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Abstract
Title: Sensory coding in strongly correlated neural populations.

Keywords: Vision; Retina; Sensory coding; Noise correlations; Collective behavior

Abstract: Neurons in sensory systems encode information related to input stimuli in

their collective activity. The neural population activity is shaped by two main sources of

correlations. First, natural stimuli tend to contain strong spatio-temporal correlations, which

transpire in neural responses through what are called stimulus or signal correlations. Second,

interactions between neurons further promote correlations in the population activity. In

particular, biological neurons are not deterministic but noisy, and neuronal interactions will

correlate noise across the network in a phenomenon termed noise correlations. Positive

noise correlations are widely observed across sensory systems, from the retina to the

cortex, especially between neurons with similar sensitivity to the stimulus. This is at

odds with a large body of theoretical work which suggests that simultaneously positive

noise and stimulus correlations should reduce the sensory information encoded by the

network compared to the case of uncorrelated noise. To investigate this discrepancy, we

started by developing an inference approach for Generalized Linear Models that inherently

distinguishes between the contributions of the stimulus and that of interactions. This

approach allowed us to model accurately the collective behavior of OFF-alpha ganglion cells

from the rat retina and showed that the network of interactions underlying noise correlations

in retinal data is robust to strong changes in stimulus statistics. To investigate how the

interplay between noise and stimulus correlations affect sensory coding, we then developed

a small-correlation approximation of themutual information between stimulus and response.

This approximation is accurate and can be directly applied to quantify mutual information

between response and stimulus in experimental data. Furthermore, our development also

provides a clear and transparent view of how neural neural correlations impact information:

positive noise correlations will benefit sensory coding not only when they are opposed

to stimulus correlations, but also when they are sufficiently large. Analysis of rat retinal

recordings revealed that both regimes could occur experimentally for populations of OFF-

alpha ganglion cells depending on the statistics of the stimulus. We further investigated

these effects in large population models and showed both theoretically and experimentally

that positive noise correlations benefit coding by boosting the information encoded about

fine-grained stimulus details.
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Introduction

We often take for granted how effortlessly we perceive our environment. Yet, the problems

our sensory organs have to solve to make sense of the flood of physical stimulation they

collect continuously are far from being straightforward. The biological substrate in which

sensory systems are implemented comes with limitations that make this task especially

difficult. Sensory systems convert their physical inputs into spikes of electrical activity that

are used by neurons throughout the central nervous system to convey information. Each

spike costs energy and due to the limited resources available to them, sensory neurons have

to make the most of the information they extract from the environment.

A consequence of the energetic efficiency of biological neurons is that they are not

deterministic, but noisy. When presented many times with the exact same input stimulus,

a sensory neuron may exhibit variability in its activity. This will limit the neuron’s ability to

convey information about the sensory signal it encodes. In the case of networks of neurons,

neural noise is not independent from one neuron to the other, but is correlated across the

population by neuronal interactions. This phenomenon, often called noise correlations in

the literature, will modulate the impact of neural noise on stimulus encoding.

The effect of noise correlations on sensory coding has been widely debated in the

literature during the last decades. Most theoretical investigations argued that positive noise

correlations as those observed in many systems ranging from the retina to cortical areas

would increase the detrimental effect of neural noise when stimuli also promote positive

correlations in neural responses. By contrast, many experimental studies showed that

noise correlations tend to be positive and significant when stimulus also positively correlate

neural activity. Due to the lack of a direct and straightforward relationship between the

structure of response correlations and the information carried by neural responses, this

discrepancy between experimental observations and theoretical predictions remains poorly

understood.

The retina is a thin piece of brain located at the back of the eye that takes as an input

the visual stimulus, encodes it into the collective activity of its output neurons, and provides
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all visual information available to the brain. Thanks to its layered organization that makes

it easy to record from and to the virtual absence of feedback it receives from the rest of the

nervous system, the retina is an ideal place to start investigating how stimuli are processed

and encoded into the collective activity of sensory neurons.

The goal of this thesis is to investigate how noise correlations impact the encoding of

stimulus information in the collective activity of sensory neurons, using the retina as a

model system. The methods, results and insights we derive here are general and can be

applied beyond the retina to other sensory systems.

Thesis outline

Introductory chapters

• Chapter 1. The first chapter gives a basic overview of retinal physiology and

discuss how noise and signal correlations contribute to the collective behavior

of retinal ganglion cells.

• Chapter 2. The second chapter focuses on quantitative analyses of noise corre-

lations and how they impact sensory coding. It starts by a section giving precise

definitions of noise and signal (or stimulus) correlations that will be used during

the rest of the thesis. In a second section, we discuss the literature regarding the

impact of noise correlations on sensory coding through the lens of two different

information measures: the Fisher information and the mutual information.

Results

• Chapter 3, previously published as reference [101]. Studying the collective

behavior of sensory neurons often requiresmodeling neural population responses

to incoming stimuli. In this chapter, we present a new inference approach for

Generalized Linear Models that palliates to some well known inaccuracies of

the classical maximum likelihood approach and disentangles signal and noise

correlations during training, resulting inmodels that better describe the collective

behavior of retinal ganglion cells.

• Chapter 4, previously published as reference [102]. We develop a small

correlation approximation for the mutual information that can be easily applied

to data and gives accurate estimates. We validate the accuracy of this approach

on synthetic data and showcase its application to retinal recordings. Further,

– 2 –



CONTENTS

this approximation results in a simple and interpretable expression relating the

structure of pairwise noise and signal correlations to their impact on information.

• Chapter 5, submitted and available as a preprint [100]. In this final part, we
develop the insights derived from the approximation introduced in the previous

chapter. We start by using it to interpret the structure of noise and signal

correlations observed in retinal recordings. Next, we extend analytically our

conclusions to a large Gaussian population model and evaluate theoretically

and experimentally the impact of noise correlations on different features of the

encoded stimulus.

Conclusion

• Chapter 6. We conclude the thesis by discussing limitations of our findings as

well as perspectives and potential future directions.
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Chapter 1

The retina

The retina constitute the first step in the processing of visual information that ultimately

gives rise to perception. It is a thin outgrowth of brain tissue that is located at the back of

the eye. It takes as an input light from the external environment, which is focused on it by

the eye’s optics (cornea and lens), and outputs neural signals that are sent to higher visual

centers for further processing. Every single bit of visual information that is available to the

brain is extracted from visual inputs and packaged by this remarkably small and efficient

neural network.

This first chapter aims to provide an overview of retinal physiology and functions, and

set the stage for using the retina as a model to investigate stimulus encoding in strongly

correlated neural populations.

We will start with a rapid examination of the retinal anatomy, describing the different

cell classes and neuronal interactions that compose the retinal network. Second, we will

briefly present the way the retina processes visual stimuli and how this processing relates to

the retinal organization. Concluding the chapter, we will discuss the structure of collective

neural activity in the retinal output as well as its different sources.

The considerations that will be made in the following sections will be valid for mam-

malians, and to a large extent for vertebrates in general.

1.1 Physiology of the retina

Despite the great diversity that exists in retinal organization across species, some general

features of the retina’s structure are remarkably conserved across vertebrates. The vertebrate

5



The retina

retina is organized in five alternating nuclear and synaptic layers (Fig. 1.1 A):

• The outer nuclear layer (ONL) contains the cell bodies of the photoreceptors,

responsible for converting light into electrical signals.

• The first synaptic connections occur in the outer plexiform layer (OPL), where
photoreceptors connect with bipolar and horizontal cells.

• The inner nuclear layer (INL), hosts the cell bodies of bipolar, horizontal, and

amacrine cells that perform the bulk of retinal computations.

• The inner plexiform layer (IPL) is where bipolar cells synapses make contact with

ganglion cells, and where amacrine cells connect primarily with bipolar cells.

• The ganglion cell layer (GCL) is composed of the ganglion cells’ bodies.

Light from the external environment enters the eye through the pupil and is focused onto

the retina by the cornea and the lens (Fig. 1.1 A). There, photons cross the entire width of the

retina until they reach its outermost layer, where they will modulate themembrane potential

of photoreceptors (cones and rods). During this phenomenon termed photo-transduction, a

photon hits a photoreceptor cell where it is absorbed by a retinaldehyde molecule that’s

bounded to an opsin protein. The retinaldehyde undergoes photo-isomerization, which in

turn changes the conformation of the opsin to which it is bounded. This in turns triggers a

cascade of chemical reactions that eventually lead to the closing of sodium channels and

the hyperpolarization of the cell. The resulting time varying electrical signal encodes the

local level of light impinging the retina: rods output conveys the signal relative to local

luminance while cones provide the signal necessary to color sensitivity.

In the following layer of the retina, bipolar cells can be both inhibited or excited by

photoreceptors, leading to the emergence of the ON and OFF visual pathways. There,

horizontal and amacrine cells provide (mostly) inhibition at different stages of the retinal

processing (Fig. 1.1, B.). Amacrine cells, on the other hand, provide inhibition to the output

of bipolar cells. They synapse at the inner plexiform layer, where they interact with both

bipolar cells and ganglion cells. They play an important purpose in both the temporal and

spatial aspects of visual processing, enhancing contrast and contributing to the regulation

of signal timing.

The final and innermost layer of the retina is populated by retinal ganglion cells. These

neurons integrate the signal processed by upstream cells and summarize the information

extracted by the retina in the form of action potentials, short electrical impulses that

– 6 –



The retina
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Figure 1.1: A. Light from the visual scene enters the eye through the iris and is focused
on the retina by the cornea and the lens. Photons from incoming stimuli then penetrate
the retina until they reach the photoreceptors, the rods (dark grey) and the cones (light
blue and green), which bodies are located in the outer nuclear layer (ONL). Rods and cones
convert incoming photons into electrical signal that is fed to bipolar cells (yellow) in the
inner nuclear layer (INL), then further relayed to ganglion cells (dark blue) in the ganglion
cells layer (GCL). Horizontal cells (orange) and amacrine cells (purple) are both located
in the inner nuclear layer (INL) as well. Horizontal cells synapse in the outer plexiform
layer (OPL) while amacrine cells synapse in the inner plexiform layer (IPL). Panel adapted
from [12]. B. Neuronal interactions in the retina can be classified in two main categories.
Synaptic connections on the one hand can be either excitatory (full circles) or inhibitory
(empty circles). On the other hand, gap junctions (small resistor symbol) are excitatory
electrical couplings. Photoreceptors (P) can excite or inhibit bipolar cells (P), which can
only excite directly ganglion cells (G). Inhibitory feedback is exerted by horizontal cells (H)
on photoreceptors and bipolar cells, while amacrine cells (A) inhibit ganglion cells through
chemical synapses. Simultaneously, amacrine cells connect to bipolar and ganglion cells via
gap junctions. Panel reprinted from [62].
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The retina

support information transmission throughout the brain. The axons of all retinal ganglion

cells bundle together to form the optic nerve, a cranial nerve that crosses the retina at the

optic disk before connecting to higher visual areas.

Ganglion cells can be seen as the output of the retina, they provide the brain with a

complex and sparse neural representation (or "neural code") of the visual input. Thanks to

the layered structure of the retina and to the position of ganglion cells in its architecture, it

is possible to record through ex-vivo electrophysiological experiments the electrical activity

of large retinal ganglion cells populations. This makes the retina an ideal system to study

the encoding of stimulus information in the collective activity of sensory neurons.

In this thesis, we will investigate how the structure of the neural representation formed

by the collective activity of retinal ganglion cells affects the amount of information that is

being provided to the brain about the visual input collected by the retina.

1.2 Elements of retinal computation

The purpose of early sensory systems is two-folds: first, they need to convert their physical

input, the stimulus, into electrical signals that can be understood by the rest of the brain.

Second, they need to extract relevant information from the stimulus and represent it

efficiently in the neural code. Since the first recordings of single retinal ganglion cells by

Hartline [69, 141], Kuffler [90] and Barlow [17], researchers have come a long way in their

understanding of the retina. Far from being a simple camera that would convert "pixel wise"

the visual input into a neural image, the retina already performs a variety of computations

over the visual stimulus before sending it to the brain [62, 10, 12].

1.2.1 The canonical receptive field of retinal ganglion cells

All information extracted by the retina about the visual stimulus come from the activity of

the few millions of photoreceptors that compose its input, and has to pass by the tens of

thousands retinal ganglion cell axons that constitute its only link to the rest of the brain

[76].

This tremendous decrease in dimension across the retinal hierarchy suggests that this

remarkably small network compresses the visual input in an efficient neural representation

before sending it to the brain. As Attneave [5] and later on Barlow [16] suggested, one

way to reach such an efficient representation of visual information consists in discarding

– 8 –



The retina

redundant information from the sensory input.

1.2.1.1 Spatial receptive field

Natural scenes are full of such redundancies and exhibit blatant long range spatial corre-

lations that originate from their distinctive scale invariant and hierarchical nature [150].

They are composed of overlapping objects that each possess a certain spatial extent and

present significant redundancy in their visual properties.

Retinal neurons are sensitive to stimuli within a local area of the eye’s field-of-view that

is called the receptive of that neuron (Fig. 1.2). Ganglion cells receptive fields are generally

characterized by a central area that, when flashed with a small bright spot, increases activity

for some cells (the ON ganglion cells) and decreases that of others (the OFF cells). In the

surrounding area of the receptive field, a small bright spot will have the opposite effect: the

ON ganglion cells will be suppressed while OFF cells will be stimulated.

In the 50s, Kuffler observed that while ganglion cells responded strongly to a small,

bright spot of light flashed in the center part of their receptive field, flashing two spots at

the same time in the center and the surround of the cell led to a significantly suppressed

response [90]. This experiment revealed how center and surround parts of the receptive

field interact such that the stimulation of one and inhibition of the other leads to an overall

diminution of activity (see Fig. 1.2, condition 3 versus conditions 1 and 4). This phenomenon,

called center-surround antagonism, is considered a hallmark of retinal computation.

Through this antagonism, neurons encode preferentially features of the stimulus that

induce strong local contrast such as edges while filtering out uniform patches of the visual

input. This mechanism leads to a decorrelation of neural responses compared to their initial

visual inputs, that, in agreement with Attneave and Barlow’s theories, reduces redundancy

and increases the informational content of ganglion cells activity.

1.2.1.2 Temporal receptive field

Beyond their sensitivity to spatial patterns, the receptive fields of retinal ganglion cells

also have a temporal dimension which enables them to detect temporal variations in the

stimulus. The natural world is composed of persistent objects that evolve in a smooth and

continuous fashion over time. Akin to the spatial correlations that emerge from the spatial

extent of visual objects, strong temporal correlations arise from the temporal extent of

objects in natural movies. Holding similar considerations for temporal processing as were

– 9 –



The retina

Stimulus pattern Firing rate

210
Time (s)

Stimulus

OFF cellsON cells

4 Center and
surround
opposite

3 Center and
surround 
uniform

2 Surround
only

1 Center
only

Stimuli

On area
Off area

Figure 1.2: The center-surround organization of retinal ganglion cells’ receptive fields
(adapted from [79]). A. The two columns show idealized receptive fields of ON and OFF
cells. Pink corresponds to ON areas and grey to OFF areas. Each row corresponds to a
different stimulus configuration (1: center excitation, 2: surround inhibition, 3: antagonistic
stimulation, 4: preferred contrast). The cells are stimulated with local increases (white)
or decreases (black) of contrast. B. Each row illustrates the typical firing rate of ON and
OFF cells to the corresponding stimulus configurations presented in panel A. The grey
shaded area corresponds to the duration of stimulus presentation. Each cell fires the most
when presented with its preferred contrast (rows 1 and 4), and firing is increased with
contrast (cells fire more in condition 4 with respect to condition 1). Firing is suppressed
by stimulation of the surround by a spot of the cell’s preferred contrast (condition 2), and
uniform stimulation of the receptive field drives only a weak response from the cell.
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The retina

made for spatial processing in the previous section [4, 44, 111], we can explain the biphasic

antagonism observed in the temporal receptive fields of retinal ganglion cells (see Fig. 1.3A

for a theoretical prediction and Fig. 1.3B for experimental data).
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Figure 1.3: Temporal processing by retinal ganglion cells agrees with theoretical predic-
tions of the redundancy reduction hypothesis. A. This theoretical temporal trace of an
optimal linear filter was derived originally in the context of LGN cells [44], but extends
straightforwardly to retinal processing [111, 37]. The filter exhibits clear antagonism that
promotes redundancy reduction. Adapted from [37]. B. Time course of ON (top row) and
OFF (bottom row) parasol cells from the macaque retina. The three columns correspond to
different retinas and each plots shows the overlap of temporal traces from multiple neurons.
Adapted from [55].

1.2.2 Stimulus encoding by single ganglion cells

1.2.2.1 Linear stimulus integration

So far we have seen that retinal ganglion cells can be canonically described as filters that

preprocess the visual input through their receptive field.

Let’s formalize this description of retinal processing and build a simple model of stimulus

encoding by single ganglion cells. Let ν(t) be the rate at which ganglion cell emits action

potentials at time t, and S(x, y, t′) the light level in point (x, y) of the visual space at time t′

(a.k.a. the stimulus). It follows from the previous sections that the firing rate ν(t) is related

to the filtering of S(x, y, t′) by a spatiotemporal kernel K(x, y, τ) [145, 49, 31]:

hstim(t) =

∫∫∫
dxdydτK(x, y, τ)S(x, y, t− τ), (1.1)

ν(t) = F (b+ hstim(t)) . (1.2)
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This simple model is characterized by three main components:

• The spatiotemporal receptive field K(x, y, τ), which in a first approximation can

be factorized in space and time components: K(x, y, τ) = Ks(x, y)Kt(τ). Textbook

and historical descriptions of the spatial component are often based on a difference

of Gaussians:

Ks(x, y) = αcGσc(x− xc, y − yc)− αsGσs(x− xc, y − yc). (1.3)

Here, Gσ is a bi-dimensional Gaussian function of standard deviation σ. αc and αs

dictate the strength of the center and the surround while σc and σs dictate their width.

The center of the receptive field is set by xc and yc. The temporal component on the

other hand, needs to account for the temporal antagonism illustrated in Fig. 1.3.

• The bias b sets the baseline activity of the neuron.

• The nonlinearity F is a function that essentially prevents the firing rate from being

negative. This function can be as simple as a rectifier function F(x) = max(0, x)

or an exponential F(x) = exp(x). It can also account for the fact that the firing

rate cannot be arbitrarily large by being a saturating function such as a sigmoid

F(x) = (1 + exp(−x))−1.

1.2.2.2 Stochastic spiking

Poisson spiking The response of single retinal ganglion cells is not solely characterized

by the rate at which they fire action potentials. When presented with the same stimulus

multiple times, the spiking response of retinal ganglion cells is stochastic and tend to fluctu-

ate from one trial to the other. Several processes contribute to these random fluctuactions.

First, noise originating in photoreceptors due to thermal noise affecting phototransduction

is propagated through the retinal network [65, 2]. Second, noisy synaptic release across the

retinal hierarchy is accumulated and propagated to retinal ganglion cells [2, 23], where it is

combined with the intrinsic stochastic nature of ganglion cells [184].

This intrinsic variability is an important aspect of neural responses: it is ultimately

what limits the neurons’ ability to reliably encode stimulus information, but it is also the

result of the neurons’ energetic efficiency [169]. A straightforward way to incorporate the

stochastic aspect of neural responses in our model consists of using the firing rate predicted

by our previous model as the parameter of a random process. A common choice for the

spiking process is the Poisson process, which assumes that the amount of spikes fired in
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non-overlapping time windows are independent. In this setup, inter-spike-intervals follow

an exponential distribution at constant firing rate. The resulting model is called a Linear-

Nonlinear Poisson cascade model [31, 164], often referred to as LN (or LNP) model in the

literature. The different parameters of the model (filter, bias, and eventually nonlinearity)

can be fit to experimental recordings of single neurons [31, 126, 164, 134] through maximum-

likelihood estimation. Once fit to data, the LN model has been shown to predict fairly well

the response of macaque retinal ganglion cells to simple white noise stimuli [31, 135].

Spiking regularity and intrinsic variability Neural variability in single retinal ganglion

cells tends to present more regularity than what would be expected from a Poisson process

[15, 83, 52] (see Fig. 1.4). Due to refractory effects that follow the emission of a spike [20, 52],

inter-spike-interval distributions of real neurons depart significantly from the exponential

distribution observed in Poisson spiking.

Figure 1.4: Sub-Poissonian variability of rat retinal ganglion cells, adapted from [52]. A.
Mean-variance relationship of OFF-α cells. Each dot corresponds to the variability of one
cell across many trials of the same stimulus condition, compared to the mean spike count
(i.e. the firing rate) computed across repetitions. The black line corresponds to the mean-
variance relationship of a Poisson process: OFF-α cells have a sub-Poissonian variability. B.
Same as the previous panel, but for ON-α cells, in the same rat preparation.

A simple way to account for the specificity of neural variability consists of extending

the LNP model presented above into a Generalized Linear Model (GLM) [182, 135] by

feeding the nonlinearity with a second time varying field hpast(t), added on top of the

integrated stimulus. This field would result from the convolution of the neuron’s past

activity by a spike-history filter J(τ) that accounts for any refractory effects (seed Fig. 1.5

for a schematic). For simplicity, let’s assume time has been discretized in bins of size ∆t,
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and that space has been discretized in pixels. Let R(t) denote the number of spikes emitted

by a ganglion cell in time bin t. The previous rate model now becomes:

hstim(t) =
∑
τ

∑
x,y

K(x, y, τ)S(x, y, t− τ), (1.4)

hpast(t) =
∑
τ

J(τ)R(t− τ), (1.5)

ν(t) = F (b+ hstim(t) + hpast(t)) . (1.6)

receptive field nonlinearity poisson spiking

spike history filter

stimulus

Figure 1.5: Schematic of the single cell Generalized Linear Model. The visual stimulus is
convolved by a spatiotemporal receptive fields. The resulting processed stimulus signal
gets added to the convolution of the neuron’s past spiking activity by a spike history filter
before being fed to a nonlinearity. The output of the nonlinearity is used as the parameter
of a Poisson process from which spikes are sorted.

1.3 Parallel processing in the retina

A generic property of the different areas that compose the visual system is that they process

the visual stimulus through parallel channels [118]. We have already seen how retinal

ganglion cells can be coarsely categorized inON andOFF cells, each of these groups signaling

complementary contrast information to the brain. In reality, parallel processing in the retina

goes far beyond this simple ON-OFF filtering of the visual input. Early investigations [95,

96] already suggested that there could exist a variety of retinal cell types that each respond

to a specific feature of the stimulus. This view offers a better explanation for the intricate

architecture and cellular diversity of the retinal network: the complex structure of the retina

only mirrors the complex nonlinear computations that underlie parallel stimulus features

extraction.
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1.3.1 The diversity of ganglion cell types

As stated previously in this chapter, retinal ganglion cells summarize the visual information

extracted by the retina into their spiking activity before sending it to the brain. These

neurons have been historically classified in ON, OFF, and ON-OFF cells depending on their

preferred contrast, and in transient or sustain cells depending on the temporal dynamics of

their response [33, 10].

Despite the persistence of this rather simple view in the larger vision science community,

nonlinear feature extraction has been known to occur in the retina since the 60s, when early

work showed that some ganglion cells could be selective to local motion, direction of motion

and orientation [95, 14, 33]. Recent analyses identified that there is more than 30 different

ganglion cell types in the mouse retina [10, 185]. Nonlinearity and parallel processing go

hand-in-hand in the retina: each cell type is characterized by a distinct nonlinearity that

enables the extraction of specific stimulus features [179].

A certain class of retinal neurons, the α ganglion cells, hold a particular status in the

mammalian retina: they are characterized by their large cell bodies, fast conducting axons

and short response latency [89]. These features as well as the fact that they are remarkably

conserved across species [132] suggest that they play a prominent role in visual processing.

α cells come in four sub-types: OFF transient, ON transient, OFF sustain and ON sustain.

Sustain cells seem to encode mostly local contrast information, while transient cells are

also sensitive to motion [40, 188]. Interestingly, it has recently been established through

single-cell transcriptomic analyses that parasol and midget ganglion cells from the primate

retina are orthologs of α-cells [68]. In the case of simple stimuli, this broad category of cells

seems to be fairly well modeled by linear-nonlinear models [31, 135, 149, 101], although the

same models fail in the case of more naturalistic or complex stimuli [71, 110].

1.3.2 The mosaic organization of the retina

Most of the different ganglion cell types seem to cover an extensive range of the retina

so as to extract feature maps across large portions of the visual field (Fig. 1.6 A.). Within

a cell type, the receptive fields follow an approximate triangular lattice (Fig. 1.6 B.). This

organization, akin to a sphere packing problem, allows ganglion cells to sample densely

from the visual scene [43, 189, 106].

Many properties of the receptive fields that form these mosaics differ not only between

cell types but also within a single type [21]. Local statistics in natural scenes and features
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Figure 1.6: The mosaic organization of retinal ganglion cells. A. Receptive fields of midget
and parasol cell from the primate retina tile tigthly the visual space. Largest gaps in the
population are due to missing cells. Adapted from [142]. B. Radial density function of a
single ganglion cell type (W3 cells, local motion detectors) in a small portion of the mouse
retina. The red line corresponds to the fit of a noisy sphere packing model that models the
approximate triangular lattice of W3 cells. Adapted from [198].

of behavioral interest vary across the animal’s field of view. For instance, the sky tends

to be uniform and salient flying objects are likely to be predators for a mouse, while the

bottom part of the view is likely to be overcome with dark contrast and be where food is

located. Mirroring these variation of local scene statistics, the properties of receptive fields

often vary across regions of the retina. These variations are believed to be adaptations to

the statistics of natural scenes [12, 66], in accordance with efficient coding theory.

Further considerations based on efficient coding theory have suggested that the relative

arrangement of various cell types is likely optimized to enhance the encoding of stimulus

information [77]. Recent research [148] showed that the arrangement of ON and OFF

parasol (primate) and alpha (mouse) mosaics is not random but anti-aligned.

1.4 The collective behavior of retinal ganglion cells

Retinal ganglion cells are notorious for responding to visual stimuli in a substantially

correlated manner. Within and across cell types, ganglion cells have a strong tendency to

co-fire differently than what would be expected by chance [143, 153]. Correlated spiking

has been characterized in the retina of many different mammals (rat [167], mouse [149, 124],

primate [160, 159], cat [107, 108]). The striking conservation of this phenomenon across

species suggests that it serves an important purpose in retinal information processing.

There are two main sources that shape the collective behavior of retinal neurons: on
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the one hand ganglion cells respond to a common input, the stimulus, and the correlations

it contains can drive correlated neural activity. Second, neuronal interactions within the

ganglion cell layer, as well as interactions with upstream cells can further correlate the

population response. These two sources of correlations are very different in nature, and will

have substantially different impacts on the responses of retinal neurons.

1.4.1 Stimulus induced correlations

As was already discussed in this chapter, natural stimuli contain strong spatiotemporal

correlations [150, 4], and computations in the retina are hypothesized to reduce redun-

dancy by decorrelating the retinal output. At odds with this idea, research showed that

retinal ganglion cells only partially decorrelate their visual inputs [163, 136]. This means

that substantial residual stimulus-induced correlations persist between the activities of

retinal ganglion cells (see Fig. 1.7). These correlations are often termed signal (or stimulus)

correlations, and arise as the combination of two different effects. First, the visual stimuli

itself contains strong spatio-temporal correlations that may not be filtered out by the retina

[136]. Second, the processing performed by the retina itself can further promote signal

correlations. For instance, receptive fields of neighboring ganglion cells have been shown to

overlap, even within cell types [43]. Further, correlated responses can arise to signal specific

features of the visual stimulus like motion reversal [154], or motion speed [40]. Recently,

gaze shifts have been shown to strongly correlate the responses of retinal ganglion cells

[84].

1.4.2 Intrinsic interactions further promote correlations

Intrinsic interactions within the retinal network also drive the correlated activity of retinal

ganglion cells. The impact of interactions on population activity is of very different nature

than the stimulus. Whereas the stimulus promotes correlations in the deterministic part of

retinal responses (their firing rate), interactions induce correlations of the stochastic part

of neural responses. The intrinsic variability (or noise) that characterizes neural spiking is

reshaped through network interactions to give rise to the so-called noise correlations.

Noise correlations in the activity of retinal ganglion cells has been extensively charac-

terized during the last decades [135, 167, 65]. Research has shown that noise correlated

activity can arise from two main different sources [187, 181, 184]: shared noisy input and

direct neuronal couplings.
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Figure 1.7: Ganglion cells from the salamander retina only partially decorrelate stimulus
inputs (adapted from [163]). Black lines represent spatial correlations in the visual input,
and blue lines correlations between retinal neurons of the same polarity (OFF cells). Left:
Correlations between pairs of retinal ganglion cells are significant even in the absence of
strong long range correlations in the stimulus (white noise). Right: For naturalistic stimuli,
OFF ganglion cells significantly reduce correlations in their output compared to their input,
down to a level that is close to the white noise case.

First, noise originating from photoreceptors is propagated across the retina. As this

noise crosses the retinal layers, it becomes correlated due to network interactions while

accumulating additional noise due to noisy synaptic transmission. In each layer of the

retina, different neurons can receive common noisy inputs from upstream cells: bipolar cells

receive synaptic inputs from multiple photoreceptors, likewise, retinal ganglion cells can

receive inputs from several bipolar cells [106, 190]. In addition to this feed-forward noise

propagation, horizontal and amacrine cells can further correlate the signal and its noise

across the network. All in all, these common noisy inputs will result in retinal ganglion

cells being noise correlated themselves, yielding what is sometimes termed "shared noise".

Shared noise is significant both between pairs of cells of the same type and pairs of different

types, and arises primarily in pairs with shared phtoreceptors input [181, 2].

Another prominent source of correlated variability arises at the ganglion cell layer. It

is well-established that certain types of retinal ganglion cells are interconnected directly

via gap junctions [186, 187]. These gap junctions function like small resistances, providing

direct electrical coupling to neighboring ganglion cells of the same type [74, 180] as well as

to some ganglion cells with amacrine cells [147]. Gap junctions induced noise correlations

can be distinguished from shared noise by their short time-scale and typical double peaked

cross-correlogram [25, 74, 187] (see Fig. 1.8 A). Interestingly, noise correlations induced by

gap junctions are present in many different species (mouse [187], rabbit [74], rat [167], and

primate [181]). This remarkable conservation across species in ortholog types of ganglion

cells (α in mammals and parasol in primates), suggests fast noise correlations induced by

– 18 –



The retina

Figure 1.8: A-C Cross-correlograms between spontaneous spiking activity of pairs of mouse
ganglion cells illustrate the diverse origins of noise correlations. (adapted from [187]) A.
Cross-correlogram for an example pair of ganglion cells from the mouse retina. Direct
couplings between the cells induce very fast correlations, with a typical double-peak centered
on zero. B. In a second example pair, gap junctions between ganglion cells and amacrine cells
mediate intermediate timing correlated spiking. C. For another pair, slow cross-correlations
originate from both chemical and electrical synaptic inputs to the ganglion cells. D,E
Illustration of the spatial dependency of noise correlations in a population ganglion cells
from the rat retina (adapted from [167]). D. Partial mosaic of receptive fields from an
OFF-α ganglion cells population. E. Noise correlations between pairs of OFF-α ganglion
cells decrease exponentially with distance. The blue dot corresponds to the blue pair in the
mosaic.
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gap junctions may serve an important role in retinal processing.

1.5 Conclusion

We have seen in this chapter that the purpose of the retinal network is to process the visual

stimulus to encode it into the collective behavior of its output layer, composed of retinal

ganglion cells. In agreement with the efficient coding hypothesis, retinal computations

seem to transform the stimulus to reduce redundancy in retinal outputs and increase the

efficiency of this process.

The representation of visual stimuli in collective ganglion cell activity has a very specific

organization: many different types of ganglion cells, each covering most of the visual field

and encoding different features of the stimulus, relay parallel streams of information to

the rest of the brain through the optic nerve. Ganglion cells activity is also very structured

within each of these cell types, and neurons that encode information from neighboring

locations in the visual field tend to be correlated by correlations in the stimulus and overlaps

in their receptive fields.

We also saw that biological neurons are not deterministic: ganglion cell responses are

noisy due to unreliable biological processes shaping the input they receive from upstream

retinal layers, such as noisy synaptic release and photo-transduction in the photoreceptor

layer. Like stimulus induced activity, neural noise is also correlated across the retinal

network. In particular, within some ganglion cell types, shared synaptic inputs and direct

electrical couplings via gap junctions result in noise correlations being strong for pairs of cells

that also tend to be correlated by incoming stimuli. This phenomenon is broadly conserved

across species, notably in mammalian α-cells and primate parasol cells, suggesting it may

be an important feature of retinal computation.

Neural noise in ganglion cells activity plays a fundamental role in sensory processing: it

limits reliable encoding of sensory signals by "blurring" them. To understand how retinal

ganglion cells encode stimulus information in their collective activity, one therefore needs

to understand how signal and noise are structured relatively to each other and how this

structure impacts the encoded information. In the next chapter, we will delve on these two

points. We will start by introducing measures of signal and noise correlations, then we

will develop the main results of the literature on the impact of correlations on stimulus

encoding, and finally describe the computational approaches that we will use in the rest of

the thesis to model the collective behavior of retinal neurons.
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Chapter 2

Population coding of stimulus
information

A longstanding goal of neuroscience has been to crack the "neural code"—that is, to under-

stand how stimulus related information is represented in the activity of sensory neurons.

This problem is inherently complex because sensory coding cannot be fully understood by

considering separately the activity of individual neurons: neural activity is characterized

by its collective nature that emerges from stimulus input and neuronal interactions. This

phenomenon has been widely observed in the retina, as discussed in the previous chapter

[112, 161, 42], but also across a variety of other sensory systems such as the hippocampus

[117], the somatosensory [139, 168], auditory [98, 48] and visual [199, 87, 165] cortices.

Characterizing the population activity of sensory neurons is challenging in itself, let

alone understanding how this collective behavior relates to stimulus information encoding,

due to the gigantic size of the "neural lexicon". Let’s consider a set of neurons that can exist

in one of two states: active or inactive. In this simplified case, the total number of possible

states for a population of size N is 2N . In reality, this problem is made even more complex

by the fact that neural responses are dynamic and structured in time.

The retina is an ideal system to start investigating population coding, primarily thanks

to its self-contained organization (it receives almost no feedback from the brain) and the

accessibility of its output layer. These unique features allow recording ex-vivo from nearly

complete local populations of neurons through electrophysiology, offering a sensible pip

into collective ganglion cells activity. In addition, the retina is relatively well understood

compared to other sensory centers such as the visual cortex. This understanding provides

a solid ground to start relating the structure of population activity to retinal form and

function.
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The goal of this chapter is to give a general frame to the problem of population coding

that is addressed in the rest of the thesis with a more specific emphasis on the retina. We

will start by discussing ways to quantify the different sources that lead to the emergence of

collective neural activity, i.e. stimulus and noise correlations. Second, we will review how

the structure of this collective behavior is thought to impact stimulus information encoding.

Finally, we will develop the computational tools that will be used throughout this thesis to

investigate how neurons from the retina encode stimulus information.

2.1 Quantifying the collective behavior of sensory neu-
rons

In order to study the impact of correlations on stimulus information encoding by sensory

neurons, we first need to be able to characterize their collective behavior. The correlated

activity of sensory neurons has been studied in the literature through the use of different

quantities. Here we will define a set of correlation measures that will formalize our descrip-

tion of neural correlations. These quantities will be used throughout this thesis and will

serve as the basis for our study of population coding.

2.1.1 Disentangling stimulus and noise correlations

Decomposition of marginal correlations To formalize our definition of signal corre-

lations, let’s consider the discretized activity of a population of N neurons that respond

to a time varying stimulus. Let Ri | S be the spike count random variable of neuron i in

response to stimulus S. The Pearson correlation coefficient is a classical measure of linear

correlations between two random variables. We call total correlations ρtotij the Pearson

correlation between Ri and Rj , the responses of neurons i and j, described by the marginal

distribution P (Ri, Rj) = ⟨P (Ri, Rj | S)⟩S :

ρtotij =
Cov (Ri, Rj)√

Var (Ri)Var (Rj)
. (2.1)

According to the law of total covariance, we can decompose the covariance Ctot
ij =

Cov (Ri, Rj) in stimulus and noise contributions Cs
ij and Cn

ij . If we note µi(S) = Ri(S)

the mean spike count of neuron i in response to stimulus s we get:
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Ctot
ij = Cs

ij + Cn
ij, (2.2)

Cs
ij = Cov (µi(S), µj(S)) , (2.3)

Cn
ij = ⟨Cov (Ri, Rj | S)⟩S . (2.4)

As a result, we can decompose total correlations in two contributions:

ρtotij = rsij + rnij, (2.5)

rsij =
Cs

ij√
Ctot

ii Ctot
jj

, (2.6)

rnij =
Cn

ij√
Ctot

ii Ctot
jj

, (2.7)

where rsij and rnij correspond to the fractions of response correlations that are due

respectively to stimulus and noise.

Signal (or stimulus) correlations The component of neural responses that corresponds

to how the stimulus drives the neuron’s activity is the mean spike count µi(S) = Ri(S)

(see Eq. 1.2). From this, a straightforward way to quantify signal correlations between cells

i and j consists in taking the Pearson correlation between the two cells firing rates:

ρsij =
Cs

ij√
Cs

iiC
s
jj

. (2.8)

Noise correlations To quantify noise correlations between cells i and j, we can therefore

compute the Pearson correlation of their noise variables:

ρnij =
Cn

ij√
Cn

iiC
n
jj

. (2.9)

This measure of noise correlations however, doesn’t account for the fact that noise

correlations can depend on stimulus, as it is based on the use of the average noise covariance

Cn
ij defined in Eq. 2.4. The dependency of noise correlations on the stimulus is thought to

impact the way information is encoded in population activity [57, 137]. To get a precise
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picture of the structure of noise correlations, one can quantify them in a stimulus conditional

manner:

ρnij(S) =
Cov (Ri, Rj | S)√

Var (Ri | S)Var (Rj | S)
. (2.10)

2.1.2 Experimental quantification

Computing the aforementioned correlations from experimental data requires being able

separate signal from noise in neuronal recordings. This can be done only by recording

simultaneously the activity of a population of retinal ganglion cells to repeated presentations

of a set of stimuli through electrophysiological recordings by multi-electrode arrays [104].

Repeating many times the presentation of each individual stimuli in the stimulus ensemble

is what allows to disentangle signal from noise correlations: averaging neural activity over

repeats amounts to averaging over the empirical neural noise distribution. This way, we

can compute the mean spike counts of the neurons µi(S) as well as all the correlations

described above.

In practice, estimating noise averaged quantities can be tricky as data are limited by

experimental recording duration, and accurate estimation of firing rates and correlations

may require from tens to hundreds of repetitions per stimuli. In particular, noise correlations

will induce correlations in the residual noise of mean spike counts estimates, resulting in a

bias in the empirical stimulus covariance estimates. This effect can be particularly striking

in the case of neurons that are weakly modulated by the stimulus (small signal, large noise).

In the cortex, using repeated presentations of the stimulus isn’t usually enough to

separate intrinsic neural noise from neural signals. Any sensory cortical area receives inputs

from other areas (sensory or even motor), and neural activity may be modulated by internal

variables such as brain states and attention that are difficult to monitor accurately. These

factors are not conditioned upon when repeating the presentation of the stimulus, which

means that intrinsic neural noise that comes from the stochastic nature of neurons cannot

be properly separated from varying inputs that originate from other part of the brain [46].

The nearly complete absence of feedback from the brain to the retina, combined with

the ability to record from the ganglion cells layer ex-vivo in minimally disturbed retinal

networks, establishes the retina as the ideal system for studying neural correlations and

their impact on sensory coding.

– 24 –



Population coding of stimulus information

2.2 The impact of correlated activity on stimulus encod-
ing

Sensory neurons encode information about incoming stimuli in their collective activity.

The accuracy of this encoding process will depend on the structure of the signal, that of

the noise and how they relate to each other: the signal carries stimulus information while

the noise corrupts it. In the current section, we will formalize this intuition by starting

with simple geometrical considerations, following with an overview of the impact of noise

correlations from the perspectives of estimation and information theory.

2.2.1 Geometrical picture

Noise in the response of sensory neurons will always hurt the representation of stimulus

information. Due to noise, two stimuli may elicit similar responses from the population,

while when averaged over noise, the mean spike counts may be different. Intuitively, noise

is harmful because it blurs stimulus representations in the population activity and makes

them overlap. In the simplest case of two neurons responding to two different stimuli,

this can be pictured easily. The overlap between the responses to the stimuli is decreased

compared to the uncorrelated noise case (Fig. 2.1 A) in the case where the direction of the

noise is orthogonal to that of the signal (Fig. 2.1 B). Conversely, it is increased when the

direction of the noise and signal are the same (Fig. 2.1 C). This phenomenon is sometimes

called the sign-rule in the literature [75, 8]: when noise and signal correlations have the

same sign, information decreases, but when they have opposite signs, information increases.

Real sensory neurons however, do not only encode pairs of stimuli, like illustrated in

the simplistic example above: they respond to and code for large stimuli ensembles. To

illustrate the impact of noise correlations on stimulus encoding in a more realistic setting,

we can look at the response of a pair of neurons with mean responses specified by their

overlapping receptive fields (see Fig. 2.1 D). In the example designed here, the pair’s mean

response lie along a manifold that encodes stimulus signal (see Fig. 2.1 E). In the case of

positive noise correlations, omnipresent in sensory systems and in particular in the retina

(see previous chapter), different effects will contribute to their overall impact on stimulus

encoding. Locally, noise correlations may be detrimental or beneficial depending on whether

they increase or decrease noise along the signal direction (see stimulus pairs (S3,S4) and

(S5,S6) on the plot). But the effect of noise correlation on stimulus encoding isn’t limited to

local coordination with the signal direction. At a global scale, noise correlations also impact
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Figure 2.1: Geometrical illustration of the impact of noise correlations on stimulus coding.
Responses are assumed to be Gaussian, and ellipses delimit the 2σ interval around the
mean of pairwise responses conditioned on the stimulus. The simple case of two neurons
responding to two different stimuli (S1 and S2) is sketched on panels A-C. In the absence
of noise correlations (panel A), noise is isotropic at a given stimulus. Noise correlations
are beneficial when they decrease the overlap between distributions compared to the
uncorrelated case (panel B) and detrimental when they increase it (panel C). The case
of two neurons responding to an ensemble of stimuli is sketched on panels D,E. The
neurons spike according to their receptive fields defined by Von Mises functions µi(S) =
A(exp (cos(S − ci))− e−1)/(e− e−1) +B), where A = 40 and B = 10 set respectively the
amplitude and the baseline of the mean spike count, and ci the receptive field centers. In
response space, the cells’ mean activity (the signal) organizes along a manifold (grey line).
Noise correlations now have different local and global effects on stimulus encoding. Locally,
noise correlations can be beneficial (stimuli S3, S4) or detrimental (S5, S6), depending on
how they align with the signal manifold. On a global scale, noise correlations can also be
beneficial (i.e. stimuli S2, S5) or detrimental (i.e. S1, S3), depending on how they relate to
the global structure of the manifold.
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the discernability of stimuli lying on distant points on the manifold: while being detrimental

for local stimulus pair (S5,S6), positive noise correlations allow better discrimination of pair

(S2,S5) that lies on opposite sides of the manifold.

The picture outlined here gives an intuition about the impact of noise correlation on

stimulus encoding. It remains however simplistic as it is based on simple geometrical

considerations derived from a pair of sensory neurons encoding a simple stimulus into a

very simple low dimensional representation. To fully understand how neural correlations,

and in particular noise correlations, impact coding of complex stimuli in large populations

of sensory neurons, one needs to first settle on a definition and a measure of what is

information. Without such a measure, no definitive understanding of the phenomenon can

arise.

2.2.2 Fisher information

2.2.2.1 Definition

Fisher information is a key concept of statistical estimation theory, a branch of statistics

that deals with estimating the values of parameters underlying empirical data distributions.

It measures the amount of information an observable random variable R carries about the

parameter θ upon which the probability of R depends. In the context of sensory coding,

the random variable R would represent the N dimensional population activity, while the

unknown parameter θ (a scalar or a vector) would represent the stimulus that elicited neural

responses.

The Fisher information of a parameter θ is defined as the variance of the score, which is

the gradient (with respect to θ) of the log-likelihood function, evaluated in a particular point

of parameter space θ∗. It is a local measure of information as it measures the information

carried by R about θ in each point of parameter space. For a random variable R with

probability density function f(R; θ), the Fisher information is given by:

F(θ) = ER

[(
∂

∂θ
log f(R; θ)

)2
]
. (2.11)

Under few simplifying assumptions, its mathematical form becomes very tractable.

Assuming that R is conditionally Gaussian such that P (R | θ) ∼ N (µ(θ), Cn(θ)), with

µ(θ) the noise average of R and Cn(θ) the covariance in θ, the Fisher information is often
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approximated by:

Flin(θ) =
∂µ(θ)

∂θ

⊤

Cn(θ)−1∂µ(θ)

∂θ
. (2.12)

This quantity is sometimes called the "linear Fisher" information. It coincides with the true

Fisher information in the case of Gaussian responses with constant noise covariance. In the

case where the covariance matrix depends on the stimulus θ, it is a lower bound to the true

Gaussian Fisher information, which contains another positive term that accounts for the

information provided by stimulus-dependent changes of the covariance matrix.

An important inequality that provides an intuitive interpretation of the Fisher infor-

mation is the Cramér-Rao bound. Noting θ̂(R) an unbiased estimator of θ such that

ER(θ̂(R)) = θ, we have:

VarR(θ̂) ≥
1

F(θ)
. (2.13)

This inequality states that no unbiased estimator of the parameter θ can have a variance

smaller than the inverse of the Fisher information. In the context of sensory coding, it

means that the inverse Fisher bounds the precision with which stimuli can be read out

from population activity. Interestingly, the linear Fisher information defined previously

corresponds to the inverse variance of an unbiased locally optimal linear decoder [19, 80].

2.2.2.2 Noise correlations and Fisher information

Due to its tractable form, Fisher information and its linear approximation have been the

basis of numerous investigations of the impact of noise correlations on stimulus encoding

[1, 166, 45, 80, 193, 194, 165, 116, 75, 57, 86]. Most theoretical and computational studies

based on this quantity were inspired from the primary visual cortex, with large populations

of neurons coding for a scalar stimulus angle. These studies mainly focused on the large

population density limit, when a high number of tuning curves cover any single point of

the stimulus ensemble (see Fig. 2.2A for an illustration) and considered constant noise

correlations independent of the stimulus. The main conclusions of these studies are three-

fold:

• Positive uniform noise correlations (i.e. with infinite range) contribute positively to

the Fisher information [1, 166, 193, 195].

• Positive short range noise correlations decrease the average Fisher information

⟨F(θ)⟩θ compared to the independent case. In this case, the linear Fisher information

even saturates with system size instead of scaling linearly as in the independent case

(see Fig. 2.2B, left plot) [1, 166, 193, 45, 195].
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• Introducing heterogeneity in tuning curves properties (see Fig. 2.2A right versus left)

like amplitude and width may allow positive short range noise correlations to become

beneficial if sufficiently strong (Fig. 2.2B right) [193, 45].

One way to get intuition about the linear Fisher information is to note that it corresponds

to the squared norm of the vector of mean response derivatives µ′(θ), computed using the

covariance matrix as a metric (i.e. expressed in units of noise variance). This is akin to a

local definition of the signal-to-noise ratio, where the local signal variation corresponds here

to the derivative of the mean response with respect to the stimulus, and the noise to the

amount of noise along the direction of the derivative vector. For the simpler case of constant

positive noise covariance [1, 166], noise correlations will be beneficial for each stimulus

value that corresponds to response derivatives µ′(θ) located within specific fixed areas of

the space of derivatives (see Fig. 2.2C for an illustration with two neurons). The distance

between any points in these areas and the origin (µ′ = 0) will be larger when computed

using the noise covariance matrix as a metric, compared to when using the diagonal noise

variance matrix corresponding to the uncorrelated case as a metric (red areas in Fig. 2.2C).

Let’s consider a pair of cells with overlapping and similar tuning curves like shown in Fig.

2.1D. Mean response derivatives µ′
1(θ) and µ′

2(θ) will often have the same sign for certain

ranges of stimulus values, leading to µ′(θ) spending a significant amount of time within

the detrimental areas (blue zones in Fig. 2.2C). In the case of non-overlapping cells with

very distant tuning curves, the mean response derivatives will never be simultaneously

large for both cells for any given stimulus. Either one or both cells will have a very small

response derivative, which will result in the derivative µ′(θ) being close to the axes of the

space and thus in the beneficial zones (red areas in Fig. 2.2C encompass the vertical and

horizontal axes). This intuition extends to large homogeneous neural populations such as

the one depicted in Fig. 2.2A. In the case of positive short range noise correlations, the

Fisher information will decrease compared to the uncorrelated case, as only the neighboring

neurons with very similar tuning curves will be noise correlated. By contrast, in the case of

uniform correlations, distant pairs of cells will also be noise correlated, leading to beneficial

effects that may overall increase the Fisher information.

Another prominent case studied in the literature concerns a kind of stimulus dependent

correlations termed "information-limiting" or "differential" correlations [116, 81]. Recent

research has shown the presence of such information-limiting correlations in the cortex [18,

78]. These correlations correspond to a non-constant noise covariance matrix that always

aligns the direction of the noise with that of the mean response gradient. An example of

such correlations is illustrated in Fig. 2.2D. As a result, the Fisher information will always

be decreased by the presence of differential correlations, compared to the independent
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Figure 2.2: Overview of the impact of noise correlation on Fisher information. A-B, adapted
from [45]. The Fisher information has been mostly studied in the case of systems inspired
from the visual cortex. The neurons’ receptive fields cover densely the stimulus ensemble
(here an angular variable), such that any point in the stimulus ensemble is covered by many
neurons. The case of homogeneous (left in A) and heterogeneous (right in A) tuning curves
is shown here. Panel B shows the ratio of linear Fisher Jmean over uncorrelated Fisher Jindep
for homogeneous (left) and heterogeneous populations (right), versus the noise correlation
strength, and for different population sizes (n). In the homogeneous case, noise correlations
always decrease information compared to the independent case, while in the heterogeneous
case, strong noise correlations are beneficial. C Here we show (black line) the response
derivative µ′(θ) of the pair from Fig. 2.1D,E. The grey dotted circle corresponds to the
two standard deviations ellipse of the variance matrix, and the grey ellipse to that of the
covariance matrix (correlation strength ρn = 0.4 and noise variance of each cell Cn

ii = 15).
Noise correlations increase the Fisher in any point of the red area of this space and decrease
it in the blue area. These areas are delimited by lines passing by the intersections of the
covariance and variance ellipses. D Information-limiting correlations are such that they
align the noise with the local direction of the signal (the derivative of the response) for any
given stimulus value. Therefore, they are always detrimental to the Fisher information.
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case with same noise variance. Interestingly, it has been shown that some types of retinal

ganglion cells exhibit noise correlations that vary with the stimulus in a way orthogonal to

that of information-limiting correlations. Direction selective ganglion cells from rat and

mouse retinas show noise correlations that make the noise orthogonal to the direction of

the local signal, resulting in significant increase of the Fisher information [57, 200].

2.2.2.3 Limitations and perspectives

The Fisher information has been extensively used in neuroscience to evaluate the impact

of noise correlations on sensory coding. Despite the insight it provides, this measure of

information has specificities that limits its usability and interpretability.

First, quantifying the Fisher information requires having a parametric model of stimulus

dependent responses. Estimating such a model from neural data tends to be challenging.

This issue can be tackled in the case of low dimensional stimuli like the angular stimuli

presented in the previous sections, but these stimuli are mostly relevant for the visual

cortex and direction selective cells in the retina. For more relevant high-dimensional stimuli

like naturalistic images in the case of retinal ganglion cells, solving this task starts to be

challenging.

Another limitation of the Fisher information is that it measures the local sensitivity of

neural responses to small changes in the stimulus. The Fisher information doesn’t account

for the existence of the stimulus ensemble, and is thus oblivious to the global effects that

were highlighted in the first part of this section where we discussed a geometrical view on

noise correlations. In the regime where neural noise is low compared to the strength of

the signal, these global effects may be negligible and coding may be dominated by local

statistics [28]. In the case where the neural noise is significant however, global statistics of

the stimulus ensemble may have to be taken into account, as different stimuli can yield

overlapping noisy responses.

To summarize, while the Fisher information can provide valuable insights on the effect

of noise correlations on sensory coding, its intrinsic limitations make it likely to give a

limited account of the full phenomenon. In the next section, we introduce the mutual

information that will be used throughout the thesis to assess sensory coding and which

palliates to some of the limitations of the Fisher.
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2.2.3 Mutual information

2.2.3.1 Definition

In the late 40s, Claude Shannon laid the basis of information theory [156] and developed a

mathematical framework providing grounded definitions of quantities such as the surprisal

of a random process outcome and information. The entropy of a discrete random variable

R with ensemble of possible outcomes R and probability distribution P is defined as:

H(R) =

〈
log

1

P (R)

〉
R

(2.14)

=−
∑
R∈R

P (R) logP (R). (2.15)

This quantity measures the uncertainty inherent to the outcome of process R, as it is the

average of the surprisal S(R) = log 1/P (R), a quantity that is high for unlikely values of

R and low for its common values. The entropy of a random variable is expressed either in

bits or nats depending on whether the logarithm used for its calculation is in base 2 or in

base 10.

Mutual information is to information theory what Fisher information is to estimation

theory. It measures how much information the observation of one random variable provides

about another variable. Let our two random variables be R and S. From the intuition that

a gain of information corresponds to a decrease of uncertainty and using the notion of

entropy defined above, one recovers the definition of the mutual information:

I(R;S) = H(R)− ⟨H(R | S)⟩S . (2.16)

The mutual information is symmetric, and is expressed in bits or nats, like the entropy.

Contrary to the Fisher information, the mutual information is a global measure of informa-

tion. It accounts for the entire ensembles of both stimuli and responses, and integrates the

structure of these ensembles as well as their statistical dependencies at all orders.

Connections between the mutual information and the Fisher information have been

made in the literature, with a focus on sensory neuroscience [26, 166, 192]. When S is a one

dimensional random stimulus variable and R a sensory measurement or neural response, it

has been shown that the mutual information can be approximated by the Fisher information

in the small Gaussian noise limit. This is in accordance with the considerations outlined in

the previous section: in the small noise limit, coding is dominated by local effects and the

Fisher information therefore gives a good account of sensory coding. When the noise is not
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small this connection breaks down as both local and global effects accounted for by the

mutual information but not by the Fisher impact sensory coding.

2.2.3.2 The effects of noise correlations on mutual information

Compared to the Fisher information, the mutual information has a less tractable form

that hinders its use to study sensory coding. While the Fisher information is derived

solely from the conditional response distribution, understanding the mutual information

requires both conditional response and marginal response distributions to be tractable.

Nonetheless, several theoretical studies investigated the impact of noise correlations on

stimulus information encoding [128, 166, 137, 93, 178, 75, 117].

The impact of noise correlations on the mutual information can be evaluated through

one quantity that we will call noise synergy and note ∆I in the rest of the thesis. Noting

I(R;S) the mutual information (defined in Eq. 2.16) between the stimulus S and the

response R in the presence of noise correlations, and Iind(R;S) the mutual information

when noise correlations are removed, we have:

∆I = I(R;S)− Iind(R;S). (2.17)

Concretely, removing noise correlations consists in assuming that the conditional response

distribution P (R | S) gets replaced by Pind(R | S) =
∏

i P (Ri | S), where P (Ri | S) is the
conditional response of the i-th neuron from the population. We thus assume that neurons

are conditionally independent, all other things being equal.

The current common wisdom in sensory neuroscience about this can be summarized

through a decomposition of the mutual information in correlation contributions [137]. This

decomposition of the mutual information constitutes and exact and model free version of a

previous small-firing rate approximation [128] that overall gives the same insights. This

general decomposition has the advantage of making no assumptions on the underlying

noise and response models, and decomposes the noise synergy in two components:

∆I = Icorr-ind + Icorr-dep. (2.18)

Noting P (Ri) the marginal and P (Ri | S) the conditional responses of neuron i, P (R) =

⟨P (R | S)⟩S the marginal population response distribution and Pind(R) = ⟨
∏

i P (Ri | S)⟩S
the marginal population response distribution in the absence of noise correlations, we can
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express the terms of the above decomposition as [137]:

Icorr-ind =
∑
R

[P (R)− Pind (R)] log

(∏
i P (Ri)

Pind(R)

)
, (2.19)

Icorr-dep =

〈∑
R

P (R | S) log
(

P (R | S) /Pind (R | S)
⟨P (R | S ′)⟩S′ / ⟨Pind (R | S ′)⟩S′

)〉
S

. (2.20)

In this decomposition, the effect of correlations can be gauged by recalling that the

difference between conditional distributions P (R | S) and Pind (R | S) on the one hand

and marginal distributions P (R) and Pind (R) on the other hand are solely due to noise

correlations. From this, the two aforementioned components can be shown to describe two

different effects of noise correlations on mutual information:

• Icorr-ind specifically captures the effect of noise correlations on the marginal response

distribution, that is the effect of noise correlations, irrespective of how they vary with

the stimulus. If noise correlations increase the probability of a certain response pat-

terns R, then P (R)−Pind (R) ≥ 0. On the other hand, if signal correlations increase

the probability of a certain response patterns R, then log (
∏

i P (Ri)/Pind(R)) ≤ 0.

As a result, if noise and signal correlations promote the same patterns, then over-

all Icorr-ind will be negative, while it will be positive otherwise. This phenomenon is

sometimes called the sign-rule in the literature [75, 8] and captures the intuition

outlined in the previous sections that when correlations align noise and signal, they

are harmful to coding (see Figures 2.1 and 2.2).

• Icorr-dep is the term that accounts for the stimulus-dependence of noise correla-

tions. This term is always positive and is usually interpreted as the information

carried by the fluctuations of noise correlations themselves (here the fluctuations of

P (R | S) /Pind (R | S)).

Interestingly, we can rephrase Icorr-dep and Icorr-indep in a way that leads to the emergence

of another quantity:

Icorr-ind = Icross(R;S)− Iind(R;S), (2.21)

Icorr-dep = I(R;S)− Icross(R;S). (2.22)

If we define the cross-entropy between two probability distributions P and Q as

H [P,Q] = −
∑
R

P (R) logQ(R), (2.23)
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the quantity Icross(R;S) is given by:

Icross(R;S) = H [P (R), Pind(R)]− ⟨H [P (R | S), Pind(R | S)]⟩S , (2.24)

=

〈∑
R

P (R | S)) log (P0(R | S))
P0(R)

)

〉
s

. (2.25)

Icross resembles a mutual information, with the important difference that it is built from the

cross-entropy between the dependent and independent distributions instead of the entropy

of one or the other. Therefore, this quantity can be seen as the information available to an

ideal decoder that ignores noise correlations, and it has been shown in the literature that

the quantity Icorr-dep = I(R;S)− Icross(R;S) is an upper bound on the information lost by

such a decoder [124, 93].

2.2.3.3 Perspectives

The aforementioned breakdown of mutual information summarizes and formalizes various

observations and considerations that constitute the common wisdom found in the literature.

Namely, noise correlations are thought to be beneficial for coding whenever they oppose

stimulus correlations and follow the sign-rule, as well as when they vary with the stimulus.

To some extent, this picture seem to generalize the conclusions drawn from the Fisher

information, for which noise correlations are detrimental when they constrain noise in

the direction of the signal. This phenomenon is akin to a violation of a local version of

the "sign-rule" evoked previously and was exemplified in the case of population coding by

densely overlapping tuning curves (inducing positive stimulus correlations) and positive

short range noise correlations.

The apparent cohesion that emerges from the theoretical literature on the informational

effects of noise correlations and in particular on the sign-rule seem to be at odds with the

overwhelming experimental evidence showing both in retina [112, 161, 187, 167, 107] and

cortex [199, 94, 13, 87, 73, 7] that noise correlations are particularly strong and positive for

neurons that also have positive stimulus correlations.

Pinning down this contradiction or understanding where this discrepancy originates

from would require being able to straightforwardly relate the theoretical frameworks

outlined above to experimental measures of the structure of stimulus and noise correlations.

Such attempts in the case of the Fisher information have been limited to low dimensional

stimuli [57, 200, 70, 86, 165] for reasons that were discussed in a previous section.

Several studies have approached this problem using the mutual information [137, 93, 178,

– 35 –



Population coding of stimulus information

75, 124, 117]. However, the reliance of the mutual information on estimation of probability

distributions greatly hinders its applicability but even more its interpretability. Beyond the

difficulties that stem from estimating response distributions from data, the formulation

of the mutual information prevents relating structures of correlations to their impact

on coding. For instance, the aforementioned mutual information breakdown has been

applied to experimental data [114, 123], but the measures of correlations as comparisons

of correlated and uncorrelated probability distributions on which it is based render its

interpretation difficult. This is due to the fact that the behavior of such measures do not

align straightforwardly with pairwise correlations or covariances. As an example, constant

pairwise noise covariances do not imply that the ratio P (R | S) /Pind (R | S) (from Eq.

2.20) is constant, even for pairwise response distributions.

The goal of this thesis is to address these points by filling the gap that exist in the

literature on relations between mutual information and structures of noise and signal

correlations. We will try to develop a framework that provides theoretical understanding

of the impact of noise and signal correlations on the noise synergy ∆I , which can also be

related straightforwardly to experimental data.

2.3 Modelling the collective behavior of sensory neurons

We have seen in the previous section that a grounded way to understand sensory coding and

how noise correlations impact it consists in quantifying information theoretic quantities

such as the mutual information. To do so one has to estimate the distributions of population

responses R to the stimulus S. This problem is rendered difficult by the fact that the

population activity R can be high-dimensional. For a population of N neurons that can

each exist in q different states of activity, the probability distribution of the response is

described by qN−1 parameters. Estimating directly and reliably the probability distributions

of responses for each given stimuli requires having amounts of data that are difficult to

gather in reasonable experimental time. A solution to circumvent this problem consists of

building response models that are characterized by less parameters, but which still provide

a good description of the data after fitting.

The goal of this section is to describe the computational tools that will be used and built

upon in the rest of the thesis. We will start by describing a maximum entropy approach to

the modeling of neural responses, following by an introduction of the Generalized Linear

Model and how it can be used to model populations of sensory neurons.
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2.3.1 Maximum entropy approach

2.3.1.1 Model description

Estimating accurately the probability distributions of neural responses from limited experi-

mental recordings in the case of large neural populations is a difficult problem, especially

in a model free manner. One way to curb this problem is to make careful assumptions

(impose inductive biases) on the structure of the model in order to reduce the number of

parameters to infer, while still capturing the gist of the data statistics. Maximum entropy

(maxent) models are a wide category of models that are built by maximizing the entropy

under constraints that will enforce reproduction of a few selected empirical statistics (the

observables) from the data.

Lets consider a network of N binary neurons with response vector R that follows some

empirical distribution Pdata. Let µdata
i = ⟨Ri⟩data and Cdata

ij = ⟨RiRj⟩data − µdata
i µdata

j

denote respectively the mean and covariances computed from empirical data that we wish

to model. Noting P (R) the model probability of response R, the pairwise maxent model

can be derived by maximizing the Lagrangian:

L = H(R) +
∑
i

hi

(∑
R

P (R)Ri − µdata
i

)

+
∑
i<j

Jij

(∑
R

P (R)RiRj − (Cdata
ij + µi

dataµj
data)

)

+ γ

(∑
R

P (R)− 1

)
,

(2.26)

where H(R) = −
∑

R P (R) log(P (R)) is the entropy of the model, with Lagrange mul-

tipliers hi and Jij enforcing reproduction of the empirical means and covariance, while

γ enforces normalization of the probability distribution. This results in the probability

distribution:

P (R) =
1

Z({hi}, {Jij})
exp

(∑
i

hiRi +
∑
i<j

JijRiRj

)
, (2.27)

where Z({hi}, {Jij}) =
∑

R exp
(∑

i hiRi +
∑

i<j JijRiRj

)
normalizes the probability

distribution. Parameters hi and Jij are often called respectively magnetic fields and cou-

plings in reference to the Ising model of statistical physics.
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2.3.1.2 Inverse problem

The process of optimizing the parameters of the maxent model from empirical data to

reproduce the set of chosen observables is called the inverse problem. This inference can be

tackled in different ways, and significant effort has devoted to this problem in the literature.

Maximum likelihood estimation The most straightforward way to optimize the pa-

rameters of the pairwise maxent model consists in maximizing the log-likelihood of the

empirical data given parameters of the model. Let us try to model the probability distribu-

tion of R the binary (0, 1) multivariate neural response. Assuming we have access to T data

samples of the distribution, the observed data are {R(t)}t=1,T where t denotes the sample

index. Noting µdata
i = ⟨Ri⟩t the empirical mean response and Cdata

ij = ⟨RiRj⟩t − µdata
i µdata

j

empirical covariances, the log-likelihood of the observed dataset is given by:

log ℓ({hi}, {Jij}; {R(t)}) =
T∑
t=1

(∑
i

hiR
(t)
i +

∑
i<j

JijR
(t)
i R

(t)
j − logZ({hi}, {Jij})

)
,

= T

(∑
i

hiµ
data
i +

∑
i<j

Jij(C
data
ij + µdata

i µdata
j )− logZ({hi}, {Jij})

)
.

(2.28)

The log-likelihood can be related directly to the cross-entropy, another quantity of interest

that also quantifies the match between empirical and model distributions. Recalling its

definition Eq. 2.23 and noting Pdata the empirical data distribution we have:

log ℓ({hi}, {Jij}; {R(t)}) = −T ·H(Pdata, P ). (2.29)

Inference of model parameters that match predicted and empirical observables can thus

be done equivalently by maximizing the log-likelihood or minimizing the cross-entropy

between data and model. In the case were the model predicts accurately empirial means

and covariances, the cross-entropy H(Pdata, P ) is minimized and becomes equal to the

entropy of the model H(R).

To maximize the log-likelihood, we start by computing its gradient with respect to the

parameters hi and Jij . Calling µi =
∑

R P (R)Ri and Cij =
∑

R P (R)RiRi − µiµj the

model predicted means and covariances, gradients are given by:

∂ log ℓ({hi}, {Jij}; {R(t)})
∂hi

= T
(
µdata
i − µi

)
, (2.30)
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and
∂ log ℓ({hi}, {Jij}; {R(t)})

∂Jij
= T

(
Cdata

ij − Cij + µdata
i µdata

j − µiµj

)
. (2.31)

Optimizing the log-likelihood function with respect to the fields and couplings will therefore

ensure reproduction of the empirical means and covariances. This optimization can be

simply performed by performing gradient ascent of the log-likelihood using the gradients

derived above.

Approximate inference and small-correlation expansion Solving the inverse problem

by maximizing the log-likelihood above Eq. 2.28 is doable analytically for very small

groups of neurons, but quickly becomes intractable as the population size increases. For

larger populations of up to ≈ 20 neurons, exact maximization of the likelihood is feasible

numerically by the exact gradient ascent approach described in the previous section. Beyond

≈ 20 neurons however (≈ 106 configurations), it becomes difficult to do things exactly, and

one has to resort tomonte-carlo simulations to estimate numerically themodel’s observables

in the right hand side of Eq. 2.30 and 2.31 and solve the optimization. Another strategy that

has been pursued in the literature has been to search for approximate solutions to the inverse

problem. Many of these approximate solutions were derived in the context of statistical

mechanics, and such approaches include mean-field [82, 172], Thouless-Anderson-Palmer

[175] solutions and small-correlation expansions [155].

The Sessak-Monasson expansion [155] is a perturbative approach that allows to estimate

the parameters of the maxent model under the assumptions that the covariances Cij are

small. The starting point of this approximation is the minimization of the cross-entropy

between the empirical data and the model distributions H(Pdata, P ), which is equivalent

to the maximization of the log-likelihood (see Eq. 2.29). Noting again µdata
i and Cdata

ij the

empirical observables, this cross-entropy can be written:

H(Pdata, P ) = −
∑
i

hiµ
data
i −

∑
i<j

Jij(C
data
ij + µdata

i µdata
j ) + logZ({hi}, {Jij}). (2.32)

As already seen in the previous section, when the fields hi and couplings Jij minimize

effectively this cross-entropy, the models’ means and covariances coincide with that of the

data, and the minimum of the cross-entropy equals the entropy of the fitted model.

The main trick of the expansion consists of replacing all covariances Cij by βCij , where

β is a positive scaling parameter. As a result, the optimal fields and couplings of the above

equation will now depend on this parameter and when β = 0, the solution will correspond

to independent binary variables with null couplings. The gist of the derivation consists
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of performing a Taylor expansion of the cross-entropy with scaled covariances at small β.

Evaluating this expansion in β = 1 results in approximate solutions for the optimal fields hi

and couplings Jij . Keeping in mind that the entropyH(R) of the maxent distribution P (R)

is in fine given by the optimized cross-entropy, the small-correlation expansion evaluated

in β = 1 also gives an approximation of the maxent entropy. In the case of binary variables

Ri = 0, 1, this approximation can be written as:

H(R) =−
∑
i

(1− µi) log (1− µi) + µi log (µi)

− 1

2

∑
i<j

C2
i,j

Γ
(1)
i Γ

(1)
j

+
1

6

∑
i<j

C3
i,j

(Γ
(1)
i Γ

(1)
j )3

Γ
(2)
i Γ

(2)
j

+ 1
∑
i<j<k

Ci,jCj,kCk,i

Γ
(1)
i Γ

(1)
j Γ

(1)
k

,

(2.33)

where:

Γ
(1)
i =

〈
(Ri − µi)

2
〉
= µi(1− µi), (2.34)

and

Γ
(2)
i =

〈
(Ri − µi)

3
〉
= µi(1− µi)(1− 2µi). (2.35)

2.3.1.3 Application to data

The pairwise maxent model has proven to be a data-efficient tool to model the collective

behavior of biological neurons [152]. It has been applied successfully to model populations

from the retina [153, 160, 176, 51, 39], as well as from the cortex [105, 174, 113, 122]. In

previous sections, we showed how this approach could be used to describe an arbitrary

distribution of the population activity of N binary neurons, without worrying about the

nature of this distribution. The maxent approach can indeed be used to characterize the

collective behavior of populations of neurons through the inferred coupling network, or

to estimate neural activity entropies as well as other information theoretic quantities. In

practice, maxent models can be applied to describe both stimulus conditioned response

distributions R | S and marginal response distributions R alike. Interpretation of the

inferred models however, differs significantly in these two settings. Applying the maxent

model to conditional neural responsesR | S yields couplings Jij that solely account for noise

correlations and describe the effective connectivity of the population. By contrast, when

modeling the marginal distribution R, couplings will account for both noise and stimulus
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induced correlations, giving no information about how these two sources of correlations

differently impact the collective behavior. Further, maxent models can be seen as "static"

models and their interpretation depends on the temporal preprocessing of the data on

which they were fitted. If empirical data are binned at size ∆t = 20ms, the model will

solely account for fast neural correlations that exist across the network within that bin size

while correlations within the network across time bins will be lost. As a result, network

couplings or information theoretic quantities computed from these models always need to

be interpreted in light of the temporal properties of the underlying experimental data.

2.3.2 Generalized Linear Model

A different approach tomodeling the response of sensory neurons, and in particular how they

respond to time varying input stimuli, is to use a "dynamic" model such as the Generalized

Linear Model (GLM) already mentioned in section 1.2. Unlike the pairwise maxent model

which describes statically a given conditional or marginal response distribution, the GLM

models neural responses based on past stimulus values as well as past population responses,

and is used to simulate dynamically, time bin after time bin, neural responses to input

stimuli.

2.3.2.1 Model description

We introduced in section 1.2 a single neuron stimulus encoding model for retinal ganglion

cells, to illustrate the main characteristics of retinal responses. The independent model we

developed accounted for stimulus induced activity and past activity effects. To model noise

correlations, one as to account for how the past activity of all neurons in the population

impact the activity of each neuron. This can be done by extending the model detailed in Fig.

1.5 and defined in Eq. 1.6 by adding a set of couplings filters to the model [182, 135]. Let

Jij(τ) denote the coupling filter that accounts for the impact of cell j on cell i, and Jii(τ)

the self-coupling (or spike-history) filter that accounts for the cell’s own past effects (see

Fig. 2.3A for a schematic). We note R(t)
i the spike count variable of neuron i in time bin t

and νi(t) the parameter of the random (Poisson or Bernoulli) process that yields R(t)
i . As

seen in section 1.2, the neuron responds to a stimulus movie S, and its response function is

characterized by a spatio-temporal filterKi, a bias bi and a nonlinearity F . The extended
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population model is described by:

hi
stim(t) =

∑
τ

∑
x,y

Ki(x, y, τ)S(x, y, t− τ), (2.36)

hi
past(t) =

∑
i,j

∑
τ

Jij(τ)R
(t−τ)
j ∆t, (2.37)

νi(t) = F
(
bi + hi

stim(t) + hi
past(t)

)
. (2.38)

Once the parameters of the model fitted to the data, simulations of the GLM should

reproduce empirical cross-correlations. This approach has been shown to work well, in

particular for ON and OFF parasol ganglion cells from the primate retina [135] (see reprint

in Fig. 2.3B).
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Figure 2.3: Generalized Linear Models (GLM) to describe the collective behavior of sensory
neurons. A Schematic of the GLM, extended from Fig. 1.5. The activity of other cells in
the population is now linearly processed by a set of couplings filters that will correlate
neural variability across the system. B These couplings allow us to model the spikes
cross-correlograms of neural responses (adapted from [135]). This plot shows three cross-
correlograms for three example pairs of retinal ganglion cells from the rat retina. The first
plot corresponds to a pair of ON cells, the second to OFF cells, and the third to a pair
of ON and OFF cells. The uncoupled model (blue lines) captures only the part of cross-
correlations that correspond to stimulus induced correlations. The coupled model (red)
however, captures most of the remaining correlations in experimental data (black). These
remaining correlations correspond to noise correlations, which are thus well accounted for
by the coupled model.

We have seen in the last section that maximum entropy models have to be applied to

spiking data with bin size∆t larger than the typical timescale of cross-correlations in order

to integrate them effectively. By contrast, GLMs have to be used along with very small time

bins (a few milliseconds maximum) to accurately describe empirical cross-correlations. This
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is due to the fact that GLM couplings only account for the effect of past time bins on the

current one, resulting in the activity of two different cells to be conditionally independent

within the same time bin. To capture fast timed cross-correlations as the ones described

in section 1.4.2, the GLM must therefore be applied to data binned at a resolution much

higher than the latency of the fastest correlations present in the data.

2.3.2.2 Maximum likelihood estimation

The most common approach to fit the parameters of a GLM model is log-likelihood maxi-

mization. In the case of the GLM, we model the probability P (Ri | t) of observing response
Ri for neuron i at time t, given the past stimulus and the population response from the

empirical data. We note the empirical response of neuron i as {R(t)
i }t=1,T , where t desig-

nates the time bin index of the sample. Given the aforementioned model definition and

further assuming that the nonlinearity F is exponential and the noise process Poissonian,

the log-likelihood of the GLM for neuron i becomes:

log ℓi

(
{Jij(τ)}, {Ki(x, y, τ)}, {bi}; {R(t)

i }
)
=
∑
t

R
(t)
i log (νi(t))− νi(t)− log

(
R

(t)
i !
)
.

(2.39)

Maximization of the GLM log-likelihood is straightforward if the chosen nonlinearity F
is convex and log-concave, as in this case the log-likelihood function is concave [126] and

optimization can be done by gradient ascent. Gradients of the log-likelihood with respect

to the parameters of the model are given by:

∂ log ℓi
∂bi

=
∑
t

Ri(t)− νi(t), (2.40)

∂ log ℓi
∂Ki(x, y, τ)

=
∑
t

(Ri(t)− νi(t))S(x, y, t− τ), (2.41)

∂ log ℓi
∂Jij(τ)

=
∑
t

(Ri(t)− νi(t))Rj(t− τ). (2.42)

These gradients illustrate how the bias bi is here to enforce the mean spike count, while

the stimulus filter Ki promotes reproduction of stimulus driven activity and couplings Jij
enforce that of cross-correlations.

We need to note here that this inference approach has some important caveats, as

maximization of the above likelihood does not fully ensure reproduction of firing rates and

cross-correlations during simulation of the inferred model. This can happen because of

limitations of the model itself, for instance when stimulus-response relationships in the
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data are too complex or nonlinear to be captured by the simple point-wise nonlinearity of

the GLM. On top of this, as is shown by gradients Eq. 2.42, couplings enforce reproduction

of total cross-correlations, but not separately of noise and stimulus correlations. A potential

consequence of this limitation is that mismatch between predicted and empirical firing

rates, which leads in mismatch between predicted and empirical stimulus correlations, can

impact estimations of noise correlations. The model could use couplings to compensate for

firing rates mismatch and eventually recover total correlations.

Another intrinsic limitation that may interact with the two previous points has to do

with the fact that likelihood maximization is performed on the predicted Poisson parameter

νi(t) given in Eq. 2.38, where hi
past(t) is computed with response history from the data,

and not from response history predicted by simulation of the model. This can amplify the

mismatch between predicted firing rates and empirical ones, affect inferred coupling values

and eventually lead to ill-behaved simulations due to runaway population activity [61, 72,

130].

2.4 Conclusion

In this chapter, we laid the bases that will be used throughout the thesis to investigate the

structure of correlated activity in the retina, as well as its impact on stimulus information

encoding. We started by introducing precise definitions for pairwise signal and noise

correlations that will serve in the rest of this thesis to characterize the collective behavior of

retinal neurons. An overview of the literature showed that the effect of noise correlation on

stimulus encoding could be summarized through the "sign-rule". A local version of the sign-

rule, related to the Fisher information, suggested that noise correlations are detrimental

when they align noise to the signal. Considerations based on the Fisher information further

resulted in the conclusion that positive short range noise correlations are overall detrimental.

Similarly, we saw that theoretical work on the mutual information suggested that noise

correlations are detrimental when of the same sign than stimulus correlations, although

fluctuations in their value could encode information about the stimulus.

These results are at odds with observations made in many sensory systems such as the

retina or V1, where noise correlations tend to be strong and positive for cells that also have

similar stimulus tuning. To pin down and understand this contradiction, one would need to

relate directly the structure of signal and noise as measured by the quantities introduced

in the first part of this chapter to a global measure of the stimulus information carried by

neural responses. Doing so in the case of the mutual information is rendered difficult by
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the fact that this quantity relies on estimations of probability distributions, which hinders

greatly interpretability and straightforward application to data.

One of the main results of this thesis is the derivation of a mutual information approxi-

mation that is not only straightforward to apply to data, but most importantly provides an

interpretable picture of the effects of noise and stimulus correlations on sensory coding. To

develop, test and apply this approach, we relied and built on computational tools that we

described in the last section of this chapter. Generalized Linear Models were used to model

the population activity of retinal ganglion cells, and to perform synthetic experiments by

simulating their responses. Maximum entropy models were used to describe (marginal and

stimulus conditional) response distributions from experimental recordings of ganglion cells

populations and compute efficiently from data information theoretic quantities such as the

mutual information. In particular, the small-correlation approximate inference approach

for maximum entropy models described previously served as the basis for the mutual

information approximation we developed.

The next three chapters of this manuscript consist of articles that were written in the

context of this thesis project. In the first article, we develop a new inference approach for

Generalized Linear Models that palliates to some limitations of their classical inference

approach and allows us to describe accurately the collective behavior of ganglion cells

populations. In the second article, we detail the derivation of a small correlation approxima-

tion for the mutual information that yields both accurate estimates of information and an

interpretable picture of the impact of noise correlations on stimulus encoding by sensory

neurons. In the last paper (in preparation for submission), we delve on the implications of

the picture derived from the mutual information approximation and showcase the different

regimes in which noise correlations benefit stimulus encoding both in data and synthetic

experiments.
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Chapter 3

A new inference approach for training
shallow and deep generalized linear
models of noisy interacting neurons

A preliminary step to study how neural populations encode stimulus information in their

collective activity often consists in building models of the population response to the

encoded stimulus. Ideally, such models should allow us to understand how collective neural

activity emerges from the different sources that shape its structure. As we have seen in two

previous chapters, there are two main sources to the collective behavior of sensory neurons:

on the one hand, incoming stimuli and sensory computations correlate neural responses

across the population but also across time, inducing what are often called stimulus or

signal correlations. On the other hand, the neural noise that arise from unreliable biological

processes in the system such as noisy synaptic release is also correlated across network

and time due to direct neural interactions between cells and shared inputs from upstream

neurons.

A successful approach to model the collective behavior of sensory neurons, and in

particular of retinal ganglion cells has been to use Generalized Linear Models (GLM) [135,

149]. However, the GLM seem to suffer from several limitations: a first well known problem

of the GLM is that it is subject to very unnatural runaway activity transients [130, 72, 61]

that limit its applicability. A second limitation of the GLM, is the fact that its inference via

likelihood maximization does not disentangle stimulus and noise correlations. This can

result in models that accurately predict total correlations, but not separately stimulus and

noise correlations, as well as to models that do not generalize well to new stimuli not used

in the training set.
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In this chapter, we introduce a new inference approach for the GLM that yields models

that capture separately accurately stimulus and noise correlations, and that do not exhibit

runaway activity transients. The inference approach is compared to the results given by

the classical log-likelihood maximization approach and applied to electrophysiological data

from the rat retina. The integrality of the chapter that is reproduced below is a strict version

of record of an article published previously as:

Gabriel Mahuas, Giulio Isacchini, Olivier Marre, Ulisse Ferrari, and Thierry Mora. “A

new inference approach for training shallow and deep generalized linear models of noisy in-

teracting neurons”. In: Advances in neural information processing systems 33 (2020), pp. 5070–

5080
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Abstract. Generalized linear models are one of the most efficient paradigms for predicting

the correlated stochastic activity of neuronal networks in response to external stimuli, with

applications in many brain areas. However, when dealing with complex stimuli, the inferred

coupling parameters often do not generalize across different stimulus statistics, leading

to degraded performance and blowup instabilities. Here, we develop a two-step inference

strategy that allows us to train robust generalized linear models of interacting neurons, by

explicitly separating the effects of correlations in the stimulus from network interactions

in each training step. Applying this approach to the responses of retinal ganglion cells to

complex visual stimuli, we show that, compared to classical methods, the models trained in

this way exhibit improved performance, are more stable, yield robust interaction networks,

and generalize well across complex visual statistics. The method can be extended to deep

convolutional neural networks, leading to models with high predictive accuracy for both

the neuron firing rates and their correlations.

3.1 Introduction

The pioneering work of J.W. Pillow and colleagues [135] showed how the Generalized Linear

Model (GLM) can be used for predicting the stochastic response of neurons to external

stimuli. Thanks to its versatility [191], high performance, and easy inference, the GLM

has become one of the reference models in computational neuroscience. Nowadays, its

applications range from retinal ganglion cells [135], to neurons in the LGN [9], visual [88],

motor [182], parietal [131] cortices, as well as other brain regions [151, 144]. However, the

GLM has also shown some significant limitations that has prevented its application to an

even wider spectrum of contexts. In particular, the GLM shows unsatisfying performance

when applied to the response to complex stimuli with spatio-temporal correlations much

stronger than white noise, as for example naturalistic images [110] or videos [71].

A first limitation is that the inferred parameters depend on the stimulus used for training.

This happens not only for the part of the model that deals with the external stimulus, which

typically suffers a change in the stimulus statistics, but also for the couplings parameters

quantifying interactions between the neurons of the network. However, if these couplings

are to reflect an underlying network of biological interactions, they should be stimulus

independent. In addition, and as we show in this paper, this lack of generalizability comes

with errors in the prediction of correlated noise between neurons. This issue can strongly

limit the application of GLM for unveiling direct synaptic connections between the recorded

neurons [85] and for estimating the impact of noise correlations in information transmission

[135].
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A second issue is that the GLM can be subject to uncontrollable and unnatural self-

excitation transients [130, 72, 61]. During these strong and positive feedback loops, the

network’s past activity may drive its current state to excitations above naturalistic levels, in

turn activating neurons in subsequent time steps and resulting in a transient of very high,

unrealistic activity. This problem limits the use of the GLM as a generative model—it is often

necessary to remove those self-excitation runs by hand. Ref. [130] proposed an extension of

the GLM that also includes quadratic terms limiting self-excitations of the network, but this

comes at the price of more fitting parameters and harder inference. Ref. [72] showed that a

GLM that predicts the responses several time-steps ahead in time [140] limits self-excitation,

but this implies higher computational complexity and the risk of missing fine temporal

structures. Alternatively, Ref. [61] proposed an approximation to estimate the stability of

the inferred GLM model, and then used a stability criterion to constrain the parameter

space over stable models. However the resulting models are sub-optimal, with degraded

performance.

Thirdly, because neuronal responses are highly non-linear and hard to model for complex

stimuli, the GLM fails to predict those responses correctly, even for early visual areas such

as the retina [71]. Recently deep convolutional neural networks (CNNs) have been shown

to outperform the GLM at predicting individual neuron mean responses [110, 29, 171, 30].

Compared to the GLM, these deep CNNs benefit from a more flexible and richer

network architecture allowing for strong performance improvements [110]. However, the

GLM retains an advantage over CNNs: thanks to the couplings between neurons in the

same layer, it can account for both shared noise across the population and self-inhibition

due to refractoriness. This feature, which is missing from deep CNNs [110], can be used

to study how noise correlated in space and time impacts the population response [135].

A joint model combining the benefits of the deep architecture of CNNs and the neuronal

couplings of the GLM is still lacking. It would allow for a more detailed description of the

neuronal response to stimulus.

In this paper we develop a two-step inference strategy for theGLM that solves these three

issues. We apply it to recordings in the rat retina subject to different visual stimulations. The

main idea is to use the responses to a repeated stimulus to infer the GLM couplings without

including the stimulus processing component. Then, in a second, independent step, we infer

the parameters of the model pertaining to stimulus processing. Our approach allows for a

wide variety of architectures, including deep CNNs. Finally, we introduce an approximation

scheme to put together the two inference results into a single model that can predict the

joint network response from the stimulus. All codes and data for the algorithms presented

in this paper are available at https://github.com/gmahuas/2stepGLM.
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3.2 Recordings

Retinal ganglion cells of a long-evans rat were recorded through a multi-electrode array

experiment [103, 40] and spike-sorted with SpyKING CIRCUS [196]. Cell activity was

stimulated with one unrepeated and two repeated videos of checkerboard (white-noise)

and moving bars. For the checkerboard, we used the unrepeated (1350s) and one of the

two repeated videos (996s in total for 120 repetitions) for training, and the second repeated

video for testing (756s in total for 120 repetitions). Similarly, for the moving bars video

we used the unrepeated (1750s) and one of the two repeated videos (165s in total for 50

repetitions) for training, and the second repeated video for testing (330s in total for 50

repetitions). In addition, we also recorded responses from a full-field movie with naturalistic

statistics [40].

After sorting, we applied a spike-triggered average analysis to locate the receptive fields

of each cell. Then, we used the response to full-field stimulation to cluster cells into different

cell-types. In this work we focus on a population ofN = 25OFF Alpha retinal ganglion cells,

which tile the visual field through a regular mosaic. The responses to both checkerboard

and moving bars stimulations showed strong correlations, which we decompose into the

sum of stimulus and noise correlations. Stimulus correlations are correlations between the

cell mean responses (Peristimulus time histogram or PSTH). They are large only for the

bars video, mostly because the video itself has strong and long-ranged correlations. Noise

correlations, on the other hand, are due to shared noise from upstream neurons and gap

junctions between cells in the same layer [25], and mostly reflect the architecture of the

underlying biological network. Consistently, noise correlations were similar in the response

of the two stimulations. In Suppl. sect. S1 we present additional statistics of the data.

3.3 Generalized linear model

In our Poisson GLM framework, ni(t), the number of spikes emitted by cell i in the time-bin t

of duration dt = 1.67ms, follows a Poisson distributionwithmean λi(t): ni(t) ∼ Pois(λi(t)).

The vector of the cells’ firing rate {λi(t)}Ni=1, with N = 25 is then estimated as

λi(t) = exp
{
hi
offset + hi

stim(t) + hi
int(t)

}
, (3.1)
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where hi
offset accounts for the cell’s baseline firing rate and where

hi
int(t) =

∑
j

∑
τ>0

Jij(τ)n
j(t− τ) (3.2)

accounts for both past firing history of cell i itself and the contribution coming from all

other cells in the network: Jii are the spike-history filters, whereas Ji ̸=j are coupling filters.

Both integrate the past up to 40ms. hi
stim(t) is a contribution accounting for stimulus drives,

which takes the form of a linear spatio-temporal convolution in the classical GLM:

hi
stim(t) =

∑
τ>0

∑
xy

Kx,y(τ)Sx,y(t− τ) , (3.3)

where Sx,y(t) is the stimulus movie at time t, {x, y} being the pixel coordinates andKx,y(τ)

is a linear filter that integrates the past up to 500 ms. Later in the paper, we will go beyond

this classical architecture and will allow for deep, non-linear architectures.

In order to regularize couplings and spike-history filters during the inferences, we

projected their temporal part over a raised cosine basis [135] of 4 and 7 elements respectively,

and added an L1-regularization = 0.1, which we kept the same for all the inferences. In

addition, we imposed an absolute refractory period of τ irefr time-bins (calculated from the

training set) during simulations and consequently the Jii(τ) were set to zero for τ ≤ τ irefr. In

order to lower its dimension, the temporal behavior of stimulus filterKx,y(τ) was projected

on a raised cosine basis with 10 element. In addition we included an L1 regularization over

the basis weights and a L2 regularization over the spatial Laplacian to induce smoothness.

All the inferences were done by log-likelihood (log-ℓ) maximization with Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method, using the empirical past spike activity during

training [135]. For easy comparison, all the performances discussed below are summarized

in Table 3.1.

3.4 Failure of GLM for complex stimuli

We inferred the GLM by whole log-ℓ maximization from both the response to the checker-

board and moving bars non-repeated stimulations, and then simulated its response to the

repeated videos (Fig. 3.1). Consistent with [135], in the case of the checkerboard stimulus,

the model can predict with high accuracy the PSTH of all cells (Fig. 3.1A, mean Pearson’s

ρ = 0.82 ± 0.05 std). It also reproduces the values of the zero-lag (17 ms window) noise

correlations for all cell pairs (Fig. 3.1B, coefficient of determination CoD= 0.94, computed as
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Figure 3.1: GLM fails to predict noise correlations in the presence of strong stimulus
correlations. A) PSTH prediction for the response of an example cell to checkerboard
stimulation. Inset: histogram of the model performance (Pearson correlation between
empirical and model PSTH) for all cells in the population. B) Empirical and model predicted
noise correlations versus distance between the cells. Inset: scatterplot. C) Empirical and
model predicted noise cross-correlation between a nearby and a distant example cells.
D,E,F) same as A,B,C, but for the response to moving bars stimulation. Note that the model
overestimates noise correlations between certain pairs of distant cells. G) Error in the
prediction of noise correlations normalized over their empirical value versus the empirical
value of stimulus correlations. H) Population firing rate in time during model simulations
of the responses to the moving bars stimulus. Note the transient of unnatural high activity
due to self-excitation within the model.
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1− var(error)/var(data)), and the temporal structure of noise cross-correlations (Fig. 3.1C).

The model performance is very degraded for the moving bars video—a stimulus charac-

terised by long-range correlations. The model reproduces the empirical PSTH with rather

good accuracy (Fig. 3.1D, ρ = 0.71 ± 0.10 std) and shows fair overall accuracy on the

noise correlations (Fig. 3.1E, CoD= 0.55). However it overestimates the value of the noise

correlation for certain distant cell pairs (Fig. 3.1E&F). A closer look reveals that the model

overestimates noise correlations for pairs of cells that are strongly stimulus-correlated

(Fig. 3.1G). Here the error in the estimates is normalized over the empirical value of the

noise correlations with a cut-off at three standard deviations. Interestingly, the effect is

strong only for the moving bars video, as stimulus correlations are small for checkerboard

stimulation. These results show that the inferred couplings of the GLM do not depend only

on the correlated noise among the neurons, but can also be influenced by stimulus correla-

tions. This prevents the inferred couplings from generalizing across stimuli. In addition,

we observed several self-excitation transients when simulating the GLM inferred from the

moving-bars stimulus (10% of the time, in 36% of the repetitions, Fig.3.1H, versus 0% for

the model inferred from the checkerboard stimulus). This effect is probably the consequence

of the over-estimation of those cell-to-cell couplings in the moving-bars stimulus, which

drive the over-excitation of the network.

All these issues can be ascribed to the fact that by maximising the whole log-ℓ over all

the parameters simultaneously, the GLM mixes the impact of stimulus correlations with

neuronal past activity. In the next section we develop an inference strategy that disentangles

stimulus from noise correlations and infer their parameters independently.

3.5 A two-step inference approach

In order to disentangle the inference of the couplings between neurons from that of the

stimulus filters, we split the model training into two independent steps. We name this

approach “two-step” inference (Fig. 3.2).

Coupling inference. We run a log-ℓ maximization inference over the response to a

repeated video stimulation. Instead of inferring the parameters of a stimulus filter (Kx,y(τ)

in Eq. 3.3), we treat the terms hi
stim(t) of Eq. 3.1 as auxiliary parameters that we infer directly

from data (Fig. 3.2B). The log-ℓ derivative over these parameters is proportional to the

difference between empirical and model-predicted PSTH. As a consequence, thanks to the

repeated data, the addition of these parameters allows for enforcing the value of the PSTH

exactly when the corresponding log-ℓ gradient vanishes. In this way, stimulus correlations
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Figure 3.2: Two-step inference of couplings and spike-history filters. A) Whole log-ℓ
maximization [135] trains couplings and spike-history filters together with the stimulus
filter. B) Two-step inference trains couplings filters and stimulus filters by running two
independent log-ℓ maximizations. Top: we remove coupling filters and infer the equivalent
of an LNP model for each cell. Bottom: we run an inference over repeated data where we
add auxiliary variables (instead of the stimulus filter) to exactly enforce the PSTH prediction.
C) We build together the model by using the previously inferred parameters. A correction
needs to be added (not shown, see text).

are perfectly accounted for, and the couplings only reflect correlated noise between neurons.

As for the GLM inferred with whole log-ℓ maximization, we imposed an absolute refractory

period of τ irefr time-bins and thus set Jii(τ) to zero for τ ≤ τ irefr.

Filter inference. We run the inference of a GLM model without the couplings between

neurons or with themselves (spike-history filter) using the responses to the unrepeated

stimulus (single-neuron linear-nonlinear Poisson (LNP)models [31], Fig. 3.2B). This inference

allows us to predict the mean firing rate λi of each neuron.

Full model. Once couplings and stimulus filters are inferred, we can combine them

to build up the full model (Fig. 3.2C). This cannot be done straightforwardly because the

addition of the couplings will change the firing rate prediction of LNP model. As the average

contribution of interactions on the activity of the cells were not taken into account during

the inference of the stimulus model, we need to correct for this effect.

To do so, we subtract the mean contribution of the coupling term: hi
int(t) → hi

int(t)−
⟨hi

int(t)⟩noise∼Pois. This correction is equivalent to modify Eq. 3.2 into∑
j

∑
τ>0

Jij(τ)n
j(t− τ) →

∑
j

∑
τ>0

Jij(τ)
(
nj(t− τ)− λi(t− τ)

)
. (3.4)

Lastly, in order to account for the addition of absolute refractory periods, we added a term∑τ irefr
τ=1 λ

i(t − τ) for each neurons (Suppl. Sect. S2). To compute all the corrections, we

therefore only need the past firing rates λi(t) of all neurons in the absence of the couplings,
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which are given by the LNP model predictions. This allows the full model to predict the

neuronal response to unseen (testing) data.

Note that this last correction is only an approximation. An exact alternative would

be to perform the inference of the GLM stimulus filters as before, but in the presence of

coupling filters fixed to the values inferred in the first step. Applying this approach to our

data brought no improvement in terms of model accuracy, at the cost of more complex and

time-consuming inferences.

Figure 3.3: Two-step inference retrieves noise correlations independently of the
strong stimulus correlations in the moving bars video. A) PSTH prediction for an
example cell. Inset: histogram of the model performance for all cells. B) Empirical and
model-predicted noise correlations versus distance between the cells. Inset: scatterplot. C)
Empirical and model predicted noise cross-correlation between example pairs of nearby and
distant cells. D) Normalized error in the prediction of noise correlations plotted versus the
empirical value of the stimulus correlations. E) Population activity during model simulation
shows no self-excitation transients.

We first applied our two-step inference to the response to checkerboard stimulation

and obtained very similar results to whole log-ℓ maximization (Table 3.1). By constrast,

performance was improved in the case of the moving bars stimulus (Fig. 3.3). The two

inference approaches yielded similar performances for the PSTH (Fig. 3.3A, ρ = 0.72± 0.10

std, versus ρ = 0.71 ± 0.10 std), but for noise correlations we obtained much better

results (Fig. 3.3B, CoD= 0.91, versus CoD= 0.55). In particular, the model avoids the

overestimation the noise correlations for distant pairs (Fig. 3.3B&C) that we obtained with

whole log-ℓ maximization (Fig. 3.1E&F). With the two-step inference, the strong stimulus
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correlations of the moving bars video do not affect the model inference as was the case

for whole log-ℓ maximization (Fig. 3.3D). In addition the model is much more stable, and

we never observed self-excitation for either stimulus when simulating the model (Fig.3.3E,

versus 10% of the time, Fig. 3.1H). In Table 3.1 we report all the performance for the different

cases.

3.6 Two-step inference allows for generalizing across
stimuli

Figure 3.4: Two-step inference allows for generalizing across stimulus ensembles
A,B,C,D) Simulation of the checkerboard responses for a model where stimulus filters were
inferred from the response to checkerboard, and couplings filter were inferred from the
moving bars data with our two-step inference. A) PSTH predictions. B) Noise correlations.
C) Noise cross-correlation. D) Population activity showed no self-excitation transients E)
Simulation of checkerboard responses when couplings filters are those inferred frommoving
bars data with whole log-ℓ maximization. The model shows self-excitation during all runs.

So far we have shown how our two-step approach can disentangle the inference of

neuronal couplings from stimulus correlations. If these couplings are only due to network

effects, one should expect them to generalize across stimulus conditions. To test for this,

we run model simulations of one stimulus using its stimulus filter and the coupling filters

inferred from the other. For the checkerboard movie (Fig. 3.4), and compared to the case

where couplings are inferred on the same stimulus, with our two-step inference we obtained
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performances that are almost equal for the PSTH (ρ = 0.81±0.05 std, versus ρ = 0.81±0.05

std) and rather good for noise correlations (CoD= 0.84, versus CoD= 0.95). In addition, we

never observed self-excitation (Fig. 3.4D). By contrast, when we used the couplings inferred

by whole log-ℓ maximization, self-excitation happens so often (93% of the time in 100% of

the repetitions) that we were not able to estimate the model performance (Fig. 3.4E).

For the moving bars video (Fig. S2), our two-step inference yielded performances similar

to the case where couplings were inferred on the same stimulus (Table 3.1). Using the

couplings inferred by whole log-ℓ maximization instead, the model performance decreased

for the PSTH (ρ = 0.65 ± 0.12 std, versus ρ = 0.71 ± 0.10 std), and improved for noise

correlations (CoD= 0.80, versus CoD= 0.55). In conclusion, two-step outperforms whole

log-ℓ maximization on both stimuli (Table 3.1).

3.7 Deep GLM outperforms previous approaches

Figure 3.5: Deep CNN can be included in our two-step approach to improve model
performance A) Architecture of our deep, time-distributed CNN. B) PSTH prediction for
the response of an example cell to checkerboard stimulation. Inset: histogram of model
performance for all cells. C) Empirical andmodel predicted noise correlations versus distance
between cells. Inset: scatterplot.

Our two-step inference decomposes the model training into two independent com-

ponents, one for the stimulus processing and one for network effects. In the previous

experiments we still used a linear convolution to process the stimulus, but thanks to this

decomposition, we can also consider any machine capable of predicting the neurons firing

rates {λi(t)}Ni=1. In order to predict the response to checkerboard stimulation with higher

accuracy, we inferred a deep, time-distributed CNN, a special case of CNNs [110] with the

additional constraint that the weights of the convolutional layers are shared in time [32]. In

our architecture, two time-distributed convolutional layers are followed by a max-pooling

and eventually by two dense layers that output the firing rate λi(t) (Fig. 3.5A, see supple-
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Checkerboard stimulus Moving bars stimulus

PSTH noise-corr. self-exc. PSTH noise-corr. self-exc.

whole log-ℓ
maximiza-
tion

0.82± 0.05 0.94 0% 0.71± 0.10 0.55 10%

two-step
approach

0.81± 0.05 0.95 0% 0.72± 0.10 0.91 0%

coupl. ex-
change max
logℓ

unstable unstable 93% 0.65± 0.12 0.80 0%

coupl. ex-
change two-
step

0.81± 0.05 0.84 0% 0.73± 0.09 0.91 0%

CNN 0.87± 0.04 0.93 0% — — —

Table 3.1: Model performance for different inference approaches. We computed
Pearson’s correlation coefficients between empirical and model predicted firing rate (PSTH).
For noise correlations, we estimated the CoD between model predictions and data. The
third and forth rows refer to simulations that use the coupling filters inferred from the
other stimulus.

mentary section 4 for more details). After training, we included the model in our two-step

inference to build a model with both a deep architecture for the stimulus component, and a

network of coupling filters.

The model shows higher performance in predicting the PSTH: ρ = 0.87 ± 0.04 std,

versus ρ = 0.82± 0.05 std and ρ = 0.81± 0.05 std, when compared to our previous models

(Fig. .3.5B). In addition, the model was capable of predicting noise correlations with high

accuracy (Fig. .3.5C, CoD= 0.93, versus CoD= 0.94 and CoD = 0.95). We also did not

observe any self-excitation transient. In summary, the model combines the benefits of deep

networks with those of the GLM with its neuronal couplings.

We summarise all the different model performances in Table 3.1.

3.8 Discussion

In this work we have studied the application of the GLM to the case of retinal ganglion

cells subject to complex visual stimulation with strong correlations. We have shown how

whole log-ℓ maximization over all model parameters leads to inferring erroneous coupling
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filters that reflect stimulus correlations (Fig. 3.1G). This effect introduces spurious noise

correlations when the model is simulated (Fig. 3.1E&F), prevents its generalization from one

stimulus ensemble to another (Fig. 3.4E), and increases the chance of having self-excitation

in the network dynamics (Fig. 3.1G). This last issue poses a major problem when the GLM

is used as a generative model for simulating spiking activity.

To solve these issues we have proposed a two-step algorithm for inferring the GLM that

takes advantage of repeated data to disentangle the stimulus processing component from

the coupling network. A similar approach has been proposed in the context of maximum

entropy models [64, 51], and here we have fully developed it for the GLM. Our method

prevents the rise of large couplings reflecting strong stimulus correlations (Fig. 3.3D). The

absence of these couplings lowers the probability of observing self-excitation (Fig. 3.3E) and

the inferred GLM does not predict spurious noise correlations (Fig. 3.3B&C). In addition,

with our two-step inference the couplings are robust to a change of stimulus, and allows

for generalizations (Fig. 3.4). In particular we showed that a model with the stimulus

filter inferred from checkerboard data but couplings inferred from moving bars stimulation

predicts with high accuracy the response to checkerboard.

The strongest drawback of using our method is the requirement of repeated data, which

are not necessary for whole log-ℓ maximization of GLM. This may limit the application

of our inference approach. However we emphasize that only 165s of repeated data were

needed for inferring the couplings. In addition, another possibility that deserves to be tested

is the use of spontaneous activity instead of repeated stimuli. For the retina, this activity

can be recorded while the tissue is exposed to a static full-field image (blank stimulus).

However, as spontaneous activity is usually very low, these recordings need to be long

enough to measure correlations with high precision.

Another important contribution of our work is the possibility to easily include deep

CNNs into the GLM to increase its predicting power. Deep CNNs represent today one of

the best options for modelling and predicting the mean response of sensory neurons to

complex stimuli such as naturalistic ones [110, 29, 171, 30], and architectures based on deep

CNNs expanded with recurrence are therefore of great interest for studying the neural

dynamic of sensory systems [119]. However, building a deep network that take as input

both stimulus and the past activity of the neural population can be very challenging, as it

implies dealing with very heterogeneous inputs. Our framework solves this problem by

separating the CNN inference from that of coupling and spike-history filters, and can thus

be easily added on an already inferred CNN.

The GLM has been used to estimate the impact of correlated noise on information
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transmission, but mostly for stimuli with low complexity [135, 57]. Future works can

apply our method to model the responses to complex stimulations and study its impact on

stimulus encoding.

Broader Impact

In this work we present a computational advance to improve the inference and performance

of the GLM. As the GLM is one of the most used models in computational neuroscience, we

believe that many researchers can benefit from this work to advance in their investigations.

The fight against blindness, which affects about 45 millions people worldwide, is one of such

possible applications. Retinal prostheses, where an array of stimulating electrodes is used

to evoke activity in neurons, are a promising solution currently under clinical investigation.

A central challenge for such implants is to improve the information that is sent to the brain.

A central challenge for retinal implants is thus to mimic the computations carried out by a

healthy retina to optimize information sent to the brain. Modeling retinal processing could

thus help optimize vision restoration strategies in the long term [53].

We believe that no one will be put at disadvantage from this research, that there are

no consequences of failure of the system. Biases in the data do not apply to the present

context.
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Figure S1: Stimulus and noise correlation in the retinal response A)Mosaic forN = 25
OFF alpha cells. B) Scatterplot of total pairwise correlation between the spiking activity
in response to checkerboard and moving bars video. C) Total pairwise correlation versus
cell distance D) Stimulus correlation versus cell distance E) Noise correlation versus cell
distance

Responses to checkerboard and moving bars stimuli show different correlation patterns

(Fig. S1). The moving bars video induces much stronger and long-ranged stimulus cor-

relations, especially for certain pairs of distant cells. On the contrary, noise correlations

decrease smoothly with distance and are of similar magnitude in the two datasets.

S2 Correction for the absolute refractory period

As explained in the main text, when we add the two-step coupling filters to the LNP model,

we need to correct the hi
int by its mean, Eq.3.4. However this correction does not take into

account the addition of an absolute refractory period. In fact, if we start with an LNP

model with rate λ(t), and we prevent the cell to spike if it has spiked in the previous τ irefr
time-bins during simulations, then the model rate will become a random variable itself with

an average lower than λ(t). In order to correct for this effect, we need first to quantify the
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mean of n(t), the spike-count at time t:

E (n(t) ) = E

(
n(t) ∼ Pois(λ(t))

∣∣∣ ∑
τ

n(t− τ) = 0

)

= E
(
n(t) ∼ Pois(λ(t))

)
Prob

(∑
τ

n(t− τ) = 0

)
≈ E

(
n(t) ∼ Pois(λ(t))

) ∏
τ

Prob (n(t− τ) = 0 )

= λ(t)
∏
τ

exp{−λ(t− τ)} (3.5)

where the approximation is valid under the hypothesis of small λ. By taking the log of

Eq. 3.5, we obtain the correction term
∑

τ λ(t− τ) that needs to be added to hint(t) in order

to correct for the addition of the absolute refractory period.

S3 Generalization results for moving bars stimulus

S4 Time Distributed Convolutional Neural Network

In section 3.7 we introduce the constrained architecture of Time Distributed Convolutional

Neural Networks. In order to exploit the information in the 2D spatial structure of the

data we use two convolutional layers, as it is successfully done in [110], with kernels of 8x8

and 5x5 size and two feature channels each. A MaxPooling layer of pool size 2x2 is then

subsequently applied to complete the spatial computation of the network. We additionally

impose a Time Distributed architecture [32], i.e. the independent application of the same

spatial computation to each time slice of the input, as can be seen Fig. 3.5. Each temporal

slice of the input is compressed though the convolutional part of the network to two real

numbers. Subsequently the temporal information is combined through a dense layer of 100

units with softplus activation function. A Dropout layer is additionally implemented before

the last layer in order to enforce regularisation.

This architecture reduces the number of parameters to ≈ 3000. Each model is trained for

30 epochs using the Adam optimiser on batches of 200 samples. A validation set was used

to monitor the inference.
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Figure S2: Generalization results for moving bars stimulus Simulation of the moving
bars responses for a model where stimulus filters were inferred from the response to moving
bars and couplings filter were inferred from the checkerboard data (opposite of Fig. 3.4)
with whole log-ℓ maximization (A,B,C) and with our two-step inference (D,E,F). A,D) PSTH
predictions. B,E) Noise correlations. C,F) Noise cross-correlation.
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Chapter 4

A small-correlation expansion to
quantify information in noisy sensory
systems

As we have seen in the introductory chapters to this thesis, investigating how sensory

neurons encode stimuli into their population response requires being able to relate the

structure of collective neural activity to a measure of the information carried by neural

responses about the visual stimulus. Further, we have discussed how the collective behavior

of neural responses originates from both the structures of neural noise and stimulus induced

activity (i.e. neural signal). Has we have further seen in chapter 1, the contributions of noise

and signal to the collective activity of sensory neurons can be described to some extent by

pairwise noise and signal correlations that can be estimated directly from data.

A theoretically grounded way to estimate the information neural responses carry about

the stimulus consists in calculating the mutual information between stimulus and response.

However, the mutual information is notoriously difficult to evaluate accurately from limited

experimental data as it requires estimating the high-dimensional probability distributions

that describe neural responses. A way to circumvent this issue consists in building models of

response distributions, fit them to experimental data and use them to estimate information

theoretic quantities such as the mutual information. A successful approach that has been

applied to model the collective activity of many sensory systems is the maximum entropy

approach. Pairwise maximum entropy models as introduced in chapter 2 are the least

structured (and thus maximally agnostic) models that reproduce means and covariances

from the data they are fit to.

In this chapter, we propose an analytical approach that bridges the gap between empir-

ical measures of pairwise neural correlations and mutual information between stimulus
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and response. The approach relies on the use of a small-correlation expansion [155] that

was originally developed as an approximate inference approach for pairwise maximum

entropy models. Here, we use it to express the entropies of neural response distributions in

terms of their correlations, and find an approximation of the mutual information between

stimulus and responses expressed in terms of these correlations. We validate the approach

on synthetic data generated by a biologically inspired Generalized Linear Model of 12

RGC-like neurons and show that it provides accurate measures of mutual information even

under significant stimulus and noise correlation strengths. We then apply the approach on

retinal data to assess the effect on sensory coding of noise correlations between neurons

as well as that of refractory effects (noise correlations across time) in single neurons. The

integrality of the chapter below is a strict version of record of an article published previously

as:

Gabriel Mahuas, Olivier Marre, Thierry Mora, and Ulisse Ferrari. “Small-correlation

expansion to quantify information in noisy sensory systems”. In: Physical Review E 108.2

(2023), p. 024406
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Abstract. Neural networks encode information through their collective spiking activity in

response to external stimuli. This population response is noisy and strongly correlated, with

complex interplay between correlations induced by the stimulus, and correlations caused

by shared noise. Understanding how these correlations affect information transmission has

so far been limited to pairs or small groups of neurons, because the curse of dimensionality

impedes the evaluation of mutual information in larger populations. Here we develop

a small-correlation expansion to compute the stimulus information carried by a large

population of neurons, yielding interpretable analytical expressions in terms of the neurons’

firing rates and pairwise correlations. We validate the approximation on synthetic data

and demonstrate its applicability to electrophysiological recordings in the vertebrate retina,

allowing us to quantify the effects of noise correlations between neurons and of memory in

single neurons.

4.1 Introduction

Networks of neurons from sensory systems are characterized by strong correlations that

shape their collective response to stimuli [25, 153, 97, 87, 138, 57]. These correlations have

two sources [25]: stimulus correlations, which originate from shared or correlated stimuli

that affect the mean activities of different neurons in a concerted way; and noise correlations,

which stem from network interactions that couple noise across cells. These two sources of

correlations impact how well the population encodes stimulus information, and detailed

investigations have explored this effect both experimentally [138, 57, 135, 149, 70] and

theoretically [199, 1, 129, 137, 166, 45, 75], showing a wide variety of scenarios in which

noise correlations could either hurt or improve information transmission (see [8] for a recent

review).

While geometric arguments about the structure of stimulus and noise correlations can

help interpret and evaluate the impact of their interplay on information transmission for

pairs or small groups of cells [75, 8], specific challenges arise when dealing with large

populations of cells. A common way to quantify these effects is by computing the mutual

information between the stimulus and the activity of the whole population. However, at-

tempts at quantifying this information are inherently limited by the curse of dimensionality,

whereby the size of the state space to be sampled grows exponentially with the system’s

size. Models based on the principle of maximum entropy have been proposed to build

explicit probabilistic models of the collective activity of many neurons, based on mean spike

rates and correlation functions [153, 173, 177, 158, 174, 54]. These distributions map onto

known models of statistical mechanics, and can be used to evaluate entropies as well as
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mutual informations.

In this paper, we leverage these techniques from statistical physics to compute the

information of experimental spike trains using a small correlation expansion [155]. We show

on synthetic data that this approach outperforms previous approximations of the mutual

information and is computationally efficient. The resulting formulas are expressed as simple

functions of the experimental observables, yielding an intuitive picture of how correlations

affect information encoding in sensory systems beyond the previously discussed “sign rule”

[75], which states that noise correlations are beneficial when of opposite sign to stimulus

correlations. We apply our formulas to real electrophysiological recordings from the retina,

to illustrate how it can be used to quantify the effect of noise correlations between neurons

and across time.

4.2 Small correlation expansion of the mutual informa-
tion

The collective response of a neural network of size N can be described by the neuronal

activities n = (n1, . . . , nN), taking value 0 or 1 depending on whether the neuron spikes or

not within a short time window ∆t (typically 10 – 20 ms). In general, because of processing

delays and adaptation, the response is a stochastic function P (n|s) of the history of the

stimulus s up to the response. Themutual information I(n, s) quantifies the amount of infor-

mation conveyed by the neural response about the stimulus [156, 197]. Since it is expressed

as a difference of entropies I = H[n]− ⟨H[n|s]⟩s, where H[x] = −
∑

x P (x) lnP (x), its

quantification requires good entropy estimators. Direct estimation methods from data exist,

and can be applied for relatively small groups of neurons [170]. However, the estimation

problem quickly becomes intractable as the number of neurons increases and the size of

the response space grows exponentially. To deal with large networks, we thus developed

a method based on a small correlation expansion of entropies [155], which allows us to

express them as analytical functions of the empirical correlations.

We start by assuming that both P (n) and P (n|s) follow the form of maximum entropy

models consistent with empirical pairwise covariances and spike rates. Later we will discuss

the limitations of this assumption. The total covariance between two cells i and j across

stimuli, Cij ≡ Cov(ni, nj), can be decomposed into two contributions corresponding to

the effects of stimulus and noise: Cij = Cs
ij + ⟨Cn

ij(s)⟩s, with Cs
ij ≡ Covs(⟨ni⟩ni|s, ⟨nj⟩nj |s),

Cn
ij(s) ≡ Cov(ni, nj|s), which can be computed from the response to repeated presentations

of the same stimulus. Likewise, the Pearson correlation coefficient ρtotij ≡ Cij/
√

CiiCjj
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Figure 4.1: How correlations affect information. A) Visual stimuli drive the noisy
response of sensory neurons (spikes, represented by vertical ticks). ρnij(s) is the pairwise
Pearson correlation between the activities of cells i and j in a short window∆t, conditioned
on past stimuli s. The total Pearson correlation, ρtot, can be decomposed into stimulus and
noise contributions, rs and rn. B) Small-correlation expansion of the mutual information I
and synergy ∆I = I − ICI between stimulus s and response n, based on [155]. ICI is the
information in absence of noise correlations. In the diagrams each line corresponds to a
correlation term; double lines are sums of two correlations; multiple lines connecting the
same two points are multiplied.
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can also be decomposed into stimulus- and noise-induced contributions: ρtotij = rsij + rnij

(Fig. 4.1A), with rsij ≡ Cs
ij/
√

CiiCjj and rnij ≡ Cn
ij/
√
CiiCjj . Note however that these

two terms are not proper correlation coefficients because of the normalization. Stimulus

correlations may instead be quantified by ρsij ≡ Cs
ij/
√

Cs
iiC

s
jj , and noise correlations in a

stimulus-dependent manner through: ρnij(s) ≡ Cn
ij(s)/

√
Cn

ii(s)C
n
jj(s).

Following [155], we expand the entropy of the maximum entropy models—and thus

the mutual information—at small values of the covariance parameter (Cij or Cn
ij(s)), I =

I0th + I1st + I2nd + . . . (App. S1). The leading order of this expansion is the sum of the

information carried by each neuron: I0th =
∑

i [H[ni]− ⟨H[ni|s]⟩s]. The first order term
vanishes, while the second one reads (Fig. 4.1B, App. S1):

I2nd = −1

2

∑
i<j

(
ρtotij

2 − ⟨ρnij(s)2⟩s
)
. (4.1)

We can compute higher-order terms using Feynman diagrams rules [92], but they quickly

become unwieldy. However, some of these terms can be re-summed to yield a better

approximation of the mutual information than (4.1) in terms of first and second order

moments [155] (App. S2):

I ≈ I0th + Ipairs + IG − Idbl. (4.2)

Ipairs is the sum of the mutual information gains (with respect to single cells) of each pair

(i, j) calculated one by one, ignoring the rest of the network. IG is the mutual information

gain computed through a mean-field (or loop) approximation [34, 155], which is equivalent

to assuming that all fluctuations (stimulus and noise) are Gaussian:

IG =
1

2
log
(
|ρtot|

)
− 1

2
⟨ln (|ρn(s)|)⟩s, (4.3)

where |ρ| denotes the determinant of the correlation matrix. Finally Idbl corrects for terms

that are double-counted in Ipairs and IG .

4.3 Noise synergy

These expansions can be used to investigate the impact of noise correlations on information

transmission. We define the noise synergy,∆I ≡ I − ICI, as the gain in information relative

to the conditionnally independent case (Fig. 4.1B, bottom line). ICI can be computed in

practice by shuffling the response of individual neurons across repetitions of the same

stimulus, which preserves stimulus correlations but destroys noise correlations. At second
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order we obtain (App. S1):

∆I ≈
∑
i<j

[
−rni,jr

s
i,j +

1

2

(〈
ρni,j(s)

2〉
s
− rni,j

2
)]

. (4.4)

This expression shows how noise synergy depends on noise correlations through rn and ρn.

The first term is positive when noise and stimulus correlations have opposite signs. This

effect is known in the literature as the sign rule [75] and can be interpreted in terms of the

whitening of the output power spectrum: it is beneficial for the network to “cancel out” input

correlations by adding noise correlations of opposite sign, in order to approach a uniformly

distributed output, thereby increasing output entropy and information. The second term

of (4.4), which is of second order in the noise correlation parameter, can be either positive

or negative in general. However, in the particular case of noise correlations independent

of the stimulus, ρn(s) = ρn, the Cauchy-Schwarz inequality guarantees its non-negativity

(see App. S1 for a proof). This implies that noise correlations may be beneficial even when

the sign rule is violated and the noise correlations are constant (see last section of App. S4).

Noise synergy can also be computed using the re-summed entropies of (4.2). The formulas

are slightly more involved and are reported in App. S2.

4.4 Numerical test on synthetic data

To test our approximations (4.1) and (4.2), we built a generalized linear model to mimic the

response of a small population of 12 retinal neurons with nearest-neighbor interactions

(Fig. 4.2A) for which mutual informations could be estimated exactly. The stimulus is

modeled as a random Gaussian field sampled at 100Hz, with varying spatial correlations,

allowing us to tune the strength of stimulus correlations (App. S3). The stimulus is convolved

with a linear filter consisting of a difference-of-Gaussians receptive field with biphasic

temporal kernel [101] (App. S3). The mean spike rate is controled by the result of this

convolution, to which the effect of its own spiking history is added, through a non-linear

function. In addition, the past activities of its neighbors control the stochastic part of firing,

through coupling filters (the mean effect of which is subtracted from the average rate,

see App. S3). This strategy allows us to tune noise correlations while keeping stimulus

correlation constant. Importantly, this model is mathematically inconsistent with the

maximum entropy assumption. It thus allows us to test for both the appropriateness of

the maximum entropy approximation in the context of a realistic spiking model, and the

accuracy of the small-correlation expansion.
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Figure 4.2: A) A spatially correlated random stimulus activates a network of 12 neurons
according to a generalized linear model defined by stimulus, coupling, and spike-history
filters. B) Exact, second order (4.1), re-summed (4.2), and small time bin expansion [129]
of the mutual information for various strengths of the noise and stimulus correlations
(averaged over all pairs of neighbors). Note that since mutual information is a difference of
entropies, the error may be a non monotonic function of ρn and ρs.
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After binning at 15ms, we computed the exact mutual information between stimulus

and response using exhaustive numerical simulations, and compared it with the predictions

of our approximations, as well as the state-of-the-art small time bin expansion of Ref. [129]

(Fig. 4.2B). We observed an excellent agreement between numerical calculations and analyt-

ical expressions, in particular for the re-summed mutual information (4.2), in contrast to

the small time bin approximation, which yields inaccurrate results even in absence of noise

correlations. Although less accurate, the second order approximation (4.1) still provided

fair estimates for a wide range of correlation strengths. We further checked that the error

did not blow up with the system’s size, by analyzing networks subsampled from the full

population with sizes 3 through 12 for various values of the stimulus and noise correlations

(Fig. S1).

A B C

D

Figure 4.3: Application on retinal population response to visual stimulation. A) A
mosaic of a population of off alpha cells in the rat retina. B) Stimulus correlation (ρsij)
plotted against the distance between pair of cells stimulated with a white noise movie. C)
Same as (B) but for noise correlations ⟨ρnij(s)⟩s. D) Noise synergy for subset populations of
nearby cells. Each boxplot corresponds to the noise synergy of many subgroup of ganglion
cells. Only nearby cells are considered.

4.5 Application to retinal data

We applied our formulas to ex-vivo multi-electrode array recordings of rat retinal ganglion

cells in response to black and white checkerboard stimulation [40, 167]. The receptive
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fields of the cells have a mosaic structure (Fig. 4.3A), so that neuronal responses show

strong stimulus correlations between neighbors, which decay with the distance between

the receptive field centers (Fig. 4.3B). Due to network effects [25], nearby cells also show

strong noise correlations that decay with distance on a similar length scale (Fig. 4.3C).

We computed the noise synergy using our re-summed approximation (4.2) for many

subgroups of nearby cells of different sizes (Fig. 4.3D). In this case it is not possible to

estimate mutual informations exactly because of limited data, making it a good test case

for the usefulness of our analytical formulas. Spike trains were binned at 15ms and, to

correct for the bias stemming from noise in estimating correlations, we subtracted the

value obtained after shuffling individual cell activities across repetitions. We observe that

noise correlations impede information transmission, by the order of 1 bit per neuron per

second, for a total information of around 10 bits per neuron per second. It should be stressed

however that this result is specific to the white-noise stimulus statistics considered here,

and may not be a general feature of retinal processing, as other stimulus statistics would

change both the nature of stimulus correlations and the input-output relationship as the

network adapts.

We also used our method to study the effect of spiking memory in single neurons, by

treating the spike activity of the same neuron inN consecutive 4ms time bins as our activity

vector (n1, . . . , nN) (treating time bins as we treated individual neurons previously, see

Fig. 4.4A). Stimulus temporal auto-correlations are positive for about 50ms (Fig. 4.4B), then

become negative and go to zero for longer times (not shown). Noise temporal correlations

are driven by refractoriness, which suppresses activity immediately following a spike, and

by burstiness, which induces rippling effects up to 50 ms (Fig. 4.4C). We find that these

correlations improve information transmission by up to 8 bits per second (Fig. 4.4D), almost

doubling it for some cells. This suggests that information is encoded not just in the average

spike rate, but also through the control of inter-spike timing, consistent with previous

findings [121, 52, 24, 41].

4.6 Discussion

Despite being based on a small-correlation expansion, our analytical predictions, especially

(4.2), work well even in the presence of strong correlations, which are ubiquitous in neuro-

science [25, 153, 116]. We showed how our results can be applied to same-time correlations

between neurons, or to neuron autocorrelations, and they can readily be used on general

spatial-temporal correlations.

– 74 –



A small-correlation expansion to quantify information in noisy sensory systems

A B C

D

Figure 4.4: Application on retinal temporal response to visual stimulation. A)We build
a pseudo population of neurons to describe the spiking history of single neurons. B) Stimulus
autocorrelations for different cells responding to a white noise stimulation. Highlighted
lines correspond to two example cells. C) Same as (B) but for noise autocorrelations. D)
Noise synergy for different cells plotted against increasing temporal integration length.

Our work shares some connections with previous efforts to estimate or interpret informa-

tion in population codes [26, 129, 166, 137, 75, 192, 8]. Ref. [137] proposes decompositions of

the mutual information with different interpretations, but does not provide ways to estimate

it. Refs. [26] and [75, 192] are mostly based on the Fisher information, which in some limit

can be related to the mutual information. While the first term of our simpler expression

(4.4) recovers one of their main results—the so-called sign rule—second and higher order

terms in the noise correlation parameter provide important corrections when correlations

are high, as can be seen from deviations from the initial slope in Fig. 4.2B. In [129] the

authors developed a small time bin expansion of the mutual information. Expanding their

results for small correlations (and further assuming Poisson distributed spike counts, see

App. S4) gives back our second-order expression (4.1). Our method however does not need

to assume small time bins, and still works well for large correlations. Ref. [166] provides

estimate of the mutual information when the neuronal responses are correlated but have

only small fluctuations around a large mean activity, which is not appropriate for small

time bins or for low spike rates as in the retina.

Our results are based on the small correlation expansion developed in [155]. In order

to apply this theoretical tool, we assumed that both the stimulus-conditioned and the

marginal responses follow a pairwise maximum entropy distribution. These models are

characterized by many unknown parameters that in principle need to be inferred from

– 75 –



A small-correlation expansion to quantify information in noisy sensory systems

data. However the final expressions for the mutual information contain only quantities

that can be directly estimated from data, without needing any inference. This makes our

approximations ready and easy to use, without requiring much computational efforts. We

showed that it works well even when the data was generated with a very different model.

Maximum entropy distributions are actually a series of approximations which, just like

Taylor expansions, can be refined by adding higher-order correlations. A future direction

could be to compute corrective terms to the mutual information corresponding to third-

and higher-order correlation functions, rather than just pairwise correlations as we did in

this work. At the same time, the pairwise approximation has proven very accurate for both

marginal [153, 59, 177, 58, 54] and conditional [157, 64, 51, 39] responses of populations of

neurons, and is only expected to break down for very large densely correlated populations

[146]. We thus expect our results to be applicable to a wide array of neuronal contexts.
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Figure S1: Relative error |δI|/I in the estimate of the mutual information as a
function of population size. Each subplot corresponds to different values of average
nearest neighbour noise ⟨ρn(s)⟩s and stimulus ρs correlations. For population size N , we
selected compact groups ofN cells out of the network of 12 cells of Fig. 2 (where by compact
we mean that their topology minimizes their average distance to the group’s center of
mass). The error is computed as the difference between the various approximations and the
true value estimated by the histogram method, and is then averaged over groups of cells.
The resummed approximation systematically outperforms the second order and small time
bin expansions for all values of noise and stimulus correlations.

S1 Second order approximation

Sessak-Monasson expansion of the entropy

Sessak and Monasson [155] proposed a small-correlation expansion of the entropy of Ising

systems in order to develop an approximated inference method for the model parameters.

We used that expansion to obtain approximations of entropies and mutual information in

stimulus driven systems.

Here we start by summarising [155] to obtain an estimation of the Ising model entropy

in term of mean activities and correlations. We consider a population of N binary neurons

n = (n1..., nN) described by the following Hamiltonian:

H [n] =−
∑
i<j

Jijninj −
∑
i

hini, (S1.1)
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where the values of the couplings Jij and fields hi are determined by the pairwise covariances

cij and means µi of the neurons. Noting Z [{Jij}, {hi}] the partition function of the system

for a given set of couplings and fields,

Z [{Jij}, {hi}] =
∑
n

e−H[n], (S1.2)

the neurons means’ can be expressed as:

µi =
∂ log (Z [{Jij}, {hi}])

∂hi

∣∣∣∣
J∗
ij ,h

∗
i

, (S1.3)

and their covariances as:

cij =
∂ log (Z [{Jij}, {hi}])

∂Jij

∣∣∣∣
J∗
ij ,h

∗
i

− µiµj. (S1.4)

By inverting these relations, we find the parameters of the model that match the observables.

Following [155], we introduce the entropy:

H [n] = log (Z({Jij}, {hi}))−
∑
ij

Jij(αcij + µiµj)−
∑
i

hiµi. (S1.5)

where a parameter α has been introduced to rescale the observed covariances. Minimizing

this entropy with respect to hi and Jij yields the parameters that match the µi and cij of

the data, Eqs. S1.3 and S1.4 (up to α). When α = 1, this minimization gives the true entropy

of the system, a quantity that is in general difficult to compute exactly. The approach

proposed by Sessak and Monasson [155] consists of expanding the entropy Eq. S1.5 at

small α. This allows one to express the entropy, couplings and fields of the system as power

series in α, where each term is a function of the means and covariances of the population.

The evaluation of this series in α = 1 then yields approximations for the entropy, couplings

and fields, that involve only the covariances and means of the population. Following this

approach, we can expand the entropy of system up to order 2 in α:

H [n] = H0th [n] + αH1st [n] + α2H2nd [n] +O(α3). (S1.6)

Evaluating the truncated series at α = 1 gives the following approximation for the popula-

tion’s entropy:

H [n] ≈ H0th [n] +H1st [n] +H2nd [n] . (S1.7)
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The first term of this expansion H0th is the entropy of the neurons in the total absence of

correlations and is thus the sum of the entropies of the single neurons:

H0th [n] =−
∑
i

(1− µi) log (1− µi) + µi log (µi). (S1.8)

The first order contribution H1st vanishes, and the second order contribution is given in

terms of Pearson’s correlation coefficients as:

H2nd [n] =− 1

2

∑
i<j

ρ2ij. (S1.9)

Mutual Information

We can perform this expansion for the entropy of the marginal distributionH [n] as well as

for the entropies of the conditional distributions H [n|s], and hence calculate the mutual

information to the second order in the correlations:

I ≈ I0th + I2nd, (S1.10)

where I0th is the sumof information carried by the neurons individually I0th =
∑

i [H[ni]− ⟨H[ni|s]⟩s]:

I0th =−
∑
i

(1− µi) log (1− µi) + µi log (µi)

+

〈∑
i

(1− µi(s)) log (1− µi(s)) + µi(s) log (µi(s))

〉
s

,

(S1.11)

and where the first non-zero contribution from the pairwise correlations in the response is

I2nd:

I2nd =− 1

2

∑
i<j

(
ρtotij

2 −
〈
ρnij(s)

2〉
s

)
. (S1.12)

Noise synergy

Correlations in themarginal response ρtotij = rsij+rnij boil down to their stimulus contribution

in the conditionally independent case ρtot, CIij = rsij . Thus the noise synergy ∆I ≡ I − ICI is

given at second oder by:
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∆I ≈
∑
i<j

[
−rnijr

s
ij +

1

2

(〈
ρnij(s)

2〉
s
− rnij

2
)]

. (S1.13)

In general the second termunder the sum in the noise synergy,∆Iquadij = 1
2

(
⟨ρnij(s)

2⟩s − rnij
2
)

can be positive or negative depending on the level of correlation between ρnij(s) and√
Cn

ii(s)C
n
jj(s), as r

n
ij = ⟨ρnij(s)

√
Cn

ii(s)C
n
jj(s)⟩s/

√
CiiCjj . However, if we assume noise

correlations are independent from the stimulus ρnij(s) = ρnij , we can show that ∆Iquadij =
1
2

(
ρnij

2 − rnij
2
)
is non-negative. First, the formulation of rnij in terms of ρnij becomes:

rnij = ρnij

〈√
Cn

ii(s)C
n
jj(s)

〉
s√

CiiCjj

, (S1.14)

which then gives:

∆Iquadij =
1

2
ρnij

2

1−

〈√
Cn

ii(s)C
n
jj(s)

〉2
s

CiiCjj

 . (S1.15)

According to theCauchy-Schwartz inequalitywe have that
〈√

Cn
ii(s)C

n
jj(s)

〉2
s
≤ ⟨Cn

ii(s)⟩s
〈
Cn

jj(s)
〉
s
.

Besides, from the law of total variance we have that Cii = Cs
ii + ⟨Cn

ii(s)⟩s, thus ⟨Cn
ii(s)⟩s ≤

Cii and finally
〈√

Cn
ii(s)C

n
jj(s)

〉2
s
≤ CiiCjj . Altogether this gives that ∆Iquadij ≥ 0.

S2 Resummed expansion

Entropy

In [155] it is shown that some of the terms in the small-correlation expansion of the couplings

can be resummed to yield a better approximation. We can proceed in the exact same way

for the entropy and resum some of the diagrams in the small-correlation expansion. All the

terms of the second order approximation above are contained in the resummed expansion

we detail here. Note that this resummed expansion is equivalent to a cluster expansion

truncated to second order, with mean-field reference entropy [35]. It reads:

H [n] ≈ H0th [n] +Hpairs [n] +HG [n]−Hdbl [n] . (S2.1)

The single site contribution H0th [n] is the same as above, and Hpairs [n] corresponds to the

entropy gain of all pairs in the population taken independently compared to the single
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site contribution. Interestingly, taking the sum of these two first contributions amounts to

making an independent pair approximation, which would be exact in the case of a tree-like

network topology. Hpairs [n] is a sum over all pairs of neurons in the population:

Hpairs [n] =
∑
i<j

H[ni, nj], (S2.2)

with H[ni, nj] the entropy gain of pair (ij) compared to the single neurons case:

H[ni, nj] =− (Cij + µiµj) log (1 +
Cij

µiµj

)

+ (Cij + µi(µj − 1)) log (1 +
Cij

µi(µj − 1)
)

+ (Cij + µj(µi − 1)) log (1 +
Cij

µj(µi − 1)
)

− (Cij + (1− µi)(1− µj)) log (1 +
Cij

(1− µi)(1− µj)
).

(S2.3)

The second resummed term of this expansion HG [n] corresponds to the contribution of

interactions to the entropy in the mean-field approximation. It contains the resummation

of all loop diagrams in the expansion and amounts to assuming the entropic contribution

of pairwise correlations is Gaussian. Noting ρ the correlation matrix of n we get:

HG [n] =
1

2
log (|ρ|) . (S2.4)

Finally there are some terms in the expansion that are resummed both in Hpairs [n] and

HG [n], therefore we need to substract them once from the expansion throughHdbl [n]. The

double counted terms simply correspond to the Gaussian approximation applied to each

pair of neurons:

Hdbl [n] =
1

2

∑
i<j

log
(
1− ρ2ij

)
. (S2.5)

Mutual Information

Applying the resummed approximation to the marginal and conditional responses results

in a resummed approximation for the mutual information:
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I ≈ I0th + Ipairs + IG − Idbl. (S2.6)

With Ipairs the contribution of pairwise correlations to the mutual information in the

independent pairs approximation. If we write Cij ≡ Cov(ni, nj) the total covariance across

stimuli and Cn
ij(s) ≡ Cov(ni, nj|s) the covariance at a given stimulus s:

Ipairs =
∑
i<j

[
−(Cij + µiµj) log (1 +

Cij

µiµj

)

+ (Cij + µi(µj − 1)) log (1 +
Cij

µi(µj − 1)
)

+ (Cij + µj(µi − 1)) log (1 +
Cij

µj(µi − 1)
)

− (Cij + (1− µi)(1− µj)) log (1 +
Cij

(1− µi)(1− µj)
)

−
〈
−(Cn

ij(s) + µi(s)µj(s)) log (1 +
Cn

ij(s)

µi(s)µj(s)
)

+ (Cn
ij(s) + µi(s)(µj(s)− 1)) log (1 +

Cn
ij(s)

µi(s)(µj(s)− 1)
)

+ (Cn
ij(s) + µj(s)(µi(s)− 1)) log (1 +

Cn
ij(s)

µj(s)(µi(s)− 1)
)

− (Cn
ij(s) + (1− µi(s))(1− µj(s))) log (1 +

Cn
ij(s)

(1− µi(s))(1− µj(s))
)

〉
s

]
.

(S2.7)

If we denote by ρtot the total correlation matrix across stimuli and ρn (s) the correlation

matrix at given stimulus s, the Gaussian (i.e. mean-field) contribution of correlations to the

mutual information takes the simple form:

IG =
1

2
log
(
|ρtot|

)
− 1

2
⟨log (|ρn(s)|)⟩s , (S2.8)

while the double counting correction becomes:

Idbl =
1

2

∑
i<j

[
log
(
1− ρtotij

2
)
−
〈
log
(
1− ρnij (s)

2)〉
s

]
. (S2.9)

Noise synergy

Likewise we can write a resummed approximation of the noise synergy:
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∆I ≈ ∆Ipairs +∆IG −∆Idbl. (S2.10)

Noting that the total covariance across stimuli can be decomposed in terms of noise

covariance and stimulus covariance Cij = Cs
ij +Cn

ij , with Cn
ij = ⟨Cn

ij(s)⟩s, the independent
pairs approximation of the noise synergy ∆Ipairs would be given by:

∆Ipairs =
∑
i<j

[
−Cn

ij log(1 +
Cij

(µi(µj − 1) + Cij)(µj(µi − 1) + Cij)
)

− (Cs
ij + µiµj) log(1 +

Cn
ij

µiµj + Cs
ij

)

+ (Cs
ij + µi(µj − 1)) log(1 +

Cn
ij

µi(µj − 1) + Cs
ij

)

+ (Cs
ij + µj(µi − 1)) log(1 +

Cn
ij

µj(µi − 1) + Cs
ij

)

− (Cs
ij + (1− µi)(1− µj)) log(1 +

Cn
ij

(1− µi)(1− µj) + Cs
ij

)

−
〈
−(Cn

ij(s) + µi(s)µj(s)) log (1 +
Cn

ij(s)

µi(s)µj(s)
)

+ (Cn
ij(s) + µi(s)(µj(s)− 1)) log (1 +

Cn
ij(s)

µi(s)(µj(s)− 1)
)

+ (Cn
ij(s) + µj(s)(µi(s)− 1)) log (1 +

Cn
ij(s)

µj(s)(µi(s)− 1)
)

− (Cn
ij(s) + (1− µi(s))(1− µj(s))) log (1 +

Cn
ij(s)

(1− µi(s))(1− µj(s))
)

〉
s

]
.

(S2.11)

The Gaussian contribution to the noise synergy takes again a simple form:

∆IG =
1

2
log

(
|ρtot|
|ρtot,CI|

)
− 1

2
⟨log (|ρn(s)|)⟩s , (S2.12)

where we recall that correlations in the marginal response can be expressed as the sum of

stimulus and noise contributions ρtot = rs + rn. In the conditionally independent case we

have ρtot,CI = rs + νn with νn the diagonal matrix containing the diagonal elements of rn.
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Finally, the double counting correction to the noise synergy is given by:

∆Idbl =
1

2

∑
i<j

[
log

(
1− ρtotij

2

1− rsij
2

)
−
〈
log
(
1− ρnij(s)

2)〉
s

]
. (S2.13)

S3 Generalized linear model simulations

The model used to generate the synthetic data is a Generalized Linear Model [135] with

sigmoidal nonlinearity. The number of spikes emitted by cell i in time bin t of size dt = 1ms

follows a Bernoulli distribution with mean λi (t), given by:

λi (t) = (1 + exp (−hi (t)))
−1 , hi (t) = hbias

i + hstim
i (t) + hint

i (t) + hcorr
i (t) , (S3.1)

where hbias
i sets the baseline firing rate of the cell, hstim

i (t) accounts for how the stimulus

drives the cell’s activity, hint
i (t) accounts for the effect of couplings and self-coupling, while

hcorr
i (t) is here to correct for the contribution of the neuron-neuron couplings to the firing

rate.

The stimulus S is a movie of dimensions (Nx, Ny, Nt) where Nx and Ny correspond to

the two spatial dimensions in pixels, andNt is the temporal length of the stimulus in number

of time bins. We simulated 12 cells organized on a triangular lattice as represented in Fig. S2B,

spaced by ξ = 4 pixels. Here the stimulus consisted of Nt zero-mean, 2D Gaussian frames

of size (Nx, Ny) with covariance function C(u,v) = δu,v +(1− δu,v)c0 exp (−∥u− v∥/λ),
where λ = 2ξ and c0 is varied to change the level of stimulus correlation in the response.

There was no correlations between frames and they were refreshed at 100Hz.

The cells’ stimulus filters, of size (Nx, Ny, N
stim
t ) were built from the product of a

temporal and spatial component which were chosen to mimick the properties of natural

retinal ganglion cells. The temporal componentKtime(τ) is illustrated Fig. S2D and consists

of a difference of two raised cosine functions:

rc(τ, s, c) =


cos((log(τ + s)− c)π)/2 + 1/2 when− 1 ≤ log(τ + s)− c ≤ 1

0 otherwise,

(S3.2)

such that:

Ktime(τ) = a1rc(τ, s, c1)− a2rc(τ, s, c2), (S3.3)

with s = 50, a1 = 0.35, c1 = 5.3, a2 = 1.15 and c2 = 4.8. The spatial component is made

of a difference of Gaussian functions and exhibits a positive center and a negative surround,
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A B C

D E F

Figure S2: Parameters of the GLMmodel. The different parameters of the model were
chosen to be biologically plausible and mimick those of retinal ganglion cells. A) The spatial
component of the spatio-temporal stimulus filterKspace is made of a difference of Gaussians
Eq. S3.4. B) The 12 cells are arranged according to a triangular lattice. We represented here
the receptive fields of the cells by circles that correspond to the contour where the center
and the surround of the spatial components compensate exactly. Only nearest neighbours
in this population are coupled by non-zero Jij coupling filters. C) Profile view of the spatial
components cut in y = y∗ on panel B. D) The temporal component of the stimulus filter
has a biphasic profile and consists of a difference of two raised cosine functions Eq. S3.3.
E) Coupling filters are non zero for nearest neighbours and are defined by Eq. S3.8. The
increasing coupling amplitude shown here induces increasing noise correlations in the
response of the cells. F) The self coupling filter, accounting for the effect of the neuron’s
own spiking history, induced refractory effects over 10ms in the past.
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as shown on Fig. S2A and Fig. S2C. Noting uc
i = (xc

i , y
c
i ) the spatial position of the receptive

field center of cell i:

Kspace
i (u) =

1

r − 1

[
r exp

(
−∥u− uc

i∥2

2σcenter

)
− exp

(
−∥u− uc

i∥2

2σsurround

)]
(S3.4)

where σcenter = 2 pixel, σsurround = 2.1 pixel, and r = 1.12. The firing rate variance is

fixed through a parameter αs (set to 0.5 in our synthetic experiments) such that hstim
i (t) =

αs · z-score
(
h̃stim
i (t)

)
, where h̃stim

i (t) is given by the temporal convolution of stimulus S

by the spatio-temporal stimulus filter:

h̃stim
i (t) =

∑
τ>0

∑
u

Kspace
i (u)Ktime(τ)S(u, t− τ). (S3.5)

Likewise, the spiking history contribution of cell i itself as well as that of the other cells

in the network are accounted for by linear convolutions of the spiking histories by a set of

temporal coupling filters:

hint
i (t) =

∑
j

∑
τ>0

Jij (τ)nj(t− τ), (S3.6)

where the self-coupling filters Jii(τ), shown Fig. S2F, are given by:

Jii(τ) =


J0
self if τ ≤ τrefr,

0 otherwise,

(S3.7)

with J0
self = −10 and τrefr = 10ms. The neuron-neuron (i.e. i ̸= j) couplings Jij follow:

Jij(τ) =


J0
coupl τ exp (−τ) if i and j are nearest neighbours,

0 otherwise,

(S3.8)

where the coupling strength J0
coupl can be varied (as illustrated on Fig. S2E) to change the

amount of noise correlations in the response.

In order to vary independently stimulus and noise correlations in the neurons’ response

we introduced the field hcorr
i that corrects for the contribution of neuron-neuron couplings

to the firing rates of the cells. This correction is needed because changing the strength of

the couplings will not only change the amount of noise correlations in the reponse, but

also the firing rates of the cells. This corrective field is computed via an iterative inference

approach built upon the 2-step inference method [101]. The first step of this iterative
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A B

Figure S3: Results of the iterative inference approach. A) For the three test stimuli
chosen we see that ρs, the stimulus correlation averaged over all pairs of neighbouring cells,
is constant with respect to the coupling strength J0

coupl. B) Likewise, the stimulus variance
averaged across the population V s = ⟨Cs

ii⟩i is independent of J0
coupl.

procedure is the following: for a given stimulus movie, we simulateNrepe times the response

of the conditionally-independent neurons (i.e. with J0
coupl = 0). We then fix the strength

of neuron-neuron couplings J0
coupl to the desired value so as to induce noise correlations

in the response of the cells. From here we approximate the interaction field ĥint
i using

the simulated response and the chosen couplings amplitude J0
coupl. Finally we infer the

corrective field hcorr
i on the previously simulated response similarly to the 2-step inference

approach by minimzing the following single neuron negative log-likelihood for each neuron

in the population:

nLLi = −
Nrepe∑
r=1

Nt∑
t=1

hcorr
i (t)ni(t, r) + log

(
1− λ̂i(t, r)

)
, (S3.9)

where ni(t, r) denotes the simulated response of neuron i in time bin t and repetition r and

where λ̂i(t, r) =
(
1 + exp

(
−hbias

i + hstim
i (t) + ĥint

i (t, r) + hcorr
i (t)

))−1

. The second step

of the procedure consists in simulating the response of the cells using the previously chosen

coupling amplitude and the infered corrective field hcorr
i (t). We can then re-estimate

the interaction field ĥint
i on these simulated data and infer again hcorr

i to get a better

approximation of the couplings’ contribution to the firing rate. This second step is repeated

as many times as needed to match the firing rates of the conditionally-dependent model

to those of the conditionally-independent model within the desired precision. For the

generation of the synthetic data used for testing the approximations we systematically

performed 20 successive inference steps. This approach resulted for each given stimuli in

constant stimulus correlations Fig. S3A as well as constant stimulus variance Fig. S3B across

coupling strengths.

The simulation of the model described above was repeated Nrepe = 106 times for each

stimulus movie, then the mutual information was computed using the second order and
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the resummed approximations as well as by the histogram (or “exact") method. In order

to be able to compare the mutual information computed via the approximations to that

computed via the histogram method, we first need to correct for the effect of sampling

bias on these quantities. From [99] the bias in the entropy of a maximum entropy model

withNcells and thus Ncells(Ncells+1)
2

constraints, evaluated onNsamples can be approximated by

bmaxent
H = −Ncells(Ncells+1)

4Nsamples
. In the case of the marginal entropy we haveNsamples = Nrepe×Nt,

while in the case of the noise entropy we have Nsamples = Nrepe. The sampling bias on the

mutual information of a maximum entropy model is thus given by:

bmaxent
I =

Ncells(Ncells + 1)

4Nrepe

(1− 1

Nt

), (S3.10)

which has then to be subtracted from the raw results of the 2nd order and the resummed

approximations. To evaluate the bias on the entropies evaluated via the histogram method

we used a shuffling approach similar to [115]: we estimate the bias on the entropy H[n] as

bexactH = Hshuffle[n]− (H0th[n]− b0th) whereHshuffle[n] is the entropy computed on the data

shuffled so that correlations between cells are destroyed, and where H0th[n] is the single

site entropy contribution given by Eq.S1.8. H0th[n] is also biased, so we need to correct

it by b0thH = − Ncells

2Nsamples
(as here we have only one constraint per neuron). Applying this to

the marginal and conditional entropies gives the following bias for the mutual information

computed via the exact method:

bexactI =
(
Hshuffle[n]− ⟨Hshuffle[n|s]⟩s

)
−
(
H0th[n]− ⟨H0th[n|s]⟩s

)
+

Ncells

2Nrepe

(1− 1

Nt

),

(S3.11)

which has to be subtracted from the raw result of the histogram method.

We applied a similar shuffling approach to the small time bin expansion of Ref. [129] in

order to correct for the sampling bias in that context (see section S4).

S4 Link to the small time bin expansion (Panzeri et al.
1999)

Small time bin expansion

Panzeri et al. [129] introduced a small time bin t expansion of the mutual information:

I = tI t +
t2

2
I tt + ... (S4.1)
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They quantify noise correlations and stimulus correlations in terms of ni(s) the spike count

variable at fixed stimulus s, µi(s) = ni(s) its average over the noise, µi = ⟨µi(s)⟩s the
average firing rate across stimuli and use the according rates ni(s)/t, µi(s)/t and µi/t in

the expression of the mutual information. They introduce the “noise correlation density":

γij(s) =


ni(s)nj(s)

µi(s)µj(s)
− 1 if i ̸= j

ni(s)
2−µi(s)

µi(s)
2 − 1 if i = j,

(S4.2)

and the “stimulus correlation density":

νij =
⟨µi(s)µj(s)⟩s

µiµj

− 1. (S4.3)

The first order contribution (sum over the single cell contributions) to themutual information

in the small time bin expansion is:

tI t =
∑
i

〈
µi(s) ln

µi(s)

µi

〉
s

, (S4.4)

The second order contribution contains the correlations contributions:

t2

2
I tt =

t2

2

∑
ij

I
tt,(1)
ij + I

tt,(2)
ij + I

tt,(3)
ij , (S4.5)

with

I
tt,(1)
ij =

1

t2
µiµj

[
νij + (1 + νij) ln

(
1

1 + νij

)]
, (S4.6)

I
tt,(2)
ij =

1

t2
⟨µi(s)µj(s)γij(s)⟩s ln

(
1

1 + νij

)
, (S4.7)

I
tt,(3)
ij =

1

t2

〈
µi(s)µj(s) (1 + γij(s))× ln

(
(1 + γij(s)) ⟨µi (s

′)µj (s
′)⟩s′

⟨µi (s′)µj (s′) (1 + γij (s′))⟩s′

)〉
s

. (S4.8)

The three contributions in I tt render the effects of stimulus and noise correlations as

well as interactions thereof [129]: I tt,(1)ij contains the effect of signal correlations, while

I
tt,(2)
ij accounts for how (stimulus independent) noise correlations interact with stimulus

correlations and affect information, and I
tt,(3)
ij contains information carried by the stimulus-

dependency of noise correlations.

These expressions are also biased by finite sampling. The bias, which should be sub-

tracted from the estimate, can be computed as the contribution of noise correlations to the

mutual information, evaluated on the shuffled data. In the decomposition of Eq. S4.5, this
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reads:

bsmall-t
I =

t2

2

∑
i ̸=j

I
tt,(2),shuffle
ij + I

tt,(3),shuffle
ij , (S4.9)

where the two terms under the sum are defined in Eqs. S4.7 and S4.8 and computed on the

shuffled data.

Link to the small correlation expansion

The single site contribution of the small time bin approximation tIt amounts to assuming

information is conveyed only by spikes rather than by spikes and silences together. To

illustrate this, we can rewrite the expression obtained previously for I0th by regrouping the

noise entropy and marginal entropy contributions separately for spikes on one hand, and

silences on the other hand:

I0th =
∑
i

〈
µi(s) log

(
µi(s)

µi

)〉
s

+
∑
i

〈
(1− µi(s)) log

(
1− µi(s)

1− µi

)〉
s

. (S4.10)

We see the first term in this rewriting of I0th corresponds to tI t. Further corrections to

the single site information It are found in the diagonal terms under the sum in I tt. In the

small rates (i.e. Poisson) limit however, this correction is simplified as γii(s) vanishes for

Cn
ii(s) = µi(s). The single site correction coming from I tt is therefore given by:

t2

2

∑
i

I
tt,(1)
ii =

1

2

∑
i

µi
2

[
νii + (1 + νii) ln

(
1

1 + νii

)]
. (S4.11)

The out of diagonal terms (i ̸= j) in I tt account for the effect of noise and stimulus cross-

correlations. In the small rates and small correlations limit, we show here that we recover

the main result of this paper. First we notice that in this limit:

νij =
rsij√
CiiCjj

=
rsij√
µiµj

, (S4.12)

γij(s) =
ρnij(s)√

Cn
ii(s)C

n
jj(s)

=
ρnij(s)√
µi(s)µj(s)

. (S4.13)
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Replacing these expressions in I
tt,(1)
ij , I tt,(2)ij and I

tt,(3)
ij then expanding the logarithms at

small rsij and ρnij(s) (and thus rnij) and truncating at second order gives:

t2

2
I
tt,(1)
ij = µiµj

[
rsij√
µiµj

−
(
1 +

rsij√
µiµj

)
ln

(
1 +

rsij√
µiµj

)]
≈ −1

2
rsij

2, (S4.14)

t2

2
I
tt,(2)
ij = −

〈
ρnij(s)

√
Cn

ii(s)C
n
jj(s)

〉
s
ln

(
1 +

rsij√
µiµj

)
= −Cn

ij ln

(
1 +

rsij√
µiµj

)
≈ −rnijr

s
ij, (S4.15)

t2

2
I
tt,(3)
ij =

〈(
µi(s)µj(s) + ρij(s)

√
Cn

ii(s)C
n
jj(s)

)
×
[
ln

(
1 +

ρnij(s)√
µi(s)µj(s)

)

− ln

1 +
⟨ρij(s′)

√
Cn

ii(s
′)Cn

jj(s
′)⟩s′

⟨µi(s′)µj(s′)⟩s′

]〉
s

=

〈(
µi(s)µj(s) + Cn

ij(s)
)
×
[
ln

(
1 +

ρnij(s)√
µi(s)µj(s)

)
− ln

(
1 +

Cn
ij

Cs
ij + µiµj

)]〉
s

=

〈(
µi(s)µj(s) + Cn

ij(s)
)
× ln

(
1 +

ρnij(s)√
µi(s)µj(s)

)〉
s

− µiµj

(
1 +

rsij√
µiµj

+
rnij√
µiµj

)
× ln

(
1 +

rnij/
√
µiµj

rsij/
√
µiµj + 1

)
≈ 1

2

〈
ρnij(s)

2〉
s
− 1

2
rnij

2. (S4.16)

Summing up these contributions gives:

t2

2
I tt =

t2

2

∑
ij

I
tt,(1)
ij + I

tt,(2)
ij + I

tt,(3)
ij

=
t2

2

∑
i

I
tt,(1)
ii + t2

∑
i<j

I
tt,(1)
ij + I

tt,(2)
ij + I

tt,(3)
ij

≈ 1

2

∑
i

µi
2

[
νii + (1 + νii) ln

(
1

1 + νii

)]
− 1

2

∑
i<j

(
(rsij + rnij)

2 −
〈
ρnij(s)

2〉
s

)
≈ 1

2

∑
i

µi
2

[
νii + (1 + νii) ln

(
1

1 + νii

)]
− 1

2

∑
i<j

(
ρtotij

2 −
〈
ρnij(s)

2〉
s

)
, (S4.17)
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and finally:

I ≈ tI t +
t2

2
I tt

≈ Isingle + I2nd,

(S4.18)

with the single site term given by:

Isingle =
∑
i

〈
µi(s) ln

µi(s)

µi

〉
s

+
1

2

∑
i

µi
2

[
νii + (1 + νii) ln

(
1

1 + νii

)]
, (S4.19)

and the second order cross-correlations contribution by:

I2cd = −1

2

∑
i<j

(
ρtotij

2 −
〈
ρnij(s)

2〉
s

)
. (S4.20)

In the small correlations and small rates (or Poisson) limit, the contribution to the mutual

information of cross-correlations as described by the small time bin expansion coincides

with the second order approximation derived in this paper.

Interpretation of the small time bin and small correlation approxima-
tions

The agreement between the small time bin and small correlation approximations raises

questions about the interpretation of how noise correlations contribute to the mutual

information. On the basis of the small time bin expansion [129] and its generalization [137],

it is often stated in the litterature that noise correlations increase mutual information in

two cases: when they are of opposite sign than stimulus correlations and follow the “sign

rule", as seen in the expression of I tt,(2)ij (Eq. S4.7); or when they fluctuate with the stimulus,

as seen in the expression of I tt,(3)ij (Eq. S4.8). Therefore, constant noise correlations of the

same sign than stimulus correlations should not benefit the mutual information in any way.

However, that interpretation relies on quantifying noise correlations and their variations

through the correlation density γij(s), which do not correspond to correlation coefficients

in the classical sense.

By contrast, as we showed in App. S1, where results are expressed in terms of the more

familiar Pearson correlations ρnij(s), constant noise correlations contribute positively to

the mutual information (Eq. S1.15). This different interpretation is not a consequence

of the incompatibility of the two approaches (as shown by Eq. S4.16), but rather of the

two definitions of “constant noise correlations”. In the case of constant Pearson noise

correlations ρnij(s), the noise correlation density γij(s) defined in Eq. S4.2 actually varies

– 92 –



A small-correlation expansion to quantify information in noisy sensory systems

with the stimulus, thereby positively contributing to the mutual information according to

the original interpretation. Therefore, it is important in these discussions to specify how

noise correlations are defined: γij(s), ρnij(s), or something else.
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Chapter 5

Strong but not weak noise correlations
are beneficial for population coding

We have seen in the introductory chapters of this thesis that the general picture emerging

from the literature regarding how noise correlations affect sensory coding can be summa-

rized through the "sign-rule". This rule suggests that noise correlations will be beneficial

when of opposite sign than stimulus correlations, and detrimental otherwise. Decades of

theoretical investigations led to the widely admitted idea that positive noise correlations,

such as the ones observed in ganglion cells populations (see chapter 1), will be detrimental if

they correlate neurons that also tend to be correlated by the stimulus (see chapter 2). These

results are at odds with the structure of noise and signal correlations that are observed in

many sensory systems, where noise correlations are often found to be strong and positive

between cells that also share sensitivity to the same stimuli.

In the previous part, we addressed the fact that assessing the impact of noise correlations

on sensory coding from the mutual information standpoint is intrinsically difficult. We

overcame this issue by deriving an approximation for the mutual information that allows

us to relate directly the structure of pairwise noise and signal correlations to their impact

on stimulus information encoding.

In this chapter, we build on the approximation and insights derived previously to

investigate how strong positive noise correlations as those observed in the retina affect

sensory coding. Our approximation — which has been shown in the previous chapter to

provide accurate measures of mutual information for retina-like populations of intermediate

size, even under significant stimulus and noise correlation strengths — is applied here to

experimental recordings of OFF-α ganglion cells from the rodent retina. We show that the

impact of positive noise correlations strongly depends on the stimulus, but most importantly
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that strong noise correlations can lead to violations of the sign-rule. In contrast to prior

studies, which have mostly focused on Fisher information [45, 166, 75, 57] or optimality

considerations [178, 75, 117], we derive new quantitative criteria for the value of noise

correlations that predict their impact on mutual information between stimulus and response.

We expand the insight derived from our approximation to a Gaussian population model,

demonstrating the existence of a critical value beyond which noise correlations become

beneficial. We further investigate the impact of noise correlations on the encoding of

different features of the stimulus and show that, both in model and data, positive noise

correlations favor the encoding of small details of the stimulus, at the expense of large-scale

features which are already well encoded by the system. This chapter has been submitted

for peer review and is currently available as a preprint:

Gabriel Mahuas, Thomas Buffet, OlivierMarre, Ulisse Ferrari, and ThierryMora. “Strong,

but not weak, noise correlations are beneficial for population coding”. In: bioRxiv (2024),

pp. 2024–06
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Abstract. Neural correlations play a critical role in sensory information coding. They are

of two kinds: signal correlations, when neurons have overlapping sensitivities, and noise

correlations from network effects and shared noise. It is commonly thought that stimulus

and noise correlations should have opposite signs to improve coding. However, experiments

from early sensory systems and cortex typically show the opposite effect, with many pairs

of neurons showing both types of correlations to be positive and large. Here, we develop

a theory of information coding by correlated neurons which resolves this paradox. We

show that noise correlations are always beneficial if they are strong enough. Extensive

tests on retinal recordings under different visual stimuli confirm our predictions. Finally,

using neuronal recordings and modeling, we show that for high dimensional stimuli noise

correlation benefits the encoding of fine-grained details of visual stimuli, at the expense of

large-scale features, which are already well encoded.

5.1 Introduction

Neurons from sensory systems encode information about incoming stimuli in their collective

spiking activity. This activity is noisy: repetitions of the very same stimulus can drive

different responses [199, 112, 60, 165, 73, 36]. It has been shown that the noise is shared

among neurons and synchronizes them, an effect called noise correlations, as opposed to

signal correlations induced by the stimulus [6, 36, 86, 8, 127]. Noise correlations have been

observed since the first synchronous recordings of multiple neurons [133, 109] and at all

levels of sensory processing, from the retina [112, 124, 161, 135, 186, 187, 57, 200, 149, 167] to

the visual cortex [199, 56, 87, 165, 47, 73, 97] and other brain areas [183, 6, 94, 13, 36, 8, 70]

Strong noise correlations have been measured mostly between nearby neurons with

similar stimulus sensitivity [107, 109, 199, 94, 13, 87, 67, 7, 73]. This behaviour is particularly

evident in the retina between nearby ganglion cells of the same type [112, 161, 186, 187,

167]. This observation is however surprising, since previously it was thought that these

correlations are detrimental to information coding: a theoretical argument [199, 26, 129,

137, 166] suggests that noise correlations are detrimental to information transmission if

they have the same sign as signal correlations [6, 8, 127]. This rule is sometimes called

the sign rule [75], and is related to the notion of information-limiting correlations [116].

Since nearby neurons with similar tuning are positively correlated by the signal, the theory

would predict that their positive noise correlations should be detrimental, making the code

less efficient. However, a large body of literature has reported the beneficial effects of noise

correlations on coding accuracy [1, 135, 178, 45, 63, 162, 57, 149, 22, 117]. Because of these

contradictions, the effect of shared variability on information transmission is still unclear,
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and remains a largely debated topic in neuroscience [6, 86, 8].

Here we aim to resolve these tensions by developing a general framework that builds

on previous theoretical work [102] and is grounded on the analysis of multi-electrode array

recordings of rat and mouse retinas. While previous studies have considered the impact of

noise correlations either for particular stimuli [199, 135, 57, 70], or for particular models [166,

178, 45], our approach is general and covers both low and high dimensional stimuli. We show

that the sign rule can be broken in a specific regime that we observed in retinal responses:

when noise correlations are strong enough compared to signal correlations, they have a

beneficial effect on information transmission. Our results unravel the complex interplay

between signal and noise correlations, and predict when and how noise correlations are

beneficial or detrimental. In the case of high dimensional stimuli, like images or videos, our

theory predicts different effects of noise correlations depending on stimulus features. In

particular, it explains how large noise correlations between neurons with similar stimulus

sensitivity help encode fine details of the stimulus.

We study theoretically the different regimes for pairs of spiking neurons, and illustrate

them in the correlated activity of rat retinal ganglion cells. We then extend our analysis to

large populations of sensory neurons, and propose a spectral analysis suggesting that local

noise correlations enhance information by favoring the accurate encoding of fine-grained

details. We validate this last prediction combining data from the mouse retina with accurate

convolutional neural network (CNN) models.

5.2 Results

Strong pairwise noise correlations enhance information transmission

We start with a simple model of a pair of spiking neurons encoding an angle θ, for instance

the direction of motion of a visual stimulus, in their responses r1 and r2. These responses are

correlated through two sources: signal correlations ρs due to an overlap of the tuning curves

(Fig. 5.1A); and noise correlations ρn due to shared noise (see Methods for mathematical

definitions). We asked how this shared noise affects the encoded information, for a fixed

level of noise in neurons.

To quantify the joint coding capacity of the 2 neurons, we computed the mutual infor-

mation I(θ; r1, r2) between their activities and the stimulus θ. For fixed tuning curves, we

find that the mutual information depends non monotonously on the noise correlation ρn

(Fig. 5.1B). For small abolute values of ρn, the sign rule is satisfied, meaning that negative
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Figure 5.1: The effects of noise correlations on information coding depends on the
stimulus. A. Example pair of VonMises tuning curves with moderate signal correlation level
(ρs = 0.25). B. Mutual information between stimulus and response for the example pair of
A, vs the strength of noise correlations. Grey areas correspond to forbidden correlations
zones. C. The non-monoticity of B may be explained by examining how well the stimulus
is represented by the sum and difference of the two neurons’ activities, as measured by
their signal-to-noise ratios. Noise correlations enhance noise in the sum, but reduce it in
the difference. D. Heatmap representing the noise synergy, defined as the relative gain
of mutual information induced by noise correlations compared to the uncorrelated case.
The dotted vertical line corresponds to the example pair of A and B. E. Three stimuli with
different spatiotemporal statistics were presented to a rat retina. F. Retinal ganglion cells
(RGCs) were recorded using a multi-electrode array (MEA).G.We isolated a nearly complete
population of OFF-α cells, with receptive fields (RFs) that tile the visual field following
approximately a triangular lattice. H. Example raster plots and firing rates for two cells with
neighboring RFs. I. Signal and noise correlations for each pairs of neurons in the population,
versus their distance. Each plot corresponds to 1 of the 3 stimuli of E. J. Noise synergy
induced by noise correlations for all pairs of nearby neurons (≥ 300µm), for each stimulus
of E.
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noise correlations are beneficial, and weak positive ones are detrimental [75, 6, 1, 137].

However, the mutual information increases again and noise correlations become beneficial

if they are larger than a certain threshold ρ∗n, violating the sign rule. This non monotonous

dependency may be intuitively explained as the interplay between two opposite effects

(Fig. 5.1C). Negative noise correlations are beneficial because they reduce noise in the

total activity of the neurons. By contrast, positive noise correlations reduce noise in their

differential activity, but this effect only dominates when they are strong enough.

We call “noise synergy” the gain in information afforded by noise correlations, ∆I =

I(ρn) − I(ρn = 0). Fig. 5.1D shows how noise synergy depends on both the noise and

signal correlation, where the latter is varied in the model by changing the overlap between

the tuning curves. Very generally, and beyond the cases predicted by the sign-rule, noise

correlations are beneficial also when they are stronger than the signal correlations. We can

gain insight into this behaviour by computing an approximation of the mutual information

that is valid for small correlations, following [102] (see Methods). The noise synergy can be

expressed as:

∆I ≈ α

2
ρn(ρn − ρ∗n), (5.1)

where α ≤ 1 is prefactor that grows with the signal-to-noise ratio (SNR) of the neurons.

Eq. 5.1 captures the behaviour of Fig. 5.1B, in particular the observation that noise corre-

lations are beneficial if ρnρs < 0, as the sign rule predicts, or if they are strong enough,

|ρn| > |ρ∗n|. We can show (see Methods) that the threshold ρ∗n scales with the signal

correlation strength ρs:

ρ∗n = β ρs. (5.2)

This result holds in the case of Gaussian neurons (see Methods) and the prefactor β ≤ 1

gets smaller and even approaches 0 as the SNR increases. It is also smaller when these

SNR are dissimilar between cells, consistent with previous reports [45]. When the SNRs

are weak and similar, we have β ≈ 1. This analysis indicates that noise correlations are

beneficial when they are of the same strength as signal correlations, but also that this

benefit is enhanced when neurons are reliable.

Our definition of the noise synergy relies on comparing the noise-correlated and uncor-

related cases at fixed noise level (SNR). However, increasing noise correlations at constant

SNR decreases the effective variability of the response, as measured by the noise entropy of

the joint response of the pair (see Methods). This means that high noise correlations imply

a more precise response, which could explain the gain in information. To study this possible

confounding factor, we also computed∆I at equal noise entropy, instead of equal SNR, and

found that strong noise correlations are still beneficial, with modified ρ∗ = 2ρs/(1+ρ2s ) ≤ 1
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(see Methods).

Benefit of noise correlations in pairs of retinal ganglion cells

The theory predicts that noise correlations may be beneficial when they are of the same

sign and magnitude as the signal correlations. To see whether real neurons fall in that

physiological regime, we recorded ex vivo the joint spiking activity of rat retinal ganglion

cells (RGCs, see Methods) [40, 24]. We subjected the same retinal preparation to 3 stimuli

with distinct spatio-temporal patterns: a random flickering checkerboard, drifting gratings,

and randomly moving disks (Fig. 5.1E). The activity of RGCs was recorded using a multi-

electrode array (Fig. 5.1F), and data was processed to assign spikes to each neuron [196].

We identified cells belonging to a nearly complete OFF-α population forming a regular

mosaic pattern of their receptive fields (Fig. 5.1G).

Each of the 3 stimulus movies was repeated multiple times (Fig. 5.1H), which allowed

us to compute the noise and signal correlation functions ρn and ρs (Fig. 5.1I), see Methods.

All three stimuli produced similar structures of noise correlations across the network, with

positive correlations between cells with nearby receptive fields. This is consistent with the

fact that noise correlations are a property of the network, independent of the stimulus [167,

101], and likely come here from gap junctions coupling neighbouring RGCs [25, 186]. In

contrast, signal correlations strongly depend on the statistical structure of the presented

stimulus, and may be positive or negative, with varying strengths.

To test the predictions of our theory, we computed the mutual information between

stimulus and response for all pairs of cells whose receptive fields were closer than 300µm

(Fig. 5.1J). The case of the drifting gratings with fixed orientation offers an illustration of

the sign rule. That stimulus induces strong negative signal correlations between many

cells, depending on their relative positions relative to the gratings direction. Since noise

correlations are positive, they are of opposite sign and therefore beneficial. In the case of

the checkerboard stimulus, noise correlations were found to be generally detrimental. This

again agrees with the sign rule since they have the same sign as signal correlations, but are

too weak to surpass the critical correlation value ρ∗n. Finally, the case of the moving disks

provides an example of the third regime, which violates the sign rule: noise correlations are

of the same sign as the signal correlations, but also of comparable magnitude. As a result,

many pairs fall above the threshold ρ∗n, making noise correlations beneficial.

Overall, the 3 stimuli illustrate the 3 possible regimes predicted by the theory when

noise correlations are positive: a beneficial effect when signal correlations are negative,
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signal covariances
noise covariances

Figure 5.2: Population analysis. A. Neurons are assumed to be spatially arranged along
sensory space. They combine features of the stimulus through a response function µi.
Noise is added to the neural responses. B. Signal and noise covariances versus distance
between neurons. Signal and noise covariances decay exponentially with distance with
spatial scales Ls and Ln. C.-D. Mutual information as a function of the noise correlation
between neighbors for: (C) varying levels of signal correlations, with fixed Vs = 2, Vn = 1,
and Ln = 2; and (D) varying levels of signal-to-noise ratio (SNR= Vs/Vn), with Ls = Ln = 2
(ρs ≈ 0.6).

a detrimental effect if signal correlations are positive and noise correlation weaker, and

a beneficial effect when noise and signal correlations are both positive and of the same

magnitude.

Large sensory populations in high dimension

We then asked how these results extend from pairs to large populations, by considering a

large number of neurons tiling sensory space (Fig. 5.2A). To go beyond neurons tuned to a

single stimulus dimension, and account for the ability of neurons to respond to different

stimuli in a variety of natural contexts, we assume that each neuron responds to high-

dimensional stimulus, like a whole image, a temporal sequence, or a movie. As different

stimuli are shown, the spike rate of each neuron will vary. For computational ease, we take

these fluctuations to be Gaussian of variance Vs.

To account for the empirical observation that nearby neurons tend to have close receptive

fields, we correlate the responses of any two neurons with a strength that decreases as a

function of their distance in sensory space, with characteristic decay length Ls (Fig. 5.2B).

The value of the correlation between nearest neighbours quantifies the signal correlation,
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ρs. For simplicity the response noise is also assumed to be Gaussian of variance Vn. To

model positive noise correlations between nearby neurons observed in both the retina [112,

161, 186, 187, 167] and cortex [107, 109, 199, 94, 13, 87, 67, 7, 73], we assume that they

also decay with distance, but with a different length Ln (Fig. 5.2B). The noise correlation

between nearest neighbors, defined as ρn, quantifies their strength.

In this setting, both signal and noise correlations are positive, and the sign rule alone

would predict a detrimental effect of noise correlations. The mutual information can

be computed analytically in terms of simple linear algebra operations over the neurons’

covariance matrices (see Methods) [3]. Using these exact formulas, we examined how the

mutual information changes as a function of the noise correlation ρn for different values of

the signal correlation ρs (Fig. 5.2C) and of the SNR Vs/Vn (Fig. 5.2D).

The results qualitatively agree with the case of pairs of neurons considered previously.

Weak noise correlations impede information transmission, in accordance with the sign rule.

However, they become beneficial as they increase past a critical threshold (ρ∗n), and this

threshold grows with the signal correlation strength. It also decreases and even vanishes

as the SNR is increased (Fig. 5.2D and Methods for a discussion of the large SNR limit).

This means that more reliable neurons imply an enhanced benefit of noise correlations.

We further proved that, even at low SNR, there always exists a range of noise correlation

strengths where noise correlations are beneficial (see Methods). The general dependency of

ρ∗n on the correlation ranges Ls and Ln is shown in Fig. S1.

Based on the analysis of pairs of neurons, we expect inhomogeneities in the SNR Vs/Vn

of neurons to enhance the benefit of noise correlations. To study this effect, we let the power

of the signal Vs vary between cells, while the noise level Vn is kept constant. Assuming that

each cell is assigned a random value of Vs, we can compute the correction to the critical

noise correlation ρ∗n. We find that ρ∗n decreases at leading order with the magnitude of the

inhomogeneity (see Methods). This result confirms that, in large populations of neurons

as well, variability among neurons makes it more likely for noise correlations to have a

beneficial effect.

Spectral decomposition

Mutual information is a single number that provides a global quantification of coding

efficiency, but says nothing about what is being transmitted. Likewise, a positive noise

synergy indicates that noise correlations are beneficial overall, but it doesn’t tells us what

feature of the stimulus are better encoded, nor which specific interactions between signal
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Figure 5.3: Spectral analysis of stimulus information encoding. A. Spatial spectral
decomposition I(k) of the mutual information between stimulus and response for a system
with SNR= 2, Ls = 2 and ρn = 0.4, for various ranges of the noise correlations (Ln =
0 corresponds to the absence of noise correlations). B. Spectral decomposition of the
noise synergy ∆I(k) = log[(1 + S(k)/N(k))/(1 + S(k)/Vn)]. The inset shows the power
spectrum of the noise. C. Heatmap showing the noise synergy spectral decomposition as a
function of the noise correlation range Ln. The critical spatial frequency k∗ above which
noise correlations are beneficial is shown as a black dotted line.

and noise allow for that benefit. We wondered what features of the signal were enhanced

by strong positive noise correlations in our population encoding model.

Thanks to the translation-invariant structure of the model, the mutual information

and noise synergies may be decomposed spectrally as a sum over spatial frequencies k

(expressed in units of inverse distance between nearest neighbors):

∆I =
n

2

∫ 1/2

−1/2

dk log

(
1 + S(k)/N(k)

1 + S(k)/Vn

)
, (5.3)

where S(k) is the power spectrum of the stimulus, andN(k) that of the noise (see Methods),

and n → ∞ is the total number of neurons. In this decomposition, low frequencies

correspond to long-range collective modes, while high frequencies correspond to fine-grain

features.

Natural stimuli involve spatially extended features impacting many neurons. This

causes neural responses to exhibit strong long-range signal correlations between neurons,

corresponding in our model to large Ls (Fig. 5.2B). Most information is then carried by low

frequency modes of the response (Fig. 5.3A).

Noise correlations concentrate noise power at low frequencies and decrease noise power

at high frequencies for a fixed noise level Vn (inset of Fig. 5.3B). As a result, noise correlations

enhance information in the high frequency modes of the signal (k ≥ k∗), at the expense of

the low frequencies features (Fig. 5.3B), which are already well represented. Fig. 5.3C shows

the spectral decomposition of the noise synergy as a function of the noise correlation range
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Figure 5.4: Noise correlations benefit small scale features at the detriment of large
scale ones. A.We built a large population of 49 RGCs based on 7 neurons recorded from
the mouse retina. A deep-GLM [101] was fit to the experimental population and its central
neuron model was tilled on a triangular lattice to create a large RGC network. Couplings
between the central experimental cell and its neighbors were symmetrized (green links in
the population plot; green lines in the inset plot) and averaged to obtain the coupling filters
between nearest neighbors in the synthetic population (blue links in the synthetic mosaic;
blue line in the inset plot). B. Information in the absence of noise correlations Iindep and
noise synergy ∆I per pixel for stimulus features of increasing scales. These quantities were
computed via a decoding approach applied to a binary flashed checkerboard stimuli with
various check sizes. Error bars are the standard error obtained by repeating the analysis on
bootstrapped data. In the absence of noise correlations, little information is transmitted
about small stimulus features. By contrast, large scale features are well encoded and
information per pixel saturates towards 1 bit as check size grows. The noise synergy is
positive for small and intermediate check sizes while negative for larger checks, in line
with the theoretical results highlighted in Fig. 5.3. C. Noise correlations nearly double the
amount of information encoded about stimulus features of small and intermediate sizes,
while only decreasing information for the largest checks by less than 10%.

Ln. The critical frequency k∗ = (1/2π) arccos(e−1/Ln) above which noise correlations are

beneficial only depends on Ln (Fig. 5.3C). However, the relative information gains in each

frequency domain depends on the strengths of the signal and noise correlations.

In summary, noise correlations enhance fine details of the stimulus to the detriment

of its broad features, which are already sufficiently well encoded. This redistribution of

the noise across the spectrum drives the gain in information. This effect is generic to any

choice of the correlation lengths, and we expect it to hold for other forms of the power

spectra and receptive field geometries.

Noise correlations in the retina favor the encoding of fine stimulus
details

To test our predictions, we studied experimentally the impact of noise correlations on the

encoding of features at different spatial scales in the retina. We recorded ex vivo the spiking
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activity of 7 OFF-α retinal ganglion cells from a mouse retina using the same experimental

technique as described before. We presented the retina with a multi-scale checkerboard

stimulus composed of frames made of random black and white checkers, flashed at 4Hz.

Each frame was made of a checkerboard with a given spatial resolution (checks of sizes 12,

24, 36, 72 and 108 µm). From the recorded activity, we infered a deep generalized linear

model [101] and used the inferred model to build a large synthetic population of 49 cells

organized on a triangular lattice (Fig. 5.4A). We then generated a large dataset of repeated

responses to regular black and white checker flashes. Each checker was composed of checks

of a given size (sizes ranging from 140 to 420 µm, with 28 µm increments) and for each

check size, 50 spatially offset versions of the checker were showed. We trained a linear

decoder of each pixel value (black or white) on this synthetic dataset, and a second decoder

on the synthetic data in which the activity of each cell was shuffled across repetitions to

destroy noise correlations (see Methods).

The two decoders were then applied to the testing datasets, synthetically generated

in the same way as the training sets, to decode each pixel from the response. For a fair

comparison, the second decoder was applied to data in which noise correlations were

removed by shuffling, as in the training. The mutual information carried by the decoders

was then estimated separately for each checker size. To limit border effects, the mutual

information was estimated for each pixel within a small hexagon centered on the central

cell of the synthetic population, of size (distance between opposite sides of the hexagon)

equal to the distance between cells.

We found that the gain in mutual information afforded by noise correlations is large

and positive for small and intermediate check sizes, while moderately negative for large

checks (Fig. 5.4B and C). These results suggest that noise correlation benefit the encoding

of small-scale features of the stimulus, at the expense of the large-scale ones, which are

easier to encode. Noise correlations can therefore trade the encoding power of large-scale

features to improve sensitivity to the small-scale ones.

5.3 Discussion

Many experimental works have shown that neurons with the strongest positive noise

correlations are similarly tuned to the stimulus [107, 109, 199, 94, 13, 87, 67, 7, 73]. Here

the sign rule [6, 75, 8] would predict a detrimental effect of shared variability, at odds with

the efficient coding hypothesis [16], which is supported by a large body of work showing

that noise correlations are indeed beneficial [1, 135, 45, 162, 57, 149]. Our work resolves
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this inconsistency by showing that beyond a critical value ρ∗n, noise correlations become

beneficial to information encoding regardless of their sign. We experimentally demonstrated

this effect in recordings of retinal neurons subject to stimuli with different statistics, and

showed that it generalizes to large populations of sensory neurons.

Pairwise correlations build up to strong network effects for large populations [153].

This large scale synchronization should be detrimental for coding because it impedes

denoising by pooling the signal ofmultiple neurons [199, 166]: the information gain saturates

compared to a population of independent neurons. In contrast, other studies focusing on

the stimulus response of large sensory populations have observed a positive gain [135, 45, 63,

57, 149]. Our study proposes a solution to this dispute: when the neural population encodes

a low dimensional stimulus, as the angle of a drifting gratings, similarly tuned nearby

neurons become strongly signal-correlated, and their noise correlations are detrimental

[166]. In the case of high dimensional stimuli, like naturalistic images or videos, signal

correlations between them are positive but weak, so that noise correlations become larger

than the threshold ρ∗n and therefore beneficial. We analyzed the impact of shared variability

depending of the stimulus spatial frequency: large scale (low dimensional) modes give rise

to strong signal correlations, making positive noise correlations detrimental, while small

scale (high dimensional) modes benefit from positive signal correlations since their signal

correlations are small.

Previous theoretical work assessed the potential benefits of noise correlations violating

the sign-rule [45, 75], and studied the interplay of noise and signal correlations in special

cases with specific correlation structures [166, 7, 57, 200]. Previous decompositions of the

mutual information [128, 137] suggested that variations of the noise correlations with

the stimulus may be beneficial, with additionnal information encoded in these variations.

However, these results relied on a non-standard definition of noise correlations, making

a direct comparison to our results intricate (see appendix D in [102]). Nonetheless, we

considered the impact of such fluctuations within our framework, by relaxing the assump-

tion of constant noise correlations in the second order derivation of the noise synergy (see

Methods). The computation shows that these fluctuations can improve the noise synergy in

two ways: by being large, and by being synchronized to the noise level Vn(θ), also assumed

to be stimlulus dependent. Our results thus extend and clarify previous theoretical work

under a common information-theoretic framework.

Our work also shares some similarity with Ref. [178], where the authors predicted the

optimal patterns of noise correlations maximizing information transmission by a population

of neurons. They showed that at high SNR, optimal noise correlations follow the sign

rule. This result does not rule out that high levels of noise correlations violating the sign
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rule could be beneficial—albeit not optimal—in agreement with our theory. However, a

direct comparison with our results is difficult because in Ref. [178] noise correlations were

tuned through inter-neuron couplings that affect the mean response of each neuron to

the stimulus, which is kept constant in our analysis. In fact, this effect leads to optimal

noise correlations of the same sign as stimulus correlations in the low SNR regime [178]. It

was also shown to improve positional coding in the hippocampus through the sharpening

of stimulus tuning [117]. This apparent violation of the sign rule is however indirect and

distinct from the direct beneficial effect of strong noise correlations that we discuss in this

work.

Several studies have focused on the effect of noise correlations on the Fisher information

[166, 45, 57, 1, 165]. While our main results are based on the mutual information, they

equivalently apply to the Fisher information in the Gaussian case [26] (see Supplementary

Appendix). To further test the robustness of our conclusions, we demonstrated that our

results are model independent, and hold both for binary and Gaussian neurons. In addi-

tion, empirical results from the retinal recordings (Fig. 5.1J) were obtained without any

approximation or model choice, and agree with the theory.

Also building on the Fisher information, another line of work [116, 81] suggested

that noise correlations are detrimental when aligned to the signal direction in each point

of response space. The structure of this type of noise correlations, called “differential”

or “information-limiting” correlations, can be intuited from the definition of the Fisher

information [116]. Although an in-depth discussion is beyond the scope of this paper,

we have performed an additional numerical analysis (see Fig. S2) to demonstrate that

information-limiting correlations become increasingly beneficial to the mutual information

as their strength increases, while they are always detrimental to the Fisher information.

We validated our theoretical predictions experimentally on recordings of neurons from

the retina. Applying our approach to data in sensory cortical areas where similar noise

correlation structures have been observed [73, 165] could lead to new understanding of the

role of noise correlations in sensory information processing. Another key open question

is what stimulus ensembles most benefit from noise correlations, and where naturalistic

stimuli stand in that regard. We have further shown that noise correlations benefit the

encoding of high-frequency features of the stimulus, which correspond to fine-grained

neural activity patterns. Extending these results to higher cortical areas would require

understanding which features from the stimulus drive such activity patterns.
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5.4 Methods

Covariance and correlation measures

The average responses of two neurons 1 and 2 are given as function of the stimulus θ

by the tuning curves µ1(θ) = ⟨r1⟩θ and µ2(θ) = ⟨r2⟩θ. Signal correlations are defined

as ρs = Corrθ(µ1, µ2), and noise correlations as: ρn(θ) = Corr(r1, r2|θ). The sum of

these two coefficients does not have a simple interpretation in terms of total correlation

or covariance, but we can also decompose the total correlation coefficient between r1

and r2 as Corr(r1, r2) = rs + rn, with rs = Covθ(µ1, µ2)/
√

Var(r1)Var(r2), and rn =

⟨Cov(r1, r2|θ)⟩θ/
√

Var(r1)Var(r2).

Pairwise analysis

Tuning curves. We consider a pair of neurons encoding an angle θ. The responses of

the two neurons, r1 and r2, are assumed to be binary (spike or no spike in a 10ms time

window) and correlated. Their average responses µ1(θ) and µ2(θ) are given by Von Mises

functions (Fig. 5.1A):

µi(θ) = a
exp (cos (θ − θic) /w)− exp (−1/w)

exp (1/w)− exp (−1/w)
+ b. (5.1)

Signal correlations between the two neurons can be tuned by varying the distance between

the center of the two tuning curves θ1c and θ2c . The tuning curve width w was set arbitrarily

to 5, the amplitude a to 0.4 and the baseline b to 0.1. The strength of noise correlations is

set to a constant of θ, ρn(θ) = ρn.

Small correlation expansion. When noise correlations ρn are constant, the noise synergy

may be expanded as [102]:

∆I = −rsrn +
1

2

(
ρn

2 − rn
2
)
=

α

2
ρn (ρn − ρ∗n) , (5.2)

where the second equality highlights the dependency on ρn. The critical ρ∗n may be written

as

ρ∗n = β ρs, with β =
2VsVn

Vtot
2 − Vn

2 , (5.3)
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and the prefactor α = 1 − V 2
n /V

2
tot, with the shorthands Vtot =

√
Var(r1)Var(r2), Vn =

⟨
√

Var(r1|θ)Var(r2|θ)⟩θ, and Vs =
√
Var(µ1(θ))Var(µ2(θ)) corresponding to measures of

total, noise, and signal variances in the two cells.

By Cauchy-Schwartz we have:

Vn
2 ≤ ⟨Var(r1|θ)⟩θ⟨Var(r2|θ)⟩θ, (5.4)

which entails

β ≲
1

cosh ∆lnR
2

+R/2
≤ 1, (5.5)

where R =
√
R1R2 and ∆lnR = ln(R1/R2), with Ri = Var(µi)/⟨Var(ri|θ)⟩θ the signal-

to-noise ratio of the cells. R measures the overall strength of signal-to-noise ratios, while x

measures their dissimilarity. The last inequality implies that noise correlations are always

beneficial for ρn > ρs.

Varying noise correlations. When ρn(θ) depends on θ, the noise synergy becomes [102]:

∆I = ∆Ic +∆If,1 +∆If,2, (5.6)

where ∆Ic is given by Eq. 5.2, and ∆If,1 = (1/2)Varθ(ρn(θ)) ≥ 0 accounts for the effect of

fluctuations of ρn(θ). ∆If,2 is given by:

∆If,2 = −
〈
(ρn(θ)− ρ̄n)

Vn(θ)

Vtot

〉
θ

×(
1

2

〈
(ρn(θ) + ρ̄n)

Vn(θ)

Vtot

〉
θ

+ rs

)
,

(5.7)

where ρ̄n = ⟨ρn(θ)⟩θ. This contribution can be positive or negative, depending on how noise

correlations ρn(θ) co-vary with the noise variance of the pair Vn(θ).

Gaussian case. To test the theory’s robustness to modeling choices, we also considered

a continuous rather than binary neural response: ri = µi(θ) + δri, where both µi and

δri are Gaussian variables defined by their covariance matrices Σs,ij = Covθ(µi, µj), and

Σn,ij = ⟨Cov(ri, rj|θ)⟩θ. The noise synergy can be calculated through classic formulas for

the entropy for Gaussian variables, yielding:

∆I =
1

2
log

(
|Σs + Σn||Vn|
|Σs + Vn||Σn|

)
, (5.8)
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where |X| denotes the determinant of matrix X , and where Vn is the diagonal matrix

containing the noise variances of the cells Vn,ii = Σn,ii. Note that this formula is general for

an arbitrary number of correlated neurons. In the pairwise case considered here matrices

are of size 2 × 2. The condition for beneficial noise correlations ∆I ≥ 0 is satisfied for

ρn ≥ ρ∗n, with

ρ∗n = βρs with β =
1

cosh ∆lnR
2

+ (1− ρ2s)R/2
≤ 1, (5.9)

which has a similar form as Eq. 5.5.

Noise synergy at constant noise entropy. Increasing noise correlations at constant

Vn decreases the effective variability of the response, as measured by the noise entropy,

H({r1, r2}|θ) = ln(2πe|Σn|1/2), with |Σn| = V 2
n (1− ρ2n) in the case two neurons with the

same noise level. To correct for this effect we also computed ∆I at constant noise entropy,

by rescaling the noise variances in the correlated and uncorrelated cases, Vn,c and Vn,u, so

that their resulting noise entropies are equal |Σn| = V 2
n,c(1− ρ2n) = V 2

n,u.

The critical noise correlation at which ∆I ≥ 0 is then given by:

ρ∗n = 2
ρs

1 + ρ2s
≤ 1, (5.10)

where the last inequality implies that strong enough noise correlations are always beneficial.

Retinal data. Retinal data were recorded ex-vivo from a rat retina using a microelectrode

array [40] and sorted using SpyKING CIRCUS [196] to isolate single neuron spike trains.

From the ensemble of single cells we could isolate a population of 32 OFF-α ganglion cells.

Three stimuli movie with different spatio-temporal statistics were presented to the retina: a

checkboard movie consisting of black and white checks changing color randomly at 40Hz

and repeated 79 times; a drifting grating movie consisting of black and white stripes of

width 333µm moving in a fixed direction relatively to the retina, at speed 1mm/s, and

repeated 120 times; and finally a movie composed of 10 black disks jittering according to a

Brownian motion on a white background, repeated 54 times.

Gaussian population and spectral analysis

We consider a population of n neurons organized along a 1D lattice with constant in-

terneuron spacing. Their mean response and noise are assumed to be Gaussian, with their

noise and signal covariances given by an exponentially decaying function of their pairwise
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distances:

Σs,ij = Vse
−|i−j|/Ls , (5.11)

Σn,ij = Vn(δij + ρ0ne
−|i−j|/Ln). (5.12)

Vs and Vn are the signal and noise variance of the single cells. The parameter ρ0n sets

the strength of noise correlations such that nearest neighbors have noise correlation

ρn ≡ ρ0n exp (−1/Ln). When n is large and boundary effects can be ignored, the sys-

tem is invariant by translation and we can diagonalize Σs and Σn in the Fourrier basis

νk,l =
1√
n
exp (−i2πkl/n). Denoting the spectra of Σs and Σn by S(l/n) and N(l/n), the

expression of the noise synergy, Eq. 5.8, can then be written as a sum over modes:

∆I =
1

2

(n−1)
2∑

l=− (n−1)
2

log

(
1 + S(l/n)/N(l/n)

1 + S(l/n)/Vn

)
, (5.13)

which simplifies in the n → ∞ limit to:

∆I

n
=

1

2

∫ 1/2

−1/2

log

(
1 + S(k)/N(k)

1 + S(k)/Vn

)
dk, (5.14)

with

S(k) = Vs
1− ρs

2

1− 2ρs cos (2πk) + ρs2
, (5.15)

N(k) = Vn

(
1− ρ0n + ρ0n

1− λn
2

1− 2λn cos (2πk) + λn
2

)
, (5.16)

where ρs = exp (−1/Ls) is the nearest-neighbors signal correlation, and λn = exp (−1/Ln).

k is a wave vector interpretable as a spatial frequency in units of the system’s size, up to a

2π factor. Examining Eq. 5.14, we see that noise correlations are beneficial for frequencies

for which N(k) ≤ Vn, which happens for k ≥ k∗ where k∗ = (1/2π) arccos(e−1/Ln).

In the low noise regime, R = Vs/Vn ≫ 1, the noise synergy reduces to:

∆I

n
≈ −1

2

∫ 1/2

−1/2

log (N(k)/Vn)dk ≥ 0, (5.17)

where the inequality stems from Jensen’s inequality, because − log is a convex function,

and − log(
∫ 1/2

−1/2
dkN(k)/Vn) = 0. Therefore in that regime noise correlations are always

beneficial.
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In the high noise limit, R ≪ 1, the noise synergy becomes:

∆I

n
≈ 1

2

∫ 1/2

−1/2

[
S(k)

N(k)
− S(k)

Vn

]
dk. (5.18)

Computing this integral gives the critical noise correlation:

ρ∗n = ρs
(1− λ2

n)

1− 2λnρs + ρs2
≤ ρmax

n , (5.19)

where ρmax
n = (1 + λn)/2 is the maximum possible value of ρn (ensuring that the noise

spectrum N(k) is non-negative for all k). The last inequality in Eq. 5.19 implies that there

always exists a regime in which strong noise correlations are beneficial.

Non-identical neurons. To study the effect of nonhomogeneities among neurons, we

considered the case where the signal variance of each cell is different, and drawn at random

as
√

V i
s = µ + ηi, where ηi is normally distributed with zero mean and variance ν2. The

noise synergy can be rewritten in the high noise regime (R ≪ 1) as:

∆I ≈ 1

2
Tr
(
ΣsΣ

−1
n − ΣsV

−1
n

)
. (5.20)

Averaging this expression over ηi yields:

∆I ≈ ∆Iu +
1

2

ν2

(µ2 + ν2)
Tr
(
Σ−1

n

(
R̄I− Σs

))
, (5.21)

where∆Iu is the noise synergy in a uniform population (with Vs = µ2 + ν2), and where the

second term is always positive, with R̄ = ⟨V i
s ⟩/Vn = (µ2 + ν2)/Vn.

Taking the continuous limit (n → ∞) in Eq. 5.21, similarly to the integral limit of

Eq. 5.14, allows us to write the critical noise correlation ρ∗n as:

ρ∗n =
ρ∗,un

1 + γ
+

1− ρ∗,un

2

(
1−

√
1 +

4γρ2s (1− λ2
n)

(1 + γ)2(1− λnρs)2

)
, (5.22)

where γ = ν2/µ2 quantifies the relative magnitude of nonhomogeneities, and ρ∗,un is the

critical noise correlation value in a uniform population (Eq. 5.19). This modified critical

noise correlation value is always smaller than in the uniform case, and scales linearly at

leading order with the inhomogeneity parameter γ:

ρ∗n = ρ∗,un

(
1− γ

1− ρ2s
1− ρsλn

)
+ o(γ). (5.23)
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Decoding analysis

Experimental and synthetic data. We presented a mouse retina with a stimulus con-

sisting of a black and white random checkerboard flashed at 4Hz, each frame with a given

spatial resolution (checks of sizes 12, 24, 36, 72 and 108µm). Retinal ganglion cell activity

was recorded ex-vivo using a micro-electrode array and single neuron activity isolated via

spike sorting using SpyKING CIRCUS [196]. We isolated a population of Ncells = 7 OFF-α

retinal ganglion cells which presents strong noise correlations in their response [187]. The

original recording contained a 15 s checkerboard movie repeated 90 times as well as 90

different 22.5 s long unrepeated movies.

We inferred a deep Generalized Linear Model (GLM) of the central cell among 7 from the

experimental population (Fig. 5.4A), consisting of a stimulus-processing filter, and filters for

the spiking history of the cell as well as its 6 neighbors (couplings). The stimulus-processing

part of the model consisted of a deep neural network composed of two spatio-temporal

convolutional layers followed by a readout layer. The whole model was fit to the data using

the 2-step inference approach [101].

A synthetic population of 49 OFF-α ganglion cells was then constructed by arranging

them on a triangular lattice of 7 by 7 points. Each cell responds according to the inferred

GLM with translated receptive fields. Nearest neighbors were coupled with the average of

the GLM couplings inferred between the central cell from the experiment and its neighbors.

To stimulate this synthetic population, we generated a synthetic stimulus ensemble

from 550 regular black and white checker frames, each with a given check size ranging from

140 to 420 µm (with increments of 28 µm). Every checker of a given size was presented

for 5 different regularly spaced offsets ranging from 0 to 224 µm both in the horizontal

and vertical directions, resulting in 25 different frames per size. To further ensure that the

color of each pixel in the stimulus ensemble is black or white with equal probability, each

checker frame also had its color-reversed version in the set, resulting in 50 different frames

for a given check size. A single snippet from the synthetic stimulus ensemble consisted of a

250ms white frame followed by one of the 550 aforementioned checker frames.

We built a training, a vadliation, and testing set for the dependent and independent

decoders by simulating the synthetic population for sets of 3750, 1250, and 5000 repetitions

(respectively) of each synthetic stimulus snippets.

Decoders. The binary decoders are logistic regressors taking in the integrated response

of the population over the Nτ = 5 past bins of 50ms to predict the ongoing stimulus frame.
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The predicted stimulus at time t and repeat k is given by:

X̂(x, y, t, k) = f (Ax,yr(t, k) + βx,y) , (5.24)

where x, y are the pixel indices along the two dimensions of the stimulus, f(x) = (1+e−x)−1

is the sigmoidal function, Ax,y is a matrix of size (Nτ , Ncells), r(t, k) is a matrix of size

(Ncells, Nτ ) containing the spike history of the population at time t and repeat k, and

βx,y a pixel-wise bias. Each decoder was trained by minimizing the average binary cross

entropy (BCE) between predicted stimulus X̂(x, y, t, k) and the true stimulus X(x, y, t),

⟨BCE(x, y, t, k)⟩x,y,t,k, where

BCE(x, y, t, k) = −X(x, y, t) ln (X̂(x, y, t, k))

−(1−X(x, y, t)) ln (1− X̂(x, y, t, k)).
(5.25)

Training was done by stochastic gradient descent on the synthetic datasets using the

training (3750 repetitions) and validation (1250 repetitions) sets. Optimization was done

using stochastic gradient descent with momentum, with early stopping when the validation

loss did not improve over 6 consecutive epochs. During that procedure the learning rate

was divided by 4 whenever the validation loss did not improve for 3 consecutive epochs.

We probed the decoders’ abilities to decode features of different spatial scales by

decoding the simulated responses of the synthetic population to the checker stimuli with

varying check size from the testing set. Performances of the decoders were assessed by

computing the mutual information between each pixel’s color X and it’s decoded value

X̂ , separately for the different sizes of checks. The noise synergy was then computed as

the difference between the mutual information averaged over pixels for the dependent and

independent decoders.

Error bars were computed as follows. We infered 10 deep GLMs on bootstraps of the

original training set, obtained by re-sampling with replacement the simulus-response pairs

used for training. These 10 models were used to generate 10 surrogate training sets, from

which 10 separate decoders were infered with noise correlations, and another 10 without

noise correlations. Then synthetic test sets for the checker decoding task were generated

from each of the 10 models, and the performance of each decoder computed separately

with and without noise correlations, yielding 10 values of the mutual information, and 10

values of the noise synergy (both averaged over pixels). The error bars are the standard

deviations of the resulting information, noise synergy and synergy-to-information ratios

(i.e. relative noise synergy) over the 10 bootstraps.
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Data availibility

Part of the data utilized in this work have been used or published in previous studies [40, 24].

The remaining data and codes will be shared upon publication of this study. The code used

to generate the synthetic data is available at https://github.com/gmahuas/
noisecorr.
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5.5 Supplementary information

Strong noise correlation and Fisher information

We consider a pair of neurons encoding an arbitrary variable θ. The responses r of these

neurons is assumed to be Gaussian of mean µ(θ) and covariance matrix Σn), where µ (θ)

are the tuning curves. In this context the Fisher information is defined as:

Fdep (θ) = µ′ (θ)⊤Σ−1
n µ′ (θ) . (5.1)

Expanding this expression for a pair of neuronswith equal noise variance,Σn = Vn

(
1 ρn

ρn 1

)
,

yields:

Fdep (θ) =
µ′
1 (θ)

2 + µ′
2 (θ)

2

Vn (1− ρ2n)

(
1− ρn

2µ′
1 (θ)µ

′
2 (θ)

µ′
1 (θ)

2 + µ′
2 (θ)

2

)
. (5.2)

In the absence of noise correlations (ρn = 0), the Fisher information simplifies to:

Findep (θ) =
µ′
1 (θ)

2 + µ′
2 (θ)

2

Vn

. (5.3)

To quantify the overall Fisher improvementwe introduce the quantity∆R = ⟨(Fdep(θ)/Findep(θ)−
1)⟩θ. Defining ξ(θ) = 2µ′

1(θ)µ
′
2(θ)

µ′
1(θ)

2+µ′
2(θ)

2 , the Fisher improvement becomes:

∆R =
ρn (ρn − ⟨ξ(θ)⟩θ)

1− ρn2
. (5.4)

Therefore, strong positive noise correlations will benefit the Fisher information whenever

they exceed the critical value ρ∗,Fn = ⟨ξ(θ)⟩θ.
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Figure S1: Behavior of ρ∗n. ρ∗n changes non-monotically with the signal Ls and noise Ln

correlation ranges, and is concave with respect to these parameters. The maximum value of
ρ∗n at a given Ls is achieved when Ln = Ls.
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Figure S2: Impact of information limiting correlations on stimulus information.
An angular stimulus θ is encoded by a pair of neurons characterized by Von Mises tuning
curves (with parameters a = 40, b = 10, and w = 5). Their response is Gaussian of means
µ1(θ) and µ2(θ). Information-limiting correlations are defined by a covariance of the form:
Σn(θ) = V0I + ϵµ′(θ)µ′(θ)⊤, were ϵ controls their strength, and where we set V0 = Vs/2.
Note that Σn now depends on θ. A. Relative noise synergy ∆I = Idep/Iindep − 1 as a
function of ϵ, where Idep and Iindep quantify the mutual information with and without (off
diagonal terms of Σn set to 0) noise correlations, for different levels of signal correlation ρs.
Mutual information was computed via Monte-Carlo integration. Information-limiting noise
correlations become beneficial to the mutual information if they are strong enough, except
when cells are perfectly signal-correlated. B. By contrast, information-limiting correlations
are always detrimental to the Fisher information F (θ) = µ′(θ)⊤Σ−1

n (θ)µ′(θ). The relative
Fisher improvement∆R = ⟨(Fdep(θ)/Findep(θ)− 1)⟩θ, where Fdep(θ) and Findep(θ) denote
the Fisher information with and without noise correlations, is always negative and decreases
with ϵ and ρs.
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Chapter 6

Discussion and perspectives

Sensory neurons encode stimulus information in the collective activity that is shaped both

by stimulus input as well as network interactions [25, 163, 51, 135, 64, 187]. These two

sources to the collective behavior have very different impacts on neural responses: while the

stimulus drives the deterministic part of neural activity, interactions also reshape the noise

inherent to neural responses and correlate it across the network. Experimental evidence

highlighted how, across a wide variety of sensory systems, noise correlations tend to be

positive and strong for pairs of neurons that shared stimulus preferences [112, 161, 187, 167,

107, 94, 13, 87, 73, 7]. By contrast, a wide body of theoretical and computational literature

argued that such noise correlations structure should decrease stimulus information encoding

compared to the hypothetical case of uncorrelated noise [128, 137, 8, 1, 166, 193, 45, 195].

The main results discussed in this thesis suggest a potential resolution to this discrep-

ancy. Positive noise correlations do not necessarily decrease the information conveyed by

the collective response of sensory neurons. In fact, we demonstrated that positive noise

correlations can benefit sensory coding even when neurons are positively correlated by

stimulus inputs, as long as noise correlations are sufficiently strong. More precisely, we de-

rived a "rule-of-thumb" from the small correlation approximation of the mutual information,

that shows how noise correlations will benefit coding when larger than signal correlations.

Furthermore, our results suggest that this benefit goes hand in hand with a change in the

informative content of neural responses: positive short range noise correlations benefit the

encoding of small details of the stimulus, while they decrease the information conveyed

about large scale stimulus features.

To reach these conclusions, we developed and employed various computational methods,

and used the retina as a model sensory system. These aspects of our approach inevitably

involve certain assumptions and limitations. In this section, we will discuss these constraints
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and explore the potential insights and future directions emerging from our findings.

6.1 Stimulus dependency of noise correlations

In chapter 1, we showed through a new model based approach that the interaction network

underlying noise correlations between α cells from the rat retina is robust to strong changes

in statistics of the stimulus ensemble. This result implies that noise correlations in the

marginal response distribution (which we denoted rnij in chapter 2) should be minimally

affected by changes in the stimulus ensemble. Beyond this result, a point that we didn’t

investigate in detail in this thesis concerns the stimulus dependence of noise correlations in

the response conditioned to the stimulus (denoted ρnij(S) in chapter 2). Indeed, although

they are relatively constant when average over sufficiently large durations or stimulus

ensembles, noise correlations could still fluctuate significantly with firing rates or with the

stimulus over fine time scales.

Investigating further this point could be of prominent interest as findings from the

literature show that, beyond their strength and relation to stimulus correlations, the depen-

dency of noise correlations on the stimulus will also impact sensory coding [57, 200, 137].

When deriving the "rule-of-thumb" in chapter 5, we assume for simplicity that pairwise

noise correlations in the conditional response are constant. In reality, these correlations

can be modulated by firing rates of the cells [38] as well as by the stimulus [180].

Nonetheless, the intuition derived from the "rule-of-thumb" does predict qualitatively

the sign-rule violations observed in experimental data, where the mutual information is

computed exactly and accounts for stimulus dependent noise correlations (see chapter 5 Fig.

5.1 panel J). This means that the stimulus dependency of noise correlations between OFF-α

ganglion cells from the rat retina does not affect significantly their impact on stimulus

encoding.

Studying the implications of the detailed stimulus-dependency of noise correlations and

understanding whether our findings hold for different ganglion cell types or even different

systems remains an open question, that is moreover difficult to tackle. Indeed, to assess

accurately their effect on the mutual information, stimulus dependent noise correlations

need to be estimated with sufficient precision from experimental data. To do this, the

response to many single stimulus trials have to be recorded experimentally, for a wide range

of stimulus values. Here, classical models such as the GLM fall out of their use case, as

their functional form will impose the structure of stimulus dependent noise correlations,

however well they model the stimulus average of noise correlations (i.e. marginal noise
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correlations). Approaches such as integrate-and-fire or biologically inspired models [38,

181] could be used to investigate the relationship between firing rates, stimulus correlations

and noise correlations depending on the origin of noise correlations (i.e. shared noise or

gap junctions). Powerful statistical methods can also be applied to this task. A recent and

promising advance to model the stimulus dependency of noise correlations consists in using

Wishart processes to reduce drastically the need for experimental data [120].

6.2 Beyond pairwise instantaneous correlations

The goal of this thesis was to investigate the impact of the structure of neural noise on

sensory coding in the retina. To keep this problem tractable and obtain interpretable results,

we had to make significant simplifications to the most general formulation of this problem.

The first major (but common) simplification we did was to discretize neural responses

in time and only considered the population activity within one time bin. By doing so,

we bias our estimate of information by imposing an arbitrary temporal resolution to the

neural code, and we further neglect all (signal and noise) correlations between successive

time bins. In this thesis, we mostly focused on studying the coding impact of the fast

noise correlations observed between mammalian α retinal ganglion cells. To mitigate the

effect of the aforementioned simplification, we binned experimental data at around 15ms

to integrate most noise correlations in single bins, leaving almost no such correlations

between successive time bins. As a consequence, we neglect the temporal structure of

correlations within one time bin, while it as been shown in different systems including the

retina that stimulus information can be carried by spikes with millisecond precision [121,

11]. A potential solution to circumvent this issue and account for the temporal structure

of noise correlations has been illustrated in chapter 4, where we applied our approach to

compute the information conveyed by subsequent small time bins in single neurons. Future

work could directly extend this approach to populations of retinal neurons and their spiking

history.

The second important simplification we performed was to reduce our description of

collective neural activity in individual time bins to pairwise correlations between neurons.

This approximation naturally stemmed from the use of pairwise maximum entropy models

and the corresponding small correlation expansion. However, while the pairwise assumption

for conditional responses agrees at least intuitively with the fact that nearby ganglion cells

are coupled via gap junctions, one could argue that shared noise could induce higher order

noise correlations that may not be predictable from pairwise interactions. This is even more

striking for marginal distributions, as the strong spatio-temporal correlations present in the

– 121 –



Discussion and perspectives

stimulus could drive higher order correlations in neural responses, leading to the breakdown

of the approximation [39]. That being said, maximum entropy models have been extensively

used in the literature to model both conditional [64, 51, 39] and marginal [153, 176, 58, 54]

response distributions. It has been shown, both in the retina and the cortex, that pairwise

interactions are usually sufficient for up to a few tens of neurons [125, 176]. This is in

agreement with our results discussed in chapter 3, where we validated our approach on non

maximum entropy synthetic data. However, accounting for higher order interactions starts

becoming important for larger populations [125, 176]. Extensions of our approach could

be done by approximating the mutual information from small correlation expansions of

maximum entropy models accounting not only for pairwise but also for triplet interactions.

It is worth noting however that applying such approaches to experimental data will be

hindered by the fact that three point correlations are notoriously hard to estimate from

limited data.

6.3 Stimulus specific impact of noise correlations

We have shown that the impact of noise correlations on stimulus encoding depends heavily

on the choice of the stimulus ensemble. In particular, we showed that strong positive

noise correlations such as those observed in the retina would overall increase the mutual

information for stimuli that only moderately correlate neural responses. Our experimental

data analyses focused on a set of stimuli that had very different statistics, to illustrate the

different effects predicted from our theoretical developments. A point we didn’t address in

our analyses but which could constitute an immediate next step for future work would be

to investigate where natural stimuli stand in that picture.

One could question however, the understanding that such an analysis would provide.

Indeed, the mutual information is but an average measure of the uncertainty reduction

that one gets about the stimulus value, from observing neural responses. If two different

populations, one noise correlated and the other uncorrelated, have the same mutual infor-

mation value, does this imply that noise correlations have no impact on stimulus encoding

and can be overlooked when studying sensory coding? Beyond their effect on the mutual

information value, noise correlations could also redistribute the amount of information

available in neural responses about each different stimulus composing the ensemble.

In order to gather intuition on this point, one can rely on the Fisher based mutual

information approximation that we mentioned in chapter 2 [26, 166, 192]. In the small

neural noise regime, the mutual information can be approximated as I = α⟨log(J(θ))⟩θ+β,
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where α and β are constant and J(θ) is the Fisher information about stimulus parameter θ

(see Eq. 2.12 for the linear Fisher expression). Coming back to the simplistic case of two

neurons encoding a single stimulus parameter θ as illustrated in Fig. 2.1 from chapter 2,

one would therefore expect positive noise correlations to benefit stimuli lying in between

receptive fields, when direction of the local signal is orthogonal to that of the noise (see

discussion on this point in chapter 2 and Fig. 2.2 C).

By contrast, a simple approximation for the mutual information in the high noise

regime derived in ref. [166] yields a very different interpretation. Assuming constant noise

covariance Cn and Gaussian conditional neural responses, noting µ(θ) the mean population

response vector to stimulus θ and introducing δ(θ) = µ(θ)− ⟨µ(θ)⟩θ, this approximation

gives:

I =
1

2
⟨δ(θ)⊤Cn−1δ(θ)⟩θ. (6.1)

Interestingly, this expression strongly resembles that of the linear Fisher information Eq.

2.12, at the difference that mean response derivatives µ′(θ) are now replaced by their "global"

counterpart δ(θ) = µ(θ)− ⟨µ(θ)⟩θ. The same reasoning applied to the Fisher information

previously can be adapted to this new setting: noise correlations will be beneficial when

they are orthogonal to the signal, which is now quantified by δ(θ) instead of µ′(θ). For

the simple pairwise example re-invoked above, this implies that positive noise correlations

will benefit the encoding of stimuli that activate one neuron more than average and the

other less than average. By contrast to the previous low noise case where positive noise

correlations would benefit stimulus encoding between tuning curves, noise correlations will

now benefit the encoding of stimuli that are centered on one of the two receptive fields.

This transition between high and low noise regimes clearly illustrates how understanding

the precise role of noise correlations in sensory coding will require going beyond the average

information measure that the mutual information is. We note nonetheless that validating

and extending the picture sketched here to the case of more complex and realistic stimuli

may require using more general and theoretically grounded decompositions of the mutual

information, such as the Stimulus Specific Information [27, 28].

6.4 Population coding of specific stimulus features

Retinal ganglion cells activity is often very nonlinear and sensitive to several features of

the stimulus [50, 40]. How sensitivity to multiple features extends from single neurons

to populations and more precisely how the encoding of different features interact at the

population level is unclear. Such parallel feature encoding could give rise to flexible neural
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codes, where information about different features is readily available from the collective

activity of a given population. Moreover, all features that compose the visual stimulus may

not have the same behavioral interest at any given time. To take an example, an animal

actively engaging in prey capture may care more about detecting small moving objects

in the visual field than other features such as global luminance changes. Understanding

how information related to one "relevant" stimulus feature is impacted by the activity

induced by other "irrelevant" features in the context of a given task could shed new light on

population coding in the retina. In this thesis, we considered that noise in neural responses

was entirely due to intrinsic neural variability, while the signal of interest to encode by the

system consisted of the whole visual input. In light of the picture outlined above, one could

consider an alternate view of the problem. Instead of treating the whole visual input as the

signal to encode, one could rather consider that only specific features of the stimulus (like

moving objects in the aforementioned example) ought to be treated as signal. As a result,

the part of neural activity that is driven by other "irrelevant" features (i.e. global luminance

in the example above) should be treated as noise when evaluating information in neural

responses. This implies that there are now two noise sources to the collective behavior of

sensory neurons: intrinsic noise that we already considered in the rest of the thesis, and

extrinsic noise, that is induced by "irrelevant" stimulus features.

From there, one can first wonder about the effect of these total noise correlations on

the encoding of the feature considered here as "relevant". An answer to this question can

be provided by extending the main results derived in chapters 4 and 5 to this new setup:

total noise correlations will benefit stimulus encoding whenever they are larger than or

opposed to signal correlations. Interestingly, it has been shown that such extrinsic noise

correlations can indeed lead to synergistic coding of specific stimulus features in the retina

[91]. Specifically, salamander direction selective ganglion cells are both sensitive to stimulus

motion direction and luminance changes, with similar sensitivity in luminance changes

for neighboring cells. When considering motion direction as the signal to encode and

luminance induced activity as noise, neural correlations increase the information encoded

by collective neural responses about stimulus motion.

Another possible direction would be to focus on the impact of intrinsic noise correlations

on a specific feature from the stimulus. This could be done by maintaining the distinction

between extrinsic and intrinsic noise correlations and computing the noise synergy related

to intrinsic neural noise, i.e. the difference between mutual information with and without

intrinsic noise correlations, with conserved extrinsic correlations. Our main results could

also be extended to this setting, by decomposing total noise covariances in two components

Cn
tot(s) = Cn

int(s) + Cn
ext(s) and inserting this decomposition directly in the second order
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mutual information approximation derived in chapter 4. This would result in a modified

value for the critical noise correlation value discussed in chapters 4 and 5, that would

depend on the strength of signal and extrinsic noise correlations, as well as on the ratio

between extrinsic and intrinsic noise variances. Applying this approach to experimental

data could be challenging however, as it would imply getting repeated trials for each stimuli

and each extrinsic noise realisation, making the use of generative models to palliate the

lack of experimental time almost unavoidable.

6.5 Conclusion

The impact of noise correlations on stimulus encoding has been a longstanding research

topic in sensory neuroscience. The main contributions of this thesis attempted to tackle this

problem from three complementary angles. First, we developed a new inference approach for

Generalized LinearModels, that describes accurately the contributions of noise and stimulus

correlations to the collective behavior of rat retinal ganglion cells. This approach allowed

us to assess the independence of the interaction network underlying noise correlations

with respect to the stimulus ensemble. Further, this approach could be used to investigate

the impact of noise correlations in simulated responses to new synthetic stimuli. Second,

we developed a small-correlation approximation of the mutual information that can be

directly applied to experimental recordings and which provides theoretical insight on the

impact of noise correlations on sensory coding. The accuracy of this approximation was

validated on synthetic data, and the approach was used to quantify the impact of noise

correlations and refractory effects in retinal coding. Lastly, by investigating the impact

of noise correlations on coding in experimental data from the retina, we illustrated the

predictions of the aforementioned approximation. In particular, we showed that, beyond

the "sign-rule", strong and positive noise correlation could still benefit sensory coding as

long as they were larger than stimulus correlations. We further demonstrated that such

effects could also arise in large neural populations, and that they are concomitant with

beneficial effects of noise correlations on the encoding of small scale stimulus features.

– 125 –





Bibliography

[1] Larry F Abbott and Peter Dayan. “The effect of correlated variability on the accuracy

of a population code”. In: Neural computation 11.1 (1999), pp. 91–101.

[2] Petri Ala-Laurila, Martin Greschner, EJ Chichilnisky, and Fred Rieke. “Cone pho-

toreceptor contributions to noise and correlations in the retinal output”. In: Nature

neuroscience 14.10 (2011), pp. 1309–1316.

[3] Joseph J Atick and A Norman Redlich. “Towards a theory of early visual processing”.

In: Neural computation 2.3 (), pp. 308–320.

[4] Joseph J Atick and A Norman Redlich. “What does the retina know about natural

scenes?” In: Neural computation 4.2 (1992), pp. 196–210.

[5] Fred Attneave. “Some informational aspects of visual perception.” In: Psychological

review 61.3 (1954), p. 183.

[6] Bruno B Averbeck, Peter E Latham, and Alexandre Pouget. “Neural correlations,

population coding and computation”. In: Nature reviews neuroscience 7.5 (), pp. 358–

366.

[7] Bruno B Averbeck and Daeyeol Lee. “Effects of noise correlations on information

encoding and decoding”. In: Journal of neurophysiology 95.6 (2006), pp. 3633–3644.

[8] Rava Azeredo da Silveira and Fred Rieke. “The geometry of information coding in

correlated neural populations”. In: Annual Review of Neuroscience 44 (2021), pp. 403–

424.

[9] Baktash Babadi, Alexander Casti, Youping Xiao, Ehud Kaplan, and Liam Paninski.

“A generalized linear model of the impact of direct and indirect inputs to the lateral

geniculate nucleus”. In: Journal of Vision 10.10 (2010), pp. 22–22.

[10] Tom Baden, Philipp Berens, Katrin Franke, Miroslav Roman Roson, Matthias Bethge,

and Thomas Euler. “The functional diversity of retinal ganglion cells in the mouse”.

In: Nature 529.7586 (2016), pp. 345–350.

127



[11] Tom Baden, Federico Esposti, Anton Nikolaev, and Leon Lagnado. “Spikes in retinal

bipolar cells phase-lock to visual stimuli with millisecond precision”. In: Current

Biology 21.22 (2011), pp. 1859–1869.

[12] Tom Baden, Thomas Euler, and Philipp Berens. “Understanding the retinal basis of

vision across species”. In: Nature Reviews Neuroscience 21.1 (2020), pp. 5–20.

[13] Wyeth Bair, Ehud Zohary, and William T Newsome. “Correlated firing in macaque

visual area MT: time scales and relationship to behavior”. In: Journal of Neuroscience

21.5 (2001), pp. 1676–1697.

[14] HB Barlow and William R Levick. “The mechanism of directionally selective units

in rabbit’s retina.” In: The Journal of physiology 178.3 (1965), p. 477.

[15] HB Barlow and WR Levick. “Three factors limiting the reliable detection of light by

retinal ganglion cells of the cat”. In: The Journal of Physiology 200.1 (1969), pp. 1–24.

[16] Horace B Barlow et al. “Possible principles underlying the transformation of sensory

messages”. In: Sensory communication 1.01 (1961), pp. 217–233.

[17] Horace B Barlow. “Summation and inhibition in the frog’s retina”. In: The Journal of

physiology 119.1 (1953), p. 69.

[18] RamonBartolo, RichardC Saunders, AndrewRMitz, and Bruno BAverbeck. “Information-

limiting correlations in large neural populations”. In: Journal of Neuroscience 40.8

(2020), pp. 1668–1678.

[19] Jeffrey Beck, Vikranth R Bejjanki, and Alexandre Pouget. “Insights from a simple

expression for linear fisher information in a recurrently connected population of

spiking neurons”. In: Neural computation 23.6 (2011), pp. 1484–1502.

[20] Michael Berry and Markus Meister. “Refractoriness and neural precision”. In: Ad-

vances in neural information processing systems 10 (1997).

[21] Adam Bleckert, Gregory W Schwartz, Maxwell H Turner, Fred Rieke, and Rachel OL

Wong. “Visual space is represented by nonmatching topographies of distinct mouse

retinal ganglion cell types”. In: Current Biology 24.3 (2014), pp. 310–315.

[22] Juan C Boffi, Brice Bathellier, Hiroki Asari, and Robert Prevedel. “Effective sound lo-

calization coding by noisy populations of mouse inferior colliculus neurons revealed

by fast volumetric imaging”. In: ().

[23] Bart G Borghuis, Peter Sterling, and Robert G Smith. “Loss of sensitivity in an analog

neural circuit”. In: Journal of Neuroscience 29.10 (2009), pp. 3045–3058.

– 128 –



Bibliography

[24] Vicente Botella-Soler, Stéphane Deny, Georg Martius, Olivier Marre, and Gašper

Tkačik. “Nonlinear decoding of a complex movie from the mammalian retina”. In:

PLoS computational biology 14.5 (), e1006057.

[25] ImanHBrivanlou, David KWarland, andMarkusMeister. “Mechanisms of concerted

firing among retinal ganglion cells”. In: Neuron 20.3 (1998), pp. 527–539.

[26] Nicolas Brunel and Jean-Pierre Nadal. “Mutual information, Fisher information, and

population coding”. In: Neural computation 10.7 (1998), pp. 1731–1757.

[27] Daniel A Butts. “How much information is associated with a particular stimulus?”

In: Network: Computation in Neural Systems 14.2 (2003), p. 177.

[28] Daniel A Butts and Mark S Goldman. “Tuning curves, neuronal variability, and

sensory coding”. In: PLoS biology 4.4 (2006), e92.

[29] Santiago A Cadena, George H Denfield, Edgar Y Walker, Leon A Gatys, Andreas S

Tolias, Matthias Bethge, and Alexander S Ecker. “Deep convolutional models improve

predictions of macaque V1 responses to natural images”. In: PLoS computational

biology 15.4 (2019), e1006897.

[30] Santiago A Cadena, Fabian H Sinz, Taliah Muhammad, Emmanouil Froudarakis,

Erick Cobos, Edgar Y Walker, Jake Reimer, Matthias Bethge, Andreas Tolias, and

Alexander S Ecker. “How well do deep neural networks trained on object recognition

characterize the mouse visual system?” In: Real Neurons {\&} Hidden Units: Future

directions at the intersection of neuroscience and artificial intelligence@ NeurIPS 2019

(Real Neurons & . . . ). 2019.

[31] EJ Chichilnisky. “A simple white noise analysis of neuronal light responses”. In:

Network: computation in neural systems 12.2 (2001), p. 199.

[32] François Chollet et al. Keras. https://keras.io. 2015.

[33] BG Cleland and WR Levick. “Brisk and sluggish concentrically organized ganglion

cells in the cat’s retina”. In: The Journal of Physiology 240.2 (1974), pp. 421–456.

[34] Simona Cocco and Rémi Monasson. “Adaptive cluster expansion for inferring Boltz-

mann machines with noisy data”. In: Physical review letters 106.9 (), p. 090601.

[35] Simona Cocco and Rémi Monasson. “Adaptive cluster expansion for the inverse

Ising problem: convergence, algorithm and tests”. In: Journal of Statistical Physics

147 (), pp. 252–314.

[36] Marlene R Cohen and Adam Kohn. “Measuring and interpreting neuronal correla-

tions”. In: Nature neuroscience 14.7 (), pp. 811–819.

– 129 –

https://keras.io


[37] Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and

mathematical modeling of neural systems. MIT press, 2005.

[38] Jaime De La Rocha, Brent Doiron, Eric Shea-Brown, Krešimir Josić, and Alex Reyes.

“Correlation between neural spike trains increases with firing rate”. In: Nature

448.7155 (2007), pp. 802–806.

[39] Geoffroy Delamare and Ulisse Ferrari. “Time-dependent maximum entropy model

for populations of retinal ganglion cells”. In: Physical Sciences Forum (Physical

Sciences Forum). Vol. 5. 1. MDPI. 2022, p. 31.

[40] Stephane Deny, Ulisse Ferrari, Emilie Mace, Pierre Yger, Romain Caplette, Serge

Picaud, Gašper Tkačik, and Olivier Marre. “Multiplexed computations in retinal

ganglion cells of a single type”. In: Nature communications 8.1 (2017), p. 1964.

[41] Amadeus Dettner, Sabrina Münzberg, and Tatjana Tchumatchenko. “Temporal pair-

wise spike correlations fully capture single-neuron information”. In: Nature commu-

nications 7.1 (), p. 13805.

[42] Steven H DeVries. “Correlated firing in rabbit retinal ganglion cells”. In: Journal of

Neurophysiology 81.2 (1999), pp. 908–920.

[43] Steven HDevries and Denis A Baylor. “Mosaic arrangement of ganglion cell receptive

fields in rabbit retina”. In: Journal of neurophysiology 78.4 (1997), pp. 2048–2060.

[44] Dawei W Dong and Joseph J Atick. “Temporal decorrelation: a theory of lagged and

nonlagged responses in the lateral geniculate nucleus”. In: Network: Computation in

neural systems 6.2 (1995), p. 159.

[45] Alexander Ecker, Philipp Berens, Andreas Tolias, and Matthias Bethge. “The effect of

noise correlations in populations of diversely tuned neurons”. In: Nature Precedings

(2011), pp. 1–1.

[46] Alexander S Ecker, Philipp Berens, R James Cotton, Manivannan Subramaniyan,

George H Denfield, Cathryn R Cadwell, Stelios M Smirnakis, Matthias Bethge, and

Andreas S Tolias. “State dependence of noise correlations in macaque primary visual

cortex”. In: Neuron 82.1 (2014), pp. 235–248.

[47] Alexander S Ecker, Philipp Berens, Georgios A Keliris, Matthias Bethge, Nikos K

Logothetis, and Andreas S Tolias. “Decorrelated neuronal firing in cortical microcir-

cuits”. In: science 327.5965 (), pp. 584–587.

[48] Jos J Eggermont. “Properties of correlated neural activity clusters in cat auditory

cortex resemble those of neural assemblies”. In: Journal of neurophysiology 96.2

(2006), pp. 746–764.

– 130 –



Bibliography

[49] Christina Enroth-Cugell and John G Robson. “The contrast sensitivity of retinal

ganglion cells of the cat”. In: The Journal of physiology 187.3 (1966), pp. 517–552.

[50] Adrienne L Fairhall, C Andrew Burlingame, Ramesh Narasimhan, Robert A Harris,

Jason L Puchalla, and Michael J Berry. “Selectivity for multiple stimulus features in

retinal ganglion cells”. In: Journal of neurophysiology 96.5 (2006), pp. 2724–2738.

[51] Ulisse Ferrari, Stephane Deny, Matthew Chalk, Gašper Tkačik, Olivier Marre, and

Thierry Mora. “Separating intrinsic interactions from extrinsic correlations in a

network of sensory neurons”. In: Physical Review E 98.4 (2018), p. 042410.

[52] Ulisse Ferrari, Stephane Deny, Olivier Marre, and Thierry Mora. “A simple model for

low variability in neural spike trains”. In: Neural Computation 30.11 (2018), pp. 3009–

3036.

[53] Ulisse Ferrari, Stéphane Deny, Abhishek Sengupta, Romain Caplette, Francesco

Trapani, José-Alain Sahel, Deniz Dalkara, Serge Picaud, Jens Duebel, and Olivier

Marre. “Towards optogenetic vision restoration with high resolution”. In: PLoS

computational biology 16.7 (2020), e1007857.

[54] Ulisse Ferrari, Tomoyuki Obuchi, and Thierry Mora. “Random versus maximum

entropy models of neural population activity”. In: Physical Review E 95.4 (), p. 042321.

[55] Greg D Field, Alexander Sher, Jeffrey L Gauthier, Martin Greschner, Jonathon Shlens,

Alan M Litke, and EJ Chichilnisky. “Spatial properties and functional organization

of small bistratified ganglion cells in primate retina”. In: Journal of Neuroscience

27.48 (2007), pp. 13261–13272.

[56] József Fiser, ChiayuChiu, andMichaelWeliky. “Small modulation of ongoing cortical

dynamics by sensory input during natural vision”. In: Nature 431.7008 (), pp. 573–578.

[57] Felix Franke, Michele Fiscella, Maksim Sevelev, Botond Roska, Andreas Hierlemann,

and Rava Azeredo da Silveira. “Structures of neural correlation and how they favor

coding”. In: Neuron 89.2 (2016), pp. 409–422.

[58] Elad Ganmor, Ronen Segev, and Elad Schneidman. “A thesaurus for a neural popu-

lation code”. In: Elife 4 (), e06134.

[59] Elad Ganmor, Ronen Segev, and Elad Schneidman. “The architecture of functional

interaction networks in the retina”. In: Journal of Neuroscience 31.8 (), pp. 3044–3054.

[60] Timothy J Gawne and Barry J Richmond. “How independent are the messages

carried by adjacent inferior temporal cortical neurons?” In: Journal of Neuroscience

13.7 (), pp. 2758–2771.

– 131 –



[61] Felipe Gerhard, Moritz Deger, and Wilson Truccolo. “On the stability and dynamics

of stochastic spiking neuron models: Nonlinear Hawkes process and point process

GLMs”. In: PLoS computational biology 13.2 (2017), e1005390.

[62] Tim Gollisch and Markus Meister. “Eye smarter than scientists believed: neural

computations in circuits of the retina”. In: Neuron 65.2 (2010), pp. 150–164.

[63] Arnulf BA Graf, Adam Kohn, Mehrdad Jazayeri, and J Anthony Movshon. “Decoding

the activity of neuronal populations in macaque primary visual cortex”. In: Nature

neuroscience 14.2 (), pp. 239–245.

[64] Einat Granot-Atedgi, Gašper Tkačik, Ronen Segev, and Elad Schneidman. “Stimulus-

dependent maximum entropy models of neural population codes”. In: PLoS compu-

tational biology 9.3 (2013), e1002922.

[65] Martin Greschner, Jonathon Shlens, Constantina Bakolitsa, Greg D Field, Jeffrey L

Gauthier, Lauren H Jepson, Alexander Sher, Alan M Litke, and EJ Chichilnisky.

“Correlated firing among major ganglion cell types in primate retina”. In: The Journal

of physiology 589.1 (2011), pp. 75–86.

[66] Divyansh Gupta, Wiktor Młynarski, Anton Sumser, Olga Symonova, Jan Svatoň,

and Maximilian Joesch. “Panoramic visual statistics shape retina-wide organization

of receptive fields”. In: Nature Neuroscience 26.4 (2023), pp. 606–614.

[67] Diego A Gutnisky and Valentin Dragoi. “Adaptive coding of visual information in

neural populations”. In: Nature 452.7184 (), pp. 220–224.

[68] Joshua Hahn, Aboozar Monavarfeshani, Mu Qiao, Allison H Kao, Yvonne Kölsch,

Ayush Kumar, Vincent P Kunze, Ashley M Rasys, Rose Richardson, Joseph B Wek-

selblatt, et al. “Evolution of neuronal cell classes and types in the vertebrate retina”.

In: Nature 624.7991 (2023), pp. 415–424.

[69] Haldan K Hartline. “The receptive fields of optic nerve fibers”. In: American Journal

of Physiology-Legacy Content 130.4 (1940), pp. 690–699.

[70] Omer Hazon, Victor HMinces, David P Tomàs, Surya Ganguli, Mark J Schnitzer, and

Pablo E Jercog. “Noise correlations in neural ensemble activity limit the accuracy of

hippocampal spatial representations”. In: Nature communications 13.1 (2022), p. 4276.

[71] Alexander Heitman, Nora Brackbill, Martin Greschner, Alexander Sher, Alan M

Litke, and EJ Chichilnisky. “Testing pseudo-linear models of responses to natural

scenes in primate retina”. In: BioRxiv (2016), p. 045336.

– 132 –



Bibliography

[72] David Hocker and Il Memming Park. “Multistep inference for generalized linear

spiking models curbs runaway excitation”. In: 2017 8th International IEEE/EMBS

Conference on Neural Engineering (NER) (2017 8th International IEEE/EMBS . . . ).

IEEE. 2017, pp. 613–616.

[73] Sonja B Hofer, Ho Ko, Bruno Pichler, Joshua Vogelstein, Hana Ros, Hongkui Zeng,

Ed Lein, Nicholas A Lesica, and Thomas D Mrsic-Flogel. “Differential connectivity

and response dynamics of excitatory and inhibitory neurons in visual cortex”. In:

Nature neuroscience 14.8 (2011), pp. 1045–1052.

[74] Edward H Hu and Stewart A Bloomfield. “Gap junctional coupling underlies the

short-latency spike synchrony of retinal α ganglion cells”. In: Journal of Neuroscience

23.17 (2003), pp. 6768–6777.

[75] Yu Hu, Joel Zylberberg, and Eric Shea-Brown. “The sign rule and beyond: boundary

effects, flexibility, and noise correlations in neural population codes”. In: PLoS

computational biology 10.2 (2014), e1003469.

[76] Chang-Jin Jeon, Enrica Strettoi, and Richard HMasland. “The major cell populations

of the mouse retina”. In: Journal of Neuroscience 18.21 (1998), pp. 8936–8946.

[77] Na Young Jun, Greg D Field, and John Pearson. “Scene statistics and noise determine

the relative arrangement of receptive field mosaics”. In: Proceedings of the National

Academy of Sciences 118.39 (2021), e2105115118.

[78] MohammadMehdi Kafashan, Anna W Jaffe, Selmaan N Chettih, Ramon Nogueira,

Iñigo Arandia-Romero, Christopher DHarvey, RubenMoreno-Bote, and Jan Drugow-

itsch. “Scaling of sensory information in large neural populations shows signatures

of information-limiting correlations”. In: Nature communications 12.1 (2021), p. 473.

[79] Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James

Hudspeth, Sarah Mack, et al. Principles of neural science. Vol. 4. McGraw-hill New

York, 2000.

[80] Ingmar Kanitscheider, Ruben Coen-Cagli, Adam Kohn, and Alexandre Pouget. “Mea-

suring Fisher information accurately in correlated neural populations”. In: PLoS

computational biology 11.6 (2015), e1004218.

[81] Ingmar Kanitscheider, RubenCoen-Cagli, and Alexandre Pouget. “Origin of information-

limiting noise correlations”. In: Proceedings of the National Academy of Sciences 112.50

(2015), E6973–E6982.

[82] Hilbert J. Kappen and FDB Rodrıguez. “Efficient learning in Boltzmann machines

using linear response theory”. In: Neural Computation 10.5 (1998), pp. 1137–1156.

– 133 –



[83] Prakash Kara, Pamela Reinagel, and R Clay Reid. “Low response variability in

simultaneously recorded retinal, thalamic, and cortical neurons”. In: Neuron 27.3

(2000), pp. 635–646.

[84] Dimokratis Karamanlis, Mohammad H Khani, Helene M Schreyer, Sören J Zapp,

Matthias Mietsch, and Tim Gollisch. “Natural stimuli drive concerted nonlinear

responses in populations of retinal ganglion cells”. In: bioRxiv (2023), pp. 2023–01.

[85] Ryota Kobayashi, Shuhei Kurita, Anno Kurth, Katsunori Kitano, Kenji Mizuseki,

Markus Diesmann, Barry J Richmond, and Shigeru Shinomoto. “Reconstructing

neuronal circuitry from parallel spike trains”. In: Nature communications 10.1 (2019),

p. 4468.

[86] Adam Kohn, Ruben Coen-Cagli, Ingmar Kanitscheider, and Alexandre Pouget. “Cor-

relations and neuronal population information”. In: Annual review of neuroscience

39 (2016), pp. 237–256.

[87] Adam Kohn and Matthew A Smith. “Stimulus dependence of neuronal correlation

in primary visual cortex of the macaque”. In: Journal of Neuroscience 25.14 (2005),

pp. 3661–3673.

[88] Subhodh Kotekal and Jason NMacLean. “Recurrent interactions can explain the vari-

ance in single trial responses”. In: PLoS computational biology 16.1 (2020), e1007591.

[89] Brenna Krieger, Mu Qiao, David L Rousso, Joshua R Sanes, and Markus Meister.

“Four alpha ganglion cell types in mouse retina: Function, structure, and molecular

signatures”. In: PloS one 12.7 (2017), e0180091.

[90] Stephen W Kuffler. “Discharge patterns and functional organization of mammalian

retina”. In: Journal of neurophysiology 16.1 (1953), pp. 37–68.

[91] Norma Krystyna Kühn and Tim Gollisch. “Activity correlations between direction-

selective retinal ganglion cells synergistically enhance motion decoding from com-

plex visual scenes”. In: Neuron 101.5 (2019), pp. 963–976.

[92] Tobias Kühn and Frédéric van Wijland. “Diagrammatics for the inverse problem

in spin systems and simple liquids”. In: Journal of Physics A: Mathematical and

Theoretical 56.11 (), p. 115001.

[93] Peter E Latham and Sheila Nirenberg. “Synergy, redundancy, and independence in

population codes, revisited”. In: Journal of Neuroscience 25.21 (2005), pp. 5195–5206.

[94] Daeyeol Lee, Nicholas L Port, Wolfgang Kruse, and Apostolos P Georgopoulos.

“Variability and correlated noise in the discharge of neurons in motor and parietal

areas of the primate cortex”. In: Journal of Neuroscience 18.3 (1998), pp. 1161–1170.

– 134 –



Bibliography

[95] Jerome Y Lettvin, Humberto R Maturana, Warren S McCulloch, and Walter H Pitts.

“What the frog’s eye tells the frog’s brain”. In: Proceedings of the IRE 47.11 (1959),

pp. 1940–1951.

[96] William R Levick. “Receptive fields and trigger features of ganglion cells in the visual

streak of the rabbit’s retina”. In: The Journal of physiology 188.3 (1967), p. 285.

[97] I-Chun Lin, Michael Okun, Matteo Carandini, and Kenneth D Harris. “The nature

of shared cortical variability”. In: Neuron 87.3 (), pp. 644–656.

[98] Dmitry R Lyamzin, Samuel J Barnes, Roberta Donato, Jose A Garcia-Lazaro, Tara

Keck, and Nicholas A Lesica. “Nonlinear transfer of signal and noise correlations in

cortical networks”. In: Journal of Neuroscience 35.21 (2015), pp. 8065–8080.

[99] Jakob H Macke, Iain Murray, and Peter Latham. “How biased are maximum entropy

models?” In: Advances in neural information processing systems 24 ().

[100] Gabriel Mahuas, Thomas Buffet, Olivier Marre, Ulisse Ferrari, and Thierry Mora.

“Strong, but not weak, noise correlations are beneficial for population coding”. In:

bioRxiv (2024), pp. 2024–06.

[101] Gabriel Mahuas, Giulio Isacchini, Olivier Marre, Ulisse Ferrari, and Thierry Mora.

“A new inference approach for training shallow and deep generalized linear models

of noisy interacting neurons”. In: Advances in neural information processing systems

33 (2020), pp. 5070–5080.

[102] Gabriel Mahuas, Olivier Marre, Thierry Mora, and Ulisse Ferrari. “Small-correlation

expansion to quantify information in noisy sensory systems”. In: Physical Review E

108.2 (2023), p. 024406.

[103] OMarre, D Amodei, N Deshmukh, K Sadeghi, F Soo, T Holy, MJ Berry, et al. “Record-

ing of a large and complete population in the retina”. In: Journal of Neuroscience

32.43 (2012), p. 1485973.

[104] Olivier Marre, Dario Amodei, Nikhil Deshmukh, Kolia Sadeghi, Frederick Soo, Tim-

othy E Holy, and Michael J Berry. “Mapping a complete neural population in the

retina”. In: Journal of Neuroscience 32.43 (2012), pp. 14859–14873.

[105] Olivier Marre, Sami El Boustani, Yves Fregnac, and Alain Destexhe. “Prediction of

spatiotemporal patterns of neural activity from pairwise correlations”. In: Physical

review letters 102.13 (2009), p. 138101.

[106] Richard HMasland. “The neuronal organization of the retina”. In: Neuron 76.2 (2012),

pp. 266–280.

– 135 –



[107] DAVID N Mastronarde. “Correlated firing of cat retinal ganglion cells. I. Sponta-

neously active inputs to X-and Y-cells”. In: Journal of Neurophysiology 49.2 (1983),

pp. 303–324.

[108] DAVIDNMastronarde. “Interactions between ganglion cells in cat retina”. In: Journal

of Neurophysiology 49.2 (1983), pp. 350–365.

[109] David N Mastronarde. “Correlated firing of retinal ganglion cells”. In: Trends in

neurosciences 12.2 (), pp. 75–80.

[110] Lane McIntosh, Niru Maheswaranathan, Aran Nayebi, Surya Ganguli, and Stephen

Baccus. “Deep learningmodels of the retinal response to natural scenes”. In:Advances

in neural information processing systems 29 (2016).

[111] Markus Meister and Michael J Berry. “The neural code of the retina”. In: neuron

22.3 (1999), pp. 435–450.

[112] Markus Meister, Leon Lagnado, and Denis A Baylor. “Concerted signaling by retinal

ganglion cells”. In: Science 270.5239 (1995), pp. 1207–1210.

[113] Leenoy Meshulam, Jeffrey L Gauthier, Carlos D Brody, David W Tank, and William

Bialek. “Collective behavior of place and non-place neurons in the hippocampal

network”. In: Neuron 96.5 (2017), pp. 1178–1191.

[114] Fernando Montani, Adam Kohn, Matthew A Smith, and Simon R Schultz. “The role

of correlations in direction and contrast coding in the primary visual cortex”. In:

Journal of Neuroscience 27.9 (2007), pp. 2338–2348.

[115] Marcelo A Montemurro, Riccardo Senatore, and Stefano Panzeri. “Tight data-robust

bounds to mutual information combining shuffling and model selection techniques”.

In: Neural Computation 19.11 (), pp. 2913–2957.

[116] Ruben Moreno-Bote, Jeffrey Beck, Ingmar Kanitscheider, Xaq Pitkow, Peter Latham,

and Alexandre Pouget. “Information-limiting correlations”. In: Nature neuroscience

17.10 (2014), pp. 1410–1417.

[117] Michele Nardin, Jozsef Csicsvari, Gašper Tkačik, and Cristina Savin. “The structure

of hippocampal CA1 interactions optimizes spatial coding across experience”. In:

Journal of Neuroscience 43.48 (2023), pp. 8140–8156.

[118] Jonathan J Nassi and Edward M Callaway. “Parallel processing strategies of the

primate visual system”. In: Nature reviews neuroscience 10.5 (2009), pp. 360–372.

[119] Aran Nayebi, Daniel Bear, Jonas Kubilius, Kohitij Kar, Surya Ganguli, David Sussillo,

James J DiCarlo, and Daniel L Yamins. “Task-driven convolutional recurrent models

of the visual system”. In: Advances in neural information processing systems 31 (2018).

– 136 –



Bibliography

[120] Amin Nejatbakhsh, Isabel Garon, and Alex Williams. “Estimating Noise Correlations

Across Continuous Conditions With Wishart Processes”. In: Advances in Neural

Information Processing Systems 36 (2024).

[121] Ilya Nemenman, Geoffrey D Lewen, William Bialek, and Rob R de Ruyter van

Steveninck. “Neural coding of natural stimuli: information at sub-millisecond reso-

lution”. In: PLoS computational biology 4.3 (), e1000025.

[122] Trang-Anh Nghiem, Bartosz Telenczuk, Olivier Marre, Alain Destexhe, and Ulisse

Ferrari. “Maximum-entropy models reveal the excitatory and inhibitory correlation

structures in cortical neuronal activity”. In: Physical Review E 98.1 (2018), p. 012402.

[123] Sunny Nigam, Sorin Pojoga, and Valentin Dragoi. “Synergistic coding of visual

information in columnar networks”. In: Neuron 104.2 (2019), pp. 402–411.

[124] Sheila Nirenberg, Steve M Carcieri, Adam L Jacobs, and Peter E Latham. “Retinal

ganglion cells act largely as independent encoders”. In: Nature 411.6838 (2001),

pp. 698–701.

[125] Valdemar Kargård Olsen, Jonathan R Whitlock, and Yasser Roudi. “The quality and

complexity of pairwise maximum entropy models for large cortical populations”. In:

PLOS Computational Biology 20.5 (2024), e1012074.

[126] Liam Paninski. “Maximum likelihood estimation of cascade point-process neural

encoding models”. In: Network: Computation in Neural Systems 15.4 (2004), p. 243.

[127] Stefano Panzeri, Monica Moroni, Houman Safaai, and Christopher D Harvey. “The

structures and functions of correlations in neural population codes”. In: Nature

Reviews Neuroscience 23.9 (), pp. 551–567.

[128] Stefano Panzeri, Simon R Schultz, Alessandro Treves, and Edmund T Rolls. “Correla-

tions and the encoding of information in the nervous system”. In: Proceedings of the

Royal Society of London. Series B: Biological Sciences 266.1423 (1999), pp. 1001–1012.

[129] Stefano Panzeri, Alessandro Treves, Simon Schultz, and Edmund T Rolls. “On decod-

ing the responses of a population of neurons from short time windows”. In: Neural

computation 11.7 (), pp. 1553–1577.

[130] Il Memming Park, Evan W Archer, Nicholas Priebe, and Jonathan W Pillow. “Spec-

tral methods for neural characterization using generalized quadratic models”. In:

Advances in neural information processing systems 26 (2013).

[131] Il Memming Park, Miriam LR Meister, Alexander C Huk, and Jonathan W Pillow.

“Encoding and decoding in parietal cortex during sensorimotor decision-making”.

In: Nature neuroscience 17.10 (2014), pp. 1395–1403.

– 137 –



[132] Leo Peichl. “Alpha ganglion cells in mammalian retinae: common properties, species

differences, and some comments on other ganglion cells”. In: Visual neuroscience

7.1-2 (1991), pp. 155–169.

[133] Donald H Perkel, George L Gerstein, and George P Moore. “Neuronal spike trains

and stochastic point processes: II. Simultaneous spike trains”. In: Biophysical journal

7.4 (), pp. 419–440.

[134] Jonathan Pillow. Likelihood-based approaches to modeling the neural code. Vol. 70. 3.

MIT press Cambridge, Massachusets, 2007.

[135] Jonathan W Pillow, Jonathon Shlens, Liam Paninski, Alexander Sher, Alan M Litke,

EJ Chichilnisky, and Eero P Simoncelli. “Spatio-temporal correlations and visual

signalling in a complete neuronal population”. In: Nature 454.7207 (2008), pp. 995–

999.

[136] Xaq Pitkow and Markus Meister. “Decorrelation and efficient coding by retinal

ganglion cells”. In: Nature neuroscience 15.4 (2012), pp. 628–635.

[137] G Pola, A Thiele, KP Hoffmann, and S Panzeri. “An exact method to quantify

the information transmitted by different mechanisms of correlational coding”. In:

Network: Computation in Neural Systems 14.1 (2003), p. 35.

[138] Adrián Ponce-Alvarez, Alexander Thiele, Thomas D Albright, Gene R Stoner, and

Gustavo Deco. “Stimulus-dependent variability and noise correlations in cortical MT

neurons”. In: Proceedings of the National Academy of Sciences 110.32 (), pp. 13162–

13167.

[139] James FA Poulet and Carl CH Petersen. “Internal brain state regulates membrane

potential synchrony in barrel cortex of behaving mice”. In: Nature 454.7206 (2008),

pp. 881–885.

[140] Jose C Principe and Jyh-Ming Kuo. “Dynamic modelling of chaotic time series with

neural networks”. In: Advances in neural information processing systems 7 (1994).

[141] Floyd Ratliff and H KEFFER Hartline. “The responses of Limulus optic nerve fibers to

patterns of illumination on the receptor mosaic”. In: The Journal of general physiology

42.6 (1959), pp. 1241–1255.

[142] Colleen E Rhoades, Nishal P Shah, Michael B Manookin, Nora Brackbill, Alexandra

Kling, Georges Goetz, Alexander Sher, Alan M Litke, and EJ Chichilnisky. “Unusual

physiological properties of smooth monostratified ganglion cell types in primate

retina”. In: Neuron 103.4 (2019), pp. 658–672.

[143] Fred Rieke, David Warland, Rob de Ruyter Van Steveninck, and William Bialek.

Spikes: exploring the neural code. MIT press, 1999.

– 138 –



Bibliography

[144] Rajeev V Rikhye, Aditya Gilra, and Michael M Halassa. “Thalamic regulation of

switching between cortical representations enables cognitive flexibility”. In: Nature

neuroscience 21.12 (2018), pp. 1753–1763.

[145] Robert W Rodieck. “Quantitative analysis of cat retinal ganglion cell response to

visual stimuli”. In: Vision research 5.12 (1965), pp. 583–601.

[146] Yasser Roudi, Sheila Nirenberg, and Peter E Latham. “Pairwise maximum entropy

models for studying large biological systems: when they can work and when they

can’t”. In: PLoS computational biology 5.5 (), e1000380.

[147] Kaushambi Roy, Sandeep Kumar, and Stewart A Bloomfield. “Gap junctional cou-

pling between retinal amacrine and ganglion cells underlies coherent activity integral

to global object perception”. In: Proceedings of the National Academy of Sciences

114.48 (2017), E10484–E10493.

[148] Suva Roy, Na Young Jun, Emily L Davis, John Pearson, and Greg D Field. “Inter-

mosaic coordination of retinal receptive fields”. In: Nature 592.7854 (2021), pp. 409–

413.

[149] Kiersten Ruda, Joel Zylberberg, and Greg D Field. “Ignoring correlated activity

causes a failure of retinal population codes”. In: Nature communications 11.1 (2020),

p. 4605.

[150] Daniel L Ruderman. “The statistics of natural images”. In: Network: Computation in

Neural Systems 5.4 (1994), pp. 517–548.

[151] Caroline A Runyan, Eugenio Piasini, Stefano Panzeri, and Christopher D Harvey.

“Distinct timescales of population coding across cortex”. In: Nature 548.7665 (2017),

pp. 92–96.

[152] Cristina Savin and Gašper Tkačik. “Maximum entropy models as a tool for building

precise neural controls”. In: Current opinion in neurobiology 46 (2017), pp. 120–126.

[153] Elad Schneidman, Michael J Berry, Ronen Segev, andWilliam Bialek. “Weak pairwise

correlations imply strongly correlated network states in a neural population”. In:

Nature 440.7087 (2006), pp. 1007–1012.

[154] Greg Schwartz, Sam Taylor, Clark Fisher, Rob Harris, and Michael J Berry. “Syn-

chronized firing among retinal ganglion cells signals motion reversal”. In: Neuron

55.6 (2007), pp. 958–969.

[155] Vitor Sessak and Remi Monasson. “Small-correlation expansions for the inverse

Ising problem”. In: Journal of Physics A: Mathematical and Theoretical 42.5 (2009),

p. 055001.

– 139 –



[156] Claude Elwood Shannon. “A mathematical theory of communication”. In: ACM

SIGMOBILE mobile computing and communications review 5.1 (2001), pp. 3–55.

[157] Hideaki Shimazaki, Shun-ichi Amari, Emery N Brown, and Sonja Grün. “State-space

analysis of time-varying higher-order spike correlation for multiple neural spike

train data”. In: PLoS computational biology 8.3 (), e1002385.

[158] Hideaki Shimazaki, Kolia Sadeghi, Tomoe Ishikawa, Yuji Ikegaya, and Taro Toy-

oizumi. “Simultaneous silence organizes structured higher-order interactions in

neural populations”. In: Scientific reports 5.1 (), p. 9821.

[159] Jonathon Shlens, Greg D Field, Jeffrey L Gauthier, Martin Greschner, Alexander

Sher, Alan M Litke, and EJ Chichilnisky. “The structure of large-scale synchronized

firing in primate retina”. In: Journal of Neuroscience 29.15 (2009), pp. 5022–5031.

[160] Jonathon Shlens, Greg D Field, Jeffrey L Gauthier, Matthew I Grivich, Dumitru

Petrusca, Alexander Sher, Alan M Litke, and EJ Chichilnisky. “The structure of

multi-neuron firing patterns in primate retina”. In: Journal of Neuroscience 26.32

(2006), pp. 8254–8266.

[161] Jonathon Shlens, Fred Rieke, and EJ Chichilnisky. “Synchronized firing in the retina”.

In: Current opinion in neurobiology 18.4 (2008), pp. 396–402.

[162] Rava Azeredo da Silveira and Michael J Berry. “High-fidelity coding with correlated

neurons”. In: PLoS computational biology 10.11 (), e1003970.

[163] Kristina D Simmons, Jason S Prentice, Gašper Tkačik, Jan Homann, Heather K Yee,

Stephanie E Palmer, Philip C Nelson, and Vijay Balasubramanian. “Transformation

of stimulus correlations by the retina”. In: PLoS computational biology 9.12 (2013),

e1003344.

[164] Eero P Simoncelli, Liam Paninski, Jonathan Pillow, Odelia Schwartz, et al. “Charac-

terization of neural responses with stochastic stimuli”. In: The cognitive neurosciences

3.327-338 (2004), p. 1.

[165] Matthew A Smith and Adam Kohn. “Spatial and temporal scales of neuronal corre-

lation in primary visual cortex”. In: Journal of Neuroscience 28.48 (2008), pp. 12591–

12603.

[166] Haim Sompolinsky, Hyoungsoo Yoon, Kukjin Kang, and Maoz Shamir. “Population

coding in neuronal systems with correlated noise”. In: Physical Review E 64.5 (2001),

p. 051904.

[167] Oleksandr Sorochynskyi, Stephane Deny, Olivier Marre, and Ulisse Ferrari. “Pre-

dicting synchronous firing of large neural populations from sequential recordings”.

In: PLoS computational biology 17.1 (2021), e1008501.

– 140 –



Bibliography

[168] Peter N Steinmetz, A Roy, PJ Fitzgerald, SS Hsiao, KO Johnson, and Ernst Niebur.

“Attentionmodulates synchronized neuronal firing in primate somatosensory cortex”.

In: Nature 404.6774 (2000), pp. 187–190.

[169] Peter Sterling and Simon Laughlin. Principles of neural design. MIT press, 2015.

[170] Steven P Strong, Roland Koberle, Rob R De Ruyter Van Steveninck, and William

Bialek. “Entropy and information in neural spike trains”. In: Physical review letters

80.1 (), p. 197.

[171] Hidenori Tanaka, Aran Nayebi, Niru Maheswaranathan, Lane McIntosh, Stephen

Baccus, and Surya Ganguli. “From deep learning to mechanistic understanding in

neuroscience: the structure of retinal prediction”. In: Advances in neural information

processing systems 32 (2019).

[172] Toshiyuki Tanaka. “Mean-field theory of Boltzmann machine learning”. In: Physical

Review E 58.2 (1998), p. 2302.

[173] Aonan Tang, David Jackson, Jon Hobbs, Wei Chen, Jodi L Smith, Hema Patel, Anita

Prieto, Dumitru Petrusca, Matthew I Grivich, Alexander Sher, et al. “A maximum

entropy model applied to spatial and temporal correlations from cortical networks

in vitro”. In: Journal of Neuroscience 28.2 (), pp. 505–518.

[174] Gaia Tavoni, Ulisse Ferrari, Francesco P Battaglia, Simona Cocco, and Remi Monas-

son. “Functional coupling networks inferred from prefrontal cortex activity show

experience-related effective plasticity”. In: Network Neuroscience 1.3 (2017), pp. 275–

301.

[175] David J Thouless, Philip W Anderson, and Robert G Palmer. “Solution of ’solvable

model of a spin glass’”. In: Philosophical Magazine 35.3 (1977), pp. 593–601.

[176] Gašper Tkačik, Olivier Marre, Dario Amodei, Elad Schneidman, William Bialek, and

Michael J Berry. “Searching for collective behavior in a large network of sensory

neurons”. In: PLoS computational biology 10.1 (2014), e1003408.

[177] Gašper Tkačik, Olivier Marre, Dario Amodei, Elad Schneidman, William Bialek, and

Michael J Berry II. “Searching for collective behavior in a network of real neurons”.

In: arXiv preprint arXiv:1306.3061 ().

[178] Gašper Tkačik, Jason S Prentice, Vijay Balasubramanian, and Elad Schneidman.

“Optimal population coding by noisy spiking neurons”. In: Proceedings of the National

Academy of Sciences 107.32 (2010), pp. 14419–14424.

[179] Francesco Trapani, Giulia Lia Beatrice Spampinato, Pierre Yger, and Olivier Marre.

“Differences in nonlinearities determine retinal cell types”. In: Journal of Neurophys-

iology 130.3 (2023), pp. 706–718.

– 141 –



[180] Stuart Trenholm, Amanda J McLaughlin, David J Schwab, Maxwell H Turner, Robert

G Smith, Fred Rieke, and Gautam B Awatramani. “Nonlinear dendritic integration

of electrical and chemical synaptic inputs drives fine-scale correlations”. In: Nature

neuroscience 17.12 (2014), pp. 1759–1766.

[181] Philipp Khuc Trong and Fred Rieke. “Origin of correlated activity between parasol

retinal ganglion cells”. In: Nature neuroscience 11.11 (2008), pp. 1343–1351.

[182] Wilson Truccolo, Uri T Eden, Matthew R Fellows, John P Donoghue, and Emery N

Brown. “A point process framework for relating neural spiking activity to spiking his-

tory, neural ensemble, and extrinsic covariate effects”. In: Journal of neurophysiology

93.2 (2005), pp. 1074–1089.

[183] W Martin Usrey and R Clay Reid. “Synchronous activity in the visual system”. In:

Annual review of physiology 61.1 (), pp. 435–456.

[184] Michael Vidne, Yashar Ahmadian, Jonathon Shlens, Jonathan W Pillow, Jayant

Kulkarni, Alan M Litke, EJ Chichilnisky, Eero Simoncelli, and Liam Paninski. “Mod-

eling the impact of common noise inputs on the network activity of retinal ganglion

cells”. In: Journal of computational neuroscience 33 (2012), pp. 97–121.

[185] Anna L Vlasits, Thomas Euler, and Katrin Franke. “Function first: classifying cell

types and circuits of the retina”. In: Current opinion in neurobiology 56 (2019), pp. 8–

15.

[186] Bela Völgyi, Samir Chheda, and Stewart A Bloomfield. “Tracer coupling patterns of

the ganglion cell subtypes in the mouse retina”. In: Journal of Comparative Neurology

512.5 (2009), pp. 664–687.

[187] Bela Völgyi, Feng Pan, David L Paul, Jack T Wang, Andrew D Huberman, and

Stewart A Bloomfield. “Gap junctions are essential for generating the correlated

spike activity of neighboring retinal ganglion cells”. In: PloS one 8.7 (2013), e69426.

[188] Fei Wang, E Li, Lei De, Qiwen Wu, and Yifeng Zhang. “OFF-transient alpha RGCs

mediate looming triggered innate defensive response”. In: Current Biology 31.11

(2021), pp. 2263–2273.

[189] Heinz Wässle. “Parallel processing in the mammalian retina”. In: Nature Reviews

Neuroscience 5.10 (2004), pp. 747–757.

[190] Heinz Wässle, Christian Puller, Frank Müller, and Silke Haverkamp. “Cone con-

tacts, mosaics, and territories of bipolar cells in the mouse retina”. In: Journal of

Neuroscience 29.1 (2009), pp. 106–117.

– 142 –



Bibliography

[191] Alison I Weber and Jonathan W Pillow. “Capturing the dynamical repertoire of

single neurons with generalized linear models”. In: Neural computation 29.12 (2017),

pp. 3260–3289.

[192] Xue-Xin Wei and Alan A Stocker. “Mutual information, Fisher information, and

efficient coding”. In: Neural computation 28.2 (2016), pp. 305–326.

[193] Stefan D Wilke and Christian W Eurich. “Representational accuracy of stochastic

neural populations”. In: Neural computation 14.1 (2002), pp. 155–189.

[194] Si Wu, Shun-ichi Amari, and Hiroyuki Nakahara. “Population coding and decoding

in a neural field: a computational study”. In: Neural Computation 14.5 (2002), pp. 999–

1026.

[195] Stuart Yarrow, Edward Challis, and Peggy Seriès. “Fisher and Shannon information

in finite neural populations”. In: Neural computation 24.7 (2012), pp. 1740–1780.

[196] Pierre Yger, Giulia LB Spampinato, Elric Esposito, Baptiste Lefebvre, Stéphane Deny,

Christophe Gardella, Marcel Stimberg, Florian Jetter, Guenther Zeck, Serge Picaud,

et al. “A spike sorting toolbox for up to thousands of electrodes validated with

ground truth recordings in vitro and in vivo”. In: Elife 7 (2018), e34518.

[197] Anthony Zador. “Spikes: Exploring the neural code”. In: Science 277.5327 (), pp. 772–

773.

[198] Yifeng Zhang, In-Jung Kim, Joshua R Sanes, and Markus Meister. “The most nu-

merous ganglion cell type of the mouse retina is a selective feature detector”. In:

Proceedings of the National Academy of Sciences 109.36 (2012), E2391–E2398.

[199] Ehud Zohary, Michael N Shadlen, and William T Newsome. “Correlated neuronal

discharge rate and its implications for psychophysical performance”. In: Nature

370.6485 (1994), pp. 140–143.

[200] Joel Zylberberg, Jon Cafaro, Maxwell H Turner, Eric Shea-Brown, and Fred Rieke.

“Direction-selective circuits shape noise to ensure a precise population code”. In:

Neuron 89.2 (2016), pp. 369–383.

– 143 –


	Abstract
	Thanks
	Introduction
	The retina
	Physiology of the retina
	Elements of retinal computation
	The canonical receptive field of retinal ganglion cells
	Stimulus encoding by single ganglion cells

	Parallel processing in the retina
	The diversity of ganglion cell types
	The mosaic organization of the retina

	The collective behavior of retinal ganglion cells
	Stimulus induced correlations
	Intrinsic interactions further promote correlations

	Conclusion

	Population coding of stimulus information
	Quantifying the collective behavior of sensory neurons
	Disentangling stimulus and noise correlations
	Experimental quantification

	The impact of correlated activity on stimulus encoding
	Geometrical picture
	Fisher information
	Mutual information

	Modelling the collective behavior of sensory neurons
	Maximum entropy approach
	Generalized Linear Model

	Conclusion

	A new inference approach for training shallow and deep generalized linear models of noisy interacting neurons
	Introduction
	Recordings
	Generalized linear model
	Failure of GLM for complex stimuli
	A two-step inference approach
	Two-step inference allows for generalizing across stimuli
	Deep GLM outperforms previous approaches
	Discussion
	Empirical data and correlations
	Correction for the absolute refractory period
	Generalization results for moving bars stimulus
	Time Distributed Convolutional Neural Network

	A small-correlation expansion to quantify information in noisy sensory systems
	Introduction
	Small correlation expansion of the mutual information
	Noise synergy
	Numerical test on synthetic data
	Application to retinal data
	Discussion
	Second order approximation
	Resummed expansion
	Generalized linear model simulations
	Link to the small time bin expansion (Panzeri et al. 1999)

	Strong but not weak noise correlations are beneficial for population coding
	Introduction
	Results
	Discussion
	Methods
	Supplementary information

	Discussion and perspectives
	Stimulus dependency of noise correlations
	Beyond pairwise instantaneous correlations
	Stimulus specific impact of noise correlations
	Population coding of specific stimulus features
	Conclusion


