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Introduction

Acoustic lining is one of the key technologies for controlling aero-engine noise
[1–3]. Due to its effectiveness in low cost, low weight, it has been widely applied
in aircraft engines, particularly in the surface treatment of the intake, bypass, and
exhaust sections of nacelles, as shown in Figure 1. The measurement of the liner per-
formance and the study of its behaviour are important topics in its development and
design. This thesis focuses on the measurement of acoustic liners under conditions
representative of aircraft nacelles, namely complex acoustic fields within large ducts
and sheared high-speed flows.

Figure 1: Schematic view of liner positions in a turbofan engine na-
celle [4].

Liner characterisation

In duct acoustics, the process of liner optimisation is typically achieved through
numerical simulations of the given problem and geometry. This results in the com-
putation of the optimal impedance (or the geometry) of the liner to be installed for
effective noise reduction [5, 6]. The acoustic impedance is defined as the ratio be-
tween the acoustic pressure and the normal particle velocity at the surface of the
liner. Following the optimisation, measurements are required to verify the liner’s
performance in different environments. In this context, impedance measurements
are crucial, as impedance is a parameter that remains independent of the duct geom-
etry, unlike other acoustic quantities such as absorption or transmission loss. How-
ever, it has been shown [7] that the flow velocity and the incident Sound Pressure
Level (SPL) have an impact on the impedance, so that the measurements have to be
performed under conditions close to the targeted application. To this end, several
studies [8, 9] have investigated factors such as the incident amplitude of the incident
acoustic field, flow velocity, and flow profile. However, these investigations have
predominantly been conducted in small-scale test ducts, which do not adequately
represent the complex conditions found in engine nacelles. In the latter situation,
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the acoustic field is more complex due to a larger number of propagating modes,
and the effects of flow shear require further investigation in large-scale ducts. To ad-
dress these investigations, the MAINE Flow facility [10–12], which includes a large
cross-sectional duct, has been established at LAUM for liner measurements under a
controlled large amplitude incident acoustic field and a high-speed airflow.

Common experimental methods to assess the liner impedance in presence of
flows include the in-situ method [13] and impedance eduction techniques [14–18].
The former focuses on local effects, but requires damaging the liner sample, whereas
the latter is based on an acoustic propagation model within the duct, and therefore
generally leads to the effective average impedance along the entire lined section.
Also, impedance eduction methods can be categorised as inverse or direct, depend-
ing on whether the impedance is obtained by iterative calculations or not. This the-
sis focuses on the direct method for impedance eduction and its development in the
context of large ducts. Therefore, an accurate propagation model is needed to con-
sider the framework of multimodal sound fields and large Mach number subsonic
flows.

Acoustic propagation models incorporate physical effects to varying extents, de-
pending on the hypotheses made. With regard to flow effects, the assumption of uni-
form flow has been shown to lead to errors in the process of educing the impedance,
highlighting the importance of accounting for flow shear in realistic situations [9,
19]. For example, a comparative study in the NASA GFIT facility [9] reveals discrep-
ancies between the impedance obtained using uniform or shear flow, especially at
high flow velocities. However, Jing et al. [20] demonstrates that impedance educ-
tion considering shear flow is minimally influenced by the boundary layer’s exact
shape, consistent with earlier findings [21]. Nevertheless, Spillere et al. [18] observes
that more realistic flow profiles can impact impedance eduction in their larger cross-
section test duct, differing from previous observations. Bonomo et al. [22] further
highlights how varying flow profiles can cause discrepancies in impedance results
across different test rigs, suggesting that accurate impedance calculations should
account for the flow profile. With these studies occurring in different contexts, key
questions remain: To what extent does mean flow shear impact impedance eduction,
and how are these effects influenced by factors such as duct size, frequency and flow
velocity?

Concerning existing test facilities, published experimental results are mainly ob-
tained with small cross-section ducts in which the flow and the incident sound field
can be more easily generated and controlled. However, in these test ducts, only
plane wave propagates at most frequencies of interest, with limited studies address-
ing shear flow effects with multimodal fields in larger ducts. NASA’s studies [23, 24]
report similar impedance eduction results between a small cross-section duct (GFIT)
and a large-scale duct (CDTR) under the uniform flow assumption. Discrepancies
were observed only at very low or very high frequencies, attributed to low attenu-
ation and the emergence of higher-order modes, respectively [24]. While these data
provide valuable insights into differences between small and large ducts, the pre-
cise impact of mean flow shear in large ducts remains to be thoroughly investigated.
Additionally, at typical measurement frequencies, multimodal propagation is more
prevalent in large ducts. Roncen et al. [25] assesses uncertainties in flow profiles
using Bayesian inference, and concludes that uniform flow assumptions do not sig-
nificantly affect single-mode propagation results, but that multimodal cases require
further investigations. Given the lack of studies in multimodal acoustic field, it is
crucial to develop impedance eduction techniques, enabling more experimental in-
vestigations in large ducts that account for higher-order modes.
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Objectives and outline of the thesis

This thesis aims to develop direct impedance eduction techniques for large ducts
with sheared flows. It begins with a review on acoustic liners in presence of flow,
outlining the current state of research. This is followed by a detailed description of
the propagation models that simulate acoustic fields in large ducts, serving as key
tools for both experimental and numerical studies. Using these tools, new direct
impedance eduction methods are developed and compared with the traditional al-
gorithm [15]. The primary objective is to analyse, through parametric studies, the
influence of shear flow on acoustic propagation and attenuation in ducts equipped
with liners, as well as to assess the validity of the uniform flow assumption inher-
ent in the traditional algorithm. A secondary purpose is to implement these direct
impedance techniques and to evaluate the performance of both existing and newly
developed methods through numerical simulations and experimental validations in
the large duct of MAINE Flow facility. To these ends, the thesis is organised into five
chapters.

Chapter 1 provides an overview of the background and evolving demands for
the application of acoustic liners. It details the physical mechanisms associated with
acoustic liners and outlines the existing empirical design methods. The chapter also
reviews experimental methods and facilities commonly used for the characterisa-
tion of acoustic liners. Based on existing modelling and experimental research, it
concludes with some considerations on the influence of various physical conditions
on the liner performance, including high sound pressure levels and flow effects.

In Chapter 2, the numerical and experimental methods employed in this thesis
are described. It begins with a description of the MAINE Flow facility. Following
this, a multimodal approach is used to simulate the acoustic field within large ducts:
the convected Helmholtz equation is used to account for a uniform flow, and the
linearized Euler equations for a sheared flow. Furthermore, the chapter provides
a detailed explanation of both the traditional direct impedance eduction algorithm
and the newly developed methods that account for lined-lined (so-called double-
liner) configuration and/or sheared flow. These models and methods are employed
in Chapter 3 to assess several aspects of the impact of shear flow in a lined duct. The
impedance eduction techniques are also used for numerical simulations (in Chapter
4) based on pressure data computed through the multimodal models, and for exper-
imental analysis (in Chapter 5) using data measured in the MAINE Flow facility.

The direct impedance eduction method can be broadly divided into two steps:
extracting wavenumbers from the sound field signals and calculating the acoustic
impedance using these wavenumbers. Consequently, the impact of shear flow on
impedance eduction is considered in relation to these two stages. Additionally, the
overall performance of impedance eduction is influenced by liner attenuation [17, 24,
26]. In view of these, Chapter 3 provides a detailed analysis of the effects of shear
flow by focusing on three key aspects: acoustic propagation within the duct, the
accuracy of impedance eduction results, and the sound attenuation performance of
acoustic liners within the duct. The study examines various parameters, including
boundary layer thickness, flow velocity, propagation direction, and different liner
configurations. The chapter first investigates the impact of shear flow on acoustic
propagation by analysing the differences in wavenumbers under uniform and shear
flow conditions. Next, it evaluates the accuracy of calculating impedance through
comparing result errors obtained using the traditional method (which assumes uni-
form flow and applies the Ingard-Myers boundary condition) with those from the
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proposed method (which accounts for flow shear). The influence of shear is also
assessed in terms of transmission coefficients.

Chapter 4 simulates the eduction process by numerically conducting impedance
eduction using pressure signals from the lined section, within the acoustic field sim-
ulated by the multimodal models described in Chapter 2. In other words, the direct
impedance eduction experiments conducted in the MAINE Flow duct are replicated
through numerical simulations. The analysis covers several key aspects, including
wavenumber estimation methods, liner configurations, flow assumptions used in
impedance calculations, the presence of noise in pressure signals, mode disturbances
in the incident sound field, and the positioning and deployment of the microphone
array. These simulations assess the performance of impedance calculations under
both single-liner and double-liner configurations, considering uniform and shear
flow assumptions. The underlying mechanisms driving the performance differences
between the two configurations are then discussed in detail. Finally, to improve the
effectiveness of the double-liner configuration in practical experiments, the use of a
2-line microphone array is proposed.

The last chapter of this thesis presents the experimental part, conducted with
the large duct (MAINE Flow) and incorporating newly developed ideas such as the
double-liner configuration and the two microphone arrays (1-line and 2-line). For
data post-processing, two methods are developed and compared to accurately se-
lect the correct wavenumbers from the experimental data, which are essential for
calculating precise impedance values. During testing, liner samples are measured
under various conditions to analyse the effects of different liner configurations, inci-
dent modes, sound pressure levels, flow velocities, and propagation directions. The
chapter also compares the results obtained using uniform flow and shear flow mod-
els during the impedance calculation. Additionally, the impact of microphone spac-
ing is discussed, and the performances of different microphone arrays in impedance
eduction are compared. Finally, the chapter introduces tests conducted on two sets
of optimised liners, specifically designed for their high-frequency attenuation in the
presence of flow.

Finally, the key findings in this thesis are summarised in the conclusions and a
number of perspectives are provided for future work.
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Résumé

Les traitements acoustiques ("acoustic liners" en Anglais) sont une technolo-
gie clé pour contrôler le bruit émis par les moteurs d’avion, en particulier dans le
traitement de surface des sections d’admission, de dérivation et d’échappement des
nacelles. L’étude expérimentale de leur comportement et la mesure de leurs per-
formances sont des sujets importants pour la conception et le développement de
ces traitements. Cette thèse se concentre sur la mesure des revêtements acoustiques
dans des conditions représentatives des nacelles d’avion, à savoir des champs acous-
tiques complexes à l’intérieur de grands conduits où existent des écoulements cisail-
lés de grande vitesse.

Le processus d’optimisation des revêtements acoustiques est généralement réal-
isé au moyen de simulations numériques d’une situation. Cela permet de calculer
l’impédance optimale (ou la géométrie) du traitement à installer pour une réduc-
tion efficace du bruit [5, 6]. L’impédance acoustique est définie comme le rap-
port entre la pression acoustique et la vitesse particulaire normale à la surface du
revêtement. Après l’optimisation, des mesures sont nécessaires pour vérifier les
performances du revêtement dans différents environnements. Dans ce contexte, les
mesures d’impédance sont essentielles, car l’impédance est un paramètre indépen-
dant de la géométrie du conduit, contrairement à d’autres grandeurs acoustiques
telles que l’absorption ou la perte par transmission. Cependant, il a été démontré
[7] que la vitesse d’écoulement et le niveau de pression sonore incidente (SPL) in-
fluencent l’impédance, de sorte que les mesures doivent être effectuées dans des
conditions proches de l’application visée. À cette fin, plusieurs études [8, 9] ont ex-
aminé des facteurs tels que l’amplitude du champ acoustique incident, la vitesse de
l’écoulement et le profil d’écoulement. Cependant, ces recherches ont été principale-
ment menées dans des conduits d’essai de petite section, qui ne représentent pas
adéquatement les conditions complexes rencontrées dans les nacelles de moteurs.
Dans ce dernier cas, le champ acoustique est plus complexe en raison d’un plus
grand nombre de modes propagatifs, et les effets du cisaillement de l’écoulement
doivent être étudiés plus en détails dans de grands conduits. Pour mener à bien ces
études, le banc d’essai MAINE Flow [10–12], qui comprend un conduit de grande
section, a été mis en place au LAUM pour caractériser des traitements acoustiques
dans des conditions contrôlées, avec un champ acoustique incident à grande ampli-
tude et un écoulement d’air à grande vitesse.

Les méthodes expérimentales courantes pour évaluer l’impédance du revête-
ment en présence d’écoulement sont les techniques dites d’«impedance eduction» (la
mesure d’impédance) [14–18]. La plupart de ces techniques repose sur un modèle de
propagation acoustique dans un conduit, et conduisent généralement à l’impédance
moyenne effective sur l’ensemble de la section de traitement. En outre, les méthodes
d’«impedance eduction» peuvent être inverses ou directes, selon que l’impédance
est obtenue par des calculs itératifs ou non. Cette thèse vise à developper la méthode
directe d’«impedance eduction» dans le contexte des grands conduits en prenant en
compte des champs acoustiques complexes et des écoulements cisaillés.
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Cette thèse commence par une étude bibliographique sur les revêtements acous-
tiques en présence d’écoulement, qui décrit l’état actuel de la recherche sur le su-
jet. Elle est suivie d’une description détaillée des modèles mis en place au cours
de cette thèse pour simuler la propagation de champs acoustiques en conduits
avec écoulement. Grâce à ces outils, de nouvelles méthodes directes de mesure
d’impédance sont développées et validées. Le premier objectif est d’analyser, au
moyen d’études paramétriques, l’influence de l’écoulement cisaillé sur la propaga-
tion et l’atténuation acoustiques dans les conduits traités, ainsi que d’évaluer la va-
lidité de l’hypothèse d’écoulement uniforme inhérente à l’algorithme traditionnel.
Un objectif secondaire est de mettre en œuvre ces techniques de mesure d’impédance
et d’évaluer la performance des méthodes existantes et nouvellement développées
par le biais de simulations numériques et de validations expérimentales dans le
grand conduit de MAINE Flow. Dans l’évaluation de la performance des méthodes,
les effets de champ acoustique incident sont aussi étudiés, accompagnés de recom-
mandations sur l’antenne de microphone à utiliser. De ce fait, la thèse est organisée
en cinq chapitres.

Le premier chapitre présente l’application des traitements acoustiques pour
l’aéronautique et les mécanismes physiques en jeu. Il présente ensuite les méth-
odes d’«impedance eduction» pour mesurer et évaluer les revêtements, ainsi qu’une
liste détaillée des bancs d’essai existants dans la littérature. Le chapitre rappelle
également les études [8, 19] qui prennent en compte les effets du niveau de pression
acoustique (SPL) et des conditions d’écoulement sur les performances des revête-
ments et sur la précision des mesures. Cependant, il est identifié que peu d’études
[18, 20] considèrent des vitesses d’écoulement élevées et les effets de la couche lim-
ite, et les conduits de grande taille présentant des champs acoustiques multimodaux.
En outre, bien que certaines recherches aient mis en évidence l’influence du cisaille-
ment de l’écoulement sur les résultats de la mesure d’impédance, on ne comprend
toujours pas clairement comment et dans quelle mesure l’écoulement cisaillé a un
impact sur l’impédance et/ou sa mesure. Cela souligne la nécessité d’une analyse
systématique pour mieux comprendre ces effets.

Le chapitre 2 pose les bases méthodologiques de cette thèse. Une description dé-
taillée de l’installation MAINE Flow est fournie, caractérisée par sa grande section
transversale qui supporte un champ acoustique multimodal contrôlé et des vitesses
d’écoulement élevées. Grâce à la synthèse et à la détection modales, cette installation
permet de mesurer les traitements pour chaque mode acoustique individuel, ce qui
sert à une évaluation plus complète du traitement acoustique. Pour simuler la prop-
agation acoustique dans un conduit à trois segments, des modèles multimodaux
avec un écoulement uniforme (en utilisant l’équation de Helmholtz convectée) ou
cisaillé (en utilisant les équations d’Euler linéarisées) sont introduits. Une méthode
pseudo-spectrale est employée pour le calcul de mode à l’intérieur de chaque seg-
ment, tandis qu’une approche de raccordement modal traite les discontinuités dans
la direction axiale. Les champs acoustiques simulés par ces modèles seront essentiels
dans l’étude numérique suivante.

La méthode directe de mesure d’impédance peut être divisée en deux étapes : i)
l’estimation des nombres d’ondes constituant le champ acoustique et ii) le calcul de
l’impédance acoustique à partir de ces nombres d’ondes. En ce qui concerne la pre-
mière étape, deux méthodes de type Prony, KT (Kumaresan–Tufts) et HTLS (Hankel
Total Least Square), sont décrites. Sur cette base, la méthode directe est dévelop-
pée et étendue pour prendre en compte une configuration à deux traitements face
à face (dites «double-liner») avec un écoulement moyen uniforme ou cisaillé. Pour
les cas d’écoulement cisaillé, la méthode utilise le déplacement vertical acoustique
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comme variable, plutôt que la vitesse verticale acoustique, afin de contourner les
problèmes numériques liés aux profils d’écoulement avec des dérivées infinies aux
bords. L’approche proposée ici réduit considérablement le temps de calcul par rap-
port à [19].

En utilisant les modèles de propagation et les méthodes directes de mesure
d’impédance, et par le biais d’une analyse paramétrique dans le cas 2D, le chapitre 3
examine les effets du cisaillement sur la propagation acoustique, la précision des cal-
culs d’impédance et l’atténuation provoquée par traitement. En comparant les hy-
pothèses d’écoulement uniforme et cisaillé, l’étude met en évidence l’influence sig-
nificative du cisaillement de l’écoulement moyen, en particulier dans les grands con-
duits et à haute fréquence. Les effets sont plus prononcés pour la propagation con-
tre l’écoulement et pour des vitesses d’écoulement plus élevées, ce qui est en accord
avec les études récentes [18, 24, 117]. L’analyse démontre également que l’impact du
cisaillement est similaire pour les configurations à un seul ou à deux traitements, et
que le modèle d’écoulement uniforme est peu précis en cas de vitesses d’écoulement
élevées et de couches limites épaisses. Ces résultats soulignent aussi la nécessité
d’intégrer les considérations relatives à l’écoulement cisaillé dans l’optimisation des
revêtements acoustiques afin d’obtenir des prédictions précises et des performances
optimales.

En simulant la mesure d’impédance, le chapitre 4 révèle d’abord la meilleure ro-
bustesse de la méthode HTLS pour l’estimation des nombres d’ondes sur la base des
données de pression obtenues par une antenne linéaire de microphones, par rapport
à la méthode KT. Ensuite, il est démontré que dans un grand conduit, des amélio-
rations significatives des résultats obtenus se produisent lors de l’utilisation du
modèle d’écoulement cisaillé combiné à une configuration à deux traitements, par
rapport à l’écoulement uniforme traditionnel et à la configuration à un seul traite-
ment. Les raisons du meilleur fonctionnement de la configuration à deux traitements
sont le maintien de la symétrie du champ acoustique incident et l’augmentation de
l’atténuation, ce qui réduit l’incertitude sur les mesures d’impédance. En outre, cette
configuration s’avère plus fiable face aux perturbations liées au bruit d’écoulement,
ce qui en fait un choix prometteur pour les expériences.

En ce qui concerne l’influence du champ acoustique incident, la présence de
modes de différent types de symétrie, rencontré dans les expériences réelles, peut
modifier la mesure d’impédance. Une antenne de microphones à deux lignes est
proposée pour atténuer ces perturbations. En séparant les modes symétriques et
antisymétriques, cette antenne améliore considérablement la précision de la mesure
d’impédance avec la configuration à deux traitements.

Dans l’ensemble, ces simulations soulignent les avantages de la méthode prenant
en compte l’écoulement cisaillé, de la configuration à deux traitements et de
l’antenne de microphones à deux lignes, ouvrant la voie à une mesure d’impédance
plus précise et plus fiable dans les travaux expérimentaux.

Le dernier chapitre présente la mise en œuvre expérimentale des méthodes di-
rectes de mesure d’impédance dans MAINE Flow, validant ainsi les méthodologies
développées dans les chapitres précédents. Lors du post-traitement des signaux
expérimentaux, une approche est proposée pour la sélection des nombres d’ondes
qui met l’accent sur les contributions physiques de chaque nombre d’ondes. Il est
confirmé expérimentalement que la configuration à deux traitements est supérieure
à la configuration à un seul traitement, en raison des meilleures performances en
matière d’estimation des nombres d’ondes et d’atténuation acoustique. En outre, la
prise en compte de l’écoulement cisaillé améliore la fiabilité et la qualité des résultats
d’impédance, en particulier pour les hautes fréquences, la propagation vers l’amont
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et les vitesses d’écoulement élevées, ce qui est conforme aux conclusions de l’étude
numérique.

D’après les résultats, les modes antisymétriques présentent de meilleures per-
formances en matière de mesure d’impédance que les modes symétriques, proba-
blement en raison de leur plus grande atténuation, bien que des recherches sup-
plémentaires soient nécessaires pour comprendre pleinement ce comportement.
L’évaluation de différentes antennes de microphones (à une ligne ou à deux lignes)
montre que l’antenne à deux lignes améliore la régularité des résultats, sans modifier
les tendances générales. Cependant, des problèmes de résolution sont observés avec
un espacement des microphones de 4 cm, dans les cas de propagation vers l’amont
avec des écoulements à grande vitesse. Des essais avec des traitements spécialement
conçus et optimisés pour l’atténuation des hautes fréquences sont également menés,
soulignant à nouveau l’importance de l’atténuation pour la précision de la méthode
de mesure d’impédance.

Perspectives: Cette thèse a proposé une méthode de mesure d’impédance basée
sur un modèle de propagation 2D en tenant compte d’écoulement cisaillé. Il serait
pertinent de considérer en plus le profil d’écoulement de la troisième dimension
afin de rendre la méthode plus précise. Vu que la performance des modes anti-
symétriques est meilleure que celle des modes symétriques, l’étude pourrait viser à
l’interaction des modes d’ordres hauts avec l’écoulement cisaillé pour mieux com-
prendre ce phénomène. À l’échelle expérimentale, l’antenne de microphone à deux
lignes pourrait s’améliorer en prenant un plus petit espacement des microphones
adjacents, afin de retourner les problèmes de résolution. La précision de la vitesse
d’écoulement s’est montrée aussi important pour le calcul précis d’impédance. Par
conséquent, il serait bon d’étudier la sensibilité de la méthode avec différents profils
d’écoulement. Enfin, au vu des effets importants du cisaillement dans de grands
conduits, la méthode inverse [126] pourrait être développée en incluant le cisaille-
ment.
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Chapter 1

Review on acoustic liners with flow

1.1 Acoustic liner

Noise emissions from commercial air transport have long been a crucial issue
in relation to public health, economic competitiveness and technological develop-
ments. Aircraft noise mainly contains two categories: the noise generated by the
airframe and the noise radiated from the propulsion system [27]. The relative level
of these noise sources varies depending on the aircraft type and flight conditions.
Typically, the propulsion noise (related to the turbofan engine) dominates during
take-off and is comparable to the airframe noise during the landing phase.

Turbofan noise originates from multiple components within the engine itself (re-
fer to Figure 1.1). Primarily, this includes noise from turbo-machinery and the ex-
haust jet. Developments in engine design, particularly the increase in engine bypass
ratios, have significantly abated jet noise by decreasing the speed of the jet [28]. The
engine bypass ratio (BPR) defines the relationship between the mass of cooler air
directed around the core engine to the mass of air passing through the core. Indeed,
since the 1960s, the use of high bypass ratio engines has reduced combined engine
noise levels by more than 20 Effective Perceived Noise Decibels (EPNdB) [29]. Thus,
turbofan noise has become the main noise source in the aircraft engine (see Figure
1.2).

A major component of turbofan noise is the interaction between the fan rotor and
stator, which propagates through the duct and then radiates to the far field. This
specific noise source arises from the impingement of the rotor wakes on the stator

Figure 1.1: Sources of turbofan engine noise [30]: turbo-machinery
and the exhaust jet.
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Figure 1.2: Evolution of the directivity and the relative levels of the
different engine noise sources as a function of the engine architecture
(or BPR): (a) low BPR (single flow turbojet). (b) High BPR (turbofan

engine) [3].

vanes, causing pressure fluctuations on the stator vanes which then excites acous-
tic duct modes [31]. Since fan noise sources may behave differently depending on
operating conditions, turbofan noise encompasses a broad spectrum of frequencies
[27].

The reduction of fan noise radiation to the far field can be achieved through
two principal strategies [32]. The first strategy focuses on the reduction of the noise
sources, including mitigating interaction mechanisms, tuning the stator cascade pa-
rameters, and adjusting the number of rotor blades and stator vanes [29]. The sec-
ond strategy involves attenuating noise after its generation, which includes imple-
menting duct wall treatments and manipulating sound diffraction mechanisms to
manage how noise travels and dissipates. Given the complexity of engine design,
a significant research effort has been dedicated to the implementation of duct wall
treatments.

This is primarily achieved through the installation of acoustic liners within the
nacelle ducts and along the inner walls of aircraft engines, aiming to enhance noise
absorption by tuning the boundary conditions during its propagation. Indeed, as
an acoustic wave moves away from a source of noise within an enclosed duct, the
acoustic energy at a boundary may be attenuated through absorption of acoustic
waves [1]. Given the severe operating conditions, it is essential for liners to pos-
sess robust material properties and structural rigidity. Figure 1.3 illustrates liners
commonly used in modern aircraft engines. The construction of these liners typi-
cally involves three key components: perforated sheets, cavity structures (typically
honeycomb) and a rigid backplate. Tandem assembly of these components can form
liner structures with different degrees of freedom. Common acoustic liners consist of
either one layer of honeycomb structure or two layers separated by a porous sheet,
which are referred to as single-degree-of-freedom (SDOF) and double-degrees-of-
freedom (DDOF), respectively.

The liners with (honeycomb) cavities prevents propagation in the transverse di-
rection within the cavity, and the propagation occurs only normal to the plate, ir-
respective of whether the incident wave approaches the perforated plate at a non-
normal angle. This type of liners is denoted as locally-reacting, because the response
of the liner depends solely on the local acoustic pressure, and not on the structure
of the sound field above the liner [33]. Additionally, there exist non-locally-reacting
liners that permit the transverse propagation of sound inside the liner. This can be
achieved by substituting the cellular honeycomb structure between the face-sheet
and the rigid backplate with structures which allow propagation of the sound later-
ally insides [2]. However, the discussion of non-locally-reacting liners falls outside
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Figure 1.3: Representations of typical locally-reacting liners applied
in the aeronautical industry [3]: (a) SDOF liner; (b) wire-mesh SDOF

liner; (c) DDOF liner.

the scope of this thesis and will not be further addressed.
Locally-reacting liners achieve noise reduction through two primary mechanisms

[28]. The first mechanism involves the physical damping of pressure fluctuations
within the porous "resistive" structure of the face sheet, where viscous resistance
dissipates acoustic energy and converts it into heat. The second is the cancellation
of the direct incident sound wave by the wave reflected from the solid backplate
inside the honeycomb cavity. The latter supports designing as a function of the in-
cident acoustic wave the cavity depth, following the 1/4 wavelength theory, which
primarily influences the noise reduction frequency band of the acoustic liner around
its resonance frequencies [34]. The combination of the orifices and cavities makes
the liner as an array of Helmholtz resonators. Consequently, both SDOF and DDOF
liners are effective within narrow frequency ranges and require tuning to specific
one or two frequencies, respectively.

The performance of an acoustic liner can be assessed by measuring the sound
absorption it induces. However, the acoustic absorption does not only depend on the
liner itself, but also on the dimensions of the duct in which it is placed. In contrast,
the acoustic impedance is a less affected parameter, which depends on frequency,
the liner geometry and material, sound pressure level (SPL) and flow conditions.
It is thus more suited to characterise acoustic liners in a determined-physical case.
The acoustic impedance Ẑ of a boundary can be defined as the complex ratio of the
acoustic pressure p and the normal component of the acoustic particle velocity un,
as a function of the angular frequency ω:

Ẑ(ω) =
p(ω)

un(ω)
= R̂(ω) + iX̂(ω). (1.1)

The real part R̂ represents the acoustic resistance, which reflects the dissipation of
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acoustic energy, and the imaginary part X̂ represents the acoustic reactance, which
reflects the liner effect on the phase of acoustic propagation. In addition, some
studies[35] use the admittance Ŷ = 1/Ẑ in computational analyses. Also, the spe-
cific impedance Z = Ẑ/ρ0c0 is also used, where Ẑ is normalised by the medium
impedance.

1.2 Physical mechanisms and liner impedance models

A common way of acoustic liner design is to reach an impedance value in or-
der to reduce noise as much as possible within the target frequency range. After
determining the desired impedance for the liner, the next step is to design the liner
material and geometry to achieve this specified impedance. For instance, with a typ-
ical SDOF liner, the relevant parameters are percentage open area (POA, or poros-
ity), hole diameter (with circular holes), plate thickness, cavity depth, and even cav-
ity cross dimensions and cavity wall thickness. The design process typically relies
on semi-empirical acoustic impedance models. With given geometric parameters,
flow condition and sound amplitude, semi-empirical models are able to compute an
impedance value by integrating specific acoustic theories with regression of exten-
sive experimental data.

For instance, Guess model [36] is a commonly used one. Considering one simple
perforated liner consisting of a plate with cylindrical perforations, a cavity and a
back plate, the model takes into consideration the following physical mechanisms:

(1) visco-thermal losses [37, 38] on the rigid boundaries of such liner, including i)
the dissipation in the viscous boundary layer, ii) the sound dissipation in the
thermal boundary layer, as the unsteady heat transfer at the wall acts as a sink
of sound [39]. The visco-thermal effects relate to the thickness of the perforated
plate, the diameter of the perforation and the porosity.

(2) radiation effects [7] at the entrance and the exit of the orifices. The resistive
part of the radiation impedance relates to the sound field generated by the
velocity within the orifice, while the radiation reactance stands for the impact
of the inertial mass of the local air movement near the orifice. The latter is
typically considered as a mass "end correction" in the semi-empirical model.
The radiation effects relate to the diameter of the perforation.

(3) interaction effect [40, 41] between the apertures of the plate. This effect is also
included in the model as an end correction. Ingard [40] found that the end
correction depends significantly on the separation distance. Later, Melling [41]
considered this effect in the case with enough small separation, and revealed
that i) the shear region between the adjacent apertures is disturbed, affecting
the resistance, and ii) in terms of the reactance, the attached mass of two aper-
tures interacts. The interaction effect relates to the diameter of the porosity and
only influences the reactance.

(4) viscous edge effects [40] occurring at both ends of the aperture, as well as at
the sharp corners. The resulting dissipation affects the resistance of the liner
and is typically taken into account by adding a correction to the length of the
neck, i.e. the thickness of the perforated plate. The viscous edge effects relate
to the thickness of the perforated plate, the diameter of the perforation and the
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porosity, as well as the incident amplitude and flow velocity when the non-
linear effects (with a jet extending from the neck) or the presence of a grazing
flow is considered.

(5) back-plate reflection [40]. With (honeycomb) cavities, locally-reacting liners
limits the propagation normal to the perforated plate. The tangential velocity
to the viscous boundary layer along the cavity walls is low, thus the viscous
losses are negligible. Additionally, the thermal effects are generally neglected
[40]. Therefore, the cavity is assumed to be purely reactive and the reactance is
expressed by a cotangent function in terms of the depth of the cavity.

Furthermore, corrections have been derived based on Guess model to consider
non-linear effects at high amplitudes and flow effects. The physical mechanisms
concerning these effects are described in the following.

Non-linear effects

In the linear regime, liners exhibit acoustic properties which are unaffected by
a change in the amplitude of incident waves, with a linear relationship between
the acoustic pressure and velocity at its surface at a given frequency. However, de-
pending on the plate geometry, liners can display a non-linear behaviour where the
impedance shows a dependency on the wave amplitude. Melling [41] first realized
that the linear or non-linear behaviour depends mostly on the incident sound am-
plitude.

For low incident amplitudes, a numerical simulation by Tam and Kurbatskii [42]
demonstrated that the flow through the orifice is laminar and unsteady and the
losses are mainly due to viscous dissipation in the shear layer. For high incident am-
plitudes, pulsatory effects dominate, leading to the formation of jet flow and vortex
rings. These structures quickly convert acoustic energy into hydrodynamic energy
through viscosity [43].

More precisely, focusing on one orifice, the experimental study of Ingard and
Ising [7] found that the relationship between the acoustic pressure and velocity at
the orifice, is linear at sufficiently low pressure levels, and approaches a square-law
relation described by Bernoulli’s law at high amplitudes. There, the resistive com-
ponent of the orifice impedance dominates and proportionally increases with the
incident amplitude, while the reactance decreases and the reduction depends on the
orifice geometric size. The study also indicates that in the non-linear regime, flow
separation and jet formation occur at the orifice. Then, Melling [41] suggested that
with the formation of jet, the primary dissipation mechanism is turbulence, but this
mechanism was not confirmed by subsequent studies. The numerical analysis [42]
observed a vortex-shedding mechanism taking place at the opening of the resonator,
which is responsible for the conversion of acoustic energy into hydrodynamic en-
ergy and further viscous dissipation into heat. Jing et al. [44] demonstrated that the
non-linear acoustic behaviour of an orifice depends mainly on the vortex shedding
rate at the orifice edge and the convection speed of the shed vortex in the vicinity of
the orifice.

In Guess model [36], the non-linear effects at high incident amplitude are con-
cerned by corrections associated to the acoustic particle velocity in the orifice. The
corrections account for both resistance and reactance.
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Flow effects

In presence of a grazing flow at the surface of the perforated plate, the liner
impedance is affected, usually with a trend which is that the resistance increases
and the reactance decreases [4]. Ingard and Ising [7] investigated the flow effects by
considering the superimposed flow in the orifice, at a small amplitude of the incident
sound pressure, so that the case is in the linear regime in the absence of the grazing
flow. This investigation explained that the presence of the grazing flow over the
liner yields an additional fluctuating flow in the orifice to the acoustic oscillation,
resulting in the formation of jets. Hence, the influence of the grazing flow on the
orifice impedance is somehow similar to that of high incident amplitudes on the
non-linear impedance in the absence of flow. Therefore, the flow effect is concerned
in Guess model [36] also as additional corrections associated to the flow velocity,
which are in similar form to the corrections of non-linear effects.

1.3 Experimental characterisation of acoustic liners

Prior to installation in a nacelle, it is crucial to characterize the liner using a
test bench and, if feasible, under realistic conditions. This step is essential to verify
whether the liner meets the acoustic impedance anticipated by the semi-empirical
models, such as the Guess model described in the last section. However, conducting
acoustic impedance measurements directly on full-scale engines is expensive and
not convenient. Since the impedance of locally-reacting acoustic liners is not influ-
enced by the curvature of the liner itself, measurements are generally performed
on small and flat samples in a controlled environment recreating actual conditions.
In the following, the main methods for measuring acoustic liner impedance are de-
scribed.

(1) Normal-incident impedance tube (NIT)

Impedance tubes are used to measure surface acoustic impedance and the ab-
sorption coefficient of porous materials or perforated liners under no-flow and
normal incidence conditions [2, 45]. The tube is equipped with an acoustic
source on one side and a test sample on the other side. For measurements,
there are two types shown in Figure 1.4.

(a) (b)

Figure 1.4: Schematic representation of two measurement techniques
in an impedance tube [46]: (a) movable probe microphone; (b) two

fixed microphones.

The first (shown in Figure 1.4(a)) uses a movable probe microphone face to
the tested sample, to measure the sound pressure of the standing-wave pat-
tern in the tube. With r = (SWR − 1)/(SWR + 1) where SWR is the standing
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Figure 1.5: The implementation of the In-situ method [2].

wave ratio, defined by the ratio between measured maximum and minimum
amplitude of the standing wave pattern, the impedance is calculated:

Z =
1 + re−i(π+2kD)

1 − re−i(π+2kD)
. (1.2)

Here, k = ω/c0 is the free-field wavenumber and D is the distance between
the first measured minimum of wave amplitude and the sample.

The second, in Figure 1.4(b), is based on the transfer function of two fixed
microphones which are located at two different axial positions in the tube wall.
The complex pressure reflection coefficient is obtained as

RC =
HAB − e−ikδ

ei(kδ) − HAB
ei2kz, (1.3)

where HAB is the transfer function between microphone position A and B, δ is
the microphone spacing, z is the distance between the sample and the closest
microphone (i.e. microphone B in Figure 1.4(b)). Then the acoustic impedance
of the sample is calculated from the relation Z = (1 + RC)/(1 − RC).

(2) In-situ method (Dean Method)

Considering the characteristics of the response of a locally-reacting acoustic
liner to acoustic waves, Dean [13] proposed an in-situ two-microphone method
to measure the acoustic impedance of the acoustic liner under tangential flow
conditions. Based on the original definition in Eq. (1.1), this method obtains
the impedance directly from locally measured pressures and velocities. There-
fore, unlike other methods described in this section, this method does not rely
on any acoustic propagation model in lined ducts with flow. The apparatus
shown in Figure 1.5 is representative of the in-situ method used for the deter-
mination of liner impedance, also called two-microphone method in literature
[2, 47, 48]. One microphone is inserted through the face sheet (microphone A)
and the other is mounted flush on the backplate of a chosen cavity (microphone
B). They must be small enough to have negligible effects on the propagation
within the cavity. Typically, measurements are done at frequencies below the
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first cut-off frequency of the high order modes, so only the plane wave exists in
the cavity. Thus, if the viscous effects are ignored and hence the acoustic par-
ticle velocity inside the small holes is assumed to be uniform, the normalised
impedance Z of a SDOF liner is obtained from the measured quantities by the
expression:

Z
ρ0c0

= −i
pA pBeiφAB

p2
A sin(kh)

, (1.4)

where the numerator part is the cross spectral density between microphones
A and B, the denominator contains p2

A the auto spectral density of microphone
A, and h the cavity depth.

The in-situ method is often used when local information is required about the
effects of grazing flow on the liner impedance, and can be used in a laboratory
duct or on the actual engine installation [2]. This method has been widely used
for the measurements of locally-reacting acoustic liners [18, 49], as it allows
directly obtaining the local impedance. However, when using this method,
it is inevitable to destroy the structure of the acoustic liner. While attempts
have been made to avoid the destruction using techniques like Particle Im-
age Velocimetry (PIV) [50], success has been limited. And for multi-degree-
of-freedom acoustic liners, the implementation of this method will be more
difficult. Zandbergen [51] introduces the extension of the method to DDOF
liners and shows difficulty of implementation for accurate results. Meanwhile,
since only a single microphone measures the acoustic pressure information on
the surface of the acoustic liner, the measurement results are greatly affected by
the surface pressure fluctuations in the turbulent boundary layer, and the mea-
surement error is large if the microphone is not exactly flush with the surface,
or if the flow velocity is high, or if there is leakage.

(3) Single Mode method

This method is based on the infinite waveguide model in a duct with a lined
boundary, where the imaginary part of the propagating wavenumbers appears
to determine the acoustic energy attenuation rate. Based on this, Armstrong
[52] proposed the infinite waveguide method, also called Single Mode Method
(SMM) by NASA [9, 14]. This method requires that the lined duct has an infi-
nite length and constant cross-section. Also, an acoustic liner with a uniform
impedance is installed on the duct wall. The method proceeds by assuming
that the flow present in the duct is uniform, and that only a single dominant
acoustic mode exists in the duct and remains formally unchanged during prop-
agation, as shown in the schematic in Figure 1.6.

Under these conditions, the measured sound pressure level SPL(x) and the
phase φ(x) at the centreline of the rigid wall varies linearly along the axial di-
rection of the duct [14, 52] (see Figure 1.6). Thus, the axial propagation constant
(i.e. the acoustic wavenumber kx) of the dominant mode can be determined
from the slope of the line:

kx =
dφ(x)

dx
+

i
20 log10(e)

dSPL(x)
dx

. (1.5)

To calculate the impedance of the liner, this axial propagation constant is used
in conjunction with the normal mode solution based on a propagation model,
such as the convected wave equation and the local-reacting wall impedance
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Figure 1.6: Schematic (top) of the single mode method and example
(bottom) of sample SPL and phase profiles [14].

boundary condition. Therefore, if the assumptions are valid, this method in-
volves only simple algebraic calculations with high efficiency. Unfortunately,
the assumption of single mode can hardly hold in practical conditions. The fi-
nite length of acoustic liner will inevitably excite multiple propagating acous-
tic modes, in which case the measurement results of this method will contain
large errors. Nonetheless, this approach provides the basic process for the di-
rect impedance eduction method, which will be later introduced and applied.

(4) Inverse method

Since non-negligible impedance discontinuities cause errors in the Single Mode
method, liner impedance measurements must consider a duct consisting of
multiple sections, typically arranged in a rigid-lined-rigid succession. The in-
verse method, also known as the objective function method, is an optimisation
process that involves minimising the difference between acoustic quantities in
experimental and simulated sound fields within the test duct. It begins with an
estimate of the liner impedance to compute the simulated acoustic field and it-
erates to provide a new estimate of impedance until the computed parameters
agree with the measured value. The agreement is judged by the minimisation
of the cost function:

Z = arg min
Z

|AFComputed(Z)− AFMeasured(Z)|, (1.6)

where AF represents physical quantities of the acoustic field.

The idea first originated with Syed [53], using the attenuation SPL induced
by the tested liner to establish the objective function. Since then, the inverse
method has been developed and refined by NASA LaSR [54–57]. These stud-
ies use a finite element model to simulate the sound field inside the duct and
consider the complex acoustic pressures at the wall as parameters in the ob-
jective function. With the development of numerical computational methods,
the inverse method has obvious advantages over the in-situ method in terms
of applicability and accuracy, becoming the mainstream acoustic impedance
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measurement method since 2000. This method has evolved in two main as-
pects: the modelling and the methodology used to compute the simulated
field, and the acoustic parameters considered in the construction of the ob-
jective function. Various models can be used to simulate the acoustic field ac-
counting for different flow effects, such as the Convected Helmholtz Equation
(CHE) [9] for uniform mean flow, the Linearized Euler Equations (LEE) [56, 58]
for inviscid sheared flow and the Linearized Navier–Stokes Equations (LNSE)
[59] for viscous flow. To compute the acoustic field, [16, 49, 60] use a semi-
analytical multimodal method instead of the finite-element method. Moreover,
other acoustic parameters can also be considered in the objective function, such
as the scattering matrix [16, 61], insertion loss [62, 63], acoustic pressure [64],
acoustic wavenumber [19], exit impedance [21, 65–67], etc. Furthermore, the
accuracy of the cost function can be improved by considering supplementary
parameters or effects, such as boundary conditions [60], flow direction [60],
impedance model (geometry parameters) [68] and SNR (Signal-to-Noise Ra-
tio) [69]. In addition, the Laser Doppler Anemometry (LDA) technique has
also been applied to obtain the measured acoustic velocity field [70–72] near
the liner.

The inverse method presents inherent limitations. First, the simulated sound
field is obtained using a propagation model which is based on several assump-
tions to simplify the computation. Hence, the lack of consideration of physi-
cal effects in the model’s assumptions may raise issues on the accuracy of the
impedance results. Secondly, accurate measurement of reflection conditions at
source and exit sections within the flow duct is essential when using complex
sound pressure as a comparison target. However, obtaining precise measure-
ments under flow conditions is also challenging, leading to potential sources
of error [55]. Furthermore, as with other iterative approaches, issues arise with
determining initial guess and achieving convergence. The method may exhibit
slow or non-convergent behaviour [56].

(5) Direct method

According to the principle of the Single Mode method, the problem of mea-
suring the acoustic impedance of liners mainly lies in how to decompose the
measured acoustic field and accurately obtain the wavenumber of each mode
when multiple modes and reflections coexist in the duct. To that end, Jing et al.
[15] have applied Prony’s method [73], commonly used in signal processing
and system identification domains for extracting sinusoids parameters from
noisy or sampled data, to the acoustic mode identification in ducts. This ap-
proach marked the formation of the so-called direct method. The inverse and
direct methods are the two main categories, collectively known as impedance
eduction technique [17].

Given N equally spaced spatial measurement points on the wall of a lined duct,
Prony’s method is able to quickly identify the amplitudes and axial wavenum-
bers of up to the first N/2 principal modes. With an obtained axial wavenum-
ber kx, the unknown acoustic impedance can be calculated from the eigenvalue
and dispersion relations based on the classical mode-decomposition analysis.
This method is also called SFM (straightforward eduction method [15]) since
it involves only one-off algebraic computation. However, it considers uniform
mean flows, and is only applicable to ducts with constant cross-sectional area
and uniform test liner structures.
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Based on the initial basic principle, the direct method is being developed in
different aspects. In terms of flow assumptions, the direct method has been
extended to account for the presence of shear in flow by numerically solving
the Pridmore Brown equation [20]. Further, Zhang et al. [74] considered the
sheared boundary layer separately from the core uniform flow region, and pro-
posed an alternative boundary condition using effective admittances at the in-
terfaces between boundary layers and core flow regions. This work aims also
at mitigating the discrepancy in acoustic impedance determined in a test-rig
subjected to both upstream and downstream acoustic excitation.

Regarding the measurement of the acoustic wavenumber, the strategic design
of the microphone array is crucial. The array is usually 1D-equally-spaced
microphones mounted on the wall opposite to the liner [75, 76], while some
researchers consider their installation on the lateral wall [26]. More recently,
various innovative microphone arrays and associated algorithms have also
been developed. A diagonally mounted microphone array [77, 78] has been
positioned on the wall opposite to the test liner within a flow duct to simulta-
neously capture information from both axial and transverse directions, which
enables the realization of the full modal decomposition using Prony’s method.
However, a significant challenge arises due to the too small spanwise micro-
phone spacing. To address this issue, Chen et al. [79] extended the direct
method to three-dimensional, employing an evenly spaced rectangular array
in the lined section of the flow duct. Subsequently, Qiu et al. [80] introduced a
zigzag microphone array design to overcome the problem of limited spanwise
microphone spacing, building upon the idea of the diagonal microphone array
[77].

Additionally, the Laser Doppler Velocimetry (LDV) technique has also been
employed [81] to measure the periodic fluctuating velocity of the acoustic field,
with the objective of retrieving wavenumbers from the equally spatially-spaced
acoustic velocity information.

Concerning the wavenumber identification, efforts have been made to enhance
extraction accuracy and stability. Renou et al. [76] and then Watson et al. [26]
advocated for the use of the Kumaresan–Tufts (KT) method [82] over Prony’s
method for identifying wavenumbers, aiming to improve the precision of the
extraction process. Subsequently, other identification techniques have been
applied in the domain of impedance eduction. For instance, Bayesian inference
methods have been employed [25], as well as the Matrix-Pencil approach [81,
83], to further advance the wavenumber extraction procedures.

Following on these developments, the direct method is being used more widely,
and it will be the experimental method used in this work.

Each impedance eduction technique possesses distinct advantages and draw-
backs, prompting numerous studies to compare and contrast these methods. Jones et
al. [57] compared the NIT and inverse method using the convected Helmholtz equa-
tion. Then, a comparative study by Watson et al. [9] provided detailed evaluations of
both the inverse and direct methods. In a subsequent study [24], these methods were
tested in both small and large cross-sectional ducts, yielding consistent impedance
results. Weng et al. [84] compared the inverse and direct impedance eduction tech-
niques using propagation models with different flow assumptions. Bonomo et al.
[17] conducted a parametric study to investigate the primary sources of uncertainties
associated with the direct impedance eduction technique, aiding to understand how
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to carry out an accurate direct impedance eduction. Additionally, they compared
the In-situ method with the two impedance eduction techniques under conditions
of grazing flow and high SPLs, demonstrating the robustness of In-situ results [8].

1.4 Flow ducts for impedance eduction

In practice, acoustic impedance are primarily experimentally measured through
a flow duct test bench. The test rig is usually designed to facilitate impedance educ-
tion of liners under controlled acoustic and flow conditions. For locally-reacting
acoustic liners, its impedance is independent of the sample size, unless the non-
linear effects is considered due to the evolution of SPL along the liner. Except for the
In-situ method, other methods introduced above are averaged measurements and
provide an effective value of liner impedance in the whole lined section. Most flow
duct are small-sized rectangular cross-sectional. Many research organisations such
as NASA, DLR, etc., as well as major aircraft and engine manufacturers have such
flow ducts for acoustic liner measurements. Figure 1.7 shows a schematic for the
general facility.

Figure 1.7: General schematic of the test rig for impedance eduction
[16]: 1: Compressor, 2: Flowmeter, 3: Upstream anechoic termina-
tion, 4: Upstream source , 5: Upstream microphones, 6: Lined wall,
7: Downstream microphones, 8: Downstream source, 9: Downstream

anechoic termination.

The experimental facility typically consists of multiple segments and comprises

• sound sources on both sides of the sample for generating incident waves,

• a compressor and fan to generate the flow,

• Pitot tube for measuring flow velocity,

• a test section for mounted liners, the other walls being rigid,

• acoustic terminations (usually anechoic),

• microphones on both sides of the sample for the decomposition of acoustic
field into modal space,

• microphones mounted in the wall of the lined section (usually for direct impedance
eduction).

The following is a brief list of the main published flow duct test benches. Due
to the common structural features, the primary focus will be on the dimensions and
the ability to control the acoustic field and the flow velocity. The flow velocity is
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usually normalised as Mach number M by the sound velocity c0. In Table 1.1, Mmax
stands for the maximum Mach number Mmax on the flow velocity profile, also called
centreline Mach number in literatures, and Mbulk is the bulk Mach number. More
detailed description are unfolded in Appendix A.

Table 1.1: Published test rigs for impedance eduction.

Facility name
Cross-section
[mm2]

Liner length
[mm]

max Mach num-
ber

NASA Grazing Flow
Impedance Tube (GFIT)
[57]

50.8 × 63.52 50.8 to 609.6 Mmax = 0.6

NASA Curved Duct Test
Rig (CDTR) [23]

152.4 × 381 762 Mmax = 0.5

DLR DUct aCoustic Test
Rig (DUCT-R) [85]

60 × 80 800 Mmax = 0.28

NLR Flow Duct Facility
(FDF) [86]

150 × 300 1050 1 Mmax = 0.7

KTH flow acoustic test
rig 1 [49]

32 × 32 50 Mmax = 0.3

KTH flow acoustic test
rig 2 [87]

70 × 25 25 Mmax = 0.2

UFSC grazing Flow
Liner Impedance educ-
tion test Rig (FLIR) [22]

40 × 100 210 Mmax = 0.7

Beijing University of
Aeronautics and Astro-
nautics (BUAA) test rig
[78, 88]

51 × 51 800 Mmax = 0.25

ONERA B2A [72] 50 × 50 150 Mbulk = 0.5

1The sample sizes for in-situ measurements are 170 mm × 32 mm, and for insertion loss measure-
ments are 170 mm × 850 mm.
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Table 1.2: Sound source of the published test rigs for impedance educ-
tion.

Facility name Source type
max SPL
[dB]

Frequency range

NASA Grazing Flow
Impedance Tube (GFIT)

stepped-sine 150
400 to 3000 Hz
(∆ = 100 Hz)

NASA Curved Duct Test
Rig (CDTR)

stepped-sine,
broadband

140
400 to 3000 Hz
(∆ = 100 Hz)

DLR DUct aCoustic Test
Rig (DUCT-R)

multi-tone 130
up to 2200 Hz
(∆ = 100 Hz)

NLR Flow Duct Facility
(FDF)

broadband
and tonal

(150)2 1000 to 6000 Hz
(∆ = 500 Hz)

KTH flow acoustic test
rig 1

stepped-sine (150) 550 to 4100 Hz

KTH flow acoustic test
rig 2

stepped-sine (145)
200 to 2600 Hz
(∆ = 40 Hz)

UFSC grazing Flow
Liner Impedance educ-
tion test Rig(FLIR)

swept-sine 150 400 to 2500 Hz

Beijing University of
Aeronautics and Astro-
nautics(BUAA) test rig

single-tone (135) 500 to 6000 Hz

ONERA B2A multi-sine (135) 300 to 3500 Hz

One of the motivations of flow duct facilities is to simulate engine operating con-
ditions, such as high-speed flow and high incident wave amplitudes. These condi-
tions pose significant challenges to achieve in experiments. Even though some ducts
outlined in Table 1.1 and 1.2 manage to approach high SPL and flow velocity, inves-
tigations in these ducts is limited to small cross-section. It is questionable whether
the conclusions about the physical effects of these pipe liners are applicable to the
scale of the engine. Therefore, there remains a pressing need to carry out studies
within larger ducts to further explore impedance eduction.

Some studies have been conducted to compare certain of these rigs. In [89], such
a study compared results obtained with four flow rigs, as well as the corresponding
normal incidence tubes. Then, with the establishment of different test rigs, numer-
ous comparative studies have been involved more flow ducts. For instance,

• Busse et al. [90] compared results on the DLR DUCT-S and the NLR FDF;

• Busse et al. [85] compared results on the DLR DUCT-R and the NASA GFIT,

• Zhou et al. [87] made a comparison of the KTH duct to the results in [85];

• [91] : ONERA B2A and NASA ducts

• [23] : NASA GFIT and CDTR;

• [22] : UFSC test rig and NASA GFIT.

Most of them give basically the conclusion that results on different rigs more or
less agree with each other in the absence of flow. The main discrepancies are found
in the presence of grazing flow and also found for the high incident amplitude.

2Note that the values in parentheses in this table are overall SPLs.
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1.5 Non-linear and flow effects in impedance eduction

As presented in the previous sections, the liner impedance is influenced in the
presence of a high SPL or grazing flow. And studies have shown the impedance
varies when the direction of propagation relative to the flow changes. In this section,
we provide a review regarding these effects in the work of the impedance eduction.

High SPL: non-linear effects

Since changing SPL affects liner behaviours, it is vital to account for different
incident amplitudes in the impedance eduction. Many studies made attempts to
control the incident SPL [8, 12]. Moreover, Lafont et al. [72] considers the evolution
of SPL in the acoustic field, such that the impedance is space-dependent along the
duct axis. For liners with a non-linear behaviour with respect to SPL, a threshold
value is shown, above which the effects of the incident SPL on the resistance of
the liner can be described with a space-dependent resistance. Under this threshold,
the resistance remains constant. Besides, the discrepancies between upstream and
downstream educed impedances, which is an issue needed to be understood [76],
are shown to increase for higher SPLs [8].

Flow effects

Impedance eduction methods (both inverse and direct methods) rely on the acous-
tic propagation model in ducts and involve a boundary condition accounting for
physical effects at the liner surface to describe the liner impedance. Regarding the
effects of flow, most studies employ the assumption of a uniform and inviscid mean
flow with the Ingard–Myers impedance condition [92, 93].

The Ingard–Myers boundary condition (IM–BC) assumes an infinitely thin bound-
ary layer adjacent to the impedance wall and acoustic particle displacement conti-
nuity across a vortex sheet over the liner face (slipping flow). Eversman et al. [94]
as well as Tester [95] have validated that the acoustic effect of a non-slipping invis-
cid sheared flow approaches that of an inviscid plug flow3 as the boundary layer
thickness tends to zero. The IM–BC at a lined wall with a normalised impedance Z,
where the acoustic pressure and normal velocity at the liner surface are denoted p
and v respectively, writes

v =
D0

Dt
p

iωρ0c0Z
, (1.7)

where D0/Dt = d/dt+ u0 ·∇ is the material derivative along the mean flow velocity
u0. u0 is assumed tangential to the boundary.

The IM–BC plays a role in both inverse and direct impedance eduction. In the for-
mer, it serves as an impedance condition for the modelling of lined walls during the
iterative computation of the acoustic field. In the latter, it provides a straightforward
relationship between the liner impedance and the acoustic wavenumbers. However,
several studies [76, 96] have questioned its application in impedance eduction, since
discrepancies have been measured between the educed impedances of a locally re-
acting liner using upstream and downstream propagating waves in presence of flow.

3Plug flow is a simple model of the velocity profile of a fluid flowing in a duct. In plug flow, the
velocity of the fluid is assumed to be constant across the cross-section perpendicular to the axis of the
duct. And the plug flow model assumes there is no boundary layer adjacent to the inner wall of the
duct.
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From a mathematical point of view, the IM–BC has problems relative to insta-
bilities in simulation, and Brambley [97] found that the wave propagation problems
consisting of impedance models with vanishing flow boundary layer are mathemati-
cally ill-posed. To avoid the ill-posedness of IM–BC, Rienstra and Darau [98] derived
a regularised boundary condition by considering a thin finite boundary layer, unlike
the infinite thin one in IM–BC, with a linear velocity profile and a uniform mean
density. However, its use of incompressibility assumption that serves for computing
hydrodynamic modes induces errors in the acoustic modes [99]. To the same end,
Brambley [100] derived a closed-form effective boundary condition for a compress-
ible, inviscid, and finite thin boundary layer of thickness δ by means of the method of
composite expansions, with the flow remaining uniform above the boundary layer.

Schulz et al. [101] commented that this set of derived models are limited to thin
boundary layers and operate under the assumption that raises concerns regarding
real situations, particularly when dealing with turbulent flows and/or low frequen-
cies. Furthermore, there is a lot of work aimed at improving the description of the
boundary layer effects [102].

In the context of impedance eduction, the work of Spillere et al. [18] shows that
using Brambley’s impedance boundary condition instead of the IM–BC reduces but
does not eliminate the discrepancies between upstream- and downstream-educed
impedances. This may mean that the reasons for discrepancies involve more com-
plicated effects, and are not only the failure of the infinite thin boundary layer model.

Furthermore, due to the inviscid assumption, the Ingard–Myers boundary con-
dition fails to account for viscous effects like shear stress in acoustic boundary layers,
which could significantly impact sound propagation within a lined duct and further
the accuracy of impedance eduction results, especially with grazing flow.

Nayfeh [103] first included the molecular transport of momentum and heat
within a sheared flow into an effective wall admittance to account for the viscos-
ity. For the same purpose, Starobinski and Auregan [35, 104] account additionally
for the mean flow velocity in the acoustic boundary layer and introduce an added
normal displacement defined in terms of the heat flux and the shear stress at the
wall. This considers both the transfer of axial momentum and heat flux of the sta-
tionary flow into the lined wall as the main effect of viscosity. Moreover, Aurégan et
al. [35] derive a modified impedance condition with two additional coefficients βv
and βt (see Eq. (23) in Ref. [35]) standing for the viscous and thermal diffusion. More
recently, Schultz et al. [101] use a momentum transfer impedance ξT (see Eq. (9) in
Ref. [101]), defined by the ratio between the acoustic wall shear stress and the wall
normal particle velocity, as a free parameter besides the wall impedance. The au-
thors explain for the wave-direction dependence of educed impedance that even if
the impedance and momentum transfer impedance do not depend on the structure
of the acoustic field, the effective impedance observed outside the acoustical bound-
ary layer becomes a non-locally reacting boundary condition. Similarly, Aurégan
[105] uses a stress-impedance by introducing a friction factor fw = τw/pw that links
the pressure pw to the shear stress τw at the wall:

Y∗
w =

ω − U0kx

ω

(
Yw +

kx

ω
fw

)
. (1.8)

To summarise, these models indicate that, with flow, impedance is not sufficient
any more. Then the difference between the results in the two directions can be elimi-
nated by setting up a system of equations associating the impedance of the wall and



1.5. Non-linear and flow effects in impedance eduction 25

the proposed parameter. To do so, Renou and Aurégan [76] employed the modi-
fied IM–BC [35] including only the parameter βv relative to the transfer of momen-
tum (see Eq. (24) in Ref. [76]). Further attempts have been done by Spillere et al.
[60] to identify physically the correctness of the available boundary condition mod-
els, using one and two identical lined walls, denoted in this manuscript as single-
and double-liner configurations, respectively. This investigation used the single-
liner configuration to educe the liner impedance and any additional parameter in
different boundary condition models, whereas the double-liner case served for the
comparison between measured data and simulated data using parameters inferred
from the former case. However, in this investigation, first, unphysical values are
obtained for the additional parameters; secondly, with the double-liner configura-
tion, weak agreement is shown between measurements and simulations using the
obtained parameters. Besides the boundary condition, the uniform flow assumption
is also pointed out as issues in the model of duct acoustic propagation, and further
in the impedance eduction.

Published results indicate that the assumption of uniform flow may introduce
errors in the impedance eduction results. A comparative study in the NASA GFIT
[9] shows that differences occur between the eduction results using the assumptions
of uniform and shear flow, and could be greater at higher Mach numbers. More re-
cently, Jing et al. [20] exploit a straightforward method for impedance eduction in
the presence of shear flow and boundary layer effects, and show that the eduction
was not susceptible to the exact shape of the boundary layer, similar to the conclu-
sions in Ref. [21]. Roncen et al. [25] evaluate the uncertainties on the flow profile in
the modal decomposition based on Bayesian inference. They conclude that the uni-
form flow assumption does not introduce significant errors when considering only
one mode propagation, and suggested more exploration on the impact of the use of
the uniform flow assumption when considering multiple mode propagation. Sub-
sequently, [19] note that an apparent mismatch between wavenumber definitions
appeared when considering a uniform mean flow, which can be reduced but not
removed by considering an inviscid sheared flow. However, when considering a
larger duct, Spillere et al. [18] note that the educed impedance is affected when con-
sidering a more realistic flow profile, which differs from the previous observations.
Moreover, Bonomo et al. [22] discuss that different flow profiles (boundary layer
displacement thickness) lead to disparities in educed impedance, when comparing
results on two test rigs, i.e. the NASA GFIT and UFSC duct, with a same centreline or
same average Mach number. The comparison uses a constant value as Mach num-
ber in the calculation of impedance, which is based on a wavenumber-impedance
relationship [15] deduced from the uniform flow assumption and the Ingard–Myers
boundary condition. This suggests that the flow profile need be taken into consid-
eration when calculating the impedance. Consequently, some questions remain: to
what extent does the mean flow shear alters the impedance eduction? Is this effect
influenced by other parameters such as duct size, frequency, flow velocity?

Most of experimental research focused on small cross-section ducts, while stud-
ies on the effect of shear flow in large ducts are limited. An existing study at NASA
[23, 24] shows similar impedance eduction results in a duct with small cross-section
(the GFIT) and in a large-scale duct (the CDTR) when using the uniform flow as-
sumption. The only discrepancies observed between the two ducts were at the very
low, or very high, frequencies, This was explained by the low attenuation and the ap-
pearance of a higher-order mode, respectively [24]. While these experimental data
provides useful information on the differences observed between small and large
ducts, the impact of the mean flow shear on the eduction method remains to be
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more precisely assessed.

1.6 Conclusions

This chapter describes the application of acoustic liners, introduces impedance
eduction methodologies for measuring and evaluating acoustic liners, and sum-
marises existing test benches for impedance eduction, along with the physical effects
and impacts under varying conditions.

Previous research have not fully accounted for realistic operating conditions of
acoustic liners, such as large-sized ducts, multimodal sound field, high flow veloc-
ities, and boundary layer effects. Particularly regarding different incident modes,
most existing studies are limited to the propagation of plane waves due to the small
size of the test benches. The mean flow shear has been shown to have influences on
the impedance eduction results, but there is no explicit conclusion on these effects.
Moreover, it is not clear how the sheared flow affects the process of impedance educ-
tion, and what these effects are under different conditions, following inconsistent
observations in published work [18, 20]. Thus, the present work aims to investigate
the effects of sheared flow and multimodal incident field on the impedance educ-
tion, numerically and experimentally. This study relies on the MAINE Flow facility
[12], a large-duct test bench described in Chapter 2.
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Chapter 2

Numerical methodologies and
experimental techniques

This chapter presents the numerical and experimental methodologies employed
in this thesis. It includes descriptions of the MAINE Flow facility, models for multi-
modal acoustic propagation and algorithms for direct impedance eduction. MAINE
Flow is both the framework for the analytical numerical studies and the experimen-
tal facility in this study. Section 2.1 outlines its general description and capabilities
for controlling acoustic and flow conditions. Then, Section 2.2 introduces a multi-
modal method for simulating the acoustic field in a duct composed of three sections,
as encountered in the test duct, accounting for either uniform or sheared mean flow.
Finally, Section 2.3 details both direct impedance eduction traditional algorithms
and the approaches newly developed in this study. These models and methods will
be employed in Chapter 3 to assess the impact of shear flow. And the impedance
eduction techniques will be used and assessed through the numerical simulation
using pressure data computed by the multimodal models (Chapter 4) and through
the experiments using pressure data measured in the MAINE Flow facility (Chap-
ter 5).

2.1 MAINE Flow facility

MAINE Flow (Multimodal Acoustic ImpedaNce Eduction with Flow) [11, 12]
is a large duct facility designed to provide high-speed flow conditions and a con-
trolled multimodal acoustic field, allowing for an assessment of the behaviour of the
acoustic treatment in realistic flow and acoustic conditions. Figure 2.1 (Top) shows
two views of the MAINE Flow facility, which consists of a 10 m-long duct with a
rectangular cross-section of dimensions 150 × 280 mm2 [12]. The section dedicated
to direct impedance eduction, used in the present study, spans a length of 800 mm.
On the narrow sides of this section, one or two face-to-face liner samples can be in-
stalled. These configurations are referred as single-liner and double-liner, with the
latter specifically involving two identical liners. The former is a common configu-
ration for the direct impedance eduction [9, 15, 17], whereas the latter is a newly
developed approach in this study, aimed at improving impedance eduction results
in such large ducts, which will be discussed later through simulations and experi-
ments.

At the upstream end of the duct (upstream the acoustic sources), an anechoic
termination is installed to limit the end reflections. And a diverging section is quasi-
anechoic on the other side. The flow is driven by a fan working in suction mode.
Figure 2.1 (Bottom) displays the flow profile measured just upstream of the liner
using a Pitot tube. Only the profile in the direction perpendicular to the liner is



28 Chapter 2. Numerical methodologies and experimental techniques

shown. In this example, the corresponding mean Mach number is the average value
over the 2D cross-section Mave = 0.63, the largest available flow velocity.

In the regions (denoted 1 and 3 in Figure 2.1) upstream and downstream of the
lined section, 60 flush-mounted microphones are used for the modal decomposition
of the acoustic field [11], and placed at optimised positions. Then, on each side, 24
loudspeakers and 66 compression chambers are employed to generate and control a
desired acoustic field with a maximum available incident amplitude of 150 dB. This
combination of microphones and acoustic sources allows the independent genera-
tion and detection of the 24 modes that are cut-on at 4000 Hz. We describe briefly
the procedure for the generation of a desired acoustic field. More details can be
found in [11].

(1) Generation of a stepped-sine signal by each source located upstream or down-
stream of the test section and simultaneous acquisition by all the microphones
located in the upstream and downstream lined sections, i.e. zones 1 and 3 in
Figure 2.1.

(2) Modal decomposition of the acoustic field in the ducts upstream and down-
stream for stepped sine sweep case, using the wavenumbers under the as-
sumption of dissipative propagation in a uniform flow [106].

(3) Identification of the transfer matrix between the acoustic sources and the inci-
dent acoustic modes in the duct, according to the propagation matrix which is
obtained in (2) and relates the commands on each source and the amplitudes
of each mode. Here each source is excited one-by-one on each side.

(4) Excitation of particular acoustic modes or mode combinations. This operation
is achieved by a pseudo-inversion of the transfer matrix between the sources
and the modes, including a penalization to ensure that no source is excited
above a certain limit so that the physical integrity of all the sources is pre-
served.

This procedure is performed for each considered flow velocity and for waves
propagating in the same direction as the flow, and against it. When a target mode
is generated, there are inevitably other cut-on modes. A mode can be considered
correctly generated at a particular frequency on basis of a criterion of emergence
(typically of 20 dB) of this mode above the other modes cut-on at this frequency.

Figure 2.2 displays 3D schematics of the test section, with both single- and double-
liner configurations. H denotes the duct dimension perpendicular to the liner and
the dimension associated with the width of liner is denoted W.

2.2 Multimodal model for acoustic propagation in duct with
flow

The multimodal model simulates the acoustic propagation in a duct such as the
MAINE Flow, which serves as tools for the parametric study in Chapter 3 and pro-
vides the pressure data for the numerical impedance eduction in Chapter 4. This
section starts with the governing equations used to model the uniformly convected
acoustic waves. The model for the numerical calculation of 2D multimodal acoustic
propagation in a flow duct consisting of several segments is introduced. Two as-
sumptions for the mean flow profile will be separately applied: uniform flow and
inviscid sheared flow.
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Figure 2.1: Top, left: general view of the MAINE Flow duct with
acoustic sources marked by yellow brackets upstream and down-
stream of the test section. Top, right: view of the test section,
2 indicates the lined section with the microphone array for direct
impedance eduction, while 1 and 3 are rigid sections used for modal
decomposition. Bottom: Mach number profile measured upstream of
the liner in the direction perpendicular to it when the average Mach

value over the cross-section is Mave = 0.63.
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Figure 2.2: Schematics of MAINE Flow facility with a lined middle
section ( 2 ) and rigid sections ( 1 and 3 ) on each side. (a): single-
liner configuration, (b): double-liner configuration. The length of the
lined section is L = 800 mm and the width of the liner is W = 150
mm. The distance between the two lined walls is H = 280 mm. The
incident waves pin can be generated at both sides. The both ends are
set anechoic. The flow of velocity u0 can be sent from left 1 to right

3 , being uniform or sheared in the numerical study.

2.2.1 Governing equations

We consider the case in the absence of external sources and heat transfer, with
assumptions of inviscid, ideal and isentropic fluid. In such case, a fluid motion can
be described by the Euler equations [107]. The later consist of the continuity equa-
tion (2.1), the momentum conservation equation (2.2) and the energy equation (2.3):

Dρw

Dt
+ ρw∇ · uw = 0. (2.1)

ρw Duw

Dt
+∇pw = 0. (2.2)

Dpw

Dt
+ ρwc2∇ · uw = 0. (2.3)

The notations with superscript w stand for the whole flow field quantities. ρw is the
flow density, uw is the flow velocity vector field, pw is the pressure, cw is the speed
of sound in the flow, and D/Dt = ∂/∂t + uw · ∇ is the material derivative.

In acoustics, we are often concerned with small unsteady perturbations over a
mean flow, such that the flow variable can be written

ρw = ρ0 + ρ; uw = u0 + u; pw = p0 + p.

In this approach, the whole flow field quantity (denoted with superscript w) is
decomposed into steady base flow quantities (denoted with subscript 0) and un-
steady perturbed variables (unscripted). This decomposition is introduced into the
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Euler equations, while neglecting the feedback between the base flow and the per-
turbation field. Subsequently, by disregarding non-linear terms (deemed negligible
for the acoustic field), the Euler equations are linearized to describe the propagation
of small-amplitude perturbations:

∂ρ

∂t
+∇ · (ρ0u + ρu0) = 0, (2.4)

ρ0
D0u
Dt

+ ρ
D0u0

Dt
+ ρ0(u · ∇)u0 +∇p = 0, (2.5)

D0 p
Dt

+ u · ∇p0 + ρ0c2
0∇ · u + ρ0c2∇ · u0 = 0. (2.6)

Here, D0/Dt = ∂/∂t + u0 · ∇ is the material derivative associated to the base
flow.

In this thesis, the acoustic problem in the duct is simplified to a two-dimensional
case, where the width of the duct is neglected. Despite this simplification, the study
remains valid for analysing the acoustic field and the impedance eduction within
both uniform and sheared flows [20, 22, 26]. The flow structure in two-dimensional
cases focuses on a single plane vertical to the width dimension of three-dimensional
ducts, and allows effectively representing the effects.

A 2D duct as depicted by Figure 2.3 is considered, in which either a uniform or
a shear mean flow is aligned with the axis. The first and third sections have hard
boundaries, while the walls of the middle section can be treated with a locally react-
ing liner (either both the upper and lower walls, or only the lower wall). The height
of the 2D duct is denoted H and the length of each section is Ln. The axial coor-
dinate is denoted x, and y is the vertical coordinate. The duct exits are considered
anechoic. The following propagation models are for linear acoustic waves with an
implicit time dependence given by e+iωt, where ω is the angular frequency.
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Figure 2.3: Schematic of the 2D duct with three sections. Ln is the
length of n-th section. The boundaries of the middle section are either
lined-rigid or lined-lined. The incident wave pin is sent from the left.
The flow inside the duct is assumed to be uniform or sheared. The
upstream or downstream propagation are controlled by the direction

of the imposed flow.
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2.2.2 Model with uniform flow

With a uniform mean flow along the axial direction, the acoustic pressure field
inside the duct is governed by the convected Helmholtz equation:

1
c2

0

D2
0 p

Dt2 −∇2 p = 0, (2.7)

where ∇2 is the Laplacian operator.
For a hard wall, the boundary condition gives

∂p
∂n

= 0, (2.8)

indicating that the normal particle velocity vanishes at the duct wall, where n is
the unit normal to the wall, towards the outside of the duct. In the case of a lined
wall, the liner is assumed to have a constant impedance value along the axis, and
Eq. (1.7), the Ingard–Myers boundary condition [92, 93], is used to describe the rela-
tion between the acoustic velocity and pressure at the wall:

v =
D0

Dt
p

iωρ0c0Z
,

where Z is the specific surface impedance (i.e. normalised by ρ0c0). Thus, the bound-
ary condition at the lined wall writes

∂p
∂n

= − D2
0

Dt2
p

iωc0Z
, (2.9)

2.2.2.1 Mode calculation

In each section of the duct, the acoustic pressure can be sought in the following
modal form:

p(x, y) = ∑
n

A+
n Ψ+

n (y)e
−ik+xnx + ∑

n
A−

n Ψ−
n (y)e

−ik−xnx, (2.10)

where each mode is defined by an amplitude A±
n , a shape function Ψ±

n and an axial
wavenumber k±xn. The symbol ± selects the direction of propagation. Then, the
transverse wavenumber ky is defined using the dispersion relation of the acoustic
waves in a uniform flow

k2
yn =

1
c2

0
(ω − u0kxn)

2 − k2
xn, (2.11)

which allows to write the axial wavenumber as:

k±xn =
±c0

√
ω2 − (c2

0 − u2
0)k2

yn − u0ω

c2
0 − u2

0
. (2.12)

This expression indicates that each transverse wavenumber kyn matches two pos-
sible axial wavenumbers corresponding to waves propagating in the positive and
negative directions.

The wavenumbers and shape functions are solutions of an eigenvalue problem
given by Eq. (2.7)–(2.9) while assuming solutions of the form p = Ψ(y)e−ikxx. For a



2.2. Multimodal model for acoustic propagation in duct with flow 33

hard-wall section, this eigenvalue problem can be solved analytically:

Ψn(y) = cos
(
kyny

)
, with kyn = nπ/H. (2.13)

For a lined section, the problem is addressed using a pseudo-spectral method
based on Chebyshev polynomials, following the approach outlined by Boyd [108]. In
this method, each mode shape Ψ is represented as a series expansion in Chebyshev
polynomials: Ψ(y) = ∑N−1

n=0 αnTn(y), where Tn(y) are the Chebyshev polynomials
and αn are their associated coefficients. The convected Helmholtz equation is dis-
cretized and solved at Chebyshev points along the duct height. The linear system is
further constrained by applying boundary conditions Eq. (2.9) and/or Eq. (2.8). The
eigenvalue problem is then solved to determine the axial wavenumbers kx and the
corresponding mode shape functions. A detailed description of this computational
process is provided in Appendix B.1.

Among the obtained modes, it is then necessary to distinguish the acoustic modes
from the hydrodynamic modes and to reorder the wavenumbers in both directions
of propagation. Hydrodynamic modes in ducts typically appear along the real axis
in the complex plane, ranging from Re(kx) = ω/u0 to Re(kx) → ∞ in the complex
plane [109]. Therefore, to isolate the acoustic modes, we limit Re(kx) such that it does
not exceed ω/u0. Then, for acoustic modes propagating in the positive (or negative)
axial direction in a hard-walled duct with uniform flow, their axial wavenumbers
are located in a quadrant of the complex plane defined by

Im(k+x ) ≤ 0 , Re(k+x ) ≥
ωu0

u2
0 − c2

0
;

or Im(k−x ) ≥ 0 , Re(k−x ) ≤
ωu0

u2
0 − c2

0
. (2.14)

For a lined duct, the propagation direction of the acoustic modes can be identified
using a heuristic rule with a diagonal defined by Im(kx) = Re(kx)− u0ω/(c2

0 − u2
0):

Im(k+x ) ≤ Re(k+x )−
ωu0

u2
0 − c2

0
and Im(k+x ) < 0 , (2.15a)

Im(k−x ) ≥ Re(k−x )−
ωu0

u2
0 − c2

0
and Im(k−x ) > 0 . (2.15b)

The intersection with the real axis at −u0ω/(c2
0 − u2

0) represents the real part of the
just cut-on modes in a hard-walled duct. Modes that propagate in the positive direc-
tion appear in the lower half of the complex plane, while those propagating in the
negative direction are found in the upper half. Subsequently, the acoustic modes are
ordered based on the attenuation rates, which are anticipated by the absolute value
of their associated transverse wavenumbers. As a final remark, the normalisation of
the mode shape function is crucial for interpreting and comparing the amplitudes of
the modes in a uniform way in the subsequent mode-matching step.

2.2.2.2 Mode matching

Once the modal basis is known in each section, a mode-matching method devel-
oped by Gabard and Astley [110] is used to compute the whole duct field by connect-
ing the modal solutions in each sections considering the discontinuity of boundary
at interfaces. Mode-matching is applied at the leading and trailing edges of the lin-
ers, and allows computing the modal amplitudes A±

n in each section, based on the
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conservation of mass and momentum. The continuity condition is obtained from
a variational statement of the field equations and impedance boundary conditions
over a vanishingly small transition region between rigid and lined segments. We
first present the theory of this approach and then apply it to this study.

In the original mode-matching method [110], a 3D duct is considered with the
assumption that the axial change in liner impedance occurs over a finite region ±ϵ
on either side of the matching plane at x = 0, as shown in Figure 2.4. In this small
transition region, the acoustic pressure p(x, y, z) and velocity amplitudes u(x, y, z) =
[u, v, w] satisfy the linearised momentum and continuity equations. The matching
conditions are established for this finite transition region and the limit ϵ → 0 is
taken to simulate an abrupt discontinuity at x = 0. The cross-section of the duct at
x = 0 defines an area S bounded by a contour Γ. In regions (1) and (2) on either
side of the transition region, the complex amplitudes of the acoustic pressure and
the velocity are taken equal to p1, u1, v1 and w1 for x < −ϵ, and p2, u2, v2 and w2 for
x > ϵ.

y, z

x
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V

Impedance 𝑍1 Impedance 𝑍2

𝑆𝑧
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𝑢0
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Γ

S

𝑛
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Figure 2.4: Schematic for the mode matching at liner discontinuity
(modified from [110]). x is the axial axis, y and z axis lie in the cross-
section. Z1 and Z2 are impedances of boundary in region (1) and (2),
respectively. u0 is the velocity of the flow in duct and only has the ax-
ial component. Grey region: thin transition volume for the matching

conditions with the length 2ϵ → 0.

To formulate the matching conditions in the duct, particularly in the matching
region, only the axial momentum equation and the continuity equation are consid-
ered. They are written in conservative form:

iωu +∇ · (u0u +
1
ρ0

p, 0, 0) = 0, (2.16)

iωp +∇ · (u0 p + ρ0c2
0u, ρ0c2

0v, ρ0c2
0w) = 0. (2.17)

These equations are solved within a region bounded by the left and right planes (S−

and S+) near the interface, and bounded by the thin section of the duct wall (Sz).
The impedance boundary condition on the duct lined wall is Eq. (2.9). The

impedance varies continuously and the values at the edge of the region on the pipe
wall are Z = Z1 and Z = Z2. Then, Eq. (2.16) and (2.17) are multiplied by a continu-
ous weighting function W(y) and integrated over the region volume V. The region
is assumed infinitely thin. By applying Green’s theorem, substituting the boundary
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conditions, the equations become∫
S

u0W(u2 − u1)dS +
∫

S

1
ρ0

W(p2 − p1)dS = 0, (2.18)

∫
S

ρ0c2
0W(u2 − u1)dS +

∫
S

u0W(p2 − p1)dS =
∫

Γ

iu0ρ0c2
0

ω
W
(

p2

Z2
− p1

Z1

)
dΓ. (2.19)

When the flow in the duct is uniform, the two previous equations can reduce to

∫
S

u0W(p2 − p1)dS = − iu2
0

c2
0 − u2

0

ρ0c2
0

ω

∫
Γ

W
(

p2

Z2
− p1

Z1

)
dΓ, (2.20)

∫
S

u0W(u2 − u1)dS =
iu2

0

c2
0 − u2

0

c0

ω

∫
Γ

W
(

p2

Z2
− p1

Z1

)
dΓ. (2.21)

To match the modal solutions across a liner discontinuity, the acoustic pressure
field expression (2.10) is substituted into Eq. (2.20) and Eq. (2.21). Thus the mode
amplitudes in two sections are linked by[

P+
2 −P−

1
M+

2 −M−
1

] (
A+

2
A−

1

)
=

[
P+

1 −P−
2

M+
1 −M−

2

] (
A+

1
A−

2

)
, (2.22)

where A±
n is the amplitude of the acoustic pressure in the n-th zone. The sign ±

indicates the propagation direction and the sub-matrices M±
1,2 and P±

1,2 are formed as
follows:

(M±
n )a,b =

∫
s

(
u0 + c2

0
k±xb,n

ω − u0k±xb,n

)
WaΨ±

n,bdS −
∫

Γ

iu0ρ0c2
0

ωZn
WaΨ±

n,bdΓ for n = 1, 2,

(2.23)

(P±
n )a,b =

∫
s

ωWaΨ±
n,b

ρ0(ω − u0k±xb,n)
dS for n = 1, 2, (2.24)

where a and b are the mode index and Ψn,b is the mode shape function of mode b in
n-th zone . The trial function Wa is chosen as Ψ+

2,b for P+
n and Ψ−

1,b for M+
n .

For a 2D duct with 3 sections (hard-lined-hard) as considered in this study, the
mode-matching conditions are established at the interfaces on each side of the lined
section, as indicated in Figure 2.5. According to Eq. (2.22), two linear systems of
equations are written: Eq. (2.25) for the upstream interface 1-2 and Eq. (2.26) for the
downstream interface 2-3. Here, the index n of the wavenumbers kx represents the
n-th segment.

[
P+

2 −P−
1

M+
2 −M−

1

] (
A+

2
A−

1

)
=

[
P+

1 −P−
2

M+
1 −M−

2

] [
e−ik+

x,1L1 0
0 eik−

x,2L2

](
A+

1
A−

2

)
, (2.25)

[
P+

4 −P−
3

M+
4 −M−

3

] (
A+

3
A−

2

)
=

[
P+

3 −P−
4

M+
3 −M−

4

] [
e−ik+

x,2L2 0
0 eik−

x,3L3

](
A+

2
A−

3

)
. (2.26)

The expressions for M±
n and P+

n given by Eq. (2.23) and Eq. (2.24) become
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Figure 2.5: 2D duct schematic and wave amplitudes A±
n in the n-th

segment, with wavenumbers k±x,n, respectively. x is along the duct
axis and y is along the duct height. Ln is the length of each segment.

H is the duct height. u0 is the velocity of the grazing flow.

(M±
n )a,b =

∫ h

0
(u0 + c2

0
k±xb,n

ω − u0k±xb,n
)WaΨ±

n,bdy −
[

iu0ρ0c2
0

ω
AnWaΨ±

n,b

](y=h)

(y=0)
, (2.27)

(P±
n )a,b =

∫ h

0

ω

ρ0(ω − u0k±xb,n)
WaΨ±

n,bdy. (2.28)

Here, M±
n and P+

n with n = 1, 2 are for the interface 1-2, and n = 3, 4 for the interface
2-3. The trial functions in Eq. (2.27) for the first interface are Ψ+

2,b for P+
n and Ψ−

1,b for
M+

n . The trial functions in Eq. (2.28) for the second interface are Ψ+
3,b for P+

n and Ψ−
2,b

for M+
n . More details in the implementation are described in Appendix B.1.2.

2.2.3 Model with shear flow

We now develop a propagation model with a sheared mean flow in ducts. For
parallel shear flows, the mean flow velocity is in the same direction everywhere and
the flow properties are constant in the streamwise direction. However, the velocity
magnitude depends on the vertical coordinate. In this flow case, we still consider
a 2D model, where the mean flow velocity [u0x(y), u0y = 0] is only in the axial di-
rection and the value u0x(y) varies along the y axis. Two common models used
to describe the sound propagation in parallel shear flows are the Linearised Euler
Equations (LEEs) and the Pridmore Brown equation [111]. A problem with both
models is that the gradient u′

0(y) of the mean flow profile appears in these equa-
tions. For some common flow profiles, such as the inverse law profile [18], this
velocity gradient tends to infinity at the duct wall, which can create difficulties for
the numerical solutions. To avoid this issue, we introduce the vertical acoustic dis-
placement ξ which is related to the vertical acoustic velocity v by D0ξ/Dt = v, such
that we can use the LEEs in this study. The LEEs can thus be written as follows in
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terms of p and ξ:

∂p
∂y

+ ρ0
D2

0ξ

Dt2 = 0 , (2.29a)

ρ0c2
0

D2
0

Dt2
∂ξ

∂y
− c2

0
∂2 p
∂x2 +

D2
0 p

Dt2 = 0 . (2.29b)

It can be seen that the gradient of the mean flow does not appear explicitly. Also,
from the definition of impedance ρ0c0Z = p/v, the impedance boundary condition
can be directly written as ξ = −p/(iωρ0c0Z) or ξ = p/(iωρ0c0Z) for the lower or
upper lined walls, respectively.

In each section, the pressure p and displacement ξ are written in modal form, as
in Eq. (2.10). Assuming that p and ξ have an axial dependence given by e−ikxx yields

∂p
∂y

− ρ0(ω − u0kx)
2ξ = 0 , (2.30a)

−ρ0c2
0(ω − u0kx)

2 ∂ξ

∂y
+ c2

0k2
x p − (ω − u0kx)

2 p = 0 . (2.30b)

This eigenvalue problem for the axial wavenumbers kx and mode shape functions p
and ξ is also solved using the pseudo-spectral method, with N Chebyshev polyno-
mials to represent p and ξ.

Once the axial wavenumbers are computed, the classification of the modes is per-
formed. However, in the case of a sheared flow, the dispersion relation in Eq. (2.11)
is not valid, so the transverse wavenumbers cannot be defined nor serve as the re-
ordering indicator. Another way to achieve the reordering of wavenumbers is to use
a smoothness indicator for each mode. This indicator is defined by the L2 norm of
the associated mode shape, with smaller values for smoother mode. Based on this
indicator, all modes can be reordered from the most to the least smooth. Addition-
ally, when the average flow velocity u0,ave > 0 (resp. u0,ave < 0), the aforemen-
tioned condition for the model with uniform flow is not capable enough of separat-
ing right-running (resp. left-running) acoustic modes from hydrodynamic modes,
and a second criterion is needed. For the acoustic modes, the largest expected value
for Re(k+x ) is close to ω/(c0 + u0,ave). For the hydrodynamic modes when u0,ave > 0,
the smallest value of Re(kx) is expected to be close to ω/u0,max with u0,max being
the largest value of the velocity profile. We therefore use the average of these two
values as a threshold to discriminate between acoustic and hydrodynamic modes.
More specifically, a wavenumber is retained as an acoustic mode if

Re(kx) <
ω

2

(
1

u0,ave + c0
+

1
u0,max

)
, when u0 > 0; (2.31a)

Re(kx) >
ω

2

(
1

u0,ave − c0
+

1
u0,max

)
, when u0 < 0. (2.31b)

The conditions Eq. (2.31) are only qualitative, but their robustness has been tested in
practice.

Then, the whole acoustic field is calculated by the mode-matching method [110]
using the matching conditions in equations (2.18) and (2.19). In this method, the axial
acoustic velocity u is needed for the matching conditions, and the axial components
in the conservation of momentum Eq. (2.5) provide a relationship for deriving u:
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ρ0
D0u
Dt

+ ρ0v
∂u0

∂y
+

∂p
∂x

= 0. (2.32)

Thus, using the vertical displacement ξ and the pressure p, the axial acoustic velocity
u for a single mode writes:

u =
kx

ρ0(ω − u0kx)
p − du0

dy
ξ. (2.33)

Now the propagation model with the assumption of a shear flow is obtained,
enabling the numerical study on the wave propagation and providing the acoustic
pressure field for the impedance eduction. Apart from these, the two propagation
models with uniform or shear flow can be used for comparisons of the acoustic prop-
agation and the impedance eduction between two flow cases and for the investiga-
tion of the effects of shear flow.

2.3 Direct impedance eduction technique

This section describes the algorithms for the direct impedance eduction method.
In the 3-segment duct described before, once the acoustic field in the duct is known,
either experimentally measured in the MAINE Flow duct described in Section 2.1
or numerically simulated using the multimodal models described in Section 2.2, the
direct impedance eduction is used to provide the liner impedance. This technique
can be split into two steps: estimating axial wavenumbers, and calculating the liner
impedance from the wavenumbers. The first step relies on a linear array of equidis-
tant microphones in the lined section (see Figure 2.6). From the pressure signals, the
wavenumbers can be identified using an exponential parameter estimation method.
Then, with one identified axial wavenumber kx, the liner impedance can be obtained
by means of a direct relationship considering the property of mean flow.
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Figure 2.6: Schematics depicting the installation of microphones. (a):
on the wall opposite to the liner in the traditional single-liner con-
figuration [18], (b): on the lateral wall, which is compatible with the

double-liner configuration [23].
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2.3.1 Wavenumber estimation

Exponential parameter estimation [82, 112–115] is widely employed to retrieve
the components of signals composed of a sum of exponentials. In the present study,
the estimation is performed on the acoustic pressure p in the frequency domain.
The latter can be indeed decomposed into a sum of modes with amplitudes An,
i.e. p = ∑n Ane−ikxnx, enabling the estimation of wavenumbers from the acoustic
pressure data. Two methods are introduced for this purpose: the Kumaresan–Tufts
(KT) method and the Hankel Total Least Squares (HTLS) method.

2.3.1.1 KT method

The KT method proposed by Kumaresan and Tufts [82] is based on a linear pre-
diction equation system. We consider N samples of the acoustic pressure, obtained
in the lined section by an array of N equidistant microphones separated by a dis-
tance ∆x. Since the propagation of a mode with a wavenumber kx along the x axis
is characterised by e−ikxx, the acoustic pressures measured by adjacent microphones
differ by a factor e−ikx∆x. Thus, each of the first N − Lkt samples can be expressed as
a linear combination of the following Lkt points. Here, Lkt is named the order of the
linear prediction filter.

In this method, the linear prediction equations concern the samples in the back-
ward direction. The system of (N − Lkt) equations can then be expressed:

p(2) · · · p(Lkt + 1)
p(3) · · · p(Lkt + 2)

...
. . .

...
p(N − Lkt + 1) · · · p(N)


︸ ︷︷ ︸

Hkt


b(1)
b(2)

...
b(Lkt)


︸ ︷︷ ︸

B

= −


p(1)
p(2)

...
p(N − Lkt)


︸ ︷︷ ︸

D

. (2.34)

Hkt is an (N − Lkt) × Lkt Hankel matrix composed of the samples, B is a column
vector presenting the linear prediction coefficients, and D is the conjugates of the
first N − Lkt samples. Referring to [76], the vector of the prediction coefficients B is
obtained by

B = −H†
ktD, (2.35)

where Hkt
† is the pseudo-inverse of Hkt. This can be given by the singular value

decomposition of Hkt:
Hkt = UΣVH, (2.36)

and
Hkt

† = VΣ−1UH. (2.37)

Here, Σ is a rectangular diagonal matrix and contains the singular values of Hkt. The
columns of U (resp. V) are called left-singular vectors (resp. right-singular vectors).
The superscript H denotes the Hermitian transpose.

The essential idea in the KT method is to reduce the influence of the measure-
ment noise by considering a reduced rank approximation of Hkt. This is done by us-
ing a truncated Singular Value Decomposition (SVD) of Hkt with a truncation num-
ber Mt, meaning to keep only the first Mt most important components. Then, Hkt
can be express as

(Hkt)Mt = UMt ΣMt V
H

Mt , (2.38)
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where the size of UMt is (N − Lkt)× Mt, the size of ΣMt is Mt × Mt and the size of V
is Lkt × Mt.

Therefore, the vector of prediction coefficients B can be estimated as

B = −(Hkt)
†
Mt

D = −VMt Σ
−1
Mt
(UH)Mt D. (2.39)

From the linear prediction coefficients, we can write the prediction-error filter poly-
nomial

B(z) = 1 +
Lkt

∑
n=1

bnz−n. (2.40)

According to the roots zn of this polynomial, the axial wavenumbers are obtained by
the relationship zn = e−ik±xn∆x, thus:

kxn =
ln zn + 2mπi

−i∆x
. (2.41)

Here, the natural logarithm results in periodic solutions ln zn + 2mπi, where m is an
integer. Consequently, each axial wavenumber are among multiple solutions, and
the correct value depends on the choice of m. Jing et al. [20] addressed this issue
by constraining the proper range of the real part of the axial wavenumber using the
uniform-flow dispersion relation. Nevertheless, in this study, the logarithm func-
tion is computed using NumPy in Python 3, returning the solution of the natural
logarithm whose imaginary part lies in ]− π, π]. This solution is considered as the
correct one to calculate the acoustic axial wavenumber, because the additional term
−2mπ/∆x introduces an excessively large real part into the resulting wavenumber.
For instance, with a microphone spacing ∆x = 0.02 m, a typical choice in exper-
iments [81], the additional term for m = 1 is approximately -314, which is not a
physical solution for an acoustic mode. Therefore, this thesis only takes the value
obtained by the NumPy function for the retrieved axial wavenumber.

2.3.1.2 Hankel Total Least Square method

In contrast to the previous method, the Hankel Total Least Square method [112]
retrieves the wavenumbers by taking advantage of the subspace representation and
of the shift-invariance property of the Vandermonde decomposition (VDMD). Again,
a microphone array containing N complex samples is considered. All the pressure
samples are included in an L × R Hankel Matrix:

H =


p(1) · · · p(R)
p(2) · · · p(R + 1)

...
. . .

...
p(L) · · · p(N)

 , (2.42)

with L and R chosen so that N = L + R − 1 and L > K. Here, the numbers of row
and column L and R do not have the same meaning as in the KT method, and K is
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the truncation number used later. Then the VDMD decomposition of H is realised:

H = SCTT =


1 · · · 1
z1

1 · · · z1
K

z2
1 · · · z2

K
...

. . .
...

zL−1
1 · · · zL−1

K




c1

0
. . .

0
cK


 1 z1

1 z2
1 · · · zR−1

1
...

...
... · · ·

...
1 z1

K z2
K · · · zR−1

K

 ,

(2.43)
where the zk are also called the generators and the superscript T denotes the trans-
pose of the matrix. These poles form a diagonal matrix Z = diag{z1, z2, . . . , zK}. The
goal is to obtain the poles zk that link to axial wavenumbers. It can be noted that the
matrix S (resp. T) possesses the shift-invariance property:

Ŝ↑ = Ŝ↓Z, (2.44)

where the up (down) arrow placed behind a matrix represents the deletion of the
top (bottom) row of the considered matrix.

In the absence of noise, H can be decomposed as

H =
[

Û U0
] [ Σ̂ 0

0 Σ0

] [
V̂H

VH
0

]
, (2.45)

where the bottom right corner of the singular values matrix Σ0 is null and the SVD
of H reduces to the product ÛΣ̂V̂H consisting of the non-null part and the associated
left and right singular vectors. The columns of S (resp. T) span the same subspace
as the columns of Û (resp. V̂∗). Therefore, Û has also the shift-invariance property
Û↑ = Û↓Z, so that the poles are obtained by the total least square (TLS) solution.

If noise is present, the truncated SVD is the best rank-K approximation of H:
ĤL×R = ÛL×KΣ̂K×KV̂H

K×R. Here, K can be interpreted as the assumed number of
present modes. Then, the equality in Û↑ = Û↓Z does not hold any more. The total
least square solution of the overdetermined set of linear equations Û↑ ≈ Û↓Z̃ is
given by: ̂̃Z = −W12W−1

22 , (2.46)

where

W =

[
W11 W12
W21 W22

]
(2.47)

is obtained from the SVD of the matrix [Û↓ Û↑]:

[Û↓ Û↑]
SVD
= YΓWH. (2.48)

Once Z̃ is estimated, its eigenvalues λk give an estimation of the signal poles zk that
links to axial wavenumbers. Finally the wavenumbers are computed:

kxk =
ln λk

i∆x
, (2.49)

where the natural logarithm result does not include other periodic solutions for the
same reason as explained in the KT method.

Both methods effectively address the challenge of noisy signals. The KT method
focuses on separating noise from the signal subspace by applying the Singular Value
Decomposition (SVD) to a Hankel signal matrix. Its primary goal is to identify the
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signal subspace that most accurately represents the observed data, and it has shown
robustness to noise perturbation in applications such as impedance eduction in small
ducts [17, 26]. In contrast, the HTLS method is specifically designed to manage noise
more comprehensively by considering errors in both the signal and the matrix struc-
ture. The HTLS enhances the basic approach by using a Hankel matrix in conjunc-
tion with Total Least Squares to minimize errors across the signal and data matrix,
thereby offering increased robustness in noisy environments. Both methods will be
assessed in the simulated impedance eduction in Chapter 4.

2.3.2 Calculation of impedance

The second key step in the direct eduction of impedance is to calculate the liner
impedance using a measured axial wavenumber kx. This section first reviews the
traditional method proposed by Jing et al. [15] for the ’single-liner configuration,’
where only the lower duct wall is lined. This method assumes a uniform mean flow
and uses the Ingard–Myers boundary condition. Building on this foundation, we ex-
tend the method to a ’double-liner configuration’, where both the lower and upper
walls are lined by the same material. In addition, we also deduce the solution for the
unknown impedance when using different materials on two walls, one of which is
known. Furthermore, to account for the effects of a parallel sheared mean flow, we
introduce new solutions for determining the unknown impedance of the liner based
on the Linearised Euler Equations for both configurations. These methods can be
applied for either a single incident mode case or an incident multimodal field.

2.3.2.1 Uniform flow

For a uniform flow, the mode shape functions that satisfy Eq. (2.7) can be directly
written as

Ψn(y) = an cos(kyny) + bn sin(kyny), (2.50)

where the transverse wavenumbers kyn are given by the dispersion relation (see
Eq. (2.11)):

kyn =
√
(k0 − Mkxn)2 − k2

xn. (2.51)

We first consider the traditional method that uses the single liner configuration
where only the lower duct wall is treated. Substituting the above expression for Ψn
into the Ingard–Myers condition (2.9) at y = 0, and into the hard-wall condition (2.8)
at y = H, we obtain a closed-form expression for the specific impedance Z in terms
of the mode wavenumbers [15]:

Z =
i(k0 − Mkxn)2

k0kyn tan(kynH)
. (2.52)

Using the same assumption of flow, the method can be extended for the double
liner configuration. The Ingard–Myers condition Eq. (2.9) is applied at both the up-
per and lower walls, with the assumption that they have the same impedance. This
yields the following quadratic equation:

Q2 − 2Qkyncot(kynH)− k2
yn = 0 , with Q =

(k0 − Mkx)2

ik0Z
. (2.53)
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The solutions for the impedance are

Z =
(k0 − Mkxn)2 sin(kynH)

ik0kyn[cos(kynH)± 1]
. (2.54)

This expression contains two types of solutions distinguished by “±” in the denom-
inator, in which “−” corresponds to symmetric modes and “+” to antisymmetric
modes. The choice is completely controlled by the symmetry of the incident mode.
Indeed, when the upper and lower walls are lined with the same material, the total
sound field will retain the symmetry of the incident mode. As a consequence, if the
incident mode is antisymmetric, then one should use the sign “+” in the expression
above.

Note that Spillere et al. also provide an expression to calculate the impedance for
both configurations (see Eq. (6) in [64]). However, their expression for the double-
liner configuration is only applicable to symmetric acoustic fields. The present result
in Eq. (2.54) is equally applicable to both types of incident modes.

Furthermore, for a configuration with two different liners, when the specific
impedance of one liner is known as Z1 at y = 0, the other liner impedance Z2 at
y = H can be written as

Z2 =
(k0 − Mkxn)2[(k0 − Mkxn)2 sin(kynH)− ik0kynZ1]

ik0k2
ynZ1 sin(kynH) + kyn cos(kyn)(k0 − Mkxn)2 . (2.55)

When Z1 = Z2, Eq. (2.55) reduces to Eq. (2.54).

2.3.2.2 Shear flow

With shear flow, it is not possible to write a closed-form expression for the wall
impedance like Eq. (2.52) or Eq. (2.54). Instead, the relation between Z and the axial
wavenumber kx remains implicitly defined by the governing equations Eq. (2.30).
To compute the impedance Z associated to a given kx, one approach is to use a non-
linear optimisation method to iteratively adjust Z until one of the duct modes in
the lined section has the expected wavenumber kx. This approach requires solving
the model presented in Section 2.2.3 many times, which can be computationally ex-
pensive [19]. Here, we reuse and extend the method from [20] to compute the wall
impedance in a single calculation. In contrast with the shear flow model for the
whole duct, Eq. (2.30) are now solved only in the lined section, for a known kx and
with modified boundary conditions.

For the case of a single liner on the lower wall y = 0, two boundary conditions
are imposed on the hard wall (at y = H), while no condition is imposed on the
lined wall. More specifically, the normal displacement is set to zero on the upper
wall, ξ(y = H) = 0, which is consistent with a rigid surface, and pressure is also
prescribed on that wall: p(y = H) = 1. These boundary conditions are sufficient
to obtain a well-posed differential equation. This model is solved numerically with
the same pseudo-spectral method as in Section 2.2.3. It is then straightforward to
compute the impedance of the lined wall at y = 0:

Z =
−p(0)

iωρ0c0ξ(0)
. (2.56)

This expression shows that the value of Z is independent of the amplitude of the
sound field. This justifies the fact that p(H) can be set to any non-zero value.
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The procedure has to be modified for the case where the two walls are lined with
the same impedance. Two separate solutions are computed. The solutions p1(y) and
ξ1(y) satisfy p1(H) = 1 and ξ1(H) = 0, while the solutions p2(y) and ξ2(y) satisfy
p2(H) = 0 and ξ2(H) = 1. We then construct a linear combination of these solutions:

p(y) = c1 p1(y) + c2 p2(y), (2.57a)
ξ(y) = c1ξ1(y) + c2ξ2(y), (2.57b)

so that this new solution has the same impedance at the two walls. In other words,
we seek the constants c1 and c2 such that

ρ0c0Z =
p(H)

iωξ(H)
=

p(0)
−iωξ(0)

. (2.58)

This expression reduces to a quadratic equation for Z:

ω2ξ1(0)ρ2
0c2

0Z2 − iω[ξ2(0) + p1(0)]ρ0c0Z − p2(0) = 0 . (2.59)

One of the two roots corresponds to a symmetric solution, while the other corre-
sponds to an antisymmetric solution. Using the same argument as for the uniform
flow method, it is easy to identify the correct value of Z based on the symmetry of
the incident mode.

2.4 Conclusions

This chapter provides the methodological foundations of this thesis. First, the
MAINE Flow facility is described featuring a large cross-section, which involves a
multimodal acoustic field at high flow velocities. By utilizing mode synthesis and
mode detection, the facility can measure acoustic liner properties separately for each
cut-on acoustic mode, enabling a more detailed assessment of the acoustic treatment
behaviour.

Next, multimodal models for acoustic propagation in a multi-segment duct with
uniform or shear flow have been described. These models serve as a simulation
tool to mimicking the acoustic propagation in the presence of airflow within a duct
like the MAINE Flow facility. The models use a pseudo-spectral method for the
mode calculation in each segments and a mode-matching approach to account for
boundary discontinuities in the axial direction. They provide simulated acoustic
fields in the flow duct, which will be used for a numerical study of shear flow effects
and for simulated impedance eduction in the next chapters.

Regarding the direct impedance eduction, the traditional algorithm [15] is re-
viewed, which considers the single-liner configuration using a uniform flow as-
sumption and the Ingard–Myers boundary condition. Based on that, the direct
method is developed and extended for the double-liner configuration with either
uniform or shear mean flow. The double-liner configuration is proposed to improve
the impedance eduction results, which will be discussed in Chapter 4. In case of
shear flow, acoustic vertical displacement ξ is considered as the variable instead of
acoustic vertical velocity v in [20], in order to avoid the numerical issues associ-
ated with a flow profile that has infinite derivative at the boundary. In addition,
extending the direct method to shear flow cases significantly reduces computation
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costs compared to the inverse method that accounts for the flow shear. In the fol-
lowing, these methods are used to study the effects of shear flow on the calculation
of impedance in Chapter 3 and to conduct numerical and experimental impedance
eduction in the subsequent chapters.
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Chapter 3

Parametric study of the shear flow
effects

This chapter presents a parametric study of the effects of mean flow shear, using
the multimodal propagation models and methodologies described in the previous
chapter. This study considers flow profile parameters including the boundary layer
thickness, the flow velocity and the propagation direction. In addition, both single-
and double-liner configurations are included. The physical parameters is described
in Section 3.1 before considering three aspects of the shear effects. First, Section 3.2
investigates the influence of the mean flow shear on the acoustic propagation in
terms of the acoustic mode wavenumbers. Then, Section 3.3 focuses on the valid-
ity of the uniform flow assumption used when calculating the wall impedance from
the knowledge of an acoustic axial wavenumber in the presence of flow shear. Fi-
nally, Section 3.4 explores how the presence of the mean flow shear affects the liner
performance, i.e. the acoustic transmission.

3.1 Framework of the parametric study

3.1.1 Physical parameters

The following parametric studies are presented using non-dimensional parame-
ters, based on the reference values ρ0, c0 and H. For instance, the angular frequency
ω is converted into the Helmholtz number He = ωH/c0. This Helmholtz number
will vary between 0.1 and 16, which covers a wide range of experimental facilities.
For instance, for a small duct facility (H = 4 cm as in [116]) operating between 300
and 3000 Hz, the Helmholtz number varies roughly between 0.22 and 2.2. In con-
trast, for a large duct facility (H = 28 cm in the MAINE Flow [12]) operating in the
same frequency range, He varies between 1.6 and 15.5 approximately.

A constant value Z = 1 − i is used for the liner impedance in this chapter. It
has been checked that conclusions remain the same for other choices, including fre-
quency dependent impedance functions Z = 1 − i cot(k0hcav), with hcav being the
depth of the liner cavity, and rigid wall case. For the sake of brevity, these results are
not shown here.

3.1.2 Velocity profiles

The velocity profile u0(y) of the studied shear flow follows an inverse power law:

u0(y)
u0max

=


(y/δ)1/n, for 0 ≤ y ≤ δ,
1, for δ ≤ y ≤ 1 − δ,
[(1 − y)/δ]1/n, for 1 − δ ≤ y ≤ 1,

(3.1)
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where have been introduced the boundary layer thickness δ, the power n and the
maximum velocity u0max. For this profile, the relationship between the average and
maximum velocity can be deduced:

u0ave =

(
1 − 2

n + 1
δ

H

)
u0max (3.2)

To study the effect of the boundary layer on sound propagation, it is recommended
to use the displacement boundary layer thickness δ1 defined in Eq. (3.3) to charac-
terize the boundary layer [117]:

δ1 =
∫ H/2

0

[
1 − u0(y)

u0max

]
dy. (3.3)

For the profile defined by Eq. (3.1), it reads δ1 = δ/(n + 1). The present paramet-
ric study will therefore focus on varying δ1 instead of δ. Also, instead of defining
directly the order n of the power law, the shape factor θ, which is the ratio of the
displacement thickness to the momentum thickness of the boundary layer, is used.
The momentum thickness of the boundary layer is defined by [118]:

δ2 =
∫ H/2

0

u0(y)
u0max

[
1 − u0(y)

u0max

]
dy. (3.4)

Thus, for the profile Eq. (3.1) we have θ = 1 + 2/n. For the rest of the study, the
shape factor is fixed to θ = 1.55, which is typical of turbulent boundary layers [118].
Note finally that when comparing results obtained with a uniform flow and a shear
flow, the same average Mach number Mave will be used for the two cases.

The velocity profile given in Eq. (3.1) implies discontinuities of the velocity gra-
dient at y = δ and y = 1 − δ. This can be detrimental to the accuracy of the spectral
method used in this thesis. A simple way to mitigate this is to smooth the profile by
introducing blending functions that permit quick but smooth transitions from one
part of the profile to the next. The following gives the detailed definitions of these
blending functions, but note that this smoothing has a negligible effect on the flow
properties δ1, θ and Mave.

The velocity profile is composed of three parts, each using one of the following
functions:

f1(y) = u0max(y/δ)1/n, (3.5a)
f2(y) = u0max, (3.5b)
f3(y) = u0max[(H − y)/δ]1/n, (3.5c)

where f1 and f3 represent the boundary layers and f2 represents the central region.
To construct a smoothly varying profile u0(y) the three functions defined above are
combined with blending functions b̃i(y):

u0(y) =
3

∑
i=1

fi(y)b̃i(y) . (3.6)

The blending functions are defined as follows:

b̃i(y) =
{

bi(y)− min
0≤y≤H

[bi(y)]
}

/
{

max
0≤y≤H

[bi(y)]− min
0≤y≤H

[bi(y)]
}

, (3.7)
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with

b1(y) = g(δ − y) , b2(y) = g(y − δ)g(H − y − δ) , b3(y) = g(y + δ − H) , (3.8)

and
g(y) =

1
2

[
1 + tanh

(y
d

)]
. (3.9)

The parameter d controls how quickly the functions bi transition from 0 to 1. The
scaling introduced in Eq. (3.7) ensures that the blending functions b̃i(y) vary exactly
between 0 and 1. With the definition (3.6), the velocity profile u0(y) and all its deriva-
tives are continuous. An example of blending functions is shown in Figure 3.1 where
each blending function can be seen to vary smoothly, and quickly, between 0 and 1
at y = δ and y = H − δ.

0.0 0.2 0.4 0.6 0.8 1.0
y/H

0.0

0.2

0.4

0.6

0.8

1.0

̃b1(y)
̃b2(y)
̃b3(y)

Figure 3.1: Blending functions b̃i(y) as defined by Eq. (3.7) for δ/H =
0.2 and d/H = 0.01.

3.2 Acoustic propagation

First, the influence of the mean flow shear on the acoustic propagation is studied,
by looking at the duct mode wavenumbers. These wavenumbers are calculated here
for uniform flows and for shear flows using the methods introduced in Section 2.2.2
and 2.2.3 of Chapter 2.

3.2.1 Effects of the displacement thickness

Here, the displacement thickness δ1 is varied between 0.01 and 0.1, which cor-
responds to 1% and 10% of the duct height, respectively. This range of values are
based on data obtained in several facilities with different duct heights and Mach
numbers [22]. The mean flow velocity is kept constant as Mave = ±0.3, with the sign
+ (resp. −) corresponding to the acoustic wave propagating downstream with the
flow (resp. upstream against the flow). The velocity profiles are shown in Figure 3.2.

Figure 3.3 shows the axial wavenumbers kx,u and kx,s calculated respectively for
a uniform flow or a shear flow with various boundary layer thicknesses in the single-
liner case. For the first mode kx1 corresponding to the plane wave in the hard-wall
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Figure 3.2: Examples of the velocity profiles given by Eq. (3.1) for
various displacement thicknesses δ1, with Mave = 0.3 and θ = 1.55.

duct, shown in Figure 3.3(a), the linear scaling of the axial wavenumber with the fre-
quency is clearly visible. The variation of the wavenumber with δ1 is visible for the
imaginary part but difficult to assess for the real part. For the second mode kx2 dis-
played in Figure 3.3(b), the wavenumbers otained for the uniform flow and for the
shear flow align closely, except for the imaginary part at He < 2. The insets shows
variation of the wavenumber with δ1, with a trend similar to kx1. Nevertheless, it
is not convenient to evaluate in this way the discrepancies over the total frequency
range.

It is therefore preferable to plot the differences kx,s − kx,u between the wavenum-
bers in order to investigate the shear flow effects, as shown in Figure 3.4. In the fol-
lowing, only the first mode kx1 is shown, but the same conclusions can be drawn for
the other modes. First, it can be seen that the differences between the wavenumbers
computed for uniform and sheared flows increase systematically with the boundary
layer thickness δ1. For downstream propagation and in the single-liner framework,
see Figure 3.4(a), the difference between the uniform and shear flow cases is negli-
gible when He ≲ 5. For higher frequencies, one can observe that kx,s diverge more
significantly from kx,u. For the upstream propagation, shown in Figure 3.4(b), the
differences on the real part of the wavenumber are larger than for the downstream
case, but the differences on the imaginary part are much smaller and even tend to
decrease at higher frequencies.

For the double-liner configuration, the trend in Figure 3.4(c) is similar to the
single-liner case, with an increased difference at higher frequencies (He ≳ 6). Fig-
ure 3.4(d) shows that the differences for upstream propagation and a double-liner
are also similar to the single-liner cases, but with larger effects at low frequencies.

The main trends to note in these results is that the effect of the boundary layer is
more significant for larger δ1 and for upstream sound propagation at high frequen-
cies. In practice, it means that for experimental facilities with small duct (He ≲ 5),
the mean flow shear can be largely ignored, except for upstream propagation with
two liners face to face. On the contrary, for larger ducts (He ≳ 5), the sheared mean
flow should be taken into account for an accurate computation of the acoustic prop-
agation with flow.

3.2.2 Effects of the mean flow velocity

To assess the influence of the flow velocity, we vary Mave from 0.1 to 0.7 in both
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Figure 3.3: Axial wavenumbers calculated with a uniform flow or
with a shear flow for various displacement thicknesses (mean flow

velocity Mave = +0.3) for the single-liner configuration.
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tained with a uniform or sheared flows as a function of the Helmholtz
number He. (a,b): single-liner configuration. (c,d): double-liner con-

figuration.
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directions. The boundary layer thickness δ1 is set to 0.05, which is a typical value in
experiments [118].

In Figure 3.5, the differences in wavenumbers kx,s − kx,u follow a similar trend for
both the single- and double-liners. For downstream propagation (Mave > 0), shown
in Figure 3.5(a) and 3.5(c), the differences remain small when He ≲ 5, similar to the
previous section. However, the differences become significant for higher frequen-
cies, and the increase in the mean flow velocity only impacts slightly the magnitude
of the wavenumber differences. For upstream propagation (Mave < 0), as shown in
Figure 3.5(b) and 3.5(d), the differences are much larger, even at low frequencies. In
this case, there is a clear trend whereby increasing the mean flow speed increases the
differences in wavenumber.
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Figure 3.5: Differences between axial wavenumbers kx,s − kx,u ob-
tained with a uniform and sheared flow as a function of the
Helmholtz number He. The mean Mach number Mave is varied be-
tween 0.1 and 0.7 for both directions. (a,b): single-liner configuration.

(c,d): double-liner configuration.

To summarise, this section shows that for downstream propagation, the mean
flow shear has little influence on the acoustic propagation in small ducts and a more
visible influence in large ducts. However, the effect of mean flow shear is much more
important for upstream propagation (including in small duct) and even more so for
the double-liner configuration. Also, the effects appear larger at higher frequencies.

3.3 Accuracy of the impedance calculation

We now discuss the validity of the uniform flow assumption traditionally used
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when calculating the liner impedance given a set of wavenumbers. The parametric
study still focuses on the influence of the boundary layer thickness and of the flow
velocity, which vary in the same range as previously. The duct mode wavenum-
bers kx,s are first calculated in the lined section using the shear flow model from Sec-
tion 2.2.3, for each case with various δ1 and Mave. These wavenumbers are then used
as inputs for the two methods presented in Section 2.3.2 to calculate the impedance,
either for a single-liner or a double-liner. Thus, this analysis excludes the influence
of errors in the step of the wavenumbers estimation based on the pressure signals
from the microphone array. The analysis compares the imposed value of the liner
impedance and the calculated results Zu or Zs, where Zu is the impedance obtained
under the assumption of a uniform flow (Section 2.3.2.1), while Zs is computed with
the shear flow method (Section 2.3.2.2).

3.3.1 Effects of the displacement thickness

Figure 3.6 displays the difference between the calculated impedance and the im-
posed value, either for the uniform flow model or the shear flow model. The Mach
number is Mave = ±0.3, and the displacement thickness δ1 varies between 0.01 and
0.1.
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Figure 3.6: Differences between the calculated impedance and the
imposed impedance Zu − Zimposed (solid lines) and Zs − Zimposed
(dashed lines). δ1 is varying from 0.01 to 0.1 and Mave = ±0.3. (The

vertical axis range is adjusted to improve the readability.)

The dashed lines in Figure 3.6 show that, in all the cases, there is no error on
the calculated impedance when using the shear flow model with the correct δ1 from
Section 2.3.2.2. This is not surprising since the same propagation model with shear
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flow Eq. (2.30) is used to calculate the axial wavenumber in the first place, and then
to recover the impedance.

What is more interesting in Figure 3.6 is the quantitative assessment of the error
introduced by assuming a uniform mean flow when calculating the impedance. The
error on the impedance is steadily growing as we increase the boundary layer thick-
ness. For Helmholtz numbers smaller than 3 or 4, the error on Z can be considered
negligible. For downstream propagation and frequencies He ≳ 5 the error is larger,
but the calculated impedance remains within 0.4 from the imposed value. However,
for frequencies He ≳ 5, the discrepancies are much more important for upstream
propagation (at least an order of magnitude larger). This indicates that the uniform
flow assumption is only valid for small ducts and low frequencies. For large ducts,
it is important to include the effect of the mean flow shear, especially when waves
are propagating upstream.

3.3.2 Effects of the mean flow velocity

To assess the effect of the mean flow velocity on the impedance calculation, Fig-
ure 3.7 shows the error in the computed impedance as a function of the average
Mach number Mave.
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Figure 3.7: Differences between the calculated impedance and the
imposed impedance Zu − Zimposed (solid lines) and Zs − Zimposed
(dashed lines). Mave is varying from 0.1 to 0.7 in both directions,

δ1 = 0.05.

It is noted that the results are very similar in both liner configurations. Again,
the results calculated using the shear flow method are in perfect agreement with the
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imposed value, as expected. For the results calculated using the uniform flow as-
sumption, the discrepancies with the imposed value tend to increase with the mean
flow Mach number. For downstream propagation at low frequencies, these discrep-
ancies can still be considered negligible, except for high flow velocities as Mave = 0.5
and 0.7. However, the error increases steadily for higher frequencies to reach ap-
proximately 0.5. The situation is much worse for upstream propagation, where the
error on the impedance is significantly larger at all frequencies (with the exception
of the smallest flow velocity Mave = −0.1 for which the error remains small at all
frequencies).

Here, the same conclusions as in the previous section can be drawn. For small
ducts and low frequencies, the effect of the mean flow shear can be safely neglected.
For large ducts or high frequencies, the uniform flow assumption is inaccurate, es-
pecially for upstream propagation. This study reveals the importance of the mean
flow shear for the impedance eduction in large ducts, which is never addressed in
the previous studies. It is therefore recommended to use the shear flow method
from Section 2.3.2.2 for accurate calculation of the wall impedance based on the ax-
ial wavenumber.

3.4 Acoustic transmission

We now consider the shear flow effects on the acoustic transmission through a
lined section in a duct. The study is conducted for the 2D duct consisting of three
sections depicted in Figure 2.3. The ratio of height and length of the lined section
correspond to those of the MAINE Flow duct. The liner impedance remains the
constant value Z = 1 − i, at either one or two face-to-face walls. Then, the acoustic
field in the whole duct is computed by using the propagation models in Section 2.2
for either a uniform or a sheared flow. The displacement boundary layer thickness
δ1 is varied from 0.01 to 0.10 and the average Mach number Mave is varied from 0.1
to 0.7 in both directions, as in the previous sections.

This analysis focuses on the transmission coefficient of amplitude for each mode
that propagates through the lined section of the duct. The transmission coefficient T
is the ratio of the amplitudes of modes at the leading and trailing edges of the liner.
The magnitude |T| is presented and compared between the uniform and shear flow
models. Additionally, acoustic transmission can also be expressed from an energy
perspective, known as transmission loss. The analysis of transmission loss, which
exhibits similar trends and conclusions, is detailed in Appendix C..

3.4.1 Validation in the no-flow case

First, it is expected that the two propagation models yields the same results in
the absence of flow. Figure 3.8 shows the transmission coefficient in the case without
flow for the single-liner configuration, using both uniform and shear flow models.
For the sake of brevity, the results present the transmission coefficients only for the
first 4 modes, which are representative and sufficient to demonstrate the conclu-
sions. Each sub-figure displays the transmission coefficients Tm,i between individ-
ual modes as a function of the Helmholtz number He, and Tm,i remains 0 until the
cut-off frequency of the mode of index min(m, i). It can be seen that the two sets of
transmission coefficients are in agreement when there is no flow.

Figure 3.9 shows the transmission coefficient in the case without flow for the
double-liner configuration. The agreement between the transmission coefficients
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obtained by both models is great. In addition, it is shown that the transmission
coefficient between odd and even indexed modes is 0, which is expected. Indeed,
since the duct configuration is symmetric, the power of a mode is transmitted only
to the modes with the same symmetry.
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Figure 3.8: Transmission coefficient between each modes for the
single-liner configuration with no flow using the uniform flow model
(blue solid lines) and the shear flow model (green dashed lines). With

i for incident modes and m for transmitted modes.

3.4.2 Effects of the displacement thickness

Figure 3.10 displays the transmission coefficients in the downstream propagation
case with the single-liner configuration, for the uniform flow model and the shear
flow model. The Mach number is Mave = ±0.3, and the displacement thickness δ1
varies between 0.01 and 0.1. In each sub-figure, the transmission coefficients for both
the uniform and the shear flow models follow a similar trend as a function of He.
The discrepancies between the two models appear modest for small He, and become
more significant for larger He and for thicker boundary layers.

Figure 3.11 shows the transmission coefficients in the upstream propagation case
with the single-liner configuration for both models. First, by comparing the sub-
figures one by one for the two propagation directions displayed in Figure 3.10 and
3.11, the upstream propagation case generally shows larger difference between the
two models. In most sub-figures, the results follow the same conclusion as in the
downstream propagation case. Nevertheless, for some higher-order modes, such
as T3,1 T4,1 T3,3 and their inverses T1,3 T1,4, the trends for Tm,i are different in the
two models. Indeed, the trend for the shear flow model is following that of the
uniform flow model at low frequencies, while the trend for thicker boundaries δ1 ≥
0.03 becomes different from the uniform flow model when He > 10. This implies
that the effects of the mean flow shear is so important that the evolution of the T is
completely changed, especially at high frequencies or in a large duct. Therefore, an
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Figure 3.9: Transmission coefficient between each modes for the
double-liner configuration with no flow using the uniform flow
model (blue solid lines) and the shear flow model (green dashed

lines). With i for incident modes and m for transmitted modes.

accurate model of the acoustic propagation with liner need to include considerations
of shear flow, particularly when thick boundary layers are present.

Then, the transmission coefficients for the double-liner configuration in the down-
stream propagation case are shown in Figure 3.12. Since the transmission coefficient
between modes with different symmetry, only sub-figures with non-zero Tm,i are
shown here. The discrepancies between Tm,i for the two models increase with the
boundary thickness δ1, following a trend similar to that of the single-liner configu-
ration. Furthermore, the values of T for antisymmetric modes (with even indexed)
are smaller than those for symmetric modes (with odd indices), which implies that
the attenuation of the former modes is greater.

In addition, Figure 3.13 presents the transmission coefficients for the double-liner
configuration in the upstream propagation case. It clearly shows again that the ef-
fects of the mean flow shear increase with the boundary layer thickness. When com-
paring with the downstream propagation case in Figure 3.12, the shear flow results
deviate from the uniform flow results by a much larger amount in the upstream
propagation case. For example, in T1,1, the deviation of the results with δ1 = 0.1
from the results of the uniform flow model is about 0.4 in the upstream propagation
case, while it is 0.2 in the downstream case. In another example T4,4, the results of
the two models in the downstream propagation case are quite close, even with the
maximum boundary layer thickness. However, in the upstream propagation case,
including of a boundary layer with δ1 = 0.05 causes a significant decrease in T, from
0.20 to 0.05, or even lower at the largest He.

For the assessment of the performance of a liner, assuming a uniform flow leads
to inadequate considerations of the flow effects and thus to the inaccurate predic-
tions of the acoustic transmission. Thus, it is vital to account for the mean flow shear
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Figure 3.10: Transmission coefficients for the single-liner configu-
ration in the downstream propagation case, with the uniform flow
model (black lines) and the shear flow model (coloured lines). With

δ1 varying from 0.01 to 0.1, Mave = +0.3.
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Figure 3.11: Transmission coefficients for the single-liner configura-
tion in the upstream propagation case, with the uniform flow model
(black lines) and the shear flow model (coloured lines). With δ1 vary-

ing from 0.01 to 0.1, Mave = −0.3.
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in the propagation model for a duct like the MAINE Flow where many modes propa-
gate. In particular, if the goal is to perform an optimization to determine the optimal
impedance at a given frequency and a flow velocity, including shear is mandatory
in order to achieve experimentally the expected performances.

3.4.3 Effects of mean flow velocity

This part studies the influence of the flow velocity on the discrepancies between
the propagation models in terms of transmission coefficients. Since the results are
very similar in both liner configurations, only the single-liner results are presented
for brevity.

Figure 3.14 displays Tm,i for the single-liner configuration in the downstream
propagation case with δ1 = 0.05 and various Mave. Note that the cut-off frequency
of the higher-order modes varies with the Mach number. Hence, the curves for dif-
ferent flow velocities begin at different Helmholtz numbers. At the low velocity
Mave = 0.1, the transmission coefficients in blue near He ≃ 9 begin to show no-
table difference between uniform and shear flow models. When increasing the flow
velocity, this effect becomes more pronounced and the discrepancies appear earlier
(i.e. at lower He). When comparing the two models with a large Mach number, the
transmission coefficients usually show a very different behaviour as a function of
He.

Figure 3.15 exhibits Tm,i in the upstream propagation case with single-liner con-
figuration. The transmission coefficients, represented by the blue curves with Mave =
−0.1, exhibit similar trends between uniform and shear flow models, with discrep-
ancies becoming more pronounced at higher He. For the other Mach numbers, the
trends and values of results for two models are significantly different, particularly
at high velocities Mave = −0.5 and −0.7.

In summary, for small ducts, low frequencies, and low flow velocities, computing
the transmission while neglecting the flow shear is acceptable. In contrast, for large
ducts and high frequencies, the uniform flow assumption leads to acoustic transmis-
sion results that significantly deviate from those obtained by considering shear flow,
particularly for upstream propagation or high flow velocities. In the latter cases, the
effects of shear flow are critically important to account for in the calculation of the
acoustic transmission.

3.5 Conclusions

To conclude, this chapter systematically assesses the effects of mean flow shear
on the sound propagation in a 2D duct, on the direct eduction of impedance and on
the acoustic transmission, by means of the models and methodologies described in
the previous chapter. For the acoustic propagation, the modes are computed with
both flow assumptions, and the acoustic wavenumbers are compared. In the context
of direct impedance eduction, the impedance is computed starting from the same
wavenumbers but using either the Ingard–Myers boundary condition or either the
LEE where the mean flow shear is accounted for. Then, based on the propagation
models for a 3-section (rigid-lined-rigid) duct, the transmission of the modal ampli-
tudes and acoustic power in two flow cases are compared to provide more insights
into the shear flow effects.
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Figure 3.12: Transmission coefficients for the double-liner configu-
ration in the downstream propagation case, with the uniform flow
model (black lines) and the shear flow model (coloured lines). With

δ1 varying from 0.01 to 0.1, Mave = +0.3.



3.5. Conclusions 63

0.00.20.40.60.81.0
|T

|

Tm = 1, i = 1

0.1
0.2
0.3
0.4 Tm = 1, i = 3

5 10 15
He

0.1
0.2
0.3
0.4

|T
|

Tm = 3, i = 1

5 10 15
He

0.000.050.100.150.20 Tm = 3, i = 3

(a) Modes with odd indices.

0.0
0.2
0.4
0.6

|T
|

Tm = 2, i = 2

0.000.050.100.150.200.25 Tm = 2, i = 4

5 10 15
He

0.1
0.2
0.3

|T
|

Tm = 4, i = 2

5 10 15
He

0.00
0.05
0.10
0.15
0.20 Tm = 4, i = 4

Uniform flow
1 = 0.01
1 = 0.03
1 = 0.05
1 = 0.07
1 = 0.10

(b) Modes with even indices.

Figure 3.13: Transmission coefficients for the double-liner configura-
tion in the upstream propagation case, with the uniform flow model
(black lines) and the shear flow model (coloured lines). With δ1 vary-

ing from 0.01 to 0.1, Mave = −0.3.
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Figure 3.14: Transmission coefficients for the single-liner configu-
ration in the downstream propagation case, with the uniform flow
model (solid lines) and the shear flow model (dashed lines). With
δ1 = 0.05 and Mave = +0.1 (blue), +0.3 (green), +0.5 (magenta) and

+0.7 (yellow).
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Figure 3.15: Transmission coefficients for the single-liner configura-
tion in the upstream propagation case, with the uniform flow model
(solid lines) and the shear flow model (dashed lines). With δ1 = 0.05
and Mave = −0.1 (blue), −0.3 (green), −0.5 (magenta) and −0.7 (yel-

low).
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Several existing studies have highlighted the significance of shear flow effects in
similar aspects. Watson et al. [26] emphasised the necessity of incorporating bound-
ary layer effects in impedance eduction at high flow velocities. Spillere et al. [18]
demonstrated that considering the boundary layer in the boundary condition leads
to improvements in the impedance eduction. Gabard [117] provided a detailed dis-
cussion on the impact of the boundary layer on liner attenuation, concluding that
its effect is limited for downstream propagation but significant for upstream propa-
gation. Gabard’s analysis also revealed the unseparated link between the effects of
boundary layer and the liner resistance, a factor not considered in this study.

This study examines the effects of shear flow in a relatively systematic manner,
complementing and quantifying the extent of the effects under different parametric
conditions. Moreover, previous studies have not considered the double-liner con-
figurations, and the present study offers a supplement to this gap. The parametric
study considers the influence of the Helmholtz number, the displacement boundary
layer thickness, the Mach number, the direction of propagation and the liner config-
uration. The main conclusions are:

• The effects of the mean flow shear shows similar trends for both single- and
double-liner configurations.

• The influence of the mean flow shear is more important for large Helmholtz
numbers. While the uniform mean flow approximation is clearly valid for
small ducts at low frequencies, the results presented here demonstrate that it
is crucial to include the mean flow shear when considering large ducts and/or
high frequencies.

• The shear flow effects are more important for upstream sound propagation,
compared to downstream propagation.

• The validity of the uniform flow approximation decreases for high flow veloc-
ities and thick boundary layers. This is in line with the conclusion in [26].

• The presence of mean flow shear has shown non-negligible impact when con-
sidering the acoustic attenuation induced by a liner, in particular for high flow
velocities and upstream propagation case. Indeed the acoustic transmission
varies greatly depending on whether or not shear is taken into account, indi-
cating that the uniform flow model may not be accurate enough to predict the
acoustic field. Similar conclusions can be found in [117].

• For an optimization based on the acoustic transmission to determine the op-
timal impedance at a given frequency and a flow velocity, the consideration
of shear is mandatory in order to achieve experimentally the expected perfor-
mances.

As noted above, the shear flow effects have been shown important in the con-
text of a large duct, for both single- and double-liner configurations. Part of these
conclusions have been published in Journal of Sound and Vibration [119]. In the fol-
lowing chapter, we numerically simulate the impedance eduction process based on
the pressure data in the lined section of the duct. The presence of noise is taken into
account in order to evaluate the robustness of the eduction method for both liner
configurations.
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Chapter 4

Numerical simulation of
impedance eduction

This chapter carries out numerically the impedance eduction using pressure sig-
nals from the acoustic field simulated by the multimodal models described in Chap-
ter 2. The analysis considers several important aspects, including the wavenumber
estimation methods, liner configurations, flow assumptions used in the impedance
computations, noise in pressure signals, mode perturbations in the incident field,
and the positioning of the microphone array.

The first step in direct impedance eduction involves the estimation of the
wavenumbers. In this context, Section 4.1 compares the KT and HTLS methods
described in Chapter 2 with respect to their accuracy and robustness within a tradi-
tional single-liner configuration. Subsequently, Section 4.2 presents numerical sim-
ulations to replicate the experimental process of direct impedance eduction in the
MAINE Flow duct. These simulations assess the performance of impedance cal-
culations using either the uniform or shear flow assumption for both single- and
double-liner configurations. A detailed discussion follows, elucidating the mecha-
nisms underlying the differences in the performance of both configurations. Fur-
thermore, the influence of noise in the pressure signals is evaluated, and various
configuration attempts are made to mitigate their impact on the eduction results.
Lastly, Section 4.3 explores the effects of perturbations from modes other than the
main incident mode on the eduction performance. The use of a 2-line microphone
array is proposed in order to enhance the efficiency of the double-liner configuration
in practical experiments.

4.1 Comparison between KT and HTLS method

This section compares both wavenumber estimation methods, KT and HTLS,
for direct impedance eduction with the traditional single-liner configuration. Both
methods can handle noisy signals by separating the noise subspace using Singular
Value Decomposition (SVD), with the HTLS method further improving estimation
robustness through the application of Total Least Squares. Both methods are used to
retrieve the axial wavenumbers through the post-processing of the pressure signals
from the microphones, which are simulated by the multimodal model described in
Chapter 2. From the wavenumbers, the effective impedance of the liner can be cal-
culated with the methods described in Section 2.3.2.
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4.1.1 Simulations

4.1.1.1 Set-up

The comparison is conducted in relatively simple acoustic fields. A 2D small
duct is considered with a height of 0.04 m, where shear flow effects can be neglected
as per the analysis in Chapter 3. The configuration for the impedance eduction is
comparable to that depicted in Figure 2.6(a), with microphones facing the liner, con-
sistent with existing studies [15, 76]. The uniform flow model described in Sec-
tion 2.2.2 is employed to simulate the acoustic pressure field, and subsequently,
the uniform flow method outlined in Section 2.3.2.1 is used to calculate the liner
impedance from the estimated wavenumbers. The axial wavenumber used here is
the least attenuated, following the choice of previous studies, such as [15, 76].

A constant liner impedance Z = 1 − i is used as in the previous analysis. The
frequency range is [300, 3000] Hz with 30 Hz increments. Several lengths of the
lined section are tested: L2 = 0.8, 0.6, 0.4 and 0.2 m. A linear array with equally
spaced microphones is located along the upper wall exactly opposing to the liner.
The axial distance between two adjacent microphones is ∆x = 0.02 m. To avoid the
influence of discontinuities and scattering at the interfaces between the rigid and
lined sections, the first measuring microphone is placed ∆x/2 = 0.01 m into the
lined section.

For the KT method, Renou et al. [76] recommend setting the column number
Lkt of the Hankel matrix to 3/4 of the number N of signals. However, the imple-
mentation indicates that the truncation number Mt plays a more important role in
achieving accurate results. When Mt is appropriately selected, variations in Lkt have
minimal impact on the results. For the HTLS method, it is suggested in [120] that the
column number L should be between 40% and 60% of N to ensure reliable results.
This recommendation is tested and demonstrates good performance in this study.
Therefore, the parameters for both methods are chosen to optimize the accuracy of
the results, and their selected values are displayed in Table 4.1.

KT HTLS
N Lkt Mt N L K

L2 = 0.8 m 40 22 8 40 22 4
L2 = 0.6 m 30 16 8 30 16 4
L2 = 0.4 m 20 10 8 20 10 4
L2 = 0.2 m 10 7 3 10 6 4

Table 4.1: Parameters used by the two wavenumber estimation meth-
ods for different liner lengths L2.

4.1.1.2 Background noise

The presence of noise in the experiments, produced mainly by the turbulent
boundary layer above the microphones, can significantly impact the impedance educ-
tion results. In this study, the background noise is simulated by adding random sig-
nals to the simulated pressure signals calculated at the microphone positions. The
noise signals are assumed to be uncorrelated between microphones and are gen-
erated with an amplitude following a normal distribution with mean value 0 and
standard deviation σ. The random phase follows a uniform distribution in the range
[0, 2π]. The Signal-to-Noise Ratio (SNR) is defined as 10 log10(P2

in/σ2), where Pin is
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the pressure amplitude of the incident mode. In the results presented below, Pin = 1
and the SNR is readily adjusted by setting σ.

4.1.2 Comparison between KT and HTLS method

4.1.2.1 Results without noise

Firstly, the eduction process is conducted without noise. Figure 4.1 shows the
educed impedance using the simulated acoustic pressure in the cases without flow
and with flow at Mave = 0.3 in both directions. The HTLS method provides a sat-
isfactory agreement between the educed and the imposed impedances, except that
the educed impedance for L2 = 0.2 m in the presence of flow below 500 Hz deviates
slightly from the imposed values. In contrast, the results for L2 = 0.2 m using the KT
method are completely different from the imposed value in all cases (see the insets in
Figure 4.1). For longer liners, the educed impedance using the KT method shows a
good agreement with the imposed values in the absence of flow, while discrepancies
are observed in presence of flow at low frequencies (<500 Hz at Mave = −0.3 and
<1000 Hz at Mave = +0.3) and they are larger when the liner length is increased.

According to the comparison above, the HTLS method generally demonstrates
superior accuracy and robustness, even in cases involving very short liners where
the sound attenuation is potentially weaker.

4.1.2.2 Results with noise

We now simulate the eduction process in the presence of noise using a SNR of
30 dB, which is close to the case in experiments. To obtain the mean and standard
deviation of the educed impedance, 1000 realisations of the random noise are gener-
ated and the eduction process is applied to each one.

Figure 4.2 illustrates the educed impedance in the presence of noise and the flow
with Mave = +0.3 using the 0.8 m-long liner. The results show that the educed
impedance obtained using the KT method deviates from the imposed value, whereas
the HTLS method demonstrates a good agreement with the imposed impedance.

In summary, the HTLS method is more accurate and robust than the KT method,
both in the case of poor acoustic attenuation and in the case with noise. Therefore,
only the HTLS method will be used in the remainder of this thesis.

4.2 Simulation for MAINE Flow duct

In this section, we use numerical calculations to simulate the experimental pro-
cess of direct impedance eduction in the context of the MAINE Flow duct, which
features a larger cross-section. The pressure signals from the microphones are post-
processed to estimate the axial wavenumbers, from which the liner impedance can
be calculated with the methods proposed in Section 2.3.2.

4.2.1 Simulation settings

4.2.1.1 Set-up

To simulate a representative experimental setup, we use the parameters of the
MAINE Flow facility introduced in Chapter 2 and modelled here as a 2D duct. The
configuration is shown in Figure 4.3, where the duct height is 0.28 m and the lined
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Figure 4.1: Imposed impedance Z = 1 − i (black solid line) and
educed impedance using wavenumbers estimated by the KT (dashed
lines) or HTLS method (coloured solid lines) for a single-liner config-
uration within a duct of H = 0.04 m. The liner length is 0.2 (blue), 0.6
(orange), 0.4 (green) and 0.8 m (red). The pressure field is obtained
with the uniform flow model using incident plane wave in the cases
without flow (M = 0) and with flow (Mave = ±0.3). Insets: enlarged

y-axis range for the KT method with length of 0.2 m.
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(a) HTLS method. (b) KT method.

Figure 4.2: Imposed impedance Z = 1 − i (black solid line) and
educed impedance using wavenumbers estimated by the KT (right)
or HTLS method (left) for the single-liner configuration in presence
of noise. The length of liner is 0.8 m. Blue solid line: mean value.
Dashed lines: standard deviation. The pressure field is obtained by
the uniform flow model using incident plane wave in the cases with

flow (Mave = +0.3).

section has a length of 0.8 m. To acquire pressure signals for direct impedance educ-
tion, a one-dimensional array of 40 evenly spaced flush-mounted microphones is
positioned along the axis of the lined section, situated at 2/3H or 1/2H from the
lower lined wall, following the configuration proposed in [23]. This position can
avoid the pressure nodes of modes, especially for a configuration with symmetric
boundaries, where the k-th zeros of the shape function of the n-th mode is located at
y = (2k − 1)H/(2n). The distance between adjacent microphones is ∆x = 0.02 m,
with the first and last microphones placed 0.01 m into the lined section.
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Figure 4.3: Schematic of the 2D MAINE Flow duct composed of three
sections. The boundaries of the middle section are either lined-rigid

or lined-lined. The incident wave pin is sent from the left.

In the following, the liner is a Single Degree of Freedom (SDOF) liner with a
specific impedance given by Z(ω) = 1 − icot(k0hcav). The first term models a per-
forated facing sheet with a constant resistance while the second term represents the
acoustic reactance of a cavity of depth hcav = 0.03 m. Given this boundary condition,
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the acoustic field is computed between 300 and 3000 Hz with 30 Hz increments us-
ing the numerical multimodal model with shear flow described in Section 2.2.3. The
mean velocity profile is obtained in the dimension normal to the liner by fitting the
inverse-power law profile in Eq. (3.1) to data measured using a Pitot tube at the mid-
width in the cross–section of MAINE Flow [12]. Figure 4.4 shows the corresponding
data points and the fitted velocity profile.
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Figure 4.4: Measured and fitted mean velocity profile in the cross-
section of the MAINE Flow facility. The fitted profile is obtained us-

ing Eq. (3.1).

4.2.1.2 Wavenumber retrieval process

Based on the pressure data obtained at the 40 microphone points, the HTLS
method is used to retrieve the axial wavenumbers. The parameter L is set as 22,
following the recommendation of [0.4N, 0.6N] in [120]. Not all the wavenumbers
identified by the HTLS technique correspond to physical acoustic modes in the duct
lined section. It is therefore necessary to filter out the spurious results and select a
physical wavenumber that will be adequate for the impedance eduction.

To this end, the approach is similar to what has been done for the mode classifi-
cation during the mode computation in Section 2.2.3. Firstly, we expect the physical
wavenumbers kx to be located in specific regions of the complex plane. To identify
right-running modes, the following heuristic rule is used:

Im(kx) ≤ Re(kx)− k0
Mave

M2
ave − 1

. ((2.15))

This corresponds to the region of the complex plane below the diagonal intersect-
ing with the real axis at kx = k0Mave/(M2

ave − 1). With a uniform flow with Mach
number Mave, this is the wavenumber of modes that are just cut-on. Moreover, only
modes on or below the real axis are used, so as to exclude unphysical modes with
wavenumbers having a positive imaginary part.
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Next, a second criterion is needed to separate acoustic modes from hydrody-
namic modes. As described in Section 2.2.3, for acoustic modes, the largest expected
value for Re(kx) is close to k0/(1+ Mave). For hydrodynamic modes when Mave > 0,
the smallest value of Re(kx) is expected to be close to k0/Mmax with Mmax being the
largest Mach number of the velocity profile. We use the average of these two values
as a threshold to discriminate between acoustic and hydrodynamic modes. More
specifically, a wavenumber is retained as an acoustic mode if

Re(kx) <
k0

2

(
1

Mave + 1
+

1
Mmax

)
. ((2.31))

The two conditions are only qualitative, but their robustness has been proven in
practice. For example, Figure 4.5 shows the region defined to select the retrieved
wavenumbers in the double-liner configuration with an incident plane wave at f =
2500 Hz and with Mave = 0.5. The wavenumbers computed numerically are also
shown to compare with those retrieved by the HTLS method.
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Figure 4.5: Illustration of the computed (orange plus signs) and re-
trieved wavenumbers (blue circles), and the pink region defined to
select the wavenumbers used in the subsequent impedance eduction.
The green dashed line stands for Eq. ((2.15)); the purple dashed liner
for Eq. ((2.31)). The case is: the double-liner configuration, incident

plane wave, Mave = 0.5 and f = 2500 Hz.

After enforcing these conditions, several wavenumbers calculated by the HTLS
technique remain, and one of them should be selected for the impedance eduction.
In the literature [9, 15, 18] it is common to use the least attenuated mode for the
impedance eduction, i.e. the wavenumber closest to the real axis. As shown in
Section 4.1.2, this choice is well suited for small ducts and at low frequencies (that
is, for small Helmholtz numbers) where only the plane wave is propagating, i.e. the
sound field is composed of a single mode in each direction. For large ducts or at high
frequencies, it is possible to have several modes that are only weakly attenuated and
the sound field in the lined section is clearly composed of several modes. In such
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cases, and according to the simulations, the least attenuated wavenumber does not
always yield the most accurate result for the impedance eduction.

When the least attenuated mode does not perform adequately, an alternative
criterion is proposed for selecting the wavenumber. This criterion is based on the
number of cut-on modes in the hard-wall section of the duct. The wavenumbers
identified in the lined section are selected according to the constraints previously de-
scribed and ordered by their rate of attenuation, which is determined by the value of
|Im(kx)|. The mode ranked first is indeed the least attenuated. For a given frequency,
if there are n propagating modes in the hard-wall duct, the n-th wavenumber calcu-
lated by the HTLS technique will be used to calculate the liner impedance. Since
the HTLS technique may struggle to identify enough accurate wavenumbers at very
high frequencies, we apply this criterion only up to the 5-th cut-off frequency. Be-
yond this point, if n ≥ 6, we continue to use the 5-th wavenumber. For instance,
with the single-liner configuration, if two modes are cut-on in the hard-wall sec-
tion, then the second wavenumber will be used to calculate the impedance; if seven
modes are cut-on in the hard-wall section, then the fifth wavenumber will be used
to calculate the impedance. Note that for the double-liner configuration, only the
cut-on modes with the same symmetry as the incident wave should be counted. For
example, with the double-liner configuration, if the incident mode is symmetric and
there are two symmetric cut-on modes in the hard-wall duct, then the second mea-
sured wavenumber will be used. This is because the total sound field retains the
symmetry of the incident mode in the double-liner configuration. This property is
also visible in the example in Figure 4.5 where only symmetric modes are identified
by the HTLS technique.

4.2.2 Results without noise

The eduction process is first simulated without noise perturbation in the ab-
sence of flow. Since the uniform and shear flow methods provide indeed the same
impedance results in the absence of flow, here are only shown the results obtained
using the model with shear flow. The first two modes are studied individually,
namely mode 0 (plane wave) and mode 1 (first transverse mode). These are consid-
ered representative of the symmetric and antisymmetric modes, respectively. Fig-
ure 4.6 displays the educed impedance for both single- and double-liner configura-
tion in the absence of flow. The alternative criteria described in Section 4.2.1.2 is only
applied for the former configuration, where it brings improvements. The results
for the double-liner configuration show an excellent agreement with the imposed
impedance for both incident modes. However, for the single-liner configuration, the
educed impedance exhibits oscillations at high frequencies (above 2200 Hz).

Then, to consider the presence of flow, the Mach number is varied from 0.1 to
0.7 by scaling the fitted flow profile already shown in Figure 4.4. The alternative
criterion described in Section 4.2.1.2 is applied.

Figure 4.7 compares the educed impedance obtained by assuming a uniform or
a sheared mean flow in the impedance calculation, while the pressure was calcu-
lated by taking into account shear. The results obtained with the plane wave as the
incident mode in the downstream direction and for the single and double-liner con-
figurations are shown. The results in Figure 4.7(a) and (c), obtained with the shear
flow model, show an excellent agreement with the imposed impedance for the two
liner configurations (except at high frequencies for the single-liner configuration).
Increasing the flow velocity makes little difference to the agreement of the eduction
results, except at low frequencies for Mave = 0.7. In that specific case, results can be
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Figure 4.6: Educed impedance without flow nor noise using the shear
flow assumption for both single- and double-liner configuration. The
incident wave is individually the mode 0 or 1. Black line: imposed

value. Coloured lines: educed value.

improved by selecting the second educed wavenumber, as shown in the inset graphs
of Figure 4.7. When using the uniform flow assumption, the double-liner configura-
tion tends to improve the accuracy of the educed impedance, as seen by comparing
Figure 4.7(b) with (d). However, the impedance educed with the uniform flow as-
sumption shows notable discrepancies from the imposed value that increase with
the flow velocity. This is because the formula in Eq. (2.54) based on the uniform
flow assumption is not able to represent accurately the relationship between axial
wavenumbers and wall impedance in large ducts. This confirms that the validity of
the uniform flow assumption with the Ingard-Myers boundary condition is poor for
the impedance eduction in the MAINE Flow, which is in line with the conclusions in
Chapter 3.

Figure 4.8 presents the eduction results with the plane mode incident in the up-
stream direction. The results in Figure 4.8(a) and (c), obtained with the shear flow
model, show an excellent agreement with the imposed impedance for both liner con-
figurations (except at high frequencies for the single-liner configuration). Using the
uniform flow assumption with Ingard–Myers boundary condition as done in Fig-
ure 4.8(b) and (d) leads to very poor agreement when the flow velocity is greater
than Mave = −0.1.

The eduction results above demonstrate that using the shear flow model com-
bined with the double-liner configuration yields significant benefits compared to
the standard approach (that is, the model based on the uniform flow assumption
and the single-liner configuration). Similar comparisons have also been performed
with single incident higher-order modes (see results for the mode 1 in Figure 4.9 and
4.10), and the conclusions remain the same as above.

4.2.3 Discussion on the configurations

In this section, the mechanisms underlying the performance disparities between
single-liner and double-liner configurations are examined in detail. Furthermore, an
explanation is provided as to why the double-liner configuration yields more precise
eduction results.
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Figure 4.7: Educed impedance without noise using the uniform
(right) and shear (left) flow models, for different flow velocities in
the same direction as the incident plane wave. The insets show the
impedance calculated using the second educed wavenumber. Top:
single-liner configuration. Bottom: double-liner configuration. Black

solid line: imposed impedance.
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Figure 4.8: Educed impedance without noise using the uniform
(right) and shear (left) flow models, for different flow velocities in
the opposite direction as the incident plane wave. Top: single-liner
configuration. Bottom: double-liner configuration. Black solid line:

imposed impedance.
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Figure 4.9: Educed impedance without noise using the uniform
(right) and shear (left) flow models, for different flow velocities in
the same direction as the incident mode 1. Top: single-liner configu-
ration. Bottom: double-liner configuration. Black solid line: imposed

impedance.
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Figure 4.10: Educed impedance without noise using the uniform
(right) and shear (left) flow models, for different flow velocities in the
opposite direction as the incident mode 1. Top: single-liner configu-
ration. Bottom: double-liner configuration. Black solid line: imposed

impedance.
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Figure 4.11 shows the acoustic pressure field in the treated section of the single-
liner and of the double-liner configurations at a selected frequency f = 1500Hz. The
liner impedance remains Z = 1 − cot(k0hcav)i, with hcav = 0.03 m. The flow profile
is scaled to Mave = +0.3. Through a rough comparison, the double-liner config-
uration preserves the symmetry of the acoustic field, so that the scattered acoustic
field of symmetric incident modes (such as the plane wave) remains symmetric and
the acoustic field of antisymmetric incident modes (such as the mode 1) remains
antisymmetric.
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Figure 4.11: Acoustic pressure field in the lined section of the single-
liner and the double-liner case ( f = 1500Hz) with Mave = +0.3. Inci-
dent wave: mode 0 (left) and 1 (right) in the downstream direction.
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Figure 4.12: Left: acoustic pressure field in the lined section of a
half-height duct with single-liner and of the double-liner case ( f =
1500Hz): the plane wave in the downstream direction with Mave =

+0.3. Right: simulated axial wavenumbers in both cases.

Figure 4.12(a) illustrates the acoustic pressure field in the lined section of a half-
height duct with a single liner on the lower wall, as well as in a double-liner duct,
by taking the plane wave as the incident mode. The acoustic field in the double-
liner duct is symmetric and is equivalent to that of two rigid-lined ducts with half
the height, placed symmetrically face to face. As shown in Figure 4.12(b), the axial
wavenumbers in the half single-liner duct match those of the symmetric modes in
the double-liner duct. Therefore, with symmetric incident modes, the double-liner
configuration effectively makes the acoustic field resemble that of a half-height duct
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and then permits simplifying the acoustic field components. To some extent, this re-
duces the difficulty of the impedance eduction for large ducts by virtually reducing
the height in front of the liner.

To further investigate the reasons for the good performance of the double-liner
configuration, the pressure signals ( f = 1500Hz) obtained by the microphone array
at 2/3H are plotted to clarify the evolution of the acoustic field along the axis in the
lined section. In addition to this, in the numerical simulation, the acoustic field in
the lined section are modal-decomposed and then modes are superposed through
several combinations to discover the dominant modes that contribute the most to
the total acoustic field.

Figure 4.13 shows the modal decomposition and the recombination of the dom-
inant modes in the lined section in the single-liner case, and Figure 4.14 depicts the
double-liner case. The total signal stands for the total acoustic field recorded by
the microphone array, and mode n± represents the n-th mode with the index of di-
rection ±. The least modes required to accurately reconstruct the acoustic field are
revealed. Note that if fewer modes are taken, there will be a poor match between the
reconstruction and the original signal.
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Figure 4.13: Mode decomposition and recombination in the lined sec-
tion of the single-liner at f = 1500Hz: the mode 0 and 1 in the down-

stream direction with Mave = +0.3.

For the double-liner configuration, it is worth noting that with a symmetric inci-
dent mode, the acoustic field in the treated section is only composed of symmetric
modes; similarly, with an antisymmetric incident mode, antisymmetric modes are
the most dominant in the acoustic field. From the energy point of view, the sym-
metry of the double-liner configuration preserves the symmetry type of the incident
wave, thus allowing the energy to be transferred to higher-order modes of the same
symmetry as much as possible. However, in the single-liner case shown in Fig-
ure 4.13, the acoustic field always consists of more modal components, 2 times more
than in the double-liner case. In addition, the issue in the single-liner case is the
inability to reconstruct the complete acoustic field with the same few number and
order of dominant modes as in the double-liner case. Therefore, it is more com-
plicated in the single-liner case to retrieve the most dominant axial wavenumber
during the process of exponential parameter estimation.
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Figure 4.14: Mode decomposition and recombination in the lined sec-
tion of the double-liner at f = 1500Hz: the incident plane wave and
the first transverse mode in the downstream direction with Mave =
+0.3. Combination: symmetric modes 0± and 2±; antisymmetric

modes 1± and 3±.
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4.2.4 Issues with the single-liner configuration with noise

4.2.4.1 Results for original single-liner configuration

The simulation is now conducted for the eduction process in the presence of
noise. Various SNRs are tested, between 20 and 40 dB. Note that, in real exper-
iments, the SNR will vary with frequency, depending on the source strength, the
background noise in the test rig and the liner efficiency (e.g. the SNR will decrease
when the liner absorption is strong). In this numerical simulation, the amplitude
of noise for each signal is defined relative to the incident amplitude, resulting in a
decreasing SNR along the propagation direction. To compute the mean value and
the standard deviation of the educed impedance, 1000 realizations of the random
noise are calculated, and the eduction process is applied to each one, along with the
criteria described in Section 4.2.1.2.

Figure 4.15 shows the eduction results in the single-liner configuration for both
incident modes. Large discrepancies with the mode 0 appear between the imposed
and educed impedances at several frequencies below 1800 Hz. For the mode 1, the
eduction results are poor on the whole frequency range. This failure can be ex-
plained by the small attenuation of the sound field achieved by a single-liner. The
small decay of the acoustic pressure over the liner is more easily swamped by the
noise added to the microphone data. Even with a SNR of 40 dB, the deviations of
the results from the imposed value is significant. It is also shown that the increase of
SNR influences only weakly the mean values and only reduces the standard devia-
tion of results. Figure 4.15 shows results obtained with the shear flow assumption.
The results obtained with the uniform flow assumption are even worse, as can be
predicted by the results in the absence of noise in the previous section.
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Figure 4.15: Educed impedance with noise (with SNR being from 20
to 40 dB) using the shear flow assumption, with the 0.8 m liner for
the single-liner configuration, with flow of Mave = +0.3 in the same
direction as the incident mode (the mode 0 or 1). Black solid line: im-
posed impedance. Blue solid line: mean value of educed impedances.

Blue dashed line: standard deviation of educed impedances.
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4.2.4.2 Possible improvements

Given that the results above obtained for the single-liner configuration are not
satisfactory in the presence of noise, other configurations based on the MAINE Flow
facility are tested to see whether they would provide any improvement. Except the
proposition and the application of the double-liner configuration (in the next sec-
tion), several attempts based on the single-liner configuration are made to improve
the impedance eduction results with noise. In the presence of flow (Mave = 0.3) and
noise (SNR = 30 dB), tests include:

• to increase the length of the liner,

• to change the number of microphones,

• to change the position of the liner from the narrow side to the wide side in
the lined section of MAINE Flow (i.e. the height of the duct is reduced in the
numerical simulation).

Effects of liner length and microphone spacing

The first attempt is to change the length of the liner. Besides the original liner
length 0.8 m in the MAINE Flow facility, simulations are also conducted for the
impedance eduction in lined sections with lengths of 1.2 and 1.6 m. For each length,
the effect of the microphone number is also evaluated by modifying the distance
between the data points.

For the 1.6 m liner, the chosen spacing ∆x are 0.04, 0.06, and 0.08 m, which cor-
responds to arrays of respectively 40, 27, and 20 microphones. For the 1.2 m liner,
the chosen spacing are 0.03, 0.04 and 0.06 m, which correspond to arrays of respec-
tively 40, 30, and 20 microphones. For the 0.8 m liner, the chosen distance are 0.01,
0.02, and 0.04 m, corresponding to arrays of respectively 80, 40, and 20 microphones.
For all layouts, the first and last microphones are placed ∆x/2 into the lined section.
For each configuration, the column number L is selected in [0.4N, 0.6N]. Table 4.2
summarises the setting parameters.

0.8 m 1.2 m 1.6 m
N ∆x [m] L N ∆x [m] L N ∆x [m] L
80 0.01 42 40 0.03 22 40 0.04 22
40 0.02 22 30 0.04 16 27 0.06 14
20 0.04 10 20 0.06 10 20 0.08 10

Table 4.2: Layout, for the liners of various lengths L, of the arrays
containing N microphones separated by distances ∆x.

For this study, we consider as an incident acoustic field the mode 0 propagating
in the downstream direction. Since the higher-order modes lead always to worse
results compared to the plane wave, for the sake of brevity, only the results for the
latter are shown in this part.

Figures 4.16, 4.17 and 4.18 show the impedance eduction results with noise for
a SNR=30 dB and liners of length 0.8, 1.2, and 1.6 m, respectively. Based on these
numerous results, it can be observed that increasing the number of microphones, i.e.
increasing the resolution, does not significantly improve the accuracy of results. For
instance, in Figure 4.16, when the number of microphones increases from 20 to 80,
the standard deviation of the educed impedance is reduced. However, the overall
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quality of the eduction results remains poor. Moreover, through an analysis of the
results for various liner lengths, it is evident that increasing the liner length signifi-
cantly improves the results between 500 and 1500 Hz, because the sound attenuation
is increased. The longest liner with a length of 1.6 m gives the best results in spite
of the large discrepancy near 1500 Hz which can be slightly mitigated by a smaller
microphone spacing.

To summarise, increasing the liner length indeed improves the accuracy of educ-
tion results, as the sound attenuation increases, thereby reducing the uncertainty in
impedance eduction [17, 121]. Conversely, the improvement gained by increasing
the number of microphones (i.e., refining the microphone array) is minimal. The
influence is only reflected in the reduction of the standard deviation, indicating a
decreased sensitivity of educed results to noise. Nevertheless, it does not essentially
alter the accuracy of the predictions.
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(b) N = 40, ∆x = 0.02 m
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(c) N = 20, ∆x = 0.04 m

Figure 4.16: Educed impedance with noise (SNR=30dB) using the
shear flow assumption, with the 0.8 m liner for the single-liner con-
figuration, with flow of Mave = +0.3 in the same direction as the in-
cident plane wave. Black solid line: imposed impedance. Blue solid
line: mean value of educed impedances. Blue dashed line: standard

deviation of educed impedances.
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(a) N = 40, ∆x = 0.03 m
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(b) N = 30, ∆x = 0.04 m
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(c) N = 20, ∆x = 0.06 m

Figure 4.17: Educed impedance with noise (SNR=30dB) using the
shear flow assumption, with the 1.2 m liner for the single-liner con-
figuration, with flow of Mave = +0.3 in the same direction as the in-
cident plane wave. Black solid line: imposed impedance. Blue solid
line: mean value of educed impedances. Blue dashed line: standard

deviation of educed impedances.

Effect of reducing the duct height

The second test consists in simulating the impedance eduction for the single-liner
configuration in a duct with a height of 0.15 m, in order to imitate the installation
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(c) N = 20, ∆x = 0.08 m

Figure 4.18: Educed impedance with noise (SNR=30dB) using the
shear flow assumption, with the 1.6 m liner for the single-liner con-
figuration, with flow of Mave = +0.3 in the same direction as the in-
cident plane wave. Black solid line: imposed impedance. Blue solid
line: mean value of educed impedances. Blue dashed line: standard

deviation of educed impedances.

of the liner on one of the wide sides (0.28 m × 0.8 m) in the MAINE Flow facility.
The flow velocity remains Mave = +0.3. The modes 0 and 1 are sent separately, and
the eduction is performed over the frequency ranges from 300 to 3000 Hz and 1200
to 4000 Hz, respectively, with 30 Hz increments. The latter range begins at a higher
frequency than in previous analyses because the cut-off frequency of the mode 1
( fc ≃ 1081 Hz) is higher in a duct of this height.

The eduction results are depicted for the SNRs of 20, 30, 40 dB and for the first
two modes in Figure 4.19. Compared to the results of the original single-liner con-
figuration in Figure 4.15, it can be seen that reducing the duct height improves the
eduction results. In fact, when the height of the duct is smaller, the multimodal
acoustic field in the duct become less complicated. Therefore, it is easier to educe the
impedance. Furthermore, in Figure 4.19, the performance of eduction is better with
a higher SNR, which can be expected. But according to the results in Figure 4.15, the
improvement in performance associated to the SNR is limited when the results are
poor.

To conclude, some of these attempts improve the performance of the single-liner
configuration, mainly by increasing the acoustic attenuation of the liner or simpli-
fying the acoustic field composition. However, they involve significant modifica-
tions to the existing experimental facilities, which cannot be easily realised and are
therefore not adopted. Nevertheless, these tests provide suggestions for accurate
impedance eduction, such as prioritising the increase of liner length over the number
of microphones. To deal with the noise perturbations, a simpler and more favourable
solution is presented in the next section, without the need to change the fundamental
parameters of the experimental bench.

4.2.5 Results with noise for the double-liner configuration

As shown in Section 4.2.3, the double-liner configuration can increase the acous-
tic attenuation and simplify the acoustic field. It requires only one additional liner
to be installed, without the need to change the fundamental parameters of MAINE
Flow.

In the presence of noise with a SNR of 30 dB, the educed impedances are obtained
for the double-liner configuration using the first two modes individually. Figure 4.20
shows the educed impedance for the incident plane wave in both directions. The re-
sults are not entirely satisfactory. For downstream propagation, the mean values
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(f) SNR = 40 dB, mode 1

Figure 4.19: Educed impedance with noise (with SNR being from
20 to 40 dB) using the shear flow assumption in the 0.15 m-high
duct, with the 0.8 m liner for the single-liner configuration, with flow
of Mave = +0.3 in the same direction as the incident plane wave.
Black solid line: imposed impedance. Blue solid line: mean value of
educed impedances. Blue dashed line: standard deviation of educed

impedances.

of the educed resistance deviate from the imposed value, even for a small veloc-
ity Mave = 0.1. The upstream results are drastically worse with larger errors and
standard deviations. Consequently, strategies are needed to alleviate these issues.

For the double-liner configuration, and in order to increase our chances for a
robust eduction by improving the signal amplitudes, the vertical position of the mi-
crophone line is now changed depending on the incident acoustic mode. For anti-
symmetric modes, the array is still located at 2/3 of the duct height in order to avoid
pressure nodes. However, for the case of a symmetric incident mode, the micro-
phone array is placed at the half of the duct height, where the pressure is maximum.
Figure 4.21 exhibits the eduction results in the presence of noise, using the positions
of the microphone array for both mode 0 and 1. Since the truncation number K must
be small enough to avoid noise disturbances, the number of retrieved wavenumbers
is consequently reduced, limiting the retrieval of higher-order modes. As a result,
the alternative criterion introduced in Section 4.2.1.2 for selecting wavenumbers are
not used in this context.

For downstream propagation, in Figure 4.21(a), the results with the mode 0 shows
a good agreement with the prescribed impedance, and the standard derivation re-
mains acceptable (except close to 1100 Hz). With Mave = 0.7, there exists a disparity
at f ≥ 2500 Hz between the educed results and the imposed resistance, which might
be explained by the appearance of higher-order modes. In addition, the results ob-
tained for Mave = 0.1 show limited standard derivation, but it becomes larger at
higher frequencies. A similar trend is observed for larger Mach numbers Mave.

Comparing Figure 4.21(a) and (c) shows that the mean impedance value educed
for incident mode 1 is closer to the exact value than for incident mode 0. For Mave =
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(b) Mode 0, upstream propagation

Figure 4.20: Educed impedance with noise (SNR = 30 dB) using the
model with sheared flow. Incident mode: the plane wave. Black line:
imposed impedance. Coloured solid line: mean value of impedance.
Coloured dashed line: standard deviation of the educed impedance

around its mean value.

0.5 and Mave = 0.7, the standard derivation becomes large in the vicinity of the cut-
off frequencies of higher-order modes, indicating that the noise perturbations are
significant when one more mode is just cut-on.

In Figure 4.21(b) and (d), incident modes propagating in the upstream direction
are considered. It is shown that the mean impedance values remain close to the im-
posed impedance in most of the cases. For the results obtained for the mode 0, there
exists a disparity at high frequencies which might be explained by the reduced accu-
racy of estimated wavenumbers with the appearance of higher-order modes. Note
that there is a trade-off between the number of considered modes and the avoid-
ance of noise perturbations when estimating the wavenumbers. If more wavenum-
bers are needed, more noise will be involved in the calculation due to the increased
truncation number in the algorithm. Therefore, the standard variation becomes no-
table, and the mean value deviates more from the imposed value at high frequencies
( f > 2400 Hz). However, high-speed flows in the opposite direction of the incident
acoustic wave pose challenging conditions which require more work to be tackled.
In particular, for Mave = −0.7 the mean impedance value is only close to the im-
posed one at low frequencies before deviating dramatically.

Except when Mave = −0.7, comparing the results obtained for the two modes
shows that the antisymmetric incident mode provides a better performance in the
impedance eduction due to a greater attenuation. This suggests an experimental
perspective that would use attenuated high-order modes or antisymmetric modes
as incident waves to improve the robustness of the method.

To conclude, and according to the results above, using the shear flow method
with the double-liner configuration improves the accuracy and the reliability of the
eduction process. This is critical for understanding the behaviour of acoustic liner
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(d) Mode 1, upstream propagation

Figure 4.21: Educed impedance with noise (SNR = 30 dB) using the
model with sheared flow. The microphone array is installed at 1/2H
for the mode 0 and at 2/3H for the mode 1. Black line: imposed
impedance. Coloured solid line: mean value of impedance. Coloured
dashed line: standard deviation of the educed impedance around its

mean value.
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submitted to high speed flows and multimodal acoustic conditions where the uni-
form flow assumption is not applicable.

4.3 Development of microphone arrays

The double-liner configuration proposed above aims at increasing the accuracy
of impedance eduction by enforcing the acoustic attenuation and simplifying the
acoustic field composition. However, in real experiments, when one incident mode
is generated, the controlled incident field includes not only the desired one but also
additional modes at much lower SPLs. Consequently, the incident acoustic field is
indeed multimodal and thus the presence of these additional modes disrupts the
separation between symmetric and antisymmetric modes achieved by the double-
liner configuration.

This section, therefore, examines the impact of these additional modes on the
effectiveness of impedance eduction with the double-liner configuration. Subse-
quently, to mitigate this influence, a new microphone array is proposed taking ad-
vantage of the properties of the mode (anti)symmetry. In this section, the impedance
is always calculated using the shear flow model.

4.3.1 Influence of additional modes

First, when generating a single incident mode, other modes are present at a SPL
about 30 dB below the main incident mode. To mimic this situation in our numerical
simulation, the other modes are set at 30 dB below the main incident mode, and the
acoustic field is computed between 300 and 3000 Hz with 30 Hz increments using the
propagation model with shear flow. The pressure signal acquisition is performed by
the 40-microphone array at 2/3H as depicted in Figure 4.3.

The first analysis is conducted in the absence of flow. For both incident modes,
the impedance is calculated from the first three wavenumbers retrieved with the
HTLS method, as shown in Figure 4.22. The results for the incident mode 1 begin at
600 Hz. According to the impedance calculation method described in Section 2.3.2.2
for the double-liner, each wavenumber can provide two impedances, associated to
either a symmetric or an antisymmetric solution. According to the results for the in-
cident mode 0, the symmetric solution provided by the first retrieved wavenumber
kx1,ed is in line with the imposed impedance. However, the correct solutions, cal-
culated from the second and third retrieved wavenumbers, correspond to different
symmetry types which alter along the frequency. Therefore, with the perturbation
of the additional modes, the correct results cannot identified by using the symmetry
type of the incident mode. For the results with the mode 1, conclusions are similar.

When only one incident mode is present, the correct solution can be identified
based on the symmetry of that mode, because the acoustic field is only composed
of modes of the same symmetry (see Figure 4.14). However, when the incident field
contains not exactly one mode, the acoustic field is as complicated as with the single-
liner configuration where all modes are present. Figure 4.23 shows the wavenum-
bers kx,simu computed by the multimodal model and the ones retrieved from the pres-
sure signals of the microphone array. It is noted that the retrieved wavenumbers are
associated to modes of both symmetry types, indicating that there are modes of both
symmetry types constituting the acoustic field. This explains the altering symmetry
type of the correct solutions shown in the results in Figure 4.22.
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(c) Incident mode 0. From kx3,ed.
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(d) Incident mode 1. From kx1,ed.
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(e) Incident mode 1. From kx2,ed.
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(f) Incident mode 1. From kx3,ed.

Figure 4.22: Educed impedance from n-th retrieved wavenumbers,
for the incident mode 0 (top) and 1 (bottom) with other modes
at 30 dB lower as perturbation. Solid line: symmetric solution of

impedance, dashed line: antisymmetric solution of impedance.

The influence of the additional modes is thus revealed. On the one hand, this in-
troduces the difficulty of identifying the correct solution in the calculation of impedances.
On the other hand, the acoustic field contains twice as many modes (compared to the
case with a single incident mode), thus increasing the complexity of the wavenum-
ber estimation.
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Figure 4.23: Comparison between the wavenumbers (kx,simu) cal-
culated by the multimodal model and n-th retrieved wavenumber
(kxn,ed) in the cases with incident mode 0 (left) and 1 (right) in the

presence of other modes at 30 dB lower.

Furthermore, it is noteworthy that the presence of noise can surprisingly alle-
viate the challenges posed by the perturbation of additional modes. Simulations
conducted with noise (SNR = 30 dB) are shown in Figure 4.24, which presents the
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impedance solutions corresponding to the same symmetry type as that of the in-
cident mode. These impedances are still calculated using the first three retrieved
wavenumbers. The figure demonstrates that in the presence of noise, the impedance
solutions of the assumed symmetry type (same as that of the incident mode) are
correct, in contrast to the situation shown in Figure 4.22. This effect may be due to
the noise level masking the amplitudes of the additional modes. Consequently, the
experiments in the next chapter can begin with the 1-line array.
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Figure 4.24: Educed impedance calculated by n-th retrieved
wavenumber (kxn,ed), for the incident mode 0 (left) and 1 (right) in
the presence of other modes at 30 dB lower and of white noise at SNR

of 30 dB. Solid line: mean value. Dashed lines: standard deviation.

4.3.2 2-line microphone array

The previous section demonstrates that the presence of additional modes un-
dermines the advantages of the double-liner configuration. To address this issue,
it is necessary to eliminate modes of undesired symmetry types from the pressure
signals. Then, by ensuring that the signals consist solely of a single type of mode,
the double-liner configuration can perform as intended.

It has been shown in Section 4.2.5 that positioning the microphone at H/2 can en-
hance the performance of impedance eduction for symmetric incident modes. This
position corresponds to a pressure node of all antisymmetric modes, making it effec-
tive for isolating symmetric modes in the pressure signals and thereby eliminating
antisymmetric modes. Conversely, the elimination of symmetric modes cannot be
achieved merely by altering the position of the microphone array. Moreover, it is
impractical to adjust the microphone position for different incident modes in prac-
tice.

To realise the elimination of both types of modes without complicated experi-
mental implementation, a 2-line microphone array is developed. Figure 4.25 shows
the deployment of the microphones in this new array. Two lines of 40 microphones
are located at 1/3 and 2/3 of the duct height, recording pressure signals p(H/3)
and p(2H/3), respectively. According to the property of the (anti)symmetry, the
elimination can be achieved through simple operations on these two line pressure
signals. For symmetric incident modes, the pressure signals used to estimate the
axial wavenumbers are the sum of p(H/3) and p(2H/3). Conversely, for antisym-
metric incident modes, the pressure signals used are the subtraction of p(H/3) and
p(2H/3).



4.3. Development of microphone arrays 93

an
ec

h
o

ic

H

Acoustic liner

y

x

𝑢0

𝑝𝑖𝑛

an
ec

h
o

ic

Acoustic liner

1 2 3

L2 =0.8 m

2nd line microphones

1st line microphones

H/3

H/3

Figure 4.25: Schematic of the 2-line microphone array for the
impedance eduction with the double-liner configuration, i.e. lined-
lined boundaries in the middle section. The first and second lines are

located at 1/3 and 2/3 of the duct height, respectively.

4.3.3 Results with the 2-line array for the double-liner configuration

4.3.3.1 Validation without flow

Using the newly developed array, the impedance eduction is conducted for the
first two incident modes, again in the absence of flow. The acoustic field is still
computed in the presence of perturbation modes. Figure 4.26 shows the impedance
educed from the first three wavenumbers retrieved by HTLS method. It can be ob-
served that the correct impedance is in accordance with the symmetry type of the
incident mode.

In addition, Figure 4.27 displays the wavenumbers computed by the multimodal
model and the ones retrieved from the operated pressure signals of the 2-line mi-
crophone array for both incident modes. The retrieved wavenumbers are associated
to the modes that have the same symmetry as the incident one. Therefore, the use
of the 2-line microphone array indeed eliminates the undesired modes and recovers
the advantages of the double-liner configuration.

4.3.3.2 Validation with flow

Following the validation without flow, this section shows the eduction results us-
ing the 2-line microphone array for the double-liner configuration, in the presence of
flow, without and with noise. The parameters remain the same as in the simulations
for the double-liner configuration with the 1-line array (Section 4.2.2 and 4.2.5).

Figure 4.28 shows the educed impedance without noise for both incident modes
propagating in both directions, and for several flow velocities. All results obtained
for both directions agree well with the imposed impedance, except for those with
Mave = ±0.5, which show discrepancies at frequencies below 700 Hz. This is likely
due to a numerical issue.

Figure 4.29 displays the eduction results in the presence of noise (SNR=30 dB).
Compared with the results obtained by the 1-line array with a pure incident mode
(refer to Figure 4.21), the results obtained using the signals from the operations be-
tween the 2-line are quite similar, except for results with Mave = 0.5, which is previ-
ously observed in the noiseless case.
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(b) Incident mode 0. From kx2,ed.
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(c) Incident mode 0. From kx3,ed.
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(e) Incident mode 1. From kx2,ed.
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(f) Incident mode 1. Z(kx3,ed).

Figure 4.26: Educed impedance from n-th retrieved wavenumbers,
using the pressure signals obtained by the 2-line microphone array,
for the incident mode 0 (top) or 1 (bottom) in the presence of other

modes 30 dB smaller.
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Figure 4.27: Comparison between the wavenumbers (kx,simu) com-
puted by the multimodal model and the n-th retrieved wavenumber
(kxn,ed) in the cases with incident mode 0 (left) and 1 (right) in the
presence of other modes 30 dB smaller. Retrieved wavenumbers are

obtained using the operated signals of 2-line microphone array.
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Figure 4.28: Educed impedance without noise using the 2-line mi-
crophone array, for different flow velocities in the same or opposite
direction relative to the incident mode. Top: main incident mode 0.
Bottom: main incident mode 1. Black solid line: imposed impedance.
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Figure 4.29: Educed impedance with noise (SNR = 30 dB) using the
model with sheared flow. The 2-line microphone array is applied.
Black line: imposed impedance. Coloured solid line: mean value of
impedance. Coloured dashed line: standard deviation of the educed

impedance around its mean value.
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However, the standard deviation is larger for the results obtained with the two-
line signals. This increase can be attributed to the operations (addition or subtrac-
tion) performed on the signals, both of which contain noise with an amplitude fol-
lowing a normal distribution. When two normal distributions are added or sub-
tracted, the resulting distribution has a larger standard deviation σ, thereby reduc-
ing the SNR (which is inversely related to the noise standard deviation σ) in the final
signal used for impedance eduction. Despite this, the results in real experiments,
discussed in the next chapter, are expected to remain unaffected.

4.4 Conclusions

This chapter has explored various aspects of direct impedance eduction using
pressure signals from simulations performed by the multimodal models introduced
in Chapter 2.

The comparative analysis of the KT and HTLS methods have revealed that both
approaches are viable for wavenumber estimation in small ducts (tests only per-
formed in the single-liner configuration). However, the KT method generally offered
lower accuracy under certain conditions, while the HTLS method shows greater ro-
bustness when the attenuation is weak. In addition, the KT method fails in the pres-
ence of noise perturbation. The HTLS method is selected thereafter, accompanied
by the recommended setting for the Hankel matrix column number L in [0.4N, 0.6N]
[120].

In the context of the large MAINE Flow duct, numerical simulations have
replicated the impedance eduction process, showing that the performance of the
impedance eduction is significantly influenced by the flow assumption (uniform
vs. shear) and the liner configuration (single vs. double-liner). The shear flow
model combined with the double-liner configuration yields significant benefits com-
pared to the standard approach (the model based on the uniform flow assumption
and the single-liner configuration). The double-liner configuration consistently pro-
vides better performance compared to the single-liner configuration. The analysis
of the mechanisms underlying this difference shows two main advantages of the
double-liner, and offers insights for optimising the accuracy of impedance eduction.
First, the symmetry of the double-liner configuration maintains the symmetry of the
acoustic field according to the incident mode, and simplifies its modal content. On
the other hand, the double-liner enhances the attenuation, thereby reducing the un-
certainty of the impedance eduction method.

With these benefits, the double-liner also provides satisfactory impedance results
in the presence of noise perturbations. The impact of noise in pressure signals is sig-
nificant, affecting the accuracy of the impedance eduction with the single-liner con-
figuration. It is confirmed by various tests with noise perturbations that the eduction
results can be improved principally by increasing the acoustic attenuation along the
lined section or simplifying the acoustic field composition. Therefore, the double-
liner configuration is more favourable and promising in experiments.

In real experiments, perturbations in the incident field from modes other than
the desired incident one are shown to mislead the impedance eduction, necessitating
some changes to clear the signals feeding the wavenumber estimation. The develop-
ment and implementation of a 2-line microphone array provides a practical solution
to tackle this difficulty. Through the operations between the pressure signals at 1/3
and 2/3 of the duct height, this array effectively isolates symmetric and antisym-
metric modes, leading to more accurate impedance eduction with the double-liner
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configuration. This approach offers a significant improvement for real experiments,
where mode perturbations are unavailable, and provides a robust method for en-
hancing the efficiency of the double-liner configuration.

Overall, this chapter demonstrates the effectiveness of various methods and con-
figurations for the direct impedance eduction, preparing for the experiments on
MAINE Flow in the next chapter. The studies highlight the benefits of the shear
flow method, the double-liner configuration and the new 2-line microphone array.
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Chapter 5

Experimental investigation of
impedance eduction in multimodal
ducts

This chapter contains the experimental part of this thesis, including the investiga-
tions within a large multimodal duct. Section 5.1 introduces the new configurations
for the direct impedance eduction on MAINE Flow. The two microphone arrays
proposed in the previous chapter are deployed on the test rig. The installation of
acoustic liners and the procedure for the measurements are detailed. In the post-
processing of experimental data, it is vital to select the correct wavenumbers from
all the retrieved values in order to correctly calculate the impedance. For this task,
two methods are developed and compared. When coming to the tests, a DDOF liner
is first measured under various conditions in Section 5.2. The results are analysed,
with an emphasis on the effects of different liner configurations (single or double),
incident modes, SPLs, flow velocities and propagation directions. For the calcula-
tion of impedance from the wavenumbers, the uniform and shear flow method are
compared through the experimental results. Section 5.3 discusses then the influence
of the microphone spacing and compares the performance of one or two lines of mi-
crophones in the impedance eduction. Finally, Section 5.4 presents results with two
sets of optimised SDOF liners in order to assess the performance of our impedance
eduction methods with larger attenuation at high frequencies in the presence of flow.

5.1 Set-up

The main parameters of the experimental facility have been described in Chap-
ter 2, including the dimensions and the methods for multimodal control of the inci-
dent field which were developed before the present thesis [10, 11].

This section focuses on the development and the implementation of the experi-
ments for the direct impedance eduction on the MAINE Flow facility. The installa-
tion of liners and the microphones are first described, followed by the experimental
procedure. Then, for the wavenumber estimation based on signals obtained by the
microphone array, two new techniques are developed to select the right wavenum-
bers.

5.1.1 Configurations

5.1.1.1 Installation of the liner sample

Firstly, the installation of the acoustic liner, as mentioned in Chapter 2, can be
carried out on both narrow sides (150 × 800 mm2) of the duct test section. This
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allows experiments using both single-liner and double-liner configurations. The in-
side length of the sample holder is 800 mm, and the width is 190 mm. The surface
of the test liner is tightly pressed against the opening of the lined section (150 × 800
mm2), and the extra part of the surface of the liner is pressed on the edge next to
the opening. This ensures that the surface of the liner is flush with the inner wall
of the duct and that the tested surface area of the liner is fixed at 150 × 800 mm2.
The sample holder is designed as a closed structure, ensuring rigid wall conditions
around the liner. To accommodate liners of different thicknesses, the sample holder
is equipped with a depth-adjustable rigid back plate. In the preparation of measure-
ment, the position of the rigid slider is adjusted to fit snugly against the backplate of
the liner.

(a)

(b)

(c)

Figure 5.1: Illustration of the liner installation. (a): general view of
the test section of the MAINE Flow duct, with liners installed at both
sides, referring to the double-liner configuration. The 2-line micro-
phone array is mounted in the test section. (b): sample holder with a
liner inside. (c): opening (150× 800 mm2) of the lined section, against

which the liner is pressed.

5.1.1.2 Microphone arrays

To acquire pressure signals for direct impedance eduction, and following the
numerical simulations in Chapter 4, microphones are flush-mounted on the top wall
(which is perpendicular to the liner) in the lined section, either along a single line
(1-line) or along two parallel lines (2-line). Figure 5.2 shows the microphone arrays
installed on the MAINE Flow rig.

The 1-line array of 40 evenly spaced microphones is positioned along the axis
of the lined section and is situated at 2/3 of the width from one of the lined walls.
The distance between adjacent microphones is ∆x = 0.02 m, with the first and last
microphones placed 0.01 m into the lined section.

The 2-line microphone array is also composed of 40 microphones, with 20 situ-
ated both at 2/3 and at 1/3 of the duct width. In each line, the distance between
adjacent microphones is ∆x = 0.04 m. When using the 2-line microphone array, the
20 unused positions along the 40 points are sealed flush with the inner wall. Using
half of the position in 1-line array, the first pair of microphones (in the flow direc-
tion) is placed 0.01 m into the lined section and the last pair is placed 0.03 m into the
lined section.
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40 positions

20 positions

Figure 5.2: General view of the microphone arrays in the lined sec-
tion for direct impedance eduction. The yellow box marks the 1-line
microphone array that contains 40 evenly spaced positions with the
distance ∆x = 0.02 m. The blue box marks the second line of the 2-
line microphone array, which contains 20 positions with a spacing of

∆x = 0.04 m.

Before recording signals, the calibration of microphones is also essential in acous-
tic measurements when quantitative results are required. There are two types of cal-
ibration: absolute and relative. The absolute calibration is achieved individually for
all the microphones (both in rigid and lined sections) using the GRAS 42AG, which
concerns only the amplitude of signals. The relative calibration is also done for the
microphones in the lined section, which concerns both the amplitude and phase of
signals. To that end, a small cavity displaying an uniform acoustic field up to 3000
Hz is used for the two microphones to be compared. The most upstream micro-
phone is taken as a reference, and the transfer functions are computed between the
signals recorded by each microphone and the reference one at the frequencies of in-
terest. In the processing of the pressure data, the transfer function is used to correct
the signals of the associated microphone. For example, Figure 5.3 shows the signal
before and after correction by the relative calibration. Note that, compared to the
absolute calibration that is performed at 1000 Hz, the relative method gives an in-
formation about the frequency dependency of the calibration. However, it is a more
time-consuming process.

5.1.1.3 Measurement procedure

Following the installation of the acoustic liner and microphones, the measure-
ment procedure includes the following steps:

1. Flow speed monitoring: Acoustic measurements only begin once the flow
speed is stabilised at the prescribed value. Golliard et al. [10] have detailed
the methodology for measuring the Mach number in the MAINE Flow facil-
ity. A differential pressure sensor is installed between the settling chamber
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Figure 5.3: Pressure signals obtained by the 40 microphones in the 1-
line array, normalised by the most upstream microphone, at f = 1400
Hz before (dashed lines) and after (solid lines) the relative calibration
process. The various colours correspond to the individual incident

modes (0,0), (1,0) and (2,0), at SPL=120 dB.

(where air enters at atmospheric conditions) and the test duct inlet. By mea-
suring also the total temperature in the settling chamber, the Mach number at
the upstream end of the duct can be obtained. Additionally, temperature and
atmospheric pressure are monitored along the test duct, enabling the Mach
number at the liner to be obtained.

2. Temperature control: High flow speeds can induce a severe drop of the tem-
perature in the test section, due to the fact that the facility is working with a
fan in suction mode. Therefore, in cases of high flow speeds or cold weather,
heating resistances are employed to maintain a chosen and appropriate tem-
peratures within the duct test section, preventing issues such as condensation
or freezing. If heating is necessary, the temperature within the test section is
controlled and kept constant during the tests.

3. Modal excitation: Through previous measurements, the transfer function be-
tween all the sources (upstream or downstream) and the rigid duct modes is
known. Thus, we can select a desired incident mode (n, m) and incident ampli-
tude. The control system then adjusts the amplitude and phase of each source
as a function of frequency to produce a stepped-sine excitation signal. For an
incident mode (n, m), n denotes the direction perpendicular to the liner, while
m represents the transverse direction.

4. Data acquisition and analysis: The temperature and pressure conditions
recorded are used to calculate the air density and speed of sound. The mi-
crophones in the lined section capture the acoustic pressure data, and then
the data are post-processed using the methodologies outlined in Chapter 2 to
educe the impedance of the tested liner.

Based on this, we can perform the impedance eduction with a controlled mul-
timodal acoustic field in the large MAINE Flow duct. Since the proposed method
(using shear flow assumption) considers mean flow shear in 2D case, only the flow
profile in the direction perpendicular to the acoustic liner shown in Figure 4.4 is
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used for the impedance calculation. The 2D model introduced in Chapter 2 already
includes the key features for this study: a parallel shear flow and high-order cut-on
modes. The effects of these two features are equally relevant in 2D and 3D. In 3D,
the presence of additional modes along the depth of the cross-section is not expected
to change the trends identified with the 2D model in Chapter 3 and 4. Hence, the
present facility allows for the experimental investigation of the effects of different
incident modes, various SPLs, different flow velocities and wave incident directions
relative to the flow, and microphone arrays.

5.1.2 Wavenumber selection in signal post-processing

The first task after acquiring the signals from the microphone array is to extract
the axial wavenumbers for subsequent calculation of the impedance. In the process
of estimating the wavenumber using the HTLS method described in Chapter 2, nu-
merous parameters need adjustment, and there are various choices to consider. This
section focuses on how to accurately extract wavenumbers based on the experimen-
tal data obtained from the microphone array.

Given N microphones, the minimum failure rate of the HTLS method occurs
with the column number L of the Hankel matrix in the interval [0.4N, 0.6N] [120],
so L is set to 22, following Chapter 4. In that chapter, criteria for wavenumber se-
lection are applied on simulated data. However, these criteria often prove unsatis-
fied when processing experimental data due to noise perturbations and incertitudes
in measurements. Consequently, the following methods are specifically designed
to address the nuances of experimental data, providing more practical and accu-
rate means for impedance eduction. The wavenumber estimation process contains
two main choices: the truncation number K in the HTLS method, and selecting the
wavenumber from multiple wavenumbers once K is set.

In the first step, K can be interpreted as the expected number of propagating
modes within the duct test section. It is understood that a larger K includes more
modal information but increases the risk of noise influence, whereas a smaller K
limits the number of modes. While the latter is more stable, it may not yield enough
accurate results. Several supplementary algorithms exist in the field of exponential
parameter estimation, such as SAMOS [122], which aims to select automatically the
optimal truncation number that appropriately exclude noise channels, thus provid-
ing more accurate exponential parameters. However, these algorithms, effective in
numerical simulations, have been found to be difficult to work accurately with the
experimental data obtained in the present study.

Therefore, K is here selected based on the physical considerations and the ac-
curacy of the reconstruction of the pressure signal along the liner, compared to the
measurement, when the amplitudes and wavenumbers are obtained. To that end,
different values of K from 1 to 8 are first tested, and for each K a set of wavenumbers
{kx1,ed, kx2,ed, ..., kxn,ed} is obtained. For each set of wavenumbers, the amplitudes An
corresponding to each retrieved wavenumber are calculated using the Least Squares
Estimation method based on the measured pressure signals pme. Then, wavenum-
bers and amplitudes are used to reconstruct the pressure at all microphone positions
x. Each K corresponds to a reconstructed signal pre, and the K that induces the small-
est L2-norm error between the reconstructed and measured signals is optimal. This
can be summarised as:
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pre = ∑
n

Ane−ikxnx , (5.1a)

K = arg min
K

∥pre − pme∥2

∥pme∥2
. (5.1b)

When K is set to a small value, less noise subspace is contained in the decomposition
of signal and the results will be less perturbed; when K is set to a large value, the
errors of reconstructed signal decreases due to the consideration of more modes, but
with a risk of noise perturbation. Thus, a trade-off between a smaller K and minimal
reconstruction error is sought.

Once the truncation number K is determined, and hence a set of wavenumbers
is identified in the pressure evolution at a given frequency, the next step is to select
one wavenumber (kx,ed) from this set for the impedance calculation. To this end, two
approaches are developed in this study.

The first method is inspired by, though not entirely equivalent to, the approach
used by NASA in [22]. For the obtained set of wavenumbers {kx1,ed, kx2,ed, ..., kxn,ed},
the impedance corresponding to each wavenumber can be calculated using either
the uniform flow method or the shear flow method. Subsequently, each impedance
value Z(kxn,ed) is used to compute the acoustic field by means of the multimodal
model described in Chapter 2, which provides a set of simulated signals psimu at
the same microphone points as in the experiments. Then, the L2-norm error be-
tween each set of simulated signals and the original measured signals is calculated.
Finally, the wavenumber corresponding to the simulated signal with the smallest er-
ror is selected. This method is computationally intensive, since it requires numerous
computations of the acoustic field, and it can be expressed as:

kx,ed =
arg minZ(kxn,ed) ∥psimu(Z(kxn,ed))− pme∥2

∥pme∥2
. (5.2)

The second method is to select the wavenumber associated with the mode that
contributes most to the whole signal. The contribution of each mode is defined as
the L2 norm of the decomposed signal, i.e. ∥pn∥2 = ∥Ane−ikxn x⃗∥2 with An the n-th
mode amplitude. This method can be expressed as

kx,ed = arg max
kxn,ed

∥pn∥2. (5.3)

This method offers the distinct advantage of computational efficiency.

Comparison of the two methods

The comparison between the two methods (described in Eq. (5.2) and Eq. (5.3))
for the selection of the wavenumber to be used in the impedance eduction is illus-
trated in Figure 5.4. The figure displays the wavenumbers retrieved by both meth-
ods and the resulting educed impedance using the shear flow method. The incident
modes considered separately are (1,0) and (3,0), and they propagate downstream
with an average Mach number Mave= 0.3. The impedance results are not smoothed
for the purpose of comparisons based on their intrinsic quality.

As shown in Figure 5.4(a), the wavenumbers selected by both methods are
consistent at low frequencies, with differences becoming more apparent in the
high-frequency range, where more modes propagate. Despite the differences in
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wavenumber selection, the final impedance results using both methods, displayed
in Figure 5.4(b), are mostly consistent.

Given the comparable accuracy of the eduction results, this study prefers the sec-
ond method due to its significantly shorter computational time. This choice simpli-
fies the analysis process without compromising the quality of the impedance educ-
tion results, making it the preferred approach in the following for handling experi-
mental data efficiently.
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Figure 5.4: Left: retrieved wavenumbers used to calculate the
impedance, selected using the two methods (in Eq. (5.2) and in
Eq. (5.3)). Right: impedance computed using the shear flow model
with the wavenumbers in (a). Incident modes are individually (1,0)
and (3,0), in the downstream propagation direction, with an average

Mach number of 0.3.

5.2 Tests with DDOF liners

The experiments are first conducted with double-degree-of-freedom (DDOF) lin-
ers. Figure 5.5 presents the impedance predicted by the liner model of the industrial
partner, with incident amplitudes ranging from 120 to 150 dB without flow, and
Mach numbers ranging from 0 to 0.6 with incident amplitudes at 150 dB against
flow. The 1-line array, containing 40 microphones, is firstly used.

The tests cover different flow velocities and wave/flow directions, various inci-
dent modes, and different liner configurations. First, the eduction performance of
the single- and double-liner configurations are compared without flow. Also, dif-
ferent incident modes at various SPLs are considered in the double-liner configura-
tion. Then, tests are conducted for several flow velocities and the results obtained
considering either uniform or shear flow assumptions are described and compared.
Finally, the influence of the flow velocity is discussed, as well as the impact of the
chosen incident mode.

5.2.1 Without mean flow

5.2.1.1 Liner configurations

First, experiments are conducted without flow for both configurations (single-
liner and double-liner) across a frequency range spanning 300 to 2000 Hz, with in-
crements of 10 Hz. The amplitude of the incident mode is 120 dB. As methods are by
definition equivalent without flow, the uniform and shear flow methods introduced
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Figure 5.5: Predicted impedances of the tested DDOF liner.

in Section 2.3.2 provide exactly the same educed impedance. Thus, in this section,
only the results obtained using the shear flow method are presented.

Figure 5.6 illustrates the educed impedance obtained for the incident modes (0,0)
and (1,0) in both directions of propagation. It can be seen that the eduction is more
accurate with the double-liner configuration compared to the single-liner one. In-
deed, the agreement between results of two directions is improved when there are
two liners, and the results are smoother at high frequencies. In the single-liner case,
although the mode (1,0) shows similar results between the two directions of prop-
agation, the results follow a trend differing from the model impedance when the
frequency increases.

To further understand these discrepancies, Figure 5.7 shows the measured axial
wavenumbers for downstream propagation for both configurations, corresponding
to the impedance results in blue in Figure 5.6. For the mode (0,0) in the double-
liner case, it is apparent from Figure 5.7(b) that the retrieved wavenumbers have a
stable trend along the frequency, while for the single-liner in Figure 5.7(a) several
wavenumbers after 1200 Hz are far away from the main trend. For the single-liner
configuration, the real parts of the two mode wavenumbers overlap perfectly. How-
ever, the imaginary part of the mode (1,0) drifts away from 0, despite its clean trend
over the frequency range. The main explanation for the results in Figure 5.6(b) is
thus that the HTLS method gives inaccurate results in this case.

The attenuation rate also plays a central role in the performance of the impedance
eduction [17, 121]. Figure 5.7 shows that the attenuation is larger for the double-
liner configuration compared to the single-liner one, for the two incident modes.
Both configurations perform well at low frequency, due to the large attenuation rate.
For higher frequencies, the single-liner configuration becomes less accurate as the
modal attenuation decreases, whereas the double-liner remains accurate. Another
reason for the good performance achieved by the double-liner configuration is that
it preserves the symmetry of the incident sound field. As described in Chapter 4,
a symmetric incident mode will be scattered only onto other symmetric modes (an-
tisymmetric modes will not be excited). As a consequence, the number of modes
present in the lined section of the duct is reduced, which makes the identification
of their wavenumbers easier. When both symmetric and antisymmetric modes are
present (such as in the single-liner case), a greater number of exponentials should be
identified by the HTLS method, which can increase the error.

To further clarify the difference in effectiveness between the two configurations,
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(d) Double-liner, mode (1,0)

Figure 5.6: Educed impedance without flow for both single- (Top) and
double-liner (Bottom) configurations. Left column is obtained for an
incident plane wave, right column for an incident vertical mode (1, 0).
The incident modes with an amplitude of 120 dB are propagating ei-
ther in the same direction as the flow (blue), either against it (green).

Black line: predicted impedance.

Figure 5.8 compares the pressure field pme measured by the microphone array and
the pressure field reconstructed with the wavenumbers and amplitudes identified by
the HTLS method. The latter is computed as pre(x) = ∑n Ane−ikxn,edx with a selected
set of retrieved axial wavenumber kxn,ed. The difference between the two fields is
quantified by the relative L2-norm error between the pressure values. According to
this analysis, the relative error for the double-liner configuration is almost always
below 20% and lower than that for the single liner, indicating that the acoustic field
is more accurately reconstructed in the double-liner case.

5.2.1.2 Influence of sound pressure levels

In view of the greater performance of the double-liner configuration, the single-
liner configuration is not used in the remainder of the manuscript. To study the influ-
ence of the incident modes and of the SPL, experiments are now carried out without
flow for the first 4 incident modes with amplitudes varying between 120 and 150 dB.
To consider higher-order modes, the maximal frequency is now 3500 Hz. Note that a
moving-average smoothing is now applied to the measured liner impedance along
the frequency axis in order to facilitate the readability of the overall trends. Also,
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(b) Double-liner

Figure 5.7: Retrieved axial wavenumbers, normalised by k0, as a func-
tion of frequency for both single- and double-liner configurations.

The sources are located on the upstream side.
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Figure 5.8: Relative error ∥pre − pme∥2/∥pme∥2 of the reconstructed
acoustic pressure field at the microphone positions for both single-
and double-liner configurations. The sources are located on the up-

stream side.

for the sake of brevity and given the good agreement between the two directions ob-
served in the previous section, the results are only displayed for downstream prop-
agation.

Figure 5.9 shows the educed impedances using incident modes (0,0) and (3,0)
as representatives of the two types of symmetry. First, below 1500 Hz, Figure 5.9(a)
shows that the resistance increases and the reactance decreases with increasing SPL.
Then, Figure 5.9(b) shows that the first anti-resonance of the liner, located between
2000 and 2750 Hz, fades as the SPL increases. These are clear evidences of a non-
linear behaviour of the tested liner in presence of high SPL. It is also noticeable that
the antisymmetric mode used for Figure 5.9(b) provides cleaner results. This is most
likely due to its larger attenuation rate, compared to the plane wave. For the latter,
as the sound field becomes more complex at high frequencies, the impedance results
contain more oscillations. When compared with the predicted impedances of the
tested liner, the trends in the measured impedance agree with that of the predicted
values.

Figure 5.10 compares the impedance eduction results obtained with the first 4
modes at incident SPLs of 120 and 150 dB. At 120 dB in Figure 5.10(a), it is observed
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(b) Mode (3,0)

Figure 5.9: Educed impedance without flow for the double-liner con-
figuration using incident modes (0,0) and (3,0), as representative of
the two types of symmetry, in the downstream direction. Dashed

lines: predicted impedances.

that each incident mode yields similar results before 2000 Hz. After 2000 Hz, de-
pending on the symmetry of the incident mode, the educed impedance exhibits two
different behaviours. The impedances measured using the antisymmetric modes
(1,0) and (3,0) show a clear anti-resonance, with smaller rise and fall for the higher-
order mode (3,0). In comparison, the impedances educed using the symmetric modes
(0,0) and (2,0) display large oscillations after 2000 Hz, making it difficult to observe
an anti-resonance. Therefore, using antisymmetric incident modes provide more
robust results for the direct impedance eduction, most likely due to greater attenu-
ation rates. At 150 dB in Figure 5.10(b), similarly to before, the impedance results
show slightly different trends according to the symmetry of the incident mode at
high frequencies. However, and in contrast to 120 dB, the results for the symmetric
modes are less oscillating and more consistent. The reason might be the disappear-
ance of the anti-resonance due to the non-linear effects at high amplitudes. Indeed,
the liner impedance is then closer to the optimal impedance of the duct, inducing
more acoustic attenuation, and thus cleaner results.

5.2.2 With mean flow

This section considers the impedance eduction in both directions in the presence
of flow. Since the educed impedance can be calculated using a model with a uniform
flow, or a model including the mean flow shear, a comparison between these two
models is first conducted.

5.2.2.1 Comparison between the two eduction methods

To that end, experiments are carried out with the mode (0,0) at 150 dB for two
average Mach numbers: Mave = 0.29 and Mave = 0.45. Since the results in the
upstream propagations cases are poor at high frequencies due to the low acoustic
attenuation and the large noise perturbations in presence of flow, these comparisons
focus on low frequencies.

Figure 5.11 displays the educed impedance using either the uniform or the more
accurate one – shear flow model. The predicted impedance is only for the upstream
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(b) SPL = 150 dB

Figure 5.10: Educed impedance without flow for the double-liner
configuration. The first 4 modes are generated at SPLs of 120 (a) and
150 dB (b) in the downstream direction. Black: predicted impedance.

propagation case. As observed in Figure 5.11(a), the difference between the educed
impedance obtained by the two methods is not significant at low frequencies and
becomes larger at higher frequencies. Furthermore, the discrepancy is more pro-
nounced when the acoustic propagation is against flow (as seen in Figure 5.11(b)
compared to (a)), and when the flow velocity increases (in Figure 5.11(d) compared
to (b)). It is therefore important to include the mean flow shear in the impedance
eduction process when working with large ducts and for high flow velocities. The
present experimental results thus confirm the conclusions of the numerical study in
Chapter 3 and Chapter 4. The shear flow method is therefore used for the following
experiments.

5.2.2.2 Effects of the flow velocity

This section focuses on the impedance eduction with different average Mach
numbers Mave: 0.10, 0.29, 0.45 and 0.575. For each Mach number, the first 2 modes
are generated separately with a 130 dB amplitude, either from upstream or down-
stream. There is no impedance model prediction at 130 dB in presence of flow. Also
here the effects of the flow velocity are only assessed for a given incident mode. The
discussion regarding the dependence of the educed impedance with respect to the
selected incident mode in presence of flow is addressed in Section 5.2.2.3.

Firstly, Figure 5.12(a) shows that when Mave increases from 0.10 to 0.45, the re-
sistance rises and the reactance decreases. However, the curves at Mave = 0.575 do
not follow this trend, with a resistance between the results obtained at Mave = 0.29
and at Mave = 0.45 and a reactance significantly lower than the other three. For
the upstream propagation (see Figure 5.12(b)), the low-frequency range displays a
large increase of the resistance and a decrease of the reactance with increasing flow
velocity. These trends are more pronounced than for the downstream propagation
case. When comparing Figure 5.12(b) and (a) at low frequency, the resistances ap-
pear clearly larger for waves propagating against the flow, especially for high Mach
numbers. Unfortunately, the results quality at high frequencies is poor and prevents
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(a) Mave = 0.29, downstream propagation
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(b) Mave = 0.29, upstream propagation
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(c) Mave = 0.45, downstream propagation
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(d) Mave = 0.45, upstream propagation

Figure 5.11: Educed impedance for the double-liner configuration us-
ing either shear (blue solid lines) or uniform (blue dashed lines) flow
assumptions. Black solid line: predicted impedance of the liner. The

mode (0,0) is incident at 150 dB in both directions.
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any conclusion for the fast flows. Moreover, the frequency at which large errors ap-
pear decreases as a function of flow velocity. This can be explained by the decrease
of the signal-to-noise ratio when the flow velocity increases.

When the mode (1,0) is used (see Figure 5.12(c) and (d)), the trends observed as
a function of the Mach number in the downstream propagation case are roughly the
same as for the plane wave, but they look a bit cleaner. This is probably due to a
larger attenuation rate.

The results for the upstream propagation case are only usable at low frequency,
and their behaviour is the same as for the plane wave. For the higher-order modes
that are not shown here, the results follow trends similar to that of the low-order
modes with the same symmetry, but look noisier.
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(a) Mode (0,0), downstream propagation
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(b) Mode (0,0), upstream propagation
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(c) Mode (1,0), downstream propagation
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(d) Mode (1,0), upstream propagation

Figure 5.12: Educed impedance as a function of frequency for average
Mach numbers 0.10 (blue), 0.29 (orange), 0.45 (green) and 0.575 (red).
The incident modes are the modes (0,0) (Top) and (1,0) (Bottom) with

an amplitude of 130 dB.

5.2.2.3 Influence of the incident mode

This section discusses the influence of the incident mode on the impedance educ-
tion in the presence of flow.

Figure 5.13 shows the educed impedance with a mean flow Mach number of 0.29.
Note that, as for the case without flow, antisymmetric incident modes provide less
noisy results, witnessing a more robust direct impedance eduction process. In Fig-
ure 5.13(a), it is observed that all incident modes lead to the same impedance below
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2000 Hz. For higher frequencies, two trends are followed by the resistance, and this
seems to depend on the symmetry of the incident mode. Nevertheless, the reactance
obtained with symmetric modes (0,0) and (2,0) show discrepancies. Regarding the
upstream propagation case in Figure 5.13(b), the first two cut-on modes provide sim-
ilar results at low frequency, but then deviate above 1500 Hz. For higher frequencies,
each mode seems to provide a different impedance. However, the results are noisy
and not conclusive. It is thus difficult to analyse and discuss properly the relation
between the incident mode and the educed impedance.
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(a) Downstream propagation
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(b) Upstream propagation

Figure 5.13: Educed impedance in the presence of flow at M=0.29
with incident modes at 130 dB in both directions. Blue: mode (0,0).

Orange: mode (1,0). Green: mode (2,0). Red: mode (3,0).

5.3 Comparison of microphone arrays

According to the previous results, the trend of the educed impedance obtained
with various incident modes depends on the mode symmetry. Moreover, while accu-
rate measurements can be obtained in many cases, the performance of the eduction
method at high frequencies and for sound propagation against the flow remains to
be improved.

This section uses the 2-line microphone array to perform the impedance eduction
with the DDOF liners. As proved in Chapter 4, the 2-line array allows separating
symmetric and antisymmetric modes in the pressure signals, enhancing the accuracy
of impedance eduction with the double-liner configuration.

5.3.1 Comparison between 20 and 40 axial positions

Given that the 2-line array has twice the axial spacing between microphones
compared to the 1-line array, the performance of 20 versus 40 microphone positions
is first compared to assess the impact of reduced axial resolution (∆x increasing from
2 cm to 4 cm). This analysis uses pressure signals from either all the 40 microphones
or only the half of them within the 1-line array setup. To evaluate the quality of the
results, the moving-average smoothing is not applied in this comparison. Results
are obtained using the incident mode (1,0), because as an antisymmetric mode it
performs well while covering a wide frequency range [600, 3500] Hz.

Figure 5.14 presents the educed impedance for incident amplitudes of 120 dB
and 150 dB in the absence of flow. The results obtained using microphone arrays
with different axial resolutions show consistent results.
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(b) 150 dB.

Figure 5.14: Comparison of educed impedance using 20 (blue) and 40
(green) microphones in the 1-line array. Incident mode (1,0) is present

at amplitude of 120 dB (a) and 150 dB (b), in the absence of flow.

Then, the comparison of the two axial resolutions is done in the presence of flow,
with the incident mode (1,0) at 130 dB. Figure 5.15 compares the results for flow
velocities Mave = ±0.29,±0.45,±0.575. For downstream propagation, the increase
in axial spacing between microphones shows negligible impact on the impedance
eduction results. However, for upstream propagation, the results diverge notably
at higher frequencies, particularly at f ≥ 3000 Hz for Mave = −0.3, f ≥ 2400 Hz
for Mave = −0.45, and f ≥ 1600 Hz for Mave = −0.575. At higher frequencies and
for upstream propagation with high flow velocities, the wavelengths become com-
parable to the microphone spacing, resulting in unreliable results. For instance, at
Mave = −0.575 and 3000 Hz, the plane wave wavelength is approximately 4.8 cm in
the rigid section, whereas the Shannon criteria specifies that at least two points are
required by wavelength. This is verified for the complete antenna but not with 20
microphones. Note that the wavelength of the mode (1,0) is supposed to be slightly
larger than this value, but this may not influence the validation of the Shannon cri-
teria.

In conclusion, the microphone spacing of ∆x = 4 cm in the 2-line array is ad-
equate for most cases. However, resolution issues may arise in cases of upstream
propagation with high-speed flow and at high frequencies.

5.3.2 Comparison between 1-line and 2-line

This section assesses the improvement brought by the use of the 2-line array
through a comparison with the results obtained using 20 microphones from only one
line. Remember that simple operations introduced in Chapter 4 are conducted on
two line pressure signals in order to eliminate the undesired modes. For symmetric
incident modes, the signals used to educe the impedance are the sum of the pressures
of both lines, while for antisymmetric incident modes, such as the mode (1,0) in this
section, the signals are the subtraction of the pressures of both lines. The mode (1,0)
is excited at 120 and 150 dB in the downstream direction with Mach numbers at
Mave = 0, 0.29 and 0.45. The moving-average smoothing is not applied for a natural
comparison between results.

Figure 5.16 illustrates the educed impedances obtained using 1-line of 20 micro-
phones and the complete 2-line array with 2*20 microphones. The overall trends
for results obtained using both microphone arrays are consistent, aligning well with
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(c) Mave = +0.575
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(d) Mave = −0.29
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(e) Mave = −0.45
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(f) Mave = −0.575

Figure 5.15: Comparison of educed impedance using 20 (blue) and
40 (green) microphones in the 1-line array. Incident mode (1,0) is
present at amplitude of 130 dB in both directions, with flows at

Mave = ±0.29,±0.45,±0.575.

the predicted impedance values. The comparison shows that using the complete 2-
line array yields smoother results at low frequencies ( f ≤ 2000 Hz) and mitigates
oscillations at high frequencies.

5.3.3 Results with the 2-line array

The 2-line microphone array is now used to conduct impedance eduction at
various flow velocities with different incident modes.

5.3.3.1 Influence of the incident mode

Figure 5.17 shows the impedances obtained without flow. The first 6 modes
are individually excited at 140 dB, including symmetric modes (0,0), (2,0) and (4,0)
and antisymmetric modes (1,0), (3,0) and (5,0). Similar to the observation in Sec-
tion 5.2.1.2, antisymmetric modes provide more consistent results and perform bet-
ter for the impedance eduction.

5.3.3.2 Influence of the flow velocity

For downstream propagation, Figure 5.18 shows the results for the mode (1,0)
at amplitudes of 130 dB and 150 dB. The flow velocities considered are Mave =
0, 0.29, 0.445 and 0.575 for both amplitudes, with an additional Mave = 0.15 for 130
dB and Mave = 0.10 for 150 dB.

For 130 dB, Figure 5.18(a) clearly shows an increase in resistance and a decrease
in reactance as the flow velocity increases, particularly below 1500 Hz. These trends
are more distinct compared to the results obtained using the 1-line array with 40 mi-
crophones, as shown in Figure 5.12(c). With increasing frequency, the overall trends
remain consistent for results using both arrays.
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(b) 150 dB, Mave = 0
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(c) 150 dB, Mave = 0.29
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(d) 150 dB, Mave = 0.45

Figure 5.16: Comparison of educed impedance using 20 (blue) and
2*20 (green) microphones in the 2-line array. Incident mode (1,0) is
present in the direction of downstream propagation. Black line: pre-

dicted impedances.
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(a) Symmetric incident modes.
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(b) Antisymmetric incident modes.

Figure 5.17: Educed impedance using symmetric (a) and antisymmet-
ric (b) incident modes at 140 dB without flow, using the 2-line array.

Black: predicted impedance.
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(a) 130 dB.
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(b) 150 dB.

Figure 5.18: Educed impedance as a function of frequency for differ-
ent average Mach numbers using the 2-line microphone array. The in-
cident mode is the mode (1,0) at amplitudes 130 dB and 150 dB, prop-

agating in the downstream direction.

For 150 dB, Figure 5.18(b) indicates that the educed impedances are quite similar
for Mave = 0 and Mave = 0.1. Then, as the flow velocity increases further, the
reactance decreases. Notably, the resistance for Mave = 0.575 is significantly higher
than for the other Mach numbers before 1500 Hz. Overall, the impedance results for
150 dB show less variation with the Mach number compared to the case with 130 dB.

For upstream propagation, to avoid the resolution issues previously discussed,
experiments are conducted only at Mave = 0, 0.15, and 0.29. Additionally, to pre-
vent potential damage to the acoustic sources that happen more frequently against
flow with modal amplitudes of 150 dB, the incident amplitude is set to 140 dB. Fig-
ure 5.19 presents separately the educed impedances using the mode (0,0) as the in-
cident wave up to 1800 Hz, and the mode (3,0) for the remainder of the spectrum. It
appears that these upstream results are superior to those obtained using the 1-line
array in Figure 5.12. The figure also compares the results between upstream and
downstream propagation. At Mave = 0.15, the educed impedances for both direc-
tions are similar. At Mave = 0.29, the upstream results exhibit greater resistance and
more pronounced oscillations compared to the downstream results, with a signifi-
cant increase in oscillations particularly after 2500 Hz.

To summarise, the use of the 2-line array for the impedance eduction improves
the clarity of results and shows more clearly the trends of impedance with the vari-
ation of incident modes, Mach numbers and propagation directions. However, the
results for Mave = 0.29 are still noisy for upstream propagation at high frequencies
(above 3000 Hz), potentially due to weak signal to noise ratio, insufficient spatial
resolution and small attenuation. Therefore, more tests are needed with liners that
have greater attenuation in these cases, so as to assess in the high-frequency band
with flow the performance of direct impedance eduction.

5.4 Tests with optimised liners

This section begins with designing and optimising acoustic liners with the aim of
effective acoustic attenuation in the high-frequency band in presence of flow. Once
optimised, the impedance of the liners are measured in the MAINE Flow facility.
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Figure 5.19: Educed impedance using the plane wave (left column)
and mode (3,0) (right column) with an incident amplitude of 140 dB
in both directions for average Mach numbers: 0 (purple), 0.15 (blue),
0.29 (orange). Dashed lines: downstream propagation; solid lines:

upstream propagation.

5.4.1 Optimisation and design of liner

The objective of the optimisation is to maximise the transmission loss (TL) of
the first two modes in the frequency range of [1500, 2500] Hz. The calculation of TL
employs the 2D multimodal model with shear flow described in Chapter 2, using
the flow profile in Figure 4.4 with an average Mach number 0.3. The optimisation
considers both downstream and upstream propagation directions separately.

The optimisation focuses on the double-liner configuration and looks for single-
degree-of-freedom (SDOF) liners, with the link between the impedance and the ge-
ometry stemming from the Guess model [36]. Figure 5.20 shows the optimised
liners, while their geometric parameters are detailed in Table 5.1. The predicted
impedance for the optimised liners, calculated using the Guess model with both the
initially designed and the measured parameters, is presented in Figure 5.21 for flow
velocities of Mave = 0, 0.15, and 0.3. It appears that the fabricated liners exhibit
lower porosity and higher resistance compared to the initial design. Note that the
face-sheets have been realised by conventional mechanical drilling, and they have
been glued to honeycomb of the right length.

Figure 5.20: Top: the liner optimised for upstream propagation. Bot-
tom: the liner optimised for downstream propagation.
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Perforated plate
thickness (mm)

Cavity
depth (mm)

Radius of
perforations (mm)

POA (%)

Downstream
(designed)

0.5 18.63 2.0 8.7

Upstream
(designed)

0.5 8.9 1.17 6.8

Downstream
(measured)

0.5 18.63 1.945 8.23

Upstream
(measured)

0.5 8.9 1.157 6.43

Table 5.1: Geometries of the liners optimised for both propagation
directions: initial designed parameters and measured parameters.
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Figure 5.21: Predicted impedance of optimised liners using Guess
model with initially designed (solid lines) and measured (dashed

lines) parameters, with Mave = 0, 0.15 and 0.30.

Using the impedance values from both the initial design and the fabricated lin-
ers, the transmission losses for the first two modes are computed under conditions
of equal incident power and uncorrelated modes in the double-liner configuration,
with flow at Mave = ±0.3. Figure 5.22 compares the resulting TLs, indicating that
manufacturing deviations have a minimal impact on the attenuation. Thereafter, the
optimised liners are tested in MAINE Flow.

5.4.2 Results for optimised liner - downstream propagation

This section presents the results of the impedance eduction using the liner op-
timised for downstream propagation at Mave = +0.3. The analysis considers vari-
ous incident modes and amplitudes, as well as different flow velocities and the two
propagation directions. The experiments are performed using the double-liner con-
figuration in conjunction with the 2-line microphone array, over a frequency range
from 300 to 3500 Hz.

5.4.2.1 Effects of the incident mode and amplitude

Figure 5.23 shows the educed impedance without flow for the first 6 modes,
separately according to the symmetry type of mode. The modes are individually
excited at incident amplitudes of 130 and 140 dB.
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(a) Double-liner, Mave = +0.3.
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(b) Double-liner, Mave = −0.3.

Figure 5.22: Transmission loss for the optimised liners within the
double-liner configuration, using the impedance predicted by Guess
model with initially designed (solid lines) and measured (dashed
lines) parameters. Modes (0,0) and (1,0) are uncorrelated with equal
powers. Red lines: frequency interval boundaries for the optimisa-
tion. (a): the liner designed for downstream propagation; (b): the
liner designed for upstream propagation. The flow is sheared with

Mave = ±0.3.

For symmetric incident modes, in Figure 5.23(a), the results remain consistent
up to 2400 Hz and then oscillate. Nevertheless, the results for the mode (4,0) agree
satisfactorily with the predicted impedance above 3000 Hz. It is also noticeable that
the change in incident amplitude barely affects the results, except for the mode (0,0)
below 1000 Hz where there is a significant inconsistency.

For antisymmetric incident modes, in Figure 5.23(b), the results for each mode
and both incident amplitudes are consistent. In addition, there is no difference be-
tween the results of the two amplitudes before 1000 Hz, which contrasts with the
results for mode (0,0), indicating a greater uncertainty due to low attenuation in the
measurement for the mode (0,0) in this frequency range.
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Figure 5.23: Educed impedance of the liner (optimised for down-
stream propagation) in the double-liner configuration without flow,
using the first 6 modes at amplitudes of 130 and 140 dB. Black line:
impedance predicted by Guess model using measured geometric pa-

rameters.
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Figure 5.24: Retrieved wavenumbers (normalised by k0) used for
computing the impedance for the liner (optimised for downstream
propagation) in the double-liner configuration without flow, using

the first 6 modes at 140 dB.

Figure 5.24 presents the retrieved wavenumbers for computing impedances with
incident modes at 140 dB (results of Figure 5.23). For the mode (0,0), the low atten-
uation rate below 1000 Hz explains the variability in impedance results at differ-
ent amplitudes within this frequency range. For the mode (4,0), the great perfor-
mance above 3000 Hz benefits from the clean trend of wavenumbers, as shown in
Figure 5.24(a). Furthermore, although both symmetry types exhibit similarly imag-
inary parts of wavenumbers above 2500 Hz, where the attenuation rate is close to
zero, the results obtained using antisymmetric modes are more stable.

Overall, in absence of flow, the educed resistance for the optimised liner is greater
than the predicted values, while the measured reactance is consistent with the model
impedance. Additionally, changes in incident amplitude have a negligible impact on
the measurement results for the optimised SDOF liners. Regarding the influence of
mode symmetry, similar to the previous results obtained with DDOF liners, anti-
symmetric modes provide more reliable impedance results.

5.4.2.2 Effects of the flow velocity

Figure 5.25 shows the educed impedance for different flow velocities in both
directions, with average Mach numbers set to 0, 0.15, and 0.29. Based on the per-
formance of each mode in different frequency bands, the results are presented using
the mode with optimal performance in each band: the mode (0,0) is used for 300-
1000 Hz, the mode (1,0) for 1000-2500 Hz, and the mode (3,0) for 2500-3500 Hz. The
incident amplitude is set to 140 dB.

In each case, the educed resistance decreases as a function of frequency, differ-
ing from the quasi-constant resistance predicted by the Guess model. This trend is
similar to the results obtained for SDOF liners by Spillere et al. [18]. In particular,
the resistance increases significantly with the Mach number, while the reactance re-
mains similar. Moreover, there is no more oscillations above f = 2500 Hz like those
observed in the results of DDOF (see Figure 5.19).

Finally, it can be seen that the downstream and upstream results are similar at
low frequencies. For Mave = 0.15, noticeable differences appear after 2500 Hz. For
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Figure 5.25: Educed impedance of the liner (optimised for down-
stream propagation) with an incident amplitude of 140 dB, with-
out flow and with flows at Mave = 0, 0.15 and 0.29 in both direc-
tions. Black lines: impedance predicted by Guess model using mea-
sured geometries, for different flow velocities: Mave = 0 (solid line),

Mave = 0.15 (dashed line), and Mave = 0.29 (dash-dotted line).

Mave = 0.29, the results show significant discrepancies after 2100 Hz, with a reduc-
tion in resistance for the upstream results. This may be due to the inability to main-
tain the set SPL for the selected incident mode at high frequencies for the upstream
propagation. Then, the amplitude of the selected mode cannot be distinguished
from the other modes, resulting in an incident sound field which is too complex to
decompose into wavenumbers, since no mode emerges significantly.

5.4.3 Results for optimised liner - upstream propagation

This section shows the impedance results corresponding to the liner optimised
for upstream propagation. Again, the double-liner configuration is applied with
the 2-line microphone array. The measurements contain various incident modes,
different flow velocities and directions.

5.4.3.1 Influence of the incident mode

Figure 5.26 shows the educed impedance without flow for the liner optimised
for upstream propagation. The incident modes are set at 140 dB. The result for the
mode (0,0) shows anomalously greater resistance than the other modes between 1800
and 2500 Hz, and the cause needs to be further investigated, such as the liner atten-
uation. Regarding the symmetry, the same conclusion can be obtained as previous
results, namely that the antisymmetric modes provide more consistent results. Also
similarly, the measured resistance is larger than the predicted value.

5.4.3.2 Influence of the flow velocity

This part presents the educed impedance of the liner optimised for upstream
propagation, for different Mach numbers in both directions. Since the attenuation
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Figure 5.26: Educed impedance of the liner (optimised for upstream
propagation) in the double-liner configuration without flow, using
the first 6 modes at 140 dB. Black line: impedance predicted by Guess

model using measured geometries.

from 300 Hz to 600 Hz is low (Figure 5.22), the results for the mode (0,0) are not
used. The results for antisymmetric modes are similar, so only the results for mode
(1,0) are shown to assess the influence of the flow velocity. The incident amplitude
is 140 dB.

Figure 5.27 shows the educed impedance without flow and with flow at Mave =
0.15 and 0.29 in both directions. The downstream results indicate that the resistance
with flow is higher than without flow, although this increase does not vary with
flow velocity. In contrast, the upstream results show that resistance increases with
the Mach number. Furthermore, the reactance remains consistent and closely aligns
with the model predictions, except for Mave = 0.29 before 1500 Hz. Comparing
both directions, the results at Mave = 0.15 are similar. However, at Mave = 0.29, the
differences seem significant, with the upstream results exhibiting higher resistance
and lower reactance.

Using the optimised liners, which provide significant transmission loss at high
frequencies, the results of the impedance eduction are less noisy compared to the
DDOF results. These tests highlight the importance of attenuation in impedance
eduction. The liner optimised for upstream propagation, characterised by smaller
holes and thinner cavity depth, demonstrates larger effects of grazing flow with
greater discrepancies between the two propagation directions.

5.5 Conclusions

This chapter presents an experimental implementation of direct impedance educ-
tion including shear flow for a large multimodal duct with high speed flows. It
describes the way of mounting acoustic liners, the process of experiments, as well
as the deployment of the microphone arrays proposed by the numerical study in
Chapter 4. Then, considering the post-processing of the experimental signals, two
methods for selecting wavenumbers are developed and compared. Ultimately, given
the similarity of the impedance results, the more efficient one is recommended.

Initial measurements are conducted on a DDOF liner. The tests cover various
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Figure 5.27: Educed impedance of the liner (optimised for upstream
propagation) with the incident mode (1,0) at 140 dB, without flow and
with flows at Mave = 0.15 and 0.29 in both directions. Black lines:
impedance predicted by Guess model using measured geometries.
Black solid line: model impedance for Mave = 0. Black dashed line:
model impedance for Mave = 0.15. Black dash-dotted line: model

impedance for Mave = 0.29.

liner configurations (single or double), different incident modes, varying sound pres-
sure levels, different flow velocities and propagation directions, and different mi-
crophone arrays. The double-liner configuration is shown experimentally to be
more effective than the single-liner configuration. This is attributed to the enhanced
sound attenuation, as shown by the numerical study in Chapter 4. Additionally,
for impedance eduction with flow, experimental results confirm that the effects of
shear flow are more pronounced at high frequencies, in upstream propagation, and
at high flow velocities. The impedance results obtained using the shear flow method
are more accurate than those obtained using the uniform flow method.

For impedance eduction with individual incident modes, antisymmetric modes
exhibit better performance than symmetric ones. This can be partly attributed to the
higher attenuation of antisymmetric modes. While higher-order symmetric modes
also demonstrate good attenuation, their overall performance is generally not as
satisfactory as that of higher-order antisymmetric modes. Further investigations are
needed to understand this discrepancy.

Different microphone arrays, including 1-line and 2-line arrays, are also evalu-
ated. The 2-line array is able to smooth the results, while it does not change the
overall trends compared to the results using the 1-line array. The microphone spac-
ing of ∆x = 4 cm in the 2-line array is not always adequate. Resolution issues may
arise in cases of upstream propagation at high flow velocities, as the wavelengths in
these cases become comparable to the microphone spacing.

To assess the performance of impedance eduction with great attenuation at high
frequencies with flow, two sets of SDOF liners are designed for new measurements.
These liners are optimised separately for downstream and upstream conditions by
maximising the transmission loss at high frequencies. The tests of the optimised
liners indicate some improvements in high-frequency impedance results compared
to the DDOF liners that induce weaker attenuation in this frequency band. This
emphasises the significance of the liner attenuation for the accuracy of impedance
eduction method [24, 121].
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In the present study, the discrepancies between the results for the two propaga-
tion directions notably persist as already observed by Aurégan [105], even though
the effects of shear are accounted for in the impedance calculations. Further research
should now explore the influence of three-dimensional shear effects [19] or consider
additional physical phenomena [101, 123].
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Chapter 6

Conclusions and perspectives

In this chapter, the main findings of this PhD thesis are gathered, and perspec-
tives are also provided for future studies.

6.1 Main results

The literature review identifies several gaps in previous research, particularly
concerning realistic operating conditions for acoustic liners, such as large section
ducts, multimodal sound fields, high flow velocities, and boundary layer effects.
Thus, this thesis introduces numerical and experimental techniques aiming at eval-
uating the effects of shear flow in the context of duct aero-acoustics and studying
liners in these realistic conditions.

Using the propagation models and the impedance eduction methods, this study
highlights the significant influence of mean flow shear, particularly in large ducts
and at high frequencies. The effects are found to be more pronounced for upstream
propagation and at larger flow velocities. The analysis also demonstrates that shear
flow effects are similar for both single- and double-liner configurations, and that the
uniform flow model is not sufficient under high flow velocities and thick boundary
layers. In addition, the study reveals that the flow shear has necessarily to be con-
sidered for the calculation of impedances from wavenumbers. These findings also
emphasise the necessity of incorporating shear flow considerations in the optimi-
sation of acoustic liners to achieve accurate predictions and optimal performance,
particularly in practical applications involving complex flow conditions.

Then, a parametric study has been performed to design the direct impedance
eduction experiment by comparing several configurations and methods. In particu-
lar, significant improvements occur when using a shear flow model combined with
a double-liner configuration, compared to the traditional uniform flow and single-
liner approach. The double-liner consistently outperforms the single-liner by main-
taining the symmetry of the acoustic field and enhancing attenuation, which reduces
uncertainty in impedance measurements against noise perturbations or errors in the
modal control of the incident field. Finally, using a 2-line microphone array is an
effective solution to mitigate mode perturbations in real experiments, which allows
separating symmetric and antisymmetric modes.

These features have been observed both in the numerical and experimental stud-
ies. It is confirmed that the double-liner configuration is superior to the single-liner
configuration, due to the better performance in wavenumber estimation through
greater acoustic attenuation. Additionally, the shear flow method provides more ac-
curate experimental impedance results, especially for high frequencies, upstream
propagation, and high flow velocities. According to the results, antisymmetric
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modes exhibit better performance in impedance eduction compared to symmet-
ric modes, likely due to their higher attenuation, although further investigation is
needed to fully understand this behaviour.

The evaluation of different microphone arrays shows that the 2-line array im-
proves result smoothness but does not change overall trends along the frequency.
However, the microphone spacing of 4 cm seems inadequate in the MAINE Flow fa-
cility, and challenges in resolution are noted in high-velocity, upstream propagation
cases. Tests with specially designed SDOF liners highlights again the significance of
liner attenuation for the accuracy of impedance eduction method [24, 121].

6.2 Perspectives

Numerical and methodological study

(1) Investigation of higher-order modes: This study has indicated that antisym-
metric modes perform generally better than symmetric ones. A deeper anal-
ysis of higher-order modes and their interaction with complex flow fields
could yield more insights in duct aero-acoustics and improve the accuracy of
impedance measurements.

(2) Three-dimensional sheared flows: This study accounts for the effects of shear
in the 2D case. Flow features in three-dimensional cases [19] might be interest-
ing to consider for direct impedance eduction. Such extensions to the present
models could improve the accuracy and robustness of impedance measure-
ments.

(3) Consideration of other physical effects: The results in this study have shown
discrepancies between different propagation directions, despite accounting for
effects of shear in 2D. Future work could explore the impact of flow effects in
more detail, possibly by developing or refining models that account for other
more complex boundary conditions. Beyond 2D shear effects, other physical
phenomena such as viscous effects [59, 101, 105] might be interesting to con-
sider and evaluate in the context of the MAINE Flow. Incorporating these
factors into existing models could help understand the differences between re-
sults with upstream and downstream propagation.

Experimental study

(1) Enhanced microphone array design: While the 2-line microphone array proves
effective in experiments, future research could explore the optimisation of mi-
crophone spacing and array configurations. For instance, adaptive arrays that
adjust spacing based on practical measurements could offer better resolution
and accuracy, particularly in high-speed flow conditions.

(2) Flow velocity: The accuracy of flow velocity measurements has been shown
important for impedance eduction [17, 124, 125]. The same observation is
found in this study. Even though the variations in Mach number are tiny,
substantial influence may appear in results, particularly at high flow veloci-
ties and in upstream propagation cases. Given this, future experiments should
consider minor Mach number fluctuations during measurements and incorpo-
rate these variations into impedance calculations at each frequency.
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(3) Investigation on flow profiles: This study uses the scaled flow profile that
is measured at the maximum Mach number (Mave = 0.63) on the upstream
side of the tested liner. It is necessary to study the sensitivity of the direct
impedance eduction through tests with profiles at lower flow velocities. In ad-
dition, it would be interesting to test with the profile measured in the middle
and right downstream of the liner.

(4) Consideration of flow shear in inverse impedance eduction: With regard to the
quality of impedance results, the inverse method [126] seems to provide more
robustness compared to the direct method. Given that the flow shear has sig-
nificant effects in large ducts, this inverse method could be further developed
by including the flow shear.
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Appendix A

Description of published flow
ducts

The detailed information of main published experimental facility is described as
follows:

(1) NASA Grazing Flow Impedance Tube (GFIT)

NASA Langley has developed a series of flow duct benches, with the most re-
cent being the Grazing Flow Impedance Tube (GFIT [57]), launched in 2009. Its
predecessors include the Flow Impedance Tube (FIT [127], introduced around
1980) and the Grazing Incidence Tube (GIT [128], introduced around 2000).

The GFIT at NASA Langley has a rectangular cross-section measuring 50.8 mm
in width and 63.5 mm in height. The acoustic liner is mounted on the narrow
side, enabling the evaluation of liners with lengths ranging from 50.8 mm to
609.6 mm (in 50.8 mm increments). The test liner’s surface constitutes a section
of the upper wall of the flow duct, as highlighted in blue in Figure A.1). Air-
flow in the duct is provided by a negative pressure fan, and the velocity profile
within the duct is measured using a Pitot tube driven by a 2D stepper motor.
Twelve acoustic drivers form an upstream source and six acoustic drivers form
a downstream source. Quasi-anechoic terminating diffusers are employed at
each end of the duct to control reflections and reduce flow noise.

Some common structural features, including anechoic terminations, flow
provider fans, and Pitot tubes, will not be discussed for other ducts. The pri-
mary focus will be on the dimensions and the ability to control the acoustic
field and the flow velocity.

Tests carried out in the GFIT (and its predecessors) utilize a stepped-sine source,
where the acoustic drivers generate tones one frequency at a time over a fre-
quency range from 400 to 3000 Hz, with source SPLs (peak total SPL measured
near the leading edge of the liner) up to 155 dB and centreline Mach num-
bers up to 0.6. Efforts are currently focused on implementing a controlled-
amplitude, swept-sine source [129] in the GFIT.

(2) NASA Curved Duct Test Rig (CDTR)

Figure A.1: Schematic of NASA GFIT [22].
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Figure A.2: Two configurations on NASA CDTR.

The NASA Curved Duct Test Rig (CDTR) [23, 130, 131] is also designed to
evaluate the acoustic and aerodynamic performance of aircraft engine nacelle
liners. The CDTR accommodates testing with a rectangular cross-section of
152.4 mm in width and 381 mm in height. This open-loop wind tunnel em-
ploys a fan to draw unconditioned atmospheric air at Mach number up to
0.5 through the test section and offers three test window configurations. The
standard configuration is a straight duct (left image in Figure A.2), while the
curved configuration has two options of the shift between the outlet and the
inlet (76.2 mm or 152.4 mm), shown in Figure A.2 [132]. Acoustic liners can be
mounted on one or both sidewalls of the CDTR [130].

To emit acoustic modes in both directions in the CDTR, the acoustic drivers
need to be switched from one side to another, which is complicated. The sound
generation in the test section is realised by an array of 31 acoustic drivers.
Three types of the acoustic excitation are available: controlled-mode stepped
sine (with up to 15 modes in each direction), uncontrolled-mode stepped sine,
and broadband. Regardless of the source type, tests are typically conducted
over the frequency range of 400 to 3000 Hz. The maximum SPL reaches around
140 dB, with the target mode’s amplitude typically at least 10 dB higher than
other modes. Arrays of 63 microphones, both upstream and downstream of
the 381 mm × 762 mm liners, decompose the acoustic fields into modes. Addi-
tionally, for the straight configuration, 32 microphones mounted in the upper
wall of the flow path, i.e. lateral to liners, capture the sound field within the
treated section, and are used for the direct impedance eduction.

(3) DLR DUct aCoustic Test Rig (DUCT)

The German Aerospace Center (DLR) has built flow duct test facilities to per-
form acoustic measurements with grazing flow, named DUct aCoustic Test Rig
(DUCT) [133]. There are three test rig configurations available with circular
(DUCT-C), square (DUCT-S) and rectangular cross-sections (DUCT-R) in or-
der to examine plane as well as circular liner geometries.

The DUCT-C is an aluminium-walled duct with an inner diameter of 140 mm.
The cut-on frequency of the first higher-order mode is 1400 Hz. The mean flow
Mach number is up to 0.1. Microphones are mounted at 10 positions in axial
direction, and there are 8 microphones in the circumference at each position.

When investigating samples of plate liners, the DUCT-S and DUCT-R are used,
shown in Figure A.3. The DUCT-S [66, 90, 133–135] has a cross-section of 80 ×
80 mm2. The duct is set up symmetrically, with loudspeakers at the upstream
and downstream ends which can produce discrete tones with peak levels of
about 110 − 120dB. Liner samples with a maximum length of 220 mm can be
inserted as the bottom wall in the test section at the middle of the duct. The
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Figure A.3: Schematics of DUCT-S (top) [90] and DUCT-R (bottom)
[136].

mean flow Mach number at the centreline can be set up to 0.27. This duct can
also be used for investigations with optical measurement techniques thanks to
its transparent acrylic glass wall.

Several improvements of the DUCT-S by Busse et al. [134] led to a re-
designed version (DUCT-R) with a rectangular cross-section of 60 × 80 mm2

(height×width). The DUCT-R facility supports liners with a length of up to
800 mm [85, 101, 136], which can be mounted at the top, at the bottom, or at
the side wall. 8 available loudspeakers (4 upstream, 4 downstream) provide
SPL up to 130 dB with a multi-tone excitation at a frequency up to 2200 Hz.
A microphone array is installed at the narrow side in the lined section, which
involves 31 equidistant microphones with a spacing of 16 mm.

(4) NLR Flow Duct Facility (FDF)

The Netherlands Aerospace Centre (NLR) used its Flow Duct Facility (FDF) for
in-situ impedance eduction and transmission loss measurements with grazing
flow [86], as shown in Figure A.4. The facility consists of two reverberation
rooms connected by a variable-section duct with a test section length of 1.05
m. The test section dimensions are constant and the size is 150× 300 mm2. The
maximum centreline Mach number in the test section is 0.7. The sound sources
include a broadband source, generated in the upstream reverberation room
with overall SPLs up to 150 dB, and a pure tone source, produced by a signal
generator at frequencies ranging from 1000 to 6000 Hz in 500 Hz increments.

(5) KTH flow acoustic test rigs The KTH test rig [49] has a length of 3.5 m and the
inlet duct circular cross-section is reduced gradually and converted to a square
measurement section with inner dimensions of 32× 32 mm2. The length of the
lined section is 50 mm. The loudspeakers section is placed on the downstream
side. The cut-on frequency of the first radial mode in the hard-walled duct is
5300 Hz. The valid operation frequency range is between 550 and 4500 Hz with
no flow and between 515 and 4100 Hz at Mach number of 0.3. The impedance
measurements are usually performed in the range between 1000 and 4000 Hz.

More recently, tests on another small scale facility in KTH [87] have been pub-
lished. The rig corresponds to the bottom sketch in Figure A.5. The test section
is rectangular, 70 mm wide and 25 mm high. Tested liner is mounted on the
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Figure A.4: Schematic of NLR Flow Duct Facility.

Figure A.5: Liner test setups at KTH [49, 87].

wide side wall. The stepped sine excitation reaches SPL from 100 to 145 dB,
with a step of 40 Hz between 200 Hz and 2600 Hz. The mean flow Mach num-
bers are 0.1 or 0.2. Twelve microphones are installed in the middle of the hard
wall opposite to the liner sample, including four microphones mounted on
each side of the sample and four microphones mounted in the lined section.

(5) UFSC grazing Flow Liner Impedance eduction test Rig (FLIR)

This test rig (see Figure A.6), situated at the Federal University of Santa Cata-
rina (UFSC) [22, 64, 137], comprises a rectangular duct with a cross-section
of 40 × 100 mm2. This duct contains a liner test section of length 210 mm in
the middle, where the top, the bottom, or both surfaces can be either lined
or unlined (hard-walled). Equidistant 8 microphones are spaced by 2 cm and
positioned at the half-height of the liner section, on the nodal line of the first
transverse mode. Similar to other classical ducts, upstream and downstream
of the test section are wall mounted a total of 8 microphones, and beyond these
are two or more wall-mounted loudspeakers. Measurements are made using
a frequency sweep with a sound pressure level up to 150 dB. The experiments
carried out in this test rig are limited between 400 and 3000 Hz [18] or 2500 Hz
[22, 64] to avoid the second transverse mode. The cross-section averaged flow
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Figure A.6: Representation of UFSC Liner Test Rig [8].

Figure A.7: Schematic of the flow duct test rig at BUAA [78, 88].

achieves a Mach number up to 0.7 (used in tests up to a centreline Mach = 0.5
[22]).

(6) Beijing University of Aeronautics and Astronautics (BUAA) test rig

The test rig in BUAA is constantly evolving with research, so only the most
recent is presented here. The aluminium duct setup has a 51 × 51 mm2 inner
cross-section (see Figure A.7) inside which an air flow can reach up to Mach
of 0.25. Four loudspeakers are installed on the four walls upstream the test
section and are used to generate incident tones up to an overall SPL of 135 dB
in the frequency range [500, 6000] Hz. A nine-microphone array in each of the
upstream and downstream rigid wall sections is used for the modal decom-
position of the acoustic field. The 800 mm-long tested liner is flush mounted
with its faceplate, forming a portion of the duct lower wall. On the upper
wall right above the liner, a diagonal microphone array with 21 mm-spacing in
length and 1.2 mm-spacing in width is located opposite to the liner in order to
acquire synchronously the acoustic pressure field for impedance eduction in
[78].

(7) ONERA B2A

The French national aerospace centre, ONERA, established the Aero-Thermo-
Acoustic Bench (B2A) for acoustic liner measurements (see Figure A.8) in 2004
[70]. It is a stainless steel 4-m long test duct with a 50 × 50 mm2 cross-section.
The bulk Mach number of the mean flow inside the duct is capable of reaching
up to 0.5, and temperature up to 570 K. The test section is 200 mm long and
is equipped with two silica windows for optical impedance measurements via
LDV. The surface of the test liner forms a 150-mm-long portion of the lower
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Figure A.8: Sketch of B2A test bench [72].

wall of the flow duct. Two acoustic drivers are mounted upstream of the test
section and are used to generate tones (usually a multi-sine signal) at up to 150
dB over a frequency range of [300, 3500] Hz.

(8) Laboratoire d’Acoustique de l’Université du Mans(LAUM)

The acoustic laboratory LAUM, operates a flow duct [116, 138] with 40× 50 mm2

cross-section, where flow speeds up to 80 m/s. The acoustic waves are gen-
erated at several levels ranging from 110 dB to 140 dB by two compression
chambers either upstream or downstream of the test section. The sine sweep
excitation ranges from 200 to 4000 Hz with a step of 5 Hz. Three microphones
on each side of the sample can determine the scattering matrix.
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Appendix B

Details for the numerical methods

B.1 Uniform flow model

B.1.1 Pseudo-spectral method

This section gives a detailed implementation of the pseudo-spectral method to
solve the acoustic field in presence of uniform flow with the single liner configura-
tion, i.e. one liner at the lower wall in the middle section.

Propagation equations and boundary conditions

We recall first that the evolution of the acoustic pressure field inside the duct is
described by the convected Helmholtz equation Eq. (2.7), while the boundary con-
ditions Eq. (2.8) and Eq. (2.9) are applied on the walls:

1
c2

0

D2
0 p

Dt2 −∇2 p = 0 for 0 < y < H,

−∂p
∂y

= − ρ0

iωZ
D2

0 p
Dt2 at y = 0,

∂p
∂y

= 0 at y = H.

Since the solution for the acoustic pressure is sought in the form p(x, y) = Ψ(y)e−ikxx,
the three previous equations write:

∂2Ψ
∂y2 − [k2

x − (k0 − Mkx)
2]Ψ = 0 for 0 < y < H, (B.1)

∂Ψ(0)
∂y

= i
ρ0c0

k0Z
(k0 − Mkx)

2Ψ(0) at y = 0, (B.2)

∂Ψ(H)

∂y
= 0 at y = H. (B.3)

Now, we introduce Ψ(y) =
N

∑
n

αnϕn(y), which decompose the mode shape func-

tion into N functions ϕn(y) with their associated amplitudes αn. The system of equa-
tions becomes thus:
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N

∑
n

αn{ϕ′′
n (y)− [k2

x − (k0 − Mkx)
2]ϕn(y)} = 0 for 0 < y < H,

N

∑
n

αn{ϕ′
n(0)− i

ρ0c0

k0Z
(k2

0 − Mkx)
2ϕn(0)} = 0 at y = 0,

N

∑
n

αn{ϕ′
n(H)} = 0 at y = H,

Collocation method

In this part, the collocation method is applied to complete the pseudo-spectral
method. This method transforms the previous problem into an eigenvalue and
eigenvector problem. To that end, the three previous equations are rearranged and
the eigenfunction is created.

We choose m = 1, . . . , M points inside the duct. Moreover, as the boundary
conditions have to be considered, there are N = M + 2 lines in total. After the
arrangement, an eigenfunction can be written:

B0α + kxB1α + k2
xB2α = 0, (B.4)

with the details presented as follows:

[ϕ′′
n (ym) + k2

0ϕn(ym)]︸ ︷︷ ︸
B0

αn + kx [−2k0Mϕn(ym)]︸ ︷︷ ︸
B1

αn + k2
x [(M2 − 1)ϕn(ym)]︸ ︷︷ ︸

B2

αn = 0,

[ϕ′
n(0)− i

ρ0c0k0ϕn(0)
Z

]︸ ︷︷ ︸
B0

αn + kx [2i
ρ0c0Mϕn(0)

Z
]︸ ︷︷ ︸

B1

αn + k2
x [−i

ρ0c0M2ϕn(0)
k0Z

]︸ ︷︷ ︸
B2

αn = 0,

ϕ′
n(H)︸ ︷︷ ︸

B0

αn = 0.

Then, Eq. (B.4) are reformatted in matrix formulation as:[
0 I
B0 0

] [
α

kxα

]
= kx

[
I 0

−B1 −B2

] [
α

kxα

]
. (B.5)

The basis function ϕn are chosen as Chebyshev polynominals of the first kind
Tn(τ) and the collocation points are Chebyshev points ym.

Chebyshev polynominals of the first kind Tn(τ) are defined by Tn(cos θ) = cos(nθ),
whose definition domain is −1 ≤ τ = cos θ ≤ 1. cos(nθ) can be expressed by cos θ
using the angle sum formulas, which forms a recurrence relation. Thus, Chebyshev
polynominals of the first kind Tn(τ) can also be written as:

Tn(τ) =


1 if n = 0,
τ if n = 1,

2τTn−1(τ)− Tn−2(τ) if n ≥ 2.
(B.6)
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Note that the Chebyshev polynomials start at T0(τ), so the first basis function
above corresponds to T0(τ).

In the context of the propagation equation, according to the duct height, the
range of independent variables is 0 < y < H. By substituting the variables, the
relation between variables are presented as:

τ = 2
y
H

− 1. (B.7)

Chebyshev points are defined as:

τm = cos(
2m − 1

2M
π) for m = 1, . . . , M. (B.8)

and the mth y-position are chosen as (without the two boundaries):

ym =
τm + 1

2
H. (B.9)

As the calculation in Eq. (B.5) involves the first-order and second-order deriva-
tives, the relationship between the derivations of independent variables is dy/dτ =
H/2. Then, the relationship between the derived functions can be presented as fol-
lows:

ϕ′(y) =
dϕ(y)

dy
=

2
H

dT(τ)
dτ

, (B.10)

ϕ′′(y) =
d2ϕ(y)

dy2 =
4

H2
d2T(τ)

dτ2 . (B.11)

Furthermore, by differentiating the polynomials in their trigonometric forms, and
we can obtain:

T′
n(x) = nUn−1 (n ≥ 1) ; T′

0(x) = 0. (B.12)

T′′
n (x) = n

nTn − xUn−1

x2 − 1
(n ≥ 1) ; T′′

0 (x) = 0. (B.13)

Here, Un(x) are Chebyshev polynomials of the second kind, given in trigonometric
form by :

Un(cos θ) sin θ = sin((n + 1)θ), (B.14)

or defined by the recurrence relation:

Un(x) =


1 if n = 0,

2x if n = 1,
2xUn−1(x)− Un−2(x) if n ≥ 2.

(B.15)

Substituting the Chebyshev polynomials into Eq. (B.4) at the positions associated to
the Chebyshev points yields
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B0N×N
=



4
H2 T′′

0 (y1) + k2
0T0(y1)

4
H2 T′′

1 (y1) + k2
0T1(y1) . . . 4

H2 T′′
N−1(y1) + k2

0Tn(y1)
...

...
. . .

...
4

H2 T′′
0 (yM) + k2

0T1(yM) 4
H2 T′′

1 (yM) + k2
0T1(yM) . . . 4

H2 T′′
N−1(yM) + k2

0TN−1(yM)
2
H T′

0(0)− i ρ0c0k0
Z T0(0) 2

H T′
1(0)− i ρ0c0k0

Z T1(0) . . . 2
H T′

N−1(0)− i ρ0c0k0
Z TN−1(0)

2
H T′

0(H) 2
H T′

1(H) . . . 2
H T′

N−1(H)

 ,

B1N×N
=


−2k0MT0(y1) −2k0MT1(y1) . . . −2k0MTN−1(y1)

...
...

. . .
...

−2k0MT0(yM) −2k0MT1(yM) . . . −2k0MTN−1(yM)

2i ρ0c0 M
Z T0(0) 2i ρ0c0 M

Z T1(0) . . . 2i ρ0c0 M
Z TN−1(0)

0 0 . . . 0

 ,

and

B2N×N
=


(M2 − 1)T0(y1) (M2 − 1)T1(y1) . . . (M2 − 1)Tn(y1)

...
...

. . .
...

(M2 − 1)T0(yM) (M2 − 1)T1(yM) . . . (M2 − 1)TN−1(yM)

−i ρ0c0 M2

K0Z T0(0) −i ρ0c0 M2

K0Z T1(0) . . . −i ρ0c0 M2

K0Z TN−1(0)
0 0 . . . 0

 .

Then solving Eq. (B.4) provides the coefficients αn of polynomials and axial wavenum-
bers kx,n for each mode.

B.1.2 Mode-matching

Once the axial wavenumbers and the mode shape function obtained in each section,
we can use the mode-matching to connect the sections and to solve the amplitudes
of modes in each section.

According to the pseudo-spectral method, the acoustic pressure is expressed as
P±

n,a = ∑N
q=0(α

±
n,a)qTq(2y/H − 1) with n = 1, 2, 3 for each section, and a stands for the

ath mode, while Tq are Chebyshev polynomials.
To solve the matching conditions (2.27) and (2.28), the trial function for the first

interface in Eq. (2.27) is P+
2,b for P+

n and P−
1,b for M+

n , while the trial function for the
second interface in Eq. (2.28) is P+

3,b for P+
n and P−

2,b for M+
n . M±

n (including only the
first integral term) in Eq. (2.27) writes:

(M±
1 )a,b = (u0 + c2

0
k±x,1,b

ω − u0k±x,1,b
)∑

q
∑

p
(α−

1,a)q
(α±

1,b)p < Tq, Tp >,

(M±
2 )a,b = (u0 + c2

0
k±x,2,b

ω − u0k±x,2,b
)∑

q
∑

p
(α−

1,a)q
(α±

2,b)p < Tq, Tp >,

(M±
3 )a,b = (u0 + c2

0
k±x,2,b

ω − u0k±x,2,b
)∑

q
∑

p
(α−

2,a)q
(α±

2,b)p < Tq, Tp >,

(M±
4 )a,b = (u0 + c2

0
k±x,3,b

ω − u0k±x,3,b
)∑

q
∑

p
(α−

2,a)q
(α±

3,b)p < Tq, Tp > .
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In the same way, P±
n in Eq. (2.28) can be written as:

(P±
1 )a,b =

ω

ρ0(ω − u0k±x,1,b)
∑

q
∑

p
(α+

2,a)q
(α±

1,b)p < Tq, Tp >,

(P±
2 )a,b =

ω

ρ0(ω − u0k±x,2,b)
∑

q
∑

p
(α+

2,a)q
(α±

2,b)p < Tq, Tp >,

(P±
3 )a,b =

ω

ρ0(ω − u0k±x,2,b)
∑

q
∑

p
(α+

3,a)q
(α±

2,b)p < Tq, Tp >,

(P±
4 )a,b =

ω

ρ0(ω − u0k±x,3,b)
∑

q
∑

p
(α+

3,a)q
(α±

3,b)p < Tq, Tp > .

Note that the vector α used here has been normalised to avoid the incoherence
among the mode solutions in the three sections. The projection of chebyshev poly-
nomials is expressed as < Tq, Tp >=

∫ H
0 Tq(2y/H − 1)Tp(2y/H − 1)dy.

The recurrence relation for the first kind polynomials involves derivatives es-
tablished by Eq. (B.16), and the Chebyshev polynomials of the first kind satisfy the
relation Eq. (B.17).

∫ 1

−1
Tn(x)dx =

 (−1)n + 1
1 − n2 if n ≥ 1,

0 if n = 0.
(B.16)

Tm(x)Tn(x) =
1
2
[
Tm+n(x) + T|m−n|(x)

]
∀m, n ≥ 0. (B.17)

By combining the two previous equations, the projection of Chebyshev polynomials
can be calculated as:∫ 1

−1
Tm(x)Tn(x)dx =

1
2

[∫ 1

−1
Tm+n(x)dx +

∫ 1

−1
T|m−n|(x)dx

]
. (B.18)

Here, when substituting x = 2y/H − 1, it should be considered that the differential
relation is dx = 2dy/H, and then the integral result can be deduced:∫ H

0
Tp(

2y
H

− 1)Tq(
2y
H

− 1)dy =
H
2

< Tq, Tp >

=
H
2

1
2


cos[(p + q)π] + 1

1 − (p + q)2 +
cos[(p − q)π] + 1

1 − (p − q)2 if p + q ̸= 1&|p − q| ̸= 1

cos[(p + q)π] + 1
1 − (p + q)2 if p + q ̸= 1&|p − q| = 1

0 if p + q = 1(i.e.|p − q| = 1).
(B.19)

By using Eq. (B.19), the sub-matrix M±
n and P+

n can be calculated easily.
Furthermore, when it is necessary to consider the second integration term of sub-

matrix M±
n in Eq. (2.27), this term for two interfaces is expressed as:

[
(M±

n )a,b
]

int2 = − iu0c0

ωZ ∑
q

∑
p
(α−

1,a)q
(α±

n,b)pTq(0)Tp(0),



142 Appendix B. Details for the numerical methods

and [
(M±

(n+1))a,b

]
int2

= − iu0c0

ωZ
.
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Appendix C

Shear flow effects on transmission
loss

The transmission loss TL is a measure of the reduction in acoustic energy as the
sound travels through the lined section. It is calculated using the axial intensity,
defined as P = (u0u + p/ρ0)(ρ0u + ρu0) [139]. Also, TLm,i represents the ratio in
decibels (dB) between the power of the ith incident mode from the left at the first
interface and the power of the mth right-running mode at the second interface (see
Figure 2.5):

TL = 10 log10
Pi

Pm
. (C.1)

C.1 Validation in no-flow case

First, the two propagation models provide the same transmission loss for the
single-liner configuration in the case without flow, using both uniform and shear
flow models, as shown in Figure C.1. Each sub-figure contains the transmission loss
TLm,i between individual modes as a function of Helmholtz number He.

For the double-liner configuration, Figure C.2 illustrates that the transmission
loss TL between modes of the same symmetry type remains consistent when com-
paring the uniform flow model with the shear flow model. However, discrepancies
arise in the TL between modes of different symmetry types. This is attributed to the
fact that the acoustic power transmitted to the mode of different symmetry type is
nearly zero, but the numerical calculations for the two models yield results of differ-
ent orders of magnitude. Consequently, while the transmission loss is significantly
large in both cases, the values differ. The large values of TL indicate again that there
is no acoustic transmission between modes of different symmetry types in this sym-
metric configuration.

C.2 Boundary layer thickness

Figure C.3 displays the transmission loss in the downstream propagation case
with the single-liner configuration, either for the uniform flow model or the shear
flow model. The Mach number is Mave = ±0.3, and the displacement thickness δ1
is between 0.01 and 0.1. The curve for TLm,i begins at the cut-off frequency of the
mode of index min(m, i). In each sub-figures, the uniform and shear flow model
demonstrate the similar trend of the transmission loss, but the shift between results
of two models is more significant for larger boundary layer thickness.

Figure C.4 shows the transmission loss in the upstream propagation case with
the single-liner configuration for both models.
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Figure C.1: Transmission loss for each modes in no-flow case using
uniform flow model (blue solid lines) and shear flow model (green
dashed lines). With i for incident modes and m for transmitted

modes.
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uniform flow model (blue solid lines) and shear flow model (green
dashed lines). With i for incident modes and m for transmitted

modes.
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Figure C.5 displays the transmission loss in the downstream propagation case
with the double-liner configuration for both models.

Figure C.6 presents the transmission loss in the upstream propagation case with
the double-liner configuration for both models. Due to the dramatic difference in
results for Mave = −0.7 and its impact on the visibility of other results, it is omitted
from the figures. Nevertheless, it underscores the significance of shear flow effects
in the upstream propagation case, particularly at high velocities.

According to these results for the transmission loss, same conclusions can be
drawn as in Section 3.4.2. The assumption of uniform flow does not adequately ac-
count for flow effects, and the effects of mean flow shear increases with the boundary
layer thickness.

C.3 Mean flow velocity

Regarding the influence of flow velocity coupled with the shear flow effects, Fig-
ure C.7 displays the TLm,i for the single-liner configuration in the downstream prop-
agation case with δ1 = 0.05 and various Mave.

Figure C.8 shows the transmission loss in the upstream propagation case with
the single-liner configuration for both models.

Figure C.9 displays the transmission loss in the downstream propagation case
with the double-liner configuration for both models.

Figure C.10 presents the transmission loss in the upstream propagation case with
the double-liner configuration for both models.
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Figure C.3: Transmission loss for the single-liner configuration in the
downstream propagation case, with the uniform flow model (black
lines) and the shear flow model (coloured lines). With δ1 varying from

0.01 to 0.1, Mave = +0.3.
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Figure C.4: Transmission loss for the single-liner configuration in the
upstream propagation case, with the uniform flow model (black lines)
and the shear flow model (coloured lines). With δ1 varying from 0.01

to 0.1, Mave = −0.3.
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Figure C.5: Transmission loss for the double-liner configuration in the
downstream propagation case, with the uniform flow model (black
lines) and the shear flow model (coloured lines). With δ1 varying from
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C.3. Mean flow velocity 149

0
20
40

TL
 [dB]

TLm = 1, i = 1

10
20
30 TLm = 1, i = 3

5 10 15
He

10
20
30

TL
 [dB]

TLm = 3, i = 1

5 10 15
He

20
30
40

TLm = 3, i = 3

(a) Modes with odd indices.

0
50

100

TL
 [dB]

TLm = 2, i = 2

Uniform flow
1 = 0.01
1 = 0.03
1 = 0.05
1 = 0.07
1 = 0.10

20
30

TLm = 2, i = 4

5 10 15
He

10
20
30

TL
 [dB]

TLm = 4, i = 2

5 10 15
He

20
30

TLm = 4, i = 4

(b) Modes with even indices.

Figure C.6: Transmission loss for the double-liner configuration in the
upstream propagation case, with the uniform flow model (black lines)
and the shear flow model (coloured lines). With δ1 varying from 0.01

to 0.1, Mave = −0.3.



150 Appendix C. Shear flow effects on transmission loss

���� TL���
�
TL

m
=
1,
i=

1

��	����
������

�
��	����

������
��	����

������
�

��	����
������

��	����
������

�
��	����

������
��	����

������
�

��	����
������

�����
TL

m
=
1,
i=

2

������
TL

m
=
1,
i=

3

������
TL

m
=
1,
i=

4

���� TL���
�

TL
m
=
2,
i=

1

�����������
TL

m
=
2,
i=

2

��������
TL

m
=
2,
i=

3

������
TL

m
=
2,
i=

4

������ TL���
�

TL
m
=
3,
i=

1

��������
TL

m
=
3,
i=

2

�������
TL

m
=
3,
i=

3

����
TL

m
=
3,
i=

4

�
��

��
H
e

������ TL���
�

TL
m
=
4,
i=

1

�
��

��
H
e

������
TL

m
=
4,
i=

2

�
��

��
H
e

����
TL

m
=
4,
i=

3

�
��

��
H
e

����
TL

m
=
4,
i=

4

Figure C.7: Transmission loss for the single-liner configuration in the
downstream propagation case, with the uniform flow model (solid
lines) and the shear flow model (dashed lines). With δ1 = 0.05 and
Mave as +0.1 (blue), +0.3 (green), +0.5 (magenta) and +0.7 (yellow).
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Figure C.8: Transmission loss for the single-liner configuration in the
upstream propagation case, with the uniform flow model (solid lines)
and the shear flow model (dashed lines). With δ1 = 0.05 and Mave as

−0.1 (blue), −0.3 (green), −0.5 (magenta) and −0.7 (yellow).
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Figure C.9: Transmission loss for the double-liner configuration in the
downstream propagation case, with the uniform flow model (solid
lines) and the shear flow model (dashed lines). With δ1 = 0.05 and
Mave as +0.1 (blue), +0.3 (green), +0.5 (magenta) and +0.7 (yellow).
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Figure C.10: Transmission loss for the double-liner configuration
in the downstream propagation case, with the uniform flow model
(solid lines) and the shear flow model (dashed lines). With δ1 = 0.05
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Titre :  Mesures d’impédance de traitements acoustiques en présence de champs sonores 
complexes et d’écoulements cisaillés.  

Mots clés : traitement acoustique, mesure d’impédance, effet d’écoulement cisaillé, aéro-
acoustique des conduits. 

Résumé : Les traitements acoustiques sont 
largement utilisés pour réduire les émissions 
sonores des moteurs d'avions. Pour leur 
développement, il est essentiel de pouvoir 
mesurer l’impédance acoustique de ces  
traitements et d'étudier leur comportement en 
présence d’écoulement. Cette thèse vise à  
évaluer la performance de la méthode directe de 
mesure dans des conditions réalistes, en 
particulier lorsque l'on considère de grands 
conduits, des modes acoustiques d'ordres élevés 
et des vitesses d'écoulement représentatives des 
nacelles d'aéronefs.  L'étude est d'abord basée 
sur des simulations numériques avec une 
méthode multimodale. Ensuite, le banc d’essai, 
MAINE Flow, permet de valider et de démontrer 
expérimentalement les méthodes proposées et 
les conclusions. 
 

Dans les grands conduits, le champ acoustique 
est plus complexe que dans les petits, pour la 
même gamme de fréquences. Ainsi, la mesure 
d'impédance est un défi, qui est également 
perturbé par le bruit dû à la présence de 
l'écoulement. Ce travail conçoit d’abord la 
configuration expérimentale et des antennes de 
microphones, pour réaliser une mesure 
d'impédance précise dans de grands conduits.  
Ensuite, la validité de l'hypothèse d'écoulement 
uniforme qui est souvent appliquée est évaluée, 
et l’effet d’un écoulement cisaillé est étudié, en 
particulier dans le cas de conduits de grandes 
tailles. 
Finalement, différentes ondes incidentes 
entraînent des comportements différents de la 
méthode de mesure. Par conséquent, l'influence 
du champ acoustique incident est aussi étudiée.  

 

Title :  Impedance eduction of acoustic liners with complex sound fields and shear flows. 

Keywords : acoustic liner, impedance eduction, shear flow effects, duct aero-acoustics. 

Abstract : Acoustic liners are widely used to 
reduce noise emissions in aircraft engines. The 
investigation of liners behavior is essential for 
their development. Impedance eduction is thus 
commonly implemented to measure its acoustic 
impedance in presence of flow. The work in this 
thesis aims to study the performance of the direct 
eduction method under realistic conditions, 
especially when considering large ducts, high-
order acoustic modes and flow velocities 
representative of aircraft nacelles. The study is 
first based on numerical simulations with a 
multimodal method. Then the MAINE Flow facility 
is used for experimental validation and 
demonstration of the proposed methods and 
conclusions. 
In large ducts, the sound field is more complex 
compared to small ducts in the same frequency 
range. Therefore, the impedance eduction is 
challenging, and also because it is also perturbed 
 
 
 

by the background noise due to the presence of 
flow. The first task is to design microphone 
arrays for the experimental facility with the aim 
of performing accurate impedance eduction in 
large ducts. 
The second objective is to investigate the effects 
of shear flow. Impedance eduction is commonly 
implemented under the hypothesis of uniform 
mean flow. However, it is reasonable to question 
the validity of the uniform flow hypothesis, 
especially when considering large ducts.  
The third task is to study the influence of the 
incident sound field. In large ducts, the sound 
field contains higher-order modes, and different 
incident waves result in different behavior of the 
impedance eduction. It is thus necessary to 
study how the incident acoustic field affects the 
eduction results in the presence of flow. 
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