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Titre : Identification d'homologies distantes et de gènes remodelés par des approches de réseaux. 
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Résumé : L’augmentation toujours plus importante de données génomiques et métagénomiques 

appelle de nouveaux développements méthodologiques et bio-informatiques, afin de caractériser avec 

davantage de précision les phénomènes évolutifs dans leur ensemble. En particulier, certaines des méthodes 

usuelles pour étudier l’évolution des (familles de) gènes s’avèrent inadaptées lorsque la parenté entre 

séquences n’est que partiellement supportée. Ainsi, la définition et la reconstruction de familles de gènes se 

heurtent à l’obstacle de l’homologie distante, qui passe sous le seuil de détection des alignements de 

séquences. De même, les mécanismes d’évolution combinatoire, tels que les fusions et fissions de gènes, 

remettent en cause les représentations purement arborescentes de l’évolution des familles de gènes. 

L’application de méthodes complémentaires basées sur les réseaux de similarité de séquences permet de 

contourner certaines de ces lacunes, en proposant une représentation holistique des similarités entre gènes. 

La détection et l’analyse d’homologues très divergents de familles de gènes fortement conservées dans des 

jeux de données environnementaux est notamment facilitée par la recherche itérative d’homologie fondée 

sur les réseaux. Cette fouille itérative de métagénomes révèle une immense diversité de variants 

environnementaux dans ces familles, qui divergent de la diversité connue tant par leur séquence que par la 

structure des protéines qu’ils encodent, et elle permet de suggérer des pistes pour guider de futures 

explorations de la matière noire microbienne. En outre, en prenant en compte des liens d’homologie partielle 

entre séquences génétiques, les réseaux de similarité de séquences permettent une identification 

systématique des évènements de fusion et de fission de gènes. Il devient ainsi possible d’évaluer l’impact de 

ces processus au cours de l’évolution de lignées biologiques d’intérêt, permettant de comparer le rôle qu’ils 

ont joué lors de l’émergence de phénotypes multicellulaires complexes dans plusieurs telles lignées. Plus 

généralement, ces approches basées sur les réseaux illustrent l’intérêt de prendre en compte une pluralité de 

modèles pour étudier une plus grande variété de processus évolutifs. 

 

  



 

  



 

Title: Identifying remote homology and gene remodelling using network-based approaches. 
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Abstract:  The ever-increasing accumulation of genomic and metagenomic data calls for new 

methodological developments in bioinformatics, in order to characterise evolutionary phenomena as a whole 

with better accuracy. In particular, some of the canonical methods to study the evolution of genes and gene 

families may be ill-suited when the relatedness of sequences is only partially supported. For instance, the 

definition and reconstruction of gene families face the hurdle of remote homology, which falls beneath the 

detection thresholds of sequence alignments. Likewise, combinatorial mechanisms of evolution, such as gene 

fusion and gene fission, challenge the purely tree-based representations of gene family evolution. The use of 

complementary methods based on sequence similarity networks allows us to circumvent some of these 

shortcomings, by offering a more holistic representation of similarities between genes. The detection and 

analysis of highly divergent homologues of strongly conserved families in environmental sequence datasets, 

in particular, is facilitated by iterative homology search protocols based on networks. This iterative mining of 

metagenomes reveals an immense diversity of environmental variants in these families, diverging from the 

known diversity in primary sequence as well as in the tertiary structure of the proteins they encode. It is thus 

able to suggest possible directions of future explorations into microbial dark matter. Furthermore, by 

factoring in relationships of partial homology between gene sequences, sequence similarity networks allow 

for a systematic identification of gene fusion and fission events. It thus becomes possible to assess the effects 

of these processes on the evolution of biological lineages of interest, enabling us for instance to compare the 

role that they played in the emergence of complex multicellular phenotypes between several such lineages. 

More generally, these network-based approaches illustrate the benefits of taking a plurality of models into 

account, in order to study a broader range of evolutionary processes. 
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Over the course of my doctoral studies, I have developed and applied several network-based 

methods that aim to reconstruct the evolutionary history of gene families. In particular, my research 

focused on those families that present one of two types of exacerbated divergence, typically 

exceeding the levels of variation that can be retrieved by sequence alignments. The first focus of this 

thesis consists in the retrieval of remote homologues of ancient, core gene families, which have 

diverged from the known diversity beyond detectability by canonical methods despite the marked 

evolutionary conservation of their known counterparts. In particular, we mined environmental 

metagenomic data for gene variants that could suggest the existence of uncharacterised lineages 

branching deep in the tree of life. These results are detailed in Chapter II of this thesis. The second 

research focus, which we develop in Chapter III, is the identification of gene remodelling events, in 

particular gene fusion and fission. We applied a systematic detection approach that aims to go beyond 

the scope of domain-centred analyses. By quantifying gene remodelling in two distinct lineages that 
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acquired complex multicellular phenotypes, we can draw comparative insights into the effect of 

combinatorial gene and genome dynamics on emergent multicellularity. The common thread of this 

thesis is thus the use of sequence similarity networks to investigate ‘non-canonical’ relationships of 

homology. In this introductory Chapter, we discuss the notion of homology in a broader sense, as well 

as the way in which it relates to sequence similarity, and therefore the relevance of methods based 

on sequence similarity networks in this context. 

1. The ever-growing abundance of biological sequence data  

Charles Darwin’s On the Origin of Species, first published in 1859, is inarguably the seminal text 

of evolutionary biology as we understand it today. In it, Darwin introduced the central concept of 

natural selection: living organisms must compete for access to limited resources necessary to their 

survival, leading the fittest individuals to prevail over their less well-adapted counterparts, thus 

producing more offspring in the next generation. Offspring inherit many characteristics of their 

ancestors, but not always with exactly identical fidelity: slightly shorter legs, or lighter wings, or wider 

leaves. Hereditary traits are passed down across generations with some variation, a notion Darwin 

called descent with modification. In turn, these variations may turn out beneficial or deleterious for 

survival, and therefore may be passed down, or lost, in further generations. 

One weakness in Darwin’s theory at the time was the absence of a known physical support for 

heredity, as he observed himself in the first chapter of Origin. The first half of the 20th century saw 

more and more mechanistic advancements to the understanding of vertical heredity, most 

prominently the re-discovery of Gregor Mendel’s work on inheritance and the development of 

mathematical population genetics, which were unified with Darwinian theory in the 1940s under the 

name of Modern Synthesis. However, it was only in the early 1950s that the DNA molecule, which had 

been discovered nearly a century earlier, was confirmed to be the physical template onto which 

hereditary genetic information is encoded. 

The DNA molecule consists of two polynucleotide strands, coiled together to give DNA its classic 

double-helix structure. Each strand is a succession of nucleotides, each containing one of four 

nucleobases: adenine (A), cytosine (C), guanine (G) or thymine (T). In addition, the two strands of a 

DNA molecule are complementary: adenine and thymine always face each other, as do cytosine and 

guanine. The genetic information is therefore encoded redundantly by each strand, as the contents of 
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one strand dictates the contents of the other1. What this linear polynucleotidic structure of DNA 

means, for the bioinformatician, is that any DNA molecule can be abstractly represented textually, by 

a simple string of A, C, G and Ts mirroring the sequence of nucleotides along a strand. This 

representation encapsulates all the genetic information encoded by the molecule, in a data format 

that can be easily read, stored and processed by humans or computers. Similarly, RNA and proteins 

(the functional products of biological processes encoded by DNA) are also linear polymeric molecules. 

RNA is a single-strand molecule that has the same sequence as its coding gene, with the exception of 

thymines that are substituted by uracils (U). Proteins, on the other hand, are chains of residues from 

a canonical set of 20 amino-acids (Figure 1A). Each block of three nucleotides (called a codon) along a 

messenger RNA dictates one amino-acid in the resulting peptide chain, following a correspondence 

known as genetic code (Figure 1B). In other words, not only can the support of heredity and template 

for biological function (DNA) be represented and studied from its sequence, but its functional products 

(mRNAs, proteins, non-coding RNAs) can too. Accessing the genome of organisms thus grants a unique 

window into their evolution and the ways in which they function.  

 

Figure 1: The central dogma of molecular biology.  

(A) The biological instructions encoded by genes are transcribed into messenger RNAs by RNA 

polymerase, and mRNAs are then translated into proteins by ribosomes.  

(B) Translation follows the codon-to-amino acid correspondence of the genetic code.  

The first major breakthrough in DNA sequencing came with Frederick Sanger’s chain-

termination method in 1977, and the publication of the first full genome sequence, that of 

bacteriophage φX174. At first fully manual, the Sanger method was progressively refined and 

automated throughout the end of the 20th century, with improvements to time and cost requirements 

as well as reading accuracy. This allowed the first draft of the full human genome to be published in 

2001 after over a decade of work by the Human Genome Project and an estimated cost of $2.7 billion. 

 
1 This is precisely the crux of the DNA duplication process, which allows singular cells to duplicate into 

multiple copies carrying the same genetic baggage: the DNA strands are separated, and each strand functions 
as a template for the creation of its new complementary strand, resulting in two copies of the initial molecule. 
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Sequencing costs remained high in the early 2000s, until the irruption of Next Generation Sequencing 

(NGS) on the DNA sequencing market, which made genome sequencing dramatically more affordable 

(Figure 2A). In mid-2007, where NGS was just starting to replace Sanger sequencing in laboratories, 

raw sequencing costs were of roughly $500 per million base pairs (Mbp); a year later, NGS had dropped 

costs to $8/Mbp, and $0.35/Mbp by mid-2010. Recent estimates place the cost of sequencing one 

Mbp at $0.006 in 2022, a drop by five orders of magnitudes in just 15 years.  

 

Figure 2: NGS methods provide access to unprecedented amounts of sequence data. 

(A) In the early 2000s, Sanger sequencing became exponentially more affordable, in line with the 

predictions of Moore’s law on the exponential increase of computing power over time. In the 15 years 

since NGS technologies entered the market, sequencing costs have decreased even more rapidly. 

Data from: Wetterstrand KA. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing 

Program (GSP) Available at: www.genome.gov/sequencingcostsdata. Accessed in October 2024. 

(B) Public sequence databases such as GenBank contain more and more records each year, making 

necessary the development of new bioinformatic methods to address this ongoing informational 

torrent. 

Data from: https://www.ncbi.nlm.nih.gov/genbank/statistics. 

The democratisation of mass DNA sequencing has resulted in a genuine torrent of new genomic 

data (Figure 2B). Furthermore, beyond whole genome sequencing, other ‘omics’ developments have 

allowed access to many other kinds of biological data, such as RNA transcripts (transcriptomics), 

proteins (proteomics), or metabolites (metabolomics) [Hollywood, Brison, and Goodacre 2006, Aslam 

et al. 2017, Lowe et al. 2017, Stricker, Köferle, and Beck 2017]. New methods in metagenomics also 

make it possible for the genomic contents of whole environments to be sequenced at once, thus 

bypassing the constraining requirements of cultivation and isolation, and provide new insights into 

the inter-species interactions that sustain ecological systems. This massive influx of biological data is 

an unparalleled trove of information for the scientific community, and allows us to investigate 

evolutionary processes from many new angles. The magnitude of this genomic torrent also raises 

practical and computational challenges. Automated methods are now vital to produce, process and 

https://www.genome.gov/sequencingcostsdata
https://www.ncbi.nlm.nih.gov/genbank/statistics
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analyse this biological information in an efficient and reliable way, and continued progress in 

bioinformatics is required to keep up with sequence datasets of ever-increasing sizes. 

2. Comparing sequences to infer evolutionary relationships 

2.1 – Understanding the evolution and function of biological 

sequences 

Rendering the genomic information from nanoscopic DNA molecules in a ‘language’  convenient 

for humans and computers allows for further characterisation of this sequence dataset. From this 

point, and as is the case in any other scientific field, the new data must be interrogated in the light of 

already established knowledge. A biologist may glean a certain amount of information from a gene 

sequence itself, by looking into specific features such as CG-content and codon usage bias. Establishing 

the genomic signature of this sequence with such metrics can provide insights into its taxonomy, 

function and ecology [Coutinho, Franco, and Lobo 2015]. However, to understand the evolutionary 

history and the biological function of that gene with better certainty, its analysis will usually include 

comparing its sequence to other genes, with features that have already been characterised and 

validated. This is not so different from a historian who happens upon an unknown ancient text for the 

first time: if the contents of the text may already provide some information about its nature or its 

purpose, it is only within its greater historical context that the origin, importance and significance of 

the document can be truly evaluated. Over the past decades, dozens of generalist and specialised 

sequence databases, hosting billions of public DNA sequences, have been assembled to facilitate 

sequence comparisons for such purposes [Quast et al. 2013, Benson et al. 2013, Jolley, Bray, and 

Maiden 2018, The UniProt Consortium 2023].  

The most common way to recontextualise a novel gene (or protein) sequence is to ascribe it to 

a known gene family, i.e. a set of homologous genes sharing a common evolutionary ancestor. Gene 

families are one of the main organisational principles of the global genetic space and are meant to 

represent coherent units of gene evolution. Comparing gene sequences to reconstruct homologous 

gene families can therefore help us understand the evolution and divergence of this family, following 

the expectation that more distantly related genes will have less similarity between their sequences. 

Moreover, for certain genes in particular that are known to be remarkably conserved (meaning that 

mutations in their sequences are particularly rare), evolutionary information at the gene level can be 

used to infer evolutionary relationships between their hosts. The prime example of such a marker 

gene is the one coding for 16S ribosomal RNA (Figure 3), present in all prokaryotic life forms. The 
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sequence of this gene consists of a succession of highly conserved regions, interspaced by nine more 

variable regions (numbered V1-V9). This allows the representation of evolutionary relationships with 

a large range of granularity, from strain identification to reconstructions of the overall tree of life2 

[Yang, Wang, and Qian 2016]. 

 

Figure 3: The prokaryotic 16S rRNA gene. 

(A) Site-specific sequence identity between bacterial 16S rRNA genes, with the nine hypervariable 

regions indicated by shaded ranges in the graph. The degree of variability differs between V1-V9 

regions, such that different subsets of those regions are well-suited for different taxonomic 

resolutions. 

(B) Secondary structure of the 16S rRNA molecule, with the positions of V1-V9 regions indicated. 

Adapted from: [Wensel et al. 2022]. 

The functional aspect of gene sequence annotation also relies on comparisons with known 

genes. Indeed, the nucleotide sequence of a gene that codes for a protein dictates its amino-acid 

sequence (see Figure 1), which in turn influences its three-dimensional conformation. Many features 

of a protein’s spatial conformation, such as its flexibility or rigidity, or which of its residues are exposed 

at its surface, can be essential for a protein to perform its ‘intended’ function by interfacing and 

interacting with other biomolecules. As such, some functional information about an unknown gene 

sequence can be extracted in a number of ways. If a gene has clear homology with another sequence 

that has already been functionally annotated, then this likeness in sequence may extend to a likeness 

in function. However this is not automatically true, as relatively small changes in a protein’s sequence 

can result in much greater structural variation [Tokuriki and Tawfik 2009]. For this reason, other 

approaches prefer to look directly for structural features in the sequence to annotate. In particular, 

the computational prediction of 3D protein structures from their primary sequence, which has long 

been considered a major challenge for bioinformatics, has seen dramatic advances in the last few 

years with the emergence of deep-learning methods (with DeepMind’s AlphaFold at the forefront). 

 
2 Carl Woese and George E. Fox notably pioneered the use of 16S rRNA to reconstruct phylogenies, 

leading to their discovery of the archaeal Domain [Woese and Fox 1977]. 
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Nearly all proteins in the UniProt sequence database now have AlphaFold-predicted structures, greatly 

improving inferences of functional features for unknown sequences. At a more granular level, specific 

structural features can also guide functional inferences. Protein domains, in particular, are structural 

units that are encoded by one contiguous region in the coding sequence and translate to a contiguous 

region of the protein’s polypeptide chain that folds onto itself independently from the rest of the 

protein. Because these domains often correspond to specific functions, identifying domain-coding 

regions in a gene sequence can also provide indications about the functional role of its protein. 

Nonetheless, the functional annotation of gene and protein sequences is far from a solved issue. Many 

predicted protein domains, for instance, are not associated with known functions (as of October 2024, 

domains of unknown function (DUFs) appear in approximately four thousand Pfam protein families), 

and some proteins are not covered by domains at all [Paysan-Lafosse et al. 2023]. Likewise, as we 

discuss in more detail in a following chapter, large numbers of detected protein families have no 

functional labels, especially in metagenomic data.  

As a contextual note: because protein-coding DNA sequences (CDS) can be deterministically 

translated to amino-acids (see Figure 1), it is common to use protein sequences for evolutionary 

comparisons at larger taxonomic scales and, likewise, to assimilate gene families and protein families. 

This offers an immediate computational advantage, because sequences are then three times shorter 

(since each codon is encoded in one character instead of three). Moreover, sequences of amino-acids 

are better conserved than nucleic ones, meaning that more ancient relationships between sequences 

can be detected. This omits information about synonymous mutations in CDS, i.e. substitutions that 

occur in a codon without changing the corresponding amino-acid, due to the redundancy in the 

genetic code. Synonymous substitutions are likely to be selectively neutral, but they can also affect 

gene expression and protein folding [Bailey, Alonso Morales, and Kassen 2021] and thus be adaptive. 

Still, the approximation of ignoring synonymous mutations is acceptable for the larger-scale studies 

that we focus on, especially in light of the gain in computational efficiency. On the other hand, indel 

mutations inside a gene can result in a translational frameshift (if their length is not a multiple of 

three), which will greatly alter the resulting amino-acid sequence. Using translated sequences to 

compare genomic data can therefore potentially lead to erroneous results, because related sequences 

that differ by a frame-shifting indel will then not be recognised as similar. In the case of protein-coding 

genes however, this is highly likely to produce a dysfunctional protein, which may be abnormally short 

or long because the initial stop codon is now out-of-frame. In a way, this could be assimilated to a 

gene loss, since the well-formed protein is not encoded anymore. Here, because we are mostly 

focused on studying the evolution of protein-coding families, we predominantly use amino-acid 
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sequences for our computations, as the drawbacks mentioned here are only of minor concern for our 

purposes. 

2.2 – Comparison of biological sequences with pairwise alignments 

By ‘comparing’ pairs of sequences, what is generally meant is that we try to identify common 

regions between the two sequences that have many identical or similar letters at the same positions. 

This practice makes sense when comparing sequences that derive from a common ancestry: the 

sequences were initially identical, then modifications appeared over time in one or the other (a letter 

could have been lost by one but kept by the other, or have appeared in only one of them, or changed 

for a different letter), but enough positions may have stayed unchanged to recognise a common root. 

Aligning these sequences then consists in matching their corresponding positions two by two, to 

represent which positions are conserved and which ones have diverged. 

 Let us look, as an example, at the English name Peter, and its Spanish equivalent Pedro. Both 

come from the Greek Petros (Πέτρος), and from this root they share a similar consonant structure p-

[t/d]-r, as well as an -e- in the leading syllable. On the other hand, the terminal -s has disappeared in 

both, and the Spanish version of the name turned the -t- into a -d-, whereas the English one lost an -

o- and gained another -e-. These positional similarities and differences can be summarised by writing 

one name above the other, in a way that matches pairs of corresponding letters vertically: 

P E D - R O 
| | :   |   
P E T E R - 

Alignments are by far the most common way to compare sequences together, and are routinely 

performed for a wide range of biological studies. Aligning two sequences relies on the hypothesis that 

they share some level of homology, such that their differences can be attributed to an accumulation 

of mutations since their divergence, rather than a convergent acquisition of the same features. Each 

insertion, deletion or substitution of a letter in the sequence is considered to happen with a given 

probability. For instance, when comparing DNA sequences, transition mutations (A↔G or C↔T) are 

more likely than transversions (A/G ↔ C/T) because of the two different molecular classes of 

nucleotides (purines, A and G; pyrimidines, C and T). Likewise, in protein sequence alignments, the 

frequency of each substitution is estimated from sets of sequences with known homology. Based on 

these probabilities, a numeric score can be assigned to a sequence alignment, using a substitution 

matrix (PAM and BLOSUM matrices being the most common ones) and a gap penalty function: 

matches between identical positions or frequent substitutions increase this score, whereas rare 

mismatches and insertions or deletions that add gaps to the alignment are penalised negatively. The 
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score of an alignment between two sequences is then obtained by adding up the scores at each 

position. In these scores, the penalties assigned to gaps generally follow a linear function, where the 

first position ‘opening’ a gap is more severely scored than following positions that ‘extend’ the gap 

(Figure 4). 

 

Figure 4: Process of scoring a pairwise sequence alignment. 

Top left: An extract of the BLOSUM62 substitution matrix, computed from sets of proteins with less 

than 62% of identical positions. Top right: The gap scoring system, which penalises gap openings more 

than extensions, to reflect that a single indel event may produce gaps over more than one position. 

Bottom: The alignment between two amino-acid sequences is scored by adding up the score of each 

position, according to the chosen substitution matrix. 

2.3 – Alignment algorithms, BLAST, and the speed-accuracy trade-off 

The theoretical number of possible alignments between two sequences grows extremely large 

as soon as sequences exceed a few dozen letters in length. Algorithmic methods have therefore been 

developed to identify the optimal alignments of two input sequences efficiently. Some of those 

algorithms are designed to provide the exact solution to this problem (i.e. the highest-scoring 

alignment possible), but this optimality results in a higher complexity that greatly slows computations. 

Notable exact algorithms include the Needleman-Wunsch algorithm, which uses dynamic 

programming to identify the optimal global alignment between two sequences [Needleman and 

Wunsch 1970], and the Smith-Waterman algorithm, which adapts the Needleman-Wunsch process to 

find local alignments between subregions of the sequences [Smith and Waterman 1981]. Probabilistic 

algorithms that rely on heuristics and approximations, on the other hand, can run much more 

efficiently to find alignments that get close to, but not always exactly on, the optimal solution. Most 
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notable among them is BLAST (Basic Local Alignment Search Tool), which has become a veritable staple 

to anyone working with sequence data [Altschul et al. 1990]. Most modern sequence databases 

published online now integrate some BLAST implementation to let users search an input sequence 

within the database records, leading to BLAST being sometimes presented as the ‘search engine’ for 

DNA and protein sequences. Perhaps unsurprisingly, the work we present here made extensive use of 

BLAST alignments too, and warrants a few explanations about the way it functions. 

 

Figure 5: Seed-and-extend search of local alignments using BLAST.  

BLAST identifies short segments of (near-)perfect identity between the query sequence and the targets 

(yellow points). These seeds are then extended into High-scoring Segment Pairs (HSPs), highlighted in 

red. Notice that more than one HSP can exist between the same sequences. 

From: [Jachiet 2014]. 

Like Smith-Waterman, BLAST belongs to the family of local aligners, which implement the notion 

that sequences can be similar for only some portion of their length, instead of their full span. It uses a 

particular heuristic called ‘seed-and-extend’, which assumes that high-scoring alignments must 

contain short segments of identical or near-identical letters (Figure 5). The first step of a BLAST 

alignment thus consists of finding ‘seeds’, i.e. identical or nearly identical segments between the two 

sequences (typically three letters long for protein alignments, and 11 letters for nucleotide 

sequences). Local matches called HSPs (High-scoring Segment Pairs) are then extended from each 

seed, towards the left and the right, until dropping significantly in quality, and the highest scoring 

alignment encountered during this extension is retained. HSPs from two consecutive seeds can 

sometimes overlap, in which case BLAST merges them together when beneficial. BLAST then returns 

all HSPs with a better score than a user-defined threshold. This output can be provided in a variety of 

formats, which can either make the exact alignment explicit or only specify the endpoints of each HSP 

along each sequence. 

Due to the rapid growth of the amount of sequence data now available and of the increased 

computing power of modern processors, BLAST is now generally used to align many sequences 

together at once, rather than simply two. In its implementation, there is therefore a distinction 

between query and target sequences. Typically, if one has obtained new gene sequences and wants 
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to check if they are any similar to genes already published in a database, the new sequences form 

together the query set, and sequences from the database are the targets. A single execution of BLAST 

can then search for alignments between any query sequence and any target. On the other hand, if one 

wants to compare between all pairs of sequences in a single set (in what we refer to as an all-against-

all alignment), then every sequence is both a query and a target. Each pair of sequences will then be 

compared twice (once in each ‘direction’), and it should be noted that results of bidirectional 

alignments can sometimes differ slightly, due to algorithmic optimisations that improve calculation 

times but disrupt the symmetry of the comparison. 

2.4 – Understanding an alignment output: what are the relevant 

metrics? 

 

Figure 6: Example of a protein sequence alignment with BLAST. 

(A) Tabular BLAST output of an all-against-all alignment between a toy set of 5 sequences. (B) 

Alignment descriptors used in a typical BLAST output. Note that these only qualify the aligned region: 

for instance, the pident column only counts the positions within each HSP. (C) Detailed output of BLAST 

showing the explicit alignment between seq2 and seq3. Highlighted areas of text show the 

correspondence between fields in the tabular and the full alignment outputs. 

Raw alignment score values intrinsically depend on the choice of a scoring matrix and gap 

penalties, making it impossible to compare between search results that used different scoring 

systems. Other scoring metrics that can be applied more uniformly are therefore preferred when it 

comes to comparing alignments. In particular, the E-value is very frequently used to assess the validity 

of BLAST outputs (Figure 6). The E-value of an alignment quantifies how many hits of similar or better 

quality could be expected (hence, E) by chance between two random sequences of similar sizes. More 

precisely, an alignment between two sequences of length m and n with a raw score S (computed as 
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above) will be assigned an E-value of E = K∙m∙n∙e-λS – here K and λ, called the Karlin-Altschul 

parameters, normalise the influence on the E-value of the selected scoring system and its underlying 

assumptions about amino-acid frequencies in the protein space [Karlin and Altschul 1990]. The E-value 

thus decreases exponentially with the raw alignment score, with lower values indicating more reliable 

alignments that are less likely to come from a spurious similarity between sequences. When the target 

set is not a single sequence but a larger database, its size is factored into the E-value calculation, which 

then represents the expected number of similar hits against a random database of comparable size. 

The influence of the selected scoring system on raw alignment scores disappears when 

converting to E-values, but the resulting values are still a function of the query and target sizes. This 

means that comparing alignments based on E-values only formally makes sense when they are 

performed against the same target: looking up two genes in a same database can tell us which one 

‘fits’ the database the most, but looking up the same gene in two different databases (of different 

sizes) should not inform us on which one it fits best. In practice, an E-value grows proportionally with 

the size of the target, but since it decreases exponentially with the raw alignment score, that score 

remains the main deciding factor in expected values. Comparing across databases can thus be 

permissible with a proportional adjustment of E-values to take unequal database sizes into account. 

Choosing an E-value threshold under which to consider alignments as significant depends on 

the stringency that is required for the specific purposes of each analysis. The limit of 10-5 is commonly 

used, with sometimes even lower orders of magnitude for stricter filters. Even at E-values of 10-5, 

similarities between two sequences are sometimes difficult to discern visually, and the E-value 

threshold is often coupled with other criteria to evaluate alignments. The percentage of identical 

positions within the alignment, and the fraction that it covers on the entire length of each sequence, 

are in particular often used in tandem with an E-value threshold. Again, the choice of a threshold here 

depends on what kind of sequence similarities we are looking to find. Strict limits on alignment 

coverage will help identify full-length similarities between sequences, but lower thresholds are more 

adapted to local similarities, for instance when looking for common domains between complex multi-

domain proteins. Likewise, looking for near-identical sequences can warrant percentages of identity 

above 90% or even 95% (for instance, two organisms are generally considered to belong to the same 

species when their 16S rRNA genes have more than 97% identical nucleotides), whereas lower values 

are relevant for finding more distant similarities. There is, however, a lower limit of sequence similarity 

that can be detected in practice by sequence aligners. For amino-acid sequences, in particular, 

proteins that have less than 25-30% of identical positions (a range known as the “twilight zone” of 

protein alignment) are aligned by BLAST only with some difficulty [Rost 1999], meaning that distantly 
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related homologues may be missed by alignment searches. This issue of remote homology detection 

is discussed in further detail in a subsequent chapter, as it is one of the focuses of this thesis. 

2.5 – Different kinds of homology and sequence similarity 

Establishing significant similarities between the sequences of different genes or proteins usually 

serves to answer one question: do these genes/proteins stem from the same ancestor, i.e. are they 

homologous. Indeed, modern genomes are close to the only source of information at our disposal to 

study evolution, so we must rely on contemporary data to infer past events in the history of life3. The 

similarity between two sequences is thus used as a proxy to infer their homology, based on the 

strength of the alignment between the two (according to the metrics discussed above). In this 

subsection, we briefly review the different types of homology and their significance in the study of 

evolution. 

The perhaps ‘canonical’ scenario for sequence homology is that in which a gene, present in an 

ancestor organism, perpetuates itself in multiple extant organisms following a chain of speciation 

events. The term orthology was coined to describe such homology relationships in 1970, in opposition 

to the then-new concept of evolution by gene duplication, which was in turn called paralogy [Ohno, 

Wolf, and Atkin 1968, Fitch 1970] (Figure 7). Orthology is a particularly important notion for 

evolutionary studies, because the divergence of a set of orthologous genes presumably reflects the 

divergence of their hosts, and therefore an accurate definition of orthologous families is crucial to 

reconstruct phylogenies between species. Moreover, orthologues generally fulfil identical (or 

biologically equivalent) functions in different organisms, whereas paralogues are more likely to 

diverge in function after duplication4 (a process known as sub- or neo-functionalisation). Although this 

“orthology-function conjecture” is more a statistical genomic trend than an immutable law [Gabaldón 

and Koonin 2013], orthology is nevertheless an important resource for the functional annotation of 

 
3 Of course this is not strictly true: evolution was already studied before the advent of genetics, e.g. by 

analysing fossils (i.e. paleontology). However, fossils only provide morphological data, and are thus mostly 
relevant for animal and plant evolution, de facto overlooking microorganisms. Another source of evolutionary 
data is ancient DNA (aDNA), sampled in preserved specimens: naturally or artificially mummified remains, 
paleofeces, frozen material, etc. Because aDNA is subject to degradation, we can only sequence samples up to 
2 million years old [Willerslev et al. 2004, Kjær et al. 2022], meaning that aDNA will mostly be able to yield 
insights into comparatively recent evolution.  

4 When gene duplication was first described, its ability to produce functional innovations at a faster rate 

than local mutations led some scientists to view duplication as the driving force of evolution (see Introduction 
of [Ohno, Wolf, and Atkin 1968]: “Gene duplication now emerges as the prime factor of evolution”). Although 
duplications are clearly an important factor of evolution, further investigations have found that neo-
functionalisation was not the main outcome for duplicated genes [Shakhnovich and Koonin 2006]. 
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new genetic sequences and is the basis for numerous databases of functional clusters (including 

eggNOG and OMA, to name but a few). 

 

Figure 7: Different kinds of sequence homology. 

(A): A hypothetical scenario of evolution for one gene family. Successive events of speciation, gene 

duplication, and horizontal gene transfer give rise to paralogues, orthologues and xenologues in three 

extant species. As a result, the phylogenetic tree of the gene family (B) is incongruent with the species 

phylogeny (C). 

The two main types of homology, orthologues and paralogues, both represent ‘internal’ 

processes of gene inheritance that follow an arborescent model of divergence. However, genomes 

also evolve by more reticulate mechanisms, and horizontal gene transfer (HGT), wherein a gene from 

one organism is recruited into the genome of another one, is another significant process driving 

evolution. Two genes that are related in this manner are termed xenologues (Figure 7). Far from 

marginal, this process is actually ubiquitous in prokaryotes, which routinely exchange genetic 

information with their counterparts, even when only very distantly related. Several mechanisms 

contribute to HGT in prokaryotes, including gene transductions mediated by viruses, exchanges of 

plasmids between cells in membrane-to-membrane contact, and direct uptakes of extra-cellular 

genetic material from the environment (Figure 8A). As a result, the prokaryotic world is often 
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described as one huge interconnected gene pool, sub-compartmentalised by genomes of distinct 

lineages but with little to no rigid barriers [Bapteste et al. 2009]. This process is essential for microbial 

adaptation and survival: due to their asexual mode of reproduction that does not involve genetic 

admixture, other sources of genetic innovation are vital to prevent a gradual accumulation of 

deleterious mutations that eventually leads to extinction5. In eukaryotic lineages, HGT is a far less 

frequent occurrence, partly because of the existence of the nucleus that segregates chromosomes 

from the rest of the cellular milieu. Still, multiple cases have been documented, including gene uptakes 

from bacteria, but also between plants and fungi. Another particular case concerns the transfer of 

genetic material between the nucleus of a eukaryotic cell and its organelles. Mitochondria, present in 

all eukaryotes, and chloroplasts, responsible for the photosynthetic ability of plant and algal lineages, 

both result from endosymbiosis events with bacteria, and thus possess genomes. The ‘protection’ 

offered by an endosymbiotic lifestyle allowed major reductions in the gene content of mitochondria 

and plastids, and instances of gene flow between organelles and the nucleus have been recorded in 

just about every direction (Figure 8B). In all these instances, from the prokaryotic ‘web of life’ to 

eukaryotes and their organelles, gene transfers result in homology relationships that challenge the 

strictly tree-like view of evolution.  

 
Figure 8: Horizontal gene transfer between prokaryotes and within eukaryotic cells. 

(A) Prokaryotic organisms can exchange genetic material in a variety of ways: direct environmental 

intake (a), cell-cell conjugation (c), mediation by mobile genetic elements (b, d). From: [Brito 2021]. 

(B) Gene flow routes between organelles and nuclei in eukaryotic cells. The thickness of arrows 

represents the frequency of each exchange route. From: [Kleine, Maier, and Leister 2009]. 

 
5 This process, known as Muller’s ratchet, was first introduced by the American geneticist Hermann Muller 

in a 1932 talk titled “Some genetic aspects of sex” [Muller 1932]. The term itself was coined by Joseph Felsenstein 
in his 1974 paper “The evolutionary advantage of recombination” [Felsenstein 1974]. 
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When discussing homology relationships thus far, we have mostly focused on genes and 

proteins as units, and considered sequence similarities that span the majority of the length of each 

sequence. However, sequences may also resemble each other only in some part of their length – this 

is, for instance, implicitly stated by the design of local sequence aligners. Two proteins can share the 

same domain, but can each have a second domain that is absent in the other. In this case, should we 

consider these proteins to be homologues, if some part of them descends from a common ancestor 

but others do not? To clarify this relationship, we can say that the shared regions are homologous, 

and that the two proteins as a whole are partial homologues – here “partial” does not qualify the 

strength or the quality of the homologous region, but rather that it is indeed only a subregion of the 

whole sequence. This also implies that gene sequences can be composites of different subunits from 

different origins: in the same way that HGT introduces mosaicism to genomes, genetic remodelling 

introduces mosaicism to genes. This is far from a fringe phenomenon, as multi-domain proteins are 

estimated to represent 65-80% of the proteome in Eukaryotes, as well as 40-60% in prokaryotes [Apic, 

Gough, and Teichmann 2001, Ekman et al. 2005]. Along with remote homology, partial homology and 

gene recombination is the second focus of this thesis, and we return to these notions in greater detail 

in a future chapter. 

In summary, sequence similarity is an extremely important descriptor to infer homology, but it 

is not an infallible one. First, distantly homologous sequences can be difficult to align past a certain 

point of divergence; second, several evolutionary processes (e.g. gene duplication, HGT, gene 

remodelling) can result in incongruences between the evolution of a gene family and that of its hosts. 

Additionally, gene families can take complex evolutionary trajectories involving processes that are 

sometimes incompatible with the usual arborescent representation of its history. As such, other 

modelisations of a gene family can complement this tree-centric view in a useful way. The present 

work, in particular, relies heavily on sequence similarity networks, which attempt to provide a more 

holistic representation of the gene-to-gene (or protein-to-protein) relationships within families. 

Networks in general, and sequence similarity networks in particular, are the focus of the next section. 

3. Sequence similarity networks 

3.1 – What do we talk about when we talk about networks 

The term “network” is a recurring buzzword that has permeated common parlance around a 

broad variety of topics. The word is perhaps most frequently used in relation to technology and 

telecommunications (as in social networks, neural networks, and implicitly in internet), but also 

appears in interpersonal contexts (attending networking events, for instance, is often recommended 
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to people looking to grow their professional network). Under this jargon lies a specific approach to 

model certain types of data, which is extensively studied by mathematicians and computer scientists, 

and applied to numerous scientific areas such as biology, physics, sociology or economics. Networks 

provide intuitive visual representations of relationships between data points, backed by a robust 

theoretical framework that provides quantitative ways to describe these relationships. 

 
Figure 9: Using the network view to represent a list of social interactions. 

(A) A list of all friendly interactions represented on screen in the first series of The Office (US) (subject 

to personal interpretation). 

(B) The same interactions represented as a network: each node corresponds to a character, and edges 

are drawn between characters that have an interaction listed in (A). Note that Jan is absent from the 

list in (A), as she is never shown to be more than neutral with any other character despite appearing 

in 4 out of 6 episodes. 

Let us take advantage of this visual quality to introduce some basic notions of network science 

with an example, based on one of the most popular comedy TV series of recent years: the American 

sitcom The Office (2005-2013). This TV show follows the day-to-day lives of employees in the Scranton 

regional branch of the (fictional) paper distribution company Dunder Mifflin. Over nine series, viewers 

can follow the evolution of interpersonal relationships between all the employees, ranging from 

romantic to friendly or cordial, all the way to hostile. As the series goes on, the overall social structure 

of the Scranton office is heterogeneous and dynamic. To represent the current state of relationships 

at a given point in the show, we could for instance list all the friendships and all the animosities that 

the relevant characters entertain with one another. This would, of course, be a slightly reductive 

depiction of the more complex social dynamics that the authors portray on screen, but could still give 

a fairly accurate idea of affinities between characters. However, this list would perhaps be ineffective 
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at depicting the global office relationship picture in a convenient visual way, given the cast of 18 

recurring characters in the first series alone. This is where the network view comes in, providing a 

descriptive figure that depicts the same information as the friendships list in a perhaps clearer way 

(Figure 9). In this figure, each character in The Office is represented by a node, and links (or edges) 

connect characters that are friends, or at least friendly, in the pilot series.  

 

Figure 10: Visual representation of different characteristics of a dataset. 

(A) The Office network with nodes coloured according to their degree, indicating how many other 

nodes they are connected to. 

(B) The same network with nodes coloured according to their betweenness centrality, indicating the 

importance of each character for the overall cohesion of the social structure. 

(C) The same network with nodes coloured according to the department each character works in. This 

shows both the size of each department, and the fact that coworkers form relationships with people 

across specialisms. 

Structural features and patterns of connectivity in the resulting network reflect certain features 

of the social community. Some people concentrate many positive relationships, such as Jim the 

friendly salesman or Pam the quirky receptionist, while others seem generally disliked; secondary 

characters, usually working in a different place to the main office (e.g. Todd and Katy), only relate to 

a small number of employees in the main cast, and are mainly indifferent to the rest. In network terms, 

popular characters are represented by nodes with a high degree (the number of adjacent edges), and 

less popular ones with lower degree nodes (Figure 10A). Distinct social groups can also be identified 

as disconnected clumps, i.e. connected components: the largest component gathers most characters 
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depicted rather positively, whereas four ‘antagonists’ are grouped separately, and Jan the upper 

manager forms a singleton (an unconnected node) as she is not shown to be friendly with anyone.  

Other network properties can illustrate other social dynamics in interesting ways. For instance, 

we can test whether “the friend of my friend is my friend” holds true, by looking at trios of nodes: Jim 

is friends with Pam, who is friends with Roy, but Jim and Roy do not seem to be friends (we can say 

that they form a non-transitive triplet). This notion of (in)transitivity also suggests that if people can 

belong to the same social group only because of common friends, or even friends-of-friends, then 

some people (intuitively among the more popular ones) may act as ‘social glue’, centralising the 

cohesion of their group that would perhaps be more fragmented in their absence. Such people are 

represented by nodes with a high betweenness centrality, also called hubs, in the social network 

(Figure 10B). For instance, Dwight has a betweenness of 0.67 because he is in the middle of two out 

of three interactions between other people in his social cluster (he mediates Angela-Michael and 

Angela-Todd interactions, but not Michael-Todd). 

Analysing the topology of a network, i.e. the structure of its nodes and edges, can therefore 

provide significant quantitative information about the underlying data. But another strength of 

network analyses is that this information can be conveyed visually by different graphical features of 

the network’s image representation. Playing with specific visual properties, such as node size, colour, 

or shape, can help to highlight specific properties. Making nodes bigger when they have higher 

degrees, for instance, is a common way to bring attention to the most ‘active’ agents of a network. 

Qualitative information can also be mapped to the network representation, to enrich the image with 

additional data. For instance, colouring nodes in the Office network based on the department of their 

character (sales, accounting, customer service, management, etc.) shows that these departments vary 

in size, and that bonds between coworkers are not necessarily restricted to one’s own job type (Figure 

10C). 

The layout of a network (i.e. the spatial distribution of nodes in the 2D plane) is also an 

important visual vector of information. Because our minds rely on pattern recognition for visual cues, 

we intuitively expect co-located nodes to be strongly connected (and vice-versa), with central nodes 

in the middle of the grouping and peripheral nodes closer to the edge. This visual proximity bias can 

sway our understanding of the data being depicted: artificially placing the node representing Angela 

at the centre of the network, for instance, could fool us into thinking that she is unanimously liked by 

her coworkers. Selecting an appropriate layout algorithm that accurately depicts the information we 

wish to convey from a network analysis is therefore essential. Most network layouts used for large 

datasets try to minimise the distance between closely connected nodes, usually by mimicking the 
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stabilisation of a physical system: edges are modelled as springs that can pull together nodes or push 

them away, and the layout algorithm simulates this system until reaching a stable conformation. 

The graphical depiction of a network can be a useful tool to guide the analysis of a dataset, as 

it offers visual support to make hypotheses based on observed trends. It can reveal patterns that were 

not initially anticipated and that may not have been considered in the initial collection of data. Still, 

for large datasets, the visual representation of a network may not be able to convey the full complexity 

of the data: in a similar way to a principal component analysis, a network layout is only a 2D projection 

of a dataset with a potentially much higher dimensionality. In many cases, the qualitative approach 

must be complemented by computational and statistical work to draw more objective conclusions 

from the network. The underlying paradigm is that relationships between elements of a dataset are 

relevant to the characteristics of these elements, and contribute to shaping the data itself. Therefore, 

more than being simple surface-level descriptors of a dataset’s contents, network representations can 

provide pertinent insights into its specificities and dynamics. This is the conceptual basis of network 

science, which is the quantitative study of relational data, as well as the main lens through which we 

approach biological data in this work, primarily by constructing and analysing sequence similarity 

networks [Watson et al. 2019]. 

3.2 – Constructing sequence similarity networks  

As we have established in previous sections, sequence comparisons are now ubiquitous in 

modern biology. Whenever a new set of sequences is generated, for instance, one of the first steps of 

analysis usually consists of comparing them in an all-against-all pairwise alignment. This is generally 

done in order to pool sequences into groups of high similarity [Zou et al. 2020]. This is allows data 

inspection at a higher level of abstraction, for instance by constructing Operational Taxonomic Units 

to work at the level of species (or higher) rather than individual sequences [Blaxter et al. 2005]. This 

clustering can also be useful to minimise the computational load by dereplication: groups of identical 

or near-identical sequences are reduced to a single representative, under the assumption that the 

informational loss of removing this redundancy is negligible [Fu et al. 2012].  

Underlying each of the examples above is the issue of the general organisation of a sequence 

dataset: how are sequences similar and distinct from one another? Am I working with a mere handful 

of major archetypes, or a constellation of small unrelated sequence groups? These questions pertain 

to the overall structure of the data at hand, and as we have argued earlier, network representations 

are well suited to address these – and specifically, because we are talking about pairwise comparisons 

between biological sequences, sequence similarity networks. 
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Sequence similarity networks (SSNs) consist of nodes representing sequences from a given 

dataset, and of edges linking pairs of sequences that meet a predetermined criterion for similarity. 

This criterion can in theory be anything, but will most frequently correspond to thresholds on one or 

more metrics that can be applied to pairwise sequence alignments (e.g. E-value, alignment identity, 

alignment coverage). Indeed, SSNs are usually constructed by performing an all-against-all BLAST 

alignment on the dataset (using the same set as both query and target sequences). This produces a 

list of pairs of sequences that were successfully aligned (Figure 11A), with (if specified prior to 

execution) the corresponding metrics for each alignment. Any alignment reported by BLAST that fails 

to meet the thresholds determined for the specific purpose of the SSN is then discarded.  

 

Figure 11: Constructing a sequence similarity network from a tabular BLAST output. 

(A) An example tabular BLAST output, as in Figure 6, with added columns representing the coverage 

of each alignment (in %) on the query (qcov) and subject (scov) sequences. 

(B) Taking the raw BLAST output as a list of edges produces a network with duplicate edges 

(bidirectional hits) and self-loops (self-hits).  

(C) The network in (B) is filtered to remove self-loops, bidirectional edges and hits with less than 30% 

amino-acid identity, resulting in a ‘clean’ sequence similarity network. 

At this stage, all remaining alignments correspond to pairs of sequences that we do wish to be 

linked in the SSN, with a couple of caveats. First, because the entire sequence dataset is used as both 

query and target by BLAST, each sequence will be compared to itself once in the process, resulting in 

self-alignments with perfect scores that obviously pass any criterion for similarity (Figure 11B). These 
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‘self-loops’ in the BLAST output are entirely uninformative from a biological standpoint, and should 

therefore be discarded. Second, because the BLAST alignment process is asymmetrical, each pair of 

(distinct) sequences is actually compared twice: when sequence X is used as query, it is compared to 

all other sequences including sequence Y, and conversely when Y is the query it is also compared to X. 

This produces, in the ‘unfinished’ SSN, two directed edges between X and Y, one in each direction if 

raw alignment outputs are read as being oriented query-to-target. These two alignments can have 

slight differences of E-value or base identity due to the nature of the BLAST algorithm – in rare cases, 

the similarity criteria can even retain one edge but not the other, when the gap between their scores 

overlaps the thresholds considered. Again, this does not have any biological meaning, as we intuitively 

want similarity relationships to be reciprocal, and so duplicate edges should also be removed, usually 

by keeping the highest-scoring alignment out of the pair (Figure 11C).  

In short, the construction of a SSN from a raw BLAST output can be carried out following three 

main steps once the similarity criteria have been set: (i) apply the criteria to remove alignments of 

insufficient quality, (ii) delete self-loops, and (iii) remove duplicate edges by discarding the weakest 

alignment of a bidirectional alignment pair. Of course, the key step in this process is the definition of 

similarity criteria that are suitable for the eventual purpose of the SSN, as their stringency or leniency 

dictate entirely the density of edges in the network as well as their signification. Extremely strict 

thresholds on sequence identity, for instance, will create sparser networks (possibly with many 

connected components) where edges represent remarkable similarities between closely related 

sequences, whereas more relaxed thresholds will yield dense networks connecting sequences more 

distantly related. In real-world biological data, there is rarely a clear-cut threshold of sequence identity 

or E-value guaranteeing that all sequences above the threshold, and only those, are homologous. It is 

therefore for the biologist to decide how strict the criteria for constructing the SSN should be, to best 

mitigate the risks of including false-positive similarities, and of excluding tenuous but real homologies 

(Figure 12). 
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Figure 12: Selection of a threshold for filtering sequence alignments. 

The overlap in sequence similarity between homologues and non-homologues makes the choice of an 

appropriate threshold crucial. 

3.3 – Similarity networks and sequence families 

In an earlier section, we discussed the connection between sequence similarity and sequence 

homology, and we came to the conclusion that although one does not necessarily imply the other, 

similarities between sequences could generally be considered as a sign of homology provided they 

rely on adequate thresholds of alignment quality. Therefore, under this assumption, by constructing 

similarity sequence networks, are we then not constructing sequence homology networks too? In that 

case, if we apply criteria coherent with sequence homology when constructing a SSN, what can it then 

tell us about evolutionary relationships between the sequences it represents?  

The implicit expectation behind the definition of homologous gene families (as sets of genes 

that share a common ancestor) is that all genes in a family should have the same evolutionary history. 

In other words, those genes should all be homologous to each other even if they cannot be aligned 

together directly: the similarity network of that family might not be a fully connected clique, but the 

underlying, hypothetical homology network is. Even if two homologous genes have diverged too much 

to be readily aligned, they might both still have some similarity with a common neighbour, a sort of 

intermediate sequence bridging the gap between the distant homologues. Taking this idea further, 

distant homologues might not even have a direct common neighbour but may be linked by a longer 

chain of intermediate homologues. Thus, in an SSN, any two sequences connected by either a direct 

edge or a longer path would be considered homologous: connected components of the SSN therefore 

delineate exactly the different gene families in the dataset. This approach to reconstructing gene 
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families is called single-linkage, and aims to permit the identification of homology relationships 

beyond the detection scope of sequence alignment.  

In practice, applying a single-linkage protocol to reconstruct sequence families is likely to 

connect sequences that are barely homologous, if at all. A number of pathological patterns can emerge 

from chains of sequence alignments that do not conform to the expectation stated above for a 

common evolutionary history (Figure 13). This is true even with strong constraints on the proportion 

of each sequence that must be covered by an alignment, such that this mode of reconstructing gene 

families is only really suitable for strongly conserved, evolutionarily stable families. Indeed, we used 

this compatibility with conserved sequences to expand gene families with distant homologues, by 

applying additional constraints to link together sequences in SSNs. This is the object of the next 

chapter of this thesis. 

 

Figure 13: Anomalous patterns in chained sequence alignments. 

Each black line represents a sequence, and the aligned regions between two adjacent sequences are 

shaded in blue.  

(A) Sequences can align over different regions, such that only a narrow portion of each sequence is 

really common to all. 

(B) Successive alignments can result in a sliding or staircase pattern, connecting distant sequences 

without any actual correspondence between them. 

The aforementioned imposition of a high mutual coverage in sequence alignments (and, even 

before that, the definition of gene families as sequences with the same evolutionary path) de facto 

excludes partial homology relationships: if two gene families share a portion of their length but are 

otherwise unrelated, then the single-linkage approach to constructing gene families will simply not 

reflect this partial homology information. A part of the evolutionary history of these gene families is 

therefore overlooked, assuming that this shared region (e.g. a common protein domain) is indeed 

descended from the same ancestor in both families. To take into account such relationships, the 

method of constructing SSNs must be adapted to reflect the plurality of sequence similarities, with 
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partial or full coverage of the aligned sequences. Using such similarity networks that account for 

partial homology, in order to study the dynamics of gene remodelling and combinatorial evolution, is 

the focus of the third chapter of this thesis. 

 
Figure 14: A sequence similarity network representing the SMC protein family. 

Nodes in the network are coloured according to their Domain of life. Pale green indicates sequences 

of CPR bacteria, and other bacterial sequences are shown in dark green. Similarly, DPANN and other 

Archaea are represented in pale and bright yellow respectively. Lastly, shades of red correspond to 

four different SMC paralogues in Eukaryotes. 

The topology of the network reflects the evolution of SMC proteins: CPR and non-CPR bacteria are 

grouped separately, reflecting the divergence between these two bacterial groups; eukaryotic 

sequences clearly cluster with the same paralogous copies; the small clump of green near Archaea 

represents sequences from Cyanobacteria, which are suspected to have acquired their SMC gene in a 

HGT event of archaeal origin. 

As discussed earlier (in the context of OTUs and sequence dereplication), analysing large 

amounts of data will often call for a reduction of the complexity and dimensionality of the dataset in 

order to operate at higher levels of abstraction. With the massive accumulation of biological data in 

the past few years, SSNs (like any other bioinformatic tool) are now being used to handle large sets of 

sequences that can contain tens of thousands of nodes, and thus edges numbering in the (tens of, 

hundreds of) millions. A higher-order view of relationships in the dataset is therefore imperative, 

which brings us back to the importance of identifying highly cohesive groups of sequences in the 

network. The single-linkage principle is one such approach, but it can often fail to reach the necessary 

level of granularity, especially because large SSNs frequently contain a ‘giant’ connected component 

that concentrates a majority of the nodes [Newman, Strogatz, and Watts 2001, Halary et al. 2010]. 

Therefore, less blunt methods can also be fruitful, by recognising that attachment within connected 

components is not random, such that several tightly knit groups of sequences can exist in the same 

component. In this way, the overall structure of an SSN reflects the underlying organisation of its gene 
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set, beyond simple connectivity (Figure 14). Clustering algorithms can identify coherent groups of 

preferential attachment in large networks, allowing the subdivision of SSNs into clusters of similarity 

that can, for instance, distinguish between gene families that were connected together in a giant 

component. In later chapters of this thesis, we discuss several uses of network clustering in SSNs, in 

particular to identify divergent variants within gene families, and to delineate families in networks of 

partial homology. 

4. Reconstructing the evolutionary history of poorly 

characterised proteins 

 

Figure 15: Proportion of uncultured cells in natural and human-associated environments. 

Only 19% of Earth’s microorganisms belong to cultivated lineages, with 25% being from phyla with no 

cultured representative. In human and human-associated microbiomes, more than 80% of cells are 

from cultivated genera.  

Data from [Lloyd et al. 2018], illustration from [Hug 2018]. 

Although the genomics revolution that ushered in a boom in the number of gene and genome 

sequences available allowed unprecedented insights into the diversity and evolution of living 

organisms and their function, it also revealed a perhaps unsuspected complexity of the gene universe. 

In particular, vast amounts of gene sequences remain poorly characterised to this day, even in the 

core genomes of intensively studied organisms such as the Escherichia coli K12 strain that is used in 

countless microbiology labs [Cummins et al. 2022]. In addition to ORFans, i.e. genes encoded in only 

one genome with no apparent orthologue, sequence databases are rife with hypothetical proteins 

that have been predicted by computational methods in several genomes but never confirmed 

experimentally, often containing DUFs that hinder attempts to understand their function. Even more 

striking is the abundance of uncharacterised sequences in environmental metagenomes. While host-
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associated microbiomes (such as the human gut microbiome that is highly popular in the media) are 

relatively well understood, at least in their composition, studies of microbiomes in natural 

environments paint a different picture, in which genes of unknown taxonomical origin and/or 

biological function make up the overwhelming majority of the microbial genetic space (Figure 15).  

These uncharacterised genes, performing undescribed functions in microorganisms well known 

or otherwise, constitute a major lacuna in our understanding of the diversity of life and its molecular 

processes. The difficulties encountered by canonical annotation methods (generally based on 

sequence orthology inferences) to qualify these sequences suggest that maybe their divergence stems 

from unusual evolutionary trajectories beyond the scope of those methods. If that hypothesis is true, 

then alternative approaches targeted to address specific causes of sequence divergence may be well 

suited to complement more general models. 

4.1 – Distant homologues fly under the radar of sequence alignment 

In previous sections, we discussed the links between sequence similarity and homology, and in 

particular how sequence alignments are the main empirical data used to infer evolutionary 

relationships between genes. However, we also mentioned that genes can have low sequence 

similarity (resulting in failed or low-scoring alignments) but still be distantly homologous. 

Perhaps one of the best ways to illustrate distant homology is to consider the case of ancestral 

gene families that appeared early in the history of life on Earth, typically prior to LUCA (the Latest 

Universal Common Ancestor) and the separation of Archaea and Bacteria, some 3.5 billion years ago 

(to use a conservative estimate). A large portion of these genes are present in all major lineages of 

cellular life, and involved in fundamental biological processes such as information processing 

(transcription, translation) and DNA maintenance. Sequences of such key genes generally evolve 

under strong forces of purifying selection and consequently diverge more slowly than the average of 

gene families. Yet, because of their remarkable evolutionary age, the gradual accumulation of 

mutations in their sequences can diminish the sequence similarity between ancestral genes in 

distantly related organisms, beyond the scope of detection by sequence alignment. 

The erosion of sequence similarity within a gene family can also occur when genes on a specific 

branch of the family develop faster rates of mutation than their counterparts. This is commonly 

observed, for instance, in the aftermath of a gene duplication event, where the increase in copy 

number relaxes the purifying pressures on a gene sequence, allowing one of the paralogues to 

accumulate mutations and develop a new function while the other copy retains its original role. This 
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rapid divergence in primary sequence can also appear between orthologues present in different 

lineages, e.g. when changes in selective pressure can quickly favour beneficial adaptive mutations.  

Remote homology can be problematic when trying to explore a new sequence dataset that is 

yet to be annotated. Most annotation processes in biology rely on previous knowledge, e.g. a 

reference database of functionally resolved genes, and target genes are compared directly against 

references. Direct homologues of reference genes are easily identified and given an annotation, but 

the target database may also contain genes that are only distant homologues of the reference set – 

for instance, because they correspond to unknown paralogues or come from divergent lineages. These 

indirect homologues might not be picked up by simple alignment-based searches from the reference 

database, despite their evolutionary connection to them. This is especially problematic when 

considering that our current knowledge of the extant diversity of genomes and life forms on Earth is 

far from complete. In most environmental metagenomes, for instance, sequences that can confidently 

be mapped back to well-characterised lineages and functions only represent a small fraction of the 

entire microbial diversity. Many important discoveries have come from exploring this “microbial dark 

matter” [Marcy et al. 2007, Rinke et al. 2013], but many unknowns remain about the full nature of 

microbial life on Earth [Bernard et al. 2018]. Therefore, if this partial knowledge is our basis for 

studying and understanding the biological world, then the insights we gain from it may not be fully 

comprehensive. Methods that are able to address this distant homology in an efficient and reliable 

way could therefore improve biological knowledge, by providing a comprehensive picture of the 

diversity of gene families. 

4.2 – Remodelled genes and the combinatorics of evolution 

In addition to tree-like evolutionary processes that occur within the boundaries of gene families, 

such as vertical modifications, duplications or horizontal transfers, genes can also undergo more 

combinatorial processes that involve ‘subunits’ of several genes from unrelated families. In particular, 

genes can merge with others, split into several independent genes, or recombine regions of their 

sequence into new arrangements during the course of evolution. When thinking about genes as 

assemblages of protein domains [Forslund, Kaduk, and Sonnhammer 2019], for instance, this idea of 

cross-combination between the contents of different genes can help to explain the modular nature of 

multi-domain proteins as well as the sometimes patchy phyletic distribution of domains in distantly 

related proteins. In this work, we focus specifically on gene fusions and gene fissions, which we group 

together under the term of gene remodelling events, although we recognise that other kinds of 

combinatorial processes exist in gene and protein evolution. 
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Events of gene remodelling can occur in different ways following a change in genomic 

organisation [Marsh and Teichmann 2010, Leonard and Richards 2012]. The loss of a stop codon 

and/or a larger intergenic region, for instance, can merge the sequences of two adjacent genes that 

will now be transcribed as one (an event called gene fusion). Conversely, the emergence of a stop 

codon and a new transcription initiation sequence inside a gene can split it into two new distinct genes 

(gene fission). In addition to these ‘local’ events, gene fusions and fissions can also result from broader 

scale chromosomal rearrangements, such as translocations that can bring together genes that were 

formerly sitting at distant places in the genome.  

The primary lens through which gene fusions and fissions are perceived is that of protein 

domain rearrangements. Indeed, multi-domain proteins represent the majority of proteins both in 

Eukaryotes and prokaryotes, and their functional coherence allows for many insights into the role that 

those proteins play in different biological processes. On the other hand, domains do not represent the 

full extent of biological sequences, and many CDS are not covered by any domain [Mistry et al. 2021]. 

For this reason, they provide a good but only partial picture of the evolutionary significance of gene 

remodelling. More comprehensive models, taking a more systematic approach to the characterisation 

of partial homology, can complete this picture and describe in further detail the dynamics of 

combinatorial processes as a whole. There also exists another source of bias in a number of gene 

remodelling studies, which consists in a heavy focus on gene fusion events, sometimes to the 

detriment of gene fission. Genes that have partial homology to two separate gene families are 

sometimes automatically considered as fused, even though in reality some may have been split by a 

gene fission event, which gave rise to the other two families. Avoiding this pitfall is necessary in order 

to present an accurate view of combinatorial evolutionary processes. 
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5. Aims of this doctoral thesis 

 

Figure 16: Canonical, remote and partial homology. 

The three main types of homology that we discuss in this thesis produce different alignment patterns 

and therefore different motifs in sequence similarity networks.  

During the three years of my doctoral research, I have developed and applied new methods, 

based on network science and in particular sequence similarity networks, to study two main types of 

evolutionary relationships between genes: distant homology, and partial homology from gene 

remodelling events. 

In Chapter II of this thesis, I detail the work that we conducted on using sequence similarity 

networks to identify and describe distant homologues of known gene families in an environmental 

dataset. We sought to measure the genetic and phylogenetic diversity of highly conserved gene 

families, typically as old as cellular life, when uncultured organisms are taken into account. In 

particular, we were interested in finding divergent groups of sequences compatible with new 

microbial lineages branching near the root of the tree of life. To that end, we performed iterative 

homology searches, from a set of reference ancestral gene families, in a large oceanic metagenome. 

We showed that many of these families have important groups of divergent homologues in the global 

ocean microbiome, and that new major discoveries remain possible from microbial dark matter. We 
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found, in particular, a new putative paralogue of SMC proteins in Actinobacteria, with divergent 

structural features that are likely to indicate an alteration of the way this protein interacts with DNA. 

We also identified vast amounts of uncharacterised genetic diversity in DNA clamp-loading subunits, 

as well as in recombinases. In addition to reporting these results, we also prepared the publication of 

the computer programme that performs these distant homology searches. 

Furthermore, we used sequence similarity network analyses to detect gene fusions and fissions, 

which is detailed in Chapter III of this thesis. We studied these remodelling events in two different 

lineages of eukaryotes that independently evolved a multicellular life (brown algae and animals), and 

we sought to understand the effects of gene remodelling on the emergence of complex 

multicellularity. In both of these studies, we combined network information and phylogenetic signal 

to ‘polarise’ the inferred remodelling events, distinguishing between gene fusion and fission. We 

found that fusions were slightly more frequent than fissions in brown algae, and that the majority of 

these events occurred in the early stages of their evolution. The genetic products of fusions and 

fissions only represented a small portion of all brown algae genes, but they tended to be more retained 

than non-remodelled genes in extant genomes. In animals, we found that fusions were significantly 

more prevalent than fissions, and that bursts of gene fusions occurred at key nodes of animal 

evolution. Additionally, many gene fusions appeared convergently in several places of the animal 

phylogeny, in a pattern of repeated evolution of successful innovations. These results on gene 

remodelling in two different lineages allow us to draw comparisons between how remodelling might 

have contributed to each of their independent emergences of multicellularity. 

Overall, this research highlights the multifactorial nature of evolutionary processes beyond 

conventional models of gradual and arborescent evolution, and demonstrates the importance of 

taking this diversity of processes into account when trying to understand biological sequences in a 

more comprehensive manner. 
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Chapter II. Remote environmental 

homologues of conserved protein families 

 

Figure 17: Uncultivated lineages enrich the modern Tree of life. 

(A) Phylogenetic tree of all known major lineages, with CPR bacteria and DPANN archaea highlighted, 

constructed from a concatenated set of 14 ribosomal proteins. 

(B) Reconstructing a phylogenetic tree with only archaeal sequences restores the monophyly of the 

DPANN clade, which was not monophyletic in the full tree. 

From: [Castelle and Banfield 2018]. 
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1. The great unknowns of environmental genomics 

1.1 – Microbial dark matter: the unseen majority 

Microbial life forms are virtually everywhere, populating just about every single corner of Earth, 

from our own bodies to the deepest waters of the oceans. Despite their extremely low individual mass, 

microbes as a whole (which includes archaea, bacteria, viruses and unicellular eukaryotes) represent 

the second largest share of global biomass, far behind plants but far ahead of animals and fungi [Bar-

On, Phillips, and Milo 2018]. The tree of life is also dominated by microbial lineages, relative to which 

multicellular organisms only represent a tiny fraction of the overall phylogenetic diversity. 

Our knowledge of microorganisms still, to this day, derives primarily from strains that can be 

isolated and grown in laboratory conditions. The historical reasons for this are numerous, starting with 

the fact that the precursors to modern microbiology were largely concerned with the study, 

prevention and healing of infectious diseases. In the late 19th century, Robert Koch formulated a 

series of principles for establishing a causal link between a microbe and a disease, in which he 

stipulated the need to isolate and grow the microbe in pure cultures [Koch 1877]. Unquestionably, 

microbial cultures remain entirely relevant to today’s biology, as they provide unparalleled insights 

into the functioning of microorganisms. However, the advent of environmental genomics, starting in 

the 1990s, revealed a strikingly large diversity outside the scope of culture-based studies, and led to 
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the realisation that traditional cultivation techniques are only compatible with a small minority of 

microbial life forms [Staley and Konopka 1985, Whitman, Coleman, and Wiebe 1998]. Surveys of 16S 

rRNA diversity in natural environments have repeatedly found large numbers of OTUs that could not 

be confidently assigned to any of the known bacterial and archaeal phyla. From the early 2000s, the 

improvements and democratisation of cultivation-independent shotgun sequencing and high-

throughput sequencing allowed biologists to sequence the entire DNA contents of an ecosystem at 

once, rather than single-gene amplifications. In these metagenomes too, the vast majority of genes 

proved difficult to annotate, taxonomically and/or functionally. This is especially true of sequences 

derived from natural environments, although host-associated and man-made microbiomes also 

harbour significant amounts of genes of unknown origin and function [Lloyd et al. 2018]. This colossal 

repertoire of untapped microbial diversity is collectively referred to as “microbial dark matter” (MDM), 

in direct analogy to the dark matter of the cosmological kind. The term is somewhat loosely defined, 

and can refer either to the set of microorganisms that do not belong to any well-established lineage 

(MDM in the cellular sense), or to the set of genome sequences with elusive taxonomical origin and 

biological function (MDM in the molecular sense). Still, microbial dark matter is a useful shorthand for 

the vast diversity of unknown microbes and microbial genes that may contribute to ecosystems in 

unsuspected ways. 

The genomic content of MDM can be unravelled to access the genes and genomes that are at 

play in microbial ecosystems. From raw metagenomic reads (typically 100-500 bases long), the 

sequencing data is filtered and processed in order to discard low-quality sequences, as well as possible 

contaminant DNA (e.g. host DNA in human gut microbiomes). The remaining sequences are then 

assembled into longer contigs, based on overlapping regions between reads. Coding DNA sequences 

(CDS) can be detected from these contigs to gain insights into the ecological composition and function 

of the sequenced microbial community. The accuracy of this assembly step is therefore of particular 

importance, especially to avoid producing chimeric contigs that merge sequences from different 

organisms. The identified CDS can then be curated into a clean metagenome that contains all microbial 

genes detected6 in the sample. Although already informative in itself, the gene pool of a sampled 

biome can be further studied by binning contigs in order to reconstitute the genomes of sequenced 

organisms. In addition to bringing additional hierarchy to otherwise unstructured metagenomes, 

these metagenome-assembled genomes (or MAGs) allow for a deeper understanding of in situ 

microorganisms and their diversity, for instance by enabling phylogenetic reconstructions from 

 
6 This generally represents an underestimation of the genetic diversity present in the sample: genes of 

low-abundance organisms can go undetected if the sequencing coverage is insufficient, and assembly algorithms 
can blend intraspecific variations in gene sequence. 
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concatenated gene sets. MAGs of uncultured microbes are of particular significance for MDM 

research, as they represent (along with single-cell amplified genomes) one of the only ways to bypass 

the prerequisites of cultivation for genomic analysis.  

1.2 – The tree of life in the light of uncultured organisms 

With the developments of environmental genomics, MDM is now far from entirely inscrutable, 

and has proven to be a formidable source of biological discovery in the past two decades. By turning 

MDM from a data-poor to a data-rich field of research [Jiao et al. 2021], cultivation-free sequencing 

has allowed for new major perspectives on our fundamental knowledge of life on Earth (Figure 17).  

Some twenty years ago, it was largely undisputed that the range of prokaryotic cell sizes hardly 

overlapped that of viral capsids [Koonin and Yutin 2019]. This assumption, however, was disproved by 

the discovery of CPR bacteria [Brown et al. 2015] and DPANN archaea[Baker et al. 2010, Rinke et al. 

2013], two novel prokaryotic lineages with ultra-small cell diameters of around 0.2 µm. Although they 

belong to different Domains of life, CPR and DPANN share a number of common features in addition 

to their nanoscopic sizes [Castelle and Banfield 2018]. Both are remarkably diverse, and are largely 

accepted as forming distinct superphyla in their respective kingdoms (although the monophyly of 

DPANN is somewhat less evident than that of CPR), with CPR representing somewhere between 15-

50% of all bacteria. The genomes of both CPR and DPANN have undergone significant reduction, and 

are typically only 0.5 to 1 Mbp long, in line with other prokaryotes that live obligate symbiotic or 

parasitic lifestyles [Castelle et al. 2018]. In comparison, the alphaproteobacterium “Candidatus 

Pelagibacter communis”7 has one of the smallest known genomes of free-living organisms at 1.3 Mbp, 

which is already considered an advanced level of genome streamlining [Giovannoni et al. 2005]. In this 

genome reduction, most CPR and DPANN have lost metabolic pathways that are essential for self-

sufficient lifestyles, including de novo biosynthesis of amino-acids, nucleotides, and fatty acids (key 

components of cellular membranes). The extent of loss in metabolic capacity varies between different 

groups, but it is expected that most CPR and DPANN are reliant on other microorganisms for a number 

of essential biochemical resources, mediated via episymbiotic lifestyles (i.e. an attachment to the 

outer membrane of a host) (Figure 18A-B).  

 
7 Incidentally, “Ca. P. communis” also has some of the smallest cell dimensions for non-symbionts, with 

a rod-like shape of roughly 0.8 µm in length and 0.2 µm in diameter. It is alternatively known as “Ca. P. ubique” 
due to its extreme abundance in both salt and freshwater environments worldwide, making up 25% to 50% (in 
summer) of all microbial cells in temperate ocean surface layers. 
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Figure 18: Electron microscopy images of CPR bacteria, DPANN archaea and Asgard Archaea. 

(A) CPR bacterium Nanosynbacter lyticus parasitising its bacterial host Actinomyces odontolyticus. 

(B) DPANN archaeon Candidatus Nanohalobium constans parasitising its archaeal host Halomicrobium 

sp. 

(C) Asgard archaeon Ca. Lokiarchaeum ossiferum showing multiple membrane protrusions. 

On all images, the scale bar indicates a size of 500 nm. 

From: [López‐García and Moreira 2021] (A, B) and [Rodrigues-Oliveira et al. 2023] (C). 

The overlap between prokaryotic and viral sizes is further amplified by the discovery of giant 

viruses that can reach up to 1 µm in diameter in the phylum Nucleocytoviricota, or NCLDV 

(nucleocytoplasmic large DNA viruses) [Iyer et al. 2006]. These include the Poxviridae, responsible for 

multiple human and animal diseases such as smallpox and mpox, though by far the largest viruses are 

found in the families Mimiviridae, Pandoraviridae and Pithovidirae, mainly infecting amoebae. NCLDV 

viruses have remarkably large genomes that can exceed those of free-living archaea and bacteria, with 

the record being held by Pandoravirus salinus and its 2.5 Mbp genome. Moreover, these genomes 

were found to encode multiple proteins that are universal to cellular organisms but rarely present in 

other viruses, including key proteins of the translational apparatus – although ribosomes are notably 

absent from known giant viruses genomes [Schulz et al. 2017]. These virus-encoded cellular genes 

were initially thought to branch between bacterial and eukaryotic clades, leading to hypotheses about 

NCLDV possibly representing either a fourth domain of life [Colson et al. 2012] or a degraded variant 

of some reduced eukaryotic lineage [Claverie and Abergel 2013], but it has since been shown that 

these genes were instead acquired from eukaryotic hosts. The horizontal acquisition of genetic 

material between virus and host is commonplace in the virosphere, especially in double-stranded DNA 

viruses, but even within these NCLDV viruses stand out as particularly frequent vectors of HGT, both 

as donors and receivers [Irwin et al. 2022]. The breadth and frequency of these exchanges likely 

contributed to the expansion of NCLDV genomes and viral particles, and suggest remarkable co-

evolutionary relationships between NCLDV and eukaryotes. The viral acquisition of eukaryotic genes 

promotes infection via the development of new host-manipulation strategies, for instance by 

alleviating the reliance on host machinery that can be shut down by immune responses. Conversely, 

some important transitions in the evolution of eukaryotes may have been facilitated by genes acquired 
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from giant viruses, including the development of cell wall structures in algae and cellular aggregation 

in opisthokonts [Irwin et al. 2022]. 

Environmental genomics can also help to shed light on our own origins. The identification of a 

new superphylum of archaea, the Asgard archaea, was a groundbreaking discovery for the research 

done on eukaryogenesis. Genomes of these archaea, first assembled from metagenomic surveys of 

deep-sea sediment samples, formed a monophyletic group with eukaryotes in phylogenomic analyses 

[Spang et al. 2015]. This indicates that the first eukaryotic cell likely evolved from an archaeal ancestor, 

with features similar to those of extant Asgard archaea. In accordance with this phylogenetic 

placement, Asgard genomes encode many eukaryotic signature proteins, previously thought to be 

exclusive to eukaryotes. These include functions related to information processing and regulation, 

such as a ubiquitin-based system for post-translational protein regulation and modification. Asgards 

also encode an actin-based cytoskeleton system that is highly analogous to that of eukaryotes. 

Although these close relatives of eukaryotes are predominantly known from environmental MAGs, 

two strains of Asgard have recently been successfully isolated in cultures (namely, Ca. 

Prometheoarchaeum syntrophicum and Ca. Lokiarchaeum ossiferum) [Imachi et al. 2020, Rodrigues-

Oliveira et al. 2023]. Microscopy imaging performed on these isolates revealed a rather intricate 

cellular architecture, with multiple tentacle-like protrusions budding from the membrane of Asgard 

archaea cells, supported by the actin filaments of their cytoskeleton (Figure 18C). If eukaryotic cells 

did evolve from an Asgard-like ancestor, these membrane protrusions may have played a role in the 

recruitment of the alphaproteobacterium that would eventually become the mitochondrion. Indeed, 

such extrusions could have mediated trophic interactions by direct cell-cell contact between an Asgard 

(obligate anaerobe) and an aerobic partner, and led to the progressive engulfment of that bacterium 

within the Asgard host. This proposed entangle-engulf-endogenise model [Imachi et al. 2020] provides 

a mechanistic explanation for the revived eocyte hypothesis [Archibald 2008] on the origin of 

eukaryotes, in opposition to the once-preferred three-domain system. 

1.3 – Challenges facing the exploration of microbial dark matter 

If the past couple of decades have been particularly prolific in major discoveries from 

cultivation-independent genomic surveys, this trend seems to have slowed down somewhat in the 

past few years. Gradually, new conjectures emerged, predicting that we may soon have discovered all 

the major divisions of life that were unknown to us before cultivation-free sequencing came of age 

[Castelle and Banfield 2018]. After all, as more and more metagenomic projects are undertaken over 

time, covering an increasing share of the world’s ecosystems, it appears logical that we would 

eventually exhaust all the possible ecological niches for divergent life forms. In 2020 for instance, a 
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large meta-survey has been performed on a broad collection of metagenomes, and “found little 

evidence of new deep-branching lineages representing new phyla” in prokaryotes [Nayfach et al. 

2020]. Despite this, metagenomes still harbour vast amounts of predicted genes that lack taxonomical 

and/or functional annotations to this day [Bernard et al. 2018]. There is therefore still a great potential 

for biological discovery in the microbial world, certainly at least in sub-phylum taxonomic scales. Many 

of these elusive genes, for instance, could be specific to bacterial lineages that are incompatible with 

lab growth requirements, but nonetheless belong to well-documented taxa. Still though, one could 

argue that if such large portions of metagenomes escape characterisation attempts, then entirely 

ruling out the possibility of discovering new highly divergent life forms in the future is perhaps a 

pessimistic perspective. More generally, this vast pool of elusive environmental sequences remains a 

major blind spot in our understanding of the microbial world, both its inhabitants and their internal 

and collective processes.  

This discrepancy between, on one hand, the massive amount of environmental sequences that 

remain uncharacterised and, on the other, the apparent ebb of biological discoveries that are made 

from them, is reflective of a number of challenges that MDM research is currently facing. The first, 

and perhaps the most fundamental, is the fractal-like structure of the space of microbial unknowns8. 

At every stage of unravelling the MDM of an ecosystem, only a portion of it is effectively addressed: 

rarely occurring organisms may not be accurately represented in a metagenome, only a fraction of 

any metagenome can be assembled into MAGs, MAGs often fail to cover the entirety of an organism’s 

actual genome, and most MAGs contain many genes that cannot be assigned to known families. 

Methodological developments are thus required to improve the reconstruction and annotation of 

metagenomes and MAGs, in order to increase their descriptive and discovery power. A second 

challenge resides in the inference of metabolic and ecosystemic functions from MAGs. Genomic 

information can provide only limited insight into the internal function of a microorganism or its 

interaction within an ecological community, and complementary methods used in tandem with 

metagenomics have proven useful to lift these limitations. These include other meta-omics methods 

(metatranscriptomics, metaproteomics, metabolomics), as well as bioimaging and mass spectrometry 

techniques [Jiao et al. 2021]. Lastly, improvements to cultivation protocols could lead to new microbial 

strains being grown and studied in lab conditions, which would provide biologists a much more 

 
8 This is an analogy to Koonin’s “fractality of the prokaryote gene space-time” in The Logic of Chance (p. 

75) [Koonin 2012]. He describes prokaryotic pangenomes as having a distinct structure consisting of a reduced 
core, a larger shell and an even larger cloud. He then goes to show that this structure exists at all levels of 
prokaryotic lineages, from the pangenome of a single multi-strain bacteria to that of prokaryotes as a whole: 
zooming in or out on prokaryotic evolution does not affect the core-shell-cloud picture of the current lineage’s 
pangenome. 
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detailed knowledge of their physiology. To achieve this goal, functional information gained from meta-

omics studies could be leveraged towards the production of specifically well suited growth strategies. 

Co-cultivation strategies could also be devised for pairs or groups of microbes that form obligate 

syntrophic partnerships, similar to the two successful isolations of Asgard archaea mentioned above. 

The different challenges listed here are naturally interconnected, which highlights the benefit of a 

plurality of complementary approaches to improve our understanding of the microbial world. 

In this chapter, we present the work we conducted in an attempt to address the persistent issue 

of unravelling the uncharacterised fraction of metagenomes. In particular, we sought to measure the 

diversity of ancient, highly conserved gene families in natural environments. Our hypothesis was that 

identifying divergent homologues of genes that evolve notoriously slowly, and are recorded in most 

(if not all) extant lineages, would result in particularly interesting candidates for potential biological 

novelty. Highlighting these potential sources of novelty could guide further MDM investigations, 

especially in the search for new basal groups of microbial lineages. We opted for the OM-RGC (Ocean 

Microbiome Reference Gene Catalog) metagenome as the target environmental dataset for our 

analyses, due to its highly comprehensive sampling of marine environments across the planet 

[Sunagawa et al. 2015]. Starting from a reference dataset of highly conserved gene families, we 

performed iterative alignment-based searches in the OM-RGC database to gather increasingly distant 

homologues around the references.  

In the following section, we explain the motivations for implementing an iterative process to 

retrieve remote homologues, as well as the specific method we developed and how it performs on a 

benchmark dataset. We then return to the real-world analysis mentioned above, and detail the 

datasets we used to explore the marine microbiome.  

2. Iterative detection of distant homologues 

2.1 – What motivates a propagative approach? 

Sequence alignment algorithms, such as BLAST, perform best above a certain threshold of 

similarity between sequences. For protein sequences, in particular, the accuracy of aligners remains 

high above the 30% mark for sequence identity, but drops drastically once the identity dips below 

25%, defining a critical range of sequence similarity known as the “twilight zone” for protein alignment 

[Rost 1999]. Below this range, the homology signal between proteins is increasingly blurred by 

fortuitous local matches, making the detection of distant homology a persistent challenge in 

bioinformatics, which calls for a change in strategy. Instead of relying on a single alignment search 
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with over-relaxed similarity cut-offs to identify remote homologues, some of these strategies attempt 

to establish this homology indirectly, in a propagative approach. Starting from a “seed” sequence (or 

group of sequences), for which we want to identify distant homologues, successive search steps are 

performed, each time updating the search criteria to reflect the newly retrieved homologues.  

 

Figure 19: Migration routes of Polynesians from mainland Asia to the Pacific Islands. 

From: [Eccles, n.d.]. 

The underlying assumption is that gaps that are too big to be cleared by a single step (of search) 

could still be crossed with a series of shorter steps. Consider, for the sake of comparison, the 

indigenous population of Easter Island, one of the most remote inhabited locations in the world. The 

first humans to settle on the island could likely not have reached it directly from mainland Eurasia. 

Instead, it is believed that the Rapa Nui people descend from Polynesians, and that the spread of 

Homo sapiens in the Pacific islands of Oceania followed a chain of shorter migrations, from South East 

Asia to New Guinea, then to the Islands of Salomon, Vanuatu, Fiji, Polynesia and eventually Easter 

Island [Hunt and Lipo 2006] (Figure 19). Had Melanesia and Polynesia been sparser, with fewer islands 

separated by longer distances, H. sapiens may have never been able to settle on Easter Island. 

Similarly, the iterative approach to detecting remote homology presupposes that between two 

sequences that cannot be aligned directly, there exists a chain of intermediate sequences placed at 
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regular enough intervals that each can be reached from the previous one, collectively bridging the 

evolutionary gap between the start and end sequences.  

2.2 – Different classes of iterative algorithms 

The main algorithm implementing such a strategy to identify remote homologies is PSI-BLAST 

[Altschul et al. 1997]. From an initial set of query proteins, PSI-BLAST constructs a position-specific 

scoring matrix (PSSM), which represents a statistical profile of the input sequences. This matrix is then 

used to identify similar proteins in a database, which are then taken into account to update the 

weights of the profile, prior to the next search phase. The iterations end when no new sequence has 

been found by the last search step. This allows the retrieval of more homologues than a regular BLAST 

search, and reduces the variability of the results based on the initial choice of query proteins. The time 

performances, however, can make the use of PSI-BLAST cumbersome on larger sequence datasets, as 

all target sequences are queried at each step of the procedure.  

Some methods for sequence comparison rely on other approaches than sequence alignments. 

Several algorithms based on hidden Markov models (HMMs), in particular, have been developed as 

alternatives to BLAST. Fundamentally, these methods consist in using HMMs as statistical descriptors 

to condense the information contained in a multiple sequence alignment (MSA), in a similar way to 

PSSMs but allowing for a finer level of detail by taking into account insertions and deletions. Sequences 

can then be scored against a HMM to check their similarity with the underlying MSA, and HMMs can 

even be compared together by pairwise HMM-HMM alignments [Söding 2005]. These comparisons 

are usually more sensitive than those based on profiles or direct sequence alignment, simply because 

Markov models are finer descriptors of sequence data that can take into account more parameters 

than PSSMs (e.g. by implementing site-specific gap penalties, rather than uniform values). As a result, 

a single HMM-based search is generally able to identify some homologues beyond the twilight zone 

of protein similarity. An iterative version of HMM search has been developed for detecting remote 

homologies, dubbed HHblits, which relies on pairwise HMM alignment [Remmert et al. 2012]. Simply 

put, the query sequences are abstracted into a query HMM, and sequences in the target database are 

clustered by similarity, before constructing one target HMM per cluster. The query HMM is then 

compared to each target HMM, and target HMMs with hits below a certain E-value threshold are 

retained. A new query HMM is then built using query sequences as well as those of matched target 

HMMs. This protocol leverages the statistical power of Markov models to produce fast and sensitive 

searches, but it does come with the requirement of having queries and databases already formatted 

as HMMs, or paying the computational cost of formatting them de novo. 
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We developed an alternative approach to PSI-BLAST and HMM-based models that also relies on 

iterative searches to identify distant homologues, this time based on chains of direct sequence 

alignments. We called our implementation of this method SHIFT, for Sequence Homology Iterative 

Finding Tool. From an initial set of seed sequences, a target database is queried by a BLAST alignment, 

and the direct homologues of seed sequences (above given thresholds of E-value, sequence identity 

and alignment coverage) are retained. This group of first-degree homologues are then used in a 

second round of search against the remainder of the target dataset, and their homologues (thus 

second-degree homologues to the initial seeds) are retained. A new cycle of search then begins, and 

so on, each time using as queries the sequences newly retrieved at the previous step (Figure 20A-B). 

The resulting set of homologues is therefore layered around the initial queries, like the layers of an 

onion: the seed sequences occupy the central position, and are direct homologues to the first layer of 

target sequences, which are themselves homologous to sequences in the second layer, and so on. As 

with PSI-BLAST, the execution is interrupted once no new match is found at a given search step 

(HHblits, on the other hand, requires its user to specify a priori the number of iterations to perform). 
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Figure 20: Iterative aggregation of remote homologues with SHIFT. 

(A) From a set of seed sequences belonging to a given protein family, a first search iteration finds 

environmental homologues (dark blue) for some of the seeds. A second search iteration then uses 

these environmental sequences as queries to find more homologues (medium blue, red outline), which 

are themselves used as queries for a third search iteration finding further environmental homologues 

(light blue, yellow outline). 

(B) Schematic representation of the main steps of SHIFT. Taking a FASTA file for a reference family as 

input, sequences are repeatedly aligned against the target database to find increasingly distant 

homologues. A sequence similarity network with reference sequences and homologues is then 

produced. 

(C) At each iteration of the search, newly found homologues are only retained if their aligned region 

can be mapped back onto a seed sequence in a way that ensures at least 80% coverage on all 

sequences along the chain of aligned sequences. 

When creating chains of direct pairwise alignments, two opposite kinds of anomalies can occur 

and challenge the validity of the inferred distant homology between connected sequences. Both of 
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these pitfalls come from the fact that slightly different regions of a sequence can be aligned to 

different homologues, even if each resulting alignment covers a sufficient portion of each sequence.  

Firstly, consecutive alignments can extend each other to the left or the right seemingly 

randomly, such that only a small interval is shared by all sequences, with a strong but narrow 

homology signal (Figure 13A). This can arise, for instance, if all sequences in the alignment chain share 

a short and frequently occurring protein domain, but are otherwise largely unrelated. Conversely, 

each aligned region along a chain of alignments can extend the previous one horizontally in the same 

direction, which produces a sliding or ‘staircase’ pattern, wherein the aligned parts of the start and 

end sequences are eventually completely mismatched (Figure 13B). To avoid both of these pitfalls, 

SHIFT imposes a significant reciprocal coverage between all sequences: after each step that retrieves 

new potential homologues, all candidates are checked to map back onto a seed sequence, typically 

with at least 80% of coverage on each. All sequences along a valid alignment chain thus have >80% of 

their length indirectly aligned to the seed sequence set (Figure 20C). 

2.3 – Stringent models are required to preserve valid results 

To test the reliability of SHIFT for retrieving distant homologues, we performed a benchmark on 

a set of 3402 simulated protein families. We generated a collection of toy phylogenies, with a balanced 

binary topology on 64 leaves, but with asymmetrical branch lengths on opposing sides of the root. 

Thus, in each phylogeny, branches on one side all had a uniform unit length, whereas some internal 

branches on the other side were elongated by a multiplicative factor between 1 and 8. To generate 

our artificial protein families, each tree was assigned a randomly generated protein sequence of 300 

amino-acids, which was numerically evolved along the tree, resulting in 64 different sequences, half 

of which had diverged faster than the rest (in accordance with the elongated internal branches on one 

side of the tree). ‘Slow-evolving’ sequences (at the tips of non-elongated branches) within the same 

toy family shared together an average of 42.7% amino-acid identity. We then conducted SHIFT 

searches for each family, each time using the 32 slow-evolving sequences to retrieve their 32 fast-

evolving homologues among all the sequences of all other protein families (64 sequences from each 

of 3401 other families, i.e. 217,664 non-homologous sequences to filter through).  

The performance of SHIFT in retrieving these homologues was evaluated against two metrics: 

precision and recall. A high precision indicates a low rate of erroneous positive calls, meaning that 

reported homologues can be trusted to indeed belong to the seed protein family, whereas a high recall 

indicates low rates of false negative calls, meaning that most of the existing homologues for that family 

were successfully retrieved. In general, there is a trade-off between precision and recall for 
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classification tasks, and increasing one at the expense of the other can be relevant depending on the 

relative severity of false positive or false negative errors. In our case, a false positive error would be 

to include as homologue a sequence that is unrelated to seeds. When this happens in SHIFT, an 

unrelated sequence that is mistakenly retained will then be used to further query the target database 

for its own homologues, which might eventually result in the inclusion of many more sequences that 

are not actually homologous to the starting sequences. There is therefore a risk of a snowballing effect 

for false positives, due to the very nature of iterative searches. This problem is also well-documented 

in PSI-BLAST, known as “model corruption”: once an unrelated sequence is retained, it will skew the 

weights of the PSSM in a way that enables other unrelated sequences to be matched as well [Schäffer 

et al. 2001]. For all iterative methods, this model corruption not only undermines the reliability of the 

search results by creating incorrect outputs, but can also inflate the time and memory costs of their 

execution with irrelevant and unnecessary computations. Limiting the frequency of false positives is 

therefore highly desirable, as long as some recalling power is preserved, including for non-trivial cases 

(i.e. still being able to detect some non-direct homologues). In our simulations, we observed a perfect 

precision score across all instances, meaning that unrelated sequences were never marked as 

homologues erroneously. The recall strength of SHIFT, on the other hand, varied based on the rapidity 

at which fast-evolving sequences diverged from their regular counterparts (quantified by the 

elongation factor applied to internal branches). When the divergence speed was up to 2.5 times the 

regular rate, distant homologues were nearly systematically retrieved; then the recall power gradually 

fell, down to a near-zero for six- and eight-fold branch length increases. The method implemented in 

SHIFT thus retrieves remote homologies rather conservatively, minimising the risk of model corruption 

from spurious homology calls, although this comes at the expense of an inability to retrieve many 

homologues in cases of extreme divergence. 

3. Distant homologues of ancestral gene families in the ocean 

microbiome 

3.1 – Highly conserved gene families 

The speed of sequence evolution and the phyletic distribution across taxa are both highly 

variable properties of gene families. In practice, evolutionary biologists are often predominantly 

interested in families that are well-distributed across the tree of life and show a relative stability in 

their sequence, as they preserve a greater amount of phylogenetic signal than fast-evolving genes. 

These genes can be called highly conserved, both in the sense that their sequences accumulate 

mutations at a slower pace, and that they are rarely lost from genomes altogether. This latter part is 
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of particular significance, because genomes have a higher plasticity than genes, and the gene content 

of a genome can evolve much more rapidly than the actual sequence of most genes. In fact, many 

genes in any given genome can be relatively ancient (typically, as old as their host’s domain of life), 

but only a very narrow set of core genes are reliably found across taxonomic scales with limited 

exceptions [Wolf et al. 2009]. Many of the gene families among the most conserved are involved in 

fundamental molecular processes that are shared by all forms of cellular life and likely originated at 

the time of LUCA or before. These include, for instance, numerous functions related to transcriptional 

and translational machineries (such as ribosomal RNAs and proteins, frequently used as phylogenetic 

markers), as well as transporter proteins that mediate the import and export of biochemical products 

across cellular membranes. In a sense, those core genes can be thought of as the most basic 

prerequisites for sustaining cellular life, a hypothesis that can be confirmed by gene knockout 

experiments to observe the consequences of their loss on the survival of their host. As such, it can be 

reasonably expected of any undiscovered lineage to also rely on these core genes for the same 

functions as observed in known organisms. In other words, detecting divergent variants of universally 

conserved genes in the microbial dark matter could potentially be indicative of new groups of currently 

undescribed organisms, or at least suggest divergent modes of operation in the fundamental 

processes of cellular life. 

We thus sought to explore the environmental diversity of highly conserved gene families, as 

well as the potential evolutionary implications that divergent variants of these families may have. We 

assembled an initial dataset of gene families, and from this we extracted a small selection of 

particularly conserved families to use as seeds for our distant homology search. The initial dataset was 

constructed by Romain Lannes, former PhD candidate in the lab, by gathering a representative sample 

of public genomes across all major groups of life, and performing a large all-against-all BLAST search 

of all genes present in these genomes. The resulting SSN consisted of hundreds of thousands of 

connected components, and we extracted a subset of 53 clusters corresponding to the most 

evolutionarily conserved families in the dataset. These included 12 families of ribosomal proteins, as 

well as a number of families involved in transcription, chromosome stability, amino-acid biosynthesis, 

and protein translocation. 

3.2 – The Tara Oceans metagenome 

Natural aquatic environments across the globe harbour an unparalleled diversity of 

microorganisms. Each millilitre of water can contain between 104 and 106 microbes, which account for 

up to two thirds of total oceanic biomass [Bar-On, Phillips, and Milo 2018]. As the primary contributors 

of organic carbon to the marine food web, microorganisms are an essential component of aquatic 
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ecosystems, sustaining the larger occupants of higher trophic levels. The marine microbiome also plays 

a vital part in the capture of carbon dioxide and the release of oxygen into the atmosphere, equalling 

terrestrial forests and wetlands. In the current context of anthropogenic climate degradation, 

understanding the composition, organisation and function of the marine microbial biosphere is 

therefore extremely important for the preservation of biodiversity and ecosystems at large.  

 

Figure 21: Sampling sites of the Tara Oceans expedition. 

From: [Sunagawa et al. 2015]. 

Global-scale efforts to sequence the oceanic microbiome have been carried out in the last few 

decades. One of these projects, conducted by the Tara Oceans foundation and scientific consortium, 

collected hundreds of water samples in 68 marine locations around the Earth, at varying depths and 

times of day (Figure 21). Metagenomic sequencing of these samples led to the constitution of the 

Ocean Microbiome Reference Gene Catalog, a considerable dataset of over 40 million genes from 

marine microorganisms, and an unprecedented window into the diversity of the microbial world 

[Sunagawa et al. 2015]. One of the first discoveries made from this genetic record, for instance, 

highlighted the central role of temperature in shaping microbial community composition in the sunlit 

layer, more so than geographical distance. Gene rarefaction analyses showed that almost no new 

genes were detected by the end of the sampling, suggesting that this dataset constitutes a virtually 

exhaustive picture of the microbial gene space in the ocean, at least in the locations sampled. In this 

Tara Oceans metagenome, at time of initial publication, 45% of sequences lacked a taxonomical 

annotation at or below the Domain level, and 43% were unassigned to a functional orthologous group. 



51 

A large part of the genetic diversity in the global ocean is therefore still undercharacterised, and 

unravelling this mysterious fraction could thus be an abundant source for discoveries of exciting new 

biology.  

In the following article, we used SHIFT to mine the OM-RGC metagenome in order to measure 

the environmental diversity of our selected protein families. This resulted in a seven-fold increase of 

their sequence content once environmental homologues are identified. We found that a fifth of those 

sequences diverged more from any gene in the entire diversity of well-characterised organisms than 

bacterial and archaeal homologues diverged on average in our reference dataset. These highly 

divergent variants were present in comparable proportions in all sampling sites, suggesting that MDM 

still persists in many marine environments. In particular, we investigated the significance of divergent 

environmental homologues in three key protein families. In DNA polymerase clamp loaders, we found 

groups of divergent variants spread throughout the phylogenetic diversity of the family, suggesting 

that a diversity of uncultivated marine organisms replicate DNA using various unusual proteic 

machineries. We also detected a new variant of SMC proteins, responsible for chromosome 

conformation and stability in all Domains of life [Hirano 2002, Cobbe and Heck 2004], with unusual 

structure and domain architecture in Actinobacteria. Specifically, this divergent SMC clade has lost the 

hinge domain responsible for interfacing with DNA to initiate DNA binding [Gruber et al. 2006], which 

indicates that these proteins may either perform a different function than usual SMC, or use a 

different mechanism to achieve this function. These hinge-less SMC could be encoded by known 

members of Actinobacteria (which would be the first description of a duplication of SMC in 

prokaryotes), or by a novel lineage within this phylum with a unique SMC variant. Lastly, we identified 

clusters of divergent recombinases that were enriched in super-small cell size fractions, typical of CPR 

and DPANN but phylogenetically distinct from recombinases of those phyla. These recombinases 

might belong to unknown bacteriophages, or perhaps to unknown groups of ultra-small organisms, 

and in any case highlight this size fraction as a particular source of potential biological novelty. 

Together, these results support the notion that significant gaps remain in our understanding of 

microbial life, and provide examples of possible discoveries to be made regarding new types of biology 

in the ongoing unravelling of microbial dark matter.  
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Abstract 13 

Background: Metagenomics has considerably broadened our knowledge of microbial diversity, 14 

unravelling fascinating adaptations and characterising multiple novel major taxonomic groups, e.g. 15 

CPR bacteria, DPANN and Asgard archaea, and novel viruses. Such findings profoundly reshaped the 16 

structure of the known tree of life and emphasised the central role of investigating uncultured 17 

organisms. However, despite significant progresses, a large portion of proteins predicted from 18 

metagenomes remain today unannotated, both taxonomically and functionally, across many biomes 19 

and in particular in oceanic waters, including at relatively lenient clustering thresholds.  20 

Results: Here, we used an iterative, network-based approach for remote homology detection, to 21 

probe a dataset of 40 million ORFs predicted in marine environments. We assessed the 22 

environmental diversity of 53 gene families as old as cellular life, broadly distributed across the Tree 23 

of Life. About half of them harboured clusters of environmental homologues that diverged 24 

significantly from the known diversity of published complete genomes, with representatives 25 

distributed across all the oceans. In particular, we report the detection of environmental clades with 26 

new structural variants of essential genes (SMC), divergent polymerase subunits forming deep-27 

branching clades in the polymerase tree, and variant DNA recombinases of unknown origin in the 28 

ultra-small size fraction.  29 

Conclusions: These results indicate that significant environmental diversity may yet be unravelled 30 

even in strongly conserved gene families. Protein sequence similarity network approaches, in 31 

particular, appear well-suited to highlight potential sources of biological novelty and make better 32 

sense of microbial dark matter across taxonomical scales.  33 

Keywords: Microbial dark matter, Sequence similarity networks, Distant homology, Microbiome 34 
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Background 35 

Over the last decades, novel sequencing methods have allowed microbiologists to appreciate the 36 

ubiquity and abundance of uncultured organisms [1–5], and access microorganisms’ genomes 37 

beyond the isolation-cultivation dogma issued from the Koch principles [6] that underpinned 38 

microbiological studies for decades. Metagenomic studies [7] have led to an unprecedented 39 

broadening of our knowledge of microbial diversity [8], from the unravelling of microbial adaptations 40 

and interactions in numerous environments [9–12] to the characterisation of multiple novel major 41 

taxonomic groups [13–17] – most notably CPR bacteria [13, 18, 19], DPANN archaea [18, 20, 21] and 42 

Asgard archaea [22–24], profoundly reshaping the structure of the tree of life. Large groups of novel 43 

viruses [25–27] and mobile elements [28] have also been unearthed. Together, these major 44 

discoveries emphasise the central role of investigating yet uncultured organisms, believed to 45 

constitute the majority of overall microbial lineages [3, 29], in addressing many fundamental 46 

questions of biology and evolutionary biology. 47 

Over time, as cultivation-independent sequencing efforts are carried out in an increasing range of 48 

ecosystems, discovery events of novel branches near the base of the tree of life are predicted to 49 

become less frequent [8, 17]. In accordance with this perspective, an extensive study of over 50,000 50 

MAGs, assembled from a vast ensemble of metagenomes and including 12,556 novel candidate 51 

species-level OTUs, found no reliable evidence of novel prokaryote phylum content [30]. It may 52 

therefore seem that whatever biodiversity remains to be discovered should yield few more “major 53 

unknowns”. 54 

However, contrasting with these observations, it still persists that across most biomes, large portions 55 

of environmental metagenomes remain taxonomically and functionally unannotated, even at 56 

relatively permissive clustering thresholds [31]. This vast pool of uncharacterised sequences remains 57 

a significant blind spot in our grasp of the extant biological diversity on Earth. Some may yet belong 58 

to genomes of unknown organisms that have so far escaped detection efforts, for instance due to 59 
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accelerated evolution rates or an ancestral divergence from known organisms. Novel genes of well-60 

characterised organisms with “open” pangenomes, divergent paralogues of known genes, and 61 

unusual mobile elements may also be expected to contribute to this “microbial dark matter” [4]. In 62 

any case, the persistence of those biological unknowns highlights the need for novel approaches 63 

complementing the current techniques to mine metagenomes for highly divergent groups. 64 

Various network-based approaches [32], in particular, have been developed to address these 65 

concerns. Co-occurrence networks, for instance, can help assessing ecological roles of unknown taxa 66 

[33]. Sequence similarity networks, wherein pairs of primary sequences are connected according to 67 

set similarity criteria, can also be employed to compare sequences from cultured and uncultured 68 

organisms [34, 35]. In 2012, Lynch et al. used sequence similarity networks to identify several 69 

candidate new lineages from environmental 16S rRNA [36]. In 2015, Lopez et al. designed a network-70 

based exploratory analysis to probe metagenomes for distant homologues of well-distributed gene 71 

families [37]. 86 clusters of genes broadly distributed across Domains of life were used as seeds for a 72 

two-step BLAST search inside a metagenome collection. Seed sequences were then gathered in 73 

sequence similarity networks together with their direct and indirect environmental homologues, and 74 

environmental sequences gathered in the second alignment step were more divergent from their 75 

cultured relatives than those gathered in the first round. The authors found several hundred groups 76 

of highly divergent environmental variants, some of them potentially compatible with novel major 77 

divisions of life. Consequently, (i) iterative explorations of environmental datasets may allow the 78 

retrieval of increasingly divergent variants (Fig. 1A), and (ii) network-based methods may be well-79 

suited to handle this type of data, by integrating sequences with various levels of divergence within 80 

homologous gene families. Sequence similarity networks have also been used recently to assess how 81 

the deep-learning breakthrough in protein structure prediction may be leveraged to shed light into 82 

“functionally dark” regions of the natural protein space [38]. 83 
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In this work, we conducted an exploratory search of ocean metagenomic data to identify potential 84 

sources of novel diversity in highly conserved, near-universal gene families. Our search mined the 85 

environmental diversity of the Ocean Microbial Reference Gene Catalog (OM-RGC) dataset [39]. This 86 

extensive, non-redundant record contains sequences for over 40 million bacterial and archaeal 87 

genes, predicted from metagenomic sequencing of a large variety of marine environments across the 88 

world. At the time of initial publication, around 45% of these sequences lacked taxonomical 89 

annotation at or below the Domain level, and 43% lacked functional annotation to an eggNOG 90 

orthologous group (OG), highlighting the existence of a vast, undescribed diversity in the global 91 

oceanic microbiome, as well as the necessity of additional efforts to improve its characterisation. To 92 

perform this search, we further developed the iterative explorative strategy of environmental 93 

datasets initiated by Lopez et al. [37], by allowing distant homologue search iterations to continue 94 

indefinitely until convergence. Specifically, we focussed our search on ancestral gene families that 95 

showed particular conservation across their taxonomic distribution in the face of evolution. 96 

Retrieving highly divergent variants in such families could indeed carry an increased biological 97 

significance, given their stability in primary sequence for many reference genomes, and potentially 98 

guide future searches for novel putative taxonomical groups or biological functions involving these 99 

nearly universal gene families. We thus used a custom dataset of 53 ancient, conserved gene families 100 

with key biological functions to initiate our iterative probing of OM-RGC. We identified highly 101 

divergent variants of multiple gene families, uncovering new putative structural and sequence 102 

variants of biologically essential proteins across taxonomical scales. 103 
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Results and Discussion 104 

Oceanic metagenomes harbour distant homologues of highly conserved protein families 105 

We developed an iterative mining procedure to accumulate highly divergent environmental variants 106 

for families of genes or proteins of interest. From an initial set of nearly ten million protein 107 

sequences gathered from prokaryotic, eukaryotic, viral and plasmidic complete genomes (Table SI-1), 108 

we selected a set of 53 protein clusters, highly conserved and at least as old as cellular life. Most 109 

clusters corresponded to single protein families, though a few of them comprised proteins from two 110 

or more closely related families (we hereafter refer to those clusters as families for simplicity, and 111 

will make multiplicity cases explicit when discussing such clusters specifically). These families 112 

spanned a total of 125,774 sequences and included 12 families of ribosomal proteins (Table SI-2). On 113 

average, bacterial sequences in these families had 34.9% amino-acid identity to their closest archaeal 114 

homologue (and vice-versa), roughly illustrating the level of divergence to expect between sequences 115 

from different Domains of life.  116 

Each selected family was used as the seed for a deep homologue-mining procedure in the OM-RGC 117 

dataset [39]. This iterative search aimed at aggregating around each seed family the diversity of its 118 

environmental homologues, including variants too divergent to produce a significant direct alignment 119 

to any seed sequence. For each family, direct oceanic homologues of seed sequences were identified 120 

in a first round of search. The OM-RGC dataset was then further queried for homologues of those 121 

homologues, and so forth until the procedure converged to find no additional environmental 122 

homologues (See Fig. 1A-E and Methods for details). 123 

We tested the performance of our method by conducting homology searches on a simulated dataset, 124 

and found that our protocol was particularly resistant to false-positive homology calls. More 125 

specifically, we sought to evaluate (i) how reliably our iterative procedure successfully retrieved 126 

distant homologues of seed sequences, and (ii) whether this retrieval was prone to false-positive 127 
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calls, where sequences would be attained from seeds that did not share a homologous origin. To that 128 

end, we generated a collection of phylogenetic trees, based on a common balanced binary tree 129 

structure, where branches along the path from the root to another given node (internal or terminal) 130 

were elongated to represent various levels of divergence. Each tree was then assigned a randomly 131 

generated amino-acid sequence, which was evolved numerically along its branches, resulting in some 132 

slow- and some fast-evolving terminal sequences. Slow-evolving sequences within the same “family” 133 

shared an average of 42.7% sequence identity. Finally, the slow-evolving subsets were each used as 134 

seeds for iterative homology searches to retrieve their own fast-evolving homologues amongst all 135 

sequences generated from all phylogenies. Across the 3402 test cases that were performed in total, 136 

we detected no instance of false-positive homology hit, i.e. homology searches only ever retrieved 137 

sequences genuinely related to the seeds. In cases where fast-evolving sequences diverged up to 2.5 138 

times faster than their slow counterparts, the search procedure was nearly systematically able to 139 

retrieve all divergent sequences (Fig. SI-1). When the evolution rate difference was four-fold, about 140 

half of the test instances successfully retrieved all divergent homologues. Finally, above a six-fold 141 

increase, seed sequences were largely unable to retrieve any divergent sequence at all. These results 142 

on simulated data show that the procedure we developed to identify remote homologies aggregates 143 

new sequences in an efficient but conservative manner that resists spurious homology calls, although 144 

the higher complexity of real-world biological sequence data may be expected to yield aberrant 145 

results on occasion. 146 

Our iterative metagenome mining procedure expanded the selected 53 seed families by a total of 147 

826,717 environmental sequences from OM-RGC (Fig. SI-2). All seed families had their own set of 148 

environmental homologues, requiring an average of 7 rounds of iterative search before exhaustion. 149 

Despite metagenomic sequencing sometimes yielding shorter gene sequences than what is 150 

anticipated from genomes in culture, sequences retrieved from OM-RGC were only marginally 151 

shorter than their reference counterparts (Pearson r=0.96, p-value 3.5×10-30), further confirming that 152 

their divergence was not related to a systematic bias associated with sequence size. 153 
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OM-RGC homologues of the 53 selected seed families were then compared against proteins from the 154 

NCBI non-redundant (nr) database to find their closest relative amongst all published sequences with 155 

taxonomically resolved annotations (Fig. 1F; Supplementary Text SI-1). Only 6.7% of all retrieved 156 

environmental sequences were >90% similar to their closest characterised relative, implying that a 157 

large majority of environmental proteins cannot be accurately represented by genomes captured by 158 

current cultivation or isolation techniques. Furthermore, 20.5% of environmental variants had less 159 

than 34.9% similarity with their closest nr relative, i.e. they diverged more from any proteins of well-160 

characterised organisms than bacterial and archaeal homologues diverged from one another on 161 

average in the reference dataset. Environmental homologues of ribosomal protein families had 162 

generally higher similarity to their closest characterised relative than non-ribosomal environmental 163 

sequences (one-sided Kolmogorov-Smirnov test, p-value <1.6×10-22; Fig. SI-3), possibly owing to their 164 

reputedly high evolutionary conservation. Still, even ribosomal protein families included very 165 

divergent oceanic variants (Fig. SI-3). Moreover, all sampled oceanic sites revealed similar 166 

proportions (but uneven absolute numbers) of divergent and highly divergent prokaryotic sequences 167 

(Fig. SI-2). Any location in the global ocean could therefore be a prolific reserve of new microbial 168 

gene variants, including temperate surface-layer habitats. Some of the retrieved environmental 169 

sequences show levels of divergence to the known diversity that are comparable with the difference 170 

between archaeal and bacterial homologues. These variants could potentially belong to 171 

uncharacterised lineages that branched away from well-known taxa long ago, although alternative 172 

hypotheses can be offered: divergent environmental homologues could, for instance, be distant 173 

paralogues of seed sequences, that evolved faster than their known counterparts due to relaxed 174 

selective pressure after duplication, and appear environmentally conserved but not described in 175 

cultured organisms. 176 
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Highly divergent clusters of environmental variants expand the diversity of multiple 177 

universal protein families 178 

Seed sequences and their (direct and indirect) oceanic homologues were then gathered in family-179 

specific sequence similarity networks (SSNs). Similar sequences in these networks are expected to 180 

gather in coherent, well-connected groups, thus reflecting the structure of protein families in the 181 

network topology. Sequences within each SSN were therefore partitioned into network communities 182 

using Louvain clustering [40] (Fig. 1G). This higher-level view of network structures allows an easier 183 

assessment of the environmental diversity, including identifying potential sources of biological 184 

novelty in these protein families. In particular, clusters consisting exclusively or predominantly of 185 

environmental sequences (>90% of environmental sequences), with little similarity to published 186 

sequence records (<40% sequence identity to any non-environmental sequence in the nr database), 187 

and containing enough proteins to be unlikely the result of sequencing inaccuracies, are intuitively 188 

the most likely to correspond to genuinely novel groups of environmental homologues.  189 

691 clusters of sequences were inferred in total across the 53 SSNs, of which we retained 80 clusters 190 

of proteins fitting the above criteria for significant novelty potential. These 80 clusters of highly 191 

divergent sequences were distributed across 25 ancient, conserved protein families. Remarkably, no 192 

cluster with such a high level of divergence was found in networks of ribosomal proteins, possibly 193 

due to a superior level of conservation or a higher coverage of their diversity in public sequence 194 

databases. Still, the fact that clusters of divergent environmental homologues were identified in 195 

nearly half of our selected protein families suggests that numerous key biological processes are 196 

carried out by a currently underestimated diversity of protein primary structures. In other words, the 197 

“functional dark matter” of proteins likely consists of both unknown functions and unknown actors of 198 

known functions [31, 41] .  199 

To assess how these groups of divergent sequences may relate to their reference counterparts, we 200 

reconstructed phylogenetic trees regrouping seed and environmental sequences from each of the 80 201 
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selected highly divergent clusters. This selection exposed an additional phylogenetic diversity in 202 

conserved protein families when environmental contributions are considered. In particular, in some 203 

families, sequences representative of certain divergent network clusters branched between or beside 204 

the main groups of archaeal and bacterial sequences. Such phylogenetic placements indicate 205 

substantial potential for novelty in the sequence space of those protein families. We detail findings 206 

of particular interest for three families in the following subsections. 207 

High environmental diversity in oceanic DNA polymerase clamp loaders  208 

One of the selected seed families in our study consisted of several AAA+ ATPases [42], mostly 209 

involved in clamp-loading systems for DNA replication. In the environmental diversity of this family, 210 

we identified large contingents of highly divergent variants across the phylogeny of the family. 211 

In a mechanism conserved across all cellular life forms, DNA polymerases process and replicate DNA 212 

by binding onto circular clamps that encircle and slide along the template DNA strand. Sliding clamps 213 

are embedded onto DNA by a pentameric clamp-loading system, which exhibits a universally 214 

conserved structure in archaea, bacteria and eukaryotes despite differences in subunit composition 215 

[43]. All clamp loaders consist of one “large” subunit (δ in bacteria, RfcL in archaea, Rfc1 in 216 

eukaryotes) complemented by four “small” subunits: three γ and one δ’ subunits in bacteria (also 217 

respectively called DnaX and HolB), four RfcS subunits in archaea, one each of Rfc 2-5 subunits in 218 

eukaryotes. All subunits are homologous to one another within and across all three Domains of life 219 

[44–47]. 220 

Our seed family consisted of sequences for the clamp loader “small” subunits (CLSSUs) described 221 

above (i.e. bacterial DnaX and HolB, archaeal RfcS, and eukaryotic Rfc 2-5), as well as sequences for 222 

the bacterial replication-associated recombination protein RarA. This protein, present in bacteria and 223 

eukaryotes but not in archaea [48], is involved in homologous recombination and DNA repair, both in 224 

the context of DNA replication and outside [49]. The RarA protein sequence is highly conserved and 225 
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also substantially homologous to DnaX, and as such was grouped alongside it in the construction of 226 

our seed families. 227 

The iterative retrieval of environmental homologues for this protein family resulted in a nearly five-228 

fold increase of its sequence content (Table SI-2). In particular, the resulting SSN harboured 10 new 229 

clusters of highly divergent environmental homologues (Fig. SI-4). Owing to their high divergence in 230 

primary sequence, not all clusters translated to perfectly monophyletic groups in the phylogeny we 231 

produced (Fig. 2), though they still generally maintained some level of coherence. Amongst the ten 232 

environmental clusters, one had its representative sequences branch within reference archaeal and 233 

eukaryotic Rfc sequences (cluster 26), and another translated to a new clade within reference 234 

HolB/DnaX bacterial sequences (cluster 23). Additionally, one environmental cluster branched next 235 

to bacterial RarA sequences (cluster 27), and its sequences were annotated as belonging to the B 236 

subunit of the Holliday junction resolving complex RuvABC, already shown to cluster near clamp-237 

loading proteins in sequence networks [50]. Finally, sequences from seven divergent clusters resulted 238 

in groups outside the bacterial and archaeal/eukaryotic seed sequence clans [51] in the phylogeny 239 

(clusters 2, 14, 15, 16, 19, 24, 25). Eggnog annotations for these sequences mapped them 240 

predominantly to HolB (COG0470), though it should be noted that one particular cluster contained 241 

96% of functionally unassigned sequences (cluster 24). 242 

Protein structures were predicted for representatives of seed and divergent environmental CLSSUs 243 

using ColabFold [52, 53], and gathered in a dendrogram depicting their similarities (Fig. 3). Most seed 244 

proteins used for this comparison showed similar structures, although HolB, DnaX, RarA and 245 

archaeal/eukaryotic Rfc still formed distinct groups in the structure dendrogram. Structures inferred 246 

from environmental variants followed a pattern similar to the sequence phylogeny, with 247 

representatives from clusters 2, 15 and 23 branching near HolB references, and most other clusters 248 

translating to structures sitting outside of the main reference groups. In other words, the 249 
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environmental HolB variants that we identified on the basis of primary sequence divergence also 250 

exhibited a divergence in 3D structure consistent with their phylogenetic placements. 251 

Oceanic homologues of CLSSUs therefore diverge from their known counterparts in primary 252 

sequence, and exhibit tertiary structures comparable, but not identical, to canonical CLSSU 253 

structures. Such structural differences and sequence-based phylogenetic placements for these highly 254 

divergent environmental CLSSU homologues could reflect the existence of undetected divergent 255 

paralogues in these gene families, which would raise interesting questions about their possible 256 

contribution in such a conserved subprocess of DNA replication. These could also hypothetically be 257 

indicative of some unknown microbial lineage(s), though much more conclusive data would be 258 

required before firmly asserting this. In any case, these results hint at a diversity of uncultivated 259 

marine organisms replicating DNA using various unusual proteic machineries, possibly resulting in 260 

unusual replication mechanisms operating in the ocean. 261 

Novel abundant clade of SMC proteins with unusual structure in Actinobacteria 262 

Another remarkable seed family consisted of SMC (structural maintenance of chromosomes) 263 

proteins, and we identified a small but abundant group of environmental SMC variants with strikingly 264 

singular structures within Actinobacteria. 265 

SMC proteins are present in all Domains of life and act (as part of the SMC complex) as regulators of 266 

high-order chromosome organisation [54]. Eukaryotic genomes encode six paralogous SMC proteins 267 

(SMC1-6), due to a sequence of duplications around the time of the last eukaryotic common 268 

ancestor. Indeed, a single copy of the smc gene is present in nearly all archaea and bacteria, with a 269 

few exceptions. In some γ-proteobacteria a different proteic complex, MukBEF, is responsible for 270 

these functions instead [55]. Bacteria from various phyla can also harbour another complex, MksBEF, 271 

alongside their SMC or MukBEF machinery [56]. MksBEF is believed to be evolutionarily related to 272 

MukBEF, and both are structurally analogous to the SMC complex, but primary sequence 273 

comparisons have ruled this structural similarity as convergent rather than due to distant homology 274 
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[54]. SMC complexes are also notably absent from Crenoarchaeota, resulting in distinctive 275 

chromosomal dynamics and cell cycle logics [57, 58].  276 

A typical SMC protein consists of five domains: an N-terminal domain containing a Walker A motif; a 277 

first helical chain of roughly 300 amino-acids; a central “hinge” domain; a second α-helix of 278 

comparable length to the first; a C-terminal domain containing a Walker B motif [59, 60]. This linear 279 

structure self-folds by linking the N- and C-terminal motifs into an ATPase “head”, with the two α-280 

helix domains forming an antiparallel coiled-coil between this head and the hinge domain. This hinge 281 

then serves as a dimerisation site for a second SMC monomer, with accessory proteins binding to the 282 

ATPase heads to complete the ring-shaped SMC complex [54]. The hinge region of the SMC complex 283 

subsequently plays the essential role of mediating DNA binding, and allows the loading of SMC rings 284 

onto chromosomes [61, 62]. 285 

From seed sequences in this family, we retrieved a rather limited amount of environmental 286 

homologues (0.97 environmental homologue per seed sequence in this family, compared to a 287 

median value of 2.6 across all families, see Table SI-2), but one small cluster of distant environmental 288 

homologues was still identified (cluster 9 in Fig. SI-5). In the phylogeny produced from seed SMC 289 

sequences and oceanic variants from this cluster (Fig. 4), environmental sequences formed a 290 

monophyletic clade branching close to the base of seed actinobacterial sequences. These divergent 291 

environmental sequences were functionally annotated as SMC proteins (COG1196), and were 292 

strikingly abundant in the sequencing data, nearly seven times more so than other OM-RGC SMC 293 

homologues. Moreover, this novel oceanic clade harbours SMC-related proteins that are critically 294 

different in structure from canonical SMC proteins (Fig. 5A; average TM-score between two proteins 295 

in the divergent cluster: 0.828; average TM-score between a protein in the divergent cluster and a 296 

reference SMC protein: 0.440). Namely, these oceanic variants lack the hinge domain which is 297 

normally essential to SMC assembly and function (Fig. 5B). As such, they may be considered more 298 

similar to bacterial SbcC and archaeal and eukaryotic Rad50 proteins, thought to be distant 299 
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evolutionary relatives of SMC [54]. Indeed, proteins from this ancestral family also consist of an SMC-300 

like head and an antiparallel coiled-coil with no hinge domain, dimerising instead through a zink-hook 301 

structure induced by a CXXC motif [63]. However, FoldSeek structural comparisons clearly 302 

discriminate between reference Rad50/SbcC proteins on one side, and SMC proteins (reference or 303 

divergent OM-RGC variants) on the other (Fig. SI-6). The zink-hook CXXC motif conserved in 304 

Rad50/SbcC is also absent from our environmental cluster sequences, confirming them as divergent 305 

variants within the SMC diversity rather than beside it. 306 

Several evolutionary scenarios could explain this new bacterial cluster of “hinge-less” SMC. Firstly, it 307 

could be indicative of some paralogue of SMC existing in Actinobacteria. This would then be, to the 308 

best of our knowledge, the first description of SMC duplication in prokaryotes [64]. Alternatively, this 309 

divergent cluster could indicate the existence of an unknown lineage, supposedly branching within 310 

Actinobacteria, where the SMC hinge domain would have been lost. In any case, the substantial 311 

divergence of these environmental sequences to any gene published from a well-characterised 312 

organism, together with the loss of the essential hinge domain and their remarkably high abundance 313 

in the sampling data, suggests that we identified a new kind of biology within the SMC family. By the 314 

absence of their expected interaction site with DNA, one would speculate that these hinge-less SMC-315 

related proteins must either perform a different function than known SMC or bind DNA through 316 

different mechanisms. The broad distribution of hinge-less SMC variants across the oceans, their 317 

monophyly and their relative abundance in the ocean microbiome suggest that they play an 318 

important, underappreciated function in this oceanic clade. 319 

Divergent recombinases from potentially novel groups in sub-micrometre size fractions 320 

In a third family, consisting of RecA/RadA DNA recombinases [65], we identified other possible 321 

sources of novel diversity, including within ultra-small cell size fractions.  322 

During the course of DNA replication, accidental double-strand breaks (DSBs) in the DNA molecule 323 

can have detrimental effects on genome stability and cell viability [66]. Recombinase proteins in the 324 

66



15 

RecA/RadA family are central to homologous recombinational repair, a key replicative stress-325 

reduction pathway that can correct DSBs as well as other types of DNA damage. This family contains 326 

the extensively studied bacterial recombinase RecA (also present in eukaryotic organelles) as well as 327 

its archaeal and eukaryotic homologues, respectively RadA and Rad51 [65, 67–69]. 328 

Identifying distant environmental homologues of this seed family increased its total size five-fold 329 

(Table SI-2). Amongst this added diversity, four clusters of environmental sequences were retained as 330 

highly divergent, totalling 1700 sequences. A phylogenetic tree was produced from seed sequences 331 

as well as representative sequences for these divergent environmental clusters (Fig. 6). In this 332 

phylogeny, sequences from a first cluster branched near the root of archaeal seed sequences, and 333 

was functionally categorised as RadA (COG1066) in accordance with this placement (cluster 20 in Fig. 334 

SI-7). A second cluster of divergent environmental sequences (cluster 12) branched within the 335 

environmental ultra-small cluster in Bacteria. Interestingly, this cluster was predominantly annotated 336 

as ArlH (COG2874), an archaeal protein involved in the biogenesis of the archaellum, a cellular 337 

motility structure analogous to bacterial flagella [70]. Structure and sequence similarities between 338 

ArlH and bacterial RecA have previously been described [71] but, to the best of our knowledge, no 339 

evolutionary hypothesis has yet been put forth to explain this surprising homology. Finally, one 340 

cluster of distant environmental RecA homologues (COG0468) branched within bacterial sequences 341 

(cluster 5), and a final cluster, also annotated as RecA, saw its representative sequences sit between 342 

the archaeal and bacterial references (cluster 19). Interestingly, both of these clusters were 343 

composed of >50% of sequences from the “ultra-small” size fraction of cells with diameters <0.2 µm. 344 

Such cellular sizes are akin to those of CPR bacteria and DPANN archaea [72]; however, seed 345 

sequences from these ultra-small superphyla branch clearly within the clans of their respective 346 

Domains of life. Additionally, environmental sequences from these ultra-small clusters bore no 347 

remarkable similarity to viral sequences recorded in the NCBI Virus sequence database (accessed in 348 

February 2023) and just 11 of them (out of 1700) matched to a single oceanic virus from the GVMAG 349 

database [73].  350 
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The origin of these divergent RecA proteins therefore remains open: they could, for instance, belong 351 

to unknown bacteriophages or mobile elements populating the global ocean. They might also result 352 

from a duplication and divergence of the recA gene in CPR bacteria, although they should in that case 353 

be expected to appear in published genomes for members of this lineage. They may yet genuinely 354 

belong to new uncharacterised, deep-branching cellular lineages of sub-micrometre cell size, though 355 

significantly more evidence would again be required to support this hypothesis. Nevertheless, our 356 

finding of new very deep-branching groups related to RecA is consistent with the description of new 357 

basal groups of metagenomic RecA sequences formerly proposed [74], and highlights the ultra-small 358 

size fraction as a notable source of novelty in this essential protein family. Uncovering divergent 359 

forms of RadA in metagenomes is also exciting, because even some forms of RadA previously 360 

described as inactivated have been demonstrated to be functionally relevant for their host cells, and 361 

putatively attached to an alternative mechanism of replication initiation or in the regulation of origin 362 

recognition [75]. Moreover, sequence divergence, typically in the non conserved region of intein-363 

containing RadA, may be functional, as it may affect the temperature-induced splicing of the intein of 364 

RadA, a phenotype that has been described in Thermococcus sibericus [76]. 365 
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Conclusion 366 

The prevalence of biological unknowns in environmental metagenomes remains, to this day, vast; 367 

vast indeed to the extent that “known unknowns” and “unknown unknowns” constitute a relevant 368 

distinction to address genes, organisms, processes and interactions at play in the uncultured 369 

microbial world. With our network-based, multi-marker iterative approach, we sought to understand 370 

the structure of environmental genetic variation for a range of ancient, conserved gene families with 371 

functions essential to cellular life. We found that environmental variants for those gene families 372 

could exist in marine microbiomes with considerable divergence to the known diversity. Moreover, 373 

these highly divergent sequences organised in (sometimes vast) cohesive groups of homology, 374 

supposedly harboured in (sometimes vast) groups of related genomes, as illustrated by the oceanic 375 

variants of DNA polymerase clamp loaders, hinge-less SMCs, and deep-branching divergent 376 

RecA/RadA variants from the ultra-small size fraction.  377 

A common issue surrounding metagenomic data is to know whether predicted genes and proteins 378 

actually exist in the sampled environment or result from aberrations in the assembly process. To 379 

avoid this pitfall, we purposefully limited our analyses to larger clusters of (similar but non-identical) 380 

sequences, from the already non-redundant OM-RGC dataset. Furthermore, the nature of our 381 

retrieval process imposes at least 80% of the length of any retrieved sequence to map back to at 382 

least 80% of a seed sequence (Fig. 1B-C). As such, recombined proteins mixing sequence fragments 383 

from several protein families are unlikely to be matched to our “canonical” seed families if 384 

exogenous regions cover more than 20% of their length. Lastly, the benchmarks we performed on 385 

simulated protein families show that sequences unrelated to the search seeds are seldom retrieved 386 

by erroneous homology calls. For these reasons, we believe that the groups of oceanic variants we 387 

discussed correspond to genuine environmental homologues of reference sequences, rather than 388 

assembly artifacts, protein recombinants, or non-homologous proteins from unrelated families. 389 
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Still, various competing scenarios of evolution and diversification could explain highly divergent 390 

homologues such as those we detected. We list some of them here, understanding that a single 391 

“one-size-fits-all” explanation to all the divergent groups we identified is highly unlikely.  392 

A first hypothesis could be that an environmental cluster represents deep paralogues resulting from 393 

an ancestral duplication in the gene family. Though not impossible, this hypothesis does require an 394 

explanation as to why these paralogues do not appear more broadly in the wide range of public 395 

genomes currently available, save for some unlikely event of widespread parallel gene loss across the 396 

tree of life. Alternatively, these divergent sequences could have been spawned by more recent gene 397 

duplications at narrower taxonomic scales, after which they would have diverged rapidly from their 398 

“original” copy. This is entirely possible, predominantly for clusters clearly branching inside the 399 

phylogenetic clade of established taxa. The divergent SMC proteins we identified within 400 

Actinobacteria are perhaps an example of this (this would then be the first description of an SMC 401 

duplication in prokaryotes), though once again it would leave unexplained why most actinobacterial 402 

genomes do not seem to carry these “hinge-less” variants. Cases like this are also interesting from a 403 

functional standpoint, as the rapid divergence in primary sequence following gene duplication raises 404 

questions of neo- or subfunctionalisation for the novel paralogue.  405 

Divergent homologues of highly conserved, ancestral families could also stem from uncharacterised 406 

genomes bearing these variants. Marine viruses, or other mobile elements, could be carrying such 407 

variants, especially those identified in smaller organism size fractions, such as the divergent forms of 408 

recombinase A we reported. It is possible that the divergence of these homologues could then point 409 

to radical gene changes, driven by specific selective pressures associated with non-cellular organisms. 410 

Conversely, unknown cellular lineages that diverged recently (e.g. from known genera or families) 411 

could also harbour unusual gene variants. In the functions we specifically targeted, strong constraints 412 

on sequence evolution are expected, meaning that drastic changes in intracellular processes or 413 

external selective pressure may have prompted those high levels of sequence divergence over short 414 
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evolutionary timeframes. Lastly, the levels of divergence observed from some environmental groups 415 

could be compatible with novel major taxonomic groups that diverged from the established diversity 416 

some hundreds of millions, or even billions of years ago. This last hypothesis would, of course, 417 

require a lot more evidence to substantiate such a claim, and full genomes with high levels of 418 

divergence across their length would have to be produced and analysed thoroughly. Still, however 419 

remote, the possibility for new basal branches in the tree of life should not be fully discarded in the 420 

absence of conclusive evidence favouring other hypotheses.  421 

All in all, the detection of divergent variants in key protein families, that have likely existed since 422 

cellular life began, supports the notion that major gaps remain in our knowledge of biological 423 

diversity, and that various forms of exciting new biology may be expected from unravelling this 424 

microbial world. To that end, future methodological extensions that rely less on primary sequence 425 

comparisons still appear warranted to address the whole natural diversity. The recent breakthroughs 426 

in protein structure prediction, in particular, could greatly benefit microbial dark matter analyses, as 427 

3D structures tend to be more conserved than primary sequences during evolution. As such, the 428 

development of 3D similarity networks, connecting protein structures from cultured organisms to 429 

structures predicted from metagenomes, could offer unprecedented insights into the evolution and 430 

the functional landscape of environmental microbiomes, with possible applications to fields such as 431 

ecological, biotechnological or biomedical sciences. 432 
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Materials & Methods 433 

Constitution of a conserved protein families dataset 434 

We constituted a dataset of 9,737,821 proteins, from 4403 bacterial (including CPR), 567 archaeal 435 

(including DPANN and Asgard), 120 eukaryotic, 18,020 viral and 1586 plasmidic genomes, acquired 436 

from public NCBI databases [77] (Table SI-1). The sequence similarity network (SSN) of this protein 437 

collection was reconstructed by an all-against-all DIAMOND blastp alignment [78] (version 2.0.9, 438 

thresholds: E-value ≤10-5, sequence identity ≥30%, mutual coverage ≥80%). This SSN contained 439 

891,459 protein clusters (connected components). The assortative mixing between Domains of life 440 

within each cluster was computed using the Python package networkx [79] (version 2.8.8). We 441 

retained 53 protein clusters meeting thresholds of (i) Domain assortativity ≥0.65 and (ii) 150 or more 442 

sequences from both archaea and bacteria. These 53 protein families comprised a total of 125,774 443 

sequences. 444 

Iterative retrieval of environmental homologues 445 

40,154,822 gene sequences from the Ocean Microbial Reference Gene Catalog (OM-RGC v1) [39] 446 

were collected, alongside corresponding sampling metadata and eggNOG [80] annotations, and 447 

translated into amino-acid sequences. An iterative search for environmental homologues in the OM-448 

RGC dataset was conducted for the selected 53 protein families independently (building upon [37]). 449 

For each family, seed sequences were aligned against the OM-RGC protein sequences with DIAMOND 450 

(thresholds: E-value ≤10-5, sequence identity ≥30%, mutual coverage ≥80%). Environmental 451 

sequences retrieved were used as a base for a new round of DIAMOND alignment (identical 452 

parameters) against OM-RGC. This procedure was iterated, each round using as queries the 453 

environmental sequences retrieved in the previous round, until no additional sequence was found 454 

(Fig. 1A). At each step, the aligned regions of matched sequences were checked to project back to a 455 

region covering at least 80% of a seed sequence, to maintain the plausibility of distant homology 456 
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between indirectly linked sequences (Fig. 1B-C). Sequences not meeting this criterion were discarded 457 

before the next search iteration. 826,717 sequences in the OM-RGC dataset were assigned to the 458 

selected protein families in this way (Table SI-2). 459 

Precision and accuracy of our iterative retrieval protocol on simulated protein families 460 

From a balanced binary tree with 64 leaves, we generated a collection of toy phylogenies. For each 461 

non-root node in the starting tree, new trees were created by elongating branches between the root 462 

and this node, by a factor of 1 (“null” case), 1.5, 2, 2.5, 3, 3.5, 4, 6 or 8, yielding 126 non-root nodes × 463 

9 possible elongation factors = 1134 (non-unique) tree instances. Random sequences of 300 amino-464 

acids were then generated and numerically evolved along the branches of these trees using pyvolve 465 

[81] (version 1.0.3, LG model). Doing three replicates per tree instance, we thus simulated a total of 466 

3402 artificial protein families with 64 members each.  467 

In each tree we generated, branches were only elongated from the root to one target node, and 468 

therefore only on one side of the root, leading to leaf nodes on that side being further away from the 469 

root than the leaves on the opposite side. Sequences simulated along those trees could therefore be 470 

classified as slow- or fast-evolving depending on their side in the tree. 3402 iterative homology 471 

searches (same parameters as for real-world data) were thus conducted, each time using the slow-472 

evolving sequences from one simulated family to find their fast-evolving homologues within the 473 

entire set of generated sequences. The precision (percentage of true positive homology calls 474 

amongst all retrieved sequences) and recall (percentage of fast-evolving homologues successfully 475 

retrieved) of the search protocol were determined from these results, for each possible factor of 476 

divergence, and each possible depth in the tree this divergence spanned (from 1, stopping at a node 477 

directly under the root, to 6, all the way to a leaf node).  478 
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Comparison of retrieved environmental sequences to cultured diversity 479 

Environmental sequences retrieved for each of the 53 selected seed families were compared to 480 

published sequences from taxonomically-resolved organisms in the NCBI nr database (downloaded in 481 

March 2020) via a DIAMOND alignment search (E-value ≤10-5). Similarity values between 482 

environmental sequences and their closest published relative were calculated as the product of the 483 

amino-acid identity in the aligned region times the alignment coverage on the shortest sequence. 484 

Sequence similarity network reconstruction and analysis 485 

SSNs were computed for each environmentally expanded protein family by conducting all-against-all 486 

DIAMOND blastp alignments of seed and environmental sequences (E-value ≤10-5, sequence identity 487 

≥30%, mutual coverage ≥80%). We then inferred, using Louvain clustering (implemented in networkx, 488 

v2.8.8) [40], node communities in those networks, i.e. groups of sequences tightly connected by 489 

homology links. This clustering defined 691 communities across the 53 families in our dataset. We 490 

further selected clusters containing at least 30 sequences, of which at least 90% were from the 491 

environmental dataset, and with environmental sequences averaging 40% identity or less with their 492 

closest published counterpart. 80 such clusters were identified across 25 families. 493 

SSNs were rendered using Cytoscape (version 3.9.1) [82]. However larger networks, typically with 494 

millions of edges, made visualisations intractable. Synthetic “meta-networks” of those SSNs were 495 

created instead (Fig. SI-4, SI-5, SI-7). Rather than showing interconnections between all sequences, 496 

these represented connections between sequence clusters (as defined above): each Louvain cluster 497 

inferred in an SSN was condensed to a single “meta-node”, and two meta-nodes were linked by a 498 

“meta-edge” if the corresponding clusters were adjacent in the SSN. Meta-edges were also given a 499 

numeric weight representing the proportion of edges between clusters, relative to the total possible 500 

number of edges if the clusters had been fully connected together. 501 
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Phylogenetic analysis of divergent clusters 502 

Sequences from divergent clusters were gathered in phylogenetic trees along with seed sequences. 503 

We used CD-HIT (90% identity threshold, version 4.8.1) [83] to dereplicate sequences from each of 504 

the 80 selected clusters, as well as seed sequences from each of the 25 corresponding families. Up to 505 

100 sequences per environmental cluster and 200 seeds per family were selected as representatives. 506 

We then first computed cluster-specific maximum likelihood phylogenies. Sequences from each 507 

divergent cluster were aligned with corresponding seed sequences using Mafft (version 7.520, 1000 508 

iterative refinement cycles) [84]. These alignments were then trimmed using trimAl (version 1.4.1) 509 

[85], and phylogenies were produced using IQ-TREE (version 1.6.12, 1000 bootstrap replicates) [86–510 

88]. Next, we inferred family-wide alignment-free phylogenies, grouping together (representatives 511 

of) seed sequences and all divergent clusters from each family [89, 90]. k-mer-based distance 512 

matrices were computed between all representative sequences of a family using jD2Stat (version 1.0, 513 

k=7) [91], and used to infer Neighbour-Joining trees with RapidNJ (version 2.3.2) [92]. All trees were 514 

rendered and annotated in iTOL (version 6.9) [93]. 515 

Inference and comparison of protein tertiary structures 516 

3D structures were inferred for a selection of representative sequences in the SSNs of SMC proteins 517 

and DNA clamp-loading subunits.  518 

For clamp loaders, one sequence was selected as representative for each cluster in the SSN. 519 

Divergent environmental clusters were represented by the environmental sequence with the highest 520 

degree (number of edges in the SSN) to other environmental sequences within the cluster; other 521 

clusters were represented by the reference sequence with the highest degree to other references in 522 

the cluster. For SMC proteins, which have a significantly longer primary sequence (around 1200 523 

amino-acids), we sought to reduce the number of structures to infer de novo. Six sequences from the 524 

divergent cluster of environmental SMC variants were chosen arbitrarily (all had maximal degree, 525 

because the cluster was fully connected), and public AlphaFold structures [53, 94] were acquired 526 
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from UniProt [95] to represent reference SMC sequences (UniProtKB accessions: P9WGF2, Q5N0D2, 527 

A3PMS2, A9BZW2, P51834, Q69GZ5, Q8TZY2) and their Rad50/SbcC homologues (UniProtKB 528 

accessions: A0A7I7YPX7, A5GLL1, O68032, A0A210VWK9, A0A640H0H1, P62134, P58301). 529 

Structures were inferred for selected clamp loaders and environmental SMC sequences using 530 

ColabFold (v1.5.2, default parameters) [52]. Then, reference and environmental clamp loader 531 

structures were compared using FoldSeek (version 7-04e0ec8, all-against-all, easy-search mode, no 532 

pre-filter, alignment by TM-Align) [96]. Inferred environmental SMC structures were compared with 533 

UniProt reference SMC structures following the same protocol. For both protein families, these 534 

comparisons were used to construct dendrograms with RapidNJ [92], taking as distance metric 535 

between two structures the average local distance difference test (lDDT) score of the corresponding 536 

bidirectional structural alignment. Dendrograms were plotted in iTOL [93] and annotated with 3D 537 

models of the protein structures rendered by PyMOL (version 2.5.5).  538 
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Figure 1: Iterative homologue search procedure. (A) Iterative aggregation of environmental 561 

homologues around seed sequences in a similarity network. From a set of seed sequences belonging 562 

to a given protein family (green and orange nodes), a first search iteration finds environmental 563 

homologues (dark blue nodes) for some of the seeds. A second search iteration then uses these 564 

environmental sequences as queries to find more homologues (medium blue nodes, red frame), 565 

which are themselves used as queries for a third search iteration finding further environmental 566 

homologues (light blue nodes, yellow frame). (B) At each iteration of the search, newly found 567 

homologues are only retained if their aligned region can be mapped back onto a seed sequence in a 568 

way that ensures >80% coverage on all sequences along the chain of aligned sequences. (C) Left: 569 

sequence D is found after three search iterations from seed A, and its alignment with sequence C can 570 

be mapped back to A in a way that preserves 80% coverage on all sequences along the “alignment 571 

chain”. Sequence D is therefore retained and will be used as query for the next iteration of the 572 

search. Right: sequence D’ is found after three search iterations from seed A, but its aligned region 573 

cannot be mapped back to A without breaking the 80% coverage requirement. D’ is thus not retained 574 

as a distant homologue of A in this round of search. (D-G) Sequence similarity networks for SMC 575 

proteins. (D) shows seed sequences only, (E-G) show seed and environmental sequences. In (D-F), 576 

nodes representing seed sequences are coloured according to their taxonomic origin (yellow: non-577 

DPANN archaea; orange: DPANN archaea; light green: CPR bacteria; dark green: non-CPR bacteria; 578 

shades of red: four eukaryotic SMC paralogues). In (E), environmental nodes are coloured in blue, 579 

with darker shades for sequences retrieved in earlier iterations of the search, and lighter shades for 580 

sequences retrieved later. In (F), environmental nodes are coloured in blue, with darker shades for 581 

sequences with higher similarity to the known cultured diversity, and lighter shades for sequences 582 

with less similarity. In (G), all nodes are coloured according to Louvain clusters inferred in the SSN 583 

(one arbitrary colour per cluster). 584 
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 585 

Figure 2: Alignment-free phylogeny of the DNA clamp loader subunits: HolB/DnaX/RarA/RFC 586 

sequences and environmental homologues from significantly divergent clusters. Seed sequences 587 

are coloured according to the Domain of life of their host organism (green: Bacteria, yellow: Archaea 588 

and Eukaryotes). Groups of environmental sequences are coloured according to the network cluster 589 

they belong to in the family SSN, and outlined in red. Numerical cluster labels are inherited from Fig. 590 

SI-4 and shared with Fig. 3. Note: environmental network clusters 19 and 25 are both split into two 591 

groups in this phylogenetic tree. 592 
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 593 

Figure 3: Dendrogram of tertiary structures of DNA clamp loader subunits: HolB/DnaX/RarA/RFC 594 

sequences and environmental homologues from significantly divergent clusters. Protein structures 595 

were inferred with AlphaFold and compared (all against all) using Foldseek. Leaves and structures are 596 

boxed according to the Domain of life of their host organism (green: Bacteria, yellow: Archaea, 597 

magenta: Viruses). Environmental leaves and structures are boxed in red, with numerical labels 598 

corresponding to the SSN cluster they belong to, in accordance with Fig. 2 and Fig. SI-4.  599 
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 600 

Figure 4: Maximum likelihood phylogenetic tree of SMC sequences and environmental homologues 601 

from significantly divergent clusters. Seed sequences are coloured according to the Domain of life of 602 

their host organism (green tones: Bacteria, yellow: Archaea, orange and purple tones: Eukaryotes). 603 

Environmental sequences are coloured in blue and outlined in red. Red dots indicate environmental 604 

sequences for which 3D structures were inferred. Black dots indicate branches with >85% bootstrap 605 

support. 606 
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 607 

Figure 5: Environmental SMC homologues with divergent tertiary structure. (A) Dendrogram of 608 

tertiary structures of SMC sequences and selected environmental homologues from significantly 609 

divergent clusters. Protein structures were inferred with AlphaFold and compared (all against all) 610 

using Foldseek. Leaves and structures are boxed according to the Domain of life of their host 611 

organism (green: Bacteria, yellow: Archaea). Environmental leaves and structures are highlighted in 612 

red. (B) Schematic structure of SMC monomers. Left: canonical SMC protein with N- and C-terminal 613 

ATP-binding motifs, linked to a central hinge domain by two coiled-coil regions. This linear structure 614 

folds (grey arrow) by joining the two terminal motifs into an ATPase domain, forming a helical coiled-615 

coil with the arm regions between the ATPase and hinge domains. Right: “hinge-less” environmental 616 
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SMC homologue lacking a hinge domain. The folded protein still features the ATPase domain at one 617 

end of the coiled-coil helix, without the hinge at the opposite end. 618 

 619 

Figure 6: Alignment-free phylogeny of RecA/RadA sequences and environmental homologues from 620 

significantly divergent clusters. Seed sequences are coloured according to the Domain of life of their 621 

host organism (green: Bacteria and eukaryotic organelles, yellow: Archaea and eukaryotic nuclei). 622 

Groups of environmental sequences are coloured according to the network cluster they belong to in 623 

the family SSN, and outlined in red. Numerical cluster labels are inherited from Fig. SI-7. 624 
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1. Combinatorics of genes and gene parts 

1.1 – Homologous and non-homologous genetic recombination 

Gene duplication, sequence divergence, and recombination are generally understood as the 

three main forces of gene evolution. Among these, genetic recombination stands out conceptually 

because, unlike duplication and divergence, it goes against the historical model of evolution as a 

predominantly tree-like process based on clonal replication. The term “recombination” actually 

encompasses a variety of evolutionary mechanisms that all share a common characteristic: they depict 

the gene space not as a collection of isolated, atomic units, but rather as a mosaic of compartments 

that can be arranged and rearranged with some flexibility. Combinatorial processes of gene evolution 

that involve this mosaicism of genes are fundamentally not tree-like, and therefore (tautologically) 

gene families that evolved from such processes cannot be accurately described with canonical 

phylogeny methods. Consequently, remodelled genes can sometimes be overlooked by evolutionary 

analyses that focus mainly on phylogenetic trees. This is not because of a lack of awareness or 

consensus on the prevalence of recombination in gene evolution; it is not disputed, for instance, that 

the majority of protein-coding genes can be decomposed into distinct domains that can be arranged 
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in a multitude of different architectures [Forslund, Kaduk, and Sonnhammer 2019]. Domains are even 

the basis for several popular methods of protein function annotation, but investigations into the 

evolutionary dynamics around domain rearrangements, and more generally around gene remodelling 

as a whole, are less frequent. In this chapter, we show that network-based approaches can help to 

detect and analyse these remodelling events, with a particular focus on gene fusions and gene fissions. 

We studied how these mechanisms have affected the evolution of two different lineages, both 

characterised by the emergence of complex multicellularity from unicellular ancestors: brown algae 

and animals. 

Processes of genetic recombination are further split in two main categories. The first one is 

called homologous recombination, which is when DNA is exchanged between two corresponding loci 

on homologous chromosomes. This is a common source of genetic diversity that occurs in all Domains 

of life and is facilitated by a variety of mechanisms, including double-stranded DNA breaks repair 

(Figure 22), and chromosomal crossover between non-sister chromatids during meiosis in eukaryotes 

[Zickler and Kleckner 2015]. Prokaryotic organisms, which reproduce asexually, can particularly benefit 

from recombinations with homologous genes acquired horizontally to avoid the deleterious effects of 

Muller’s ratchet [Vos 2009]. Homologous recombination thus contributes to shuffling genetic 

polymorphisms within populations but does not contribute to the creation of new gene forms. In this 

way, it is defined in opposition to non-homologous recombination, which encapsulates all other types 

of combinatorial processes of gene evolution.  
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Figure 22: Mechanisms of homologous recombination following a double-stranded break. 

A double-stranded break in DNA can be repaired with a homologous sequence (here in orange), for 

instance a homologous chromosome. Several mechanisms can fix these breaks, including double-

stranded break repair (DSBR) by the formation and resolution of Holliday junctions (HJ), and synthesis-

dependent strand annealing (SDSA). Once the double-stranded break is fixed, the repaired 

chromosome contains a portion of the homologous template. 

Adapted from: [Sung and Klein 2006]. 

Non-homologous mechanisms of genetic recombination involve the movement of genetic 

material between non-homologous (in the stricter sense of homology) gene families. They are 

sometimes referred to as “illegitimate recombination”, a rather pejorative term that depicts these 

processes as undesirable and deleterious. While it is true that, locally, most recombination events 

have adverse effects on their hosts (as is the case for most mutations), many gene families have been 

created through combinatorial processes, contributing to important adaptations and transitions in the 

evolution of all organisms [Apic, Gough, and Teichmann 2001, Ekman et al. 2005]. Although various 

types of non-homologous recombination have been described, each facilitated by specific molecular 

mechanisms, we focused in particular on gene fusions and fissions, through which organisms can 

develop new proteins with innovative functions [Pasek, Risler, and Brézellec 2006, Dohmen et al. 2020, 

Padalko, Nair, and Sousa 2024]. 
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1.2 – Gene fusions and gene fissions 

Gene fusion is the process in which a novel gene sequence is created by the merging of two 

genes (or parts of genes) that previously existed as separate entities. The word “merging” here is to 

be understood in the sense of concatenation: the resulting fused gene9 is composed of distinct regions 

that correspond to each “donor” gene sequence. A variety of mechanisms can give rise to gene fusions. 

The first one, which is common to all Domains of life, consists in the loss of the intergenic region 

between two adjacent open reading frames (ORFs), such that the transcription goes on uninterrupted 

between the two genes. This is the main way for prokaryotes, in particular, to obtain fused genes, 

whereas the intron-exon gene structure of eukaryotes allows for more modularity: gene fusions can 

for instance happen by the gain of an exon from a different gene [Marsh and Teichmann 2010]. Larger-

scale rearrangements of chromosomes can also produce fusion genes, this time regardless of the 

relative distance between two genes along the genome10.  

The inverse process, wherein a single gene sequence becomes split in two new distinct genes, 

is coherently called gene fission. Likewise, gene fissions can arise from various different processes, 

both locally (e.g. the emergence of a new stop codon and intergenic region) and globally (e.g. genome 

rearrangements). Gene fissions are usually less frequent than fusions, although relative rates of 

fusion/fission events vary between different organisms [Kummerfeld and Teichmann 2005, Leonard 

and Richards 2012]. This can be explained, at least in part, by the relative complexity of evolving a 

novel intergenic sequence within an existing ORF (which requires the concurrent emergence of a new 

stop codon, promoter and start codon), compared to the disappearance of the intergenic space 

between two ORFs (feasible in a single event of stop codon loss or interstitial deletion). Split genes 

may also be more restricted than fused genes in their function, e.g. if both split genes resulting from 

a fission must be coexpressed and interact to fulfil the same role as the unit gene pre-fission, which 

may lead to a counter-selection of gene fissions relative to fusions. 

 
9 Some authors make a distinction between the fusion of whole genes, for which they reserve the term 

“fused gene”, and the merging of only some parts of genes, called “chimeric genes”. For our purposes, we choose 
to overlook this distinction, and we use the terms interchangeably. 

10 Chromosome rearrangements are often deleterious, and in humans are associated with many types of 

tumours and cancer [Mitelman, Johansson, and Mertens 2004]. The first detected instance of a fusion gene was 
actually found in cancer cells, and oncogenic gene fusions are often targeted during diagnostics of these 
pathologies. This can perhaps explain the use of “illegitimate recombination” in a human health, rather than 
evolution, context. 
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Figure 23: Gene fusions and fissions can occur through diverse mechanisms. 

(A) The exon-intron structure of eukaryotic genes enables gene fusions via a number of processes. 

Adapted from [Marsh and Teichmann 2010].  

(B) Three mutational processes that may result in the fission of a gene with two conserved regions 

(e.g. domains) A and B. From [Leonard and Richards 2012]. 

The genetic novelty created by gene fusions and fissions can generate new protein functions. In 

both cases, however, there exists a general trend to favour recombination between genes performing 

similar, or associated, functions [Yanai, Derti, and DeLisi 2001]. A number of reasons for this fact can 

be put forward, both upstream and downstream from natural selection. First, co-functioning genes 

have a higher chance of also being co-localised within genomes. This is especially true of prokaryotes, 

in which proteins that function together are frequently encoded by ORFs belonging to the same 

operon. In this context, local recombination events are more likely to involve genes with similar 

functions when they occur within the boundaries of an operon. From a structural perspective, 

furthermore, ‘homofunctional’ remodelling events may happen with less deleterious consequences. 

If two genes that code for proteins involved in a same complex are fused, for instance, the resulting 

fusion protein has a chance of adopting a structure that reflects the two ancestral proteins, which can 

reduce the risk of destabilising the complex and impeding its normal function. Such events can thus 

occur in a relatively transparent manner with respect to natural selection. Still, even remodelling 

events that involve functional partners can lead to variations in function. 

1.3 – Protein domains: the Swiss Army knife of protein annotation 

Protein domains indubitably constitute the best acknowledged framework for discussions of 

gene modularity and combinatorial evolution processes [Buljan and Bateman 2009]. Several databases 

coexist that map the diversity of these domains, all differing in how they recognise, classify and 

annotate these domains. Despite their differences, all of these databases provide an important 

ontological basis for the study of non-homologous recombination: an explicit collection of basic 
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building blocks for protein-coding genes that connect structural, functional and evolutionary aspects 

of the protein space. Protein domains are thus highly versatile descriptors of protein composition, 

because they represent good approximations of structural units, functional units and evolutionary 

units all at once, and they consequently lend themselves to a wide array of studies. Looking at proteins 

through the lens of domain architecture has produced numerous insights into the evolution of 

organisms throughout the tree of life. First and foremost is the prevalence of multi-domain proteins 

in all genomes, representing up to 80% and 60% of all eukaryotic and prokaryotic proteins respectively 

[Apic, Gough, and Teichmann 2001] – in other words, a majority of proteins derives, at least partly, 

from gene remodelling events. Domain rearrangements have been associated with some important 

evolutionary changes, including environmental adaptation in plants, multicellularity in animals, and 

eusociality in insects [Kersting et al. 2012, Cromar et al. 2014, Dohmen et al. 2020].  

 

Figure 24: Coverage of UniProtKB by Pfam domains over the last five Pfam releases. 

The number of sequences in UniProtKB has more than tripled between 2016 and 2021. In the same 

time, successive releases of Pfam have maintained approximately the same coverage of UniProtKB: 

~77% of sequences have at least one Pfam annotation, and Pfam domains cover on average ~53% of 

a protein’s length. 

From: [Mistry et al. 2021]. 

Despite their undeniable value, however, protein domains fall short of representing the entire 

protein universe with perfect exhaustivity (Figure 24). Out of all the protein sequences in the 

comprehensive UniProtKB database, for instance, roughly 23% of them do not contain a single Pfam 

domain11 [Mistry et al. 2021]. Furthermore, Pfam domains only cover 53% of a protein sequence’s 

 
11 When also taking into account the 12 other domain databases hosted by InterPro, this figure only goes 

down to 18% [Paysan-Lafosse et al. 2023]. 
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length on average, meaning that nearly half of the total known proteome cannot be currently 

described on the sole basis of protein domains. These figures have been remarkably stable over time, 

in line with the successive updates of both protein sequence and protein domain databases. This 

suggests that the non-domain-like portions of proteins are not unannotated because our sampling of 

domains is incomplete, but rather because domains are defined towards a specific archetype of 

protein sequence, which is in no way meant to be exhaustive. Intrinsically disordered regions, for 

instance, have no fixed 3D conformation, and although some annotations do exist for disordered 

domains, most fall outside the scope of what domains are meant to represent. Speaking more 

generally, domains describe the organisation of proteins rather than genes, and consequently, gene 

remodelling events do not necessarily operate strictly along the same lines. As an example, many 

protein domains roughly correspond to exons or groups of exons [Liu and Grigoriev 2004], but this 

view ignores that intronic sequences may be affected by remodelling too. A domain-centric approach 

to characterise gene fusions and gene fissions thus has some limitations, and cannot account for all 

the combinatorial processes that contribute to gene evolution.  

2. Using similarity networks to identify remodelled genes 

Although gene fusion and gene fission are mechanistically different, they still cannot be fully 

dissociated because in terms of gene evolution, they are structurally opposite processes: a fission 

event splitting a gene X into two genes X1 and X2 could hypothetically be ‘reverted’ by a fusion of X1 

and X2 into X, and vice versa (Figure 25A). Gene fusions and gene fissions both involve a ‘long form’ 

gene which contains two distinct (i.e. non-overlapping) regions that also occur independently in 

separate ‘split form’ genes. Identifying these patterns can point to putative gene fusions or fissions, 

but it does not allow us to distinguish between the two, precisely because both can result in this same 

motif. An analysis of gene fusion and fission thus requires two distinct steps, to first identify putative 

events of fusion/fission, and then to classify each event into one of these two categories, for which 

other types of information about these genes must be leveraged. Before the fusion/fission decision is 

made, we will therefore adopt the terminology of composite and components [Enright et al. 1999]: 

the central ‘long form’ gene, which has partial homology to both the ‘split form’ genes, is called a 

composite gene, and the others are called components. This allows for a more neutral description of 

sets of genes that are involved in remodelling events, reflecting the a priori ignorance of which are 

fusions and which are fissions. We will also prefer “gene remodelling” over “recombination”, as the 

latter has many different uses beyond our specific scope of fusion and fission events. 
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Figure 25: Gene fusions and fissions can result in the same sequence similarity patterns. 

(A) The ‘composite/component’ terminology reflects the fact that gene fusion and gene fission are 

structurally inverse processes. 

(B) Either of gene fusion and gene fission can produce an intransitive similarity pattern where the 

composite is similar to both components, which themselves are not similar to one another. 

(C) In a fusion between two components that are already partly homologous, the resulting similarity 

pattern may not be an intransitive triplet. 

2.1 – A first approach: intransitive homology triplets 

Early computational methods for detecting fusion and fission events relied on non-transitive 

relationships of homology between genes [Jachiet et al. 2013]. The base assumption for this type of 

approach is that while a composite gene is homologous to each of its components, in general there 

should not be any homology between different components12. The composite gene therefore sits at 

the centre of an intransitive homology triplet, with components at each end (Figure 25B). This is an 

easy enough pattern to check for, giving a conceptually simple recipe for identifying putative 

remodelling events within a given pool of genes: enumerate all possible trios of genes, and retain 

those forming intransitive triplets. This approach has proven fruitful in past investigations of gene 

fusions, but it does suffer from a few shortcomings. First, the number of possible triplets to enumerate 

grows cubically in relation with the number of genes considered, which complicates the analysis of 

large datasets. Second, while many remodelling events do produce intransitive homology triplets, 

these patterns can also reflect other sequence relationships, including distant homologies – it is, after 

all, what we based SHIFT upon (see previous chapter). In practice, however, these anomalistic cases 

 
12 This is perhaps influenced by an understanding of gene fusion in the stricter sense, i.e. two whole genes 

being fused into one, as opposed to gene chimerism that merges subparts of genes instead (see section 1.2 of 
this chapter). 
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can be eliminated by checking whether components correspond to non-overlapping regions of the 

composite, which would not correspond to distant homologues. But conversely, intransitive triplets 

may not represent all fusion or fission events, especially if some genes have undergone several 

remodelling events in succession (Figure 25C). To detect remodelling events comprehensively, 

therefore, it might be necessary to take more general approaches. 

2.2 – Detecting a broader spectrum of remodelled genes 

As we discussed in the Introduction, a sequence similarity network can be viewed as a proxy for 

the homology relationships between a set of genes. To infer putative fusion/fission events from 

relationships of homology, therefore, one can build and analyse SSNs that reflect these homologies. 

However, unlike in the previous chapter where gene similarities were only considered when covering 

large parts of each sequence (typically >80%), here we must account for partial-length similarities as 

well. In a way, this amounts to creating SSNs with two different types of edges, in order to distinguish 

between full-length and partial alignments. Several methods based on SSNs for gene remodelling have 

been developed in our lab, including FusedTriplets, which implements a gene-based intransitive triplet 

search [Jachiet et al. 2013]; MosaicFinder, which transposes this idea at the level of gene families 

(using clique minimal separators to represent composite families) [Jachiet et al. 2013]; and 

CompositeSearch, which takes a slightly more general approach that does not rely explicitly on 

intransitive homology relationships [Pathmanathan et al. 2018]. This last programme is the one we 

used in particular to analyse the effects of gene remodelling events on the evolution of animals and 

of brown algae. 

CompositeSearch relies on the ab initio constitution of gene families in the SSN, by clustering 

the network into modules using the Louvain community detection algorithm [Blondel et al. 2008]. At 

this step, only edges corresponding to full-length alignments are considered, so that the resulting 

clusters reflect coherent groups of full homology. Partial-length alignments are then factored in to 

detect putative composite genes, which is any gene with partial homologues in two different families 

that align on distinct regions of the composite sequence (in practice, small overlaps between those 

regions can be tolerated, to compensate for overextensions in BLAST alignments). Finally, once 

composite genes are called, the families that contain them are themselves reported as composite 

families. From a conceptual standpoint, this approach differs from those relying on intransitive triplets 

in that it centres directly around the intrinsic definition of a composite gene, rather than identifying 

connectivity patterns that are associated with this definition. In that regard, CompositeSearch allows 

for a more global description of gene remodelling dynamics than previous methods. The distinction 

between composites and components is also blurred, as gene families can now be simultaneously 
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composite and components, e.g. when a gene created by fusion is then involved in another fusion 

event. 

2.3 – Fusion, fission, other? Polarisation of gene remodelling events 

Despite its improvements over previous methods, CompositeSearch still cannot address the 

issue of classifying different types of remodelling events: composite families are reported as 

composites, but other steps are required to understand what this reflects from their evolutionary 

trajectory. To tackle this issue, we have developed a post-treatment method that works from the 

output of CompositeSearch to infer cases of gene fusion and fission within the set of reported 

composite families. This process of investigating remodelling events to decide in which direction the 

remodelling occurred (from composite to components, i.e. fission, or from components to composites, 

i.e. fusion) is sometimes called “polarising” the events, as it amounts to picking an orientation for the 

arrow of time.  

The polarisation approach that we adopted uses evolutionary relationships between the host 

organisms of composite genes. Based on the phylogenetic tree of species that are represented in the 

dataset, the presence/absence of each gene family in extant species is used to infer the moment of 

emergence of that gene (Figure 26A), in accordance with the Dollo parsimony method [Rogozin et al. 

2006]. In other words, a gene family present in the genomes of a number of species is considered to 

have originated no later than in the last common ancestor of those species. We can then apply a 

simple heuristic to label composite families as fused (i.e. originated in a fusion event) or split 

(underwent a fission event). If the components of a composite family existed prior to the composite’s 

origin, then it is classified as a fusion event (Figure 26B); conversely, when a composite predates the 

emergence of its components, then it is considered as a gene fission (Figure 26C). Many intermediate 

cases also arise in practice, where the relative order of evolution between composite and components 

is not as clear-cut. A particularly frequent pattern consists of the composite point of origin being 

‘sandwiched’ between a component that emerged earlier, and a second component that only evolved 

in a branch below the composite origin. In such cases, we reasoned that the composite must have 

originated by gene fusion, because at least one building block of its sequence was already present in 

its ancestral lineage; however, a single fusion event is insufficient to explain the seemingly later 

emergence of the other component, and subsequent events of gene fission or loss could have 

occurred to produce this phylogenetic distribution.  
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Figure 26: Polarisation of remodelling events from composite and component presence/absence. 

(A) Using Dollo parsimony, the points of emergence of a composite family and its components are 

inferred on the species tree, according to the phyletic distribution of each family in extant genomes. 

Circles (plain yellow and purple for two components, and dual-tone for the corresponding composite) 

indicate the extant distribution (at the tips of the tree) and the points of origin (on internal branches) 

of each family. 

(B) The order of emergence between components and composite is used to classify each remodelling 

event as fusion or fission. Here, the components appeared before the composite gene, suggesting a 

gene fusion event. 

(C) In this other case, the composite gene predates the component forms, which is suggestive of gene 

fission. 

This is a relatively simple model to infer fusion and fission events, and it relies on a few 

assumptions. First of all, it is highly reliant on the phylogenetic tree of species represented in the 

dataset and is therefore only well-suited for studying gene remodelling in lineages that evolve in a 

tree-like fashion. The lineages of eukaryotes that we applied this method to largely conform to this 

expectation, but alternative techniques may be preferred when working with bacterial genomes for 

instance, given their extensive use of horizontal gene transfer [Bapteste et al. 2009, Soucy, Huang, and 

Gogarten 2015]. Second, the Dollo parsimony model that is used to infer points of origin for each gene 

family is also based on a fairly restrictive set of hypotheses: each gene can only emerge once, and once 

lost it cannot be acquired again. This is only really appropriate when the gene families considered are 

orthogroups. This is another complication for using this method on prokaryotic genomes, again due 

to HGT which will make patterns of homoplasy emerge in presence/absence data. Even in the absence 

of HGT, inaccurate detection of orthologous gene families in the dataset can lead to erroneous results. 

Moreover, there is no reason why some remodelling events could not happen convergently in 

unrelated lineages, as indeed we observed in metazoans. In both the research projects for which we 

conducted analyses of remodelling events, we tried to account for this limitation, albeit in different 

ways. In the brown algae study, another team had already performed a detection of orthologous gene 

families in the genome dataset, and we therefore used their results to define the gene families in the 

SSN, instead of performing Louvain clustering. In the case of metazoans, on the other hand, the 

families defined by CompositeSearch (based on SSN topology) were used for the composite 
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annotation, but then those families were checked to correspond to mono- or polyphyletic groups in 

the species phylogeny, prior to the polarisation step which treated sub-families of polyphyletic clusters 

independently. With those caveats in mind, we found that our method was able to label most of the 

composite families as either fusions or fissions, although some problematic cases persisted, e.g. in 

cases where the origins of a composite and its components were inferred in unrelated branches of the 

species phylogeny. Such cases could not be assigned to gene fusion or fission with our methods, and 

were considered undecided. 

3. Important role of remodelled genes in the early evolution 

of brown algae 

We conducted a gene remodelling analysis as part of our contribution to a broad study on the 

biology and evolution of brown algae. This study was the fruit of the Phaeoexplorer project, a research 

consortium involving more than 100 collaborators that produced and analysed a large resource of 

novel genomes for this lineage. An article presenting the main outcomes of this project has been 

submitted and accepted for publication in Cell, and is reproduced below. Our specific analysis of 

remodelled genes is featured in this article, but it only represents a small part of all the work done 

with these new genomes, and thus only a small part of the article is centred specifically on our results. 

We therefore describe and discuss our contribution in more detail in this present section, before the 

reproduction of the article as a whole. 

Along with some green and red algae, brown seaweeds are one of the three types of 

macroscopic algae populating coastal seawaters on Earth. They constitute an abundant and central 

component of those ecosystems, as exemplified by the forests of kelp that serve as habitats and food 

sources for many marine species. Brown algae (Phaeophyceae) form a class within the larger group of 

photosynthetic stramenopiles that acquired a chloroplast following a secondary endosymbiosis with 

a red alga [Keeling 2009], and they emerged around 450 million years ago during the Great Ordovician 

Biodiversification Event (GOBE) [Choi et al. 2024]. They are notable for their acquisition of complex 

multicellularity, in contrast with sister clades that are either unicellular or form simple multicellular 

filaments13. Over the course of their evolution, brown algae have developed a broad diversity of cell 

 
13 “Simple” multicellularity, or pluricellularity, typically consists of intercellular aggregations in “one 

dimension” (filaments) or two (biofilms), where most cells keep a direct interface with the environment, have 
limited exchanges with their neighbours and do not differentiate into specialised cell types. Complex 
multicellular organisms, on the other hand, develop different tissue types with high levels of cell-cell 
communication and gene regulation, and display three-dimensional organisations requiring complex systems of 
biomolecule transportation [Knoll 2011]. 
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cycles and morphological plans, in adaptation to diverse coastal ecosystems, including fully 

submerged or intertidal seawater, brackish waters, and on a few occasions freshwater [Dittami et al. 

2017]. Interestingly, the GOBE has previously been cited as having created favourable conditions for 

the evolution of multicellularity in algae, due to the emergence of marine herbivores that grazed on 

algae [LoDuca et al. 2017]: in that context, growing in size and developing different tissues could help 

reducing the detrimental effect of herbivores on the alga’s survival, for instance by directing the 

grazing action toward leaf-like structures14 that are relatively easy to regrow. 

The Phaeoexplorer group produced 60 genomes of brown algae and closely related species, 

covering all the major orders of brown algae. Among these genomes, 17 were acquired from long-

read sequencing, and were part of a high-quality subset of 21 genomes (with the inclusion of four 

quality genomes already published) on which most analyses were focused. The general trend that was 

observed from analysing those genomes consisted in a marked gain of new gene families and functions 

early in the evolution of brown algae, contributing to the development of novel metabolic pathways 

central to the transition to complex multicellularity. Gene loss and gene family amplification (the 

increase in copy number of a gene within a genome), on the other hand, were much more prevalent 

later in the diversification of the lineage, and supposedly drove the emergence of a diverse range of 

morphological and physiological phenotypes.  

 
14 Called blades, laminae or fronds based on their morphology. 
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Figure 27: Emergence and retention of fused and split genes in the evolution of brown algae. 

Phylogenetic distribution of fused (red), split (blue) and non-remodelled (grey) gene family originations 

across the evolution of brown algae. Pie charts on each branch of the phylogeny indicate the relative 

contribution of gene fusion and fission to the overall emergence of novel gene families, quantified by 

the area of the circle. Bars on the right indicate the percentage of gene families retained in extant 

genomes among all gene families that emerged during the evolution of our species set. Brown algae 

species are indicated in brown, and other stramenopiles in black. Note that only the topology of the 

species tree is displayed here, without specific branch lengths. 
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Figure 28: Functional enrichment of certain COG categories in Phaeophyceae remodelled genes. 

Distribution of gene families in COG functional categories for fused, split, and non-remodelled 

orthologous groups. Orthogroups with no annotation or annotated as ‘S (unknown function)’ were 

discarded, so that only orthogroups with known functions were taken into account. Asterisks above 

bars indicate a statistically significant divergence from non-remodelled gene families (p-value < 0.05, 

two-sided Chi-squared test with Yates correction). 

Our gene remodelling analysis also focused on the high-quality subset of 21 genomes, because 

misassemblies of reads in low quality genomes can result in artefacts such as gene chimeras that could 

be picked up by CompositeSearch as composite genes. To produce results that were compatible and 

interoperable with those of other working groups, we based our search on orthologous gene families 

(orthogroups) that had previously been defined from those genomes. We found that 12.6% of all 

orthogroups (excluding singletons) were potential composites. In particular, 6.7% of orthogroups were 

formed in gene fusion events, whereas 4.8% had undergone fission events15. We thus observed more 

gene fusions than fissions, in line with most of the previous literature on fusion/fission events in other 

lineages, but the disparity between the two was markedly less than the four-to-one ratio that is 

generally documented [Kummerfeld and Teichmann 2005]. As with other gene family gains, the 

majority of fusion and fission events occurred in the early stages of Phaeophyceae evolution, and were 

less frequent in more recent branches of the phylogeny (Figure 27). An analysis of retention rates 

showed that the gene families created in remodelling events were less frequently lost than non-

remodelled genes in extant genomes and, importantly, this preferential retention was much more 

 
15 Of the remaining 1.1% of orthogroups that were detected as composites, 0.7% could not be called 

because composites and components all originated before the emergence of brown algae, and 0.4% had an 
unresolved polarisation due to incongruent phyletic patterns between composites and components. 
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pronounced in brown algae than in other species of stramenopiles (Figure 27). These results suggest 

that gene fusions and gene fissions played an important role in the initial emergence of brown algae, 

and that they mainly contributed to processes that were critical for this lineage, such that their loss 

was markedly selected against. Indeed, orthogroups that resulted from remodelling events were 

enriched in a few specific functional categories (Figure 28), particularly related to cell wall and 

signalling (COG categories G - Carbohydrate transport and metabolism, M - cell wall biogenesis, T - 

signal transduction) and transcription (COG category K). These functional classes may have 

contributed to the development of complex phenotypes, including the brown algal cell wall and 

extracellular matrix (ECM) that are both composed of algin, a polysaccharide specific to members of 

the Phaeophyceae class [Mazéas et al. 2023]. Remodelled genes in those functional categories may 

have also facilitated the emergence of complex multicellularity, thanks to innovations in signalling 

pathways and cell-cell communication.  

In summary, our results indicate that gene remodelling events played a substantial role, along 

with other routes of novel gene family foundation, in the emergence and the early evolution of brown 

algae from unicellular stramenopiles. Gene fusion and fission may have contributed, in particular, to 

functions that helped the onset of complex multicellularity, as well as metabolic adaptations to 

intertidal and subtidal ecosystems (e.g. thanks to the flexibility provided by alginate-based cell walls 

and ECMs, which helps resist the push-pull forces of seawater movement). In the later stages of 

Phaeophyceae diversification, remodelling events seemingly became less frequent (or less frequently 

fixed), but early remodelled genes were preferentially conserved, which suggests that they may be of 

particular importance for the success of their hosts. Other collaborators in the Phaeoexplorer 

consortium have noted that brown algal genes are also more intron-rich than genes of other 

stramenopiles, due to a rapid period of intron acquisition just before Phaeophyceae diverged from 

their closest sister class, Schizocladiophyceae. Interestingly, this increase of intron content in the 

genes of the common ancestor of brown algae may have set the stage for the subsequent wave of 

gene remodelling events that contributed to the emergence and the diversification of Phaeophyceae, 

acting as a sort of precursor event to the development of increasing biological complexity.
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4. Punctuated, repeated evolution of remodelled genes in the 

animal kingdom 

We also took part in a research project that studied the impact of gene remodelling on the 

evolution of animals. This study was led by Mary O’Connell and James McInerney at the University of 

Nottingham, and a draft article has been written to present the results, which is currently in the 

process of submission. Our main contribution to this work consisted in applying the polarisation 

method that we developed to composite families that had already been identified. This allowed for a 

finer understanding and interpretation of the results, as composite genes would otherwise be 

ambiguously attributed to gene fusions or gene fission events.  

This study was based on a dataset of ~1.2 million protein-coding genes, from a set of 63 species 

covering all major clades of metazoans. We found that composite genes represented around 5% of all 

genes in animal genomes, with gene fusions responsible for the emergence of 73.3% of all composite 

genes, and 25.4% of composites corresponding to fission events. Only a fifth (21%) of fusion 

composites were compatible with the scenario of a single fusion event with no ulterior remodelling, 

whereas the other 79% of gene fusions showed signs of having undergone later events of fission or 

other remodelling. This suggests that gene remodelling in animals is a particularly dynamic process 

that frequently revisits gene families that had already been involved in previous remodelling events. 

The SSN of animal gene families is also highly modular, which corroborates this observation: 87% of 

composite families are also components for another composite, and even contribute, on average, to 

more remodelling events than non-composite families that are also components. Remodelling events 

thus appear to involve a specific pool of families in animal genomes that are regularly reused towards 

new genetic rearrangements. The high levels of intermingling and recombination within this specific 

gene subset may also be responsible for another trend of gene remodelling in animals, which is its 

remarkable repeatability. Indeed, of all composite families in the dataset, 41% had a polyphyletic 

distribution in the species tree, suggesting that these composites may have evolved convergently in 

distinct lineages, which may reflect an adaptive advantage granted by these composites. 

Rather than being evenly spread throughout the animal tree of life, gene remodelling events (or 

at least retained composite genes) seem to occur in punctuated bursts at specific nodes of the 

phylogeny (Figure 29). Deuterostomia (including chordates, hemichordates and echinoderms), in 

particular, display higher amounts of remodelled genes than Protostomia (including arthropods, 
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molluscs, and most worm-like animals) or non-bilaterians16. The maximal amount of remodelled gene 

gain at a single position in the animal phylogeny occurs on the branch leading to the ancestor of 

Euteleostomi (around 450 million years ago), coinciding with a number of important phenotypic 

changes such as the transition from a cartilaginous skeleton to one of mineralised bone, as well as an 

overall increase in genome complexity [Sacerdot et al. 2018, Simakov et al. 2020]. Relative rates of 

composite gene formation per time unit highlight some more recent lineages that have experienced 

particularly high rates of gene remodelling, especially in Hominoidea and Caenorhabditis. This 

punctuated gain pattern at specific points of the animal phylogeny contrasts with overall trends of 

gene family acquisition in animals, which predominantly occurred in branches leading to the common 

metazoan ancestor and soon after. This substantial wave of gene origination early in the evolution of 

animals could thus have created a repertoire of genetic “building blocks” that gene remodelling would 

have later exploited for further genetic innovation, especially at certain key points of animal evolution.  

 

Figure 29: Emergence and loss of remodelled genes in the evolution of animals. 

Phylogenetic distribution of the gains and losses of fused and split genes across the animal tree of life. 

The area of each circle is proportional to the amount of gain/loss at the corresponding node. The bar 

plot on the right shows the number of composite gene families in each extant genome. The inset box 

plot shows the distribution of the rate of composite gene gain per time unit. 

 
16 Deuterostomia and Protostomia are the two main clades of bilaterian animals that have a distinct 

bilateral symmetry at the embryonic stage. Most Bilateria maintain this symmetry as adults, with the exception 
of echinoderms, which become pentamerous as adults (e.g. starfish). Animals that are not bilateral include 
Porifera (sea sponges), Ctenophora (comb jellies), Placozoa, and Cnidaria (jellyfish, corals, anemones, etc.). 
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Figure 30: Retention of remodelled genes in extant animal genomes.  

This bar plot indicates the rates of retention for fused, split and non-remodelled gene families in extant 

animal genomes. Species names are coloured according to their inclusion in Deuterostomia (light 

green), Protostomia (dark green) or non-bilaterian clades (black). The internal nodes corresponding to 

the emergence of Vertebrata and Euteleostomi are highlighted as they represent a shift in the pattern 

of retention, compared to non-vertebrate groups. 

We also found that fused genes were more likely to be retained in present-day genomes of 

vertebrate species than non-remodelled genes, with Euteleostomi in particular showing markedly high 

rates of fusion gene retention (Figure 30). In non-vertebrate lineages, on the other hand, fused genes 

were lost at rates comparable (or sometimes higher, e.g. in Caenorhabditis) to non-remodelled genes. 

Conversely, split genes that originated from fission events were substantially less stable than fused 

and non-remodelled genes in most animal lineages. These results suggest that gene fissions and 

fusions have played distinct roles in the evolution of animals, with fissions creating gene products that 

were largely volatile and rarely selected for, whereas gene fusions may have resulted in more neutral 

or even beneficial (especially in vertebrates) genetic innovations. Lastly, from a functional standpoint, 
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fusion genes were found to be predominantly involved in transcription (COG category K), post-

translational modification, protein turnover and chaperone functions (O), signal transduction (T), 

extracellular structures (W) and inorganic ion transport and metabolism (P). Functional innovations in 

these categories (especially K, O, T) could have contributed to a complexification of gene regulation 

pathways, which in animals are particularly associated with morphological development and the 

evolution of body plans [Davidson and Erwin 2006]. Likewise, the emergence of new functions 

associated with extracellular structures (W) may have played a role in the extant diversity of biological 

tissues and organs in animals. Although gene remodelling may not have been central to the initial 

emergence of animals [Ocaña-Pallarès et al. 2022], later remodelling events might therefore have 

contributed to the diversification of animal lineages. In particular, some major physiological and 

morphological changes in animal evolution, such as bilateral body plans and the axial endoskeleton of 

vertebrates, are coincident with bursts of gene gains from fusion events at specific nodes in the animal 

tree of life. 
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Abstract

A molecular level perspective on how novel phenotypes evolve is contingent on our
understanding of how genomes evolve through time, and of particular interest is how
novel elements emerge or are lost. Mechanisms of protein evolution such as gene
duplication have been well established. Studies of gene fusion events show they
often generate novel functions and adaptive benefits. Identifying gene fusion and
fission events on a genome scale allows us to establish the mode and tempo of
emergence of composite genes across the animal tree of life, and allows us to test
the repeatability of evolution in terms of determining how often composite genes can
arise independently. Here we show that ~5% of all animal gene families are
composite, and their phylogenetic distribution suggests an abrupt, rather than
gradual, emergence during animal evolution. We find that gene fusion occurs at a
higher rate than fission (73.3% vs 25.4%) in animal composite genes, but many gene
fusions (79% of the 73.3%) have more complex patterns including subsequent
fission or loss. We demonstrate that nodes such as Bilateria, Euteleostomi, and
Eutheria, have significantly higher rates of accumulation of composite genes. We
observe that in general deuterostomes have a greater amount of composite genes
as compared to protostomes. Intriguingly, up to 41% of composite gene families
have evolved independently in different clades showing that the same solutions to
protein innovation have evolved time and again in animals.

Significance statement

New genes emerge and are lost from genomes over time. Mechanisms that can
produce new genes include, but are not limited to, gene duplication,
retrotransposition, de novo gene genesis, and gene fusion/fission. In this work, we
show that new genes formed by fusing distinct homologous gene families together
comprise a significant portion of the animal proteome. Their pattern of emergence
through time is not gradual throughout the animal phylogeny - it is intensified on
nodes of major transition in animal phylogeny. Interestingly, we see that evolution
replays the tape frequently in these genes with 41% of gene fusion/fission events
occurring independently throughout animal evolution.
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Introduction

Composite genes emerge by fusion of distinct protein coding sequences
(“components”), or by the fission of protein coding sequences into components.
Often composite genes establish novel domain architectures, expression profiles,
and functions (1–7). For example, the fusion gene Jingwei is remodelled from yellow
emperor and alcohol dehydrogenase genes combining activity on both long chain
alcohols and diols, including growth hormones and pheromones, and establishing a
novel developmental function in Drosophila (8). In addition, the kua-UEV fusion gene
in human has facilitated cytoplasmic localization of an otherwise solely nuclear
polyubiquitination co-effector (9). Whilst there is mounting evidence for the role of
gene fusion in driving adaptive evolution (10–15), there are a number of outstanding
questions about the evolution of composite genes in animals. Specifically, how
prevalent composite gene formation has been, whether the emergence of composite
genes occurs in bursts rather than gradually, whether the pattern of emergence of
composite genes correlates with the origin of major animal groups, and at what rate
fusions or fissions occur. In addition, whilst the convergent evolution of phenotypes
is well established in animals, the extent to which composite genes can arise
independently in different lineages is largely unknown. Given the divergence in
morphologies, niches, lifestyles, and indeed genomes, it is not clear whether
repeated evolution of the same molecular components would be precluded, or
whether the deterministic effects, i.e. the benefits of particular kinds of composites,
would overcome any contingent effects of prior genome evolution.

Animal genome evolution has been shaped by regulatory innovations (16), by de
novo gene genesis (17–21), and by gene duplication and gene loss (20, 22).
Composite genes have been particularly challenging to study as they simultaneously
reside in more than one homologous gene cluster which complicates gene family
assignment and phylogenetic analyses. Studies of protein coding aspects of animal
evolution have necessarily relied upon strict definitions of gene families that limit our
view to purely furcating processes (23, 24). An alternative view is provided by
retaining the connections between composite genes and their components in
sequence similarity networks (SSNs), permitting genes to be members of more than
one family simultaneously. Taking advantage of the unique network motif typical of
composite genes, i.e. they form “non-transitive triplets” thereby connecting gene
families that are otherwise unconnected through partial sequence homology, we can
identify candidate composite genes from genome scale data (25).

The protein domain space that comprises all animal proteins (components and
composites alike) is limited, and it is conceivable that the same composite gene
forming event could occur multiple times independently (26). Indeed, comparative
empirical studies reveal surprisingly repeatable evolutionary fates in closely related
lineages, a trend considered to reduce with increasing distance (27, 28). To date, the
rate of independent evolution observed within multi-domain proteins has varied
dramatically from very low, i.e. 0.4% (29), to much higher, 5-25% (13, 27). The lower
range of estimates of independent evolution is thought to be caused by limited taxon
sampling (13, 27). Using a large representative dataset, we provide a statistically
sound framework to elucidate the rate of independent evolution of composite genes
in animals.
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Materials and methods

Dataset assembly

A dataset of 1,217,174 protein coding genes from a sample of 63 animal species
representing all major clades within the animal tree was obtained from the OMA
orthology database (70). Taxa were sampled to capture the known periods of major
transition within animal evolution, and species representing all major nodes in the
animal tree were included. The quality of data used was of particular importance in
this study (given the potential for misidentification of composite genes) therefore
taxon sampling was guided by the quality of gene annotation of the available species
genomes using two filtering steps of genomes. First, we searched for protein coding
genes known to be present across all of Metazoa (412 genes in total) (71), ranking
genomes as high quality if they possessed >70% of the conserved set, while low
quality genomes had less. Next, a smaller set of 40 protein coding genes that are
annotated as being present across all of life (72) were used as queries to search for
their presence in the set of animal genomes. As this set of protein coding genes is
more conserved, this allowed for stricter filtering for quality of the genomes. All
homology searching for the “core set of metazoans” and “all of life” protein coding
genes was carried out using a reciprocal BLASTp approach (73). Searching for the
set of conserved genes within sampled genomes in Metazoa and all of life, ensured
that genomes of high quality (deemed by the presence of these sets of conserved
genes) were used in our analysis.

To construct a time-calibrated species tree, node dates and topology were obtained
from TimeTree (53), and contentious groupings (such as the branching order at the
root of the animal lineage) were resolved based on current literature on the animal
phylogeny (50–52, 74). We also included an alternative topology for the root position
on the animal tree to test if our results are robust to the position of the deepest
divergences. Twelve of the species in our dataset were missing from the TimeTree
database, and so to place their position and time of divergence, closely related
species to these lineages were used as replacements. In most cases, sister species
from the same genus were present, and a list of the closely related species used to
replace them can be found in (Supplementary Table S2). With other species, such
as the case of Ciona savignyi, which was not present in TimeTree, the divergence
time between it and its sister lineage Ciona intestinalis was taken as 176 MYA from
the literature (75).

Generation and filtering of the sequence similarity network

An all versus all BLASTp (Altschul et al. 1990) was carried out (E-value <= 1e-5,
percent identity >= 30%). The statements of homology output from BLASTp were
used to generate a Sequence Similarity Network (SSN), using the cleanBlastp step
in CompositeSearch (25). CompositeSearch applies a modified Depth First Search
(DFS) algorithm to annotate gene families followed by subsequent network
searching to define composite genes and gene families, then takes this SSN as input
and identifies composite gene clusters which are denoted by non-transitive triplet
patterns in the SSN. We used an E-value cutoff of 1e-5, percent identity cutoff of
30%, and coverage threshold of 80%. This provides output files on all HGs - both the
gene families detected, and the gene families annotated as composite (CHGs). The
composite gene family’s annotation file also provides information on the size of the
composite gene families, the number of component families associated with the
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composite family, the size of the component gene families and the connectivity of the
subgraph of composite genes within a family. Information such as the number of
composite genes within a family, and the amount of overlap of the homologous
regions between the distinct component genes and the composite gene is all made
readily available. As discussed previously the detection of composite genes may be
prone to misidentification and false positives. Therefore, as an initial filtering step, a
series of quality filters were applied to the putative composite gene families identified
in the CompositeSearch analysis: firstly, singleton CHGs, i.e. those with only a single
member in the CHG, were removed. In total this filtering step removed 48,640 CHGs
out of the total of 77,085 putative CHGs. In addition, genes where the mapping of
components to the composite was ambiguous or where the mapping of the
components overlapped, were also removed (this removed a further 14,813), leaving
a total of 13,632 remaining putative CHGs.

Finding evidence for expression of unique joining-points of composite genes
using publicly available transcriptome data

We collated a dataset of all available transcriptomes from RNA sequencing studies
for each taxon (52 out of 63 taxa had RNAseq data available). This allowed us to
assess the putative composite genes at two levels: (i) their validity - making sure we
do not report putative composite genes that are misassembly or misannotation
artefacts, and (ii) whether they have evidence of expression. RNAseq reads were
mapped to the unique joining-point region of the composite genes (i.e. the junction of
component genes) using bowtie2 (76). RNAseq datasets were selected based on
their robustness (as measured by the number of time points and tissues sampled)
and the phylogenetic distribution of composites. For example, for widely distributed
composite families, representative taxa from across the lineages containing the
composite family were chosen based on the robustness of their available RNAseq
datasets. The representative taxa for each of the Bilaterian clades included humans
(Deuterostomia) and fruit-fly (Protostomia). Coverage across the composite joining-
point was assessed using BEDTools (77). Evidence for transcription of the
composite gene was determined by the coverage of at least one read across the
joining-point.

Domain architecture analysis

For all of our HG datasets (composite HGs, component HGs, and non-composite
associated HGs) we first annotated protein domains from the Pfam database using
domain-specific hidden markov models (31), using pfam_scan.pl and parsing using
PfamScanner with an e-value threshold of 1e-3. We calculated the proportion of
retention and loss during gene fusion for each domain by dividing every time it is
present or lost in a composite gene by the number of times it is seen in all
component genes (this analysis was carried out on just the domain type architecture
of the proteins rather than the full protein architecture which may include repeat
domains). No statistically significant correlation is observed between the number of
times a domain type is seen in a CHG vs the proportion of time it is present or lost
(Supplementary Figure S1). Similarly, when we annotate the domain by function or
size, there does not seem to be a correlation between the presence of a domain and
these traits.

To assess whether there were any domains enriched in the set of composite genes
which were annotated as emerging independently multiple times, we compared
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domain sets between single event CHGs and convergently formed CHGs. We
obtained domain lists and correlating functions for both sets of CHGs and applied the
find_enrichment.py script from Goatools (78) setting the full set of domains from all
CHGs as the background.

Assessment of rate of convergent evolution of CHGs

The pipeline for determining which CHGs emerged in a single event or multiple
events is highlighted in Figure 3. In summary, we first retained all CHGs that had a
simple 2-to-1 relationship between composite and component genes. Next, we
extracted the homologous regions between both parts of the composite gene and
their respective component sequences, using information from the tabular all-v-all
BLAST output. The homologous regions between composite and components were
aligned using MAFFT (79) and trimmed using trimAl, using the -gappyout parameter
(80). Corresponding gene trees for both parts of the composite gene and respective
component genes were constructed using IQTree (42, 43), applying ModelFinder
(81) to find the model of best fit and carrying out 1000 ultrafast bootstrap replicates.
We used clan-check to classify composite genes according to whether they
appeared at face-value to have a single or multiple origins (82). Next, we constructed
constrained gene trees in IQTree by forcing the composite sequences to be
monophyletic and applying the model of best fit as inferred from the previous gene
tree construction step. This ensures that gene tree construction is consistent
between the two approaches, the only exception being that the composite genes are
forced to be monophyletic. Finally, an AU test was carried out using IQTree, applying
the -au parameter to compare support levels for the inferred gene tree with the
constrained gene tree.

We also assessed the conservation of the joining-points between composite genes
in each CHG tested. This involved determining the location of the joining-point for
each composite gene by annotating where the sequence homology of the
component genes mapped to the composite gene. Then, each composite gene in
each CHG was split into four non overlapping but equal length regions (proportional
to overall length of the composites) and we assessed whether the joining-points for
all composite genes in a CHG fell within the same region. The assumption being
that, while there may be some variation in the exact location of the joining-point,
those in the same region of the composite gene provide more support for a single
origin of a given CHG. This test was carried out on all CHGs. Leading on from this
we could then address the question of whether we observe different joining-points in
CHGs of multiple origin.

Mapping composite gene gain and loss onto species tree

For the taxa in our dataset, most of the branching patterns are well resolved allowing
the analysis of the rate of emergence of CHGs on each branch across the tree to
determine the patterns of gain and loss. We reconstructed the gain/loss history of the
CHGs and used a constrained timetree (53) to determine their rates of gain and loss.
The pattern of gains and losses of CHGs across the tree was assessed using one of
two models; if CHGs were determined to have been formed in a single event, we
used Claddis (46) an R package which operates in a maximum likelihood framework
to describe characteristics of binary data. Specifically we used the
map_dollo_changes.R function, which was developed to generate a stochastic
character map for Dollo characters, allowing for a single gain event followed by any
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number of losses (47). Alternatively, if CHGs were annotated as evolving
convergently, we implemented the Mk model using a stochastic character mapping
approach, this time implemented in RevBayes (49). Setting the root to zero and
using a Mk model with unequal transition rates, allowing a character to be lost and
gained a number of times at different rates across the tree, we measured the rate of
gain and loss of each CHG individually. For each CHG we ran two mcmc chains for
5,000 generations each, allowing us to measure the precise timing of gain along
each branch stochastically. Visualisation of the numbers of gains and losses on the
species tree was carried out using an edited version of the R package, RevGadgets
(83). To determine the rate of gain and loss of the CHGs mapped to the species
phylogeny, we divided the number of CHGs gained or lost at a given node by the
age of that node. The rates of gain and loss were added to each branch in the tree
using ETE3 (84) and the tree was plotted using ggtree (85).

Characterising composite formation events

Composite genes may have originated from either fusion or fission. Fusion events
merge two or more pre-existing components (e.g. gene families without direct
connections in sequence similarity networks). Fission results in the subsequent
appearance of split forms (i.e. components) of the gene. CompositeSearch (25) does
not natively provide a classification of detected composites as corresponding to a
fusion or fission event, yet this step is pivotal for a deeper biological interpretation of
the computational outcome. We therefore applied a phylogeny-based method to infer
the relationship of evolutionary precedence between composites and their respective
components, and deduce the type of gene remodelling that was detected in the
network (i.e. the evolution of composite genes by fusion vs the evolution of
component genes by fission).

The last common ancestor of each CHG and the last common ancestor of each of its
components were mapped onto the reference species tree of our sample set. These
last common ancestors represent the putative points of appearance (assuming a
unique origin) of each composite family and their associated component families. A
simple heuristic was then applied to label CHGs as fused (originated from a gene
fusion event) or split (underwent a gene fission event). CHGs for which components
existed prior to the composite origin were considered as fused, as the inference of a
component evolutionarily older than the composite indicates that at least one
“building block” of the composite was present in its ancestral lineage before its
appearance, and thus was unlikely the result of the composite fission. Conversely,
CHGs for which components appeared only below the composite origin were marked
as having undergone gene fission, as split forms of the composite persist in extant
lineages ancestrally carrying the non-split gene. Many CHGs exhibited a particular
pattern with both a component existing prior to the composite form and another
component evolving only after the composite origin. Such cases are difficult to
ascribe to a single fusion or fission event and may be the result of a more complex
evolutionary path: the existence of a component predating the CHG indicates that it
likely originated from a fusion event, possibly followed by a subsequent gene fission
or loss that would have given rise to the later-evolving component.

Functional annotation of composite genes

All proteins used in our starting dataset were functionally annotated using eggNOG-
mapper (86) v2.1.6, employing DIAMOND v2.0.11 to align sequences to the
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eggNOG database v5.0.2. Cluster of Orthologous Groups (COG) functional
categories were extracted for each sequence, and where required these were used
to annotate the representative set of functions per CHG. To first test whether there
were differences between the functional groups represented in fusion genes versus
genes never associated with CHGs, we compared each COG category for each
gene annotated as fusion or annotated as neither fusion or fission, and plotted the
relative proportions (i.e. the number of COG categories divided by the number of
genes) for each category. Next, to compare proportion of functional categories which
emerged on each node of the tree, including major animal nodes, we took the
proportions of categories from each CHG, and inferred the overall contribution at
each node by dividing all the categories by the number of CHGs gained on the given
node. These proportions for each node were plotted individually for the major nodes
and combined to compare against all other internal nodes in the tree.

Results

Sequence similarity networks uncover a large number of composite genes

From a set of 1.2 million protein coding sequences across 63 animal genomes we
identified 297,806 homologous groups (HGs) of which 77,085 contained putative
composite homologous groups (CHGs). We removed (i) all singleton CHGs (of which
there were 48,640), and (ii) all putative CHGs where the contributing component
sequences did not map to specific and non-overlapping regions of the composite
gene (14,813 CHGs in total). Under these strict criteria we identified 13,632 CHGs,
or ~5% of all the gene families in animals, and these groups included 157,206
individual composite genes. To further mitigate against annotation and assembly
artefacts, we assessed whether putative composites have associated evidence of
gene expression. We mapped the unique “joining-point” in each composite gene to
available transcriptome datasets (the “joining-point” is the location within the
composite sequence where the contributing component sequences meet).
Transcriptome data was available for 52 of the 63 species and 12,048 of the 13,632
CHGs (see Materials and Methods). A total of 7,774 CHGs (65%) had evidence of
expression for at least one composite gene member of a given CHG family. The
proportion with evidence of expression (i.e. 65%) is what we might expect from large
scale RNAseq studies on temporal and spatial variation in expression in animal
protein coding genes (30).

The 13,632 CHGs were related to a total of 40,217 component HGs, with the
majority of CHGs (i.e. 10,855 (80%)) having just 2 component genes (or parts
thereof). We identified a nested characteristic of composite formation in that CHGs
once formed tend to contribute to further composite formation. In total, 11,805 out of
13,632 (87%) CHGs are also components (Figure 1 a&b). Indeed, when compared
to genes that did not arise by composite formation, genes that arose by composite
formation are more likely to subsequently contribute to other novel composite events
(on average 10 vs 17 subsequent events respectively), suggesting there is a pool of
genes prone to remodelling in animal genomes. On assessing protein length and
domain content across the ~1.2 million protein coding genes in the network we
observe that composite genes display a wider range of domain combinations (as
classified by Pfam (31)) than either (i) component genes (p < 2.2e-16, Wilcoxon
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signed-rank test), or (ii) non-composite associated genes (i.e. those genes that are
not composite and not component) (p < 2.2e-16). Additionally, composite genes tend
to have longer protein coding sequences than either component genes (p < 2.2e-16)
or non-composite associated genes (p < 2.2e-16). On average component genes
contribute 100 amino acids during composite formation - corresponding closely to
the average length of a domain in all component genes in our dataset (i.e. 118 amino
acids). The most common proportion of component gene sequence to be present
following a fusion event is 20% or 100%, suggesting that the domain unit places the
strongest constraint on the size and architecture of composite genes (Figure 1c).
Comparing domain types between component and composite genes, we find that no
domain is significantly over-represented across all CHGs and thus present at a
higher rate than others during composite formation (27). However, whilst not
statistically significant, domains WD40 and zf-C2H2 are present at a higher rate in
CHGs than any other domain, i.e. WD40 is present in 391 components and is
present in the resulting CHGs 58% of the time, and zf-C2H2 is present in 339
components and present in CHGs 58% of the time (Supplementary Figure S1).
This trend possibly reflects the abundance and promiscuity of these two domains:
the WD40 domain is one of the most abundant and also amongst the top interacting
domains in eukaryotic genome (32), whilst the zf-C2H2 domain is amongst the most
numerous of domains in metazoa (33).

For most CHGs (82% or 11,211 of 13,632 CHGs), the contributing elements (i.e. the
parents of the gene fusion or the gene parent for the fission), are lost from the host
genome. There are 2,421/13,632 CHGs where the composite and at least one
component reside in the same genome simultaneously. For example, whilst previous
studies of insulin-like growth factor-binding protein gene family (IGFBP) have
characterised the functional domains, our analyses identify that the formation of this
gene was via gene fusion on the stem chordate lineage (Figure 2a). We also show
that following formation of this gene fusion its component genes were not lost from
the genome. The process of gene fusion involved the C terminal IGFBP domain
which functions to regulate IGF, and the N terminal Thyroglobulin-1 domain which
contains nuclear localization sequences (Figure 2b). The IGFBP fusion and
subsequent duplication resulted in many novel IGF-independent actions in a new
cellular functional landscape (34–38). This example provides new insights into the
process of gene fusion which involves retention of both component and composite
genes in most chordates sampled (Figure 2). Conversely, the Nitrilase and fragile
histidine triad fusion protein (NitFhit) demonstrates the loss of ancestral components
following gene fusion. Given that the separate components have been found to be
expressed and localised at similar time points and are also involved in similar
interaction networks and functions, this fusion represents a coordination of
biochemical pathways (39, 40). The NitFhit fusion was initially proposed to have
originated by gene fusion in C. elegans and D. melanogaster (39), and we identify it
in both Ecdysozoa and Lophotrochoza, placing the origin of the NitFhit fusion at the
base of the Protostomia.

Larger number of composite genes are formed by gene fusion

As composite gene losses may be conflated with lineage-specific gene fission
following a fusion event, we further categorised the mode of origin of all composite
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genes in each CHG as having emerged by gene fusion or fission (see Materials and
methods, Supplementary Figure S2). Briefly, if the last common ancestor of the
component genes was an older node than that of the composite gene, the composite
was categorised as formed by gene fusion; and the converse for fissions. Out of the
13,632 CHGs in this analysis, 9,994 CHGs (73.3%) were found to have originated
from a fusion event. Of these, 2,096 (21%) fit the scenario of a single fusion event
with no subsequent fission, while 7,898 (79%) were inferred to have undergone a
more complex pattern of independent fusion and/or subsequent fission events
(Supplementary Figure S2B). Interestingly, there were 3,460 CHGs (25.4%) that
underwent a single, unique fission event (Supplementary Figure S2C). Finally, 178
CHGs (1.3%) could not be assigned to any of the above categories, suggesting a
more complex evolutionary history. Overall, the relative rates of fusion and fission
observed mirror recent findings which suggest that gene fusion played a greater role
in metazoan gene family evolution as compared to other eukaryotes, i.e. Fungi (21,
41) (Supplementary Figure S2). These findings also suggest that gene fission
occurs at a previously underestimated rate in animal genomes, particularly following
gene fusion events.

Composite genes evolve multiple times independently

We quantified the rates at which evolution converged on the same composite gene
using a phylogenetic approach, thus allowing us to overcome the bias related to
gene loss. Using the phylogenetic signal within the homologous regions of the
component and composite gene alignments, we determined the rate of independent
origins of composite genes (Figure 3). We analysed component-composite gene
trees to distinguish composite sequences that form monophyletic groups (which
were most likely formed by a single event), from polyphyletic composite sequences
(which represent possible multiple independent origins of that composite family, e.g.,
multiple independent fusions/fissions). From among the 13,632 CHGs we selected
families that met two criteria: whether they involved only two component families,
and whether they contained more than three species in the alignment. In total,
10,829 of 13,632 CHGs satisfied these criteria.

Briefly, for each CHG we first aligned and trimmed the sequences and then built
gene trees using IQTree (42, 43) (v2.03; using automatic model selection and
carrying out 1000 ultrafast bootstrap replicates) for all homologous blocks of
sequences of component and composite genes (Figure 3a-b). We then selected
those maximum likelihood trees where the composite genes do not appear as a
monophyletic group (9,124/10,829 or 84%). We re-ran the analysis using the same
phylogenetic models as before, but this time we imposed topological constraints on
the search for optimal trees, where we forced the composite sequences to form a
monophyletic group (Figure 3c). The Approximately Unbiased (AU) test (44) was
used to measure the significance in the difference in support for the unconstrained
(polyphyletic) versus the constraint (monophyletic) tree (Figure 3d). The null
hypothesis is that there is no significant difference in likelihood score for the
constraint tree and the unconstrained tree. This approach provides a robust
statistical framework to infer the rate of independent evolution of composite genes.
Out of the 9,124 CHGs of putative independent origin, 5,631 rejected the null
hypothesis, i.e. the monophyletic constraint is significantly worse than the
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polyphyletic gene tree implying independent origin of the same composite event. For
the remaining 3,493 CHGs tested for single or multiple origins, there was no
significant difference between the constraint and gene trees, i.e. a monophyletic
origin could not be discounted and in these cases we parsimoniously assumed
monophyletic origin. Whilst different joining-points are possible in both monophyletic
and polyphyletic CHGs, there should be less constraint on identical joining-points in
polyphyletic cases. To test this we annotated the joining-point in all composite genes
for each CHG and asked whether this location fell within the same general region of
the protein for each gene in a CHG (see Materials and methods). Indeed, an
analysis of the joining-points of all CHGs shows that 70% of polyphyletic CHGs have
different joining-points as compared to 44% for monophyletic CHGs. To summarise,
across all 13,632 CHGs identified, 5,198 CHGs (38%) were most likely
monophyletic, 5,631 CHGs (41%) emerge independently more than once across the
animal phylogeny, and 2,803 CHGs (21%) could not be assessed in this way as a
consequence of having more than two components and/or insufficient species in the
alignment.

Next, we assessed whether there was a significant difference in the types of protein
domains present in composite genes of multiple origin as compared to those of
single origin. We found that domains with functions related to protein binding and
binding (GO:0005515, GO:0005488) were enriched in the set of composite genes
which emerged more than once (p<0.05, Benjamini-Hochberg correction)
(Supplementary Table S1).

Composite gene gain and loss events are concentrated at specific nodes on
the phylogeny

In order to determine the tempo of CHG gain and loss across the animal phylogeny
we analysed a subset of 10,829 (from a total of 13,632) CHGs where we could
categorise the CHG as single or multiple origin. For the 5,198 CHGs of single origin
we analysed their evolutionary history using the irreversible Dollo model of evolution
(45) implemented in the R package Claddis (46, 47). For the 5,631 CHGs of multiple
origin we used the reversible Mk model (48) implemented in the RevBayes software
program (49). We used the species tree shown in Figure 4 (50–52), the most
appropriate model as described above, and applied time calibrations extracted from
the TimeTree database (53). Using TimeTree as a source for divergence times
allowed us to use a detailed phylogeny including all taxa of interest. However,
TimeTree divergence times are summary statistics from a diversity of studies some
of which are by now only of historical value. In particular, for the deep part of the
animal phylogeny, TimeTree estimates are most likely too old (54). Accordingly,
rates of origin and loss of composite genes estimated here should be interpreted as
minimal estimated values, as reducing the branch length in the timetree following
more recent animal divergence time studies will cause the inference of higher rates
of origin and losses. We also employed an alternative rooting for the tree placing the
Ctenophore as the earliest diverging group (55–57) and found no significant change
to the results presented here (Supplementary Figure S3).

The first major observation is that CHG gain is not evenly distributed across the tree
(Figure 4). Within Deuterostomia for example there are 21,381 separate CHG gain
events across all branches compared to 6,295 CHGs gains in all branches within
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Protostomia. There are 1,322 gains in total across the five nodes preceding the
divergence of Deuterostomia and Protostomia (i.e. Bilateria, Panulozoa, Eumetazoa,
Metazoa, and Metazoa + Choanoflagellates). While there is a clear disparity between
the number of composite genes between protostome and deuterostome species, this
trend does not hold at the level of total gene count per species (Supplementary
Figure S4A&B) suggesting underlying variation in the rate of CHG formation
between these clades. To account for the difference in the number of species
sampled between Protostomia and Deuterostomia, CHG counts for a random
sample of 10 species were carried out 100 times, and we find that the number of
CHGs present in the Deuterostome clade is significantly higher (Wilcoxon rank-sum
test, p=0) (Supplementary Figure S4C). Finally, the distribution of CHGs across the
tree suggests that a large proportion may be clade-specific. For example, there are
341, 338, and 1,475 CHGs unique to Caenorhabditis, Eutheria and Euteleostomi,
respectively. The ancestral node with the largest number of CHGs gained was
Eutelostomi with 1,475 gains, followed by Bilateria with 527 gains (Figure 4).

Across the tree we find that the rates of composite gene gain and loss per million
years (MY) are highly variable and non-clock like (Figure 4). Note that the absolute
values presented for rates are likely to be underestimated given the tree, but the
comparisons of gains and losses remain valid. Within the internal branches of the
phylogeny the average rate of CHG gain is 1.03/MY, compared to a loss rate of
2.81/MY. The branch leading to the Hominoidea clade displays the highest rate of
CHG gain (9.31 CHG gains/MY). The branches leading to Caenorhabditis (5.67
gains/MY), Euteleostomi (3.39 gains/MY), Poecilinae (4.50 gains/MY), Eutheria (3.20
gains/MY), and Tetraodontidae (2.56 gains/MY) all display rates of CHG gain above
the average plus the SD observed across the whole phylogeny (1.03 ± 1.51 CHG
gains/MY) (Figure 4 inset, Supplementary Figure S5A). Contrastingly, higher rates
of CHG loss tend to be found towards the tips of the tree, consistent with the
observation of loss most often relating to loss of a single composite gene within a
specific species rather than complete loss of the CHG (Figure 4). Branches with
rates of loss higher than the average plus SD (2.81 ± 4.33 losses/MY) include:
Hominoidea (24.96 losses/MY), Xenarthra (12.27 losses/MY), and Passeriformes
(10.53 losses/MY), and the tip lineages: Nomascus leucogenys (23.08 losses/MY),
Choloepus hoffmanni (21.98 losses/MY) (Supplementary Figure S5B). When
assessing rates of gain and loss of composite genes, it must be noted that loss can
relate to a complete loss of a composite gene from a species, or a reversal of the
composite formation event (e.g. subsequent fission in a lineage following a fusion
event). Gain of an individual composite gene member also occurs but at a lower rate
than CHG member loss.

Finally, to assess the functional contribution of gene fusions specifically from our
composite gene repertoire we compared the functional categories of fusion genes
versus genes never associated with composite formation (i.e. neither composite nor
components). We calculated the relative representation of Cluster of Orthologous
Groups (COG) categories for genes of each type (i.e. fusion genes versus non-
composite associated genes). We found that, in comparison to non-composite
associated genes, fusion genes had a larger number of genes involved in
transcription (K), post-translational modification, protein turnover, and chaperone
functions (O), inorganic ion transport and metabolism (P), signal transduction (T),
and extracellular structures (W) (Supplementary Figure S6A). To assess the
potential functional impact of gene fusion events at major nodes in the animal tree,
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we measured the relative proportions of COG categories for fusion genes gained at
these particular nodes (Supplementary Figure S6B). The overall proportions of
COG categories are similar for all nodes tested, with signal transduction (T),
transcription (K), and post-translational modification, protein turnover, and chaperone
functions (O) representing the highest proportion of COG categories in all nodes.
These patterns overlap with the broader contribution of fusion genes to these
functions relative to non-composite genes, as seen above (Supplementary Figure
S6A). Some clade specific shifts in COG proportions were observed; with overall
larger proportion of genes involved in RNA processing and modification (A) present
in the nodes Deuterostomia, Tetrapoda, Mammalia, and Eutheria; a larger
contribution of extracellular structures (W) category in Euteleostomi and Tetrapoda;
and a higher proportion of genes involved in defence mechanisms (V) in Tetrapoda,
relative to other major nodes in the tree (Supplementary Figure S6B). Generally,
the functional impact of gene fusion seems to be specific to certain broad functional
categories throughout the animal phylogeny, pointing to a specific, persistent, role of
gene fusion in driving the evolution of certain functions important for animal evolution
(58).

Discussion

The most recognisable part of evolutionary biology is the Tree of Life with its
continually diverging branches emerging from the root. This narrative has hugely
influenced how we think about evolutionary history, and it influences what we expect
to see when we examine genomes. In addition to, and perhaps influenced by, the
Tree of Life perspective, there is a feeling that evolution rarely, if ever, repeats itself.
This last idea was most forcefully expressed by the palaeontologist Stephen Jay
Gould who asked whether the tape of life was replayable (59) – a question to which
Gould answered: No.

Fortunately, with the sequencing of an extensive array of genomes from many taxa
across the diversity of animals we can address issues relating to the non-treelike
aspects of evolution on one hand, as well as whether genome evolution is contingent
on genetic background. If evolution is contingent on prior evolutionary events, then
we expect that with increasingly divergent genetic backgrounds we are less likely to
see repeated evolution, while on the other hand if evolution is largely deterministic,
then despite differences in genetic backgrounds we expect to see the same
evolutionary events occurring in different lineages. In the end, we find that the
repeatability of evolution falls short of being hugely deterministic – only a small
proportion of the overall animal gene repertoire shows evidence of repeated
evolution, but by the same token, we see that repeatability has happened and it has
happened across animal evolution many, many times.

Composite gene evolution is largely characterised by high rates of gene turnover,
unequal rates of gain and loss between animal phyla, and significant bursts of
composite gains intensified at particular nodes in the animal phylogeny. The rate of
composite gene formation varies drastically between the major animal groups, with a
greater number of composite genes found in Deuterostomia, compared to
Protostomia or the non-bilaterian lineages. The single largest number of CHG gain
events observed are on the branch leading to the Euteleostomi ancestor - a branch
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synonymous with major phenotypic innovations such as the emergence of
mineralised bone and the development of a more complex immune system. The
higher rates of CHG birth on this branch may also be related to increases in genome
complexity at this point in animal evolution (60, 61). Multiple whole genome
duplication (WGD) events within the vertebrate clade (62), coincide with nodes
containing a large number of composite genes. In terms of rate of composite gain
per million years, the branch leading to Euteleostomi also shows a significantly
higher rate of gain than the average across the whole tree, reinforcing the
contribution of gene fusion and fission at this point in animal evolution. The branch
leading to the Caenorhabditis species also shows significantly higher rates of CHG
gain. While this branch may not represent a point of major phenotypic or genomic
change, species of this phylum are known to have a higher rate of recombination
within their genomes (63). This may provide a molecular basis for the increased
rates of gene fusion and fission in this group. Compared to patterns of gain and loss
of other gene types, which show significant gain in early metazoan branches and
pre-metazoan branches in particular (17, 18, 20), we find that the highest rates of
composite gene gain correlate with nodes that emerge subsequent to these deep
nodes, suggesting that the evolution of genetic content through mechanisms other
than fusion and fission may be followed by subsequent higher rates of composite
gene formation.

In animals, convergent fusion events are known, for example the TRIM5-CYPA gene
in New World monkeys (64) and Old World monkeys (65), the repeated fusion of -
globin genes in Laurasiatheria (66), and the recurrent fusion of transcription factors
and transposons in vertebrates (67). More broadly speaking, 25% of all multi-domain
proteins in eukaryotes are thought to have emerged independently, and 71% of
domain combinations in the human genome have been found to be gained
independently in at least one other eukaryotic genome (27). There have also been
several examples of recurrent gene fusion in different eukaryote lineages (68, 69).
Our estimate for the rate of convergent evolution of composite genes in the evolution
of animals suggests that selection for the same combinations of gene sequences in
composite genes is indeed common, with 41% (5,631 CHGs) having likely evolved
independently more than once on the tree. Given our approach, using phylogenetic
signal within the composite and component sequences, we could be confident that
our results are not skewed by taxon sampling or data quality issues. The data
presented here suggests that there are high levels of CHG formation and loss across
animal evolution, that the same composites form independently across the tree, and
that these CHG likely contribute substantially to the emergence of animal gene
repertoires providing functional innovation, e.g. the IGFBP fusion protein. This work
has important implications for our understanding of how protein coding genes evolve
in animals, the prevalence of convergent evolution, how we construct gene families,
and how we annotate function between homologous genes.
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Figure 1. Characterisation and contributions of composite genes and their
components. (a) The number of component CHGs (blue) and composite CHGs (red).
Overlap represents component CHGs which are themselves composite. (b) Cartoon network
demonstrating the nested nature of composite formation, whereby e.g. a CHG (orange)
formed from distinct component CHGs in red and yellow, may itself be involved in a separate
fusion with another HG component family (in blue) to form a new CHG (green). (c)
Distribution of the component sequences showing the proportion of the component that is
present in the composite.
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Figure 2. Evolution of the composite IGFBP gene in Chordates. (a) The chordate clade
is highlighted with a red toned background on the circular tree, and the outgroups in blue
and green toned backgrounds. The presence/absence of the composite and components are
denoted with coloured triangles on the leaf nodes: the presence of the IGFBP composite
gene is denoted as a red triangle, and the two component genes IGFBP and Thyroglobulin 1
are denoted as blue and green triangles respectively. The node of origin of the IGFBP
composite genes is annotated by an in-filled circle on the species tree. (b) A cartoon of the
constituent domains IGFBP (green) and Thyroglobin_1 (blue). Arrows point to the
corresponding regions in the IGFBP composite gene protein structure. The structure colour
gradient represents regions of high (blue) and low (red) confidence, note the two component
protein domains are linked by a sequence of low structural confidence.
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Figure 3. Pipeline used to identify composite genes that emerged in a single event or
multiple independent events. (a) Summary of component and composite homologous
sequences used for gene tree inference. (b) Gene trees inferred from component-composite
sequences showing an example where the composite sequences (in red) form a
monophyletic group (left) and an example where they do not (right). (c) Constrained trees
inferred using the topology of the gene tree inferred from the previous step but forcing the
composite sequences to be monophyletic. (d) Approximately unbiased test: measuring the
significance in the difference in support for the constraint tree (monophyletic) versus the
unconstrained (polyphyletic) tree. Where H0 = no significant difference in likelihood score for
the constraint and unconstrained trees.
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Figure 4. Distribution of the gain and loss of CHGs across the animal tree. The species
phylogeny for our sample set is shown in the centre, with divergence time estimates in
millions of years ago (MYA) on the x-axis (taken from TimeTree (53)). Gains of CHGs are
shown as red discs and losses as blue. The size of the disc on the node is proportional to
the amount of gain/loss at that node. The associated histogram on the right shows the total
number of CHGs identifiable in the genomes of extant species. Inset: boxplot showing
overall rate of gain for each node in the phylogeny, outlier nodes are named.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 11, 2023.;https://doi.org/10.1101/2023.07.10.548381doi:bioRxiv preprint

190



25

Competing Interests

The authors declare no conflict of interest.

Data availability

All data and code used in this study are publicly available. Find all necessary
information deposited at:
https://figshare.com/projects/CompositeGenesMetazoa_Mulhair_et_al_/127943

Acknowledgements

This work was undertaken on ARC3, part of the High-Performance Computing
facilities at the University of Leeds, UK. We thank Martin Callaghan and all members
of the ARC team for their excellent technical support. PM was funded through a
University Academic Fellowship to MOC at the University of Leeds. RM was funded
by the IRCSET PhD scholarship (GOIPG/2014/306). The authors wish to
acknowledge the Irish Centre for High-End computing (ICHEC) for the provision of
computational facilities and support. EB and JP were supported by a FP7/2007-2013
Grant Agreement # 615274, category LS8). C.J.C. wishes to acknowledge funding
from the European Commission via Horizon 2020 (818368, MASTER with K.S.T. and
101000213 HoloRuminant); FJW was supported by a Marie Skłodowska-Curie
Individual Fellowship (GA no. 793818) and a University of Nottingham Anne
McLaren Fellowship. DP wishes to acknowledge funding from the John Templeton
Foundation (#62220 although the opinions expressed in this paper are those of the
authors and not those of the John Templeton Foundation) and the Gordon and Betty
Moore Foundation (GBMF9741). We would also like to thank all current and former
members of the O’Connell and McInerney research groups for invaluable
discussions and insights over the course of this work. We are publishing under an
open access license.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted July 11, 2023.;https://doi.org/10.1101/2023.07.10.548381doi:bioRxiv preprint

191



192 

 

  



193 

Chapter IV. Conclusion and perspectives 

Over the course of my doctoral studies, I have developed and applied several methods of gene 

family analysis, based on representations of data as sequence similarity networks, to study particular 

types of homology relationships. The first part of my work focused on detecting and characterising 

remote homologues of known gene families. To that end, I have contributed to the development of 

SHIFT, a new tool using iterative sequence alignments to retrieve increasingly divergent homologues 

of an input gene or protein family. I have then applied this protocol to explore the diversity of a large 

marine metagenome, targeting in particular divergent variants of highly conserved gene families. The 

second focus of my PhD work centred on combinatorial evolution, and specifically gene fusion and 

fission events. I have designed a polarisation method, complementary to composite gene detection 

techniques already in place in our lab, which allows the classification of composite families in fusion 

and fission events. These methods were then used to study the influence of gene remodelling in the 

evolution of two different eukaryotic lineages that share the particularity of having evolved complex 

multicellularity independently. In this conclusion, I summarise and discuss my contribution to both of 

these research themes. 

1. Exploring the oceanic microbial dark matter with remote 

homology searches 

1.1 – Detecting distant homologues with SHIFT 

In the Chapter I of this thesis, I detailed the study that we conducted on surveying the microbial 

dark matter inside an ocean metagenome. This analysis consisted in identifying highly divergent 

variants of universally conserved genes that are considered to be as old as LUCA. The methodological 

backbone of this study was SHIFT, a programme we developed to identify remote homologues of an 

input set of sequences (e.g. from the same gene family).  

The foundational ideas behind SHIFT were first laid out by two of my supervisors in a 2015 article 

[Lopez, Halary, and Bapteste 2015], in which they conducted two rounds of BLAST searches in a 

collection of metagenomes: a first round gathered the direct environmental homologues of query 

sequences, which were then used as queries themselves for a second round of search, to retrieve their 

own homologues in the target dataset. The study found that the second-degree homologues of query 

sequences were more divergent from the known microbial diversity than first-degree homologues. 



194 

Given those results, the logical extension of this approach would be to ask: if we looked for third-

degree homologues, and beyond, could we find even more divergent variants? This idea was 

implemented by Romain Lannes, who completed his PhD in the lab before my arrival and created a 

first prototype of SHIFT, which built on this principle and allowed multiple iterations of search to take 

place instead of just two [Lannes 2019]. The version of SHIFT that I developed during my doctoral 

studies (in close collaboration with Eduardo Corel) is based on the same idea of iterative searches: the 

homologues retrieved in the n-th search step are used as queries in step n+1 to find their own 

homologues, such that increasingly distant homologues of the seed sequences are reached step by 

step17.  

 

Figure 31: Homology searches by SHIFT can converge to the same sequence via different paths.     

The crux of SHIFT resides in the ‘sanity check’ step, which ensures that any retrieved homologue 

can be mapped back onto at least 80% of a seed sequence. This step is essential to limit the risk of 

overextending the search into regions of the sequence space that are not bona fide homologous to 

the initial sequence set. Projecting the aligned region of a newly matched sequence back onto a seed 

sequence, through a chain of alignments, is relatively trivial in the case where sequences are aligned 

without any gaps: aligned positions define ‘columns’ of the alignment stack, and the columns 

corresponding to the alignment on the final sequence can be checked to cover a sufficiently large 

interval of the initial sequence. However, sequence alignments are rarely ungapped in practice, and 

the mutual cover check becomes much less trivial in the general case (with gapped alignments). This 

 
17 Here I wish to voice a mild annoyance of mine around the locution “de proche en proche”, which is 

commonplace in French and explains the intuition behind SHIFT very efficiently, but which somehow has no 
direct equivalent in English – I cannot count the number of different formulations I have used or considered to 
express this idea during the writing of this manuscript! 



195 

specific issue is the one that was targeted by most of the improvements to the prototype version of 

SHIFT, in order to formalise as much as possible this crucial part of the algorithm while preserving the 

computational efficiency of our implementation. We have identified a sound criterion to apply in order 

to check the mutual coverage of all sequences along an alignment stack, but some unsolved issues 

remain in the implementation of this criterion, which at the moment is still quite cumbersome 

computationally. In a nutshell, when using a retrieved environmental sequence as a query for a new 

round of search, some information must be stored with respect to how it was retrieved (i.e. via which 

alignment stack/s). Looking at Figure 31, we see that three different paths are admissible to reach the 

sequence circled in yellow (in addition to the path highlighted in green, there is one to its left going 

through a different sequence at Iteration 1, and one to its right going through a different sequence at 

Iteration 2). Each of these paths defines a different alignment stack, which may correspond to slightly 

different regions on the sequence circled. Once that sequence is used as query in Iteration 4, it may 

match new sequences that could be admissible for one alignment stack, but not for others. Therefore 

it is necessary to keep track, for each query sequence, of all the admissible paths that lead to it from 

a seed, and of the regions covered on intermediate sequences along each of these paths. Storing and 

processing this information explicitly would require a lot of time and memory space, and we have 

lowered this complexity by only saving a reduced representation of it, i.e. the complete paths that 

match positions on every sequence in the stack. Still, there is a significant computational cost when 

many alignment stacks are acceptable and have many complete paths. The main upcoming challenge 

in the development of SHIFT is now to reduce this complexity further, either by identifying an efficient 

heuristic that can circumvent suboptimal alignment stacks, or by using a more performant 

representation of the alignment data that could apply the mutual cover check to newly matched 

sequences with fewer computations. 

The problem of remote homology is in no way new in the field of bioinformatics, and multiple 

algorithms have been proposed to overcome the boundary of the twilight zone of protein similarity. 

Different ways to represent and compare biological sequences, in particular, have been developed to 

improve the sensitivity of aligners: rather than using direct pairwise sequence-sequence comparisons 

(e.g. Smith-Waterman, BLAST), sequences can be compared to profiles (PSI-BLAST) or HMMs 

(HMMER) that encapsulate the information of a multiple-sequence alignment between sequences 

that are already considered homologous. Taking the idea one step further, target sequences can also 

be represented as profiles or HMMs, allowing for pairwise profile-profile (COMPASS) and HMM-HMM 

(HHblits) alignments. In tandem with innovations in the types of comparisons carried out, another 

algorithmic avenue to identify remote homologues can be found in iterative searches, alternating 

between phases of (i) searching for new homologues and (ii) updating the search model (e.g. the PSSM 
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profile or HMM) with new sequences found in the search phase. Notable examples of remote 

homology methods based on iterative model refinements include PSI-BLAST (profile-sequence 

comparisons), JackHMMER (HMM-sequence) and HHblits (HMM-HMM). 

SHIFT is fundamentally similar to these methods, namely in the use of iteration to further the 

search for homologues from an initial gene or protein family, either until no new sequence is found or 

a maximum number of iterations is reached. However, SHIFT also differs from those, chiefly in that it 

does not use (representations of) multiple sequence alignments as queries, but rather individual 

sequences – albeit with implicit constraints relative to the stacking of successive alignments. This 

presents a certain computational advantage, because pairwise alignments are faster to construct than 

comparisons to sequence profiles or HMMs. The ‘model actualisation’ phase is also highly simplified, 

as sequences matched at a given search step essentially are the model for the next search. This also 

provides a level of traceability to the output of SHIFT, in the sense that we can reconstruct the path 

leading to the retrieval of any homologue from a seed sequence. Lastly, because SHIFT uses primary 

sequences as targets, it can be readily applied to mine any sequence dataset, without requiring pre-

processing the target data to format it into profiles or HMMs, as is the case for HHblits for instance. 

In the simulations that we conducted to test the precision and recall power of SHIFT, we found 

that it gathered homologues in a relatively conservative way, without ever calling a false-positive 

homology. However, this comes at the necessary expense of its sensitivity, meaning that SHIFT fails to 

gather extremely distant homologues when their divergence rate exceeds a certain point. This is 

preferable to the opposite situation of high sensitivity and low precision, as this would result in 

considering as homologues many sequences that are not, but improvements to the recall power could 

still be desirable, for instance by identifying better heuristics to perform the mutual coverage check 

between matched and seed sequences. Furthermore, the risk of homology overextension is low, but 

not entirely absent, and indeed in our use of SHIFT on real-world data we identified a few cases where 

sequences were likely retrieved beyond the boundaries of homology. In such cases of overextension, 

we can typically see the number of sequences retrieved in each round decrease, then significantly 

increase again before eventually converging to zero. This can be expected when a small number of 

non-homologues are erroneously retained, after which many other sequences from the same ‘foreign’ 

family are also included; generally, these sequences will also have higher similarity to their published 

counterparts than some bona fide homologues of seed sequences.  

Arguably, this pattern can also arise from possibly desirable cases where a distant paralogue of 

the seed family is retrieved during the search. We observed an instance of this due to the presence of 

two ancient paralogues in our selection of conserved families, namely the SecD and SecF translocation 
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proteins [Pogliano and Beckwith 1994, Hand et al. 2006]. These proteins were retained as separate 

families in our initial dataset, and were thus used independently for SHIFT homology searches. 

However, the environmental homologues that were retrieved for these families largely overlapped, 

amounting to 73% of all sequences matched by SecD and/or SecF. This shows that SHIFT is able to 

recover ancient paralogy relationships, and further analyses of these families’ SSNs enabled us to map 

back 80% of sequences matched by both SecD and SecF to one family or the other. However, although 

we were able to identify this specific occurrence as a paralogy reconstitution rather than an 

overextension, a few other seed families do appear to have retrieved genuinely unrelated sequences 

during their extension by SHIFT. This therefore represents another potential refinement of our 

method. In future, incorporating other kinds of biological information in addition to primary 

sequences could be beneficial to the precision and sensitivity of distant homology searches. Protein 

3D structures, for instance, are generally more conserved than sequences, and the recent advances in 

structural prediction and comparison could be leveraged to improve the retrieval of remote 

homologues and eliminate anomalous hits that may result in situations of overextension.  

1.2 – Environmental diversity of highly conserved gene families 

Although SHIFT could conceptually be applied to explore the diversity of any gene or protein 

family of interest, we developed it with a specific goal in mind: unravelling the environmental genetic 

variation of highly conserved ‘core’ genes, especially in uncultured microorganisms. We found that 

many of those gene families existed in the global ocean with great diversity relative to what is known 

from cultured species, and that some groups of environmental variants were compatible with putative 

new deep-branching lineages. Detailed investigations into three specific families showed the different 

kinds of biological insights that can be expected from this added environmental diversity. In certain 

families, such as what we observed in polymerase clamp loaders, divergent sequences can be found 

throughout the gene’s phylogeny, suggesting that genetic variation within those families is largely 

underrepresented in isolate genomes alone. However, divergent environmental homologues may also 

come from more specific components of the microbiome, for instance certain size fractions (e.g. 

divergent recombinases from ultra-small organisms) or certain taxa (e.g. structural variants of SMC 

proteins in Actinobacteria). These results therefore highlight the multifaceted nature of microbial dark 

matter, which could contribute biological novelty to gene families in a variety of ways, both 

quantitatively and qualitatively. 

From a methodological standpoint, this study demonstrates a new approach to explore the 

unknown fraction of the gene universe that is particularly well suited for unravelling the 

environmental diversity of targeted gene families. Previous research groups have applied comparable 
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remote homology techniques to characterise the dark protein space, albeit with somewhat different 

purposes, such as the functional annotation of metagenomic ORFans [Lobb et al. 2015] or the 

identification of novel protein domains [Bitard-Feildel and Callebaut 2017]. On a broader level, the 

issue of resolving gene function in the microbial dark matter has concentrated numerous research 

efforts, based on a diversity of approaches including sequence clustering [Brum et al. 2016, Vanni et 

al. 2022, Pavlopoulos et al. 2023], structural comparison [Durairaj et al. 2023], and deep learning 

[Bileschi et al. 2022]. Thanks to this plurality of complementary approaches, this collective undertaking 

is generating new insights into the coding potential of unknown microbial genes, and sketching out 

the underlying organisation of the overall gene space [Vanni et al. 2022]. In the early years of microbial 

dark matter research, the majority of the spotlight was occupied by the discovery of novel major 

lineages (CPR bacteria, DPANN archaea, Asgard archaea, etc.) that was enabled by the reconstruction 

of extended phylogenetic trees that included MAGs as well as reference genomes [Hug et al. 2016, 

Castelle and Banfield 2018]. Since then, more room has been made for function-oriented analyses, 

concomitantly with the realisation that many uncharacterised sequences are not covered by MAGs, 

such that alternative methods may be necessary to resolve their evolutionary and taxonomic origin. 

In this context, our multi-marker approach could be relevant to the formulation of new evolutionary 

hypotheses that could guide future explorations of metagenomes: in the same way that Wyman et al. 

[Wyman et al. 2018] proposed a “most-wanted list” of conserved but unannotated protein families, 

so could our protocol suggest a selection of “most-wanted lineages” that encode divergent variants in 

one or several core gene families. Being able to upscale this method to larger sets of both query 

families and target datasets, and possibly automating at least some part of the subsequent SSN 

analysis, would be especially interesting for this last objective, in order to provide a “most-wanted 

list” that would be relevant for a larger research community. 

Although our results using SHIFT to mine the Tara Oceans metagenome are already interesting, 

a few additional analyses could still be completed in order to bring the study to its full potential. In 

particular, our investigations into some divergent clusters of specific gene families could be enhanced 

by digging deeper into their biological context. We were especially interested in finding new gene 

variants that could suggest the existence of novel basal branches in the tree of life, i.e. currently 

undiscovered major lineages [Wu et al. 2011]. Some of the divergent groups of environmental 

homologues that we identified are compatible with such lineages, and the fact that they feature in 

highly conserved gene families is encouraging in this regard. However, as things presently stand, these 

divergent clusters were found on a single-marker basis, so that these new gene variants exist in 

relative isolation to each other and to the rest of the gene space. This limitation makes it difficult to 

confidently assess their significance outside the evolutionary history of their family. Linking these 
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variants with other gene products may therefore enlighten us about the genomes, and perhaps even 

the organisms, bearing these divergent genes. 

In order to overcome this limitation, a first step would be to search for them in collections of 

MAGs and single-cell genomes, especially assembled from Tara Oceans or other marine sequence 

datasets. Not only could this allow us to measure their phylogenetic distribution in the tree of life, but 

it could also yield significant information on functional partners of these variants, possibly revealing 

compensatory adaptations to maintain regular function despite their divergence or, on the contrary, 

co-evolution patterns in other related genes that may lead to functional innovations in their hosts. 

The marine virosphere, in particular, is rife with bacteriophages and archaeal viruses that encode a 

variety of DNA processing genes, and thus some of the gene variants reported may derive from phage 

genomes, or possibly prophage insertions in genomes of cellular organisms. On the other hand, since 

only a fraction of metagenome-predicted genes are covered by MAGs, some lower-level analyses may 

prove equally fruitful to understand the broader context of these divergent clusters of core gene 

homologues. For instance, given the particularly broad range of locations and environments 

represented in the OM-RGC dataset, biogeographical annotations are available for the environmental 

homologues we retrieved, and could thus provide an adequate resolution for co-occurrence analyses. 

Pronounced levels of co-occurrence between some of our variants of interest, or with other marine 

sequence clusters, may lead to further insights into their ecological and functional role, especially 

when genome-level information is unavailable. Finally, in a broader sense, other microbiome data 

could be explored, especially from different environments than the global ocean, to understand 

whether these variants are exclusive to marine life or also occur in other habitats on Earth. 

Some of the variants identified by our analysis also have particular structural features that raise 

the question of a possible functional divergence, such as the hinge-less SMC-like proteins found in 

Actinobacteria. Further research would be required to confirm whether these variants indeed occupy 

a different function than their more ‘canonical’ homologues, and this could happen in a number of 

ways. Firstly, breakthroughs in the in silico prediction of protein structure, with AlphaFold2 at the 

forefront, have recently been followed by advances in predicting the structure and interaction of 

entire complexes of biomolecules (including proteins, RNAs, DNA segments, ligands, etc.) with 

AlphaFold3 [Abramson et al. 2024]. In the case of our hinge-less SMC proteins, for instance, this could 

be leveraged by testing computationally the assembly of an SMC complex with either one hinge-less 

and one regular SMC, or with two hinge-less SMC, as well as the usual accessory proteins. The 

interaction of these hinge-less or semi-hinge-less complexes with a DNA molecule could even be 

simulated, to predict how, if at all, these could interface with DNA. However, even these in silico 
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predictions using the most recent deep-learning algorithms of structural biology would eventually 

require testing in vitro and/or in vivo. Lab-grown strains of Actinobacteria could for instance be 

injected with a plasmid encoding a hinge-less SMC variant. This would then allow us to test (i) whether 

the hinge-less variant is at all expressed in the bacteria, using transcriptomic readings, and (ii) whether 

this variant is viable for the bacterial population when the ‘regular’ SMC gene is knocked out. These 

hypotheses for experimental testing are of course easier to formulate than to actually carry out, but 

they could still one day be implemented if a given environmental variant is of particular interest for a 

specific purpose that we (from our bioinformatic standpoint) may not suspect. 

2. Gene fusion, gene fission, and the evolution of complex 

multicellularity 

The second chapter of my thesis is dedicated to the study of gene remodelling processes, in 

particular gene fusion and fission. My work on that subject has been built upon knowledge previously 

developed at the Lopez & Bapteste lab, in particular by former PhD students Pierre-Alain Jachiet, who 

transposed the non-transitive gene homology framework to the level of gene families with 

MosaicFinder [Jachiet et al. 2013], and Jananan Pathmanathan, who generalised in CompositeSearch 

the detection of composite gene families by implementing a more flexible variation of the non-

transitivity model [Pathmanathan et al. 2018]. I applied this latter method to study gene remodelling 

in two eukaryotic lineages that both evolved towards a complex multicellular lifestyle. I also made 

methodological contributions to this field, chiefly by developing a polarisation method that allows the 

classification of remodelling events detected by CompositeSearch into events of gene fusion and gene 

fission. 

2.1 – Comparing the role of gene remodelling in the evolution of 

animals and brown algae 

During my doctoral work, I have been involved in two collaborations that have allowed me to 

analyse gene remodelling dynamics in two different branches of Eukaryotes: brown algae, within the 

Phaeoexplorer consortium, and animals, with Mary O’Connell’s group at the University of Nottingham. 

Although they sit in different places in the eukaryotic tree of life, these two lineages have in common 

the fact that they independently evolved complex multicellularity (CMC) from unicellular ancestors. 

The emergence of CMC in Eukaryotes is extensively studied across the five main multicellular 

groups (animals, land plants, brown algae, and some lineages of fungi and red algae) in which it 

emerged, seemingly at least 16 different times in total [Sebé-Pedrós, Degnan, and Ruiz-Trillo 2017]. 
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Among these five groups, animals and fungi (collectively, opisthokonts) are particularly well studied. 

However, the lens through which CMC is investigated is often a functional one: identifying the genetic 

toolkit that is associated with multicellularity enables a better understanding of the physiological 

changes that preceded the transition to CMC and ensued from it. In fungi, for instance, multicellular 

groups are distributed throughout the group’s phylogeny, and transversal studies are performed 

across these groups to understand whether fungal CMC stems from a single origin (followed by a 

consequent number of losses) or emerged convergently in multiple clades [Nagy, Kovács, and Krizsán 

2018]. In this context, comparing the genetic toolset that is involved in CMC in each multicellular group 

could help elucidate the origin/s of this phenotype. In 2022, Ruiz-Trillo and colleagues [Ocaña-Pallarès 

et al. 2022] found little support for either hypothesis regarding fungal CMC. However, their broader 

analysis of genomic trajectories in Opisthokonta provides, in addition to functional analyses, a 

mechanismic perspective into the onset of CMC in animals and fungi. Their results reveal divergent 

dynamics of genomic changes in the evolutionary stages before, during and after the emergence of 

metazoans and of fungi. In particular, they highlight marked gene gains at the root of Metazoa in 

functions associated with multicellularity (transcription, signal transduction, extracellular structures), 

and a significant contribution of gene fusions in their genomes, whereas fungi favour gene acquisition 

by horizontal transfer. In line with this work, our investigations of gene remodelling in animals and in 

brown algae allow us to draw a number of comparisons between the two, specifically about the ways 

in which gene fusion and fission events contributed, if at all, to their respective transition to CMC. In 

particular, because the single origin of multicellularity in animals and in brown algae is well established 

compared to CMC in fungi, we can compare with better clarity the role of gene remodelling before, 

during and after the onset of CMC. 

Perhaps the most comparable characteristic of remodelled genes in brown algae and animals is 

their distinct bias towards similar subsets of functional categories. In animals as well as brown algae, 

gene products of fusion and fission events contribute significantly to information processing pathways 

(especially translation and signal transduction), as well as functions relevant to cellular and 

intercellular structures. Both of these functional classes are relevant to CMC, in particular via the 

complexification of regulatory networks, extracellular matrices and cell-cell communication, which 

play a role in the diversification of tissue types and the progression of the life cycle. This first 

comparison thus suggests that in both animals and brown algae, combinatorial gene processes have 

been mobilised preferentially for the development of phenotypic changes that are associated with 

multicellularity. 
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Another observation concerns the frequency of these events across those lineages, in absolute 

numbers as well as in the fusion-fission ratio. In brown algae, we observed that more than 12% of all 

gene families were putative composites, compared to only 5% in animal genomes. In both lineages, 

gene fusions were more frequent than fissions, but to different extents: in animals, the number of 

fusions was triple that of fissions, broadly conforming with estimations from the literature, whereas 

brown algal genomes only experienced 40% more fusions than fissions. The genomes of brown algae 

are therefore much richer in remodelled genes overall, and are particularly enriched in gene families 

created by fission events, a pattern that has previously been observed in fungi [Leonard and Richards 

2012]. Metazoans, on the other hand, seem to rely mostly on gene fusions when it comes to 

combinatorial evolution, in line with previous estimations of relative rates of fusion and fission across 

the tree of life [Kummerfeld and Teichmann 2005]. The increased intron content in genomes of brown 

algae compared to other stramenopiles could be a possible explanation for the unusually high rate of 

gene fission observed in this lineage, by offering more ‘splitting sites’ within genes without affecting 

exon sequences. 

This apparent difference in affinity for certain types of gene remodelling events is further 

attested by the relative retention rates of fused and split gene families in each lineage. In brown algae, 

the genetic products of fusion and fission events are retained in extant genomes at comparable rates, 

which exceed the retention of non-remodelled gene families. In animals, however, gene fusion 

products are preferentially retained compared to non-remodelled genes (predominantly in vertebrate 

genomes, which concentrate the bulk of gene remodelling in animals; see below), but split genes 

created by fissions are lost significantly more. The preferred mechanisms of genome evolution thus 

vary across lineages, with strong biases in favour of gene fusions in animal genomes, as opposed to a 

more balanced contribution of fusion and fission in the case of brown algae.  

Lastly, the chronology of gene remodelling also follows different patterns in the two lineages 

studied here. Most of the remodelled genes that are present in brown algal genomes date back to the 

initial emergence and the early evolution of brown algae, with much rarer fusion and fission events in 

the subsequent stages of Phaeophyceae diversification. Given the preferential retention of 

remodelled gene families in extant algal genomes, this suggests that genetic fusion and fission may 

have given rise to a number of new ‘core’ functions in brown algae that participated in the emergence 

of this lineage and persist in many algal species to this day. On the other hand, gene gains due to 

remodelling events are concentrated at specific points in the animal tree of life, predominantly much 

later than the initial evolution of animals, a result in accordance with previous findings [Ocaña-Pallarès 

et al. 2022]. The extent of gene remodelling also varies significantly from lineage to lineage, with a 
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marked tendency of different clades of animals evolving similar remodelled genes convergently. The 

combinatorics of genes and gene parts in Metazoans therefore appear highly dynamic – with fusions 

in particular contributing to a number of important phenotypic transitions – and generally seem to 

have played a more significant part in the diversification of animals than during their early evolution.  

In summary, gene remodelling processes have had significant effects on the evolution of both 

animals and brown algae, in particular in relation to functions associated with complex multicellular 

phenotypes. Although these functions have been affected by gene remodelling in animals and brown 

algae at different stages of their respective evolution, in both cases they appear to have participated 

in physiological and morphological innovations at key points of these multicellular lineages. However, 

it is interesting to note that these contributions have been made via different genomic trajectories. 

On the one hand, brown algae have acquired many remodelled genes relevant to CMC at the onset of 

their lineage, both by means of gene fusion and gene fission, and these genes have been largely 

retained in extant genomes. On the other hand, in the evolution of Metazoa, gene fissions have played 

a seemingly negligible role, whereas bursts of gene fusions have induced significant gene gains at 

specific key points of the animal tree of life. Of particular note is the repeated evolution of similar 

gene fusions at several points in the tree, amounting to 41% of all composite gene families. In an 

arborescent, gradualist conception of evolution, convergence in gene sequence can occur under 

particular selective constraints but is nonetheless rare, and non-adaptive convergence in particular is 

virtually impossible. In a combinatorial framework that takes genetic rearrangements into account, 

however, the reinvention of gene forms (e.g. domain architectures) becomes possible via punctuated 

events of gene fusion or fission. Indeed, at least 25% of multi-domain proteins18 in Eukaryotes have 

emerged convergently [Zmasek and Godzik 2012], and several specific fusions with multiple origins 

have also been identified in animals [Cosby et al. 2021]. This repeatability of successful genetic 

innovations suggests a highly modular organisation of the gene space, and may raise challenges for 

many evolutionary and bioinformatic approaches that rely heavily on assumptions of orthology in 

homologous families. 

2.2 – Polarising gene remodelling events using Dollo parsimony 

In order to improve the descriptive power of remodelling analyses based on CompositeSearch, 

I developed a post-treatment method that allows composite gene families to be further classified into 

gene fusions and gene fissions. It relies on the simple idea that if extant composite and component 

gene families can be traced back to their ancestral node of origin in the tree of life, then we can 

 
18 And therefore 20% of all eukaryotic proteins, since 80% of them are multi-domain proteins. 
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compare the relative positions of these origin nodes to polarise the remodelling event: if the 

composite is older than its components, then it most likely has undergone a fission event giving rise 

to the later components, and conversely if the components predate the composite, then that 

composite must have been created by fusion of the components. This heuristic has the advantage of 

being easy to implement, as well as computationally efficient, and was able to classify most of the 

composite families in the two datasets we applied it to. Still, it has a number of conceptual or practical 

shortcomings that could be addressed to make it applicable to a broader range of studies and improve 

the reliability of its outputs. 

First, this method relies heavily on the phylogeny of species present in the dataset to infer the 

phylogenetic origin of each gene family. In other words, it must make the assumption that the lineage 

being studied evolves in a strong ‘tree-like’ manner, i.e. that the effects of introgressive processes on 

its evolution are negligible. This is acceptable for most eukaryotic lineages, and in particular 

multicellular ones, but it may be more questionable when trying to study gene remodelling in 

prokaryotes or viruses, among which the dominance of horizontal gene transfer brings the evolution 

model closer to a network than a phylogenetic tree. In these ‘non-tree-like’ lineages, understanding 

the dynamics of gene fusion and fission would require alternative methods that also take lateral gene 

flow into account. If permitted by future methodological developments, studying the coordinated 

effects of horizontal transfer and gene remodelling in Bacteria and Archaea could lead to some 

fascinating insights into their evolution. During my doctoral studies, I actually attempted something 

similar by trying to identify chimeric fusions in the organelles of photosynthetic eukaryotes that would 

unite genetic material from both mitochondrial and chloroplastic genomes. However, the 

methodological hurdle of reconciling the phylogenies of eukaryotes, mitochondria and chloroplasts 

(which have been acquired in several lineages by endosymbiosis of another photosynthetic eukaryote, 

and therefore have a phylogeny that is incongruent with that of their hosts) prevented us from 

producing conclusive results within the time constraints of my doctoral studies. 

The resolution of our polarisation method also benefits from well-balanced phylogenetic trees, 

stemming from a relatively uniform sampling of the diversity of species within the lineage studied. 

This allows for more accurate estimations of the points of emergence for gene families, as well as less 

biased comparisons between different groups of the species tree. For instance, in the animal tree of 

life that we used in our study, only three branches correspond to non-bilaterians, as opposed to sixty 

bilaterians, meaning that little insight can be confidently gained about combinatorial evolution in 

those basal animal groups. This does not invalidate the results that are identified in other parts of the 

species phylogeny, but it should be borne in mind when comparing the dynamics of gene remodelling 
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between different clades, e.g. that have the same taxonomic rank or that emerged around the same 

point in time. 

Another aspect to keep in mind regarding our approach is that it can only characterise the 

remodelling events within the studied lineage and cannot identify ancestral remodelled genes that 

emerged prior to the last common ancestor of the species set. This explains why, in both studies for 

which we applied this polarisation, outgroup species (other Stramenopiles in the case of brown algae; 

choanoflagellate Monosiga brevicollis for animals) were included: their presence allows to separate 

gene families that appeared in the animal, or brown algal, ancestor from those that are more ancient. 

Ancestrally remodelled genes cannot be detected beyond the root of the species phylogeny, and 

therefore their fate in more modern branches cannot be studied: are they just as conserved as new 

remodelled genes in extant genomes, have they become obsolete and therefore largely lost, or 

perhaps replaced by other, newer ones? These questions concerning gene turnover could be relevant 

to clarify the broader dynamics of gene remodelling and would be permitted by the inclusion of 

genomic data from more outgroup species.  

Lastly, the Dollo parsimony model that is used to decide the emergence points of gene families 

is perhaps a little simplistic and is sensitive to the way gene families are defined in the genomic 

dataset. One particular weakness is that it does not account for the fact that remodelled genes may 

replace their ancestral forms, rather than exist in tandem with them. For instance, in a species where 

two adjacent single-copy genes A and B become fused following the disappearance of their separating 

intergenic region (and therefore A and B are not encoded as separate genes anymore), then the gene 

families A and B will be considered absent from that species. Since the nodes of origin of gene families 

are inferred according to their presence/absence data in extant genomes, this can alter the outcome 

of that inference, and consequently the polarisation of remodelling events. In fact, a majority of 

remodelling events can be affected by this: indeed, in animal genomes, we found that in 82% of all 

remodelling events, the contributing genes (i.e. the composite parent in the case of a gene fission, and 

the component parents for a fusion) were lost and only the remodelled products remained in extant 

genomes. The method’s accuracy in inferring the origination of each gene family could therefore be 

improved by taking this phenomenon into account, for instance in cases where counting the 

presence/absence of components and composites together resolves the paraphyly or polyphyly of 

some families. Furthermore, in some lineages, genetic rearrangement may be highly dynamic, and it 

is possible that some remodelling events may be subsequently reverted, e.g. a fused gene undergoing 

fission and returning to a split form. We tried to address some of those cases when we detected 

composite families that had an older component but also a more recent one – we then ascribed this 
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pattern to a fusion followed by a subsequent fission. However, other phyletic patterns can arise from 

cases of consecutive remodelling events, and refining the parsimony model to allow for some reversals 

to ancestral states may lead to a finer understanding of these combinatorial genetic dynamics.  

3. Using similarity networks to map out the genetic space 

The most frequent angle from which the evolutionary relationships between genes are 

established, represented and analysed is the arborescent model of phylogeny. The phylogenetic tree 

of a gene family, for instance, simultaneously depicts its diversity and its evolutionary history, in a 

simple representation that proposes an unambiguous reconstitution of the events that led to the 

family’s contemporary state. It also provides a full hierarchy of the proximity between pairs of 

sequences, which allows us to adjust the granularity of the model by sorting sequences into coherent 

groups, all while preserving the hierarchical information between these groups. However, some 

evolutionary processes are best described by other models than purely arborescent ones, typically 

when they involve other motifs than evolutionary ‘forks’ where one ancestor gives rise to two or more 

offspring [Haggerty et al. 2014]. Such processes exist at the scale of genes (e.g. recombination, 

horizontal gene transfer), of organisms (e.g. endosymbiosis, hybridisation) and of populations (e.g. 

admixture).  

Over the course of this thesis, the main approaches that we have adopted to model gene 

families and study their evolution have been through the lens of networks of interconnections, and in 

particular sequence similarity networks. This representation contrasts with phylogenies in its 

conception of relationships between sequences: whereas phylogenetic trees are strongly hierarchical, 

networks are much more horizontal and include information on the proximity of any two sequences. 

This is not a fundamentally better or a worse model than the arborescent one, nor is it meant to 

replace it. Rather, networks offer a complementary viewpoint to phylogenies: the former view focuses 

on the overall structure of the gene space at a given instant, without painting a clear picture of the 

underlying evolutionary trajectory, whereas the latter view proposes the opposite. Indeed, readers of 

this thesis will have probably noticed the frequent use of phylogenies as a complement to network 

analyses. When we detected clusters of divergent environmental variants in SSNs of conserved 

microbial families, we relied on phylogenetic trees to understand their contribution to the diversity of 

said families; likewise, when we identified putative remodelling events in SSNs from algal and animal 

genomes, their classification into fusions or fissions was guided by the phylogeny of the species 

present in the dataset.  
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In our specific case, the choice of sequence similarity networks as a framework allows us to 

overcome some limitations of the classic tree-like approach to map out the diversity of the global 

genetic space. In particular, we described remote homology relationships that can escape detection 

by canonical homology search methods and impede the reconstruction of multiple-sequence 

alignments that most phylogenetic trees are based upon. We also characterised processes of 

combinatorial, non-linear evolution that are also overlooked by these techniques, and that are 

intrinsically incompatible with the arborescent representation of gene family evolution. Our use of 

network-based methods to alleviate some shortcomings of more canonical approaches, themselves 

complemented by some tree-based analyses when necessary, illustrates the benefits of a conceptual 

and methodological pluralism to understand the diversity of genes, organisms and evolutionary 

mechanisms in their globality.  



208 

  



209 

Chapter V. Bibliography 

Abramson, Josh, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf 
Ronneberger, et al. 2024. ‘Accurate Structure Prediction of Biomolecular Interactions with 
AlphaFold 3’. Nature 630 (8016): 493–500. https://doi.org/10.1038/s41586-024-07487-w. 

Altschul, Stephen F., Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman. 1990. ‘Basic 
Local Alignment Search Tool’. Journal of Molecular Biology 215 (3): 403–10. 
https://doi.org/10.1016/S0022-2836(05)80360-2. 

Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb 
Miller, and David J. Lipman. 1997. ‘Gapped BLAST and PSI-BLAST: A New Generation of Protein 
Database Search Programs’. Nucleic Acids Research 25 (17): 3389–3402. 
https://doi.org/10.1093/nar/25.17.3389. 

Apic, Gordana, Julian Gough, and Sarah A Teichmann. 2001. ‘Domain Combinations in Archaeal, 
Eubacterial and Eukaryotic Proteomes1’. Journal of Molecular Biology 310 (2): 311–25. 
https://doi.org/10.1006/jmbi.2001.4776. 

Archibald, John M. 2008. ‘The Eocyte Hypothesis and the Origin of Eukaryotic Cells’. Proceedings of 
the National Academy of Sciences 105 (51): 20049–50. 
https://doi.org/10.1073/pnas.0811118106. 

Aslam, Bilal, Madiha Basit, Muhammad Atif Nisar, Mohsin Khurshid, and Muhammad Hidayat Rasool. 
2017. ‘Proteomics: Technologies and Their Applications’. Journal of Chromatographic Science 
55 (2): 182–96. https://doi.org/10.1093/chromsci/bmw167. 

Bailey, Susan F, Luz Angela Alonso Morales, and Rees Kassen. 2021. ‘Effects of Synonymous Mutations 
beyond Codon Bias: The Evidence for Adaptive Synonymous Substitutions from Microbial 
Evolution Experiments’. Genome Biology and Evolution 13 (9): evab141. 
https://doi.org/10.1093/gbe/evab141. 

Baker, Brett J., Luis R. Comolli, Gregory J. Dick, Loren J. Hauser, Doug Hyatt, Brian D. Dill, Miriam L. 
Land, Nathan C. VerBerkmoes, Robert L. Hettich, and Jillian F. Banfield. 2010. ‘Enigmatic, 
Ultrasmall, Uncultivated Archaea’. Proceedings of the National Academy of Sciences 107 (19): 
8806–11. https://doi.org/10.1073/pnas.0914470107. 

Bapteste, Eric, Maureen A. O’Malley, Robert G. Beiko, Marc Ereshefsky, J. Peter Gogarten, Laura 
Franklin-Hall, François-Joseph Lapointe, et al. 2009. ‘Prokaryotic Evolution and the Tree of Life 
Are Two Different Things’. Biology Direct 4 (1): 34. https://doi.org/10.1186/1745-6150-4-34. 

Bar-On, Yinon M., Rob Phillips, and Ron Milo. 2018. ‘The Biomass Distribution on Earth’. Proceedings 
of the National Academy of Sciences 115 (25): 6506–11. 
https://doi.org/10.1073/PNAS.1711842115. 

Benson, Dennis A., Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi, David J. Lipman, James Ostell, 
and Eric W. Sayers. 2013. ‘GenBank’. Nucleic Acids Research 41 (D1): D36–42. 
https://doi.org/10.1093/nar/gks1195. 

Bernard, Guillaume, Jananan S Pathmanathan, Romain Lannes, Philippe Lopez, and Eric Bapteste. 
2018. ‘Microbial Dark Matter Investigations: How Microbial Studies Transform Biological 
Knowledge and Empirically Sketch a Logic of Scientific Discovery’. Genome Biology and 
Evolution 10 (3): 707–15. https://doi.org/10.1093/gbe/evy031. 

Bileschi, Maxwell L., David Belanger, Drew H. Bryant, Theo Sanderson, Brandon Carter, D. Sculley, Alex 
Bateman, Mark A. DePristo, and Lucy J. Colwell. 2022. ‘Using Deep Learning to Annotate the 
Protein Universe’. Nature Biotechnology 40 (6): 932–37. https://doi.org/10.1038/s41587-021-
01179-w. 

Bitard-Feildel, Tristan, and Isabelle Callebaut. 2017. ‘Exploring the Dark Foldable Proteome by 
Considering Hydrophobic Amino Acids Topology’. Scientific Reports 7 (1): 41425. 
https://doi.org/10.1038/srep41425. 



210 

Blaxter, Mark, Jenna Mann, Tom Chapman, Fran Thomas, Claire Whitton, Robin Floyd, and Eyualem 
Abebe. 2005. ‘Defining Operational Taxonomic Units Using DNA Barcode Data’. Philosophical 
Transactions of the Royal Society B: Biological Sciences 360 (1462): 1935–43. 
https://doi.org/10.1098/rstb.2005.1725. 

Blondel, Vincent D., Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. ‘Fast 
Unfolding of Communities in Large Networks’. Journal of Statistical Mechanics: Theory and 
Experiment 2008 (10): P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008. 

Brito, Ilana Lauren. 2021. ‘Examining Horizontal Gene Transfer in Microbial Communities’. Nature 
Reviews Microbiology 19 (7): 442–53. https://doi.org/10.1038/s41579-021-00534-7. 

Brown, Christopher T., Laura A. Hug, Brian C. Thomas, Itai Sharon, Cindy J. Castelle, Andrea Singh, 
Michael J. Wilkins, Kelly C. Wrighton, Kenneth H. Williams, and Jillian F. Banfield. 2015. 
‘Unusual Biology across a Group Comprising More than 15% of Domain Bacteria’. Nature 523 
(7559): 208–11. https://doi.org/10.1038/nature14486. 

Brum, Jennifer R., J. Cesar Ignacio-Espinoza, Eun-Hae Kim, Gareth Trubl, Robert M. Jones, Simon Roux, 
Nathan C. VerBerkmoes, Virginia I. Rich, and Matthew B. Sullivan. 2016. ‘Illuminating 
Structural Proteins in Viral “Dark Matter” with Metaproteomics’. Proceedings of the National 
Academy of Sciences 113 (9): 2436–41. https://doi.org/10.1073/pnas.1525139113. 

Buljan, Marija, and Alex Bateman. 2009. ‘The Evolution of Protein Domain Families’. Biochemical 
Society Transactions 37 (4): 751–55. https://doi.org/10.1042/BST0370751. 

Castelle, Cindy J., and Jillian F. Banfield. 2018. ‘Major New Microbial Groups Expand Diversity and Alter 
Our Understanding of the Tree of Life’. Cell 172 (6): 1181–97. 
https://doi.org/10.1016/j.cell.2018.02.016. 

Castelle, Cindy J., Christopher T. Brown, Karthik Anantharaman, Alexander J. Probst, Raven H. Huang, 
and Jillian F. Banfield. 2018. ‘Biosynthetic Capacity, Metabolic Variety and Unusual Biology in 
the CPR and DPANN Radiations’. Nature Reviews Microbiology 16 (10): 629–45. 
https://doi.org/10.1038/s41579-018-0076-2. 

Choi, Seok-Wan, Louis Graf, Ji Won Choi, Jihoon Jo, Ga Hun Boo, Hiroshi Kawai, Chang Geun Choi, et 
al. 2024. ‘Ordovician Origin and Subsequent Diversification of the Brown Algae’. Current 
Biology 34 (4): 740-754.e4. https://doi.org/10.1016/j.cub.2023.12.069. 

Claverie, Jean-Michel, and Chantal Abergel. 2013. ‘Chapter Two - Open Questions About Giant 
Viruses’. In Advances in Virus Research, edited by Karl Maramorosch and Frederick A. Murphy, 
85:25–56. Academic Press. https://doi.org/10.1016/B978-0-12-408116-1.00002-1. 

Cobbe, Neville, and Margarete M. S. Heck. 2004. ‘The Evolution of SMC Proteins: Phylogenetic Analysis 
and Structural Implications’. Molecular Biology and Evolution 21 (2): 332–47. 
https://doi.org/10.1093/MOLBEV/MSH023. 

Colson, Philippe, Xavier de Lamballerie, Ghislain Fournous, and Didier Raoult. 2012. ‘Reclassification 
of Giant Viruses Composing a Fourth Domain of Life in the New Order Megavirales’. 
Intervirology 55 (5): 321–32. https://doi.org/10.1159/000336562. 

Cosby, Rachel L., Julius Judd, Ruiling Zhang, Alan Zhong, Nathaniel Garry, Ellen J. Pritham, and Cédric 
Feschotte. 2021. ‘Recurrent Evolution of Vertebrate Transcription Factors by Transposase 
Capture’. Science 371 (6531): eabc6405. https://doi.org/10.1126/science.abc6405. 

Coutinho, Tarcisio José Domingos, Glória Regina Franco, and Francisco Pereira Lobo. 2015. ‘Homology-
Independent Metrics for Comparative Genomics’. Computational and Structural 
Biotechnology Journal 13 (January):352–57. https://doi.org/10.1016/j.csbj.2015.04.005. 

Cromar, Graham, Ka-Chun Wong, Noeleen Loughran, Tuan On, Hongyan Song, Xuejian Xiong, Zhaolei 
Zhang, and John Parkinson. 2014. ‘New Tricks for “Old” Domains: How Novel Architectures 
and Promiscuous Hubs Contributed to the Organization and Evolution of the ECM’. Genome 
Biology and Evolution 6 (10): 2897–2917. https://doi.org/10.1093/gbe/evu228. 

Cummins, Elizabeth A., Rebecca J. Hall, Chris Connor, James O. McInerney, and Alan McNally. 2022. 
‘Distinct Evolutionary Trajectories in the Escherichia Coli Pangenome Occur within Sequence 
Types’. Microbial Genomics 8 (11): 000903. https://doi.org/10.1099/mgen.0.000903. 



211 

Davidson, Eric H., and Douglas H. Erwin. 2006. ‘Gene Regulatory Networks and the Evolution of Animal 
Body Plans’. Science 311 (5762): 796–800. https://doi.org/10.1126/science.1113832. 

Dittami, Simon M., Svenja Heesch, Jeanine L. Olsen, and Jonas Collén. 2017. ‘Transitions between 
Marine and Freshwater Environments Provide New Clues about the Origins of Multicellular 
Plants and Algae’. Journal of Phycology 53 (4): 731–45. https://doi.org/10.1111/jpy.12547. 

Dohmen, Elias, Steffen Klasberg, Erich Bornberg-Bauer, Sören Perrey, and Carsten Kemena. 2020. ‘The 
Modular Nature of Protein Evolution: Domain Rearrangement Rates across Eukaryotic Life’. 
BMC Evolutionary Biology 20 (1): 30. https://doi.org/10.1186/s12862-020-1591-0. 

Durairaj, Janani, Andrew M. Waterhouse, Toomas Mets, Tetiana Brodiazhenko, Minhal Abdullah, 
Gabriel Studer, Gerardo Tauriello, et al. 2023. ‘Uncovering New Families and Folds in the 
Natural Protein Universe’. Nature 622 (7983): 646–53. https://doi.org/10.1038/s41586-023-
06622-3. 

Eccles, David. n.d. ‘Polynesian Migration Map’. World History Encyclopedia. Accessed 15 October 
2024. https://www.worldhistory.org/image/10691/polynesian-migration-map/. 

Ekman, Diana, Åsa K. Björklund, Johannes Frey-Skött, and Arne Elofsson. 2005. ‘Multi-Domain Proteins 
in the Three Kingdoms of Life: Orphan Domains and Other Unassigned Regions’. Journal of 
Molecular Biology 348 (1): 231–43. https://doi.org/10.1016/j.jmb.2005.02.007. 

Enright, Anton J., Ioannis Iliopoulos, Nikos C. Kyrpides, and Christos A. Ouzounis. 1999. ‘Protein 
Interaction Maps for Complete Genomes Based on Gene Fusion Events’. Nature 402 (6757): 
86–90. https://doi.org/10.1038/47056. 

Felsenstein, Joseph. 1974. ‘THE EVOLUTIONARY ADVANTAGE OF RECOMBINATION’. Genetics 78 (2): 
737–56. https://doi.org/10.1093/genetics/78.2.737. 

Fitch, Walter M. 1970. ‘Distinguishing Homologous from Analogous Proteins’. Systematic Biology 19 
(2): 99–113. https://doi.org/10.2307/2412448. 

Forslund, Sofia K., Mateusz Kaduk, and Erik L. L. Sonnhammer. 2019. ‘Evolution of Protein Domain 
Architectures’. In Evolutionary Genomics: Statistical and Computational Methods, edited by 
Maria Anisimova, 469–504. New York, NY: Springer. https://doi.org/10.1007/978-1-4939-
9074-0_15. 

Fu, Limin, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. 2012. ‘CD-HIT: Accelerated for 
Clustering the next-Generation Sequencing Data’. Bioinformatics 28 (23): 3150–52. 
https://doi.org/10.1093/bioinformatics/bts565. 

Gabaldón, Toni, and Eugene V. Koonin. 2013. ‘Functional and Evolutionary Implications of Gene 
Orthology’. Nature Reviews Genetics 14 (5): 360–66. https://doi.org/10.1038/nrg3456. 

Giovannoni, Stephen J., H. James Tripp, Scott Givan, Mircea Podar, Kevin L. Vergin, Damon Baptista, 
Lisa Bibbs, et al. 2005. ‘Genome Streamlining in a Cosmopolitan Oceanic Bacterium’. Science 
309 (5738): 1242–45. https://doi.org/10.1126/science.1114057. 

Gruber, Stephan, Prakash Arumugam, Yuki Katou, Daria Kuglitsch, Wolfgang Helmhart, Katsuhiko 
Shirahige, and Kim Nasmyth. 2006. ‘Evidence That Loading of Cohesin Onto Chromosomes 
Involves Opening of Its SMC Hinge’. Cell 127 (3): 523–37. 
https://doi.org/10.1016/j.cell.2006.08.048. 

Haggerty, Leanne S, Pierre-Alain Jachiet, William P Hanage, David A Fitzpatrick, Philippe Lopez, Mary J 
O’Connell, Davide Pisani, Mark Wilkinson, Eric Bapteste, and James O McInerney. 2014. ‘A 
Pluralistic Account of Homology: Adapting the Models to the Data’. Molecular Biology and 
Evolution 31 (3): 501–16. https://doi.org/10.1093/molbev/mst228. 

Halary, Sébastien, Jessica W. Leigh, Bachar Cheaib, Philippe Lopez, and Eric Bapteste. 2010. ‘Network 
Analyses Structure Genetic Diversity in Independent Genetic Worlds’. Proceedings of the 
National Academy of Sciences 107 (1): 127–32. https://doi.org/10.1073/pnas.0908978107. 

Hand, Nicholas J., Reinhard Klein, Anke Laskewitz, and Mechthild Pohlschröder. 2006. ‘Archaeal and 
Bacterial SecD and SecF Homologs Exhibit Striking Structural and Functional Conservation’. 
Journal of Bacteriology 188 (4): 1251–59. https://doi.org/10.1128/JB.188.4.1251-



212 

1259.2006/ASSET/4757EE22-0FB5-450E-A7E8-
21C33DE75A8A/ASSETS/GRAPHIC/ZJB0040654590006.JPEG. 

Hirano, Tatsuya. 2002. ‘The ABCs of SMC Proteins: Two-Armed ATPases for Chromosome 
Condensation, Cohesion, and Repair’. Genes & Development 16 (4): 399–414. 
https://doi.org/10.1101/GAD.955102. 

Hollywood, Katherine, Daniel R. Brison, and Royston Goodacre. 2006. ‘Metabolomics: Current 
Technologies and Future Trends’. PROTEOMICS 6 (17): 4716–23. 
https://doi.org/10.1002/pmic.200600106. 

Hug, Laura A. 2018. ‘Sizing Up the Uncultured Microbial Majority’. mSystems 3 (5): 
10.1128/msystems.00185-18. https://doi.org/10.1128/msystems.00185-18. 

Hug, Laura A, Brett J Baker, Karthik Anantharaman, Christopher T Brown, Alexander J Probst, Cindy J 
Castelle, Cristina N Butterfield, et al. 2016. ‘A New View of the Tree of Life’. Nature 
Microbiology 1 (5): 1–6. https://doi.org/10.1038/nmicrobiol.2016.48. 

Hunt, Terry L., and Carl P. Lipo. 2006. ‘Late Colonization of Easter Island’. Science 311 (5767): 1603–6. 
https://doi.org/10.1126/science.1121879. 

Imachi, Hiroyuki, Masaru K. Nobu, Nozomi Nakahara, Yuki Morono, Miyuki Ogawara, Yoshihiro Takaki, 
Yoshinori Takano, et al. 2020. ‘Isolation of an Archaeon at the Prokaryote–Eukaryote 
Interface’. Nature 577 (7791): 519–25. https://doi.org/10.1038/s41586-019-1916-6. 

Irwin, Nicholas A. T., Alexandros A. Pittis, Thomas A. Richards, and Patrick J. Keeling. 2022. ‘Systematic 
Evaluation of Horizontal Gene Transfer between Eukaryotes and Viruses’. Nature 
Microbiology 7 (2): 327–36. https://doi.org/10.1038/s41564-021-01026-3. 

Iyer, Lakshminarayan M., S. Balaji, Eugene V. Koonin, and L. Aravind. 2006. ‘Evolutionary Genomics of 
Nucleo-Cytoplasmic Large DNA Viruses’. Virus Research, Comparative Genomics and Evolution 
of Complex Viruses, 117 (1): 156–84. https://doi.org/10.1016/j.virusres.2006.01.009. 

Jachiet, Pierre-Alain. 2014. ‘Étude de l’évolution Combinatoire Des Gènes Par l’analyse de Réseaux de 
Similarité de Séquence’. PhD Thesis, Université Pierre et Marie Curie-Paris VI. 
https://theses.hal.science/tel-01127379/. 

Jachiet, Pierre-Alain, Romain Pogorelcnik, Anne Berry, Philippe Lopez, and Eric Bapteste. 2013. 
‘MosaicFinder: Identification of Fused Gene Families in Sequence Similarity Networks’. 
Bioinformatics 29 (7): 837–44. https://doi.org/10.1093/bioinformatics/btt049. 

Jiao, Jian-Yu, Lan Liu, Zheng-Shuang Hua, Bao-Zhu Fang, En-Min Zhou, Nimaichand Salam, Brian P 
Hedlund, and Wen-Jun Li. 2021. ‘Microbial Dark Matter Coming to Light: Challenges and 
Opportunities’. National Science Review 8 (3): nwaa280. 
https://doi.org/10.1093/nsr/nwaa280. 

Jolley, Keith A., James E. Bray, and Martin C. J. Maiden. 2018. ‘Open-Access Bacterial Population 
Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications’. Wellcome 
Open Research 3 (September):124. https://doi.org/10.12688/wellcomeopenres.14826.1. 

Karlin, S, and S F Altschul. 1990. ‘Methods for Assessing the Statistical Significance of Molecular 
Sequence Features by Using General Scoring Schemes.’ Proceedings of the National Academy 
of Sciences 87 (6): 2264–68. https://doi.org/10.1073/pnas.87.6.2264. 

Keeling, Patrick J. 2009. ‘Chromalveolates and the Evolution of Plastids by Secondary Endosymbiosis’. 
Journal of Eukaryotic Microbiology 56 (1): 1–8. https://doi.org/10.1111/j.1550-
7408.2008.00371.x. 

Kersting, Anna R., Erich Bornberg-Bauer, Andrew D. Moore, and Sonja Grath. 2012. ‘Dynamics and 
Adaptive Benefits of Protein Domain Emergence and Arrangements during Plant Genome 
Evolution’. Genome Biology and Evolution 4 (3): 316–29. https://doi.org/10.1093/gbe/evs004. 

Kjær, Kurt H., Mikkel Winther Pedersen, Bianca De Sanctis, Binia De Cahsan, Thorfinn S. Korneliussen, 
Christian S. Michelsen, Karina K. Sand, et al. 2022. ‘A 2-Million-Year-Old Ecosystem in 
Greenland Uncovered by Environmental DNA’. Nature 612 (7939): 283–91. 
https://doi.org/10.1038/s41586-022-05453-y. 



213 

Kleine, Tatjana, Uwe G. Maier, and Dario Leister. 2009. ‘DNA Transfer from Organelles to the Nucleus: 
The Idiosyncratic Genetics of Endosymbiosis’. 
Http://Dx.Doi.Org/10.1146/Annurev.Arplant.043008.092119 60 (April):115–38. 
https://doi.org/10.1146/ANNUREV.ARPLANT.043008.092119. 

Knoll, Andrew H. 2011. ‘The Multiple Origins of Complex Multicellularity’. Annual Review of Earth and 
Planetary Sciences 39 (Volume 39, 2011): 217–39. 
https://doi.org/10.1146/annurev.earth.031208.100209. 

Koch, Robert. 1877. ‘Untersuchungen Uber Bakterien V. Die Aetiologie Der Milzbrand-Krankheit, 
Begrunder Auf Die Entwicklungegeschichte Bacillus Anthracis’. Beitrage Zur Biologie Der 
Pflanzen 2 (2): 277–310. 

Koonin, Eugene V. 2012. The Logic of Chance: The Nature and Origin of Biological Evolution. Upper 
Saddle River, N.J: Pearson Education. 

Koonin, Eugene V., and Natalya Yutin. 2019. ‘Chapter Five - Evolution of the Large Nucleocytoplasmic 
DNA Viruses of Eukaryotes and Convergent Origins of Viral Gigantism’. In Advances in Virus 
Research, edited by Margaret Kielian, Thomas C. Mettenleiter, and Marilyn J. Roossinck, 
103:167–202. Academic Press. https://doi.org/10.1016/bs.aivir.2018.09.002. 

Kummerfeld, Sarah K., and Sarah A. Teichmann. 2005. ‘Relative Rates of Gene Fusion and Fission in 
Multi-Domain Proteins’. Trends in Genetics 21 (1): 25–30. 
https://doi.org/10.1016/j.tig.2004.11.007. 

Lannes, Romain. 2019. ‘Recherche de séquences environnementales inconnues d’intérêt 
médical/biologique par l’utilisation de grands réseaux de similarité de séquences’. Phdthesis, 
Sorbonne Université. https://theses.hal.science/tel-02954131. 

Leonard, Guy, and Thomas A. Richards. 2012. ‘Genome-Scale Comparative Analysis of Gene Fusions, 
Gene Fissions, and the Fungal Tree of Life’. Proceedings of the National Academy of Sciences 
109 (52): 21402–7. https://doi.org/10.1073/pnas.1210909110. 

Liu, Mingyi, and Andrei Grigoriev. 2004. ‘Protein Domains Correlate Strongly with Exons in Multiple 
Eukaryotic Genomes – Evidence of Exon Shuffling?’ Trends in Genetics 20 (9): 399–403. 
https://doi.org/10.1016/j.tig.2004.06.013. 

Lloyd, Karen G., Andrew D. Steen, Joshua Ladau, Junqi Yin, and Lonnie Crosby. 2018. ‘Phylogenetically 
Novel Uncultured Microbial Cells Dominate Earth Microbiomes’. mSystems 3 (5): 
10.1128/msystems.00055-18. https://doi.org/10.1128/msystems.00055-18. 

Lobb, Briallen, Daniel A. Kurtz, Gabriel Moreno-Hagelsieb, and Andrew C. Doxey. 2015. ‘Remote 
Homology and the Functions of Metagenomic Dark Matter’. Frontiers in Genetics 6 (July). 
https://doi.org/10.3389/fgene.2015.00234. 

LoDuca, S. T., N. Bykova, M. Wu, S. Xiao, and Y. Zhao. 2017. ‘Seaweed Morphology and Ecology during 
the Great Animal Diversification Events of the Early Paleozoic: A Tale of Two Floras’. 
Geobiology 15 (4): 588–616. https://doi.org/10.1111/gbi.12244. 

Lopez, Philippe, Sébastien Halary, and Eric Bapteste. 2015. ‘Highly Divergent Ancient Gene Families in 
Metagenomic Samples Are Compatible with Additional Divisions of Life’. Biology Direct 10 (1): 
64. https://doi.org/10.1186/s13062-015-0092-3. 

López‐García, Purificación, and David Moreira. 2021. ‘Physical Connections: Prokaryotes Parasitizing 
Their Kin’. Environmental Microbiology Reports 13 (1): 54–61. https://doi.org/10.1111/1758-
2229.12910. 

Lowe, Rohan, Neil Shirley, Mark Bleackley, Stephen Dolan, and Thomas Shafee. 2017. ‘Transcriptomics 
Technologies’. PLOS Computational Biology 13 (5): e1005457. 
https://doi.org/10.1371/journal.pcbi.1005457. 

Marcy, Yann, Cleber Ouverney, Elisabeth M. Bik, Tina Lösekann, Natalia Ivanova, Hector Garcia Martin, 
Ernest Szeto, et al. 2007. ‘Dissecting Biological “Dark Matter” with Single-Cell Genetic Analysis 
of Rare and Uncultivated TM7 Microbes from the Human Mouth’. Proceedings of the National 
Academy of Sciences of the United States of America 104 (29): 11889–94. 
https://doi.org/10.1073/pnas.0704662104. 



214 

Marsh, Joseph A., and Sarah A. Teichmann. 2010. ‘How Do Proteins Gain New Domains?’ Genome 
Biology 11 (7): 126. https://doi.org/10.1186/gb-2010-11-7-126. 

Mazéas, Lisa, Rina Yonamine, Tristan Barbeyron, Bernard Henrissat, Elodie Drula, Nicolas Terrapon, 
Chikako Nagasato, and Cécile Hervé. 2023. ‘Assembly and Synthesis of the Extracellular Matrix 
in Brown Algae’. Seminars in Cell & Developmental Biology, Special Issue: Algal model 
organisms by Susana Coelho and Olivier de Clerck, 134 (January):112–24. 
https://doi.org/10.1016/j.semcdb.2022.03.005. 

Mistry, Jaina, Sara Chuguransky, Lowri Williams, Matloob Qureshi, Gustavo A Salazar, Erik L L 
Sonnhammer, Silvio C E Tosatto, et al. 2021. ‘Pfam: The Protein Families Database in 2021’. 
Nucleic Acids Research 49 (D1): D412–19. https://doi.org/10.1093/nar/gkaa913. 

Mitelman, Felix, Bertil Johansson, and Fredrik Mertens. 2004. ‘Fusion Genes and Rearranged Genes as 
a Linear Function of Chromosome Aberrations in Cancer’. Nature Genetics 36 (4): 331–34. 
https://doi.org/10.1038/ng1335. 

Muller, H. J. 1932. ‘Some Genetic Aspects of Sex’. The American Naturalist 66 (703): 118–38. 
https://doi.org/10.1086/280418. 

Nagy, László G., Gábor M. Kovács, and Krisztina Krizsán. 2018. ‘Complex Multicellularity in Fungi: 
Evolutionary Convergence, Single Origin, or Both?’ Biological Reviews 93 (4): 1778–94. 
https://doi.org/10.1111/brv.12418. 

Nayfach, Stephen, Simon Roux, Rekha Seshadri, Daniel Udwary, Neha Varghese, Frederik Schulz, 
Dongying Wu, et al. 2020. ‘A Genomic Catalog of Earth’s Microbiomes’. Nature Biotechnology 
39 (4): 499–509. https://doi.org/10.1038/s41587-020-0718-6. 

Needleman, Saul B., and Christian D. Wunsch. 1970. ‘A General Method Applicable to the Search for 
Similarities in the Amino Acid Sequence of Two Proteins’. Journal of Molecular Biology 48 (3): 
443–53. https://doi.org/10.1016/0022-2836(70)90057-4. 

Newman, M. E. J., S. H. Strogatz, and D. J. Watts. 2001. ‘Random Graphs with Arbitrary Degree 
Distributions and Their Applications’. Physical Review E 64 (2): 026118. 
https://doi.org/10.1103/PhysRevE.64.026118. 

Ocaña-Pallarès, Eduard, Tom A. Williams, David López-Escardó, Alicia S. Arroyo, Jananan S. 
Pathmanathan, Eric Bapteste, Denis V. Tikhonenkov, Patrick J. Keeling, Gergely J. Szöllősi, and 
Iñaki Ruiz-Trillo. 2022. ‘Divergent Genomic Trajectories Predate the Origin of Animals and 
Fungi’. Nature 609 (7928): 747–53. https://doi.org/10.1038/s41586-022-05110-4. 

Ohno, Susumu, Ulrich Wolf, and Niels B. Atkin. 1968. ‘Evolution from Fish to Mammals by Gene 
Duplication’. Hereditas 59 (1): 169–87. https://doi.org/10.1111/j.1601-5223.1968.tb02169.x. 

Padalko, Anastasiia, Govind Nair, and Filipa L. Sousa. 2024. ‘Fusion/Fission Protein Family 
Identification in Archaea’. mSystems 9 (6): e00948-23. 
https://doi.org/10.1128/msystems.00948-23. 

Pasek, Sophie, Jean-Loup Risler, and Pierre Brézellec. 2006. ‘Gene Fusion/Fission Is a Major 
Contributor to Evolution of Multi-Domain Bacterial Proteins’. Bioinformatics 22 (12): 1418–
23. https://doi.org/10.1093/bioinformatics/btl135. 

Pathmanathan, Jananan Sylvestre, Philippe Lopez, François-Joseph Lapointe, and Eric Bapteste. 2018. 
‘CompositeSearch: A Generalized Network Approach for Composite Gene Families Detection’. 
Molecular Biology and Evolution 35 (1): 252–55. https://doi.org/10.1093/molbev/msx283. 

Pavlopoulos, Georgios A., Fotis A. Baltoumas, Sirui Liu, Oguz Selvitopi, Antonio Pedro Camargo, 
Stephen Nayfach, Ariful Azad, et al. 2023. ‘Unraveling the Functional Dark Matter through 
Global Metagenomics’. Nature 622 (7983): 594–602. https://doi.org/10.1038/s41586-023-
06583-7. 

Paysan-Lafosse, Typhaine, Matthias Blum, Sara Chuguransky, Tiago Grego, Beatriz Lázaro Pinto, 
Gustavo A Salazar, Maxwell L Bileschi, et al. 2023. ‘InterPro in 2022’. Nucleic Acids Research 
51 (D1): D418–27. https://doi.org/10.1093/nar/gkac993. 

Pogliano, Joseph A, and Jon Beckwith. 1994. ‘SecD and SecF Facilitate Protein Export in Escherichia 
Coli’. The EMBO Journal 13 (3): 554–61. 



215 

Quast, Christian, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo Yarza, Jörg Peplies, 
and Frank Oliver Glöckner. 2013. ‘The SILVA Ribosomal RNA Gene Database Project: Improved 
Data Processing and Web-Based Tools’. Nucleic Acids Research 41 (D1): D590–96. 
https://doi.org/10.1093/nar/gks1219. 

Remmert, Michael, Andreas Biegert, Andreas Hauser, and Johannes Söding. 2012. ‘HHblits: Lightning-
Fast Iterative Protein Sequence Searching by HMM-HMM Alignment’. Nature Methods 9 (2): 
173–75. https://doi.org/10.1038/nmeth.1818. 

Rinke, Christian, Patrick Schwientek, Alexander Sczyrba, Natalia N Ivanova, Iain J Anderson, Jan-Fang 
Cheng, Aaron Darling, et al. 2013. ‘Insights into the Phylogeny and Coding Potential of 
Microbial Dark Matter’. Nature 499 (7459): 431–37. https://doi.org/10.1038/nature12352. 

Rodrigues-Oliveira, Thiago, Florian Wollweber, Rafael I. Ponce-Toledo, Jingwei Xu, Simon K.-M. R. 
Rittmann, Andreas Klingl, Martin Pilhofer, and Christa Schleper. 2023. ‘Actin Cytoskeleton and 
Complex Cell Architecture in an Asgard Archaeon’. Nature 613 (7943): 332–39. 
https://doi.org/10.1038/s41586-022-05550-y. 

Rogozin, Igor B., Yuri I. Wolf, Vladimir N. Babenko, and Eugene V. Koonin. 2006. ‘Dollo Parsimony and 
the Reconstruction of Genome Evolution’. In Parsimony, Phylogeny, and Genomics, edited by 
Victor A. Albert, 0. Oxford University Press. 
https://doi.org/10.1093/acprof:oso/9780199297306.003.0011. 

Rost, Burkhard. 1999. ‘Twilight Zone of Protein Sequence Alignments’. Protein Engineering, Design and 
Selection 12 (2): 85–94. https://doi.org/10.1093/protein/12.2.85. 

Sacerdot, Christine, Alexandra Louis, Céline Bon, Camille Berthelot, and Hugues Roest Crollius. 2018. 
‘Chromosome Evolution at the Origin of the Ancestral Vertebrate Genome’. Genome Biology 
19 (1): 166. https://doi.org/10.1186/s13059-018-1559-1. 

Schäffer, Alejandro A., L. Aravind, Thomas L. Madden, Sergei Shavirin, John L. Spouge, Yuri I. Wolf, 
Eugene V. Koonin, and Stephen F. Altschul. 2001. ‘Improving the Accuracy of PSI-BLAST Protein 
Database Searches with Composition-Based Statistics and Other Refinements’. Nucleic Acids 
Research 29 (14): 2994–3005. https://doi.org/10.1093/nar/29.14.2994. 

Schulz, Frederik, Natalya Yutin, Natalia N. Ivanova, Davi R. Ortega, Tae Kwon Lee, Julia Vierheilig, 
Holger Daims, et al. 2017. ‘Giant Viruses with an Expanded Complement of Translation System 
Components’. Science 356 (6333): 82–85. https://doi.org/10.1126/science.aal4657. 

Sebé-Pedrós, Arnau, Bernard M. Degnan, and Iñaki Ruiz-Trillo. 2017. ‘The Origin of Metazoa: A 
Unicellular Perspective’. Nature Reviews Genetics 18 (8): 498–512. 
https://doi.org/10.1038/nrg.2017.21. 

Shakhnovich, Boris E., and Eugene V. Koonin. 2006. ‘Origins and Impact of Constraints in Evolution of 
Gene Families’. Genome Research 16 (12): 1529–36. https://doi.org/10.1101/gr.5346206. 

Simakov, Oleg, Ferdinand Marlétaz, Jia-Xing Yue, Brendan O’Connell, Jerry Jenkins, Alexander Brandt, 
Robert Calef, et al. 2020. ‘Deeply Conserved Synteny Resolves Early Events in Vertebrate 
Evolution’. Nature Ecology & Evolution 4 (6): 820–30. https://doi.org/10.1038/s41559-020-
1156-z. 

Smith, T. F., and M. S. Waterman. 1981. ‘Identification of Common Molecular Subsequences’. Journal 
of Molecular Biology 147 (1): 195–97. https://doi.org/10.1016/0022-2836(81)90087-5. 

Söding, Johannes. 2005. ‘Protein Homology Detection by HMM–HMM Comparison’. Bioinformatics 21 
(7): 951–60. https://doi.org/10.1093/bioinformatics/bti125. 

Soucy, Shannon M., Jinling Huang, and Johann Peter Gogarten. 2015. ‘Horizontal Gene Transfer: 
Building the Web of Life’. Nature Reviews Genetics 16 (8): 472–82. 
https://doi.org/10.1038/nrg3962. 

Spang, Anja, Jimmy H Saw, Steffen L Jørgensen, Katarzyna Zaremba-Niedzwiedzka, Joran Martijn, 
Anders E Lind, Roel van Eijk, Christa Schleper, Lionel Guy, and Thijs J G Ettema. 2015. ‘Complex 
Archaea That Bridge the Gap between Prokaryotes and Eukaryotes’. Nature 521 (7551): 173–
79. https://doi.org/10.1038/nature14447. 



216 

Staley, James T, and Allan Konopka. 1985. ‘Measurement of in Situ Activities of Nonphotosynthetic 
Microorganisms in Aquatic and Terrestrial Habitats’. Annual Review of Microbiology 39 (1): 
321–46. 

Stricker, Stefan H., Anna Köferle, and Stephan Beck. 2017. ‘From Profiles to Function in Epigenomics’. 
Nature Reviews Genetics 18 (1): 51–66. https://doi.org/10.1038/nrg.2016.138. 

Sunagawa, Shinichi, Luis Pedro Coelho, Samuel Chaffron, Jens Roat Kultima, Karine Labadie, Guillem 
Salazar, Bardya Djahanschiri, et al. 2015. ‘Structure and Function of the Global Ocean 
Microbiome’. Science 348 (6237): 1261359. https://doi.org/10.1126/science.1261359. 

Sung, Patrick, and Hannah Klein. 2006. ‘Mechanism of Homologous Recombination: Mediators and 
Helicases Take on Regulatory Functions’. Nature Reviews Molecular Cell Biology 7 (10): 739–
50. https://doi.org/10.1038/nrm2008. 

The UniProt Consortium. 2023. ‘UniProt: The Universal Protein Knowledgebase in 2023’. Nucleic Acids 
Research 51 (D1): D523–31. https://doi.org/10.1093/nar/gkac1052. 

Tokuriki, Nobuhiko, and Dan S Tawfik. 2009. ‘Stability Effects of Mutations and Protein Evolvability’. 
Current Opinion in Structural Biology, Carbohydradtes and glycoconjugates / Biophysical 
methods, 19 (5): 596–604. https://doi.org/10.1016/j.sbi.2009.08.003. 

Vanni, Chiara, Matthew S. Schechter, Silvia G. Acinas, Albert Barberán, Pier Luigi Buttigieg, Emilio O. 
Casamayor, Tom O. Delmont, et al. 2022. ‘Unifying the Known and Unknown Microbial Coding 
Sequence Space’. eLife 11 (March). https://doi.org/10.7554/ELIFE.67667. 

Vos, Michiel. 2009. ‘Why Do Bacteria Engage in Homologous Recombination?’ Trends in Microbiology 
17 (6): 226–32. https://doi.org/10.1016/j.tim.2009.03.001. 

Watson, Andrew K, Romain Lannes, Jananan S Pathmanathan, Raphaël Méheust, Slim Karkar, Philippe 
Colson, Eduardo Corel, Philippe Lopez, and Eric Bapteste. 2019. ‘The Methodology Behind 
Network Thinking: Graphs to Analyze Microbial Complexity and Evolution’. In Evolutionary 
Genomics: Statistical and Computational Methods, edited by Maria Anisimova, 271–308. 
Methods in Molecular Biology. New York, NY: Springer. https://doi.org/10.1007/978-1-4939-
9074-0_9. 

Wensel, Caroline R., Jennifer L. Pluznick, Steven L. Salzberg, and Cynthia L. Sears. 2022. ‘Next-
Generation Sequencing: Insights to Advance Clinical Investigations of the Microbiome’. The 
Journal of Clinical Investigation 132 (7). https://doi.org/10.1172/JCI154944. 

Whitman, W B, D C Coleman, and W J Wiebe. 1998. ‘Prokaryotes: The Unseen Majority’. Proceedings 
of the National Academy of Sciences 95 (12): 6578–83. 
https://doi.org/10.1073/pnas.95.12.6578. 

Willerslev, Eske, Anders J. Hansen, Regin Rønn, Tina B. Brand, Ian Barnes, Carsten Wiuf, David 
Gilichinsky, David Mitchell, and Alan Cooper. 2004. ‘Long-Term Persistence of Bacterial DNA’. 
Current Biology 14 (1): R9–10. https://doi.org/10.1016/j.cub.2003.12.012. 

Woese, Carl R., and George E. Fox. 1977. ‘Phylogenetic Structure of the Prokaryotic Domain: The 
Primary Kingdoms’. Proceedings of the National Academy of Sciences 74 (11): 5088–90. 
https://doi.org/10.1073/pnas.74.11.5088. 

Wolf, Yuri I., Pavel S. Novichkov, Georgy P. Karev, Eugene V. Koonin, and David J. Lipman. 2009. ‘The 
Universal Distribution of Evolutionary Rates of Genes and Distinct Characteristics of Eukaryotic 
Genes of Different Apparent Ages’. Proceedings of the National Academy of Sciences 106 (18): 
7273–80. https://doi.org/10.1073/pnas.0901808106. 

Wu, Dongying, Martin Wu, Aaron Halpern, Douglas B. Rusch, Shibu Yooseph, Marvin Frazier, J. Craig 
Venter, and Jonathan A. Eisen. 2011. ‘Stalking the Fourth Domain in Metagenomic Data: 
Searching for, Discovering, and Interpreting Novel, Deep Branches in Marker Gene 
Phylogenetic Trees’. PLOS ONE 6 (3): e18011. https://doi.org/10.1371/journal.pone.0018011. 

Wyman, Stacia K., Aram Avila-Herrera, Stephen Nayfach, and Katherine S. Pollard. 2018. ‘A Most 
Wanted List of Conserved Microbial Protein Families with No Known Domains’. PLOS ONE 13 
(10): e0205749. https://doi.org/10.1371/journal.pone.0205749. 



217 

Yanai, Itai, Adnan Derti, and Charles DeLisi. 2001. ‘Genes Linked by Fusion Events Are Generally of the 
Same Functional Category: A Systematic Analysis of 30 Microbial Genomes’. Proceedings of 
the National Academy of Sciences 98 (14): 7940–45. 
https://doi.org/10.1073/pnas.141236298. 

Yang, Bo, Yong Wang, and Pei-Yuan Qian. 2016. ‘Sensitivity and Correlation of Hypervariable Regions 
in 16S rRNA Genes in Phylogenetic Analysis’. BMC Bioinformatics 17 (1): 135. 
https://doi.org/10.1186/s12859-016-0992-y. 

Zickler, Denise, and Nancy Kleckner. 2015. ‘Recombination, Pairing, and Synapsis of Homologs during 
Meiosis’. Cold Spring Harbor Perspectives in Biology 7 (6): a016626. 
https://doi.org/10.1101/cshperspect.a016626. 

Zmasek, Christian M., and Adam Godzik. 2012. ‘This Déjà Vu Feeling—Analysis of Multidomain Protein 
Evolution in Eukaryotic Genomes’. PLOS Computational Biology 8 (11): e1002701. 
https://doi.org/10.1371/journal.pcbi.1002701. 

Zou, Quan, Gang Lin, Xingpeng Jiang, Xiangrong Liu, and Xiangxiang Zeng. 2020. ‘Sequence Clustering 
in Bioinformatics: An Empirical Study’. Briefings in Bioinformatics 21 (1): 1–10. 
https://doi.org/10.1093/bib/bby090. 

 

 

  



218 

  



219 

Chapter VI. Appendix 

Draft article – SHIFT: Sequence Homology Iterative Finding 

Tool for remote homology detection 

  



220 

 



221



222



223



224



225



226



227



228



229



230



231



232 

 

  



233 

Chapter VII. Résumé français 

Note préalable : sauf indication contraire, les références faites à des figures dans ce résumé se 

rapportent aux figures du corps de texte principal. Le lecteur est donc invité à se référer à la Table des 

figures, présente en début de manuscrit, pour retrouver facilement les figures mentionnées ci-après. 

Introduction 

La démarche scientifique, en particulier en ce qui concerne les sciences de la nature, peut être 

considérée comme l’union deux grands « archétypes » de pratiques. D’un côté, l’approche 

expérimentale consiste à élaborer et réaliser des expériences contrôlées, dans le but de valider (ou de 

réfuter) certaines hypothèses, ou bien de mesurer certaines grandeurs. Citons à titre d’exemple un 

essai clinique, visant à démontrer l’efficacité supposée d’un traitement contre une pathologie donnée. 

A l’inverse, la démarche historique a pour objectif d’inférer des évènements passés afin d’expliquer 

un état actuel du système étudié. Ainsi, en cosmologie, l’observation du fond diffus cosmologique et 

l’abondance des éléments légers ont permis d’établir le Big Bang comme origine la plus probable de 

l’univers. De même, en biologie de l’évolution, notre objectif général est d’inférer des évènements et 

relations évolutives entre la diversité des organismes contemporains, notamment en s’appuyant sur 

l’observation et la comparaison de caractères communs, homologues, entre différentes lignées. Avant 

d’explorer plus en profondeur cette notion d’homologie, notons tout de même que les deux 

archétypes présentés ci-dessus sont loin d’être incompatibles, et que de nombreuses disciplines (y 

compris la biologie de l’évolution) se basent conjointement sur des connaissances expérimentales et 

historiques pour étayer leurs cadres d’étude. 

Si le terme « homologie », dans sa signification biologique, ne remonte qu’au XIXème siècle, la 

notion en elle-même est en revanche plus ancienne. Le naturaliste Pierre Belon met ainsi en évidence 

dès le milieu du XVIème siècle des similarités structurelles entre les squelettes d’humains et d’oiseaux, 

obéissant au même plan d’organisation. C’est l’anatomiste anglais Richard Owen qui, en 1843, utilise 

pour la première fois le terme d’homologie, décrivant l’existence de « mêmes organes dans des 

animaux différents » selon des similarités de position, de composition et de développement. La notion 

d’homologie s’oppose à celle d’analogie, qui désigne des caractères semblables (de par leur forme ou 

leur fonction) ne satisfaisant pas ces trois critères. Dans L’Origine des espèces, publié pour la première 

fois en 1859, Charles Darwin apporte une coloration évolutive au concept d’homologie, expliquant 

que les similarités entre caractères homologues découlent d’une ascendance à un ancêtre commun 
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chez qui le caractère est apparu. Si, à l’époque de Darwin, cette définition de l’homologie s’adressait 

avant tout à des comparaisons morphologiques, elle peut tout à fait être étendue pour qualifier 

d’autres traits héréditaires ayant une origine commune. Des gènes descendant d’un même ancêtre 

peuvent ainsi être dits homologues, et la reconstruction de familles d’homologie (c’est-à-dire de 

groupes de gènes descendant tous du même gène ancestral) est l’un des principes d’organisation 

majeurs de l’espace de séquences génétiques. 

La dimension évolutive apportée à la notion d’homologie par Darwin a deux conséquences 

importantes pour l’étude des relations d’homologie entre gènes. La première est qu’elle établit 

l’homologie comme une relation binaire (ou plutôt, en termes de logique formelle, booléenne) : soit 

deux gènes sont homologues, s’ils partagent un ancêtre commun, soit ils ne le sont pas, dans le cas 

contraire. Cela implique en particulier que l’espace des séquences génétiques est partitionné en 

familles d’homologie au sein desquelles tous les gènes sont homologues entre eux, et à aucun autre 

gène dans d’autres familles. La seconde est que l’homologie devient une relation non plus empirique 

mais historique (au sens défini plus tôt), qui ne peut donc qu’être inférée sur la base d’observations 

des gènes contemporains19. 

L’établissement d’un lien d’homologie entre deux gènes passe le plus souvent par la 

comparaison de leurs séquences, en construisant un alignement : de la même manière que l’on peut 

faire correspondre les os du bras d’un humain et ceux de l’aile d’un oiseau pour illustrer leur similarité 

morphologique, on fait correspondre les positions de chaque séquence avec celles de l’autre pour 

mettre en lumière leur similarité (Figure 4). Une similarité « excessive » entre séquences – sous-

entendu, par rapport à la similarité que l’on s’attend à trouver entre deux séquences choisies au 

hasard – sert alors de base pour inférer une relation d’homologie entre les gènes considérés. Cet excès 

de similarité se mesure par différentes métriques, notamment la E-value associée à l’alignement, qui 

quantifie le nombre d’alignements d’une qualité égale ou supérieure qui apparaîtraient entre deux 

séquences aléatoires de cette taille, ainsi que le pourcentage d’identité entre les positions alignées et 

la couverture de l’alignement sur chacune des séquences (Figure 6). Dans le cadre standard de 

l’homologie, qui repose sur des comparaisons directes entre séquences génétiques, on ne considère 

donc que les paires de séquences qui s’alignent entre elles, avec une similarité prononcée, et ce 

 
19 En ré alité , pas éxclusivémént : lé sé quénçagé dé fragménts d’ADN ancién (aDNA), pré sérvé s par dés 
procéssus dé congé lation ou dé momification naturéllé ou artificiéllé, pérmét é galémént d’obténir dés 
informations é volutivés. Cépéndant, la dé gradation progréssivé dé l’ADN compliqué fortémént 
l’éxploitation d’é chantillons au-déla  dé quélqués millions d’anné és, faisant dé l’aDNA un outil 
principalémént adapté  a  l’é tudé d’uné histoiré é volutivé rélativémént ré cénté. 
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(puisque les gènes sont soit homologues, soit non) le long d’une région recouvrant la majeure partie 

de leur longueur. 

Si ce cadre opérationnel permet de révéler et de qualifier un très grand nombre de relations 

évolutives, il présente toutefois quelques angles morts par rapport à l’ensemble des liens 

d’ascendance pouvant exister au sein de l’espace génétique dans son ensemble. Au cours de ma thèse, 

je me suis intéressé spécifiquement à deux de ces liens d’ascendance qui échappent au modèle 

canonique de l’homologie, et j’ai développé de nouvelles méthodes d’analyse basées sur les réseaux 

de similarité de séquences pour étudier ces relations (Figure 16). 

Le premier de ces angles morts concerne l’existence de liens d’homologie plus distante que celle 

usuellement décrite par les alignements de séquences. En effet, deux gènes peuvent tout à fait être 

homologues sans pour autant présenter suffisamment de similarité pour qu’un alignement soit 

construit entre eux. Cela s’explique, au moins partiellement, par des limitations techniques que 

rencontrent les algorithmes d’alignement lorsqu’il s’agit de comparer des séquences présentant un 

faible niveau de similarité (typiquement, dans le cas de BLAST, sous la barre des 30% d’identité entre 

séquences protéiques). En raison de cet effet, appelé « twilight zone » de l’alignement de séquences, 

les liens d’homologie qui résultent en des similarités faibles ne sont pas détectés, et sont donc 

rarement considérés. Cette homologie distante peut notamment se produire lorsqu’une lignée 

spécifique d’une famille de gènes diverge d’une manière accélérée, en accumulant un nombre accru 

de mutations qui érode progressivement sa similarité avec d’autres lignées jusqu’à passer sous le seuil 

de détectabilité des aligneurs de séquences.  

Le second problème du cadre standard de l’homologie réside, plus fondamentalement, dans la 

manière dont on définit celle-ci. En effet, nous avons jusque là parlé exclusivement de familles de 

gènes discrètes, déconnectées les unes des autres ; cependant, des mécanismes combinatoires 

entrent aussi en jeu dans l’évolution des gènes. Dans le cas d’une fusion de gènes, par exemple, l’union 

d’un gène A et d’un gène B pour former le gène AB produit des motifs de similarité incompatibles avec 

cette vision discrète des familles de gènes : AB est similaire à A sur une partie de sa séquence 

seulement, et similaire à B sur une autre. Il n’apparaît donc pas tout à fait correct de dire qu’AB est 

homologue à A et/ou à B, mais il n’est pas non plus satisfaisant de dire qu’ils ne sont pas homologues 

du tout. De tels processus d’évolution des gènes sont donc incompatibles avec la définition de 

l’homologie comme une relation strictement binaire, et font apparaître en filigrane l’idée que tous les 

mécanismes de l’évolution n’adhèrent pas nécessairement au modèle de l’arborescence pour les 

illustrer. 
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Pour étudier les relations entre gènes dans leur ensemble, d’autres modèles que ceux basés sur 

les arbres phylogénétiques peuvent donc parfois être préférables (ou au moins complémentaires). 

Pendant ma thèse en particulier, les méthodes que j’ai développées et appliquées s’appuient sur les 

réseaux de similarité de séquences (SSN en anglais). Dans un tel réseau, chaque séquence est 

représentée par un nœud, et deux séquences sont connectées par une arête lorsqu’elles présentent 

une similarité excédant un seuil prédéfini. L’avantage de ces réseaux est que certaines relations 

évolutives particulières produisent dans le réseau des patrons d’interconnexion distinctifs, qui 

peuvent alors être détectés et analysés computationnellement. En raison de cette propriété, les SSN 

ont été utilisés pour étudier une grande variété de facettes de l’évolution, notamment certaines ne 

s’inscrivant pas dans le cadre opérationnel classique de l’homologie : évolution des protéines multi-

domaines, remodelage de gènes suite à une endosymbiose, réseaux de partage de gènes entre 

différents biomes… Dans la lignée de ces travaux, ma thèse propose donc d’étudier l’homologie 

distante et le remodelage de gènes en développant de nouvelles analyses basées sur ces 

représentations en réseaux. 

Homologues distants de familles de protéines très 

conservées 

Les limitations pratiques rencontrées par les algorithmes d’alignement pour établir des 

similarités entre séquences homologues mais peu semblables font de la détection d’homologues 

distants un problème récurrent en biologie. Ces liens d’homologie distante sont pourtant 

particulièrement intéressants, car ils peuvent révéler des variants génétiques divergeant fortement 

de la diversité connue au sein d’une famille de gènes. Ces variants peuvent par ailleurs être de 

différentes natures : certains peuvent représenter des lignées génétiques récentes ayant accumulé 

rapidement un grand nombre de mutations, par exemple dans le cas de la néo-fonctionnalisation de 

gènes dupliqués ; d’autres, à l’inverse, peuvent correspondre à des lignées génétiques plus basales, 

dont la faible similarité de séquence s’explique par une divergence ancestrale par rapport aux lignées 

connues dans cette famille de gènes. La détection et l’analyse de liens d’homologie distante est donc 

capitale pour améliorer notre compréhension des manières dont les familles de gènes évoluent, et 

nous permettre de saisir l’étendue réelle de leur diversité dans le monde vivant. 

Au cours de ma thèse, j’ai participé au développement d’une méthode de détection 

d’homologues distants, nommée SHIFT. Le principe de base de cette méthode consiste à effectuer des 

recherches itératives d’homologie dans une large base de séquences cible, dans le but d’accumuler 

des variants de plus en plus divergents autour de séquences de référence (Figure 20A). L’ambition est 
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alors de pouvoir retrouver, de proche en proche, des homologues trop distants des références pour 

être atteints par une recherche directe. A partir des séquences choisies comme références pour la 

famille de gènes étudiée, un premier tour de BLAST permet d’identifier leurs homologues « directs » 

dans la base de données cible. Ces nouvelles séquences peuvent alors être utilisées comme queries 

pour une seconde recherche BLAST, afin d’identifier leurs propres homologues dans la base de 

données, qui sont donc des homologues « de second degré » des références. En itérant ce principe, 

utilisant à chaque tour pour queries les séquences retrouvées à l’itération précédente, on peut alors 

agréger des variants de plus en plus distants des séquences références (Figure 20B). Cependant, en 

appliquant cette procédure de manière « naïve » sans contrôler la nature des séquences retrouvées à 

chaque itération, il est possible d’aboutir à une surextension du champ de recherche, en rapatriant 

des séquences n’ayant en réalité pas d’origine commune avec les références initiales (Figure 13). Il est 

donc vital d’implémenter un contrôle pour s’assurer, entre deux tours successifs de BLAST, que les 

séquences nouvellement retrouvées semblent bien correspondre à des homologues distants des 

références. Plus précisément, dans SHIFT, les séquences nouvellement identifiées à chaque tour 

d’alignement ne sont retenues que si leurs régions alignées peuvent être rétro-propagées jusqu’à une 

séquence référence, de manière à ce que la région commune recouvre au moins 80% de toutes les 

séquences le long de la chaîne d’alignement (Figure 20C). Avec ce critère en place, les recherches 

itératives ont beaucoup moins de chances de retenir des séquences n’ayant pas de rapport évolutif 

avec les références. Les itérations de SHIFT se poursuivent jusqu’à ce qu’aucune nouvelle séquence 

ne soit trouvée, après quoi un réseau de similarité de séquences « étendu », regroupant à la fois les 

séquences de référence et leurs homologues plus ou moins proches, est produit par un dernier 

alignement BLAST tout-contre-tout.  

L’aspect méthodologique de SHIFT fait l’objet d’un article actuellement en cours de rédaction. 

Pendant ma thèse, j’ai également appliqué ce protocole afin de conduire, dans un contexte de 

génomique environnementale, une recherche d’homologues profonds de familles de gènes très 

conservées, en particulier dans un métagénome océanique riche en organismes non cultivés. Avant 

de présenter les résultats de ces travaux, je propose de restituer brièvement le contexte de la 

génomique environnementale et de l’exploration de la matière noire microbienne. 

Depuis maintenant quelques décennies, il est communément admis que la grande majorité des 

microorganismes présents sur Terre sont incompatibles avec les approches actuelles de cultivation en 

laboratoire. Ce fait est particulièrement marqué dans les environnements « naturels », c’est-à-dire 

non associés aux microbiomes humains ou autres milieux anthropiques, où l’écrasante majorité des 

organismes appartiennent à des genres, des ordres ou même des phylums sans souche représentative 
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cultivée (Figure 15). Par conséquent, la plupart des métagénomes environnementaux sont dominés 

par des séquences sans origine phylogénétique et/ou fonction biologique connues, et cette fraction 

du monde microbien est parfois appelée « matière noire microbienne ». 

Cette importante diversité environnementale a fait l’objet de nombreuses études au cours des 

quinze dernières années, lesquelles ont notamment révélé de nouvelles lignées majeures dans l’arbre 

du vivant. On peut ainsi citer les bactéries CPR, un large superphylum ayant la particularité de 

présenter des cellules et génomes bien plus petits que la norme des autres bactéries ; les DPANN, 

similaires aux CPR de par la taille de leurs génomes et cellules du côté des archées ; ou encore les 

Asgard, un groupe diversifié d’archées apparaissant comme les plus proches parents des eucaryotes 

connus à ce jour. Au-delà même du monde cellulaire, les investigations de génomique 

environnementale ont également révélé une diversité insoupçonnée de la virosphère, en particulier 

chez les virus à ARN. Cependant, au cours des dernières années, le rythme des nouvelles découvertes 

majeures dans l’arbre du vivant semble avoir fortement ralenti. Ce reflux mène certains biologistes à 

conjecturer que l’ensemble des grands groupes phylogénétiques existant sur Terre ont désormais été 

découverts, de sorte que la diversité restante au sein de la matière noire microbienne représenterait 

surtout de nouvelles lignées moins basales, ainsi que des groupes inconnus sur le plan fonctionnel.  

Dans ce contexte, la recherche d’homologie distante peut être pertinente afin d’explorer plus 

en profondeur les fractions inconnues de métagénomes environnementaux. En particulier, un nombre 

réduit de familles de gènes s’avère fortement conservées sur le plan évolutif, au sens où elles sont 

présentes dans tous les Domaines du vivant, rarement perdues ou transférées horizontalement entre 

génomes, et présentant des divergences de séquence relativement faibles au vu de leur âge 

considérable. Ces familles « core » peuvent donc être considérées, d’une certaine manière, comme 

essentielles à la vie cellulaire. Trouver des groupes de variants homologues distants dans ces familles 

est donc d’un intérêt biologique notable, car ces variants peuvent alors indiquer des lignées ou des 

fonctions divergentes dans des processus considérés comme clés pour les organismes vivants. C’est 

dans ce but précis que j’ai conduit, en utilisant SHIFT, une recherche d’homologues distants pour un 

certain nombre de ces familles « core », spécifiquement au sein du métagénome océanique OM-RGC 

assemblé par l’expédition Tara Océans. Ces travaux ont fait l’objet d’un autre article de recherche, 

actuellement en cours de révision pour le journal Environmental Microbiome. 

J’ai constitué un ensemble de 53 familles de gènes fortement conservées, et j’ai utilisé SHIFT 

pour chacune d’elles afin de trouver leurs homologues (proches et distants) dans le métagénome OM-

RGC. La convergence de SHIFT a été atteinte après en moyenne sept itérations, multipliant par plus 

de six la quantité de séquences dans cet ensemble de familles de gènes par rapport aux seules 
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séquences de référence. Les homologues environnementaux détectés par SHIFT ont ensuite été 

alignés par BLAST contre la base données nr du NCBI, permettant ainsi de quantifier le pourcentage 

d’identité entre chacune de ces séquences et son plus proche homologue dans l’ensemble de la 

diversité génétique cultivée. Nous avons trouvé que seules 6.7% des séquences rapportées par SHIFT 

étaient 90% similaires ou plus à leur plus proche parent connu, tandis que 20.5% des homologues 

environnementaux divergent plus de l’ensemble de la diversité connue que la divergence observée en 

moyenne entre séquences bactériennes et archées dans nos familles initiales.  

L’objectif étant d’identifier des variants d’intérêt dans la diversité environnementale de ces 

familles très conservées, il est naturellement plus intéressant et plus significatif de trouver des 

groupes cohérents de séquences très divergentes, plutôt que des séquences individuelles isolées du 

reste. J’ai donc effectué un partitionnement du réseau de similarité de séquences de chacune des 

familles en plusieurs communautés (ou clusters) de séquences fortement connectées entre elles, en 

appliquant pour cela l’algorithme de Louvain. Cela nous a permis d’identifier des clusters riches en 

séquences environnementales très divergentes de la diversité connue, qui peuvent donc représenter 

des lignées divergentes dans leurs familles de gènes respectives. Je me suis alors intéressé plus en 

profondeur à ces clusters divergents dans trois familles spécifiques, dont les résultats sont restitués 

dans le preprint de l’article figurant dans le Chapitre II de ma thèse. Dans ce résumé, je présenterai 

mes résultats pour deux de ces trois familles, représentant des variants génétiques de différente 

nature. 

Le premier exemple concerne un variant génétique appartenant à une lignée bien établie, mais 

qui présente toutefois des particularités intéressantes du point de vue fonctionnel et structural. Il 

appartient à la famille de protéines appelée SMC, qui assure les dynamiques de repliement et de 

dépliement des chromosomes au cours des différentes étapes du cycle cellulaire. Une protéine SMC 

est constituée de deux longs brins hélicoïdaux enroulés ensemble, présentant à une extrémité un 

domaine globulaire ATPase, et à l’autre un domaine en demi-cercle appelé hinge (voir Figure 5 du 

preprint dans le Chapitre II). Deux protéines SMC s’associent ensemble par le biais de leur domaine 

hinge, et recrutent à leurs extrémités ATPase des protéines accessoires pour former un complexe SMC 

en forme d’anneau, capable d’encercler une molécule d’ADN double-brin pour réguler son 

organisation spatiale. Plus spécifiquement (c’est important pour la suite), cet attachement autour du 

chromosome s’effectue par l’ouverture transiente de l’interface entre les domaines hinge des deux 

protéines SMC.  

Dans cette famille SMC, SHIFT a permis l’identification d’un cluster de séquences divergentes 

de la diversité connue. Ce cluster a la particularité d’être très abondant dans le métagénome OM-RGC, 



240 

près de sept fois plus que le reste des séquences SMC retrouvées par SHIFT. Au sein de la phylogénie 

des protéines SMC, ce variant océanique s’inscrit au sein des séquences d’Actinobactéries (voir Figure 

4 du preprint dans le Chapitre II). Surtout, les séquences de ce variant présentent la particularité de 

ne pas posséder de domaine hinge, et les structures protéiques que nous avons inférées confirment 

cette observation. En d’autres termes, nous avons identifié dans l’océan un variant « hinge-less » des 

protéines SMC, ayant perdu le domaine a priori indispensable pour l’attachement du complexe SMC 

à l’ADN préalablement à toute régulation de son organisation. Il semble peu probable que ces variants 

SMC « hinge-less » assurent la même fonction que leurs homologues usuels en l’absence de leur 

interface avec l’ADN. Pour autant, la forte abondance de ces séquences dans l’environnement pousse 

à croire qu’elles réalisent bien une certaine fonction dans leurs hôtes, qu’il sera important d’élucider 

pour mieux comprendre la signification biologique de ce nouveau variant. 

A l’inverse, le second exemple de famille conservée présentant des variants environnementaux 

divergents concerne plutôt l’identification de potentielles nouvelles lignées basales dans l’évolution 

de cette famille. Il s’agit cette fois-ci de la protéine recombinase A, qui assure plusieurs fonctions dans 

la réparation de dommages subis par l’ADN (notamment des cassures double-brin) et permet la tenue 

de recombinaisons homologues chez les procaryotes. Dans cette famille, nous avons identifié quatre 

groupes d’homologues environnementaux divergents (voir Figure 6 du preprint dans le Chapitre II). 

En particulier, deux de ces clusters étaient fortement enrichis en séquences venant de fractions de 

taille de l’ordre du nanomètre, typique des virus ou encore des bactéries CPR et des archées DPANN. 

Dans la phylogénie des séquences de cette famille de gènes, l’un de ces clusters semblait correspondre 

à des séquences d’origine bactérienne, tandis que l’autre formait un clade entre les bactéries et les 

archées, un placement qui pourrait être compatible avec des lignées microbiennes très divergentes 

dans l’arbre du vivant. En particulier, malgré leur présence dans des fractions de taille « ultra-petites », 

ces variants océaniques divergents ne correspondaient pas aux séquences de recombinase A connues 

pour les CPR ou les DPANN. Ils pourraient par conséquence appartenir à des bactériophages, qui 

encodent parfois de tels gènes essentiels pour leurs hôtes, ou encore à de nouvelles lignées cellulaires 

inconnues, ayant potentiellement des diamètres cellulaires particulièrement faibles. 

Homologie partielle et remodelage de gènes dans deux 

lignées multicellulaires 

Dans le cadre conceptuel standard de l’homologie, les gènes sont principalement considérés 

comme des unités atomiques (indivisibles) d’évolution, divergeant selon une variété de processus qui 

peuvent être représentés par des arbres phylogénétiques (Figure 7). Cependant, les gènes évoluent 
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également par des processus combinatoires, qui mettent en jeu des réarrangements de parties de 

gènes, tels que les fusions et fissions génétiques. Ces mécanismes font alors apparaître des motifs de 

similarité partielle entre des gènes qui ne partagent qu’une portion de leur séquence. Loin d’être un 

phénomène de marge, le remodelage de gènes est amplement reconnu et documenté, principalement 

dans le cadre opérationnel des domaines protéiques, voulus comme des sous-unités conservées de 

séquence, de structure et de fonction. La majorité des protéines, que ce soit chez les procaryotes ou 

les eucaryotes, comportent par ailleurs plusieurs domaines, soulignant l’importance de ces processus 

combinatoires dans l’évolution des gènes (Figure 23).  

En raison de la versatilité de la définition des domaines protéiques, la plupart des investigations 

concernant le remodelage de gènes ont été conduites par le prisme des assemblages de domaines. 

Pour autant, les domaines ne décrivent pas l’intégralité de l’espace des séquences génétiques : 

environ 20% des protéines connues ne contiennent pas de domaine répertorié, et les domaines ne 

couvrent qu’un peu plus de 50% des résidus dans l’ensemble du protéome connu (Figure 24). Par 

conséquent, étudier l’évolution combinatoire par ce prisme uniquement ne peut offrir qu’une vision 

partielle de l’étendue de ces processus, qui peut être complétée en définissant des « briques de base » 

des réarrangements génétiques par d’autres moyens. L’une de ces approches, mise en place dans mon 

laboratoire avant ma thèse et intitulée CompositeSearch, permet ainsi de détecter des événements 

de remodelage génétique sur la base seule des similarités partielles entre séquences. Cette méthode 

s’affranchit donc de la définition des domaines protéiques, mais a l’inconvénient que les fusions de 

gènes comme les fissions peuvent résulter en un même patron de similarités partielles, ne permettant 

donc pas de les distinguer a priori (Figure 25). On parle donc plutôt de gènes composites et 

composants au sein de ces patrons, afin de ne pas induire de biais terminologique envers l’une ou 

l’autre de la fusion ou de la fission de gènes. En outre, une analyse complémentaire doit être 

entreprise afin de « polariser » ces événements de remodelage détectés, c’est-à-dire restaurer 

l’information de fusion ou fission associée à chaque événement.  

Pendant ma thèse, j’ai développé une telle méthode de polarisation comme analyse 

subséquente à CompositeSearch. Cette méthode s’appuie sur le signal phylogénétique afin de 

déterminer, entre une famille composite et ses familles composantes associées, laquelle des formes 

(associée, dans les gènes composites ; dissociée, dans les gènes composants) préexistait par rapport 

à l’autre. Les données de présence/absence des familles composite et composantes dans chaque 

génome de la lignée étudiée sont utilisées pour inférer, par parcimonie Dollo, leurs points d’origine 

dans la phylogénie de la lignée (Figure 26A). Ces origines sont ensuite comparées entre elles pour 

déterminer la polarisation. Des familles composantes ayant émergé avant l’apparition du gène 
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composite indiquent ainsi une fusion de gènes ayant donné lieu à ce composite (Figure 26B) ; à 

l’inverse, une forme composite pré-datant les formes composantes suggère davantage un événement 

de fission (Figure 26C). De nombreux cas intermédiaires peuvent émerger en dehors de ces cas de 

figure « idéaux », par exemple si l’origine de la forme composite pré-date une composante mais est 

ultérieure à une autre. Ces cas de figure correspondent à des scénarios plus complexes qu’une simple 

fusion ou fission, par exemple une fusion de gènes suivie d’une perte de l’une des composantes 

expliquant son émergence inférée comme plus tardive.  

J’ai appliqué durant ma thèse cette méthode dans le cadre de deux études distinctes. La 

première de ces études est le fruit d’un large consortium réuni autour d’un projet de séquençage et 

d’analyse de 60 nouveaux génomes d’algues brunes, dont les résultats ont été récemment publiés 

dans la revue Cell. Au sein de ce projet, j’ai réalisé une analyse consistant à détecter et polariser les 

gènes remodelés dans ces génomes, ainsi qu’à étudier leurs fonctions et leur stabilité au cours de 

l’évolution de la lignée des algues brunes. La seconde étude s’est concentrée plus spécifiquement sur 

les événements de remodelage dans les génomes animaux, à partir de 63 génomes déjà publiés. Dans 

cette recherche, j’ai appliqué mon analyse de polarisation à des composites déjà existants, et j’ai pu à 

nouveau étudier la stabilité de ces gènes remodelés dans les génomes animaux. Les résultats de cette 

recherche sont à l’heure actuelle disponibles à l’état de preprint sur bioRxiv. 

Un point commun entre ces analyses est le fait qu’elles se concentrent toutes deux sur des 

lignées ayant acquis indépendamment un phénotype multicellulaire complexe. Plus généralement, la 

multicellularité se retrouve dans cinq grands groupes d’eucaryotes : en plus des animaux et des algues 

brunes, on peut citer les plantes et algues vertes, les algues rouges, ainsi que les champignons. 

L’émergence de ce phénotype requiert un grand nombre d’adaptations physiologiques, notamment 

des systèmes de transport d’oxygène et de nutriments, ou encore un programme de développement 

pour passer de la cellule-œuf au stade adulte. L’apparition répétée de cette multicellularité est donc 

loin d’être anodine, et il est particulièrement intéressant de comprendre les « recettes » génomiques 

permettant la transition de l’unicellularité à la multicellularité. Dans le spécifique cadre du remodelage 

de gènes, des recherches ont déjà établi une association entre complexité des architectures de 

domaines et complexité phénotypique des organismes. Cette association est d’ailleurs largement 

documentée chez les animaux, qui présentent des combinaisons de domaines protéiques 

particulièrement dynamiques.  

Dans les algues brunes, j’ai pu identifier une forte contribution des phénomènes de remodelage 

à l’évolution des génomes. En effet, 6.7% de l’ensemble des familles de gènes dans cette lignée ont 

été produits par un événement de fusion, et près de 5% par une fission de gènes. La plupart de ces 
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gènes remodelés ont émergé tôt dans l’évolution des algues brunes, notamment dans les branches 

menant à l’ancêtre de cette lignée ainsi que dans ses premières diversifications (Figure 27). J’ai ensuite 

évalué le taux de rétention de ces gènes remodelés dans les génomes contemporains, c’est-à-dire la 

proportion de gènes effectivement présents dans le génome d’une espèce parmi tous ceux qui ont 

émergé dans la lignée menant à cette espèce. J’ai alors pu observer que chez les algues brunes et leurs 

plus proches parents, les gènes issus de fusions et de fissions étaient préférentiellement conservés 

par rapport aux gènes non-remodelés, ce qui n’était pas le cas dans d’autres espèces de Straménopiles 

plus éloignées (Figure 27). Cela suggère que les produits du remodelage génétique peuvent occuper 

des fonctions importantes pour les algues brunes, qui ont émergé tôt dans l’histoire de la lignée et 

ont été conservées ensuite au cours de la diversification de cette lignée. Par ailleurs, les remodelages 

de gènes ont été bien plus fréquents pour certaines catégories fonctionnelles spécifiques, qui ont la 

particularité d’être fréquemment associées à la multicellularité (Figure 28). Ainsi, des contributions de 

fusions et fissions de gènes aux processus liés au métabolisme des glucides et à la synthèse de la paroi 

cellulaire ont pu participer au développement de la paroi et de la matrice extra-cellulaire des algues 

brunes, basées sur les alginates et qui assurent la cohésion intercellulaire dans ces algues. De même, 

le remodelage de gènes a particulièrement affecté les catégories fonctionnelles de la transcription et 

de la transduction du signal, qui chez les multicellulaires sont liés à une complexification des voies de 

signalisation et de communication intercellulaire.  

Chez les animaux, nous avons observé une dynamique différente dans les processus d’évolution 

combinatoire des familles de gènes. Environ 5% des familles de gènes étaient composites, dont trois 

quarts de fusions de gènes et un quart de fissions. Plutôt qu’une contribution progressive et continue, 

les événements de remodelage se concentrent à certains nœuds spécifiques de la phylogénie animale, 

notamment à l’émergence des bilatères et des Euteleostomi (Figure 29). Le remodelage génétique 

chez les animaux est également caractérisé par une forte dynamicité et réversibilité : dans la majorité 

des cas de fusion, le gène fusionné est ultérieurement fissionné à nouveau dans au moins une des 

espèces hôtes. En analysant les taux de rétention des gènes remodelés dans les génomes 

contemporains, comme expliqué précédemment pour les algues brunes, j’ai par ailleurs pu observer 

que chez les vertébrés spécifiquement, et de manière d’autant plus prononcée chez les Euteleostomi, 

les gènes issus de fusions sont largement plus conservés que les gènes non-remodelés, tandis qu’à 

l’inverse les gènes issus de fissions sont significativement plus perdus (Figure 30). Ce motif suggère 

ainsi un biais significatif envers les fusions de gènes dans les génomes animaux, qui malgré leur 

réversibilité restent bien plus conservés que les produits de fissions. En outre, ces fusions participent 

significativement à certaines catégories de fonctions qui peuvent être associées à la grande diversité 

des phénotypes animaux. Des contributions substantielles aux fonctions de transcription, de 
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transduction du signal et de modifications post-traductionnelles pourraient ainsi avoir favorisé 

l’émergence de voies de régulation complexes, qui chez les animaux sont particulièrement 

importantes au développement des organismes. De même, une participation marquée des fusions de 

gènes dans les fonctions liées aux structures extra-cellulaires pourrait être en lien avec la grande 

diversité de tissus et d’organes présente à travers la diversité du « règne » animal.  

Discussion & Perspectives 

Au cours de ma thèse, mon objectif a été de remédier à deux écueils principaux du cadre 

opérationnel standard de l’homologie entre gènes, dans le but de prendre en compte un spectre plus 

large de relations d’ascendance évolutive. En particulier, je me suis intéressé d’une part à la notion 

d’homologie distante, qui passe en quelque sorte sous le radar des analyses basées sur des 

alignements standards entre séquences, et d’autre part à des processus d’évolution combinatoire, 

incompatibles avec une définition binaire, « tout ou rien » de l’homologie. J’ai pour cela développé et 

appliqué différentes méthodes bio-informatiques basées sur la construction et l’analyse de réseaux 

de similarité de séquences. 

Ma recherche de variants océaniques distants dans des familles de gènes « core » très 

conservées a permis de révéler une grande diversité de variants génétiques divergents dans l’océan 

global. En particulier, j’ai pu identifier des groupes divergents de différente nature, avec notamment 

d’une part des variants structuraux et fonctionnels dans des lignées phylogénétiques bien établies, 

ainsi que d’autre part des groupes plus profonds, potentiellement compatibles avec de nouvelles 

lignées basales dans l’arbre du vivant. Les résultats produits dans le cadre de cette étude sur trois 

familles spécifiques ne sont en réalité qu’une fraction de la diversité que nous avons réellement 

trouvés, car 25 des 53 familles considérées au total comportaient au moins un cluster d’homologues 

très divergents. Caractériser un plus grand nombre de ces variants permettrait donc de révéler dans 

de plus amples détails la diversité génétique présente en dehors des limites de la cultivation 

microbienne en laboratoire. Cette approche et ces résultats pourraient potentiellement guider la 

formulation de nouvelles hypothèses en génomique environnementale, par exemple en dressant une 

sorte de liste des lignées inconnues les « plus recherchées », qui pourraient porter plusieurs de ces 

variants environnementaux. En outre, tirer profit des avancées récentes en prédiction et comparaison 

de structures protéiques permettrait d’améliorer les capacités d’identification d’homologues distants, 

les structures de protéines étant généralement bien plus conservées évolutivement que les séquences 

primaires.  
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Dans un second axe de recherche, j’ai pu mettre en évidence au cours de ma thèse une 

contribution significative des processus de remodelage génétique dans l’évolution des algues brunes 

et des animaux, en particulier dans des catégories fonctionnelles généralement associées à l’évolution 

de phénotypes multicellulaires complexes. Cette contribution des processus de remodelage s’est pour 

autant faite suivant des tendances distinctes. Du point de vue mécanistique d’abord, puisque les 

algues brunes ont tiré profit d’un équilibre relatif entre fusions et fissions de gènes, tandis qu’un biais 

marqué en faveur des fusions a pu être observé chez les animaux. Du point de vue chronologique 

également, les algues brunes ayant surtout acquis leurs gènes remodelés tôt au cours de l’évolution 

de leur lignée, alors qu’à l’inverse le remodelage de gènes chez les animaux semble plutôt avoir eu 

lieu par pics, à certains points spécifiques de la lignée métazoaire. Au vu de ces différences, il serait 

d’autant plus intéressant d’étendre ces études aux autres lignées ayant acquis une forme de 

multicellularité complexe : cette multicellularité ayant émergé indépendamment au moins 16 fois au 

cours de l’évolution des eucaryotes, étudier la contribution du remodelage de gènes à chacune d’entre 

elles permettrait d’éclairer une compréhension d’ensemble des « recettes » génomiques pouvant être 

mises en œuvre pour acquérir ce phénotype complexe. 

L’approche que j’ai adoptée durant ma thèse, qui consiste à étudier l’évolution des familles de 

gènes par le spectre principal des réseaux de similarité, vise à apporter une vision plus holistique des 

liens évolutifs pouvant exister entre les gènes. Cette démarche vise non pas à supplanter, mais à 

étendre et complémenter les approches basées sur la vision arborescente des phénomènes évolutifs, 

précisément dans le but de capturer les relations évolutives qui ne peuvent être décrites dans ces 

approches. En cela, ma thèse souligne les bénéfices d’un pluralisme de concepts et de méthodes en 

biologie de l’évolution, afin de comprendre la diversité des gènes, des organismes et des mécanismes 

évolutifs dans leur globalité. 



 

  



 

  



 

Résumé : L’augmentation toujours plus importante de données génomiques et métagénomiques 
appelle de nouveaux développements méthodologiques et bio-informatiques, afin de caractériser 
avec davantage de précision les phénomènes évolutifs dans leur ensemble. En particulier, certaines 
des méthodes usuelles pour étudier l’évolution des (familles de) gènes s’avèrent inadaptées lorsque 
la parenté entre séquences n’est que partiellement supportée. Ainsi, la définition et la reconstruction 
de familles de gènes se heurtent à l’obstacle de l’homologie distante, qui passe sous le seuil de 
détection des alignements de séquences. De même, les mécanismes d’évolution combinatoire, tels 
que les fusions et fissions de gènes, remettent en cause les représentations purement arborescentes 
de l’évolution des familles de gènes. L’application de méthodes complémentaires basées sur les 
réseaux de similarité de séquences permet de contourner certaines de ces lacunes, en proposant une 
représentation holistique des similarités entre gènes. La détection et l’analyse d’homologues très 
divergents de familles de gènes fortement conservées dans des jeux de données environnementaux 
est notamment facilitée par la recherche itérative d’homologie fondée sur les réseaux. Cette fouille 
itérative de métagénomes révèle une immense diversité de variants environnementaux dans ces 
familles, qui divergent de la diversité connue tant par leur séquence que par la structure des protéines 
qu’ils encodent, et elle permet de suggérer des pistes pour guider de futures explorations de la 
matière noire microbienne. En outre, en prenant en compte des liens d’homologie partielle entre 
séquences génétiques, les réseaux de similarité de séquences permettent une identification 
systématique des évènements de fusion et de fission de gènes. Il devient ainsi possible d’évaluer 
l’impact de ces processus au cours de l’évolution de lignées biologiques d’intérêt, permettant de 
comparer le rôle qu’ils ont joué lors de l’émergence de phénotypes multicellulaires complexes dans 
plusieurs telles lignées. Plus généralement, ces approches basées sur les réseaux illustrent l’intérêt de 
prendre en compte une pluralité de modèles pour étudier une plus grande variété de processus 
évolutifs. 

Abstract: The ever-increasing accumulation of genomic and metagenomic data calls for new 
methodological developments in bioinformatics, in order to characterise evolutionary phenomena as 
a whole with better accuracy. In particular, some of the canonical methods to study the evolution of 
genes and gene families may be ill-suited when the relatedness of sequences is only partially 
supported. For instance, the definition and reconstruction of gene families face the hurdle of remote 
homology, which falls beneath the detection thresholds of sequence alignments. Likewise, 
combinatorial mechanisms of evolution, such as gene fusion and gene fission, challenge the purely 
tree-based representations of gene family evolution. The use of complementary methods based on 
sequence similarity networks allows us to circumvent some of these shortcomings, by offering a more 
holistic representation of similarities between genes. The detection and analysis of highly divergent 
homologues of strongly conserved families in environmental sequence datasets, in particular, is 
facilitated by iterative homology search protocols based on networks. This iterative mining of 
metagenomes reveals an immense diversity of environmental variants in these families, diverging 
from the known diversity in primary sequence as well as in the tertiary structure of the proteins they 
encode. It is thus able to suggest possible directions of future explorations into microbial dark matter. 
Furthermore, by factoring in relationships of partial homology between gene sequences, sequence 
similarity networks allow for a systematic identification of gene fusion and fission events. It thus 
becomes possible to assess the effects of these processes on the evolution of biological lineages of 
interest, enabling us for instance to compare the role that they played in the emergence of complex 
multicellular phenotypes between several such lineages. More generally, these network-based 
approaches illustrate the benefits of taking a plurality of models into account, in order to study a 
broader range of evolutionary processes. 


