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Abstract

Optimal transport (OT) is a powerful mathematical theory at the interface between the
theories of optimization and probability, with many applications in a wide range of fields.
This thesis presents the application of OT and statistics to two domains: biology and actu-
arial sciences.

The first part of the thesis addresses the biological challenge of better understanding
micro-RNA (miRNA) regulation in the striatum of Huntington’s disease (HD) model mice.
To do so, we build several algorithms designed to learn a pattern of correspondence between
two data sets in situations where it is desirable to match elements that exhibit a relationship
belonging to a known parametric model. The two data sets contain miRNA and messenger-
RNA (mRNA) data, respectively, each data point consisting in a multi-dimensional profile.
The strong biological hypothesis is that if a miRNA induces the degradation of a target
mRNA or blocks its translation into proteins, or both, then the profile of the former, say y,
should be similar to minus the profile of the latter, say −x. We consider a loosened hypoth-
esis stating that y is then similar to t(x) where t is an affine transformation in a parametric
class that includes minus the identity and translates expert knowledge about the experiment
that yielded the data. The algorithms unfold in two stages. During the first stage, an OT
plan P and an optimal affine transformation are learned, using the Sinkhorn-Knopp algo-
rithm and a mini-batch gradient descent. During the second stage, P is exploited to derive
either several co-clusters or several sets of matched elements. A simulation study illustrates
how the algorithms work and perform. The real data application further illustrates their
applicability and interest.

The second part of thesis addresses an actuarial problem related to drought events in
France. Drought events rank as the second most costly natural disasters within the French
legal framework of the natural disaster compensation scheme. A critical aspect of the na-
tional compensation scheme involves cities submitting requests for the government decla-
ration of natural disaster for a drought event as a key step. We take on the challenge of
forecasting which cities will submit such requests. The problem can be tackled as a classi-
fication task, leveraging the power of classification algorithms. Taking a slightly different
perspective, we introduce an alternative procedure that hinges on OT and iPiano, an inertial
proximal algorithm for nonconvex optimization. The optimization problem is designed so
as to yield a sparse vector of predictions because it is known that relatively few cities will
submit requests. Additionally, we develop a hybrid procedure that synergistically combines
and utilizes both types of predictions, resulting in enhanced forecasting accuracy. The real
data application is presented and discussed in details. The convergence of the iPiano algo-
rithm is established, using the notion of o-minimal structures.

Keywords: Huntington’s disease; matching; natural disasters; omics data; optimal trans-
port; proximal algorithm; Sinkhorn algorithm; Sinkhorn divergence.
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Résumé

Le transport optimal (OT) est une théorie mathématique puissante à l’interface de la
théorie de l’optimisation et de celle des probabilités, avec de nombreuses applications dans
un large éventail de domaines. Cette thèse présente l’application de la théorie du transport
optimal et des statistiques dans deux domaines : la biologie et l’actuariat.

La première partie de la thèse aborde le problème biologique consistant à chercher à mieux
comprendre la régulation des micro-ARN (miARN) dans le striatum des souris modèles de la
maladie de Huntington (HD). Pour ce faire, nous développons plusieurs algorithmes conçus
pour apprendre un modèle de correspondance entre deux ensembles de données dans des si-
tuations où il est souhaitable de faire correspondre des éléments qui présentent une relation
appartenant à un modèle paramétrique connu. Les deux ensembles de données contiennent
des informations sur les miARN et les ARN messagers (ARNm), respectivement, chaque
point de données consistant en un profil multidimensionnel. L’hypothèse biologique forte
est que si un miARN induit la dégradation d’un ARNm cible ou bloque sa traduction en
protéines, ou les deux, alors le profil du premier, disons y, devrait être similaire à moins le
profil du second, disons −x. Nous considérons une hypothèse plus souple selon laquelle y est
alors similaire à t(x), où t est une transformation affine dans une classe paramétrique qui
inclut moins l’identité et traduit les connaissances d’experts sur l’expérience qui a produit
les données. Les algorithmes se déroulent en deux étapes. Au cours de la première étape, un
plan de transport optimal P et une transformation affine optimale sont appris, en utilisant
l’algorithme de Sinkhorn-Knopp et une descente de gradient par mini-batch. Au cours de
la deuxième étape, P est exploité pour obtenir soit plusieurs co-clusters, soit plusieurs en-
sembles d’éléments appariés. Une étude de simulation illustre la façon dont les algorithmes
fonctionnent et performent. L’application aux données réelles illustrent plus avant leur ap-
plicabilité et leur intérêt.

La deuxième partie de la thèse traite d’un problème actuariel lié aux événements de
sécheresse en France. Les sécheresses sont les deuxièmes catastrophes naturelles les plus
coûteuses dans le cadre du régime français d’indemnisation des catastrophes naturelles. Un
aspect critique du régime national d’indemnisation implique que les villes soumettent des
demandes de déclaration de catastrophe naturelle pour un événement de sécheresse, ce qui
constitue une étape clé. Nous relevons le défi de prévoir quelles villes soumettront de telles
demandes. Le problème peut être abordé comme une tâche de classification, en tirant partie
de la puissance des algorithmes de classification. Dans une perspective légèrement différente,
nous introduisons une procédure alternative qui s’appuie sur la théorie OT et sur iPiano, un
algorithme proximal inertiel pour l’optimisation non convexe. Le problème d’optimisation
est conçu de manière à produire un vecteur parcimonieux de prédictions, car on sait que
relativement peu de villes soumettront des demandes. En outre, nous développons une pro-
cédure hybride qui combine et utilise de manière synergique les deux types de prédictions,
ce qui permet d’améliorer la précision des prévisions. L’application aux données réelles est
présentée et discutée en détail. La convergence de l’algorithme iPiano est établie à l’aide de
la notion de structures o-minimales.

Mots-Clefs : Algorithme de Sinkhorn ; algorithme proximal ; catastrophes naturelles ; diver-
gence de Sinkhorn ; données omics ; maladie de Huntington ; matching ; transport optimal.
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Notations

• JMK: the set of integers {1, . . . ,M}.

• 1M : vector of size M with all entries equal to 1.

• 0d: vector of size d with all entries equal to 0.

• diag(ρ), any ρ ∈ RM : the M ×M matrix with diagonal ρ and zero elsewhere.

• ⟨·, ·⟩F : Euclidean dot-product between vectors; for two matrices of the same size A
and B, ⟨A,B⟩F := TrA⊤B is the Frobenius dot-product.

• a⊗ b := ab⊤ ∈ RM×N , for any (a, b) ∈ RM × RN .

• a⊙ b := (ambm) ∈ RM for any (a, b) ∈ (RM )2.

• f⊕ g := f1⊤
M + 1Ng⊤ ∈ RM×N , for any f ∈ RM , g ∈ RN

• ♯: the push forward operator.

• C(X ): the set of continuous functions from X to R.

• ∇: the gradient operator.

• ΩM : the probability simplex of dimension (M−1), that is, the set of vectors x ∈ (R+)
M

such that
∑M

m=1 xm = 1.

• P(X ): the set of probability measures on X .

• a and b: elements of ΩM and ΩN viewed as histograms/laws.

• α and β: probability measures on spaces X and Y.

• δx: the Dirac measure on {x}.

• Π(a, b): set of couplings between a and b.

• Π(α, β): set of couplings between α and β.

• µa
x :=

∑
m∈JMK amδxm

and νby :=
∑

n∈JNK bnδyn
): weighted empirical measures at-

tached to x := {x1, . . . , xM} and y := {y1, . . . , yN}.

• (x, y) 7→ c(x, y): cost function, with associated pairwise cost matrix evaluated on x
and y, C(x,y), such that (C(x,y))m,n = c(xm, yn) for all m ∈ JMK, n ∈ JNK.

• K := e−C/γ , any cost matrix C and γ > 0: Gibbs kernel associated to C and γ.

• Wp(α, β): the p-Wasserstein distance between two probability measures α and β.

• OTc(α, β): optimal transport criterion specific to α, β and c.

• OTγ,c(α, β): regularized optimal transport criterion specific to α, β, c and γ > 0, a
parameter controlling the amount of regularization based on the entropy.
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• Sγ,c(α, β): Sinkhorn loss (or divergence) specific to α, β, c and γ > 0, a parameter
controlling the amount of regularization of the related c-specific optimal transport
criterion based on the entropy.

Conflicts in notation between chapters

We have tried to use coherent and non-conflicting notation for the mathematical objects
defined in this thesis. However, for the sake of consistency with the conventions of the field,
we made the choice to keep conventional notations for known quantities.

Theses notational conflicts have been kept to ease the understanding of the manuscript.
They occur between different chapters but not inside each chapter. We stress that the
potential uncertainty is removed when the context is taken into consideration.
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1
Résumé long

La théorie du transport optimal (OT) a trouvé de nombreuses applications dans divers
domaines car elle fournit un outil puissant pour comparer les distributions de probabilités,
une étape cruciale du “machine learning”. Dans cette thèse, nous exploitons la théorie OT et
les statistiques pour aborder des problèmes survenant en biologie et en science actuarielle.

Le problème biologique consiste à mettre en relation des expressions de micro-ARNs
et d’ARN messagers dans le striatum de souris modèles de la maladie de Huntington. Le
problème actuariel est lié à l’anticipation de la déclaration de catastrophe naturelle pour un
événement de sécheresse.

Malgré la disparité apparente entre les deux applications, elles trouvent leur unité sous le
cadre général que nous appelons “OT-based machine learning”. Dans le reste de ce résumé
long, nous entrelaçons les deux études. L’alternance répétée entre les problèmes biologiques
et actuariels révèle naturellement les caractéristiques partagées des études.

Contextes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

À PROPOS DE LA MALADIE DE HUNTINGTON. La maladie de Huntington (HD) est un trouble
neurodégénératif progressif autosomique dominant. HD est caractérisée par des mouvements
chromatiques involontaires avec des perturbations cognitives et comportementales. Elle est
causée par une expansion d’une série répétitive de triplets CAG dans le gène huntingtin (Wal-
ker, 2007 ; MacDonald et al., 1993).

Comme plusieurs maladies neurodégénératives telles que la maladie d’Alzheimer, la ma-
ladie de Parkinson et la sclérose latérale amyotrophique, HD est liée à une dérégulation
génique. Cela a encouragé de grandes études sur les mécanismes régulateurs des gènes (voir
Langfelder et al., 2018, en particulier). L’expression génique est contrôlée en limitant la quan-
tité d’ARN messager (mRNA) produite à partir d’un gène particulier au niveau de la trans-
cription et en régulant la traduction de mRNA en protéines au niveau post-transcriptionnel.
Les acteurs les plus importants à ce dernier niveau sont les petits ARNs non codants ap-
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pelés micro-ARNs (miRNAs). Ces éléments d’explication justifient pourquoi les chercheurs
s’intéressent à l’étude de l’interaction entre les miRNAs et les mRNAs dans HD, afin d’ob-
tenir une compréhension plus approfondie de la maladie et, éventuellement, de développer
de nouveaux traitements.

Le premier problème que nous abordons dans cette thèse concerne HD. Notre objectif
est de contribuer à l’étude de l’interaction complexe entre les miRNAs et les mRNAs
dans le contexte de cette maladie.

À PROPOS DE L'ANTICIPATION DE LA DÉCLARATION DE CATASTROPHE NATURELLE POUR UN ÉVÉNE-
MENT DE SÉCHERESSE. Le changement climatique se réfère à des changements à long terme
dans les modèles statistiques de la météo sur Terre (Assadollahi, 2019). Alors que le change-
ment climatique s’est produit très lentement tout au long de l’histoire de la Terre en raison
de la variabilité naturelle, il se produit de nos jours plus rapidement en raison des activités
humaines. Cela a conduit à une large gamme d’impacts dans toutes les régions de la Terre
ainsi que dans de nombreux secteurs économiques. Notamment, le changement climatique
exacerbe les sécheresses en les rendant plus fréquentes, plus longues et plus intenses. Par
exemple, Spinoni et al. (2015, 2017) ont étudié plusieurs indices de sécheresse sur 60 ans
pour montrer que de nombreuses régions européennes ont connu des conditions plus sèches
au cours des trois dernières décennies.

Dans cette thèse, nous appelons événement de sécheresse le phénomène de gonflement
de l’argile en conditions humides et de son retrait en conditions sèches. Compte tenu du
paragraphe précédent, les événements de sécheresse devraient devenir plus fréquents et plus
intenses également. Ceci est très problématique car, en induisant des déplacements de la
surface du sol, les événements de sécheresse peuvent entraîner des dommages importants
aux bâtiments, tels que des fissures au sol et dans les murs. Pour donner une idée du défi
notons que, selon la Caisse Central de Réassurance (CCR, un réassureur du secteur public
fournissant aux cédants opérant en France une couverture contre les catastrophes naturelles
et les risques non assurables), le coût annuel moyen des événements de sécheresse entre 2016
et 2020 est de 1,1 milliard d’euros, soit une augmentation d’un facteur trois par rapport à
la période 2002-2015 (CCR, 2021).

Les événements de sécheresse ont été intégrés en 1989 dans le régime français d’indemni-
sation des catastrophes naturelles (également connu sous le nom de régime “CatNat”), sept
ans après sa création par la loi. Par conséquent, les coûts engendrés par les dommages liés
aux événements de sécheresse sont couverts par toutes les polices d’assurance de propriété
privée (MTES, 2016). Depuis lors, les événements de sécheresse sont la deuxième catastrophe
naturelle la plus coûteuse avec un coût cumulatif de 14 milliards d’euros, et jusqu’à 2 mil-
liards d’euros en 2003. Étant donné que 90% du marché français de l’assurance contre les
catastrophes naturelles est réassuré par CCR (CCR, 2022), c’est finalement l’État français
qui est exposé.

Quelques mots sur le régime français d’indemnisation des catastrophes naturelles sont
nécessaires. Premièrement, comme expliqué dans (Charpentier et al., 2022a ; Heranval et al.,
2022), le régime d’indemnisation des catastrophes naturelles est fondé sur le principe de
solidarité : le même taux de prime supplémentaire est appliqué à tous les contrats d’assurance
de propriété. Deuxièmement, le déclenchement du régime d’indemnisation des catastrophes
naturelles repose sur deux conditions essentielles :

• la propriété ayant subi des pertes ou des dommages doit être couverte par une police
d’assurance de biens et de responsabilité civile, une exigence privée ;
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• un décret gouvernemental déclarant officiellement une catastrophe naturelle doit être
publié dans le “Journal Officiel”, une condition publique.

Il est important de noter que la responsabilité d’initier la demande de cette déclaration
gouvernementale au sein des municipalités qu’ils supervisent incombe aux maires.

Le deuxième problème que nous abordons dans cette thèse concerne les événements
de sécheresse. Notre objectif est de construire et d’analyser des outils afin de mieux
prévoir les demandes de déclaration gouvernementale de catastrophe naturelle pour un
événement de sécheresse.

Formalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

À PROPOS DE LA MALADIE DE HUNTINGTON. Ces dernières années, l’avènement de technologies
de séquençage avancées, telles que la RNAseq, a permis aux chercheurs de générer de grands
ensembles de données englobant la génomique, la protéomique, la transcriptomique et la
métabolomique. Grâce à l’analyse de ces vastes ensembles de données, les chercheurs ont ac-
quis des connaissances sur la génétique, la biologie humaine et la compréhension de diverses
maladies. Notamment, des données sur HD sont de plus en plus disponibles, telles que les
signatures d’expression de mRNA de HD dans des cerveaux humains post-mortem (Neue-
der and Bates, 2014 ; Cha, 2007) et les modifications de l’expression des miRNAs observées
dans plusieurs modèles de souris (Langfelder et al., 2018). Cependant, malgré cette richesse
croissante d’informations, notre connaissance de l’interaction entre mRNA et miRNA dans
HD reste plutôt limitée. Plusieurs défis doivent être relevés. Premièrement, le manque de
données de haute qualité en séries temporelles de différents types de cellules et de tissus dans
des conditions saines et malades constitue un obstacle. Deuxièmement, il est intrinsèque-
ment difficile de modéliser avec précision les interactions entre les miRNAs et les mRNAs.
Troisièmement, la réalisation d’expériences pour la détection et la validation des gènes cibles
des miRNAs est à la fois coûteuse et chronophage, comme discuté dans (Nazarov and Kreis,
2021).

Encouragés par les découvertes prometteuses de Langfelder et al. (2018) ; Mégret et al.
(2020), notre objectif est de mettre en lumière l’interaction entre les mRNA et les miRNAs
à partir de données multidimensionnelles disponibles publiquement via le Gene Expression
Omnibus (GEO) et le portail HDinHD. Les données sont collectées à trois âges différents
(2, 6, 10 mois) dans quatre régions du cerveau et dans le foie d’une série allélique de souris
modèles de HD avec des longueurs croissantes de CAG dans le gène Huntingtin endogène
(longueurs polyQ : Q20, Q80, Q92, Q111, Q140, Q175) (Langfelder et al., 2016, 2018). Pour
chaque combinaison de longueur polyQ et d’âge, l’expression des mRNA et des miRNAs de
huit souris, dont quatre femelles et quatre mâles, a été quantifiée. Après prétraitement (Mé-
gret et al., 2020), le jeu de données final se compose de M = 13, 616 profils de mRNA,
X := {x1, x2, . . . , xM} ⊂ Rd, et N = 1, 143 profils de miRNA, Y := {y1, y2, . . . , yN} ⊂ Rd

avec d = 15.

L’hypothèse biologique au cœur de notre étude postule que lorsqu’un miRNA déclenche
la dégradation d’un mRNA cible ou entrave sa traduction en protéines, ou les deux,
alors le profil du premier, disons y, et celui du second, disons x, présentent ce que
nous appelons une relation de miroir, signifiant de manière approximative que y et −x
sont similaires. Notre objectif est d’identifier des groupes de mRNAs et de miRNAs qui
interagissent en exploitant l’hypothèse biologique, X et Y . Il s’agit d’une tâche difficile
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car les miRNAs et leurs mRNAs régulés s’engagent souvent dans des relations de miroir
complexes, à plusieurs niveaux.

À PROPOS DE L'ANTICIPATION DE LA DÉCLARATION DE CATASTROPHE NATURELLE POUR UN ÉVÉNE-
MENT DE SÉCHERESSE. L’ensemble de données est obtenu en fusionnant plusieurs jeux de
données, soit fournis par les cédants de CCR, soit collectés auprès d’autres sources. Les unités
expérimentales sont les villes françaises. Chacune d’entre elles peut contribuer une structure
de données pour une année donnée t (par convention, t = 1, 2, 3 correspond respectivement
aux années 2019, 2020 et 2021) et une semaine donnée u (l’entier u ∈ Ut ⊂ N∗ indiquant
le nombre de semaines à partir de la première semaine de l’année t, avec 44 ≤ u ≤ 85).
Une structure de données englobe de multiples aspects du profil d’une ville, visant à fournir
une représentation complète de son contexte et des déclencheurs potentiels pour demander
la déclaration gouvernementale de catastrophe naturelle pour un événement de sécheresse.
Elle se compose des blocs de variables suivants :

Description de la ville Les variables de ce bloc fournissent une compréhension globale
des caractéristiques de la ville.

Exposition de la ville aux événements de sécheresse Les variables de ce bloc décri-
vent l’exposition de la ville aux événements de sécheresse. Elles s’appuient sur le Soil
Wetness Index (SWI). Fourni par Météo-France, les données SWI consistent en des
séries temporelles de valeurs (une tous les dix jours) variant entre -3,33 (sol très sec)
et 2,33 (sol très humide).

Historique des demandes de la ville Ce bloc nous donne un aperçu du processus déci-
sionnel de la ville, de ses intentions et actions concernant la soumission d’une demande
de déclaration gouvernementale de catastrophe naturelle pour un événement de séche-
resse.

Statut actuel de la demande de la ville Cette variable indique si la ville a soumis ou
non une demande de déclaration gouvernementale de catastrophe naturelle pour un
événement de sécheresse pour l’année t pendant la semaine u ou avant.

Description du voisinage de la ville Ce bloc se concentre sur les alentours de la ville.

Désignons par xm ∈ X (m ∈ JMK = {1, . . . ,M}) la description spécifique de la ville
pour l’année t et la semaine u, pour laquelle il est connu si la ville a demandé ou non la
déclaration de catastrophe naturelle pour un événement de sécheresse pour l’année t d’ici
la semaine u, une information notée par ym ∈ {0, 1} (avec la convention ym = 1 si la ville
avec la description au niveau de la ville spécifique à l’année xm l’a fait). De plus, désignons
par x′n ∈ X (n ∈ JNK) la description spécifique de la ville pour l’année t et la semaine
u, pour laquelle il n’est pas connu si la ville demandera ou non in fine une déclaration de
catastrophe naturelle pour un événement de sécheresse pour l’année t, une information notée
par y′n ∈ {0, 1}.

Notre objectif ultime est d’apprendre à prédire y′n en fonction de x′n (pour chaque
n ∈ JNK) en exploitant {(xm, ym) : m ∈ JMK}. L’objectif est difficile à atteindre pour
plusieurs raisons. Premièrement, relativement peu de villes demandent la déclaration
de catastrophe naturelle pour un événement de sécheresse. Deuxièmement, nous souhai-
tons encourager des prédictions prenant exactement la valeur 0. Troisièmement, même
en tentant de créer une description de ville complète et générique, il peut encore y avoir
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en jeu des facteurs insaisissables qui déclenchent une demande de déclaration gouver-
nementale de catastrophe naturelle pour un événement de sécheresse. Par exemple, les
affiliations et alliances politiques entre les villes peuvent être influentes, mais elles sont
assez difficiles à saisir.

Conception et mise en œuvre d'algorithmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

À PROPOS DE LA MALADIE DE HUNTINGTON. De manière informelle, nous recherchons des
couples (m,n) ∈ JMK × JNK tels que le nième miRNA induit la dégradation du mième
mRNA ou bloque sa traduction en protéines ou les deux. Nous sommes guidés par l’hypo-
thèse biologique forte que, si c’est le cas, alors le profil yn du premier est similaire à l’opposé
du profil xm du second — c’est-à-dire, xm et yn présentent une relation de miroir. Il est à no-
ter qu’un seul miRNA peut cibler plusieurs mRNAs. Les relations de miroir réelles peuvent
être plus ou moins aiguës, par exemple à cause d’effets de seuil, ou de plusieurs miRNAs
ciblant le même mRNA ou d’un seul miRNA ciblant plusieurs mRNAs. Par conséquent, au
lieu d’utiliser rigoureusement des comparaisons entre −xm et yn, nos algorithmes appren-
dront à partir des données une transformation pertinente θ ∈ Θ, un ensemble paramétrique
de relations de miroir relâchées, et utiliseront des comparaisons entre θ(xm) et yn. À cette
fin, nous nous appuyons sur la théorie OT pour apprendre une transformation optimale
θ̂ ∈ Θ et une matrice de transport P interprétée comme une matrice de similarité entre
les profils de miRNAs et de mRNAs. Ensuite, nous exploitons P pour identifier les paires
pertinentes en utilisant une procédure d’appariement.

Concrètement, nous identifions un θ pertinent dans Θ en résolvant

min
ω∈ΩM

min
θ∈Θ

Sγ,c(µ
ω
θ(X), νY ) (1.1)

où

• θ(X) := θ(x1), . . . , θ(xM ) est l’image de X par θ ∈ Θ ;

• ΩM := {ω ∈ (R+)
M :

∑
m∈JMK ωm = 1} est le simplexe de dimension (M − 1) ;

• µω
θ(X) :=

∑
m∈JMK ωmδθ(xm) est la mesure empirique pondérée par ω attachée à θ(X) ;

• νY :=
∑

n∈JNK δyn
est la mesure empirique attachée à Y ;

• Sγ,c est la perte de Sinkhorn correspondant à une fonction de coût c définie sur Rd×Rd

et un paramètre de régularisation γ > 0 (Genevay et al., 2018).

Nous décidons d’optimiser par rapport à ω ∈ ΩM car nous ne nous attendons pas à associer
finalement un yn à chaque xm. Pour résoudre (1.1), nous mettons à jour itérativement ω
puis θ, en utilisant l’algorithme Sinkhorn-Knopp et une descente de gradient à mini-batches.

Notre code est écrit en python. Nous adaptons l’algorithme Sinkhorn implémenté par
Aude Genevay et disponible ici. Les descentes de gradient stochastiques s’appuient sur
le cadre d’apprentissage automatique pytorch.

Finalement, nous sommes intéressés par le minimiseur (ω̂, θ̂) et par le plan de transport
optimal P̂ caché dans la définition de Sγ,c(µ

ω
θ(X), νY ). Une fois le plan P̂ obtenu, nous nous

appuyons sur une procédure d’appariement pour trouver les paires pertinentes. Enfin, une
analyse biologique supplémentaire est menée pour identifier les paires les plus fiables.
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À PROPOS DE L'ANTICIPATION DE LA DÉCLARATION DE CATASTROPHE NATURELLE POUR UN ÉVÉNE-
MENT DE SÉCHERESSE. Rappelons que {(xm, ym) : m ∈ JMK} ⊂ X × {0, 1} et {(x′n, y′n) :
n ∈ JNK} ⊂ X × {0, 1} sont deux collections de couples pour lesquels on souhaite prédire
y′n en fonction de x′n, pour chaque n ∈ JNK, en utilisant les observations passées (x1, y1), …,
(xM , yM ). Pour ce faire, nous proposons de résoudre le problème d’optimisation suivant :

arg min
θ∈RN

{Sγ(z, z′(θ)) + gτ (θ)} (1.2)

où

• pour tout θ ∈ RN ,

z := ((x1, y1), . . . , (xM , yM )) , z′(θ) := ((x′1, θ1), . . . , (x
′
N , θN )) ;

• la fonction de coût c : (X × R)× (X × R)→ R+ est donnée par

c ((x, y), (x′, θ)) := dis(x, x′)2 + (y − θ)2

pour une distance ou dissimilarité dis sur X ;

• gτ (τ > 0) est une fonction convexe donnée soit par gτ (θ) := τ∥θ∥1 + I{θ ∈ [0, 1]N},
avec ∥θ∥1 :=

∑
n∈JNK |θn|, soit par gτ (θ) := I{∥θ∥1 ≤ τ} + I{θ ∈ [0, 1]N}, où I{A}

vaut 0 si A est vrai et +∞ sinon ;

• Sγ(z, z′(θ)) est la perte de Sinkhorn entre z et z′(θ) correspondant à la fonction de
coût ci-dessus c et au paramètre de régularisation γ > 0.

Résoudre (1.2) n’est pas simple, en partie parce que le critère à minimiser est la somme de la
fonction non convexe différentiable f : θ 7→ Sγ(z, z′(θ)) et de la fonction convexe non diffé-
rentiable gτ . Heureusement, nous pouvons nous appuyer sur l’algorithme iPiano (Ochs et al.,
2015), qui a été développé précisément pour traiter ce type de problèmes d’optimisation.

La convergence de l’algorithme iPiano est établie, en utilisant la notion de structures
o-minimales.

Notre code est écrit en python et utilise pytorch. Une fois de plus, nous adaptons
l’algorithme de Sinkhorn implémenté par Aude Genevay et disponible ici. De plus, nous
nous appuyons sur un algorithme efficace disponible pour implémenter la projection
mentionnée sur la boule ℓ1 (Duchi et al., 2008). Une procédure mini-batches permet de
faire face à des situations où M et N sont grands.

De plus, nous nous appuyons notamment sur hyperband (Li et al., 2018), une approche
fondée sur les bandits pour l’optimisation des hyperparamètres, afin de définir la cruciale
fonction de coût, et sur une recherche gourmande afin d’affiner ensuite les autres hyperpara-
mètres. Nous comparons les résultats obtenus en agrégeant les prédictions acquises à partir
d’algorithmes de classification avec ceux obtenus par la procédure OT. De plus, nous intro-
duisons la procédure hybride qui combine et utilise de manière synergique les deux types de
prédictions.

Résultats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

À PROPOS DE LA MALADIE DE HUNTINGTON. Nous appliquons notre algorithme d’appariement
pour découvrir des motifs cachés dans les données de séquençage d’ARN obtenues dans le
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striatum de souris modèles de HD afin de trouver les appariements potentiels. Pour garantir
la pertinence biologique des appariements, nous ne retenons que ceux connus pour exhiber
des preuves de liaison, comme indiqué dans les bases de données TargetScan, MicroCosm
et miRDB. Spécifiquement, une paire (x, y) est retenue si et seulement si le mRNA dont le
profil est x et le miRNA dont le profil est y sont tous les deux parmi les 27,355 mRNA et
1,478 miRNAs apparaissant dans les bases de données TargetScan, MicroCosm, et miRDB.

Les 1,247 appariements retenus sur 7,521 produits par l’algorithme d’appariement sont
tous présentés sur cette page du site web compagnon.

Nous évaluons et comparons la signification biologique des mRNA retenus par les al-
gorithmes WGCNA (Langfelder et al., 2018), MiRAMINT (Mégret et al., 2020) et notre
algorithme d’appariement.

L’analyse d’enrichissement révèle que les appariements mRNA-miRNA produits par
notre algorithme d’appariement sont principalement annotés pour “extracellular matrix
organization” (qui se rapporte à l’identité cellulaire) et secondairement annotés pour
“mitigation of host antiviral defense response”, et pour “conventional motile cilium”.

Au contraire, les appariements produits par l’algorithme MiRAMINT sont principale-
ment annotés pour “regulation of defense response to virus by host”, ce qui est lié à la
réponse au stress et à l’immunité innée. De plus, les appariements produits par l’algorithme
WGCNA sont principalement annotés pour “axonogenesis”, ce qui est lié à la dynamique
du cytosquelette et à la morphologie cellulaire.

À PROPOS DE L'ANTICIPATION DE LA DÉCLARATION DE CATASTROPHE NATURELLE POUR UN ÉVÉNE-
MENT DE SÉCHERESSE.

Nous appliquons le super learner (un algorithme d’apprentissage automatique), notre
“procédure OT” et une procédure hybride qui tire parti des deux approches précédentes
pour prédire les probabilités de soumettre une demande relative à l’année 2021 pour
chaque semaine u et toutes les villes qui n’ont pas encore soumis de demande d’ici
la semaine u. Les prédictions hybrides semblent trouver un juste équilibre entre les
prédictions produites par le super learner et par la procédure OT.

Lors de l’évaluation des trois approches en utilisant l’erreur quadratique moyenne
comme critère, la procédure hybride surpasse la procédure OT qui, à son tour, per-
forme mieux que le super learner. De plus, la procédure hybride surpasse l’algorithme
actuellement utilisé chez CCR.
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2
Introduction

Optimal transport (OT) theory has found many applications in diverse fields as it provides a
powerful tool for comparing probability distributions, one crucial step in machine learning.
In this thesis, we leverage OT theory and statistics to deal with problems arising in biology
and actuarial science.

The biological problem is to assess the possible relationships between microRNA and
mRNA expression in the striatum of Huntington’s disease model mice. The actuarial prob-
lem relates to the anticipation of the declaration of natural disaster for a drought event.

Despite the apparent disparity between the two applications, they find unity under the
overarching framework that we call “OT-based machine learning”. In the rest of this in-
troductory chapter, we intertwine the two studies. The repeated alternation between the
biological and the actuarial problems naturally reveals the studies’ shared features.

In Section 2.1, we provide the applications’ contexts. In Section 2.2, we introduce elements
of formalization and clarify what are our objectives. In Section 2.3, we discuss the states
of the art upon which our work builds. In Section 2.4, we concisely expose the algorithms
that we designed in order to fulfill our objectives. This includes some details about the
algorithms’ implementation. In Section 2.5, we briefly describe the results of our studies.
Finally, in Section 2.6, we outline the structure of the rest of the document – where we
present the full-fledged studies.

2.1 What is this thesis about? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ABOUT HUNTINGTON’S DISEASE. Huntington’s disease (HD), an autosomal-dominant, pro-
gressive neurodegenerative disorder, is characterized by involuntary chromatic movements
with cognitive and behavioral disturbances. It is caused by an expansion of a repeating
CAG triplet series in the huntingtin gene (Walker, 2007; MacDonald et al., 1993). In nor-
mal individuals the CAG repeat length ranges from 10 to 35, while in HD individuals, it
ranges from 36 to more than 120 (see Figure 2.1). In detail, HD patients with 36-40 CAG
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repeats may have late onset or may not develop symptoms; HD patients with 41-59 CAG
repeats may have symptoms onset in their fourth decade; and CAG repeats greater than 60
in length lead to juvenile onset (Andrew et al., 1993). There are currently no treatments to
prevent the onset or to slow the progression of HD.

Figure 2.1 – CAG repeat expansions in HD. Source: California’s Stem Cell Agency.

Like several neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease
and amyotrophic lateral sclerosis, HD relates to gene deregulation. This has encouraged
large studies of gene regulatory mechanisms (see Langfelder et al., 2018, in particular).
Gene expression is controlled by limiting the amount of messenger-RNA (mRNA) produced
from a particular gene at the transcription level and by regulating the translation of mRNA
into proteins at the post-transcriptional level. The most important instruments in the latter
level are small non-coding RNAs called micro-RNAs (miRNAs). It binds to a complemen-
tary sequence in the 3’UTR of the target mRNA resulting in a rapid degradation of the
mRNA or less frequently in an inhibition of its translation into protein (see Pasquinelli,
2012, and Figure 2.2). These basic facts explain why researchers are interested in studying
the interaction between miRNAs and mRNAs in HD to gain a deeper understanding on the
disease and, eventually, to develop new therapeutics.

The first problem that we tackle in this thesis pertains to HD. Our aim is to make a
substantial and noteworthy contribution to the study of the intricate interplay between
miRNAs and mRNAs in the context of HD.

ABOUT THE ANTICIPATION OF THE DECLARATION OF NATURAL DISASTER FOR A DROUGHT EVENT.
Climate change refers to long-term shifts in the statistical patterns of weather on Earth (As-
sadollahi, 2019). While climate change has occurred very slowly throughout Earth’s history
due to natural variability, it is nowadays happening more rapidly due to human activi-
ties. This has led to a wide range of impacts across every region of Earth as well as many
economic sectors. Notably, climate change exacerbates droughts by making them more fre-
quent, longer, and more intense. For instance, Spinoni et al. (2015, 2017) studied multiple
drought indexes over 60 years to show that many European regions has experienced drier
conditions in the last 3 decades.
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Figure 2.2 – Mechanism of miRNA action. MiRNA can bind to specific regions of target mRNA transcripts and
destabilizes the target transcript and/or blocks its translation. Source: (Teixeira et al., 2014).

Figure 2.3 – Left: the clay shrinking-swelling phenomenon. Right: an example of crack due to the clay
shrinking and swelling phenomenon.

In this dissertation we call drought event the phenomenon of clay swelling in humid
conditions and shrinking in dry ones. In view of the previous paragraphs, drought events are
expected to become more frequent and more intense too. This is very problematic because,
by inducing displacements of the ground surface, drought events can lead to significant
damages to buildings, such as cracks on the floor and in the walls, see Figure 2.3. To give
a sense of the challenge, note that, according to Caisse Central de Réassurance (CCR, a
public-sector reinsurer providing cedents operating in France with coverage against natural
catastrophes and uninsurable risks), the average annual cost of drought events between 2016
and 2020 is 1.1 billion euros, a threefold increase relative to the 2002-2015 period (CCR,
2021).

Drought events have been integrated in 1989 into the French natural disaster compen-
sation scheme (also known as the “Cat Nat” scheme), 7 years after its creation by law.
Consequently, the costs incurred by damages related to drought events are covered by all
private property insurance policies (MTES, 2016). Since then, drought events are the second
costliest natural disaster with a cumulative cost of 14 billions euros, and as much as 2 billion
euros in 2003. Because 90% of the French natural disasters insurance market is reinsured
by CCR (CCR, 2022), it is the French State that is exposed eventually.

A few words on the French natural disaster compensation scheme are in order. First, as
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explained in (Charpentier et al., 2022a; Heranval et al., 2022), the natural disaster compensa-
tion scheme is based on the principle of solidarity: the same additional-premium insurance
rate is applied to all property insurance contracts. Second, the initiation of the natural
disaster compensation scheme hinges on two essential prerequisites:

• the property that has incurred losses or damages must fall under the coverage of a
property and casualty insurance policy, a private requirement;

• a government decree officially declaring a natural disaster must be published in the
“Journal Officiel”, a public condition.

Importantly, the responsibility for initiating the request for this government declaration
within the municipalities they oversee lies with the mayors.

The second problem that we address in this thesis pertains to drought events. Our
objective is to build and analyze tools to better forecast the requests of the government
declaration of natural disaster for a drought event.

2.2 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ABOUT HUNTINGTON’S DISEASE. In recent years, the advent of advanced sequencing tech-
nologies, such as RNAseq, has allowed researchers to generate large datasets encompassing
genomics, proteomics, transcriptomics and metabolomics. Through the analysis of these
extensive datasets, the researchers have gained insights into genetics, human biology and
the understanding of various diseases. Notably, data on HD are increasingly available, such
as mRNA expression signatures of HD in post-mortem human brains (Neueder and Bates,
2014; Cha, 2007) and the alterations in miRNA expression observed across multiple mouse
models (Langfelder et al., 2018). However, despite this growing wealth of information, our
knowledge of the interaction between mRNA and miRNA in HD remains rather limited.
Several challenges must be dealt with. Firstly, the lack of high quality, time-series data
from different cell types and tissues from healthy and diseased conditions poses a hurdle.
Secondly, it is inherently difficult to model accurately the interactions between miRNAs
and mRNAs. Thirdly, conducting experiments for the detection and validation of miRNA
target genes is both costly and time-consuming, as discussed in (Nazarov and Kreis, 2021).

Encouraged by the promising findings of Langfelder et al. (2018); Mégret et al. (2020),
our goal is to shed light on the interaction between mRNAs and miRNAs based on mul-
tidimensional data which are publicly available through Gene Expression Omnibus (GEO)
and the HDinHD portal. The data are collected at three different ages (2, 6, 10 months)
in four brain regions and liver from an allelic series of HD model knock-in mice with in-
creasing CAG lengths in the endogenous Huntingtin gene (poly Q lengths: Q20, Q80, Q92,
Q111, Q140, Q175) (Langfelder et al., 2016, 2018). For each combination of poly Q length
and age, miRNA and mRNA expression of 8 mice including 4 females and 4 males have
been quantified. After preprocessing (Mégret et al., 2020), the final dataset consists of
M = 13, 616 mRNA profiles, X := {x1, x2, . . . , xM} ⊂ Rd, and N = 1, 143 miRNA profiles,
Y := {y1, y2, . . . , yN} ⊂ Rd with d = 15.

The biological hypothesis at the core of our study posits that when a miRNA triggers
the degradation of a target mRNA or hinders its translation into proteins, or both,
then the profile of the former, say y, and the one of the latter, say x, exhibit what we
call a mirroring relationship, meaning loosely that y and −x are similar. Our aim is
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to identify groups of mRNAs and miRNAs that interact by leveraging the biological
hypothesis, X and Y . This is a challenging task because miRNA and their regulated
mRNAs often engage in complex, many-to-many mirroring relationships.

ABOUT THE ANTICIPATION OF THE DECLARATION OF NATURAL DISASTER FOR A DROUGHT EVENT.
The data set is obtained by merging several data sets, either provided by CCR’s cedents
or collected from other sources, namely the National Institute for Statistical and Economic
Studies (Insee), Geographic National Institute (IGN), French Geological Survey (BRGM)
and Météo-France. The experimental units are the French cities. Each of them can con-
tribute a data structure for a given year t (by convention, t = 1, 2, 3 respectively correspond
to years 2019, 2020 and 2021) and a given week u (the integer u ∈ Ut ⊂ N∗ being the number
of weeks starting from the first week of year t, with 44 ≤ u ≤ 85). A data structure encom-
passes multiple aspects of a city’s profile, aiming to provide a comprehensive representation
of its context and potential triggers for requesting the government declaration of natural
disaster for a drought event. It consists of the following blocks of variables:

City description The variables within this block provide a global understanding of the
city’s characteristics.

City exposure to drought events The variables within this block outline the city’s ex-
posure to drought events. They build upon the Soil Wetness Index (SWI). Provided
by Météo-France, the SWI data consist of time series of values (one every ten-day
period) ranging between -3.33 (very dry soil) and 2.33 (very wet soil).

City history of requests This block gives us insight into the city’s decision-making pro-
cess, intentions and actions regarding the submission of a request for the government
declaration of natural disaster for a drought event.

City current request status This variable indicates whether or not the city submitted a
request for the government declaration of natural disaster for a drought event for year
t during week u or before.

City’s vicinity description This block focuses on the city’s surroundings.

Let us denote by xm ∈ X (m ∈ JMK = {1, . . . ,M}) the mth year-t and week-u specific
description of a city for which it is known whether or not the city requested the declaration
of natural disaster for a drought event for year t by week u, a piece of information denoted
by ym ∈ {0, 1} (with convention ym = 1 if the city with year-specific city-level description
xm did). Moreover, let us denote by x′n ∈ X (n ∈ JNK) the nth year-t and week-u specific
description of a city for which it is not known whether of not the city will request during
week u a declaration of natural disaster for a drought event for year t, a piece of information
denoted by y′n ∈ {0, 1}.

Our ultimate objective is to learn to predict y′n based on x′n (for every n ∈ JNK) by
leveraging {(xm, ym) : m ∈ JMK}. The objective is challenging for several reasons.
First, relatively few cities do request the declaration of natural disaster for a drought
event. Secondly, we aim to encourage predictions that lean towards 0. Thirdly, even
when attempting to create a comprehensive and generic city description, there may
still be elusive factors at play that trigger a request for the government declaration of
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natural disaster for a drought event. For instance, political affiliations and alliances
among cities may be influential, but they are quite difficult to capture.

2.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ABOUT HUNTINGTON'S DISEASE. Since the first discovery of miRNAs in 1993 (Lee et al.,
1993), numerous methods of computational prediction, experimental detection and valida-
tion of miRNA target genes have been developed to understand how miRNA function and to
identify their role in varied biological processes. As reviewed in (Huang et al., 2010; Nazarov
and Kreis, 2021), the traditional experimental methods of miRNA target gene interaction
include

• mutation studies,

• gene-silencing techniques,

• classic genetic studies.
On the other hand, the current experimental methods include

• reporter gene assay,

• protein level analyses,

• crosslinking followed by immunoprecipitation of RICS complexes (CLIP and CLASH
methods),

• other biochemical approaches.
Although experimental methods can provide direct evidence between miRNAs and their
targets, they are time-consuming and expensive, especially when multiple miRNAs are of
interest. Moreover, false positive results may arise in some experimental methods, for exam-
ple when analyzing data from RNASeq experiments following over-expression of miRNAs.

Computational methods for miRNA target prediction leverage databases that have been
published over the past 10 years, including but not limited to TargetScan (Lewis et al.,
2005), MicroCosm (Betel et al., 2010) and miRDB (Ding et al., 2016). Citing Nazarov and
Kreis (2021), these computational methods for miRNA target prediction rely upon several
criteria:

• degree of Watson-Crick pairing between miRNA seed region and target site,

• evolutionary conservation across species,

• thermodynamic properties,

• accessibility of target sites,

• sequence composition in the vicinity of seeds and target sites.
For instance, the analysis of TargetScan conducted by Huang et al. (2010) integrates thermo-
dynamics-based modeling of miRNA-mRNA interactions and sequence alignment analysis
to predict conserved miRNA binding sites among different species.

Today, with the development of high-throughout technologies, the datasets of mRNA and
miRNA profiles across many samples and conditions are increasingly available for data inte-
gration. Nazarov and Kreis (2021) enumerate three main approaches to integrate different
datasets:
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• (i) data-driven methods based on similarities,

• (ii) data-driven methods based on matrix factorization,

• (iii) so-called hybrid methods.

When adopting approach (i), one typically chooses one of two methods: the first consists in
defining a similarity matrix based on classical similarity measures (such as the Pearson and
Spearman correlation coefficients; the cosine similarity; the mutual information); the second
consists in building on canonical correlation analysis to establish linear relations between
two datasets. When adopting approach (ii), the expression matrices A and B of mRNA
and miRNA data measured in m samples (a column for each sample) are approximated by
products of lower rank matrices, A ≈ ÃΩa and B ≈ B̃Ωb. The matrices Ã and B̃ can
be interpreted as expression matrices of “meta-mRNA” and “meta-miRNA”, Ωa and Ωb as
weight-matrices. Integration can be performed by correlating the weight profiles over the
samples, yielding a network of linked components. Unfortunately, neither approach (i) or
(ii) can discriminate between true interactions and fake interactions originating from hidden
regulators such as transcription factors. Nazarov and Kreis (2021) argue that the hybrid
approach, by combining information about miRNA targets and experimental observations,
is best qualified to identify the highest potential interactions.

Two previous analyses of miRNA regulation have been performed using the same datasets
as us of mRNA and miRNA profiles in the striatum of HD knock-in mice. The first analysis
relies on the WGCNA algorithm, a weighted gene co-expression network analysis which
yields clusters of genes whose expression profiles are correlated (Langfelder et al., 2018).
The second analysis relies on the MiRAMINT algorithm (Mégret et al., 2020). MiRAMINT
is a pipeline whose main steps consist in (a) carrying out a weighted gene co-expression
network analysis, (b) using random forests to select candidate matchings, and (c) using
Spearman’s correlation test and a multiple testing procedure to identify the more reliable
matchings. The two analyses suffer from little congruence with only one mRNA-miRNA
pair output by both the MiRAMINT and WGCNA algorithms: Mir132-Pafah121. As a
matter of fact, this is a common issue of all approaches for miRNA target prediction.

In view of the two previous paragraph, the algorithms that we develop in this thesis to
study how miRNAs “come together to regulate the expression of a gene or a group of
genes” (an expression borrowed from Nazarov and Kreis (2021)) in HD are based on
similarities. We do not rely on classical similarity measures but instead exploit tools
from OT theory. Naturally, we compare our findings to those of Langfelder et al. (2018);
Mégret et al. (2020).

ABOUT THE ANTICIPATION OF THE DECLARATION OF NATURAL DISASTER FOR A DROUGHT EVENT.
Paraphrasing (Logar and van den Bergh, 2011, page 4, first paragraph), “[t]he existing
literature on the costs of drought [events] is scarce, fragmented and heterogeneous, and there
is a need for comprehensive costs estimations to help designing effective policy responses.” To
the best of our knowledge, only five recent works (Chatelain and Loisel, 2021; Charpentier
et al., 2022b; Heranval et al., 2022; Ecoto et al., 2021; Ecoto and Chambaz, 2022) are
publicly available about the cost prediction of a drought event (all in France), while the
studies conducted by insurance companies are confidential.

The problem can be separated into two sub-problems (Ecoto et al., 2021; Ecoto and
Chambaz, 2022): sub-problem 1 consists in predicting which cities will make a request for
the government’s declaration of natural disaster for a drought event; sub-problem 2 consists
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in predicting the cost of a drought event for those cities that obtained the government
declaration of natural disaster for a drought event. (Chatelain and Loisel, 2021) takes on
both sub-problems simultaneously. On the other hand, (Charpentier et al., 2022b; Heranval
et al., 2022) predict which cities will experience claims (a proxy for sub-problem 1) and
subsequently estimate the cost for these cities.

In the work of Charpentier et al. (2022b), the authors employed a combination of Gener-
alized Linear Models (GLM) and tree-based models, which are variants of the random forest
algorithm, to predict both the average cost per claim and the number of houses experiencing
losses in each city. Subsequently, they calculated a city-specific predicted cost by multiply-
ing these two values. To obtain the overall cost, they summed up all the city-specific costs.
As for Heranval et al. (2022); Chatelain and Loisel (2021), they utilized penalized GLM and
machine learning algorithms, including random forest and extreme gradient boosting, for
the same purpose. For a given drought event, Heranval et al. (2022) predicted city-specific
costs by considering the number of houses and employing a common linear regression model.
In contrast, Chatelain and Loisel (2021) predicted costs at the house level, using geolocated
data and applying several GLMs. In both cases, the overall cost was eventually estimated
by summing up either the city-specific or house-specific costs.

In (Ecoto et al., 2021; Ecoto and Chambaz, 2022), the authors develop and apply a new
methodology to predict the cost of a drought event. The methodology hinges on Super
Learning, a general aggregation strategy to learn a feature of the law of the data identified
through an ad hoc risk function by relying on a library of algorithms. Theoretical guarantees
reveal that it is possible to learn from a short time series (thirty years of data, one data-
structure per year) of many slightly dependent data (each data-structure gathers data across
all French cities).

In this thesis we focus on sub-problem 1. We also rely on machine learning algorithms,
but our main contribution lies in the use of tools from OT theory to try and obtain
better performances.

2.4 Design and implementation of algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ABOUT HUNGTINTON'S DISEASE. Informally, we look for couples (m,n) ∈ JMK × JNK such
that the nth miRNA induces the degradation of the mth mRNA or blocks its translation
into proteins or both. We are guided by the strong biological hypothesis that, if that is the
case, then the profile yn of the former is similar to minus the profile xm of the latter — that
is, xm and yn exhibit a mirroring relationship. Of note, it it expected that a single miRNA
can target several mRNAs. The actual mirroring relationships can be more or less acute, for
instance because of threshold effects, or of multiple miRNAs targeting the same mRNA or of
a single miRNA targeting several mRNAs. Therefore, instead of rigidly using comparisons
between −xm and yn, our algorithms will learn from the data a relevant transformation
θ ∈ Θ, a parametric set of loose mirroring relationships, and use comparisons between
θ(xm) and yn. To this end, we rely on OT theory to learn an optimal transformation θ̂ ∈ Θ
and an OT matrix P interpreted as a similarity matrix between miRNA and mRNA profiles.
Then, we exploit P to derive the relevant pairs using a matching procedure. As such, our
algorithms belong to the family of data-driven methods based on similarities as described
by (Nazarov and Kreis, 2021).

Concretely, we identify a relevant θ ∈ Θ by solving

min
ω∈ΩM

min
θ∈Θ

Sγ,c(µ
ω
θ(X), νY ) (2.1)

16



where

• θ(X) := {θ(x1), . . . , θ(xM )} is the image of X by θ ∈ Θ;

• µω
θ(X) :=

∑
m∈JMK ωmδθ(xm) is the ω-weighted empirical measure attached to θ(X);

• νY :=
∑

n∈JNK δyn is the empirical measure attached to Y ;

• Sγ,c is the Sinkhorn loss corresponding to a cost function c defined on Rd × Rd and a
regularization parameter γ > 0 (Genevay et al., 2018).

We decide to optimize with respect to ω ∈ ΩM because we do not expect to associate a yn
to every xm eventually. To solve (2.1), we iteratively update ω then θ, using the Sinkhorn-
Knopp algorithm and a mini-batch gradient descent.

Our code is written in python. We adapt the Sinkhorn algorithm implemented by Aude
Genevay and available here. The stochastic gradient descents relies on the machine
learning framework pytorch.

Eventually, we are interested in the minimizer (ω̂, θ̂) and in the OT plan P̂ hidden in the
definition of Sγ,c(µ

ω
θ(X), νY ). Once the OT plan is derived, we rely on a matching procedure

to find the relevant pairs. Finally, a further biological analysis is conducted to identify the
more reliable pairs.

ABOUT THE ANTICIPATION OF THE DECLARATION OF NATURAL DISASTER FOR A DROUGHT EVENT.
Recall that {(xm, ym) : m ∈ JMK} ⊂ X × {0, 1} and {(x′n, y′n) : n ∈ JNK} ⊂ X × {0, 1}
are two collections of couples for which it is desired to predict y′n based on x′n, for every
n ∈ JNK, using past observations (x1, y1), …, (xM , yM ). To do so, we propose to solve the
following optimization problem:

arg min
θ∈RN

{Sγ(z, z′(θ)) + gτ (θ)} (2.2)

where

• for all θ ∈ RN ,

z := ((x1, y1), . . . , (xM , yM )) , z′(θ) := ((x′1, θ1), . . . , (x
′
N , θN )) ;

• the cost function c : (X × R)× (X × R)→ R+ is given by

c ((x, y), (x′, θ)) := dis(x, x′)2 + (y − θ)2

for a distance or dissimilarity dis on X ;

• gτ (τ > 0) is a convex function given by either gτ (θ) := τ∥θ∥1 + I{θ ∈ [0, 1]N}, with
∥θ∥1 :=

∑
n∈JNK |θn|, or gτ (θ) := I{∥θ∥1 ≤ τ}+ I{θ ∈ [0, 1]N}, where I{A} equals 0 if

A is true and +∞ otherwise;

• Sγ(z, z′(θ)) is the Sinkhorn loss between z and z′(θ) corresponding to the above cost
function c and the regularization parameter γ > 0.
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Solving (2.2) is not straightforward, in part because the criterion to minimize is the sum
of the non-convex differentiable function f : θ 7→ Sγ(z, z′(θ)) and of the convex non-
differentiable function gτ . Luckily, we can rely on the so-called iPiano algorithm (Ochs
et al., 2015) which was developed precisely to deal with such optimization problems.

The iPiano algorithm starts from an initial θ−1 = θ0 ∈]0, 1[N and the update scheme
informally writes as (below, α, β are positive constants)

θk+1 = Proxαgτ

(
θk − α∇f(θk) + β(θk − θk−1)

)
, (2.3)

where the proximal map Proxαgτ is defined by

Proxαgτ (t) := arg min
θ∈RN

{
1
2∥θ − t∥

2
2 + αgτ (θ)

}
. (2.4)

On the one hand, if gτ (θ) = τ∥θ∥1 + I{θ ∈ [0, 1]N} then (2.4) is simply given by

(Proxαgτ (t))n = min{(|tn| − ατ)+ , 1}.

In particular, if t ∈ [0, 1]N then (Proxαgτ (t))n = (tn − ατ)+ for every n ∈ JNK. On the
other hand, if gτ (θ) = I{∥θ∥1 ≤ τ}+ I{θ ∈ [0, 1]N} then the proximal map is the Euclidean
projection onto the ℓ1-ball centered at 0 and with radius τ .

The convergence of the iPiano algorithm is established, using the notion of o-minimal
structures.

Our code is written in python and uses the machine learning framework pytorch.
Once again we adapt the Sinkhorn algorithm implemented by Aude Genevay and avail-
able here. Moreover, we rely on an efficient algorithm available to implement the
aforementioned projection on the ℓ1-ball (Duchi et al., 2008). A mini-batch procedure
allows to cope with situations where M and N are large.

Furthermore, we notably rely on hyperband (Li et al., 2018), a bandit-based approach to
hyperparameter optimization, to define the pivotal cost function, and on a simple grid search
to then fine-tune the other hyperparameters. We compare the results obtained by aggregat-
ing the predictions acquired from classification algorithms with those achieved through the
OT-procedure. Moreover, we introduce the hybrid procedure which synergistically combines
and utilizes the two types of predictions.

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ABOUT HUNGTINTON'S DISEASE. We apply our matching algorithm to discover patterns hid-
den in RNA-seq data obtained in the striatum of HD model mice to find the potential
matching. In an effort to guarantee biological relevance to the matchings, we only retain
those showing evidence for binding sites as indicated in the databases TargetScan, Micro-
Cosm and miRDB. Specifically, a pair (x, y) is retained if and only if the mRNA whose
profile is x and the miRNA whose profile is y are both among the 27,355 mRNAs and 1,478
miRNAs appearing in TargetScan, MicroCosm, and miRDB databases.

The 1,247 matchings retained out of 7,521 output by the matching algorithm are all
presented on this page of the companion website.

We assess and compare the biological significance of the mRNAs retained by the WGCNA,
MiRAMINT and our matching algorithms.
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The enrichment analysis reveals that the mRNA-miRNA matchings output by our
matching algorithm are primarily annotated for extracellular matrix organization (which
relates to cell identity)a and secondarily annotated for mitigation of host antiviral de-
fense responseb, and for conventional motile ciliumc.

aGO:0030198, a process that is carried out at the cellular level which results in the assembly,
arrangement of constituent parts, or disassembly of an extracellular matrix.

bGO:0050690, evasion by virus of host immune response.
cGO:0097729, a motile cilium where the axoneme has a ring of 9 outer microtubules doublets plus

2 central micro tubules.

On the contrary, the matchings output by the MiRAMINT algorithm are primarily an-
notated for regulation of defense response to virus by host∗, which relates to stress response
and innate immunity. Furthermore, the matchings output by the WGCNA algorithm are
primarily annotated for axonogenesis†, which relates to cytoskeleton dynamics and cell mor-
phology.

ABOUT THE ANTICIPATION OF THE DECLARATION OF NATURAL DISASTER FOR A DROUGHT EVENT.

We apply the super learner (a machine learning algorithm), our procedure based on OT
(say the OT-procedure) and a hybrid procedure that leverages both previous approaches
to predict the probabilities of submitting a request relative to year 2021 for every week
u and all cities which did not submit a request yet by week u. The hybrid predictions
seem to strike a fine balance between the predictions output by the super learner and
the OT-procedure.

When evaluating the three approaches using mean squared error as the criterion, the
hybrid procedure outperforms the OT-procedure which, in turn, performs better than
the super learner. Moreover, the hybrid procedure outperforms the algorithm currently
in use at CCR.

2.6 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This thesis covers the author’s work as part of the Ph.D. requirements. The layout of the
thesis is intended to facilitate independent reading of chapters by minimizing dependencies
between them.

Chapter 3 presents a modicum of OT theory. While this chapter contains crucial notions
that will be referred to throughout the thesis, a reader familiar with basic concepts of OT
theory can safely skip it.

Chapter 4 addresses the problem of learning a pattern of correspondence between two
data sets in situation where it is desirable to match elements that exhibit a relationship
belonging to a known parametric model. Our ultimate objective is to shed light on the
interaction between mRNAs and miRNAs based on data collected in the striatum (a brain
region) of HD model mice. The main part concerns the optimization program at the core
of the study and several algorithms to solve it. We also present and comment upon the real
data application.

∗GO:0050691, any host process that modulates the frequency, rate or extent of the antiviral response of
a host cell or organism.

†GO:0007409, de novo generation of a long process of a neuron, including the terminal branched region.
Refers to the morphogenesis or creation of shape or form of the developing axon, which carries efferent
(outgoing) action potential from the cell body towards target cells.

19



Chapter 5 deals with the actuarial problem consisting in predicting which cities will
submit a request for the government declaration of natural disaster for a drought event in
France. We present there the so called OT-procedure that we developed to make sparse
predictions. We also discuss how to solve the nonconvex optimization task that sits at its
core using the algorithm iPiano (Ochs et al., 2015), from both theoretical and computational
perspectives. Additionally, we developed a hybrid procedure that synergistically combines
and utilizes both types of predictions, derived from classification algorithms and the OT-
procedure. We describes the full-fledged application to the challenge of forecasting which
cities will submit a request for the government declaration of natural disaster for a drought
event. In the last part, we gather the proofs of the convergence of of the iPiano algorithm
using a theorem proven in (Ochs et al., 2015). The Kurdyka-Lojasiewicz property (Attouch
et al., 2010) and notion of o-minimal structures (Wilkie, 1996) play a central role.

Chapter 6 brings the thesis to a close. It discusses the implications of the contributions of
the results of the preceding chapters under a unified view, elaborates on connections between
them, and proposes various avenues of future work.
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3
Elements of optimal transport

This chapter is dedicated to a concise but self-contained introduction to optimal transport
(OT). It largely builds upon the monograph (Peyré and Cuturi, 2019).

We describe the basics of OT by introducing the related assignment and Monge problems
along with their generalization, the Kantorovich problem. After that, we consider regularized
OT and discuss its advantage in practice. Theoretical and numerical results for regularized
OT are presented. We finally describe a family of divergences, the so-called Sinkhorn di-
vergences, interpolating between regularized OT and Maximum Mean Discrepancy (MMD)
losses.

3.1 The assignment and Monge problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OPTIMAL ASSIGNMENT PROBLEM. Fix two integers M,N ≥ 1 and denote two datasets by
x := {x1, . . . , xM} ⊂ X and y := {y1, . . . , yN} ⊂ Y where X ,Y are two metric spaces. LetJMK := {1, . . . ,M} be the set of all positive integers up to M , and consider a cost matrix
C(x,y) ∈ RM×N

+ where (C(x,y))m,n represents the cost of moving a unit of mass from xm
to yn. Assuming M = N , the optimal assignment problem consists of finding a bijective
function σ : JMK→ JMK such that the total cost

∑
m∈JMK(C(x,y))m,σ(m) is minimized (see

Figure 3.1). A naive solution is to evaluate the total cost of M ! permutations of M elements.
However, M ! is huge even for small M so this may be very inefficient. Although we can
use either the techniques of Linear Programming or the transportation method to solve the
assignment problem, the Hungarian method developed by Kuhn (1955) is much faster and
efficient with complexity O(M3) in the worst case.

MONGE PROBLEM. A generalization of optimal assignment problem, known as the Monge
problem, was introduced by the French mathematician Monge (1781) as follows: a worker
must find the “best” way to transport a certain quantity of soil from the ground to places
where it should be used in a construction. Assume that the source and target places are
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Figure 3.1 – An assignment of x1, x2, x3 to y1, y2, y3 with the cost matrix C =
(

1 3 2
2 7 8
4 7 9

)
and the

permutation σ : 1 → 3, 2 → 1, 3 → 2 represented by the solid lines.

known and the transportation cost to move a unit of mass between two points is known as
well. The goal is to determine the destination to which a source point should be transported
so that the total cost is minimal. This problem can be stated equivalently as follows.
Denote Ωd := {a ∈ (R+)

d|
∑

i∈JdK ai = 1} the (d − 1)−dimensional simplex. For any
(a, b) ∈ ΩM × ΩN , let α :=

∑
m∈JMK amδxm , β :=

∑
n∈JNK bnδyn be two weighted empirical

measure attached to x and y. Given a cost function c : X×Y → R+ define the transportation
cost to move a unit of mass from xm to yn, the Monge problem consists in solving

min
T∈T

∑
m∈JMK c(xm, T (xm)), (3.1)

where T := {T : x → y|bn =
∑

m:T (xm)=yn
am}, the so-called feasible set, is the set of

all mappings that associates each point xm to a single point yn and such that the mass
conservation constraints are met. Note that the mapping T between two finite sets can be
represented in a straightforward way by an assignment σ : JMK → JNK where σ(m) = n if
and only if T (xm) = yn and the constraints are equivalent to

∑
m∈σ−1(n) am = bn. When

M = N and the two measures are uniform, i.e. α := 1
M

∑
m∈JMK δxm

, β := 1
M

∑
n∈JMK δyn

,
then the conservation constraints induce that T is a bijection, such that T (xm) = yσ(n) and
the Monge problem corresponds to the optimal assignment problem with the cost matrix
(C(x,y))m,n = c(xm, yn). Note that the set T may be empty if the two measures α and β
are incompatible, for example if M < N or

∑
m∈JMK am ̸= ∑

n∈JNK bn so that the Monge
problem may not have a solution. In case a solution exists, it is very difficult and costly to
solve this problem.

3.2 The Kantorovich relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We have shown that the assignment problem is a special case of the Monge problem when
the two measures are attached to two sets of the same size and are uniform. Also, the Monge
problem allows to consider two arbitrary measures and to assign several source points to a
target point. However, both problems are hard to solve in practice.
Much later after its introduction, the Monge problem was rediscovered by a Russian math-
ematician, Loenid Vitaliyevich Kantorovich, motivated by an economic problem (see Kan-
torovich, 1942). He proposed an ingenious idea that allows to split the mass of each source
point and move them to several target points. Therefore, Kantorovich formulation consists
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in solving, in place of a map T , a probabilistic matrix P where Pmn describes the amount of
mass moved from xm to yn. This coupling matrix satisfies the mass conservation constraints,
i.e., the sums of rows and columns should be equal to a and b, respectively. Formally, the
set of admissible couplings is defined by

Π(a, b) := {P ∈ (R+)
M×N |P1N = a, P⊤1M = b}.

In fact, Π(a, b) can be expressed as the set of the joint probability matrix over (x,y) with
marginal distributions w and w′, respectively. Obviously, this set contains a × b so it is
nonempty. Another benefit is the symmetric property in the sense that P is an element of
Π(a, b) if and only if P⊤ is an element of Π(b, a) as well. Given a cost matrix C(x,y) ∈
(R+)

M×N , where (C(x,y))mn = c(xm, yn), Kantorovich’s formulation consists in solving

OTc(α, β) := min
P∈Π(a,b)

⟨C(x,y), P ⟩F , (3.2)

where ⟨C(x,y), P ⟩F :=
∑

(m,n)∈JMK×JNK (C(x,y))mn Pmn is the P -specific expected cost of
transport from x to y. In many cases, the notation OTc(α, β) is useful to indicate explicitly
the dependence on the cost function c to define the cost matrix C(x,y).

We generalize the definition (3.2) of OTc to the case of arbitrary measures by first intro-
ducing some useful notations of functions and probability measures. Let P(X ) be the set of
probability measures over X . If f : X → Y is a continuous function, we define its associated
push-forward operator f♯ : P(X ) → P(Y), i.e., the push-forward measure β = f♯(α) of
α ∈ P(X ) that satisfies∫

Y
h(y)dβ(y) =

∫
X
h(f(x))dα(x), ∀h ∈ C(Y),

where C(Y) is the space of continuous functions over Y. In the general case, we consider,
in place of coupling matrices, joint distributions over the product space X × Y that must
satisfy the mass conservation constraints. Therefore, the set of admissible couplings can be
defined as

Π(α, β) := {P ∈ P(X ,Y)|πX♯(P ) = α, πY ♯(P ) = β},

where πX ♯ and πY♯ are the push-forward operators of the projections πX (x, y) = x and
πY(x, y) = y, respectively. The Kantorovich problem now reads

OTc(α, β) := min
P∈Π(α,β)

∫
X×Y

c(x, y)dP (x, y). (3.3)

This infinite-dimensional linear optimization over a space of measures have a solution under
mild assumptions, for example that (X ,Y) are compact spaces and the cost function c is
continuous. Furthermore, the OT loss can be rewritten as the expectation of c(X,Y )

OTc(α, β) = min
(X,Y )

{EX,Y (c(X,Y )) : X ∼ α, Y ∼ β}, (3.4)

where (X,Y ) is a couple of random variables with the joint law P ∈ Π(α, β) and fixed
marginals α and β, respectively.

OPTIMAL TRANSPORT LOSS AS THE DISTANCE. One advantage of OT theory is that OT loss
can be seen as a distance between probability measures if the cost function satisfies certain
suitable properties. Specifically, when X = Y is equipped with a metric d and c = dp with
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p ≥ 1, we define the p-Wasserstein distance Wp between two measures α, β ∈ P(X ) by
Wp(α, β) := (OTdp(α, β))

1/p
. The distance W1 is also called the Kantorovich-Rubinstein

distance in statistics or the Earth Mover’s Distance in computer vision. To prove that the p-
Wasserstein distance is a metric on a space of probability measures, we rely on the following
classical result.
Lemma 3.1 (Gluing lemma (Berkes and Philipp, 1977) ). Let (Xi, αi), i = 1, 2, 3, be Polish
probability spaces. If (X1, X2) is a coupling of (α1, α2) and (Y2, Y3) is a coupling of (α2, α3),
then one can construct a triple of random variables (Z1, Z2, Z3) such that (Z1, Z2) has the
same law as (X1, X2) and (Z2, Z3) has the same law as (Y2, Y3).

This lemma allows us to “glue together” two couplings having a common marginal: if
P1,2 stands for the law of (X1, X2) on X1 × X2 and P2,3 stands for the law of (X2, X3) on
X2×X3 then one can “glue” P1,2 and P2,3 along their common marginal to obtain the joint
law P1,2,3. Using this lemma, we will prove the triangle inequality of Wp.
Proposition 3.1 (adapted from Theorem 7.3 in (Villani and Society, 2003)). The quantity
Wp is a distance over P(X ).
Proof. Of course Wp is symmetric by symmetry of dp. It it clear that W(α, α) = 0 and
W(α, β) ≥ 0,∀α, β ∈ P(X ). On the other hand, since d is a metric, it must satisfy d(x, y) = 0
iff x = y. Therefore, if Wp(α, β) = 0 it can only be that there exists a transportation plan
entirely concentrated on the diagonal (y = x) in X × X , so that β = id♯α = α.

All that remains to be proved is the triangle inequality. Let α1, α2, α3 ∈ P(X ) and let
(X1, X2) be an optimal coupling of α1 and α2 and analogously for (Y2, Y3) with respect
to α2 and α3. By the Gluing Lemma, there exists random variables (Z1, Z2, Z3) such that
(Z1, Z2)

d
= (X1, X2) and (Z2, Z3)

d
= (Y2, Y3). Clearly, (Z1, Z3) is a coupling of α1 and α3.

Moreover, using in turn the optimality of Wp, the triangle inequality of distance d then
Minkowski’s inequality, we obtain

Wp(α1, α3) ≤ (E[d(Z1, Z3)
p])1/p

≤ (E[(d(Z1, Z2) + d(Z2, Z3))
p
])1/p

≤ (E[d(Z1, Z2)
p])1/p + (E[d(Z2, Z3)

p])1/p

=Wp(α1, α2) +Wp(α2, α3).

So Wp satisfies the triangle inequality. This concludes the proof.

The p-Wasserstein distance is an effective tool to compare measures because of its ability
to capture their underlying geometry by relying on the cost function that encodes the metric
of the space X . Besides, the coupling matrix P provides a mapping from one measure to
the other which can be of interest in domain adaptation (see Courty et al., 2017). However,
solving the Kantorovich problem is not an easy task. In the discrete case, the Kantorovich
problem can be solved either by using Orlin’s program or by interior point methods both
of which run in O(M3 ln(M)) operations (see Pele and Werman, 2009). Furthermore, OT
suffers from the curse of dimensionality. These limitations have led to the neglect of OT in
machine learning applications for a long time.

3.3 Entropic regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We introduce a family of numerical schemes to reduce the high computational complexity of
Kantorovich’s formalization of optimal transport. The idea (see Cuturi, 2013a) is to add an
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entropy regularization term in Equation (3.2). We focus on the case of discrete measures.
The discrete entropy of a coupling matrix is defined by

E(P ) := −
∑

(m,n)∈JMK×JNKPmn(logPmn − 1),

with the convention E(P ) = −∞ if one of the elements Pmn is 0 or negative. By penalizing
the entropy of the original problem, we obtain a regularized version of problem (3.2)

OTγ,c(α, β) = min
P∈Π(a,b)

{⟨C(x,y), P ⟩F − γE(P )} . (3.5)

Since P 7→ E(P ) is a 1-strongly concave function and P 7→ ⟨C(x,y), P ⟩F is a linear function
on domain Π(a, b), the function P 7→ ⟨C(x,y), P ⟩F−γE(P ) is γ-strongly convex. Therefore,
Problem (3.5) has a unique optimal solution. Furthermore, the following proposition proves
the convergence of the solution of that regularized optimal transport.

Proposition 3.2 (adapted from Proposition 4.1 in (Peyré and Cuturi, 2019)). Let Pγ be
the unique solution of (3.5) for γ > 0. Then Pγ converges to the solution with maximal
entropy of (3.2) as γ tends to zero, namely

Pγ
γ→0−−−→ arg min

P
{−E(P ) : P ∈ Π(a, b), ⟨C(x,y), P ⟩F = OTc(a, b)}. (3.6)

So that, in particular
OTγ,c(a, b)

γ→0−−−→ OTc(a, b). (3.7)
Moreover, Pγ converges to the coupling with maximal entropy between two marginals a and
b as γ tends to infinity, namely

Pγ
γ→∞−−−−→ a⊗ b = ab⊤ = (ambn)m,n. (3.8)

Proof. Let (γℓ)ℓ≥0 be a strictly positive sequence converging to zero. We denote Pℓ the
solution of (3.5) for γ = γℓ. The set Π(a, b) is compact because it is closed and bounded.
So there exists a subsequence (Pℓk) and P ⋆ ∈ Π(a, b) such that Pℓk converges to P ⋆. Let P̂
be a solution of (3.2). By the definitions of P̂ and Pℓk , we get

0 ≤ ⟨C,Pℓk⟩ − ⟨C, P̂ ⟩ ≤ γℓk
(
E(Pℓk)− E(P̂ )

)
. (3.9)

Since E is continuous, taking the limit ℓk → +∞ in this expression show that ⟨C,P ⋆⟩ =
⟨C, P̂ ⟩. Therefore, P ⋆ is also a solution of (3.2). Moreover, dividing by γℓk in (3.9) and
taking the limit, we obtain E(P̂ ) ≤ E(P ⋆), which means that P ⋆ is a solution of (3.6).
Because of the strict convexity of −E, the problem

min
P
{−E(P ) : P ∈ Π(a, b), ⟨C(x,y), P ⟩F = OTc(a, b)}

has a unique solution. This shows (3.6) and (3.7).
Similarly, let (γℓ)ℓ≥0 be a strictly positive sequence converging to infinity. We denote Pℓ

the solution of (3.6) for γ = γℓ. Then there exists a subsequence (Pℓk) and P∞ ∈ Π(a, b)
such that Pℓk → P∞. It is straightforward to show that the problem

min
P∈Π(a,b)

−E(P )
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Figure 3.2 – Effect of the entropic regularization parameter γ on the optimal coupling P between two 1D
probability distributions. As γ increases the coupling tends to blur and converges to the marginals’ product

coupling.

has the unique solution P̄ = a⊗ b. By the definitions of P̄ and Pℓk , we get

0 ≤ E(P̄ )− E(Pℓk) ≤
1

γℓk

(
⟨C, P̄ ⟩ − ⟨C,Pℓk⟩

)
.

Taking the limit k → +∞ in this expression shows that E(P̄ ) = E(P∞), which means that
P∞ = a⊗ b. This completes the proof.

As stated in formulas (3.6) and (3.8), the convergence of optimal transport matrix depends
on the regularization parameter, which is illustrated in Figures 3.2. When γ is small, the
OT matrix becomes more sparse, in the sense of having few entries larger than a threshold
and many zero entries. In contrast, when γ is very large, the OT matrix becomes blurry.

Using the Lagrangian duality, we show that the solution of (3.5) has a specific form,
which can be parameterized using only N +M variables.

Proposition 3.3 (adapted from Proposition 4.3 in (Peyré and Cuturi, 2019)). The solution
to (3.5) is unique and has the form

P ⋆ = diag(u)K diag(v) (3.10)

where K = e−
C
γ is the Gibbs kernel associated to the cost matrix C and u ∈ (R∗

+)
M , v ∈

(R∗
+)

N are two (unknown) scaling variables.

Proof. The Lagrangian with respect to (3.5) is

L(P, f,g) := ⟨P,C⟩ − γE(P )− ⟨f, P1N − a⟩ − ⟨g, P⊤1M − b⟩,

where f ∈ RM
+ and g ∈ RN

+ . Now, let us calculate the gradient

∂L(P, f,g)
∂Pm,n

= Cm,n + γ log(Pm,n)− (fm + gn),

and set it equal to 0, which implies that Pm,n = efm/γe−Cm,n/γegn/γ . Therefore, we obtain
the optimal solution as (3.10) by using the notation u = (efm/γ)m∈JMK and v = (egn/γ)n∈JNK.

26



The factorization of the OT matrix P ⋆ allows us to easily solve that problem by finding
two nonnegative vectors (u, v). The two conservation constraints can be expressed as the
following equations

diag(u)K diag(v)1N = a and diag(v)K⊤ diag(v)1M = b.

Since diag(v)1M = v and diag(u)1N = u, we simplify those equations into an equivalent
form

u⊙ (Kv) = a and v ⊙K⊤u = b, (3.11)
where ⊙ denotes the component-wise multiplication of vectors. This problem, the so-called
classical matrix scaling problem, can be solved through an iterative method which alter-
nately normalizes u and v to satisfy the left and right-hand sides of Equation (3.11). More
specifically, initialized with any positive vector v(0) = 1N , we implement two updates in
each iteration of the procedure known as the Sinkhorn’s algorithm

u(ℓ+1) :=
a

Kv(ℓ)
and v(ℓ+1) :=

b

K⊤u(ℓ+1)
(3.12)

where the division operator between two vectors is to be understood element-wise. Now
we present an elementary proof of linear convergence of the iterations by using the Hilbert
projective metric on (R∗

+)
d.

Definition 3.1. The Hilbert projective metric on (R∗
+)

d is defined by

∀x, x′ ∈ (R∗
+)

d, dH(x, x′) := log max
{

xix
′
j

x′
ixj

: i, j ∈ JdK} .
We will use the following properties (see Birkhoff, 1957):

∀x, x′ ∈ (R∗
+)

d, dH(x, x′) = ∥ log(x)− log(x′)∥var; (3.13)
∀x, x′ ∈ (R∗

+)
d, dH(x, x′) = dH(x/x′,1d) = dH(1d /x

′,1d /x); (3.14)
∀K ∈ (R∗

+)
d×d′

,∀x, x′ ∈ (R∗
+)

d′
, dH(Kx,Kx′) ≤ λ(K)dH(x, x′), (3.15)

where ∥x∥var := max {xi : i ∈ JdK}−min {xi : i ∈ JdK} is the variation seminorm and λ(K) :=√
η(K)−1√
η(K)+1

< 1 with η(K) := max
{

Ki,kKj,ℓ

Kj,kKi,ℓ
: i, j ∈ JdK, k, ℓ ∈ Jd′K}. We have the following

convergence theorem.

Theorem 3.1 (adapted from Theorem 4.2 in (Peyré and Cuturi, 2019)). We have (u(ℓ), v(ℓ))→
(u⋆, v⋆) and

dH(u(ℓ), u⋆) = O
(
λ(K)2ℓ

)
, dH(v(ℓ), v⋆) = O

(
λ(K)2ℓ

)
, (3.16)

where u⋆, v⋆ are the optimal solutions. Furthermore,

dH(u(ℓ), u⋆) ≤
dH
(
P (ℓ)1M , a

)
1− λ(K)2

, (3.17)

dH(v(ℓ), v⋆) ≤
dH
(
(P (ℓ))⊤1N , b

)
1− λ(K)2

, (3.18)

where P (ℓ) := diag(u(ℓ))K diag(v(ℓ)). Last, we have

|| log(P (ℓ))− log(P ⋆)||max ≤ dH(u(ℓ), u⋆) + dH(v(ℓ), v⋆), (3.19)

where P ⋆ is the unique solution of (3.5) and ||P ||max := max {Pm,n : m ∈ JMK, n ∈ JNK} .
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Proof. Using (3.14) and (3.15), we get

dH(u(ℓ+1), u⋆) = dH

( a

Kv(ℓ)
,
a

Kv⋆

)
= dH(Kv(ℓ),Kv⋆) ≤ λ(K)dH(v(ℓ), v⋆). (3.20)

Using the fact that λ(K⊤) = λ(K), we get in the same manner

dH(v(ℓ), v⋆) = dH

(
b

K⊤u(ℓ)
,

b

K⊤u⋆

)
= dH(K⊤u(ℓ),K⊤u⋆)

≤ λ(K⊤)dH(u(ℓ), u⋆) = λ(K)dH(u(ℓ), u⋆). (3.21)

The inequalities (3.20) and (3.21) imply that

dH(u(ℓ+1), u⋆) ≤ (λ(K))2dH(u(ℓ), u⋆).

That is equivalent to the left-hand side of equation (3.16). We obtain the right-hand side
of equation (3.16) in the same manner. Now, by invoking the triangle inequality and both
equations (3.14) and (3.15), we get

dH(u(ℓ), u⋆) ≤ dH(u(ℓ+1), u(ℓ)) + dH(u(ℓ+1), u⋆)

≤ dH
( a

Kv(ℓ)
, u(ℓ)

)
+ λ(K)2dH(u(ℓ), u⋆)

= dH

(
a, uℓ ⊙ (Kv(ℓ))

)
+ λ(K)2dH(u(ℓ), u⋆).

The above inequality and the fact that uℓ⊙(Kv(ℓ)) = P (ℓ)1M imply (3.17). Equation (3.18)
can be proved in an analogous way. (3.19) follows from (Franklin and Lorenz, 1989,
Lemma 3).

The bound (3.17) and (3.18) suggest that we can implement the stopping criteria based on
the marginal constraint violation, for instance ||P (ℓ)1M−a||1 and ||P (ℓ)⊤1N−b||1, to monitor
the convergence. Furthermore, formula (3.16) states that the variable (u(ℓ), v(ℓ)) converges
linearly for the Hilbert metric. By (3.13), the dual variable (f(ℓ),g(ℓ)) = (γ ln(u(ℓ)), γ ln(v(ℓ)))
converges linearly for the variation seminorm ||·||var. Therefore, the convergence of Sinkhorn’s
algorithm deteriorates as γ tends to zero.

In practice, the Sinkhorn’s algorithm will fail for small values of γ because of the division
by zero in (3.12). In fact, the elements of the kernel K = e−C/γ vanish rapidly and become
null in memory by overflow error. To address this problem, we will use a log-sum-exp
stabilization trick (see Schmitzer, 2019) which allows to numerically run the algorithm at
small regularizations and reduces the number of required iterations.

3.4 Sinkhorn loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Due to the addition of entropy term, OTγ(α, α) is no longer zero and OTγ suffers from
biased sample gradients (see Bellemare et al., 2017). Following (Genevay et al., 2018), the
problem is solved by considering instead the Sinkhorn divergence

Sγ,c (α, β) := 2OTγ,c (α, β)−OTγ,c (α, α)−OTγ,c (β, β) .
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The Sinkhorn divergence has many appealing properties that make it a useful tool in machine
learning. It is positive, symmetric, convex and metrizes convergence of measures (see Feydy
et al., 2019b). Furthermore, Sinkhorn divergences, based on regularized OT, interpolate
between OT and MMD. This allows to leverage the geometry of OT on the one hand and
the properties of MMD (favorable high-dimensional sample complexity and sensitivity to
differences in both location and shape of distributions that makes MMD a versatile tool
for detecting various types of distributional discrepancies) one the other hand, which comes
with unbiased gradient estimates (see Genevay et al., 2018).
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4
Optimal transport-basedmachine learning toma-
tch specific patterns: application to the detec-
tion ofmolecular regulation patterns in omics da-
ta

In this chapter, we present several algorithms designed to learn a pattern of correspondence
between two data sets in situations where it is desirable to match elements that exhibit
a relationship belonging to a known parametric model. In the motivating case study, the
challenge is to better understand micro-RNA (miRNA) regulation in the striatum of Hunt-
ington’s disease (HD) model mice. The two data sets contain miRNA and messenger-RNA
(mRNA) data, respectively, each data point consisting in a multi-dimensional profile. The
strong biological hypothesis is that if a miRNA induces the degradation of a target mRNA
or blocks its translation into proteins, or both, then the profile of the former, say y, should
be similar to minus the profile of the latter, say −x. We consider a loosened hypothesis
stating that y is then similar to t(x) where t is an affine transformation in a parametric class
that includes minus the identity and translates expert knowledge about the experiment that
yielded the data.

The algorithms unfold in two stages. During the first stage, an optimal transport plan P
and an optimal affine transformation are learned, using the Sinkhorn-Knopp algorithm and
a mini-batch gradient descent. During the second stage, P is exploited to derive either
several co-clusters or several sets of matched elements.

We share codes that implement our algorithms. A simulation study illustrates how they
work and perform. A brief summary of the real data application in the motivating case-study
further illustrates the applicability and interest of the algorithms.

This chapter is based on (Nguyen et al., 2023), joint work with W. Harchaoui, L. Mégret,
C. Mendoza, O. Bouaziz, C. Neri, A. Chambaz. The project is funded by Université Paris
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Cité thanks to a Ph.D. fellowship granted by Domaine d’Intérêt Majeur Math Innov (Région
Île-de-France and Fondation Sciences Mathématiques de Paris).

My main contribution has consisted in developing the methodology, formally and com-
putationally, and performing the data analysis based on insights from Lucile Mégret and
Chistian Neri on how mutant huntingtin may significantly influence expression patterns
across CAG repeat alleles and age points in the brain of HD mice. The corresponding
article has been submitted to the international Journal of the Royal Statistical Society:
Series C (JRSS-C). A minor revision has been requested.

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The analysis of numerous omics data is a challenging task in biological research (Benayoun
et al., 2019) and disease research (Langfelder et al., 2016; Maniatis et al., 2019). In disease
research, omics data are increasingly available for the analysis of molecular pathology. This
is notably illustrated by research on Huntington’s Disease (HD): messenger-RNA (mRNA),
micro-RNA (miRNA), protein data collectively quantifying several layers of molecular reg-
ulation in the brain of HD model knock-in mice (Langfelder et al., 2016, 2018) now compose
one of the largest data set available to date to understand how neurodegenerative processes
may work on a systems level. The data set is publicly available through the database repos-
itory Gene Expression Omnibus (GEO) and the HDinHD portal.

Encouraged by the promising findings of (Mégret et al., 2020), our ultimate goal is to
shed light on the interaction between mRNAs and miRNAs based on data collected in the
striatum (a brain region) of HD model knock-in mice (Langfelder et al., 2016, 2018). Each
data point takes the form of multi-dimensional profile. The strong biological hypothesis
is that if a miRNA induces the degradation of a target mRNA or blocks its translation
into proteins, or both, then the profile of the former, say y, should be similar to minus
the profile of the latter, say −x. We relax the hypothesis and consider that y is similar to
θ(x) where θ is an affine transformation in a parametric class Θ that includes minus the
identity and whose definition translates expert knowledge about the experiment that yields
the data. Our study straightforwardly extends to the case that the relationship is known
to belong to any parametric model. In order to identify groups of mRNAs and miRNAs
that interact, we develop a co-clustering algorithm and a matching algorithm based on
optimal transport (Peyré and Cuturi, 2019), spectral and block co-clustering, and a matching
procedure tailored to our needs.

Spectral co-clustering (Dhillon, 2001) and block clustering (Brault et al., 2014; Govaert
and Nadif, 2010) are two ways among many others to carry out co-clustering, an unsuper-
vised learning task to cluster simultaneously the rows and columns of a matrix in order to
obtain homogeneous blocks. There are many efficient approaches to solving the problem,
often characterized as model-based or metric-based methods (Pontes et al., 2015).

In an enlightening article, Nazarov and Kreis (2021) review a variety of computational
approaches to study how miRNAs “come together to regulate the expression of a gene or
a group of genes”. They identify three different families of methods: data-driven meth-
ods based on similarities, data-driven methods based on matrix factorization, and hybrid
methods. Our algorithms belong to the first family. In view of (Nazarov and Kreis, 2021,
Section 2.5 and Fig. 2), we do not rely on the standard similarity measures (Pearson and
Spearman correlation coefficients; cosine similarity; mutual information) to define our sim-
ilarity matrix but, instead, use optimal transport to derive it. Moreover, as in canonical
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correlation analysis, we do not compare the raw mRNA and miRNA profiles x, y but, instead,
we compare a data-driven transformation θ(x) and y, where θ is an affine transformation of
x. Finally, as explained by Nazarov and Kreis (2021), our algorithms cannot discriminate
between true interactions and fake interactions originating from common hidden regulators
such as transcription factors. It is necessary to conduct a further biological analysis to
identify the relevant findings.

The rest of the article is organized as follows. Section 4.2 describes the data we use.
Section 4.3 presents a modicum of optimal transport theory. Section 4.4 introduces our
algorithms. Section 4.5 evaluates the performances of the algorithms in various simulation
settings. Section 4.6 illustrates the real data application.

4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 Presentation
The data analyzed herein cover RNA-seq data obtained in the striatum of the allelic series
of HD knock-in mice (poly Q lengths: Q20, Q80, Q92, Q111, Q140, Q175) at 2-month,
6-month and 10-month of age. After preprocessing (Mégret et al., 2020, Methods section),
the final data set consists of M = 13, 616 mRNA profiles, X := {x1, . . . , xM} ⊂ Rd, and of
N = 1, 143 miRNA profiles, Y := {y1, . . . , yN} ⊂ Rd with d = 15.

Informally, we look for couples (m,n) ∈ JMK× JNK := {1, . . . ,M}×{1, . . . , N} such that
the nth miRNA induces the degradation of the mth mRNA or blocks its translation into
proteins, or both. We are guided by the strong biological hypothesis that, if that is the case,
then the profile yn of the former is similar to minus the profile xm of the latter – then xm
and yn exhibit what we call a mirroring relationship. Of note, it is expected that a single
miRNA can target several mRNAs.

The actual mirroring relationships can be more or less acute, for instance because of
threshold effects, or of multiple miRNAs targeting the same mRNA, or of a single miRNA
targeting several mRNAs. Therefore, instead of rigidly using comparisons between −xm and
yn, our algorithms will learn from the data a relevant transformation θ ∈ Θ (in a parametric
class Θ of transformations that includes minus the identity) and use comparisons between
θ(xm) and yn.

Figure 4.1 exhibits two profiles xm and yn that showcase a mirrored similarity. The
corresponding miRNA and mRNA, Mir20b (which may inhibit cerebral ischemia-induced
inflammation in rats (Zhao et al., 2019)) and the Aryl-Hydrocarbon Receptor Repressor
(Ahrr), are believed to interact in the striatum of HD model knock-in mice (Mégret et al.,
2020).

4.2.2 A brief data analysis
So as to give a sense of the distribution of the data, we propose two kinds of visual sum-
maries. The first one uses Lloyd’s k-means algorithm (Lloyd, 1982) to build synthetic profiles
representing the real profiles x1, . . . , xM on the one hand and y1, . . . , yN on the other hand.
The second one uses kernel density estimators of the j-th component of x1, . . . , xM on the
one hand and of y1, . . . , yN on the other hand, for each 1 ≤ j ≤ d.
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Figure 4.1 – Left: profile xm of a mRNA (Ahrr). Right: profile yn of a miRNA (Mir20b). It is believed that
Mir20b targets Ahrr.

4.2.2.a Using k-means to cluster the mRNA and miRNA profiles
In Figure 4.2 we plot the synthetic mRNA profiles x̂1, . . . , x̂5 of the 5 centroids obtained
by running Lloyd’s k-means algorithm on x1, . . . , xM with k = 5. Likewise, we plot in
Figure 4.3 the synthetic miRNA profiles ŷ1, . . . , ŷ5 of the 5 centroids obtained by running
Lloyd’s k-means algorithm on y1, . . . , yN with k = 5.

The 5 mRNA centroids correspond to 5319 (x̂1), 2097 (x̂2), 4688 (x̂3), 310 (x̂4) and 1202
(x̂5) mRNA profiles. The first and third centroids (x̂1 and x̂3), which represent 73% of the
real mRNA profiles, are rather flat. The second and fourth centroids (x̂2 and x̂4), which
represent 18% of the real mRNA profiles, are decreasing in poly Q length and age, in a more
pronounced way for the latter than for the former. Finally, the fifth centroid (x̂5), which
represents the remaining 9% of real mRNA profiles, is increasing in polyQ length and age.

The 5 miRNA centroids correspond to 872 (ŷ1), 7 (ŷ2), 80 (ŷ3), 81 (ŷ4) and 103 (ŷ5)
miRNA profiles. The first centroid (ŷ1), which represents 76% of the real miRNA profiles,
is rather flat. The second and fifth centroids (ŷ2 and ŷ5), which represent 10% of the real
miRNA profiles, are increasing in poly Q length and age, in a more pronounced way for
the former than for the latter. The fourth centroid (ŷ4), which represents 7% of the real
miRNA profiles, is decreasing in poly Q length and age. Finally, the third centroid (ŷ3),
which represents 7% of the real miRNA profiles, exhibits two peaks.

In Section 4.1, we stated the following biological hypothesis: if a miRNA induces the
degradation of a target mRNA or blocks its translation into proteins, or both, then the
profile of the former should be similar to minus the profile of the latter (a particular form of
affine relationship). In view of this hypothesis, it is tempting to relate the synthetic miRNA
profiles ŷ2 and ŷ5 to the synthetic mRNA profiles x̂4 and x̂2, respectively, and the synthetic
miRNA profile ŷ4 to the synthetic mRNA profile x̂5. Our objective is to identify groups of
real mRNA and miRNA profiles that interact in this manner.

4.2.2.b Using kernel density estimators to study themarginal distributions of themRNA
and miRNA profiles

For each 1 ≤ j ≤ d, we build the kernel density estimator of the j-th component of the mRNA
profiles x1, . . . , xM , using a Gaussian kernel and the default fine-tuning of the density
function from the stats R-package (R Core Team, 2022), see Figure 4.4. We do the same
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Figure 4.2 – Profiles x̂1, . . . , x̂5 of the 5 centroids obtained by Lloyd’s k-means algorithm on the mRNA profiles
x1, . . . , xM .
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Figure 4.3 – Profiles ŷ1, . . . , ŷ5 of the 5 centroids obtained by running Lloyd’s k-means algorithm on the
miRNA profiles y1, . . . , yN .
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poly Q length Age 2 Age 6 Age 10
Q80 1 0.646 1.39
Q92 0.886 1.02 1.48
Q111 0.964 1.21 3.08
Q140 0.805 1.70 4.11
Q175 1.24 1.86 4.32

poly Q length Age 2 Age 6 Age 10
Q80 1 2.35 1.03
Q92 0.516 1.06 0.956
Q111 0.655 0.722 2.15
Q140 0.698 1.92 2.72
Q175 0.588 1.80 3.34

Table 4.1 – For each level of poly Q length (Q80, Q92, Q111, Q140, Q175) and age (2, 6, 10 months) we
computed the empirical standard deviation of mRNA (left) and miRNA (right) gene expressions, all normalized
by the empirical standard deviation at poly Q length Q80 and 2 months of age (that is, by 0.0475 for mRNA

and 0.0660 for miRNA).

for the miRNA profiles y1, . . . , yN , see Figure 4.5. Both for mRNA and miRNA the kernel
density estimates are systematically more concentrated around their means (all close to 0)
than the corresponding Gaussian densities. Moreover, the kernel density estimates obtained
from the M mRNA profiles are much smoother than those obtained from N miRNA profiles,
a feature that could be simply explained by the fact that M/N > 11.

Table 4.1 reports, for each level of poly Q length (Q80, Q92, Q111, Q140, Q175) and
age (2, 6, 10 months), the empirical standard deviation of mRNA (a) and miRNA (b) gene
expressions, all normalized by the empirical standard deviation at poly Q length Q80 and
2 months of age (that is, by 0.0475 for mRNA and 0.0660 for miRNA). A clear pattern
emerges from sub-Table 4.1 (a): except for poly Q length Q80, the poly Q length-specific
empirical standard deviation increases as age increases. Likewise, except for age 2 months,
the age-specific empirical standard deviation increases as poly Q length increases. On the
contrary, no clear pattern emerges from sub-Table 4.1 (b) but the fact that, except for poly Q
lengths Q80 and Q92, the poly Q length-specific empirical standard deviation increases as
age increases. We do not comment on the empirical means because they are all very small
compared to the corresponding empirical standard deviations.

4.3 Elements of optimal transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let Ω := {ω ∈ (R+)
M |
∑

m∈JMK ωm = 1} be the (M − 1)-dimensional simplex and ω̄ :=

M−11M , where 1M ∈ RM is the vector with all its entries equal to 1. For any ω ∈ Ω, define

Π(ω) := {P ∈ (R+)
M×N |P1N = ω, P⊤1M = N−11N}

and let µω
X :=

∑
m∈JMK ωmδxm , νY := N−1

∑
n∈JNK δyn be the ω-weighted empirical measure

attached to X and the empirical measure attached to Y . An element P of Π(ω) represents
a joint law on X × Y with marginals µω

X and νY .
The celebrated Monge-Kantorovich problem (Peyré and Cuturi, 2019, Chapter 2) con-

sists in finding a joint law over X × Y with marginals µω̄
X and νY that minimizes the

expected cost of transport with respect to some cost function c : X × Y → R+. We focus
on c given by c(x, y) := ∥x − y∥22 (the squared Euclidean norm in Rd). Specifically, de-
noting CX,Y ∈ RM×N the cost matrix given by (CX,Y )mn := c(xm, yn) for each (m,n) ∈JMK × JNK, the problem consists in solving minP∈Π(ω̄)⟨CX,Y , P ⟩F where ⟨CX,Y , P ⟩F :=∑

(m,n)∈JMK×JNK(CX,Y )mnPmn is the P -specific expected cost of transport from X to Y .
It is well known that it is very rewarding from a computational viewpoint to con-

sider a regularized version of the above problem (Peyré and Cuturi, 2019, Chapter 4).
The penalty term is proportional to the discretized entropy of P , that is, to E(P ) :=
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Figure 4.4 – In black, kernel density estimates of the densities of mRNA gene expression for each level of poly Q
length (Q80, Q92, Q111, Q140, Q175) and age (2, 6, 10 months), zooming on the interval [−0.5, 0.5] and

using a log(1 + ·)-scale on the y-axis. In red, densities of the Gaussian laws with a mean and a variance equal to
the empirical mean and variance computed in each stratum of data. Systematically, the kernel density estimates

are more concentrated around their means than the corresponding Gaussian densities.

−
∑

(m,n)∈JMK×JNK] Pmn(logPmn − 1). The regularized problem (presented here for any
ω ∈ Ω beyond the case ω = ω̄) consists, for some user-supplied γ > 0, in finding Pγ that
solves

Wγ (µ
ω
X , νY ) := min

P∈Π(ω)
{⟨CX,Y , P ⟩F − γE(P )} . (4.1)

One of the advantages of entropic regularization is that one can solve (4.1) efficiently using
the Sinkhorn-Knopp matrix scaling algorithm.

Finally, following (Genevay et al., 2018), we use Wγ to define the so called Sinkhorn loss
between µω

X (any ω ∈ Ω) and νY as

W̄γ (µ
ω
X , νY ) := 2Wγ (µ

ω
X , νY )−Wγ (µ

ω
X , µ

ω
X)−Wγ (νY , νY ) .

This loss interpolates between W0 (µ
ω
X , νY ) and the maximum mean discrepancy of µω

X

relative to νY (Genevay et al., 2018, Theorem 1). Paraphrasing the abstract of (Genevay
et al., 2018), the interpolation allows to find “a sweet spot” leveraging the geometry of
optimal transport and the favorable high-dimensional sample complexity of maximum mean
discrepancy, which comes with unbiased gradient estimates.
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Figure 4.5 – In black, kernel density estimates of the densities of miRNA gene expression for each level of
poly Q length (Q80, Q92, Q111, Q140, Q175) and age (2, 6, 10 months), zooming on the interval [−0.5, 0.5]
and using a log(1 + ·)-scale on the y-axis. In red, densities of the Gaussian laws with a mean and a variance

equal to the empirical mean and variance computed in each stratum of data. Systematically, the kernel density
estimates are more concentrated around their means than the corresponding Gaussian densities.

4.4 Optimal transport-based machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this section we introduce two co-clustering algorithms and one matching algorithm, all
based on the solution of a master optimization program. The optimization program is
presented in Section 4.4.1 and the algorithms are presented in Section 4.4.2.

4.4.1 Stage 1: the master optimization program and how to solve it

We introduce a parametric model Θ consisting of affine mappings θ : Rd → Rd of the
form x 7→ θ(x) = θ1x + θ2, where θ1 ∈ Rd×d and θ2 ∈ Rd. The formal definition of
Θ is given in Appendix 4.7. Each θ ∈ Θ is a candidate to formalize the aforementioned
mirroring relationship. The set Θ imposes constraints on the matrices θ1, in particular
that their diagonals are made of negative values. Of course, minus identity belongs to Θ.
The parametrization is identifiable, in the sense that θ = θ′ implies (θ1, θ2) = (θ′1, θ

′
2). It

is noteworthy that any identifiable, regular model Θ could be used. We focus on Θ as
defined in Appendix 4.7 because of the application that we consider in Section 4.6 (and in
Section 4.5).

By analogy with Section 4.3 we introduce, for any θ ∈ Θ, ω ∈ Ω and γ > 0, θ(X) :=
{θ(x1), . . . , θ(xM )} the image of X by θ; the ω-weighted empirical measure attached to θ(X),
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µω
θ(X) :=

∑
m∈JMK ωmδθ(xm); the cost matrix Cθ(X),Y given by (Cθ(X),Y )mn := c(θ(xm), yn)

for each (m,n) ∈ JMK× JNK; and

Wγ

(
µω
θ(X), νY

)
= min

P∈Π(ω)

{
⟨Cθ(X),Y , P ⟩F − γE(P )

}
(4.2)

where ⟨Cθ(X),Y , P ⟩F :=
∑

(m,n)∈JMK×JNK(Cθ(X),Y )mnPmn is the P -specific expected cost of
transport from θ(X) to Y .

Fix arbitrarily ω ∈ Ω. The first program that we introduce is the ω-specific program

min
θ∈Θ
W̄γ

(
µω
θ(X), νY

)
, (4.3)

where we are interested in the minimizer θ̂ that solves (4.3) and in the optimal joint matrix
P̂ ∈ Π(ω) that solves

min
P∈Π(ω)

{
⟨Cθ̂(X),Y , P ⟩F − γE(P )

}
.

In words, we look for an ω-specific optimal mirroring function θ̂ and its ω-specific optimal
transport plan P̂ .

How to choose ω? We decide to optimize with respect to ω as well. This additional
optimization is relevant because we do not expect to associate a yn to every xm eventually
at the co-clustering stage. So, our master program is

min
ω∈Ω

min
θ∈Θ
W̄γ

(
µω
θ(X), νY

)
, (4.4)

where we are interested in the minimizer (ω̂, θ̂) and in the optimal matrix P̂ ∈ Π(ω̂) that
solves

min
P∈Π(ω̂)

{
⟨Cθ̂(X),Y , P ⟩F − γE(P )

}
. (4.5)

We propose to solve (4.4) iteratively by updating ω and then θ. At round t, given ωt, we
make one step of mini-batch gradient descent to derive θt+1 from θt (here, we notably rely
on the Sinkhorn-Knopp algorithm). Given θt+1, ωt+1 is chosen proportional to the vector
in (R+)

M whose mth component equals h−1
∑

n∈JNK φ((yn − θt+1(xm))/h) where φ is the
standard normal density and h is the arithmetic mean of the c(yn, yn′) for all n ̸= n′ ∈ JNK.
Eventually, once the final round T is completed, we compute P̃ ∈ Π(ωT) that solves

min
P∈Π(ωT)

{
⟨CθT(X),Y , P ⟩F − γE(P )

}
(again, we rely on the Sinkhorn-Knopp algorithm).

The algorithm to solve (4.4) is summarized in Procedure 1. We have no guarantee that
it converges. Note, however, that using the Sinkhorn-Knopp algorithm to solve (4.5) for a
given (ω̂, θ̂) is known to converge (Peyré and Cuturi, 2019, Theorem 4.2).

In light of (Alvarez-Melis, 2019, Section 1.3, page 25), we inject problem-specific knowl-
edge onto two of the three main components of the transportation problem: the represen-
tation spaces (via the mapping θ) and the marginal constraints (via the weight ω), leaving
aside the cost function. Furthermore, we resort to mini-batch gradient descent because
the algorithmic complexity prevents the direct computation using the whole data set. A
theoretical analysis of this practice is proposed in (Fatras et al., 2020).
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We can now exploit P̃ so as to derive relevant associations between mRNAs and miRNAs.
We propose two approaches. On the one hand, the first approach outputs bona fide co-
clusters. We expect that the co-clusters can associate many mRNAs with many miRNAs,
thus making it difficult to interpret and analyze the results. On the other hand, the second
approach rather matches each mRNA with at most k miRNAs and each miRNA with at
most k′ mRNAs (k and k′ are user-supplied integers). Details follow.

4.4.2 Stage 2: co-clustering or matching

4.4.2.a Co-clustering.

To carry out the co-clustering task once P̃ has been derived, we propose to rely either on
spectral co-clustering (we will use the acronym SCC) (Dhillon, 2001), applying it once or
twice, or co-clustering based on latent block models (Govaert and Nadif, 2010). Of course,
any other co-clustering algorithm could be used as well. Specifically, we develop the following
algorithms (the acronym WTOT stands for weighted transformation optimal transport).
WTOT-SCC1. Algorithm WTOT-SCC1 applies SCC once to build bona fide co-clusters

based on P̃ . It is required to provide a number of clusters. We rely on a criterion
involving graph modularity to learn from the data a relevant number of clusters (Ailem
et al., 2016, Sections 2 and 4).
In our simulation study, we also consider algorithm WTOT-SCC1∗, an oracular version
of WTOT-SCC1 that benefits from relying on the true number of clusters. This allows
to assess how relevant is the learned number of clusters in WTOT-SCC1.

WTOT-SCC2. Algorithm WTOT-SCC2 applies SCC twice to build bona fide co-clusters
based on P̃ . It proceeds in three successive steps.

• In step 1, WTOT-SCC2 applies SCC a first time to derive an initial co-clustering.
A relevant number of co-clusters is learned as in WTOT-SCC1.

• In step 2, WTOT-SCC2 selects and removes some rows and columns correspond-
ing to mRNAs and miRNAs that are deemed irrelevant. The selection is based
on a numerical criterion computed from P̃ . In our simulation study (Section 4.5),
all rows and columns that correspond to diagonal blocks with a variance larger
than two times the overall variance of P̃ are selected and removed. In the real
data application (Section 4.6), we implement and use a different procedure.

• In step 3, WTOT-SCC2 applies SCC a second time, the relevant number of co-
clusters being learned as in WTOT-SCC1.

In our simulation study, we also consider algorithm WTOT-SCC2∗, an oracular version
of WTOT-SCC2 that is provided the true number of clusters for its third step. This
allows to assess how relevant is the sub-procedure to learn the numbers of clusters in
WTOT-SCC2.

WTOT-BC. Algorithm WTOT-BC applies the so called block clustering algorithm to
build bona fide co-clusters based on P̃ . It is required to provide the row- and column-
specific numbers of clusters. We rely on an integrated completed likelihood crite-
rion (Brault et al., 2014) to learn relevant values from the data.

The co-clusters obtained via WTOT-SCC1, WTOT-SCC2 or WTOT-BC should reveal the
interplay between the (remaining, as far as WTOT-SCC2 is concerned) mRNAs and miRNAs
in HD.
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4.4.2.b Matching.

The larger P̃mn is, the more we are encouraged to believe that the profiles xm and yn reveal a
strong relationship between the mth mRNA and the nth miRNA. This simple rule prompts
the following matching procedure applied once P̃ has been derived.

WTOT-matching. Fix two integers k, k′ ≥ 1 and let τ̃ be the quantile of order q of all
the entries of P̃ . For every m ∈ JMK and n ∈ JNK, we introduce

N 0
m :=

{
n ∈ JNK : P̃mn ∈ {P̃m(1), . . . , P̃m(k)} and P̃mn ≥ τ̃

}
,

M0
n :=

{
m ∈ JMK : P̃mn ∈ {P̃(1)n, . . . , P̃(k′)n} and P̃mn ≥ τ̃

}
where P̃m(1), . . . , P̃m(k) are the k largest values among P̃m1, . . . , P̃mN and P̃(1)n, . . . , P̃(k′)m

are the k′ largest values among P̃1n, . . . , P̃Mn. For instance, N 0
m identifies the miRNAs

that are the k more likely to have a strong relationship with the mth mRNA. However,
this does not qualify them as relevant matches yet. In order to keep only matches that
are really relevant, we also introduce, for each m ∈ JMK and n ∈ JNK,

Nm := N 0
m ∩ {n ∈ JNK : m ∈M0

n},
Mn :=M0

n ∩ {m ∈ JMK : n ∈ N 0
m}.

Algorithm WTOT-matching outputs the collections {Nm : m ∈ JMK} and {Mn : n ∈JNK}.
Now if, for instance, n ∈ Nm then yn is among the k miRNA profiles upon which P̃ puts
more mass when it “transports” xm onto Y and xm is among the k′ mRNA profiles upon
which P̃ puts more mass when it “transports” yn onto X.

Note that we expect that some Nm and Mn will be empty, depending on k and k′. The
mRNAs and miRNAs worthy of interest are those for which Nm and Mn are not empty.
The integers k and k′ should be chosen relatively small, to make their interpretation and
analysis feasible, but not too small because otherwise few matchings will be made.

In the simulation study, we use k = k′ between 2 and 200, depending on the simulation
scheme. Moreover, we choose q = 50% so that τ̃ is the median of the entries of P̃ .

4.4.3 Implementation of the method
Our code is written in python. We adapt the Sinkhorn algorithm implemented by Aude
Genevay and available here. The stochastic gradient descents relies on the machine learning
framework pytorch. We use the implementation of SCC available in the sklearn python
module. To learn a relevant number of clusters, we rely on the coclust python module.
Finally, we rely on the blockcluster R package to carry out block clustering.

Our algorithm bears a similarity to the one developed in (Laclau et al., 2017). The main
differences are (i) our use of the parametric model Θ and weights ω, (ii) the fact that we
apply SCC or block clustering to the approximation of the optimal transport matrix P̃ . Our
algorithm also bears a similarity to (Heng et al., 2020), a fast and certifiable point cloud
registration algorithm. We plan to study the similarities and differences closely.
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To assess the performances of the algorithms described in Section 4.4.1, we conduct a simu-
lation study in three parts. As we go on, the task gets more difficult. In all cases, the laws
of the synthetic observations are mixtures of Gaussian laws. Overall 12 simulation scenarios
are considered.

We think that the first two simulation schemes produce unrealistic data and, on the
contrary, that the third simulation scheme produces somewhat realistic data. The diversity
of the synthetic mRNA and miRNA profiles obtained by using Lloyd’s k-means algorithm
in order to summarize the variety of real profiles, see Section 4.2.2.a, encouraged us to rely
on mixtures in order to simulate data. We chose mixtures of Gaussian laws because of their
ubiquity and versatility.

In Section 4.5.4, the weights of the mixtures and parameters of the Gaussian laws are
chosen by us. Moreover, the two mixtures (to simulate X and Y ) share the same weights and
induce a perfect mirroring relationship (details below), thus making the co-clustering task
less difficult. In Section 4.5.5, the weights of the mixtures and parameters of the Gaussian
laws are randomly generated. Moreover, the two mixtures do not share the same weights
and do not induce a perfect mirroring relationship anymore, so that the co-clustering task
is much more difficult. Finally, in Section 4.5.6, we use plus or minus real, randomly chosen
miRNA profiles and 0d as means of the Gaussian laws to simulate X and Y , in such a way
that there is no perfect mirroring relationship. We think that the corresponding co-clustering
task is the most difficult of the three.

Section 4.5.1 briefly introduces two competing algorithms to identify matchings (Laclau
et al., 2017). Section 4.5.2 lists all the algorithms that compete in the simulation study
and Section 4.5.3 presents the measure of discrepancy between two co-clusterings and the
matching criteria that we rely on to assess how well the algorithms perform. Sections 4.5.4,
4.5.5 and 4.5.6 present in turn the data-generating mechanisms and report the results in
terms of co-clustering and matching performances.

4.5.1 Two ``Gromov-Wasserstein co-clustering'' algorithms
We compare our algorithms with two co-clustering algorithms adapted from (Laclau et al.,
2017). For self-containedness, we summarize here how these algorithms work.

The first step of both algorithms consists in computing the similarity matrices KX ∈
(R+)

M×M and KY ∈ (R+)
N×N given by

(KX)mm′ := exp
{
−∥xm − xm

′∥22
2ℓ2X

}
(m,m′ ∈ JMK),

(KY )nn′ := exp
{
−∥yn − yn

′∥22
2ℓ2Y

}
(n, n′ ∈ JNK)

where ℓX (respectively, ℓY ) is the mean of all pairwise Euclidean distances between elements
of X (respectively, of Y ). The similarity matrices KX and KY now represent X and Y
through the lense of the so called radial basis function kernel.
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For any integers a, b ≥ 1 and pair of matrices A ∈ Ra×a and B ∈ Rb×b, define

Πa,b :=
{
P ∈ (R+)

a×b|P1b = a−11a, P
⊤1a = b−11b

}
,

⟨[A,B], [P, P ]⟩F :=
∑

i,k∈JaK,j,ℓ∈JbK(Aik −Bjℓ)
2PijPkℓ (P ∈ Πa,b),

GWγ(A,B) := min
P∈Πa,b

{⟨[A,B], [P, P ]⟩F − γE(P ) (4.6)

where E(P ) := −
∑

(i,j)∈JaK×JbK Pij(logPij − 1). The quantity GWγ(A,B) is known in the
literature as an entropic Gromov-Wasserstein discrepancy between A and B. It can be
used to define an entropic Gromov-Wasserstein barycenter of A and B and its barycen-
ter transport matrices. Specifically, setting s = ⌊ 12 (a + b)⌋ (one choice among many),
(Γ̂, P̂A, P̂B) ∈ (R+)

s×s ×Πs,a ×Πs,b that solves

min
Γ,PA,PB

1

2

{(
⟨[Γ, A], [PA, PA]⟩F − γE(PA)

)
+
(
⟨[Γ, B], [PB , PB ]⟩F − γE(PB)

)}
(4.7)

(where (Γ, PA, PB) ranges over (R+)
s×s × Πs,a × Πs,b) can be interpreted as a barycenter

between A and B (Γ̂) and the optimal transport matrices between Γ̂ and A (P̂A) and between
Γ̂ and B (P̂B).

The second step of the algorithms consists either in solving numerically (4.6) with (A,B) =
(KX ,KY ), yielding Q̃, or in solving numerically (4.7) with (A,B) = (KX ,KY ), yielding in
particular the transport matrices Q̃X and Q̃Y . We call CCOT-GWD and CCOT-GWB
the corresponding algorithms. In both cases, the Sinkhorn-Knopp algorithm is used and
provides solutions that decompose as

Q̃ = diag(ρ)ξ diag(ρ′),
Q̃X = diag(ρX)ξX diag(ρ′X),

Q̃Y = diag(ρY )ξY diag(ρ′Y ),

for some ρ, ρX ∈ RM , ρ′, ρ′Y ∈ RN , ρX , ρY ∈ Rs and ξ ∈ RM×N , ξX ∈ Rs×M , ξY ∈
Rs×N (Peyré et al., 2016).

The third and last step builds upon either (ρ, ρ′) or (ρ′X , ρ′Y ) to derive partitions of X and
Y , by detecting “jumps” along the vectors. The two partitions finally yield a co-clustering.

4.5.2 Listing all competing algorithms
We run and compare algorithms WTOT-SCC1, WTOT-SCC2 (and their oracular counter-
parts WTOT-SCC1∗, WTOT-SCC2∗), WTOT-BC on the one hand (see Sections 4.4.2.a)
and CCOT-GWD and CCOT-GWB on the other hand (see Section 4.5.1). In addition, we
also run algorithm WTOT-matching (see Section 4.4.2.b).

For CCOT-GWD, we set γ = 0.1 in (4.6). For CCOT-GWB, we set γ = 0.05 in (4.7).
We tried several values and chose the ones that yielded the smallest errors.

In view of Procedure 1, we choose M̃ and Ñ equal approximately M/2 and N/2 respec-
tively, (η, γ0) = (1, 0) (no decay), T = 500, and an initial mapping θ0 drawn randomly (see
Appendix 4.7 for details).

We checked that varying M̃ and Ñ around M/2 and N/2 had little impact if any. Like-
wise, the randomly drawn initial mapping θ0 had little impact if any. Moreover, varying γ
in [ 12 × γ

∗; 2× γ∗] with γ∗ = mean{∥x− x′∥2 : x, x′ ∈ X} also had little impact if any. We
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did not rigorously check the impact of the total number of iterations T , but we observed
that numerical convergence seemed to be reached for fewer iterations than T . Finally, we
did not challenge the choice of h = mean{∥y − y′∥2 : y, y′ ∈ Y }.

4.5.3 Assessing performances
A MEASURE OF DISCREPANCY BETWEEN TWO CO-CLUSTERINGS. In order to assess the quality
of the co-clusterings that we derive, and to compare performances, we propose to rely on a
commonly used measure of discrepancy between two co-clusterings. Its definition extends
that of a measure of discrepancy between partitions that we first present.

Let z and z′ be two partitions of the set JMK into K components, taking the form of
matrices z = (zmk)m∈JMK,k∈JKK and z′ = (z′mk)m∈JMK,k∈JKK with convention zmk = 1 (re-
spectively, z′mk = 1) if m belongs to component k of z (respectively, z′) and 0 otherwise. The
corresponding confusion matrix C(z, z′) = (ckℓ)k,ℓ∈JKK is given by ckℓ :=

∑
m∈JMK zmkz

′
mℓ

(every k, ℓ ∈ JKK). Suppose that the labels of the partitions z and z′ are such that

Tr(C(z, z′)) = max
σ∈ΣK

Tr(C(z, (z′mσ(k))m∈JMK,k∈JKK)),
where ΣK is the set of permutations of the elements of JKK. Then the proportion

δ(z, z′) := 1− 1

M

∑
m∈JMK,k∈JKK zmkz

′
mk (4.8)

is a natural measure of discrepancy between z and z′. As suggested earlier, the measure can
be extended to compare pairs of partitions.

Consider now (z, w) and (z′, w′) two pairs of partitions, z and z′ partitioning JMK into K
components, w and w′ partitioning JNK into L components. We represent (z, w) and (z′, w′)
with

u = (umnkℓ)m∈JMK,n∈JNK,k∈JKK,ℓ∈JLK
and

u′ = (u′mnkℓ)m∈JMK,n∈JNK,k∈JKK,ℓ∈JLK
where umnkℓ := zmk × wnℓ and u′mnkℓ := z′mk × w′

nℓ (for every m ∈ JMK, n ∈ JNK, k ∈JKK, ℓ ∈ JLK), supposing again that the labels of the partitions z, z′ on the one hand and w,
w′ on the other hand maximize the traces of the confusion matrices C(z, z′) and C(w,w′) as
above (then two pairs of partitions define without ambiguity a co-clustering). By analogy
with (4.8), the proportion

∆((z, w), (z′, w′)) := 1− 1

KL

∑
m∈JMK,n∈JNK,k∈JKK,ℓ∈JLKumnkℓu

′
mnkℓ (4.9)

is a measure of discrepancy between (z, w) and (z′, w′). It can be shown that

∆((z, w), (z′, w′)) = δ(z, z′) + δ(w,w′)− δ(z, z′)× δ(w,w′). (4.10)

In the rest of this section we report means and standard deviations, computed across 30
independent replications of each analysis, of the above measure of discrepancy between the
derived partition/co-clustering and the true one.
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MATCHING CRITERIA. Set arbitrarily m ∈ JMK and suppose that we have derived the subset
Nm ⊂ JNK that matches xm to {yn : n ∈ Nm}. Suppose moreover that in reality xm is
matched to {yn : n ∈ N ⋆

m} for some N ⋆
m ⊂ JNK. We propose to use three real-valued criteria

to compare Nm with N ⋆
m.

Let TPm := card(Nm ∩N ⋆
m), FPm := card(Nm ∩ (N ⋆

m)c), TNm := card((Nm)c ∩ (N ⋆
m)c),

FNm := card((Nm)c ∩ N ⋆
m) be the numbers of true positives, false positives, true negatives

and false negatives, respectively. The so called m-specific
• precision: TPm/(TPm + FPm),

• sensitivity: TPm/(TPm + FNm),

• specificity: TNm/(TNm + FPm)

quantify how similar are Nm and N ⋆
m, larger values indicating better concordance.

In the rest of this section we report means and standard deviations, computed across
30 independent replications of each analysis, of the average of the m-specific precision,
sensitivity and specificity. We also report means and standard deviations, computed across
the same 30 independent replications of each analysis, of

k̃r :=

∑
m∈JMK card(Nm)

card({m ∈ JMK : Nm ̸= ∅})
,

k̃c :=

∑
n∈JNK card(Mn)

card({n ∈ JNK :Mn ̸= ∅})
the row- and column-specific averages of the cardinalities of the sets Nm and Mn that are
not empty.

4.5.4 First simulation study
SIMULATION SCHEME. For four different choices of the hyperparameters M ≥ 200, N ≥
200,K ≥ 2, d ≥ 2, µ1, . . . , µK ∈ Rd, σ ∈ R∗

+, α ∈ (R+)
K such that

∑
k∈JKK αk = 1, we

sample independently x1, . . . , xM from the mixture of Gaussian laws∑
k∈JKKαkN(µk, σ

2Idd) (4.11)

and y1, . . . , yN from ∑
k∈JKKαkN(−µk, σ

2Idd). (4.12)

One way to sample x from the mixture (4.11) consists in sampling a latent label u inJKK from the multinomial law with parameter (1;α1, . . . , αK) then in sampling x from the
Gaussian law N(µu, σ

2Idd). Similarly, sampling y from the mixture (4.12) can be carried out
by sampling a latent label v in JKK from the multinomial law with parameter (1;α1, . . . , αK)
then by sampling y from the Gaussian law N(−µv, σ

2Idd). We think of x and y as having a
mirrored relationship if u = v. In this light, the challenge that we tackle consists in finding
such relationships without having access to the latent labels.

Table 4.2 describes the four configurations that we investigate. Note that configuration
A2 is more difficult to deal with than A1 because (i) the weights in α are balanced in the
latter and unbalanced in the former, and (ii) because the variance σ2 is smaller in A1 than
in A2. Moreover, configurations A3 and A4 are more challenging than A2 because there is
K = 4 components in the Gaussian mixture under A3 and A4 and K = 3 components under
A2.

46



configuration (M,N) K µ1, . . . , µK σ2 α

A1 (200, 200) 3

4.0
0.5
1.5

 ,

1.8
4.5
1.1

 ,

1.5
1.5
5.5

 0.10 (1/3, 1/3, 1/3)

A2 (300, 300) 3

4.0
0.5
1.5

 ,

1.8
4.5
5.1

 ,

3.5
1.5
5.5

 0.15 (0.2, 0.3, 0.5)

A3 (400, 300) 4
(
4.0
0.5

)
,

(
0.5
3.5

)
,

(
7.5
7.8

)
,

(
0.5
0.5

)
0.20 (0.4, 0.2, 0.2, 0.2)

A4 (300, 300) 4
(
4.0
0.5

)
,

(
0.5
3.5

)
,

(
7.5
7.8

)
,

(
0.5
0.5

)
0.10 (0.5, 0.2, 0.1, 0.2)

Table 4.2 – Four different configurations for the first simulation scheme. Configuration A1 is less challenging
than A2 which is itself less challenging than A3 and A4.

RESULTS. Thirty times, independently, we simulated synthetic data sets X and Y under
the simulation scheme described above, then we applied the various algorithms as presented
in Section 4.5.2. We summarize the results in Tables 4.5, 4.6, and 4.7. Table 4.5 summarizes
the results of the seven algorithms listed in Section 4.5.2 that rely on bona fide co-clustering
algorithms (see Section 4.4.2.a), that is, of our algorithms WTOT-SCC1∗, WTOT-SCC1,
WTOT-SCC2∗, WTOT-SCC2, WTOT-BC∗ and of algorithms CCOT-GWD and CCOT-
GWB. As for Tables 4.6 and 4.7, they summarize the results of our algorithm that relies on
matching (see Section 4.4.2.b).

Table 4.5. Except in configuration A1, where they perform equally well, our algorithms
WTOT-SCC1, WTOT-SCC2 outperform their competitors CCOT-GWD and CCOT-
GWB.
Recall that WTOT-SCC1 and WTOT-SCC2 learn the number of co-clusters. When
they underestimate it, they pay a high price, partly explaining why the standard de-
viations are rather large. In order to assess how well they work relative to their coun-
terparts which benefit from knowing in advance the true number of co-clusters, we
can compare their measures of performance to those of algorithms WTOT-SCC1∗ and
WTOT-SCC2∗. In configurations A1 and A2, algorithms WTOT-SCC1, WTOT-SCC2
perform almost as well as WTOT-SCC1∗ and WTOT-SCC2∗, respectively. In config-
uration A3, they are clearly outperformed. In configuration A4, algorithm WTOT-
SCC1 performs better in average but not in standard deviation.
Finally, we note that algorithm WTOT-BC∗ outperforms all our other algorithms.
Unfortunately, its counterpart that learns the number of co-clusters performs poorly
(results not shown).

Tables 4.6 and 4.7. Table 4.6 illustrates the influence of k = k′ on the performances of
algorithm WTOT-matching. In configuration A1, specificity is not impacted much by
the value of k = k′, whereas precision decreases and sensitivity increases as k = k′

grows. More specifically, precision does not change much when one goes from k =
k′ = 10 to k = k′ = 75 but it drops for larger values of k = k′. As for sensitivity, it
increases dramatically when one goes from k = k′ = 10 to k = k′ = 75 and slightly
for higher values of k = k′. Furthermore we note that, in configuration A1, when
k = k′ equal either 65 or 75 and are thus closest to Nαℓ =Mαℓ ≈ 67, k̃r is close to 67
and precision, sensitivity and specificity are quite satisfying. In configuration A4 (as
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in configuration A1), specificity is not impacted much by the value of k = k′; on the
contrary, precision decreases and sensitivity increases steadily as k = k′ grows. The
best performances are achieved for k = k′ = 95 and k = k′ = 150, that is, when k = k′

get closer to M maxi≤4{αi} = N maxi≤4{αi}. As emphasized earlier, deriving relevant
matchings is more difficult in configuration A4 than in configuration A1 because the
weights given in parameter α are unbalanced in the former and balanced in the latter.
Table 4.7 summarizes the results of WTOT-matching in all configurations for a specific
choice of k = k′ in terms of the row- and column-specific averages k̃r and k̃c, preci-
sion, sensitivity and specificity. In each configuration, we chose the value of k = k′

among many retrospectively, so that the overall performance (in terms of precision,
sensitivity and specificity) is good. The left-hand-side (m-specific) and right-hand-
side (n-specific) tables in Table 4.7 are very similar. This does not come as a surprise
because the first simulation scheme imposes symmetry.

4.5.5 Second simulation study
SIMULATION SCHEME. The second simulation scheme also relies on mixtures of Gaussian
laws, but the means and weights are generated randomly from a Gaussian determinantal
point process (DPP) for the former and from a Dirichlet law for the latter. More specifically,
given the hyperparameters M ≥ 200, N ≥ 200,K ≥ L ≥ 3, σ ∈ R∗

+,

1. we sample µ1, . . . , µK from a Gaussian DPP on [0, 1]2 with a kernel proportional to
x 7→ exp(−∥x/0.05∥22) conditionally on obtaining exactly K points (Lavancier et al.,
2015; Baddeley and Turner, 2005);

2. independently, we sample α ∈ (R+)
K and β ∈ (R+)

L from the Dirichlet laws with
parameters 71K and 71L;

3. we sample independently x1, . . . , xM from the mixture of Gaussian laws∑
k∈JKKαkN(µk, σ

2Id2)

and y1, . . . , yN from ∑
k∈JLKβkN(−µk, σ

2Id2).

We use a DPP to generate µ1, . . . , µK to avoid the arbitrary choice of the mean parameters
in such a way that the randomly picked µ1, . . . , µK are dispersed in [0, 1]2 (because the DPP
is a repulsive point process).

Table 4.3 describes the four configurations that we investigate. The larger L is the more
challenging the configuration is. In configurations B2, B3, B4, it holds that K = L+1, hence
the data points from the Kth cluster should not be matched. Moreover, for given (K,L) and
(M,N), a configuration gets more challenging as its σ2 parameter increases. It is noteworthy
that the values of σ2 as reported in Table 4.3 cannot be compared straightforwardly to
those reported in Table 4.2, because µ1, . . . , µK live in [0, 1]2 in the present simulation study
whereas they do not in the simulation study of Section 4.5.4.
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configuration (M,N) (K,L) σ2

B1 (200, 200) (3, 3) 5× 10−4

B2 (300, 300) (7, 6) 10−4

B3 (300, 300) (16, 15) 10−5

B4 (300, 300) (16, 15) 10−4

Table 4.3 – Four different configurations for the second simulation scheme. The larger ℓ ∈ [4] is the more
challenging configuration Bℓ is.

RESULTS. Thirty times, independently, we simulated synthetic data sets X and Y under the
simulation scheme described above, then we applied the various algorithms as presented in
Section 4.5.2. Table 4.8 summarizes the results of the seven algorithms listed in Section 4.5.2
that rely on bona fide co-clustering algorithms (see Section 4.4.2.a). Tables 4.9 and 4.10
summarize the results of our algorithm that relies on matching (see Section 4.4.2.b).

Table 4.8. We first note that WTOT-SCC1, WTOT-SCC2 and CCOT-GWD perform sim-
ilarly in configurations B1 and B2, much better than CCOT-GWB, but less well than
the oracular algorithms WTOT-SCC1∗, WTOT-SCC2∗ and WTOT-BC∗. More gen-
erally, across configurations B1, B2, B3, B4, the oracular algorithms WTOT-SCC1∗
and WTOT-SCC2∗ perform much better than the other algorithms (and WTOT-BC∗

fails to find a partition with the given number of co-clusters in B3 and B4). More-
over, WTOT-SCC1 and WTOT-SCC2 perform poorly in configurations B2, B3 and
B4 though not as poorly as CCOT-GWD and CCOT-GWB in configurations B3 and
B4. It seems that WTOT-SCC1 and WTOT-SCC2 fail to learn a “practical” number
of co-clusters from P̃ , in part because of those among x1, . . . , xM that are drawn from
the Gaussian law N(µK , σ

2Id2) when K = L + 1 (these data points should not be
matched at all). The fact that WTOT-SCC1 and WTOT-SCC2 perform similarly in
configurations B3 and B4 although σ2 is 10 times larger in B4 than in B3 gives credit
to the previous interpretation.

Tables 4.9 and 4.10. Table 4.9 illustrates the influence of k = k′ on the performances
of algorithm WTOT-matching in configurations B1 and B4. In each configuration,
the values of k = k′ are chosen in the vicinity of M/K (67 in configuration B1, 11
in configuration B4). We observe the same patterns in configurations B1 and B4:
precision decreases (gradually) and specificity decreases (slightly) as k = k′ grows,
while sensitivity increases (strongly in B1 and dramatically in B4).
Table 4.10 summarizes the results of WTOT-matching in configurations B1, B2, B3,
B4 for a specific choice of k = k′ in terms of the row- and column-specific averages
k̃r and k̃c, precision, sensitivity and specificity. In each configuration, we chose the
value of k = k′ among many retrospectively so that the overall performance (in terms
of precision, sensitivity and specificity) is good. The left-hand-side (m-specific) and
right-hand-side (n-specific) tables in Table 4.10 are very similar although K > L in
configuration B3 and B4. Interestingly, the fact that σ2 is 10 times larger in configu-
ration B4 than in B3 does not affect much the performance of the matching algorithm.

4.5.6 Third simulation study
SIMULATION SCHEME. The third simulation scheme aspires to generate synthetic data sets
X and Y that are more similar to the real data sets than those generated in the two first
simulation studies. Once again, we rely on mixtures of Gaussian laws. This time, however,
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the various means are neither chosen arbitrarily (unlike in the first simulation study) nor
drawn randomly (unlike in the second simulation study) but are sampled in the real collection
of miRNAs. Moreover, the weights of the mixtures are random.

Specifically, given the hyperparameters K ≥ 3, λx, λ′x ≥ 0, λy, λ′y ≥ 0 and σ, σ′ ∈ R∗
+

(with σ′ much larger than σ),

1. we sample µ1, . . . , µK uniformly without replacement from the collection of observed
miRNA profiles conditionally on mink ̸=k′ ∥µk − µk′∥2 ≥ 2;

2. independently, we sample independently (m1− 1), . . . , (mK − 1) from the Poisson law
with parameter λx, (n1 − 1), . . . , (nK − 1) from the Poisson law with parameter λy,
(mK+1 − 1) and (nK+1 − 1) from the Poisson laws with parameter λ′x and λ′y;

3. for each 1 ≤ k ≤ K, we sample independently xk,1, . . . , xk,mk
from the Gaussian law

N(µk, σ
2Id18) and yk,1, . . . , yk,nk

from the Gaussian law N(−µk, σ
2Id18). Moreover,

we also sample independently xK+1,1, . . . , xK+1,mK+1
and yK+1,1, . . . , yK+1,nK+1

from
the Gaussian law N(018, (σ

′)2Id18).

Here, we think of x and y as having a mirrored relationship if there exists k ∈ JKK such
that x and y are drawn from the laws N(µk, σ

2Id18) and N(−µk, σ
2Id18). Furthermore, we

view x and y drawn from the law N(018, (σ
′)2Id18) as noise.

Table 4.4 describes the four configurations that we investigate. The larger K is the more
challenging the configuration is.

configuration (λx, λy) (λ′x, λ
′
y) K (σ, σ′)

C1 (50, 50) (50, 10) 3 (0.1, 5)
C2 (15, 15) (0, 0) 15 (0.01, 5)
C3 (15, 15) (30, 30) 15 (0.01, 5)
C4 (15, 15) (30, 30) 15 (0.1, 5)

Table 4.4 – Four different configurations for the third simulation scheme. The larger ℓ ∈ [4] is the more
challenging configuration Cℓ is.

RESULTS. Thirty times, independently, we simulated synthetic data sets X and Y under
the simulation scheme described above, then we applied the various algorithms as presented
in Section 4.5.2. Table 4.11 summarizes the results of the seven algorithms listed in Sec-
tion 4.5.2 that rely on bona fide co-clustering algorithms (see Section 4.4.2.a). Tables 4.12
and 4.13 summarize the results of our algorithm that relies on matching (see Section 4.4.2.b).

Table 4.11. We first focus on configuration C1. We note that WTOT-SCC1 and WTOT-
SCC2 perform similarly, much better than CCOT-GWD and CCOT-GWB, better
than the oracular algorithm WTOT-BC∗, but not as well as the oracular algorithms
WTOT-SCC1∗ and WTOT-SCC2∗.
We now turn to configurations C2, C3 and C4. Configuration C3 is more challenging
than configuration C2 because it shares the same hyperparameters as C2 except for
(λ′x, λ

′
y) (which drives the number of noisy data points), set to (0, 0) in C2 and to

(30, 30) in C3. Similarly, configuration C4 is more challenging than configuration C3
because it shares the same hyperparameters as C3 except for σ (the standard deviation
of the Gaussian variations around the mean profiles), set to 0.01 in C3 and to 0.1 in
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C4. The comparisons will not concern algorithms WTOT-BC∗ (which never converges
in these simulations), CCOT-GWD and CCOT-GWB (which perform very poorly).
In configuration C2, in the absence of noisy data points, algorithm WTOT-SCC1
performs slightly better than WTOT-SCC2, as well as the oracular algorithm WTOT-
SCC2∗, and almost as well as the oracular algorithm WTOT-SCC1∗ (in average). In
configurations C3 and C4, the introduction of noisy data points then the increase in
variability strongly degrade the performances of WTOT-SCC1, WTOT-SCC1∗ and, to
a lesser extent, those of WTOT-SCC2 and WTOT-SCC2∗. Algorithm WTOT-SCC2
outperforms WTOT-SCC1 and the oracular algorithm WTOT-SCC1∗ too.

Tables 4.12 and 4.13. Table 4.12 illustrates the influence of k = k′ on the performances
of algorithm WTOT-matching in configurations C1 and C4. In each configuration,
the values k = k′ are chosen in the vicinity of λx or λy (50 in configuration C1, 15
in configuration C4). For specificity and sensitivity, we observe the same patterns in
configurations C1 and C4: specificity is not impacted much as k = k′ grows whereas
sensitivity increases dramatically. Precision remains high in configuration C1 for all
choices of k = k′. In configuration C4, precision remains high for k = k′ ranging
between 5 and 20, then it decreases when k = k′ grows from 25 to 30.
Table 4.13 summarizes the results of WTOT-matching in configurations C1, C2, C3,
C4 for a specific choice of k = k′ in terms of the row- and column-specific averages
k̃r and k̃c, precision, sensitivity and specificity. In each configuration, we chose the
value of k = k′ among many retrospectively, so that the overall performance (in terms
of precision, sensitivity and specificity) is good. The left-hand-side (m-specific) and
right-hand-side (n-specific) tables in Table 4.13 are very similar. In configurations C1
and C2, all precision, sensitivity and specificity are quite satisfying. In configurations
C3, C4, sensitivity and specificity are quite satisfying as well while precision falls bellow
0.86.

4.6 Illustration on real data: matching mRNA andmiRNA in Hunting-
ton's disease mice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Next, we apply algorithms WTOT-SCC2 and WTOT-matching to discover patterns hidden
in RNA-seq data obtained in the striatum of HD model mice. As explained in Section 4.1,
multidimensional mRNA and miRNA sequencing data were obtained in the striatum of
these mice (Langfelder et al., 2016, 2018) and an earlier analysis of these data using shape
analysis concepts (Mégret et al., 2020) has demonstrated their value.

4.6.1 Tuning

Specifically, in view of Procedure 1, we choose M̃ = 1, 024, Ñ = 512, T = 500. The entries
of the 3× 5 matrices θ̃a1 , θ̃b1, θ̃c1 are constrained to take their values in ]− 10, 0[ (for WTOT-
SCC2) or ]− 2, 0[ (for WTOT-matching), ]− 0.2, 0.2[ and ]− 0.2, 0.2[ respectively. We also
choose (η, γ0) = (0.95, 3). Finally, the initial mapping θ0 is drawn randomly.

Furthermore, regarding step 2 of algorithm WTOT-SCC2, we remove rows and columns
based on the following loop: 100 times successively, (i) we compute the Kullback-Leibler
divergence between each row (renormalized) and the uniform distribution then remove the
100 rows with the smallest divergences, then (ii) we compute the Kullback-Leibler divergence
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between each column (renormalized) and the uniform distribution then remove the 5 columns
with the smallest divergences. By doing so, we successively get rid of the rows and columns
which, viewed as distributions, are too uniform and therefore deemed irrelevant. Finally,
we remove all rows for which the (columnwise) sum of the remaining entries of P̃ is smaller
than one tenth of the maximal (columnwise) sum, and all columns for which the (rowwise)
sum of the remaining entries of P̃ is smaller than one tenth of the maximal (rowwise) sum.

4.6.2 Results
CO-CLUSTERING. The selection procedure (step 2 of WTOT-SCC2) keeps 3,409 mRNA pro-
files (among the 13,616 available in the data set) and 602 miRNA (among the 1,143 avail-
able in the data set). Eventually, algorithm WTOT-SCC2 outputs 8 co-clusters. The co-
clusters’s sizes (numbers of mRNA and miRNA gathered in each co-cluster) are (321, 86),
(333, 30), (261, 6), (498, 125), (127, 5), (708, 203), (703, 119), (458, 28). Figure 4.6 repre-
sents the averages, computed across all blocks, of the entries of the matrix derived from the
optimal transport matrix P̃ during step 2 of algorithm WTOT-SCC2 and after its rearrange-
ment. Squares located on the diagonal tend to be slightly darker than the other squares.
This reveals that, in average, a pair (xm, yn) of mRNA and miRNA gathered in a diagonal
co-cluster tends to exhibit a mirrored relationship that is slightly stronger than those of the
form (xm, yn′) or (xm′ , yn) which do not fall in the same co-cluster. However, few of the
off-diagonal averages are small in comparison to the on-diagonal averages, a disappointing
observation that comes on top of the fact that the co-clusters’ sizes are so large that it is
difficult to interpret the results. This makes it even more relevant to focus on algorithm
WTOT-matching.

Figure 4.6 – Logarithms of the averages, computed across all blocks, of the entries of the matrix derived from
the optimal transport matrix P̃ during step 2 of algorithm WTOT-SCC2 and after its rearrangement.

MATCHING. We run the WTOT-matching algorithm with k = k′ = 10 and q = 90%. For
the anecdote, we observe (k̃r, k̃c) ≈ (1.82, 6.04) (recall that k̃r, k̃c are the row- and column-
specific averages of the cardinalities of the sets Nm andMn that are not empty). We report
the parameters that characterize the mapping θ̂ in Appendix 4.7.

As an illustration, the mirrored profile (the opposite value of yn) of the Mir20b miRNA
is displayed in Figure 4.7 along with its three matched mRNAs (Ahrr, Cnih3 and Relb)
obtained by running algorithm WTOT-matching algorithm with k = k′ = 10. Recall that
the original profile of Mir20b can be found in Figure 4.1.
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Figure 4.7 – Minus the profile −yn of the Mir20b miRNA (top left), and profiles xm of its matched mRNAs,
Ahrr (top right), Relb (bottom left) and Cnih3 (bottom right).

4.6.3 Biological analysis of the results
In an effort to guarantee biological relevance to the matchings, we only retain those showing
evidence for binding sites as indicated in the databases TargetScan (Lewis et al., 2005),
MicroCosm (Betel et al., 2010) and miRDB (Ding et al., 2016). Specifically, a pair (x, y) is
retained if and only if the mRNA whose profile is x and the miRNA whose profile is y are
both among the 27,355 mRNAs and 1,478 miRNAs appearing in the TargetScan, MicroCosm
and miRDB databases. The 1,247 matchings retained out of the 7,521 output by the WTOT-
matching algorithm are all presented on this page of the companion website. We stress that
we would have obtained fewer matchings if we had excluded from the collections X and Y
the profiles of mRNA or miRNA which do not appear in the databases.

Furthermore, we build upon two previous analyses of miRNA regulation in the striatum of
HD knock-in-mice (Langfelder et al., 2018; Mégret et al., 2020) to comment on the biological
relevance and novelty of our findings. The first analysis (Langfelder et al., 2018) relies
on the WGCNA algorithm, a weighted gene co-expression network analysis which yields
clusters of genes whose expression profiles are correlated. The second analysis (Mégret
et al., 2020) relies on the MiRAMINT algorithm. MiRAMINT is a pipeline whose main
steps consist in (a) carrying out a weighted gene co-expression network analysis, (b) using
random forests to select candidate matchings, and (c) using Spearman’s correlation test
and a multiple testing procedure to identify the more reliable matchings. We highlight that
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WGCNA outputs 1,583 mRNA-miRNA matchings showing evidence for binding sites in the
databases TargetScan, MicroCosm and miRDB, which involve only 46 different miRNAs.
As for MiRAMINT, it only outputs 31 matchings of which 20 show evidence for binding
sites in the databases TargetScan, MicroCosm and miRDB, involving 14 different miRNAs.
The 31 mRNA-miRNA matchings output by MiRAMINT are all presented on this webpage.

ANALYZING THEOVERLAPS. Three mRNA-miRNA matchings are retained both by the WTOT-
matching and WGCNA algorithms: Mir186-Chl1, Mir132-Fam196b, Mir212-Fam196b. No
matchings are retained both by the WTOT-matching and the MiRAMINT algorithms. One
pair is retained both by the MiRAMINT and WGCNA algorithms: Mir132-Pafah121.

Figure 4.8 in Appendix 4.7 presents two Venn diagrams summarizing the overlaps be-
tween the sets of miRNAs (respectively, mRNAs) which belong to a pair output by the
WGCNA, MiRAMINT and WTOT-matching algorithms. On the one hand, focusing on
miRNAs, 13/14 (respectively, 29/46) miRNAs involved in a mRNA-miRNA pair output
by MiRAMINT (respectively, WGCNA) are among the miRNAs involved in a mRNA-
miRNA pair output by WTOT-matching. On the other hand, focusing on mRNAs, 1/20
(respectively, 100/1, 583) miRNAs involved in a mRNA-miRNA pair output by MiRAMINT
(respectively, WGCNA) are among the miRNAs involved in a mRNA-miRNA pair output
by WTOT-matching. We carry out one-sided Fisher’s exact tests to quantify to what ex-
tent the overlaps reflect an agreement between two algorithms (using the 1,478 miRNAs and
27,355 mRNAs appearing in the TargetScan, MicroCosm and miRDB databases as reference
populations). The p-value of the test comparing WTOT-matching and MiRAMINT equals
0.45. The other p-values are smaller than 10−6.

It is desirable to identify miRNAs that are particularly susceptible to play a distinct
role in HD in mice. To do so, we evaluate two simple criteria on the mRNAs associated
to each miRNA (the miRNAs with no matched mRNAs are obviously less interesting in
our study). The criteria assess to what extent a mRNA profile is “monotonic” and, on the
contrary, to what extent it is “peaked”, accounting for the amplitude of log-fold change.
Formally, rewriting each profile x ∈ R15 as a matrix (x̃tq)t∈J3K,q∈J5K, the first criterion is the
minimum (relative to time t) of the absolute values of the slopes of the regression lines of
the sets {(q, x̃tq) : q ∈ J5K} and the second criterion is maxq∈J5K(x̃1q− x̃2q)× (x̃2q− x̃3q). By
convention, a miRNA profile is labeled monotonic (respectively, peaked) if at least one of its
associated mRNA profiles is such that its first (respectively, second) criterion is larger than
95% (respectively, smaller than 99%) of the similar criteria. Moreover, all mRNA profiles
x appearing in a pair (x, y) are labeled like y. We stress that no mRNA labeling conflicts
occur.

Below, we reproduce the same analysis as above focusing in turn on mRNA-miRNA
matchings labeled as peaked, monotonic, and neither peaked nor monotonic.

Peaked profiles. Figure 4.9 in Appendix 4.7 presents two Venn diagrams summarizing the
overlaps between the sets of miRNAs (respectively, mRNAs) which belong to a pair
output by the WGCNA, MiRAMINT and WTOT-matching algorithms, looking at the
WTOT-matching matchings labeled as peaked. None of the 17 miRNAs and none of the
12 mRNAs involved in a mRNA-miRNA pair output by WTOT-matching are involved
in a mRNA-miRNA pair output by the WGCNA or MiRAMINT algorithms.
The take-home message is that the WTOT-algorithm retains mRNA-miRNA match-
ings that we label as peaked whereas neither the WGCNA nor the MiRAMINT algo-
rithms do.
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Monotonic profiles. Figure 4.10 in Appendix 4.7 presents two Venn diagrams summariz-
ing the overlaps between the sets of miRNAs (respectively, mRNAs) which belong to
a pair output by the WGCNA, MiRAMINT and WTOT-matching algorithms, looking
at the WTOT-matching matchings labeled as monotonic. On the one hand, focus-
ing on miRNAs, 8/14 (respectively, 9/46) miRNAs involved in a mRNA-miRNA pair
output by MiRAMINT (respectively, WGCNA) are among the miRNAs involved in
a mRNA-miRNA pair output by WTOT-matching. On the other hand, focusing on
mRNAs, 0/20 (respectively, 14/1, 583) miRNAs involved in a mRNA-miRNA pair
output by MiRAMINT (respectively, WGCNA) are among the miRNAs involved in
a mRNA-miRNA pair output by WTOT-matching. We carry out one-sided Fisher’s
exact tests to quantify to what extent the overlaps reflect an agreement between two
algorithms (using the 1,478 miRNAs and 27,355 mRNAs appearing in the TargetScan,
MicroCosm and miRDB databases as reference populations), excluding the compari-
son of the MiRAMINT and WTOT-matching algorithms in mRNAs (due to an empty
intersection). The p-values are smaller than 10−5.
The take-home message is that, in matchings that we label as monotonic, the agree-
ment between the WTOT-matching and WGCNA algorithms is better than that be-
tween the WTOT-matching and MiRAMINT algorithms.

Neither peaked nor monotonic profiles. Finally, Figure 4.11 in Appendix 4.7 presents
two Venn diagrams summarizing the overlaps between the sets of miRNAs (respec-
tively, mRNAs) which belong to a pair output by the WGCNA, MiRAMINT and
WTOT-matching algorithms and labeled neither as peaked nor monotonic. On the one
hand, focusing on miRNAs, 12/14 (respectively, 28/46) miRNAs involved in a mRNA-
miRNA pair output by MiRAMINT (respectively, WGCNA) are among the miRNAs
involved in a mRNA-miRNA pair output by WTOT-matching. On the other hand,
focusing on mRNAs, 1/20 (respectively, 86/1, 583) miRNAs involved in a mRNA-
miRNA pair output by MiRAMINT (respectively, WGCNA) are among the miRNAs
involved in a mRNA-miRNA pair output by WTOT-matching. We carry out one-
sided Fisher’s exact tests to quantify to what extent the overlaps reflect an agreement
between two algorithms (using the 1,478 miRNAs and 27,355 mRNAs appearing in the
TargetScan, MicroCosm and miRDB databases as reference populations), excluding
the comparison of the MiRAMINT and WTOT-matching algorithms in mRNAs (due
to an intersection reduced to a singleton). The p-value are smaller than 10−5.
The take-home message is that, in matchings that we label as neither peaked nor
monotonic, the agreement between the WTOT-matching and WGCNA algorithms is
better than that between the WTOT-matching and MiRAMINT algorithms.

ENRICHMENT ANALYSIS. Next, we assess and compare the biological significance of the mR-
NAs retained by the WGCNA, MiRAMINT and WTOT-matching algorithms. To do so
we carry out an enrichment analysis using the EnrichR tools (Chen et al., 2013; Kuleshov
et al., 2016; Xie et al., 2021). We consider only top annotations (balancing a small p-value
and a large number of hits) as provided by Gene Ontology data (biological process, cellular
content) and KEGG data. When necessary, only the top 40 hits are considered so as to
guarantee a sufficient level of biological precision. Pubmed searches are also used to assess
the biological significance of predicted miRNA regulation.

Figures 4.12, 4.13 and 4.14 in Appendix 4.7 present the mRNA-miRNA networks based
on the mRNA-miRNA matchings output by the WTOT-matching algorithm, focusing on
the matchings which are labeled as peaked, monotonic and neither peaked nor monotonic
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(in that order). The mRNAs and miRNAs retained by the WGCNA and MiRAMINT
algorithms are colored. The enrichment analysis reveals

• that the mRNA-miRNA matchings output by the WGCNA algorithm are primarily
annotated for axonogenesis∗, which relates to cytoskeleton dynamics and cell morphol-
ogy;

• that the matchings output by the MiRAMINT algorithm are primarily annotated for
regulation of defense response to virus by host†, which relates to stress response and
innate immunity;

• that the matchings output by the WTOT-matching algorithm are primarily annotated
for extracellular matrix organization (which relates to cell identity)‡, due to the match-
ings labeled as neither peaked nor monotonic, and secondarily annotated for mitigation
of host antiviral defense response§, due to the matchings labeled as monotonic, and
for conventional motile cilium¶, due to the matchings labeled as peaked.

Although the numbers of hits in some of these annotations are small, they suggest that the
WTOT-matching algorithm is able to uncover a role of miRNA regulation in responding
to mutant huntingtin that was not detected by the WGCNA and MiRAMINT algorithms
(despite the large number of mRNAs retained by the former).

We now interpret the above results from a biological viewpoint. Recall that the peaked
and monotonic profiles are especially interesting because they are more susceptible to corre-
spond to mRNAs and miRNAs that play a distinct role in HD in mice. Extracellular matrix
organization (the primary annotation of the matchings output by the WTOT-matching al-
gorithm, driven by the mRNA-miRNA matchings labeled as neither peaked nor monotonic)
is known to be regulated by miRNAs (Rutnam et al., 2013) and HD mutations are known
to strongly affect neuronal identity via down-regulating a large number of cell identity
genes (Achour et al., 2015). Mitigation of host antiviral defense response (the first sec-
ondary annotation of the matchings output by the WTOT-matching algorithm, due to the
mRNA-miRNA matchings labeled monotonic) is similar to the primary annotation of the
matchings output by the MiRAMINT algorithm. Finally, conventional motile cilium (the
second secondary annotation of the matchings output by the WTOT-matching algorithm,
due to the mRNA-miRNA matchings labeled peaked) is a new finding.

Additionally, although miRNA levels and regulation in response to mutant huntingtin is
anticipated to be dependent on cellular context and could be differentially influenced across
murine models of HD, it is noticeable that the analysis of miRNA regulation in the striatum
of HD knock-in mice based on the WTOT-matching algorithm retained several miRNAs
that are altered in the striatum of other types of HD mice such as BACHD (Olmo et al.,
2021) or altered in the human HD caudate nucleus (Petry et al., 2022) such as for example
Mir100, Mir127, Mir132, Mir 212 and Mir133, supporting the relevance of our findings for
the study of molecular regulation in mouse and human HD.

∗GO:0007409, de novo generation of a long process of a neuron, including the terminal branched region.
Refers to the morphogenesis or creation of shape or form of the developing axon, which carries efferent
(outgoing) action potential from the cell body towards target cells.

†GO:0050691, any host process that modulates the frequency, rate or extent of the antiviral response of
a host cell or organism.

‡GO:0030198, a process that is carried out at the cellular level which results in the assembly, arrangement
of constituent parts, or disassembly of an extracellular matrix.

§GO:0050690, evasion by virus of host immune response.
¶GO:0097729, a motile cilium where the axoneme has a ring of 9 outer microtubules doublets plus 2

central micro tubules.
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We believe that these facts substantiate our claim that the WTOT-matching algorithm
strikes a good balance between the low and high selectivity of the WGCNA and MiRAMINT
algorithms. Moreover, our findings related to striatal alterations in HD mice lead to recon-
sidering the formerly-expressed view on a limited role of miRNA regulation in the striatum
of HD mice on a systems level (Mégret et al., 2020).

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PARAMETRIC MODEL Θ. Introduced in Section 4.4.1, the parametric model Θ consists of
affine mappings θ : Rd → Rd of the form x 7→ θ1x+ θ2, where θ1 takes its values in a subset
T1 of Rd×d and θ2 takes its values in Rd (without any constraint). It is easier to describe
the set of linear mappings {x 7→ θ1x : θ1 ∈ T1} after a reparametrization.

In the rest of this section only, we rewrite the mRNA and miRNA profiles x, y ∈ Rd

under the form of d1× d2 matrices x̃ = (x̃tq)t∈Jd1K,q∈Jd2K and ỹ = (ỹtq)t∈Jd1K,q∈Jd2K. For each
t ∈ Jd1K and q ∈ Jd2K, x̃t• and x̃•q are the tth row and qth column of x̃. Here, indices t and
q correspond to the age and CAG lengths of the mice whose RNA sequencing yielded x̃tq
and ỹtq.

The definition of T1 should formalize what we consider to be a (plausible) mirroring
relationship. The simplest mirroring relationship is y = −x or, equivalently, ỹ = −x̃. The
equality is of course too stringent/rigid, and the definition of T1 is driven by our wish to
relax it.

Biological arguments encourage us to consider that y and x exhibit a (plausible) mirroring
relationship if, for each (t, q) (t ∈ Jd1K, q ∈ Jd2K), ỹtq is strongly negatively correlated with
x̃tq, mainly, and (positively or negatively) correlated with x̃(t−1)q (if t > 1) and/or with
x̃t(q−1) (if q > 1), secondarily. We thus formalize {x 7→ θ1x : θ1 ∈ T1} as the set of all linear
mappings of the form

x 7→ θ̃a1 ⊙ x̃+ θ̃b1 ⊙

 0⊤
d2

x̃1•

...
x̃(d1−1)•

+ θ̃c1 ⊙
(
0d1

x̃•1 · · · x̃•(d2−1)

)

where θ̃a1 and θ̃b1, θ̃c1 are d1×d2 matrices (here, ⊙ is the componentwise multiplication). The
entries of θ̃a1 correspond to comparisons between x̃tq and ỹtq (same poly Q length q and age
t). The entries of θ̃b1 (whose first row consists of 0s) correspond to comparisons between
x̃(t−1)q and ỹtq (same poly Q length q, different age t). The entries of θ̃c1 (whose first column
consists of 0s) correspond to comparisons between x̃t(q−1) and ỹtq (different poly Q length
q, same age t)

In the simulation study presented in Section 4.5, the entries of θ̃a1 are constrained to
take their values in the interval ] − 5, 0[ while those of θ̃b1, θ̃c1 are constrained to take their
values in ]− 1/2, 1/2[. In the simulation study presented in Section 4.5, the entries of θ̃a1 are
constrained to take their values in the interval ]− 5, 0[ while those of θ̃b1, θ̃c1 are constrained
to take their values in ]− 1/2, 1/2[. The initial mapping is drawn randomly by sampling the
entries of θ̃a1 independently and uniformly in ] − 5, 0[ and, independently, by sampling the
entries of θ̃b1 and θ̃c1 independently and uniformly in ]− 1/2, 1/2[.

In the illustration of the WTOT-matching algorithm presented in Section 4.6.2, the map-
ping θ̂ is parametrized by θ̃ given by
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Figure 4.8 – Venn diagrams summarizing the overlaps between the sets of miRNAs (left) and mRNAs (right)
which belong to a pair output by the WGCNA, MiRAMINT and WTOT-matching algorithms.

θ̃a1 =

(−0.88 −1.47 −0.73
−0.59 −0.90 −0.89
−0.62 −0.70 −1.17
−0.97 −1.30 −0.95
−0.56 −1.16 −1.24

)
, θ̃b1 =

(
0 0 0

0.13 −0.19 0.13
0.17 0.09 0.13
0.19 0.09 −0.00
0.18 0.15 0.08

)
,

θ̃c1 =

(
0 0.18 −0.18
0 0.19 0.17
0 0.04 0.15
0 0.05 0.11
0 0.18 0.14

)
, θ2 =

(−0.01 0.01 −0.00
0.00 0.01 0.01
0.00 0.01 0.00
0.01 0.01 0.01
−0.01 0.01 0.01

)

(the numbers are rounded to two decimal places). We note that:

• On the one hand, the entries of θ̃a1 are distributed around -1. On the other hand, the
entries of θ2 are small. This is in line with the strong biological hypothesis (that is,
if a miRNA induces the degradation of a target mRNA or blocks its translation into
proteins, or both, then the profile of the former should be similar to minus the profile
of the latter).

• The entries of θ̃b1 and θ̃c1 are small.
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Figure 4.9 – Venn diagrams summarizing the overlaps between the sets of miRNAs (left) and mRNAs (right)
which belong to a pair output by the WGCNA, MiRAMINT and WTOT-matching algorithms, focusing on the

WTOT-matching matchings labeled as peaked.
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Figure 4.10 – Venn diagrams summarizing the overlaps between the sets of miRNAs (left) and mRNAs (right)
which belong to a pair output by the WGCNA, MiRAMINT and WTOT-matching algorithms, focusing on the

WTOT-matching matchings labeled as monotonic.
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Figure 4.11 – Venn diagrams summarizing the overlaps between the sets of miRNAs (left) and mRNAs (right)
which belong to a pair output by the WGCNA, MiRAMINT and WTOT-matching algorithms, focusing on the

WTOT-matching matchings which are labeled as neither peaked nor monotonic.

Figure 4.12 – The mRNA-miRNA networks based on the mRNA-miRNA matchings output by the
WTOT-matching algorithm, focusing on the matchings which are labeled as peaked. Disks correspond to
miRNAs and squares to mRNAs. The top annotation is conventional motile cilium (GO:0097729, 3 hits).
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Figure 4.13 – The mRNA-miRNA networks based on the mRNA-miRNA matchings output by the
WTOT-matching algorithm, focusing on the matchings which are labeled as monotonic. Disks correspond to

miRNAs and squares to mRNAs. Elements also retained by the WGCNA algorithm (respectively, the
MiRAMINT algorithm) are indicated in blue (respectively, yellow). The top annotation is mitigation of host

antiviral defense response (GO:0050690, 2 hits).
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Algorithm 1 Master optimal transport algorithm.

Input: X,Y , minibatch sizes M̃, Ñ , decay rate η ∈]0, 1], initial regularization parameter
γ0, initial mapping θ0 ∈ Θ, maximal number of iterations T

Output: Transport coupling P̃T ∈ (R+)
M×N , mapping θT ∈ Θ, weight ωT

Compute:

• γ = mean{∥x− x′∥2 : x, x′ ∈ X} {for entropy regularization}

• h = mean{∥y − y′∥2 : y, y′ ∈ Y } {for window calibration}

Set t← 0
Set stop ← FALSE
while ¬ stop or t < T do
γt ← max(γ0 × ηt, γ)
Sample uniformly a minibatch of M̃ observations x̃

1:M̃
:= (x̃1, . . . , x̃M̃ ) from X

Sample uniformly a minibatch of Ñ observations ỹ1:Ñ := (ỹ1, . . . , ỹÑ ) from Y
Define and compute θt(x̃1:M̃ ) :=

(
θt(x̃1), . . . , θt(x̃M̃ )

)
Define and compute ωt ∈ (R+)

M̃ such that
∑

m∈JM̃K(ωt)m = 1 by setting

(ωt)m ∝
∑

n∈JÑK
φ

(
ỹn − θt(x̃m)

h

)
(all m ∈ JM̃K)

where φ is the standard normal density
Define µωt

θt(x̃1:M̃
), the ωt-weighted empirical measure attached to θt(x̃1:M̃ ), and νỹ

1:Ñ
,

the empirical measure attached to ỹ1:Ñ
Compute Losst = W̄γt

(
µωt

θt(x̃1:M̃
), νỹ1:Ñ

)
and ∇Losst, the gradient of Losst relative to

the parameter defining θt {relies on the Sinkhorn-Knopp algorithm}
Update the parameter defining θt by performing one step of stochastic gradient descent,
yielding θt+1

Check stopping criterion and update stop variable accordingly
t← t+ 1

end while
Set θT ← θt−1

Set γT ← γt−1

Define and compute ωT ∈ (R+)
M such that

∑
m∈JMK(ωT )m = 1 by setting

(ωT )m ∝
∑

n∈JNKφ
(
yn − θT (xm)

h

)
(all m ∈ JMK)

Compute P̃T ∈ Π(ωT ) solving minP∈Π(ωT )WγT

(
µωT

θT (X), νY

)
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5
Making sparse predictions, and anticipating the
requests of declaration of natural disasters for a
drought event in France

Drought events, the phenomenon of clay swelling and shrinking in humid and dry conditions,
rank as the second most costly natural disaster within the French legal framework of the
natural disaster compensation scheme. A critical aspect of the national compensation scheme
involves cities submitting requests for the government declaration of natural disaster for a
drought event as a key step. This chapter is dedicated to the challenge that we take up of
forecasting which cities will submit such requests.

The problem can be tackled as a classification task, leveraging the power of classification
algorithms. Taking a slightly different perspective, we introduce an alternative procedure
that hinges on OT theory and iPiano, an inertial proximal algorithm for nonconvex opti-
mization. The optimization problem is designed so as to yield a sparse vector of predictions
because it is known that relatively few cities will submit requests. Additionally, we develop
a hybrid procedure that synergistically combines and utilizes both types of predictions (that
is, those made based on classification algorithms and those yielded by the alternative pro-
cedure), resulting in enhanced forecasting accuracy.

A simulation study illustrates the procedures. The real data application is presented and
discussed in details. The convergence of the iPiano algorithm is established, using the notion
of o-minimal structures.

This chapter is based on a joint work with G. Ecoto (Ph.D. candidate under the super-
vision of A. Chambaz) and A. Chambaz. The project was funded by Université Paris Cité
and Caisse Centrale de Réassurance.

My main contribution has consisted in developing the methodology, formally and com-
putationally, and performing the data analysis with Geoffrey Ecoto. This chapter will

68

https://www.ccr.fr/en/


be submitted soon as a technical report then to an international journal.

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We define a drought event in this study as the phenomenon of clay shrinking and swelling
during a calendar year. For a comprehensive introduction to drought events and their eco-
nomic consequences, we refer to (Charpentier et al., 2022b, Sections 1 and 2). In brief, the
clay in the soil undergoes alternating shrinkage and swelling in dry and humid conditions,
leading to instabilities and cracks in buildings. The costs incurred by these cracks are cov-
ered by all private property insurance policies (MTES, 2016). As 90% of the French natural
disasters insurance market is reinsured by Caisse Centrale de Réassurance (henceforth ab-
breviated as CCR) (CCR, 2022), a public-sector reinsurer providing coverage against natural
catastrophes and uninsurable risks, the French state ultimately bears the risk.

Due to intricacies of the French legal framework (known as the natural disasters compen-
sation scheme, see Charpentier et al., 2022b, Section 2.1), two prerequisites must be met in
order to initiate the compensation scheme. Firstly, the property that has been lost and/or
damaged must be covered by a property and casualty insurance policy, which is a condition
of private nature. Secondly, a government decree declaring a natural disaster must be pub-
lished in the Official Journal, which is a condition of public nature. The responsibility of
initiating the request for the government declaration of a natural disaster for the cities they
administer lies with the mayors. Of note, we adopt here and henceforth the term “city”
regardless of the size of the commune, encompassing a wide range from small hamlets to
large urban centers.

Forecasting the cost of drought events in France is a critical task for CCR. CCR currently
addresses two sub-problems separately: sub-problem 1 involves predicting which cities will
submit a request for the government declaration of natural disaster for a drought event, while
sub-problem 2 is centered on predicting the cost of a drought event for those cities that have
already obtained the government declaration of natural disaster for a drought event. In this
study, we concentrate on sub-problem 1. (Ecoto et al., 2021; Ecoto and Chambaz, 2022)
focus on sub-problem 2. In contrast, (Chatelain and Loisel, 2021) takes on both sub-problems
simultaneously. On the other hand, (Charpentier et al., 2022b; Heranval et al., 2022) predict
which cities will experience claims (a proxy for sub-problem 1) and subsequently estimate the
cost for these cities. We acknowledge that the problem we address in this study is, therefore,
more narrowly focused than those studied in (Chatelain and Loisel, 2021; Charpentier et al.,
2022b; Heranval et al., 2022).

Quoting (Logar and van den Bergh, 2011, page 4, first paragraph), “[t]he existing liter-
ature on the costs of drought [events] is scarce, fragmented and heterogeneous and there is
a need for comprehensive costs estimations to help designing effective policy responses.” To
the best of our knowledge, (Chatelain and Loisel, 2021; Charpentier et al., 2022b; Heran-
val et al., 2022; Ecoto et al., 2021; Ecoto and Chambaz, 2022) are the only five references
available about the prediction of the cost of drought events, thus susceptible to address the
problem of predicting which cities will submit a request for the government declaration of
natural disaster for a drought event. It is worth noting that studies conducted by insurance
companies are often kept confidential, further emphasizing the scarcity of available literature
on this subject.

In (Chatelain and Loisel, 2021), the authors use Generalized Linear Models (GLM) and
the extreme gradient boosting algorithm to predict which cities will submit a request for the
government declaration of natural disaster for a drought event (see Section 3.1 therein). We
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also tackle the problem as a classification task, leveraging the power of classification algo-
rithms. However, taking a slightly different perspective, our main contribution consists in
introducing an alternative procedure that hinges on optimal transport theory and an inertial
proximal algorithm for nonconvex optimization. The optimization problem is designed so
as to yield a sparse vector of predictions because it is known that relatively few cities will
submit requests. Additionally, we develop a hybrid procedure that synergistically combines
and utilizes both types of predictions (that is, those made based on classification algorithms
and those yielded by the alternative procedure).

The rest of the study is organized as follows. Section 5.2 introduces the data set that we
obtained by merging several data sets, some of which either provided by CCR’s cedents∗

while others were collected from other trusted sources. This section also outlines the sta-
tistical challenge that we undertake and presents insights into the data. Section 5.3 is a
modicum of optimal transport theory. Section 5.4 exposes our novel procedure to make
sparse predictions and discusses how to solve the nonconvex optimization task that sits at
its core using the algorithm iPiano (Ochs et al., 2015), from both theoretical and compu-
tational perspectives. Section 5.5 presents a simulation study and introduces the hybrid
procedure. Section 5.6 describes the full-fledged application to the challenge of forecasting
which cities will submit a request for the government declaration of natural disaster for a
drought event. In the appendix, Section 5.7 gathers the proofs of the convergence of the
iPiano algorithm using a theorem proven in (Ochs et al., 2015). The Kurdyka-Lojasiewicz
property (Attouch et al., 2010) and notion of o-minimal structures (Wilkie, 1996) play a
central role.

5.2 Data and statistical challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2.1 Presentation of the data, first pass
The data set is obtained by merging several data sets, either provided by CCR’s cedents
or collected from other sources, namely the National Institute for Statistical and Economic
Studies (Insee), Geographic National Institute (IGN), French Geological Survey (BRGM)
and Météo-France. While there are numerous similarities between the present data set and
the one comprehensively presented and used in (Ecoto and Chambaz, 2022, see Section 2),
there are also major differences.

From now on, France refers to Metropolitan or Mainland France, and the adjective French
to what is related to France with the restricted acceptation of the word. This is justified
because drought events are not a threat in Overseas France (essentially because there is
little clay in these parts of the country).

The experimental units are the French cities. Each of them can contribute a data structure
for a given year t (by convention, t = 1, 2, 3 respectively correspond to years 2019, 2020 and
2021) and a given week u (the integer u ∈ Ut ⊂ N∗ being the number of weeks starting
from the first week of year t, with 44 ≤ u ≤ 85). A data structure encompasses multiple
aspects of a city’s profile, aiming to provide a comprehensive representation of its context
and potential triggers for requesting the government declaration of natural disaster for a
drought event. It consists of the following blocks of variables:

City description (16 variables). This block provides detailed information about the city,
covering various aspects such as housing stock age, housing stock exposure to clay-

∗A cedent is a party in an insurance contract that passes the financial obligation for certain potential
losses to the insurer. In return for bearing a particular risk of loss, the cedent pays a reinsurance premium.
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shrinkage-swelling hazard, and climatic zone. By capturing these variables, a holistic
understanding of the city’s characteristics is obtained.

City exposure to drought events (25 variables). The variables within this block outline
the city’s exposure to drought events. They build upon the Soil Wetness Index (SWI),
and include an indicator of whether or not the city is eligible for the government
declaration of natural disaster for a drought event.

City history of requests (12 variables). This block provides a record of the city’s pre-
vious requests for the government declaration of natural disaster for a drought event,
including information on the success or failure of the requests. The record gives us
insight into the city’s decision-making process, intentions and actions regarding the
submission of a request for the government declaration of natural disaster for a drought
event.

City current request status (1 variable). This variable indicates whether or not the city
submitted a request for the government declaration of natural disaster for a drought
event for year t during week u or before.

City’s vicinity description (13 variables). This block focuses on the city’s surroundings.
It provides information about the neighboring cities’ claims and requests for the gov-
ernment declaration of natural disaster for a drought event.

5.2.2 Presentation of the data, second pass
DESCRIPTION OF A CITY. The description of a city notably consists of its population, of the
(estimated) number of houses located within the city’s limits (the estimation is based on
census data: Insee, 2000), of the city’s average altitude and area (source: IGN, 2018), house
density (defined as the ratio of the number of houses to the city’s area), and proportions
of buildings built prior to 1949, between 1950 and 1974, between 1975 and 1989, and after
1989 (the proportions are computed based on data found in Insee, 2000). In addition,
the description of the city also includes the proportions of houses located within the city’s
limits that fall in each of the four clay-shrinkage-swelling hazard categories (as defined
by, and obtained from BRGM: MI, 2019); the city’s seismic zone (a four-category variable
attributed to each city by the French Code de l’environnement); the climatic zone of the
city’s department (the French State attributes to each department this five-category variable;
a department is a level of government between the administrative regions and communes).

Up to now, the variables that we listed are essentially static. The description of the city
is completed by the (estimated) insured sum corresponding to the houses located within its
limits. The estimations are based on data from Insee and portfolios data provided by CCR’s
cedents. This last piece of information depends on the year, but the variations from one
year to another are limited.

To conclude, let us stress that the age of the housing stock is used here as a proxy for the
house building technology, an important factor to consider because some buildings are more
vulnerable than others (France Assureurs, 2022, page 28). Furthermore, accounting for clay
concentration is mandatory since it is the clay present in the soil that, by shrinking and
swelling in dry and humid conditions, creates instabilities and generates cracks in buildings.

DESCRIPTION OF A CITY'S EXPOSURE TO DROUGHT EVENTS. The description of a city’s exposure
to drought events builds upon the SWI in a manner presented almost comprehensively
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in (Ecoto and Chambaz, 2022, Section 2.3.2). For self-containedness, we recall here the
main elements of the presentation.

Provided by Météo-France since 1959, the SWI data consist of time series of values (one
value every ten-day period) ranging between -3.33 (very dry soil) and 2.33 (very wet soil).
There are as many SWI time series as the number of 8×8 km2 squares used by Météo-France
to partition the French territory.

Note that for any year t and week u ∈ Ut ∩ J44, 52K (that is, before the end of year t), we
necessarily have access to fewer than 37 values of the SWI for year t. We use a prediction
model to predict future values of the SWI so that all the time series of SWI cover the whole
year. As u increases, the predicted values are replaced by the actual values provided by
Météo-France, until the complete time series for year t are all observed.

For every year t and every city, we then derive a city-specific SWI time series by taking
the convex average of the possibly completed SWI time series attached to the squares that
overlap the city’s area, the weights being proportional to the areas of the intersections. The
description of a city’s exposure to drought events for year t builds upon the corresponding
SWI time series. It notably consists of the minimum value of the SWI time series, of the
overall average of the time series, of the averages restricted to the first, second, third and
fourth quarters of year t respectively (that is, January-March, April-June, July-September,
October-December), and of the averages restricted to the unions of the second and third
quarters (April-September) or of the first, second and third quarters (January-September).
The description is complemented by measures of how exceptional the monthly and quarterly
average SWI (say SWI) are relative to historical SWI data. Specifically, for every month
(respectively, every quarter), we compute the empirical cumulative distribution function of
the monthly (respectively, quarterly) average SWI using all data for the city of interest from
1959 to 2009 and then evaluate that function at SWI. The smaller is the resulting proportion,
the more pronounced is the soil dryness and, conversely, the larger is the resulting proportion,
the more pronounced is the soil wetness. Moreover, the description includes an indicator
of whether or not the city is eligible for a government declaration of natural disaster for a
drought event.

This description holds utmost relevance as it focuses on the critical role of soil humidity
in causing the shrinkage and swelling of clay, eventually leading to instabilities and the
formation of cracks in buildings.

REQUESTS FOR THE GOVERNMENT DECLARATION OF NATURAL DISASTER FOR A DROUGHT EVENT.
Being the secretary of the Commission Interministérielle Catastrophe Naturelle, CCR has
been having access, since 1989, to the requests for the government declaration of natural
disaster for a drought event as they accrue. Formally, a city can submit a request for the
government declaration of natural disaster for a drought event for year t until the end of
June of year (t + 2). However, anticipating which cities will submit a request for year t is
only a necessity typically between the months of November of year t and of September of
year (t+ 1).

DESCRIPTION OF A CITY'S REQUEST HISTORY. Given a year t and a week u, the (t, u)-specific
description of a city’s request history consists of t and u, of the overall number of French
cities that submitted a request for year t during week u or before, and of the ratio of the
logarithm of that overall number to u. In addition, the description includes the number
of requests submitted by the city since 1990 (respectively, between years (t − 4) and t),
the number of times the city obtained the government declaration of natural disaster for a
drought event since 1990 (respectively, between years (t − 4) and t), and the ratio of the
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aforementioned number of requests submitted by the city since 1990 to the number of years
between 1990 and year t. Moreover, the description includes an indicator of whether or not
the city was denied the government declaration of natural disaster for a drought event on
year (t − 1), and the numbers of denied requests between (t − 2) and (t − 1) and between
(t− 4) and (t− 1).

This description holds significant relevance, primarily due to its ability to provide valuable
insights into the city’s inclination to submit a request for a government declaration of natural
disaster for a drought event. By examining the city’s historical pattern of submitting such
requests since 1990 or within the previous five years, regardless of their success, we can
gather essential information about the city’s familiarity with the administrative procedure.
Additionally, this serves as a proxy for assessing the city’s exposure to drought events.

DESCRIPTION OF A CITY'S VICINITY. Using the flux of requests, we compile a collection of
variables describing the vicinity of a city. The variables concern either the neighboring cities
or, more broadly, the cities in the same department. Given a year t and a week u, the (t, u)-
specific collection notably consists of the following five numbers: the number of neighboring
cities that requested the government declaration of natural disaster for a drought event for
year t during week u or before, the number of neighboring cities (respectively, of cities in the
same department) that submitted such a request for the first time for year t, and the number
of neighboring cities (respectively, of cities in the same department) that submitted such a
request for the first time between years (t−4) and t. The collection is complemented by the
ratios of the four last numbers to either the number of neighboring cities or the number of
cities in the same department. In addition, the collection also includes the number of claims
for year t made during week u or before by the neighboring cities (respectively, by the cities
of the same department), and the ratio of that number to the number of neighboring cities
(respectively, of cities in the same department).

To conclude, it is important to emphasize the potential relevance of these variables for
several compelling reasons. For instance, it is common for mayors of neighboring cities to
exchange information, particularly if their cities are part of the same federation of munic-
ipalities. This interconnectedness means that if a city submits a request for a government
declaration of natural disaster for a drought event, then that raises the likelihood that neigh-
boring cities will do the same, either in the same year or later. Furthermore, it is worth
noting that drought events are not necessarily confined to a single city’s territory. Even if
the mayors do not actively share information, the occurrence of a drought event in one city
that prompts the submission of a request for a government declaration of natural disaster
for a drought event increases the likelihood that a similar drought event has taken place in
nearby areas. Consequently, the likelihood of submitting a request for such a declaration
also increases in those affected vicinity areas.

5.2.3 The statistical challenge and some facts about the data
As elaborated in Section 5.2.1, each French city can contribute a data structure for a given
year t and a given week u (the integer u being the number of weeks starting from the first
week of year t). It is worth mentioning that the composition of the set of French cities
undergoes slight changes from one year to another. To address this variability, we define
At as the set of cities for year t (with the aforementioned convention t = 1, 2, 3 for years
2019, 2020 and 2021, respectively). Furthermore, we introduce Ut as the comprehensive list
of weeks during which CCR received the latest submissions of a request for the government
declaration of natural disaster for a drought event for year t, encompassing a period of up
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to 85 weeks following the first week of year t.
We report that cardA1 = cardA2 = 34, 841 and cardA3 = 34, 836. Moreover,

U1 = {44, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 69, 75},
U2 = {48, 49, 50, 51, 53, 54, 55, 56, 58, 59, 60, 61, 63, 65, 67, 68, 69, 70, 71, 73, 75, 78, 81, 85},
U3 = {49, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 71, 72, 73, 77, 78}.

For every year t = 1, 2, 3 and each week u ∈ Ut, we let

• ξα,t,u ∈ X ⊂ Rd be city α’s vector of covariates on week u relative to year t (for any
city α ∈ At);

• ζα,t,u ∈ {0, 1} be the indicator equal to 1 if and only if (iff) city α submitted a request
before or during week u relative to year t (for any city α ∈ At);

• u− := max{ν ∈ Ut : ν < u} index the week before u in Ut (with convention u− = 0 if
u = minUt), so that (ζα,t,u − ζα,t,u−) ∈ {0, 1} equals 1 iff city α submitted a request
during week u relative to year t (for any city α ∈ At, with convention ζα,t,0 = 0).

In addition we also define, for each year t = 1, 2, 3 and any city α ∈ At, ζα,t ∈ {0, 1}, the
indicator equal to 1 iff city α submitted a request relative to year t (possibly after the week
maxUt). Note that ζα,t ≥ maxu∈Ut ζα,t,u. In words, some cities may submit a request for
the government declaration of natural disaster for a drought event relative to year t beyond
week maxUt. This fact is discussed further in the next paragraph.

Table 5.1 reports the quartiles of the sets{∑
α∈At

(ζα,t,u − ζα,t,u−) : u ∈ Ut

}
, t = 1, 2, 3,

that is, the quartiles of the sets of the week-specific numbers of new requests for the gov-
ernment declaration of natural disaster for a drought event relative to year t, for t = 1, 2, 3.
Table 5.1 also reports the initial numbers and proportions of requests for the government
declaration of natural disaster for a drought event relative to year t (that is,

∑
α∈At

ζα,t,min Ut

and
∑

α∈At
ζα,t,min Ut/ cardAt), their overall numbers and proportions at week maxUt (that

is,
∑

α∈At
ζα,t,max Ut

and
∑

α∈At
ζα,t,max Ut

/ cardAt), and the overall numbers and propor-
tions of requests for the government declaration of natural disaster for a drought event
relative to year t (that is,

∑
α∈At

ζα,t and
∑

α∈At
ζα,t/ cardAt), for t = 1, 2, 3. We em-

phasize that only 12.5% (776/6240), 11.0% (589/5335) and 4.8% (81/1696) of the requests
for the government declaration of natural disaster for a drought event relative to year t
were already submitted at week minUt, while only 82% (5142/6240), 92.9% (4958/5335)
and 69.0% (1169/1696) of the overall numbers of requests for the government declaration
of natural disaster for a drought event relative to year t were submitted at week maxUt,
for t = 1, 2, 3. Moreover, between the first and last weeks minUt and maxUt, the median
numbers of newly submitted requests corresponded to 4.7% (245/5142), 3.3% (166/4958)
and 4% (47/1169) of the overall numbers of requests at week maxUt, for t = 1, 2, 3.

Our ultimate objective is to achieve sequential forecasting of which cities will submit a
request for the government declaration of natural disaster for a drought event leveraging
past data and, in particular, knowing which cities already did. Formally, our objective is
the following: for every u ∈ U3, leveraging past observations, that is

{(ξα,t,ν , ζα,t,ν , ζα,t) : t = 1, 2, α ∈ At, ν ∈ Ut st ζα,t,ν = 0 or (ζα,t,ν− , ζα,t,ν) = (0, 1)}
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numbers of new requests 2019 2020 2021
(
∑

α∈At
(ζα,t,u − ζα,t,u−), u ∈ Ut) (t = 1) (t = 2) (t = 3)

minimum 104 41 10
1st quartile 138 75 32

median 245 166 47
3rd quartile 386 208 69

maximum 776 589 129
initial number (and proportion)

of requests (
∑

α∈At
ζα,t,min Ut

) 776 (2.2%) 589 (1.7%) 81 (0.2%)
overall number (and proportion)

of requests (
∑

α∈At
ζα,t,max Ut

) 5142 (14.8%) 4958 (14.2%) 1169 (3.3%)
overall number (and proportion)

of requests (
∑

α∈At
ζα,t) 6240 (17.9%) 5335 (15.3%) 1696 (4.9%)

Table 5.1 – Summary measures of the sets {
∑

α∈At
(ζα,t,u − ζα,t,u− ) : u ∈ Ut} (t = 1, 2, 3), that is, of the

numbers of new requests for the government declaration of natural disaster for a drought event as weeks go by,
for years 2019, 2020 and 2021 respectively. In addition, the overall numbers

∑
α∈At

ζα,t and proportions∑
α∈At

ζα,t/ cardAt (t = 1, 2, 3) of requests for the government declaration of natural disaster for a drought
event relative to year t are also reported for years 2019, 2020 and 2021.

if u = minU3 and otherwise

{(ξα,t,ν , ζα,t,ν , ζα,t) : t = 1, 2, α ∈ At, ν ∈ Ut st ζα,t,ν = 0 or (ζα,t,ν− , ζα,t,ν) = (0, 1)}
∪{(ξα,3,ν , ζα,3,ν , 0) : α ∈ A3, ν ∈ U3, ν < u st ζα,3,ν = 0 or (ζα,3,ν− , ζα,3,ν) = (0, 1)}, (5.1)

we wish to predict ζα,3 using ξα,3,u for every α ∈ A3 such that ζα,3,u = 0. Of note, the set
defined in (5.1) when u = maxU3 consists of more than 2.05 million triplets. Moreover, we
will not apply thresholding to the estimated probabilities with the aim of generating binary
labels.

The focus on “making sparse predictions” which is explicit in the title of the manuscript
is justified by the last row of Table 5.1: in 2019, 2020 and 2021, the proportions of cities
that eventually submitted a request for the government declaration of natural disaster for
a drought event were respectively 17.9%, 15.3% and 4.9%. Finally, promoting 0-predictions
as part of the control of the sparsity of a set of predictions {ζ̂uα,3 : α ∈ A3 st ζα,3,u = 0} for
a week u ∈ U3 holds merit in itself. Indeed, denoting by ISα,3 the 2021 (estimated) insured
sum corresponding to the houses located within the limits of any city α ∈ A3 (one of the
entries of ξα,3,u, see Section 5.2.2), the sum∑

α∈A3

ISα,3 1{ζα,3,u = 1}+
∑
α∈A3

ζ̂uα,3ISα,3 1{ζα,3,u = 0} (5.2)

may be used as an estimator of 2021 drought events overall cost. The contribution to (5.2)
of a single city α ∈ A3 with a large ISα,3 may be significant even if its prediction ζ̂uα,3 is
small but not 0. In addition, the contribution to (5.2) of many cities with moderate insured
sums may be significant even if their prediction are small but not 0.

5.3 A modicum of optimal transport theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This section introduces the few tools from optimal transport theory that will be instrumental
in developing our novel procedure in the next section.
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Fix arbitrarily two integers R,R′ ≥ 2. Let z := (z1, . . . , zR) and z′ := (z′1, . . . , z
′
R′) be

two collections of elements of a space Z. Let c : Z × Z → R+ map any couple (z, z′) to
a nonnegative number interpreted as the cost to move z to z′, a cost function. The cost
function c induces the R × R′ matrix C(z, z′) ∈ RR×R′

+ whose (r, r′)-specific component
(C(z, z′))r,r′ := c(zr, z

′
r′) is interpreted as the cost to move zr to z′r′ (relative to c).

Let ΠR,R′ := {P ∈ RR×R′

+ : P 1R′ = 1
R 1R, P

⊤ 1R = 1
R′ 1R} represent the joint laws onJRK× JR′K with uniform marginal laws, where JdK := {1, . . . , d} for every integer d ≥ 1. For

each P ∈ ΠR,R′ , let
E(P ) := −

∑
r∈JRK,r′∈JR′KPr,r′ logPr,r′

denote the entropy of P . For every P ∈ ΠR,R′ and C ∈ RR×R′

+ , let

⟨P,C⟩ :=
∑

r∈JRK,r′∈JR′KPr,r′ × Cr,r′ .

When C = C(z, z′), ⟨P,C⟩ is interpreted as the (P,C)-specific cost to transport z onto z′.
For any γ > 0 and C ∈ RR×R′

+ , introduce

Wγ(C) := min
P∈ΠR,R′

[⟨P,C⟩ − γE(P )] . (5.3)

In particular, when C = C(z, z′),Wγ(C(z, z′)) is the γ-regularized optimal cost to transport
z onto z′, abbreviated to “the γ-regularized OT cost”. Considering the γ-regularized OT
cost Wγ(C(z, z′)) instead of the regular OT cost W0(C(z, z′)) (defined as in (5.3) with
γ = 0) has two important merits (Peyré and Cuturi, 2019, Chapters 3, 4, 9). First, RR×R′

+ ∋
C 7→ W0(C) ∈ R is not differentiable whereas RR×R′

+ ∋ C 7→ Wγ(C) ∈ R is differentiable.
Second, for any C ∈ RR×R′

+ , computing W0(C) requires solving a costly linear program via
network simplex methods whereas computingWγ(C) can be performed easily thanks to the
so-called Sinkhorn algorithm (Cuturi, 2013b).

Finally, we use the γ-regularized OT cost to define the γ-regularized Sinkhorn cost

Sγ(z, z′) :=Wγ(C(z, z′))− 1
2 [Wγ(C(z, z)) +Wγ(C(z′, z′))]

(the dependence of Sγ(z, z′) on the cost function c is hidden). By (Feydy et al., 2019b,
Theorem 1), Sγ(z, z′) ≥ Sγ(z, z) = 0. Moreover, we stress that Sγ(z, z′) can be computed
with little additional computational cost compared to Wγ(z, z′).

5.4 Making sparse predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The procedure we are about to present is funded on two core ideas. Firstly, we aim to predict
whether a city will submit a request for the government declaration of natural disaster for
a drought event by employing an interpretable comparison of the city’s covariates with
those of other cities whose submission status may be already known. Secondly, we want to
have a control on the sparsity of the set of predictions and encourage 0-predictions, which
correspond to cases where we predict that a city will not submit a request.
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5.4.1 Translation to an optimization problem
As elaborated in Section 5.2.3, our objective is to predict ζα,3 based on ξα,3,u for every
α ∈ A3 such that ζα,3,u = 0, using past observations (5.1), and so repeatedly for each
u ∈ U3. In the rest of the study, it will be convenient to denote generically {(xm, ym) : m ∈JMK} ⊂ X × {0, 1} and {(x′n, y′n) : n ∈ JNK} ⊂ X × {0, 1} two collections of couples for
which it is desired to predict y′n based on x′n, for every n ∈ JNK, using past observations
(x1, y1), …, (xM , yM ). To do so, we propose to solve the following optimization problem:

arg min
θ∈RN

{Sγ(z, z′(θ)) + gτ (θ)} , (5.4)

where

• for all θ ∈ RN ,

z := ((x1, y1), . . . , (xM , yM )) , z′(θ) := ((x′1, θ1), . . . , (x
′
N , θN )) ;

• the cost function c : (X × R)× (X × R)→ R+ is given by

c ((x, y), (x′, θ)) := dis(x, x′)2 + (y − θ)2 (5.5)

for a distance or dissimilarity dis on X ;

• gτ is a convex function given by either gτ (θ) := τ∥θ∥1 + I{θ ∈ [0, 1]N}, with ∥θ∥1 :=∑
n∈JNK |θn|, or gτ (θ) := I{∥θ∥1 ≤ τ} + I{θ ∈ [0, 1]N}, where I{A} equals 0 if A is

true and +∞ otherwise;

• γ, τ > 0 are some user-supplied constants.

A few comments are in order. Firstly, the argmin in (5.4) is over RN but could equivalently
be over [0, 1]N (even if the term I{θ ∈ [0, 1]N} was dropped from the definitions of gτ (θ)).
We thus view θn as the probability that the city described by x′n will submit a request of
the government declaration of natural disaster for a drought event.

Secondly, though hidden in the notation, the cost function c obviously plays a pivotal
role. It operationalizes the core idea of making predictions based on comparisons between
the covariates of different cities.

Thirdly, for both choices of gτ , the ℓ1-norm of θ can be seen as a measure of sparsity of
θ, a substitute for the integer card{n ∈ JNK : θn ̸= 0}. Incorporating the penalization term
+gτ (θ) operationalizes the core idea of promoting sparse solutions, aligning with our prior
understanding that only a limited number of cities will eventually submit a request of the
government declaration of natural disaster for a drought event (see Table 5.1 for the actual
numbers and proportions of cities that did in 2019, 2020 and 2021). Finally, the case where
gτ (θ) = I{∥θ∥1 ≤ τ} + I{θ ∈ [0, 1]N} is quite interesting because, as we will see, there is a
natural way to select τ .

5.4.2 On solving (5.4)
Solving (5.4) is not straightforward, in part because the criterion to minimize is the sum
of the non-convex differentiable function f : θ 7→ Sγ(z, z′(θ)) (see Section 5.7.1.b) and
of the convex non-differentiable function gτ . Luckily, we can rely on the so-called iPiano
algorithm (Ochs et al., 2015) which was developed precisely to deal with such optimization
problems.
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The iPiano algorithm starts from an initial θ−1 = θ0 ∈]0, 1[N and the update scheme
informally writes as (below, α, β are positive constants)

θk+1 = Proxαgτ

(
θk − α∇f(θk) + β(θk − θk−1)

)
, (5.6)

where the proximal map Proxαgτ is defined by

Proxαgτ (t) := arg min
θ∈RN

{
1
2∥θ − t∥

2
2 + αgτ (θ)

}
. (5.7)

On the one hand, if gτ (θ) = τ∥θ∥1 + I{θ ∈ [0, 1]N} then (5.7) is simply given by

(Proxαgτ (t))n = min{(|tn| − ατ)+ , 1}.

In particular, if t ∈ [0, 1]N then (Proxαgτ (t))n = (tn − ατ)+ for every n ∈ JNK. On the
other hand, if gτ (θ) = I{∥θ∥1 ≤ τ}+ I{θ ∈ [0, 1]N} then the proximal map is the Euclidean
projection onto the ℓ1-ball centered at 0 and with radius τ . An efficient algorithm is available
to implement this projection (Duchi et al., 2008).

Moreover, following (Cuturi and Doucet, 2014, Section 4.3), we show in Section 5.7.1.b
that the gradient of f is given by

∇f(θ) = ∇Wγ(C(z, z′(θ))− 1
2∇Wγ (C(z′(θ), z′(θ)))

= 2( 1
N θ − P̂

⊤
θ y)− ( 2

N θ − (Q̂θ + Q̂⊤
θ )θ)

= −2P̂⊤
θ y + (Q̂θ + Q̂⊤

θ )θ (5.8)

with

P̂θ = arg min
P∈ΠM,N

{⟨P,C(z, z′(θ))⟩ − γE(P )} , (5.9)

Q̂θ = arg min
P∈ΠN,N

{⟨P,C(z′(θ), z′(θ))⟩ − γE(P )} . (5.10)

We check that the assumptions of (Ochs et al., 2015, Theorems 4.9 and 4.14) are met by
proving that f is C1-smooth with an L-Lipschitz gradient on dom gτ and that (f+gτ ) satisfies
the Kurdyka-Lojasiewicz property on its domain (the proof is presented in Section 5.7).
Therefore we can assert that

• the sequence (θk)k≥0 converges to a critical point of θ 7→ f(θ) + gτ (θ);

• mink≤K ∥θk+1 − θk∥22 = O(K−1);

• if we set r(θ) := θ − Proxαgτ (θ − α∇f(θ)), then mink≤K ∥r(θk)∥22 = O(K−1).

The so-called proximal residual r(θ) is interesting because r(θ) = 0 means that the first-order
optimality condition is met at θ. Indeed (denoting by ∂ℓ(x) either the subdifferential of the
convex function ℓ at x or the limiting-subdifferential of the proper lower semicontinuous
function ℓ at x, see Section 5.7.2.a), r(θ) = 0 iff

θ = Proxαgτ (θ − θ∇f(θ)) iff 0 ∈ ∂
(
1
2∥θ − α∇f(θ)− ·∥

2
2 + αgτ

)
(θ)

iff 0 ∈ {θ − (θ − α∇f(θ))}+ α∂gτ (θ)

iff 0 ∈ {α∇f(θ)}+ α∂gτ (θ)

iff 0 ∈ ∂(f + gτ )(θ).
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5.4.3 Implementation of the ``OT-procedure''
Algorithm 2 solves (5.4) by using the iPiano algorithm and a mini-batch procedure to cope
with situations where M and N are large. From now on, running the OT-procedure will
mean applying Algorithm 2.

Algorithm 2 A mini-batch version of the inertial proximal algorithm for nonconvex opti-
mization (iPiano) tailored to solve (5.4). For any vector θ ∈ RN and subset N of JNK, we
denote θ|N := (θn)n∈N ∈ Rcard N .
Input: Data {(xm, ym) : m ∈ JMK}, {x′n : n ∈ JNK}; regularization parameter γ > 0,

constraint τ > 0; learning rate α > 0, momentum parameter β ≥ 0; batch size B ∈ N∗,
number of iterations T ∈ N∗

Output: Proposed optimizer θT
Sample θ−1 ∈ RN with independent components drawn from the uniform law on [0, 0.01]
Set θ−1 ← 0.5 + θ−1 and θ0 ← θ−1

Set t← 0
while t < T do

Independently, sample uniformly without replacement M ⊂ JMK, N ⊂ JNK of cardi-
nality B
Set z← ((xm, ym) : m ∈M) and z′(θt|N )← ((x′n, θ

t
n) : n ∈ N )

Compute F (θt|N ) = Sγ(z, z′(θt|N )) using Sinkhorn’s algorithm
Compute ∇F (θt|N ) using automatic differentiation
Set θt+1 ← θt and update θt+1|N ← θt+1|N − α∇F (θt|N ) + β(θt|N − θt−1|N )
Update θt+1 ← Proxαgτ (θ

t+1)
Update t← t+ 1

end while

We wrote a python/pytorch program that implements Algorithm 2. It will be made
available soon. The program hinges on the GeomLoss package (Feydy et al., 2019a) which
provides a very fast GPU implementation of the Sinkhorn algorithm (Cuturi, 2013b).

In Section 5.5, we conduct a simple simulation study in a simple context where X = R2

and both M and N are relatively small. We compare the results obtained by aggregating
the predictions acquired from classification algorithms with those achieved through the OT-
procedure. Notably, we report how we select the pivotal cost function (5.5), gτ and the
hyperparameters (γ, α, β) of Algorithm 2. Moreover, we also introduce the hybrid procedure
which synergistically combines and utilizes the two types of predictions.

Section 5.6 is dedicated to the challenging task of forecasting the requests of the gov-
ernment declaration of natural disaster for a drought event. This real-world application
poses greater challenges than the simulation study. Tangibly, these challenges arise because
X ⊂ Rd is a relatively high-dimensional space (d = 67) and both M and N are large. Intan-
gibly, the intricacies lie in the mechanisms that determine whether a request is submitted
or not.

We compare the results obtained from a classification algorithm with those achieved
through the OT-procedure and the hybrid procedure. Regarding the OT-procedure, we
notably rely on hyperband (Li et al., 2018), a bandit-based approach to hyperparameter
optimization, to define the pivotal cost function, and on a simple grid search to then fine-tune
the hyperparameters (γ, α, β) of Algorithm 2.
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5.5 A simple simulation study, introducing the "hybrid procedure" . .

5.5.1 Simulated data
For any p ∈ (0, 1), let Pp be the law on R2 × {0, 1} such that

• if R and A are independently drawn from the χ2(1) law and from the uniform law on
[0, 2π], if X = (R cos(A), R sin(A)) and if, conditionally on X, Y is drawn from the
Bernoulli law with parameter expit(cst(p) +R), then the joint law of (X,Y ) is Pp;

• the above constant cst(p) ∈ R is defined in such a way that EPp
(Y ) = Pp(Y = 1) = p.

For instance, cst(15%) ≈ −3.13, cst(10%) ≈ −3.83 and cst(5%) ≈ −5.00. Note that, for any
p ∈ (0, 1), under Pp, the further X is from 0 the more likely it is that Y = 1.

We generate independently L = 30 data sets as follows. For each ℓ ∈ JLK, for every
p ∈ {15%, 10%, 5%}, we independently sample n = 1000 independent copies of (X,Y ) under
Pp. We thus obtain M = 3n couples (xm,ℓ, ym,ℓ). Moreover, we also sample independently
n = 1000 independent copies of (X,Y ) from the law Pp with p = 5%. We thus obtain N = n
couples (x′n,ℓ, y′n,ℓ). Our objective is to recover, for each ℓ ∈ JLK, the vector (y′n,ℓ)n∈JNK based
on {(xm,ℓ, ym,ℓ) : m ∈ JMK} and on (x′n,ℓ)n∈JNK.
5.5.2 Fine-tuning the OT-procedure
Let us first describe how we fine-tune the OT-procedure in order to predict (y′n,ℓ)n∈JNK
by solving (5.4) with (xm, ym) = (xm,ℓ, ym,ℓ) and (x′n, y

′
n) = (x′n,ℓ, y

′
n,ℓ) for all m ∈ JMK

and n ∈ JNK, for each ℓ ∈ JLK in turn. On the one hand, we select the cost function
c : (R2 × {0, 1})× (R2 × {0, 1})→ R+ (5.5) given by

c((x1, x2, y), (x
′
1, x

′
2, y

′)) := 100×
∣∣∣∣√x21 + x22 −

√
(x′1)

2 + (x′2)
2

∣∣∣∣+ (y − y′)2.

Admittedly, this puts us in a favorable position because the true conditional probability
of the event Y = 1 given X only depends on

√
X2

1 +X2
2 . On the other hand, we choose

the function gτ : θ 7→ I{∥θ∥1 ≤ τ} + I{θ ∈ [0, 1]N} for a τ whose choice is explained in
Section 5.5.3. Furthermore, in view of Algorithm 2, we set γ = 10−3, α = 10−3, β = 10−4,
B = 128 and T = 2000.

5.5.3 Alternative, classification-based approaches
As an alternative approach, we also consider training an algorithm using {(xm,ℓ, ym,ℓ) :
m ∈ JMK} in order to learn to classify each x′n,ℓ individually (n ∈ JNK), for every ℓ ∈ JLK
in turn. Instead of selecting one algorithm, we rely on super learning to learn and train
a meta-algorithm that builds upon several algorithms to classify at least as well as (and
sometimes better than) all the candidate algorithms (van der Laan et al., 2007; Polley et al.,
2021, 2011, and references therein). We rely on four individual algorithms to learn the
conditional probability of the event Y = 1 given X: an algorithm that approximates it
under the form of a constant function (in X); an algorithm that learns which element of the
working model {x 7→ expit(t0+t1x1+t2x2) : t ∈ R3} best approximates it (see stats::glm);
an algorithm that approximates it under the form of a tree, using the covariates X1 and X2

(see rpart::rpart); an algorithm that approximates it under the form of a random forest,
using the covariates X1 and X2 (see ranger::ranger) – more details are given below.
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In addition, we consider a second super learning procedure to learn the conditional prob-
ability of the event Y = 1 given X by relying on: an algorithm that approximates it under
the form of a constant function (in X); an algorithm that learns which element of the work-
ing model {x 7→ expit(t0 + t1x1 + t2x2 + t3

√
x21 + x22) : t ∈ R4} best approximates it (see

stats::glm); an algorithm that approximates it under the form of a tree, using the covari-
ates X1, X2 and

√
X2

1 +X2
2 = R (see rpart::rpart); an algorithm that approximates it

under the form of a random forest, using the covariates X1, X2 and R (see ranger::ranger).
We expect the second super learner to perform better than the first one because it can use
the relevant covariate R.

We use the SuperLearner R package (R Core Team, 2022; Polley et al., 2021) to im-
plement and train the super learners. For both super learning procedures, we rely on
V -fold cross validation with V = 10 folds and use the default hyperparameters specified
in SuperLearner::SL.glm, SuperLearner::SL.rpart (Therneau and Atkinson, 2019) and
SuperLearner::SL.ranger (Wright and Ziegler, 2017).

5.5.4 Results, introducing the "hybrid procedure"

For each ℓ ∈ JLK, we train the two super learners and denote by ŷ
′SL1

n,ℓ and ŷ
′SL2

n,ℓ the estimates
of the conditional probabilities that Y = 1 given X = x′n,ℓ that they output for each n ∈ JNK.
Next, we set τ = ∥ŷ

′SL2

n,ℓ ∥1 for the OT-procedure, run it, and denote by ŷ′OT
n,ℓ the estimates

of the conditional probability that Y = 1 given X = x′n,ℓ for each n ∈ JNK that it yields.
Before discussing the results, we introduce a fourth procedure that we aptly refer to as the

“hybrid procedure” because it builds upon the OT-procedure and the second super learning
procedure. Specifically, the hybrid procedure produces estimates of the above conditional
probabilities which are merely defined as the geometric means of the estimates output by
the second super learner and yielded by the OT-procedure. Hereafter, these estimates are
denoted by ŷ′HYB

n,ℓ := (ŷ
′SL2

n,ℓ × ŷ
′OT
n,ℓ )1/2 for every n ∈ JNK.

Figure 5.1 provides insights into the predictions {ŷ′•
n,ℓ : n ∈ JNK} where the symbol

• stands for SL1,SL2,OT,HYB. On the one hand, the empirical cumulative distribution
functions (ecdfs) plotted in the left-hand side panel of Figure 5.1 reveal that the predictions
ŷ

′OT
n,ℓ for (n, ℓ) ∈ JNK× JLK such that yn,ℓ = 0 are often (17%) equal to 0 and are generally

more concentrated around 0 than the other predictions (the red ecdf dominates the others).
In stark contrast, the predictions ŷ

′SL1

n,ℓ and ŷ
′SL2

n,ℓ for the same couples (n, ℓ) are bounded
away from 0 (being larger than 1.56% and 1.35%, respectively). On the other hand, the ecdfs
plotted in the right-hand side panel of Figure 5.1 reveal that the predictions ŷ′OT

n,ℓ for (n, ℓ) ∈JNK × JLK such that yn,ℓ = 1 can be equal to 0 (2.7%) and are generally smaller than the
other predictions (the red ecdf dominates the others again). They also show that the second
super learner outperforms the first one in the sense that the maximum gap between their
ecdfs is large (a Kolmogorov-Smirnov viewpoint). Furthermore, by conducting a comparison
across panels we discern the notable and desirable trend wherein the predictions {ŷ′•

n,ℓ : n ∈JNK, ℓ ∈ JLK st y′n,ℓ = y} exhibit larger values when y = 1 as opposed to when y = 0.
In conclusion, the hybrid predictions seem to strike a fine balance between the predictions
output by the second super learner and the OT-procedure.

In order to complement this first analysis, we employ mean squared error (MSE) as a
measure of performance and compute, for each ℓ ∈ JLK,

MSE•
ℓ :=

1

N

∑
n∈JNK(y

′
n,ℓ − ŷ

′•
n,ℓ)

2 (5.11)
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Figure 5.1 – Empirical cumulative distribution functions of the sets {ŷ′•
n,ℓ : ℓ ∈ JLK, n ∈ JNK st y′n,ℓ = y} for

y = 0 (left-hand side panel) and y = 1 (right-hand side panel), where the symbol • stands for
SL1, SL2,OT,HYB.
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where we substitute SL1,SL2,OT,HYB for the symbol •. The average and standard devi-
ations of these numbers are reported in Table 5.2. There is no stark differences in terms of
standard deviations. In terms of average, the estimates yielded by the OT-procedure out-
perform those obtained by super learning. However, it is the hybrid procedure that emerges
as the top performer. Figure 5.2 allows us to go beyond comparisons in average. More
that two thirds of the points are situated to the left of the black vertical line, meaning that
MSEOT

ℓ is smaller than MSESL2

ℓ for the corresponding ℓs. Likewise, 29 out of 30 blue points
are situated below the horizontal black line, meaning that MSEHYB

ℓ is smaller than MSESL2

ℓ

for the corresponding ℓs, while 24 out of 30 red points are situated below the horizontal
black line, meaning that MSEHYB

ℓ is smaller than MSEOT
ℓ for the corresponding ℓs. In par-

ticular, the average pattern unveiled by Table 5.2 remains consistent even before averaging:
the hybrid procedure exhibits superior performance, surpassing the OT-procedure, which in
turn outperforms the second super learning procedure.

MSE
procedure average std. deviation

SL1 0.0361 0.0046
SL2 0.0345 0.0048

HYB 0.0330 0.0045
OT 0.0337 0.0044

Table 5.2 – Averages and standard deviations of the mean squared errors {MSE•
ℓ : ℓ ∈ JLK} (5.11) where the

symbol • stands for SL1, SL2,OT,HYB and L = 30. See also Figure 5.2. In each column, the smallest value
stands out in bold characters.

5.6 Forecasting the requests of the government declaration of nat-
ural disaster for a drought event in France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6.1 Fine-tuning the OT-procedure
DEFINING A COST FUNCTION. To begin with, we address the challenge of defining a cost
function c : (X × R) × (X × R) → R+ (5.5). In view of the description of a generic vector
of covariates x ∈ X made in Section 5.2.1, let us rewrite x := (x[1], . . . , x[4]) where x[1], x[2],
x[3] and x[4] respectively regroup the covariates that collectively describe the corresponding
city (x[1], 16 variables) and its exposure to drought events (x[2], 25 variables), provide a
history of its past requests of declaration of natural disaster for a drought event, successful
or not (x[3], 13 variables), and describe the city’s vicinity (x[4], 13 variables).

Let ξ̄1 and std1 be the vectors whose components are the component-specific mean and
standard deviation of

{ξα,1,u : α ∈ A1, u ∈ U1 st ζα,t,u = 0 or (ζα,t,u− , ζα,t,u) = (0, 1)} ⊂ X ,

that is, the set of covariates corresponding to year 2019, and let ζ̄1 be the ∥ · ∥1-norm of
{ζα,1 : α ∈ A1}, that is, the number of cities which made a request for year 2019. For any
generic vector of covariates x ∈ X , denote (using the entrywise division of vectors)

x̃ :=
x− ξ̄1
std1

. (5.12)
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Figure 5.2 – Scatterplot of (MSEHYB
ℓ − MSE•

ℓ )/MSESL2
ℓ against (MSEOT

ℓ − MSESL2
ℓ )/MSESL2

ℓ (ℓ ∈ J30K) where
the symbol • stands for SL2 (blue) or OT (red). See also Table 5.2.
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We select a cost function in the parametric set {ca : a ∈ R5
+} where, for any a ∈ R5

+ and
x, x′ ∈ X , y, y′ ∈ R,

ca((x, y), (x
′, y′)) :=

4∑
k=1

ak∥x̃[k] − x̃′[k]∥
2
2 + a5(y − y′)2. (5.13)

To do so, we rely on Hyperband, an algorithm which reformulates hyperparameter
optimization as a pure-exploration, adaptive resource allocation problem addressing how
to allocate resources among randomly generated hyperparameter configurations (Li et al.,
2018). Specifically, in view of (5.4), we set γ = 10−2, gτ : θ 7→ I{∥θ∥1 ≤ τ}+ I{θ ∈ [0, 1]N}
with τ = ζ̄1 and, in view of (5.6) and Algorithm 2 in Section 5.4.3, we set

{(xm, ym) : m ∈ JMK} = {(ξα,1,75, ζα,1) : α ∈ A1 st ζα,2,75 = 0 or (ζα,2,75− , ζα,2,75) = (0, 1)},
(5.14)

{x′n : n ∈ JNK} = {ξα,2,85 : α ∈ A2 st ζα,2,85 = 0}, (5.15)

α = 10−3, β = 10−4 and B = 128. In words, setting (5.14) and (5.15) means that we
exploit the data associated with the last week relative to year 2019 (that is, the (75 −
52) = 23rd week of 2020) to predict which cities will submit a request for the government
declaration of natural disaster for a drought event for year 2020 during the last week relative
to year 2020 (that is, the (85 − 52) = 33rd week of 2021). As for the random generation
of configurations a = (a1, a2, a3, a4, a5) ∈ R5

+, we sample independently a5 uniformly on
[1/5, 10] and (a1, a2, a3, a4) from the law of 73 × exp(Z)/∥ exp(Z)∥1 with Z drawn in R4

from the centered Gaussian law with identity covariance matrix and where the exponential
is applied elementwise.

Moreover, in view of (Li et al., 2018, Algorithm 1, page 8), we set the maximum amount
of resource that can be allocated to a single configuration (that is, the maximum number of
iterations in Algorithm 2 that can be allocated to a randomly generated candidate a ∈ R5

+)
to R = 3000 and the parameter controlling the proportion of configurations discarded in
each round of SuccessiveHalving to η = 10. For this specific couple (R, η), Hyperband
consists of 4 independent “brackets” which we present in Table 5.3. In the bracket indexed
by s = 0, n0,0 = 4 different a ∈ R5

+s (that is, configurations) are independently randomly
generated; then each is allocated r0,0 = 3000 iterations in Algorithm 2 and associated with
a score, a notion that we will clarify in the next paragraph. In the brackets indexed by
s ∈ {1, 2, 3}, ns,0 different a ∈ R5

+s are independently randomly generated; then, each is
allocated rs,0 iterations of Algorithm 2 and associated with a score. Next, recursively for
i = 1, . . . , s, each of the ns,i configurations with the smallest scores is allocated rs,i iterations
of Algorithm 2 and associated with a new score.

brackets
s = 3 s = 2 s = 1 s = 0

i n3,i r3,i n2,i r2,i n1,i r1,i n0,i r0,i

0 1000 3 134 30 20 300 4 3000
1 100 30 13 300 2 3000
2 10 300 1 3000
3 4 3000

Table 5.3 – Resource allocations and numbers of configurations ((rs,i, ns,i), i ∈ {0, . . . , s}) in each bracket
s ∈ {0, 1, 2, 3} of the Hyperband procedure.
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It only remains to clarify what are the aforementioned scores. For any configuration a
randomly generated and tested while running Hyperband, let us denote by ζ̂OT,85

α,2 (a) the
predicted probability output by Algorithm 2 that city α will eventually submit a request for
the government declaration of natural disaster for a drought event for year 2020 for every
α ∈ A2 such that ζα,2,85 = 0. The score associated with a is the MSE score

1

N

∑
α∈A2

(ζ̂OT,85
α,2 (a)− ζα,2)2 1{ζα,2,85 = 0}. (5.16)

This completes the description of the Hyperband algorithm that we run to select a cost
function of the form (5.13). Eventually, we select ca with a ≈ (16.75, 18.74, 30.57, 6.94, 0.34)
(entries rounded to two decimal places).

RELATIVE IMPORTANCE OF THE FOUR GROUPS OF COVARIATES CONCERNING THE SELECTED COST
FUNCTION. To discuss the relative importance of each term in (5.13) with this choice of
a, we sample uniformly without replacement M = B = 128 elements x1, . . . , xm, . . . , xM
from {ξα,1,44 : α ∈ A} ⊂ X and, independently, N = B = 128 elements x′1, . . . , x′n, . . . , x′N
from {ξα,2,48 : α ∈ A} (recall that minU1 = 44 and minU2 = 48). In view of (5.12), each
xm yields x̃m,[1], x̃m,[2], x̃m,[3], x̃m,[4] and each x′n yields x̃′n,[1], x̃′n,[2], x̃′n,[3], x̃′n,[4]. We then
compute the quartiles of the sets {∥x̃m,[k] − x̃′n,[k]∥

2
2 : m ∈ JMK, n ∈ JNK} (k = 1, 2, 3, 4),

which we report in Table 5.4.
Looking at Table 5.4 it seems that, for any x, x′ ∈ X viewed as two cities’ vectors of

covariates, the sum
∑4

k=1 ak∥x[k]−x′[k]∥
2
2 (the left-hand side sum in (5.13)) is mainly driven,

in decreasing order of importance, by x[2], x
′
[2] (the groups of 25 covariates describing the

cities’ exposures to drought events), x[3], x′[3] (the groups of 13 covariates describing the
cities’ histories of requests of declaration of natural disaster for a drought event), x[1], x′[1]
(the groups of 16 covariates describing the cities) and x[4], x

′
[4] (the groups of 13 covariates

describing the cities’ vicinities). This is confirmed by Figure 5.3.
Figure 5.3 represents the cumulative distribution functions of the sets {cstm,n×ak∥x̃m,[k]−

x̃′n,[k]∥
2
2 : m,n ∈ J128K} (k = 1, 2, 3, 4) where each cstm,n (any m,n ∈ J128K) is defined as

cstm,n :=

(
4∑

k=1

ak∥x̃m,[k] − x̃′n,[k]∥
2
2

)−1

.

The more a cumulative distribution function is shifted to the right the more a generic sum∑4
k=1 ak∥x[k] − x′[k]∥

2
2 (for any x, x′ ∈ X , the left-hand side sum in (5.13)) is driven by the

corresponding groups of covariates. By this criterion, we recover the ordering suggested by
Table 5.4.

SETTING THE REMAINING HYPERPARAMETERS. Once the cost function is defined, we carry out
a grid search to select values for γ (the regularization parameter in (5.4)), α and β (the
learning rate and momentum parameters in Algorithm 2), with

(γ, α, β) ∈ {10−2, 10−1, 1} × {10−3, 5× 10−3} × {10−4, 5× 10−4}.

For each possible triplet (γ, α, β), we run Algorithm 2 with gτ : θ 7→ I{∥θ∥1 ≤ τ} +
I{θ ∈ [0, 1]N} where τ = ζ̄1, (5.14), (5.15), B = 128 and collect the predicted probabil-
ity ζ̂OT,85

α,2 (γ, α, β) that city α will eventually submit a request for the government decla-
ration of natural disaster for a drought event for year 2020 for every α ∈ A2 such that
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covariates a its exposure to its request its
describing: city drought events history vicinity

(x̃[k]) (k = 1) (k = 2) (k = 3) (k = 4)

minimum 0.40 2.80 2.01 0.00
1st quartile 5.25 7.41 2.01 1.26

median 6.20 8.75 3.69 2.35
3rd quartile 7.25 10.22 6.20 3.83

maximum 15.94 20.78 15.80 20.18
a 16.75 18.74 30.57 6.94

Table 5.4 – Quartiles of the sets {∥x̃m,[k] − x̃′
n,[k]

∥22 : m,n ∈ J128KK} (k = 1, 2, 3, 4) where x̃1, . . . , x̃128 and
x̃′
1, . . . , x̃

′
128 are derived from x1, . . . , x128 and x′

1, . . . , x
′
128 which are independently sampled, uniformly

without replacement, from {ξα,1,44 : α ∈ A} and {ξα,2,48 : α ∈ A}. The last row recalls the four first entries of
a selected based on the Hyperband algorithm. See also Figure 5.3.

ζα,2,85 = 0. The score associated with (γ, α, β) is the MSE score defined as in (5.16) with
ζ̂OT,85
α,2 (γ, α, β) substituted for ζ̂OT,85

α,2 (a). We select the triplet whose score is the smallest:
(γ, α, β) = (10−2, 10−3, 10−4).

5.6.2 Alternative, classification-based approaches
As in the simulation study presented in Section 5.5, we also develop an alternative approach
to predicting the requests of the government declaration of natural disaster for a drought
event. We consider five individual algorithms in order to learn to classify each x′n (n ∈ JNK)
using {(xm, ym) : m ∈ JMK}. From a probabilistic viewpoint, the first algorithm, CST,
approximates the conditional probability that Y = 1 given X under the form of a constant
function (in X); the second algorithm, GLM, learns which element in a linear working model
best approximates it (see stats::glm); the third algorithm, RPART, approximates it under
the form of a tree (see rpart::rpart); the fourth algorithm, RANGER, approximates it
under the form of a random forest (see ranger::ranger); the fifth algorithm, KNN, uses the
nearest labelled neighbors of any x to estimate the conditional probability at X = x. More
specifically, the linear working model at the core of GLM regresses Y linearly onto each com-
ponent of X, treating as categorical variables the covariates characterizing a city’s seismic
and climatic zones, and uses a logit link function. RPART relies on the default hyperparam-
eters specified in rpart::rpart.control (Therneau and Atkinson, 2019). RANGER uses
the Gini splitting rule while the other hyperparameters are set to their default values spec-
ified in ranger::ranger (Wright and Ziegler, 2017). As for KNN, it relies on the python
class sklearn.neighbors.KNeighborsClassifier (Buitinck et al., 2013) and uses k = 100
neighbors, uniform weights, the ball tree algorithm (Liu et al., 2006, to handle the large
learning data set) with a leaf size set to 30 and the weighted Euclidean (x, x′) 7→ ∥x̃− x̃′∥2.

We adopt a sequential learning viewpoint. Firstly, we train the five algorithms using all
the data relative to year 2019, that is

{(xm, ym) : m ∈ JMK}
= {(ξα,1,u, ζα,1) : α ∈ A1, u ∈ U1 st ζα,1,u = 0 or (ζα,1,u− , ζα,1,u) = (0, 1)},

yielding five functions ζ̂•1 : X → [0, 1], where the symbol • stands for CST, GLM, RPART,
RANGER or KNN. Secondly, for each algorithm in turn, we compute the predicted prob-
abilities of submitting a request relative to year 2020 for every week u ∈ U2 and all cities
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Figure 5.3 – Cumulative distribution functions of the sets {cstm,n × ak∥x̃m,[k] − x̃′
n,[k]

∥22 : m,n ∈ J128K}
(k = 1, 2, 3, 4) where x̃1, . . . , x̃128 and x̃′

1, . . . , x̃
′
128 are derived from x1, . . . , x128 and x′

1, . . . , x
′
128 which are

independently sampled, uniformly without replacement, from {ξα,1,44 : α ∈ A} and {ξα,2,48 : α ∈ A}, where a
is selected based on the Hyperband algorithm, and where each cstm,n is such that

cstm,n ×
∑4

k=1 ak∥x̃m,[k] − x̃′
n,[k]

∥22 = 1 for all m,n ∈ J128K. The more a cumulative distribution function is
shifted to the right the more a generic sum

∑4
k=1 ak∥x[k] − x′

[k]
∥22 (for any x, x′ ∈ X , the left-hand side sum in

(5.13)) is driven by the corresponding groups of covariates. See also Table 5.4.

which did not submit a request yet by week u, that is ζ̂•,uα,2 := ζ̂•1 (ξα,2,u) for every u ∈ U2 and
α ∈ A2 such that ζα,2,u = 0. Thirdly, for each algorithm in turn, we compute the overall
MSE score ∑

u∈U2

∑
α∈A2

(ζ̂•,uα,2 − ζα,2)2 1{ζα,2,u = 0}∑
u∈U2

∑
α∈A2

1{ζα,2,u = 0}
.

The top-performing algorithm, GLM, is defined as the one with the smallest overall MSE
score among all. We refer to it as the discrete super learner SL for year 2021 (we comment
on the word “discrete” in the next paragraph). Lastly we retrain GLM, leveraging all data
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relative to years 2019 and 2020, that is

{(xm, ym) : m ∈ JMK}
= {(ξα,t,u, ζα,t) : t = 1, 2, α ∈ At, u ∈ Ut st ζα,t,u = 0 or (ζα,t,u− , ζα,t,u) = (0, 1)},

yielding the function ζ̂SL
1:2 : X → [0, 1].

Returning to the word “discrete” mentioned in the previous paragraph, it suggests that
our focus lies in determining the top-performing algorithm rather than seeking the best com-
bination of all the algorithms. This approach is justified due to our limited hindsight, relying
solely on two years of data. To illustrate, consider a future scenario where we aim to forecast
the requests of the government declaration of natural disaster for a drought event for year
t beyond 2021 based on data from years 2019 to (t− 1). The sequential learning procedure
outlined above would naturally extend, opening the possibility that another algorithm may
outperform GLM as the best-performing algorithm.

5.6.3 Results
We compute the predicted probabilities of submitting a request relative to year 2021 for
every week u ∈ U3 and all cities which did not submit a request yet by week u, that is
ζ̂SL,u
α,3 := ζ̂SL

1:2(ξα,3,u) for every u ∈ U3 and α ∈ A3 such that ζα,3,u = 0. Moreover, we
run Algorithm 2 sequentially for each u ∈ U3, using the cost function (5.13) with a ≈
(16.75, 18.74, 30.57, 6.94, 0.34), (γ, α, β) = (10−2, 10−3, 10−4), B = 128, T = 30, 000 and
gτ : θ 7→ I{∥θ∥1 ≤ τ} + I{θ ∈ [0, 1]N} with τ = ∥(ζ̂SL,u

α,3 )α∈A3 st ζα,3,u=0∥1. This yields the
predictions ζ̂OT,u

α,3 for every u ∈ U3 and α ∈ A3 such that ζα,3,u = 0. Finally, we compute
the predictions according to the hybrid procedure, that is, ζ̂HYB,u

α,3 := (ζ̂SL,u
α,3 × ζ̂

OT,u
α,3 )1/2 for

every u ∈ U3 and α ∈ A3 such that ζα,3,u = 0. Of note, it necessarily holds by design that

∥(ζ̂HYB,u
α,3 )α∈A3 st ζα,3,u=0∥1 ≤ ∥(ζ̂SL,u

α,3 )α∈A3 st ζα,3,u=0∥1 (5.17)

for every u ∈ U3. Indeed, for any θ, θ′ ∈ RN
+ such that ∥θ∥1 ≥ ∥θ′∥1, the Cauchy-Schwarz

inequality yields
∥([θnθ′n]1/2)n∈JNK∥1 ≤ (∥θ∥1 × ∥θ′∥1)1/2 ≤ ∥θ∥1.

Figure 5.4 represents the ecdfs of the predicted probabilities {ζ̂•,uα,3 : α ∈ A3 st ζα,3,u = 0}
of submitting a request for the government declaration of natural disaster for a drought event
for year 2021 output by the super learner, the OT-procedure and the hybrid procedure for
a selection of weeks u: the 49th week of 2021 (December 6th to 12th, u = minU3 = 49), the
7th, 17th and 26th weeks of 2022 (February 15th to 21st, u = 59; April 26th to May 2nd,
u = 69; June 28th to July 4th, u = maxU3 = 78). For each week, the right-hand side and
left-hand side panels respectively focus on cities that will and that will not submit a request
eventually. As expected, the curves in the left-hand side panels dominate their counterparts
in the right-hand side panels, illustrating the fact that the predicted probabilities are smaller
(in law) for cities that will not submit a request eventually than for cities that will. The
curves mainly differ around the origin. The left-hand side panels clearly showcase the ability
of the OT-procedure to rightly assign a 0 probability to submit a request to cities that,
indeed, will not submit one eventually: this concerns 49.5%, 51.2%, 50.7% and 56.4% of
them for weeks 49, 59, 69 and 78 respectively. In contrast, the quantiles of order 49.5%,
51.2%, 50.7% and 56.4% of the super learner’s predictions for these cities are 1.5%, 1.3%,
0.8% and 0.5% respectively. This notable ability comes at a price, as illustrated by the right-
hand side panels showing that a 0-probability to submit a request is wrongly assigned to a
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fraction of the cities that, in fact, will submit one eventually: this concerns 4.3%, 7.6%, 6.7%
and 14.6% of them for weeks 49, 59, 69 and 78 respectively. In comparison, the quantiles
of order 4.3%, 7.6%, 6.7% and 14.6% of the super learner’s predictions for these cities are
1.7%, 1.9%, 0.9% and 0.9% respectively.

Figure 5.5 compares the predicted probabilities of submitting a request for the government
declaration of natural disaster for a drought event for year 2021 output by the super learner
and by the OT-procedure during the 49th week of 2021 (u = minU3 = 49) and the 26th week
of 2022 (u = maxU3 = 78). For each week, the right-hand side and left-hand side panels
respectively focus on cities that will and that will not submit a request eventually. Points
lying above the first bisecting line correspond to cities α ∈ A3 for which ζ̂OT,u

α,3 > ζ̂SL,u
α,3 .

Colored points represent quantiles of order 10%, 50% and 90%. Two patterns emerge. On
the one hand, for u = 49 and u = 78 both, when concentrating on cities that will not submit
a request eventually: (a) the 10%-quantile and median of {ζ̂OT,u

α,3 : α ∈ A3 st ζα,3,u = 0} are
smaller than those of {ζ̂SL,u

α,3 : α ∈ A3 st ζα,3,u = 0} while (b) the 90%-quantile of the former
set is larger than that of the latter. Finding (a) is in favor of the OT-procedure while finding
(b) is in favor of the super learner. On the other hand, for u = 49 and u = 78 both, when
centering on cities that will submit a request eventually: (c) the median of {ζ̂OT,u

α,3 : α ∈
A3 st (ζα,3,u, ζα,3,u−) = (1, 0)} is larger than that of {ζ̂SL,u

α,3 : α ∈ A3 st (ζα,3,u, ζα,3,u−) =
(1, 0)} while (d) the 10%- and 90%-quantiles of the former set are smaller than that of the
latter. Finding (c) is in favor of the OT-procedure while finding (d) is in favor of the super
learner.

Figure 5.6 pays special attention to the medians, representing those of the predicted
probabilities of submitting a request for the government declaration of natural disaster for
a drought event for year 2021 as output by the super learner, the OT-procedure and the
hybrid procedure as weeks go by, its right-hand side and left-hand side panels focusing on
cities that will and that will not submit a request eventually. A clear pattern emerges: when
centering on cities that will not submit a request eventually, the week-specific median of the
predictions made by the super learner is consistently larger than that of the predictions
made by our procedure which, in turn, is consistently larger than that of the predictions
made by the hybrid procedure. Conversely, when concentrating on cities that will submit
a request eventually, the week-specific median of the predictions made by the super learner
is consistently smaller than that of predictions made by the OT-procedure which, in turn,
is consistently larger than that of the predictions made by the hybrid procedure. From this
perspective, the hybrid procedure outperforms the OT-procedure which, in turn, performs
better than the super learner.

To conclude, we report in Table 5.5 the week-specific MSE scores∑
α∈A3

(ζ̂•,uα,3 − ζα,3)2 1{ζα,3,u = 0}∑
α∈A3

1{ζα,3,u = 0}
(5.18)

(all u ∈ U3, the symbol • standing for SL, OT and HYB). The key insight from Table 5.5
is that the hybrid procedure exhibits superior performance, by consistently outperforming
both the OT-procedure and the super learner. Interestingly we also observe that, for every
procedure, (5.18) decreases as u ∈ U3 increases, suggesting that the challenge of forecast-
ing which cities will eventually request the government declaration of natural disaster for
a drought event becomes progressively less challenging as the weeks go by. The evolution
of (5.18) for u ∈ U3 is represented in Figure 5.7, with those of the stock of requests al-
ready submitted (u 7→

∑
α∈A3

ζα,3,u, necessarily increasing) and of the sum of the predicted
probabilities that the cities which have not yet submitted such a request will eventually do,
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Figure 5.4 – This plot shows, when week u is one of the 49th week of 2021 (December 6th to 12th), the
(59− 52) = 7th, (69− 52) = 17th and (78− 52) = 26th weeks of 2022 (February 15th to 21st, April 26th to

May 2nd, June 28th to July 4th), the empirical cumulative distribution functions (ecdfs) of the predicted
probabilities of submitting a request made by procedures SL, OT and HYB separately for those cities that will
not eventually submit a request for the government declaration of natural disaster for a drought event for year
2021 (that is, the ecdfs of {ζ̂•,uα,3 : α ∈ A3 st ζα,3 = 0}, left-hand side panels) and for those that will (that is,
the ecdfs of {ζ̂•,uα,3 : α ∈ A3 st ζα,3 = 1}, right-hand side panels). See also Figure 5.6 for a focus on medians.
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Figure 5.5 – This plot shows, for week u equal either to the 49th week of 2021 (December 6th to December
12th) or the (78− 52) = 26th week of 2022 (June 27th to July 3rd), the predicted probabilities of submitting a

request made by procedures SL (x-axis) and OT (y-axis) separately for those cities that will not eventually
submit a request for the government declaration of natural disaster for a drought event for year 2021 (that is,

{(ζ̂SL,u
α,3 , ζ̂OT,u

α,3 ) : α ∈ At st ζα,3,u = 0, ζα,3 = 0}, left-hand side panels) and for those that will (that is,
{(ζ̂SL,u

α,3 , ζ̂OT,u
α,3 ) : α ∈ At st ζα,3,u = 0, ζα,3 = 1}, right-hand side panels). In addition, three colored points

represent in each panel the coordinate-specific quantiles of order 10%, 50% and 90%.
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Figure 5.6 – This plot shows, as week u goes from the 49th week of 2021 (December 6th to December 12th) to
the (78− 52) = 26th week of 2022 (June 27th to July 3rd), the evolutions of the medians of the predicted

probabilities of submitting a request made by procedures SL, OT and HYB separately for those cities that will
not eventually submit a request for the government declaration of natural disaster for a drought event for year
2021 (that is, of u 7→ median{ζ̂•,uα,3 : α ∈ At st ζα,3,u = 0, ζα,3 = 0}, left-hand side panel) and for those that

will (that is, of u 7→ median{ζ̂•,uα,3 : α ∈ At st ζα,3,u = 0, ζα,3 = 1}, right-hand side panel). See also Figure 5.4
for more comprehensive descriptions through empirical cumulative distribution functions.
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MSE
week u SL OT HYB

49 0.0341 0.0341 0.0333
52 0.0336 0.0333 0.0327
53 0.0332 0.0331 0.0324
54 0.0317 0.0321 0.0309
55 0.0307 0.0311 0.0299
56 0.0294 0.0302 0.0288
57 0.0281 0.0290 0.0275
58 0.0268 0.0280 0.0264
59 0.0258 0.0271 0.0255
60 0.0248 0.0261 0.0245
61 0.0242 0.0248 0.0237

MSE
week u SL OT HYB

62 0.0236 0.0241 0.0231
64 0.0223 0.0228 0.0219
65 0.0216 0.0221 0.0212
66 0.0208 0.0214 0.0205
67 0.0202 0.0203 0.0198
68 0.0195 0.0195 0.0190
71 0.0179 0.0180 0.0176
72 0.0177 0.0177 0.0174
73 0.0168 0.0168 0.0165
77 0.0156 0.0156 0.0154
78 0.0150 0.0150 0.0148

Table 5.5 – Evolution of MSE u 7→ n−1
3,u

∑
α∈A3

(ζ̂•,uα,3 − ζα,3)2 1{ζα,3,u = 0} where
n3,u :=

∑
α∈A3

1{ζα,3,u = 0} is the number of cities which have not submitted such a request yet at week
u ∈ U3 and the symbol • stands for SL, OT, HYB. In each row, the smallest value stand out in bold characters.

See also Figure 5.7.

according to the hybrid procedure (u 7→
∑

α∈U3
ζ̂HYB,u
α,3 1{ζα,3,u = 0}). The quartiles and

range of {∑
α∈A3

ζα,3,u +
∑
α∈U3

ζ̂HYB,u
α,3 1{ζα,3,u = 0} : u ∈ U3

}
(5.19)

(the heights of the bars in Figure 5.7) are 1572 (minimum), 1636 (first quartile), 1731
(median), 1853 (third quartile), 1908 (maximum), 336 (range) while its mean is 1740. In
comparison, the quartiles and range of{∑

α∈A3

ζα,3,u +
∑
α∈U3

ζ̂SL,u
α,3 1{ζα,3,u = 0} : u ∈ U3

}
(5.20)

are 1662 (minimum), 1776 (first quartile), 1881 (median), 2051 (third quartile), 2133 (max-
imum), 471 (range), while its mean is 1905 – note that we could have substituted OT for
SL in the above display. In view of (5.17), it was guaranteed that each of the quartile and
mean associated to (5.19) would be smaller then its counterpart associated to (5.20). Both
convex hulls of (5.19) and (5.20) contain the true value

∑
α∈A3

ζα,3 = 1696, the former being
more concentrated around it than the latter. This last observation stems from a comparison
of the ranges of the sets and can be further substantiated by comparing the interquartile
intervals, with that of (5.19) encompassing the true value, unlike that of (5.20).

5.6.4 On the importance of the variables used to make predictions
In this last subsection, we consider the influence that each covariate ξα,3,u,s (note the ad-
ditional subscript s, indicating the sth covariate) in a generic ξα,3,u has on the prediction
ζ̂HYB,u
α,3 that city α ∈ A3 such that ζα,3,u = 0 will eventually submit a request for the govern-

ment declaration of natural disaster for a drought event relative to year 2021 based on data
available at week u ∈ U3. The question pertains to the definition and estimation of vari-
able importance measures. The literature on this topic is rich, with notable contributions
from studies such as (van der Laan, 2006; Hubbard et al., 2016; Williamson et al., 2021)
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Figure 5.7 – This plot shows, as week u goes from the 49th week of 2021 (December 6th to 12th) to the
(78− 52) = 26th week of 2022 (June 27th to July 3rd), the evolutions of the cardinality of the stock of requests
already submitted for the government declaration of natural disaster for a drought event for year 2021 (that is,
of u 7→

∑
α∈At

ζα,3,u, in blue) and of the sum of the predicted probabilities that the cities which have not yet
submitted such a request will eventually do (that is, of u 7→

∑
α∈At

ζ̂HYB,u
α,3 1{ζα,3,u = 0}, in red). The actual

eventual number of such requests (that is,
∑

α∈At
ζα,3, which equals 1696) is also represented (horizontal

dashed line). In addition, the plot shows the evolution of MSE (that is, of
u 7→ n−1

3,u

∑
α∈A3

(ζ̂HYB,u
α,3 − ζα,3)2 1{ζα,3,u = 0} where n3,u :=

∑
α∈A3

1{ζα,3,u = 0} is the number of cities
which have not submitted such a request yet at week u, in yellow). See also Table 5.5.
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on the one hand and (Lundberg and Lee, 2017, and references therein) on the other hand,
offering valuable insights on how to tackle this question. However, applying these existing
approaches to our specific scenario is impractical, mainly due to the interdependence of the
data-structures specific to each (α, u) ∈ A3×U3 and the fact that we are dealing with a rel-
atively large number of covariates. As a result, we propose a simple approach tailored to the
circumstances of the present situation. The approach is very similar to the one developed
in (Ecoto and Chambaz, 2022, Section 4.4).

Set arbitrarily s ∈ J67K and u ∈ U3.

• If s is such that the covariate ξα,3,u,s corresponds to the overall number of French
cities that submitted a request for year 2021 during week u or before, or to the ratio of
the logarithm of that overall number to u (two elements of the description of a city’s
request history), then we cannot quantify the covariate’s importance because all cities
α ∈ U3 share a common value.

• If s is such that ξα,3,u,s (α ∈ A3 such that ζα,3,u = 0) takes v values with 2 ≤ v ≤ 5,
then we let ρs be the correlation ratio computed based on {(ζ̂HYB,u

α,3 , ξα,3,u,s) : α ∈
A3 st ζα,3,u = 0}:

ρus :=

( ∑v
ν=1 nν(ζ̄ν − ζ̄)2∑

α∈A3
(ζ̂HYB,u

α,3 − ζ̄)2 1{ζα,3,u = 0}

)1/2

where ζ̄ν is the average of the ζ̂HYB,u
α,3 s such that ξα,3,u,s = ν and ζ̄ is the average of

all ζ̂HYB,u
α,3 s.

• Otherwise, we treat the covariate ξα,3,u,s (α ∈ A3 such that ζα,3,u = 0) as a continu-
ous variable and let ρus be the absolute value of the Spearman rank correlation coeffi-
cient (Hollander and Wolfe, 1999, Section 8.5) computed based on {(ζ̂HYB,u

α,3 , ξα,3,u,s) :
α ∈ A3 st ζα,3,u = 0}.

Note that, in the second case, we could have defined ρus as Wilcoxon test’s statistic (case
v = 2) or the Kruskal-Wallis test’s statistics (case 3 ≤ v ≤ 5) (see Hollander and Wolfe,
1999, Sections 3.1 and 6.1). By guaranteeing that all ρus s naturally lie in [0, 1], the present
choice eases comparisons.

In all cases, the magnitude of ρus directly reflects the strength of the association between
the sth covariate and the predictions made at week u ∈ U3. We resort to permutation tests
to assess significance levels, with one million independent permutations drawn uniformly in
each of the above cases. The maximum value obtained by permutation equals 3.16%.

Figure 5.8 shows the evolutions of u 7→ ρus for every eligible s ∈ J67K, where the covariates
are grouped based on the type of information they contribute. In each panel, values above the
black horizontal lines (y-intercept at (0, 3.16%)) are considered highly significant according
to the permutation tests. From this perspective, most covariates play an effective role in
the predictions. For the covariates related to a city’s description, its exposure to drought
events, or its request history, the curves appear relatively flat, indicating a steady strength of
association with the predictions over time. In contrast, for the covariates describing a city’s
vicinity, the curves lying above the horizontal line show an increasing trend before levelling
off. This suggests that the strength of association for each corresponding covariate gradually
increases then stabilizes over time. In Table 5.6, we report the five variables which, in each
group of covariates, feature the largest average variable importance (

∑
u∈U3

ρus/ cardU3).
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Figure 5.8 – This plot shows, as week u goes from the 49th week of 2021 (December 6th to 12th) to the
(78− 52) = 26th week of 2022 (June 27th to July 3rd), the evolutions of the importance of each variable used
to make predictions, as defined in Section 5.6.4. For every eligible s ∈ J67K, the larger is ρus , the stronger is the
association between the sth covariate ξα,3,u,s and the prediction ζ̂HYB,u

α,3 across α ∈ A3 such that ζα,3,u = 0.
Values above the black horizontal lines are deemed highly significant based on permutation tests. See also

Table 5.6.
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description of variable avg. importance
a city proportion of houses∗ in the 2nd clay-

shrinkage-swelling hazard category
0.392

climatic zone 0.275
insured sum 0.259
number of houses∗ 0.244
population 0.239

its exposure to average SWI over Q1, Q2, Q3† 0.436
drought events overall average SWI 0.420

average SWI over Q2, Q3 0.412
minimum SWI over Q2 0.412
global minimum SWI 0.402

its request his-
tory

number of requests submitted during the 5
previous years

0.757

number of requests submitted since 1990 0.744
number of requests denied during the 2 previ-
ous years

0.715

number of requests granted during the 2 pre-
vious years

0.708

indicator of request denied the previous year 0.654
its vicinity number of claims in the same department 0.423

proportion of cities in the same department
that submitted a request for year 2023 before
week u

0.416

proportion of cities in the same department
that submitted a request for the first time dur-
ing the 5 previous years

0.392

ratio of the number of claims in the same de-
partment to the number of cities in the de-
partment

0.308

number of neighboring cities that submitted a
request for year 2023 before week u

0.305

∗ within the city’s limits
† Q1, Q2, Q3, Q4 are the 1st to 4th quarters

Table 5.6 – The five variables used to make predictions with the highest average importance
(
∑

u∈U3
ρus / cardU3, see definition in Section 5.6.4) in each group of covariates. For every eligible s ∈ J67K,

the larger is ρus , the stronger is the association between the sth covariate ξα,3,u,s and the prediction ζ̂HYB,u
α,3

across α ∈ A3 such that ζα,3,u = 0. See also Figure 5.8.
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5.7 Appendix: checking the iPiano assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The iPiano assumptions consist in

1. f being C1-smooth with a Lipschitz continuous gradient on dom gτ , see Section 5.7.1;

2. for any δ > 0, Hδ : RN × RN → R given by Hδ(θ, θ
′) := f(θ′) + gτ (θ

′) + δ∥θ − θ′∥22
having the Kurdyka-Lojasiewicz property at a cluster point (θ⋆, θ⋆) of the sequence
(θk)k≥1, see Section 5.7.2.

5.7.1 The function f isC1-smooth and its gradient is Lipschitz continuous ondom gτ

5.7.1.a Preliminaries
ON MATRIX NORMS. For self-containedness, let us recall several definitions and results con-
cerning matrix norms. For any matrix A ∈ Rd×d′ , the Frobenius and maximum norms of A
are given by ∥A∥F :=

(∑
i∈JdK,j∈Jd′KA2

i,j

)1/2
and ∥A∥max := max{|Ai,j | : i ∈ JdK, j ∈ Jd′K}.

For any vector x ∈ Rd, the variation seminorm of x is defined as ∥x∥var := max{xi : i ∈JdK} −min{xi : i ∈ JdK}. We will use the following classical inequalities and equality:

∀A ∈ Rd×d′
,∀B ∈ Rd′×d′′

, ∥AB∥F ≤ ∥A∥F ∥B∥F ; (5.21)
∀A ∈ Rd×d′

,∀x ∈ Rd′
, ∥Ax∥2 ≤ ∥A∥F ∥x∥2; (5.22)

∀x ∈ Rd, ∥diag(x)∥F = ∥x∥2; (5.23)
∀x ∈ Rd, ∥x∥var ≤ 2∥x∥∞; (5.24)

∀x ∈ {0} × Rd−1, ∥x∥∞ ≤ ∥x∥var. (5.25)

ON THE HILBERT PROJECTIVE METRIC. The Hilbert projective metric on (R∗
+)

d is defined by

∀x, x′ ∈ (R∗
+)

d, dH(x, x′) := log max
{

xix
′
j

x′
ixj

: i, j ∈ JdK} .
We will use the following properties (Birkhoff, 1957):

∀x, x′ ∈ (R∗
+)

d, dH(x, x′) = ∥ log(x)− log(x′)∥var; (5.26)
∀x, x′ ∈ (R∗

+)
d, dH(x, x′) = dH(x/x′,1d) = dH(1d /x

′,1d /x); (5.27)
∀K ∈ (R∗

+)
d×d′

,∀x, x′ ∈ (R∗
+)

d′
, dH(Kx,Kx′) ≤ λ(K)dH(x, x′), (5.28)

where λ(K) :=

√
η(K)−1√
η(K)+1

< 1 with η(K) := max
{

Ki,kKj,ℓ

Kj,kKi,ℓ
: i, j ∈ JdK, k, ℓ ∈ Jd′K}.

We end this section with a lemma.

Lemma 5.1. Let x, x′ ∈ (R∗
+)

d be such that 0 < t ≤ min{xj , x′j : j ∈ JdK} ≤ max{xj , x′j :

j ∈ JdK} ≤ T . It holds that 1
2 tdH(x, x′) ≤ ∥x− x′∥2. Moreover, if x1 = x′1 = 1, then it also

holds that ∥x− x′∥2 ≤
√
dTdH(x, x′).

Proof. Set x, x′ ∈ (R∗
+)

d as in the statement of the lemma, and denote ℓ := log(x), ℓ′ :=
log(x′) (the logarithms are elementwise). Set arbitrarily i ∈ JdK. We can assume without

99



loss of generality that xi ≥ x′i (or, equivalently, ℓi ≥ ℓ′i). Therefore if x1 = x′1 = 1 (or,
equivalently, ℓ1 = ℓ′1 = 0), then

|xi − x′i| = max(xi, x′i)× |1− e−|ℓi−ℓ′i||
≤ T × |ℓi − ℓ′i| because |1− e−|q|| ≤ |q| for all q ∈ R
≤ T × ∥ℓ− ℓ′∥∞
≤ T × ∥ℓ− ℓ′∥var by (5.25) since ℓ1 = ℓ′1 = 0

= TdH(x, x′) by (5.26).

Consequently, ∥x− x′∥2 ≤
√
d∥x− x′∥∞ ≤

√
dTdH(x, x′). Furthermore,

|xi − x′i| = min(xi, x′i)× |e|ℓi−ℓ′i| − 1|
≥ t× |ℓi − ℓ′i| because |e|q| − 1| ≥ |q| for all q ∈ R.

It follows that

∥x− x′∥2 ≥ ∥x− x′∥∞ ≥ t∥ℓ− ℓ′∥∞ ≥ 1
2 t∥ℓ− ℓ

′∥var by (5.24)
= 1

2 tdH(x, x′) by (5.26).

This completes the proof.

5.7.1.b The function f is differentiable
To prove that f is differentiable, we rely on the following classical result (Danskin, 1966):

Theorem 5.1 (Danskin’s theorem, Proposition B.25 in Bertsekas (1999)). Let C ⊂ Rd′ be
a compact set and ϕ : Rd × C → R be a continuous function such that ϕ(·, y) is convex
for every y ∈ C. The function ψ : Rd → R given by ψ(x) := maxy∈C ϕ(x, y) is convex.
Moreover, if there exists a unique ŷ maximizing ϕ(x, ·) and if ϕ(·, ŷ) is differentiable, then
ψ is differentiable at x and ∇ψ(x) = ∇ϕ(·, ŷ)|x.

Let C = ΠR,R′ (a compact set) and ϕ : RR×R′ × ΠR,R′ → R be given by ϕ(C,P ) :=
−[⟨P,C⟩ − γE(P )]. The function ϕ is continuous and ϕ(·, P ) is convex for every P ∈
ΠR,R′ . Therefore, by the above theorem, the function ψ : RR×R′ → R given by ψ(C) :=

maxP∈ΠR,R′ ϕ(C,P ) = −Wγ(C) is convex. Moreover, for every C ∈ RR×R′ , there exists
a unique P̂C such that ψ(C) = ϕ(C, P̂C) (Cuturi and Doucet, 2014, Proposition 4.3) and
ϕ(·, P̂C) is affine hence differentiable. Therefore, C 7→ Wγ(C) is differentiable at every
C ∈ RR×R′ with a gradient given by ∇Wγ(C) = P̂C .

We use now that f = fa − 1
2fb + constant with fa, fb : RN → R given by

fa(θ) :=Wγ (C(z, z′(θ))) and fb(θ) :=Wγ (C(z′(θ), z′(θ)))

where the cost matrices C(z, z′(θ)) and C(z′(θ), z′(θ)) are such that (C(z, z′(θ)))m,n :=
dis(xm, x′n)2 + (ym − θn)2 and (C(z′(θ), z′(θ)))n,n′ := dis(x′n, x′n′)2 + (θn − θn′)2. In view
of the previous paragraph, and by the chain rule, fa and fb are thus differentiable at every
θ ∈ RN with gradients

∇fa(θ) = 2( 1
N θ − P̂

⊤
θ y) and ∇fb(θ) = 2( 2

N θ − (Q̂θ + Q̂⊤
θ )θ)

(P̂θ and Q̂θ are defined in (5.9) and (5.10)). Therefore f is differentiable at every θ ∈ RN

and (5.8) follows straightforwardly.
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5.7.1.c P̂θ and Q̂θ are Lipschitz continuous (as functions of θ)

The fact that θ 7→ P̂θ and θ 7→ Q̂θ are Lipschitz continuous on dom gτ is a consequence of
the following lemma.

Lemma 5.2. Let θ 7→ C(θ) be a bounded and Lipschitz continuous function from [0, 1]R
′ to

RR×R′

+ . For each θ ∈ [0, 1]R
′ , let P̂ (θ) be the minimizer in (5.3) with C(θ) substituted for

C. Then θ 7→ P̂ (θ) is Lipschitz continuous from [0, 1]R
′ to RR×R′

+ .

Indeed, θ 7→ C(z, z′(θ)) and θ 7→ C(z′(θ), z′(θ)) (defined in Section 5.7.1.b) are obviously
bounded and Lipschitz continuous.

Let us prove Lemma 5.2. By (Cuturi and Doucet, 2014, Proposition 4.3), for every
θ ∈ RR′ ,

P̂ (θ) = diag(û(θ))K(θ)diag(v̂(θ)),

where û : RR′ → (R∗
+)

R, v̂ : RR′ → (R∗
+)

R′ and the Gibbs kernel functions K : RR′ →
RR×R′ , given by

K(θ) :=
(

exp
[
− (C(θ))r,r′ /γ

])
r∈JRK,r′∈JR′K

satisfy the mass conservation constraints inherent to ΠR,R′ :

diag(û(θ))K(θ)diag(v̂(θ))1R′ = 1
R 1R (5.29)

diag(v̂(θ))K(θ)⊤ diag(û(θ))1R = 1
R′ 1R′ , (5.30)

Equivalently, using the entrywise division of vectors,

û(θ) =
1
R 1R

K(θ)v̂(θ)
, v̂(θ) =

1
R′ 1R′

K(θ)⊤û(θ)
. (5.31)

Note that (ρû(θ), v̂(θ)/ρ) also satisfy (5.29) and (5.30) for any ρ > 0. Thus, without loss
of generality, we can impose from now on that, for all θ ∈ dom gτ , the first element û1(θ) of
û(θ) equals 1 (this affects both û(θ) and v̂(θ)).

We now consider the following steps.

• The Gibbs kernel function K is Lipschitz continuous on dom gτ with Lipschitz constant
LK := k2uL

2
C/γ

2 where ku := max{(K(θ))r,r′ : r ∈ JRK, r′ ∈ JR′K} and LC is the
Lipschitz constant of θ 7→ C(θ).
Proof: The function θ 7→ C(θ) is bounded, so θ 7→ K(θ) is bounded as well. For all
θ, θ′ ∈ [0, 1]R

′ , r ∈ JRK and r′ ∈ JR′K, it holds that

|(K(θ))r,r′ − (K(θ′))r,r′ |

= max{e−(C(θ))r,r′/γ , e−(C(θ′))r,r′/γ} × |1− exp(−|(C(θ))r,r′ − (C(θ′))r,r′ |/γ)|

≤ ku
γ
× |(C(θ))r,r′ − (C(θ′))r,r′ |.
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Therefore,

∥K(θ)−K(θ′)∥2F =
∑

r∈JRK,r′∈JR′K[(K(θ))r,r′ − (K(θ′))r,r′ ]
2

≤ k2u
γ2

∑
r∈JRK,r′∈JR′K[(C(θ))r,r′ − (C(θ′))r,r′ ]

2

≤ k2uL
2
C

γ2
∥θ − θ′∥22.

• Denote kℓ := min{(K(θ))r,r′ : r ∈ JRK, r′ ∈ JR′K}. For every θ ∈ dom gτ ,

λ(K(θ)) ≤ Λ := (ku − kℓ)/(ku + kℓ) < 1. (5.32)

Proof: Because kℓ ≤ (K(θ))r,r′ ≤ ku for all θ ∈ dom gτ , r ∈ JRK, r′ ∈ JR′K, it holds
that (K(θ))i,k(K(θ))j,ℓ/((K(θ))j,k(K(θ))i,ℓ) ≤ k2u/k

2
ℓ for all i, j ∈ JRK, k, ℓ ∈ JR′K.

Consequently, η(K(θ)) ≤ k2u/k2ℓ hence λ(K(θ)) = (
√
η(K)− 1)/(

√
η(K) + 1) ≤ (ku −

kℓ)/(ku + kℓ).

• For every θ ∈ dom gτ , û(θ) and v̂(θ) are uniformly bounded: for all r ∈ JRK, r′ ∈ JR′K,
kℓ
kuR′ ≤ ûr(θ) ≤

kuR

kℓ
, (5.33)

kℓ
k2uR

′R2
≤ v̂r′(θ) ≤

1

kℓR
. (5.34)

Proof: Set arbitrarily θ ∈ dom gτ . In view of (5.29) (first row), since û1(θ) = 1, we
have

kℓ∥v̂(θ)∥∞ ≤
1

R
=

∑
r′∈JR′K(K(θ))1r′ v̂r′(θ) ≤ kuR′∥v̂(θ)∥∞. (5.35)

Set r′0 ∈ arg max{v̂i(θ) : i ∈ JR′K}. In view of (5.30) (r′th row), we have

1

R′ = v̂r′0(θ)
∑

r∈JRK(K(θ))rr′0 ûr(θ) ≥ kℓ∥v̂(θ)∥∞∥û(θ)∥∞.

Hence, by (5.35),

∥û(θ)∥∞ ≤
1

kℓR′∥v̂(θ)∥∞
≤ kuRR

′

kℓR′ =
kuR

kℓ
. (5.36)

Furthermore, for any r′ ∈ JR′K, in view of (5.30) (r′th row) and (5.36),

1

R′ = v̂r′(θ)
∑

r∈JRK(K(θ))rr′ ûr(θ) ≤ Rku∥û(θ)∥∞v̂r′(θ) ≤
k2uR

2

kℓ
v̂r′(θ). (5.37)

The inequalities (5.35) and (5.37) readily imply (5.34). Likewise, for any r ∈ JRK, in
view of (5.29) (rth row),

1

R
= ûr(θ)

∑
r′∈JR′K(K(θ))rr′ v̂r′(θ) ≤ R′ku∥v̂(θ)∥∞ûr(θ) ≤

kuR
′

kℓR
ûr(θ). (5.38)

The inequalities (5.36)and (5.38) readily imply (5.33).
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• The function θ 7→ û(θ) is Lipschitz continuous on dom gτ with Lipschitz constant

Lû :=
2k3uR

2
√
R′LK

(1− Λ2)k4ℓ
(
√
R+ Λ

√
R′).

Proof. Set arbitrarily θ, θ′ ∈ dom gτ . Inequalities (5.33) and (5.34) imply that

min{(K(θ)v̂(θ′))r : r ∈ JRK} ≥ k2ℓ/(k2uR2),

min{(K(θ)⊤û(θ′))r′ : r
′ ∈ JR′K} ≥ k2ℓR/(kuR′).

In view of Lemma 5.1 (first inequality), (5.22) (second inequality), (5.34) and the fact
that K is LK-Lipschitz (third inequality), we obtain

dH(K(θ)v̂(θ),K(θ′)v̂(θ)) ≤ 2k2uR
2

k2ℓ
∥K(θ)v̂(θ)−K(θ′)v̂(θ)∥2

≤ 2k2uR
2

k2ℓ
∥K(θ)−K(θ′)∥F ∥v̂(θ)∥2

≤ 2k2uR
√
R′LK

k3ℓ
∥θ − θ′∥2. (5.39)

Likewise, using (5.33) instead of (5.34)

dH(K(θ)⊤û(θ),K(θ′)⊤û(θ)) ≤ 2kuR
′

k2ℓR
∥K(θ1)

⊤û(θ1)−K(θ2)
⊤û(θ1)∥2

≤ 2kuR
′

k2ℓR
∥K(θ)⊤ −K(θ′)⊤∥F ∥û(θ)∥2

≤ 2k2u
√
RR′LK

k3ℓ
∥θ − θ′∥2. (5.40)

We can now bound the Hilbert projective metric between v̂(θ) and v̂(θ′): by invoking
in turn (5.31), (5.27), the triangle inequality, (5.28) and both (5.40) and (5.32), we get

dH(v̂(θ), v̂(θ′)) = dH

(
1R′ /R′

K(θ)⊤û(θ)
,

1R′ /R′

K(θ′)⊤û(θ′)

)
= dH

(
K(θ)⊤û(θ),K(θ′)⊤û(θ′)

)
≤ dH

(
K(θ)⊤û(θ),K(θ′)⊤û(θ)

)
+ dH

(
K(θ′)⊤û(θ),K(θ′)⊤û(θ′)

)
≤ dH

(
K(θ)⊤û(θ),K(θ′)⊤û(θ)

)
+ λ (K(θ′)) dH(û(θ), û(θ′))

≤ 2k2u
√
RR′LK

k3ℓ
∥θ − θ′∥2 + ΛdH(û(θ), û(θ′)). (5.41)

Likewise, by invoking in turn (5.31), (5.27), the triangle inequality, (5.28) and both
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(5.40) and (5.41), we get

dH(û(θ), û(θ′)) = dH

(
1R /R

K(θ)v̂(θ)
,

1R /R

K(θ′)v̂(θ′)

)
= dH (K(θ)v̂(θ),K(θ′)v̂(θ′))

≤ dH (K(θ)v̂(θ),K(θ′)v̂(θ)) + dH (K(θ′)v̂(θ),K(θ′)v̂(θ′))

≤ dH(K(θ)v̂(θ),K(θ′)v̂(θ)) + λ(K(θ′))dH(v̂(θ), v̂(θ′))

≤ dH(K(θ)v̂(θ),K(θ′)v̂(θ))

+ Λ

(
2k2u
√
RR′LK

k3ℓ
∥θ − θ′∥2 + ΛdH(û(θ), û(θ′))

)
.

The above inequality and (5.39) then yield

dH(û(θ), û(θ′)) ≤ 1

1− Λ2

(
dH(K(θ)v̂(θ),K(θ′)v̂(θ)) + Λ

2k2u
√
RR′LK

k3ℓ
∥θ − θ′∥2

)

≤ 2k2u
√
RR′LK

(1− Λ2)k3ℓ
(
√
R+ Λ

√
R′)∥θ − θ′∥2.

Therefore, by Lemma 5.1 and (5.33), ∥û(θ)− û(θ′)∥2 ≤ Lû∥θ − θ′∥2, which completes
the proof.

• The function θ 7→ v̂(θ) is Lipschitz continuous on dom gτ with Lipschitz constant

Lv̂ :=
kuLK

k3ℓ
√
R

+
ku
√
R′Lû

k2ℓR
3/2

.

Proof: Set arbitrarily θ, θ′ ∈ dom gτ . By (5.31) and (5.34),

∥v̂(θ)− v̂(θ′)∥2 =

∥∥∥∥ 1R′ /R′

K(θ)⊤û(θ)
− 1R′ /R′

K(θ′)⊤û(θ′)

∥∥∥∥
2

≤ ∥K(θ)⊤û(θ)−K(θ′)⊤û(θ′)∥2
R′ minr′∈JR′K{(K(θ1)⊤û(θ1))r′}minr′∈JR′K{(K(θ′)⊤û(θ′))r′}

=
∥K(θ)⊤û(θ)−K(θ′)⊤û(θ′)∥2

minr′∈JR′K{v̂r′(θ)−1}minr′∈JR′K{v̂r′(θ′)−1}

≤ 1

k2ℓR
2
∥K(θ)⊤û(θ)−K(θ′)⊤û(θ′)∥2.

Moreover, using in turn the triangle inequality, (5.22) then the fact that K and û are
Lipschitz continuous and bounded on dom gτ , we get

∥K(θ)⊤û(θ)−K(θ′)⊤û(θ′)∥2 ≤ ∥K(θ)⊤û(θ)−K(θ′)⊤û(θ)∥2 + ∥K(θ′)⊤û(θ)−K(θ′)⊤û(θ′)∥2
≤ ∥K(θ)−K(θ′)∥F ∥û(θ)∥2 + ∥K(θ′)∥F ∥û(θ)− û(θ′)∥2

≤
(
kuR

3/2LK

kℓ
+
√
RR′kuLû

)
∥θ − θ′∥2.

Therefore, ∥v̂(θ)− v̂(θ′)∥2 ≤ Lv̂∥θ − θ′∥2, which completes the proof.
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• The function P̂ (θ) is Lipschitz continuous on dom gτ .
Proof: We have proved that θ 7→ û, θ 7→ K(θ) and θ 7→ v̂(θ) are bounded and Lipschitz
continuous on dom gτ . Consequently, so is θ 7→ P̂ (θ) = diag(û(θ))K(θ)diag(v̂(θ)).

This completes the proof of Lemma 5.2, hence that of the fact that θ 7→ P̂θ and θ 7→ Q̂θ are
Lipschitz continuous on dom gτ .

5.7.1.d The gradient of f is Lipschitz continuous

Set arbitrarily θ, θ′ ∈ dom gτ ⊂ [0, 1]N . We begin by noting that, by the triangle inequality
and (5.22),

1
2∥∇f(θ)−∇f(θ

′)∥2 ≤ ∥y∥2 × ∥P̂θ − P̂θ′∥F + ∥θ∥2 × ∥Q̂θ − Q̂θ′∥F + ∥Q̂θ′∥F × ∥θ − θ′∥2
≤ ∥y∥2 × ∥P̂θ − P̂θ′∥F +

√
N × ∥Q̂θ − Q̂θ′∥F + ∥θ − θ′∥2.

We then readily conclude because we showed in Section 5.7.1.c that θ 7→ P̂θ and θ 7→ Q̂θ are
Lipschitz continuous on dom gτ .

5.7.2 The functionHδ satisfies the Kurdyka-Lojasiewicz property

5.7.2.a The Kurdyka-Lojasiewicz property

Let us first recall what is the Kurdyka-Lojasiewicz property. Let ℓ : Rd → R ∪ {+∞}
be a proper, lower semicontinuous function. For any −∞ < η1 < η2 ≤ +∞, the bracket
[η1 < ℓ < η2] is the set {x ∈ Rd : η1 < ℓ(x) < η2}. We refer the reader to (Attouch et al.,
2010, Section 2) for elementary facts of nonsmooth analysis, including the definition of ∂ℓ,
the limiting-subdifferential of ℓ (Rockafellar and Wets, 1998).

Definition 5.1 (Kurdyka-Lojasiewicz property, definition 3.1 in Attouch et al. (2010)). The
function ℓ is said to have the Kurdyka-Lojasiewicz property at x̄ ∈ dom ∂ℓ if there exists
η ∈ (0,+∞], a neighborhoood U of x̄ and a continuous concave function φ : [0, η) → R+

such that:

• φ(0) = 0,

• φ is C1 on (0, η),

• for all s ∈ (0, η), φ′(s) > 0,

• and for all x ∈ U ∩ [ℓ(x̄) < ℓ < ℓ(x̄) + η], the Kurdyka-Lojasiewicz inequality holds:

φ′(ℓ(x)− ℓ(x̄))dist(0, ∂ℓ(x)) ≥ 1. (5.42)

Inequality (5.42) can be interpreted as follows: subject to the reparametrization of f
through φ, we deal with a sharp function. To see this, consider the simple case where the
finite-valued f is differentiable and f(x̄) = 0, so that (5.42) rewrites as ∥∇φ◦f(x)∥ ≥ 1: the
function φ transforms a singular region, characterized by arbitrarily small gradients, into a
regular region where the gradients are bounded away from zero. Thus the transformation
φ is aptly referred to as a “desingularizing function” for f . For further theoretical and
geometrical insights, we refer to (Bolte et al., 2010).

To prove that Hδ satisfies the Kurdyka-Lojasiewicz property, we apply Theorem 4.1
in (Attouch et al., 2010). We state it below for the sake of completeness. The key notions
necessary to understand the theorem are succinctly presented after the statement.
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Theorem 5.2 (Theorem 4.1 in Attouch et al. (2010)). Any proper lower semicontinuous
function ℓ : Rd → R∪ {+∞} which is definable in an o-minimal structure O over R has the
Kurdyka-Lojasiewicz property at each point of dom ∂ℓ. Moreover the function φ appearing
in (5.42) is definable in O.

ON o-MINIMAL STRUCTURES. An o-minimal structure over R can be viewed as an axiomati-
zation of the quantitative properties of semialgebric sets. Semialgebric sets are finite unions
and intersections of sets of the form {x ∈ Rd : Q(x) = 0, R(x) < 0} for some polynomial
functions Q,R : Rd → R. Algebraic sets are finite unions and intersections of sets of the
form {x ∈ Rd : Q(x) = 0} for some polynomial function Q : Rd → R.

Formally, a collection O = {On}n≥0 is a structure over R if the following conditions are
met:

(a) for each n ≥ 0, On is a collection of subsets of Rn;

(b) for each n ≥ 0, all algebraic subsets of Rn are in On;

(c) for each n ≥ 0, On is a Boolean subalgebra, that is, ∅ ∈ On and, for every A,B ∈ On,
A ∪B, A ∩B and Rn \A belong to On;

(d) if A ∈ Om and B ∈ On, then A×B ∈ Om+n;

(e) if p : Rn+1 → Rn is the projection on the first n coordinates and A ∈ On+1, then
p(A) ∈ On.

It is o-minimal if, in addition,

(f) the elements of O1 are precisely the finite unions of intervals.

The smallest o-minimal structure over R containing the semialgebric sets is denoted Ralg.
It is the collection {On}n≥0 where each On is the class of semialgebric sets on Rn (Benedetti
and Risler, 1990; Bochnak et al., 1998).

The smallest structure containing the semialgebraic sets and the graph of the exponential
function exp : R→ R∗

+ is denoted Rexp. It extends Ralg and it is o-minimal over R (Wilkie,
1996).

ON DEFINABLE SETS AND DEFINABLE FUNCTIONS. Given an o-minimal structure O = (On)n≥0

over R, the elements of each On are called the definable subsets of Rn. A function φ : A→ B
between to definable sets is definable in O if its graph is definable in O.

For instance, a polynomial function Q : Rd → R is definable in Ralg, hence in Rexp as
well.

We use the following properties (Attouch et al., 2010) (from now on, we write “definable”
in lieu of “definable in O”):

(g) if φ : A→ B is definable and if A′ ⊂ A is definable, then φ|A′ is definable;

(h) if φ is definable, then |φ| is definable;

(i) finite sums of definable function are definable;

(j) any indicator function I{A} (which equals 0 if the argument falls in A and +∞ oth-
erwise) of a definable set A is definable;

(k) generalized inverse functions of definable functions are definable;
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(l) compositions of definable functions are definable;

(m) if ψ and C are definable, then Rn ∋ x 7→ infy∈C ψ(x, y) and Rn ∋ x 7→ supy∈C ψ(x, y)
are definable.

5.7.2.b The functionHδ is definable in Rexp

Let us prove now that Hδ is definable in Rexp – from now on, “definable” means definable
in Rexp. We consider the following steps.

• The set ΠR,R′ is semialgebric hence definable.
Proof: Introduce the sets Ar,r′ := {P ∈ RR×R′

: Pr,r′ ≥ 0}, Br := {P ∈ RR×R′
:∑

r′∈JR′K Pr,r′ =
1
R} and Cr′ := {P ∈ RR×R′

:
∑

r∈JRK Pr,r′ =
1
R′ } (for all r ∈ JRK and

r′ ∈ JR′K). Each of them is semialgebraic. Therefore their intersection, which equals
ΠR,R′ , is semialgebraic too, hence definable.

• Consider F : RN × RM×N × RN×N → R given by

F (θ, P,Q) :=
∑

m∈JMK,n∈JNKPm,n

(
d(xm, x

′
n)

2 + (ym − θn)2
)

− 1
2

∑
m∈JMK,n∈JNKQn,n′

(
d(x′n, x

′
n′)2 + (θn − θn′)2

)
+ gτ (θ).

Proof: The function (θ, P ) 7→ F (θ, P,Q)− gτ (θ) is definable because it is polynomial.
Moreover, gτ is also definable.

– When gτ (θ) = τ∥θ∥1 + I{θ ∈ [0, 1]N}: on the one hand, θ 7→ ∥θ∥1 =
∑

n∈JNK |θn|
is definable as a finite sum of definable functions (properties (i) and (h); on
the other hand, I{[0, 1]N} is definable because [0, 1]N is definable (property (j)).
Therefore, gτ is definable (property (i)).

– When gτ (θ) = I{∥θ∥1 ≤ τ}+ I{θ ∈ [0, 1]N}: on the one hand, the set {θ ∈ RN :
∥θ∥1 ≤ τ} is definable because it can be written as

∪
ε∈{±1}N

 ∩
n∈JNK

{
θ ∈ RN : εnθn ≥ 0

}
∩
{
θ ∈ RN :

∑
n∈JNK εnθn − τ ≤ 0

} ,
which is semialgebraic since it is a finite union and intersection of semialgebraic
sets; therefore, θ 7→ I{∥θ∥1 ≤ τ} is definable (property (j)). On the other hand,
we already proved that I{[0, 1]N} is definable, hence gτ is definable (property (i)).

It follows that F is definable (property (i)). Because the set RN × ΠM,N × ΠN,N is
definable, this implies that F |RN×ΠM,N×ΠN,N

is definable (property (g)).

• The function γE : P 7→ γ × E(P ) from ΠR,R′ to R is definable.
Proof: The function log : R∗

+ → R is definable (property (k)). Consequently, φ : R∗
+ →

R2 given by φ(x) := (log(x), x) is definable because its graph can be written as

(Γlog × R) ∩ {(x, y, z) ∈ R3 : x− z = 0}

where the graph Γlog of log is definable and the right-hand-side set is algebraic hence
definable, revealing that the graph of φ is definable as the intersection of two definable
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sets. Moreover, the polynomial function Q : R2 → R given by Q(x, y) := −γx(y − 1)
is definable. Therefore, ϕ := Q ◦ φ : R∗

+ → R, so that ϕ(x) = −γx(log(x) − 1),
is definable (property (l)). Setting ϕ(0) := 0 extends ϕ by continuity and yields
a definable function ϕ : R+ → R. It follows that γE : (R+)

R×R′ → R given by
γE(P ) :=

∑
r∈JRK,r′∈JR′K ϕ(Pr,r′) is definable (property (i)), hence γE := γE|ΠR,R′ is

definable too (property (g)).

• The function (f + gτ ) : RN → R is definable.
Proof: This is a straightforward consequence of the fact that, for all θ ∈ RN ,

(f + gτ )(θ) := min
P∈ΠM,N

max
Q∈ΠN,N

{
F |RN×ΠM,N×ΠN,N

+ γE(P )− 1
2γE(Q)

}
,

where the sets ΠM,N and ΠN,N are definable (property (m)).

• The function Hδ is definable.
Proof: Recall that Hδ : RN×RN → R is given by Hδ(θ, θ

′) := f(θ′)+gτ (θ
′)+δ∥θ−θ′∥22.

The function (θ, θ′) 7→ f(θ′) + gτ (θ
′) between RN ×RN and R is definable because its

graph
{(θ, θ′, f(θ′) + gτ (θ

′)) : (θ, θ′) ∈ RN × RN} = RN × Γf+gτ ,

where Γf+gτ is the graph of (f + gτ ), is definable as the product of two definable sets.
Moreover, the function (θ, θ′) 7→ δ∥θ − θ′∥22 between RN × RN and R is polynomial,
hence definable. Therefore, Hδ is definable (property (i)).

5.7.2.c The functionHδ is proper and lower semicontinuous, hence satisfies the Kurdyka-
Lojasiewicz property on the domain of ∂Hδ

The function Hδ never takes on the value −∞ and Hδ(0) is finite, so Hδ is proper. More-
over, f is differentiable (see Section 5.7.1), gτ is lower semicontinuous because it is either
continuous (when gτ (·) = τ∥ · ∥1) or lower semicontinuous (when gτ is the characteristic
function of the closed ∥ · ∥1-ball centered at 0 and with radius τ), and (θ, θ′) 7→ δ∥θ − θ′∥22
is continuous. Therefore, Hδ is proper and lower semicontinuous. By Theorem 5.2, Hδ

satisfies the Kurdyka-Lojasiewicz property on the domain of ∂Hδ.
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6
Conclusion and perspectives for further work

Optimal transport is a powerful tool to capture the similarity between two datasets and
has found application in many diverse areas of machine learning including domain adapta-
tion (Courty et al., 2017), generative modeling (Genevay et al., 2018). The contributions
of this thesis can be organized in two main issues. In the first project, the contribution
is to better understand micro-RNA (miRNA) regulation in the striatum of Huntington’s
disease (HD) model mice. In the second project, the contribution is to address a problem
that involves predicting which cities will submit a request for the government declaration of
natural disaster for a drought event. This is a sub-problem of forecasting the cost of drought
events in France.

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ABOUT HUNTINGTON'S DISEASE. We have developed two co-clustering algorithms (WTOT-
SCC1 and WTOT-SCC2) and a matching algorithm (WTOT-matching) for the purpose
of identifying groups of mRNAs and miRNAs that interact. The algorithms apply in any
situation where it is of interest to cluster or match the elements of two data sets based on
a parametric model Θ expressing what it means to interact for any two pairs of elements
from the two data sets. The algorithms rely on optimal transport, spectral co-clustering
and a matching procedure. In light of (Alvarez-Melis, 2019, Section 1.3, page 25), problem-
specific knowledge is injected onto two of the three main components of the transportation
problem: the representation spaces (via Θ) and the marginal constraints, leaving aside the
cost function.

During the first stage, an optimal optimal transport plan P and mapping in Θ are learned
from the data using the Sinkhorn-Knopp algorithm and a mini-batch gradient descent.
During the second stage, P is exploited to derive either co-clusters or several sets of matched
elements.

As in (Mégret et al., 2020), the motivation of our study is to shed light on the interaction
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between mRNAs and miRNAs based on data collected in the striatum of HD model knock-in
mice (Langfelder et al., 2016, 2018). Each data point takes the form of a multi-dimensional
profile. The strong biological hypothesis is that if a miRNA induces the degradation of
a target mRNA or blocks its translation into proteins, or both, then the profile of the
former should be similar to minus the profile of the latter — this particular form of affine
relationship drives the formulation of a loosened hypothesis and definition of model Θ. The
fact that the algorithm learns from the data a best element in Θ provides more flexibility
than in (Mégret et al., 2020).

The simulation study reveals on the one hand that WTOT-SCC2 works overall better
than WTOT-SCC1, but that the co-clustering task can be very challenging in the presence
of many irrelevant data points (data points that do not interact). On the other hand, it
shows that the performances of WTOT-matching are satisfying.

An illustration on real data is given. The results are biologically relevant and illustrate
how our algorithm strikes a good balance between two moderately and highly selective,
competing algorithms. Our findings lead to reconsidering the formerly-expressed view on a
limited role of miRNA regulation in the striatum of HD mice on a systems level (Mégret
et al., 2020).

ABOUT THE ANTICIPATION OF THE DECLARATION OF NATURAL DISASTER FOR A DROUGHT EVENT.
This study is motivated by the challenging task of forecasting which cities in France will
submit a request for the government declaration of natural disaster for a drought event.
While the problem can be addressed as a classification task using standard classification
algorithms, we take a slightly different perspective and introduce an alternative procedure
based on optimal transport theory (Peyré and Cuturi, 2019) and iPiano (Ochs et al., 2015),
an inertial proximal algorithm for nonconvex optimization.

We build the OT-procedure upon two core ideas. Firstly, we aim to predict whether a
city will submit a request by making an interpretable comparison of the city’s covariates
with those of other cities whose submission status may be already known. Secondly, rec-
ognizing that relatively few cities will submit requests, we seek to control the sparsity of
our predictions and encourage 0-predictions, indicating cases where we predict that a city
will not submit a request. Additionally, we develop a hybrid procedure that synergistically
combines and utilizes both types of predictions, derived from classification algorithms and
the OT-procedure.

We develop and program an algorithm that hinges on iPiano and a mini-batch procedure
to cope with large data sets, see Algorithm 2. The convergence of the iPiano algorithm is es-
tablished, using the notion of o-minimal structures from the field of tame geometry (Wilkie,
1996) to prove that a critical function related to (5.4) satisfies the Kurdyka-Lojasiewicz
property (Attouch et al., 2010). Coded in python/pytorch, relying on the GeomLoss pack-
age (Feydy et al., 2019b) for its fast implementation of the Sinkhorn algorithm, the program
will soon be made available.

We conduct a simulation study to illustrate the use of the OT-procedure and of the hybrid
procedure in a simple context, laying the groundwork for the real-world application. The
latter poses greater challenges than the former. Tangibly, these challenges arise because
X ⊂ Rd is a relatively high-dimensional space (d = 67) and because the sample sizes are
large. Intangibly, the intricacies lie in the mechanisms that determine whether a request is
submitted or not.

We rely on the Hyperband algorithm (Li et al., 2018) and on a simple grid search
to define a relevant cost function and fine-tune the hyperparameters of Algorithm 2. An
analysis of the cost function reveals that the more relevant groups of covariates are, in
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decreasing order of importance, the covariates related to a city’s exposure to drought events,
its request history, its description and its vicinity.

For a total of 22 weeks spanning from the 49th week of 2021 (December 6th to 12th) to
the 26th week of 2022 (June 28th to July 4th), intermittently, we predict whether or not
the cities that have not yet submitted a request for the year 2021 will eventually do so.
We employ the best of five standard classification algorithms, the OT-procedure and the
hybrid procedure to make these predictions. Overall, the hybrid procedure yields enhanced
forecasting accuracy, in particular while focusing on the estimation of the eventual number
of requests. A simple analysis of the covariate’s importance sheds light on the strength of
association between each covariate and the predictions. It suggests that most covariates
play an effective role in the predictions.

6.2 Perspectives for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ABOUT HUNTINGTON'S DISEASE. There are several directions for future work. First, we will
develop a similar study to better understand miRNA regulation in the cortex of HD model
mice. Second, we will evaluate the performances of our algorithms by simulation studies
based on a simulation scheme learned from the real data so as to better mimic their law.
Third, we will put our algorithms into the general context of co-clustering and matching of
datasets and carry out more benchmark tests and comparisons.

ABOUT THE ANTICIPATION OF THE DECLARATION OF NATURAL DISASTER FOR A DROUGHT EVENT.
We list potential avenues for future research. Firstly, the procedures discussed in the study
may benefit from the use of an enhanced version of the city-level SWI. By considering the
variation in the nature of the soil across different regions of France, this refined version could
contribute to making more accurate predictions. Secondly, to make the hybrid procedure
more acceptable to the experts at CCR, it would be interesting to complement the analysis
of the covariates’ importance. This additional analysis could offer further insights and
explanations regarding the predictions. Thirdly, the current predictions obtained from the
investigated procedures lack a measure of confidence. Developping a methodology to address
this issue would be highly valuable. In conclusion, we acknowledge that the last two questions
raised are very challenging, notably due to the complex interdependence within the data set.
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