Giff mitch BNC GA
Species: Feldmannia mitchelliae

Strain: KU-2106 Giff mitch BNC GA

Genotype: haploid

Sex: monoicous

Maintenance: Maintained in culture
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Fucus distichus
Species: Fucus distichus
Strain: field collected meristem
Genotype: diploid
Sex: n/a
Maintenance: N/A

Fucus serratus
Species: Fucus serratus
Strain: field collected ovule cells
Genotype: diploid
Sex: female
Maintenance: N/A

Fucus serratus
Species: Fucus serratus
Strain: field collected sperm cells
Genotype: diploid
Sex: male
Maintenance: N/A

Halopteris paniculata strain Hal grac a UBK
Species: Halopteris paniculata

Strain: Hal grac a UBK

Genotype: haploid

Sex: monoicous

Maintenance: Maintained in culture

Hapterophycus canaliculatus strain Oshoro5f
Species: Hapterophycus canaliculatus

Strain: Oshoro5f

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Hapterophycus canaliculatus strain Oshoro7m
Species: Hapterophycus canaliculatus

Strain: Oshoro7m

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Hapterophycus canaliculatus strain Oshoro 3F x 9M
Species: Hapterophycus canaliculatus

Strain: Oshoro 3F x 9M

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Hapterophycus canaliculatus strain Oshoro 4F x 9M
Species: Hapterophycus canaliculatus

Strain: Oshoro 4F x 9M

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture
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Hapterophycus canaliculatus strain Oshoro 6F x 6M
Species: Hapterophycus canaliculatus

Strain: Oshoro 6F x 6M

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Heribaudiella fluviatilis strain SAG. 13.90
Species: Heribaudiella fluviatilis

Strain: SAG. 13.90

Genotype: unknown

Sex: unknown

Maintenance: Maintained in culture

Heterosigma akashiwo strain CCMP452
Species: Heterosigma akashiwo

Strain: CCMP452

Genotype: unknown

Sex: unknown

Maintenance: Maintained in culture

Himanthalia elongata
Species: Himanthalia elongata
Strain: field meristem
Genotype: diploid
Sex: n/a
Maintenance: N/A

Laminaria digitata strain LdigPH10-18mv
Species: Laminaria digitata

Strain: LdigPH10-18mv

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Laminarionema elsbetiae strain ELsaHSoW15
Species: Laminarionema elsbetiae

Strain: ELsaHSoW15

Genotype: unknown

Sex: unknown

Maintenance: Maintained in culture

Macrocystis pyrifera strain P11A1
Species: Macrocystis pyrifera

Strain: P11A1

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Macrocystis pyrifera strain P11B4
Species: Macrocystis pyrifera

Strain: P11B4

Genotype: haploid

Sex: male

Maintenance: Maintained in culture
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Myriotrichia clavaeformis strain Myr cla04
Species: Myriotrichia clavaeformis

Strain: Myr cla04

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Myriotrichia clavaeformis strain Myr cla05
Species: Myriotrichia clavaeformis

Strain: Myr cla05

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Myriotrichia clavaeformis strain Myr cla12
Species: Myriotrichia clavaeformis

Strain: Myr cla12

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Pelvetia canaliculata

Species: Pelvetia canaliculata
Strain: field collected meristem
Genotype: diploid
Sex: n/a
Maintenance: N/A

Phaeothamnion wetherbeei strain SAG 119.79
Species: Phaeothamnion wetherbeei

Strain: SAG 119.79

Genotype: unknown

Sex: unknown

Maintenance: Maintained in culture

Pleurocardia lacustris strain SAG 25.93
Species: Pleurocardia lacustris

Strain: SAG 25.93

Genotype: unknown

Sex: unknown

Maintenance: Maintained in culture

Porterinema fluviatile strain SAG 2381
Species: Porterinema fluviatile

Strain: SAG 2381

Genotype: unknown

Sex: unknown

Maintenance: Maintained in culture

Pylaiella littoralis strain U1.48
Species: Pylaiella littoralis

Strain: U1.48

Genotype: haploid

Sex: unknown

Maintenance: Maintained in culture
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Pylaiella littoralis strain F24
Species: Pylaiella littoralis

Strain: F24

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Saccharina japonica strain Ja
Species: Saccharina japonica
Strain: Ja
Genotype: haploid
Sex: male
Maintenance: N/A

Saccharina latissima strain SLPER63f7
Species: Saccharina latissima

Strain: SLPER63f7

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Saccorhiza dermatodea strain SderLii1190fm
Species: Saccorhiza dermatodea

Strain: SderL(i1190fm

Genotype: haploid

Sex: monoicous

Maintenance: Maintained in culture

Saccorhiza polyschides strain SpolBR94f
Species: Saccorhiza polyschides

Strain: SpolBR94f

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Saccorhiza polyschides strain SpolBR94m
Species: Saccorhiza polyschides

Strain: SpolBR94m

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Saccorhiza polyschides
Species: Saccorhiza polyschides

Strain: field collected sample (young sporophytes ~2-10cm)

Genotype: diploid
Sex: n/a
Maintenance: N/A

Sargassum fusiforme
Species: Sargassum fusiforme
Strain: unknown
Genotype: diploid
Sex: n/a
Maintenance: N/A
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Schizocladia ischiensis strain KU-0333
Species: Schizocladia ischiensis

Strain: KU-0333

Genotype: unknown

Sex: unknown

Maintenance: Maintained in culture

Scytosiphon promiscuus strain 000310-Muroran-5-female
Species: Scytosiphon promiscuus

Strain: 000310-Muroran-5-female

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Scytosiphon promiscuus strain Ot110409-Otamoi-16-male
Species: Scytosiphon promiscuus

Strain: Ot110409-Otamoi-16-male

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Scytosiphon promiscuus strain SXS107
Species: Scytosiphon promiscuus

Strain: SXS107

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Sphacelaria rigidula strain Sph rig Cal Mo 4-1-68b
Species: Sphacelaria rigidula

Strain: Sph rig Cal Mo 4-1-68b

Genotype: haploid

Sex: female

Maintenance: Maintained in culture

Sphacelaria rigidula strain Sph rig Cal Mo 4-1-G3b
Species: Sphacelaria rigidula

Strain: Sph rig Cal Mo 4-1-G3b

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Sphacelaria rigidula strain Sph rig Cal Mo SP
Species: Sphacelaria rigidula

Strain: Sph rig Cal Mo SP

Genotype: diploid

Sex: n/a

Maintenance: Maintained in culture

Sphaerotrichia firma strain ET2f
Species: Sphaerotrichia firma

Strain: ET2f

Genotype: haploid

Sex: female

Maintenance: Maintained in culture
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Sphaerotrichia firma strain Sfiri3m
Species: Sphaerotrichia firma

Strain: Sfirt3m

Genotype: haploid

Sex: male

Maintenance: Maintained in culture

Tribonema minus strain UTEX B 3156
Species: Tribonema minus

Strain: UTEX B 3156

Genotype: unknown

Sex: unknown

Maintenance: N/A

Undaria pinnatifida strain Kr2015
Species: Undaria pinnatifida

Strain: Kr2015

Genotype: diploid

Sex: n/a

Maintenance: N/A

METHOD DETAILS

Biological material

Sequencing brown algal genomes has been hampered by the significant challenges involved, including inherent problems with
growing brown algae, the presence of molecules that interfere with sequencing reactions and complex associations with microbial
symbionts. To address these problems, cultured, unialgal filamentous gametophyte material was used whenever possible (i.e. for
species with haploid-diploid life cycles) and the extraction methodology was adapted for each species.

The algal strains analysed in this study are listed in Table S1A, which provides information about the sampling site for each strain.
The sampling sites are shown on a world map in Figure S1D.

All strains except those belonging to the Fucales were grown under laboratory conditions. The latter cannot be maintained long-
term in the laboratory so field material was harvested for extractions. The haploid gametophyte generation was grown in culture for
species with characterised haploid-diploid life cycles, with the exception of Ectocarpus strains, for which haploid partheno-sporo-
phytes or diploid sporophytes were cultivated. All cultures were grown either in 140 mm diameter Petri dishes orin 2-10 L bottles, the
latter aerated by bubbling with sterile air. Most cultures were grown in Provasoli-enriched'®* natural seawater (PES medium) under
fluorescent white light (10-30 uM photons/m2-s) at 13°C (or at 10°C for Hapterophycus canaliculatus and Chordaria linearis or 20°C
for Sphacelaria rigidula, Dictyota dichotoma, Schizocladia ischiensis and Chrysoparadoxa Australica). Exceptions included the fresh-
water species Pleurocladia lacustris, Porterinema fluviatile and Heribaudiella fluviatilis, which were grown in natural seawater that had
been diluted to 5% with distilled water (i.e., 95% distilled water / 5% seawater) before addition of ES medium (http://sagdb.uni-
goettingen.de/culture_medi a/01%20Basal%20Medium.pdf) micronutrients (at 20°C for P. lacustris) and Phaeothamnion wether-
beei, which was grown in MIEB12 (medium 7 in Letunic et al.”””). Whole thallus was extracted for all species except the Fucales,
where either dissected meristematic regions or released male gametes were extracted. Tissue samples were frozen in liquid nitrogen
and stored at -80°C before extraction.

DNA extraction

DNA was extracted using either the OmniPrep Genomic DNA Purification Kit (G Biosciences, St. Louis, MO, USA) or the Nucleospin
Plant Il midi DNA Extraction Kit (Macherey-Nagel, Diren, Germany). DNA quality was assessed using a Qubit fluorometer (Themo
Fisher Scientific, Waltham, MA, USA), and fragment length was assessed by migration on a 1% agarose gel for some of the samples.

Illumina library preparation and sequencing

Libraries were prepared using the NEBNext DNA Modules Products (New England Biolabs, Ipswich, MA, USA) with an ‘on bead’ pro-
tocol developed by Genoscope, starting with 100 ng of genomic DNA. DNA was sonicated to a 100-800 bp size range using a Covaris
E220 sonicator (Covaris, Woburn, MA, USA), end-repaired and 3'-adenylated. lllumina adapters (Bioo Scientific, Austin, TX, USA)
were then added using the NEBNext Sample Reagent Set (New England Biolabs, Ipswich, MA, USA) and the DNA purified using Am-
pure XP (Beckmann Coulter Genomics, Danvers, MA, USA). Adapted fragments were amplified with 12 cycles of PCR using the Kapa
Hifi Hotstart NGS library Amplification kit (Roche, Basel, Switzerland), followed by 0.8x AMPure XP (Beckman Coulter Genomics,
Danvers, MA, USA) purification. Libraries were sequenced with lllumina MiSeq, HiSeq 4000 or NovaSeq 6000 instruments (lllumina,
San Diego, CA, USA) in paired-end mode, 150 base read-length.

e15 Cell 187, 6943-6965.e1-e29, November 27, 2024

147



Cel ¢ CellPress

OPEN ACCESS

Oxford Nanopore library preparation and sequencing

Some samples were first purified using the Short Read Eliminator Kit (Pacific Biosciences, Menlo Park, CA, USA). All libraries were
prepared using the protocol "1D Genomic DNA by Ligation" provided by Oxford Nanopore Technologies (Oxford Nanopore Tech-
nologies Ltd, Oxford, UK). Most of the libraries were prepared with the SQK-LSK109 kit (Oxford Nanopore Technologies), a few
with the SQK-LSK108 or SQK-LSK110 kits (Oxford Nanopore Technologies). Three flow cells were loaded with barcoded samples.
The samples were mainly sequenced on R9.4.1 MinlON or PromethlON flow cells.

RNA extraction, lllumina RNA-seq library preparation and sequencing

RNA was extracted using either the Qiagen RNeasy kit or the Macherey Nagel RNAplus kit (Macherey-Nagel, Duren, Germany).
RNA-seq libraries were prepared using the TruSeq Stranded mRNA Sample Prep (lllumina) according to the manufacturer’s protocol,
starting with 500 ng to 1 pg of total RNA, or using the NEBNext Ultra Il Directional RNA Library Prep for lllumina (New England
BioLabs) according to the manufacturer’s protocol, starting with 100 ng of total RNA. The libraries were sequenced with lllumina
HiSeq 2500, HiSeq 4000 or NovaSeq 6000 instruments (lllumina, San Diego, CA, USA), in paired-end mode, 150 base read-length.

Assembly strategies

Two assembly strategies were employed: one was designed for genomes exclusively sequenced using short reads with lllumina
technology, while the other was designed for genomes that underwent sequencing using a combination of long and short reads, us-
ing respectively the Nanopore and lllumina technologies.

Short-read-based genome assembly

When sequencing was performed exclusively using short reads, reads corresponding to bacterial contaminants were filtered out
early in the assembly process because, typically, the initial datasets were too large to run assemblers like SPAdes. To remove bac-
terial contaminants, an assembly based on the initial illumina dataset was first generated for each strain using a fast and non-greedy
algorithm, MEGAHIT®? version 1.1.1 with the parameters —k-min 101 —-k-max 131 —k-step 10. Assigning taxonomy is easier when
working with contigs than with reads. Contigs exceeding 500 bp in each preliminary assembly underwent taxonomic classification
based on gene models predicted using the ab initio software MetaGene® version 2008.8.19 with default parameters and then align-
ing proteins against UniprotKB using BLASTp (e-value <10e™). A superkingdom (Eukaryota, Archaea or Bacteria) was assigned to
each gene based on the best alignment (selected using the BLASTp score). Contigs that contained more than 50% of their genes
assigned to Bacteria and with at least one gene every 10 kbp were classified as bacterial sequences. For each strain, the initial lllu-
mina sequencing reads were aligned against the corresponding bacterial sequences using latest version of the Burrows-Wheeler
Aligner® (BWA) with default parameters and mapped short-reads were labelled as contaminants, and assembled for the purpose
of obtaining more contiguous contigs. These bacterial contigs were then used to build a contaminant sequence database. Finally,
the clean subset of reads was obtained by aligning the whole lllumina dataset against this strain-specific bacterial contig database,
using Bowtie2®® version 2.2.9 with default parameters. A final assembly was then generated for each strain using the contaminant-
free read datasets and the SPAdes®” assembler version 3.8.1 with the parameters -k 21,57,71,99,127 -m 2000 —only-assembler
—careful. Genome assemblies based only on short-reads were more fragmented (N50 ranged from 3 kbp to 31 kbp) than assemblies
that used long reads but the sizes of the former were consistent with expectations.

Long-read-based genome assemblies

A subset of the strains produced DNA of both adequate quality and quantity, enabling successful long-read sequencing. In these
cases, long reads were assembled directly and the detection of possible bacterial contigs was carried out after the assembly
step. To produce long-read-based genome assemblies we generated three samples of reads i) all reads, ii) 30X coverage of the
longest reads and iii) 30X coverage of the filtlong (https://github.com/rrwick/Filtlong) highest-score reads. The three samples
were used as input data for four different assemblers, Smartdenovo,®® Redbean,® Flye®® and Necat.’’ Based on the cumulative
size and contiguity, we selected the best assembly for each strain. This assembly was then polished three times using Racon®”
with nanopore reads, and twice with Hapo-G°® and lllumina PCR-free reads.

Assembly decontamination

Contigs from the short- and long-read genome assemblies were inspected for potential bacterial sequences. This process was car-
ried out using a combination of several analysis and tools: GC composition, read coverage, Metabat 2 (for tetramer composition and
clustering)® and Metagene (for gene prediction and taxonomic identification, as described previously). Contigs were manually
removed based on their characteristics.

Transcriptome assembly

Ribosomal-RNA-like reads were detected using SortMeRNA” and filtered out. The lllumina RNA-seq short reads from each strain
were assembled using Velvet®® version 1.2.07 and Oases®” version 0.2.08 with kmer sizes of 61, 63 and 65 bp. BUSCO'®® analysis
(v5, eukaryota_odb10) was then performed on the three resulting assemblies for each strain in order to select the best assembily, i.e.
the most complete at the gene level. Reads were mapped back to the contigs with BWA-mem, and only consistent paired-end reads
were retained. Uncovered regions were detected and used to identify chimeric contigs. In addition, open reading frames (ORF) and
domains were identified using TransDecoder (Haas, B.J., https:/github.com/TransDecoder/TransDecoder) and CDDsearch,®
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respectively. Contigs were broken into uncovered regions outside ORFs and domains. In addition, read strand information was used
to correctly orient RNA-seq contigs.

De novo transcriptomes

The RNA-seq data was also used to generate de novo transcriptomes. For each strain, all the RNA-seq data available was cleaned to
remove poor quality sequence and adapter sequences using Trimmomatic®® v0.39 prior to being assembled using either Trinity'%°
version v2.6.5 or rnaSPAdes'®" version v3.13.1. The strandness and Kmer-length parameters of the assemblers were adjusted to
take into account RNA-seq read characteristics. The de novo transcriptomes represented an alternative source to identify and char-
acterise genes if they were not detected in the genome assemblies. The de novo transcriptomes are available from the CNRS
Research Data dataset (https://doi.org/10.57745/9U1J85) and from the Phaeoexplorer website (https://phaeoexplorer.sb-
roscoff.fr/).

Detection and masking of repeated sequences and transposons

Prior to gene annotation, each genome assembly was masked based on the repeat library from Ectocarpus species 7 (formerly
Ectocarpus siliculosus)'’ and using RepBase with RepeatMasker'* version v.4.1.0, default parameters. Tandem repeats finder
(TRF)'®® was also used to mask tandem repeat duplications. In addition, transposons were annotated in ten species using
REPET'%* and the transposons detected were used as a reference to mask all genomes with RepeatMasker'°? version v4.1.0, default
parameters.

Gene prediction

For each strain, gene prediction was performed using both homologous proteins and RNA-seq data. Proteins from Ectocarpus spe-
cies 7 (https://bioinformatics.psb.ugent.be/orcae/overview/EctsiV2)'’® and UniRef90 (https://www.uniprot.org/uniref/) were aligned
against each genome assembly. First, BLAT'°° with default parameters was used to quickly localise putative genes corresponding to
the Ectocarpus species 7 proteins. The best match and matches with a score > 90% of the best match score were retained. Second,
the alignments were refined using Genewise'°® with default parameters, which is more precise for intron/exon boundary detection.
Alignments were retained if more than 80% of the length of the protein was aligned to the genome. To detect conserved proteins and
allow detection of horizontal gene transfer, UniRefd0 proteins (without E. siliculosus sequences) were aligned with DIAMOND %’
(v0.9.30 with parameters —evalue 0.001 -more-sensitive) to genomic regions lacking alignments with an Ectocarpus species 7 pro-
tein. Only the five best matches per locus were retained, based on their bitscore. Selected proteins from UniRef90 were aligned to the
whole genome using Genewise as described previously, and alignments with at least 50% of the aligned protein length were retained.
The assembled transcriptome for each strain was aligned to the strain’s genome assembly using BLAT'® with default parameters.
For each transcript, the best match was selected based on the alignment score, with an identity greater or equal to 90%. Selected
alignments were refined using Est2Genome ' in order to precisely detect intron boundaries. Alignments were retained if more than
80% of the length of the transcript was aligned to the genome with a minimal identity of 95%. Finally, the protein homologies and
transcript mapping were integrated using a combiner called Gmove.*° This tool can find coding sequences (CDSs) based on
genome-located evidence without any calibration step. Briefly, putative exons and introns, extracted from the alignments, were
used to build a simplified graph by removing redundancies. Then, Gmove extracted all paths from the graph and searched for
open reading frames (ORFs) consistent with the protein evidence. Translated proteins of predicted genes were then aligned against
NR prot (release 19/02/2019) and the Ectocarpus species 7 version v2 proteome'’® (https:/bioinformatics.psb.ugent.be/orcae/
overview/EctsiV2) using DIAMOND BLASTp with parameters —evalue 10-5 -more-sensitive —unal 0. All predicted genes with signif-
icant matches (the smallest protein had to be aligned for at least 50% of its length) were retained. In addition to these genes, we also
retained genes with CDS size greater than 300 bp and with a coding ratio (CDS size / mRNA size) greater or equal to 0.5.

Annotation decontamination

After predicting the genes, an additional analysis was carried out to detect bacterial sequences. If a contig did not contain any genes,
it was analysed with MetaGene and the predicted proteins added to the gene catalogue for the purpose of detecting bacterial se-
quences. Proteins generated from predicted genes (Gmove plus MetaGene) were then aligned against UniprotKB using BLASTp
(e-value < 10e™) and superkingdom (Eukaryota, Archaea or Bacteria) was assigned to each gene based on the best alignment
(selected using the BLASTp score). Contigs that contained more than 80% of their genes assigned to bacteria, Archaea or viruses
were classified as bacterial sequences and removed from the final assembly file. Genes belonging to these contigs were also
removed from the final gene catalogue. Finally, completeness of each predicted gene catalogue was assessed using BUSCO'®®
(v5.0.0; eukaryota_odb10).

In addition, the quality of the annotations was assessed by comparing the length of coding regions in pairs of orthologous proteins
(best reciprocal hits) between each genome and Ectocarpus species 7, which was used as a reference because its high-quality anno-
tation has been extensively curated.'’® The correlation between orthologous CDS lengths was higher for genomes sequenced with
long reads than for genomes only sequenced with short reads (Figure S1B). This difference was probably principally due to a higher
proportion of underestimated protein lengths in the latter (Table S1B) which likely corresponded to fragmented genes. The qualities of
Ectocarpales genome annotations were very high (BUSCO and length of predicted CDS) even when the genomes were sequenced
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using only short reads, probably because their phylogenetic proximity to Ectocarpus species 7 facilitated the building of good quality
gene models.

Analyses aimed at deducing functional characteristics of predicted proteins

Several different analyses of the predicted proteomes of each species were carried out to provide information about the cellular func-
tions of the encoded proteins. These included eggNOG-mapper'*° analyses (v2.1.8 or v2.0.1, with emapperDB v5.0.2 or v4.5.1) to
provide multiple functional annotations (Gene Ontology, Kyoto Encyclopedia of genes and genomes, Clusters of Orthologous Genes,
Pfam), Interproscan'®’ analyses (versions v5.55-88.0, v5.51-85.0 or v5.36-75.0) to detect functional domains, Hectar'®" (v1.3) pre-
dictions of protein subcellular localisation and various DIAMOND %7 (v2.0.15 vs UniRef90 2022_03, with parameter “evalue” set to
10e™°) sequence similarity searches aimed at identifying homologous proteins with functional annotations.

Detection of tandemly duplicated genes

Starting with the protein alignments that had been constructed to build the orthogroups, matches between proteins within the same
genome with an e-value of <10—20 and which covered at least 80% of the smallest protein were extracted. Two genes were consid-
ered to be tandemly duplicated if they were localised on the same genomic contig separated by five or less intervening genes, regard-
less of their orientation. The tandemly-duplicated genes were clustered using a single linkage clustering approach. A contingency
test was applied to compare the proportion of tandemly-duplicated genes in each orthogroup with the global proportion of tan-
demly-duplicated genes (p=0.0532792). The p-values are shown in Table S1.

Relative orientation of adjacent genes and lengths of intergenic regions

For each species, the proportion of pairs of adjacent genes localized on opposite strands was compared to the expected proportion
of 0.5 using a binomial test (with p=0.5). The p-values are shown in Table S1B (p-values of <0.05 correspond to cases where the pro-
portion is significantly higher than 0.5).

The lengths of intergenic regions between pairs of adjacent genes located on opposite strands (i.e. divergently or convergently
transcribed) were compared with the lengths of intergenic regions between genes located on the same strand (i.e. transcribed in
the same direction). Contingency tables were constructed for each species using a threshold of 1000 bp for the intergenic length
and the number of intergenic regions in each of four categories were counted: 1) same strand genes, intergenic <1000 bp, 2) opposite
strand genes, intergenic <1000 bp, 3) same strand genes, intergenic >1000 bp, 4) opposite strand genes, intergenic >1000 bp.
Fisher exact tests were applied to the contingency tables (alternative hypothesis: true odds ratio is greater than 1). The p-values
are shown in Table S1. When p-values are <0.05, short intergenic lengths are significantly associated with pairs of genes on opposite
strands. All calculations were performed with R'®? (version 4.3.0).

Detection of long non-coding RNAs

Transcriptome data for 11 species (Table S1F), including nine brown algal strains and two outgroup taxa, was analysed to identify
IncRNAs. Any transcripts with invalid nucleotide DNA symbols were discarded and sequences shorter than 200 nucleotides were
removed to avoid the detection of small RNA transcripts. The transcriptome sequences in Fasta format were analysed with
votingLNC (https://gitlab.com/a.debit/votinglnc) to detect INcRNA transcripts and assign a confidence level for each transcript. A
similar approach was used to detect IncRNAs in the IncPlankton database.'”® VotingLNC is a meta-classifier combining the predic-
tions of the ten most commonly used coding potential tools. Based on a majority voting ensemble procedure, the meta-tool assigns
the final coding potential class to a transcript as the class label predicted most frequently by the ten classification models included in
the ensemble. Alongside the majority voting class, a reliability score was calculated for each transcript. A cut-off non-coding reliability
score of p > 0.5 was chosen to treat a transcript as IncRNA and to decrease false-positive identification. The set of transcripts
predicted as INcRNA by the majority-voting procedure and having an ORF(s) encoding peptide(s) with length > 100aa were dis-
carded. IncRNA transcripts that had significant matches in either the Pfam'’* (hrmmscan e-value < 0.001) or SwissProt (BLASTp
e-value < 1e™® and similarity > 90%) databases were removed from the dataset. Transcript length, GC content, and the length of
the longest ORF were compared between IncRNAs and protein-coding RNAs. The comparison was carried out using a Wilcoxon
test. R version V.4.1.2 was used for all the analyses and ggplot2'®® (version 3.4.0) for plotting.

Intron conservation

Intron positions were compared in a set of single copy genes that are conserved across all the Phaeophyceae and the outgroup spe-
cies. The analysis focused on the 21 reference genomes (Table S1F) and on orthogroups that occurred exactly once in at least 20 of
the 21 genomes, allowing the gene to be absent from only one of the 21 genomes. In addition, orthogroups were discarded if more
than three copies had been annotated in the other Phaeophyceae genomes. These filters produced a set of 235 conserved (ancestral)
orthogroups. Multiple alignments were carried out for each orthogroup using MUSCLE''® version 3.8.1551 with default parameters
and conserved blocks were identified with Gblocks '*° version 0.91b with the parameters -p=t -s=n -b5=a -b2=[nsp] -b1=[nsp] -b3=6,
where “nsp” is equal to 90% of the number of proteins aligned. A shell script was then used to compare intron positions in the align-
ments. For each intron in the multiple sequence alignment, we obtained a corresponding conservation profile listing which species
contains an intron at that position. The profiles obtained for the 949 introns that are in conserved blocks of the multiple alignments are
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shown in Figure S4B. Both phase and length of ancestral introns (e.g. that were conserved in most Phaeophyceae and at least two
sister clades) were compared to the phase and length of Ectocarpus species 7 introns as a reference. The same approach was used
to compare intron positions across 11 Ectocarpus species, with Scytosiphon promiscuus as an outgroup, by selecting 831 conserved
monocopy orthogroups. The number of introns per gene in brown algae and in closely-related outgroup species were compared
using a contingency test (Table S1C).

Phylogenomic tree of the Phaeophyceae

To provide a phylogenetic framework for the analyses of the Phaeoexplorer genome dataset, the 41-species phylogenomic tree re-
ported by Akita et al.'®° was updated by adding 15 additional species using the same methodology. Briefly, for the additional species,
amino acid sequences were recovered for the 32 single-copy orthologous genes used to construct the published tree and these were
aligned manually with the existing sequences using the alignment software AliView''® v.1.26. The aligned sequences of the final 56
species were concatenated and maximum likelihood analysis was carried out with 10,000 rapid bootstraps using RAXML'"" v.8.2.9
and the gamma model. The best-fit evolutionary model for each gene was determined using AIC.

Bayesian divergence time estimation for the brown algae

An estimation of brown algal divergence time was carried out using the 32 orthologous nuclear genes (see above and ) for 51 brown
algae and five non-brown species (16,185 amino acids, 56 spp.) and MCMCTree (PAML package v4.9j) with the approximate likeli-
hood method. The WAG protein model was selected based on the AIC and BIC criteria of ModelFinder.'*® The independent
clock model was selected based on previous work on the brown algal timeline by Choi et al." One hundred million years was set
to correspond to 1 in the MCMCTree calculation. A secondary calibration for the root was based on Choi et al.” using a gamma dis-
tribution of 70.2 alpha and 10.22 beta. A kelp holdfast fossil°® was used to date the crown node of kelps with a minimum bound of
0.31, and a Julescraneia fossil'®' for the Macrocystis/Saccharina clade with a minimum bound of 0.13 (Figure S2A). MCMC chains
were run 1.5 million generations, with the first 200,000 MCMC chains being discarded as burn-in, and the convergence of MCMC
chains was checked with Tracer v1.7.2.""? This analysis estimated that Schizocladiophyceae and brown algae diverged 457.88
Mya (95% HPD: 321.29-592.66 Ma), similar to (about 8 Mya older than) the previous estimate using plastid genes' and that diversi-
fication of the major brown algal linages began about 220 million years later, after the origin of DFI clade (235.97 Mya, 95% HPD:
158.88-312.48 Mya), about 12 Ma earlier than the previous estimate.” The fossil-calibrated phylogenetic tree for 11 Ectocarpus
species (Figure S2C) was extracted from the brown algal tree (Figure S2A).

Detection of orthologous groups

Predicted proteins from the 60 strains sequenced in Phaeoexplorer complemented with 16 public proteomes covering the
Ochrophytina subphylum and the terrestrial oomycetes were clustered using OrthoFinder''® v2.5.2 with default parameters. This
generated 56,340 orthogroups that contained 90.1% of the proteins (1,415,341 of the 1,571,648). Seventy-one of the 76 strains
had more than 75% of their proteins in an orthogroup shared with at least one other strain. The orthogroups contain between
2 and 6,220 proteins with a mean of 25.1 proteins and a median of three.

Dollo analysis of orthogroup gain and loss

An analysis of evolutionary events of gene family gain and loss was carried out on a selection of strains covering the brown algal
phylogeny and sister groups as distant as the Raphidophyceae under the Dollo parsimony law using orthogroups as proxies for
gene families. To limit possible problems due to the fragmentation of predicted proteins in some assemblies, we selected 24,410
orthogroups present in at least one of 17 strains that had both good quality genome assembly and good quality gene predictions.
Dollo parsimony analysis was then run using Count’"'* version v9.1106 based on a cladogram of a subset of 24 species representative
of the Phaeoexplorer project and excluding all public outgroups more distant than Heterosigma akashiwo. The cladogram was based
on the topology of the brown algae phylogenetic tree published by Akita et al.'®”

Phylostratigraphy analysis

GenEra''® was used to estimate gene family founder events for each genome assembly by running DIAMOND'®” in ultra-
sensitive mode against the Phaeoexplorer protein dataset and the NCBI non-redundant database. All sequence matches with
e-values < 107 were treated as being homologous with the query genes in the target genomes. The NCBI taxonomy was used as
an initial template to infer the evolutionary relationships of each query gene with their matches in the sequence database but
taxonomic assignments within the PX clade and Phaeophyceae were then modified to reflect the evolutionary relationships that
were inferred in the maximum likelihood tree. Gene families were predicted based on a clustering analysis of the query proteins
against themselves using an e-value cutoff of 10™° in DIAMOND and an inflation parameter of 1.5 with MCL."'® Estimated evolutionary
distances were extracted for each pair of species from the maximum likelihood species tree (substitutions/site) to calculate homology
detection failure probabilities.'®® Taxonomic sampling of the species tree enabled homology detection failure tests to be carried out
within the PX clade. Gene families whose ages could not be explained by homology detection failure were analysed by inspecting the
functional and domain annotations for Ectocarpus species.’ '’ Structural alignments were performed using Foldseek'?° against the
AlphaFold protein structure database.’”®
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Detection of gene family amplifications
A binomial test with a parameter of 17/21 was carried out to detect gene families (OGs) that had significantly expanded in 17
Phaeophyceae reference genomes compared with four closely-related outgroup species (Schizocladia ischiensis, Tribonema minus,
Chrysoparadoxa australica and Heterosigma akashiwo; Table S1F). Expanded gene families deviated significantly from the expected
proportion (17/21 under the null hypothesis where there are equal gene numbers in all species). Benjamini-Hochberg FDR correction
for multiple testing was then applied and 233 candidate OGs with corrected p-values of < 0.001 were retained. All calculations were
performed with R (version 4.1.0).

The set of 233 candidate OGs was then filtered to limit counting errors due to annotation artefacts (e.g. genes missed or frag-
mented) using the following procedure:

1) A protein consensus was first deduced for each orthogroup. Protein sequences representative of all lineages were extracted
and aligned using MUSCLE''® version 3.8.1551 with default parameters and the multiple alignments were filtered using
OD-Seq''® version 1.0 to remove outlier sequences, with parameter —score set to 1.5. The consensus sequences were
then extracted from the multiple alignments of non-outlier sequences using hmmemit in the HMMER3''” package version
3.1b1 with default parameters.

2) In order to estimate gene family copy number independently of the assembly and annotation processes, short read sequences
for each genome were mapped onto the orthogroup consensus sequences using DIAMOND.'°” Unique matches were retained
for each read and depth of coverage was calculated for each consensus orthogroup. The depth obtained for each orthogroup
was normalised for each species by dividing by the depth obtained on a set of conserved single-copy genes, so that the final
value obtained was representative of the gene copy number. Then, for each candidate amplified orthogroup, the average depth
for the 17 Phaeophyceae species and the average depth for the four outgroup species was calculated and OGs where
the depth for outgroups was more than half the depth for the Phaeophyceae were discarded. We retained 227 out of 233
orthogroups after this step.

3) Finally, functional annotations were used to remove orthogroups that were likely to correspond to transposable elements.
A final list of 180 OGs was retained (Table S3).

The amplified gene families were manually categorised into functional classes based on the output of automatic functional
annotation programs (InterProScan,'®” EggNOG, '** nr BLASTp) and an amplification profile was assigned to each orthogroup by
identifying the taxonomic group where the amplification of the family was most marked (Table S3).

In addition to the binomial tests, we also ran CAFE5'® to reconstruct the history of gene family amplifications. Such reconstruc-
tions rely on a species tree and require that all gene families are present at the root of the tree. However, of the 180 amplified OGs that
were strongly amplified in Phaeophyceae (see above and listed in Table S3) only 19 were present at the ancestral node. The majority
(161) of the 180 families were gained during the early evolution of the lineage, most (105) at the origin of the PX clade (i.e. a collapsed
node corresponding to nodes n1 and n2 in Figure S2B) or of the Phaeophyceae/FDI clades (i.e. a collapsed node corresponding to
nodes n5 and n6; Figure S2B). To determine whether the 180 amplified OGs were significantly enriched in genes that were gained
early during Phaeophyceae evolution (i.e. at nodes n1/n2, n4, n5/n6 in Figure S2B), a Chi-squared test was carried out using the
R chisq.test function on a contingency table containing the proportions of OGs gained at various periods during brown algal evolution
for both the amplified OGs and for the entire set of OGs as a reference dataset (Table S1C). Twelve independent CAFE5 reconstruc-
tions were carried out on the OG subsets gained at 12 different nodes (n0, n1/2, n4, n5/n6, n8, n9, n10/n11, n13, n15, n18, n19, n20),
using the subtrees rooted at these nodes so that the sets of OGs gained at each node would be placed at the root of the tree for one of
the 12 analyses (Figure S3E). The analysis focused on the 19 highest quality genomes (Table S1F), which is why some pairs of nodes
were collapsed (e.g. nodes n1 and n2 to give n1/n2). Several parameters were tested for CAFE5: the —p option (Poisson distribution)
resulted in better likelihood scores than default, but we observed a weak effect when increasing the value of lambda (-k). Conse-
quently, all reconstructions were performed with —-p (and no k, i.e. k=1) for efficiency purposes. As recommended by Mendes
et al.,'® very large gene families were discarded as these can cause the program to fail to initialize the parameters. The twelve re-
constructions were then aggregated and the proportions of amplified and reduced gene families were calculated for each node
(Table S3). Only results on internal nodes were considered, since leaves are more subject to artefactual amplifications/reductions
due to genes being missed, fused or split in the annotations.

Composite genes

The amino-acid sequences of all 530,598 genes present in the selected genomes were compared in an all-against-all pairwise align-
ment using DIAMOND BLASTp ' version 2.0.11; “very-sensitive” mode; e-value threshold 1e™. This raw alignment was then filtered
using CleanBlastp, from the CompositeSearch suite,’?" to remove sequence alignments with under 30% residue identity and
produce the final sequence similarity network. CompositeSearch was then used on this network to identify putative composite
gene families among the orthologous groups (OGs) previously computed by OrthoFinder.''® Composite OGs containing two or
more genes and having non-overlapping regions aligned to their component OGs were retained for further analysis, while singleton
composite OGs and composites with overlapping component regions were discarded. A phylogeny-based approach,'®* which uses
information from extant genomes to apply a Dollo parsimony model in Count,''* was used to reconstruct the evolutionary events
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(domain fusions and fissions) that led to structural rearrangements of composite genes, allowing them to be labelled as fusion or
fission events (or as complex events when sequentiality could not be clearly deduced).

Horizontal gene transfer (HGT)

Dataset and experimental approach

Uneven data collection across taxa can impact HGT identification. The phylogeny-based HGT screening approach used here re-
quires the establishment of a comprehensive and taxonomically diverse reference dataset. The analysis focused on the
Phaeoexplorer genomes using a background database called REFAL and an automated bioinformatics tool called RoutineTree,
which screens for HGTs using phylogenetics. The background database was built using a starting database, GNM1157, which in-
cludes a diverse set of 17,250,679 protein sequences from 1157 genomes spanning various prokaryotic and eukaryotic lineages
(540 bacteria, 45 archaea, 431 Opisthokonta, 15 Rhodophyta, 83 Viridiplantae, and 43 genomes from CRASH lineages). Data
from NCBI RefSeq (updated as of May 2020) and MMETSP were integrated into GNM1157 to form the background database
REFAL. To enhance data quality and reduce redundancy, CD-HIT version 4.5.4 was used to remove highly similar sequences
(with sequence identity >90%) within each taxonomic order. This curation process resulted in a protein database consisting of
39.9 million sequences, representing over 7,786 taxa and providing comprehensive coverage across the diverse branches of the
tree of life. To obtain the best assembled genome within a genus, the latest version was selected if multiple versions were available.
In addition, the dataset was expanded by searching for genomes in other repositories such as the Joint Genome Institute. Special
attention was paid to achieving balanced representation of the Rhodophyta and Viridiplantae, which are particularly crucial for HGT
analysis within the Chromalveolate group. To accomplish this, protein data from six red algal transcriptomes sourced from MMETSP
was added. The HGT search was applied to 72 Stramenopile genomes, including 45 newly sequenced and 27 public genomes.
Phylogenetic Tree Reconstruction

The pipeline for constructing phylogenetic trees splits fasta files into individual sequence files and then carries out a search for
homologous sequences, followed by multiple sequence alignment and tree-building. Nested positions within the trees were identified
using artificial intelligence and hU and hBL methods were used for HGT verification. Instead of using all available sequences,
sequences with the best BLAST hit scores from each kingdom, phylum, and class were used for tree construction to expedite
tree-building and enhance clarity. Each gene, regardless of whether it was a copy or not, was used as a query for tree construction.
To improve precision, four different methods were used for tree building: neighbour-joining, maximum parsimony, maximum likeli-
hood and Bayesian. As a result, each node within a tree was associated with four support values. To create single-gene phylogenetic
trees, a BLASTp®* search was carried out against the background database, employing an e-value cutoff of 16 °%. For each query, the
top 1,000 significant matches were sorted by bit-score in descending order as the default criterion. Matching sequences were then
retrieved from the database, with a constraint of no more than three sequences per genus and no more than 12 sequences per
phylum. To further refine the selection, significant matches with a query-subject alignment length of at least 120 amino acids
were re-sorted based on query-subject identity in descending order. A second set of homologous sequences was then retrieved
from the database following the same procedure. These two sets of homologous sequences, along with the query, were merged
and aligned using MUSCLE'"® version 3.8.31 with default settings. The resulting alignments, trimmed to a minimum length of
50 amino acids using TrimAI'*® version 1.2 in automated mode (-automated1), were used to construct phylogenetic trees with
FastTree version 2.1.7, with the "'WAG + CAT’ model and four rounds of minimum-evolution SPR moves (-spr 4) along with exhaustive
ML nearest-neighbour interchanges (-mlacc 2 -slownni). Branch supports were estimated using the Shimodaira-Hasegawa
(SH)-test.

Inferring HGT based on tree topology

Phylogenetic trees were examined to identify specific topologies where Phaeoexplorer query sequences were nested among
other sequences, defined as a situation where two or more monophyletic clades consist of both queries and prokaryotic se-
quences, supported by distinct nodes within the tree. These monophyletic clades are considered to group together if they share
the same set of prokaryotic sequences but differ in sequences from optional taxa. Singletons for both the donor and receptor
genes were excluded to minimise contamination and recent HGT interference. To retain only robustly supported nested positions,
positions were required to be multiply supported, with a minimum of >0.70 for the SH-test and aByes-test support from at least
two Phaeoexplorer receptor nodes and three donor supporting nodes. Furthermore, queries that displayed significantly different
amino acid compositions (P < 0.05) compared to the remaining sequences in the alignment were discarded. Queries from the
CRASH category that nested among sequences from other kingdoms (supported by >70% UFBoot at one or more supporting
nodes) were retained.

Enhancing accuracy and establishing the timing of HGTs

To enhance accuracy, a minimum requirement was imposed for all supporting nodes and for strongly supported nodes that indicate
query-donor monophyly. To determine the timing of HGT events, temporal information, primarily derived from the timetree database,
was incorporated into each node. We assigned the "smallest boundary" role to pinpoint the most recent common ancestor at the time
of the HGT event. Essentially, if all descendants of a given query protein sequence can be traced back to the initial HGT event, a
common ancestral node can be identified whose occurrence time can be inferred using a molecular clock approach based on
archaeological and fossil evidence. The taxonomy boundaries of HGT descendants were determined by identifying the smallest
ancestor shared by both the donor and receptor taxa from the monophyletic clades within the tree. By considering the emergence
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times of both taxa, the timing of the transfer of genes from earlier taxa to later taxa can be determined, as the reverse scenario is not
considered plausible.
Verification of HGTs
Verification of HGT used the following contamination assessment criteria: i) HGT candidates were excluded if they were located in a
contig where 50% of the genes had better matches with other kingdoms, ii) HGT candidates were excluded if they were located in a
contig where 50% of the genes were primarily identified as HGT genes, iii) HGT candidates were excluded if one of their five closest
flanking genes, both upstream and downstream, had a better match with other kingdoms. Al, hU and the hBL value were used to
further validate HGT events. This process was supplemented with annotation and functional predictions for the identified HGTs.
Further validation was based on the following concepts:
OUTGROUP. This comprises all biological donors present in a tree, excluding the query species if it belongs to biological donors.
SKIP. This includes all biological receptors (species belonging to optional taxa) in a tree, again excluding the query species if it
belongs to biological receptors.
INGROUP. This encompasses species from SKIP’s upper level, excluding SKIP itself and the query species (if it belongs to
biological receptors).
Al (Alien Index). computed for each query gene using e-values from BLAST hits:

Al = (E — value of best BLAST hit in the INGROUP lineage) / (E — value of best BLAST hit in the OUTGROUP lineage)

The Al score quantifies how similar queries are to their homologs in the OUTGROUP compared to homologs in the INGROUP. We
apply a relatively lenient cut-off (Al > 0) for initial screening, which can be adjusted in the second screening as needed.
hU (HGT Score Support Index). calculated for each query gene based on the best bit scores of INGROUP vs. OUTGROUP:

hU = (Best — hit bitscore of OUTGROUP) — (Best — hit bitscore of INGROUP)

A lenient cut-off (hU > 0) is used for initial screening, with flexibility for adjustment in the second screening.
hBL (HGT Branch Length Support Index). calculated based on the minimum branch length to the query within INGROUP vs.
OUTGROUP:

hBL = (Minimum branch length to the query within INGROUP) — (Minimum branch length to the query within OUTGROUP)

A lenient cut-off (hBL > 0) is applied initially, with the option for modification in the second screening.

CHE, CHS, CHBL (Consensus Hit Support). To mitigate the possibility that the best bit score for either INGROUP or OUTGROUP is
influenced by contamination, we consider alternative matches. We introduce consensus hit support (CHE, CHS, and CHBL) to
assess the reliability of Al, hU, and hBL, respectively.

For example, if Al > 0, CHE evaluates the likelihood that "Al remains greater than 0" when using the e-value of each sequence in
OUTGROUP instead of the e-value of the best BLAST hit in the OUTGROUP lineage (bbhO). A similar approach applies to CHS for hU
and CHBL for hBL. This additional layer of evaluation helps ensure the robustness of the HGT verification process.

Gene codon usage, functional annotation and expression

Indices of codon usage and GC content were calculated using Codonw 1.4.4 (http://codonw.sourceforge.net). Gene functions were
assigned by searching against the Gene Ontology (GO) database using blast2GO (ref blast2GO 08) and the KEGG database using
blastKOALA (http://www.kegg.jp/blastkoala/) with default parameters. The full gene sets of each species were set as the background
for KEGG and GO enrichment analyses by applying Student’s t-test (p-value cutoff = 0.01). HGTs were also analysed with SEED
(http://www.theseed.org/wiki/Home_of_the_SEED), IPR2GO (http://www.ebi.ac.uk/interpro/search/sequence-search), eggNOG'?*
(http://eggnogdb.embl.de/#/app/home) and Pfam.'”® For each species, the differences between mean gene expression levels for
HGTs and non-HGT genes with common GO terms were accessed using Student’s t-test. Go terms with less than five genes in either
gene category were ignored. The differences in expression dispersal (coefficient of variation: standard deviation across genes or
samples / mean value) and expression specificity (frequencies of a gene to be detected as unexpressed, defined as transcripts
per kilobase million (TPM) = 2, in any condition) were accessed in a similar manner. Given the variable experimental conditions asso-
ciated with different transcriptome data for each species, gene expression values for a gene were used indiscriminately regardless of
the conditions. Correlation tests between the codon adaptation index (CAl) and gene expression were carried out using the Spear-
man’s rank correlation analysis tool (P. Wessa, Free Statistics Software, Office for Research Development and Education, version
1.1.23-r7, https://www.wessa.net/).

Comparative analysis of gene sets identified by genome-wide analyses of evolutionary history

Genes identified as belonging to orthogroups that were predicted to be gained at specific nodes of the phylogenetic tree based on the
Dollo parsimony analysis, to belong to either significantly amplified gene families (binomial analysis) or to belong to gene families that
have significantly changed in size over evolutionary time (CAFE5 analysis), to correspond to founder events (Phylostratigraphy anal-
ysis), to have been remodelled (composite gene analysis) or to have been derived from an HGT (HGT analysis) were extracted from
the output of each of these analysis and aggregated in a single datatable. Correspondences were established manually between
phylogenetic tree nodes and phylostrata and this information was integrated into the datatable. Counting and calculations of the
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frequency of events at specific time points were carried out using ad hoc R scripts (R version 4.4.1) and the tidyverse'®’ package
(version 2.0.0). Graphs were generated using the ggplot2'®® package (version 3.5.1). For each gene, a COG functional category
was retrieved from the eggNOG mapper output and the COG enrichment analysis was carried out in R using the clusterProfiler'®®
package (version 4.6.2) by comparing each set of gene families with the full set of gene families.

Detection of viral genome insertions and viral regions in algal genomes

To reduce the dataset size for analysis, 64 Phaeoexplorer and eight public genomes were initially filtered to retain only contigs that
were more than 10 kbp in length. Gene prediction was then carried out on all contigs using Prodigal'*® (V2.6.3, settings: default, meta)
and the resulting proteins were used as queries against the NCVOG'”" and VOGDB'®° databases using hmmscan (HMMER 3.3.2
with default settings). The contigs detected by hmmscan were then filtered to retain only sequences with at least one match to either
viral database at a defined e-value cutoff (1e2° for NCVOG, and 1e78° for VOGDB). The resulting positive 4,951 contigs were then
analysed using ViralRecall'®’ version 2.0 with settings -w 50 -g 1 -b -f -m 2 using the built-in Nucleocytoviricota (NCV) database
GVOG and a window size of 50 kbp. To ensure that viral genes were not missed because they had not been annotated by Prodigal,
six-frame translations of the contigs were generated using esl-translate (version 0.48 with default settings), and the resulting proteins
queried against the same databases used by ViralRecall using hmmsearch (HMMER 3.3.2, settings: -E 1e-10). The ViralRecall results
were then parsed using an in-house workflow. Six-frame translations were removed from the results if they overlapped (even partially)
with any Prodigal gene prediction, as identified using bedtools'?® (v2.29.2; intersect). Likewise, overlapping six-frame translations
and gene predictions with the same NCVOG match were removed to reduce redundancy. Based on the distance between query se-
quences with the same GVOG hit, queries were flagged as frame-shifted (less than 100 bp gap), intron-containing (100-5,000 bp gap)
or mono-exonic (greater than 5,000 bp gap). All queries were also checked for overlaps with multi-exonic genes that had been an-
notated by the Phaeoexplorer gene prediction procedure (using Gmove'%), and flagged if they did. All queries were then filtered to
retain only those that matched a set of key NCV marker genes, identified by NCVOG code (A32, D5 helicase, D5 DNA primase, MCP,
DNA polymerase B, SFIl and VLTF3) or some Phaeovirus integrase genes (integrase recombinase, integrase resolvase and RNR).
The marker gene proteins were clustered with the protein sequences of NCVOGs using MMsegs cluster'?® (version 13.45111 with
settings —-min-seqg-id 0.3 -c 0.8). Finally, the parsed results of the NCV marker gene set identified by the ViralRecall screen were manu-
ally curated, retaining only those queries with varying combinations of the following properties: placement within a viral region as
identified by ViralRecall, similar hmmsearch results (score and e-value) and gene length to that of known NCV genes, not part of a
multi-exonic gene, lack of Pfam HMM matches to cellular domains sharing homology to the marker gene (specific to certain marker
genes), and clustered with an NCVOG in the MMsegs analysis. We noted that the median number of viral regions found in genomes
assembled with long reads was very similar to that for genomes assembled with short reads (9 and 10, respectively). The marker gene
content of the viral regions was manually assessed to estimate the number of complete or partial inserted viruses in each genome.
VRs were considered to be complete proviruses if they contained all seven of the key NCV marker genes listed above. VRs were
classed as partial proviruses if they only contained a subset of the seven key NCV marker genes, the presence of the MCP and
DNA polymerase B genes being particularly strong indicators of a partial provirus.

To classify genes in VRs (Figure 6B), viral sequences were removed for the NBCI RefSeq non-redundant protein database (NR) by
removing proteins assigned to the "Viruses" category and by comparing the database with RVDB using BLASTp and removing any
proteins that matched with an e-value cut-off of < 1-e40 to create a "virus-free NR" database. Deduced proteins were then compared
with the RVDB and the virus-free NR databases using BLASTp and relative bitscores (rbitscores) were calculated by dividing the
BLASTp bitscore for the best match in each database by the query protein’s self-hit bitscore.'® Self-hit scores were acquired by
comparing the complete deduced proteomes with themselves using BLASTp. Proteins with a RVDB rbitscore at least 20% greater
than its virus-free NR rbitscore were designated as "viral". Proteins with a virus-free NR rbitscore at least 20% greater than its RvDB
rbitscore were designated as "cellular” (i.e. corresponding to a gene from a cellular organism). Ambiguous cases without a 20%
differential were designated as "viral or cellular" and proteins with no significant matches were designated as ORFans (i.e. unknown
proteins).

The presence of host regions flanking the viral regions was evaluated based on the ViralRecall output (Table S5C). The percentages
of viral regions with two, one or zero flanking regions (longer than 2 kbp) were 25.8%, 15.0% and 59.2%, respectively (i.e. 40.8% of
viral regions had at least one flanking region). Of the viral regions that had two flanking regions, 89.5%, 7.0% and 3.5% had flanking
regions with a total length of >200 kbp, between 20 and 200 kbp or between 2 and 20 kbp, respectively. For the viral regions that had
one flanking region, the corresponding percentages were 25.3%, 36.7% and 38.0%.

Phylogenetic analysis of viral genes

Amino acid sequences of manually-curated collections of major capsid protein (MCP) and DNA polymerase B proteins were
aligned using MAFFT (v7.520, settings: —adjustdirectionaccurately —auto —-maxiterate 1000) and phylogenetic trees were generated
using IQ-TREE (v 2.2.2.3, settings: -m MFP -B 1000).

Metabolic networks
Genome-scale metabolic networks were reconstructed using AuCoMe“® version 0.5.1 using the MetaCyc'®’ version 26 database.
A first dataset, consisting of the 60 species listed in Table ST1F (column "Metabolic networks") plus two public diatom genomes

e23 Cell 187, 6943-6965.e1-e29, November 27, 2024

155



Cel ¢ CellPress

OPEN ACCESS

already used in the initial AuCoMe study (Fragilariopsis cylindrus and Fistulifera solaris) was processed to build the largest possible
database (phaeogem) for exploratory comparisons (https://gem-aureme.genouest.org/phaeogem/). Then, a second comparison
was performed on all long-read species plus outgroups. Based on Multidimensional-scaling (MDS) analyses, the most divergent
long-read species (Choristocarpus tenellus, Laminaria digitata, Phaeothamnion wetherbeei and the public genome of Sargassum
fusiforme) were excluded to construct a 16 species dataset, balancing assembly quality and phylogenetic coverage (https://gem-
aureme.genouest.org/16bestgem/). MDS plots were build using the vegan package, version 2.6-4 (https://github.com/vegandevs/
vegan) with R 4.1.2,"%? using Jaccard distances. A third stricter dataset (fwgem), enriched in high-quality long-read Ectocarpales,
was built to address questions related to freshwater adaptation (https://gem-aureme.genouest.org/fwgem/). A set of reactions
that were overrepresented in brown algae compared to the outgroup was created by taking reactions present in 100% of brown algae
and less than 70% of outgroups. Reactions corresponding to genes lost in freshwater species were also extracted. These reaction
sets were extracted from all the networks using the Aucomana library (https://github.com/PaulineGHG/aucomana). Online wikis
(phaeogem, 16bestgem and fwgem) were generated using AuReMe.'®®

CAZymes

CAZyme genes were identified based on shared homology with biochemically characterised proteins, either individually or as hidden
Markov model (HMM) profiles. For phylogenetic analyses, proteins were aligned using MAFFT'*° with the iterative refinement method
and the scoring matrix Blosum62. The alignments were manually refined and trees were constructed using the maximum likelihood
approach. Alignment reliability was tested by a bootstrap analysis using 100 resamplings of the dataset. Only bootstrap values above
60% are shown. The phylogenetic trees were displayed with MEGA."®' The annotated genes are listed in Table S4B with accession
numbers.

Sulfatases

The sulfatases encoded by each brown algal genome were identified and assigned to their respective family and subfamily using the
SulfAtlas database' """ (https://sulfatlas.sb-roscoff.fr/). Each predicted proteome was first submitted to the SulfAtlas HHM server
(https://sulfatlas.sb-roscoff.fr/sulfatlashmm/), which allows rapid identification of sulfatase candidates and (sub)family assignment
using hidden Markov model profiles for each SulfAtlas (sub)family. Each sulfatase candidate sequence was then used as a query
in a BLASTp®* search against the SulfAtlas database (https:/blast.sb-roscoff.fr/sulfatlas/). Sequences with at least 50% identity
with sulfatases from marine bacteria or other marine microorganisms were considered to be contaminants. Below this threshold,
additional examination of the predicted gene structure and genomic context of the candidate sequence was undertaken to identify
possible horizontal gene transfers.

Haloperoxidases

vHPO genes were identified based on sequence homology and active site conservation. Maximum likelihood phylogenetic
analyses were carried out using the NGphylogeny platform at https://ngphylogeny.fr/. MAFFT was used to align vHPO sequences
and alignments were automatically curated with TrimAl,"*° leading to the selection of 444 informative positions from the initial
1450 positions for the algal-type vHPOs and 402 informative positions from the initial 1078 positions for the bacterial-type vHPOs.
Maximum likelihood trees were constructed using FastTree with the WAG+G gene model and 1000 bootstrap replicates. Maximum
likelihood Newick files were formatted as circular representations using iTOL. Only bootstrap values between 0.7 and 1 were
conserved. The lists of annotated vHPO genes are in Tables S4C and S4D.

lon channels

A search was carried out for 12 classes of ion channel in the predicted proteomes of the 21 Phaeoexplorer reference genomes plus
those of two diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Predicted proteomes were screened using
BLASTp®" and query sequences from Ectocarpus species 7 and seven other species from diverse eukaryotic taxa.

Membrane-localised proteins
Membrane protein family genes were identified either by carrying out BLASTp®* searches of the predicted Phaeoexplorer
proteomes using Ectocarpus species 7 sequences as queries or by recovering orthogroups containing the relevant Ectocarpus
species 7 sequences as members. The BLASTp approach was used for DEK1-like calpains, fasciclins, tetraspanins, CHASE,
ethylene-binding-domain-like and MASE1 domain histidine kinases whereas the orthogroup approach was used to recover other
members of the histidine kinase family. Both approaches were used to search for integrins and transmembrane receptor kinases.
For integrins the two methods detected exactly the same set of proteins. For receptor kinases the BLASTp and orthogroup analyses
detected 99.3% and 98.3% of the 269 genes, respectively. For these analyses, either the whole genome dataset was analysed or only
the set of 21 reference genomes (Table S1F), depending on the size of the gene family.

Manually-curated histidine kinase protein families were aligned with Muscle''® before phylogenetic tree construction using
IQ-TREE 2'°® (version 2.3.4) with automatic model selection and 1000 bootstraps.
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Transcription-associated proteins

TAPscan v4'°° was used to analyse the transcription-associated protein (TAP) complements of 21 species. TAPscan'** is a compre-
hensive tool for annotating TAPs based on the detection of highly conserved protein domains using HMM profiles with specific
thresholds and coverage cut-offs. Following detection, specialised rules are applied to assign protein sequences to TAP families
based on the detected domains. TAPscan v4 can assign proteins to 138 different TAP (sub)families with high accuracy.

EsV-1-7 domain proteins

EsV-1-7 domain proteins were identified in the 31 brown algal and sister taxa genomes (Table S1F) by recovering the members of all
orthogroups (with the exception of OG0000001, which is a very large OG that consisting principally of transposon sequences) that
either contained one or more of a curated set of 101 EsV-1-7 domain proteins® for Ectocarpus species 7 or contained an EsV-1-7
domain protein based on a match to the Pfam EsV-1-7 motif PF19114. The recovered proteins were screened manually for the pres-
ence of at least one EsV-1-7 domain and a total of 2018 were finally identified as members of the EsV-1-7 family.

To identify orthologues of the EsV-1-7 protein IMMEDIATE UPRIGHT®? (IMM), BLASTp searches of 25 brown algal and four sister
taxa predicted proteomes were carried out with the amino-terminal domain of the IMM protein minus the five EsV-1-7 repeats as this
domain is unique to IMM. Proteins were retained as IMM orthologues if they were more similar to IMM than to the most closely-related
protein in Ectocarpus species 7, Ec-17_002150.

Histones
Histone protein sequences were analysed in Ascophyllum nodosum, Chordaria linearis, Chrysoparadoxa australica, Desmarestia
herbacea, Dictyota dichotoma, Discosporangium mesarthrocarpum, Ectocarpus crouaniorum, Ectocarpus fasciculatus, Ectocarpus
siliculosus, Fucus serratus, Heterosigma akashiwo, Pleurocladia lacustris, Porterinema fluviatile, Pylaiella littoralis, Saccharina
latissima, Sargassum fusiform, Schizocladia ischiensis, Scytosiphon promiscuus, Sphacelaria rigidula, Tribonema minus and Undaria
pinnatifida using BLASTp against the complete predicted proteomes (https://blast.sb-roscoff.fr/phaeoexplorer/) with the histone
protein sequences from the diatom Phaeodactylum tricornutum as queries. The genes and transcripts coding for the identified his-
tones were then retrieved from the genomes and predicted transcripts using BLAST (https://blast.sb-roscoff.fr/phaeoexplorer/). The
proteins encoded by the identified genes and transcripts were predicted with the Expasy web translator (https://web.expasy.org/
translate/). In order to identify truncated proteins or incorrect start codons, the following constraints were applied: H2A proteins
must start with the SGKGKGGR sequence, H2B with AKTP, canonical H3.1 and variants H3.3 with ARTKQT and H4 with
SGRGKGGKGLGKGG. For the linker histone H1, protein sequences had to be lysine-rich and sequences with incorrect start codons
were determined by alignments of all identified H1 proteins. For proteins with incorrect start codons, the region upstream of the cor-
rect start codon was removed. For truncated proteins, i.e. proteins whose transcripts lacked either the start (no methionine) or stop
codons, the protein sequence was completed based on alignment with the corresponding genomic region using the Geneious 11.0.5
software. When the sequence could not be completed, a BLAST was performed against the Phaeoexplorer de novo transcriptomes
(https://blast.sb-roscoff.fr/phacoexplorer_denovo/) when this data was available (this was not possible for the public genomes
T. minus, U. pinnatifida and S. fusiforme). Based on the nomenclature established by, ®° H3 histones were classified as follows:
canonical H3.1 proteins harbour AT residues at positions 31-32 while histone variants H3.3 harbour TA residues, H3 proteins
with other residues at positions 31-32 were named H3.4 and so on. CenH3 variants of H3 were identified by analysis with Panther 17.0
(www.pantherdb.org/tools/sequenceSearchForm.jsp?) and/or Interproscan'®” 94.0 (www.ebi.ac.uk/interpro/search/sequence/).
Species abbreviations used in histone phylogenetic trees are: Atr, Amborella trichopoda; At, Arabidopsis thaliana; Ce, Caenorhab-
ditis elegans; Di, Dictyostellium discoideum; Dr, Danio rerio; Dm, Drosophila melanogaster; Hs, Homo sapiens; Mm, Mus musculus;
Pp, Physarum polycephalum; Ppa Physcomitrium patens; Sc, Saccharomyces cerevisiae; Tm, Tetrahymena thermophila; Zm, Zea
mays; Mp, Marchantia polymorpha subsp. Ruderalis; Bd, Brachypodium distachyon; Ccr, Chondrus crispus; Gs, Galdieria sulphura-
ria; Cm, Cyanidioschyzon merolae; Cr, Chlamydomonas reinhardftii; Ol, Ostreococcus luciminarinus; Ot, Ostreococcus tauri; To,
Thalassiosira oceanica; Pt, Phaeodactylum tricornutum; An, Ascophyllum nodosum; Cl, Chordaria linearis; Ca, Chrysoparadoxa
australica; Dh, Desmarestia herbacea; Ddi, Dictyota dichotoma; Dme, Discosporangium mesarthrocarpum; Ec, Ectocarpus crouanio-
rum; Ef, Ectocarpus fasciculatus; Es, Ectocarpus siliculosus; Fse, Fucus serratus; Ha, Heterosigma akashiwo; Pla, Pleurocladia
lacustris; Pf, Porterinema fluviatile; Pli, Pylaiella littoralis; S|, Saccharina latissima; Sf, Sargassum fusiform; Si, Schizocladia ischiensis;
Sp, Scytosiphon promiscuus; Sri, Sphacelaria rigidula; Tm, Tribonema minus; Up, Undaria pinnatifida.

DNA methyltransferases

Searches were carried out for methyltransferases and demethylases in the predicted proteomes of 20 of the high quality brown
algal reference genome assemblies (based on Nanopore long-read sequence) plus the sister taxa Chrysoparadoxa australica and
Schizocladia ischiensis using BLASTp (Table S1F). A methyltransferase reference database was constructed by recovering
sequences from NCBI, ENSEMBL and UniProtKB. Methyltransferase sequences were recovered for stramenopiles such as Nanno-
chloropsis gaditana, the diatom Phaeodactylum tricornutum, the oomycete Phytophthora infestans and for species from more distant
lineages including Arabidopsis thaliana, Homo sapiens and the fungus Neurospora crassa. The proteomes of the selected brown algal
strains were then queried against this database using BLASTp and matches with an e-value of < 0.001, a bit score > 70, a maximum
gap of 5 and percentage identity of >30% were retained. The retained matches were screened against the NCBI, UniProt and
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SwissProt databases to identify and remove contaminating bacterial or viral proteins. Methyltransferase domains were detected in
the retained matches using the Simple Modular Architecture Research Tool (SMART)'”” domain architecture analysis and InterPro
searches (https://www.ebi.ac.uk/interpro/). Sequences with methyltransferase domains were retained for further analysis. Validated
brown algal methyltransferases were aligned with reference methyltransferases using Clustal'®® 2.1.

Spliceosome

Components of the Major Spliceosome were identified using a reference set of 147 human components (https://www.genenames.
org/data/genegroup/#!/group/1518), excluding the five small nuclear RNAs (snRNAs). Including isoforms, this query set consisted of
626 proteins. These proteins were used to screen the predicted proteomes of 54 genomes (Table S1F) using BLASTp and matches
were retained if they had an e-value of at most 1e° and coverage >30%. Searches were also carried out for components of LSm and
Sm complexes which have roles as scaffolds in the formation of ribonucleoprotein particles (RNPs), in the maturation of mRNAs
(including splicing, such as the cytoplasmic complex LSm1-7, LSm2-8 which is part of the core U6 snRNP and other complexes
important for the formation of the 3’ ends of histone transcripts), in the assembly of P-Bodies and in the maintenance of telomeres.

Flagella proteins

A previous proteomic analysis of anterior and posterior flagella of the brown alga Colpomenia bulfosa identified a total of 592 proteins
across the two proteomes.*! Here the Ectocarpus species 7 orthologues of 70 of these proteins that had been detected with a very
high level of confidence were used to identify the corresponding orthogroups and the presence or absence of these orthogroups was
scored for seven representative species (Table S1F).

Detection of Porterinema fluviatile genes differentially expressed in freshwater and seawater

Six independent cultures of Porterinema fluviatile were cultivated for four weeks in 140 mm Petri dishes with Provasoli-enriched
culture medium, '°° which was renewed every two weeks. For three Petri dishes, the culture medium was based on autoclaved natural
seawater (high salinity treatment), for the other three Petri Dishes natural seawater was diluted 1:19 vol/vol with distilled water (low
salinity treatment). Cultures were harvested with 40 um nylon sieves, dried with a paper towel, and immediately frozen in liquid ni-
trogen. RNA extraction library construction and sequencing were carried out as described in section "RNA extraction, lllumina
RNA-seq library preparation and sequencing”. RNA-seq reads were cleaned with Trimmomatic®® V0.38 and then mapped to the
P. fluviatile genome using Kallisto'*° version 0.44.0. Differentially expressed genes were identified using the DESeq2 package'*’
included in Bioconductor version 3.11, considering genes with an adjusted p < 0.05 and a log, fold-change > 1 as differentially
expressed. To compare the differentially expressed genes in P. fluviatile with an equivalent set previously identified for Ectocarpus
subulatus in a microarray experiment using nearly identical growth conditions,'®" orthologues in the two species were detected using
Orthofinder version 2.3.3. Of the 10,066 shared orthogroups, 6,606 had microarray expression data for E. subulatus. This information
was used to classify differentially expressed genes for the two species as either shared orthologues or as lineage-specific.

Identification of genes with generation-biased expression patterns

RNA-seq data (two to five replicates per condition) was recovered for gametophyte and sporophyte generations of ten species
(Table S1F). Data quality was assessed with FastQC'“? version 0.11.9 and sequences were then trimmed with Trim Galore version
0.6.5 with the parameters —length 50, - quality 24, —stringency 6, -max_n 3. The cleaned reads were mapped onto the corresponding
genome for each species using HISAT2 version 2.1.0 with default options. Counting was carried out with featureCounts'“® from the
subread package (version 2.0.1) on CDS features grouped by Parent. Transcript Per Kilobase Million (TPM) tables were generated for
all conditions and differentially expressed genes were detected using DESeq2'*" version 1.30.1. Genes were classified into six cat-
egories based on the differential expression analysis and the TPM values: gametophyte-biased, mean TPM >1 in gametophyte and
sporophyte, log,(fold change) >1, adjusted p-value <0.05; sporophyte-biased: mean TPM >1 in gametophyte and sporophyte,
loga(fold change) <-1, adjusted p-value <0.05; gametophyte-specific, mean TPM <1 in sporophyte and >1 in gametophyte, log,
(fold change) >1, adjusted p-value <0.05; sporophyte-specific, mean TPM <1 in sporophyte and >1 in gametophyte, log(-
fold change) <-1, adjusted p-value <0.05; unbiased genes: mean gametophyte and sporophyte TPMs >1, log,(fold change) <1
or >-1 and/or adjusted p-value >0.05; unexpressed genes, mean gametophyte and sporophyte TPM <1.

Life cycle and thallus architecture

Genome dataset and traits

To study the impact of body architecture, the brown algae were divided into three categories: 22 filamentous species, eight simple
parenchymatous species and 13 species with elaborate thalli (Table S1F). For the life-cycle-based assessment, the groups were: 30
haploid-diploid species and six diploid species (Table S1F). Body architecture information was available for 43 species, and life cycle
information was available for 36 species; species without body plan or life cycle information were not used in subsequent analyses.
Two approaches were used to estimate selection intensity across the phylogeny, (i) a model-based method, and (i) by evaluating
codon usage bias and nucleotide composition. Two evolutionary models were used, one based on architecture and the other based
on life cycle. For model-based methods the phylogeny was categorised based on the above traits, and selection intensity parameters
were estimated using PAML'*® version 4.9i. Rate estimates were obtained for non-synonymous substitutions (dN), synonymous
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substitutions (dS) and omega (dN/dS) for the multiple sequence alignments of all genes within each orthogroup using the variable-
ratio model of CODEML from PAML, which allows different omegas for different branch categories. The traits were assigned to the
branches of the phylogeny using ancestral state estimation by stochastic mapping with the phytools R package.'*”"'%?
Evolutionary models to study impacts of body architecture

To study variation in selection intensity as a function of body architecture, we devised a model with the following trait categories:
filamentous/pseudoparenchymatous (simple cell division and organisation on a single plane), parenchymatous (cell division
and organisation on multiple planes) and elaborate thallus (tissue differentiation). To ensure that at least 50% of the species in
each category were used in the analysis, we selected orthogroups (OGs) that contained at least 11 members for filamentous, at least
four members for parenchymatous and at least six members for elaborate thallus algae. Using this filter, 1068 OGs were obtained, on
which the model based on body architecture was fitted. Selection intensity parameters [rate of non-synonymous substitution (dN),
rate of synonymous substitution (dS) and omega (dN/dS)] were estimated for the three trait categories for each gene alignment. We
used the Wilcoxon signed-rank test to evaluate the statistical significance of differences between the selection intensity parameters
(dN, dS and dN/dS) for each category.

Evolutionary models to study the impacts of life cycle

The impact of life cycle on molecular evolution was assessed using a model with two categories consisting of diplontic and
haplodiplontic species. For this model we used 1,058 OGs that contained at least three members for diploid species and at least
15 members for haploid-diploid species. Using alignments of the gene within the OGs, we estimated the selection intensity
parameters for the different categories and applied the Wilcoxon signed-rank test to assess the statistical significance of differences
in selection intensity between the diploid and haploid-diploid life cycles.

Selection of intensity parameters

Omega (dN/dS) provides an estimate of the ratio of substitutions at sites under selection compared to neutral sites, and is generally
used to infer the strength of purifying selection. Omega needs to be interpreted with caution because not all synonymous sites are
neutral'®® and also synonymous substitutions are often underestimated due to saturation of synonymous sites, which might in turn
impact the omega ratios.'®® Omega values lower than one indicate substitutions are less frequent at sites under selection compared
to neutral sites and are characteristic of highly conserved genes or genes evolving under strong purifying selection. As we used pri-
marily low copy number genes in this study, the analysed genes were expected to evolve under strong purifying selection, with
omega values much lower than one. Using omega for near neutral studies is challenging because near neutral sites are determined
by effective population size, that is to say, sites under mild selection constraint in larger populations can behave as neutral sites in
smaller populations. It is therefore difficult to infer the amount of mutation from relative values of omega. In order to obtain better
insight into selection intensity, mutation accumulation was not only investigated using rates of synonymous (dS) and non-synony-
mous (dN) substitutions but also by estimating codon bias and nucleotide composition. Codon usage bias was used, in addition
to omega, to infer selection intensity across species as the former reflects selection efficacy at synonymous sites.'%~'°° We inferred
codon usage bias by estimating the effective number of codons (ENC) for each species using the enc method from the VHICA pack-
age.'*®'#2 The effective number of codons (ENC) quantifies the extent of deviation of codon usage of a gene from equal usage of
synonymous codons. For the standard genetic code, ENC values range from 20 (where a single codon is used per amino acid
implying strong codon usage bias) to 61 (implies that all synonymous codons are equally used for each amino acid'®"). Low ENC
indicates constrained use of codons, which potentially highlights stronger codon bias due to stronger selection at synonymous sites.
As nucleotide composition can also influence codon bias, we calculated the overall GC composition, GC at the third codon position
(GC3) and the theoretical expected ENC (EENC) based on GC3 using local R scripts. The lower the observed ENC (OENC, estimated
from the gene sequence) relative to EENC, the stronger the influence of selection due to translation on codon usage. This was studied
by estimating the difference (DENC = EENC - OENC) between the expected ENC and the observed ENC."°® Positive DENC indicates
a role for selection constraints on codon usage in addition to the influence of nucleotide composition. DENC values of zero or less
indicate that codon bias is entirely driven by nucleotide composition. DENC values were used to study the influence of translation
selection and nucleotide composition on codon usage bias.

Assembly and analysis of organellar genomes

Plastid and mitochondrial genomes were assembled de novo using NOVOPIlasty “* v3.7 and rbcL and cox1 nucleotide sequences as
seeds. Assembled genomes were checked by aligning reads using Bowtie2®® v2.3.5.1 and processed with SAMtools'*° v1.5. Anno-
tation of protein-coding genes was performed with GeSeq'®' v2.03. Annotation of tRNAs, tmRNAs and rRNAs was performed with
ARAGORN'%? v1.2.38.

Maximume-likelihood (ML) phylogenetic trees were constructed using 92 plastid genomes (11 non-brown outgroup sequences) and
89 mitochondrial genomes (seven non-brown outgroup sequences). The conserved coding-region amino acid sequences of 139
plastid genes (31,159 amino acids) and 35 mitochondrial genes (7,461 amino acids) were used to construct these phylogenetic trees.
The sequence for each gene was aligned individually using MAFFT'*° v7 (-maxiterate 1000) and then concatenated. Alignment par-
titions were assigned based on genes. Each of the aligned gene sequences was trimmed with trimAl'*® v1.2 (-automated1). ML
phylogenetic trees were constructed with IQ-TREE 2.'°° The protein substitution models in each gene partition were selected using
ModelFinder.'*® Statistical support for tree branches was assessed with 1,000 replicates of ultrafast bootstrap (UFBoot2).'**
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Analysis of Ectocarpus genome synteny

Global genome synteny analysis was performed using SynMap'°° on the CoGe platform (https://genomevolution.org/coge/) with the
following genomes: Ectocarpus crouaniorum male, Ectocarpus fasciculatus male, Ectocarpus siliculosus male, Ectocarpus species
7 male and Ectocarpus subulatus. SynMap identifies syntenic regions between two or more genomes using a combination of
sequence similarity and collinearity algorithms. Last'®® was used as the BLAST algorithm and syntenic gene pairs were identified
using DAGChainer'°® with settings "Relative Gene Order", -D = 20, -A =5. Neighbouring syntenic blocks were merged into larger
blocks. Substitution rates between the synthetic CDS pairs were calculated using CodeML,'“® which was also implemented in
SynMap, CoGe. In detail, protein sequences were aligned using the Needleman-Wunsch algorithm implemented in nwalign
(https://pypi.org/project/nwalign/) and then translated back to aligned codons. CodeML was run five times for each alignment using
the default parameters and the lowest dS was retained, with the upper cutoff for dS values set at 2. Ectocarpus genes were grouped
according to their age based on the phylostratigraphic analysis and by chromosomal location based on their chromosome position in
Ectocarpus species 7. All plots and statistical analysis were carried out in R version v.4.3.1. Local synteny analysis was based on
orthologous genes as identified by Orthofinder.

Analysis of Ectocarpus gene evolution

Protein sequence alignments were used to remove gaps with trimAl'*® and then translated back to DNA with backtranseq.”’° Only
DNA fasta files with a minimum of 70 bp were retained (831 single-copy orthologs). PhyML trees were built with Geneious v11.1.5
(https://www.geneious.com). Maximum likelihood analysis was carried out to detect site specific, branch-site specific and branch
specific positive selection as well as sites under negative selection, using PAML.>""

Phylogenetic analysis of Ectocarpus species

Phylogenetic analysis was carried out for 11 Ectocarpus species plus Scytosiphon promiscuus as an outgroup (Table S1F). Of the 933
single-copy orthogroups identified for these 12 species, 261 high-confidence alignments were retained for gene tree and species tree
inferences following the removal of low-quality alignments using BMGE.?° Bayesian inference of the phylogeny of the Ectocarpus
species complex was performed using BEAST'®” v2.7. The analysis was conducted under the multi-species coalescent (MSC)
model, implemented in StarBEAST3'%® v1.1.7. The MSC model coestimates gene trees and the species tree within a multispecies
coalescent framework, enabling the assessment of incongruences among genes with respect to the species tree. To account for
substitution model uncertainty, bModelTest'*? was employed to average over a set of substitution models for each alignment.
StarBEAST3 was run under both the Yule model and the strict clock model. A total of 300,000,000 Markov Chain Monte
Carlo (MCMC) generations were conducted, with tree states stored every 50,000 iterations. Posterior tree samples were combined,
discarding the initial 10% burn-in, using LogCombiner v2.4.7. A maximum clade credibility tree was generated using
TreeAnnotator'®” v2.4.7.

Ectocarpus introgression analysis

To distinguish introgression from shared ancestry, D estimates (i.e. ABBA-BABA tests) were generated from 36 four-taxon combi-
nations®°®: four to test the level of introgression within clade 1 (i.e. E. subulatus, E. crouaniorum, Ectocarpus species 1, Ectocarpus
species 2), 20 to test the level of introgression within clade 2 (i.e. Ectocarpus species 6, Ectocarpus species 7, Ectocarpus species 5,
Ectocarpus species 9, E. siliculosus, Ectocarpus species 3) and 12 to test the level of introgression between these two clades. Tests
were designed using a four-taxon fixed phylogeny ((P1,P2)P3)0O), where P1 and P2 are closely related species from the same clade,
P3 is a more divergent species that may have experienced admixture with one or both of the (P1,P2) taxa, and an out-group (O).
E. fasciculatus was used as the out-group taxon for all ABBA-BABA tests. Details about how P1, P2 and P3 taxa were selected
for each test are given in Table S6. Previous results of species tree inference were used to inform subsequent ABBA-BABA tests
and to define the (((P1,P2)P3)O) phylogenies. ABBAs are sites at which the derived allele (called B) is shared between the taxa P2
and P3, whereas P1 carries the ancestral allele (called A), as defined by the outgroup while BABAs are sites at which the derived allele
is shared between P1 and P3, whereas P2 carries the ancestral allele. Under incomplete lineage sorting, conflicting ABBA and BABA
patterns should occur in equal frequencies, resulting in a D statistic equal to zero. Historical gene flow between P2 and P3 causes an
excess of ABBA, generating positive values of D. Historical gene flow between P1 and P3 causes an excess of BABA, generating
negative values of D. Patterson’s D-statistic was calculated for the concatenated alignments of the 261 orthologroups. Significance
was detected using a block-jackknifing approach,%*~2% with a block size of 5 kbp. For the jackknife procedure, one block of adjacent
sites was removed n times. A Z-score was finally obtained by dividing the value of the D statistic by the standard error over n se-
quences of 5 kbp. The ParimonySplits network was reconstructed for the genus Ectocarpus using SplitsTree 4'°° (version 4.14.6)
with 1000 bootstrap replicates.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses are described in detail in the relevant sections of the "method details" section and the results of statistical tests
are shown in the tables and figures.
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ADDITIONAL RESOURCES

The Phaeoexplorer website (https://phaeoexplorer.sb-roscoff.fr) provides access to all the annotated genome assemblies described
in this study as downloadable files. The output files from the Orthofinder, ' Interproscan,'®” Hectar'®' and eggNOG-mapper'*° an-
alyses, together with the results of the various DIAMOND'°” sequence similarity analyses (see section "Analyses aimed at deducing
functional characteristics of predicted proteins"), can also be downloaded. In addition, the site provides genome browser interfaces
for the genomes and multiple additional tools and resources including BLAST interfaces for genomes, proteomes and de novo tran-
scriptomes, various experimental protocols, an AskOmics genomic data query interface (PhaeoAskOmics), an RShiny-based tran-
scriptomic aggregator for the model brown alga Ectocarpus species 7 strain Ec32, a link to genome-wide metabolic networks for the
Phaeoexplorer species and a list of project-related publications.

Additional data and results have been deposited in the CNRS Research Data depository under the title "Data for Phaeoexplorer
publication: Evolutionary genomics of the emergence of brown algae as key components of coastal ecosystems" (DOI: https://
doi.org/10.57745/9U1J85). Dataset description: "The Phaeoexplorer project sequenced 60 genomes corresponding to 44 brown
algal and sister species. This dataset corresponds to supplementary information relating to the initial annotation of the Phaeoexplorer
genomes and multiple analyses of the genome data. The dataset includes additional results of the project, together with accompa-
nying additional figures and tables, (Additional_results.tar.gz), presubmission (v0) versions of the Phaeoexplorer genome annotation
(GFF) files (GFF_v0.tar.gz) and genome-wide predicted proteomes as fasta files (Proteomes_v0.tar.gz), de novo transcriptome as-
semblies for the Phaeoexplorer species (RNA-seq data assembled with Trinity or rnaSPAdes; de-novo-transcriptomes.tar.gz),
RepeatMasker analyses of repeat sequences (RepeatMasker.tar.gz), alignment files used to generate a phylogenetic tree for the
Phaeoexplorer species (PhylogeneticTree.tar.gz), alignments used to build a densitree specifically for Ectocarpus species (Microe-
volution_Ectocarpus.tar.gz), an Orthofinder-based analysis of shared orthologues (Orthogroups.tar.gz) together with a Dollo-logic-
based analysis of orthogroup gain and loss during evolution (Dollo_analysis.tar.gz), a Phylostratigraphy analysis of brown algal genes
(Phylostratigraphy.tar.gz), an analysis of protein functional domain fissions and fusions (CompositeGenes.tar.gz), Interproscan an-
alyses of protein domains (InterProScan.tar.gz), Hectar predictions of protein subcellular localisations (Hectar.tar.gz), eggNOG
output providing information about predicted protein functions (eggNOG.tar.gz), RNA-seq-based data on gene expression levels
(mRNAexpression.tar.gz), results of a search for genes acquired via horizontal gene transfer (HGT.tar.gz), analyses of intron conser-
vation across genomes (Introns_conservation.tar.gz), an analysis of tandem gene duplications (Tandemely_duplicated_genes.-
tar.gz), CAFES5 reconstruction of gene family amplifications (CAFE5.tar.gz), comparisons of CDS size with the Ectocarpus reference
genome that were used to evaluate gene model completeness (CDS_size.tar.gz), a DESeq2 analysis of differential gene expression
between the sporophyte and gametophyte generations of several brown algal species (DEG_LifeCycle.tar.gz), information about or-
thogroups selected to analyse the effects of morphological complexity and life cycle structure on gene evolution (Genes_selection.-
tar.gz). Each individual dataset contains a README file explaining its content. Detailed information about the methodology used for
each analysis can be found in the STAR Methods section of the manuscript preprint (https://doi.org/10.1101/2024.02.19.579948).
The majority of these analyses and datasets can also be accessed via the Phaeoexplorer website (https://phaeoexplorer.sb-
roscoff.fr/)."
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4. Punctuated, repeated evolution of remodelled genes in the

animal kingdom

We also took part in a research project that studied the impact of gene remodelling on the
evolution of animals. This study was led by Mary O’Connell and James Mclnerney at the University of
Nottingham, and a draft article has been written to present the results, which is currently in the
process of submission. Our main contribution to this work consisted in applying the polarisation
method that we developed to composite families that had already been identified. This allowed for a
finer understanding and interpretation of the results, as composite genes would otherwise be

ambiguously attributed to gene fusions or gene fission events.

This study was based on a dataset of ~1.2 million protein-coding genes, from a set of 63 species
covering all major clades of metazoans. We found that composite genes represented around 5% of all
genes in animal genomes, with gene fusions responsible for the emergence of 73.3% of all composite
genes, and 25.4% of composites corresponding to fission events. Only a fifth (21%) of fusion
composites were compatible with the scenario of a single fusion event with no ulterior remodelling,
whereas the other 79% of gene fusions showed signs of having undergone later events of fission or
other remodelling. This suggests that gene remodelling in animals is a particularly dynamic process
that frequently revisits gene families that had already been involved in previous remodelling events.
The SSN of animal gene families is also highly modular, which corroborates this observation: 87% of
composite families are also components for another composite, and even contribute, on average, to
more remodelling events than non-composite families that are also components. Remodelling events
thus appear to involve a specific pool of families in animal genomes that are regularly reused towards
new genetic rearrangements. The high levels of intermingling and recombination within this specific
gene subset may also be responsible for another trend of gene remodelling in animals, which is its
remarkable repeatability. Indeed, of all composite families in the dataset, 41% had a polyphyletic
distribution in the species tree, suggesting that these composites may have evolved convergently in

distinct lineages, which may reflect an adaptive advantage granted by these composites.

Rather than being evenly spread throughout the animal tree of life, gene remodelling events (or
at least retained composite genes) seem to occur in punctuated bursts at specific nodes of the
phylogeny (Figure 29). Deuterostomia (including chordates, hemichordates and echinoderms), in

particular, display higher amounts of remodelled genes than Protostomia (including arthropods,
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molluscs, and most worm-like animals) or non-bilaterians!®. The maximal amount of remodelled gene
gain at a single position in the animal phylogeny occurs on the branch leading to the ancestor of
Euteleostomi (around 450 million years ago), coinciding with a number of important phenotypic
changes such as the transition from a cartilaginous skeleton to one of mineralised bone, as well as an
overall increase in genome complexity [Sacerdot et al. 2018, Simakov et al. 2020]. Relative rates of
composite gene formation per time unit highlight some more recent lineages that have experienced
particularly high rates of gene remodelling, especially in Hominoidea and Caenorhabditis. This
punctuated gain pattern at specific points of the animal phylogeny contrasts with overall trends of
gene family acquisition in animals, which predominantly occurred in branches leading to the common
metazoan ancestor and soon after. This substantial wave of gene origination early in the evolution of
animals could thus have created a repertoire of genetic “building blocks” that gene remodelling would

have later exploited for further genetic innovation, especially at certain key points of animal evolution.
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Figure 29: Emergence and loss of remodelled genes in the evolution of animals.

Phylogenetic distribution of the gains and losses of fused and split genes across the animal tree of life.
The area of each circle is proportional to the amount of gain/loss at the corresponding node. The bar
plot on the right shows the number of composite gene families in each extant genome. The inset box
plot shows the distribution of the rate of composite gene gain per time unit.

16 Deuterostomia and Protostomia are the two main clades of bilaterian animals that have a distinct
bilateral symmetry at the embryonic stage. Most Bilateria maintain this symmetry as adults, with the exception
of echinoderms, which become pentamerous as adults (e.g. starfish). Animals that are not bilateral include
Porifera (sea sponges), Ctenophora (comb jellies), Placozoa, and Cnidaria (jellyfish, corals, anemones, etc.).
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Figure 30: Retention of remodelled genes in extant animal genomes.

This bar plot indicates the rates of retention for fused, split and non-remodelled gene families in extant
animal genomes. Species names are coloured according to their inclusion in Deuterostomia (light
green), Protostomia (dark green) or non-bilaterian clades (black). The internal nodes corresponding to
the emergence of Vertebrata and Euteleostomi are highlighted as they represent a shift in the pattern
of retention, compared to non-vertebrate groups.

We also found that fused genes were more likely to be retained in present-day genomes of
vertebrate species than non-remodelled genes, with Euteleostomi in particular showing markedly high
rates of fusion gene retention (Figure 30). In non-vertebrate lineages, on the other hand, fused genes
were lost at rates comparable (or sometimes higher, e.g. in Caenorhabditis) to non-remodelled genes.
Conversely, split genes that originated from fission events were substantially less stable than fused
and non-remodelled genes in most animal lineages. These results suggest that gene fissions and
fusions have played distinct roles in the evolution of animals, with fissions creating gene products that
were largely volatile and rarely selected for, whereas gene fusions may have resulted in more neutral

or even beneficial (especially in vertebrates) genetic innovations. Lastly, from a functional standpoint,
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fusion genes were found to be predominantly involved in transcription (COG category K), post-
translational modification, protein turnover and chaperone functions (O), signal transduction (T),
extracellular structures (W) and inorganic ion transport and metabolism (P). Functional innovations in
these categories (especially K, O, T) could have contributed to a complexification of gene regulation
pathways, which in animals are particularly associated with morphological development and the
evolution of body plans [Davidson and Erwin 2006]. Likewise, the emergence of new functions
associated with extracellular structures (W) may have played a role in the extant diversity of biological
tissues and organs in animals. Although gene remodelling may not have been central to the initial
emergence of animals [Ocana-Pallarés et al. 2022], later remodelling events might therefore have
contributed to the diversification of animal lineages. In particular, some major physiological and
morphological changes in animal evolution, such as bilateral body plans and the axial endoskeleton of
vertebrates, are coincident with bursts of gene gains from fusion events at specific nodes in the animal

tree of life.
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Abstract

A molecular level perspective on how novel phenotypes evolve is contingent on our
understanding of how genomes evolve through time, and of particular interest is how
novel elements emerge or are lost. Mechanisms of protein evolution such as gene
duplication have been well established. Studies of gene fusion events show they
often generate novel functions and adaptive benefits. Identifying gene fusion and
fission events on a genome scale allows us to establish the mode and tempo of
emergence of composite genes across the animal tree of life, and allows us to test
the repeatability of evolution in terms of determining how often composite genes can
arise independently. Here we show that ~5% of all animal gene families are
composite, and their phylogenetic distribution suggests an abrupt, rather than
gradual, emergence during animal evolution. We find that gene fusion occurs at a
higher rate than fission (73.3% vs 25.4%) in animal composite genes, but many gene
fusions (79% of the 73.3%) have more complex patterns including subsequent
fission or loss. We demonstrate that nodes such as Bilateria, Euteleostomi, and
Eutheria, have significantly higher rates of accumulation of composite genes. We
observe that in general deuterostomes have a greater amount of composite genes
as compared to protostomes. Intriguingly, up to 41% of composite gene families
have evolved independently in different clades showing that the same solutions to
protein innovation have evolved time and again in animals.

Significance statement

New genes emerge and are lost from genomes over time. Mechanisms that can
produce new genes include, but are not limited to, gene duplication,
retrotransposition, de novo gene genesis, and gene fusion/fission. In this work, we
show that new genes formed by fusing distinct homologous gene families together
comprise a significant portion of the animal proteome. Their pattern of emergence
through time is not gradual throughout the animal phylogeny - it is intensified on
nodes of major transition in animal phylogeny. Interestingly, we see that evolution
replays the tape frequently in these genes with 41% of gene fusion/fission events
occurring independently throughout animal evolution.
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Introduction

Composite genes emerge by fusion of distinct protein coding sequences
(“‘components”), or by the fission of protein coding sequences into components.
Often composite genes establish novel domain architectures, expression profiles,
and functions (1-7). For example, the fusion gene Jingwei is remodelled from yellow
emperor and alcohol dehydrogenase genes combining activity on both long chain
alcohols and diols, including growth hormones and pheromones, and establishing a
novel developmental function in Drosophila (8). In addition, the kua-UEV fusion gene
in human has facilitated cytoplasmic localization of an otherwise solely nuclear
polyubiquitination co-effector (9). Whilst there is mounting evidence for the role of
gene fusion in driving adaptive evolution (10-15), there are a number of outstanding
questions about the evolution of composite genes in animals. Specifically, how
prevalent composite gene formation has been, whether the emergence of composite
genes occurs in bursts rather than gradually, whether the pattern of emergence of
composite genes correlates with the origin of major animal groups, and at what rate
fusions or fissions occur. In addition, whilst the convergent evolution of phenotypes
is well established in animals, the extent to which composite genes can arise
independently in different lineages is largely unknown. Given the divergence in
morphologies, niches, lifestyles, and indeed genomes, it is not clear whether
repeated evolution of the same molecular components would be precluded, or
whether the deterministic effects, i.e. the benefits of particular kinds of composites,
would overcome any contingent effects of prior genome evolution.

Animal genome evolution has been shaped by regulatory innovations (16), by de
novo gene genesis (17-21), and by gene duplication and gene loss (20, 22).
Composite genes have been particularly challenging to study as they simultaneously
reside in more than one homologous gene cluster which complicates gene family
assignment and phylogenetic analyses. Studies of protein coding aspects of animal
evolution have necessarily relied upon strict definitions of gene families that limit our
view to purely furcating processes (23, 24). An alternative view is provided by
retaining the connections between composite genes and their components in
sequence similarity networks (SSNs), permitting genes to be members of more than
one family simultaneously. Taking advantage of the unique network motif typical of
composite genes, i.e. they form “non-transitive triplets” thereby connecting gene
families that are otherwise unconnected through partial sequence homology, we can
identify candidate composite genes from genome scale data (25).

The protein domain space that comprises all animal proteins (components and
composites alike) is limited, and it is conceivable that the same composite gene
forming event could occur multiple times independently (26). Indeed, comparative
empirical studies reveal surprisingly repeatable evolutionary fates in closely related
lineages, a trend considered to reduce with increasing distance (27, 28). To date, the
rate of independent evolution observed within multi-domain proteins has varied
dramatically from very low, i.e. 0.4% (29), to much higher, 5-25% (13, 27). The lower
range of estimates of independent evolution is thought to be caused by limited taxon
sampling (13, 27). Using a large representative dataset, we provide a statistically
sound framework to elucidate the rate of independent evolution of composite genes
in animals.
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Materials and methods

Dataset assembly

A dataset of 1,217,174 protein coding genes from a sample of 63 animal species
representing all major clades within the animal tree was obtained from the OMA
orthology database (70). Taxa were sampled to capture the known periods of major
transition within animal evolution, and species representing all major nodes in the
animal tree were included. The quality of data used was of particular importance in
this study (given the potential for misidentification of composite genes) therefore
taxon sampling was guided by the quality of gene annotation of the available species
genomes using two filtering steps of genomes. First, we searched for protein coding
genes known to be present across all of Metazoa (412 genes in total) (71), ranking
genomes as high quality if they possessed >70% of the conserved set, while low
quality genomes had less. Next, a smaller set of 40 protein coding genes that are
annotated as being present across all of life (72) were used as queries to search for
their presence in the set of animal genomes. As this set of protein coding genes is
more conserved, this allowed for stricter filtering for quality of the genomes. All
homology searching for the “core set of metazoans” and “all of life” protein coding
genes was carried out using a reciprocal BLASTp approach (73). Searching for the
set of conserved genes within sampled genomes in Metazoa and all of life, ensured
that genomes of high quality (deemed by the presence of these sets of conserved
genes) were used in our analysis.

To construct a time-calibrated species tree, node dates and topology were obtained
from TimeTree (53), and contentious groupings (such as the branching order at the
root of the animal lineage) were resolved based on current literature on the animal
phylogeny (560-52, 74). We also included an alternative topology for the root position
on the animal tree to test if our results are robust to the position of the deepest
divergences. Twelve of the species in our dataset were missing from the TimeTree
database, and so to place their position and time of divergence, closely related
species to these lineages were used as replacements. In most cases, sister species
from the same genus were present, and a list of the closely related species used to
replace them can be found in (Supplementary Table S2). With other species, such
as the case of Ciona savignyi, which was not present in TimeTree, the divergence
time between it and its sister lineage Ciona intestinalis was taken as 176 MYA from
the literature (75).

Generation and filtering of the sequence similarity network

An all versus all BLASTp (Altschul et al. 1990) was carried out (E-value <= 1e-5,
percent identity >= 30%). The statements of homology output from BLASTp were
used to generate a Sequence Similarity Network (SSN), using the cleanBlastp step
in CompositeSearch (25). CompositeSearch applies a modified Depth First Search
(DFS) algorithm to annotate gene families followed by subsequent network
searching to define composite genes and gene families, then takes this SSN as input
and identifies composite gene clusters which are denoted by non-transitive triplet
patterns in the SSN. We used an E-value cutoff of 1e-5, percent identity cutoff of
30%, and coverage threshold of 80%. This provides output files on all HGs - both the
gene families detected, and the gene families annotated as composite (CHGs). The
composite gene family’s annotation file also provides information on the size of the
composite gene families, the number of component families associated with the
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composite family, the size of the component gene families and the connectivity of the
subgraph of composite genes within a family. Information such as the number of
composite genes within a family, and the amount of overlap of the homologous
regions between the distinct component genes and the composite gene is all made
readily available. As discussed previously the detection of composite genes may be
prone to misidentification and false positives. Therefore, as an initial filtering step, a
series of quality filters were applied to the putative composite gene families identified
in the CompositeSearch analysis: firstly, singleton CHGs, i.e. those with only a single
member in the CHG, were removed. In total this filtering step removed 48,640 CHGs
out of the total of 77,085 putative CHGs. In addition, genes where the mapping of
components to the composite was ambiguous or where the mapping of the
components overlapped, were also removed (this removed a further 14,813), leaving
a total of 13,632 remaining putative CHGs.

Finding evidence for expression of unique joining-points of composite genes
using publicly available transcriptome data

We collated a dataset of all available transcriptomes from RNA sequencing studies
for each taxon (52 out of 63 taxa had RNAseq data available). This allowed us to
assess the putative composite genes at two levels: (i) their validity - making sure we
do not report putative composite genes that are misassembly or misannotation
artefacts, and (ii) whether they have evidence of expression. RNAseq reads were
mapped to the unique joining-point region of the composite genes (i.e. the junction of
component genes) using bowtie2 (76). RNAseq datasets were selected based on
their robustness (as measured by the number of time points and tissues sampled)
and the phylogenetic distribution of composites. For example, for widely distributed
composite families, representative taxa from across the lineages containing the
composite family were chosen based on the robustness of their available RNAseq
datasets. The representative taxa for each of the Bilaterian clades included humans
(Deuterostomia) and fruit-fly (Protostomia). Coverage across the composite joining-
point was assessed using BEDTools (77). Evidence for transcription of the
composite gene was determined by the coverage of at least one read across the
joining-point.

Domain architecture analysis

For all of our HG datasets (composite HGs, component HGs, and non-composite
associated HGs) we first annotated protein domains from the Pfam database using
domain-specific hidden markov models (31), using pfam_scan.pl and parsing using
PfamScanner with an e-value threshold of 1e-3. We calculated the proportion of
retention and loss during gene fusion for each domain by dividing every time it is
present or lost in a composite gene by the number of times it is seen in all
component genes (this analysis was carried out on just the domain type architecture
of the proteins rather than the full protein architecture which may include repeat
domains). No statistically significant correlation is observed between the number of
times a domain type is seen in a CHG vs the proportion of time it is present or lost
(Supplementary Figure S1). Similarly, when we annotate the domain by function or
size, there does not seem to be a correlation between the presence of a domain and
these traits.

To assess whether there were any domains enriched in the set of composite genes
which were annotated as emerging independently multiple times, we compared
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domain sets between single event CHGs and convergently formed CHGs. We
obtained domain lists and correlating functions for both sets of CHGs and applied the
find_enrichment.py script from Goatools (78) setting the full set of domains from all
CHGs as the background.

Assessment of rate of convergent evolution of CHGs

The pipeline for determining which CHGs emerged in a single event or multiple
events is highlighted in Figure 3. In summary, we first retained all CHGs that had a
simple 2-to-1 relationship between composite and component genes. Next, we
extracted the homologous regions between both parts of the composite gene and
their respective component sequences, using information from the tabular all-v-all
BLAST output. The homologous regions between composite and components were
aligned using MAFFT (79) and trimmed using trimAl, using the -gappyout parameter
(80). Corresponding gene trees for both parts of the composite gene and respective
component genes were constructed using IQTree (42, 43), applying ModelFinder
(81) to find the model of best fit and carrying out 1000 ultrafast bootstrap replicates.
We used clan-check to classify composite genes according to whether they
appeared at face-value to have a single or multiple origins (82). Next, we constructed
constrained gene trees in IQTree by forcing the composite sequences to be
monophyletic and applying the model of best fit as inferred from the previous gene
tree construction step. This ensures that gene tree construction is consistent
between the two approaches, the only exception being that the composite genes are
forced to be monophyletic. Finally, an AU test was carried out using IQTree, applying
the -au parameter to compare support levels for the inferred gene tree with the
constrained gene tree.

We also assessed the conservation of the joining-points between composite genes
in each CHG tested. This involved determining the location of the joining-point for
each composite gene by annotating where the sequence homology of the
component genes mapped to the composite gene. Then, each composite gene in
each CHG was split into four non overlapping but equal length regions (proportional
to overall length of the composites) and we assessed whether the joining-points for
all composite genes in a CHG fell within the same region. The assumption being
that, while there may be some variation in the exact location of the joining-point,
those in the same region of the composite gene provide more support for a single
origin of a given CHG. This test was carried out on all CHGs. Leading on from this
we could then address the question of whether we observe different joining-points in
CHGs of multiple origin.

Mapping composite gene gain and loss onto species tree

For the taxa in our dataset, most of the branching patterns are well resolved allowing
the analysis of the rate of emergence of CHGs on each branch across the tree to
determine the patterns of gain and loss. We reconstructed the gain/loss history of the
CHGs and used a constrained timetree (53) to determine their rates of gain and loss.
The pattern of gains and losses of CHGs across the tree was assessed using one of
two models; if CHGs were determined to have been formed in a single event, we
used Claddis (46) an R package which operates in a maximum likelihood framework
to describe characteristics of binary data. Specifically we used the
map_dollo_changes.R function, which was developed to generate a stochastic
character map for Dollo characters, allowing for a single gain event followed by any

7

173



bioRxiv preprint doi: https://doi.org/10.1101/2023.07.10.548381; this version posted July 11, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

number of losses (47). Alternatively, if CHGs were annotated as evolving
convergently, we implemented the Mk model using a stochastic character mapping
approach, this time implemented in RevBayes (49). Setting the root to zero and
using a Mk model with unequal transition rates, allowing a character to be lost and
gained a number of times at different rates across the tree, we measured the rate of
gain and loss of each CHG individually. For each CHG we ran two mcmc chains for
5,000 generations each, allowing us to measure the precise timing of gain along
each branch stochastically. Visualisation of the numbers of gains and losses on the
species tree was carried out using an edited version of the R package, RevGadgets
(83). To determine the rate of gain and loss of the CHGs mapped to the species
phylogeny, we divided the number of CHGs gained or lost at a given node by the
age of that node. The rates of gain and loss were added to each branch in the tree
using ETE3 (84) and the tree was plotted using ggtree (85).

Characterising composite formation events

Composite genes may have originated from either fusion or fission. Fusion events
merge two or more pre-existing components (e.g. gene families without direct
connections in sequence similarity networks). Fission results in the subsequent
appearance of split forms (i.e. components) of the gene. CompositeSearch (25) does
not natively provide a classification of detected composites as corresponding to a
fusion or fission event, yet this step is pivotal for a deeper biological interpretation of
the computational outcome. We therefore applied a phylogeny-based method to infer
the relationship of evolutionary precedence between composites and their respective
components, and deduce the type of gene remodelling that was detected in the
network (i.e. the evolution of composite genes by fusion vs the evolution of
component genes by fission).

The last common ancestor of each CHG and the last common ancestor of each of its
components were mapped onto the reference species tree of our sample set. These
last common ancestors represent the putative points of appearance (assuming a
unique origin) of each composite family and their associated component families. A
simple heuristic was then applied to label CHGs as fused (originated from a gene
fusion event) or split (underwent a gene fission event). CHGs for which components
existed prior to the composite origin were considered as fused, as the inference of a
component evolutionarily older than the composite indicates that at least one
“building block” of the composite was present in its ancestral lineage before its
appearance, and thus was unlikely the result of the composite fission. Conversely,
CHGs for which components appeared only below the composite origin were marked
as having undergone gene fission, as split forms of the composite persist in extant
lineages ancestrally carrying the non-split gene. Many CHGs exhibited a particular
pattern with both a component existing prior to the composite form and another
component evolving only after the composite origin. Such cases are difficult to
ascribe to a single fusion or fission event and may be the result of a more complex
evolutionary path: the existence of a component predating the CHG indicates that it
likely originated from a fusion event, possibly followed by a subsequent gene fission
or loss that would have given rise to the later-evolving component.

Functional annotation of composite genes

All proteins used in our starting dataset were functionally annotated using eggNOG-
mapper (86) v2.1.6, employing DIAMOND v2.0.11 to align sequences to the
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eggNOG database v5.0.2. Cluster of Orthologous Groups (COG) functional
categories were extracted for each sequence, and where required these were used
to annotate the representative set of functions per CHG. To first test whether there
were differences between the functional groups represented in fusion genes versus
genes never associated with CHGs, we compared each COG category for each
gene annotated as fusion or annotated as neither fusion or fission, and plotted the
relative proportions (i.e. the number of COG categories divided by the number of
genes) for each category. Next, to compare proportion of functional categories which
emerged on each node of the tree, including major animal nodes, we took the
proportions of categories from each CHG, and inferred the overall contribution at
each node by dividing all the categories by the number of CHGs gained on the given
node. These proportions for each node were plotted individually for the major nodes
and combined to compare against all other internal nodes in the tree.

Results
Sequence similarity networks uncover a large number of composite genes

From a set of 1.2 million protein coding sequences across 63 animal genomes we
identified 297,806 homologous groups (HGs) of which 77,085 contained putative
composite homologous groups (CHGs). We removed (i) all singleton CHGs (of which
there were 48,640), and (ii) all putative CHGs where the contributing component
sequences did not map to specific and non-overlapping regions of the composite
gene (14,813 CHGs in total). Under these strict criteria we identified 13,632 CHGs,
or ~5% of all the gene families in animals, and these groups included 157,206
individual composite genes. To further mitigate against annotation and assembly
artefacts, we assessed whether putative composites have associated evidence of
gene expression. We mapped the unique “joining-point” in each composite gene to
available transcriptome datasets (the “joining-point” is the location within the
composite sequence where the contributing component sequences meet).
Transcriptome data was available for 52 of the 63 species and 12,048 of the 13,632
CHGs (see Materials and Methods). A total of 7,774 CHGs (65%) had evidence of
expression for at least one composite gene member of a given CHG family. The
proportion with evidence of expression (i.e. 65%) is what we might expect from large
scale RNAseq studies on temporal and spatial variation in expression in animal
protein coding genes (30).

The 13,632 CHGs were related to a total of 40,217 component HGs, with the
majority of CHGs (i.e. 10,855 (80%)) having just 2 component genes (or parts
thereof). We identified a nested characteristic of composite formation in that CHGs
once formed tend to contribute to further composite formation. In total, 11,805 out of
13,632 (87%) CHGs are also components (Figure 1 a&b). Indeed, when compared
to genes that did not arise by composite formation, genes that arose by composite
formation are more likely to subsequently contribute to other novel composite events
(on average 10 vs 17 subsequent events respectively), suggesting there is a pool of
genes prone to remodelling in animal genomes. On assessing protein length and
domain content across the ~1.2 million protein coding genes in the network we
observe that composite genes display a wider range of domain combinations (as
classified by Pfam (31)) than either (i) component genes (p < 2.2e-16, Wilcoxon
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signed-rank test), or (ii) non-composite associated genes (i.e. those genes that are
not composite and not component) (p < 2.2e-16). Additionally, composite genes tend
to have longer protein coding sequences than either component genes (p < 2.2e-16)
or non-composite associated genes (p < 2.2e-16). On average component genes
contribute 100 amino acids during composite formation - corresponding closely to
the average length of a domain in all component genes in our dataset (i.e. 118 amino
acids). The most common proportion of component gene sequence to be present
following a fusion event is 20% or 100%, suggesting that the domain unit places the
strongest constraint on the size and architecture of composite genes (Figure 1c).
Comparing domain types between component and composite genes, we find that no
domain is significantly over-represented across all CHGs and thus present at a
higher rate than others during composite formation (27). However, whilst not
statistically significant, domains WD40 and zf-C2H2 are present at a higher rate in
CHGs than any other domain, i.e. WD40 is present in 391 components and is
present in the resulting CHGs 58% of the time, and zf-C2H2 is present in 339
components and present in CHGs 58% of the time (Supplementary Figure S1).
This trend possibly reflects the abundance and promiscuity of these two domains:
the WD40 domain is one of the most abundant and also amongst the top interacting
domains in eukaryotic genome (32), whilst the zf~-C2H2 domain is amongst the most
numerous of domains in metazoa (33).

For most CHGs (82% or 11,211 of 13,632 CHGs), the contributing elements (i.e. the
parents of the gene fusion or the gene parent for the fission), are lost from the host
genome. There are 2,421/13,632 CHGs where the composite and at least one
component reside in the same genome simultaneously. For example, whilst previous
studies of insulin-like growth factor-binding protein gene family (IGFBP) have
characterised the functional domains, our analyses identify that the formation of this
gene was via gene fusion on the stem chordate lineage (Figure 2a). We also show
that following formation of this gene fusion its component genes were not lost from
the genome. The process of gene fusion involved the C terminal IGFBP domain
which functions to regulate IGF, and the N terminal Thyroglobulin-1 domain which
contains nuclear localization sequences (Figure 2b). The IGFBP fusion and
subsequent duplication resulted in many novel IGF-independent actions in a new
cellular functional landscape (34-38). This example provides new insights into the
process of gene fusion which involves retention of both component and composite
genes in most chordates sampled (Figure 2). Conversely, the Nitrilase and fragile
histidine triad fusion protein (NitFhit) demonstrates the loss of ancestral components
following gene fusion. Given that the separate components have been found to be
expressed and localised at similar time points and are also involved in similar
interaction networks and functions, this fusion represents a coordination of
biochemical pathways (39, 40). The NitFhit fusion was initially proposed to have
originated by gene fusion in C. elegans and D. melanogaster (39), and we identify it
in both Ecdysozoa and Lophotrochoza, placing the origin of the NitFhit fusion at the
base of the Protostomia.

Larger number of composite genes are formed by gene fusion
As composite gene losses may be conflated with lineage-specific gene fission
following a fusion event, we further categorised the mode of origin of all composite
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genes in each CHG as having emerged by gene fusion or fission (see Materials and
methods, Supplementary Figure S2). Briefly, if the last common ancestor of the
component genes was an older node than that of the composite gene, the composite
was categorised as formed by gene fusion; and the converse for fissions. Out of the
13,632 CHGs in this analysis, 9,994 CHGs (73.3%) were found to have originated
from a fusion event. Of these, 2,096 (21%) fit the scenario of a single fusion event
with no subsequent fission, while 7,898 (79%) were inferred to have undergone a
more complex pattern of independent fusion and/or subsequent fission events
(Supplementary Figure S2B). Interestingly, there were 3,460 CHGs (25.4%) that
underwent a single, unique fission event (Supplementary Figure S2C). Finally, 178
CHGs (1.3%) could not be assigned to any of the above categories, suggesting a
more complex evolutionary history. Overall, the relative rates of fusion and fission
observed mirror recent findings which suggest that gene fusion played a greater role
in metazoan gene family evolution as compared to other eukaryotes, i.e. Fungi (21,
41) (Supplementary Figure S2). These findings also suggest that gene fission
occurs at a previously underestimated rate in animal genomes, particularly following
gene fusion events.

Composite genes evolve multiple times independently

We quantified the rates at which evolution converged on the same composite gene
using a phylogenetic approach, thus allowing us to overcome the bias related to
gene loss. Using the phylogenetic signal within the homologous regions of the
component and composite gene alignments, we determined the rate of independent
origins of composite genes (Figure 3). We analysed component-composite gene
trees to distinguish composite sequences that form monophyletic groups (which
were most likely formed by a single event), from polyphyletic composite sequences
(which represent possible multiple independent origins of that composite family, e.g.,
multiple independent fusions/fissions). From among the 13,632 CHGs we selected
families that met two criteria: whether they involved only two component families,
and whether they contained more than three species in the alignment. In total,
10,829 of 13,632 CHGs satisfied these criteria.

Briefly, for each CHG we first aligned and trimmed the sequences and then built
gene trees using IQTree (42, 43) (v2.03; using automatic model selection and
carrying out 1000 ultrafast bootstrap replicates) for all homologous blocks of
sequences of component and composite genes (Figure 3a-b). We then selected
those maximum likelihood trees where the composite genes do not appear as a
monophyletic group (9,124/10,829 or 84%). We re-ran the analysis using the same
phylogenetic models as before, but this time we imposed topological constraints on
the search for optimal trees, where we forced the composite sequences to form a
monophyletic group (Figure 3c). The Approximately Unbiased (AU) test (44) was
used to measure the significance in the difference in support for the unconstrained
(polyphyletic) versus the constraint (monophyletic) tree (Figure 3d). The null
hypothesis is that there is no significant difference in likelihood score for the
constraint tree and the unconstrained tree. This approach provides a robust
statistical framework to infer the rate of independent evolution of composite genes.
Out of the 9,124 CHGs of putative independent origin, 5,631 rejected the null
hypothesis, ie. the monophyletic constraint is significantly worse than the
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polyphyletic gene tree implying independent origin of the same composite event. For
the remaining 3,493 CHGs tested for single or multiple origins, there was no
significant difference between the constraint and gene trees, i.e. a monophyletic
origin could not be discounted and in these cases we parsimoniously assumed
monophyletic origin. Whilst different joining-points are possible in both monophyletic
and polyphyletic CHGs, there should be less constraint on identical joining-points in
polyphyletic cases. To test this we annotated the joining-point in all composite genes
for each CHG and asked whether this location fell within the same general region of
the protein for each gene in a CHG (see Materials and methods). Indeed, an
analysis of the joining-points of all CHGs shows that 70% of polyphyletic CHGs have
different joining-points as compared to 44% for monophyletic CHGs. To summarise,
across all 13,632 CHGs identified, 5,198 CHGs (38%) were most likely
monophyletic, 5,631 CHGs (41%) emerge independently more than once across the
animal phylogeny, and 2,803 CHGs (21%) could not be assessed in this way as a
consequence of having more than two components and/or insufficient species in the
alignment.

Next, we assessed whether there was a significant difference in the types of protein
domains present in composite genes of multiple origin as compared to those of
single origin. We found that domains with functions related to protein binding and
binding (G0O:0005515, G0O:0005488) were enriched in the set of composite genes
which emerged more than once (p<0.05, Benjamini-Hochberg correction)
(Supplementary Table S1).

Composite gene gain and loss events are concentrated at specific nodes on
the phylogeny

In order to determine the tempo of CHG gain and loss across the animal phylogeny
we analysed a subset of 10,829 (from a total of 13,632) CHGs where we could
categorise the CHG as single or multiple origin. For the 5,198 CHGs of single origin
we analysed their evolutionary history using the irreversible Dollo model of evolution
(45) implemented in the R package Claddis (46, 47). For the 5,631 CHGs of multiple
origin we used the reversible Mk model (48) implemented in the RevBayes software
program (49). We used the species tree shown in Figure 4 (50-52), the most
appropriate model as described above, and applied time calibrations extracted from
the TimeTree database (53). Using TimeTree as a source for divergence times
allowed us to use a detailed phylogeny including all taxa of interest. However,
TimeTree divergence times are summary statistics from a diversity of studies some
of which are by now only of historical value. In particular, for the deep part of the
animal phylogeny, TimeTree estimates are most likely too old (54). Accordingly,
rates of origin and loss of composite genes estimated here should be interpreted as
minimal estimated values, as reducing the branch length in the timetree following
more recent animal divergence time studies will cause the inference of higher rates
of origin and losses. We also employed an alternative rooting for the tree placing the
Ctenophore as the earliest diverging group (55-57) and found no significant change
to the results presented here (Supplementary Figure S3).

The first major observation is that CHG gain is not evenly distributed across the tree
(Figure 4). Within Deuterostomia for example there are 21,381 separate CHG gain
events across all branches compared to 6,295 CHGs gains in all branches within
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Protostomia. There are 1,322 gains in total across the five nodes preceding the
divergence of Deuterostomia and Protostomia (i.e. Bilateria, Panulozoa, Eumetazoa,
Metazoa, and Metazoa + Choanoflagellates). While there is a clear disparity between
the number of composite genes between protostome and deuterostome species, this
trend does not hold at the level of total gene count per species (Supplementary
Figure S4A&B) suggesting underlying variation in the rate of CHG formation
between these clades. To account for the difference in the number of species
sampled between Protostomia and Deuterostomia, CHG counts for a random
sample of 10 species were carried out 100 times, and we find that the number of
CHGs present in the Deuterostome clade is significantly higher (Wilcoxon rank-sum
test, p=0) (Supplementary Figure S4C). Finally, the distribution of CHGs across the
tree suggests that a large proportion may be clade-specific. For example, there are
341, 338, and 1,475 CHGs unique to Caenorhabditis, Eutheria and Euteleostomi,
respectively. The ancestral node with the largest number of CHGs gained was
Eutelostomi with 1,475 gains, followed by Bilateria with 527 gains (Figure 4).

Across the tree we find that the rates of composite gene gain and loss per million
years (MY) are highly variable and non-clock like (Figure 4). Note that the absolute
values presented for rates are likely to be underestimated given the tree, but the
comparisons of gains and losses remain valid. Within the internal branches of the
phylogeny the average rate of CHG gain is 1.03/MY, compared to a loss rate of
2.81/MY. The branch leading to the Hominoidea clade displays the highest rate of
CHG gain (9.31 CHG gains/MY). The branches leading to Caenorhabditis (5.67
gains/MY), Euteleostomi (3.39 gains/MY), Poecilinae (4.50 gains/MY), Eutheria (3.20
gains/MY), and Tetraodontidae (2.56 gains/MY) all display rates of CHG gain above
the average plus the SD observed across the whole phylogeny (1.03 + 1.51 CHG
gains/MY) (Figure 4 inset, Supplementary Figure S5A). Contrastingly, higher rates
of CHG loss tend to be found towards the tips of the tree, consistent with the
observation of loss most often relating to loss of a single composite gene within a
specific species rather than complete loss of the CHG (Figure 4). Branches with
rates of loss higher than the average plus SD (2.81 * 4.33 losses/MY) include:
Hominoidea (24.96 losses/MY), Xenarthra (12.27 losses/MY), and Passeriformes
(10.53 losses/MY), and the tip lineages: Nomascus leucogenys (23.08 losses/MY),
Choloepus hoffmanni (21.98 losses/MY) (Supplementary Figure S5B). When
assessing rates of gain and loss of composite genes, it must be noted that loss can
relate to a complete loss of a composite gene from a species, or a reversal of the
composite formation event (e.g. subsequent fission in a lineage following a fusion
event). Gain of an individual composite gene member also occurs but at a lower rate
than CHG member loss.

Finally, to assess the functional contribution of gene fusions specifically from our
composite gene repertoire we compared the functional categories of fusion genes
versus genes never associated with composite formation (i.e. neither composite nor
components). We calculated the relative representation of Cluster of Orthologous
Groups (COG) categories for genes of each type (i.e. fusion genes versus non-
composite associated genes). We found that, in comparison to non-composite
associated genes, fusion genes had a larger number of genes involved in
transcription (K), post-translational modification, protein turnover, and chaperone
functions (O), inorganic ion transport and metabolism (P), signal transduction (T),
and extracellular structures (W) (Supplementary Figure S6A). To assess the
potential functional impact of gene fusion events at major nodes in the animal tree,
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we measured the relative proportions of COG categories for fusion genes gained at
these particular nodes (Supplementary Figure S6B). The overall proportions of
COG categories are similar for all nodes tested, with signal transduction (T),
transcription (K), and post-translational modification, protein turnover, and chaperone
functions (O) representing the highest proportion of COG categories in all nodes.
These patterns overlap with the broader contribution of fusion genes to these
functions relative to non-composite genes, as seen above (Supplementary Figure
S6A). Some clade specific shifts in COG proportions were observed; with overall
larger proportion of genes involved in RNA processing and modification (A) present
in the nodes Deuterostomia, Tetrapoda, Mammalia, and Eutheria; a larger
contribution of extracellular structures (W) category in Euteleostomi and Tetrapoda;
and a higher proportion of genes involved in defence mechanisms (V) in Tetrapoda,
relative to other major nodes in the tree (Supplementary Figure S6B). Generally,
the functional impact of gene fusion seems to be specific to certain broad functional
categories throughout the animal phylogeny, pointing to a specific, persistent, role of
gene fusion in driving the evolution of certain functions important for animal evolution
(58).

Discussion

The most recognisable part of evolutionary biology is the Tree of Life with its
continually diverging branches emerging from the root. This narrative has hugely
influenced how we think about evolutionary history, and it influences what we expect
to see when we examine genomes. In addition to, and perhaps influenced by, the
Tree of Life perspective, there is a feeling that evolution rarely, if ever, repeats itself.
This last idea was most forcefully expressed by the palaeontologist Stephen Jay
Gould who asked whether the tape of life was replayable (59) — a question to which
Gould answered: No.

Fortunately, with the sequencing of an extensive array of genomes from many taxa
across the diversity of animals we can address issues relating to the non-treelike
aspects of evolution on one hand, as well as whether genome evolution is contingent
on genetic background. If evolution is contingent on prior evolutionary events, then
we expect that with increasingly divergent genetic backgrounds we are less likely to
see repeated evolution, while on the other hand if evolution is largely deterministic,
then despite differences in genetic backgrounds we expect to see the same
evolutionary events occurring in different lineages. In the end, we find that the
repeatability of evolution falls short of being hugely deterministic — only a small
proportion of the overall animal gene repertoire shows evidence of repeated
evolution, but by the same token, we see that repeatability has happened and it has
happened across animal evolution many, many times.

Composite gene evolution is largely characterised by high rates of gene turnover,
unequal rates of gain and loss between animal phyla, and significant bursts of
composite gains intensified at particular nodes in the animal phylogeny. The rate of
composite gene formation varies drastically between the major animal groups, with a
greater number of composite genes found in Deuterostomia, compared to
Protostomia or the non-bilaterian lineages. The single largest number of CHG gain
events observed are on the branch leading to the Euteleostomi ancestor - a branch
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synonymous with major phenotypic innovations such as the emergence of
mineralised bone and the development of a more complex immune system. The
higher rates of CHG birth on this branch may also be related to increases in genome
complexity at this point in animal evolution (60, 61). Multiple whole genome
duplication (WGD) events within the vertebrate clade (62), coincide with nodes
containing a large number of composite genes. In terms of rate of composite gain
per million years, the branch leading to Euteleostomi also shows a significantly
higher rate of gain than the average across the whole tree, reinforcing the
contribution of gene fusion and fission at this point in animal evolution. The branch
leading to the Caenorhabditis species also shows significantly higher rates of CHG
gain. While this branch may not represent a point of major phenotypic or genomic
change, species of this phylum are known to have a higher rate of recombination
within their genomes (63). This may provide a molecular basis for the increased
rates of gene fusion and fission in this group. Compared to patterns of gain and loss
of other gene types, which show significant gain in early metazoan branches and
pre-metazoan branches in particular (17, 18, 20), we find that the highest rates of
composite gene gain correlate with nodes that emerge subsequent to these deep
nodes, suggesting that the evolution of genetic content through mechanisms other
than fusion and fission may be followed by subsequent higher rates of composite
gene formation.

In animals, convergent fusion events are known, for example the TRIM5-CYPA gene
in New World monkeys (64) and Old World monkeys (65), the repeated fusion of 8-
globin genes in Laurasiatheria (66), and the recurrent fusion of transcription factors
and transposons in vertebrates (67). More broadly speaking, 25% of all multi-domain
proteins in eukaryotes are thought to have emerged independently, and 71% of
domain combinations in the human genome have been found to be gained
independently in at least one other eukaryotic genome (27). There have also been
several examples of recurrent gene fusion in different eukaryote lineages (68, 69).
Our estimate for the rate of convergent evolution of composite genes in the evolution
of animals suggests that selection for the same combinations of gene sequences in
composite genes is indeed common, with 41% (5,631 CHGs) having likely evolved
independently more than once on the tree. Given our approach, using phylogenetic
signal within the composite and component sequences, we could be confident that
our results are not skewed by taxon sampling or data quality issues. The data
presented here suggests that there are high levels of CHG formation and loss across
animal evolution, that the same composites form independently across the tree, and
that these CHG likely contribute substantially to the emergence of animal gene
repertoires providing functional innovation, e.g. the IGFBP fusion protein. This work
has important implications for our understanding of how protein coding genes evolve
in animals, the prevalence of convergent evolution, how we construct gene families,
and how we annotate function between homologous genes.
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Figure 1. Characterisation and contributions of composite genes and their
components. (a) The number of component CHGs (blue) and composite CHGs (red).
Overlap represents component CHGs which are themselves composite. (b) Cartoon network
demonstrating the nested nature of composite formation, whereby e.g. a CHG (orange)
formed from distinct component CHGs in red and yellow, may itself be involved in a separate
fusion with another HG component family (in blue) to form a new CHG (green). (c)
Distribution of the component sequences showing the proportion of the component that is
present in the composite.
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Figure 2. Evolution of the composite IGFBP gene in Chordates. (a) The chordate clade
is highlighted with a red toned background on the circular tree, and the outgroups in blue
and green toned backgrounds. The presence/absence of the composite and components are
denoted with coloured triangles on the leaf nodes: the presence of the IGFBP composite
gene is denoted as a red triangle, and the two component genes IGFBP and Thyroglobulin 1
are denoted as blue and green triangles respectively. The node of origin of the IGFBP
composite genes is annotated by an in-filled circle on the species tree. (b) A cartoon of the
constituent domains IGFBP (green) and Thyroglobin_1 (blue). Arrows point to the
corresponding regions in the IGFBP composite gene protein structure. The structure colour
gradient represents regions of high (blue) and low (red) confidence, note the two component
protein domains are linked by a sequence of low structural confidence.
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Figure 3. Pipeline used to identify composite genes that emerged in a single event or
multiple independent events. (a) Summary of component and composite homologous
sequences used for gene tree inference. (b) Gene trees inferred from component-composite
sequences showing an example where the composite sequences (in red) form a
monophyletic group (left) and an example where they do not (right). (c) Constrained trees
inferred using the topology of the gene tree inferred from the previous step but forcing the
composite sequences to be monophyletic. (d) Approximately unbiased test: measuring the
significance in the difference in support for the constraint tree (monophyletic) versus the
unconstrained (polyphyletic) tree. Where H, = no significant difference in likelihood score for
the constraint and unconstrained trees.
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Figure 4. Distribution of the gain and loss of CHGs across the animal tree. The species
phylogeny for our sample set is shown in the centre, with divergence time estimates in
millions of years ago (MYA) on the x-axis (taken from TimeTree (53)). Gains of CHGs are
shown as red discs and losses as blue. The size of the disc on the node is proportional to
the amount of gain/loss at that node. The associated histogram on the right shows the total
number of CHGs identifiable in the genomes of extant species. Inset: boxplot showing
overall rate of gain for each node in the phylogeny, outlier nodes are named.
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Chapter IV. Conclusion and perspectives

Over the course of my doctoral studies, | have developed and applied several methods of gene
family analysis, based on representations of data as sequence similarity networks, to study particular
types of homology relationships. The first part of my work focused on detecting and characterising
remote homologues of known gene families. To that end, | have contributed to the development of
SHIFT, a new tool using iterative sequence alignments to retrieve increasingly divergent homologues
of an input gene or protein family. | have then applied this protocol to explore the diversity of a large
marine metagenome, targeting in particular divergent variants of highly conserved gene families. The
second focus of my PhD work centred on combinatorial evolution, and specifically gene fusion and
fission events. | have designed a polarisation method, complementary to composite gene detection
techniques already in place in our lab, which allows the classification of composite families in fusion
and fission events. These methods were then used to study the influence of gene remodelling in the
evolution of two different eukaryotic lineages that share the particularity of having evolved complex
multicellularity independently. In this conclusion, | summarise and discuss my contribution to both of

these research themes.

1. Exploring the oceanic microbial dark matter with remote

homology searches

1.1 - Detecting distant homologues with SHIFT

In the Chapter | of this thesis, | detailed the study that we conducted on surveying the microbial
dark matter inside an ocean metagenome. This analysis consisted in identifying highly divergent
variants of universally conserved genes that are considered to be as old as LUCA. The methodological
backbone of this study was SHIFT, a programme we developed to identify remote homologues of an

input set of sequences (e.g. from the same gene family).

The foundational ideas behind SHIFT were first laid out by two of my supervisors ina 2015 article
[Lopez, Halary, and Bapteste 2015], in which they conducted two rounds of BLAST searches in a
collection of metagenomes: a first round gathered the direct environmental homologues of query
sequences, which were then used as queries themselves for a second round of search, to retrieve their
own homologues in the target dataset. The study found that the second-degree homologues of query

sequences were more divergent from the known microbial diversity than first-degree homologues.
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Given those results, the logical extension of this approach would be to ask: if we looked for third-
degree homologues, and beyond, could we find even more divergent variants? This idea was
implemented by Romain Lannes, who completed his PhD in the lab before my arrival and created a
first prototype of SHIFT, which built on this principle and allowed multiple iterations of search to take
place instead of just two [Lannes 2019]. The version of SHIFT that | developed during my doctoral
studies (in close collaboration with Eduardo Corel) is based on the same idea of iterative searches: the
homologues retrieved in the n-th search step are used as queries in step n+1 to find their own

homologues, such that increasingly distant homologues of the seed sequences are reached step by

17
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Figure 31: Homology searches by SHIFT can converge to the same sequence via different paths.

The crux of SHIFT resides in the ‘sanity check’ step, which ensures that any retrieved homologue
can be mapped back onto at least 80% of a seed sequence. This step is essential to limit the risk of
overextending the search into regions of the sequence space that are not bona fide homologous to
the initial sequence set. Projecting the aligned region of a newly matched sequence back onto a seed
sequence, through a chain of alignments, is relatively trivial in the case where sequences are aligned
without any gaps: aligned positions define ‘columns’ of the alignment stack, and the columns
corresponding to the alignment on the final sequence can be checked to cover a sufficiently large
interval of the initial sequence. However, sequence alignments are rarely ungapped in practice, and

the mutual cover check becomes much less trivial in the general case (with gapped alignments). This

7 Here | wish to voice a mild annoyance of mine around the locution “de proche en proche”, which is
commonplace in French and explains the intuition behind SHIFT very efficiently, but which somehow has no
direct equivalent in English — | cannot count the number of different formulations | have used or considered to
express this idea during the writing of this manuscript!
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specific issue is the one that was targeted by most of the improvements to the prototype version of
SHIFT, in order to formalise as much as possible this crucial part of the algorithm while preserving the
computational efficiency of our implementation. We have identified a sound criterion to apply in order
to check the mutual coverage of all sequences along an alignment stack, but some unsolved issues
remain in the implementation of this criterion, which at the moment is still quite cumbersome
computationally. In a nutshell, when using a retrieved environmental sequence as a query for a new
round of search, some information must be stored with respect to how it was retrieved (i.e. via which
alignment stack/s). Looking at Figure 31, we see that three different paths are admissible to reach the
sequence circled in yellow (in addition to the path highlighted in green, there is one to its left going
through a different sequence at Iteration 1, and one to its right going through a different sequence at
Iteration 2). Each of these paths defines a different alignment stack, which may correspond to slightly
different regions on the sequence circled. Once that sequence is used as query in Iteration 4, it may
match new sequences that could be admissible for one alignment stack, but not for others. Therefore
it is necessary to keep track, for each query sequence, of all the admissible paths that lead to it from
a seed, and of the regions covered on intermediate sequences along each of these paths. Storing and
processing this information explicitly would require a lot of time and memory space, and we have
lowered this complexity by only saving a reduced representation of it, i.e. the complete paths that
match positions on every sequence in the stack. Still, there is a significant computational cost when
many alignment stacks are acceptable and have many complete paths. The main upcoming challenge
in the development of SHIFT is now to reduce this complexity further, either by identifying an efficient
heuristic that can circumvent suboptimal alignment stacks, or by using a more performant
representation of the alignment data that could apply the mutual cover check to newly matched

sequences with fewer computations.

The problem of remote homology is in no way new in the field of bioinformatics, and multiple
algorithms have been proposed to overcome the boundary of the twilight zone of protein similarity.
Different ways to represent and compare biological sequences, in particular, have been developed to
improve the sensitivity of aligners: rather than using direct pairwise sequence-sequence comparisons
(e.g. Smith-Waterman, BLAST), sequences can be compared to profiles (PSI-BLAST) or HMMs
(HMMER) that encapsulate the information of a multiple-sequence alighment between sequences
that are already considered homologous. Taking the idea one step further, target sequences can also
be represented as profiles or HMMs, allowing for pairwise profile-profile (COMPASS) and HMM-HMM
(HHblits) alignments. In tandem with innovations in the types of comparisons carried out, another
algorithmic avenue to identify remote homologues can be found in iterative searches, alternating

between phases of (i) searching for new homologues and (ii) updating the search model (e.g. the PSSM
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profile or HMM) with new sequences found in the search phase. Notable examples of remote
homology methods based on iterative model refinements include PSI-BLAST (profile-sequence

comparisons), JackHMMER (HMM-sequence) and HHblits (HMM-HMM).

SHIFT is fundamentally similar to these methods, namely in the use of iteration to further the
search for homologues from an initial gene or protein family, either until no new sequence is found or
a maximum number of iterations is reached. However, SHIFT also differs from those, chiefly in that it
does not use (representations of) multiple sequence alignments as queries, but rather individual
sequences — albeit with implicit constraints relative to the stacking of successive alignments. This
presents a certain computational advantage, because pairwise alignments are faster to construct than
comparisons to sequence profiles or HMMs. The ‘model actualisation’ phase is also highly simplified,
as sequences matched at a given search step essentially are the model for the next search. This also
provides a level of traceability to the output of SHIFT, in the sense that we can reconstruct the path
leading to the retrieval of any homologue from a seed sequence. Lastly, because SHIFT uses primary
sequences as targets, it can be readily applied to mine any sequence dataset, without requiring pre-

processing the target data to format it into profiles or HMMs, as is the case for HHblits for instance.

In the simulations that we conducted to test the precision and recall power of SHIFT, we found
that it gathered homologues in a relatively conservative way, without ever calling a false-positive
homology. However, this comes at the necessary expense of its sensitivity, meaning that SHIFT fails to
gather extremely distant homologues when their divergence rate exceeds a certain point. This is
preferable to the opposite situation of high sensitivity and low precision, as this would result in
considering as homologues many sequences that are not, but improvements to the recall power could
still be desirable, for instance by identifying better heuristics to perform the mutual coverage check
between matched and seed sequences. Furthermore, the risk of homology overextension is low, but
not entirely absent, and indeed in our use of SHIFT on real-world data we identified a few cases where
sequences were likely retrieved beyond the boundaries of homology. In such cases of overextension,
we can typically see the number of sequences retrieved in each round decrease, then significantly
increase again before eventually converging to zero. This can be expected when a small number of
non-homologues are erroneously retained, after which many other sequences from the same “foreign’
family are also included; generally, these sequences will also have higher similarity to their published

counterparts than some bona fide homologues of seed sequences.

Arguably, this pattern can also arise from possibly desirable cases where a distant paralogue of
the seed family is retrieved during the search. We observed an instance of this due to the presence of

two ancient paralogues in our selection of conserved families, namely the SecD and SecF translocation
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proteins [Pogliano and Beckwith 1994, Hand et al. 2006]. These proteins were retained as separate
families in our initial dataset, and were thus used independently for SHIFT homology searches.
However, the environmental homologues that were retrieved for these families largely overlapped,
amounting to 73% of all sequences matched by SecD and/or SecF. This shows that SHIFT is able to
recover ancient paralogy relationships, and further analyses of these families’ SSNs enabled us to map
back 80% of sequences matched by both SecD and SecF to one family or the other. However, although
we were able to identify this specific occurrence as a paralogy reconstitution rather than an
overextension, a few other seed families do appear to have retrieved genuinely unrelated sequences
during their extension by SHIFT. This therefore represents another potential refinement of our
method. In future, incorporating other kinds of biological information in addition to primary
sequences could be beneficial to the precision and sensitivity of distant homology searches. Protein
3D structures, for instance, are generally more conserved than sequences, and the recent advances in
structural prediction and comparison could be leveraged to improve the retrieval of remote

homologues and eliminate anomalous hits that may result in situations of overextension.

1.2 - Environmental diversity of highly conserved gene families

Although SHIFT could conceptually be applied to explore the diversity of any gene or protein
family of interest, we developed it with a specific goal in mind: unravelling the environmental genetic
variation of highly conserved ‘core’ genes, especially in uncultured microorganisms. We found that
many of those gene families existed in the global ocean with great diversity relative to what is known
from cultured species, and that some groups of environmental variants were compatible with putative
new deep-branching lineages. Detailed investigations into three specific families showed the different
kinds of biological insights that can be expected from this added environmental diversity. In certain
families, such as what we observed in polymerase clamp loaders, divergent sequences can be found
throughout the gene’s phylogeny, suggesting that genetic variation within those families is largely
underrepresented in isolate genomes alone. However, divergent environmental homologues may also
come from more specific components of the microbiome, for instance certain size fractions (e.g.
divergent recombinases from ultra-small organisms) or certain taxa (e.g. structural variants of SMC
proteins in Actinobacteria). These results therefore highlight the multifaceted nature of microbial dark
matter, which could contribute biological novelty to gene families in a variety of ways, both

quantitatively and qualitatively.

From a methodological standpoint, this study demonstrates a new approach to explore the
unknown fraction of the gene universe that is particularly well suited for unravelling the

environmental diversity of targeted gene families. Previous research groups have applied comparable
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remote homology techniques to characterise the dark protein space, albeit with somewhat different
purposes, such as the functional annotation of metagenomic ORFans [Lobb et al. 2015] or the
identification of novel protein domains [Bitard-Feildel and Callebaut 2017]. On a broader level, the
issue of resolving gene function in the microbial dark matter has concentrated numerous research
efforts, based on a diversity of approaches including sequence clustering [Brum et al. 2016, Vanni et
al. 2022, Pavlopoulos et al. 2023], structural comparison [Durairaj et al. 2023], and deep learning
[Bileschi et al. 2022]. Thanks to this plurality of complementary approaches, this collective undertaking
is generating new insights into the coding potential of unknown microbial genes, and sketching out
the underlying organisation of the overall gene space [Vanni et al. 2022]. In the early years of microbial
dark matter research, the majority of the spotlight was occupied by the discovery of novel major
lineages (CPR bacteria, DPANN archaea, Asgard archaea, etc.) that was enabled by the reconstruction
of extended phylogenetic trees that included MAGs as well as reference genomes [Hug et al. 2016,
Castelle and Banfield 2018]. Since then, more room has been made for function-oriented analyses,
concomitantly with the realisation that many uncharacterised sequences are not covered by MAGs,
such that alternative methods may be necessary to resolve their evolutionary and taxonomic origin.
In this context, our multi-marker approach could be relevant to the formulation of new evolutionary
hypotheses that could guide future explorations of metagenomes: in the same way that Wyman et al.
[Wyman et al. 2018] proposed a “most-wanted list” of conserved but unannotated protein families,
so could our protocol suggest a selection of “most-wanted lineages” that encode divergent variants in
one or several core gene families. Being able to upscale this method to larger sets of both query
families and target datasets, and possibly automating at least some part of the subsequent SSN
analysis, would be especially interesting for this last objective, in order to provide a “most-wanted

list” that would be relevant for a larger research community.

Although our results using SHIFT to mine the Tara Oceans metagenome are already interesting,
a few additional analyses could still be completed in order to bring the study to its full potential. In
particular, our investigations into some divergent clusters of specific gene families could be enhanced
by digging deeper into their biological context. We were especially interested in finding new gene
variants that could suggest the existence of novel basal branches in the tree of life, i.e. currently
undiscovered major lineages [Wu et al. 2011]. Some of the divergent groups of environmental
homologues that we identified are compatible with such lineages, and the fact that they feature in
highly conserved gene families is encouraging in this regard. However, as things presently stand, these
divergent clusters were found on a single-marker basis, so that these new gene variants exist in
relative isolation to each other and to the rest of the gene space. This limitation makes it difficult to

confidently assess their significance outside the evolutionary history of their family. Linking these
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variants with other gene products may therefore enlighten us about the genomes, and perhaps even

the organisms, bearing these divergent genes.

In order to overcome this limitation, a first step would be to search for them in collections of
MAGs and single-cell genomes, especially assembled from Tara Oceans or other marine sequence
datasets. Not only could this allow us to measure their phylogenetic distribution in the tree of life, but
it could also yield significant information on functional partners of these variants, possibly revealing
compensatory adaptations to maintain regular function despite their divergence or, on the contrary,
co-evolution patterns in other related genes that may lead to functional innovations in their hosts.
The marine virosphere, in particular, is rife with bacteriophages and archaeal viruses that encode a
variety of DNA processing genes, and thus some of the gene variants reported may derive from phage
genomes, or possibly prophage insertions in genomes of cellular organisms. On the other hand, since
only a fraction of metagenome-predicted genes are covered by MAGs, some lower-level analyses may
prove equally fruitful to understand the broader context of these divergent clusters of core gene
homologues. For instance, given the particularly broad range of locations and environments
represented in the OM-RGC dataset, biogeographical annotations are available for the environmental
homologues we retrieved, and could thus provide an adequate resolution for co-occurrence analyses.
Pronounced levels of co-occurrence between some of our variants of interest, or with other marine
sequence clusters, may lead to further insights into their ecological and functional role, especially
when genome-level information is unavailable. Finally, in a broader sense, other microbiome data
could be explored, especially from different environments than the global ocean, to understand

whether these variants are exclusive to marine life or also occur in other habitats on Earth.

Some of the variants identified by our analysis also have particular structural features that raise
the question of a possible functional divergence, such as the hinge-less SMC-like proteins found in
Actinobacteria. Further research would be required to confirm whether these variants indeed occupy
a different function than their more ‘canonical’ homologues, and this could happen in a number of
ways. Firstly, breakthroughs in the in silico prediction of protein structure, with AlphaFold2 at the
forefront, have recently been followed by advances in predicting the structure and interaction of
entire complexes of biomolecules (including proteins, RNAs, DNA segments, ligands, etc.) with
AlphaFold3 [Abramson et al. 2024]. In the case of our hinge-less SMC proteins, for instance, this could
be leveraged by testing computationally the assembly of an SMC complex with either one hinge-less
and one regular SMC, or with two hinge-less SMC, as well as the usual accessory proteins. The
interaction of these hinge-less or semi-hinge-less complexes with a DNA molecule could even be

simulated, to predict how, if at all, these could interface with DNA. However, even these in silico
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predictions using the most recent deep-learning algorithms of structural biology would eventually
require testing in vitro and/or in vivo. Lab-grown strains of Actinobacteria could for instance be
injected with a plasmid encoding a hinge-less SMC variant. This would then allow us to test (i) whether
the hinge-less variant is at all expressed in the bacteria, using transcriptomic readings, and (ii) whether
this variant is viable for the bacterial population when the ‘regular’ SMC gene is knocked out. These
hypotheses for experimental testing are of course easier to formulate than to actually carry out, but
they could still one day be implemented if a given environmental variant is of particular interest for a

specific purpose that we (from our bioinformatic standpoint) may not suspect.

2. Gene fusion, gene fission, and the evolution of complex

multicellularity

The second chapter of my thesis is dedicated to the study of gene remodelling processes, in
particular gene fusion and fission. My work on that subject has been built upon knowledge previously
developed at the Lopez & Bapteste lab, in particular by former PhD students Pierre-Alain Jachiet, who
transposed the non-transitive gene homology framework to the level of gene families with
MosaicFinder [Jachiet et al. 2013], and Jananan Pathmanathan, who generalised in CompositeSearch
the detection of composite gene families by implementing a more flexible variation of the non-
transitivity model [Pathmanathan et al. 2018]. | applied this latter method to study gene remodelling
in two eukaryotic lineages that both evolved towards a complex multicellular lifestyle. | also made
methodological contributions to this field, chiefly by developing a polarisation method that allows the
classification of remodelling events detected by CompositeSearch into events of gene fusion and gene

fission.

2.1 - Comparing the role of gene remodelling in the evolution of

animals and brown algae

During my doctoral work, | have been involved in two collaborations that have allowed me to
analyse gene remodelling dynamics in two different branches of Eukaryotes: brown algae, within the
Phaeoexplorer consortium, and animals, with Mary O’Connell’s group at the University of Nottingham.
Although they sit in different places in the eukaryotic tree of life, these two lineages have in common

the fact that they independently evolved complex multicellularity (CMC) from unicellular ancestors.

The emergence of CMC in Eukaryotes is extensively studied across the five main multicellular
groups (animals, land plants, brown algae, and some lineages of fungi and red algae) in which it

emerged, seemingly at least 16 different times in total [Sebé-Pedrés, Degnan, and Ruiz-Trillo 2017].
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Among these five groups, animals and fungi (collectively, opisthokonts) are particularly well studied.
However, the lens through which CMC is investigated is often a functional one: identifying the genetic
toolkit that is associated with multicellularity enables a better understanding of the physiological
changes that preceded the transition to CMC and ensued from it. In fungi, for instance, multicellular
groups are distributed throughout the group’s phylogeny, and transversal studies are performed
across these groups to understand whether fungal CMC stems from a single origin (followed by a
consequent number of losses) or emerged convergently in multiple clades [Nagy, Kovacs, and Krizsan
2018]. In this context, comparing the genetic toolset that is involved in CMC in each multicellular group
could help elucidate the origin/s of this phenotype. In 2022, Ruiz-Trillo and colleagues [Ocafia-Pallarés
et al. 2022] found little support for either hypothesis regarding fungal CMC. However, their broader
analysis of genomic trajectories in Opisthokonta provides, in addition to functional analyses, a
mechanismic perspective into the onset of CMC in animals and fungi. Their results reveal divergent
dynamics of genomic changes in the evolutionary stages before, during and after the emergence of
metazoans and of fungi. In particular, they highlight marked gene gains at the root of Metazoa in
functions associated with multicellularity (transcription, signal transduction, extracellular structures),
and a significant contribution of gene fusions in their genomes, whereas fungi favour gene acquisition
by horizontal transfer. In line with this work, our investigations of gene remodelling in animals and in
brown algae allow us to draw a number of comparisons between the two, specifically about the ways
in which gene fusion and fission events contributed, if at all, to their respective transition to CMC. In
particular, because the single origin of multicellularity in animals and in brown algae is well established
compared to CMC in fungi, we can compare with better clarity the role of gene remodelling before,

during and after the onset of CMC.

Perhaps the most comparable characteristic of remodelled genes in brown algae and animals is
their distinct bias towards similar subsets of functional categories. In animals as well as brown algae,
gene products of fusion and fission events contribute significantly to information processing pathways
(especially translation and signal transduction), as well as functions relevant to cellular and
intercellular structures. Both of these functional classes are relevant to CMC, in particular via the
complexification of regulatory networks, extracellular matrices and cell-cell communication, which
play a role in the diversification of tissue types and the progression of the life cycle. This first
comparison thus suggests that in both animals and brown algae, combinatorial gene processes have
been mobilised preferentially for the development of phenotypic changes that are associated with

multicellularity.
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Another observation concerns the frequency of these events across those lineages, in absolute
numbers as well as in the fusion-fission ratio. In brown algae, we observed that more than 12% of all
gene families were putative composites, compared to only 5% in animal genomes. In both lineages,
gene fusions were more frequent than fissions, but to different extents: in animals, the number of
fusions was triple that of fissions, broadly conforming with estimations from the literature, whereas
brown algal genomes only experienced 40% more fusions than fissions. The genomes of brown algae
are therefore much richer in remodelled genes overall, and are particularly enriched in gene families
created by fission events, a pattern that has previously been observed in fungi [Leonard and Richards
2012]. Metazoans, on the other hand, seem to rely mostly on gene fusions when it comes to
combinatorial evolution, in line with previous estimations of relative rates of fusion and fission across
the tree of life [kKummerfeld and Teichmann 2005]. The increased intron content in genomes of brown
algae compared to other stramenopiles could be a possible explanation for the unusually high rate of
gene fission observed in this lineage, by offering more ‘splitting sites” within genes without affecting

exon sequences.

This apparent difference in affinity for certain types of gene remodelling events is further
attested by the relative retention rates of fused and split gene families in each lineage. In brown algae,
the genetic products of fusion and fission events are retained in extant genomes at comparable rates,
which exceed the retention of non-remodelled gene families. In animals, however, gene fusion
products are preferentially retained compared to non-remodelled genes (predominantly in vertebrate
genomes, which concentrate the bulk of gene remodelling in animals; see below), but split genes
created by fissions are lost significantly more. The preferred mechanisms of genome evolution thus
vary across lineages, with strong biases in favour of gene fusions in animal genomes, as opposed to a

more balanced contribution of fusion and fission in the case of brown algae.

Lastly, the chronology of gene remodelling also follows different patterns in the two lineages
studied here. Most of the remodelled genes that are present in brown algal genomes date back to the
initial emergence and the early evolution of brown algae, with much rarer fusion and fission events in
the subsequent stages of Phaeophyceae diversification. Given the preferential retention of
remodelled gene families in extant algal genomes, this suggests that genetic fusion and fission may
have given rise to a number of new ‘core’ functions in brown algae that participated in the emergence
of this lineage and persist in many algal species to this day. On the other hand, gene gains due to
remodelling events are concentrated at specific points in the animal tree of life, predominantly much
later than the initial evolution of animals, a result in accordance with previous findings [Ocafia-Pallares

et al. 2022]. The extent of gene remodelling also varies significantly from lineage to lineage, with a
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marked tendency of different clades of animals evolving similar remodelled genes convergently. The
combinatorics of genes and gene parts in Metazoans therefore appear highly dynamic — with fusions
in particular contributing to a number of important phenotypic transitions — and generally seem to

have played a more significant part in the diversification of animals than during their early evolution.

In summary, gene remodelling processes have had significant effects on the evolution of both
animals and brown algae, in particular in relation to functions associated with complex multicellular
phenotypes. Although these functions have been affected by gene remodelling in animals and brown
algae at different stages of their respective evolution, in both cases they appear to have participated
in physiological and morphological innovations at key points of these multicellular lineages. However,
it is interesting to note that these contributions have been made via different genomic trajectories.
On the one hand, brown algae have acquired many remodelled genes relevant to CMC at the onset of
their lineage, both by means of gene fusion and gene fission, and these genes have been largely
retained in extant genomes. On the other hand, in the evolution of Metazoa, gene fissions have played
a seemingly negligible role, whereas bursts of gene fusions have induced significant gene gains at
specific key points of the animal tree of life. Of particular note is the repeated evolution of similar
gene fusions at several points in the tree, amounting to 41% of all composite gene families. In an
arborescent, gradualist conception of evolution, convergence in gene sequence can occur under
particular selective constraints but is nonetheless rare, and non-adaptive convergence in particular is
virtually impossible. In a combinatorial framework that takes genetic rearrangements into account,
however, the reinvention of gene forms (e.g. domain architectures) becomes possible via punctuated
events of gene fusion or fission. Indeed, at least 25% of multi-domain proteins®® in Eukaryotes have
emerged convergently [Zmasek and Godzik 2012], and several specific fusions with multiple origins
have also been identified in animals [Cosby et al. 2021]. This repeatability of successful genetic
innovations suggests a highly modular organisation of the gene space, and may raise challenges for
many evolutionary and bioinformatic approaches that rely heavily on assumptions of orthology in

homologous families.

2.2 — Polarising gene remodelling events using Dollo parsimony

In order to improve the descriptive power of remodelling analyses based on CompositeSearch,
| developed a post-treatment method that allows composite gene families to be further classified into
gene fusions and gene fissions. It relies on the simple idea that if extant composite and component

gene families can be traced back to their ancestral node of origin in the tree of life, then we can

18 And therefore 20% of all eukaryotic proteins, since 80% of them are multi-domain proteins.
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compare the relative positions of these origin nodes to polarise the remodelling event: if the
composite is older than its components, then it most likely has undergone a fission event giving rise
to the later components, and conversely if the components predate the composite, then that
composite must have been created by fusion of the components. This heuristic has the advantage of
being easy to implement, as well as computationally efficient, and was able to classify most of the
composite families in the two datasets we applied it to. Still, it has a number of conceptual or practical
shortcomings that could be addressed to make it applicable to a broader range of studies and improve

the reliability of its outputs.

First, this method relies heavily on the phylogeny of species present in the dataset to infer the
phylogenetic origin of each gene family. In other words, it must make the assumption that the lineage
being studied evolves in a strong ‘tree-like’ manner, i.e. that the effects of introgressive processes on
its evolution are negligible. This is acceptable for most eukaryotic lineages, and in particular
multicellular ones, but it may be more questionable when trying to study gene remodelling in
prokaryotes or viruses, among which the dominance of horizontal gene transfer brings the evolution
model closer to a network than a phylogenetic tree. In these ‘non-tree-like’ lineages, understanding
the dynamics of gene fusion and fission would require alternative methods that also take lateral gene
flow into account. If permitted by future methodological developments, studying the coordinated
effects of horizontal transfer and gene remodelling in Bacteria and Archaea could lead to some
fascinating insights into their evolution. During my doctoral studies, | actually attempted something
similar by trying to identify chimeric fusions in the organelles of photosynthetic eukaryotes that would
unite genetic material from both mitochondrial and chloroplastic genomes. However, the
methodological hurdle of reconciling the phylogenies of eukaryotes, mitochondria and chloroplasts
(which have been acquired in several lineages by endosymbiosis of another photosynthetic eukaryote,
and therefore have a phylogeny that is incongruent with that of their hosts) prevented us from

producing conclusive results within the time constraints of my doctoral studies.

The resolution of our polarisation method also benefits from well-balanced phylogenetic trees,
stemming from a relatively uniform sampling of the diversity of species within the lineage studied.
This allows for more accurate estimations of the points of emergence for gene families, as well as less
biased comparisons between different groups of the species tree. For instance, in the animal tree of
life that we used in our study, only three branches correspond to non-bilaterians, as opposed to sixty
bilaterians, meaning that little insight can be confidently gained about combinatorial evolution in
those basal animal groups. This does not invalidate the results that are identified in other parts of the

species phylogeny, but it should be borne in mind when comparing the dynamics of gene remodelling
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between different clades, e.g. that have the same taxonomic rank or that emerged around the same

point in time.

Another aspect to keep in mind regarding our approach is that it can only characterise the
remodelling events within the studied lineage and cannot identify ancestral remodelled genes that
emerged prior to the last common ancestor of the species set. This explains why, in both studies for
which we applied this polarisation, outgroup species (other Stramenopiles in the case of brown algae;
choanoflagellate Monosiga brevicollis for animals) were included: their presence allows to separate
gene families that appeared in the animal, or brown algal, ancestor from those that are more ancient.
Ancestrally remodelled genes cannot be detected beyond the root of the species phylogeny, and
therefore their fate in more modern branches cannot be studied: are they just as conserved as new
remodelled genes in extant genomes, have they become obsolete and therefore largely lost, or
perhaps replaced by other, newer ones? These questions concerning gene turnover could be relevant
to clarify the broader dynamics of gene remodelling and would be permitted by the inclusion of

genomic data from more outgroup species.

Lastly, the Dollo parsimony model that is used to decide the emergence points of gene families
is perhaps a little simplistic and is sensitive to the way gene families are defined in the genomic
dataset. One particular weakness is that it does not account for the fact that remodelled genes may
replace their ancestral forms, rather than exist in tandem with them. For instance, in a species where
two adjacent single-copy genes A and B become fused following the disappearance of their separating
intergenic region (and therefore A and B are not encoded as separate genes anymore), then the gene
families A and B will be considered absent from that species. Since the nodes of origin of gene families
are inferred according to their presence/absence data in extant genomes, this can alter the outcome
of that inference, and consequently the polarisation of remodelling events. In fact, a majority of
remodelling events can be affected by this: indeed, in animal genomes, we found that in 82% of all
remodelling events, the contributing genes (i.e. the composite parent in the case of a gene fission, and
the component parents for a fusion) were lost and only the remodelled products remained in extant
genomes. The method’s accuracy in inferring the origination of each gene family could therefore be
improved by taking this phenomenon into account, for instance in cases where counting the
presence/absence of components and composites together resolves the paraphyly or polyphyly of
some families. Furthermore, in some lineages, genetic rearrangement may be highly dynamic, and it
is possible that some remodelling events may be subsequently reverted, e.g. a fused gene undergoing
fission and returning to a split form. We tried to address some of those cases when we detected

composite families that had an older component but also a more recent one — we then ascribed this
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pattern to a fusion followed by a subsequent fission. However, other phyletic patterns can arise from
cases of consecutive remodelling events, and refining the parsimony model to allow for some reversals

to ancestral states may lead to a finer understanding of these combinatorial genetic dynamics.

3. Using similarity networks to map out the genetic space

The most frequent angle from which the evolutionary relationships between genes are
established, represented and analysed is the arborescent model of phylogeny. The phylogenetic tree
of a gene family, for instance, simultaneously depicts its diversity and its evolutionary history, in a
simple representation that proposes an unambiguous reconstitution of the events that led to the
family’s contemporary state. It also provides a full hierarchy of the proximity between pairs of
sequences, which allows us to adjust the granularity of the model by sorting sequences into coherent
groups, all while preserving the hierarchical information between these groups. However, some
evolutionary processes are best described by other models than purely arborescent ones, typically
when they involve other motifs than evolutionary ‘forks” where one ancestor gives rise to two or more
offspring [Haggerty et al. 2014]. Such processes exist at the scale of genes (e.g. recombination,
horizontal gene transfer), of organisms (e.g. endosymbiosis, hybridisation) and of populations (e.g.

admixture).

Over the course of this thesis, the main approaches that we have adopted to model gene
families and study their evolution have been through the lens of networks of interconnections, and in
particular sequence similarity networks. This representation contrasts with phylogenies in its
conception of relationships between sequences: whereas phylogenetic trees are strongly hierarchical,
networks are much more horizontal and include information on the proximity of any two sequences.
This is not a fundamentally better or a worse model than the arborescent one, nor is it meant to
replace it. Rather, networks offer a complementary viewpoint to phylogenies: the former view focuses
on the overall structure of the gene space at a given instant, without painting a clear picture of the
underlying evolutionary trajectory, whereas the latter view proposes the opposite. Indeed, readers of
this thesis will have probably noticed the frequent use of phylogenies as a complement to network
analyses. When we detected clusters of divergent environmental variants in SSNs of conserved
microbial families, we relied on phylogenetic trees to understand their contribution to the diversity of
said families; likewise, when we identified putative remodelling events in SSNs from algal and animal
genomes, their classification into fusions or fissions was guided by the phylogeny of the species

present in the dataset.
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In our specific case, the choice of sequence similarity networks as a framework allows us to
overcome some limitations of the classic tree-like approach to map out the diversity of the global
genetic space. In particular, we described remote homology relationships that can escape detection
by canonical homology search methods and impede the reconstruction of multiple-sequence
alignments that most phylogenetic trees are based upon. We also characterised processes of
combinatorial, non-linear evolution that are also overlooked by these techniques, and that are
intrinsically incompatible with the arborescent representation of gene family evolution. Our use of
network-based methods to alleviate some shortcomings of more canonical approaches, themselves
complemented by some tree-based analyses when necessary, illustrates the benefits of a conceptual
and methodological pluralism to understand the diversity of genes, organisms and evolutionary

mechanisms in their globality.
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Introduction

Detecting remote homology between related sequences is a challenging bioinformatic task. Esta-
blished sequence similarity detection tools (such as the classical BLAST, but also more recent tools
like DIAMOND, or MMSEQ2) display a good behaviour above a percentage of identity around
25% to 30% (the so-called “twilight zone”), below which the signal is overwhelmed by spurious
similarities, in such a way that it becomes impossible to tell weak bona fide similarities from others
that contain a small more highly conserved region.

Avoiding this problem can be tackled by repeatedly applying the similarity detection tool to the
newly detected homologous sequences. In this way, the signal is propagated (as along a transitive
closure), and a certain amount of similarity can be expected to hold.

The main existing tool for such a task is the software PSI-BLAST [Altschul et al., 1997], which
iteratively updates a position-site-specific matrix (PSSM), and uses it to detect sequences having a
weaker similarity with the initial sequence. However, the performance (especially the time requires)
of PSI-BLAST is a limit to its use for very large datasets, typically for the search of divergent
homologs in metagenomic data.

In this paper, we propose an iterative sequence similarity detection tool that runs around 10 to
50 times faster than PSI-BLAST, while retaining a comparable level of sensitivity.

1 Material and Methods

The SHIFT software suite presented here is based on an iterative sequence similarity detection
procedure, that uses fast and reliable programs to detect pairwise similarities, and repeatedly applies
it to a set of extended sequences.

Detecting remote similarities by iteration can be marred by two kinds of problems : if we restrict
the search to similar regions, the resulting similarity can rapidly “shrink” along with the iterations,
and ends up in a strong but very narrow signal (a pervasive domain, like a Zn-finger for instance).
On the contrary, if we extend the search and add up the previous regions found, the detected
similarities can grow laterally in a “staircase-like” fashion, resulting in a complete lack of homology
between the start and end sequences (Figure 2).

In designing SHIFT, we have tried to avoid both pitfalls, by including only similarities spanning
a sufficient reciprocal cover (typically above 80%), for all retained sequences i.e. not only the direct
similarities, but also the indirectly inferred ones.
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FIGURE 1 — Coverage criterion : an alignment (displaying over 30% of identity) A-B (in blue) is
retained if it moreover covers at least 80% of both sequences.

~

(a) “Finger” effect : strong but narrow (b) “Staircase” effect : no similarity
signal detected. between reference and final target
sequences.

FIGURE 2 — Schematic representation of the possible pitfalls of the iterative alignment
scheme.

1.1 Algorithm
1.1.1 General principle

Consider a reference input set Q of finite query protein or DNA sequences. The dataset of search
sequences & (typically consisting of a very large number of sequences), is queried using an existing
established tool (in our case, we implemented BLAST, DIAMOND and MMSEQ?2). Both sets of
sequences are updated at each round of the similarity detection algorithm.

Current input sequences are screened against the current search dataset. Sequences in the search
dataset are retained if three simultancous criteria are met with respect to some previously found
sequence.

S : a sequence similarity of over 30% is detected between both sequences,
C : the reported sequence similarity covers at least 80% of each sequence,
T : the coverage condition can be traced back to the reference set (transitivity condition).

The retained sequences & are added to the query set and removed from the search set. In this
way, no similarities are searched for between sequences retained at a given round of the algorithm.
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L A

FI1GURE 3 — Coverage criterion 2 : the intersection over B of the alignments A-B and B-C
is projected back on A and C. The restriction gives an implied indirect alignment A-C. If
coverage is sufficient for all three alignments, alignment is retained as a path A-B-C.

. / I
. \ ) \
i / . /

(a) C-D passes the transitivity criterion : (b) Transitive coverage is not sufficient : D’ is
sequence D is retained, and the path A-B-C is discarded.
extended to D.

Fi1cURrE 4 — Coverage criterion 3 : Iterative step — a new alignment is added.

The search is repeated from the new query set Q U & to the new search set 6\@, until no more
new sequences are found.

The first round is an ordinary BLAST-like search : we filter the output with criteria C and S,
keep the selected sequences as our new query set Q, and remove them from the search space &.

In the next rounds, in order to avoid both pitfalls described in the introduction, we ask that
the similarity extends over at least the chosen cover percentage for all sequences. Alignments in the
next rounds are therefore kept if moreover all the implied alignments satisfy the coverage criterion
(criterion T). In this way we expect to find similarities that go below the threshold of 30%, while
corresponding to actual homologies.

1.1.2 Description of the algorithm

We can model the algorithm with a similarity graph G = (V, E), with V = Q U &, and where
an edge is drawn between two sequences s and s’ if the criteria C and S are directly fulfilled. Our
criterion can be formulated as the existence of a path s, s1,..., s, from a reference sequence sg to
Sn, such that
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Iteration 4 ® %) Iteration 4 ® o)
Iteration 3 e ) Iteration 3 ° °
lteration;2 L] ] Iteration 2 ® °
Iteration 1 ® ® lteration 1 o o
Reference
Reference
(a) Red arrows denote matches that do not pass (b) A green terminal vertex is accepted if there
the transitive criterion for any path reaching exists an admissible path (in green). There can
their source vertex. be several admissible paths ending at the same
vertex.
FIGURE 5 — Iterations in the similarity graph : starting from a reference sequence (in dark
green), with the target set consisting of blue vertices, arrows denote a match satisfying
criteria S and C. Green vertices are retained by the algorithm, while red ones are found but
not retained. Green terminal vertices correspond to accepted distant homologs that do not
return significant matches with the remainder of the search space.

— (84, 8i+1) is an edge

— the implied alignment of any pair of sequences s; and s; in the path satisfies criterion C.
In a more inductive fashion, assume that s is an accepted sequence. A further match from s to s’
will lead to accepting sequence s’ if (s, s’) extends at least one path ending in s (see Figure 5).

Segments and matches. The notions used here are pretty straightforward when only ungapped
alignments are considered. However, these definitions can become rather involved when using gapped
alignments. We will therefore start with the ungapped case, while being at the same time slightly
more formal than necessary to allow for a precise description of the general case.

A segment S = (s,b,e) in a sequence s, of length |s|, is the collection of consecutive positions
from b to e in sequence s, where 1 < b < e < |s]. The length £(S) of a segment S = (s,b,¢e) is
naturally defined as £(S) = ¢ — b+ 1. Two segments S = (s,b,¢) and S = (s,b,€) of the same
sequence intersect as

GG (st er)ifb? " max(b, b) < min(e, &) <" e*
f otherwise.

A match is a pairwise alignment between two sequences. More precisely, it is a pair M = (S, T, )
of segments S = (s,b,e) and T = (¢, 3, €), together with a totally ordered subset p of pairs of distinct
matching positions in s and ¢, starting with the pair (b, 5) and ending with (e, €). Sequence s is the
source o(M) and t the target 7(M) of the match M. If the pairwise alignment is ungapped, this set
of matching positions will be omitted, since it is simply the set of (pairs of) consecutive positions.
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In general however, the segments only have the same length when gaps are included. The actual
position of the gaps is determined by the pairwise alignment software, but is essentially irrelevant
for the present discussion (Figure 7).

~

Definition 1. Let u be a totally ordered set of pairs of distinct positions in sequences s
and ¢

w=A{((s,p1), (&, q1)), - -, ((s,p2), (£, qe))} withpy <.+ <pgand g <--- <qe.
1. The sets of matching positions on s and t are defined as
w(s) ={(s,p1),...,(s,pe)} and pu(t) = {(t,q1),.--, (¢, qe)} -
2. The match induced by p is defined as
E(p) = (S, T, u) where S = (s,p1,p¢) and T = (t,q1,qe)-

We say that S = ji(s) and T = pu(¢) are the segments induced by p on s and ¢.

Consistently with the accepted usage, the complete segments S and T" are deemed to be aligned,
although indels themselves are by definition not aligned with anything, However, flanking indels
should not be included.

We need to be a little careful when restricting gapped alignments to a given segment. Distin-
guishing between matching and non-matching positions, we say that the segment I = (s,4,7) in
sequence s restricts a match M to M~ 1 = (S*,T*, u*), where the pair of segments S* = (s, b*, e*)
and T* = (t,8*,e*) are defined as follows (see Figure 6) :

e (* is the position in ¢ that matches the leftmost matching position b* in s to the right of b and 1,
e c* is the position in ¢ that matches the rightmost matching position e* in s to the left of e and j.

The set of matching positions p* is defined as the matching positions that are included in the
restriction. The resulting match M n I does not start or end with gaps, as required. The same
definition holds for the restriction of M to a segment J from sequence t.

6 718 | 9 |10 11 | 12 13 | 14 | 15 | 16 | 17 | 18
t| A - - -|lA|A| M| S| G|R - - - T | H|R|A|D|H
s| S S| K| G| - -|IN|H|G|E|Y|V]|G]|R - - V|D|H

26 | 27 | 28 | 29 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 38 | 39 | 40

FIGURE 6 — Restriction to the interval I = (s,27,38) of the match M = (S,T, 1) where
S = (s,26,40) and T = (t, 6, 18). The leftmost matching position on s to the right of b = 27
is b* = 30 and so we get 5* = 9. Similarly, we have e* = 38 and thus ¢* = 16. The restricted
match M n [ is in blue, as flanking indels have been excluded.

Admissible paths and stacks of alignments. A path in the similarity graph (Figure 5) cor-
responds to a sequence of consecutive alignments (or stack) M = (My, Mq,...,M,) such that

t
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26 40
FIGURE 7 — Abstraction of the pairwise alignment from Figure 6. Dots represent positions
in sequences s, t, and edges connecting them, the matching set u. Gaps are implicitly repre-
sented by missing edges. Red dots correspond to matching positions in the sequences. Blue
dots correspond to unaligned positions that are included in the aligned segments S = ji(s)
and T = fu(t), and gray dots are unaligned positions outside the segments.

o(M;1) = 7(M;), i.e. the target of any match is equal to the source of the next (without passing
twice on the same sequence). We first investigate when a fixed stack corresponds to an admissible
path in the similarity graph.

Putting s; = o(M;) and sp+1 = 7(M,,), the support G(M) of the stack M is the ordered

collection of sequences (sg, ..., S,+1) aligned by M. It is convenient to introduce another graph to
model the stack.

Definition 2. Let M = (My,...,M,) be a stack of alignments, where M; = (S;,T;, u;).
The set of sites in the support G(M) of M is defined as

s=g
/

B(M) = {(s,p) € (M) x N| 1 < p < |s|} partially ordered by (s,p) < (s',p) = {p <

The alignment graph G pq of the stack M is Gy = (E(M), U”L>

In short, we define an edge for every pair of matching sites in p;, and consider the graph G
defined by these edges. Stacks have a particularly simple structure.

Lemma 1. Let M be a stack, and let G4 be its alignment graph. Let "'y be the set of paths in
G r. We say that such a path is complete if it extends from the first to the last sequence of the
stack.

1. For every pair of sites 0,0’ in X(M), there exists at most one path v € I’y relating them in
G m.

2. The ordering < in (M) induces a partial ordering on the set of connected components of
G pm defined by

v <+ <= (0 <o for any pair of comparable sites o € v and o’ € ).

The ordering < is total on the set of complete paths of G o4.
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Although we prove this statement, it should be clear from Figure 8.

Démonstration. With the notations of definition 2, by construction, all edges in G have the form
((84,D), (8i+1,p")) with 0 < i < n, and every vertex has degree at most 2. If there are two paths
ending at o’ = (s;41,p") the last edge of each path connects o’ with the same site (s;,p), hence the
last edges are equal. By induction, both paths are equal.

Additionally, if e = ((s;,p), (si+1,2)) and € = ((s4,9), (si=1,4')), then (p,q) and (p',q’) are
in the same order. Therefore, we can prove the second statement by induction on n. We identify
connected components in G with maximal paths in I'yq. The case n = 0 is the definition of a
pairwise alignment M = (S, T, i), for the set of paths is then equal to the set of matching positions
1, which is totally ordered. Assume that the result has been proved for all sequences of n alignments,
and let M = (Mo, ..., M,, M,1). Let M = (M, ..., M,) and define the restriction 7 of v € I' a4
to M in the obvious way. The path ~ is either equal to its restriction 7, or is the extension of 5 by
an edge (0p,0n11). Let 7,7 < T'pq, such that v < 4/ and 4/ < 7. By definition of the transitive
closure, there exist paths y; and J; such that

y<n < <y <Y andy <5 < <5 <y

such that two consecutive paths have non-empty support intersection. The restrictions of these
relations to M and the induction hypothesis imply that 5 = 5. Therefore, cither 4 and ~ are
maximal, and there is nothing to prove, or they are both extended by an edge. Assume that
(On,0nt1) and (o;,,07,,1) be the extensions of 4 and 4. The set of edges pi,, being totally ordered,
we have then o, = o/,, and therefore v = +'. O

Lemma 1 means that a stack M defines a combinatorial (or topological) multiple sequence
alignment [Corel et al., 2010] of the sequences sg, . . ., Sp4+1 : every connected component is a column
(completed with gaps if needed), and every topological sorting of these connected components give
rise to an MSA in its familiar matrix form. Therefore, we refer to complete paths in I'yq as anchor
points for M.

Definition 3. Let M be a stack of alignments, and let G4 be the alignment graph of M.
1. Two sites o = (s,p) and ¢’ = (t,q) in X(M) are implicitly aligned by M if there exists
a path relating them in G .
2. For two sequences s,t € &(M), the alignment of s and t implied by M is the match
E(ps,t) where s ¢ is the set of pairs of sites in s, ¢ implicitly aligned by M.
3. Let s € G(M). Let S = [is (s) be the segment induced on s by E(us,+). We define the

core segment on s as Ky(s) = ﬂ St
teS (M)

. J

Lemma 2. Let M be a stack. For every match M in M, between the sequences s and t, the
restrictions M n Kq(s) and M n K (t) coincide.

Definition 4. Let M = (M, ..., M,) be a stack with support S(M) = (so, ..., Sp+1). The
core of the stack M is the stack of alignments K (M) obtained by restricting all matches in
M to the core segments K (sx) for 0 < k <n+ 1.
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S

4 > S4
S.

3 b I I 33
So > Sp

54 > Sy

(a) Ungapped case : restrictions of implied (b) Gapped case : core is equivalently defined as
alignments have all the same length. the convex hull of leftmost and rightmost
complete paths.

FIGURE 8 — Representation of the alignment graph of a stack. The core of the stack (in
shaded brown) is defined by the restriction of all implied alignments. Blue dots are aligned
positions in sequences s1, ..., S4. Red edges indicate complete paths.

The core of a stack can be empty. The key property of the core is that, for every sequence in the
support, all the implied alignments coincide on the same segment. In particular, the core K (M)
can be written as

K(M) = (My,...,M,) where M; = (S;, Si+1, 4i)-

This notion is simple enough when considering only ungapped alignments (see Figure 8, left).
However, its definition becomes straightforward in the gapped case only with the introduction of
the alignment graph (as shown in Figure 8, right). The main result of this section is the following.

Proposition 1. The core K(M) of a stack of alignments M is equal to the convex hull of all
complete paths in the graph G .

Representing the stack M as an MSA, the core represents the restriction of the alignment to
the region limited by the rightmost and leftmost anchor points of M. We are now ready to define
when a stack corresponds to an admissible path.

Definition 5. Let M be a stack of alignments with support &(M) = (sg,...,Sn+1), and
non-empty core K(M) = (My,...,M,), where M; = (S;,S;+1,1i). The coverage of the
stack is defined as the coverage of its core

k(M) = min (K(S”) .

o<isntl \ s

A stack is admissible at threshold T if k(M) = 7.

A stack of alignments corresponds to an admissible path if its core has a coverage of at least
0.8. In the ungapped case, all segments of the core have the same length, say ¢, and the criterion
becomes simply

M admissible <= ¢ > 0.8 max |s;]. (1)
0<isn+1
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S5

S4

(a) Edges from p are added to the alignment (b) Complete paths from s; to s5 define the
graph. core of the extended stack.

FIGURE 9 — Core of the extension of a stack : a match (S, T, 1) between s4 and s5 is added to
the stack of alignments. The resulting core (in shaded brown) extends over more sequences
but covers less positions per sequence. Unaligned positions are not shown for clarity.

Extensions of stacks — Transitive criterion. With the result stated in proposition 1, it be-
comes obvious how to define the extension of a stack, and its core. Let M be a stack of alignments
ending with sequence s, with core K(M) and alignment graph G x. The core K of the stack M
obtained by adding the match M = (S, T, u) on sequences s, ¢ is obtained by extending the paths in
G am by the edges given by p, and taking the convex hull of the extended anchor points (Figure 9).
Note that this “topological” setting circumvents the problem of the apparent alignment of positions
that one faces usually when adding a row to an MSA in matrix form.

A glance at Figure 9 might suggest that our method is actually prone to the “finger” effect,
since the core of an extended stack can only shrink in coverage. The short answer to this remark is
that, from sequence s obtained at a given round, we can extend any of the admissible paths that
end in s (Figure 5).

It seems that we have therefore to keep in memory all these paths, i.e all stacks of alignments
from the reference set to all currently found sequences, which potentially leads to a combinatorial
explosion, and huge memory requirements. In this section, we show how to ensure the existence
of an admissible path extension, say from s to t, without having to store all admissible paths
from the reference set to s. Once again, the answer is easy to state using the alignment graph
formalism. Indeed, we can sum up a stack M ending on a sequence s by the set of positions in s
that are terminal vertices of complete paths in G o¢. The computation of an extension becomes then
essentially trivial, since it consists simply in checking which edges of the extension are incident to
terminal vertices (Figure 10).

In the ungapped case, the computation of the coverage of an extended stack is also very casy.
Indeed, reducing the segment on the last sequence by one also reduces the span of the whole core
by one. As a consequence, we have the following criterion.

Lemma 3. Let M be a stack of ungapped pairwise alignments ending on sequence s. The core
K (M) of the stack can be summed up as the pair p(M) = (K(s), m) where m = max,esm) [t]-
Let M = (S,T) be a match from s to t ¢ (M), and let Kpyq(s) n M = (S*,T*). The match M
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(a) Red vertices in s4 denote terminal vertices (b) Added edges from s4 to s5 allow to define
of complete paths ending on s4. terminal vertices of the extended stack.

FicURE 10 — Stack extension as its trace on the last sequence, shown on the example of
Figure 9.

extends M to an admissible stack M if and only if £(7%*) > 0.8 maxXes(M)yoft) |5 We have then
p(M) = (T*,m) where 1m = max(m, [t]).

In the gapped case, however, a minimal reduction of the coverage in the last sequence can imply
a large one somewhere along the core. In principle, we should therefore keep track of the implied core
coverage for all pairs of terminal vertices, resulting in a quadratic additional memory requirement.

s ~

Definition 6. Let M be a stack ending with sequence s. Let Aprq(s) be the set of M-anchor
positions, i.e of endings of anchor points for M. For any o, 7 € Ax(s), define the restriction
M{s,-1 of M to the interval [o, 7] as the convex hull of the anchor points ending in o and
7. We define the set of M-admissible extensions of 0 € Ap(s) as

Emlo) = {r e Apm(s)| K (M[o,r7) = 0.8}.

The set of admissible extensions of o € ¥(s) is defined as £(o) = U Emlo).
M| oeAr(s)

. J

In other terms, for a given sequence s, we label as admissible extensions of an anchor position
o € X(s) all sites 7 in s such that

— there exists a stack M ending in s for which 7 is an anchor position

— the cover of the restriction of M to the interval [o, 7] is at least 0.8.

We say that a match M is admissible if it extends at least one stack M as an admissible stack.

Lemma 4. Let M = (S,7,u) be a match from sequences s to t. Let o be the leftmost anchor
position of s aligned by M, i.e there exists a stack M ending on s such that o = min u(s) N Aa(s).
Let 7 € X(¢) be the position in ¢ aligned by p, i.e such that (o, 7) € u. The match M is admissible if

1. the segment u(s) aligned by M contains at least one admissible extension of o,

2. there exists o’ € u(s) n E(o) such that the position 7/ € 3(t) aligned by u satisfies 7/ —7+1 >
0.8¢].

The set of such positions is the updated set of admissible extensions £(7) of 7 € X(¢).

In the gapped case, we sum up all admissible stacks ending in s as the association (¢, E(0)) of an
anchor position for some admissible stack to the set of all admissible extensions for all admissible
stacks, the previous result showing how to update these definitions when accepting a new alignment.

10
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Implementation details. The theoretical quadratic complexity involved by the definition of an
admissible extension can be reduced by further considerations. A position o = (s, p) is said to be
indtial when p < 0.2 |s| + 1 and final when p > 0.8]s|. An anchor position has admissible extensions
only when it is initial, and the admissible extensions are final positions. Therefore, the quadratic
term can tempered by at least a 0.04 multiplicative coefficient.

On the other hand, the higher the number of stacks, the denser the sets of admissible extensions.
Since a set of consecutive positions can be stored as a segment (and not as a set of distinct positions),
we can expect that a simpler data structure can sometimes store the sets of admissible extensions
E(o).

A trade-off is then likely to happen between the sparseness of extensions (resulting in a smaller
quadratic coeflicient), and the simplification of the description of the admissible extensions.

However, in most of the cases, the balance is unfavourable for the time performance of the exact
algorithm. We therefore investigate the following heuristic, which extends to the gapped case the
criterion for the ungapped one : namely, we accept a match M = (S, T, u) as an extension of a stack
M only when it is possible to predict exactly the coverage reduction of the core K, due to the
intersection with M.
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Chapter VII. Résumé francais

Note préalable : sauf indication contraire, les références faites a des figures dans ce résumé se
rapportent aux figures du corps de texte principal. Le lecteur est donc invité a se référer a la Table des

figures, présente en début de manuscrit, pour retrouver facilement les figures mentionnées ci-apres.

Introduction

La démarche scientifique, en particulier en ce qui concerne les sciences de la nature, peut étre
considérée comme |‘'union deux grands « archétypes » de pratiques. D’'un cOté, I'approche
expérimentale consiste a élaborer et réaliser des expériences controlées, dans le but de valider (ou de
réfuter) certaines hypothéses, ou bien de mesurer certaines grandeurs. Citons a titre d’exemple un
essai clinique, visant a démontrer I'efficacité supposée d’un traitement contre une pathologie donnée.
A l'inverse, la démarche historique a pour objectif d’inférer des événements passés afin d’expliquer
un état actuel du systeme étudié. Ainsi, en cosmologie, I'observation du fond diffus cosmologique et
I’abondance des éléments légers ont permis d’établir le Big Bang comme origine la plus probable de
I'univers. De méme, en biologie de I’évolution, notre objectif général est d’inférer des évenements et
relations évolutives entre la diversité des organismes contemporains, notamment en s’appuyant sur
I’observation et la comparaison de caractéres communs, homologues, entre différentes lignées. Avant
d’explorer plus en profondeur cette notion d’homologie, notons tout de méme que les deux
archétypes présentés ci-dessus sont loin d’étre incompatibles, et que de nombreuses disciplines (y
compris la biologie de I’évolution) se basent conjointement sur des connaissances expérimentales et

historiques pour étayer leurs cadres d’étude.

Si le terme « homologie », dans sa signification biologique, ne remonte qu’au XIXéme siecle, la
notion en elle-méme est en revanche plus ancienne. Le naturaliste Pierre Belon met ainsi en évidence
des le milieu du XVIeme siecle des similarités structurelles entre les squelettes d’humains et d’oiseaux,
obéissant au méme plan d’organisation. C’'est I'anatomiste anglais Richard Owen qui, en 1843, utilise
pour la premiere fois le terme d’homologie, décrivant I'existence de « mémes organes dans des
animaux différents » selon des similarités de position, de composition et de développement. La notion
d’homologie s’oppose a celle d’analogie, qui désigne des caractéres semblables (de par leur forme ou
leur fonction) ne satisfaisant pas ces trois critéres. Dans L’Origine des espéces, publié pour la premiére
fois en 1859, Charles Darwin apporte une coloration évolutive au concept d’homologie, expliquant

que les similarités entre caractéres homologues découlent d’une ascendance a un ancétre commun
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chez qui le caractere est apparu. Si, a I'époque de Darwin, cette définition de ’lhomologie s’adressait
avant tout a des comparaisons morphologiques, elle peut tout a fait étre étendue pour qualifier
d’autres traits héréditaires ayant une origine commune. Des génes descendant d’'un méme ancétre
peuvent ainsi étre dits homologues, et la reconstruction de familles d’homologie (c’est-a-dire de
groupes de génes descendant tous du méme gene ancestral) est I'un des principes d’organisation

majeurs de I'espace de séquences génétiques.

La dimension évolutive apportée a la notion d’homologie par Darwin a deux conséquences
importantes pour I'étude des relations d’homologie entre genes. La premiere est qu’elle établit
I’'homologie comme une relation binaire (ou plutot, en termes de logique formelle, booléenne) : soit
deux genes sont homologues, s’ils partagent un ancétre commun, soit ils ne le sont pas, dans le cas
contraire. Cela implique en particulier que I'espace des séquences génétiques est partitionné en
familles d’homologie au sein desquelles tous les genes sont homologues entre eux, et a aucun autre
géne dans d’autres familles. La seconde est que ’lhomologie devient une relation non plus empirique
mais historique (au sens défini plus tot), qui ne peut donc qu’étre inférée sur la base d’observations

des génes contemporains®®.

L'établissement d’un lien d’homologie entre deux geénes passe le plus souvent par la
comparaison de leurs séquences, en construisant un alignement : de la méme maniére que I'on peut
faire correspondre les os du bras d’un humain et ceux de I'aile d’un oiseau pour illustrer leur similarité
morphologique, on fait correspondre les positions de chaque séquence avec celles de I'autre pour
mettre en lumiere leur similarité (Figure 4). Une similarité « excessive » entre séquences — sous-
entendu, par rapport a la similarité que I'on s’attend a trouver entre deux séquences choisies au
hasard —sert alors de base pour inférer une relation d’homologie entre les génes considérés. Cet exces
de similarité se mesure par différentes métriques, notamment la E-value associée a I'alignement, qui
guantifie le nombre d’alignements d’une qualité égale ou supérieure qui apparaitraient entre deux
séquences aléatoires de cette taille, ainsi que le pourcentage d’identité entre les positions alignées et
la couverture de I'alignement sur chacune des séquences (Figure 6). Dans le cadre standard de
I’'homologie, qui repose sur des comparaisons directes entre séquences génétiques, on ne considere

donc que les paires de séquences qui s’alignent entre elles, avec une similarité prononcée, et ce

19 En réalité, pas exclusivement: le séquencage de fragments dADN ancien (aDNA), préservés par des
processus de congélation ou de momification naturelle ou artificielle, permet également d’obtenir des
informations évolutives. Cependant, la dégradation progressive de I'ADN complique fortement
I'exploitation d’échantillons au-dela de quelques millions d’années, faisant de 1I'aDNA un outil
principalement adapté a I'étude d’une histoire évolutive relativement récente.

234



(puisque les genes sont soit homologues, soit non) le long d’une région recouvrant la majeure partie

de leur longueur.

Si ce cadre opérationnel permet de révéler et de qualifier un trés grand nombre de relations
évolutives, il présente toutefois quelques angles morts par rapport a l'ensemble des liens
d’ascendance pouvant exister au sein de I’espace génétique dans son ensemble. Au cours de ma these,
je me suis intéressé spécifiqguement a deux de ces liens d’ascendance qui échappent au modele
canonique de I’homologie, et j'ai développé de nouvelles méthodes d’analyse basées sur les réseaux

de similarité de séquences pour étudier ces relations (Figure 16).

Le premier de ces angles morts concerne I'existence de liens d’homologie plus distante que celle
usuellement décrite par les alignements de séquences. En effet, deux génes peuvent tout a fait étre
homologues sans pour autant présenter suffisamment de similarité pour gu’un alignement soit
construit entre eux. Cela s’explique, au moins partiellement, par des limitations techniques que
rencontrent les algorithmes d’alignement lorsqu’il s’agit de comparer des séquences présentant un
faible niveau de similarité (typiquement, dans le cas de BLAST, sous la barre des 30% d’identité entre
séquences protéiques). En raison de cet effet, appelé « twilight zone » de I'alighement de séquences,
les liens d’homologie qui résultent en des similarités faibles ne sont pas détectés, et sont donc
rarement considérés. Cette homologie distante peut notamment se produire lorsqu’une lignée
spécifique d’'une famille de génes diverge d’une maniére accélérée, en accumulant un nombre accru
de mutations qui érode progressivement sa similarité avec d’autres lignées jusqu’a passer sous le seuil

de détectabilité des aligneurs de séquences.

Le second probléme du cadre standard de ’lhomologie réside, plus fondamentalement, dans la
maniere dont on définit celle-ci. En effet, nous avons jusque la parlé exclusivement de familles de
génes discretes, déconnectées les unes des autres; cependant, des mécanismes combinatoires
entrent aussi en jeu dans I’évolution des génes. Dans le cas d’une fusion de genes, par exemple, I'union
d’un géne A et d’un gene B pour former le gene AB produit des motifs de similarité incompatibles avec
cette vision discrete des familles de genes: AB est similaire a A sur une partie de sa séquence
seulement, et similaire a B sur une autre. Il n"apparait donc pas tout a fait correct de dire qu’AB est
homologue a A et/ou a B, mais il n’est pas non plus satisfaisant de dire qu’ils ne sont pas homologues
du tout. De tels processus d’évolution des genes sont donc incompatibles avec la définition de
I’'homologie comme une relation strictement binaire, et font apparaitre en filigrane I'idée que tous les
mécanismes de I'évolution n’adhérent pas nécessairement au modele de I'arborescence pour les

illustrer.
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Pour étudier les relations entre genes dans leur ensemble, d’autres modeéles que ceux basés sur
les arbres phylogénétiques peuvent donc parfois étre préférables (ou au moins complémentaires).
Pendant ma thése en particulier, les méthodes que j’ai développées et appliquées s’appuient sur les
réseaux de similarité de séquences (SSN en anglais). Dans un tel réseau, chaque séquence est
représentée par un noeud, et deux séquences sont connectées par une aréte lorsqu’elles présentent
une similarité excédant un seuil prédéfini. L’avantage de ces réseaux est que certaines relations
évolutives particulieres produisent dans le réseau des patrons d’interconnexion distinctifs, qui
peuvent alors étre détectés et analysés computationnellement. En raison de cette propriété, les SSN
ont été utilisés pour étudier une grande variété de facettes de I'évolution, notamment certaines ne
s’inscrivant pas dans le cadre opérationnel classique de 'homologie : évolution des protéines multi-
domaines, remodelage de génes suite a une endosymbiose, réseaux de partage de genes entre
différents biomes... Dans la lignée de ces travaux, ma thése propose donc d’étudier I'homologie
distante et le remodelage de genes en développant de nouvelles analyses basées sur ces

représentations en réseaux.

Homologues distants de familles de protéines tres

conserveées

Les limitations pratiques rencontrées par les algorithmes d’alignement pour établir des
similarités entre séquences homologues mais peu semblables font de la détection d’homologues
distants un probleme récurrent en biologie. Ces liens d’homologie distante sont pourtant
particulierement intéressants, car ils peuvent révéler des variants génétiques divergeant fortement
de la diversité connue au sein d’'une famille de génes. Ces variants peuvent par ailleurs étre de
différentes natures : certains peuvent représenter des lignées génétiques récentes ayant accumulé
rapidement un grand nombre de mutations, par exemple dans le cas de la néo-fonctionnalisation de
génes dupliqués ; d’autres, a l'inverse, peuvent correspondre a des lignées génétiques plus basales,
dont la faible similarité de séquence s’explique par une divergence ancestrale par rapport aux lignées
connues dans cette famille de genes. La détection et I'analyse de liens d’homologie distante est donc
capitale pour améliorer notre compréhension des maniéres dont les familles de genes évoluent, et

nous permettre de saisir I'étendue réelle de leur diversité dans le monde vivant.

Au cours de ma these, j'ai participé au développement d’une méthode de détection
d’homologues distants, nommée SHIFT. Le principe de base de cette méthode consiste a effectuer des
recherches itératives d’homologie dans une large base de séquences cible, dans le but d’accumuler

des variants de plus en plus divergents autour de séquences de référence (Figure 20A). L’ambition est
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alors de pouvoir retrouver, de proche en proche, des homologues trop distants des références pour
étre atteints par une recherche directe. A partir des séquences choisies comme références pour la
famille de génes étudiée, un premier tour de BLAST permet d’identifier leurs homologues « directs »
dans la base de données cible. Ces nouvelles séquences peuvent alors étre utilisées comme queries
pour une seconde recherche BLAST, afin d’identifier leurs propres homologues dans la base de
données, qui sont donc des homologues « de second degré » des références. En itérant ce principe,
utilisant a chaque tour pour queries les séquences retrouvées a l'itération précédente, on peut alors
agréger des variants de plus en plus distants des séquences références (Figure 20B). Cependant, en
appliguant cette procédure de maniére « naive » sans controler la nature des séquences retrouvées a
chaque itération, il est possible d’aboutir a une surextension du champ de recherche, en rapatriant
des séquences n’ayant en réalité pas d’origine commune avec les références initiales (Figure 13). Il est
donc vital d’'implémenter un contréle pour s’assurer, entre deux tours successifs de BLAST, que les
séquences nouvellement retrouvées semblent bien correspondre a des homologues distants des
références. Plus précisément, dans SHIFT, les séquences nouvellement identifiées a chaque tour
d’alignement ne sont retenues que si leurs régions alignées peuvent étre rétro-propagées jusqu’a une
séquence référence, de maniére a ce que la région commune recouvre au moins 80% de toutes les
séquences le long de la chaine d’alignement (Figure 20C). Avec ce critere en place, les recherches
itératives ont beaucoup moins de chances de retenir des séquences n’ayant pas de rapport évolutif
avec les références. Les itérations de SHIFT se poursuivent jusqu’a ce qu’aucune nouvelle séquence
ne soit trouvée, apres quoi un réseau de similarité de séquences « étendu », regroupant a la fois les
séquences de référence et leurs homologues plus ou moins proches, est produit par un dernier

alignement BLAST tout-contre-tout.

L'aspect méthodologique de SHIFT fait I'objet d’un article actuellement en cours de rédaction.
Pendant ma thése, j'ai également appliqué ce protocole afin de conduire, dans un contexte de
génomique environnementale, une recherche d’homologues profonds de familles de génes tres
conservées, en particulier dans un métagénome océanique riche en organismes non cultivés. Avant
de présenter les résultats de ces travaux, je propose de restituer brievement le contexte de la

génomique environnementale et de I'exploration de la matiere noire microbienne.

Depuis maintenant quelques décennies, il est communément admis que la grande majorité des
microorganismes présents sur Terre sont incompatibles avec les approches actuelles de cultivation en
laboratoire. Ce fait est particulierement marqué dans les environnements « naturels », c’est-a-dire
non associés aux microbiomes humains ou autres milieux anthropiques, ol I'écrasante majorité des

organismes appartiennent a des genres, des ordres ou méme des phylums sans souche représentative
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cultivée (Figure 15). Par conséquent, la plupart des métagénomes environnementaux sont dominés
par des séquences sans origine phylogénétique et/ou fonction biologique connues, et cette fraction

du monde microbien est parfois appelée « matiére noire microbienne ».

Cette importante diversité environnementale a fait I'objet de nombreuses études au cours des
quinze dernieres années, lesquelles ont notamment révélé de nouvelles lignées majeures dans I'arbre
du vivant. On peut ainsi citer les bactéries CPR, un large superphylum ayant la particularité de
présenter des cellules et génomes bien plus petits que la norme des autres bactéries ; les DPANN,
similaires aux CPR de par la taille de leurs génomes et cellules du c6té des archées ; ou encore les
Asgard, un groupe diversifié d’archées apparaissant comme les plus proches parents des eucaryotes
connus a ce jour. Au-dela méme du monde cellulaire, les investigations de génomique
environnementale ont également révélé une diversité insoupgconnée de la virosphere, en particulier
chez les virus a ARN. Cependant, au cours des derniéres années, le rythme des nouvelles découvertes
majeures dans I'arbre du vivant semble avoir fortement ralenti. Ce reflux mene certains biologistes a
conjecturer que I'ensemble des grands groupes phylogénétiques existant sur Terre ont désormais été
découverts, de sorte que la diversité restante au sein de la matiére noire microbienne représenterait

surtout de nouvelles lignées moins basales, ainsi que des groupes inconnus sur le plan fonctionnel.

Dans ce contexte, la recherche d’homologie distante peut étre pertinente afin d’explorer plus
en profondeur les fractions inconnues de métagénomes environnementaux. En particulier, un nombre
réduit de familles de génes s’avere fortement conservées sur le plan évolutif, au sens ou elles sont
présentes dans tous les Domaines du vivant, rarement perdues ou transférées horizontalement entre
génomes, et présentant des divergences de séquence relativement faibles au vu de leur age
considérable. Ces familles « core » peuvent donc étre considérées, d’une certaine maniére, comme
essentielles a la vie cellulaire. Trouver des groupes de variants homologues distants dans ces familles
est donc d’un intérét biologique notable, car ces variants peuvent alors indiquer des lignées ou des
fonctions divergentes dans des processus considérés comme clés pour les organismes vivants. C’'est
dans ce but précis que j'ai conduit, en utilisant SHIFT, une recherche d’homologues distants pour un
certain nombre de ces familles « core », spécifiquement au sein du métagénome océanique OM-RGC
assemblé par I'expédition Tara Océans. Ces travaux ont fait I'objet d’un autre article de recherche,

actuellement en cours de révision pour le journal Environmental Microbiome.

J'ai constitué un ensemble de 53 familles de génes fortement conservées, et j'ai utilisé SHIFT
pour chacune d’elles afin de trouver leurs homologues (proches et distants) dans le métagénome OM-
RGC. La convergence de SHIFT a été atteinte aprés en moyenne sept itérations, multipliant par plus

de six la quantité de séquences dans cet ensemble de familles de génes par rapport aux seules
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séquences de référence. Les homologues environnementaux détectés par SHIFT ont ensuite été
alignés par BLAST contre la base données nr du NCBI, permettant ainsi de quantifier le pourcentage
d’identité entre chacune de ces séquences et son plus proche homologue dans I'ensemble de la
diversité génétique cultivée. Nous avons trouvé que seules 6.7% des séquences rapportées par SHIFT
étaient 90% similaires ou plus a leur plus proche parent connu, tandis que 20.5% des homologues
environnementaux divergent plus de I'ensemble de la diversité connue que la divergence observée en

moyenne entre séquences bactériennes et archées dans nos familles initiales.

L'objectif étant d’identifier des variants d’intérét dans la diversité environnementale de ces
familles trés conservées, il est naturellement plus intéressant et plus significatif de trouver des
groupes cohérents de séquences tres divergentes, plutdt que des séquences individuelles isolées du
reste. J’ai donc effectué un partitionnement du réseau de similarité de séquences de chacune des
familles en plusieurs communautés (ou clusters) de séquences fortement connectées entre elles, en
appliquant pour cela I'algorithme de Louvain. Cela nous a permis d’identifier des clusters riches en
séquences environnementales trés divergentes de la diversité connue, qui peuvent donc représenter
des lignées divergentes dans leurs familles de génes respectives. Je me suis alors intéressé plus en
profondeur a ces clusters divergents dans trois familles spécifiques, dont les résultats sont restitués
dans le preprint de I'article figurant dans le Chapitre Il de ma théese. Dans ce résumé, je présenterai
mes résultats pour deux de ces trois familles, représentant des variants génétiques de différente

nature.

Le premier exemple concerne un variant génétique appartenant a une lignée bien établie, mais
qui présente toutefois des particularités intéressantes du point de vue fonctionnel et structural. Il
appartient a la famille de protéines appelée SMC, qui assure les dynamiques de repliement et de
dépliement des chromosomes au cours des différentes étapes du cycle cellulaire. Une protéine SMC
est constituée de deux longs brins hélicoidaux enroulés ensemble, présentant a une extrémité un
domaine globulaire ATPase, et a I'autre un domaine en demi-cercle appelé hinge (voir Figure 5 du
preprint dans le Chapitre Il). Deux protéines SMC s’associent ensemble par le biais de leur domaine
hinge, et recrutent a leurs extrémités ATPase des protéines accessoires pour former un complexe SMC
en forme d’anneau, capable d’encercler une molécule d’ADN double-brin pour réguler son
organisation spatiale. Plus spécifiquement (c’est important pour la suite), cet attachement autour du
chromosome s’effectue par I'ouverture transiente de I'interface entre les domaines hinge des deux

protéines SMC.

Dans cette famille SMC, SHIFT a permis I'identification d’un cluster de séquences divergentes

de la diversité connue. Ce cluster a la particularité d’étre trés abondant dans le métagénome OM-RGC,
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prés de sept fois plus que le reste des séquences SMC retrouvées par SHIFT. Au sein de la phylogénie
des protéines SMC, ce variant océanique s’inscrit au sein des séquences d’Actinobactéries (voir Figure
4 du preprint dans le Chapitre Il). Surtout, les séquences de ce variant présentent la particularité de
ne pas posséder de domaine hinge, et les structures protéiques que nous avons inférées confirment
cette observation. En d’autres termes, nous avons identifié dans I'océan un variant « hinge-less » des
protéines SMC, ayant perdu le domaine a priori indispensable pour I'attachement du complexe SMC
a I’ADN préalablement a toute régulation de son organisation. Il semble peu probable que ces variants
SMC « hinge-less » assurent la méme fonction que leurs homologues usuels en |'absence de leur
interface avec I’ADN. Pour autant, la forte abondance de ces séquences dans I'environnement pousse
a croire qu’elles réalisent bien une certaine fonction dans leurs hétes, qu’il sera important d’élucider

pour mieux comprendre la signification biologique de ce nouveau variant.

Al'inverse, le second exemple de famille conservée présentant des variants environnementaux
divergents concerne plutot I'identification de potentielles nouvelles lignées basales dans |’évolution
de cette famille. Il s’agit cette fois-ci de la protéine recombinase A, qui assure plusieurs fonctions dans
la réparation de dommages subis par I’ADN (notamment des cassures double-brin) et permet la tenue
de recombinaisons homologues chez les procaryotes. Dans cette famille, nous avons identifié quatre
groupes d’homologues environnementaux divergents (voir Figure 6 du preprint dans le Chapitre Il).
En particulier, deux de ces clusters étaient fortement enrichis en séquences venant de fractions de
taille de I'ordre du nanomeétre, typique des virus ou encore des bactéries CPR et des archées DPANN.
Dans la phylogénie des séquences de cette famille de génes, I'un de ces clusters semblait correspondre
a des séquences d’origine bactérienne, tandis que I'autre formait un clade entre les bactéries et les
archées, un placement qui pourrait étre compatible avec des lignées microbiennes tres divergentes
dans I'arbre du vivant. En particulier, malgré leur présence dans des fractions de taille « ultra-petites »,
ces variants océaniques divergents ne correspondaient pas aux séquences de recombinase A connues
pour les CPR ou les DPANN. lls pourraient par conséquence appartenir a des bactériophages, qui
encodent parfois de tels genes essentiels pour leurs hétes, ou encore a de nouvelles lignées cellulaires

inconnues, ayant potentiellement des diameétres cellulaires particulierement faibles.

Homologie partielle et remodelage de genes dans deux

lignées multicellulaires

Dans le cadre conceptuel standard de I’homologie, les génes sont principalement considérés
comme des unités atomiques (indivisibles) d’évolution, divergeant selon une variété de processus qui

peuvent étre représentés par des arbres phylogénétiques (Figure 7). Cependant, les génes évoluent
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également par des processus combinatoires, qui mettent en jeu des réarrangements de parties de
genes, tels que les fusions et fissions génétiques. Ces mécanismes font alors apparaitre des motifs de
similarité partielle entre des genes qui ne partagent qu’une portion de leur séquence. Loin d’étre un
phénomeéne de marge, le remodelage de génes est amplement reconnu et documenté, principalement
dans le cadre opérationnel des domaines protéiques, voulus comme des sous-unités conservées de
séquence, de structure et de fonction. La majorité des protéines, que ce soit chez les procaryotes ou
les eucaryotes, comportent par ailleurs plusieurs domaines, soulignant I'importance de ces processus

combinatoires dans I’évolution des génes (Figure 23).

En raison de la versatilité de la définition des domaines protéiques, la plupart des investigations
concernant le remodelage de genes ont été conduites par le prisme des assemblages de domaines.
Pour autant, les domaines ne décrivent pas l'intégralité de I'espace des séquences génétiques :
environ 20% des protéines connues ne contiennent pas de domaine répertorié, et les domaines ne
couvrent qu’un peu plus de 50% des résidus dans I'ensemble du protéome connu (Figure 24). Par
conséquent, étudier I'évolution combinatoire par ce prisme uniqguement ne peut offrir qu’une vision
partielle de I'étendue de ces processus, qui peut étre complétée en définissant des « briques de base »
des réarrangements génétiques par d’autres moyens. L'une de ces approches, mise en place dans mon
laboratoire avant ma thése et intitulée CompositeSearch, permet ainsi de détecter des événements
de remodelage génétique sur la base seule des similarités partielles entre séquences. Cette méthode
s’affranchit donc de la définition des domaines protéiques, mais a I'inconvénient que les fusions de
génes comme les fissions peuvent résulter en un méme patron de similarités partielles, ne permettant
donc pas de les distinguer a priori (Figure 25). On parle donc plutét de génes composites et
composants au sein de ces patrons, afin de ne pas induire de biais terminologique envers I'une ou
I'autre de la fusion ou de la fission de génes. En outre, une analyse complémentaire doit étre
entreprise afin de « polariser » ces événements de remodelage détectés, c’est-a-dire restaurer

I'information de fusion ou fission associée a chaque événement.

Pendant ma these, j'ai développé une telle méthode de polarisation comme analyse
subséquente a CompositeSearch. Cette méthode s’appuie sur le signal phylogénétique afin de
déterminer, entre une famille composite et ses familles composantes associées, laquelle des formes
(associée, dans les génes composites ; dissociée, dans les genes composants) préexistait par rapport
a I'autre. Les données de présence/absence des familles composite et composantes dans chaque
génome de la lignée étudiée sont utilisées pour inférer, par parcimonie Dollo, leurs points d’origine
dans la phylogénie de la lignée (Figure 26A). Ces origines sont ensuite comparées entre elles pour

déterminer la polarisation. Des familles composantes ayant émergé avant l'apparition du géne
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composite indiquent ainsi une fusion de genes ayant donné lieu a ce composite (Figure 26B) ; a
I'inverse, une forme composite pré-datant les formes composantes suggere davantage un événement
de fission (Figure 26C). De nombreux cas intermédiaires peuvent émerger en dehors de ces cas de
figure « idéaux », par exemple si l'origine de la forme composite pré-date une composante mais est
ultérieure a une autre. Ces cas de figure correspondent a des scénarios plus complexes qu’une simple
fusion ou fission, par exemple une fusion de génes suivie d’'une perte de I'une des composantes

expliquant son émergence inférée comme plus tardive.

J'ai appliqué durant ma thése cette méthode dans le cadre de deux études distinctes. La
premiere de ces études est le fruit d'un large consortium réuni autour d’un projet de séquencage et
d’analyse de 60 nouveaux génomes d’algues brunes, dont les résultats ont été récemment publiés
dans la revue Cell. Au sein de ce projet, j’ai réalisé une analyse consistant a détecter et polariser les
génes remodelés dans ces génomes, ainsi qu’a étudier leurs fonctions et leur stabilité au cours de
I’évolution de la lignée des algues brunes. La seconde étude s’est concentrée plus spécifiguement sur
les événements de remodelage dans les génomes animaux, a partir de 63 génomes déja publiés. Dans
cette recherche, j’ai appliqué mon analyse de polarisation a des composites déja existants, et j'ai pu a
nouveau étudier la stabilité de ces genes remodelés dans les génomes animaux. Les résultats de cette

recherche sont a I’"heure actuelle disponibles a I’état de preprint sur bioRxiv.

Un point commun entre ces analyses est le fait qu’elles se concentrent toutes deux sur des
lignées ayant acquis indépendamment un phénotype multicellulaire complexe. Plus généralement, la
multicellularité se retrouve dans cing grands groupes d’eucaryotes : en plus des animaux et des algues
brunes, on peut citer les plantes et algues vertes, les algues rouges, ainsi que les champignons.
L’émergence de ce phénotype requiert un grand nombre d’adaptations physiologiques, notamment
des systemes de transport d’oxygene et de nutriments, ou encore un programme de développement
pour passer de la cellule-ceuf au stade adulte. L'apparition répétée de cette multicellularité est donc
loin d’étre anodine, et il est particulierement intéressant de comprendre les « recettes » génomiques
permettant la transition de I'unicellularité a la multicellularité. Dans le spécifique cadre du remodelage
de genes, des recherches ont déja établi une association entre complexité des architectures de
domaines et complexité phénotypique des organismes. Cette association est d’ailleurs largement
documentée chez les animaux, qui présentent des combinaisons de domaines protéiques

particulierement dynamiques.

Dans les algues brunes, j’ai pu identifier une forte contribution des phénomeénes de remodelage
a I’évolution des génomes. En effet, 6.7% de I'ensemble des familles de genes dans cette lignée ont

été produits par un événement de fusion, et pres de 5% par une fission de génes. La plupart de ces
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génes remodelés ont émergé tot dans I'évolution des algues brunes, notamment dans les branches
menant a I'ancétre de cette lignée ainsi que dans ses premieres diversifications (Figure 27). J’ai ensuite
évalué le taux de rétention de ces genes remodelés dans les génomes contemporains, c’est-a-dire la
proportion de genes effectivement présents dans le génome d’une espéce parmi tous ceux qui ont
émergé dans la lignée menant a cette espece. J'ai alors pu observer que chez les algues brunes et leurs
plus proches parents, les genes issus de fusions et de fissions étaient préférentiellement conservés
par rapport aux génes non-remodelés, ce qui n’était pas le cas dans d’autres espéces de Straménopiles
plus éloignées (Figure 27). Cela suggére que les produits du remodelage génétique peuvent occuper
des fonctions importantes pour les algues brunes, qui ont émergé to6t dans I'histoire de la lignée et
ont été conservées ensuite au cours de la diversification de cette lignée. Par ailleurs, les remodelages
de genes ont été bien plus fréquents pour certaines catégories fonctionnelles spécifiques, qui ont la
particularité d’étre fréquemment associées a la multicellularité (Figure 28). Ainsi, des contributions de
fusions et fissions de génes aux processus liés au métabolisme des glucides et a la synthese de la paroi
cellulaire ont pu participer au développement de la paroi et de la matrice extra-cellulaire des algues
brunes, basées sur les alginates et qui assurent la cohésion intercellulaire dans ces algues. De méme,
le remodelage de genes a particulierement affecté les catégories fonctionnelles de la transcription et
de la transduction du signal, qui chez les multicellulaires sont liés a une complexification des voies de

signalisation et de communication intercellulaire.

Chez les animaux, nous avons observé une dynamique différente dans les processus d’évolution
combinatoire des familles de génes. Environ 5% des familles de génes étaient composites, dont trois
quarts de fusions de genes et un quart de fissions. Plutét qu’une contribution progressive et continue,
les événements de remodelage se concentrent a certains nceuds spécifiques de la phylogénie animale,
notamment a I'émergence des bilatéres et des Euteleostomi (Figure 29). Le remodelage génétique
chez les animaux est également caractérisé par une forte dynamicité et réversibilité : dans la majorité
des cas de fusion, le géne fusionné est ultérieurement fissionné a nouveau dans au moins une des
especes hotes. En analysant les taux de rétention des genes remodelés dans les génomes
contemporains, comme expliqué précédemment pour les algues brunes, j’ai par ailleurs pu observer
gue chez les vertébrés spécifiguement, et de maniere d’autant plus prononcée chez les Euteleostomi,
les geénes issus de fusions sont largement plus conservés que les genes non-remodelés, tandis qu’a
I'inverse les génes issus de fissions sont significativement plus perdus (Figure 30). Ce motif suggere
ainsi un biais significatif envers les fusions de genes dans les génomes animaux, qui malgré leur
réversibilité restent bien plus conservés que les produits de fissions. En outre, ces fusions participent
significativement a certaines catégories de fonctions qui peuvent étre associées a la grande diversité

des phénotypes animaux. Des contributions substantielles aux fonctions de transcription, de
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transduction du signal et de modifications post-traductionnelles pourraient ainsi avoir favorisé
I’émergence de voies de régulation complexes, qui chez les animaux sont particulierement
importantes au développement des organismes. De méme, une participation marquée des fusions de
génes dans les fonctions liées aux structures extra-cellulaires pourrait étre en lien avec la grande

diversité de tissus et d’organes présente a travers la diversité du « regne » animal.

Discussion & Perspectives

Au cours de ma thése, mon objectif a été de remédier a deux écueils principaux du cadre
opérationnel standard de I'homologie entre genes, dans le but de prendre en compte un spectre plus
large de relations d’ascendance évolutive. En particulier, je me suis intéressé d’une part a la notion
d’homologie distante, qui passe en quelque sorte sous le radar des analyses basées sur des
alignements standards entre séquences, et d’autre part a des processus d’évolution combinatoire,
incompatibles avec une définition binaire, « tout ou rien » de ’"homologie. J'ai pour cela développé et
appliqué différentes méthodes bio-informatiques basées sur la construction et I'analyse de réseaux

de similarité de séquences.

Ma recherche de variants océaniques distants dans des familles de genes « core » tres
conservées a permis de révéler une grande diversité de variants génétiques divergents dans I'océan
global. En particulier, j’ai pu identifier des groupes divergents de différente nature, avec notamment
d’une part des variants structuraux et fonctionnels dans des lignées phylogénétiques bien établies,
ainsi que d’autre part des groupes plus profonds, potentiellement compatibles avec de nouvelles
lignées basales dans I'arbre du vivant. Les résultats produits dans le cadre de cette étude sur trois
familles spécifiques ne sont en réalité qu’une fraction de la diversité que nous avons réellement
trouvés, car 25 des 53 familles considérées au total comportaient au moins un cluster d’homologues
tres divergents. Caractériser un plus grand nombre de ces variants permettrait donc de révéler dans
de plus amples détails la diversité génétique présente en dehors des limites de la cultivation
microbienne en laboratoire. Cette approche et ces résultats pourraient potentiellement guider la
formulation de nouvelles hypotheses en génomique environnementale, par exemple en dressant une
sorte de liste des lignées inconnues les « plus recherchées », qui pourraient porter plusieurs de ces
variants environnementaux. En outre, tirer profit des avancées récentes en prédiction et comparaison
de structures protéiques permettrait d’améliorer les capacités d’identification d’homologues distants,
les structures de protéines étant généralement bien plus conservées évolutivement que les séquences

primaires.
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Dans un second axe de recherche, j’ai pu mettre en évidence au cours de ma thése une

contribution significative des processus de remodelage génétique dans I'évolution des algues brunes

et des animaux, en particulier dans des catégories fonctionnelles généralement associées a I'évolution
de phénotypes multicellulaires complexes. Cette contribution des processus de remodelage s’est pour
autant faite suivant des tendances distinctes. Du point de vue mécanistique d’abord, puisque les
algues brunes ont tiré profit d’'un équilibre relatif entre fusions et fissions de genes, tandis qu’un biais
marqué en faveur des fusions a pu étre observé chez les animaux. Du point de vue chronologique
également, les algues brunes ayant surtout acquis leurs génes remodelés tot au cours de I'évolution
de leur lignée, alors qu’a l'inverse le remodelage de génes chez les animaux semble plut6ét avoir eu
lieu par pics, a certains points spécifiques de la lignée métazoaire. Au vu de ces différences, il serait
d’autant plus intéressant d’étendre ces études aux autres lignées ayant acquis une forme de
multicellularité complexe : cette multicellularité ayant émergé indépendamment au moins 16 fois au
cours de I'évolution des eucaryotes, étudier la contribution du remodelage de génes a chacune d’entre

elles permettrait d’éclairer une compréhension d’ensemble des « recettes » génomiques pouvant étre

mises en ceuvre pour acquérir ce phénotype complexe.

L’approche que j’ai adoptée durant ma these, qui consiste a étudier I'évolution des familles de
génes par le spectre principal des réseaux de similarité, vise a apporter une vision plus holistique des
liens évolutifs pouvant exister entre les génes. Cette démarche vise non pas a supplanter, mais a
étendre et complémenter les approches basées sur la vision arborescente des phénomeénes évolutifs,
précisément dans le but de capturer les relations évolutives qui ne peuvent étre décrites dans ces
approches. En cela, ma these souligne les bénéfices d’un pluralisme de concepts et de méthodes en
biologie de I’évolution, afin de comprendre la diversité des génes, des organismes et des mécanismes

évolutifs dans leur globalité.
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Résumé : L'augmentation toujours plus importante de données génomiques et métagénomiques
appelle de nouveaux développements méthodologiques et bio-informatiques, afin de caractériser
avec davantage de précision les phénomenes évolutifs dans leur ensemble. En particulier, certaines
des méthodes usuelles pour étudier I'évolution des (familles de) génes s’aveérent inadaptées lorsque
la parenté entre séquences n’est que partiellement supportée. Ainsi, la définition et la reconstruction
de familles de genes se heurtent a I'obstacle de 'homologie distante, qui passe sous le seuil de
détection des alignements de séquences. De méme, les mécanismes d’évolution combinatoire, tels
que les fusions et fissions de genes, remettent en cause les représentations purement arborescentes
de I'évolution des familles de génes. L'application de méthodes complémentaires basées sur les
réseaux de similarité de séquences permet de contourner certaines de ces lacunes, en proposant une
représentation holistique des similarités entre génes. La détection et I'analyse d’homologues trés
divergents de familles de genes fortement conservées dans des jeux de données environnementaux
est notamment facilitée par la recherche itérative d’homologie fondée sur les réseaux. Cette fouille
itérative de métagénomes révele une immense diversité de variants environnementaux dans ces
familles, qui divergent de la diversité connue tant par leur séquence que par la structure des protéines
gu’ils encodent, et elle permet de suggérer des pistes pour guider de futures explorations de la
matiere noire microbienne. En outre, en prenant en compte des liens d’homologie partielle entre
séquences génétiques, les réseaux de similarité de séquences permettent une identification
systématique des événements de fusion et de fission de génes. Il devient ainsi possible d’évaluer
I'impact de ces processus au cours de I'évolution de lignées biologiques d’intérét, permettant de
comparer le role qu’ils ont joué lors de I'émergence de phénotypes multicellulaires complexes dans
plusieurs telles lignées. Plus généralement, ces approches basées sur les réseaux illustrent I'intérét de
prendre en compte une pluralité de modeles pour étudier une plus grande variété de processus
évolutifs.

Abstract: The ever-increasing accumulation of genomic and metagenomic data calls for new
methodological developments in bioinformatics, in order to characterise evolutionary phenomena as
a whole with better accuracy. In particular, some of the canonical methods to study the evolution of
genes and gene families may be ill-suited when the relatedness of sequences is only partially
supported. For instance, the definition and reconstruction of gene families face the hurdle of remote
homology, which falls beneath the detection thresholds of sequence alignments. Likewise,
combinatorial mechanisms of evolution, such as gene fusion and gene fission, challenge the purely
tree-based representations of gene family evolution. The use of complementary methods based on
sequence similarity networks allows us to circumvent some of these shortcomings, by offering a more
holistic representation of similarities between genes. The detection and analysis of highly divergent
homologues of strongly conserved families in environmental sequence datasets, in particular, is
facilitated by iterative homology search protocols based on networks. This iterative mining of
metagenomes reveals an immense diversity of environmental variants in these families, diverging
from the known diversity in primary sequence as well as in the tertiary structure of the proteins they
encode. It is thus able to suggest possible directions of future explorations into microbial dark matter.
Furthermore, by factoring in relationships of partial homology between gene sequences, sequence
similarity networks allow for a systematic identification of gene fusion and fission events. It thus
becomes possible to assess the effects of these processes on the evolution of biological lineages of
interest, enabling us for instance to compare the role that they played in the emergence of complex
multicellular phenotypes between several such lineages. More generally, these network-based
approaches illustrate the benefits of taking a plurality of models into account, in order to study a
broader range of evolutionary processes.



