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Résumé (Français) 

Le temps est une composante de notre environnement que nous ne percevons pas 

directement. Pourtant, lorsque c’est nécessaire, nous sommes capables d’estimer des durées et de les 

classer dans le but d’optimiser nos comportements, pour « gagner du temps ». Cette catégorisation 

temporelle nous permet de distinguer un événement court d’un long, et se produit à différentes 

échelles temporelles. Le but de ce projet est d’identifier les signatures neurophysiologiques qui 

permettent de distinguer les durées à l’échelle de quelques secondes. Notre intérêt se porte sur deux 

structures cérébrales, le striatum et l’hippocampe, qui peuvent être décrites comme étant impliquées 

dans le temps de l’action et le temps de la mémoire, respectivement. Pour la première fois, nous avons 

contrasté leur activité dans une tâche de catégorisation temporelle chez le primate non-humain. Nous 

avons enregistré l’activité de neurones dans ces deux structures chez deux macaques rhésus, pendant 

qu’ils réalisaient une tâche de catégorisation de durées. Ces durées variaient d’une échelle en dessous 

de la seconde (0.25s – 0.5s – 1s) à une échelle de plusieurs secondes (2s – 4s – 8s). Après qu’une durée 

se soit écoulée, le singe doit adapter sa réponse selon que le temps passé soit court, intermédiaire, ou 

long. L’utilisation de ce modèle animal est justifiée par la proximité neuroanatomique du striatum et 

de l’hippocampe entre le macaque et l’Homme. De plus, les comportements de catégorisation 

temporelle sont similaires entre ces deux espèces à l’échelle de la seconde. Pour la première fois, nos 

résultats montrent des différences importantes entre le striatum et l’hippocampe. Nous montrons que 

l’activité hippocampique ne porte -quasiment- aucune information sur le temps qui passe. Au 

contraire, l’activité neuronale dans le striatum reflète le temps écoulé, de 1 seconde à 8 secondes. 

Nous avons également mis en évidence des codes de temps relatifs, déjà documentés, et l’existence 

de codes temporels absolus dans le striatum. Les premiers s’adaptent en fonction des durées, et sont 

liés à l’attente d’un évènement futur. Les deuxièmes maintiennent leur activité quelle que soit la durée 

à estimer. Ils découlent d’un évènement passé, et sont probablement sous-tendus par un recrutement 

séquentiel progressif au sein d’un circuit de neurones. De plus, nous avons mis en évidence que la 

présence de codes temporels est conditionnée à la demande cognitive de la tâche. Dans l’ensemble, 

nos résultats suggèrent qu’il est peu probable qu’il existe une « horloge » métronomique qui rythme 

le temps de façon invariante. Au contraire, le recrutement des circuits striataux est vraisemblablement 

limité à ses propriétés physiologiques permettant d’inscrire des actions sensori-motrices dans des 

durées courtes. Nos résultats caractérisent la structure des changements neuronaux dans le striatum 

et l'hippocampe, et leur adaptation au fil du temps.   
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Abstract (English) 

Time is a component of our environment that we do not perceive directly. However, when 

necessary, we are able to estimate durations and classify them in order to optimize our behaviours, to 

"save time". This temporal categorization allows us to distinguish a short event from a long one, and 

occurs at different temporal scales. The goal of this project is to identify the neurophysiological 

signatures that allow us to distinguish durations on the scale of a few seconds. We focused on two 

brain structures, the striatum and the hippocampus, which can be described as involved in time for 

action and time for memory, respectively. For the first time, we contrasted their activity in a temporal 

categorization task in non-human primates. We recorded the activity of neurons in these two 

structures in two rhesus macaques while they performed a time categorization task. These durations 

varied from a sub-second scale (0.25s - 0.5s - 1s) to a supra-second scale (2s - 4s - 8s). After an interval, 

the monkey must adapt its response depending on whether the elapsed time was short, intermediate, 

or long. The use of this animal model is justified by the neuroanatomical proximity of the striatum and 

the hippocampus between macaque and human. Moreover, temporal categorization behaviours are 

similar between these two species at the second scale. For the first time, our results support 

differences between the striatum and the hippocampus. We show that hippocampal activity carries 

only little information about the passage of time. On the contrary, neuronal activity in the striatum 

reflects the elapsed time, from 1 second to 8 seconds. We have also highlighted relative time codes, 

already documented, and the existence of absolute time codes in the striatum. The first ones adapt 

according to the duration, and are linked to the expectation of a future event. The second ones 

maintain their activity whatever the duration to be estimated. They arise from a past event, and are 

probably underpinned by a progressive sequential recruitment within a neuronal circuit. Moreover, 

we have shown that the presence of temporal codes is conditioned by the cognitive demand of the 

task. Overall, our results suggest that it is unlikely that there is a metronomic "clock" that invariably 

paces time. Instead, the recruitment of striatal circuitry is likely limited to physiological properties 

fitting sensory-motor actions into short durations. Our results characterize the structure of neural 

changes in the striatum and hippocampus, and their adaptation over time. 
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A. Introduction 
For Jean Giono, “time is what passes when nothing passes” -happens-. Somehow, this citation 

reveals the difficulties to define time. Indeed, it says that time “passes”, but time does not pass. The 

figures of speech we use to talk about time distort time definition. Indeed, as we say that “time flies” 

or “time flows” it is not true. Time is not an object, but rather the container allowing objects to exist. 

Indeed, the metaphor of the flowing river to define the flow of time is obsolete, because it confuses 

the container and the content (Klein, 2007). Time is not the river, but rather the borders, the container 

of the river, allowing the streams to flow. Time does not pass, but reality passes over time. The citation 

also raises another important question: what if nothing happens, does time still pass? For humans, this 

is linked with the ability to perceive time: do we need to perceive time for time to be real? To 

experience a sense of time, the brain must keep a track of changes. This raises the question, how is 

time process by the brain? 

 

I. Time in the brain  

Before going into details of neuroscientific and cognitive definitions of time, we will first try to 

restrict its conceptual definition. To provide a complete definition of time seems a pretentious 

statement given the difficulty to capture what time is at a psychophysics and neurobiological levels. 

Time is a non-sensitive feature of our environment, as space is. The understanding of temporal 

processing is related to the understanding of spatial processing, we will try to see why. Then, we will 

present a -non-exhaustive- list of examples of cognitive models explaining timing, that have been more 

or less successively linked with neural substrates, but often ignoring the role of time-range in time 

processing. 

 

I.1. The concept of time: from physics to neurosciences 

Time is a concept that neuroscience has borrowed from philosophy and physics. Recently, it 

has been argued how important it is to define properly the phenomenon -or function- we are talking 

about in neurosciences (Buzsáki, 2020). Indeed, as neuroscience is a “young science”, most of the 

vocabulary used comes from psychology and philosophy. Even if the same terms can be transposed to 

neuro-biological phenomenon’s, it is important to precise in which framework they are mentioned. 

This is also true for time (Paton & Buonomano, 2018). Likewise, when we talk about time in 

neurosciences, we are not talking about time per se, but about the “inner sense of time” (Wittmann, 

2013): the neural activity transcribing the information that something is going on. If we consider time 

as it is defined in physics, it has for a long time being defined by three characteristics that were not 

supposed to be malleable: its direction, its speed, and its unicity (Rovelli, 2017). Those are 
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characteristics that influence our perception of time, helping our understanding of it. But modern 

physics have redefined what common sense tells us: time can flow with multiple speeds, leading to 

several presents. However, the direction of time goes only in one way, from past to future. As we move 

from time in physics to neuroscience, we could first ask: do these characteristics hold?  

Relevant to the directionality of time, in physics, there is only one equation that differentiates 

the past state of objects with their future state: the entropy’s equation. It stipulates that elements go 

from a low state of entropy to a higher state of entropy; and this is their unique direction, from past 

to future. In neurosciences, this statement holds. Indeed, many equations accept time as a variable in 

neurosciences. This suggest that the brain and cognition are subject to biological laws that are time-

dependent. For example, Hebbian learning or the mechanism of action potential itself at the cellular 

level, Pavlovian conditioning at the behavioural level, or still -episodic- memory recall need to occur in 

a defined temporal order. One could argue that episodic memory allows us to retrieve memories from 

the past but also to project us into the future, losing so the unidirectionality of time. Indeed, the 

common process for mental time travel to the past or to the future is the ability to retrieve detailed 

information about an episode that is ‘not present’. The link between episodic memory and mental time 

travel to past and future has been demonstrated with brain imagery (Okuda et al., 2003) and clinical 

studies (Klein, Loftus, & Kihlstrom, 2002). Although, 1) we are not physically projected nor to the future 

nor to the past, 2) and the common process for remembering past events and planning futures ones 

lay on sequencing operations that goes in one direction only (D’Argembeau et al., 2015).  

At the neural level, for long-term potentiation (LTP), neuron A must spike before neuron B in 

order to decrease threshold excitability threshold of neuron B. If neuron A does not spike, neuron B is 

not active. If neuron B discharges before neuron A, the causal link between neuron A and B does not 

occur  (Montague & Sejnowski, 1994; Nicoll et al., 1988).  

At the behavioural level, learning processes are possible after making a link between two 

stimuli of the environment (Pavlovian conditioning) or a stimulus and an action (instrumental learning). 

Pavlovian conditioning refers to the association between two or more stimuli: a conditioned stimulus 

(CS) is learned to be annunciating the second one, an unconditioned stimulus (US), that provokes a 

physiological response. With learning, after multiple repetitions, the physiological response can be 

provoked by the presentation of CS. This process involves an ability 1) to learn a sequence that must 

respect a temporal order: CS must become first in time, in order to be an announcer of US; and 2) to 

assimilate a duration: the temporal distance of CS-US must be short enough to consider CS-US linked 

between each-other, by temporal pairing (Balsam & Gallistel, 2009; Rescola & Wagner, 1972). If the 

duration is too long, there is no learning because CS and US are not integrated as a unique memory. 

On the other hand, instrumental learning does not refer to the association between external stimuli, 

but rather to the association of a response in presence of a particular stimulus to get the desire 
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outcome -reinforcement or avoidance- (O’Doherty et al., 2017). The effect produced by the action 

following the stimulus presentation allows learning. Although, if the outcome occurs before the action 

production, the association between the sequence stimulus-action-outcome is weaken.   

These observations indicate that in the brain, as in physics, time goes only in one direction. 

The two others characteristics of time identified as multiple in physics, its speed and the unicity of 

present, can also be described as multiple in neurosciences.  

For example, relevant to the speed, it was shown that if a clock is in movement, it will slow 

down. This has been proved by testing two atomic clocks, one immobile, and the other moving around 

the world. At the end of the experiment, the clock that was moving was delayed with respect to the 

clock that stayed immobile; indicating that time did not move at the same speed in both cases (Hafele 

& Keating, 1972). Movement is not the only factor available to modify time speed. It is also influenced 

by gravity: the closer to the centre of the earth, time slows down. Without going into details, it means 

that next to points with high gravity, time is slowed down for the objects closed to it. In physics, it is 

now widely accepted that time speed is not unique. In neurosciences, the multiplicity of time speed 

can be easily understandable, as we have previously defined time as “the inner sense of time”. So, the 

transformations operated by the brain, that are biochemical mechanisms mainly involving dopamine 

(Cheng et al., 2016), can speed up or slow down subjective time perception. Time perception is then 

logically influenced by our emotional states (Effron et al., 2006) or cognitive and attentional loads 

demanded by the tasks (Polti et al., 2018) for example.  

Whether time has a unique present frame is questioned. Indeed, contemporary physics 

consider that the present is a valid concept when it refers only to objects near by the reference point; 

and there are as many presents as there are elements in the universe. The idea that all the objects 

were moving within the same time line is obsolete. Indeed, there are as many time-lines as there are 

objects. We do not go from a common past to a common future, but each element of the universe has 

its own past and its own future, that sometimes interplay, sometimes do not. In neurosciences, 

temporal multiplicity cannot be illustrated in the same way, but rather by the multiple ways to process 

time. It is possible to distinguish between circadian -temporal- rhythms, processed by the 

suprachiasmatic nucleus and widely documented (Hastings et al., 2018), and interval-timing for 

example, for which the understanding of its neural bases is still an ongoing debate. This is why from 

now on, the topic of interest is interval timing: we introduce a new task to test time processing by 

focusing on two structures that might sustain it. Interval timing differs from circadian rhythms as it is 

1) more flexible, and adapts across different ranges -with some limits-; but 2) is less accurate than 

circadian rhythms.  

Even within interval timing processing, we can distinguish between multiple forms of time. 

Explicit and implicit timing for example, correspond respectively to an active engagement in timing -
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measurement- and to an automatic temporal perception. One can also distinguish between time-

production and time-estimation: time-production -or reproduction- is internally generated and 

depends on an outcome conditioned to a specific time production, while time-estimation relies on the 

capacity to perceive time and evaluate duration afterwards. There is also another key distinction 

between timing of an event (keeping a track of a duration) and event sequencing (ordering the events 

in time). This last capacity is needed for learning and memories formation, and does probably not 

involve the same cognitive processes as interval timing.  

As a conclusion, the heuristics provided by physics offers a framework that is relevant to probe 

the neuroscience of time, leading us to question its direction, speed and unicity.  

 

I.2. Temporal and spatial processing: a common integration?  

To process temporal information, there is a need of quantification. Thus, it makes sense to 

propose temporal models linked with other types of quantification, such as counting (Gallistel & 

Gelman, 2000) but also spatial processing (Walsh, 2003; Gallistel, 1989). 

Indeed, more recent findings suggest that temporal processing is linked with spatial processing 

(Mendez et al., 2011): similar behavioural patterns were found in temporal and spatial bisection tasks 

(Figure 1). Note, a bisection task requires to categorize a target as being shorter or longer -binary 

outcome- than a sample cue. In a temporal bisection task, the cue and target are durations, in a spatial 

bisection task they are distances. Usually, the performances in these tasks lead to a psychometric curve 

where the durations best categorized are the extremes, and the closer to the cue, the performance 

tends to chance level. Performance is represented by the probability to respond long at each standard 

stimulus. Here, we can also note that humans and monkey’s performance was more similar when 

judging a duration at the second range than when judging a distance.  

Time and space have first been linked in Physics: Aristotle defended the thesis that without 

movement, there is no time, because time is only a variable to quantify change. On the other hand, 

Newton proposed the idea that time, “true time”, also exists when nothing exists and that it is only 

accessible with mathematics. Also, another example of how time and space are linked in Physics is that 

both of them share the common physical characteristic that there is a smallest unit possible for each 

one. They are not infinitely small.  

In addition to the fact that space and time are intrinsically linked in Physics, that can influence 

our way to understand them, we are also used to speak with spatial metaphors when we talk about 

time. This influences our temporal processes too. It has been demonstrated in humans: temporal and 

spatial judgements are asymmetrical. It means that spatial stimuli -its length- influences a duration’s 

estimation but not the opposite. A Theory of Magnitude (AToM) explains this phenomenon because in 

humans, semantic metaphors about time often rely on spatial metaphors, thus, space influences 
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temporal perception but the contrary is not true. In monkeys, such effect was not found (Merritt et 

al., 2010).

Another possibility of why time and space are linked in our mind, is because of our 

environments: they are correlated when we perceive and when we act. Time and space are commonly 

integrated to allow anticipation of the trajectories of surrounding stimuli in movement. It has been 

established that in timing tasks, animals develop stereotypic movements to track time (Gouvêa et al., 

2014) and when they are unable to do so, their timing abilities decreases (Safaie et al., 2020). Basically, 

time perception would result from the signals of our movements: during an interval timing task, where 

we are in space would tell “where” we are in time. Further, it has been demonstrated that timing and 

sensorimotor control are tied in primates at the milliseconds scale (Balasubramaniam et al., 2021). For 

example, training in a motor sequence improves time discrimination at the range of the movement 

performed (300ms), and time perception does not improve without motor training (Guo et al., 2019). 

Motor production and time perception at the millisecond range are likely to be sustained by very close 

processes. In non-human primates (NHP) motor cortex for example, there is a time modulated activity 

during time-production and time-estimation tasks, although neural codes for time are embedded in 

the neural codes for movement (Roux et al., 2003). Following the idea of “phylogenetic refinement” 

(Cisek, 2019), time code for perceptual and cognitive function could emerge from neural circuits for 

movement, as these later ones are phylogenetically older. In addition, attentional spatial and 

attentional temporal neural substrates partially overlap signifying that they share cognitive processes;

but time and space do not share the same cortical circuitry, respectively distributed among right and 

left hemispheres (Coull & Nobre, 1998). Although, even if animals, and humans (De Kock et al., 2021), 

use motor -spatial- strategies to improve the tracking of time, it does not mean that there is no time 

Figure 1. Psychometric curves for monkeys and humans in a temporal bisection task (left panel) and a spatial 

bisection task (right panel). In the temporal bisection task, cue durations were 350, 685 and 1195ms. In the 

spatial bisection task, cue distances were 2.85, 4.8 and 6.9° (Mendez et al., 2011).
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code in the brain possible without movement, but rather that these processes are sustained by very 

close networks.  

Thus, as we know, primates -humans and other primates- have a more developed 

somatosensation1 than  rodents (O’Connor et al., 2021). If we consider time processing interlinked with 

somatosensory processes, we can expect to see differences in the temporal processes between 

primates and rodents.  

 Finally, time and space are also related in episodic memory. Episodic memory refers to the 

ability to retrieve an episode experienced in the past, associating an event -what-, a place -where- and 

a moment -when-. The definition of episodic memory also includes a specific retrieval process, which 

is the autonoetic consciousness or, more precisely, the self-awareness which retrieves the past 

experience from a subjective point of view (Tulving, 1993). Is episodic memory unique to humans? This 

is still an ongoing debate, but one can assume that the difference between humans and animals is in 

the retrieval process and not in the memory formation, as other animal species are able to guide their 

behaviours in function of “episodic-like” traces of information (Zhou & Crystal, 2009; Ergorul & 

Eichenbaum, 2004; Clayton & Dickinson, 1998). Thus, an information stored in memory associates a 

place and a time, leading to a memory track where both features are connected. As many species are 

able to make spatiotemporal associations during memory formation, this indicate that the ability to 

place an event in time is critical for behavioural adaptation and survey.  

 Thus, in neurosciences time and space are coupled by movement and episodic memory.  

Here, we highlight the fact that basal ganglia, which group several nuclei, are involved in motor 

movements, and hippocampal formation is the region involved in episodic memory and spatial 

processing. Therefore, given the link between time, movement, space and memory, it is not surprising 

that cognitive models of time processing have given an important role of these two regions as neural 

substrates needed for timing.   

 

I.3. Cognitive models and neural substrates for time integration 

There are different types of models of timing in the literature, that can be grouped as 

pacemaker-based models, coincidence-detection models and process-decay models (Matell & Meck, 

2000). Here, we describe their principles and, without giving an exhaustive list of the models found in 

 
1 Somatosensation is the “sixth sense” allowing to a subject to interact with its environment. It groups several 
sensory systems (Ager et al., 2020): thermoception (temperature), nociception (pain), equilibrioception 
(balance), mechanoreception (vibration, discriminatory touch and pressure) and proprioception (positioning and 
movement). In O’Connor et al. (2021) the authors, the authors show that the differences in whiskers and hands 
lead to differences in the somatosensory system.   
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the literature, we focused on models that have implications for neural underpinning of time, which is 

the main topic of this thesis.  

 

II.3.a. The Scalar Expectancy Model 

The pacemaker-based models describe time integration by the brain as a stopwatch. There is 

a pacemaker in the brain ticking at a regular frequency -with an accepted (slight) variability-: the 

number of tick accounts for ongoing time. For example, at a frequency of 2Hz, four ticks code for 2 

seconds. These models are defined as dedicated model to time: their function is to estimate time 

(Wittmann, 2013); and it implies that there would be a structure in the brain that has this specific 

function: to be the pacemaker. 

The most accepted model of the pacemaker’s ones is the Scalar Expectancy Model (SEM). It 

follows from the Scalar Expectancy Theory, which stipulates that after learning, and over multiple time 

intervals, the noise in time estimation increases linearly with time. Such a property of timing behaviour 

was first observed and well  documented with Fixed Interval (FI) protocols (Gibbon, 1977).  

FI protocols are based on instrumental learning: a conditioned stimulus (CS) is presented, 

announcing a reward at time t after its onset. If the subject responds before t, he has no reward. Its 

behaviour is rewarded only when he responds at time t -or after it-. With training, the subject learns 

to respond closer to the expected event, the time t of reward. If the subjects are trained at multiple 

times, from t1 to tN, the distribution of response probability is transformed with a constant coefficient 

of variation (CV) from t1 to t2, for example. If the probability to respond at t1 follows a normal 

distribution of mean μ1 and standard-deviation σ1, then the probability to respond at t2 will follow a 

normal distribution of mean 2xμ1 and standard-deviation 2xσ1. More generally, the probability to 

respond at tN follows a scalar rule such that μN = N x μ1 and σN = N x σ1. The CV, also named k, is then 

given by the formula: k = μ1/σ1 = μN/σN  (Gibbon & Church, 1990) and suggests that timing follows a 

Weber Law2.  

Concretely, what does it mean at the behavioural level?  

The scalar property of timing behaviour implies that the performance at t1 is as good as the 

performance at tN, once both durations have been transformed on a relative scale such as tN = k x t1 

(Figure 2). 

 

 
2 Weber-Fechner laws describe how perception is influenced by the actual changes in a physical stimulus (visual, 
for example). The Weber law stipulates that perceptual sensitivity to a stimulus is proportional to the changes 
occurring in the initial stimulus. Could the fact that time perception follows a weber law induce the -wrong- idea 
that time is processed as any other physical stimulus? 
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There are a few variants of the FI task, such as the Peak-Interval (PI) procedure. First, subjects 

are trained on a FI task. Once they perform well enough, they are tested on probe trials, where the 

response at time t is not reinforced: trial keeps going on. These probe trials allow a better 

understanding of timing behaviour accuracy. Indeed, in a FI task the proportion of response will be 

highest just before or at the time of reward delivery: on average, the proportion of response increases 

until the reward. PI procedure is more informative than FI task: during probe trials, the peak of 

responses (peak-time) occurs at time t if the duration is well estimated, and the proportion of 

responses decreases after time t, reflecting the drop of reward expectancy. This protocol allows to 

understand the subject’s time accuracy: if peak-time is inferior to t (leftward shift), the subject 

underestimates the duration. If peak-time is superior to t (rightward shift), the subject overestimates 

the duration. In addition, the moments at which subjects start and end responding within the interval, 

respectively called ‘start’ and ‘stop’ times, are informative about subjective perception, impulsivity and 

inhibitory capacities. Furthermore, peak-spread (the width of responses’ distribution over time) also 

carry information about timing, indicating temporal precision, while peak-rate (the normalized amount 

of responses)  reflects the subject’s motivation (Coull et al., 2011). Scalar property of timing behaviour 

has been found on rats (Tallot, Capela, Brown, & Doyère, 2016; Meck & Church, 1984), birds (Gibbon, 

1977), monkeys (Mendoza, Méndez, Pérez, Prado, & Merchant, 2018; Mita, Mushiake, Shima, 

Matsuzaka, & Tanji, 2009) and humans (Rakitin et al., 1998), and thus seems to be a property common 

to all species.  

Figure 2. Proportion of responses during FI tasks in rodents represented in absolute times (A, 
C) and in relative time (B, D). Scalar property of timing behaviour holds from seconds to 
minute range (Mattell and Meck, 2000). 
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The scalar property of timing behaviour implies two things. First, timing relies on the 

anticipation of the reinforced event, because during retiming conditions -from t1 to tN for example-, 

estimations are tied to the end of the interval and not to its onset. Temporal processing is dependant 

of an expected event. Second, timing is relative. Indeed, the time occurrence of expected reward is 

constantly updated between different intervals, and matched in a relative scale but not in an absolute 

scale. This suggests that the expectation of the event is represented, but not the durations per se. 

Later on, the SEM proposed several components to account of this behavioural property 

(Gibbon et al., 1984) derived from an older model (Treisman, 1963). 

The SEM contains three processes that allow temporal integration: a clock, a memory and a 

decision process. Initially, the clock process was composed of a pacemaker, generating pulses at a 

constant rate, and a switch -an attentional component-, that transfers the signals into an accumulator 

when timing is involved in the cognitive task. The memory process was composed of the accumulator, 

also called the integrator -which is sometimes defined as a working memory component-, and a 

storage component, which contains reference memories. Finally, the decision process is composed of 

a comparator, that compares the durations in the integrator (ongoing time) with the durations 

retrieved from reference memory (Figure 3A). Temporal processing by this model translates a 

sequential treatment of temporal information, where each component treats the information in a well-

defined order. First, a pacemaker acts as a stopwatch, then, the switch works as an attentional process 

to transfer the pulses to the integrator. The integrator keeps in mind the ongoing duration, and sets a 

begging and an end to it. This duration is next conducted to the comparator. Meanwhile, the 

comparator also receives information about long-term memory -storage component- and finally, it is 

able to compare the ongoing duration with the one stored in the reference memory -possibly set as a 

threshold-. This comparison between ongoing and long-term memory leads to an outcome, if the 

durations are judge close enough. In function of the feedback, if there is a reinforcement, the duration 

in working memory -or integrator- is stored in the reference memory, allowing an update of the track 

leading to a thinner representation. However, the main idea of the authors is not about this sequential 

processing, because as mentioned it is replicated from an older model (Treisman, 1963), but it is rather 

about the origin of the scalar noise in this model, that would be induced by the pacemaker, the working 

memory component, the storage component, or the threshold of the reference memory. More 

recently, the working memory component has also been considered as part of the clock process (Figure 

3B): this distinction can be important as one can consider memory and clock processes sustained by 

different brain regions. 
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Afterwards, the distinction between clock process and memory processes has been linked 

respectively with dopaminergic and cholinergic systems (Meck, 1996). Warren Meck highlights the fact 

that variations in timing performance can be due to variations in clock, memory, or comparison 

process; referring to the SEM. He assimilates the clock process with dopamine (DA) circuitry in the 

basal ganglia, and the D2 receptors playing an important role. A series of experiments shows that the 

pulses for time-keeping are generated by substantia nigra (SN) in rodents, while dorsal striatum -

equivalent of Caudate-Putamen ensemble- gates the pulses for accumulation. The SN projects to the 

striatum: in the clock process of the SEM, this is equivalent to the pacemaker generating pulses to the 

accumulator through the gating. In a schematic way (Figure 4), the firing of the dopaminergic neurons 

in the SN always generates the pulses. When timing is involved, the striatum is responsible of the read 

out of these pulses and transfers them to the integrator, that could be the globus pallidus. However, 

this last proposition is challenged by the more recent models (Matell & Meck, 2004; Matell & Meck, 

2000), suggesting that the striatum would directly play the role of the integrator. On the other hand, 

the memory processes are considered as cholinergic dependant. Indeed, the author shows that choline 

acetyltransferase (ChAT) is also involved in temporal perception, but in relation with working memory 

and reference memory. The working memory process is not considered as part of the clock process 

here, therefore it is distinguished from the integrator. Concerning the cholinergic system, the author 

focuses on frontal and hippocampal regions and reviews several studies in rats with hippocampal and 

frontal damage during a gap-procedures. Gap-procedures follows the same design as a PI task, except 

Figure 3. A. The scalar expectancy model and its components, as it has been proposed initially (Gibbon et al., 
1984). B. The scalar expectancy model by placing the working memory module (integrator) as a clock 
component (Meck, 1996). 



19 
 

that a gap is introduced in the stimulus to be timed (Figure 4). In this case, the stimulus to be timed is 

in general a sound, that last for several seconds (10 or 15 for example). Then, in function of the shift 

observed for the peak-time and its relation with the gap, one can see if the tracking of the event is 

impaired: after the gap, a shift of peak-time equal of the duration of the gap illustrates an accurate 

temporal tracking paused during the gap. In our example (Figure 4), it is illustrated by a suppression of 

the behaviour during the gap and after the gap, the animal resumes its timing behaviour. This 

phenomenon is called the ‘stop rule’ (Tallot et al., 2016). Thus, when there is no ‘stop rule’ observed 

after the gap, the behaviour can be reflecting a working memory damage: the animal is unable to 

resume its timing behaviour, it has lost the track of the time preceding the gap. Hippocampal damage 

involves an amnesia for the stimulus -the time- prior the gap and frontal lesions did not, suggesting 

that the hippocampal system is involved in “working memory” but not the frontal lobes. Besides, 

during a simultaneous temporal procedure (STP), lesions of the frontal lobe impaired the timing of two 

stimuli presented simultaneously. This later result illustrates the role of frontal cortex in divided 

attention, while hippocampal lesions did not impair the performance in STP. STP follows the same rules 

than FI and PI procedures, except that two stimuli are presented simultaneously. A correct timing of 

both stimuli leads to two peak-times matching the durations of both stimuli. Taken together, these 

results indicate a distinction of the DA system as being responsible for clock process, and the 

cholinergic system being responsible of memory formation of temporal durations (Figure 5). Thus, 

cholinergic system and hippocampus could be linked in the temporal processing as they sustain 

temporal memory formations. To sustain this assumption, it has also been highlighted that in rodents, 

timing impairment after nigro-striatal pathways lesions or drug administration occurred right after 

surgeries, suggesting an alteration of the clock process. Meanwhile, lesions and drug administration’s 

acting on the cholinergic pathways impacted the behaviour after several sessions of training, 

suggesting an alteration of the encoding memory process rather than the clock (Coull et al., 2011).  

 

Figure 4. Gap procedure from Tallot et al. (2016). Legend is preserved. A–B. “The mean 
suppression curve across time is represented with the gap as a grey area (lasts 3s with an onset 
at 3s for the US@15s group (A) and lasts 2s with an onset at 2s for the US@10s group (B))” 
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One important point to understood about SEM, is that it gives an important role to neurons 

activity: pacemaker, accumulator, comparator and even reference memory can be seeing as brain 

areas coding ticks by single cells or neuronal populations activity. 

 

 

Following these results, a temporal map hypothesis of the rodents’ hippocampus advances the 

idea that durations are stored in the hippocampus. According this idea, short durations -around 8s- 

could be stored ventrally and longer durations -around 12s- could be stored dorsally (Oprisan et al., 

2018). The authors advance several arguments and results from the literature. The model is convincing 

if one considers the hippocampus as a storing structure and not a memory formation structure, but is 

documented only for a defined time-range at the tens of seconds. However, what would be the neural 

signatures for temporal memory remains unclear.  

Figure 5. Dopaminergic (A) and cholinergic (B) drugs effects on peak times (y-axis) during fixed intervals 
procedures across sessions (x-axis) in rats (Meck, 1996). A. Clock Patterns. Rats treated with methamphetamine 
(close symbols) and haloperidol (open symbols), that respectively increased and decreased levels of DA. Left. 
Drugs administrations on well-trained rats (2 groups, trained on 20s and 40s intervals). Increased levels of DA 
leads to an underestimation, and decreased levels of DA leads to an overestimation. However, the adaptation -
new memory formation- is efficient as over sessions, rats’ peak-times are getting closer to 20 and 40s for 
respective groups. Then, with no drug administration, intervals are overestimated in the methamphetamine 
group and underestimated in the haloperidol group. This reflects the changes of the internal clock suffering from 
the drug administration’s sessions that have altered the reference memories. Over training, peak-times are back 
to 20s and 40s for respective groups. B. Memory Patterns. Rats treated with physostigmine (closed symbols) 
and atropine (open symbols), that respectively increased and decreased cholinergic activity. On the contrary of 
DA drugs, cholinergic drugs do not influence the peak-time at the firsts sessions of under drug administration 
(left) for 2 groups of rats trained on (20s and 40s intervals). However, cholinergic modulations lead to a distortion 
of the new memory formations: increased cholinergic activity reduces peak time and decreased cholinergic 
activity leads to increased peak-time. As peak-time during the first sessions under drug administration are not 
shifted, this can be interpreted as a preserved clock process. The fact that peak-time, on the contrary of DA 
modulations, is shifted over training, is interpreted as an alteration of the temporal memory formation, or an 
update. When cholinergic drugs are not administrated anymore (right), the overestimations and 
underestimations pattern are consistent with the erroneous memories. New memory formations are consistent 
with a return to 20s and 40s peak-times respectively for each group. 
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Some of the components of the SEM have been placed in neural substrates but not all of them: 

nor the reference memory -except for the topological map of hippocampus mentioned above-, nor the 

comparator process for example. It also remains unclear what neural substrate act as the working 

memory component: it is not directly represented in the Meck’s model for example (Figure 6). 

Whether the integrator and the working memory components are the same remains unclear, as the 

first one is proposed to be sustained by the globus pallidus and the second one by the hippocampus in 

the text (Meck, 1996). This can be a limit of the serial representation of temporal processing. Later on, 

some regions have been suggested to play the role of comparator process at the second range: the 

Supplementary Motor Area (SMA) and the dorsolateral prefrontal cortex shows activations during 

comparisons of time intervals (Rao et al., 2001), but also the striatum (Harrington et al., 2011). 

Although, there is not direct pathway between dorsal striatum and hippocampus that would attempt 

for the connection between the gate and accumulator nor between the accumulator and comparator 

modules. Thus, this information must go through the cortex. 

Regarding the reference memory component, we prefer to consider a temporal consolidation 

in long-term memory of the durations in the cortex, exactly of what would be expected for any type of 

memory formation (Moscovitch et al., 2005) as it is described by the multi-trace theory (MTT). Indeed, 

one of the weak points of the SEM model and the neural substrates suggested, is the lack of importance 

it gives to cortical areas, except the slight mention they could play as a comparator process. Cortical 

Figure 6. The components of the scalar expectancy model as proposed by Meck (1996) and Oprisan et al. (2018). 
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areas are more often considered in the multiple-oscillator models. Gradually, the representation of 

interval timing has been disengaged from pacemaker models to move to Coincidence-Detection 

models, as more evidences of the role of cortical areas in timing appeared. Thus, cortical areas are 

probably not placed into the SEM because they have been directly placed into the coincidence-

detection models afterwards. 

Although an important point that the SEM leaves us with, is that it accounts for scalability in 

behaviour: the code for time is relative to an upcoming event. So, as behaviour is scaled in a relative 

way, there must be a relative -neural- code at the neural level for the duration estimated. But SEM 

also implies that there must be a code for memory storage in the brain. We advance the idea that such 

a storage memory code could be an “absolute time code”, even if it can be adjusted by a coefficient 

later on (Oprisan et al., 2018). 

 

II.3.b. Coincidence-Detection models  

 Coincidence-Detection models (CDm) are based on the principle that there are multiple 

pacemakers in the brain, and that their signals are integrated by a detector. Then, the detector is 

activated by the reception of the simultaneous input, and acts as a stopwatch. Usually authors refer at 

this detector component, at this stage of time perception, as a clock (Matell & Meck, 2000), but we 

prefer the term stopwatch. The use of the terms “clock” or “stopwatch” infers the fact that temporal 

processing at this stage is invariable and insensitive to noise, but it is. The CDm are not incompatible 

with pacemaker-based models, such as the SEM. They can easily be compared and are based on similar 

properties: CDm consider cortical areas as pacemakers, but they are also based on clocks, memory and 

comparator processes (Treisman, 1963): the detector from the CDm can be assimilable to the 

integrator of the SEM (Figure 7). CDm complete the SEM by including cortical areas and cortical 

oscillations in time processing. For example, in the beat-frequency (BF) model, pacemakers could be 

either the neural oscillations from cortex, or even a group of cortical neurons spiking at a regular 

frequency (Kononowicz & van Wassenhove, 2016). The main point, is the idea that the brain has 

multiple oscillators -not only one-, and all of them are acting at a unique frequency. Then, the beat 

frequency of any pair of them is defined as the frequency at which they discharge simultaneously: their 

beat frequency is lower than their intrinsic oscillations (Miall, 1989). This operation allows to time from 

milliseconds scale to minutes. Thus, the encoding of a duration from ti to tj can be computed by finding 

the oscillators firing simultaneously at ti and at tj. The retrieval of the interval can be processed by 

selecting the pair -or the group- of oscillators that fire simultaneously again. The neural substrates for 

the pacemakers of this model are the cortical areas -cortical activity is synchronized by a stimulus 

onset- and the striatum: the striatal spiny neurons detect the synchronization of the cortical inputs, 

signifying the beginning and the end of the duration (Matell & Meck, 2004; Matell & Meck, 2000). 
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Thus, the striatum is proposed to be a neural candidate for the coincidence detector, because of its 

large cortical afferent. The model underlying this architecture is referred as the striatal beat-frequency 

(SBF) model. The striatum plays a role similar to the integrator described in the previous model, 

therefore integrating information from the cortical areas. This model integrates into a unique 

framework the time codes in multiple cortical area such as frontal cortex, supplementary-motor areas, 

parietal cortex, or even auditory cortex and also the circuitry in time-attention based task  (Coull et al., 

2004). However, studies are restrained to second-range discriminations.  

 

 

It is tempting to find neural candidates for the elements making the coincidence detection 

model. Indeed, neural oscillations at the cortical level are strong candidates to represent ongoing time 

(Grabot et al., 2019), but no particular frequency band is a preferred candidate (Kononowicz & van 

Wassenhove, 2016), and the SMA acts as  a stopwatch process -pacemaker-. In addition,  the basal 

ganglia, and more specifically the putamen, may play the role of coincidence detector as part of the 

striatum, by being involved in short-term memory process at the second range (Harrington, 

Zimbelman, Hinton, & Rao, 2010; Coull, Nazarian, & Vidal, 2008; Rao, Mayer, & Harrington, 2001). This 

has been tested with time-discrimination tasks. In brief, subjects have first to encode a standard 

duration, to keep the duration in mind during a short delay, following which a second duration is 

presented. Then a comparison must be done, as in a temporal bisection task defined previously: is the 

second duration shorter, longer or -sometimes- equal to the first on? Such a task allows to distinguish 

Figure 7. Cortico-striatal circuits in interval timing as described in Coull et al. (2011) based on the SBF. Taken 
together, SEM and SBF models, pacemakers could be sustained by midbrain regions and cortical areas, integrators 
could be played by striatum or GP. In addition, suggestions in link with connectivity are represented in dot orange: 
the thalamus and the cortical areas could play a role of reference memory components. Blue lines represent 
dopaminergic inputs, and red lines glutamatergic inputs are excitatory (purple). Red lines represent GABAergic 
inhibitory inputs (green). 
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the encoding, storing and retrieval phases of timing. SMA is equally engaged -revealed with functional 

Magnetic Resonance Imagery (fMRI)- during both perceptual phases, in link with its “pacemaker” role. 

Putamen instead is involved in the storing phase, for short delays, between two cues presentation; 

while the superior temporal gyrus could be the one retrieving and comparing the durations. These 

results do not fit well the SEM neural bases described earlier: indeed, temporal areas are involved in 

the duration processing but not as working memory. Here, the striatum acts as the working memory 

process. Thus, the distinction between clock processes and memory processes remains unclear, as we 

mentioned, sometimes working memory component is part of the clock process. In addition, prefrontal 

cortex (PFC) shows strong synchrony with the striatum during learning (Antzoulatos & Miller, 2014) 

and PFC could also play an important role as a pacemaker in SBF model (Kononowicz & van 

Wassenhove, 2016), validating the idea that multiple cortical areas are involved in timing. It also 

remains unclear, from fMRI observations, how the striatum can act as a coincidence-detector if it is 

not involved at every step of timing or decision processes. From electrophysiological data although, 

the striatum shows timing activity at multiple periods of timing tasks in rodents (Zhou, Masmanidis, & 

Buonomano, 2020; Emmons et al., 2017; Mello, Soares, & Paton, 2015; Gouvêa et al., 2015) and 

monkeys (Wang, Narain, Hosseini, & Jazayeri, 2018; Chiba, Oshio, & Inase, 2015), particularly during 

memory phase and comparisons phases; which is more convincing for its detector role. There is also a 

lack of information for discrimination of longer durations, and the evidences that the basal ganglia 

would also be involved in timing at longer ranges for primates.  

Furthermore, temporal distortion under the influence of emotional load could be due to the 

sensitivity of cortical oscillators to DA level. Indeed, DA could be responsible of the resetting of the 

stopwatch at the cortical level (Oprisan et al., 2014). Its release from SN into the striatum acts as a 

reinforcement signal to represent a particular duration within the cortico-striatal connectivity (Matell 

& Meck, 2004) matching the role of the connection between cortex and striatum to time intervals. 

 In brief, SBF supports a dedicated model of timing, for which there is a dedicated network for 

temporal processing. Although, more or less recent observations support the idea of intrinsic temporal 

process in the brain: time estimation emerges from the properties of the neurons and neural circuits 

(Balasubramaniam et al., 2021; Karmarkar & Buonomano, 2007).  

 

I.3.c. The “process-decay” models as examples of intrinsic models of timing 

The scalar expectancy theory stipulates that the noise in time perception follows a scalar 

distribution at second to minutes ranges. A second interpretation of timing behaviour relates on the 

decay of information as time goes by. Models supporting such an explanation of the temporal 

processing are defined as intrinsic models of time, as opposed with the SEM or SBF that are dedicated 

models. Intrinsic models do not compute time per se, but the information they code for reflects time. 
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For example, the Multiple-Time-Scale (MTS) model advances the idea that time estimation can 

be read as the decay of memory trace (Staddon, 2005; Staddon & Higa, 1999). On FI procedures, the 

illustration is that the subject could start to respond when the memory trace induced by the stimulus 

onset drops below a threshold. The key point of this model is that habituation, forgetting and interval 

timing are underlied by the same dynamical processes which is the formation, the maintenance and 

the degradation of the memory trace. Thus, memory is interlinked with timing within a working 

memory framework.  

Similar observations have been modelled in a 3-layer neural network, the Timing from Inverse 

Laplace Transform (TILT) where the stimulus history is reconstructed according to its onset (Shankar & 

Howard, 2012). The three layers of this model are f, τ, and T. In sum, f is the function that denotes the 

presentation of a stimulus over time, f(t1) is the code for the stimulus f at t1. At each moment, the 

stimulus layer f activates a column in τ-layer, composed of leaky integrators -a component that leaks 

a small amount of input over time-. Each integrator decays at a distinct rate, and keeps a track of 

stimulus history (Figure 8). Each τ column is then transformed in the T-layer, which is modelled by 

time-cells: neurons that always peak at the same moment within an interval. The association of f(tn) 

and corresponding T-layer are stored in memory. This model is relevant because it gives a particular 

role of time-cells, suggesting that these neurons do not peak in a sequential order because they are 

sequentially organized, but rather because each node of the time-cell layer is activated after a certain 

decay of the presentation of the stimulus f. With learning, the association between f(tn) and T(tn) grow 

stronger, thus the T-layer induces activity in the f-layer, and by doing that allows the prediction of 

f(tn+1) in function of the state of T(tn): this phenomenon accounts for temporal predictions. Although, 

the key is that temporal learning is successfully coded by the decay activity in a f-layer composed of 

leaky integrators that could be played by cortical and sub-cortical structures.  

A different process-decay model is the Dual Klepsydra Model (DKM). This model does not 

consider any pacemaker neither (Wackermann & Ehm, 2006), but it is convincing to explain a particular 

phenomenon: the bias-to-short in time-reproduction-task (TRT). In a TRT, a first duration is presented 

to the subject, that the subject must reproduce the most accurately afterwards. The bias-to-short in 

TRT is the fact that the reproduced duration is shorter than the presented duration. The key point of 

this model is to propose, instead of a counting stopwatch such as the pacemaker, a cumulative clock, 

like a water-clock. Two mechanisms are described in this model: a cumulative process that is 

informative about ongoing time, and a relaxation process inducing a loss of information as time keeps 

going after the end of the duration. The model describes inflow/outflow systems combining both, the 

integration of the external event in a cumulative way and the spontaneously relaxation following its 

end. Although, this model does not account for consolidation of temporal information nor comparisons 

of durations with stored ones. 
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Intrinsic models of time are relevant as they support the idea that time is not processed by a 

central clock in the brain, but rather by different processes according to the task. In the models I have 

mentioned, one is efficient to explain behaviour in FI tasks, another one is efficient explaining 

behaviour in a TRT. This observation leads to the idea that time is processed in different areas of the 

brain in function of the cognitive demand and in function of the time ranges (Buhusi & Meck, 2005). 

 

I.4. Is time processing influenced by time-range? 

Yes. 

A dedicated model of time should not make any distinction between different time-ranges. For 

example, temporal reproduction task at the supra-second ranges (2.2, 2.7 and 3.2s) and tens of 

seconds (9, 11 and 13s) showed the same pattern of activation in cortical areas in both conditions 

(Macar et al., 2002). The scalar property of timing behaviour also predicts a dedicated timing 

computation in the brain with linear link from seconds-to-minute range. Although, whether the supra-

second ranges below ten seconds, the tens of seconds ranges, and the minute range support the same 

timing mechanism is still unknown, and electrophysiological data from rodent’s literature gives 

contradictory arguments about the distinction between tens seconds and minutes as being part of the 

same range or not (Shikano, Ikegaya, & Sasaki, 2021; Sabariego et al., 2019; Robinson et al., 2017). 

Indeed, hippocampal “time-cells”, believed to carry a code for time in interval timing, are not always 

Figure 8. The TILT model from Shankar and Howard (2012). Legend is preserved. “(a) Timing mechanism. The 
stimulus function activates a τ column of leaky integrators. Each node in the τ column has a distinct decay rate 
s. The activity in the t column is mapped onto the column of time cells T via the operator . At any moment, 
the activity distributed across the T column represents a fuzzy but scale-invariant presentation history of the 
stimulus. (b) Associative learning. For each node in the stimulus layer f, there is a column of nodes in the τ and 
T layers, as represented by appropriate shading. The T-layer activity at each moment is associated in a Hebbian 
fashion with the f layer activity, and these associations are stored in M. The associations stored in M and the 
instantaneous T-layer activity induce activity in the f layer. This internally generated activity in the stimulus 
layer is interpreted as the prediction p for the next moment.”  
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found at the minute range, but they are found at the tens of second range (Mau et al., 2018; 

MacDonald, Lepage, Eden, & Eichenbaum, 2011; Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008).  

Another recurrent division made in the literature is between the sub-second and the second 

ranges (Mauk & Buonomano, 2004). To develop further this distinction, sub-second timing would be 

automatically processed, while second range timing would involve attentional demands (Lewis & Miall, 

2003). For example, neural basis of such distinction have already been proposed, between cortico-

striatal (top-down) and cortico-cerebellar (bottom-up) circuits, respectively involved in second-to-

minute and milliseconds processing (Meck, 2005). Such a distinction has been challenged recently: in 

monkeys, cerebellum is involved in ‘self-timing’ -movement self-initiated with a delay- at sub-seconds 

but also second-range (Ohmae et al., 2017); and also times movements in rodents at the supra-second 

range (Gaffield et al., 2022). 

However, a distinction between milliseconds and second-range timing is likely to exist. Another 

argument for such a distinction lays on the fact that scalar property for timing is not observable below 

100ms in humans (Wearden & Lejeune, 2007), but is only observed  for durations from 200ms and 

above (Mauk & Buonomano, 2004). Further, supra-seconds discrimination could be enhanced by 

language acquisition in humans: pre-school children discriminate sub-second (200-800ms) and supra-

second (1000-4000ms) durations with no difference between each other, while older children (8 years 

old) performed better at the supra-second range, as adults do (Hamamouche & Cordes, 2019). This 

could reflect a strategy adopted by older children and humans in general, and involve “numerical 

counting” when humans time a duration. Indeed, counting becomes useful when the durations to time 

are longer than 1s (Grondin et al., 1999).  

Still, it is complicated to set different thresholds between the time-ranges, and probably there 

is more than one threshold to set.  

A distinction between sub-second and seconds ranges can be made based on the information 

integration by the brain (Pöppel, 2009). This distinction is not based on time-perception, but it rather 

argues that the window of 30-40ms is the time needed to reconstruct information conveying from 

multiple canals (visual, auditory) in the brain. Thus, specifically to humans, time cannot be 

discriminated within -or below- this window. These properties could define the neuropsychological 

basis of a moment: a duration that is indivisible. It is striking how timing performance in the same task 

(an -auditory- interval discrimination task) can be improved at 100 and 200ms, but that such 

improvement is not transferable from one duration to another (Karmarkar & Buonomano, 2003), and 

improvement timing estimations around 300ms does not affect timing at other ranges (Guo et al., 

2019). This suggests that different temporal processes are recruited for different time scales in the 

brain. To the millisecond window for time integration just described, Ernst Pöppel opposes another 
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window of 2-3s size that would give a pre-semantic window of temporal integration needed to 

construct a conscious episode. Time within this second temporal window is better integrated.  

At this supra-second range, one major consideration is the distinction between proactive and 

retroactive timing. Proactive timing reflects the cognitive processes to time a duration a priori: the 

instruction is given before the timing interval. On the other hand, retroactive timing demands to 

estimate a duration afterwards: no active timing was involved, the estimation rather lays on the 

recollection of the events that had elapsed. This second type of timing relies more on an episodic 

memory retrieval (MacDonald, 2014). It is not studied with animals as it needs the comprehension of 

an oral instruction following a different ongoing task. Thus, even if there is no empirical evidence for 

it -yet-, one could hypothesize that proactive timing demands attentional process, and that as time 

goes by, a duration could be better estimated by using a retrieving strategy rather than an explicit 

timing. This later strategy is more demanding and thus, maybe not adapted for longer durations. A 

suggestion is that such a phenomenon would be observable with reaction times: after proactive timing, 

reaction times would be faster and reflecting anticipation of the end of the interval, as the subject is 

engaged in timing. After retroactive timing, reaction times would be slower, there is no more 

anticipation of the end of an interval and the retrieval of the information in memory would increase 

responses times. Thus, if tested on the same type of timing task, by changing the length of the 

durations, one could argue that there is a difference in temporal processing depending on the time-

range.  

Therefore, even if scalability is observed from seconds-to-minutes intervals, we can imagine 

that second and minutes are not processed in the same way in the brain. For example, patients 

suffering from Parkinson’s disease show impaired time discrimination at the second range in a time 

discrimination task (short interval at 0.2 or 1s, long at 1.25, 1.5; 2 or 3 times longer than the shorter 

one) but did not perform differently than controls subjects while discriminating duration at the tens of 

seconds to minute ranges: 12, 24 or 48s (Riesen & Schnider, 2001). Following this idea, a distinction 

between short-term and long-term episodic memory has already been suggested, based on the scale 

from minute to hours to days, but also in function of the cognitive load of the task (Kesner & Hunsaker, 

2010). As we argued that timing is interlinked with memory when we described the cognitive models 

of timing, we can assume that such a distinction could also be made for temporal processing.  

We must ask: what are the time limits of the other cognitive process involved in time 

discriminations, such as attention or working memory? For example, in delay matching-to-sample task 

(DMTS) that involves working-memory, performance decreases as the delay between stimuli increases 

from seconds to minutes (Lind et al., 2015); and visual recognition memory is impaired at delays longer 

than 6s but preserved for delays ranging from 0 to 2s after perirhinal damages (Buffalo et al., 1998). 

Thus, does it mean that the same cognitive task does not involve the same memory -or cognitive- 
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processes as a function of time? If so, one can expect that the temporal processing in such a task would 

be different for 2 and 6s. The same type of arguments can be found in the attentional system for 

example: reaction times also increases when the periods preceding a target increase from 0.5 to 3.5s 

(Karlin, 1959), suggesting a decay in arousal that is time-dependant. In monkeys, motivation also drops 

when delay to reward increases from second to tens of seconds (Minamimoto et al., 2009) suggesting 

that the interval is not perceived in the same way in one range or the other. 

At the neural level, a similar hypothesis suggest that temporal scales are distributed 

hierarchically across the primate cortex, with prefrontal areas computing longer timescales than 

sensory areas (Murray et al., 2014). This difference would be related to the cognitive functions 

processed in the corresponding areas, as intrinsic models of time suggested.  

  Inter-species comparisons could be relevant to investigate these differences between time-

ranges. For example, because of the role of language in human and its impact in time processing, or 

because of the species differences in somatosensory processes and how these differences can 

influence temporal integration at different time ranges. Thus, differences or common observations 

observed across species could help to understand what is at the origin of temporal processing. 

Although, it is complicated to make direct comparisons between rodents and non-human primates, 

specifically because of the time-ranges studied up to now in both species differ empirically: seconds in 

monkeys, tens of seconds in rodents. On can ask if time-range is an intrinsic limitation relative to each 

specie instead of being a topic of study. In other words, is there a set of durations too short in rodents 

and a set of durations too long in primates to be studied? Or it can also be due to physical limitations 

of the animal models: freely-moving rodents and head-fixed monkeys. To provide an element of 

response to this question, we referred to a recent review (Tallot & Doyère, 2020) to compare the time-

ranges usually tested in rodents and the time-ranges usually tested in monkeys. The aim is to see if 

there is a difference between time-ranges in rodent’s studies (n=66) and time ranges in monkey’s 

(n=51). From the studies of this review, we create a dataset of durations tested in rodents and 

monkeys, where explicit and implicit timing tasks are put together. We removed of the dataset the 

studies above the minute-range, and added one study in monkeys of time categorization task 

(Mendoza et al., 2018). For the studies in which there was more than one duration, in time-

discrimination tasks or FI with variable delays for example, we used the median of the intervals as the 

representative duration of the study. We show that time-ranges studied in rodents and monkeys are 

different (1-way ANOVA, F(1,115)=10.51, p=.0016). Time ranges in rodent’s studies are higher than 

time ranges in monkey’s studies, as illustrated in Figure 9. This is an important point to consider when 

trying to extrapolate results obtained from an animal to the other, and may result from very different 

testing conditions in rodents and primates. 
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By showing 1) that the hypothesis that time processing at different time ranges could be 

sustained by cortico-striatal and cortico-cerebellar networks has been challenged, 2) contradictory 

electrophysiological data in rodents, 3) that there is some variability of performances in cognitive tasks 

as a function of time; it is complicated to set a unique threshold for time processing between time 

ranges. We can imagine the fact that there would be more than one threshold between time-ranges 

for time integration, in humans at least. The 100ms threshold is accepted in the literature, but we posit 

the fact that between several seconds to tens of seconds range there would be another threshold -and 

not the only one-.  

This question is not assessed with temporal processing, although in the attentional system, 

there is a time-dependant difference between different attentional states: a brief arousal state that is 

not comparable to a longer sustained attentional state (van Zomeren & Brouwer, 1994). Thus, it would 

make sense that time processing would integrate durations differently in function of their length.  

To investigate further the possible differences between time-ranges, we developed a 

discrimination task that involves several durations to categorize -a short, an intermediate and a long 

one- across multiple time ranges, and we asked whether the accuracy of temporal categorization was 

constant across ranges or if there was an effect of the time range in the temporal accuracy.  

 

So far, there are two brain areas coming up often when we talk about time integration: the 

striatum and the hippocampus. Whether it is about time and space, cognitive models of time 

estimations, or the link between time and learning processes, the hippocampus and the striatum are 

two potential candidates to integrate time.  

 Thus, let’s present these structures more in details. 

Figure 9. Survey of time-ranges studied in rodents and monkeys. Each diamond is the duration 
representative of a study. Mean and standard deviation are represented by dot and solid line. Dataset 
created from studies reviewed in Tallot and Doyère (2020).  
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II. The striatum and hippocampus 

 

Both the striatum and the hippocampus receive cortical inputs, but they have been associated 

to very different functions, likely resting on very different sets of connections.  The striatum receives 

its inputs from multiple cortical areas, while the hippocampus funnels in a cortical input from the 

entorhinal cortex. This is a first distinction between the two areas. Although, both brain regions play a 

part conveying a large amount of information in the aim to, schematically, select an outcome for the 

striatum, and to create a memory track of an event for the hippocampus.  

For each structure, we can ask how their cellular characteristics, their connectivity and their 

functional role would give them an important part in temporal processing. 

 

II.1) The caudate-putamen ensemble in the striatum 

The striatum is the main input of the basal ganglia (BG) which also includes the substantia 

nigra, the globus pallidus and the subthalamic nucleus. Striatum can be divided in three different sub-

regions: the caudate, the putamen and the nucleus accumbens (ventral striatum). These regions do 

not differ by their cellular characteristics, but they do differ by their connectivity and their cognitive 

functions. We will present striatum connectivity, its imbrication in the cortico-striatal-thalamic loops, 

and striatal cellular characteristics. We will mainly focus on the caudate-putamen ensemble, as it has 

been proposed as neural substrates for time processing, by detailing their functionalities. 

 

III.1.a. Connectivity 

 Striatum receives glutamatergic afferents from multiple cortical areas, thalamus, and 

dopaminergic afferents from the midbrain: the striatum is one of its larger efferent. Substantia nigra 

compacta (SNc) projects to caudate-putamen ensemble and ventral tegmental area (VTA) projects to 

nucleus accumbens (Haber, 2014). Even though most of the dopaminergic inputs to the striatum 

modulate the cortical inputs by phasic activations (Matell & Meck, 2004), there are also tonic discharge 

from dopaminergic neurons (Howe et al., 2013), that could allow to continuously track reward changes 

(Wang, Toyoshima, Kunimatsu, Yamada, & Matsumoto, 2021). 

Although, most of the striatal inputs come from cortical areas. Motor cortices project mainly 

to median-dorsal putamen (Künzle, 1975). On the other hand, striatal most anterior territories of 

caudate-putamen ensemble and ventral striatum, received most of its inputs from prefrontal cortex 

(Haber, 2016). Ventral striatum also receives inputs from the hippocampus and the amygdala. Most of 

the projections to the anterior part of the striatum are dorsally to ventrally segregated, respectively 

receiving inputs from: dorso-lateral prefrontal cortex (DLPFC), dorsal anterior cingulate cortex (ACC), 
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orbito-frontal cortex (OFC), and ventro-medial prefrontal cortex (Figure 10). This wide connectivity 

makes the anterior striatum a complex structure processing information for learning (Haber et al., 

2006). The organization of cortico-caudal projections combines two schematics approaches. The first 

one, is the organization from anterior to posterior parts: frontal cortex projects to anterior striatum, 

parietal cortex projects to median part, occipital to posterior and temporal to ventral. The second 

schematic organization concerns the caudate. Posterior-parietal cortex on one side, DLPFC and OFC on 

a second side, anterior cingulate and superior temporal cortex on a third side, respectively project to 

caudate in an organization from medial to lateral axis (Selemon & Goldman-Rakic, 1985).  

 
 

The striatum projects i) via the “direct way” to globus pallidus internal (GPi) and substantia 

nigra reticulata (SNr), or ii) via the “indirect way” that pass by the globus pallidus external (GPe) and 

subthalamic nucleus -as it was mentioned already-. GPi/SNr project then to the thalamus, which in 

turn project back to the striatum and to cortical areas (Hunnicutt et al., 2016) forming a cortico-striatal-

thalamo-cortical loop. Cortical areas are the main output of the basal ganglia circuitry. Thalamo-striatal 

projection allows inhibitory control (Saund et al., 2017), and we assume that to keep a track of time 

without any new cortical input, such a loop is needed (Figure 11). In the same way, the retro-projection 

from SN to striatum could also be involved in timing. In addition, striatum also projects to the 

hippocampus via the lateral entorhinal cortex (Sørensen & Witter, 1983).  

Figure 10. « Schematic illustrating the general topography of frontal inputs to the rostral striatum. 
dACC, dorsal anterior cingulate cortex; dPFC, dorsal prefrontal cortex; OFC, orbitofrontal cortex; 
vmPFC, ventromedial prefrontal cortex. » (Haber, 2016). 
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The first segmentation of cortical-basal ganglia circuitry has divided five cortico-striatal-

pallidal-thalamo-cortical loops (Alexander et al., 1986). Based on the inputs, a functional role has been 

proposed to different regions of the striatum: the SMA projects to the putamen in the motor circuit, 

the frontal-eye-field (FEF) project to the caudate body in the oculomotor circuit, the DLPFC projects to 

the head of the dorso-lateral caudate in an “association” loop, the lateral OFC to the head ventro-

medial caudate and the anterior cingulate to the ventral striatum. Such a physical parallelization of 

these loops allows a parallelization of the cognitive functions. Caudate head, anterior part, and caudate 

tail, posterior part, also received different cortical and sub-cortical inputs (Griggs et al., 2017).  

Therefore, we can consider that the striatal circuits, the motor one (motor cortex to putamen), 

the associative one (DLPFC to caudate) and the limbic one (anterior cingulate cortex to the ventral 

striatum) play a role in proactive inhibition, which is the ability to inhibit actions voluntary after 

learning. It can be opposed to the reactive inhibition, which is automatic, and does not go through the 

Figure 11. Cortico-striatal-pallido-thalamico-cortical circuitry. Adapted from Meck (1996). Glutamaergic 
(Glu) inputs are presented in red, dopaminergic (DA) in blue and GABAergic in green to match Figure 6. Direct 
pathway (dark grey) from striatum tu GPi/SNr facilitats action selection, indirect pathway (light grey) from 
striatum, to GPe to STN to GPi/SNr inhibits actions. Two loops presented in orange illustrates a possible 
circuitry allowing temporal processing without the any new cortical or sensory input. 
SNc/SNr: substantia nigra compacta/reticulata; GPe/GPi: globus pallidus internal/entopeduncular; STN: 
subthalamic nucleus. 
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striatum: the inhibition of an action in reaction to an external stimulus goes directly from cortex to 

subthalamic nucleus by the “hyperdirect pathway” (Jahanshahi, Obeso, Rothwell, & Obeso, 2015). 

Thus, striatal connectivity allows to maintain outcomes during a delay. This ability could also be 

allowed by the properties of medium spiny neurons. 

 

III.2.b. Striatal cells 

 Striatal cells are divided into two main classes: spiny projections neurons, or medium spiny 

neurons (MSNs), and aspiny interneurons (Kreitzer, 2009). MSNs, that represent more than 95% of the 

striatal neurons  (Yelnik et al., 1991), are phasically active in response to a spontaneous stimulus 

(Wilson et al., 1990) with a low spontaneous discharge rate (Kimura et al., 1990). There are two types 

of them: the ones projecting to the substantia nigra (SN) via the direct pathway, the others projecting 

to the globus pallidus (GP) via the indirect pathway. The direct pathway facilitates behavioural 

outcome, and the indirect pathway supresses it: stimulation of the direct pathway induces motor 

activity while stimulation of the indirect pathway inhibits motor activity (Kravitz et al., 2010; 

Macpherson, Morita, & Hikida, 2014 for review). However, the respective roles of the two pathways is 

likely to be more complex, both pathways regulate movement initiation and ongoing behaviour in 

different ways (Tecuapetla et al., 2016). Both circuits are GABAergic, their discharges inhibit the 

projection from SN to thalamus, which is also GABAergic, and by double disinhibition, they provoke 

the selected output. In the striatal beat frequency (SBF) model, the MSNs neurons are associated with 

the coincidence detection module (Kononowicz & van Wassenhove, 2016;  Oprisan & Buhusi, 2014) 

because of their -very- large amount of input and because they show high synchrony during their 

transitions from depolarized to hyperpolarized states (Stern et al., 1998): the striatal neurons have the 

biological needs to compute time.  

Another argument that makes striatum a good structure for timing, is the organization of its 

intrinsic circuitry. MSNs -projections neurons- can exert lateral inhibition within the striatal circuitry, 

to other MSNs, to inhibit them. This lateral inhibition allows to balance the actions selections and 

suppressions during a task (Burke et al., 2017). One can suppose that this lateral inhibition allows to 

maintain a selected behaviour in time, and to produce it when a selected threshold is reached or when 

it receives the proper input from thalamus or substantia nigra (Figure 12). 

The taxonomy of interneurons is more heterogeneous: fast spiking interneurons (FSI) and low-

threshold spiking (LTS) interneurons are also GABAergic neurons, but tonically active interneurons 

(TANs) are cholinergic. Although, this classification is not exhaustive (Burke et al., 2017). The last 

category are distinguishable from the others because of their electrophysiological parameters: they 

display mainly a tonic spontaneous discharge rate around 5Hz (Kimura et al., 1990). They also respond 

to reward by suppressing their tonic discharge after reward delivery, exhibiting a brief pause, followed 
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by a brief rebound in their tonic activity. This electrophysiological signature is also observed after the 

presentation of a stimulus annunciating a reward after Pavlovian conditioning (Apicella et al., 1991). 

The innervation of striatum by dopamine from the substantia nigra modulates the response of -caudal- 

TANs after learning (Aosaki et al., 1994): their proper responses are a fundamental need for associative 

learning. Also, recent evidences suggest that they trigger more information than just reward 

processing and learning, but also are informative about context recognition, movements  and stimulus 

detection (Apicella, 2007). By themselves, they give an idea of the wide range of cognitive processes 

computed by the striatum. For example, besides the recognition of a rewarding stimuli, TANs also 

contributes to motor processes by coding for the probability that the stimulus will trigger a movement 

(Blazquez et al., 2002). 

 
 

Thus, one could define as many cognitive functions for the striatum as the number of cognitive 

functions computed by its dopaminergic and cortical afferent, and the heterogeneity of striatal cells 

allow so many different computations. 

 

II.2.c. Functions 

Dopamine regulated functions 

 Besides movement production (DeLong, 1990), the cortico-striatal-pallidal-thalamo-cortical 

loops are involved in many cognitive functions such as -habit- learning (Seger & Spiering, 2011), goal-

Figure 12. Medium spiny neurons and their collateral inhibitions (black lines with rectangles) coupled with 
GABAergic outputs (green) allow action selection at time t. At t0, neurons responsible for outputs at t1, t2 and 
t3 are inhibited, and output is allowed by t0 projection. At t1, t2 or t3, the same logic is applied but inputs are 
proposed to come from other regions of the cortico-striatal-thalamic loops (dopaminergic in blue or 
glutamatergic in red). 
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directed action selection (Pernía-Andrade, Wenger, Esposito, & Tovote, 2021; Kimchi & Laubach, 2009) 

and reward evaluation (Humphries & Prescott, 2010) via  dopamine regulation (Schultz, 2007). 

Neuronal loss from SN, that projects to striatum, causes a dopamine deficiency in Parkinson’s disease 

(Jellinger, 2015). The main symptoms of Parkinsonian patients, at early stages, are motor symptoms; 

and one of the collateral effects of treatment is related to reinforcement -gambling-. Thus, 

neuropsychology informs us about the main roles of the striatum: movement and reward processing. 

Even if dopamine is believed to be one of the main neurotransmitters involved in timing, it is important 

to note that dopaminergic depletion does not provoke timing complains in these patients. Although 

when they are tested, there is indeed a deficit in timing durations (Parker et al., 2013). The first role of 

dopaminergic neurons is to signal rewards. Unexpected rewards elicit increase of dopamine neurons 

located in substantia nigra (SN) and ventral tegmental area (VTA).  With learning of an association 

between a conditioned stimulus and a reward, dopaminergic neurons increase their activity to the CS 

presentation. During the delay -in an instrumental task- dopaminergic neurons do not show a tonic 

transient activity, indicating that they do not reflect any working memory process but rather mark the 

time of events (Schultz, Apicella, & Ljungberg, 1993). When an expected reward is omitted, there is a 

suppression activity at the moment when reward would have been delivered (Sarno, De Lafuente, 

Romo, & Parga, 2017;  Schultz, Dayan, & Montague, 1997). Dopaminergic responses also occur when 

rewards are either unpredicted or when they occur at unexpected times (Hollerman & Schultz, 1998) 

after learning: by definition, dopamine codes for the occurrence of a reward and its time. A partial 

conclusion is that reward-related dopaminergic activity codes time of events. In rodents, dopaminergic 

modulations explain temporal judgements during a bisection task (Soares et al., 2016). Indeed, 

activation of dopaminergic neurons from SNc leads to an underestimation of the durations at the same 

range, and the inhibition of the dopaminergic cells lead to an overall overestimation of the durations, 

illustrated by the increased proportion to respond long. Even though this result is striking, and confirm 

the role of dopamine in timing, they do not match the theory were dopaminergic pulses act as a 

pacemaker, and increasing dopamine activity increases time estimations (Buhusi & Meck, 2002; Maricq 

& Church, 1983). Indeed, following this last assumption, the activation of dopamine neurons should 

lead to an overestimation of time, and an underestimation should be observed after inhibition. This 

illustrates perfectly the following point: the dopaminergic and striatal systems are involved in timing, 

without raising any doubt, although how they do, it is still unclear. Thus, one could make the hypothesis 

that striatum is highly involved in timing because of its dopaminergic afferent that encode information 

about rewards and time needed for learning. In addition, to the phasic inputs, dopamine neurons also 

provide tonics signal from VTA and SNc to striatum (Howe et al., 2013) that may continuously evaluate 

possible rewards (Wang et al., 2021), and permit a continuous updating of information over time -

leading to a temporal representation-.  
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Functional map based on cortical afferences 

Besides its dopaminergic inputs, the classical way to draw a functional map of the striatum, is 

to map it in function of its cortical afferences. Following the motor, associative and limbic loops 

assumptions, putamen is involved in motor action-selection and habit learning (Grahn et al., 2008). 

Indeed, while putamen shows a rostro-caudal somatotopic organization, with sensory-motors and 

motor actions from leg area located dorsally, face more ventrally and arm -or hand- in between; there 

is no such activation or neural code in caudate: it is not involved in motor movement (Gerardin et al., 

2003; Alexander & DeLong, 1985), except saccadic eyes-movements (Hikosaka, Sakamoto, & Usui, 

1989). Caudate plays more of an associative role: it is sensitive to feedbacks in learning, and allows 

updating information about ongoing behaviour (Delgado, 2007), it encodes multiple features relevant 

to decision making, including evidence accumulation -over time- (Ding & Gold, 2010). Finally, ventral 

striatum codes for motivation (Marche et al., 2017) and reward expectancy (Schultz, Apicella, Scarnati, 

& Ljungberg, 1992). Although, these loops, and so the functional territories, are not perfectly 

segregated and they do overlap (Draganski et al., 2008). In another primate study, the disruption of 

striatal activity by increasing MSNs neural activity with bicuculline (a GABAergic antagonist), induced 

movement disorders in the dorsal striatum and impaired motivational behaviours in the ventral 

striatum (Worbe et al., 2009). In addition, another distinction that can be done within striatum, is the 

division between rostral and caudal territories in motor learning: the rostral part sustains a learning 

mechanism while the caudal part impairs performance in behaviours already learned, sustaining a 

memory mechanism (Miyachi, Hikosaka, Miyashita, Kárádi, & Rand, 1997; Miyachi, Hikosaka, & Lu, 

2002), or an intentional versus an automatic mechanism as it has been discussed and confirmed later 

on (Kim & Hikosaka, 2015). A motor task dissociating selection, preparation and execution of a 

movement also illustrates different involvement of the striatal territories. While action-selection was 

sustained by the caudate nucleus, preparation and execution activated respectively rostral and caudal 

parts of the putamen with respect to the anterior commissure (Gerardin et al., 2004) confirming a 

functional distinction in the rostral-caudal axis in addition to the sub-structures of the striatum. Such 

a distinction is also made within caudate nucleus: even if caudate circuits code for saccadic eye 

movement to a rewarded object, caudate-head circuits codes are sensitive to recent experiences and 

short-term memory, while caudate-tail circuits codes in function of long-term memory with outputs 

more stable (Hikosaka et al., 2019). These arguments lead us to define a map of the striatum that is 

not solely based on the three different sub-territories, but that is also organised in an anterior-

posterior axis where the most rostral areas are involved in executive functions and caudal areas are 

influenced by long-lasting codes and processes.  

Thus, the striatum receives inputs from anterior cingulate cortex, and orbito-frontal cortex 

which process reward information and motivation (Setogawa et al., 2019; Shidara & Richmond, 2002; 
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Tremblay & Schultz, 1999). Frontal cortex plays an important role in working memory (Riley & 

Constantinidis, 2016), carrying information over time without sensory cues. For example, frontal lobe 

lesions induce deficits in performing delayed responses (Jacobsen & Nissen, 1937). Frontal cortex 

projects widely to the striatum. Considering this, the striatum receives inputs about all these 

information and codes for reward and time: reward codes in the striatum are widely distributed from 

dorsal to ventral (Bowman et al., 1996), neurons in the anterior striatum codes the values -reward 

magnitude- of an action-selection and not the action itself (Samejima et al., 2005), and reward 

expectation is coded in caudate head (Kawagoe et al., 1998). 

Reward processing in the striatum and time 

The previous paragraph described results showing that striatum processes reward 

expectancies, reward times and movements. These functions can easily be linked to proactive 

inhibition during reward discounting processes. 

Reward discounting refers to the fact that the same reward -size, amount, usually defined by 

magnitude- has a higher “subjective value” as it occurs earlier in time. Or, in other words, that waiting 

for reward devaluates its value. The subjective value can be measured by proposing a choice between 

two rewards, R1 and R2, where R2 is bigger than R1. R2 can be associated with a variable delay, from 

t0 (immediate delivery of the reward) to tN, and R1 with a fixed delay tR1. In a forced-choice task 

between receiving R1 or R2, if R2 is associated with “short” delays, from t0 to tn, the probability that 

the subject picks the bigger reward is high. To do so, the inhibition of selecting the immediate reward 

must occur. Reward evaluation and proactive inhibition interplay. If R2 is associated with “long” delays, 

from tn+1 to tN if we follow the same example, the subject has higher probability to choose R1 if it is 

associated with a shorter delay. Usually, the probability to pick R2 over R1 follows an inverse 

logarithmic curve in function of the delay it is associated with: it’s the discounting value of R2 (Frost & 

McNaughton, 2017; Green, Myerson, Holt, Slevin, & Estle, 2004). Usually, tn is longer than tR1: the 

subject waits more but receives a higher reward. So, the association between R2 and tn (R2-tn) has a 

higher value than R1-tr. But at tn+1, the subject prefers to pick R1: the association R2-tn+1 has a lower 

value than R1-tr. With delay discounting, time becomes a feature of our environment influencing 

decision making and goal-directed behaviour. Of course, prefrontal cortex codes for differential values 

of these associations needed to process a choice (Kim, Hwang, & Lee, 2008), and we know to prefrontal 

cortex projects to anterior striatum.  

Striatal -caudate and accumbens- neurons code the information (sum of reward and difference 

between two rewards) needed for decision in this type of task (Cai et al., 2011). Caudate neurons 

represents temporally discounting values combining the information about reward size and delay at 

the supra-second range (up to 6.9s) during cue presentations, and its inactivation impairs the 

integration of reward and cue leading to a drop in motivation (Hori et al., 2021). In the ventral striatum, 
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TANs code for temporal discounting during the cue period by scaling their neural pulse or their pause-

pulse responses. Such a code is informative about the subjective value of the reward leading to a 

decision, but not to time per se (Falcone et al., 2019). In addition, caudate dysfunction induced by 

dopamine agonist in non-human primates alters temporal discounting in monkeys, avoiding larger 

rewards delayed in time and seeking for smaller immediate rewards. It is likely that this disturbance is 

due to the fact that time, in this case waiting for a delayed gratification,  is perceived more aversive, 

but this could also be due to the activation of the direct pathway inducing seeking behaviours for direct 

rewards (Martinez et al., 2020). Such a pattern was not found after dopamine dysregulation in 

putamen or ventral striatum. Once more, these results confirmed the different involvement of the 

striatal sub-structures in information processing (Dalley & Robbins, 2017).  

Striatum and behavioural conditioning 

We have mentioned the importance of time in behavioural learning, such as Pavlovian and 

operant conditioning. Now we will show that the striatum plays a role in such learning. During 

Pavlovian conditioning, temporal information between CS and US is coded by the amygdalo-prefronto-

dorsostriatal circuit in rats for aversive learning (Tallot et al., 2020) and dysregulation of dorsal striatum 

slows down appetitive learning of CS-US associations (Cole et al., 2017). Indeed, dorsal striatum in rats 

is required to link stimulus-output and response-output associations in Pavlovian and instrumental 

learning (Corbit & Janak, 2010). As we already showed, FI procedures are instrumental learning task. 

During the CS-US delay, striatal neurons showed scalability from 12 to 60s to optimize behavioural 

anticipation of the reward (Mello et al., 2015). Indeed, striatum controls temporal behaviour by 

dopamine regulation (Kamada & Hata, 2021; De Corte, Wagner, Matell, & Narayanan, 2019) but also 

with cortical signals (Emmons et al., 2017). Striatum is not involved in behavioural conditioning only 

because of its responsiveness to rewards, but also because it has the function to time CS-US durations 

and to link these events in time. Striatal neurons also code expected events -rewards- in time, after 

10s or 40s, during a FI task; indicating that they do not necessarily map the durations per se but they 

can code for expected events (Matell et al., 2003). Furthermore, during an instrumental task, choice 

can be based on stimulus duration only. During Pavlovian conditioning, timing is linked with the 

expectancy to reward or CS-US integration, but not needed to produce an outcome. On the other hand, 

during instrumental task, timing is needed to produce an action: timing is not directly related with 

reward expectancy nor with temporal pairing between two events in this case. This is the case for 

bisection tasks: to get rewarded, subjects must discriminate a standard duration as shorter or longer 

than a target duration. We know that in this type of task at the second range (duration-target at 1.5s, 

duration to distinguish went from 0.6 to 2.4s), striatal activity is linked with durations-judgements 

(Gouvêa et al., 2015). This result shows that striatum codes for time in order to produce time-based 

outcomes. 
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Time processing and sequencing are functions that are also treated by the hippocampus 

(Pezzulo et al., 2014). For example, striatum and hippocampus are involved during acquisition of 

motor-learning sequences (Gann et al., 2021) but the proper functioning of both structures is also 

needed to correctly process time at the minute-range. Indeed, striatum encodes durations at the 

minute range, up to 5 minutes, in a task similar of an FI task, but the organization of its neural activity 

is impaired after hippocampal inactivation (Shikano, Ikegaya, & Sasaki, 2021). 

 

II.2. The hippocampal formation: where am I in time? 

 The hippocampus is a structure of the medial temporal lobe of three neural parts: CA1, CA2 

and CA3 that stand for Cornu Ammonis. The hippocampal formation groups the hippocampus and its 

most neighbouring structures: the entorhinal cortex (ERC), the subiculum and the dentate gyrus (DG). 

Its cytoarchitecture has an ancient phylogenetic origin with very few changes from rodents to 

primates. One of its main accepted function supports an involvement in spatial navigation which also 

support a cognitive map within which mental navigation is possible (Milivojevic & Doeller, 2013; 

O’Keefe, 1990). Further, it plays a role in the so-called episodic memory as its lesion induces a strong 

anterograde amnesia.  

 

II.2.a. Cells and internal circuitry 

The components of the hippocampal formations have 3 cells-layers, except the entorhinal 

cortex (ERC), making them different from the neocortex that is composed of 6 cells-layers of neurons. 

Most of the connections within hippocampal formation are unidirectional. The ERC is the main 

excitatory input to DG, projecting to CA3, that transmits the information to CA1: this structures a 

trisynaptic circuit of information processing (Lopez-Rojas & Kreutz, 2016). Nevertheless, ERC also has 

direct projections to CA3. Most of the excitatory neurons of the DG are granule cells, different from 

pyramidal cells of CA regions (Amaral et al., 2007). Their axon projections to CA3 are called the mossy 

fibres. They largely innervate collaterally DG and a larger number of CA3 interneurons, more than CA3 

pyramidal cells, providing a spare code of information (Figure 13). What does it do? The role of DG is 

to disambiguate similar but different information -pattern separation-: it has more cells than its cortical 

inputs, that allows to increase information with respect to the conveying one (Schmidt et al., 2012). 

The final result is to be able to distinguish between two similar memories. Although, whether such a 

computation takes place in the hippocampus is an ongoing debate: there is evidence for hippocampal 

activity responding to a same concept -conveying information- (Quian Quiroga, 2020), opposed to a 

vision where pattern separation is needed to memory formation, at the condition they take place into 

the DG and CA3 only (Rolls, 2021).   
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Neurons in the CA regions of the hippocampus can be distinguished into inhibitory 

interneurons -around 10% of them- and excitatory pyramidal cells in rodents and humans (Viskontas, 

Ekstrom, Wilson, & Fried, 2007; Csicsvari, Hirase, Czurkó, Mamiya, & Buzsáki, 1999) that differ by their 

average activity -higher for the interneurons- and their waveform. CA3 also projects 1) collaterally to 

other pyramidal CA3 neurons 2) and to CA1 via the Schaffer collaterals. CA3 collateral projections 

allows auto-associations between inputs that come from different part of the cerebral cortex -via the 

dentate gyrus- but are associated in CA3 via their recurrent network: this permit the formation and 

the storage of episodic memories in CA3 network (Treves & Rolls, 1994). For example, a colour-shape 

association is learned: colour activates neuron CA3-a and shape activates neuron CA3-b. The 

presentation of the colour recalls the shape in memory because CA3-a also activates CA3-b by the 

collateral. To retrieve a memory, the whole pattern of CA3 activations activates the CA1 pattern 

following. Then, CA1 neurons would in turn activate entorhinal cortex that projects back to the 

cerebral cortex areas originally providing inputs to the hippocampus. These back projections could re-

activate physical, emotional or semantic features of an episodic memory. CA1 also receives directs 

inputs from the entorhinal cortex, where the information is coded with more details than in the other 

structures of the hippocampal formation.  

We have also mentioned CA2 area in the hippocampus. One of the properties of CA2 neurons 

is to have a reversed synaptic strength rule: they are weakly activated by their proximal inputs from 

CA3, and strongly activated by their distal inputs from entorhinal cortex. Then, CA2 projects to CA1 

(Chevaleyre & Siegelbaum, 2010). CA2 plays a critical role in social memory (Lopez-Rojas, de Solis, 

Leroy, Kandel, & Siegelbaum, 2022; Chevaleyre & Piskorowski, 2016; Hitti & Siegelbaum, 2014), but 

not in spatio-temporal associations. 
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How does time emerge from such a complex circuitry? In theory, time is not coded in the same 

way by the entorhinal cortex than by CA regions because the activation of these sub-population -

networks- depends on the cortical inputs. One hypothesis is that temporal information is widely 

encoded in the entorhinal cortex -with neurons maintaining a monotonic increased or decreased firing 

rate over time-. In the hippocampus, CA neurons code for time with phasic -transient- activity. CA3 is 

able to associate temporal information from ERC with other features. On the other hand, CA1, that has 

the cytoarchitecture allowing competitive network processing, would allow time-sequencing for 

episodic memory formation (Rolls & Mills, 2019). 

 In conclusion, the circuitry of hippocampus allows memory formations by auto-association and 

pattern separations via the trisynaptic circuitry. It is likely that any time code in the hippocampus will 

be due to memory formation and associative learning. Although, time integration in the hippocampus 

that does not involve episodic memory might not be coded in the hippocampal circuitry.  

Figure 13. Connections of the hippocampus and pattern separation (Rolls, 2021). Legend is preserved. “Inputs 
reach the hippocampus from different parts of the neocortex (A) through the perforant path (pp) that makes 
synapses with the dendrites of the dentate granule cells (DG) (B). The DG cells are hypothesized to produce 
pattern separated representations in CA3 by operating as a competitive network that projects via the sparse 
mossy fibre inputs to the CA3 cells. The recurrent collateral system of the CA3 cells (red) is proposed to operate 
as a single attractor network to associate separate ‘where’ with ‘what’ or reward representations in one trial for 
episodic memory. The CA3 pyramidal cells project to the CA1 pyramidal cells that are hypothesised to produce 
conjunctive representations from the separate representations of ‘where’ and ‘what’ in CA3. These conjunctive 
CA1 representations are efficient as the first stage of the multistage recall process back to the neocortex (green). 
Time and temporal order are also important in episodic memory, and may be computed in the entorhinal–
hippocampal circuitry [...]. The thick lines above the cell bodies represent the dendrites. S and D – superficial 
versus deep layer pyramidal cells. F – forward inputs to neocortical neurons from earlier neocortical areas. The 
numbers of neurons in different parts of the hippocampal trisynaptic circuit in humans are shown in (A), and 
indicate many DG cells, consistent with expansion encoding and the production of sparse uncorrelated 
representations prior to CA3. […]”. 
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III.2.b. External connectivity 

The hippocampus receives its inputs from the DG and the entorhinal cortex. Entorhinal cortex 

receives its inputs from other associative temporal and parietal cortices. In primates, CA1 receives also 

cortical inputs from temporal and parietal lobes, revealing that the circuitry of hippocampal 

connections is, in reality, more complex than the trisynaptic connections (Rockland & Van Hoesen, 

1999). Then, CA1 1) projects directly to cortical regions -orbital and lateral frontal cortices, anterior 

cingulate cortex- via the fornix (Insausti & Muñoz, 2001), or 2) projects to the subiculum which projects 

back to the rhinal cortices and parahippocampal region (Suzuki & Amaral, 2003).   

Entorhinal cortex receives its inputs from temporal areas around it, mainly perirhinal and 

parahippocampal cortices (Van Hoesen & Pandya, 1975). It also receives various inputs from (orbito-) 

frontal regions (Van Hoesen et al., 1975). These wide patterns of connection allow integration of 

multiple information. 

The hippocampal formation also projects to the striatum, to the nucleus accumbens, from the 

subiculum via the ventral tegmental area (VTA). This connection is part of the hippocampal-VTA axis 

regulating dopamine release after the experience of novelty (Lisman & Grace, 2005). The inputs from 

ventral subiculum to the accumbens regulates the phasic release of dopamine neurons in the striatum, 

driven by relevant events (Grace et al., 2007).  This connexion is critical to decision-making in a reward-

delay judgement: the damage of ventral hippocampus and accumbens impaired the selection of large 

delayed rewards, and induces preference for small immediate rewards (Abela et al., 2015).  

 

II.2.c. Memory Function 

Clinical neurosciences established pioneering discoveries on the role of the medial temporal 

lobe in memory formation (Scoville & Milner, 1957) as patients with hippocampal lesion display strong 

antegrade amnesias for everyday life events, the so called episodic memory (Tulving, 1993). To what 

extent, hippocampal memory only deals with episodic memory and whether it englobes other 

processes beyond acquisition, such as consolidation, retrieval or even working memory is still a matter 

of debate (Ergorul & Eichenbaum, 2004; Eichenbaum, 2001).  

From learning episodes to consolidating them 

According to the multiple-trace theory, learning involves cortico-hippocampal circuitry: 

cortical areas activate hippocampus for associations during learning and this signal is then send back 

to neocortex. Then, with the “consolidation” of the track, the activation of cortical areas does not go 

through hippocampus anymore (Moscovitch et al., 2005). This theory explains why episodic memory 

is altered after hippocampal lesions or at early-stages of Alzheimer disease, and why older memories 

are preserved. Similarly, hippocampus is involved in explicit memory, while striatum sustains implicit -

automatic- memory (Geddes, Li, & Jin, 2018; Tecuapetla et al., 2016) . This means that during learning, 
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a consolidation of the information occurs and hippocampus is disengaged from information 

processing, in opposition with striatum, that supports stabilized memories (Albouy et al., 2015). In the 

aim to “create” a new episodic memory, there must be an association between a time, an event and a 

place (Tulving, 1993). For this, many different codes in the rodent’s hippocampal formation allow 

spatial representation: 1) self-position in allocentric space, such as place-cells (O’Keefe & Conway, 

1978; O’Keefe & Dostrovsky, 1971) and grid cells (Boccara et al., 2010),  reward location (Gauthier & 

Tank, 2018) and various aspects of space such as border cells (Bjerknes, Moser, & Moser, 2014; Lever, 

Burton, Jeewajee, O’Keefe, & Burgess, 2009). The model for space representation in hippocampal 

formation is that grid cells from ERC provides hippocampal place cells with distance and self-motion 

information (Poucet et al., 2014). These codes are interpreted to be a track of spatial memory in a 

convincing manner (Nakazawa et al., 2004). A striking observation for memory formation, is the fact 

that during spatial exploration, place-cells that fire sequentially in overlapping places “played back” 

their sequential activity during sleep episode (Wilson & McNaughton, 1994). Such organisation 

decayed across time -days- reflecting synaptic modulations modified by behavioural experiences. 

Replayed activity maintain their temporal structure on subsequent sleep episodes (Lee & Wilson, 2002; 

Louie & Wilson, 2001): the temporal order during information coding can be maintained and 

reproduced from tens of seconds to minutes. In addition to single-cells code, sharp-wave ripples (SWP-

R) are believed to transfer information to neocortex during sleep. Indeed, their inactivation during 

sleep leads to an impairment of spatial-reference memory task -food retrieval-. It is accepted that sleep 

episodes are necessary for memory consolidation (Girardeau & Lopes-Dos-Santos, 2021). Although, 

even if during awaken episodes place cells code for space, their subsequent episodes, from the studies 

we mentioned, may consolidate temporal sequence in memory and not space per se. In addition, 

replay patterns have also been observed during awaken episodes. The sequentially discharge of 

hippocampal cells is taking place in a reverse order during stop episodes following a running episode 

(Foster & Wilson, 2006). Such a replay pattern is believed to encode with precision temporally closed 

events, bringing temporal parameter in the memory formation role of place cells. It remains unclear 

whether some of the reverse replays are due to anticipation -as rats must run in the opposite direction 

after the stop episode-, or whether they could code for time information instead of space. These 

reverse replays are more readily observable in new environments than old ones, in line with the role 

of hippocampus in memory formation. In addition, spatial codes can also carry temporal information. 

Indeed, place cells in CA3 show robust pattern representation stable between different episodes of 

recording from several minutes to several hours (up to 6), while place cells in CA1 regions showed 

variability below 1h and the similarity decreased as time went by (Mankin et al., 2012). This temporal 

code reflects a “process-decay” temporal representation. 
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Cross species place codes?  

Space codes in the primate hippocampus differ from rodents, most likely due to foveally 

dominated vision in primates (Rolls & Wirth, 2018). Indeed, spatial view cells have been described in 

primates to code gaze position instead of place leading to a representation of space (Rolls, 1999). 

Although, there is also allocentric and egocentric representation of space in the primate hippocampus 

(Feigenbaum & Rolls, 1991), and hippocampus is also involved in spatial memory formation (Wirth et 

al., 2009). Hippocampus is needed to retrieve spatial information -already learned- (Hoscheidt et al., 

2010), and for allocentric navigation, as demonstrated with an impairment of food retrievals for 

monkeys after hippocampus lesions (Lavenex et al., 2006). But it codes also during learning to make 

new associations -memory formation- between two unrelated stimuli, a scene -what- and a spatial 

position -where- (Wirth et al., 2003). Other regions of the medial temporal lobe (Messinger et al., 2001) 

are also involved in learning spatial associations. But the circuitry of hippocampal formation allows 

both, spatial and nonspatial memory (Rolls, 1991). 

Schemas in hippocampus 

In rodents, hippocampus supports memory recall when spatial components must be processed 

or when there is a recency -temporally close- component (Barker & Warburton, 2011). In humans, -

visual- recognition memory can be distinguished into two different processes: familiarity, which only 

induces a feeling of knowing, or recall, which induces a full remembering of the source and context of 

a memory (Besson, Ceccaldi, Didic, & Barbeau, 2012; Tulving, 2001). Familiarity is limited to a 

recognition without being able to place the memory back into context. Recall refers to the ability to 

retrieve the contextual details encountered during encoding experience. The first allows a fast 

information processing whereas the other requires more cognitive resources and it is not 

hippocampal-dependant (Barbeau et al., 2011) but it is ventrally -rhinal cortices- sustained. On the 

other hand, the ability to recall detailed information is supported by hippocampus. The ability to recall 

in details information leads to the ability of constructing higher mental representations computed in 

the hippocampus. For example, hippocampal cells are responsive to more complex physical features 

such as social stimuli, faces and voices independently in macaques hippocampus (Sliwa et al., 2016). 

Furthermore, in humans, medial temporal lobe (MTL) also shows selectivity to “concepts”, coded with 

neurons firing in response to landmarks, objects or persons, presented in different visual modalities -

pictures or letters- (Quiroga et al., 2005). By creating concepts, hippocampus can incorporate new 

information into “schemas” already existents, allowing quicker learning (Tse et al., 2007). Schemas also 

allow the organization of past experiences. In monkeys hippocampus, schema cells allow to quick learn 

how -where- to navigate in a spatial navigation task based on previous experiences by integrating 

multiple features of similar environments (Baraduc et al., 2019). Space is integrated within a larger 

mental representation.  
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Short-term information processed in the hippocampus 

Because, hippocampus is involved in long-term memory formations, one can doubt whether 

any short-term memory processes can also depend on the same structure. The short-term 

computations in the hippocampus and in the cortico-hippocampal loop may be involved in memory 

formations by computing associations; but it has also been suggested that they can support short-term 

and working memory (Laroche et al., 2000). Short-term memory differs from long-term memory as it 

demonstrates temporal decay and chunk capacity (Cowan, 2008). Working memory has also these 

limitations, but it involves cognitive manipulation of the mental representations. 

Delayed-match-to-sample tasks are recognition memory test, that involve also short-term 

memory, and they are hippocampal-dependant (Gobin, Wu, & Schwendt, 2020; Sloan, Döbrössy, & 

Dunnett, 2006; Jagielo, Nonneman, Isaac, & Jackson-Smith, 1990). In these tasks, subjects must 

retrieve cue-targets associations. In general, cue-1 is presented first -sample phase- followed by a 

delay. After the delay, several targets are presented -match phase-, and the subjects must choose the 

correct target, i.e. target-1, according the cue. If the choice is correct, it means that cue-1 has been 

kept in memory during the delay in order to produce the appropriate outcome. Then, in another trial 

for example, if cue-2 is presented, the subject will have to pick target-2 after the delay. In rodents, 

hippocampal cells fire at the presentation of the sample, the delay, the match and the reinforcement 

(Hampson, Heyser, & Deadwyler, 1993; Otto & Eichenbaum, 1992), implying that hippocampus is 

needed to process information at every step of the task, with a more important role of CA1 associating 

nonspatial objects (Kesner et al., 2005). Later on, it has been shown that both CA3 and CA1 are involved 

in keeping a track of events in this short memory task, indicating that CA3 role is not limited to spatial 

processing and CA1 is needed to associate stimuli when there are delayed of 10s (Farovik et al., 2010). 

In monkeys, inferior temporal lobe codes to retrieve information (Naya et al., 2001) and during the 

delay of delayed sample-to-match task (Naya et al., 2003). In line with this observation, hippocampus 

also is active in humans during retention in a working memory task (Zhang & Naya, 2022). Although, 

even if hippocampal lesions impaired animal performances in a -variant- delayed nonmatch-to-sample: 

even if they were able to recognize a novel object presented 8s after the ‘sample object’; their 

recognition capacity decreases quicker than intact monkeys at the increased at 15s, 60s, 10 minutes 

and 40 minutes (Zola et al., 2000; Zola-Morgan, Squire, Rempel, Clower, & Amaral, 1992). This suggest 

that hippocampal was necessary for information processing beyond 10 seconds. Nevertheless, in the 

cognitive model of working memory, the hippocampus is not proposed to be a neural substrate for 

working memory. Working memory would be rather supported by a distributed system (Baddeley et 

al., 2011).  
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Hippocampus and temporal order 

In addition to keep information in mind for a certain time, hippocampus is also needed for 

sequencing events in time (Ranganath & Hsieh, 2016). This allows the organisation of events in episodic 

memory, and answer two questions: what comes first and what annunciates something. Thus, 

hippocampus allows temporal-order memory in rodents (Manns, Howard, & Eichenbaum, 2007; 

Fortin, Agster, & Eichenbaum, 2002) and its neural codes detects the presentation of stimuli -odours- 

in sequence or out of sequence (Shahbaba et al., 2022; Ranganath & Hsieh, 2016). In non-human 

primates, medial temporal lobe codes for temporal order items-based and link the items between 

them during the encoding phase  of a 2-items sequence order task (Naya, Chen, Yang, & Suzuki, 2017; 

Naya & Suzuki, 2011). Time related activity is informative about time elapsed since cue-1 and time 

remaining to cue-2, needed for working memory and episodic memory formation. This is in line with 

previous results showing that during an object-place association task, hippocampal activity showed 

increased selectivity between the stimuli association and the outcome, carrying memory through time 

(Sakon et al., 2014). In humans, neurons recorded in MTL show anticipatory responses to their 

responsive stimuli when there are placed in a well-known sequence (Reddy et al., 2015). These results 

illustrate how time code in the hippocampus seems to be related to sequencing events, needed to 

memory formation. In fact, it has recently been proposed that hippocampus does not represent space 

nor time per se, but rather organizes sensory events into sequences to construct an internal 

representation of the environment (Buzsáki & Tingley, 2018).  

Remember, the order of events -sequencing- is crucial for associative learning. 

During Pavlovian conditioning, hippocampus plays an important role to create a context 

associating environmental stimuli in order to prevent a positive or an aversive event (Holland & 

Bouton, 1999). Whether it links the events in time does not remain clear. During a FI task, lesions within 

the dorsal hippocampus impaired timing behaviour up to 40s in a Pavlovian task (Tam & Bonardi, 

2012), in line with the previous results showing that cholinergic level in hippocampus -and medial 

prefrontal cortex- was higher during Pavlovian associations delayed for 10s than for non-delayed 

associations (Melissa Flesher et al., 2011).  

It has also been established that at the minute range, hippocampal inactivation impaired 3-

intervals discrimination at the minute-to-tens of minutes ranges (Jacobs et al., 2013). In an 

instrumental learning task, a short, intermediate and long intervals were presented to rats that have 

to select a port in function of the length of the interval. Short and long intervals were always the same, 

1 minute and 12 minutes; and intermediate duration varied: 1.5, 3 or 8 minutes. Overall, the results 

show that time-discrimination for durations with large temporal differences (1-3-12 minutes) does not 

involve hippocampus, but the discrimination of durations close to each other (1-1.5 and 8-12) is 

hippocampal-dependant. This is line with the role of events sequencing, hippocampus allows high-
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temporal discrimination to segment episodes. At another scale, lesions of the medial entorhinal cortex 

(mERC) impaired performance on a temporal-bisection task -10 vs. 20s- but only for the longer duration 

(Vo et al., 2021), suggesting that keeping track of events exceeding 10s is sustained by the mERC, but 

not the shorter delays.  

As hippocampus supports mental navigation through concepts and memory (Theves, 

Fernández, & Doeller, 2020; Schiller et al., 2015), it is possible to navigate through time (Gauthier, 

Prabhu, Kotegar, & van Wassenhove, 2020). Thus, we mentioned spatial codes that carry temporal 

information and temporal activity reflecting memory process. Although, time-related activity and 

hippocampus involvement in time-processes seem to be related with -working or episodic- memory. 

If there would be a time code in the hippocampus for time per se, that would track a precise moment 

in time, as place cells code for a precise location in an environment, such a neural correlate should be 

observed in the hippocampus. The existence of such code has been argued with the discovery of time-

cells in the hippocampus.  
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III. How neurons can tell time: single cells and populational level  
 

At the neural level, successful time integration could result from neural activity different 

between ti and tj. As for discrimination codes, neurons selective for ti but not for tj would situate time 

at ti, and conversely for tj. For a neuron, this would be coded by firing at a well-defined moment within 

in a wider interval, such as time-cells do. We distinguish this temporal code, the modulation of a 

neuron’s activity by time during an event, from the neuronal responses relative to temporal judgments 

as what has been observed in macaques frontal cortex (Genovesio et al., 2009) and striatum (Chiba et 

al., 2015) for example. At the populational level, the state of neural population would reflect a change 

between ti and tj, to be able to situate in time -decode time- by reading the code of the population. 

Although, are these two patterns the only-ones? 

 

III.1. Single-cells can tell time  
 In a recent review, three distinct pattern of single cells have been identified to carry temporal 

information: phasic activation within a delay, ramping activity, and sustained activity over a duration 

(Tallot & Doyère, 2020). Here, we do not consider neural sustained firing rates at a constant level as a 

temporal signal, but rather as a signal carrying information over time. Although, phasic activity in a 

time interval, whether it marks expected events in time -onset and offset of durations for example- or 

a precise moment in a duration, as time-cells do, and ramping activity -up or down- over time, are the 

two codes carrying information about time (Tsao et al., 2022; S. Zhou & Buonomano, 2022). Thus, time 

can be encoded at the single-cell level. We will present the characteristic of these two temporal codes 

and their properties. 

 

III.1.a. Time cells  

The first appellation of “time cells” found in the literature does not refer anymore to the 

definition we know of them. Indeed, it classified neurons that preferentially encode for cue-1 or cue-

2 during the encoding phase of a 2-items sequences, as opposed with “item cells” -item selective-. 

These neurons cover periods lasting for 320ms, to code in a binary way period-1 versus period-2. Thus, 

the first definition of “time cells” were embodied in a code for temporal sequence of events (Yuji Naya 

& Suzuki, 2011). Twenty days later, another study, in rodents, defined “time-cells” hippocampal 

neurons that fired at a specific moment of a larger defined interval -up to 10s- (MacDonald et al., 2011) 

consistent across trials. This specific moment, time t, within the interval was defined as the time-field 

of the time-cell. It is expressed by a phasic discharge at time t for each interval presentation. During a 

delayed go/no-go task, these neurons form sequential organization of peak time, in such a way that 

they ‘bridge the gap’ between cue and response periods: the entire delay duration was filled by 
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successive peak activity of the time-cell population. Time-cells sequence an event, the delay, that lies 

within a larger sequence of events, cue-delay-response, that are already distinguished by hippocampal 

neurons, confirming the role of the hippocampus in representing sequencings of events. The concept 

of time cells has been built in analogy with the “place cells” concept, assigning them a role in memory 

consolidation as was developed for place cells. Some of these time-cells displayed different activity in 

function of the object presented in the cue period, indicating that their temporal modulation can 

depend on the memory load. Time-cells also responded to two properties: 1) their time-field -width- 

increased as the time-field arrives later in the interval; and 2) there are more neurons peaking at the 

beginning of the interval than at the end of it. Thus, beginning of durations is more strongly encoded 

than the end of a duration. In the same study, when the delay was multiplied by two -up to 20s-, there 

was evidence to show that some neurons displayed an absolute pattern of retiming, with a high 

correlation between their activity at 10s and the first half of the 20s; indicating that there is a code for 

absolute time in the brain. If a duration is stored in memory as time per se, such a code would be 

needed. On the contrary, very few neurons displayed a scaling pattern -5 out of 89- with high 

correlation on normalized time. The rest of the cells did not show strong pattern of absolute or relative 

“retiming”, but rather a total “remapping” between durations. The sequencing of an event with this 

type of code was already documented (Pastalkova, Itskov, Amarasingham, & Buzsáki, 2008). Indeed, 

in a previous study in which rodents had to complete an alternation task -left or right- after running in 

a wheel for 10-20s, hippocampal neurons showed a robust reproducibility in their peak activity across 

trials, generating a sequence during the running episode. The alternation task is defined in the study 

as a memory task, and the same pattern of sequential activity was not found in a nonmemory task; 

suggesting -again- a memory role of these hippocampal cells. As for time-cells, there was more neurons 

peaking at the beginning of the running episode than at the end. Furthermore, the pattern of these 

cells emerged quickly during learning and they carried information about subsequent behaviour in the 

alternation task, indicating that they do not carry only time information but rather time within an 

episode (Gill et al., 2011). In this type of task, neurons can also be sensitive to distance travelled, space, 

or even speed, instead or in addition of elapsed time. Indeed, when time and distance are the 

prominent dimensions of a task, time and space both modulated single-cell activity. On the other hand, 

a few neurons were influenced either by time, either by distance. Funnily, these cells modulated by 

only one feature -time or distance- regularly fire together, suggesting even though a strong 

dependence between time and space in the hippocampus (Kraus et al., 2013). When animals are 

immobilized, sequences are also generated in the hippocampus. In addition, most of the time-cells 

active during the delay match-to-sample task are selective to a specific sample; and each sample is 

represented by a distinct pattern of time-cells population (MacDonald et al., 2013). The neural 

sequences in a 10s-running episode allows to decode time, which means that in function of the neural 
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activity at time t it is possible to know time t. Also, the overall sequence of time-cells is stable across 

days -up to 4-; sufficiently enough to predict time within the interval of a day depending on another 

day activity. But it was also different enough to distinguish the sequences in function of the day (Mau 

et al., 2018). These results suggest that time code in the hippocampus is strong enough to code time 

at the tens of seconds range but also to distinguish between different episodes -days-.   

All the results mentioned above are from CA1 region, but time-cells have also been found in 

CA3, with the same prevalence, and displaying the same characteristics (Salz et al., 2016). The question 

about a difference between CA1 and CA3 remains, especially given their respective position in the 

hippocampal circuit: CA1 receives input from both CA3 and ERC, while CA3 mainly receives input from 

dentate gyrus. 

The proper organization of CA1 cells hippocampal time-cells and its memory function was 

suggested to depend on the proper inputs it receives from the ERC. Indeed, inactivation of medial ERC 

(mERC) in rodents during a delay match-to-sample -delay was 7s- induces a performance deficit in the 

task, and it impairs the sequential pattern of time cells. Although, mERC inactivation did not affect the 

place code of CA1 nor the selectivity to objects (Robinson et al., 2017). This result contrast the finding 

that mERC is involved in temporal processing for durations above 10s (Vo et al., 2021). In line with this 

last point, another study indicates the opposite. First, rats with mERC lesions and rats with mERC 

lesions plus hippocampus lesions ran an alternation task with no delay, 10s and 60s delays. 

Performance was impaired only at the delayed conditions for both groups; thus the 

electrophysiological results challenged several findings. First, during 10s-delay, sequential activity of 

time-cells did not differ between the two conditions of the alternation task -right or left- in either mEC 

lesioned groups nor control. Then, mERC lesions reduced more importantly spatial code in CA1 than in 

CA3 but did not alter the sequential firing of time-cells in none of the hippocampal regions; as opposed 

of what would have been expected from the previous study. In contrast, mERC lesions impaired the 

spatial code in both regions, more importantly in CA1 than in CA3. In addition, even if the sequential 

activity of time cells is similar between the 10s conditions and the first 10s of the 60s delay -absolute 

code-, the time cells do not “bridge the gap” of the 60s interval, suggesting that there is a temporal 

threshold above which time is not sequenced in the brain (Sabariego et al., 2019). The difference 

between this last study and the previous one might rely on the difference of the tasks: the delay match-

to-sample and the alternation task might not require the same memory load. 

Another paradox in time cells relates to their relative or their absolute code for time. Until 

now, it has been pointed out twice that there is an “absolute” code for time in rodent’s hippocampus. 

Although, a more recent study shows that time-cells in the hippocampus adapt their discharge rate 

from 10-to-20s and then back from 20-to-10s in relative way, by adjusting their responses extending 

or shrinking their temporal firing rate as they perform a temporal discrimination task -short vs. long- 



52 
 

(Shimbo et al., 2021). Thus, it seems evident that, even if a definition of time-cells linked with a 

functional role was emerging, a concluding remark has not been established yet, as there are still 

contradictory observations regarding their absolute versus relative code, the importance of mERC 

inputs to generate the sequence and their ability to time durations at the minute range. For example, 

a recent study also contradicted the non-mapping of minutes by time-cells in the hippocampus, as they 

show sequential activity up to 5 minutes (Shikano et al., 2021). In a fixed-time task where reward was 

delivered every 5 minutes, hippocampal neurons also presented a sequential activity mapping the 

entire duration, and this sequence emerges with learning. 

The question raised: are time-cells also present in primates? 

As we already reported, time-cells in the primate were first defined as time-cells because they 

were selective to a temporal position in a sequence-order task during the encoding phase (Yuji Naya 

& Suzuki, 2011). More recently, studies with patients suffering from pharmacological intractable 

epilepsy have also identify time-cells in humans hippocampus. In a first study, patients were asked to 

complete a declarative-memory task where they had to remember a list of word -encoding phase-, and 

retrieve them -recall phase- after a delay -lasting more than 20s-. Encoding periods last 30 or 40s, 

retrieval periods lasted 30 or 45s. Time-cells covering these two phases have been found, most of them 

covering one of the two phases but some of them timed both, encoding and retrieval phases. Further, 

the more the time-cells pattern were consistent, the more the patients were inclined to retrieve the 

information in a temporal clustered manner during the retrieval phase (Umbach et al., 2020). In 

another study, two experiments were performed. First, patients learned sequences of images and 

memorized them to be able to retrieve any image missing. A sequence lasted 6.5s approximately. The 

second experiment was the same as the first, but image sequences were interspersed with a 10s gap. 

Time-modulated neurons were observed during both, image sequences and gaps periods; covering the 

entire periods. Taken together, these neurons allow better time-estimations than non-time cells, 

indicating that the time cells population is informative about the time within the periods (Reddy et al., 

2021). 

Time cells have not only been reported in other species than rodents, but also in other brain 

areas.  

Time cells have also been recorded in the rats -medial- prefrontal cortex (mPFC) and motor 

cortex. In mPFC, which is also involved in working memory, neurons displaying the same characteristics 

as time cells have been recorded in a temporal bisection task at the supra-second range (Tiganj et al., 

2017). The fact that these neurons are found in an area that is also involved in working memory 

suggests that “time cells” code is relevant for memorisation. In addition, the same pattern of discharge 

has been recorded in orbitofrontal cortex during Pavlovian conditioning (Bakhurin et al., 2017) and in 

motor cortex while rodents actively timed rewards expectancy in a 2-fixed-interval (FI) timing task 
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between 3 or 6s. In another study, peak activity from neurons in the motor cortex are organized in 

sequence, and most of these cells show a scalable activity between the two durations. Although, some 

neurons also display an “absolute” code and a “remapping” in-between (Zhou et al., 2020). 

In the last study mentioned, authors recorded also from dorso-lateral striatum (DLS). The 

organization of striatal peak sequence was more strongly organized in DLS than in motor cortex. In 

addition, most of the neurons also displayed a scalable code; but absolute patterns and remapping 

patterns were also found at the supra-second range (Zhou et al., 2020). More studies have identified 

time cells like in the rodent’s striatum. The scalability of striatal time cells is also robust from tens of 

seconds-to-minute range (Mello et al., 2015), unlike of what we found in hippocampus where data is 

less striking (Sabariego et al., 2019). Striatal neurons display the same characteristics as time cells, 

which are 1) more neurons peak at the beginning of the interval compared to the end, and 2) time-

field increases as peak position moves away from the beginning. In addition, their sequential 

organisation maps the interval from 12s to 60s, by scaling their firing pattern adjusting their centre of 

mass. In another study we already mentioned, striatal neurons peak sequences were observed during 

a 5-minutes fixed-time task and map the entire interval. As in the hippocampus, striatal time cells 

presented the characteristic to have broader time-fields when peak time occurred later time, and 

striatal sequence of peak activity emerges with learning. In addition, the authors showed that when 

hippocampus is inactivated, the time selectivity for striatal cells significantly decreased, suggesting that 

the minute encode process is dependant from striato-hippocampal circuits. In a temporal-bisection 

task, striatal neurons showed a preferred time-field across trials, with more neurons peaking at the 

beginning of a trial than at the end in a complete different time-scale: second-range discrimination 

from .6 to 2.4s (Gouvêa et al., 2015); and at second range during Pavlovian conditioning (Bakhurin et 

al., 2017). In the monkey striatum, there is also some sequential activity in the responses profile of the 

neurons. During a Pavlovian task, putamen neurons can be grouped into 3 distinct sequences within a 

2s-window of cue presentation (Adler et al., 2012). Even though, these neurons do not show an acute 

time-field, they do map the entire duration by maintaining their discharge rate in a more or less 

sustained state compared to baseline.  

We have mentioned pre-supplementary motor area (pre-SMA) as a key area to process 

temporal information. One of the neural correlates for time-processing in pre-SMA are “boundary-

cells”, found in primates (Mendoza et al., 2018). These boundary-cells also show a phasic discharge at 

a specific time of an interval, except that they differ of the neurons defined as time cells because the 

specific time they represent is of interest in the temporal task. Indeed, when monkeys performed a 

bisection task across different ranges, from sub- to second-range, with boundaries between short and 

long durations defined respectively at 350, 685 and 1195ms; “boundary cells” peak relatively close to 

the boundary at each condition. One quarter of them show retiming patterns, by scaling their activity. 
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They are also linked with behavioural outcome: the closest the peak is from the boundary time, the 

higher are the chances of the monkey to correctly evaluate short as short or long as long. In the same 

study, authors have identified 1) category-selective cells, that fire after the interval to be timed as 

ended but before the choice, and carry information about the outcome: short or long; and 2) trial’s 

outcome neurons that fire during the inter-trial interval in function of the presence or absence of 

reward. In line with these results, imaging study show that pre-SMA is recruited in human performing 

a similar timing task (Coull et al., 2008). In conclusion, in pre-SMA, single-cells carry code about time 

perception, decision, and reinforcement with transient -phasic- activity. These properties are well 

studied for the temporal control and motor execution of actions. 

Further, time-cells like neurons could be found in other regions, as long as the function 

sustained by the region is time-dependant or time-indicative. For example, in monkey’s amygdala, 

single cells code for time to break a social gaze engagement (Gilardeau et al., 2021), as dopaminergic 

neurons code for time of reward as mentioned above, or TANs also code for immediate time after 

stimulus annunciating a reward. These codes give an acute temporal information, even if they do not 

code time per se. The fundamental hypothesis behind time-cells, or even boundary-cells in the study 

described, is that they do code for time. 

 

IIII.1.b. Ramping neurons 

 As opposed to time-cells that are time selective within an interval, therefore generating an 

acute code for time from which a duration cannot be decoded from a single time-cell; ramping-neurons 

show instead a monotonic increased -or decreased- activity through time, and generate a global code 

for a duration. Indeed, with a perfect ramping neuron from t0 to tN, one could know the time by looking 

at the neural activity of one single-neuron.   

 In the hippocampus, is there a ramping pattern activity complemental to the phasic one? 

 Such activity has not been much reported in the primate hippocampus. Although, in the 

humans studies we mentioned, some neurons in the hippocampus matched better a ramping pattern 

than a phasic one, and were thus characterized as ramping neurons but they were always less 

prominent than time-cells (Reddy et al., 2021; Umbach et al., 2020). In monkey’s hippocampus instead, 

“incremental timing-cells” (ITCs) were recorded in a working memory task. These neurons played a 

role carrying information over time -750ms- between an object-place association and the outcome. 

Some of these neurons were not selective to cue nor associations -agnostics cells-, and just ramped no 

matter what. Other ITCs carried information about the object-place association, and a third type of 

neurons were selective for the outcome. These two last patterns of responses are linked with memory 

load, allowing to carry information about association and to response over time (Sakon et al., 2014).  
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 In rodents, ramping neurons have been identified at the minute range in the hippocampus and 

the striatum. At the minute range, ‘pure’ ramping neurons were more prominent than ‘pure’ time-

cells in both structures (Shikano et al., 2021), suggesting that at longer ranges an acute code for 

durations is not needed but it’s rather more efficient to code a wider duration. Actually, ramping 

neurons in rodents are usually more prominent in mERC. Remember, there is this hypothesis that 

mERC codes time in a wider manner, and hippocampus codes in a more precise way (Rolls & Mills, 

2019). In humans, the proportion of ramping-cells in ERC is 50% (Umbach et al., 2020), thus higher 

than in hippocampus. In rodents too, ramping neurons are more prominent in lateral ERC than in mERC 

or CA3 (Tsao et al., 2018) during 250s periods, at the minute scale. Another time-code that has been 

found in the primate ERC, named “relaxation cells”, is similar to the ramping pattern of neurons (Bright 

et al., 2020). These neurons showed a selective response to visual cue, and then decreased their firing 

rates. Relaxation time was defined as the time it took neurons to decay back to 63% of baseline firing. 

Even if all the neurons had a quick response latency (<1.5s), the relaxation time varied from 0.1s to 

20s; allowing a wide representation of elapsed time, exactly like what would be predicted by decay-

process models of time. In line with this theoretical approach, the time-code of these neurons reflects 

an intrinsic time representation from neural activity, triggered by something else -visual cue-. This 

remark can be done for all the codes involving ramping activity. Is ramping activity coding time per se, 

or is it the following signal left by a sensory cue triggering information integration or expectation 

(Reutimann et al., 2004)? 

For example, ramping activity in macaque’s frontal cortex is indicative about outcome, keeping 

a track of it but decaying over time. This ramping activity is not necessary a time-code, but rather a 

code for outcome that decays over time, and also fits the intrinsic code for time in the brain via process 

decay (Marcos et al., 2016). A basic sensory code that could be translated in temporal code but might 

not truly be one, is the ramping activity anticipating reward; as what has been found in the rodent’s 

orbitofrontal cortex (Xiao et al., 2016) and PFC (Emmons et al., 2017; Narayanan & Laubach, 2009). In 

macaques, most of the prefrontal neurons show an increasing activity during a delay -12s- that is linked 

with future outcome, and its slope is higher when the outcome is 100% predictable (Quintana & Fuster, 

1999), also suggesting that this activity is not related with time per se but rather with sensory 

expectations. Another ramping code that is not related with time is the dopaminergic tonic discharge 

triggering reward value: their discharge rate display a ramping-up activity when reward-value 

increases (Wang et al., 2021). 

One way to address whether temporal organization of neuronal activity reflects time or other 

variables related to time, is to ask what kind of code is observed during purely temporal task. Thus, 

when macaques performed a time production task, only 10% of the neurons in medial frontal cortex 

(MFC) were categorized as ramping neurons (Wang et al., 2018). These data suggest that the ramping 
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neurons give a code in time not a code for time. In line with this assessment, ramping neurons in lateral 

intra-parietal (LIP) macaques cortex signals the probability of an event to occur -hazard rate- (Janssen 

& Shadlen, 2005; Quintana & Fuster, 1999) or the relevance of a cue as time goes by (Leon & Shadlen, 

2003) and can be linked with attentional mechanisms. Still in LIP, ramping activity is also related with 

motor outcome: when a threshold is reached, the outcome is produced (Maimon & Assad, 2006). LIP 

ramping activity also codes for time integration and scales time (re)production (Jazayeri & Shadlen, 

2015); maybe reflecting a code for time per se in the ramping activity of single cells. In rodent’s mPFC, 

ramping neurons are the more prominent during a temporal bisection task at the second range, 

confirming the importance of this type of code for timing (Kim et al., 2013). As we mentioned in waiting 

tasks, FI at supra-second and tens of seconds range and a similar FI task at 5s, ramping activity is 

prominent in rodent’s PFC but also in rodents dorsal (Emmons et al., 2017) and ventral striatum 

(Donnelly et al., 2015). Striatum receives a large quantity of inputs from cortical areas. It is possible 

that ramping activity from cortical areas drives ramping activity in striatum. 

 Indeed, in the same study (Emmons et al., 2017), the authors reported that the majority of 

striatal neurons active during the delay of the FI -3 or 12s- had a ramping activity. As for striatal time-

cells like, those neurons also scale their activity between the two durations. Furthermore, most of 

these ramping neurons -72%- did not respond significantly to lever-press. These observations suggest 

that the ramping neurons “time” the interval, but are not anticipatory to the response. In ventral 

striatum, ramping activity is also linked with reward expectation (Schultz et al., 1992). Ramping activity 

in ventral striatum and mPFC triggers the behavioural outcome when it reaches a threshold: the 

monotonic increased firing rate acts as a go signal in time (Donnelly et al., 2015). Although, in monkeys 

caudate, the responses of single cells were heterogenous and not dominated by ramping activity. The 

pattern of neurons was similar between caudate and MFC (Wang et al., 2018). Taken together, these 

results suggest that the activity profile between frontal cortex and striatum was similar during the 

same task: when there is ramping in frontal cortex, there is ramping in striatum. When there is not a 

dominant ramping pattern in cortex, striatum is not dominated by ramping activity neither. Although, 

even if ramping activity is observed in monkey’s frontal cortex and in caudate nucleus, activity in FEF 

is related to sensory incomes and activity in caudate is related to reward expectancy.  

 Several observations about ramping neurons seem to link this pattern to other features than 

time, whether it is at the cortical level or in the striatum. Although, this does not question the 

assumption that the best time code carried by a single cell is the ramping one. 
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III.2. Populational codes 
 The more data, the more reliable the information is, therefore neural population may carry 

much better information about time. Despite the role of the oscillations to tell time, here we will detail 

the pictures of neural populations throughout time.   

 To tell time at the populational level, the “state” of the population must evolve over time 

(Buonomano & Maass, 2009). At time t1, a neural population is defined by D-coordinates, or D-

dimensions, where D is the total number of neurons in this population. If we consider a 2-neurons 

population, the state of the population at time t1 is given by the activity of neuron-1 and the activity 

of neuron-2 at t1. If neuron-1 and -2 keep a constant activity during an interval, it is impossible to read-

out time within the interval because the state at each moment is defined by the 2 same coordinates: 

t1(x1,y1) = t2(x2,y2) where x1 and y1 are respectively the states of neuron-1 and -2 at t1, and x2 and y2 the 

states of neuron-1 and -2 at t2. In this case, activity at t2 is not dependant of activity at t1 (Figure 14-A). 

If one of the neurons has a time-modulated activity, it becomes more evident to read time, as shown 

in Figure 14-B: a gradient appears in the x-axis. If both of the neurons change their firing rates over 

time, it becomes possible to read-out time: all the coordinates at each time-point are informative, 

t1(x1,y1) ≠ t2(x2,y2). The gradient appears in both axis, x and y, as shown in Figure 14-C. In this second case, 

activity at t2 is “predictable”, or is “due” to the activity at t1. As the number of coordinates increases, 

so does the probability to be able to read time. Now, if we consider a population made of 1 time-cell 

and 1 ramping neuron, it becomes clearer how we can read time in function of the ramping neuron 

activity, and in addition, the time coded by the time-cell is more distinguishable from the rest of the 

interval (Figure 14-D). 

Once we consider this, it brings two important ideas to time code by neural population. 

First, by placing the neural population in a Euclidean space with n-dimensions, it becomes 

possible to compute the amount of change between the two time-points. Indeed, the change between 

time t1 and t2 is the distance between t1(x1,y1) and t2(x2,y2) given by the formula: 

t1-t2 = √[( x1 – x2)² + (y1  – y2)²] 

or 

t1-t2 = √ [  (d1 – d2)² ]  

where D is the total number of dimensions. 
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If the distance between two time-points t1 and t2 within the interval is always constant, the 

Euclidean distance between t1 and t2 can be defined as the instantaneous speed. It also becomes 

possible to compute the total amount of change, from tn to t1 for example, where tn can be any time-

point of the interval; or simply by computing the cumulative sum of the instantaneous speed from t2-

t1 to tN to tN-1; where N is the last timepoint of the interval. To simplify this computation, one method 

accepted is to compute principal component analysis (PCA) on the neural data to reduce the 

dimensionality of the data. This dimensionality reduction method allows to create new abstract 

variable from the set of the data -the neural population- by catching the components that explained 

the most the variable of the data. Thus, instead of computing the distances on D-dimensions, it 

becomes possible to compute the distances on 3-dimensions if one considers that the 3 first 

component catch enough variance in the data.  

 Second, if the amount of change is large enough between t1 and t2, then one should be able to 

“know” time by looking at the populational state and answer two different questions: is t1 different 

from t2? and “what time is it”? The first question can be answered by running a pairwise-decoding on 

the data, and the second by running multiclass-decoding (Cueva et al., 2020). With pairwise-decoding, 

for each pair of time-points within the interval, one could say which pair are close to each other -state 

proximity- and which ones are distinguishable -state distality-. On the other hand, multiclass-decoding 

allows to identify neural populations that are reliable on time predictions. Such a populational code 

would be useful to tell time any time one refers to it. 

 

Figure 14. Two-neurones populations and their trajectories. A. Top row. 2 neurons displaying constant activity over time, 
Neuron#1 at 5Hz, Neuron#2 at 8Hz, with random noise at 10% of the mean. Bottom row. Neural trajectory of such a neural 
population, not organized over time (c-axis). Time is represented from 0 to 100. B. Top row. 2 neurons population, with 
Neuron#2 displaying monotonic increase of its activity over time. Neuron#1 is the same as in A. Bottom row. Neural trajectory 
of the population. Temporal pattern appears over the x-axis (Neuron#2 activity). C. Top Row. Neuron#1 also display monotonic 
increase of its activity over time. Neuron#2 is the same as in B. Bottom Row. Time-points are well distinguishable in both axes. 
D. Top Row. Neuron#1 is a time-cell peaking around Time 60. Neuron#2 is the same as in B. Bottom row. Neural trajectory is 
well discriminated over the x-axis, but only peak time of the time-cell is distinguishable in both dimensions. 
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III.2.a. Neural populations speed: a tool to scale durations? 

 Scalar codes at the population levels have been identified in cortical -MFC- and caudate 

nucleus as monkeys performed a time-production task at the sub-second and second range. Indeed, 

even if the population in both brain areas were composed of an heterogeneous set of neurons, one 

key point at the populational level was that between ‘short’ and ‘long’ conditions, neural activity 

rescaled the temporal production by adjusting its speed (Wang et al., 2018). So, the neural population 

in two different intervals, ‘short’ and ‘long’, covers the same distance from t1 to tN. Although, the 

amount of change between, tn and tn+1 is not the same during ‘short’ and ‘long’ time-production: the 

speed between each time-point is scaled in such a way that the total duration is covered by the same 

amount of change in both conditions. The evolution of the population state over the interval is called 

the neural trajectory. So, the fact that this population code was found in MFC and caudate, but not in 

the thalamus, implies that the temporal scaling occurs before the thalamic signal. After observing 

scalar patterns in striatal single cells, there is evidence for scalability also observer at the neural 

population. Similarly, durations are also encoded in frontal cortex by scaling the speed of neural 

population in function of a prior expectation (Meirhaeghe et al., 2021). Thus, this code is not simply 

due to temporal production, but is also involved in time estimation, at least in the frontal cortex.  

 

III.2.b Time prediction: which structure is the best time-predictor? 

There can be two ways to predict time: at a wide timescale or at a precise time scale. For 

example, in a temporal bisection task, there is only a need for short versus long estimations: the code 

can be wide. Indeed, when rodents perform a temporal bisection task, two distinct sub-populations 

emerged from the time-cells of the striatum. One of these sub-populations will be active preferentially 

before the boundary, the second one will be more active after it. Thus, by looking at the average 

activity of these two sub-population, one can predict where we are in time but on a binary way: before 

or after the boundary (Gouvêa et al., 2015). Furthermore, the activity of these two sub-populations 

predicts the temporal estimation, if the ‘short’ sub-population is higher that the ‘long’ one, the 

outcome of the animal will likely be ‘short’ estimation, even though time was ‘long’. Same observation 

is done looking at the ‘long’ sub-population: when its firing pattern the highest, the estimation is ‘long’. 

In sum, striatal activity is informative about time perception, at least in a binary way: by looking at its 

neural activity, one can predict the behavioural outcome at the second range. At the tens of seconds-

to-minute ranges, striatal activity is also able to predict time accurately from 12 to 60s intervals. More 

studies in rodent striatum revealed that even if striatal neurons display the same characteristics than 

cortical neurons at the single-cell level (OFC and M2), and at the populational level -composed of time-

cells like neurons- time is best decoded in the striatum than in the others structures; because of the 

well-organized sequence of activation. All together, these results indicate that even if time is processed 
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in multiple brain areas, striatum times more accurately, probably because of its wide inputs (Zhou et 

al., 2020; Bakhurin et al., 2017). Thus, at least in rodents, if one asks the question “what time is it” 

during interval timing, one should look at the striatum to answer it. 

  Another question one can ask is whether time can be decoded from the neural populations 

depending on the nature of the timing tasks. For example, during an explicit and an implicit temporal 

task -explicit temporal task requires to keep a track of time to produce a corrected output; while an 

implicit temporal task does not require the active tracking of time between two events-, it is possible 

to decode time in multiple structures -OFC, PFC, amygdala, anterior cingulate cortex-. Without looking 

at which structure time the best, it is demonstrated that when explicit timing is involved, temporal 

decoding from the neural activity is best. This implies a stronger temporal modulation in neural 

networks when time is tracked (Cueva et al., 2020). In addition, the authors demonstrated that the 

most important component in timing activity, the one that allows the best temporal prediction, is the 

ramping component, suggesting that a monotonic increase of the activity in time allows the best time-

prediction.  

From this last observation, some results remain unclear. Somehow in line with this last 

observation, ramping neurons from rodents LEC accurately inform about time as it is segmented in 

temporal epochs of 20s, thus it  seems that they carry information about a large range of time (Tsao 

et al., 2018). On the other hand, in the entorhinal cortex also, relaxation-cells -that we defined as the 

neural basis of the “process-decay” model of timing- exhibiting a similar pattern of the ramping 

neurons, are very good temporal predictors of the beginning of an interval up to 5s, but not good 

predictors for the end of it -approximately 4/5th of the interval-. Thus, entorhinal cortex carries 

information about time at different ranges, but the differences could also be due to the animal model. 

Without any strong conclusion on the temporal codes of the entorhinal cortex, we can nevertheless 

argue that the temporal predictions are behind the expectations of what would be expected from a 

ramping-neurons population.  

Strangely, temporal prediction based on neural activity was not often computed. For example, 

even if time-cells were first documented 2011, the first decoding analysis on hippocampal time-cells 

appears seven years later by showing that time-cells allowed to decode time during intervals of 10s 

(Mau et al., 2018). Further, time predictions are better at the beginning of the interval than at the end 

of the interval: errors increased as time to be decoded arrives later in the interval. This is the same 

observation that has been done from relaxation-cells in the entorhinal cortex. The phenomenon here 

can be explained by the fact that the time-cells intrinsic organization fire mostly at the beginning of 

the interval. With this kind of population, it is easiest to distinguish between the beginning of the 

interval and the rest, but not to predict time at any moment of the interval. Similar results are reported 
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in time-cells decoding from humans (Reddy et al., 2021) for the shortest duration tested (6.5s), but 

when the interval to be decoded increased (up to 30s), time prediction decays.  

  

 In conclusion, time codes differences could emerge between structures, between pattern of 

cells or even between tasks demands. Although, the striatum seems to be the best structure predicting 

time, from what is observed in empirical data, while whether ramping or sequential activation of 

neurons is the best pattern for time decoding is still in debate. 
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B. Problematics 
 

We have highlighted that, on the contrary of rodent’s studies in the timing field, few studies 

have reported behavioural patterns and neural signatures across several seconds’ range in primates. 

Because the striatum is involved in movement and actions selection and the hippocampus is involved 

in episodic memory, these two structures have been proposed to play an important role in temporal 

processing. Thus, we have targeted these two structures in the macaque brain, as monkeys performed 

an ongoing temporal categorization task, from sub-second to several seconds’ range.  

The aim of this thesis is to 1) document the temporal behaviour across different time-ranges 

in non-human primates, during a time-categorization task. We developed a discrimination task that 

involves several durations to be categorized, as short, intermediate or long. On the contrary to time 

production task, responses associated to each duration were produced after the duration had elapsed. 

Between sets, the durations were changed, decreased or increased proportionally: sub-second (0.25, 

0.5 and 1s), second (0.5, 1 and 2s), supra-second-1 (1, 2 and 4s) and supra-second-2 (2, 4 and 8s) 

ranges. At the behavioural level, this design allows to investigate several points. First, we can do 

between-sets comparisons: we asked whether non-human primates perform temporal categorization 

with the same accuracy when durations to be timed ranged below the second and when they range at 

multiple seconds? Second, because some of the durations we use are the same between ranges, 

another between-sets comparison we can address is if the temporal categorization of a duration is set-

dependent. This allows to test relative judgements as a function of time ranges. Third, within a set, we 

can identify the behavioural pattern of temporal categorization when it includes 3 durations to 

discriminate: which one of the intervals is best discriminate, the short, the intermediate or the long? 

In bisection tasks, shorter and longer intervals are the best categorized (Figure A.1). This pattern of 

behaviour could be retrieved in our task, or the intermediate one could be better categorized as it can 

be used as a reference time.  

As monkeys performed the task, we recorded single neurons activity in the striatum: mid-parts 

of the caudate and putamen, and the anterior hippocampus. We want to highlight 2) the differences 

of the brain areas, striatum and hippocampus, during a time-categorization task. Indeed, the striatum 

has been shown to support time-related activity in rodents from second-to-minute ranges (Zhou et al., 

2020; Bakhurin et al., 2017; Emmons et al., 2017; Mello et al., 2015; Gouvêa et al., 2015) and the 

hippocampus at the tens of second ranges (Shimbo et al., 2021; Mau et al., 2018; Kraus et al., 2013; 

MacDonald et al., 2011; Pastalkova et al., 2008). Nonetheless, there are less studies in the non-human 

primates documenting these structures activity during timing tasks. We know that caudate scales its 

neural speed during temporal productions at the second range in time production task (Wang et al., 

2018), and that in human hippocampus, time-cells have been identified during learning sequences of 
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images and lists of words (Reddy et al., 2021; Umbach et al., 2020). Here, we report for the first time 

the pattern of neural activity in these two structures, and compare their activity in the same task. We 

are going to ask if, in primates, striatal activity changes over time during a temporal categorization 

task, and if its activity maintains the same dynamics across different time-ranges. On the other hand, 

we asked how good is hippocampus to code time when there is no sequence-learning, movement, nor 

any kind of episodic memory involved in the task. In the first chapter of this thesis (Paper 1), we show 

how the speed, the trajectories (Figure A.14), the time predictability and the time discrimination based 

on single-cells activity is different between striatum and hippocampus. We explained these differences 

in function of the external connectivity’s of the structures and in function of their functional role. For 

example, does the striatum sustain a time for action and the hippocampus a time for memory? This 

implies that temporal codes are due to a cognitive involvement during time. Thus, in addition, we 

asked whether the time code for a duration is dependent of the cognitive load engaged during this 

duration. In the second chapter of the thesis (Paper 2), temporal dynamics are addressed differently. 

Even if we still focus on the differences between structures, we also described different subpopulations 

coding time in two different ways: following either an absolute or a relative pattern. We aim to identify 

the structure of the unravelling of cell recruitment during the interval durations. We will test the 

robustness of these subpopulations between structures and across sets and ask which coding pattern, 

absolute or relative, drives the dynamic of the entire population.  

Finally, another point of this thesis is to 3) identify possible differences between caudate and 

putamen during timing. Indeed, even if they part of the striatum, they are both part of different basal 

ganglia loops (Alexander et al., 1986), and process information in parallel. Thus, time could be 

processed in a parallel way, in function of the cognitive task involved. 
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CC.1. Abstract 

Tracking time allows an adaptive anticipation of events when supported by memory. The striatum and 

the hippocampus display strong time-related activity suitable to time processing at different scales. 

However, no previous study directly compared their activity to understand how their neural population 

adapts to different time-ranges. Here, we recorded single-cells in caudate, putamen and hippocampus 

as monkeys performed a time-categorization task. The task is based solely on cumulative elapsed time, 

nesting two duration probabilities (short and intermediate) into the longer one, which ranged from 1 

to 8 seconds. While time-modulated cells were identified in all structures, we revealed strong 

differences between structures. There were overall more time-modulated cells in the striatum 

compared to the hippocampus. Further, the larger moment-to-moment changes in striate neural 

dynamics supported better time prediction and higher temporal discriminability between two time 

points compared to hippocampus. In addition, we discovered a difference within striatal sub-regions, 

and identified the caudate as a better predictor than the putamen. Despite strong differences in striate 

and hippocampal activity, we show that temporal discrimination adapted from fine to coarse as a 

function of time range, but in a region-specific manner. Striate activity supports an overall finer 

discrimination than hippocampus, which may relate with its functional specificity in fine control of 

action, as opposed to hippocampus which may represent time for memory. 
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CC.2. Introduction 

The use of precise time to control our daily life is extremely recent in human evolution. 

However, on a daily basis, in addition to relying on electronic agendas, one continuously tracks time 

to optimize schedule and prepare for next actions. This planning entails that the brain contains neural 

signals that can represent events’ times and durations, and further intervals between them, thereby 

supporting the ability to adaptively anticipate events and prepare adequately (Tallot & Doyère, 2020; 

Tsao, Yousefzadeh, Meck, Moser, & Moser, 2022). Indeed, we can learn that an event causally predicts 

another one if the latter follows after a short elapsed time. Once we learned to anticipate an event, 

we know when too soon is too soon, and when too late is too late (Rescola & Wagner, 1972). Recently, 

several findings shed light on how the brain achieves this, but whether and how neural activity adjusts 

to different time scales is not yet well understood, despite many reports on time-modulated neural 

activity in many brain regions during motor or cognitive tasks (Tsao et al., 2022; Tallot & Doyère, 2020;, 

Mauk & Buonomano, 2004). While the presence of a temporally organized pattern of spiking activity 

is ubiquitous, how this supports a neural map of time adapting to different event orders, durations and 

time ranges is still unclear. Indeed, evaluating events’ time order or duration may not necessarily be 

supported by the same processes or involve the same brain regions. Further, different patterns of time 

modulation have been identified in humans or animals as they timed events or intervals between 

events, with or without an explicit task demand (Tallot & Doyère, 2020; Mauk & Buonomano, 2004). 

For example, analogous to place cells, so called “time cells” identified in the rodents hippocampus 

(Shimbo, Izawa, & Fujisawa, 2021; Mau et al., 2018; MacDonald, Lepage, Eden, & Eichenbaum, 2011) 

and humans’ cells (Reddy et al., 2021; Umbach et al., 2020) display increased rates at specific moments 

during time intervals. Cells alike to time cells were also identified in the rodents striatum and display 

peak of activity spanning a time interval (Mello et al., 2015). Next, cells  displaying “ramping” activity 

were identified in the striatum (Emmons et al., 2017), the hippocampus (Sakon et al., 2014), the 

entorhinal cortex (Tsao et al., 2018) or the parietal or prefrontal cortices (Jazayeri & Shadlen, 2015; 

Kim, Ghim, Lee, & Jung, 2013). These cells present a rise in activity as event’s occurrence approaches 

(Tsao et al., 2018; Janssen & Shadlen, 2005) or, at the opposite, a slow decrease in rate as a function 

of time from an event (Bright et al., 2020; Tsao et al., 2018). Based on these different patterns, 

modelling works tested different architecture determining parameters affecting encoding efficiency 

(Zhou et al., 2020). It was shown that cells displaying peak well distributed along an interval is the 

neural organization that supports best decoding of time  (Tsao et al., 2022; Zhou & Buonomano, 2022; 

Zhou et al., 2020). However, experimental data showed that both peak and ramp activity were found 

in the same brain regions at different time ranges and in different tasks (Shikano, Ikegaya, & Sasaki, 

2021; Reddy et al., 2021; Umbach et al., 2020; Sabariego et al., 2019; Mau et al., 2018; Tiganj, Jung, 
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Kim, & Howard, 2017; Mello et al., 2015; MacDonald et al., 2011; Pastalkova, Itskov, Amarasingham, 

& Buzsáki, 2008), which suggests that peak and ramp activity may arise from different local or external 

connectivity and subserve different functions.   

Here we focused on two brain regions that share an involvement in neural representation of 

time: the striatum and the hippocampus. The striatum has a majority of inhibitory medium spiny 

neurons, and plays a major role in the cortico-striatal-thalamic loops in the control and selection of 

time for action (Jahanshahi et al., 2015). The hippocampus, whose principal cells are part of the tri-

synaptic circuit connecting with entorhinal cortex, is likely involved in processing time supporting 

building of episodic memory (Rolls, 2010). While the two regions are clearly separated by their 

neuroanatomy, cellular types and functional roles, several studies described similar neural patterns 

during time intervals (Shikano et al., 2021; Pilkiw & Takehara-Nishiuchi, 2018). How these regions 

differentially process time remains unknown. Further, many studies relied on rodents, and those 

performed in monkeys or humans rarely exceeded 1 or 2 seconds (Tallot & Doyère, 2020).Whether 

there is a difference in time processing ranging from sub-seconds range to several seconds is also an 

important issue. For the first time, we probed neural activity in the striatum and the hippocampus as 

monkeys tracked elapsed time at different time resolutions within the second (.25-.5-1s) to between 

several seconds (2-4-8s). In this new task, 3 ongoing durations are categorized as time elapsed since a 

start signal into nested short, intermediate or long durations. We describe the presence of time-

modulated cells in monkeys, in the striatum (caudate and putamen) and in the hippocampus. However, 

despite a seemingly similar neural representation, our results show a strong striatal recruitment during 

the task together with an adaptation of respective codes to different time ranges, in contrast to the 

hippocampus that showed very little time modulation.  Overall, these results provide the first data 

comparing directly caudate, putamen and hippocampus, shedding light on the task’s specific 

recruitments of these brain regions and their adaptations as a function of time range and task demand.  

 

 

 

 

 

 

 

 

 

 



69 
 

CC.3. Results 

C.3.a. Monkeys successfully categorize three ongoing durations  

We trained two female Rhesus macaques to categorize elapsed durations following a cue as 

short, intermediate or long (see Methods, Figure 1A). A trial started when a white square was briefly 

presented on the screen (200ms), its offset marking the beginning of the duration to-be-timed, and 

ended when three blue squares (responses targets) appeared at the bottom, left and top of the screen 

(Figure 1A). Depending on the elapsed duration, via a joystick, the monkey moved a pointer to the 

bottom square for short, the left one for intermediate, or the top one for long. Movements performed 

too early resulted in aborted trials. Monkeys were first taught the 0.5, 1, and 2s discrimination 

(reference set termed set-2s long).  Then, they performed within-session retiming sets (Figure 1B) to 

sub-second range (durations divided by 2, termed set 1s-long in which durations were 0.25, 0.5 and 

1s) and to two supra-second sets, termed set 4s- and set 8s-long (see Methods for details). Both 

monkeys categorized the three intervals well above chance, (χ²-test for each monkey separately, 

χ²(6)=3.3193e4, p<0.0001 for monkey 1; χ²(6)=2.6853e4, p<0.0001 for monkey 2) showing that animals 

discriminated intervals ranging up to 8 seconds (figure 1C). A general-linear mixed-effect model (GLME, 

see Methods), with interval and set as fixed factors, revealed a significant modulation of behavioral 

accuracy by time range across and within sets. Overall, performances were the highest for reference 

set 2s-long, which was also the first one animals were initially trained on, followed by 1s-, 4s- and 8s-

long. Within the sets, the long interval was better discriminated for set 2s-, 4s- and 8s-long, while for 

set 1s- the short interval was better discriminated. Performances for intermediate intervals were 

always lower for sets 2s-, 4s- and 8s-, except at sub-second range where intermediate and long 

intervals were categorized with the same accuracy (Figure 1C, supplementary Table 1).  

 

C.3.b. Monkey’s subjective perception of duration varies with time range 

To evaluate monkey’s perception of elapsed time at different time ranges, we tested whether 

the nature of the errors for the intermediate interval changed as the duration range increased (Figure 

1E). A GLME (see Methods) showed an unequal distribution of the nature of the errors that varied 

across time. Indeed, the proportion of intermediate intervals erroneously categorized as short 

decreased with increasing time range in favor of long. Thus, when facing an intermediate duration (e.g. 

0.5s), animals more likely labelled it as short (0.25s) at sub-second range than long (1s), i.e. showing 

underestimation. When the ranges increased, monkeys mistook more frequently intermediate trials 

with longer durations, showing overestimation. Next, as response latencies reflect readiness to act, 

they can be a proxy for the animal’s anticipation of an event. We tested whether response latencies 

changed as a function of intervals and of the range of discrimination (Figure 1D). A Linear Mixed Model 
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(LMM) performed on normalized response latencies (see Methods) for correct trials revealed an effect 

of set (F(3,61185)=1.2962e3, p<0.0001), duration (F(2,61185)=549.9881; p<0.0001), and an interaction 

between the two (F(6,61185)=700.19, p<0.0001). Across sets, normalized response latencies (see 

Methods) were smaller at sub-second and second ranges compared to longer sets (see supplementary 

Table 2). The distribution was also significantly shifted negatively for sub-second and second range 

suggesting that animals anticipated more at these sets compared to long ones. Within sets, reaction 

times were much smaller for long intervals at sub-second and second ranges compared to short and 

intermediate. For supra-second ranges, the opposite was true: responses were faster for the shorter 

intervals. The overall pattern of response latencies’ distribution suggests that the monkeys anticipated 

the end of the long interval at sub-second and second range only. We wish to emphasize that the task 

is not dependent on the animal’s speed to respond. Animals were only rewarded if they made a 

movement to categorize the trial once the targets were on. Anticipation of response before the end of 

the interval signaled by the target appearing on the screen (joystick movements) resulted in an aborted 

trial. Such aborted trials were rare (1.1%, 0.28%, 1.38% and 1.16% of trials for monkey 1, respectively 

at sets 1s-, 2s-, 4s- and 8s-long, and 3.99%, 1.38%, 4.44 %and 3.98% for monkey 2), and their 

distribution was consistent with an anticipation of the longest sub-second and second ranges duration 

as shown in Figure 1D.  In summary, the animals categorized durations well above chance at all ranges, 

and appeared to be able to withhold motor responses. Therefore, the task is likely dissociating 

evaluation of elapsed time from motor production itself.  

 

CC.3.c. A strong recruitment of striatal cells that adapts to processing demand over time 

We first aimed compare time-signals in the caudate, the putamen and the hippocampus. To 

this end, a rectangular chamber was implanted on the animal’s skull, linear arrays were lowered every 

session, and neural activity was recorded through a laminar electrode while animals performed the 

task (Alphaomega, see methods). We isolated offline (see Methods) 615 neurons in the caudate, 736 

in the putamen and 931 neurons in the hippocampus (Figure 1F and Figure 2 for individual examples). 

To determine whether neurons displayed time-modulated activity, we analysed the spiking activity 

during correct long trials, while the animal continually waited to categorize the current interval as 

short, intermediate and then finally categorized the trial as long. We computed a time “Information 

Content” (IC in bit per spike, Skaggs et al., 1992) for the longest interval of each set partitioned in 100 

bins. We defined time-modulated cells (TM cells) as cells for which the IC computed on actual data was 

above the 95 percentiles of the distribution obtained from 1000 surrogates with permuted spikes (see 

Methods). The time IC value reflects the information carried by a spike as a function of a time bin 

weighted against all time bins, and when tested against chance, allows determining whether actual 

pattern of firing rate as a function of time differs from chance. TM cells were significantly more 
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numerous in the caudate, followed by the putamen and the hippocampus across all time sets (χ²-test 

ran on each set, χ²=41.05, p<0.0001, for set 1s-, χ²(3)=117.78, p<0.0001, for set 2s-, χ²(3)=20.75, 

p=0.003 for set 4s-, χ²(3)=11.35, p=0.0034 for set 8s-long, Figure 1G left pies). The percentage of TM 

cells remained approximatively constant across sets within regions, suggesting an adaptation to the 

time range. To control whether this constant proportion of TM cells across ranges was due to the fact 

that bin size was adapted to the length of the interval (i.e. 10ms for 1s, 20ms for 2 s, 40ms for 4s, 80ms 

for 8s), we compared the percentage of TM cells obtained from a fixed bin size and number on a fixed 

interval (i.e. 1s). Thus, we identified TM cells with IC significance computed on 100x10ms bins of the 

first second of the 2s (cropping the second half), 4s (cropping the next 3s) or 8s interval (cropping the 

next 7s), and compared them to the 100bins of the long interval of the set 1s-long. Therefore, we 

identified TM cells using only the first second of all possible ranges, the difference being the processing 

demand during this first one second. The results showed that the percentage of TM cells in the striatum 

identified for the first second at the second and supra-second ranges decreased dramatically 

compared to the number of cells identified when a second is the whole long interval (Figure 1G right 

pies, χ²(2)=63.4434, p<0.0001 in caudate, χ²(2)=21.5167, p<0.0001 in putamen), but not in the 

hippocampus (χ²(2)=5.95, p=0.051). These results show that IC contained in one second in the striatum 

depends on the processing demand of that second: neural activity for one second is more strongly 

modulated when events are expected within that second, compared to when that second is part of a 

larger delay and no event is expected (as in 4s- and 8s-long). Overall, the results show that striatal 

activity is more strongly modulated than hippocampal activity, and further that time within intervals 

is processed in an adaptive way relative to time range.  

 

CC.3.d. A mix of ramping and sequential peaks across structures  

The nature of neural activity throughout time has been linked to different computational 

functions (Zhou & Buonomano, 2022). For example, linearity in neural population with a continuous 

increase or decrease in activity (ramping cells) carried more time information to prepare action than 

cells with one or multiple “time fields” (Cueva et al., 2020; Emmons et al., 2017).  On the other hand, 

well-distributed peaks across an interval better support fine-grained time discrimination within the 

interval than ramping cells (Zhou et al., 2020). Given that our task differed from previously described 

time bisection or interval reproduction tasks, we asked whether TM cells exhibited ramping or peak 

activity profiles across brain regions in our time categorization task. We made the simple hypothesis 

that more cells may peak near expected events, i.e. the potential end of intervals, when the animal 

expects to make a specific action related to time judgement and receive the reward (dashed lined in 

Figure 2). However, visual inspection of the population activity through time (Figure 2 for 2s-long 

interval, and Figure 3A for population time maps) suggested that TM cells exhibited a variety of time-
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modulated patterns that did not specifically fit these expectations. Via a stepwise regression method, 

we tested whether a linear or a quadratic term best explained the neural activity of each neuron during 

the interval,  and classified them into ramping or peak cells (Reddy et al., 2021; Tsao et al., 2018, see 

Methods). The latter cells exhibited one or more “time fields” and made up the majority of the 

population in all regions (Figure S3). Overall, the caudate nucleus and putamen had a higher proportion 

of ramping neurons compared to other regions at all time ranges (Figure S3B). An ANOVA on the 

absolute linear terms, with regions and sets as factors, confirmed a significant effect of region, but no 

effect of set, nor interaction (Figure S3, 2-way ANOVA, F(2, 677)=36.54, p<0.0001 for region, 

F(3,677)=1.46, p=0.2237 for set and F(6,677)=1.34, p=0.2357 for interaction). Notably, ramping cells 

were virtually absent in the hippocampus. Next, we asked whether neural activity was homogeneously 

distributed within the long interval, while the animals successively waited for this interval to end 

following short, intermediate durations. If TM cells were evenly distributed across the interval, then, 

the average firing rate (superposed black line, Figure 3A) or distribution of peak times (Figure S3C) 

should be flat. An analysis of the interquartile interval distribution of the peak shows that these were 

not uniformly distributed for any region at any time range (Figure S3).  Further, we found that the 

majority of cells reached maximal firing rate before the first half of the trial in all the brain regions, 

suggesting that more cells peaked in the first half of the trial (see Figure S3C). This suggests that TM 

cells carried more information during the part of the interval containing more time processing demand. 

Next, we asked whether neuron’s “time field” size (width) increased as a function of time in the 

interval.  We tested a linear and a quadratic model to explain the width as a function of peak times: 

we found that at set 2s-long, the quadratic model best explained the relation between time-field and 

peak time for the caudate and putamen, but not for the hippocampus (R²=0.0702 for caudate, 

R²=0.1342 for putamen and R²=0.0069 for hippocampus, see Figure S3C). Thus, contrary to what is 

usually found in the literature (Tiganj et al., 2017; Mello et al., 2015; Kraus, Robinson, White, 

Eichenbaum, & Hasselmo, 2013), time-field size did not increase with peak latency in the interval, but 

rather around the time of the first and second expected end of the interval (short or intermediate), 

compatible with fine-grained time discrimination of the first half of the intervals. Next, we tested 

whether field size increased between time ranges from sub-second to supra second ranges. We found 

that was indeed the case, as shown in Figure S3E: field size increased with the overall size of the 

interval. In sum, while field sizes did not increase within the interval, they increased across time ranges 

from sub-second to supra-second range. 

 

CC.3.e. Time-modulated cells display response to other task events  

We asked whether TM cells responded to other task events outside of the interval, such as the 

target presentation, movement or reward delivery. Such response, observed in addition to the activity 
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modulated during the long interval, could be interpreted as the prediction error of expecting a timely 

target appearance or a selective preparation of the response that would normally be executed if the 

interval had ended. To characterize cells response to other events, using all trials (short, intermediate 

or long), we used a GLME to test whether cells responded to the events (see Methods) compared to 

baseline. In the caudate, we found 33.1% (49/148) of the neurons responsive to cue, 84.5% (125/148) 

to target onset, 84.76% (124/148) to response execution and 81.76% (121/148) to reward delivery. In 

the putamen, 31.9% (29/91), 78% (71/91), 83.5% (76/91) and 73.6% (67/91) were respectively 

responsive to the same features, and 29% (18/62), 58.1% (36/62), 51.6% (32/62) and 53.2% (33/62) 

were responsive in the hippocampus. Amongst the caudate neurons, 91/125, 85/124, and 60/121 

responded differently to the target presentation, response execution, or reward delivery as a function 

of the interval. In the putamen, 51/71, 55/76, and 34/67 neurons were interval modulated during 

target, response and reward delivery. In the hippocampus, 19/36, 19/32 and 17/32 neurons were 

interval modulated during these other features of the task. To test the link between these interval 

selectivity and a possible error prediction for target appearance, or movement preparation, we 

computed the distribution of the cell’s peaks during the long trials for 3 groups of cells sorted as a 

function of their selectivity (short, intermediate, long) to the other task events during all trials. 

Specifically, we computed the distribution of peaks during the long interval for all cells that responded 

more to target appearance when in short trial, and compared them to the cells that responded more 

in intermediate trials, and long trials (Figure S3F). The results show that in all regions, there was a 

significant effect of the interval preference (F(2,147)=3.19, p=0.0441), but no effect of brain region. 

The distribution of the peaks of ‘short-preferring’ neurons for target presentation preceded that of 

‘intermediate-preferring’ neuron. However, the distribution of ‘long-preferring’ neurons did not differ 

from the other two. The peaks’ distribution of the short and intermediate preferring neurons only is 

coherent with a prediction error centred around the expected event. The same analysis applied on 

neurons selective for motor execution or reward delivery shows no significant relationship between 

neuron’s preferred movement or reward with peaks’ distribution. In sum, these results show that the 

neurons displayed a rich activity outside the interval, but that this activity was not firmly indicative of 

the peaks’ distribution within the interval.  

 

CC.3.f. A slow speed but steady progression in caudate 

It was proposed that dynamic changes in a neural population’s activity can be defined by its 

trajectory in a n-dimensional space over t times, and constitutes distinct states through elapsed time 

(Buonomano & Maass, 2009; Karmarkar & Buonomano, 2007). To compare neural trajectories across 

regions and sets, we performed a Principal Component Analysis (PCA), on a down-sampled population 

with neurons as variables and 100 time-points as observations (see methods). Therefore, while Figure 
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3B represents the projection of the PCA for the reference set 2s-long for all TM cells recorded and 

presented in Figure 3A, the measures described below were calculated on the down-sampled 

population (n=28). We computed 1) the instantaneous Euclidean distances between two consecutive 

time-points, which is sometimes referred to as the speed of the neural population (Wang, Narain, 

Hosseini, & Jazayeri, 2018), and 2) the distance between the neural state at each time point and the 

centroid of the trajectory (crosses in Figure 3B) to capture the overall distribution of the PCA score in 

the PCA space. Figure 3C shows that these two measures plotted against each other reveal clear 

differences between regions, and that while the hippocampus displays a higher speed; its distance to 

centroid is smaller than in the striatum.  Indeed, the average speed was significantly different 1) 

between regions, lower for caudate followed by putamen, and then hippocampus 

(F(2,11988)=32314.19, p<0.0001); and 2) across sets (see Figure S3D) with an overall higher speed at 

sub-second range (F(3, 11988)=14014.11, p<0.0001) dominated by a smaller speed in the caudate 

compared to other regions (F(6,11988)=1361.84, p<0.0001). Next, to test whether the speed changed 

within the interval, we regressed the neural trajectories linearly. A significant slope indicates that the 

neural trajectory changes significantly within the interval, with the negative sign indicating a slowing 

down of the neural trajectories within the interval, and positive slopes an acceleration. This measure 

was repeated across sets thereby allowing estimating speed and sign of changes within intervals and 

across sets (Figure 3E). The 2-way ANOVA on the slopes showed that caudate trajectories were 

negative across all sets and slowed down significantly more than the two others brain regions 

(F(2,11988)=1214.62, p<0.0001) with an overall effect of time range (F(3,11988)=2420.75, p<0.0001), 

as the amplitude of the slopes decreased across sets. The interaction (F(6,11988)=1646.58, p<0.0001) 

revealed changes in the direction of slopes with positive slopes at the sub-second range, except in the 

caudate, and negative slopes or close to zero otherwise. In addition, slopes in the caudate followed a 

gradient from the most negatives ones at the sub-second range to near to zero as the time range 

increased.  

 

CC.3.g. Caudate and putamen accurately predict time across sub-second and supra-second 

ranges 

If the intrinsic organisation of neural trajectory reflects ongoing time, then we should be able 

to predict time through its ongoing neural activity. To test this, we used a decoder based on linear 

regression analysis. We trained and tested our model on correct long trials within each set, for each 

brain region separately, using the down–sampling method, as indicated before, because population 

size was different across regions (see Methods). Therefore, the results were comparable across regions 

and sets. First, we show that decoding from TM cells in all three regions was significantly higher than 
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decoding from other cells (Figure 4A). Indeed, the distribution of the slopes obtained from each 

decoding output (insets in Figure 4A) was higher than that obtained from other cells (n=5000, 2-

samples T-test, for all structures, t-stat(9998)=68.64 for caudate, t-stat(9998)=61.7118 for putamen, 

t-stat(9998)=52.9489 for hippocampus, p<0.001 for all brain regions), and differed from that obtained 

by chance (above 95th percentile of the slopes obtained after random shuffling of the labels, p=0, 

p=0.001 and p=0.049, respectively for caudate, putamen and hippocampus, Figure 4A insets). The 

other cells did not decode time above chance level.  

 Next, we asked whether temporal organisation within one segment transferred to another 

segment and evaluates the specificity of decoding to a unique temporal window, not any other 

temporal window.  Precisely, we tested whether the organization of the first 800ms of the 2s long 

interval (corresponding to the duration of the inter-trial interval, or ITI) transferred to the 800ms of 

the ITI. Thus, we trained on the first 800ms and tested on the first 800ms (control, blue in figure 4B) 

or on the 800ms of the ITI (grey in figure 4B). Decoding was above chance when trained and tested on 

the first 800ms of the interval in the caudate and putamen (p=0.001 and p=0.0052, respectively, figure 

4B) but was not significantly different from chance when tested on the ITI. Together, the results show 

that the decoding of time is specific from certain task periods, and that neural activity is not organized 

in a way to support decoding across any interval. Next, we asked whether the TM cells, which were 

identified during the time interval, also supported successful time decoding during another time 

window. Precisely, we asked whether the activity of TM cells outside of the time interval, could also 

support time decoding.  To this end, we trained the model on the activity of TM cells during the inter-

trial interval (ITI, 800ms) that preceded the trial, and tested the model on the ITI (Figure S4). The results 

show that decoding of time during the baseline was not significantly different from chance in any 

region. Precisely, the intrinsic organization of TM cells’ activity during the ITI does not carry information 

to decode time: time cells identified during the interval relevant to the task, do not support time 

processing in another interval.  

Next, we asked which brain region timed the best across all time-ranges (Figure 4C). We 

showed that the caudate and putamen (Figure 4C) decoded time above chance-level for any time set, 

while, in the hippocampus, decoding did not differ from chance. Overall, decoding was better in the 

caudate, followed by the putamen and the hippocampus (2-way ANOVA, F(2,1188)=96.83, p<0.0001). 

Decoding performance was better at second range than at supra-second ranges (F(3,1188)=6.27, 

p=0.0003), but did not differ from sub-second range. The interaction (F(6,1188)=3.75, p=0.0010) 

revealed that decoding performance was always better in the striatum, with no difference between 

the caudate and putamen except at the longer set. The hippocampus was the poorer time-predictor, 

at any set. Overall, the results show a great difference in the ability of neural activity to predict time 

across regions, and point to a higher ability for the caudate over other regions.  
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CC.3.h. Higher discriminability between two time-points adapts to processing demand  

So far, we showed that striatal neural activity supported better time prediction than 

hippocampus. Next, we asked how activity at any time-point (time bin) within the intervals differed 

from any other time-point. This allows to quantify the temporal resolution of the discrimination. To 

this end, we used Support-Vector-Machine (SVM) based decoding on each possible pair of time points 

(see Methods). As above, we down-sampled the neural data to allow across regions and sets 

comparisons. Figure 5A shows the results as a time-by-time matrix, where each point is the 

discrimination probability (accuracy) between two time-points of the interval, tn and tm. We first 

compared the overall accuracy between any time-point and found a significant effect of brain regions 

(F(2,59388)=5876.61, p<0.0001) and time range (F(3,59388)=3517.73, p<0.0001). The post-hoc 

analysis following the significant interaction (F(6,59388)=399.83, p<0.0001) shows that the caudate 

discriminated better 2 time-points at sub- and second ranges, while putamen was better at supra-

second ranges, followed by a lower performance at all time ranges in the hippocampus. Then, for each 

time-point, we calculated the number of other time-points from which it differed significantly (chance 

at 0.6), and obtained a discriminability score from 0 to 99 reflecting its low to high discriminability from 

the rest of the interval (Figure 5B). In the caudate, high discriminability scores were maintained 

through the interval at the sub-second range (a=-0.0172, p=0.3361), and as the range increased, the 

scores decreased throughout the interval (a=-0.0727, p<0001; a=-0.5416, p<0.0001; a=-0.3452, 

p<0.0001 respectively for second, supra-second-1 and supra-second-2 ranges). In the putamen, high 

discriminability scores were also maintained within the interval at the second range (a=0.0164, 

p=0.1786), and decreased as a function of time for the other ranges (a=-0.0973, p<0001; a=-0.2964, 

p<0.0001; a=-0.4905, p<0.0001 respectively for sub-second, supra-second-1 and supra-second-2 

ranges).  In the hippocampus, discriminability was poorer and never constant at any range (a=0.3841, 

p<0001; a=-0.2923, p<0.0001; a=-0.3561, p<0.0001; and a=-0.3871, p<0.0001 respectively for sub-

second, second, supra-second-1 and supra-second-2 ranges).  

Next, we examined how much any time point was discriminated from its neighbouring ones 

(Figure 5C). We defined the temporal resolution as the distance ti-tj, where tj is the closest time-point 

from which ti is decoded above chance beyond tj. The distance between ti and tj gives the size of the 

time window within which neural activity around ti is too similar to be discriminated from ti. A small 

time-window reflects a high temporal resolution. This resolution differed across structures and ranges 

(2-way ANOVA, F(2,1188)=80.82, p<0.0001 for structures, F(3,1188)=149.37, p<0.0001 for sets). The 

post-hoc analysis following the significant interaction (F(6,1188)=7.76, p<0.0001) showed that the time 

window was narrower in the striatum compared to hippocampus at sub-second and second ranges, 

without differences between the caudate and putamen, and  was narrower in the putamen at supra-

second-1 (Figure 5C) compared to other brain regions. Further, the comparison across ranges showed 
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that the temporal resolution was much narrower at sub-second and second range, and increased 

dramatically at supra-second ranges.  

 

CC.3.i. A second’s encoding is contextually relevant across ranges 

The above results show that pairwise decoding was higher for short durations and that the 

temporal accuracy decreased as time ranges increased. Here, we asked whether the first second is 

decoded with the same accuracy whether the animal performs in a sub-second, second or supra-

second ranges, and thus tested whether time-points within 1s can be decoded with the same accuracy 

independently from the time range it belongs to. We hypothesized that the decoding resolution is 

adapted to the time demand. Therefore, we performed the pairwise decoding, on the first second of 

sets 2s-, 4s- and 8s-long, using the neurons defined as TM cells for this specific duration across sets 

(Figure 1G, right pies). Overall, there was a main effect of time range (figure S5): one second was better 

decoded at sub-second and second ranges compared to supra-second ranges (F(3,59388)=3094.3, 

p<0.0001). There was also an effect of the region with decoding obtained from caudate population 

above that of the other regions (F(2,59388)=2491.44, p<0.0001). The interaction (F(6,59388)=881.48, 

p<0.0001) confirmed overall a pattern of better decoding achieved by the striatum, mixed with less 

constant decoding at supra-second ranges.  
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CC.4. Discussion 

Neural signals representing the passage of time were previously identified in the striatum and 

the hippocampus, however, no study had yet compared neural activity in these structures directly in 

the non-human primate. Here, we characterized neural activity as rhesus macaques categorized 

ongoing elapsed time into serial durations at times from sub-second to supra-second ranges. We 

identified fundamental differences between the striatum and the hippocampus during temporal 

processing. Despite the presence of “time cells” in the hippocampus, their overall organization did not 

support decoding based temporal prediction. In contrast, changes of neural dynamics as a function of 

time were much stronger in the striatum than in the hippocampus and allowed time prediction more 

accurately at all-time ranges. Further, we showed that following the same sensory trigger cueing the 

interval onset, the recruitment of cells and population-based temporal discrimination between 

neighbouring time windows adapted to contextual cognitive time demand. Caudate and putamen 

populations displayed a fine-grained neural representation of time with a constant high resolution at 

the second range, which adapted to poorer discrimination at supra-second ranges, while the 

hippocampus only provided coarse representation of moments. These results provide a full 

characterization of the structure of neural changes in striatum and hippocampus, to provide a clue 

about neural adaptation through time.   

 

C.4.a. A prospective categorization based on ongoing elapsed time in the non-human primate 

from sub-second to supra-second ranges  

Various tasks have been used to test time perception, the most common being 1) temporal 

bisection, in which a duration is categorized according to reference samples (Mendoza, Méndez, Pérez, 

Prado, & Merchant, 2018; Gouvêa et al., 2015), and 2) time production, in which the subject has to 

reproduce an action in a timely fashion (Meirhaeghe, Sohn, & Jazayeri, 2021; Wang et al., 2018; 

Jazayeri & Shadlen, 2015). However, while rodents were tested in tasks ranging from seconds to 

several minutes, the time ranges tested rarely exceed 2 seconds in the non-human primate (Tallot & 

Doyère, 2020). Here, we first trained animals to categorize three ongoing durations at the second 

range, and showed that they could apply the same rule at sub- and supra-second ranges. Together, 

this shows first that rhesus macaques can classify ongoing durations into three categories, and second, 

that the time range at which they can categorize time is higher than what presumed, given the time 

range tested previously. 

The nature of their categorizing error for intermediate intervals shows that they rely on 

subjective timing, and that the classification confusion is not biased to the mean interval, but rather, 

consistent with a lack of precision as time range increases. At long ranges, the overall percent correct 
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was lower than for second or sub-second ranges, which may reflect a higher difficulty to categorize 

long durations compared to short durations. Indeed, the fact that the percentage of aborted trials was 

less than 2 % of trials even in supra-second blocks, pleas for a lack of discrimination ability in long 

ranges rather than a low performance related to poor motivation. Further, response times increased 

as a function of time-ranges, which can be linked to a higher uncertainty that slows down choices. Such 

difficulty has been reported in pre-school children who discriminate better durations at sub-second 

ranges compared to 1st year elementary school or adults which discriminated equally durations at 

second and supra-second ranges (Hamamouche & Cordes, 2019). In addition to documented bisection 

(Mendoza et al., 2018; Leon & Shadlen, 2003), order (Yuji Naya & Suzuki, 2011)  and time reproduction 

(Meirhaeghe et al., 2021; Wang et al., 2018; Jazayeri & Shadlen, 2015) abilities, our results 

demonstrate that monkeys possess a finer ability to classify durations in a levelled structure.  

 

CC.4.b. A strong and adaptive recruitment of striatum  

Consistent with the hypothesis that cortico-striatal circuits embody a neural clock, many 

findings showed that striatal cells in dorsomedial rodent striatum or caudate nuclei in the primate 

display activity patterns spanning a delay interval, with a mix of ramping and peaks that rescaled to 

the durations fitting the scalar expectancy theory (Zhou et al., 2020; Wang et al., 2018; Mello et al., 

2015; Gouvêa et al., 2015). By using a task that does not require a timed motor production, we focused 

on neural activity as animals waited for the interval to end before producing an adequate movement. 

We show that the striatum adapts to temporal demand in several ways: 1) the number of cells 

recruited increased for fine-grained discrimination at sub-second and second ranges compared to 

coarser discrimination at supra-second ranges, 2) peak width adapted to time range, yielding to 3) a 

resolution of moment-to-moment population-based discrimination which adapted to the time range.  

Together, these effects likely influenced the density of neural representation and its dynamics 

depending on the time range. While the increased number of neurons at short time ranges might 

mechanically increase time decoding, we showed by systematic down-sampling neural population for 

all measures that this explanation did not suffice. Indeed, we showed that time could be accurately 

predicted well above chance across ranges from 1s to 8s in the striatum even from small populations. 

Precisely, the instantaneous changes in neural states were higher at short time ranges, and temporal 

resolution was adapted to time range, with a high resolution at short time ranges and low resolution 

at supra-second ranges. Therefore, even in a down sampled population, time decoding was supported 

by adaptive changes in spiking activity.  

While our results document these neural mechanisms through the elapsed time of the interval 

very precisely, they also raise the question of what recruited cells in the striatum in our task. Explicitly, 

in the task, an interval always started by the same event – a white square briefly shown on the black 
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screen. Depending on the session block, monkeys adapted their responses to the appropriate time 

range following a few errors at transitions (typically around 10 trials). Therefore, the task context, 

rather than the cue itself, modified the way cells were recruited throughout the trial. Further, we 

showed that only few of the time-modulated cells responded to the visual cues, therefore ruling out 

the possibility that all the cells identified as TM cells actually displayed decay following initial response. 

Rather, TM cells were made up of a mix of ramping and peak cells, overall constant across sets in all 

brain regions, which suggests a mechanism of sequential recruitment of cells through cortical input or 

local inhibition/disinhibition mechanisms (Burke, Rotstein, & Alvarez, 2017; Hunnicutt et al., 2016; 

Plenz, 2003). Previous results showed that medium-spiny striatal neurons encoded upcoming reward 

choices and expected reward times (Schultz et al., 1992; Cromwell et al., 2018). Tonically active striatal 

neurones also play a role in tracking reward time (Apicella et al., 1991). Striatal cells are also active 

during preparation, initiation and execution of movements in rhesus macaques (Schultz, Tremblay, & 

Hollerman, 2003), and in rodents (Sales-Carbonell et al., 2018). In line with this, a large percentage of 

time-modulated cells also displayed activity for the cue signalling choice time, and during motor 

response and reward. Striatum territories are mainly responsible for contralateral movements 

execution (Worbe et al., 2009), and we recorded in the ipsilateral side of the monkey’s preferred hand. 

The location of time field was not directly in relation with these responses outside the interval, which 

suggests a mixed selectivity resulting from the interplay between cortical and local modulation in the 

circuit involved for rewarded timed actions. Given these findings, a logical hypothesis is that the 

organisation of the temporal dynamics within intervals may be coherent with the expected fixed 

events nested within each interval, i.e., the possibility that an interval will end after either a ¼, or a ½ 

of the total interval length. We observed a higher density of peaks for the first half of the whole interval 

at any time range, but the specific time of likely event’s occurrence were not marked as in dopamine 

neurons (Schultz, Dayan, & Montague, 1997). Further, our results differ from findings in pre-SMA in 

which activity reflected decisional borders between two intervals (Mendoza et al., 2018).  The neural 

dynamics measured through the PCA showed a steady change coupled with a constant resolution 

throughout 1s- and 2s-long intervals. This pleads against a serial recruitment of the three successive 

motor command preparation, or reward prediction errors. It comes at odds with the fact that the 

striatum receives projections from midbrain neurons. It suggests that, within the interval, the density 

of circuits recruited is constant, and may be independent from phasic midbrain dopamine inputs. 

Rather, striatal recruitment may reflect a self-initiated continuous cortical attractor sustained at short 

ranges (Wang et al., 2018) and supported by tonic dopamine input (Howe et al., 2013). The fact that 

population-based decoding showed adaptation depending on time range is consistent with temporal 

window gated neural plasticity occurring in cortical and sub-cortical neurons (Chaudhuri et al., 2015; 

Buonomano & Maass, 2009).  
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One surprising finding is that we observed a previously unreported difference between the 

caudate and putamen. We showed that the caudate, rather than the putamen, supports the strongest 

time prediction based on population coding, in a task with no timed motor demand. While the caudate 

and putamen do not differ in their intrinsic cellular types and organization, making the striatum 

essentially a unique structure, there are major differences in the cortical inputs each sub-region 

receives (Ferry et al., 2000; Alexander et al., 1986). Our findings indicate that the caudate is 

systematically better at time decoding than the putamen, specially at short time ranges. This is shown 

by larger neural trajectory, better overall time prediction and higher temporal resolution. An 

interesting finding is that the putamen performed better at longer time ranges than the caudate, and 

this may be related to the putamen’s involvement in motor execution and preparation (Worbe et al., 

2009). In line with this, our results identify differences within striatal territories that may well reflect 

the differential cortico-striatal loops (Jahanshahi et al., 2015).   

 

CC.4.c. Time cells presence but poor time prediction in the hippocampus  

In line with previous reports, we identified a small proportion of time cells in the hippocampus. 

Unlike striatal cells, the proportion of cells (~10%) was almost exclusively made of peak cells, in line 

with previous studies (Reddy et al., 2021; Umbach et al., 2020). This proportion did not vary with time 

range. The peak patterns identified here differed from the ones identified in the entorhinal cortex in 

rodents (Tsao et al., 2018) and macaques (Bright et al., 2020).  In rodents, entorhinal cells showed a 

decay of activity over several minutes likely encoding passage of time, while, in monkeys, neurons 

displayed a decay relaxation time after image offset akin to a ramping down type of activity. While, in 

our task, there was a cue offset that may have been able to support such temporal decay, the patterns 

we observed differed drastically from the ones reported in the entorhinal cortex.  

Further, measures of neural trajectory or time decoding were strikingly different in the 

hippocampus compared to the caudate. Indeed, despite the presence of time-modulated cells, time 

prediction was only slightly different from chance at the range of the second and at chance level at 

other ranges. This suggests that population activity did not contain sufficient modulations below or 

beyond the second resolution to support overall time prediction in the trial. While many studies 

reported time cells in rodents (Pastalkova et al., 2008; MacDonald et al., 2011; Mau et al., 2018; 

Shimbo et al., 2021) or in monkeys (Sakon et al., 2014; Naya & Suzuki, 2011), to our knowledge, no 

previous study attempted decoding time from hippocampal neurons during a time discrimination task 

at the ranges we studied. A strong difference from most previous reports identifying time cells is that, 

here, animals are waiting for an interval to end, in a context in which no new specific prospective 

memory has to be formed. By contrast, in previous studies reporting time cells, there was a memory 

demand, whether working memory (Sabariego et al., 2019; Pastalkova et al., 2008), order memory of 
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pictures (Reddy et al., 2021; Naya & Suzuki, 2011) or learning a list of words (Umbach et al., 2020). Our 

results also contrast with time cells identified in rodents placed on a forced treadmill (Mau et al., 2018; 

Kraus, Robinson, White, Eichenbaum, & Hasselmo, 2013), where the forced locomotion may have 

promoted the recruitment of cells that did not have an equivalent in our task. The striking absence of 

strong time-modulated activity may therefore reflect that no stimulus may entrain neural activity in 

monkeys performing this task.  However, an intriguing pattern emerged from the pairwise moment-

to-moment decoding (Figure 5): hippocampal activity supported some discrimination (yet at a 

probability of 0.7, well below that of the striatum) between durations for the second range (Figure 5A 

second row), while only a very coarse decoding was observed at other ranges, i.e. discriminating only 

the last or first second from all other intervals. Therefore, the best time resolution was observed for 

the most familiar set, the one to which animals were trained first. This raises the question of a potential 

role for the hippocampus in representing well-learned information. In sum, we found little evidence 

that the hippocampus tracks time when memory is not involved in the task, although the TM cells 

identified had a pattern similar to time cells reported in the rodent literature. Whether and how the 

recruitment of hippocampal cells depends on specific memory tasks requires further investigation.  

 

CC.4.d. MMoment-to-moment adaptation of temporal discrimination in striatum and 

hippocampus.   

It was suggested that the temporal processing emerges from the unravelling of internal 

dynamic states of network triggered by a stimulus, and that short-term neural plasticity influences the 

dynamics in the network (Buonomano & Maass, 2009). We made two observations that suggest that 

plasticity influences the state of the striatal population and to a lesser extent of hippocampal 

population: 1) when the animals were facing a discrimination at a short range, there were more striatal 

cells recruited compared to longer ranges; 2) the resolution of temporal discrimination between 

neighbouring times adapted to the time range in the striatum and the hippocampus (Figure 5C). We 

controlled that the effect was not due a lower sampling size by computing decoding accuracies on the 

first second of each time range with time-modulated cells identified during the first second (figure S5). 

Overall, the results suggest that plasticity biased the neuronal circuits recruited as well as their intrinsic 

information. Further, the fact that the temporal resolution differed in the striatum and the 

hippocampus has functional implications in line with the observation that hippocampal activity may 

only support time representation during episodic memory.  

Finally, it has been suggested that time related activity in the striatum is inherited from 

hippocampal circuits at the minute range (Shikano et al., 2021). Our findings show that, at a lower time 

range, there is a strong time-related signal in the striatum in the quasi absence of time-related signals 
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in the hippocampus. This suggests that these striatal circuits may be recruited independently from the 

hippocampus at short ranges, and subserve different functions. How these organizations develop over 

time remains an open question.  
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CC.5. Methods 

C.5.a. Animals and behavioral set up 

We trained two naïve adult female rhesus macaques (Monkey 1, 6.5 kg, and monkey2, 7kg, 

both 5 years old at the beginning of the experiments) on the ongoing-time categorization task. Surgical, 

behavioral and experimental procedures were authorized by the ethical comity of animal 

experimentation N°42 and authorized by the minister of research and innovation under the number 

APAFIS#13212-20180125104191. Under general anesthesia, the animals were implanted with a 

rectangular nylon chamber (21x15) allowing simultaneous access to the striatum and the hippocampus 

(coordinates of the center of the chamber relative to interaural line). A head-post was also implanted 

and covered by bone cement (Palacos©). The anesthesia for the surgery was induced by Zoletil 

(Tiletamine-Zolazepam, Virbac©, 5mg/kg) and maintained by isoflurane (Belamont, 1–2%). Post-

surgery analgesia was ensured thanks to Temgesic (buprenorphine, 0.3mg/ml, 0.01mg/kg). During 

recovery, proper analgesic and antibiotic coverage was provided. The surgical procedures conformed 

to European and National Institutes of Health Guidelines for the Care and Use of Laboratory Animals. 

 

C.5.b. Behavioral training 

The task was designed using Presentation (Neurobehavioral systems), which controlled reward 

deliveries conditioned on the movements of the joystick (Sakae Tsushin Kogyo, L.T.D.) depending on 

task contingencies. Monkeys were seated at a distance of 55cm from a 1024x768 screen with a 

refreshing rate of 60Hz. The experimental chair allowed reaching a joystick placed in front of the 

animal. We first trained the two macaques to associate the movements of the joystick to a pointer on 

the screen. Following the presentation of a brief white square (200ms interval start cue), if the animal 

moved the pointer via the joystick to a target (a blue square), it was rewarded by a small amount of 

diluted juice delivered close to its mouth. The square (150x150pixels) was randomly positioned at the 

top, bottom or left of the screen on every trial. Once the monkey learned the motor movements to 

reach targets in the 3 positions, three intervals were progressively inserted between the cue and the 

targets. The screen remained dark during these intervals. We first trained the monkeys to discriminate 

the durations at the second-range. The monkey had to wait respectively for .5, 1 and 2s (set 2s-long), 

without moving the joystick, before the bottom, left or top target appeared. Each target was presented 

individually after each interval. If the monkey moved the joystick before the end of the interval, the 

trial was aborted without reward given. The inter-trial interval (ITI) started when the monkey reset the 

joystick position. Once the monkey was able to wait until the appearance of each target separately 

before moving the joystick, we presented two targets at the time, top and bottom, after short and long 

intervals. Once the animal mastered that discrimination, we interleaved short or long interval 



85 
 

durations with intermediate durations, before finally presenting the 3 types of intervals and the three 

possible targets.  

 

CC.5.c. Retiming sets 

When the monkeys reached 80% of correct responses at discriminating durations at set 2s-

long, we tested them on different sets. First, for several blocks, the monkeys started with set 2s-long, 

and then the duration were halved: long became 1s, intermediate 0.5 and short .25s (set 1s-long). 

Then, we tested the monkeys on set 4s-long following the same procedure: monkeys started a block 

with set 2s-long and after n trials (~100), the durations were multiplied by 2: long became 4s, 

intermediate 2 and short 1s. Once the monkey adapted to this new retiming condition (retiming long), 

it had to discriminate even longer durations following the same rule: once it performed enough trials 

at set 4s-long, durations were multiplied by 2 once more, reaching 8s, 4s, and 2s. Once the monkey 

learned the retiming rules, we tested it on the same durations, but starting from set 8s-long, then 

retiming to 4s- and finally to 2s-long. 

 We recorded from both monkeys while they performed one block on one set followed by a 

second set. Sets could be set 2s-long followed by set 1s-long, or set 2s-long followed by set 4s-long and 

set 8s-long (see Figure 1B). Therefore, we recorded from many more neurons in set 2s-long, as this 

was the reference set. For monkey 1, a few sessions consisted of set 2s-long only.  

  

C.5.d. Behavioral analysis 

For behavioral analysis, we removed the sets at which the monkeys performed below a 

threshold, defined as the average accuracy at each set minus standard-deviation, therefore, discarding 

sessions in which animals performed poorly likely due to a lack of motivation. Analysis was performed 

on 53, 153, 77 and 54 sets (there are 1 to 3 sets per recording session) for monkey 1, totaling 42109 

trials, and 66, 136, 66, and 48 sets for monkey 2, totaling 32588 trials, respectively for conditions 1s-, 

2s-, 4s- and 8s-long. Next, we used a General-Linear Mixed-Effects (GLME) model to identify whether 

the set or the length of the durations influenced discriminability: 

Response ~ Interval*Set + (1|Monkey ID) + (Monkey ID|Block) 

where Interval and Set were categorical fixed factors, and the block and monkey’s identity were 

random factors, respectively numerical and categorical. The accuracy followed a binomial distribution, 

1 or 0, for respectively correct and error trials. Set, Interval and the interaction had a significant effect 

on the performance (F(3,74685)=644, p<0.0001 for Sets, F(2,74685)=784, p<0.0001 for Interval, and 

F(6,74652)=154, p<0.0001 for the interaction). To understand the interaction, we explored further the 

contrasts within and between each set, presented in the supplementary table 1. 
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Next, we focused on intermediate trials to analyze the mis-judgement of errors, as they were 

the intervals the less well categorized. We took all the incorrect intermediate trials, and ran a GLME  

Type of error ~ Set + (1|Monkey ID) + (Monkey ID|Block) 

with Set as main factor and the type of error as explained variable, with 0 for short and 1 for long. 

Monkey ID and Block were defined as random factors. Type of errors were significantly influenced by 

the time range (F(3,6433)=260, p<0.0001). 

Afterwards, we ran a Linear Mixed Model (MME) on normalized response latencies, after 

selecting correct trials only: 

Response latency ~ Interval*Set + (1|Monkey ID) + (Monkey ID|Block) 

Response latencies calculation: The response latency was calculated between the target onset and the 

action completed (the joystick entering the target), which coincided with the visual feedback and 

reward delivery. After each block, monkeys were tested on a “motor-control task”, where no delay 

was inserted between cue offset and targets onset. Only one target was presented at the time, for a 

total of ~70 trials. At each block, we computed the averaged response latency at this “motor-control 

task” for each direction, bottom, left or top. Then, we subtracted this average at each trial at the 

corresponding block. This normalization gives us a result for which responses latencies below 0 

reflected anticipation of the end of the interval, as the time was below the time needed for action 

selection/execution when the monkey did not know to which direction it had to go.  

 

CC.5.e. Electrophysiological recordings 

Neural activity was recorded using the AlphaLab SNR version 2.0.4 (AlphaOmega©).  Single 

unit responses were recorded using a 16-channel laminar probe with 300-μm inter-electrode spacing 

(V-probe, Plexon Inc.; LMA Microprobes). Two such electrodes were inserted simultaneously on every 

recording session, alternatively in the caudate and the hippocampus, or the putamen and the 

hippocampus. Cells were isolated offline using a semi-automatic method and checked manually using 

OFFLINE sorter (Version 3 and 4; Plexon Inc.)  We recorded 615 neurons in the caudate (151 in monkey 

1, 464 in monkey 2), 736 in the putamen (177 in monkey 1, 559 in monkey 2), and 931 in the 

hippocampus (291 in monkey 1, 640 in monkey 2). Among caudate neurons, 196, 461, 204, 170 cells 

were recorded respectively in sets 1s-, 2s, 4s- and 8s-long. Following the same order, 199, 574, 333, 

239 neurons were recorded in the putamen, and 348, 759, 340, 203 in the hippocampus.   

 

C.5.f. Information content computation 

To define our time-modulated cells, we computed an Information Content for each cell 

following the next formula: 
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IC = ∑ λ(x) * log( λ(x)/λ ) 

where λ(x) is the firing rate of the neuron at time t, λ is the overall firing rate, from t1 to t100. To keep it 

constant across sets, we used the longer interval for each set and divided it by 100. The size of the bins 

varied between sets (i.e. 10ms, 20ms, 40ms, and 80ms respectively for sets 1s-, 2s-, 4s- and 8s-long) 

but the total number of bins did not. Next, we shuffled the spikes within the interval 1000 times, and, 

at each time, we calculated a fake IC on the shuffled data. With these 1000 iterations, we computed 

an ICfake distribution. We defined time-modulated cells neurons that had an IC superior to 95% of the 

ICfake distribution (p-value calculation). We did this for all sets. Then, to get our TM cells for the first 

second for all sets, we cropped the correct long trials after 1s and then computed the IC value for each 

neuron after dividing 1s into 100ms for all conditions. We followed the same procedure, as before, 

shuffling the spikes within trials across the first second for all trials, to get the p-values within the first 

second. 

 

CC.5.g. Definition of the neural pattern of single-cells 

To classify the single cells as ramping or peak neurons, we used a stepwise regression analysis. 

We defined a cell as ramping when the linear term best explained its firing rate across the interval and 

the R² of the fitted model explained at least 66% of the variance. For cells that did not reach those 

criteria, we tested whether their neural activity exhibited a peak defined as an increase of 80% above 

their maximal activity followed by a decrease of at least 15%. If they did, and that only one peak was 

found in the interval, they were classified as 1-peak neurons. If they did and several peaks were found 

in the interval, they were classified as n-peaks neurons. For peak time analysis, we only took the 

highest peak time of the n-peaks neurons.   

  

C.5.h. Selectivity to features of the task  

To identify neurons that were selective for other features of the task (cue, target, response 

and reward), we tested GLME models to identify if 1) neurons were responsive to each task epoch in 

comparison to the baseline and 2) if there was a difference in that epoch as a function of short, 

intermediate and long trials (interval identity). The GLME was computed on each neuron’s firing rate 

trial-by-trial for set 2s-long following the formula:  

Firing Rate ~ task epoch*Interval + (1|Trial) 

where Firing Rate was expressed in spike/second, Feature is a categorical variable for which the 

modalities are the baseline (inter-trial interval), and separately, either the cue display (200ms), the 

targets displayed (400ms), the movement preceding reward (-400ms before reward delivery) and 

reward delivery (200ms). Thus, GLME were computed separately for each feature. Interval identity is 
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a categorical variable, either “short”, “intermediate” or “long”. Trial is the random factors. This model 

allows to identify if the baseline (ITI) activity was different from another task epoch per each neuron. 

If the task epoch was significantly different from the baseline, then we tested if there was a difference 

as a function of interval identity. We defined neurons as selective for one interval identity when its 

activity for that interval was significantly different from the other two intervals and the other two 

intervals did not differ from each other.  

 

CC.5.i. Principal Component Analysis 

We computed Principal Component Analysis (PCA) for each set and each structure on correct 

long trials within the set. For each neuron, we used the raw activity averaged across trials at each time-

point, after dividing it in 100 bins for all sets. Thus, bins at sets 1s-long, 2s-long, 4s-long and 8s-long 

were respectively 10ms, 20ms, 40ms and 80ms large, as for the IC calculation. Each neuron was defined 

as a variable and each time-point was defined as an observation. To allow inter-structures and inter 

sets analysis, we performed the dimensionality reduction 1000 times, down-sampling each time 

(iteration) our neural population to 28 neurons. At each iteration, we computed the distances to 

centroids of the distributions and the distances between time-points in the 28-dimensional state. The 

distances to the centroids were expressed in Euclidean distances with the following formula:  

D(x,c) = (xi,j,k-ci,j,k) * (xi,j,k-ci,j,k)’ 

where x is the state of the population at time t and c is the centroid of the distribution X. i, j, and k are 

the coordinates in the 3-dimensional state. The speed of the trajectory was computed with Euclidean 

distance formula, using the 28 coordinates at each time-point. The average speed and the average 

distances presented in Figure 3C-D and Figure S3D, are the average at each iteration for each structure 

and each set. The slopes in Figure 3E are computed 1000 times on the neural trajectories obtained at 

each iteration, for each structure and each set.  

 

C.5.j. Multi-class decoding using linear regression  

To predict time based on neural activity, we used a linear regression model to decode time. 

First, to compare the temporal prediction from TM cells and other cells, we trained the model on the 

neural activity of the two populations separately. Training phase was computed on the 2s-long interval, 

during 15 correct long trials. Neural activity was cut into 100 bins, of 20ms, and smoothed on +/- 4 bins 

trial-by-trial. Then, the model was tested on five different correct long trials. The analysis was cross-

validated 1000 times. Per each iteration, we obtained a decoding output Y = β + (α * X) where Y is a 

vector of 100 bins. X represents real-time and Y contains predicted time at each time-point (each bin). 

A perfect decoding would be illustrated by Y = X, with α = 1 and β = 0. As we tested the model on five 
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correct trials and cross-validated it 1000 time, we obtained per each structure and each population 

5000 decoding outputs. For each of these 5000 outputs, we calculated the slope of the predicted time 

(Y). We get a αreal distribution of 5000 slopes of decoding for both populations, TM cells and other cells, 

for each structure at set 2s-long. To define our chance-level, we performed the same decoding analysis 

after shuffling the time-labels on tested and trained trials. Thus, we also obtained a distribution of 

slopes αshuffle calculated on shuffle data. Decoding above chance was define by  

1 – (∑ αreal > P95(αshuffle) / 5000) 

We used the same method to test the temporal predictability of TM cells during the ITI by 

training and testing the activity on 15 and 5 ITI respectively. For this analysis, the ITI was cut into 100 

bins of 8ms and smoothed on +/-4 bins trial-by-trial. Then, we tested if the neural activity during the 

ITI could be decoded from the activity of the first 800ms of the interval. This time, we trained our 

model on the first 800ms of 15 trials of 2s-long conditions defined as correct. The cropped interval was 

cut into 100 bins of 8ms and smoothed on +/-4 bins. The model was then tested on 1) the first 800ms 

activity of the long interval during 5 different trials and 2) on 5 ITI. To test the performance of the 

decoding above chance, we used the same method to compute the slopes and calculate the p-values 

as before. Finally, to test the performance of decoding across sets, we used the same method, with 

the exception that, at each iteration, we down-sampled our neural population to 28 neurons. This 

makes comparisons between sets and brain regions possible. For each set, we took the longer interval 

of the set, and cut it into 100 bins: sizing of the bins at each set matched the one from PCA. The activity 

was smoothed on +/-4 bins trial-by-trial. As before, we computed, per each set and each structure, the 

distribution of the slopes of decoding outputs on real and shuffled data to test the temporal 

predictability versus chance. In addition, we also tested the distances of predicted time to real time to 

compare brain regions between each other and sets. We averaged our 5000 decoding output to get 1 

vector of predicted time. At each time-point, we calculated the distance from predicted time to real 

time, and then compared the brain regions and sets using 2-way ANOVAs.  

 

CC.5.k. Pair-wise analysis using Support-Vector-Machine  

To quantify the difference between two time-points tn and tm within an interval, we used a 

support vector machine (SVM) decoding analysis. At time tn and tm, the neural state of the population 

is given by the activity of n neurons. Again, to compare the activity between structures and sets, we 

down-sampled our populations, to 30 neurons this time. For each set, we binned the activity of correct 

long trials into 100 bins, sizing and smoothing them as we did for multiclass decoding across sets. Then, 

we extracted the 3 first components of the neural state at tn and tm using PCA on trial-by-trial basis. 

After dimensionality reduction, the neural state at tn and tm were given by 3 coordinates instead of n 

(n=30). Then, we trained a Support Vector Machine (SVM) classifier on the 3 PCs of 10 trials from tn 
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and 10 trials from tm, and tested it on the PCs obtained from 10 different trials. The SVM classifier 

returns an accuracy value between 0.5 and 1: 1 reflects the absolute certainty to classify each time-

point (tn and tm) correctly, and 0.5 reflects the chance level to distinguish tn and tm. Each pair of time 

points, from t1 to t100, was tested versus each other. We did this analysis for 10 iterations, and 

represented the averaged outcomes of SVM classifier in a time-by-time matrix, averaging the output 

of the 10 iterations. To test the temporal accuracy between brain regions and sets, we tested the 

bottom half of the matrix’s accuracies between sets and brain regions using a 2-way ANOVA. Next, we 

computed the same analysis after shuffling the labels on training and test trials. The 95th percentile of 

the overall distribution of accuracy obtained from shuffled decoding was 0.55. We used a conservative 

chance level at 0.6.  At each time-point, for each interval, we computed the accuracy score from t1 to 

t100. Accuracy score of tn was defined by the number of time-points decoded above chance from tn, and 

ranged from 0 to 99. Per each structure and at each set, we regressed the analysis scores as a function 

of time to test whether they increased or decreased over the interval. Then, to compute the timing 

resolution of each structure across sets, we calculated at each time-point ti the distance ti to tj, where 

tj is the closest time-point to ti successfully discriminated from it (above 0.6). To do so, we took the 

diagonal of our matrices and for each ti we took the closest time-point decoded above chance at the 

upper half and the lower half of the matrix, and then averaged them to get the width of the decoding. 

Finally, to test temporal discriminability in the first second of the intervals across ranges, we took the 

TM cells defined as such during the first second cropped on longer intervals. We computed the same 

decoding analysis, down-sampling our neuronal populations to 18 neurons for each structure at each 

set, except for the caudate at set 8s-long where we had 9 neurons only. To test whether time was 

discriminated successfully within one second as a function of time-range, we ran a 2-way ANOVA on 

the bottom half of the output matrices. 
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Figure 1. Ongoing time categorization task, and striatal and hippocampal neuronal population.  

A. The ongoing time categorization task. A trial started with a cue presented briefly on the screen. Its 

offset indicated the beginning of the interval to be timed and categorized into short, intermediate or 

long duration. The end of the interval is indicated by the appearance of three targets, at the bottom, 

left and top of the screen. If the response is correct, i.e. bottom for short, left for intermediate (as 

illustrated), or top for long, the monkey is rewarded with a drop of juice. The inter-trial interval starts 

once the monkey moves back the joystick to the centre of the screen. B. Sets of intervals tested across 

time-ranges. Length of the durations at sub-second (0.25-0.5-1s), second (0.5-1-2s), supra-second-1 

(1-2-4s) and supra-second-2 (2-4-8s) ranges. C. Behavioural categorization of intervals across sets. 

Proportion of correct responses for short, intermediate and long intervals across sets for monkey 1 

(M1, left panel) and monkey 2 (M2, right panel). D. Response time density for each interval across 

sets. Normalized response time normalized to mean motor response (see Methods). The density of 

the distribution is represented for both monkeys together. E. Nature of errors for intermediate trials. 

Nature of errors for the intermediate trials across sets: shift to the left indicates underestimations and 

shift to the right overestimations. From top to bottom, intermediate trials at sub-second, second, 

supra-second-1, supra-second-2 ranges. F. Recording sites. Recording sites in both monkeys: blue dots 

for caudate, green dots for putamen and red dots for hippocampus. Hippocampus coordinates of both 

monkeys are aligned to the inter-aural, striatal coordinates are aligned to the anterior commissure. G. 

Percentage of Time-Modulated cells. Sets are displayed in rows, brain areas in columns. In each 

column, the left pie represents the percentage of TM cells obtained during the long interval of the set. 

The right pie represents the percentage of TM cells obtained once the first second of the long interval 

was truncated. 
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Estimate SE tStat DF p-Value Lower Upper
Set 1s-long

Short * 1s-long (Intercept) 2,47 0,09 26,80 74685 0,00 2,29 2,65
Intermediate -1,11 0,06 -19,77 74685 0,00 -1,22 -1,00
Long -1,05 0,06 -18,44 74685 0,00 -1,16 -0,94
2s-long -0,25 0,06 -4,30 74685 0,00 -0,36 -0,14
4s-long -1,15 0,06 -18,73 74685 0,00 -1,27 -1,03
8s-long -1,86 0,06 -29,51 74685 0,00 -1,99 -1,74
Intermediate * 2s-long 0,70 0,07 9,85 74685 0,00 0,56 0,84
Long * 2s-long 1,40 0,08 18,40 74685 0,00 1,25 1,55
Intermediate * 4s-long 0,56 0,07 7,71 74685 0,00 0,41 0,70
Long * 4s-long 1,46 0,08 19,15 74685 0,00 1,31 1,61
Intermediate * 8s-long 0,40 0,07 5,43 74685 0,00 0,26 0,55
Long * 8s-long 2,13 0,08 26,31 74685 0,00 1,98 2,29
Intermediate * 1s-long (Interce 1,36 0,09 15,87 74685 0,00 1,19 1,52
Long 0,07 0,04 1,49 74685 0,14 -0,02 0,15
2s-long 0,45 0,04 10,64 74685 0,00 0,37 0,54
4s-long -0,59 0,05 -12,53 74685 0,00 -0,69 -0,50
8s-long -1,46 0,05 -28,46 74685 0,00 -1,56 -1,36
Short * 2s-long -0,70 0,07 -9,85 74685 0,00 -0,84 -0,56
Long * 2s-long 0,70 0,07 10,74 74685 0,00 0,57 0,83
Short * 4s-long -0,56 0,07 -7,71 74685 0,00 -0,70 -0,41
Long * 4s-long 0,91 0,07 13,81 74685 0,00 0,78 1,04
Short * 8s-long -0,40 0,07 -5,43 74685 0,00 -0,55 -0,26
Long * 8s-long 1,73 0,07 23,96 74685 0,00 1,59 1,87
Long * 1s-long (Intercept) 1,42 0,09 16,67 74685 0,00 1,25 1,59
2s-long 1,15 0,05 22,85 74685 0,00 1,06 1,25
4s-long 0,31 0,05 5,80 74685 0,00 0,21 0,42
8s-long 0,27 0,06 4,46 74685 0,00 0,15 0,39
Short * 2s-long -1,40 0,08 -18,40 74685 0,00 -1,55 -1,25
Intermediate * 2s-long -0,70 0,07 -10,74 74685 0,00 -0,83 -0,57
Short * 4s-long -1,46 0,08 -19,15 74685 0,00 -1,61 -1,31
Intermediate * 4s-long -0,91 0,07 -13,81 74685 0,00 -1,04 -0,78
Short * 8s-long -2,13 0,08 -26,31 74685 0,00 -2,29 -1,98
Intermediate * 8s-long -1,73 0,07 -23,96 74685 0,00 -1,87 -1,59

Set 2s-long
Short * 2s-long (Intercept) 2,22 0,08 27,85 74685 0,00 2,06 2,38
Intermediate -0,41 0,04 -9,40 74685 0,00 -0,50 -0,33
Long 0,36 0,05 7,01 74685 0,00 0,26 0,46
4s-long -0,90 0,05 -18,24 74685 0,00 -1,00 -0,80
8s-long -1,61 0,05 -31,55 74685 0,00 -1,71 -1,51
Intermediate * 4s-long -0,15 0,06 -2,33 74685 0,02 -0,27 -0,02
Long * 4s-long 0,06 0,07 0,81 74685 0,42 -0,08 0,20
Intermediate * 8s-long -0,30 0,07 -4,57 74685 0,00 -0,43 -0,17
Long * 8s-long 0,73 0,08 9,47 74685 0,00 0,58 0,88
Intermediate * 2s-long (Interce 1,81 0,08 23,29 74685 0,00 1,66 1,96
Long 0,77 0,05 16,05 74685 0,00 0,67 0,86
4s-long -1,05 0,04 -24,33 74685 0,00 -1,13 -0,96
8s-long -1,91 0,05 -40,87 74685 0,00 -2,00 -1,82
Short * 4s-long 0,15 0,06 2,33 74685 0,02 0,02 0,27
Long * 4s-long 0,21 0,07 3,02 74685 0,00 0,07 0,34
Short * 8s-long 0,30 0,07 4,57 74685 0,00 0,17 0,43
Long * 8s-long 1,03 0,07 13,84 74685 0,00 0,88 1,17
Long * 2s-long (Intercept) 2,58 0,08 31,30 74685 0,00 2,42 2,74
4s-long -0,84 0,06 -15,03 74685 0,00 -0,95 -0,73
8s-long -0,88 0,06 -14,19 74685 0,00 -1,01 -0,76
Short * 4s-long -0,06 0,07 -0,81 74685 0,42 -0,20 0,08
Intermediate * 4s-long -0,21 0,07 -3,02 74685 0,00 -0,34 -0,07
Short * 8s-long -0,73 0,08 -9,47 74685 0,00 -0,88 -0,58
Intermediate * 8s-long -1,03 0,07 -13,84 74685 0,00 -1,17 -0,88

CATEGORIZATION ACCURACY
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Supplementary Table 1. Results of the GLME computed for the categorization performance. 

Each pair comparison for each Set*Interval condition. Left columns indicate the paired comparisons: 

the “Set*Interval” condition referenced as intercept versus all the others “Set*Interval” condition. 

Results are divided by set (dark grey) and interval (light grey). When set (1s-long, 2s-long, 4s-long or 

8s-long) is not indicated in the left column, comparison is from the same set as the intercept. When 

interval (Short, Intermediate or Long) is not indicated, comparison is done with the same interval from 

another set.  

 

 

 

 

 

 

 

 

 

 

 

 

Estimate SE tStat DF p-Value Lower Upper
Set 4s-long

Short * 4s-long (Intercept) 1,32 0,07 19,28 74685 0,00 1,18 1,45
Intermediate -0,56 0,04 -12,40 74685 0,00 -0,64 -0,47
Long 0,42 0,05 8,14 74685 0,00 0,32 0,52
8s-long -0,71 0,05 -14,57 74685 0,00 -0,81 -0,62
Intermediate * 8s-long -0,15 0,07 -2,30 74685 0,02 -0,28 -0,02
Long * 8s-long 0,67 0,08 8,69 74685 0,00 0,52 0,82
Intermediate * 4s-long (Interce 0,76 0,07 11,38 74685 0,00 0,63 0,89
Long 0,97 0,05 20,14 74685 0,00 0,88 1,07
8s-long -0,87 0,04 -19,38 74685 0,00 -0,95 -0,78
Short * 8s-long 0,15 0,07 2,30 74685 0,02 0,02 0,28
Long * 8s-long 0,82 0,07 11,04 74685 0,00 0,68 0,97
Long * 4s-long (Intercept) 1,73 0,07 24,68 74685 0,00 1,60 1,87
8s-long -0,04 0,06 -0,70 74685 0,49 -0,16 0,08
Short * 8s-long -0,67 0,08 -8,69 74685 0,00 -0,82 -0,52
Intermediate * 8s-long -0,82 0,07 -11,04 74685 0,00 -0,97 -0,68

Set 8s-long
Short * 8s-long (Intercept) 0,60 0,07 9,15 74685 0,00 0,48 0,73
Intermediate -0,71 0,05 -14,59 74685 0,00 -0,80 -0,61
Long 1,09 0,06 18,77 74685 0,00 0,97 1,20
Intermediate * 8s-long (Interce -0,10 0,07 -1,59 74685 0,11 -0,23 0,02
Long 1,80 0,06 31,58 74685 0,00 1,69 1,91
Long * 8s-long (Intercept) 1,69 0,07 23,35 74685 0,00 1,55 1,83
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Estimate SE tStat DF p-Value Lower Upper
Set 1s-long

Short * 1s-long (Intercept) -0,03 0,00 -28,56 59896 0,00 -0,04 -0,03
Intermediate 0,02 0,00 11,60 59896 0,00 0,02 0,02
Long -0,09 0,00 -52,96 59896 0,00 -0,09 -0,08
2s-long -0,01 0,00 -8,92 59896 0,00 -0,02 -0,01
4s-long 0,00 0,00 0,89 59896 0,37 0,00 0,01
8s-long 0,03 0,00 13,24 59896 0,00 0,03 0,03
Intermediate * 2s-long -0,02 0,00 -10,45 59896 0,00 -0,03 -0,02
Long * 2s-long 0,04 0,00 17,21 59896 0,00 0,03 0,04
Intermediate * 4s-long -0,01 0,00 -2,77 59896 0,01 -0,01 0,00
Long * 4s-long 0,13 0,00 51,75 59896 0,00 0,12 0,13
Intermediate * 8s-long -0,01 0,00 -1,59 59896 0,11 -0,01 0,00
Long * 8s-long 0,10 0,00 35,83 59896 0,00 0,10 0,11
Intermediate * 1s-long (Interce -0,02 0,00 -12,14 59896 0,00 -0,02 -0,01
Long -0,11 0,00 -62,94 59896 0,00 -0,11 -0,10
2s-long -0,03 0,00 -22,97 59896 0,00 -0,04 -0,03
4s-long -0,01 0,00 -2,72 59896 0,01 -0,01 0,00
8s-long 0,02 0,00 9,90 59896 0,00 0,02 0,03
Short * 2s-long 0,02 0,00 10,45 59896 0,00 0,02 0,03
Long * 2s-long 0,06 0,00 27,19 59896 0,00 0,05 0,06
Short * 4s-long 0,01 0,00 2,77 59896 0,01 0,00 0,01
Long * 4s-long 0,13 0,00 52,91 59896 0,00 0,13 0,14
Short * 8s-long 0,01 0,00 1,59 59896 0,11 0,00 0,01
Long * 8s-long 0,11 0,00 35,14 59896 0,00 0,10 0,11
Long * 1s-long (Intercept) -0,12 0,00 -96,17 59896 0,00 -0,12 -0,12
2s-long 0,02 0,00 15,09 59896 0,00 0,02 0,03
4s-long 0,13 0,00 69,16 59896 0,00 0,13 0,13
8s-long 0,13 0,00 63,06 59896 0,00 0,13 0,14
Short * 2s-long -0,04 0,00 -17,21 59896 0,00 -0,04 -0,03
Intermediate * 2s-long -0,06 0,00 -27,19 59896 0,00 -0,06 -0,05
Short * 4s-long -0,13 0,00 -51,75 59896 0,00 -0,13 -0,12
Intermediate * 4s-long -0,13 0,00 -52,91 59896 0,00 -0,14 -0,13
Short * 8s-long -0,10 0,00 -35,83 59896 0,00 -0,11 -0,10
Intermediate * 8s-long -0,11 0,00 -35,14 59896 0,00 -0,11 -0,10

Set 2s-long
Short * 2s-long (Intercept) -0,05 0,00 -43,32 59896 0,00 -0,05 -0,05
Intermediate -0,05 0,00 -41,94 59896 0,00 -0,05 -0,05
Long 0,00 0,00 -2,02 59896 0,04 -0,01 0,00
4s-long 0,01 0,00 8,92 59896 0,00 0,01 0,02
8s-long 0,04 0,00 20,86 59896 0,00 0,04 0,05
Intermediate * 4s-long 0,01 0,00 6,38 59896 0,00 0,01 0,02
Long * 4s-long 0,09 0,00 41,64 59896 0,00 0,09 0,04
Intermediate * 8s-long 0,02 0,00 5,61 59896 0,00 0,01 0,02
Long * 8s-long 0,07 0,00 25,33 59896 0,00 0,06 0,07
Intermediate * 2s-long (Interce -0,05 0,00 -45,84 59896 0,00 -0,05 -0,05
Long -0,05 0,00 -39,58 59896 0,00 -0,05 -0,05
4s-long 0,03 0,00 16,90 59896 0,00 0,03 0,03
8s-long 0,06 0,00 25,81 59896 0,00 0,05 0,06
Short * 4s-long -0,01 0,00 -6,38 59896 0,00 -0,02 -0,01
Long * 4s-long 0,08 0,00 34,00 59896 0,00 0,07 0,08
Short * 8s-long -0,02 0,00 -5,61 59896 0,00 -0,02 -0,01
Long * 8s-long 0,05 0,00 17,72 59896 0,00 0,04 0,06
Long * 2s-long (Intercept) -0,10 0,00 -93,80 59896 0,00 -0,10 -0,10
4s-long 0,11 0,00 66,44 59896 0,00 0,10 0,11
8s-long 0,11 0,00 59,10 59896 0,00 0,11 0,11
Short * 4s-long -0,09 0,00 -41,64 59896 0,00 -0,10 -0,09
Intermediate * 4s-long -0,08 0,00 -34,00 59896 0,00 -0,08 -0,07
Short * 8s-long -0,07 0,00 -25,33 59896 0,00 -0,07 -0,06
Intermediate * 8s-long -0,05 0,00 -17,72 59896 0,00 -0,06 -0,04

RESPONSE TIMES
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Supplementary Table 2. Results of the GLME computed on the response times. 

Table layout is the same as Supplementary Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimate SE tStat DF p-Value Lower Upper
Set 4s-long

Short * 4s-long (Intercept) -0,03 0,00 -19,17 59896 0,00 -0,04 -0,03
Intermediate 0,01 0,00 6,30 59896 0,00 0,01 0,02
Long 0,04 0,00 21,79 59896 0,00 0,04 0,04
8s-long 0,03 0,00 12,73 59896 0,00 0,02 0,03
Intermediate * 8s-long 0,00 0,00 0,61 59896 0,54 0,00 0,01
Long * 8s-long -0,02 0,00 -8,32 59896 0,00 -0,03 -0,02
Intermediate * 4s-long (Interce -0,02 0,00 -11,59 59896 0,00 -0,02 -0,02
Long 0,03 0,00 14,57 59896 0,00 0,02 0,03
8s-long 0,03 0,00 12,11 59896 0,00 0,03 0,03
Short * 8s-long 0,00 0,00 -0,61 59896 0,54 -0,01 0,00
Long * 8s-long -0,03 0,00 -8,40 59896 0,00 -0,03 -0,02
Long * 4s-long (Intercept) 0,01 0,00 4,07 59896 0,00 0,00 0,01
8s-long 0,00 0,00 1,72 59896 0,09 0,00 0,01
Short * 8s-long 0,02 0,00 8,32 59896 0,00 0,02 0,03
Intermediate * 8s-long 0,03 0,00 8,40 59896 0,00 0,02 0,03

Set 8s-long
Short * 8s-long (Intercept) 0,00 0,00 -2,26 59896 0,02 -0,01 0,00
Intermediate 0,01 0,00 5,25 59896 0,00 0,01 0,02
Long 0,01 0,00 6,42 59896 0,00 0,01 0,02
Intermediate * 8s-long (Interce 0,01 0,00 3,94 59896 0,00 0,00 0,01
Long 0,00 0,00 0,33 59896 0,74 0,00 0,01
Long * 8s-long (Intercept) 0,01 0,00 5,24 59896 0,00 0,01 0,01
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Figure 2. Time-modulated single cell examples during the second range set.  

From left to right columns, raster histograms of spikes recorded in the caudate, putamen and 

hippocampus with the superposed average activity (line). Left panels show the activity during baseline, 

the cue, and the long interval, aligned at 0 to the offset of the cue. The possible short and intermediate 

intervals are marked by light and dark grey lines, respectively. Right panels show the neural activity 

aligned to the reward delivery (black line), with -300ms corresponding to movement. Per each cell, we 

indicate its bit/spike score and its p-value. 
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Figure 3. Population changes through time across regions at set 2s-long.  

A. From left to right, neuronal population of TM cells recorded in the caudate (left), putamen (middle), 

and hippocampus (right). Activity is z-scored. Neurons are sorted as a function of their linear term 

computed during the stepwise regression analysis. Superposed on the population maps, solid line and 

dotted lines show average z-score and standard-deviation. Time of expected interval ends are 

indicated with white vertical lines. B. Population activity over time (2s-long) projected onto the first 

two Principal Components for caudate (left), putamen (middle), and hippocampus (right). The state of 

the population at time t was defined by 2 coordinates. Each coordinate is the score of each principal 

component at time t. The time of expected interval ends are indicated for short (S), intermediate (I) 

and long (L) intervals. The centroid of the distribution is represented with a cross. C. Average speed (y-

axis) of the neural trajectories during the 2s-long interval, obtained with the first 9th PCs, from each 

iteration with the down sampling method (i=1000) plotted against the average distance to the centroid 

of the same trajectories (x-axis). D. Average speed (y-axis) of the neural trajectory obtained from each 

iteration (i=1000) for each brain region across sets.  E. Slopes obtained on each neural trajectory 

obtained from each iteration for each brain region across sets. 
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Figure Supplementary 3. Population measures across regions and sets.  

A. Distribution of the linear terms obtained from the stepwise regression analysis, for each brain region 

across sets, from top to bottom, at sets 1s-long, 2s-long, 4s-long, 8s-long. B. Proportion of TM cells 

showing ramping, 1-peak, multi-peaks and other patterns per each brain region across sets, from top 

to bottom, at sets 1s-long, 2s-long, 4s-long, 8s-long. C. From top to bottom, peak times at set 1s-long, 

2s-long, 4s- long and 8s-long. Columns from left to right: caudate, putamen, hippocampus. Left y-axis, 

distribution of peak times over the interval (white bars represent peak neurons, coloured bars ramping 

neurons). Median of the distribution (triangle) and interquartile range (horizontal line) summarize the 

peaks distribution. In the caudate, the peak times were mainly distributed within the first half of the 

interval (medians respectively at 39, 42.5, 31, and 37% of the interval duration at sets 1s-, 2s-, 4s- and 

8s-long). In the putamen, the peaks were distributed in the second half of the interval at set 1s-long 

(median at 68%), and in the first half of the interval for the other sets (medians respectively 46, 42, 

and 36% of the interval duration for sets 2s-, 4s- and 8s-long). In the hippocampus, peak distributions 

were also mainly distributed within the first half of the interval duration (medians respectively at 43, 

42, 38, and 51% of the interval). Right y-axis, width size of peaks. Dots represent width size as a function 

of peak times. Superposed dotted lines represent the linear fit for the hippocampus at set 2s-long and 

for the putamen at set 4s-long, and the quadratic fits for the other structures and sets. D. Average 

speed (y-axis) of the neural trajectories computed for each set and each brain region, obtained with 

the first 9th PCs plotted against the average distance to the centroid of the same trajectories (x-axis). 

Measures (N=1000) were obtained from each iteration with the down sampling method. E. Width size 

of the time “field” as a function of peak time for caudate (left), putamen (middle) and hippocampus 

(right) across all ranges. Solid lines represent the fit model of the linear regression. F. Distribution of 

peak times during the interval as a function of neurons selectivity to short, intermediate, and long trials 

during target task epoch in set 2s-long. From left to right: caudate, putamen and hippocampus. 
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Figure 4. Population decoding as a function of time.  

A. Multiclass decoding during 2s-long interval for caudate (left), putamen (middle) and hippocampus 

(right). Decoding of predicted time (y-axis) as a function of real time (x-axis). Decoding performance 

on TM cells is represented against decoding performance of other cells. Chance value is shown with 

light grey shade. Possible interval ends are indicated by light grey (short) and dark grey (long) dashed 

lines. Bottom right panel insets: Slopes distribution obtained from the 5000 decoding outputs for TM 

cells versus other cells. Vertical dashed line represents chance level (95th percentile). Distributions 

different from chance are indicated with an asterisk. B. Multiclass decoding tested on baseline activity 

(black line) after training on the first 800ms of the interval (coloured line) for caudate (left), putamen 

(middle) and hippocampus (right). Decoding of predicted time (y-axis) as a function of real time (x-

axis). Bottom right panel: Slopes distribution obtained from the 5000 decoding outputs of first 800ms 

(coloured dotted line) and baseline activity (black line). Distributions different from chance are 

indicated with an asterisk. C. Decoding across sets after down-sampling the populations for caudate 

(left), putamen (middle) and hippocampus (right). Decoding of predicted time (y-axis) as a function of 

normalized time (x-axis). Possible ends of interval are indicated by light grey (short) and dark grey 

(long) on the normalized time axis. Top right panel. Distance from predicted time to real time for each 

time-point of the decoded interval. Bottom right panel insets: Slopes distribution obtained from the 

5000 decoding outputs at each set. Chance level is represented in dashed lines. Distributions different 

from chance are indicated with an asterisk.  
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Figure Supplementary 4. Absence of time decoding from baseline activity.  

Multiclass decoding trained and tested on baseline activity (black line). Decoding of predicted time (y-

axis) as a function of real time (x-axis) for caudate (left), putamen (middle) and hippocampus (right). 

Chance value is shown with grey shade. Bottom panels: Slopes distribution obtained from the 5000 

decoding outputs on baseline activity (black line) did not differ from chance. 
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Figure 5. Moment-to-moment time discrimination.  

A. Pairwise decoding for caudate (left), putamen (middle) and hippocampus (right). Results for each 

set are presented in rows: from top to bottom are sets 1s-long, 2s-long, 4s-long and 8s-long and 

displayed in a time-by-time matrix in which each data-point is the discriminability accuracy between 

t(x) and t(y). Accuracy scores ranged from 0.5 to 1. Chance level is defined at 0.6. The temporal 

resolution is the window within the diagonal between black lines (chance level). Times for possible 

intervals to end are shown by light grey (short) and dark grey (intermediate) dashed vertical lines. B. 

Discriminability scores (dots) across sets for caudate (left), putamen (middle) and hippocampus (right). 

Each time on the x-axis (normalized time) is discriminated from n-points on the y-axis within the 

intervals. Coloured lines show the regressions of the accuracies scores by normalized time. Times for 

possible intervals to end are indicated by solid lines, light grey for short and dark grey for intermediate. 

C. Temporal resolution (dots) over time for caudate (left), putamen (middle) and hippocampus (right) 

across sets. Lines are the regressions of the temporal resolution over normalized time. Times for 

possible intervals to end are indicated by solid vertical lines, light grey for short and dark grey for 

intermediate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114



115 
 

Supplementary Figure 5. Moment-to-moment time discrimination within 1s.  

Pairwise decoding computed on the neurons defined as TM cells within the first second of each 

interval, across different time ranges: from top to bottom are sets 1s-long, 2s-long, 4s-long and 8s-

long. Brain regions are presented in columns: caudate (left), putamen (middle) and hippocampus 

(right). Possible times for the interval to end are represented by light grey (short) and dark grey 

(intermediate) dashed vertical lines. Results are displayed in a time-by-time matrix, each data-point is 

the discriminability accuracy between t(x) and t(y). Accuracy scores ranged from 0.5 to 1. Chance level 

is defined at 0.6. The temporal resolution is the window within the diagonal between black lines 

(chance level). 
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D. Chapter 2. Parallel absolute and relative codes in the striatum 
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DD.1. Abstract 

Many of our behaviours in daily life follows temporal flexibility, allowing us to quickly adapt to 

the environment: this temporal scalability is related to the expectancy of an external event, or to an 

internal state to reach. It is triggered by a future event. The neural patterns allowing such scalability 

have been found in many brain regions, including the striatum and the hippocampus. On the contrary, 

absolute neural codes for time have been rarely reported. An absolute temporal code is a neural 

pattern that remains stable between different time-ranges. They may arise from a sensitive external 

cue, following feedforward process, and be triggered by a past event.  We recorded single cells activity 

in the striatum and the hippocampus in two monkeys as they performed an ongoing time 

categorization task, across several time-ranges. We highlighted the fact that in the striatum (caudate 

and putamen), two sub-populations of neurons were well established: an absolute and a relative one. 

In the hippocampus, neurons remap in a way that did not follow these categories. Within the striatum, 

we showed that in caudate, both subpopulations adapted when durations were multiplied or halved, 

while putamen showed only partial adaptation. Finally, we showed when the entire caudate 

population is considered, the neural activity is maintained during first second between 2 time-ranges 

with a pattern consistent with a feedforward mechanism over time. This suggests, for the first time, 

the presence of a strong absolute code for time in the macaques caudate. 
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DD.2. Introduction 

The sensation that time passes slowly or faster depending on context is a feeling familiar to all 

of us. How do we measure time passing between two events? Do we use a universal clock fitting all 

events or do we rescale that clock depending on context? Whether there is a relative or an absolute 

code for time in the brain is therefore a legitimate question to ask. Many studies reported scalable 

patterns of neural activity between different temporal contexts in rodents (Shimbo et al., 2021; Zhou 

et al., 2020; Mello et al., 2015; Emmons et al., 2017) and monkeys (Meirhaeghe et al., 2021; Wang et 

al., 2018) in cortical regions, striatum and hippocampus. Relative codes are efficient because they 

allow quick adaptation and save energy by relying on pre-existing circuits. Such adaptive neural code 

could support behavioural scalability observed in animal timing intervals from second-to-minute scale 

(Gibbon et al., 1984; Gibbon, 1977). However, temporal absolute codes have also been reported in 

rodent’s hippocampus timing tens of seconds (MacDonald, Lepage, Eden, & Eichenbaum, 2011), and 

lately, stable hippocampal activity was observed for two different 10s periods (Sabariego et al., 2019). 

Thus, absolute codes would allow a temporal representation that does not depend on the contexts 

nor tasks. For example, such a code may be suitable to recall events order or duration in retrospect. 

Here, asked how neural activity in the striatum and the hippocampus adapts to rescaling of intervals 

reduced from second to sub-second range, or increased from second to several seconds. We used a 

duration categorization task, which allows to compare the patterns of neuronal activity for the same 

duration shifting from intermediate to short or long. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 
 

DD.3. Results 

D.3.a. Behavioural results indicate a context dependant categorization of the durations  

If a well-known duration is represented as an independent stimulus like an object, then it 

should be identified with the same accuracy regardless of its temporal context. We trained two rhesus 

macaques to perform a 3-intervals categorization task (Figure 1A) across multiple sets at different time 

ranges (Rolando et al., submitted). Durations varied across sets presented in block of 80 trials, thus, 

sets can be seen as temporal contexts. The sets varied from sub-second range (0.25-0.5-1s respectively 

for short, intermediate and long durations), second range (0.5-1-2s), supra-second-range-1 (1-2-4s) 

and surpa-second-range-2 (2-4-8s). Thus, some durations (i.e. 0.5, 1, 2 and 4s) were presented at 

multiple time ranges and had to be categorized either as short, intermediate or long in function of the 

set (Figure 1B). In other words, the same duration was the short one, the intermediate one, or the long 

one depending on the time range. Thus, if the categorization of duration T is context independent, it 

will be identified as T in any set without any difference in performance. Conversely, if the classification 

is context dependent, it will not be identified as T with the same accuracy as a function of the set 

(temporal context). To test if the temporal context influenced the categorization of the durations, we 

computed a General Linear Mixed-Effects (GLME) model (see Methods) testing for behavioural 

accuracy as a function of Interval identity We found that 0.5, 2 and 4s were not identified with the 

same accuracy depending on time ranges (Figure 1C). The 0.5s duration was better discriminated when 

it was short than when it was intermediate (t(16173)=-15.485, p<0.0001), while 2 and 4 seconds were 

best identified when they were defined as long than intermediate (t(18735)=28385, p<0.0001 for 2s 

and t(8844)=35.258, p<0.0001 for 4s). The 2s duration was also best categorized as long than short 

(t(18735)=27.09, p<0.0001) and intermediate than short (t(18735)=2.1395, p=0.0324). On the other 

hand, the 1s duration was better discriminated when it was intermediate (t(21400)=9.2981, p<0.0001 

compared with short, t(21400)=9.0546, p<0.0001 compared with long), with no difference between 

short and long labels (t(21400)=1.01162, p=0.30957). Overall, these results suggest that the 

categorization of a duration is dependent on the temporal context. As monkeys performed the task, 

we recorded neural activity in the striatum (caudate-putamen) and hippocampus. 

 

D.3.b. Classification of absolute and relative neurons across different time-ranges  

To examine neural activity, we recorded single-cells while animals classified intervals in 

multiple time ranges. Monkeys were tested separately in blocks of “retiming-to-short” condition and 

“retiming-to-long” conditions (Figure 1B). In retiming-to-short condition, they always first 

discriminated the durations at the second range (0.5-1-2s), and after n trials (around 100), the 

durations were halved with no external cue: monkeys started discriminating durations at the sub-
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second range and adapted by trial-and-error. Days when monkeys were performing retiming-to-short 

condition, they were only tested on retiming-to-short condition. Then, on alternate days, monkeys 

were tested on retiming-to-long conditions. During these blocks, monkeys discriminated durations at 

the second range, then they were tested at the supra-second-1 range (durations were multiplied by 2, 

after n trials), and then at the supra-second-range-2 (durations were multiplied by 2 another time, 

after n trials). For some sets, monkeys were tested in the retiming-to-long but the recording session 

started from supra-second-range-2 (2-4-8s) and went to second range (0.5-1-2s) by halving the 

durations 2 times. This design allows us to characterize neural activity between different temporal 

context. Although, it restrained our analysis as no neurons were recorded from sub-second range to 

supra-second ranges: neurons in retiming conditions are always compared to the second range 

condition. First, we selected the neurons that kept a stable baseline between sets (see Methods) and 

asked which pattern they displayed when the durations to-be-timed changes: an absolute pattern, 

with no change of their discharge rate between sets, or a relative pattern, characterized by a 

modulation of their discharge rate relative to the long interval of each set.  

Next, among neurons with stable baseline, we identified time-modulated (TM) cells as the ones 

displaying a pattern of activity modulated by the time within the interval during at least one of the two 

sets using the same method as described previously (Rolando et al., submitted, see Methods). During 

retiming-to-short condition, there was 87 neurons defined as TM cells in caudate, 48 in putamen and 

32 in hippocampus. At the retiming-to-long-1 condition, 45, 47 and 35 neurons were defined as TM 

cells with stable baseline respectively in caudate, putamen and hippocampus, and 27, 40 and 23 in the 

retiming-to-long-2 condition (see Table 1). Then, to classify the neurons as relative or absolute, we 

followed two different methods: a method based on the centre of mass (CoM) of the neurons at 

different ranges, inspired from a previous study (Mello et al., 2015), and a method based on the 

correlation between activity at different ranges.  

First, we computed three temporal CoM of the neurons (Figure 2A): 1) on the longest interval 

of the shortest range between the two ranges to compare (reference in red in Figure2A); 2) on its twin 

duration during the longer range, i.e. the intermediate interval of the longest duration (light grey in 

Figure 2A); 3) on the long interval of the longest duration (black in Figure 2A).  These measures were 

computed for all comparisons from second to sub-second and from second to supra-second ranges 

(Figure 1B), yielding a relative and an absolute comparison for each cell (Figure 2A, supplementary 

Figure 1 for retiming-to-long-2 condition).  Then, for each cell, we computed two ratios using the CoM 

from each of these durations: the relative ratio (RR) and the absolute ratio (AR, Figure 2A, see 

Methods). We classified neurons as relative when the relative ratio was closer to 1 compared to the 

absolute ratio: it reflected a smaller change of the position of the CoM between the reference and the 

longer duration. Neurons were classified as absolute when the opposite was true (see Methods). Figure 
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3A-I, left panels, shows the distribution of a relative/absolute index computed on the ratios (see 

Methods). All the distributions of the relative/absolute indexes were centred on 0. Consistently, the 

proportions of relative and absolute neurons were equal in all structures at all ranges (Table 1), except 

in caudate at retiming-to-long-2 conditions were relative neurons were more abundant (χ²(1,2)=8.33, 

p=0.0039) and in hippocampus at retiming-to-short, were absolute neurons were more abundant 

(χ²(1,2)=8, p=0.0047).  

As the classification using CoM is new, we validated it by comparing correlation computed on 

rate scaled in a relative or absolute way. Figure 3A-I, right panels, represent the two correlation 

coefficients for each cell, labelled with a symbol representing its previously identified classification 

obtained with the CoM method: relative (square) or absolute (diamond). Then, we computed the 

distances of each neuron to the diagonal. A measure of 0 represents the case in which there is no 

difference between relative and absolute coefficients. To validate classifications made earlier, we 

tested if the distances to the diagonal per each subpopulation previously identified were different from 

0 (1-sample T-test, see Methods and supplementary results). If the mean distance of the subpopulation 

was shifted, the direction of the shift (positive or negative) indicated if the subpopulation has higher 

relative coefficients or higher absolute coefficients. Overall, caudate relatives’ codes were consistent 

in all the retiming conditions, while absolute codes were confirmed by both methods in retiming-to-

short and retiming-to-long-1 condition. For putamen, both methods indicate that relative codes in 

retiming-to-short condition are not strong, but absolute codes were. In the hippocampus, the 

classification of absolute and relative neurons was not confirmed by the correlations, in any retiming 

condition (Figure 3). Altogether, these results show strong absolute and relative codes in caudate at 

retiming-to-short and retiming-to-long-1 conditions. In putamen, absolutes codes seem better 

established than relatives’ ones at retiming-to-short and retiming-to-long-1 condition. In the 

hippocampus, remapping was not consistent with an absolute or a relative neural pattern. In sum, only 

caudate exhibited neurones that showed convincing patterns of relative or absolute code.  

 

DD.3.c. Caudate adaptation to contexts can be explained by a shift in the centre of masses  

We used only striatal and putamen neurons identified with the CoM classifications, as these 

populations were cross-validated by the correlation methods.  Therefore, we excluded the retiming-

to-long-2 condition as the categorization to absolute or relative cells did not pass the cross-validation 

threshold. Next, we asked whether either class of absolute or relative neurones in the caudate or 

putamen scaled better. We fitted a linear model on each subpopulation of neurons in each brain area 

separately: explained variable was the centre of mass of the reference duration (CoM-R) on the y-axis 

and explanatory variables were either centre of mass on the intermediary duration of the longer set 

(CoM-A) or centre of mass in the longer duration (CoM-Long) on the x-axis (Figure 4A-D, see Methods 
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and supplementary results). Next, we tested differences in the absolute or relative fits across brain 

areas and sets by comparing the distances of the slopes obtained from each iteration from the leaving-

one-out method in the relative subpopulations, to the hypothesized slope 1 or to the hypothesized 

slope 0.5 respectively for the absolute and the relative population. We tested the effect of brain region 

and retiming condition with a 2-way ANOVA. In the absolute condition, we found that caudate slopes 

were significantly closer to the theoretical model compared to the putamen (F(1,101)=151.99, 

p<0.0001) and closer to theoretical model for the retiming-to-short than the retiming-to-long-1 

condition (F(1,101)=600.55, p<0.0001). The interaction revealed that there was no difference between 

conditions in caudate, but neurons in putamen were closer to theoretical model in retiming-to-short 

than retiming-to-long-1 condition (F(1,101)=83.62, p<0.0001). In the relative subpopulations, slopes in 

the caudate were closer to the theoretical model than putamen (F(1,108)=28.87, p<0.0001). Further, 

data was closer to the theoretical model in the retiming-to-long condition (F(1,108)=513.05, 

p<0.0001). Nonetheless, caudate fits to theoretical models did not differ between conditions 

(retiming-to-short or retiming-to-long-1), but putamen followed the theoretical model better for 

retiming-to-long-1 condition (F(1,108)=5.62, p=0.0195). Altogether, these results show that caudate 

slopes fitted the hypothetical model whether the monkey retimed to short or long for both absolute 

and relative slopes. This was not the case for putamen: absolute neurones adapted better when the 

monkey retimed to long, but relative neurones retimed better the monkey retimed to short. Therefore, 

this suggest that caudate adapt their rates when retiming to long or short, while putamen neurones 

adapted only partially.  

 

DD.3.d. Caudate population activity between sets correlates stronger with an absolute pattern 

when time is rescaled down 

In this section, we tested population-based representation of time to examine adjustments at 

the global level between relative and absolute populations. We focused on neurons identified in the 

caudate, because we showed that this region rescaled better during retiming. We concentrated the 

analysis on the condition in which animals retimed to short because there was sufficient neurons to 

carry the analysis (n=87). To display the neural populations, we sorted the neurons by their maximal 

activity during the reference duration (1s-long at the sub-second range), and aligned the neurons 

following the same sequence, in 1s-intermediate and 2s-long at second range. We did this for each 

subpopulation separately, and then for all the neurons together (Figure 5A-C). Then, for each 

subpopulation, we correlated the neural activity between 1) the reference duration versus its twin 

duration for absolute comparison and 2) the reference duration and the long duration for relative 

comparison, after z-scoring the activity within each interval separately, and obtained the correlations 
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matrices (Figure 5D-E, top row). To test whether the correlations results matched our subpopulations 

classifications, we compared the correlations coefficients of the significant positive correlations 

between the two correlations matrices (Figure 5D-E, bottom left). We found that the activity at 1s-long 

was more correlated with the activity at 1s-intermediate than at the 2s-long for the absolute 

subpopulation (2-sample T-test, t(10908)=-36.3098, p<0.0001, Figure 5Dbottom left). Conversely, we 

found that for relative population, the reference duration was more strongly correlated with the longer 

duration (2-sample T-test, t(11212)=27.7316, p<0.0001, Figure 5E, bottom left). Thus, taken 

separately, the subpopulations activity matched our single-cells’ classification. Then, we asked where 

were the time-points strongly correlated with each other. To this end, we quantified the significant 

and positive correlations, over time (Figure 5D-E, bottom right). As one could imagine, most of the 

positive correlations from the absolute populations were distributed within the first second. The 

number of time-points correlated with each other increased as the time gets closer to the end of the 

1s. For the relative sub-population, activity during the 1s-long (reference) was highly correlated with 

the first half and the end of the 2s-long (longer duration), but the middle of the interval between both 

durations was not. This shows that the relative patterns of the neurons were explained by a maintained 

activity at the beginning and the end of the intervals. Then, we asked which pattern was followed by 

the entire population, when all neurons were put together (Figures 5C and 5F, top row). When 

comparing the correlations coefficients, the 1s-long duration was more correlated with the 1s-

intermediate duration (absolute) than with the 2s-long (relative) as shown in Figure 5F, bottom left (2-

sample T-test, t(10982)=-13.6449, p<0.0001). This suggests an overall stability of the neural activity 

within the first second between sets. In addition, we observed that within the first second many time-

points were correlated with each other, and this count decreased to zero after the end of the first 

second. Although, time-points were correlated with each other also at the end of the durations (Figure 

5F, bottom right). Thus, caudal activity maps the first second, and the end of the intervals.  

 

DD.3.e. Caudal population activity is maintained between 1 and 2 seconds 

Can the neural activity from one temporal context be decoded with a model based on the 

neural activity in the other temporal context? To answer this question, we used a multiclass decoder 

(see Methods) that we trained on neural activity when animals retimed from the sub-second range to 

the second range. As a control, we first trained the decoder on the reference duration, 1s-long, and 

cross-validated the decoding on the same trial types to control that there was no difference when 

training and testing from relative and absolute subpopulations (2-sample KS-test, k=0.12, p=0.4431). 

Then, we tested the decoder for absolute retiming on the 1s-intermediate of the longer duration and 

for relative retiming on the full 2s-long duration (following the scheme presented in Figure 6A). Each 

one of these durations was divided into 100 bins (see Methods). Thus, for 1s-intermediate, tested and 
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trained durations were equal in an absolute scale. On the other hand, for 2s-long, tested and trained 

durations were equal in a relative scale: one bin from 2s-long is twice the duration than a bin from 1s-

long. We computed decoding in both subpopulations separately (Figure 6B-C, left panels). To test the 

acuity of the decoding, we compared the distances between predicted time in absolute and relative 

comparisons (blue and pink lines respectively) to predicted time from the reference (grey line) (Figure 

6B-C, left panels). We tested the effect of population type (absolute or relative neurons) and retiming 

type (absolute or relative comparisons). Consistent with their classification, in absolute neurons, there 

was no difference in decoding 1s in the absolute comparison (2-sample KS test, k=0.16, p=0.14) but 

there was a difference in the relative comparison (2-sample KS test, k=0.25, p=0.003, with Bonferroni 

correction, Figure 6B, right panel). In relative neurons, there was a difference in the absolute 

comparison (2-sample KS test, k=0.36, p<0.0001, with Bonferroni correction) and in the relative 

comparison (2-sample KS test, k=0.22, p=0.0131, with Bonferroni correction). The results suggest that 

the absolute population is very stable in the first second whether across sets, while in the relative 

population, the adaptation of neural activity in a relative scale is less accurate.   

Next, we focused on the results obtained from the entire populations. We selected the time-

points decoded above chance (see Methods) when testing decoding for absolute code (training on the 

reference interval and testing on first half of the longer interval: 1s-intermediate (in blue in Figure 6E) 

and when testing for relative code when training on reference set and testing on the whole length of 

the longer interval (in pink in Figure 6F). Then, we plotted these points together with the decoding 

obtained when training and testing with the identical reference duration (in grey in Figures 6E-F). The 

performance above chance overlapped in absolute comparison (Figure 6E), but not in relative 

comparison (Figure 6F).  

At each predicted time-point, we calculated the maximum value of the predictions obtained 

from real-time (see Methods), and compared it between absolute or relative predictions. We show 

that maximal predictions did not differ between absolute comparison (reference 1s-long vs 1s-

intermediate, 2-sample KS-test, KS=0.14, p=0.2606, Bonferroni correction), but differed between 

relative comparisons (1s-long versus 2s-long, (KS=0.22, p=0.0131).  Finally, we tested whether the 

maximal predictions were close to real time. We tested each distribution versus zero (black line in 

Figure 6G, 1-sample T-test). The distribution for the control decoding (1s long on 1slong), had a mean 

equal to 0: the maximal predictions were distributed around real time and decoding performance was 

convincing (t(99)=-1.4632, p=0.1416). For absolute comparisons (blue on Figure 6G), the maximal 

predictions were estimated above real-time, (t(99)=7.3516, p<0.0001) with a confidence intervals 

(CI=[2.5626 4.4574]) showing that during the first half of the longer interval, time was overestimated 

in average between 2 and 4 timepoints compared to 1s-long. On the contrary, in the relative 

comparison, time was underestimated when the decoding was tested on the whole 2s-long duration 
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(pink in Figure 6G, CI=[-12.1317 -7.8683], t(99)=-9.3083, p<0.0001). Overall, the decoding results show 

that subpopulations correctly decoded time in an absolute or a relative way respectively, which means 

that from a set to the other, the same pattern of neural activity was observed either by maintaining 

the neural activity or by downscaling it. Further, we showed that performance above chance computed 

on the entire population matched better an absolute rather than a relative decoding. When tested in 

a relative comparison, decoder tended to largely underestimate time, but on the contrary, it tended 

to overestimate time only slightly when tested in the absolute comparison. These results reveal 

underlying a dynamic that could reflect an absolute way to map time triggered by feedforward 

processing following the beginning of the trial (dotted line in Figure 6F). 
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DD.4. Discussion 
 The first question we asked was whether monkey’s time categorizations were contexts 

dependent or not. Our results show that temporal categorization is indeed context dependent: an 

interval is categorized with more or less difficulty as a function of its relative position in different time 

ranges. For example, the 2s interval is more easily categorized as the longest in a short time range than 

as the shortest in a long time range. Indeed, in line with this, we showed previously that the 

intermediate interval was increasingly less well discriminated with increasing time across sets (Rolando 

et al., submitted). These results suggest that monkeys map the individual intervals using short-

intermediate-long mapping according to the temporal context, and that neural activity may follow a 

relative rather than an absolute rescaling as a function of time.  

 What then happens at the neural level? One possibility is that a neuron maintains the same 

discharge pattern between two temporal contexts, or  that its discharge rate follows the structure of 

the task, and adapt its rate accordingly, as it has been shown in fixed-interval procedures (Zhou et al., 

2020; Emmons et al., 2017 ; Mello et al., 2015), temporal discrimination tasks (Shimbo et al., 2021) and 

time-productions (Meirhaeghe et al., 2021). To test this, we used two different metrics in the caudate, 

putamen and hippocampus to compare absolute or relative adaptations. First, our results show that 

caudate displays relative temporal codes across all the time ranges. Previously, caudal activity was 

shown to scale durations in a temporal production task at the second range (Wang et al., 2018). Our 

results bring evidences that caudal activity may scale time during a categorization task at longer ranges 

too (Figure 4). In addition, we are also the first reporting absolute temporal codes in caudate, from 1s 

to 4s categorizations, during a timing task.  In contrast, putamen neurons display absolute codes at all 

the retiming conditions, and relative codes at the retiming-to-long conditions. However, despite the 

presence of absolute or relative adaptations in the putamen, caudate adaptation was much stronger 

than putamen.  In the hippocampus, the classification we performed were inconclusive, suggesting 

that neurones did not present neither patterns that were maintained across retiming, nor patterns 

that adapted across retiming.   

Then, we focused on the striatal activity, and asked whether at the populational level, neurons 

from relative subpopulations scaled their activity by adjusting their center of masses, and whether the 

neurons from the absolute populations did not. We showed that neurons from caudate matched our 

expectations very closely, at both ranges, while putamen neurons did not. Although, even if both 

structures, caudate and putamen, showed absolute and relative patterns of activity at the single-cell 

level; at the populational level, the CoM is a relevant measure for caudate neurons only. This result 

indicate that caudate TM-cells can be divided into two different subpopulations: absolute ones and 

relative ones.  
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Finally, we examined further neural activity in the caudate, as it consisted of a sufficient 

number of neurones. We aimed to understand the dynamics of population activity when animal 

retimed from 2s to 1s and asked which one of absolute or relative pattern during remapping drives the 

neural code in the entire population. Using decoding methods, we have shown that a decoder trained 

on a reference duration can decode the corresponding duration taken from a longer set. This is in 

favour of an absolute code across sets. We showed that when we trained a decoder on a reference 

set, and tested it on a longer duration adapted to match relatively the reference duration, decoding 

was poor and underestimated time. This was also in favour of the absolute code driving the neural 

population   and shows that caudal activity is captured within the first second in an absolute way. In 

addition, via the cross correlations and the decoding, we show that the end of the duration only is 

captured in a relative way. The results suggest a two steps recruitment within the interval: an absolute 

forward processing at the start of the interval maintained throughout different set durations, followed 

by a relative recruitment, which may correspond, to a temporal backwards discounting anticipating 

the end of the trial. Our results suggest that these two populations span the entire duration at short 

range, while they become gradually disconnected as duration increased.   

In conclusion, we reported for the first-time evidence that absolutes patterns of neurons drive 

the primates’ caudate nucleus in a feedforward process.  
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DD.5. Methods and supplementary results 

D.5.a. Baseline comparison across sets 

To compare the baseline between sets, we focused on the inter-trial-interval activity, which 

lasted 800ms. The neural activity during baseline was cut into 100 equals time-bins. First, we computed 

the standard deviation of the baseline activity during the reference set after convolution (sub-second 

range in retiming-to-short condition, second range in retiming-to-long conditions). Next, we tested at 

each time-point of the baseline, if inter-trial-activity during retiming condition at time t did not differ 

from activity at time t +/-2 standard deviations from the reference set. A neuron with an equal activity 

during 66% of the inter-trial interval was define as having a stable baseline. 

 

D.5.b. Behavioural analysis 

To test if durations categorization were influenced by temporal context, we tested a General 

Linear Mixed-Effect (GLME) model following the formula: 

Accuracy ~ Interval identity + (1|Monkey) + (Monkey|Block) 

where Accuracy follows a binomial distribution coding for correct categorization and errors, Label is a 

fixed categorical factor, and Monkey and Block are random factors respectively categorical and 

numerical. Note that for 0.5 and 4s, Interval had only two modalities, respectively “short” or 

“intermediate” (0.5s was never defined as long), and “intermediate” or “long” (4s was never defined 

as short). Interval had three modalities for 1 and 2s: “short”, “intermediate” or “long”. Thus, each 

duration, 0.5, 1, 2, and 4 seconds, was tested separately. 16175 trials were tested for 0.5 interval, 

21403 for 1s interval, 18738 for 2s interval, 8846 for 4s interval. 

 

D.5.c. Relative and absolute patterns defined by the centre of masses 

To define if a neuron displayed an absolute or a relative pattern of discharge rate during 

retiming conditions, we computed the temporal centre of masses (CoM) according the formula: 

CoM =  xi x ti / xi 

where xi is the activity of the neuron at time ti. We adapted this method from a previous study (Mello 

et al., 2015). This previous study computed the CoM on two different durations: a reference duration 

(CoM-R) and a longer duration (CoM-L). Although, by definition the CoM of a neuron will always be 

pull towards the centre of an interval, thus the relation CoM-R/CoM-L will always tend to the ratio: 

reference duration by long duration. Thus, we added a condition in which we also computed the CoM-

A, which is the CoM in the absolute comparison: CoM-A is the centre of mass calculated after cutting 

the long duration of the longer set to be the same size as the reference one. To summarize, for each 

neuron, we are interested in the activity during 1) the reference duration 2) the longer duration of the 
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condition, and 3) the duration of the reference obtained by cutting the longer duration in an equal 

length of the reference. For example, in retiming-to-short condition, the reference duration is 1s-long 

at the sub-second range, so the twin duration is 1s-intermediate at the second range. Long duration is 

2s-long at the second range. In retiming-to-long condition, the reference duration is 2s-long of second-

range discrimination. The twin durations are 2s-intermediate or 2s-short and the long durations are 

4s-long and 8s-long respectively from supra-second-1 and supra-second-2 ranges. In conclusion, per 

each neuron we computed 3 CoM: the reference CoM-R, the twin CoM-A and the long CoM-L. The 

CoM were calculated on the post-stimuli time histogram (PSTH) of neural activity, obtained by cutting 

the duration into 100 time-bins (time-bins size was different between durations, 10ms for 1s, 20ms for 

2s, 40ms for 4s, and 80ms for 8s), and smoothing it with +/- 4 bins. Then, the CoM are used to 

computed the absolute ratios (AR) and the (RR) relative ratios such that 

AR = CoM-R / CoM-A 

and 

RR = CoM-R / CoM-L 

Finally, the neuron was defined as relative if the RR was closer to 1 than the AR, as illustrated by  

|1-RR| < |1-AR| 

 or as absolute if the absolute ratio was closer to 1 then the relative ratio, illustrated by 

|1-RR| > |1-AR| 

Then, we compared the distances, |1-RR| and |1-AR|, for each subpopulation separately, and for all 

the structures at all ranges. These comparisons show that at the sub-second range, as expected, 

relative ratios were closer to one for caudate (1-sample T-test, t(39)=-6.56, p<0.0001) and 

hippocampus (t(7)=-2.74, p=0.0288); but not for putamen (t(20)=-1.72, p=0.1012). This means that 

using this classification, relative ratios (RR) from relative putamen neurons did not differ from their 

absolute ratios (AR) and thus, putamen relative neurons did not show strong relative codes at the 

retiming-to-short condition. For absolute neurons, as expected, absolute ratios were smaller than 

relative ones for all the structures (1-sample paired T-test, t(46)=9.28, p<0.0001 for caudate, 

t(16)=4.37, p=0.0005 for putamen, t(23)=4.91, p=0.0001). In both retiming-to-long conditions, the 

hypothesis that relative subpopulations had relatives ratios closer to one than their absolute ratios, 

and the opposite assumption for the absolute neurons (absolute ratios closer to on then their relative 

ratios), was verified (1-sample paired T-test, at retiming-to-long-1: t(27)=-6.61, p<0.0001 for the 

relative subpopulation in caudate, t(16)=4.32, p=0.0005 for the absolute subpopulation in caudate, 

t(22)=-2.6451, p=0.0148 for the relative’s neurons in putamen; t(23)=6.22, p<0.0001 for the absolute 

ones, and t(17)=-3.45, p=0.0031 for the hippocampal relative subpopulation; and t(16)=5.86, p<0.0001 

for the absolute one; and at retiming-to-long-2, t(20)=-5.06, p=0.0001, for the caudate’ relative 

subpopulation, t(5)=3.83, p=0.0123 for the absolute one, t(22)=-5.67, p<0.0001, for the relative 



131 
 

subpopulation of putamen and t(16)=4.35, p=0.0005 for the absolute one and t(14)=-4.51, p=0.0005 

for the relative population in hippocampus and t(7)=3.11, p=0.017 for its absolute one. 

Finally, we computed the relative/absolute ratio per each cell following the formula: 

(AR-RR) / (AR+RR)  

We displayed the distributions of the relative/absolute ratios in Figure 3, per each structure in each 

retiming condition. 

 

DD.5.d. Relative and absolute patterns defined by the correlations 

Because our method to defined absolute and relative neurons is new, we tested a second 

method by correlating the neuron’s activity between the different durations. A similar method has 

already been used previously (MacDonald et al., 2011). First, we correlated the neural activity between 

reference and twin durations using Spearman correlation (the absolute correlation), and obtained the 

absolute rho (rabs). Then, we correlated the neural activity between reference and long duration to get 

the relative rho (rrel, relative correlation). The two correlations were computed per each neuron. Then, 

we calculated the distance D of each data-point P, defined by two coordinates rabs and rrel, to the 

diagonal, representing the hypothesis rabs=rrel, following the formula 

D = (rrel – rabs) / √(1²+1) 

Negative values indicated a higher shift to the left of the diagonal, positive values a shift to the right. 

Then we tested, for each subpopulation obtained from the CoM method, if the distances to the 

diagonal differed from 0 (1-sample T-test). If the distances were significantly negative, it meant that 

the subpopulation had, overall, higher relative coefficients. This pattern is expected for the relative 

subpopulations. Otherwise, if the distances were significantly positives, it meant that the 

subpopulation had, overall, higher absolute coefficients. This pattern is expected for the relative 

subpopulations. In caudate (Figure 3A, D, G), the classification of absolute and relative neurons hold 

at retiming-to-short and retiming-to-long-1 conditions (t(39)=-4.3032, p=0.0001; and t(27)=-2.5012, 

p=0.0187 for relative neurons respectively for each condition, and t(46)=71538, p<0.0001; and 

t(16)=3.2866, p=0.0046 for absolute ones). In retiming-to-long-2, only relative neurons were 

confirmed (t(20)=-3.10, p=0.0056, and t(5)=-0.86, p=0.4310 for absolute neurons. For putamen (Figure 

3B, E, H), relative neurons were not correctly classified at the retiming-to-short condition (t(20)=-

0.2950, p=0.77106), but absolute neurons were (t(16)=5.17, p<0.0001). At the longer retiming 

conditions, the classifications of the neurons was confirmed by the correlation method (t(22)=-3.1231, 

p=0.0049 an t(22)=-2.752, p=0.0116 for the relative populations at retiming-to-long-1 and -to-long-2 

conditions; and t(23)=4.2325, p=0.0003 and t(16)=2.207, p=0.0422 for the absolute populations). In 

hippocampus (Figure 3D, F, I), none of the subpopulations was confirmed in any condition (at the 

retiming-to-short condition, t(7)=0.4015, p=0.7 for relative neurons, and t(23)=1.641, p=0.1144, for 
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absolute neurons; at retiming-to-long-1, t(17)=-0.5910, p=0.5622 for relative neurons and t(16)=1.54, 

p=0.1426 for absolute neurons, and at retiming-to-long-2, t(14)=-1.048, p=0.3120 for relative neurons 

and t(7)=1.49, p=0.1887 for absolute neurons). 

 

DD.5.e. Leaving-one-out method for linear regression 

To test whether the CoM at the reference duration was linearly explained by the COM at the 

twin or long durations, we computed a linear regression on the different subpopulations of neurons 

testing two models. The relative model tested on relative neurons was defined by  

COM-R ~ a x COM-L + b 

and the absolute model tested on absolute neurons was defined by  

COM-R ~ a x COM-T + b 

For caudate neurons, regressions computed on each subpopulation at each retiming condition showed 

slopes close to the theoretical values (a=0.9702, p<0.0001, a=1.0390, p=0.0013 for absolute neurons 

in retiming-to-short and retiming-to-long-1 condition; and a=0.4602 and a=0.4712 respectively for 

retiming-to-short and retiming-to-long-1 in the relative subpopulation, p<0.0001 for both conditions). 

For putamen neurons, regressions were also significative but further away from theoretical model 

(a=0.8677, p<0.0001, and a=1.2765, p=0.0011 for absolute subpopulations respectively in retiming-to-

short and retiming-to-long-1 condition; a=0.6283, p=0.0001, a=0.3984, p=0.0002, for relative neurons 

in the retiming-to-short and retiming-to-long-1 condition). Then, to test if within the same population 

there was a difference between relative and absolute model, we computed N-1 times the regression 

analysis on each subpopulation of N neurons. Each time, a different neuron was left out of the analysis. 

Then, we tested the N-1 slopes obtained from each model within the same subpopulation using 1-

sample paired T-test.  

 

D.5.f. Populational correlations 

To test whether the neural activity between a temporal context to the other was correlated, 

we tested the correlation of the activity at the populational level. The population is ordered in an N-

by-T matrix, where N are the neurons and T are the times. For correlations, durations were cut into 

10ms bins and smoothed by +/- 4 bins. For example, a 1s- duration was displayed in a N-by-100 matrix 

and a 2s- duration was displayed in a N-by-200 matrix. Each neuron was z-scored in function of its 

activity during the interval of interest: either 1s-long, 1s-intermediate or 2s-long. Then, the vector from 

the reference matrix at t1 was correlated with all the vectors of the other matrix, from t1 to tT. The 

reference duration was correlated versus the twin duration and the longer duration. Next, we 

extracted the correlations coefficients of the significant positive correlations from each matrix output, 
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and compared the distribution of these coefficients using 2-sample T-test in the aim to determine 

whether a matrix was more correlated with the reference duration than another. Finally, we 

represented for each time-point of the tested duration, either twin or long, the number of time-points 

from the reference duration that were positively correlated with. This indicates whether the 

correlations of the two matrices differed, and where they differed.  

 

DD.5.g. Temporal multiclass decoding 

In addition of the correlations, we tested at the retiming-to-short condition, whether the 

activity from the 1s-long was similar enough of the 1s-intermediate or 2s-long durations. In other 

words, we asked whether 1s-intermediate or 2s-long could be decoded in function of the activity of 

1s-long. We trained an Error-Coding Output Codes (ECOC) model on the z-scored post-stimuli time 

histogram of neural data following the same procedure as for the CoM computations in order to 

obtained, for each neuron, a 100 bins vector of its neural activity. The model was trained on 15 trials 

of the reference duration (1s-long), and tested on 5 different trials for 1000 iterations. Thus, after a 

decoding iteration, the output was a trial-by-time matrix, in our case is a 5-by-100 matrix. Once the 

1000 iterations were completed, all decoding outputs were obtained on a 5-by-100-by-1000 array. 

Then, the same model was also tested on the 1s-intermediate and 2s-long durations. To compare the 

distances from predicted-time to real-time, the decoding output was averaged across trials. Next, to 

define the chance level by performing the same decoding analysis after shuffling the labels during 

training phase and decoding phase on the reference duration. From the 5-by-100-by-1000 matrix 

obtained by chance, we multiplied the 95th percentile of the distribution by 1.5 to define the chance-

level. Chance-level value was 94.5. Shades in Figure 6C shows all the time-points decoded above 

chance. Next, we wanted to know for each time-point, what was its maximal prediction. For each 

predicted-time ti, we identified the maximal prediction as the real-time value for which ti was 

categorized as such out of the 5000 outputs. In case of multiple maximal predictions, the maximal 

prediction kept was the closer to predicted-time or the first one.  
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Figure 1. Behavioural task and categorization performance.  

A. 3-ongoing categorization task design. Trial starts with a cue, then the screen remains dark for a 

short, intermediate or long interval. The end of the interval is indicated by the appearance of three 

targets at the bottom, left and top of the screen. Monkey moves a joystick in function of the elapsed 

time between cue and targets to categorize the interval: to the bottom if it is short, left if it is 

intermediate (example in the figure) and top if it is long. After a correct response, a reward is delivered. 

Inter-trial starts when the monkey returns the joystick to the centre of the screen. B. Time-ranges of 

the task. Monkeys were tested on different temporal contexts where the short, intermediate and long 

durations varied from a set to the other. Retiming-to-short defines the sessions where monkeys were 

tested on second to sub-second range. Retiming-to-long defines the sessions where monkeys were 

tested on second to supra-second ranges. There is two retiming-to-long-conditions: retiming-to-long-

1 condition refers to the sets second and supra-second-range-1. Retiming-to-long-2 condition 

conditions refers to the sets second and supra-second-range-2. C. Probability to categorize correctly a 

duration in function of their relative position in the temporal context. Each duration is represented in 

function of its label “short”, “intermediate” or “long”. Note that there is no “long” label for 0.5s and 

no label “short” for 4s. Average performance for both monkeys and standard deviation are 

represented by the white dot and the black lines. Asterixis indicate significant differences.  
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Absolute Relative
Total    
TM cells

Total 
cells

Absolute Relative
Total   
TM cells

Total 
cells

Absolute Relative
Total   
TM cells

Total 
cells

Retiming-to-
short

47 40 87 153 17 21 38 152 24 8 32 261

Retiming-to-
long-1

17 28 45 136 24 23 47 205 17 18 35 234

Retiming-to-
short-2

6 21 27 76 17 23 40 120 17 23 40 121

HippocampusCaudate Putamen
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Table 1.  

Number of recorded time-modulated (TM) cells by-structures and sets and the number of neurons 

classify as absolute or relative per each retiming condition. Right column for each structure displays 

the total number of neurons with stable baseline for each retiming condition. 
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Figure 2. Single cells example for caudate (top) putamen (middle) and hippocampus (bottom).  

Single cells example in the retiming-to-short condition (left) and retiming-to-long-1 condition (right). 

Neurons are classified as absolute or relative depending on the ratios computed on their centre of 

masses, indicated with red circle (reference from shorter set), grey square (intermediate duration of 

longer set) and black diamond (long duration of longer set). Each neuron is displayed twice. First, on 

an absolute scale, where all the durations are represented (grey is the first half of black and are from 

the same set, red is from the different set). Second, on a relative scale, where the black line is shrinked 

to match the red one. We show that for absolute neurons, grey and red activity are similar, and red 

circle and grey square are close in the absolute panel. For relative neurons, black diamond and red 

circle on the normalized panel are closer than red circle and grey square on the absolute panel. Bottom 

schemas show how the comparisons are computed. 
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Figure Supplementary 1. Single cells example for caudate (A), putamen (B), and hippocampus (C) in 

the retiming-to-long-2 condition.  

Legend is the same than in figure 2, except that reference duration is the short interval of the longer 

set (supra-second-range). Left column shows absolute neurons, right column shows relative neurons. 

Per each neuron, we show the value of CoM-R, CoM-A and CoM-L expressed in % of the interval (2 

seconds for reference and short, red and grey line, 8 seconds for the long interval, black line) and the 

value of the absolute ratio AR (CoM-R/CoM-A) and relative ratio RR (CoM-R/CoM-L). 
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Figure 4. Linear regressions computed on the centre of masses.  

A. Centre of masses of absolute neurons in caudate (black) and putamen (grey) in the retiming-to-

short condition. CoM-R (y-axis, 1s-long) were regressed according the CoM-Absolute (x-axis, 1s-

intermediate). Fit on population centre of masses are displayed in coloured lines (black for caudate, 

grey for putamen). Dotted red line is the theoretical fit (Y = 1 x X). B. Centre of masses of relative 

neurons in caudate (black) and putamen (grey) in the retiming-to-short condition. CoM-R (y-axis, 1s-

long) were regressed according the CoM-Long (x-axis, 2s-long). Fit on population centre of masses are 

displayed in coloured lines (black for caudate, grey for putamen). Dotted red line is the theoretical fit 

(Y = 0.5 x X). C. Same as in A, but for retiming-to-long-1 condition. CoM-R (y-axis, 2s-long) regressed by 

CoM-A (x-axis, 2s-intermediate). D. Same as in B, but for retiming-to-long-1 condition. CoM-R (y-axis, 

2s-long) regressed by CoM-L (x-axis, 4s-long). E. Distance to theoretical slope (=1) computed with the 

leaving-one-out method for absolute subpopulations in each structure and each set. F. Same as in E 

for relative subpopulations. Theoretical slope is equal to 0.5. 
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Figure 5. Neural activity strongly correlates within the 1s-duration between temporal contexts at the 

retiming-to-short condition.  

A. Left panel. Activity of caudate absolute neurons during the reference duration (1s-long) of the 

retiming-to-short condition sorted by their peak. Central panel. Activity of the caudate absolute 

neurons during the twin duration (1s-intermediate) sorted in function of the peak during reference 

duration. Right panel. Activity of the caudate absolute neurons during the longer duration (2s-long) 

sorted in function of the peak during reference duration. B. Same as in A with absolute neurons. D. 

Same as in A with all the neurons. D. Top row. Matrix of correlation coefficients obtained from 

reference matrix and 1s-intermediate matrix (left panel) and reference matrix and 2s-long (right 

panel). Contours define the significant correlations. Dotted line in the right panel indicates the 

theoretical pattern of correlation for absolute neurons. Bottom left. Distribution of the correlation’s 

coefficients of the significant positive correlations in grey for the reference and 1s-intermediate 

correlation, in black for the reference and 2s-long duration. Bottom right. Number of time-points from 

reference duration correlated significantly with each time-point from the 1s-intermediate matrix (grey) 

and 2s-long matrix (black). E. Same as in D for the relative neurons. Top right panel. Dotted lines 

represent the theoretical patter for relative neurons. F. Same as in D and E for all the neurons. 
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Figure 6. Decoding caudal activity in the retiming-to-short condition follows an absolute.  

A. Schema showing the comparisons from decoding output. The model was trained on the grey 

duration (reference), and tested on the grey, blue (1s-intermediate) and pink (2s-long) durations. B. 

Left panel. Decoding results on the absolute subpopulation. We display for each time point (real time, 

x-axis), its predicted time (average and standard deviation, y-axis) when the model was tested on the 

reference (grey), 1s-intermediate (blue) and 2s-long (pink) durations. Right panel. Cumulative 

probability distribution computed with an empirical cumulative distribution function on the averaged 

decoding outputs tested on reference (grey), 1s-intermediate (blue) and 2s-long (pink). C. Same as in 

B for the relative neurons. D. Decoding results from the entire population when trained on reference 

and tested on reference (grey) or 1s-intermediate (blue). Shades represent the time-points decoded 

above chance (see methods). Dots show the maximal prediction per each real time point. E. Same as 

in D when model was trained on reference (grey) and tested on 2s-long (pink). F. Distance of maximal 

prediction to real time for each tested duration: reference, 1s-intermediate and 2s-long respectively 

in grey, blue and pink. Dotted line represents the absolute pattern of time in the long condition, it is 

equivalent to the diagonal in F. 
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E. General discussion 

 

E.1. Time categorization differs across ranges 

To address whether time-ranges influences temporal estimations, we designed a time-

categorization task that could be tested at different time-ranges. We trained two rhesus macaques to 

perform the task. Monkeys are able to categorize temporal duration in a sequential order: short, 

intermediate or long. Previously, it has been shown that monkeys categorize durations into short and 

long at the second range (Mendoza, Méndez, Pérez, Prado, & Merchant, 2018; Leon & Shadlen, 2003). 

In an interval-generation task, monkeys are able to time their movements over 2, 4 or 8 seconds, and 

their temporal production follows a scalar rule (Mita et al., 2009). Scalability in their behaviour suggest 

that they are as good producing a 2s interval than an 8s interval, in a relative scale. Our task differs 

from that in the sense that durations must be categorized as they are intertwined in the longer one. In 

line with their results, 4s and 8s were categorized with the same accuracy when they were long. In our 

task, monkey’s performance was influenced by training: they performed better at the range they were 

trained on (second range, 0.5-1-2s). Nonetheless, temporal categorization did not follow the same 

patterns whether durations were divided (retiming-to-short) or multiplied by two (retiming-to-long). 

Indeed, performance on retiming-to-short conditions were higher than retiming-to-long conditions. 

This can be due to a lack of motivation to time long durations. Indeed, long durations can be perceived 

as aversive before getting a reward, as it has been shown with delay-discounting tasks (Martinez, 

Pasquereau, Saga, Météreau, & Tremblay, 2020; Minamimoto, La Camera, & Richmond, 2009). Thus, 

a lack of motivation to perform the task could be illustrated by an increase of aborted trials and/or a 

tendency to respond randomly. First, the proportion of anticipated trials did not vary across ranges in 

the retiming conditions are were always below 5% for both monkeys. Second, even at longer ranges, 

up to 8s, categorization was above 0.5 correct for short and long trials for both monkeys, while chance 

level was at defined 0.33. In addition, the nature of the errors at intermediate trials was not randomly 

distributed (0.5-0.5 for both, underestimations and overestimations) but rather showed a shift in 

temporal perception. At the sub-second range, intermediate trials (0.5s) were classified more often as 

shorts (0.25s) then long (1s). As time-range increased, intermediate trials were gradually more often 

overestimated than underestimated, with the higher difference at the set 8s-long, where intermediate 

trials (4s) were more often categorized as long (8s) than short (2s). This can be interpreted as a 

slowdown in temporal perception. Thus, decreased performance in time categorization cannot be 

linked with a decreased motivation when time-ranges increased.  
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E.2. Is there a shift of timing strategies? 

In addition, we showed that response times were shorter and illustrated anticipation of the 

end of the long intervals at shorter ranges. On the other hand, at longer ranges, the end of longer 

durations was not anticipated. We hypothesise that this could illustrate a change in the timing strategy 

of the monkeys. Congruently, the anticipation patterns were different between shorter time ranges 

(sub-second and second) and supra-second ranges. Indeed, at shorter ranges, the anticipation of the 

end of intervals (anticipated trials) increased gradually during the second half of the long interval 

(when there was only one possible response left, i.e. the long one). Monkeys anticipated the end of 

the intervals by moving the joystick before its end. On the contrary, at supra-second ranges, the 

anticipation of the end of the intervals was higher at the beginning of the durations: monkeys do not 

anticipate the end of the longer intervals anymore. One possibility to explain this differential behaviour 

is that at shorter ranges, monkeys explicitly time the interval, and at longer ranges, monkeys time the 

longer interval in an implicit manner: they respond long when the target appear after 4 or 8s without 

“actively” expecting its end. In this case, increasing responses times could reflect a lack of motor 

preparation. On the other hand, it is also possible that responses times increasing reflect uncertainty: 

in this case, the response time pattern matches the fact that temporal discrimination is more difficult 

at longer ranges. Even if some observations could suggest a shift in timing strategies, we cannot make 

any statement because we cannot reject any alternative hypothesis. 

 

E.3. Time categorization follows a sequential rule  

If we take our results altogether, we show that durations categorizations were context 

dependent and that intermediate duration was always the most difficult to categorize. This is in 

contrast with temporal production task, where time productions followed a regression to the mean 

pattern: short durations are overproduced and longer durations are underproduced (Meirhaeghe, 

Sohn, & Jazayeri, 2021; Jazayeri & Shadlen, 2015). We suggest that in our task, a regression to the 

mean would be illustrated by a better categorization of intermediate trials, as time categorization 

would be biased to the intermediate duration. On the contrary, the results show that monkeys 

categorized better longer durations from second to supra-second ranges and shorter durations in sub-

second range. At the exception of this shorter range, time categorization followed a sequential rule 

where long was better discriminated than short, and short was better discriminated than intermediate. 

This result shows that monkeys perform the task similarly as how they perform the temporal bisection 

task: the extreme durations are easier to identify (Mendoza et al., 2018; Leon & Shadlen, 2003).  

Now we can move to the next level and ask: what are the neural correlates of these 

behavioural observations? 
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E.4 TM-cells are not directly recruited as a function of movement 

Many of the proposed neural correlates for time have been linked with motor responses. This 

is the case in macaques pre-supplementary motor area (pre-SMA), lateral intra-parietal (LIP), 

orbitofrontal (OFC) and prefrontal cortices (PFC) and caudate nucleus (Meirhaeghe et al., 2021; Wang, 

Narain, Hosseini, & Jazayeri, 2018; Jazayeri & Shadlen, 2015; Tsujimoto, Genovesio, & Wise, 2009; Mita 

et al., 2009; Quintana & Fuster, 1999) and in rodents orbitofrontal cortex (OFC), motor (M2), prefrontal 

cortex (PFC),  and striatum for example (Zhou, Masmanidis, & Buonomano, 2020; Bakhurin et al., 2017; 

Emmons et al., 2017; Mello, Soares, & Paton, 2015). Even rodents time-cells in the hippocampus are 

recruited during running episodes (Shimbo, Izawa, & Fujisawa, 2021; Mau et al., 2018; Robinson et al., 

2017; Kraus, Robinson, White, Eichenbaum, & Hasselmo, 2013; Pastalkova, Itskov, Amarasingham, & 

Buzsáki, 2008) or modulated by spatial position (MacDonald et al., 2011). This suggest that time can 

be decoded from these regions because movement take place in time, and these activities are part of 

the execution of movement in time. Nevertheless, not all the temporal signatures are related to 

movement in macaques pre-SMA, but they rather target a temporal boundary (Mendoza et al., 2018); 

while in orbitofrontal, caudate nucleus and ventral striatum, neural activity can be modulated over 

time by reward expectancy (Hori et al., 2021; Cai, Kim, & Lee, 2011; Tremblay & Schultz, 1999). In 

striatum rodents, temporal decision threshold coded in the striatum can also be unrelated to 

movement (Gouvêa et al., 2015). In addition, in the medial temporal lobe, human time-cells differed 

from the ones observed in rodents as they are recruited during episodic memory tasks without 

involving any movement (Reddy et al., 2021; Umbach et al., 2020). Our results correspond to these 

latest observations, as our set up allowed to probe time cells while animals waited for an interval to 

end, rather than prepare an action in time. Therefore, we did not find strong evidences to link time-

modulated (TM) cells activity to motor movement per se. First, time cells distribution in the interval 

did not take place only during movement times, but rather were distributed during the whole interval. 

We found that time changes of neural states were almost continuous through time. Some of the TM 

cells were indeed responsive to movement, and were also responsive to the target’s appearance, 

which can be linked to movement preparation. However, for TM cells selective to one type of motor 

response (top, left, down of the joystick movement) peak distribution of these cells did not differ 

between groups in any structure. This supports the idea that the activity of these cells during the 

interval is unrelated with the execution of the motor response. In addition, in the second chapter, we 

showed that caudate dynamics during 1s where highly similar between sets at sub-second and second 

ranges, even if the motor responses associated within this second differed between sets. So, rather 

than a specific movement related task, it may be more accurate to describe the activity of the cells as 
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a temporally organized sequence recruited continuously but with a density adjusted to the rate of 

expected events.  

 

E.5. Can we decode time from neural activity?  

When neural activity carries information about time, one could be able to predict time by 

looking at the state of the population. Indeed, we followed the statement that to decode time from 

neural activity, changes in the neural states of the population must be detectable from a moment to 

the other (Buonomano & Maass, 2009; Karmarkar & Buonomano, 2007). It has been shown that neural 

population does not carry temporal information with the same strength as a function of the timing 

task: indeed, in explicit timing tasks, temporal predictability is more accurate than in implicit timing 

tasks (Cueva et al., 2020). Here, we want to highlight the fact that the “code” for a duration depends 

on the cognitive demand by addressing the question differently. First, we used TM cells from the 2s-

long set as we had more cells in all structures, and we showed that TM cells activity outside the baseline 

could not be decoded based on the activity during the interval -explicit timing task- nor decoded as a 

function of baseline activity neither. Then, we also showed that across sets, the consistency of the time 

codes during the first second (cropping the rest of the interval) decreased as intervals increased. The 

first evidence comes from the proportion of TM cells defined on the entire duration or on the first 

second of the same duration. On the striatal territories, TM cells were more abundant when they were 

defined on the longer interval of the sets (2, 4 and 8 seconds) than when they were defined on the first 

second of the same duration. On the hippocampus, such a difference was not observed. Then, we 

decoded activity moment-to-moment, and showed that the first second of the intervals was differently 

decoded as a function of the timing demand on the duration. Indeed, we showed that at shorter ranges 

(sub-second and second ranges), time was better decoded than at longer ranges. Thus, our result 

reported evidences that within the first second, the amount of change in the neural population 

depends on the probability that an event can occur within this second or not.  So, what does this mean 

if we confront to our starting question? Decoding time is a tool to probe whether neural activity has a 

structure that changes as a function of time, and that this structure is repeated over and over across 

different trials. It would of course be possible to decode time from temporal cortex if we showed a 

movie on each trial, and the time selective activity would support time decoding because neural 

activity is different as a function of the stimuli of the frames. Would this mean that the activity encodes 

time? The main point from our results is that we show that the structure of the activity as a function 

of time in the trial, following a simple stimulus, supports the decoding of time and adapts to the 

expectations within the trial. As such, the neural activity encodes expectancies in time sustained by a 

modification of the neural circuit.  
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E.6. Are all neural structures equally recruited? 

The main idea of the first manuscript is to compare the neural dynamics between striatum and 

hippocampus. Both structures have been mainly studied separately. In rodents, time can be decoded 

from hippocampal activity at the tens of seconds range (Mau et al., 2018) and from striatal activity, at 

the second, and tens of seconds-to-minute range (Mello et al., 2015; Gouvêa et al., 2015). In addition, 

when striatal neurons are compared with cortical regions, it was demonstrated that temporal decoding 

is better in the striatum than in motor and orbitofrontal cortex at the supra-second range (Zhou et al., 

2020; Bakhurin et al., 2017). A striking observation is that in these studies, striatal and cortical neurons 

display similar activity, but decoding is still better in the striatum. Recently, it was shown that in 

rodents, both structures, striatum and hippocampus, sustained temporal codes in a foraging task over 

a 5-minutes delay (Shikano et al., 2021). In both structures, the sequentiality of time-cells peaks 

emerged with learning, and allow proper decoding but without direct comparisons between 

structures. The authors also show that inactivating the hippocampus disrupted the peaks’ sequentiality 

in the striatum, highlighting a network for time code between both regions, and suggesting a 

directionality: time information is conveyed from the hippocampus to the striatum. Altogether, these 

results convey the hypothesis that time is encoded across multiple brain regions, but that the striatum 

act as a time reader  (Matell & Meck, 2004; Matell & Meck, 2000). We are the first ones comparing 

directly the neurophysiological activity of these two brain regions during a timing task in primates. Our 

results fit the previous reports as time is better decoded in the striatum than in another structure, in 

this case the hippocampus. Thus, to the fact that striatum is a better temporal reader than the cortex, 

we can add the fact that it is a best temporal reader than the hippocampus when considering single-

unit activity, during an interval categorization task. Nevertheless, time codes are presented in both 

areas even if they are weaker in the hippocampus. Thus, we suggest that in our task, temporal 

information does not convey from the hippocampus as previously reported in rodents (Shikano et al., 

2021), but rather from cortical areas. 

 

E.7. Striatum scales duration better 

It has been demonstrated that caudate, as prefrontal cortex, adapt the amount of changes 

between two consecutive time-points over an interval to be produced (Wang et al., 2018). This kind of 

temporal code allows rapid adaptability to produce movements over different durations. Our results 

fit this hypothesis, and extend these findings to categorization tasks. Indeed, between two time-points, 

the changes in caudate population gradually decreased over time within an interval, and between 

ranges. In addition, we showed, even if the amount of change between two consecutive timepoints 

were higher in hippocampus and in putamen (higher speed), the trajectories of the neural populations 
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were more “disorganised” than in caudate. On the contrary, in caudate, the amount of change of the 

neural states were smaller between two time points, but the overall changes in population activity 

over time were larger and its intrinsic organization allows a better temporal decoding. The neurons we 

recorded from are inhibitory spiny neurons which can be excited by cortical input, or dopamine and 

cholinergic input, and they can be inhibited/disinhibited by other spiny neurones (Burke et al., 2017). 

Their activation results in facilitation or inhibition of various actions. In the task we use, the activations 

we measured are the start of an inhibitory/disinhibitory circuit that results in a final action. We show 

that this circuit is best organized in time in the caudate, and this can be the result of local or global 

circuit recruitment, for which caudate prevails in our task.  

 

E.8. Striatum predictability decreases over ranges 

Temporal decoding in the striatum can be explained by the striatal anatomy. With collateral 

inhibition in the striatum (Plenz, 2003), neurons in the striatum present the characteristics to compute 

time in a discretised way. Indeed, when neuron A is stimulated by a cortical input, neuron A can inhibit 

neuron B with collaterals. Once neuron A is not stimulated anymore, it releases its inhibition to neuron 

B, that can in turn inhibits its neighbours. This can be described as a pull-push mechanism: when 

neuron A is activated, neuron B is not, and when neuron B is activated, neuron A is not. Such a 

mechanism conveys into a peak sequentially informative about time. Our results challenged the 

temporal maintenance of such a mechanism over longer ranges. Indeed, such a mechanism may not 

be maintained over long periods in macaques’ striatum, involving a loss of time tracking over long 

durations reflected by our decoding results in chapter 1. Our analysis in chapter 2 convey this 

hypothesis in caudate. Indeed, the timing track of 1s is maintained between sub- and supra-second 

ranges in an absolute way. Thus, the activity modulation is not set dependent between sub-second 

and second ranges, and can result on a basic chain reaction at the neural level triggered by the sensory 

cue. The lack of decoding accuracy moment-by-moment in the longer sets can illustrate that at longer 

ranges, this feedforward process does not hold.  

An overall mechanism may involve at a short time-range, a feedforward activation of a 

sequence of cells, until reward following the appropriate action. This reward acts as a feedback which 

modifies feedforward in retrospect. This may explain the differential recruitment following the start 

of a trial (extinction of white square) at short time-range. At a longer time-range, the temporal distance 

between the cells activated in feedforward and the feedback from midbrain dopamine or cholinergic 

tonically active neurons (TANs) at the time of reward (Martel & Apicella, 2021), may be too large to 

support plasticity maintaining this predictive sequence. To test this, it would be interesting in the 
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future to study changes as a function of learning, and to test the effects of blocking dopaminergic and 

cholinergic feedback by pharmacological manipulations.   

 

E.9. Linking ramping activity to reward anticipation 

Within a duration, moments of interest can be overrepresented via dopaminergic stimulations 

with transient -phasic- activity that encode rewards and reinforces moments of reward (Schultz, 2016). 

The major outputs of the midbrain neurons are the striatum (Haber, 2014), thus striatal role in timing 

can be directly linked with its dopaminergic inputs. In addition to its phasic dopaminergic stimulation, 

it has been demonstrated that dopaminergic neurons may provide the striatum with tonic inputs 

(Howe & Dombeck, 2016). Tonic dopaminergic modulation is sensitive to ongoing expectations about 

reward (Wang, Toyoshima, Kunimatsu, Yamada, & Matsumoto, 2021), and thus can also provide 

temporal information to the striatum in a constant way. In the second chapter, we showed that the 

middle of the longer duration does not correlate with any other state of the reference duration. Right 

after the middle of the longer duration, reinforcements never occur. On the contrary, the end of the 

longer durations for each set are highly correlated with each other. This can be explained by a 

consequent number of ramping neurons, ramping to the end of the interval in both sets and in 

consequence triggering the end of the duration in any set (1s-long or 2s-long). These neurons ramping 

to the end of the intervals could be triggered by tonic dopaminergic inputs in the striatum.  

 

E.10. Can be time decoding linked with ramping activity? 

If we consider that dopaminergic inputs to the striatum could initiate temporal codes in the 

striatum. Another mechanism between structures was proposed to account for temporal codes 

between entorhinal cortex and hippocampus (Rolls & Mills, 2019) where hippocampal time-cells are 

provided with temporal information from ramping neurons of the entorhinal cortex (Bright et al., 2020; 

Umbach et al., 2020; Tsao et al., 2018). One of the differences we found between striatum and 

hippocampus is that the latter has a very low proportion of ramping neurons. This raises an important 

question: which one of the phasic (time cells) and tonic (ramping cells) is better to predict time? 

Previously, some studies supported the idea that monotonic changes in neural activity over time allows 

better temporal prediction (Cueva et al., 2020), while others sustained the idea that a well-organized 

sequence of peaks allows a better readout of time (Zhou et al., 2020; Pilkiw & Takehara-Nishiuchi, 

2018). This is an ongoing debate (Zhou & Buonomano, 2022). Our results suggest that ramping activity 

allows better temporal prediction but not necessarily moment-to-moment decoding. Indeed, the 

striatum is the structure with the higher proportion of ramping neurons and the higher monotonic 

changes occurring at the single-cell level, without any difference between sets. Striatum is also the 
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best temporal predictor, for all ranges. Thus, it can be suggested that striatum is a better temporal 

predictor because it has higher ramping activity. But on the contrary, temporal prediction computed 

on a population of relaxation cells (displaying a pattern similar to ramping down activity), reflects 

higher decoding accuracies at the beginning of the interval than at the end  (Bright et al., 2020) but not 

a maintained performance over time. On the other hand, we showed that moment-to-moment 

decoding does decrease as the length of the ranges increased. In this case, the maintained proportion 

of ramping activity is not consistent with the lack of decoding accuracy over time. Here, we conclude 

that ramping cells are needed for temporal prediction but not for moment-to-moment classification. 

 

E.11. Is time processed in sequence or in a parallel way? 

The cognitive models of temporal processing attempted to create a universal framework in 

which a duration is processed in a sequential way and reaches a final stage in which time is encoded 

in the striatum. However, if we consider the well-studied reward circuitry, it has been proposed that 

reward information is processed by multiple areas in a parallel way and not necessary in a sequential 

network (Phillips, 1984). We can make the same hypothesis for time processing. Multiple areas 

integrate time information, from sensory inputs and reward values from the external world, but also 

for motor coordination, needing a time processing from the inner world: temporal codes emerge from 

multiple brain areas. Do they all convey to the same “clock”, i.e. the striatum? In the striatal beat 

frequency (SBF) model, all the temporal information conveys to the striatum before reaching the 

cortex back for response (Kononowicz & van Wassenhove, 2016; Matell & Meck, 2004). The temporal 

processing follows the sequential model: pacemaker, integrator and decision process. One example of 

a parallelization of temporal processing would be reflected by the fact that multiple brain areas process 

temporal information, but on the contrary to SBF model, not all the temporal information conveys to 

striatum. Another example of parallelization of temporal processing, would be that, if we accept the 

striatum as a “central clock” and all the temporal information conveys to there, time could still be 

process in parallel via its parallel cortico-striato-pallidal loops (Jahanshahi et al., 2015; Alexander et al., 

1986). The first hypothesis is innovative and has to be asked at some point. Nevertheless, many studies 

show or strongly suggest that the temporal code they observe in cortical areas convey to the striatum 

but that the temporal code is refined by striatal circuits (Zhou et al., 2020; Wang et al., 2018; Mendoza 

et al., 2018; Emmons et al., 2017; Bakhurin et al., 2017). 

The second question is whether all the temporal information conveyed to the striatum via a 

unique time network? It has been shown that in a 5-minutes foraging task, hippocampal inactivation’s 

disrupt temporal patterns in the rodent’s striatum, highlighting an hippocampal-striatal neural 

network for temporal processing (Shikano et al., 2021). These authors posit the hippocampus is the 
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source of temporal code in the striatum. However, the hippocampal-striatum network could also be 

activated during associative learning via the ventral tegmental area (Lisman & Grace, 2005). Even if we 

did not manipulate neural activity as monkeys performed the task, our data suggest that the 

hippocampus is not involved in the task. We make the prediction that inactivating the hippocampus in 

our task will not disrupt the temporal patterns observed in striatal populations. Indeed, in our task, it 

is unlikely that temporal information emerge from the hippocampus, but rather from the cortex: 

probably pre-SMA (Lehéricy et al., 2004) or OFC (Ferry et al., 2000). Our study combined with the 

previous results points out at least two different time networks going through the striatum. In addition, 

a purely speculative assumption is that, for example, during social interactions, temporal information 

could convey from the amygdala, as it has been shown that neurons in the amygdala triggered time in 

a social interaction (Gilardeau et al., 2021). Parallelization of the neural networks in time processing 

explained why we do not have strong temporal activity in the hippocampus. 

 

E.12. Future perspectives 

 We have shown that neural changes in caudate, putamen and hippocampus are different 

during a timing task. Hippocampal activity was barely modulated by ongoing time, while striatum 

showed strong time processing. We highlighted what happens at the neural level during the temporal 

intervals, but how the temporal modulations are integrated by the striatum remains unclear. The next 

step is to identify more clearly the role of the dopaminergic and cholinergic inputs of the striatum in 

temporal processing. Recently, it has been shown that dopaminergic modulation influences choices in 

a temporal bisection tasks (Soares et al., 2016), so does striatum (Gouvêa et al., 2015). To further 

explicit the differential roles of these structures in temporal processing, we suggest that double 

dissociations inactivating these structures is needed. Further, the manipulation of the different 

neurons in the striatum (i.e. medium spiny-neurons, tonically active neurons, fast-spiking neurons) 

during a timing task would allow to distinguish time linked with the reward responses (TANs) and time 

linked with action selection (fast-spiking neurons) for example (Kreitzer, 2009). In addition, whether 

the striatum act as a time-keeper, a comparator (Gouvêa et al., 2015) or a memory component (Coull 

et al., 2008) in a timing-task remains unclear. To address this, inactivation’s of the striatal territories 

during a temporal task that would distinguish an encoding, storage, comparison and response phase 

(Chiba et al., 2015) would allow to clarify at what moment of the temporal processing the striatum is 

involved. The final question is: are the monkeys able to perform a temporal categorization task if we 

remove the caudate and/or the putamen (assuming that they would be still able to produce a 

response)?  The SBF model would predict that it would be impossible, nonetheless, one could assume 

that some kind of categorization computed by the cortex would be possible.  
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