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CHAPTER I. INTRODUCTION 
 

Systems biology is a scientific field that integrates the analysis of large amounts of data to study 
complex systems that is widely applied in current times. Due to the combination of different sciences and 
applications of systems biology, there are different approaches that can be applied to answer scientific 
questions. In biomedical sciences, the application of systems biology approaches has become very popular, 
especially with the exploitation of de different “omics” types of data. In this thesis, I have explored different 
systems biology approaches in human diseases, mainly cancer, and used transcriptomics data to 
understand systems of interest.  

A. SYSTEMS BIOLOGY: AN OVERVIEW 
 

 A system can be defined as a group of elements that act as parts of a mechanism or an 
interconnecting network; an intricated whole. From this definition, in systems biology, the goal is to study a 
given system by looking at all its components simultaneously. Currently, with the exploitation of the different 
omics data types it has been feasible to acquire knowledge about the biological mechanisms occurring in 
the system. However, there are different forms to approach a scientific question in this field, generally 
speaking can be classified as top-down  and bottom-up approaches 1,2.  

I. TOP-DOWN APPROACHES  
 The top-down approach, also known as data-driven approach3, starts from experimental data that 
is analyzed in order to resolve a biological question or in an exploratory manner that will generate new 
hypotheses. This type of approaches are integrative and rely in the generation of omics data4, this data 
types will be discussed later in this chapter. After the study is designed and performed, the specimens 
should be prepared for the analysis to be performed, i.e. extraction of nucleic acids, lipids, metabolites, 
proteins etc. according to the requirements of the study.  

 After the data is generated, the following step is the processing, to assure the quality and success 
of the experiment and the fidelity of the results in downstream analyses. For the data analysis, a common 
approach in the RNA-seq transcriptomics data analysis is the following. The data is normalized so that the 
values are comparable among the measured samples5, commonly used methods are log transformations 
or variance stabilizing transformation6.  Then data are compared using statistical analyses such as t-tests, 
ANOVA etc. in order to obtain differentially expressed genes (DEG). This genes usually are determined by 
fold change differences and p-values, the last are usually adjusted using a multiple testing correction 
method like false discovery rate (FDR)7.  With the DEG, a functional analysis can be performed to determine 
the biological pathways or processes that correspond to the DEG. There are many databases that  are 
used for this type of analysis such as gene ontology (GO)8, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG)9, reactome10, WikiPathways11 or the molecular signatures data base (MSigDB)12. Then, the 
information from these pathways can be visualized in the resources that offer that option, such as KEGG 
and reactome. Also protein-protein interaction networks can be done in software such as Cytoscape13 or 
databases as the SIGnaling Network Open Resource (SIGNOR).  

With the information obtained from these analyses, then the results can be interpreted according to what is 
available in the scientific literature. By their integrative nature, these approaches require strong 
collaborations between experimental biologists, bioinformaticians, biostatisticians, computational 
biologists, and in the field of human health, epidemiologists, physicians and health care personnel, among 
others. 
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II. BOTTOM-UP APPROACHES 

 The bottom-up approaches, also termed knowledge-based approaches3, consist in creating 
detailed models that will be simulated under different conditions. These type of models represent biological 
knowledge and can be depicted as diagrams, for instance KEGG9, reactome10, WikiPathways11, pathway 
commons14 among others. In E. Barillot’s group, the atlas of cancer signaling networks (ACSN) has been 
developed15. Alternatively, there are models that are not diagrams, but they describe a biological system 
by integrating pertinent knowledge and data to perform simulations in order to explore different 
outcomes16,17. These type of models can be represented as a set of equations, like differential equations, 
or in case of genome scale metabolic models, stoichiometric matrices, like recon18.  

 Since these approaches are based on published findings, biocuration is needed, this is the action 
of extracting the knowledge and formalizing it, according to an established set of guidelines. Then it is 
represented, for instance as a diagram, and shared to the community 19. For the coherence of this thesis, 
the rest of this section will focus on the signaling network representations, as diagrams, however there are 
overlaps with other bottom-up approaches as well.  

 Before starting the process of biocuration, it is important to select the most appropriate type of 
representation to be used. According to the systems biology graphical notation (SBGN)20, there are three 
types of representations: (1) process description (PD) diagram, known as bi-partite reaction network graph 
in chemical kinetics, depicting the biochemical interactions in a network;  (2) activity-flow (AF), also referred 
as regulatory network or influence diagram, represents the flow of information or the interactions between 
the entities; and (3) entity relationship (ER) diagram, illustrate the relations in which a given entity 
participates.  

 When creating a diagram, it is also important to follow stablished standards in order to produce 
exchangeable comprehensive diagrams. Currently, the SBGN syntax is one of the strongly proposed in the 
field. This syntax is compatible with various pathway drawing software as well as analytical tools, allowing 
the representation of cellular compartments and phenotypes, in addition to the biochemical processes. 
Moreover, to increase compatibility between pathway resources, various formats to exchange information, 
as BioPAX, SBML, PSI-MI among others, have been recommended21; for instance, models in SBML format 
can be stored in repositories such as BioModels22,23, facilitating their access and reproducibility. To draw 
the network, there are some free available software solutions that can be used, such as CellDesigner24, 
SBGN-ED25, PathVisio26, Newt27. An example of these representations, for PD diagrams using the SBGN 
syntax is in Figure 1. 
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 The produced network diagram can become an issue for visualization when it reaches a high 
complexity due to a large amount of entities and reactions, this type of diagrams can even reach the 
dimensions of geographical maps. Hence, some platforms have been developed, such as Pathway 
projector28, CellPublisher29, NaviCell30,31, MINERVA32, with the goal of treat these diagrams as geographical 
maps and integrating the navigation logic and features from Google maps’ technology. The adoption of 
characteristics such as zooming in, scrolling, pinning and callouts in these maps, makes them user friendly. 
Therefore, in the field, these molecular network diagrams are referred to as maps.  

 These maps are widely used as databases, source of information or for data visualization. For 
instance, in ACSN, thanks to the NaviCell technology, it is possible to visualize different omics data types, 
allowing the user to explore their data in different ways. In the last section of this chapter I will expose some 
use-cases from these tools. In Figure 2 there is an example of the global environment of ACSN and NaviCell 
using the angiogenesis map as an example and showing some of the navigation features of the maps.  

 To conclude this section of this chapter, systems biology offers different approaches useful for 
research, these approaches are widely used in biology with applications for engineering, environmental 
sciences, microbiology, food industries, pharmaceutical design, human health among others 1,33,34, and as 
well as the top-down approaches, they require interdisciplinarity for their successful development.  

 

 

 

 

 

Figure 1. Process description (PD) diagram data model, using CellDesigner and the SBGN syntax.  
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Figure 2. Example of browsing using the Angiogenesis map in ACSN. A: Map interface in NaviCell powered Google maps platform with the layout of the map. The interface has the 
map window, selection panel, data analysis panel and upper panel. B: Example of a query for VEGFA that drops the pins where it is located in the map. C: Callout window that 
appears when clicking on one of the entities, this call out window displays details such as different identifiers of the entity, where the entity can be found in other ACSN maps as well 
as the references the curator consulted and added.  
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B. THE OMICS  
  

 The sequencing of the human genome by the Human Genome Project35, led to the development 
of new technologies that make possible to measure a vast array of molecules in a biological specimen. 
These gave rise to the omics disciplines, characterized by measuring biological molecules in a high-
throughput manner 4,36. To date, there are different omics according to the subject of study, in this section, 
some of them will be described.  

I. GENOMICS 
 Genomics is the study of the genome, which is the complete set of DNA of an organism. The DNA 
can be complete or partially studied. Examples of studies in genomics include genome-wide association 
studies (GWAS), in which genetic variants are studied by their loci and are aimed to associate them to a 
trait, often a disease, usually single nucleotide polymorphism (SNP) chips are used 37,38. Copy number 
variation (CNV) refers to a loss or amplification of the number of DNA segments larger than 1 kb, smaller 
events are known as insertions or deletions (indels), these studies reflect the genomic arrangement in the 
chromosomes 39,40 the studies of CNV use DNA sequencing, next generation sequencing (NGS) or SNP6 
arrays from Affymetrix41.  

II. TRANSCRIPTOMICS 
 The goal of transcriptomics is to measure the RNA, derived from DNA, to determine gene activation. 
The transcriptome entails different types of RNA,  the messenger RNA (mRNA), the ribosomal RNA (rRNA), 
transfer RNA (tRNA),  microRNA (miRNA), and non-coding RNA (ncRNA). Approaches to study the RNA 
include the Microarrays which contain probes and the expression is measured by fluorescence. However, 
with the next generation sequencing (NGS), it has been the most prominent method used for 
transcriptomics42,43. However, the development of technologies has given rise to approaches such as 
single-cell transcriptomics and spatial transcriptomics. The first looks to analyze the transcriptome of 
individual cells in a population by separating them and the later to look from a histological-type slide, 
different places that might correspond to different cell types that can also be annotated by microscopically 
looking at the slide and determine communication between different cell types44–46.  

III. PROTEOMICS 
 The  proteome is composed by the proteins that are expressed in an organism. An important feature 
of proteins is that they  can be modified by post-translational modifications (PTMs), thus changing their 
amino acid structure and their three dimensional conformation. These PTMs are important to regulate the 
protein homeostasis and turnover, and their detection can provide information of the biological system. 
Proteomics data usually are generated using mass-spectrometry,  by getting the mass to charge ratios of 
the amino acids in their structures 47,48. Also, the phospho-proteomics  approach, that measures 
phosphorylated proteins, is widely used  to investigate the phosphorylation effects in proteins 49,50.  

IV.  METABOLOMICS/LIPIDOMICS 
 The metabolomics refers to the quantification of small molecules, referred to as metabolites. These 
molecules can be seen as indicators of processes occurring in the cell at the level of protein interactions 
and have been used as biomarkers 51,52. The common methods to measure the metabolome are 
combinations of liquid chromatography with mass spectrometry, gas chromatography with mass 
spectrometry  or  nuclear magnetic resonance 53. Lipidomics comprise the study of lipids in depth in different 
systems, usually measured with mass spectometry 54.  



12 

 

 There are other different types of omics, such as epigenomics, studying some interactions like 
histone modifications or DNA-methylations that can have effects on the gene expression. Also, we have 
metagenomics, an approach that is aimed to analyse the genotype of the microorganisms  in the 
microbiome of an individual. In the next section of the chapter, we will see some of these omics data types 
being used in systems biology.   

 

C. EXAMPLES OF SYSTEMS BIOLOGY APPLICATIONS  
 

 In this section of the chapter, I present some conducted studies where I have applied systems 
biology approaches to address some biological questions. The presented work in this section preceded the 
work in the following chapters of this thesis.  

I. IDENTIFICATION OF PLAYERS BETWEEN PRL-3 AND METASTASIS 
 The phosphatase PRL-3 has been described as a marker of tumor progression, specially 
metastasis in many cancers, such as gastric carcinoma55, cervix cancer56, breast cancer57 or uveal 
carcinoma58. In this case, a map was created by reviewing literature, depicting the interactions of PRL-3 to 
different effectors resulting in metastasis. The information about these processes was depicted using 
CellDesigner24 following the Systems Biology Graphical Notation (SBGN)20. The signaling map is available 
at: https://acsn.curie.fr/navicell/maps/invasion_motility/master/index.html. The resulting network was then 
reduced, in order to obtain the key players between PRL-3 and intermediate processes related to 
metastasis, that were, cell matrix-adhesions, cytoskeleton remodelling, cell cycle and survival, 
angiogenesis, EMT and motility and invasion. This was done through path analysis on Cytoscape13, using 
the plugin BiNoM59. This analysis has as a goal to find the shortest path between a source node and a 
target node in the given network, resulting in different reduced networks. This network reduction approach 
permits to comprehend the organization principles of the map and to identify the essential paths and the 
players involved in them.   

 We depicted PRL-3 relationships to cell cycle, survival and apoptosis, first by RAP1 and 
downstream activation of G2/M transition. STAT3 activation induces PTEN inhibition which in a similar way 
with PI3K activation, results in AKT activation with further p53 inhibition resulting in reduced apoptosis. 
Other mechanisms reducing apoptosis regulated by PRL-3 were the direct induction of p14 as well as 
PIRH2 induced by EGR1 upstream. PRL-3 induced glycated ULBP2 in order to promote the immune 
escape of the cancer cells. The inhibition of PTP1B together with the activation of ERK1/2 resulted in the 
induction of EGF/EGFR that resulted and cell survival and proliferation by activation of downstream STAT 
and PI3K/AKT/MTOR pathways (Figure 3a). 

 When investigated the roles of the phosphatase resulting in angiogenesis, we observed that 
inhibition in the transcription of IL-4 was directly related to promote angiogenesis, whereas the induction of 
Src with downstream ERK, and RHOC and RHOA, resulting in downstream VEGF/VEGFR resulted in 
micro-vessel formation and angiogenesis promotion in cancer cells (Figure 3b).  
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 In cell adhesions, the main regulatory mechanism from PRL-3 was in preserving integrins and their 
recycling. Additionally, activation of focal adhesion kinase (FAK) and Src, important effectors of migration 
and adhesion. In cytoskeleton remodeling, Ezrin (ERZ) was one of the main induced players. The inhibition 
of PTP1B and RAC  together with induction of RHOA and ROCK result in cytoskeleton remodeling 
disfunction that leads to a change in cell polarity and further invasive profile (Figure 4).  

 In figure 5, there are depicted the mechanisms between PRL-3 and EMT and motility as well as 
invasion, the induction of AKT with further GSK3β inhibition, results in induction of Snail and further 
mesenchymal markers. For invasion, the degradation of the matrix is essential, and PRL-3 promotes its 
degradation by the induction of different metalloproteinases. With the presented results, the used approach 
allowed to organize the information contained in the map into different sub-networks, containing the major 
players in the interface of PRL-3 activation and metastasis, focusing in the key steps that lead to the latest. 
The results presented in this section, have been already reviewed and published60.  

Figure 3. (a) molecular mechanisms induced by PRL-3 leading to cell cycle progression, survival and proliferation in 
cancer. (b) molecular mechanisms leading to angiogenesis induced by PRL-3 in cancer. 
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Figure 4. (a) molecular mechanisms of cell matrix adhesion induced by PRL-3 in cancer. (b) molecular mechanism of cytoskeleton 
remodeling induced by PRL-3 in cancer. for the annotations, please see the legend in Figure 3. 
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Figure 5. (a) Molecular mechanisms leading to EMT and motility induced by PRL-3 in cancer. (b) molecular mechanisms that promote 
invasion induced by PRL-3 in cancer. For the annotations, please see the legend to Figure 3. 
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II. A MAP OF REGULATED CELL DEATH USED TO EXPLORED DISEASE MECHANISMS 
 Regulated cell death (RCD) comprises different processes that lead to the end of the life of a cell. 
These processes can be triggered by different mechanisms. In cancer cells, the avoidance of cell death is 
essential and is a hallmark of this type of cells61. A map depicting the different types of RCD was created 
in ACSN and it was used for visualization of omics data.  

 Lung cancer and Alzheimer’s disease (AD), described to be inverse comorbidities, were compared 
in the context of this map to explore the differences regarding the RCD processes. AD, as well as other 
neurogenerative disorders, has as feature an aberrant cell cycle reentry, which leads to cell death62. Lung 
cancer as many other cancer subtypes, on the other hand, are constant dividing cells that try to avoid the 
activation of RCD61.  

 For this study, gene expression datasets from lung cancer, non-small cell lung cancer (NSCLC), 
and AD samples from the hippocampus, that is a commonly affected area in  (GSE36980, GSE48350, 
GSE5281, GSE19188, GSE19804, GSE33532) were downloaded from the Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih.gov/geo/). For the testing, we grouped the cases of each disease and 
compared them to their respective controls. 

 The ROMA63 method was used to obtain activation scores across the gene-sets. The scores of AD 
and NSCLC exhibited rather an inverse trend (Figure 6). Regarding RCD types, the modules corresponding 
to the TRAIL response, Pyroptosis, and Dependence Receptors were more active in AD (Figure 6A). In 
contrast, in NSCLC, the ligand-receptor modules (TNF response, TRAIL response, and FAS response), as 
well as some modules of the signaling layer (Pyroptosis and Dependence Receptors), are less active 
(Figure 6A).  

 Of note, most modules related to the pyroptosis module appeared to be more active in Alzheimer 
disease. In addition, in NSCLC several metabolism-related modules (including glucose metabolism, 
oxidative phosphorylation and the citric acid cycle), as well as ER stress, were more active (Figure 6B,C). 
This metabolism-related modules activity confirm previous observations64,65, including on the difference 
between Alzheimer’s disease and lung cancer. Indeed, the integrated comparison of the RCD map across 
AD and NSCLC is in line with speculations on the inverse comorbidity between both diseases, as well 
epidemiological studies suggesting that NSCLC occurs less frequently in AD patients than in age-matched 
individual without AD66–68. 

 Following this analysis, the top contributing genes for each disease were identified. For this, the 
correlation coefficients in all the studies were calculated and those genes that had a correlation coefficient 
of minimum 0.5 (absolute value), with a significant p-value and that appeared in at least 2 of the 3 data sets 
were selected. As a result, a list of genes that contribute either positively or negatively to each module was 
retrieved. 

 In the case of Alzheimer, that had a great activitation of pyroptosis, it has defined as a CASP1-
dependent response to chronic aseptic inflammation69,70. Experimental evidence has linked pyroptosis in 
Alzheimer to the NLRP171 inflammasome or NLRP372 inflammasome. However, most studies correlating 
Alzheimer and pyroptosis have been performed in rodent models. Here, we identified IL18, CASP4, GBP2, 

CASP1, and AIM2 as the genes that were contributing most to the pyroptosis module. IL18 gene is over-
expressed in brains of AD patients73. CASP4 expression has been hypothesized to mediate inflammatory 
responses in AD pathology74. CASP1, together with other genes encoding caspases, is overexpressed in 
AD patients75. AIM2 has been found in mouse models to promote IL1B secretion by neurons, which might 
also participate in AD pathology. However, GBP2 expression has not yet been evaluated for its potential 
role in AD pathology. Recently, Saresella and colleagues found that inflammasome components (NLRP1, 
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NLRP3, PYCARD, CASP1, CASP5, and CASP8) and downstream effectors (IL1B, IL18) were upregulated 
in peripheral blood mononuclear cells from patients with moderate and severe AD76. All these findings 
support our results using the RCD map; nevertheless, future research is needed to elucidate if 
neuroinflammation leads to pyroptosis during AD pathology. 

 In cancer, ER stress has been identified as an adaptive response that favors either growth or 
apoptosis77,78. In addition, ER stress has also been related to chemotherapy resistance79. In our study, we 
identified the genes PDIA6, PDIA4, DNAJB11, SEC61G, SEC61A1, and CREB3L4 as positively 
contributing genes and ITPR1, RYR2, NFKB1, and NLRC4, as negatively contributing genes for the ER 
stress module. PDIA6 and PDIA4 have been demonstrated to be overexpressed in NSCLC biopsies 
resistant to chemotherapy with cisplatin, and their silencing actually may reverse drug resistance80. The 
NFKB1 gene has been described to be a key player in the ER stress pathway and cancer survival 
mechanisms81,82. NLRC4 is downregulated in lung cancer cases83 . NLRC4 contains a caspase recruitment 
domain (CARD) through which it can regulate apoptosis via NF-κB signaling pathways, suggesting a 
possible link between NLRC4 and NFKB1 genes in this module. In contrast, there are no consistent reports 
on the possible involvement of DNAJB11, SEC61G, SEC61A, and CREB3L4 in NSCLC.  

 Taken together, these results shown the application of a signaling network map to study disease 
mechanisms and obtain the major players. In this case, the differences were shown from two diseases that 
have been described to be inverse comorbidities.  

 The results of this study have been already published84. The presented two examples, depict how 
systems biology approaches can help to study human diseases. The next chapters describe different 
approaches that were addressed for different questions and contexts.  
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Figure 6. Visualization of average ROMA modules activity scores using expression data from Alzheimer disease (AD) hippocampus samples 
and non-small cell lung cancer (NSCLC) specimens in the RCD map. (a) Heatmap representing ROMA scores for the two diseases (each 
respective to its normal controls). staining of RCD map with ROMA scores from (b) AD data and (c) NSCLC data. the plotted values correspond 
to the relative ROMA module score compared to controls (as in a). top contributing genes are represented in their locations on the map, purple 
positively contributing genes and yellow negatively contributing genes. 
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CHAPTER II. TRANSCRIPTOMICS PROFILING OF ADIPOSE TISSUES 

IN BREAST CANCER 
 

A. INTRODUCTION 
Breast cancer is the most common type of cancer in females. According to the GLOBOCAN, in 

2020, 2.261.419 new cases of breast cancer were reported and 684.996 deaths in the same year were 
attributed to breast cancer world-wide 1. Among the risk factors to develop this disease are: Female gender, 
age, abusive alcohol consumption, family history of breast cancer, exposure to radiation, tobacco smoking, 
use of postmenopausal hormone therapy and obesity 2. 

The female breast could be defined as a cutaneous exocrine gland 3 The breast lies on the anterior 
thoracic wall between the 2nd and the 6th costal cartilages with the sternum medially and the midaxillary line 
laterally. The breast consists of skin and subcutaneous tissue,  breast parenchyma (ducts and lobules), 
and supporting stroma 4.  In the breast parenchyma, we can find the glandular tissue, that extends to 10 to 
20 lobes. Each lobe is then subdivided into lobule and acini. From each lobule a lactiferous duct leads to 
the nipple through the lactiferous sinus. The supporting stroma can be divided into fibrous stroma, mainly 
formed by the suspensory ligaments of Cooper and the fatty stroma, subcutaneous adipose tissue, that 
gives the main volume to the breast 5. 

Breast cancer can develop in any part of the breast. Nevertheless, the most common anatomical 
sites are the ducts and the lobules, being the first the most common type. Histologically, the breast cancers 
can be classified regarding if the cells have already invaded the basement membrane or not. Being 
determined in situ for those tumors that have not yet invaded the basal membrane and invasive, that are 
those that have spread to the basal membrane and cells can be found in another parts of the breast, 
lymphatic system or even have touched the bloodstream. Since this chapter is focused in the ductal 
carcinoma, with the aforementioned we can classify them as ductal carcinoma in situ (DCIS) or invasive 
ductal carcinoma (IDC) 6,7.  

The invasive ductal carcinomas, usually are subclassified in order to distinguish them and to guide 
the treatment management. There are many classifications, however, for this chapter we will take four 
subtypes: Luminal A, Luminal B, Her2-enriched and Triple Negative, that are the most commonly used in 
the clinical practice. Luminal A tumors are rich in estrogen receptors (ER), correspond to low grade tumors 
and usually with good prognosis, in addition to ER, progesterone receptor (PR) is highly expressed and the 
human epidermal growth factor receptor 2 (HER2) is lowly expressed and also they present low Ki67 
expression. Luminal B tumors can be positive for ER and PR, at a lower extent than luminal A tumors, and 
HER2 negative or positive, they also present high Ki67 and are classified as a higher grade than luminal A 
tumors. HER2-enriched tumors are considered highly aggressive and present a positive expression of the 
HER2 protein and negative expression of hormone receptors (ER/PR) and with high Ki67. Triple negative 
tumors are the most aggressive and they are negative for all the receptors ER/PR/HER2 and with high Ki67 
6,8. 

The tumor microenvironment (TME) has been widely studied in different cancer types, specially 
targeting immune infiltrates and fibroblasts. In recent years, the adipose tissue has gained interest, since it 
has been associated to the initiation and progression of different cancers, like breast cancer. The term 
Cancer associated adipocytes (CAA) was coined to refer to those adipocytes that are in contact with the 
tumor cells and have bi-directional interactions 9,10. It has been observed that this adipocytes can secrete 
proinflammatory cytokines like IL-6 and Prostaglandin E2, Adipokines, specially leptin, that stimulates the 
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aromatase expression, lipids that serve as fuel substrate and structural elements for tumor cells 11,12. The 
prolonged interaction between adipocytes and tumor cells is believed  to transform the mature adipocytes, 
by de-differentiation, into adipocyte derived fibroblasts 12,13. A process called “browning” of the white 
adipocytes has been suggested to be the responsible of the transformation in these cells, and experimental 
evidence has shown an increase in expression of UCP-1, PGC1α, TOMM20, PLIN1, and HSL that indicate 
this process to occur 14.  

 The adipose tissue has been greatly studied in the field of metabolic diseases, especially in obesity. 
Obesity can be defined as an excess of body weight at the expense of adipose tissue. In order to classify 
obesity, one of the most used indicators is the body mass index (BMI) the quotient resulting from dividing 
the body weight in kg between the body surface (height squared in meters). According to the WHO, a 
person with a BMI ≥ 30 kg/m2 is considered obese (see Table 1) 15. It has been observed that obesity can 
induce a low-grade chronic inflammation through cytokine excretion 16. This chronic inflammation can lead 
to recruitment of immune cells, especially macrophages, that result in the “crown-like structures” where 
macrophages surround the adipocytes and can induce cell death 17. This low-grade chronic inflammation 
has been suggested as one of the inducers of different metabolic comorbidities and cancers, including 
breast cancer 18–20.  

 

 

 

 

 

Taking into account all this information, we came to the hypothesis that the regulators of 
metabolism and signaling mechanisms in the Tumor Microenvironment components, especially Cancer 
Associated Adipocytes, provide markers of invasion and metabolic remodeling in breast cancer. In order to 
explore this hypothesis, we have set a collaborative project in 2019, called LipoCanPredict, where we have 
a partnership between the Institute Curie and the Saint-Antoine Research Center (CRSA). In this project 
we aim to explore the CAA role by taking patient biopsies to perform multi-omics (transcriptomics and 
lipidomics/metabolomics) analyses in the tissues but also we have set co-culture experiments to study more 
in detail the direct interactions.  

In this chapter, I will expose the obtained results from one of the LipoCanPredict branches, the 
analysis of transcriptomics data from patient biopsies with breast cancer. We have set a cohort of patients, 
obese or normal-weight, and taken samples from the tumor, as well as adipose tissues, one piece 
surrounding the tumor and one piece far from the tumor. This cross-sectional approach would give us a 
snapshot of the transcriptional patterns of the adipose tissues likely CAA signatures.  

 

 

 

 

BMI Nutritional status 
< 18.5 Underweight 
18.5 – 24.9 Normal-weight 
25.0 – 29.9 Overweight 
30.0 – 34.9 Obesity class I 
35.0 – 39.9 Obesity class II 
> 40 Obesity class III 

Table 1. World health organization (WHO) BMI categories. The classification is meant to be applied on adults over 20 years old. 
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B. MATERIALS AND METHODS 
 

Study subjects and tissue sampling 

Tissue samples were obtained from patients undergoing mastectomy (partial or total) at the Curie 
Institute Hospital in Paris, France. The studied individuals were selected according to the criteria listed in 
Table 1. Only the patients that have signed the informed consent approving the use of their biological 
materials for scientific research were considered for the analysis. The clinical data as well as the tissue 
specimens from the patients, were obtained in collaboration with the pathology department at the Curie 
Institute Hospital. 

Subsequent to the mastectomy, three different samples were collected as follows: 1) A sample of 
the tumor,  2) one piece of adipose tissue close to the tumor, no more than one centimeter away from the 
tumor, which we termed proximal adipose tissue and 3) one piece of adipose tissue “distant” from the 
tumor, at least 5 centimeters away from the tumor, which we termed distal adipose tissue. The adipose 
tissue distances were determined macroscopically. Then the samples were snap-frozen in liquid nitrogen 
and preserved at -80°C until manipulation.  

Inclusion Exclusion Elimination 
-Ductal carcinoma 
-Without neoadjuvant therapy or 
radiotherapy (surgery first) 

-BMI < 18.5  
-24.9 < BMI < 30 
-Tumor size <10 mm 

-Refused to sign the consent.  

Table 2. Criteria for the patients in the study 

Tissue preparation 

The collected frozen samples were ground using porcelain mortar and pestle (Dutscher), until 
obtaining a powder consistency. Throughout the grinding process, the samples were maintained cold by 
addition of liquid nitrogen. Once the sample was satisfactory ground, it was divided into tubes and weighted.  

RNA extraction and sequencing 

To extract the RNA, samples were homogenized using TRIzol reagent (Invitrogen), then the 
contents were transferred to Phasemaker tubes (Quanta Bio). Then chloroform was added, the samples 
were incubated and centrifugated. The upper phase was then transferred to a RNeasy minikit column 
(QIAGEN), afterwards total RNA was extracted according to the manufacturer specifications. The RNA’s 
quality and quantity were measured using nanodrop spectrophotometer (ThermoFisher Scientific) and 
Bioanalyzer 2000 (Agilent) before sequencing. The extracted RNA samples were sequenced at the 
CurieCoreTech Next Generation Sequencing (ICGEX) platform,  at the Curie Institute, Paris, France. The 
samples were sequenced using the protocol 3' mRNA-Seq library Prep Kit - FWD-Lexogen. The raw data 
were processed using the pipeline “rawqc” version 2.2.0 (DOI 10.5281/zenodo.7515638), and the alignment 
was done using the reference genome GRCh38 (hg38).  
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Transcriptomics data analysis 

All the analysis were performed using R software (v4.2.0). For the gene expression normalization 
and differential analysis, the packages “DESeq”, “edgeR” and “Limma” were used. For the exploratory 
analysis, the gene expression matrix was reduced to use the protein coding genes, according to the HUGO 
Gene Nomenclature Committee (HGNC). The data was normalized using a variance stabilizing 
transformation (VST). The exploratory analyses were performed using principal component analysis (PCA) 
and euclidean distances to cluster the samples and measure the gene expression divergence. For 
Differential Expression analysis, the raw counts were scaled using the trimmed mean of M-values (TMM) 
normalization method, followed by a voom transformation with a duplicated correlation for fixed effects. 
Differentially expressed genes had an adjusted p value < 0.05 and an absolute log2 Fold change (log2FC) 
> 1. The functional analysis was performed taking the differentially expressed genes log2FC using the 
packages “org.Hs.eg.db", “clusterProfiler" and "AnnotationDbi" with Gene Set Enrichment Analysis (GSEA) 
to determine enriched pathways using the databases Reactome, KEGG, WikiPathways and the Hallmarks 
genesets from the molecular signatures database (MSigDB).  

CAA mapped pathways 

From the previous analyses, according to the literature and to those enriched pathways from the 
analyses, 21 pathways from WikiPathways and KEGG were selected, the genes were extracted and used 
to perform further analyses to the transcriptomics data (see Table 16). These pathways were taken as 
relevant to describe the CAAs.  

Representation and Quantification of Module Activity (ROMA) analysis 

 The ROMA analysis21 was used to quantify the activity of the different pathways represented in the 
CAA mapped pathways. The analysis was done using the “rROMA” package in R22. Input data was 
previously normalized using VST. ROMA implements a simplest uni-factor linear model of gene regulation 
that estimates the expression data of a gene set by its first principal component (PC1). In this algorithm, a 
random gene set procedure is used to generate a null distribution for the L1 amount of variance described 
by the PC1 and computes the p-value by comparing the obtained L1 to the null distribution. From these 
calculations, the overdispersed modules were identified, corresponding to modules where the amount of 
variance explained by PC1 calculated for the genes in the module is significantly greater than the variance 
of a random gene set with the same amount of genes. Top contributing genes were calculated using 
Pearson’s correlation using the gene expression and the scores provided by the ROMA analysis.  

Reproducibility 

 The files containing the used code for the different analyses, are available in the LipoCanPredict 
repository on GitHub: https://github.com/sysbio-curie/LipoCanPredict.  
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C. RESULTS 

 

Population characteristics 

We have sequenced 218 samples in total for all tissues. However, the downstream analysis was 
performed in 171 samples, corresponding to 57 patients where the three tissues were successfully 
sequenced. The population characteristics can be found in the Table 1.  

VARIABLE OBESE  
(N = 24) 

NORMAL-WEIGHT  
(N = 33) 

TOTAL  
(N = 57) 

 Mean S.D. Mean  S.D. Mean  S.D. 
AGE (YEARS) 59.75 (±12.60) 58.82 (± 16.96) 59.21 (± 15.16) 
BMI (KG/M2) 33.42 (± 3.13) 22.25 (± 1.74)   
 Frequency Proportion Frequency Proportion Frequency Proportion 
MOLECULAR 

CLASSIFICATION 

      

INVASIVE 24 100 % 28 85 % 52 91 % 
 LUMINAL A 14 58 % 13 39 % 27 47 % 
 LUMINAL B 9 38 % 9 27 % 18 32 % 
 HER-2 ENRICHED 0 0 % 1 3 % 1 1.8 % 
 TRIPLE NEGATIVE 1 4.2 % 5 15 % 6 11 % 
NON-INVASIVE       
 DCIS 0 0 % 5 15 % 5 8.8 % 
       
GRADE (FOR 
INVASIVE)  

      

GRADE I 4 17 % 10 36 % 14 27 % 
GRADE II 16 67 % 14 50 % 30 58 % 
GRADE III 4 17% 4 14 % 8 15 % 

Table 3. Characteristics of the studied population. the quantitative variables are described with means and standard deviations (S.D.), 
whereas the qualitative variables are described as frequencies and proportions, the latest is taken as percentage of the corresponding 
category, i.e. obese, normal-weight or total.  

As we can see in Table 1, the age in both groups appears to be somewhat evenly distributed.  The 
majority of the patients in the cohort correspond to invasive ductal carcinomas (IDC). Frome these, the 
luminal A and B subtypes are the most predominant, taken together 79% of the cohort. In the invasive 
subtypes, we can observe that majority of the patients, were classified as to have a grade II. Regarding to 
the non-invasive ductal carcinomas, we only had 5 patients in the cohort and all of them were Normal-
weight in the BMI classification. 

Exploratory RNA-seq analyses  

For all the individuals, we explored the data as per tissue sampled. For this, a  principal component 
analysis (PCA) has been performed to plot the data regarding the variance of the samples. In this PCA we 
have observed a tendency of those samples corresponding to tumor tissue and distal adipose tissue to 
separate from each other, as expected. The samples corresponding to the proximal adipose tissue, show 
a spreading tendency between the distal adipose tissue and tumor samples (Figure 1). Additionally, we 
also plotted the PCA to explore the dispersion regarding the BMI categories (Normal weight and obese), 
BMI and tissue, molecular classification of the tumor, however these variables does not appear to be 
responsible for the variance in the gene expression in this cohort (Supplementary figures 1-3). Then we 
wanted to explore the effects of the fact that the samples belong to the same patient could potentially 
explain the behavior in the PCA For this, we plotted the Euclidean distances of all the samples (Figure 2). 
In this heatmap we could observe a clustering mainly composed of samples coming from the tumor samples 
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(from the bottom right corner going up and left). Then, there is a collection of samples clustering together, 
mostly proximal and distal adipose tissues, with some tumor samples following in this cluster. As expected, 
some samples coming from the same patient, specifically for adipose tissue samples, were clustering 
together. For further analyses, we would have to take this into account.  

Since this cohort has some samples corresponding to different tumor types (see Table 1), we 
decided to explore the behavior of the data in a subset of samples. To do so, we took the samples only 
from the patients that had a tumor classified as Luminal A or Luminal B. Hence, this subset of samples 
correspond to invasive carcinomas with the better prognosis. This subset (n = 45), is composed by samples 
of 23 obese and 22 normal-weight patients. After running a PCA, we observed a similar pattern as what we 
observed with the first analysis (Figure 3). Nevertheless, when plotting the first two dimensions of the PCA, 
we could observe how the different tissues were dispersed, specially the majority of the distal adipose 
tissues and the tumors. The proximal adipose tissues appear to be dispersed in between both groups, as 
we observed with the complete cohort. Additionally, the percentage of variance of the first dimension has 
dramatically increased after sub setting the samples. As done for the general samples, we also explored  
for the BMI categories, BMI and tissue, molecular classification of the tumor, though, not striking differences 
were found (Supplementary figures 4-6).  
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Figure 1. Principal component analysis plot of all the samples for the different tissue types. 
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Figure 2. Heatmap corresponding to the Euclidean distances in all the patients for the three tissues.   
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Figure 3. PCA plot corresponding to the subset of samples (luminal subtypes) for the three different tissue types.  
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Differential expression and functional analysis 

For the differential expression analysis, first we took into account all the samples available in the 
cohort (n = 57). The comparisons made to obtain the differentially expressed genes (DEG) were: 1) proximal 
adipose tissue to distal adipose tissue, 2) proximal adipose tissue to tumor tissue  and 3) distal adipose 
tissue to tumor tissue. In the first comparison 1241 DEG were obtained, on the second 2771 DEG were 
obtained and in the third comparison we obtained 4948 DEG. The overlaps in the three comparisons as 
well as unique genes per comparison are summarized in the Venn diagram corresponding to Figure 4.  

 

 
 
 
 

 

 

 

 

 

Using the lists of DEG we could then perform the enrichment analyses to see the processes that 
are related to these genes. Firstly, we have queried for all the comparisons using gene ontology (GO) terms 
for biological processes (BP). The enriched terms were quite broad and the terms that might be of interest 
got shadowed in the enriched terms results (data not shown). Then, we decided to perform the enrichment 
using the following gene sets from the Molecular Signatures Database (MSigDB): Hallmarks, KEGG gene-
sets, Reactome gene-sets, and the sets from WikiPathways.  

For the proximal adipose tissues as compared to the distal adipose tissues, the pathways that were 
enriched, from the hallmark gene-sets, were estrogen response for the proximal and the adipogenesis 
hallmark for the distal adipose tissues (see Table 4). For the KEGG gene sets, only the PPAR signaling 

pathway appear to be enriched in the distal adipose tissue (see Table 5). Then we have the enrichment 
from Reactome, in which the gene-sets enriched in the proximal adipose tissue seem to be related to cell 
development whereas in the distal adipose tissue we observed more canonical pathways as regulation of 

adipocyte differentiation or G alpha (s) signaling events, related to the Protein Kinase A (see Table 6). 
When we enriched the gene-sets using WikiPathways, we retrieved very few, the most enriched gene set 
for proximal adipose tissue was again a pathway related to development, whereas the distal adipose tissue 
have enriched the PPAR signaling pathway as when used the KEGG gene sets and adipogenesis as  
with the hallmarks gene sets (Table 7). The results of the enrichment can indicate the similarities between 
both tissues but also how the distal adipose tissues have strong enrichment for canonical adipose tissue 
pathways, as expected.  

Figure 4. Venn diagram representing the differentially expressed genes across the different comparisons per tissue type. DAT: distal adipose tissue, 
PAT: proximal adipose tissue, TT tumor tissue 
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Table 4. Enrichment results from the hallmarks gene-sets for the comparison of proximal to distal adipose tissue. Positive values in 
enrichment score correspond to proximal adipose tissue and negative values to distal adipose tissue. NES: Normalized Enrichment 
Score. 

 

Table 5. Enrichment results from the KEGG gene-sets for the comparison of proximal to distal adipose tissue. Positive values in 
enrichment score correspond to proximal adipose tissue and negative values to distal adipose tissue. NES: Normalized Enrichment 
Score. 

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

REACTOME_FORMATION_OF_THE_CORNIFIED_ 
ENVELOPE 

0.564686023 2.342612435 9.90151744518567e-05 0.004554698 

REACTOME_KERATINIZATION 0.564686023 2.342612435 9.90151744518567e-05 0.004554698 
REACTOME_ESR_MEDIATED_SIGNALING 0.495282491 2.054690349 0.00159285 0.039124398 
REACTOME_RHO_GTPASE_CYCLE 0.461659093 2.062440667 0.001984571 0.039124398 
REACTOME_SIGNALING_BY_RHO_GTPASES_ 
MIRO_GTPASES_AND_RHOBTB3 

0.346115186 1.974704343 0.001681476 0.039124398 

REACTOME_TRANSPORT_OF_SMALL_ 
MOLECULES 

-0.185508003 -1.932895669 0.002863939 0.049402954 

REACTOME_G_ALPHA_S_SIGNALLING_EVENTS -0.473993917 -2.090887184 0.001951802 0.039124398 
REACTOME_TRANSCRIPTIONAL_REGULATION_O
F_WHITE_ADIPOCYTE_DIFFERENTIATION 

-0.746684082 -2.890547816 5.06369805239322e-06 0.00069879 

Table 6. Enrichment results from the Reactome gene-sets for the comparison of proximal to distal adipose tissue. Positive values in 
enrichment score correspond to proximal adipose tissue and negative values to distal adipose tissue. NES: Normalized Enrichment 
Score. 

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

ECTODERM DIFFERENTIATION-
WIKIPATHWAYS_20230610-WP2858-HOMO 
SAPIENS 

0.593444616 2.081134426 0.001787658 0.034561389 

PPAR SIGNALING PATHWAY-
WIKIPATHWAYS_20230610-WP3942-HOMO 
SAPIENS 

-0.538515088 -2.260688838 0.001196317 0.034561389 

ADIPOGENESIS-WIKIPATHWAYS_20230610-
WP236-HOMO SAPIENS 

-0.542514429 -2.969711233 5.9081957685596e-06 0.000342675 

Table 7. Enrichment results from the WikiPathways gene-sets for the comparison of proximal to distal adipose tissue. Positive values 
in enrichment score correspond to proximal adipose tissue and negative values to distal adipose tissue. NES: Normalized Enrichment 
Score. 

After comparing both adipose tissue types, we also compared the proximal adipose tissue to the 
tumor tissue samples. We used the same gene-sets to do this comparison. From the hallmarks gene sets, 
for the proximal adipose tissues we observed an enrichment of classical adipose tissue processes but also 
others as TNF signaling and hypoxia which might indicate stress or inflammation in the case of the tumors 
we observed mostly cell cycle related processes enriched (Table 8). For the KEGG gene sets we observed 
very similar enriched elements in proximal adipose tissues as in the comparison with hallmarks, with 
metabolic pathways related to adipose tissue, also the metabolism of xenobiotics by cytochrome 

p450.In the case of the tumor tissue we observed pathways very well known for tumor development, such 
as P53 signaling pathway and cell cycle (Table 9). When we did the enrichment using the Reactome 
gene sets, we obtained 141 pathways enriched (data not shown), most of the pathways were 
complementary or redundant to others in the results, therefore, the top and bottom 15 pathways are shown 

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

HALLMARK_ESTROGEN_RESPONSE_EARLY 0.50641563 2.89583977 1.00164812568551e-08 1.35222496967544e-07 

HALLMARK_ESTROGEN_RESPONSE_LATE 0.42718786 2.45696096 1.10926328236592e-05 9.98336954129324e-05 

HALLMARK_ADIPOGENESIS -0.8361858 -3.9179996 1.11799596247795e-10 3.01858909869045e-09 

Gene Set Enrichment Score NES p-value Adjusted p-value 

KEGG_PPAR_SIGNALING_PATHWAY -0.5385151 -2.2656982 0.00051504 0.01236107 
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in Table 10. For the proximal adipose tissue the enriched pathways are classical for adipose tissue, 
however there are also some related to xenobiotic metabolism as previously described, whereas in the 
tumor tissue we have cell cycle related pathways. In the case of WikiPathways we obtained 45 enriched 
pathways (see Table 11) from which 32 were enriched in the proximal adipose tissue. From these pathways 
that many are expected for adipose tissue it is also interesting to see pathways like VEGFA-VEGFR2 

signaling, Angiopoietin-like protein 8 regulatory pathways that are related to angiogenesis and lipid 
metabolism, as well as the prostaglandin synthesis.  

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

HALLMARK_ADIPOGENESIS 0.592816899 3.439700946 1e-10 1.33333333333333e-09 
HALLMARK_FATTY_ACID_METABOLISM 0.525217835 2.625803161 5.93279921124663e-06 3.95519947416442e-05 
HALLMARK_HYPOXIA 0.432862173 2.532177823 4.60834062436205e-06 3.68667249948964e-05 
HALLMARK_XENOBIOTIC_METABOLISM 0.42518457 2.283951602 0.000193547 0.000967734 
HALLMARK_MYOGENESIS 0.422922072 2.536513021 8.0476092171551e-06 4.59863383837434e-05 
HALLMARK_BILE_ACID_METABOLISM 0.408208895 1.793094636 0.01385765 0.039593286 
HALLMARK_TNFA_SIGNALING_VIA_NFKB 0.381988912 2.21641391 0.000235116 0.001044959 
HALLMARK_UV_RESPONSE_DN 0.373025681 1.966232667 0.002471064 0.007603275 
HALLMARK_KRAS_SIGNALING_UP 0.347814614 2.002296885 0.002148184 0.007160614 
HALLMARK_ESTROGEN_RESPONSE_EARLY -0.296601522 -2.073007256 0.000402302 0.001609209 
HALLMARK_SPERMATOGENESIS -0.472069188 -2.243436024 0.00062437 0.002270435 
HALLMARK_MITOTIC_SPINDLE -0.477908112 -2.762758717 1.63305354124286e-06 1.63305354124286e-05 
HALLMARK_E2F_TARGETS -0.567810993 -3.907446107 1e-10 1.33333333333333e-09 
HALLMARK_G2M_CHECKPOINT -0.576811302 -3.987530016 1e-10 1.33333333333333e-09 

Table 8. Enrichment results from the Hallmarks gene-sets for the comparison of proximal adipose tissue to tumor tissue. Positive 
values in enrichment score correspond to proximal adipose tissue and negative values to tumor tissue. NES: Normalized Enrichment 
Score. 

 

Gene Set Enrichment 
Score 

NES p-value Adjusted  
p-value 

KEGG_PPAR_SIGNALING_PATHWAY 0.688862657 2.907624729 0.001655629 0.025728988 
KEGG_ADIPOCYTOKINE_SIGNALING_PATHWAY 0.681148487 2.634062616 0.001686341 0.025728988 
KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 0.644427308 2.260776745 0.001686341 0.025728988 
KEGG_RETINOL_METABOLISM 0.611577047 2.252571206 0.001715266 0.025728988 
KEGG_DRUG_METABOLISM_CYTOCHROME_P450 0.550572907 2.027879699 0.003430532 0.032161235 
KEGG_GLYCEROLIPID_METABOLISM 0.542253231 1.902330147 0.006745363 0.042158516 
KEGG_INSULIN_SIGNALING_PATHWAY 0.541152091 2.307791449 0.001647446 0.025728988 
KEGG_CALCIUM_SIGNALING_PATHWAY 0.393439526 1.903940002 0.004754358 0.035657686 
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0.358127306 2.039867287 0.007407407 0.042735043 
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS -0.359051518 -1.83836394 0.005390836 0.036755697 
KEGG_OOCYTE_MEIOSIS -0.495597084 -2.335781889 0.002531646 0.029844807 
KEGG_CELL_CYCLE -0.549404499 -3.193894061 0.002785515 0.029844807 
KEGG_P53_SIGNALING_PATHWAY -0.568109624 -2.053654474 0.004672897 0.035657686 

Table 9. Enrichment results from the KEGG gene-sets for the comparison of proximal adipose tissue to tumor tissue. Positive values 
in enrichment score correspond to proximal adipose tissue and negative values to tumor tissue. NES: Normalized Enrichment Score. 

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

REACTOME_TRANSCRIPTIONAL_REGULATION_OF_WHITE
_ADIPOCYTE_DIFFERENTIATION 

0.846577406 3.275101501 1.00E-10 5.37E-09 

REACTOME_TRIGLYCERIDE_METABOLISM 0.813835567 2.593382728 8.08E-07 1.31E-05 
REACTOME_PLASMA_LIPOPROTEIN_REMODELING 0.745883459 2.376845347 3.47E-05 0.000310805 
REACTOME_PLASMA_LIPOPROTEIN_ASSEMBLY_ 
REMODELING_AND_CLEARANCE 

0.687389382 2.442628393 3.14E-05 0.000288565 

REACTOME_BINDING_AND_UPTAKE_OF_LIGANDS_BY_ 
SCAVENGER_RECEPTORS 

0.632579861 2.496768185 1.96E-05 0.000197528 

REACTOME_COMPLEMENT_CASCADE 0.606392048 1.932339563 0.005490483 0.015356308 
REACTOME_METABOLISM_OF_FAT_SOLUBLE_VITAMINS 0.588246449 2.27571255 0.000521902 0.002100655 
REACTOME_SIGNALING_BY_RETINOIC_ACID 0.575522938 2.045112575 0.0019353 0.006294612 
REACTOME_RA_BIOSYNTHESIS_PATHWAY 0.566171634 1.893967661 0.008832577 0.022572142 
REACTOME_OPIOID_SIGNALLING 0.560964858 1.993380643 0.003357801 0.010104784 
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REACTOME_DRUG_ADME 0.560535129 2.067879866 0.003465889 0.010333485 
REACTOME_INTERACTION_BETWEEN_L1_AND_ANKYRINS 0.519781525 1.811503294 0.016697327 0.039826217 
REACTOME_SIGNALING_BY_TYPE_1_INSULIN_LIKE_ 
GROWTH_FACTOR_1_RECEPTOR_IGF1R 

0.517969349 1.805187633 0.01723163 0.04050062 

REACTOME_CARGO_RECOGNITION_FOR_CLATHRIN_ 
MEDIATED_ENDOCYTOSIS 

0.511741626 2.083507556 0.001508555 0.005059945 

REACTOME_METABOLISM_OF_VITAMINS_AND_ 
COFACTORS 

0.50580945 2.503615272 1.93E-05 0.000197528 

REACTOME_SYNTHESIS_OF_DNA -0.5992411 -2.5914813 1.62E-05 0.00018577 
REACTOME_DNA_METHYLATION -0.608348 -2.5013857 5.78E-05 0.00044348 
REACTOME_PRC2_METHYLATES_HISTONES_AND_DNA -0.6086519 -2.5026353 5.72E-05 0.00044348 
REACTOME_S_PHASE -0.6115992 -2.9890456 1.06E-07 2.60E-06 
REACTOME_REGULATION_OF_TP53_ACTIVITY_THROUGH
_PHOSPHORYLATION -0.6143788 -2.1437013 0.00077545 0.0029376 
REACTOME_MITOTIC_G2_G2_M_PHASES -0.6159621 -2.9715651 7.14E-08 2.09E-06 
REACTOME_FORMATION_OF_THE_CORNIFIED_ENVELOPE -0.6169531 -2.536768 3.85E-05 0.00032589 
REACTOME_KERATINIZATION -0.6169531 -2.536768 3.85E-05 0.00032589 
REACTOME_ASSEMBLY_OF_THE_ORC_COMPLEX_AT_THE
_ORIGIN_OF_REPLICATION -0.6208597 -2.6256665 2.31E-05 0.00022569 
REACTOME_CONDENSATION_OF_PROPHASE_ 
CHROMOSOMES -0.6312121 -2.7297433 2.86E-06 4.19E-05 
REACTOME_SWITCHING_OF_ORIGINS_TO_A_POST_ 
REPLICATIVE_STATE -0.6796124 -2.2934147 0.00041287 0.00174926 
REACTOME_CYCLIN_A_B1_B2_ASSOCIATED_EVENTS_ 
DURING_G2_M_TRANSITION -0.7274622 -2.4548885 6.79E-05 0.00049715 
REACTOME_G0_AND_EARLY_G1 -0.7558855 -2.5508056 1.77E-05 0.00019026 
REACTOME_G1_S_SPECIFIC_TRANSCRIPTION -0.7564335 -2.7156357 8.39E-07 1.31E-05 
REACTOME_APC_C_MEDIATED_DEGRADATION_OF_CELL_
CYCLE_PROTEINS -0.7689318 -2.7605051 3.51E-07 7.06E-06 

Table 10. Enrichment results from the Reactome gene-sets for the comparison of proximal adipose tissue to tumor tissue. The 
enriched pathways in the table correspond to the top and bottom 15 pathways enriched. Positive values in enrichment score 
correspond to proximal adipose tissue and negative values to tumor tissue. NES: Normalized Enrichment Score. 

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

DIFFERENTIATION OF WHITE AND BROWN ADIPOCYTE-
WIKIPATHWAYS_20230610-WP2895-HOMO SAPIENS 

0.734251656 2.7638847 4.50E-07 2.12E-05 

FAMILIAL PARTIAL LIPODYSTROPHY-
WIKIPATHWAYS_20230610-WP5102-HOMO SAPIENS 

0.714615012 2.649364848 4.29E-06 0.000115168 

TRIACYLGLYCERIDE SYNTHESIS-WIKIPATHWAYS_20230610-
WP325-HOMO SAPIENS 

0.709865311 2.39281935 3.40E-05 0.000709575 

TRANSCRIPTION FACTOR REGULATION IN ADIPOGENESIS-
WIKIPATHWAYS_20230610-WP3599-HOMO SAPIENS 

0.697071639 2.349694346 4.64E-05 0.000872611 

FERROPTOSIS-WIKIPATHWAYS_20230610-WP4313-HOMO 
SAPIENS 

0.689890021 2.235993353 0.00063378 0.00541594 

PPAR SIGNALING PATHWAY-WIKIPATHWAYS_20230610-
WP3942-HOMO SAPIENS 

0.67947524 2.894036361 1.30E-07 8.16E-06 

VITAMIN B12 METABOLISM-WIKIPATHWAYS_20230610-
WP1533-HOMO SAPIENS 

0.665709755 2.310243532 0.000208064 0.002793997 

AMP-ACTIVATED PROTEIN KINASE SIGNALING-
WIKIPATHWAYS_20230610-WP1403-HOMO SAPIENS 

0.656288108 2.338864494 0.000160292 0.00273954 

GALANIN RECEPTOR PATHWAY-WIKIPATHWAYS_20230610-
WP4970-HOMO SAPIENS 

0.651240238 2.110726058 0.0021074 0.014673749 

PROSTAGLANDIN SYNTHESIS AND REGULATION-
WIKIPATHWAYS_20230610-WP98-HOMO SAPIENS 

0.63788216 2.646480391 3.25E-06 0.000101863 

VITAMIN A AND CAROTENOID METABOLISM-
WIKIPATHWAYS_20230610-WP716-HOMO SAPIENS 

0.630156894 2.336244687 0.000191234 0.002793997 

FATTY ACID BETA-OXIDATION-WIKIPATHWAYS_20230610-
WP143-HOMO SAPIENS 

0.606439193 1.965521987 0.007950225 0.035586723 

ADIPOGENESIS-WIKIPATHWAYS_20230610-WP236-HOMO 
SAPIENS 

0.606429649 3.123619402 9.56E-10 1.80E-07 

NONALCOHOLIC FATTY LIVER DISEASE-
WIKIPATHWAYS_20230610-WP4396-HOMO SAPIENS 

0.605529896 2.279347691 0.00034805 0.004089591 

FOLATE METABOLISM-WIKIPATHWAYS_20230610-WP176-
HOMO SAPIENS 

0.592172411 2.269238127 0.000541836 0.005078617 

FATTY ACID BIOSYNTHESIS-WIKIPATHWAYS_20230610-
WP357-HOMO SAPIENS 

0.570652174 1.923558657 0.002273418 0.015264379 
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CHOLESTEROL METABOLISM-WIKIPATHWAYS_20230610-
WP5304-HOMO SAPIENS 

0.562082398 1.950620694 0.005109489 0.029108603 

PHOSPHODIESTERASES IN NEURONAL FUNCTION-
WIKIPATHWAYS_20230610-WP4222-HOMO SAPIENS 

0.554998687 2.057603029 0.003351783 0.020326945 

WHITE FAT CELL DIFFERENTIATION-
WIKIPATHWAYS_20230610-WP4149-HOMO SAPIENS 

0.545894195 1.945445201 0.005859991 0.030133238 

SELENIUM MICRONUTRIENT NETWORK-
WIKIPATHWAYS_20230610-WP15-HOMO SAPIENS 

0.533073934 2.211646293 0.000406148 0.00428869 

LEPTIN SIGNALING PATHWAY-WIKIPATHWAYS_20230610-
WP2034-HOMO SAPIENS 

0.52923993 1.783965953 0.007388433 0.033878668 

GLYCOGEN SYNTHESIS AND DEGRADATION-
WIKIPATHWAYS_20230610-WP500-HOMO SAPIENS 

0.521924146 1.759305853 0.009183706 0.040152017 

THYROID HORMONES PRODUCTION AND PERIPHERAL 
DOWNSTREAM SIGNALING EFFECTS-
WIKIPATHWAYS_20230610-WP4746-HOMO SAPIENS 

0.518060238 2.191206709 0.000804729 0.006303708 

ANGIOPOIETIN-LIKE PROTEIN 8 REGULATORY PATHWAY-
WIKIPATHWAYS_20230610-WP3915-HOMO SAPIENS 

0.501403318 2.013111484 0.003161255 0.020139967 

THERMOGENESIS-WIKIPATHWAYS_20230610-WP4321-HOMO 
SAPIENS 

0.494319143 2.186605554 0.000410619 0.00428869 

SUDDEN INFANT DEATH SYNDROME (SIDS) SUSCEPTIBILITY 
PATHWAYS-WIKIPATHWAYS_20230610-WP706-HOMO 
SAPIENS 

0.411754013 1.841215487 0.007092433 0.033878668 

METAPATHWAY BIOTRANSFORMATION PHASE I AND II-
WIKIPATHWAYS_20230610-WP702-HOMO SAPIENS 

0.386474185 1.938888752 0.005071074 0.029108603 

OREXIN RECEPTOR PATHWAY-WIKIPATHWAYS_20230610-
WP5094-HOMO SAPIENS 

0.374344865 2.071445366 0.000567292 0.005078617 

GPCRS, CLASS A RHODOPSIN-LIKE-
WIKIPATHWAYS_20230610-WP455-HOMO SAPIENS 

0.347554655 1.876271405 0.005473944 0.030133238 

VEGFA-VEGFR2 SIGNALING-WIKIPATHWAYS_20230610-
WP3888-HOMO SAPIENS 

0.346585192 2.053737664 0.001153445 0.008673909 

FATTY ACIDS AND LIPOPROTEINS TRANSPORT IN 
HEPATOCYTES-WIKIPATHWAYS_20230610-WP5323-HOMO 
SAPIENS 

0.325564915 2.069966742 0.000801853 0.006303708 

NUCLEAR RECEPTORS META-PATHWAY-
WIKIPATHWAYS_20230610-WP2882-HOMO SAPIENS 

0.3224205 1.888405415 0.003213825 0.020139967 

CILIOPATHIES-WIKIPATHWAYS_20230610-WP4803-HOMO 
SAPIENS 

-0.389000764 -1.812342236 0.00676039 0.033446141 

G1 TO S CELL CYCLE CONTROL-WIKIPATHWAYS_20230610-
WP45-HOMO SAPIENS 

-0.410768995 -1.760677679 0.010342916 0.044192461 

1P36 COPY NUMBER VARIATION SYNDROME-
WIKIPATHWAYS_20230610-WP5345-HOMO SAPIENS 

-0.456525637 -1.869270767 0.007382819 0.033878668 

CHRONIC HYPERGLYCEMIA IMPAIRMENT OF NEURON 
FUNCTION-WIKIPATHWAYS_20230610-WP5283-HOMO 
SAPIENS 

-0.465958187 -1.907892892 0.005930478 0.030133238 

DNA REPAIR PATHWAYS, FULL NETWORK-
WIKIPATHWAYS_20230610-WP4946-HOMO SAPIENS 

-0.501670532 -1.949334114 0.005630364 0.030133238 

CELL CYCLE-WIKIPATHWAYS_20230610-WP179-HOMO 
SAPIENS 

-0.551533289 -2.976984806 7.67E-08 7.21E-06 

RETINOBLASTOMA GENE IN CANCER-
WIKIPATHWAYS_20230610-WP2446-HOMO SAPIENS 

-0.55977502 -2.820460892 6.02E-07 2.27E-05 

COHESIN COMPLEX - CORNELIA DE LANGE SYNDROME-
WIKIPATHWAYS_20230610-WP5117-HOMO SAPIENS 

-0.570164238 -2.090982564 0.001994339 0.014420602 

MIRNA REGULATION OF DNA DAMAGE RESPONSE-
WIKIPATHWAYS_20230610-WP1530-HOMO SAPIENS 

-0.578806432 -2.249059993 0.000549643 0.005078617 

GASTRIC CANCER NETWORK 1-WIKIPATHWAYS_20230610-
WP2361-HOMO SAPIENS 

-0.585937792 -2.335786446 0.000334644 0.004089591 

DNA IR-DAMAGE AND CELLULAR RESPONSE VIA ATR-
WIKIPATHWAYS_20230610-WP4016-HOMO SAPIENS 

-0.617179983 -2.64541636 5.69E-06 0.000133666 

Table 11. Enrichment results from the WikiPathways gene-sets for the comparison of proximal adipose tissue to tumor tissue. Positive 
values in enrichment score correspond to proximal adipose tissue and negative values to tumor tissue. NES: Normalized Enrichment 
Score. 
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The last comparison we have made for the enrichments was between distal adipose tissue and 
tumor. As expected these tissues are completely different biologically speaking. We used the same gene 
sets as in the previous two comparisons. For the Hallmarks gene sets, we could observe similarities to the 
enrichment in proximal adipose tissue compared to tumor. The hallmarks adipogenesis and fatty acid 

metabolism were the higher scored as expected. In tumors, the cell cycle and proliferation related 
hallmarks were enriched as well as the hallmarks corresponding to estrogen response (see Table 12). 
Using the KEGG gene sets we observed the adipose tissue related pathways quite enriched (see Table 
13), as well as the pathways observed in tumor tissues previously when compared to proximal adipose 
tissue. Enrichment using the Reactome gene sets retrieved 153 pathways, as it was the case with the 
comparison of the proximal adipose tissue to the tumor, there were many redundant or complementary 
pathways, therefore the top and bottom 15 pathways are shown in Table 14. In this enrichment, we observe 
the classical pathways enriched in both tissue types, however in distal adipose tissue the pathways related 
to peroxisome metabolism persist as well as pathways that could be related to immune as the ADORA2B 

pathway that has been related to obesity [PMID: 28104382]. Lastly, when we performed the enrichment 
using WikiPathways we also observed enrichment similarities with the previous observations with the 
differentiation of white adipose tissue and triglyceride metabolism pathways in the distal adipose tissue as 
well as the cell cycle pathways and the genes related to gastric cancer and retinoblastoma in tumor tissues 
(see Table 15).  

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

HALLMARK_ADIPOGENESIS 0.642512317 4.108894496 1e-10 1.66666666666667e-09 
HALLMARK_FATTY_ACID_METABOLISM 0.421698746 2.535472792 1.65004822867683e-06 1.59617568694529e-05 
HALLMARK_MYOGENESIS 0.371506259 2.402288265 1.91541082433434e-06 1.59617568694529e-05 
HALLMARK_HYPOXIA 0.334010677 2.143456655 4.80495685648771e-05 0.000266942 
HALLMARK_OXIDATIVE_PHOSPHORYLATION 0.332313148 1.670624386 0.00933792 0.035915076 
HALLMARK_XENOBIOTIC_METABOLISM 0.322107557 2.050620591 0.000203024 0.001015122 
HALLMARK_UV_RESPONSE_DN 0.316894608 1.873763005 0.002470706 0.010294607 
HALLMARK_MTORC1_SIGNALING -0.319104039 -1.677869305 0.013552222 0.048400794 
HALLMARK_ESTROGEN_RESPONSE_LATE -0.367929709 -2.247807661 2.62473763874711e-06 1.87481259910508e-05 
HALLMARK_ESTROGEN_RESPONSE_EARLY -0.436049563 -2.642571947 3.69566364758807e-10 4.61957955948509e-09 
HALLMARK_SPERMATOGENESIS -0.440352887 -2.016311981 0.00064113 0.002914226 
HALLMARK_MITOTIC_SPINDLE -0.442576584 -2.341100092 1.5091502566357e-05 9.43218910397314e-05 
HALLMARK_E2F_TARGETS -0.557842856 -3.225321328 1e-10 1.66666666666667e-09 
HALLMARK_G2M_CHECKPOINT -0.571071127 -3.314192373 1e-10 1.66666666666667e-09 

Table 12. Enrichment results from the Hallmarks gene-sets for the comparison of distal adipose tissue to tumor tissue. Positive values 
in enrichment score correspond to distal adipose tissue and negative values to tumor tissue. NES: Normalized Enrichment Score. 

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

KEGG_RETINOL_METABOLISM 0.65516261 2.649380022 9.43610761299079e-06 0.000235903 
KEGG_FATTY_ACID_METABOLISM 0.644349767 2.680208721 3.61224947756717e-06 0.00015051 
KEGG_PPAR_SIGNALING_PATHWAY 0.613188418 3.054730597 7.19682284863285e-09 8.99602856079106e-07 
KEGG_PROPANOATE_METABOLISM 0.608381519 2.282724938 0.000494496 0.007726493 
KEGG_PROXIMAL_TUBULE_BICARBONATE_
RECLAMATION 

0.60716301 2.124578506 0.001694835 0.019259493 

KEGG_CITRATE_CYCLE_TCA_CYCLE 0.596006748 2.035670724 0.00280211 0.025018839 
KEGG_ADIPOCYTOKINE_SIGNALING_ 
PATHWAY 

0.584672846 2.625797366 8.31867045696878e-06 0.000235903 

KEGG_METABOLISM_OF_XENOBIOTICS_ 
BY_CYTOCHROME_P450 

0.555977305 2.248289422 0.0007642 0.010613889 

KEGG_LYSINE_DEGRADATION 0.54775284 1.916691059 0.007857334 0.046769846 
KEGG_PYRUVATE_METABOLISM 0.536466177 2.06453508 0.003910853 0.032590439 
KEGG_DRUG_METABOLISM_CYTOCHROME
_P450 

0.485172235 2.018100917 0.002079219 0.021658533 

KEGG_PEROXISOME 0.480108743 2.156194328 0.001370093 0.017126165 
KEGG_INSULIN_SIGNALING_PATHWAY 0.474799042 2.463539133 2.11987405258143e-05 0.00044164 
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE
_DEGRADATION 

0.467694896 1.891288507 0.007070362 0.046515538 

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 0.434488149 1.906112733 0.004858369 0.037594837 
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KEGG_GLYCEROLIPID_METABOLISM 0.431879364 1.894667913 0.005413656 0.037594837 
KEGG_NEUROACTIVE_LIGAND_RECEPTOR_
INTERACTION 

0.341803587 2.111401316 4.59704656880506e-05 0.000820901 

KEGG_SYSTEMIC_LUPUS_ 
ERYTHEMATOSUS 

-0.379984997 -1.773356611 0.007682649 0.046769846 

KEGG_OOCYTE_MEIOSIS -0.385256602 -1.809067653 0.005262589 0.037594837 
KEGG_P53_SIGNALING_PATHWAY -0.489511438 -1.920609418 0.00237246 0.022812119 
KEGG_CELL_CYCLE -0.513108695 -2.560457246 1.86161017568847e-07 1.16350635980529e-05 

Table 13. Enrichment results from the KEGG gene-sets for the comparison of distal adipose tissue to tumor tissue. Positive values in 
enrichment score correspond to distal adipose tissue and negative values to tumor tissue. NES: Normalized Enrichment Score. 

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

REACTOME_TRANSCRIPTIONAL_REGULATI
ON_OF_WHITE_ADIPOCYTE_ 
DIFFERENTIATION 

0.833861988 3.461247488 1e-10 9.23333333333333e-09 

REACTOME_PLASMA_LIPOPROTEIN_ 
REMODELING 

0.764944568 2.624039188 1.69852974454741e-06 5.22769710266258e-05 

REACTOME_TRIGLYCERIDE_METABOLISM 0.700632145 2.807931625 1.81218604014844e-07 7.17107904458739e-06 
REACTOME_GLYCOGEN_METABOLISM 0.684665254 2.210584082 0.000556931 0.005232952 
REACTOME_TRIGLYCERIDE_CATABOLISM 0.683381582 2.344248364 9.20912603707018e-05 0.001275464 
REACTOME_HEME_SIGNALING 0.655205573 2.115467378 0.001439171 0.010221802 
REACTOME_ADORA2B_MEDIATED_ANTI_IN
FLAMMATORY_CYTOKINES_PRODUCTION 

0.607412013 2.083645001 0.001589271 0.010869826 

REACTOME_SCAVENGING_BY_CLASS_A_ 
RECEPTORS 

0.604590898 2.023405774 0.003398874 0.018643329 

REACTOME_PLASMA_LIPOPROTEIN_ 
ASSEMBLY_REMODELING_AND_ 
CLEARANCE 

0.592738476 2.528287817 1.2459166579877e-05 0.000246454 

REACTOME_FOXO_MEDIATED_TRANSCRIP
TION_OF_OXIDATIVE_STRESS_METABOLIC_
AND_NEURONAL_GENES 

0.590677546 1.907125231 0.006674949 0.030310833 

REACTOME_PEROXISOMAL_PROTEIN_ 
IMPORT 

0.584166572 2.10707931 0.001048054 0.008538558 

REACTOME_SYNTHESIS_OF_BILE_ACIDS_ 
AND_BILE_SALTS 

0.567509636 1.8993046 0.008549866 0.03671803 

REACTOME_BINDING_AND_UPTAKE_OF_ 
LIGANDS_BY_SCAVENGER_RECEPTORS 

0.567473924 2.508501007 5.96228777225587e-06 0.000137629 

REACTOME_AQUAPORIN_MEDIATED_ 
TRANSPORT 

0.565194059 1.990578131 0.002667021 0.016060103 

REACTOME_NR1H2_AND_NR1H3_ 
MEDIATED_SIGNALING 

0.554248635 1.952029032 0.003945403 0.0204276 

REACTOME_RESOLUTION_OF_D_LOOP_ 
STRUCTURES_THROUGH_SYNTHESIS_ 
DEPENDENT_STRAND_ANNEALING_SDSA -0.572476 -1.9687342 0.00182051 0.01229953 
REACTOME_TRANSCRIPTIONAL_ 
REGULATION_BY_E2F6 -0.5896477 -1.7705319 0.00956479 0.0382198 
REACTOME_SWITCHING_OF_ORIGINS_TO_
A_POST_REPLICATIVE_STATE -0.6049253 -2.149732 0.00075514 0.0066404 
REACTOME_KERATINIZATION -0.6126038 -2.662422 1.45982210269644e-07 6.22108803764482e-06 
REACTOME_TP53_REGULATES_TRANSCRIP
TION_OF_GENES_INVOLVED_IN_G2_CELL_
CYCLE_ARREST -0.6126587 -1.8396269 0.00579483 0.02743878 
REACTOME_ORC1_REMOVAL_FROM_ 
CHROMATIN -0.6166229 -1.9174943 0.00285596 0.01701291 
REACTOME_G1_S_SPECIFIC_ 
TRANSCRIPTION -0.6236579 -2.2839775 0.00011555 0.00156134 
REACTOME_FORMATION_OF_THE_ 
CORNIFIED_ENVELOPE -0.6254944 -2.7054003 7.69545181996601e-08 3.55273359021764e-06 
REACTOME_TIGHT_JUNCTION_ 
INTERACTIONS -0.6365186 -2.0717263 0.00076945 0.00666058 
REACTOME_G0_AND_EARLY_G1 -0.6452953 -2.2931953 0.00016226 0.00204303 
REACTOME_NUCLEAR_ENVELOPE_ 
BREAKDOWN -0.6462887 -2.0097452 0.0011159 0.00870717 
REACTOME_CYCLIN_A_B1_B2_ASSOCIATED
_EVENTS_DURING_G2_M_TRANSITION -0.6574517 -2.1854321 0.00033616 0.00380061 
REACTOME_APC_C_MEDIATED_ 
DEGRADATION_OF_CELL_CYCLE_ -0.6769854 -2.5214651 2.06062314637946e-06 5.70792611547111e-05 
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PROTEINS 
REACTOME_SUMOYLATION_OF_DNA_ 
REPLICATION_PROTEINS -0.7322385 -2.2770208 3.20653368521726e-05 0.00050755 
REACTOME_POLO_LIKE_KINASE_MEDIATED
_EVENTS -0.74409 -2.3138749 1.7658849801587e-05 0.00030572 

Table 14. Enrichment results from the Reactome gene-sets for the comparison of distal adipose tissue to tumor tissue. The enriched 
pathways in the table correspond to the top and bottom 15 pathways enriched. Positive values in enrichment score correspond to 
distal adipose tissue and negative values to tumor tissue. NES: Normalized Enrichment Score. 

Gene Set Enrichment 
Score 

NES p-value Adjusted p-value 

DIFFERENTIATION OF WHITE AND BROWN ADIPOCYTE-
WIKIPATHWAYS_20230610-WP2895-HOMO SAPIENS 

0.786671607 2.976763975 1.78E-08 1.94E-06 

TRANSCRIPTION FACTOR REGULATION IN ADIPOGENESIS-
WIKIPATHWAYS_20230610-WP3599-HOMO SAPIENS 

0.757651834 2.664958702 3.06E-06 0.000142755 

FAMILIAL PARTIAL LIPODYSTROPHY-WIKIPATHWAYS_20230610-
WP5102-HOMO SAPIENS 

0.729785309 2.790222596 3.39E-07 2.21E-05 

OXIDATIVE STRESS RESPONSE-WIKIPATHWAYS_20230610-
WP408-HOMO SAPIENS 

0.706575169 2.408647923 8.17E-05 0.002054659 

TRIACYLGLYCERIDE SYNTHESIS-WIKIPATHWAYS_20230610-
WP325-HOMO SAPIENS 

0.675896339 2.504851511 3.39E-05 0.00100827 

FATTY ACID BIOSYNTHESIS-WIKIPATHWAYS_20230610-WP357-
HOMO SAPIENS 

0.662408759 2.532618655 2.44E-05 0.000797575 

GPCRS, CLASS B SECRETIN-LIKE-WIKIPATHWAYS_20230610-
WP334-HOMO SAPIENS 

0.654712569 2.138078889 0.001003736 0.013675897 

OLIGODENDROCYTE SPECIFICATION AND DIFFERENTIATION, 
LEADING TO MYELIN COMPONENTS FOR CNS-
WIKIPATHWAYS_20230610-WP4304-HOMO SAPIENS 

0.632298162 2.064880707 0.001637148 0.019119553 

PPAR SIGNALING PATHWAY-WIKIPATHWAYS_20230610-WP3942-
HOMO SAPIENS 

0.624629506 3.054470634 9.51E-09 1.55E-06 

FATTY ACID BETA-OXIDATION-WIKIPATHWAYS_20230610-
WP143-HOMO SAPIENS 

0.624396776 2.362716302 0.000137255 0.003205882 

ADIPOGENESIS-WIKIPATHWAYS_20230610-WP236-HOMO 
SAPIENS 

0.605593524 3.347684577 1.00E-10 3.27E-08 

EICOSANOID METABOLISM VIA CYCLOOXYGENASES (COX)-
WIKIPATHWAYS_20230610-WP4719-HOMO SAPIENS 

0.603119935 2.121409394 0.00163556 0.019119553 

AMP-ACTIVATED PROTEIN KINASE SIGNALING-
WIKIPATHWAYS_20230610-WP1403-HOMO SAPIENS 

0.602155494 2.490378523 4.07E-05 0.001109601 

FATTY ACID TRANSPORTERS-WIKIPATHWAYS_20230610-
WP5061-HOMO SAPIENS 

0.596701822 1.948634608 0.004394768 0.037818139 

GLYCOGEN SYNTHESIS AND DEGRADATION-
WIKIPATHWAYS_20230610-WP500-HOMO SAPIENS 

0.584326205 2.165495347 0.000933539 0.013272494 

PROSTAGLANDIN SYNTHESIS AND REGULATION-
WIKIPATHWAYS_20230610-WP98-HOMO SAPIENS 

0.581578881 2.633542635 1.08E-05 0.00044075 

WHITE FAT CELL DIFFERENTIATION-WIKIPATHWAYS_20230610-
WP4149-HOMO SAPIENS 

0.569130032 2.228969324 0.000348497 0.006511185 

STEROL REGULATORY ELEMENT-BINDING PROTEINS (SREBP) 
SIGNALING-WIKIPATHWAYS_20230610-WP1982-HOMO SAPIENS 

0.521864829 1.934015368 0.006036389 0.049347484 

PHOSPHODIESTERASES IN NEURONAL FUNCTION-
WIKIPATHWAYS_20230610-WP4222-HOMO SAPIENS 

0.520716341 2.257516572 0.000683623 0.011177231 

FERROPTOSIS-WIKIPATHWAYS_20230610-WP4313-HOMO 
SAPIENS 

0.518823022 2.145734326 0.001407697 0.017704498 

VITAMIN A AND CAROTENOID METABOLISM-
WIKIPATHWAYS_20230610-WP716-HOMO SAPIENS 

0.514982907 2.273141499 0.000330489 0.006511185 

VITAMIN B12 METABOLISM-WIKIPATHWAYS_20230610-WP1533-
HOMO SAPIENS 

0.465606856 1.97031353 0.003256018 0.032264173 

THYROID HORMONES PRODUCTION AND PERIPHERAL 
DOWNSTREAM SIGNALING EFFECTS-WIKIPATHWAYS_20230610-
WP4746-HOMO SAPIENS 

0.461294335 2.238301299 0.000242854 0.005294211 

FOLATE METABOLISM-WIKIPATHWAYS_20230610-WP176-HOMO 
SAPIENS 

0.459934385 2.188485687 0.000718595 0.01118955 

NONALCOHOLIC FATTY LIVER DISEASE-
WIKIPATHWAYS_20230610-WP4396-HOMO SAPIENS 

0.428229354 2.015510428 0.002868071 0.03126197 

SELENIUM MICRONUTRIENT NETWORK-
WIKIPATHWAYS_20230610-WP15-HOMO SAPIENS 

0.402331058 1.910987716 0.003019502 0.031686093 

AMINO ACID METABOLISM-WIKIPATHWAYS_20230610-WP3925-
HOMO SAPIENS 

0.395224217 2.029403521 0.001254715 0.016411674 
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THERMOGENESIS-WIKIPATHWAYS_20230610-WP4321-HOMO 
SAPIENS 

0.394519136 2.041805358 0.000933313 0.013272494 

VITAMIN D RECEPTOR PATHWAY-WIKIPATHWAYS_20230610-
WP2877-HOMO SAPIENS 

0.303161231 1.774429217 0.004915719 0.041216416 

OREXIN RECEPTOR PATHWAY-WIKIPATHWAYS_20230610-
WP5094-HOMO SAPIENS 

0.299182865 1.814095041 0.004091443 0.037818139 

FATTY ACIDS AND LIPOPROTEINS TRANSPORT IN 
HEPATOCYTES-WIKIPATHWAYS_20230610-WP5323-HOMO 
SAPIENS 

0.280247801 1.943864007 0.000367199 0.006511185 

EPITHELIAL TO MESENCHYMAL TRANSITION IN COLORECTAL 
CANCER-WIKIPATHWAYS_20230610-WP4239-HOMO SAPIENS 

-0.338438839 -1.767224035 0.004302066 0.037818139 

1P36 COPY NUMBER VARIATION SYNDROME-
WIKIPATHWAYS_20230610-WP5345-HOMO SAPIENS 

-0.434020802 -1.873040479 0.003875785 0.037275935 

DNA IR-DAMAGE AND CELLULAR RESPONSE VIA ATR-
WIKIPATHWAYS_20230610-WP4016-HOMO SAPIENS 

-0.461470311 -2.081517848 0.000378326 0.006511185 

MIRNA REGULATION OF DNA DAMAGE RESPONSE-
WIKIPATHWAYS_20230610-WP1530-HOMO SAPIENS 

-0.462416112 -1.918370071 0.00310078 0.031686093 

DNA DAMAGE RESPONSE-WIKIPATHWAYS_20230610-WP707-
HOMO SAPIENS 

-0.480857019 -1.974748265 0.004266598 0.037818139 

CELL CYCLE-WIKIPATHWAYS_20230610-WP179-HOMO SAPIENS -0.496276758 -2.445540094 1.79E-06 9.73E-05 
COHESIN COMPLEX - CORNELIA DE LANGE SYNDROME-
WIKIPATHWAYS_20230610-WP5117-HOMO SAPIENS 

-0.567630864 -2.001125467 0.001836597 0.02070922 

RETINOBLASTOMA GENE IN CANCER-WIKIPATHWAYS_20230610-
WP2446-HOMO SAPIENS 

-0.570918243 -2.647537432 7.55E-08 6.17E-06 

GASTRIC CANCER NETWORK 1-WIKIPATHWAYS_20230610-
WP2361-HOMO SAPIENS 

-0.645845879 -2.419836086 1.66E-05 0.000604901 

Table 15. Enrichment results from the WikiPathways gene-sets for the comparison of distal adipose tissue to tumor tissue. Positive 
values in enrichment score correspond to distal adipose tissue and negative values to tumor tissue. NES: Normalized Enrichment 
Score. 

 From these enrichment studies, we observed that the two adipose tissue types shared gene 
expression patterns and enriched for similar pathways when compared to the tumors. The proximal to distal 
adipose tissue comparison has highlighted some pathways that we detected afterwards when comparing 
the adipose tissues to the tumors, for example, the estrogen related pathways or the pathways associated 
to development. This could be due to an artifact in the sampling were the tissues were contaminated with 
tumor cells.  

In addition, we have performed the same analysis taking only into account samples from patients 
having a tumor of one of the luminal subtypes,  and we observed the enrichments per tissue to be very 
similar to the observations in all the patients for the three tissue types. Furthermore, we have performed 
the analysis for DEG in obese against the normal-weight patients per tissue type, obtaining very few genes 
and the GSEA analysis did not provide significant enrichment results. The same comparison was performed 
in the subset of patients with luminal carcinomas and again, the amount of DEG was very low (data not 
shown). 

Representation of Module Activity (ROMA) analysis 

 In order to continue exploring the proximal adipose tissue to see if we could get a signature to 
identify the CAA in the samples, we decided to focus and target pathways that were enriched in the proximal 
adipose tissue and further continued to analyze them. Therefore, from the pathways observed to be 
enriched in the GSEA, specially the comparisons involving the proximal adipose tissue, we selected 21 
pathways from WikiPathways and KEGG, then extracted the information about the genes that participate 
in them. This collection, could reflect the adipocyte’s behavior as well as the CAA. In Table 16, the 21 
pathways selected are listed. Using this map, we could apply then the Representation of Module Activity 
(ROMA) analysis, to see the over-dispersed gene-sets (activation) in the different groups of samples.  
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Module Number of Genes Module Number of Genes 
Differentiation of white and 
brown adipocyte 

25 White fat cell differentiation 32 

Triacylglyceride synthesis 24 Leptin signaling pathway 76 
Adipogenesis 135 Angiopoietin-like protein 8 

regulatory pathway 
132 

PPAR signaling pathway 68 Angiogenesis 135 
AMP-activated protein kinase 
signaling 

67 Thermogenesis 108 

Prostaglandin synthesis and 
regulation 

45 VEGFA-VEGFR2 signaling 432 

Vitamin A and carotenoid 
metabolism 

43 Estrogen metabolism 24 

Folate metabolism 69 Estrogen receptor pathway 13 
Fatty acid biosynthesis 22 Matrix metalloproteinases 30 
Cholesterol metabolism 72 Adipokines 67 
Fatty acid beta-oxidation 34   

Table 16. Pathways selected to conform the CAA collection. 

We have applied the ROMA analysis to compare the three different tissues in the context of the 
different 21 processes represented as modules. Thus, we have identified the overdispersed modules in the 
data set.  We have found three different clusters in these samples (Figure 5). The first cluster observed in 
the far left corresponds to a predominant cluster composed in its vast majority for tumor samples. These 
samples had a higher activity of leptin signaling pathway, Vitamin A and carotenoid metabolism as 
well as cholesterol metabolism modules. In the modules matrix metalloproteinases, folate 

metabolism, PPAR signaling pathway and thermogenesis these set of samples presented a lower 
expression. The second cluster was predominantly formed by distal adipose tissue samples with some 
proximal adipose tissue as well. These samples exhibit an inverse module activity to the tumor samples. 
Finally, the last cluster was smaller but mostly formed by proximal adipose tissue samples. The module 
activity in this cluster was mixed to the previously described two clusters. Nonetheless, we observed the 
intensity of this activities was lower than in the two previous clusters, having some samples more alike the 
cluster conformed by mostly tumor tissues and other samples resembling the module activity of the cluster 
of mostly distal adipose tissues. 
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Figure 5. rRoma results corresponding to overdispersed modules in the comparison of the three tissue types. The reddest color indicates higher activation and the bluest lower activation.  
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 With these results, we have compared then the sample scores for these modules across the 
different modules and groups. The tumor tissues had higher sample scores in the modules leptin signaling 

pathway, vitamin A and carotenoid metabolism and cholesterol metabolism, as the previous first 
cluster. The distal adipose tissues exhibited higher scores in the PPAR signaling, Thermogenesis, matrix 
metalloproteinases and folate metabolism. The proximal adipose tissue appeared to be in the middle of the 
other two tissues (see Figure 6). 

 
Figure 6. Boxplots showing the distribution for the different overdispersed modules in the three tissues. significance codes: “*” 
p<0.05, “**” p<0.01, “***” p0.001. Top left corresponds to PPAR signaling pathway module, top right Vitamin A and carotenoid 
metabolism, second late folate metabolism, second right cholesterol metabolism, third left leptin signaling pathway, bottom right 
thermogenesis and bottom left matrix metalloproteinases.  



44 

 

Then we explored the most contributing genes per each of the overdispersed modules. To do so, 
a correlation was computed using the gene expression value and the score of the module. The cut-off value 
was 20% of the genes in the module to the absolute correlation value. In Figure 7 we can observe a 
heatmap with the most contributing genes per module. In the cholesterol metabolism we had that the 
genes CD36, ABCA1, APOB, LRP1, ANGPTL8, CETP, TM7SF2, MGAT1, SORT1, SCARB1,  as positively 
contributing, and the genes SQLE, HMGCR, DHCR24, as to contribute negatively to the module activity. In 
the module folate metabolism, we only obtained positively contributing genes, which were: SAA1, GPX3, 

SAA2, SOD3, CAT, HBB, ABCA1, APOB, HBA1, MTHFD1, GPX4, SHMT1. In the leptin signaling 

pathway we obtained the genes ESR1, ERBB2, IKBKB as positive contributors, whereas the genes 
PDE3B, FYN, SOS1, FOXO1, CFL2, PTPN11, SOCS3, JAK1, ROCK2, LEPR, STAT5B, PTEN presented 
a negative correlation. In the matrix metalloproteinases module we had the genes TIMP4, TIMP3 as 
positive contributors, whereas the genes MMP13, MMP3, MMP7, MMP1 were negatively correlated. In the 
PPAR signaling pathway the top contributing genes appeared to correlate negatively to the module 
activity, these genes were: PLIN1, FABP4, AQP7, SORBS1, CD36, PPARG, ACSL1, PCK1, ACADL, 

ANGPTL4, ME1, FABP5, ACOX1. For the thermogenesis module, the genes that contributed positively 
were: PLIN1, KLB, PPARG, NPR1, ACSL1, MGLL, PNPLA2, SOS1, CREB5, ADCY5, ADCY4, SLC25A20, 

ACSL4, RPS6KA2, ADCY6 while the genes SMARCC1, SMARCA4, CREB3L4, MAPK13, SLC25A29, 

BMP8A were negatively contributing. Lastly, in the module vitamin A and carotenoid metabolism, all the 
top contributing genes appeared to do so in a negative manner, these genes were: RBP4, CD36, RBP7, 

RETSAT, DHRS3, ALDH1A1, RXRA, CYP26B1. Additionally, we have also plotted the weights of the genes 
in the module score as well as their expression in all the samples to interpret better the meaning of the 
contribution of the genes (Supplementary figures 7-13). 

 Subsequently, we have analyzed our cohort in the subset of samples from patients having a luminal 
subtype of cancer (n = 45). We re-ran the analysis of the three tissues, in the luminal samples, where we 
have found the modules to change their behavior. In Figure 8 we can observe the general pattern of 
expression for the overdispersed modules. We have obtained six overdispersed modules, that were matrix 

metalloproteinases, estrogen metabolism, folate metabolism, cholesterol metabolism, vitamin A 

and carotenoid metabolism and thermogenesis. Strikingly, this six modules appeared to be more active 
in the cluster conformed mostly by tumors, whereas the cluster conformed by mostly distal adipose tissues 
had a lower activation. There were two subgroups displayed at the corners of the figure, that were mostly 
composed of proximal adipose tissue samples, these subgroups shown mixed scores for the overdispersed 
modules.  

 Looking closely to these scores, we have seen a similar pattern as with all the samples, where the 
proximal adipose tissues lie in between the other two tissue types. The modules matrix metalloproteinases, 
thermogenesis and folate metabolism had a opposite scoring in the previous comparison with all the 
samples. The modules cholesterol metabolism, vitamin A and carotenoid metabolism, presented a similar 
overall scoring across the samples with higher scores for the tumor samples. In this analysis, the module 
estrogen metabolism stood out since it was not part of the overdispersed modules in the previous 
analysis. The modules leptin signaling pathway and PPAR signaling pathway did not appear to be 
overdispersed in these samples (see Figure 9). 

 When computing the top contributing genes, we have obtained the following: in the cholesterol 

metabolism, we have obtained the genes CD36, LRP1, ABCA1, APOB, ANGPTL8, MGAT1, SORT1, 

CETP, SCARB1, LBR, TM7SF2 as negatively contributors whereas the genes SQLE, DHCR24, MSMO1 
as positive contributors of the module. In the estrogen metabolism module, we have observed the genes 
AKR1C3, HSD17B4, CYP3A5 as negative contributing and the gene HSD17B7 as the only positive 
contributor. In the module folate metabolism only showed negative contributors which were the genes 
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SAA1, SOD3, GPX3, SAA2, CAT, HBB, ABCA1. APOB, HBA1, MTHFD1, GPX4, SHMT1. In the module 
matrix metalloproteinases, the genes TIMP4, TIMP3 appeared as negatively contributing whereas the 
genes MMP3, MMP13, MMP1, MMP14 contributed positively. In the module thermogenesis, the identified 
positive contributing genes were SMARCC1, SMARCA4, CREB3L4, MAPK13, SLC25A29, BMP8A and the 
negatively contributing genes were PLIN1, NP1, KLB, PPARG, MGLL, PNPLQA2, SOS1, CREB5, ADCY4, 

ADCY5, ACSL4, RPS6KA2, SLC25A20, ACSL5, ADCY6. Lastly, the module vitamin A and carotenoid 

metabolism presented CRABP2 as positive contributing gene and the genes CD36, ALDH1A1, CYP26B1, 

RBP4, DHRS3, RBP7, RETSAT, as negative contributors. The plots corresponding to the gene weights 
and expression in the overdispersed modules are in the Supplementary figures 14-19.   
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Figure 7. Top contributing genes per module, in the overdispersed modules for the three tissues. Their contribution was calculated as the correlation between the gene expression and 
the module score.  
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Figure 8. rRoma results corresponding to overdispersed modules in the comparison of the three tissue for the luminal subtypes. The reddest color indicates higher activation 
and the bluest lower activation. 
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Figure 9. Boxplots showing the distribution for the different overdispersed modules in the three tissues in the luminal patients subset. 
Significance codes: “*” p<0.05, “**” p<0.01, “***” p0.001. Top left corresponds to Estrogen metabolism module, top right to matrix 
metalloproteinases, second left Vitamin A and carotenoid metabolism, second right folate metabolism, bottom left cholesterol 
metabolism and bottom right thermogenesis.  
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Figure 10. Top contributing genes per module, in the overdispersed modules for the three tissues in the luminal subtypes. Their contribution was calculated as the correlation between the gene expression 
and the module score.  
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The results from this analysis combining the three tissues already gave us an insight of the data, 
especially regarding the behavior of the proximal adipose tissue samples. Next, we wanted to compare only 
the two types of adipose tissues, in order to see if we could detect signals from CAA using the mapped 
pathways. After running the analysis, first we looked into all the modules’ scores, regardless of the 
overdispersion, and we saw that there was a solid cluster of proximal adipose tissue samples, that had very 
extreme scores, then we had a really big cluster that was mostly composed of distal adipose tissue samples 
which scores seem opposite to the first cluster. Then the third cluster composed of mostly proximal adipose 
tissues had mixed patterns. This third cluster had some samples of proximal adipose tissue with scores 
similar to the first cluster but in a milder way (Figure 11).  

Afterwards, we have computed the overdispersed modules, that were vitamin A and carotenoid 

metabolism, cholesterol metabolism, that had higher scores in distal adipose tissues, thermogenesis 
and matrix metalloproteinases, that had higher scores in proximal adipose tissue samples (see Figure 
12). Conversely, we have observed that when we had the analyses with the tumor samples, these modules 
scored higher in this type of samples. When exploring the top contributing genes for these four 
overdispersed modules, we had for the cholesterol metabolism module the genes CD36, LRP1, ABCA1, 

TM7SF2, APOB, SORT1, CETPO, MGAT1, DGAT1, TSPO, ANGPTL8 as positively contributing and  
HMGCR, SQLE, MSMO1 as negatively contributing, in the vitamin A and carotenoid metabolism we had 
the genes RBP4, CD36, RETSAT, RXRA, DHRS3, RBP7, CYP26B1,  as positively contributing genes and 
only CRABP2 as a negatively contributing gene. For the module thermogenesis we had as negatively 
contributing genes PLIN1, MGLL, PNPLA2, NPR1, ACSL1, KLB, PPARG, SOS1, PRKACA, ADCY6, 

SLC25A20, ADCY5, ADCY4 and as positively contributing the genes SMARCC1, CREB3L4, MAPK13, 

RPS6KA6, SMARCA4, ZNF516, ACTG1, SLC25A9. Lastly, the matrix metalloproteinases module had 
as negatively contributing the genes TIMP4, TIMP3 and as positively contributing the genes MMP7, 

MMP16, MMP3. Additionally, we have also plotted the weights of the genes in the module score as well as 
their expression in all the samples to interpret better the meaning of the contribution of the genes 
(Supplementary figures 20-23).  

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

 

Figure 11. Overview of the sample scores across all the modules in proximal and distal adipose tissues.  
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Figure 12. Heatmap of the overdispersed modules between proximal and distal adipose tissue samples.  

Figure 13. Boxplots showing the sample score distribution in the different overdispersed modules in the distal and proximal adipose 
tissues. significance codes: “*” p<0.05, “**” p<0.01, “***” p<0.001. Top left boxplots corresponds to vitamin A and carotenoid 
metabolism module, top right to cholesterol metabolism, bottom left to thermogenesis and bottom right to matrix metalloproteinases. 
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Figure 14. Heatmap of the top contributing genes in the overdispersed modules between proximal and distal adipose tissues. 
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 Furthermore, we interrogated the subset of the proximal adipose tissues, in order to retrieve the 
mapped pathways comparing the patients by their BMI category. We had 45 samples corresponding to the 
patients that had a luminal tumor subtype, from them, 23 were Obese and 22 Normal-weight. When 
exploring the general scores in all the modules, we observed a cluster of patients, mostly corresponding to 
Normal-weight and then we saw some clusters of mixed patients (Figure 15).  

 After computing the overdispersed modules, the vitamin A and carotenoid metabolism as well 
as the cholesterol metabolism were mostly  overdispersed in the cluster with the majority of  Normal-
weight samples, and the modules Leptin signaling pathway, Angiopoietin-like protein 8 regulatory 

pathway and thermogenesis were mostly overdispersed in samples from Obese patients (Figure 16). With 
this information, we have then explored the sample scores for the BMI categories, observing that the 
modules vitamin A and carotenoid metabolism and cholesterol metabolism indeed had a statistically 
significant difference in the Normal-weight samples compared to the Obese. In  the Obese patients the 
module thermogenesis had a higher scores than the Normal-weight patients as well as the Leptin signaling 
pathway and Angiopoietin-like protein 8 regulatory pathway. Nevertheless, only the Thermogenesis 
module was statistically significant (Figure 17).  

  When obtaining  the top  contributing genes we have observed that  in the module  Angiopoietin-

like protein 8 regulatory pathway,  we had the genes    MLXIPL, RXRA, SLC2A4, RHOQ, PCK1, 

RAPGEF1, SCD, MAPK10, ANGPTL8, TRIP10, MAPK3, MAPK11, SOS1, FASN, NR1H3, FOXO1, IRS2, 

AKT2, MAP3K9 positively contributing, whereas the genes MAP3K1,  RPS6KA5, RPS6KA6, PIK3C2G,  

MAP2K6, MAPK13,  MAP4K5,  where negatively contributing. In the module  cholesterol metabolism  the 
genes   CD36, ABCA1, LRP1, MGAT1, CETP, APOE, TM7SF2, APOB, ANGPTL8, were negatively 
correlated, whereas the genes HMGCR, MSMO1,  SQLE, DHCR24, HMGCS1,   were positively contributing 
to the module scoring.  In the leptin signaling pathway the genes  ANGPTL8, ESR1, ERBB2, PRKAA2, 

SRC, CCND1, IRS1 contributed negatively and the genes FYN, SCOS3,  ROCK2, CFL2, SOS1, PTPN11, 

PDE3B, FOXO1, STAT5B,  contributed  positively.  In the thermogenesis module, the genes  PLIN1, 

MGLL, NPR1, PNPLA2, ACSL1, KLB, PPARG, SOS1, PRKACA, ACSL5, RPS6KA2, ADCY4 were 
positively contributing whereas the genes SMARCC1, CREB3L4, RPS6KA6, MAPK13,  SMARCE1, FRS2, 

SMARCA4,  SLC25A29,  KDM1A  were found to be negatively contributing. Lastly, in the vitamin A and 

carotenoid metabolism, the genes  CD36, RBP4, RETSAT, RXR4, RBP7, DHRS3, CYP26B1 were 
negatively contributing and the gene CRABP2 was positively contributing. As in the previous comparisons, 
we have also plotted the weights of the genes in the module score as well as their expression in all the 
samples to interpret better the meaning of the contribution of the genes (Supplementary figures 24-28). 
From this analysis, it appears that the differences regarding the BMI are minimal. Also it could be due to 
the sample size of the analysis (n = 45).
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Figure 15. Overview of the sample scores across all the modules in proximal adipose tissues, grouped by their BMI category.  
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Figure 16. Heatmap of the sample scores in the overdispersed modules in proximal adipose tissues, grouped by their BMI category. 
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Figure 17. Boxplots depicting the sample scores distributions in the overdispersed modules obtained from the proximal adipose tissue 
samples when comparing by the BMI categories. Top left boxplots correspond to thermogenesis module, second left to vitamin A and 
carotenoid metabolism, top right cholesterol metabolism, bottom right to leptin signaling pathway and bottom right to angiopoietin-like 
protein 8 regulatory pathway.  
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Figure 18. Heatmap of the top contributing genes in the overdispersed modules in the proximal adipose tissues when comparing the BMI categories.  
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D. DISCUSSION 
 

 Here we have presented an integrative study that entailed the experimental design, biological 
specimen’s collection and processing as well as the data analysis to study the gene expression profiles of 
mammary adipose tissue and to identify signatures of cancer associated adipocytes in the context of ductal 
carcinomas. The general cohort has more than 100 patients, however, for the preparation of this thesis, we 
could gather 57 patients with all the tissues of interest sequenced. From this cohort, predominated the 
patients that had an invasive carcinoma corresponding to the luminal subtypes.  

 The exploratory analyses have shown the overlap of the proximal adipose tissue samples between 
tumor and distal adipose tissue samples. Additionally, to consider, there were cases where samples coming 
from the same patient presented similar gene expression and consequently tended to cluster together. This 
factor was important to take into account for the differential expression analyses. In our cohort, we did not 
observe notable differences when considering BMI or the combination of BMI and tissue type. Then we 
consider to only analyze the luminal subtypes, due to the fact that these subtypes shared many similarities. 
In this case, the samples seemed to be more localized in groups, specially the tumor and the distal adipose 
tissue samples.  

 From the differential expression analysis, when we compared both adipose tissues, we obtained 
the lower amount of DEG as expected. From the functional analysis, comparing proximal and distal adipose 
tissue types we observed that the proximal adipose tissue enriched for estrogen signaling pathways as well 
as pathways involved in cell cycle and related to epithelial function. However, the comparison against the 
tumor samples revealed these processes to be more enriched in tumor samples whereas the proximal 
adipose tissues had enriched pathways related to adipose tissue functions. Therefore, these proximal 
adipose tissue samples, from the enriched pathways, appeared to have functionalities related to tumor but 
preserving their adipose tissue characteristics. To notice, since the sampling was done macroscopically we 
can infer that tumor cells could be present in these adipose tissue.  

 The goal of this study was to capture the CAA signatures from tissue specimens at the 
transcriptome level. Hence, the results from functional analysis were taken and refined, summarizing to a 
collection of 21 pathways that might be relevant. CAA as part of the TME in certain cancers, have gained 
popularity in the last years 23. We have used adipose tissue in the proximity of the tumor as a proxy to 
explore the CAA gene expression. In our results from the ROMA analysis, the pathways thermogenesis 
and matrix metalloproteinases appeared to be more active when compared to adipose tissues. The matrix 
metalloproteinases have been associated to be induced in the tumor microenvironment cells by the tumor 
cells24. In our study, we have found the MMP7, MMP16, and MMP3 to be positively expressed in proximal 
adipose tissues. It has been described that leptin, a major adipokine, can induce the production of 
metalloproteinases, especially MMP2 and MMP9 in breast cancer cells25. MMP3 and MMP9 have been 
found to be overexpressed in breast cancer cells upon co-culture with adipocytes26. MMP11 has been also 
associated to be expressed in adipocytes co-cultured with cancer cells27. MMP7  expression has been to 
be expressed in cells termed adipocyte derived fibroblasts13 .Taken together, however their expression has 
been seen in tumors, and in the tumors their expression was higher.  Taken together, this results shown an 
increase activity in matrix metalloproteinases as a pathway, and suggests that their players should be 
further investigated.  

 The thermogenesis module that appeared to be more active in the proximal adipose tissues, is 
related to non-shivering heat production, this process has been associated to brown adipose tissue, that is 
characterized by having higher number of mitochondria and smaller lipid droplets28. In cancer, white 
adipocyte dedifferentiation has been described to occur and to favor the tumor progression, during this 
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process, the adipose cells exhibit a “browning” effect, this is adopting the brown adipose tissue phenotype, 
while providing lipids to tumor cells and loss of their white adipocyte features 29–31. From the genes in this 
module, we found the genes PLIN1 and PPARG to be negatively contributing, which are highly expressed 
in white adipocytes32.  

 The module adipokines, seemed to not be overdispersed in any of the performed comparisons. 
Nevertheless, it is worth to mention that molecules such as leptin, IL-6, ATX or TNF-α, have been related 
to cancer initiation and progression31,33,34.  

 This study has some limitations, the sampling of the samples, that has been done macroscopically, 
could result in contamination of different cell types in the proximal adipose tissue samples. Alternatives to 
study the role of the CAA in tumor cells, could be to perform co-cultures with primary adipocytes from 
patients, and then extracting the pure adipocytes samples RNA and do the gene expression analysis. 
Additionally, other approaches, such as spatial transcriptomics, with proper annotation of the cells, could 
help to have a better picture of the CAA gene expression profiles. These two approaches, are already 
ongoing in the context of the LipoCanPredict project, and we expect to extend the presented findings.  

 In this study, we had described the gene expression profile of adipose tissue in the proximity of the 
tumor. In bulk, it appeared to have conserved adipose functions but also to interact with the tumor. The 
identified modules, metalloproteinases and thermogenesis, need to be validated to uncover the biology of 
the CAA.  
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E. SUPPLEMENTARY FIGURES 

 

 

 

 

 

 

 

 

 

Supplementary figure 1. PCA of all the samples coloring the BMI classifications.  

Supplementary figure 2. PCA featuring the molecular subtypes for all the samples. 
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Supplementary figure 3. PCA plot emphasizing the tissue type and the patients’ BMI category for all the samples. 

Supplementary figure 4. PCA of the samples from the patients’ with tumors corresponding to luminal subtypes, coloring the BMI classifications. 
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Supplementary figure 5. PCA plot of the samples from luminal patients displaying the class of luminal subtypes.  
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Supplementary figure 6. PCA plot emphasizing the tissue type and THE BMI classification for the luminal subset of patients.  
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Supplementary figure 7. Gene weights and expression of the 30 most representative genes for the module matrix metalloproteinases 
for the three different tissue types.  

 

Supplementary figure 8. Gene weights and expression of the 30 most representative genes for the module Thermogenesis for the 
three different tissue types. 
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Supplementary figure 9. Gene weights and expression of the 30 most representative genes for the module Leptin signaling pathway 
for the three different tissue types. 

 

Supplementary figure 10. Gene weights and expression of the 30 most representative genes for the module Cholesterol metabolism 
for the three different tissue types. 
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Supplementary figure 11. Gene weights and expression of the 30 most representative genes for the module Folate metabolism for 
the three different tissue types. 

 

Supplementary figure 12. Gene weights and expression of the 30 most representative genes for the module Vitamin A and carotenoid 
metabolism for the three different tissue types. 
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Supplementary figure 13. Gene weights and expression of the 30 most representative genes for the module PPAR signaling pathway 
for the three different tissue types. 

 

 

Supplementary figure 14. Gene weights and expression of the 30 most representative genes for the module Vitamin A and carotenoid 
metabolism for the three different tissue types in patients with a luminal subtype. 
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Supplementary figure 15. Gene weights and expression of the 30 most representative genes for the module Folate metabolism for 
the three different tissue types in patients with a luminal subtype. 

Supplementary figure 16. Gene weights and expression of the 30 most representative genes for the module Cholesterol metabolism 
for the three different tissue types in patients with a luminal subtype. 
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Supplementary figure 17. Gene weights and expression of the 30 most representative genes for the module Thermogenesis for the 
three different tissue types in patients with a luminal subtype. 

 

Supplementary figure 18. Gene weights and expression of the 30 most representative genes for the module Estrogen metabolism 
for the three different tissue types in patients with a luminal subtype. 
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Supplementary figure 19. Gene weights and expression of the 30 most representative genes for the module Matrix 
metalloproteinases pathway for the three different tissue types in patients with a luminal subtype. 

 

Supplementary figure 20. Gene weights and expression of the 30 most representative genes for the module Vitamin A and carotenoid 
metabolism for the proximal and distal adipose tissues. 
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Supplementary figure 21 Gene weights and expression of the 30 most representative genes for the module Cholesterol metabolism 
for the proximal and distal adipose tissues. 

 

 

Supplementary figure 22. Gene weights and expression of the 30 most representative genes for the module Thermogenesis for the 
proximal and distal adipose tissues. 
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Supplementary figure 23. Gene weights and expression of the 30 most representative genes for the module Matrix 
metalloproteinases for the proximal and distal adipose tissues. 

 

Supplementary figure 24. Gene weights and expression of the 30 most representative genes for the module Vitamin A and carotenoid 
metabolism for the proximal adipose tissues when compared by BMI categories.  
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Supplementary figure 25. Gene weights and expression of the 30 most representative genes for the module Cholesterol metabolism 
for the proximal adipose tissues when compared by BMI categories.  

 

 

Supplementary figure 26. Gene weights and expression of the 30 most representative genes for the module Leptin signaling pathway 
for the proximal adipose tissues when compared by BMI categories. 



76 

 

 

Supplementary figure 27. Gene weights and expression of the 30 most representative genes for the module Angiopoietin-like protein 
8 regulatory pathway for the proximal adipose tissues when compared by BMI categories. 

 

 

Supplementary figure 28. Gene weights and expression of the 30 most representative genes for the module Thermogenesis for the 
proximal adipose tissues when compared by BMI categories. 
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CHAPTER III. EXPLOITATION OF A SIGNALING NETWORK TO STUDY 

EMT AND SENESCENCE 
 

A. INTRODUCTION 
 

The vast majority of cancer deaths are due to Metastasis. This process can be summarized as 
invasion, that happens at the primary local tumor site, intravasation, when it can enter the lymphatic ducts 
and the bloodstream, extravasation and colonization of another site 1. For metastasis to occur, in epithelial 
tumor cells, must undergo an epithelial-mesenchymal transition (EMT), that provides the necessary 
modifications for these cells to invade and migrate distant tissues, the activation of this program is crucial 
for metastasis to happen 2.  

Cellular senescence is a stress response, characterized by cell cycle arrest, mostly in the G1 
phase3. Many insults can trigger senescence, such as oxidative stress, that emerges caused by the 
excessive production of reactive oxygen species (ROS) 4. Oxidative stress has also been associated with 
tumor progression affecting the stroma and the extracellular matrix (ECM) 5. Senescent cells have been 
described to actively communicate with neighboring cells through molecules that have been called 
senescence-associated secretory phenotype (SASP) 6. The SASP is composed of multiple molecules, 
mostly involved in immune functions, matrix remodeling and angiogenesis and it has been controversial if 
it exerts a role as anti-tumor or pro-tumor agent 6,7. It has been also observed that senescent cells might 
induce, through SASP, specially IL6 and IL8, EMT even in non-aggressive epithelial tumor cells 8. 

 While evidence indicates a role for senescent stromal cells, in particular senescent fibroblasts and 
macrophages, participating in cancer progression, the probability that tumor cells themselves could be 
senescent also, has been disregarded since they have been considered to be more a defense mechanism 
against cancer and not a contributor. It remains to be studied if tumor cells that go through EMT could also 
be senescent. 

 In this chapter, I present the work of a collaborative project with M. Boissan. In this work, there was 
a computational studies part in which I contributed and is the body of this chapter, but also a very interesting 
fundamental biology part. This work started from observations in experimental data, using a cell model that 
had silenced a metastasis suppressor gene: NME1. NME1 belongs to the nucleoside diphosphate kinases 
(NDPK) family of enzymes, which catalyze the synthesis of nucleoside triphosphates, mostly GTP, from 
corresponding nucleoside diphosphates and ATP9. As previously stated, NME1 has been recognized as a 
metastasis suppressor gene since it has been observed to be lowly expressed in metastatic primary 
tumors10,11, however, when its expression has been upregulated in multiple metastatic cell-lines, their 
metastatic potential has been reduced12,13. Previous experiments using a knocked-down cell lines for NME1 
have shown that senescence, as well as invasion markers, were highly expressed in the cell lines with the 
NME1 knock-down (Figure 1).  
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 To contribute with a systems biology approach, I enlarged a previously constructed network 
describing interactions resulting in EMT, senescence, cell polarity, extracellular matrix among others, that 
has been already published14. Firstly, I used a path analysis to reduce the network and explore the key 
players between NME1, senescence and EMT. Then using the information contained in the network, i.e. 
genes and processes (modules), I could investigate in a colorectal cancer gene expression dataset, the 
progression through the four stages via the activation of the different modules. From these analyses, it was 
possible to study how both processes could be related, as well as to pinpoint key players that can trigger 
them.  

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Loss of NME1 metastasis suppressor induces EMT and features of senescence in tumor cells. A) representative western blots from 
three independent experiments of HepG2 (CTR, KD NME1), HCT8/S11 (CTR, KD NME1) and PLC/PRF5 (CTR, KD NME1). Cell lysates 
revealed with antibodies directed against E-cadherin, Cytokeratin 18 (ck18), N-cadherin, Vimentin, MMP2, MMP9, NME1 and NME2. Tubulin 
was used as a loading control. molecular weights are in KDa. N-cadherin was undetectable in HCT8/S11 cells. B) representative western blots 
from three independent experiments of HepG2 (CTR, KD NME1), HCT8/s11 (CTR, KD NME1), and PLC/PRF5 (CTR, KD NME1), cell lysates 
revealed with antibodies directed against NME1, NME2, p16ink4a, p21waf-1, phospho-p53, p53, prelamin A, Lamin A/C, zmpste24, phospho-
p65RelA and p65RelA. Tubulin was used as a loading control. molecular weights are in KDa. (Courtesy of M. Boissan) 



81 

 

 
B. MATERIALS AND METHODS 

 

EMT-senescence signaling network map construction and availability 

The EMT and senescence signaling network map was created as an update of an already 
published EMT map 14. The update of the canonical molecular mechanisms implicated in the EMT map and 
extension towards the senescence molecular mechanisms were done through literature curation and further 
knowledge formalization 15. The map was build using standards indicated in: https://github.com/sysbio-
curie/NaviCell/blob/master/map_construction_procedures/NaviCellMapperAdminGuide.pdf. The map has 
been constructed using the commonly accepted systems biology graphical notation (SBGN) syntax in the 
molecular diagrams editor software CellDesigner 16. The different entities composing the map were 
assigned common identifiers converted into links to the corresponding entity descriptions in the HGNC, 
UniProt, Entrez, GeneCards, Reactome, and KEGG databases. The corresponding literature references, 
that support the map contents, are provided. The EMT-Senescence signalling network map is available 
online: https://acsn.curie.fr/navicell/maps/emt_senescence/master/index.html.  

Map reduction to study players between NME1 and EMT and Senescence 

 The EMT and senescence map was used to obtain the shortest paths between the protein NME1 
and the EMT and Senescence phenomena, with the aim to obtain the major players in such interactions. 
This was done using the Cytoscape software v2.8 and the BiNoM plugin using the Path Analysis 
functionality.  

Gene expression data analysis and visualization using the EMT-senescence signaling network map 

In order to estimate the involvement of different signaling pathways and molecular modules into 
the disease, we have performed a pathway enrichment study on the colorectal cancer gene expression 
data from TCGA (https://www.cbioportal.org), comparing groups of patients with different clinical 
characteristics. We have used the ‘Representation and Quantification of Module Activity from Target 
Expression Data (ROMA)‘ software 17 to quantify the activity of gene sets included into the signaling 
pathways and molecular modules (named module activity from now and on). The analysis was executed 
using the R packages “rROMA” and “rROMADash” (available at: https://github.com/sysbio-curie/rRoma). 
To obtain the top contributing genes, ROMA calculates Pearson correlation coefficients for the expression 
of the gene across the data set and the ROMA score of the module. The visualization of the module activity 
scores was performed using Cytoscape v2.8 18 and the BiNoM plugin 19, through the option “Stain 
CellDesigner Map”. This TCGA dataset was used as well to calculate the mean expression between stages 
I and IV of certain genes of interest in some modules. One tailed T-tests using mean expression between 
the patients classified as stage I and stage IV using most representative genes for the modules: EMT 
regulators, senescence, lysosome-endosome and mitochondrial oxidative stress were performed. P-values 
were considered significant when <0.05.  
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C. RESULTS 
 

We represented the genes involved in the form of a network by using the Systems Biology 
Graphical Notation syntax 20 in agreement with the Systems Biology Markup Language 21, which allowed 
us to perform further computational analysis. This structured signaling network map was based on data 
from >1400 publications, it covers 1636 biochemical reactions  and represents 1067 gene and protein 
molecules. The signaling network map was separated into eleven modules representing structures or 
processes important in the EMT and senescence: adherens junctions, gap junctions, tight junctions, 
desmosomes, cell–matrix adhesions, cytoskeleton polarity, extracellular matrix, EMT regulators, lysosome-
endosome, mitochondria oxidative stress and senescence. In this map some updates were done as NF-κB 
canonical and non-canonical dimers inducing SASP or p21 participation in the cell cycle.  

From the reduction using the shortest paths we could observe that NME1 exerts an action in clathrin 
dependent endosomal pathway that preserves the adherens junctions preventing EMT. By inhibiting TIAM1 
and activating ZMPSTE24 the cytoskeleton remodeling is interrupted so that the EMT is barred. The 
inhibition of NF-κB and HIF-1α  leads to a reduced stimulation of transcription factors such as TWIST1, 
SNAI1, SNAI2, ZEB1 that block E-Cadherin, resulting in restraint EMT.  By decreasing the mitochondrial 
ROS the downstream activation of NF-κB and SASP formation, as well as the activation of players such as 
MYC and MAPK14 that results in prevention of Senescence. Also we can see that the downstream 
hindrance of proteins such as p21CIP1, p16INK4A and downstream signaling prevent Senescence (Figure 
2). 

In order to have a global picture of these two processes, and to see if they are related, we 
proceeded to analyze a publicly available data-set from patients with colorectal cancer.  We calculated the 
activity scores of the signaling pathways and modules by using the ROMA method  in its implementation in 
R (see Material and Methods). ROMA maximizes the variance of the first principal component among the 
genes in a given set of genes (i.e. a module), to produce a score per module indicating the activity of that 
module. These activity scores were visualized in the context of the signaling network map at four stages (I, 
II, III and IV) of colorectal tumorigenesis by using the BiNoM plugin in Cytoscape (Figure 3). 

Visual inspection of the signaling network maps and pair-wise comparisons of modules, using the 
obtained ROMA scores, found that the EMT regulators and senescence modules were both more active in 
stages III and IV than in stages I and II, suggesting that the genes and signaling pathways represented by 
these modules might be related to each other. Like the EMT regulators and senescence modules, the 
mitochondria oxidative stress module was more active in stages III and IV than in stages I and II. The 
activities of the senescence and mitochondria oxidative stress modules were indistinguishable from each 
other throughout. Three main pathways of oxidative stress-induced cell senescence are known22. One is 
the DNA damage response pathway, through which oxidative stress causes DNA damage that activates 
p53 and up-regulates p21 expression to cause senescence. The second is the NF-κB pathway, in which 
intracellular accumulation of reactive oxygen species activates the IκB kinase, which phosphorylates IκB to 
activate NF-κB and stimulate transcription of the genes associated with the senescence-associated 
secretory phenotype. The third is the p38 MAPK pathway, which is activated by reactive oxygen species 
and up-regulates expression of the senescence marker p16INK4a. Strikingly, the activity of the lysosome-
endosome module also increased progressively up to stage IV. During senescence, lysosomes increase in 
number, pH and size resulting in increased SA-βGal activity 23, consistent with this observed increase in 
module activity through tumorigenesis.         
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Figure 2. Diagram of the downstream players from nme1 that participate in senescence and EMT mechanisms. Some of  the NME1 roles as metastatic suppressor. NME1 produces GTP that 
is used for some proteins involved in the clathrin dependent pathway. Also it participates by preventing the cytoskeleton remodeling, via induction of ZMPSTE24 and inhibition tiam1 but also 
Gelsolin (GSN, not shown). from this diagram we can infer that a major role of NME1 would be as inhibitor of ROS formation which are involved in the activity of different proteins that participate 
in senescence and EMT.  
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Figure 3. Shift of EMT and senescence module activity among the four stages in colorectal cancer patients. the 
obtained ROMA scores were used to visualize the module activity using the map information. in the first stages we 
observe a low activity of genes related to modules senescence, EMT regulators and mitochondria oxidative stress. 
notwithstanding, in the later stages (III and IV), there is an indication of higher activity in these modules. 



85 

 

The activities of the extracellular matrix and cell–matrix adhesions modules were strongly activated 
in stages III and IV when compared to stages I and II, consistent with remodeling of the extracellular matrix 
during cancer invasion. The activity of the cytoskeleton polarity module was also activated in stages III and 
IV when compared with stages I and II, consistent with switching from a non-migrating baso-apical polarized 
epithelial phenotype to a polarized migrating/invading mesenchymal phenotype during EMT and cancer 
invasion. Also in stage IV, we saw a slight increase in the activities of the gap junctions, adherens junctions 
and tight junctions modules when compared to stage III, but no change in the desmosomes module, whose 
activity was very low.  All of these modules are related to cell–cell adhesion.  

We correlated the scores for module activation with individual gene expression in order to extract 
the gene contribution per module . Briefly, we found the genes MSN and ZEB2 contributed positively to the 
activity of the EMT regulators module whereas CRB3 and MAPK13 contributed negatively. In the 
senescence module, HIF1A and IL6ST contributed positively whereas CDK4 and NME1 contributed 
strongly negatively (Tables 1-4).  

To identify any differences between the stages I and IV regarding the expression of key genes in 
the EMT regulators, senescence, mitochondria oxidative stress and lysosome-endosome modules, we 
computed the mean gene expression of those genes and compared them. In the EMT regulators module, 
we saw an increase in mean gene expression in stage IV including the pro-EMT genes CDH2, VIM and 
MMP14, and in genes encoding transcription factors that drive the EMT, especially SNAI1, TWIST1 and 
ZEB1, when compared to stage I. In the senescence module, we observed increased expression in stage 
IV of genes that participate in the senescence-associated secretory phenotype: IL1A, IL1B, IL6 and IL8. 
Also in the senescence module, CDKN2A, which encodes the senescence marker p16INK4a, was more 
highly expressed in stage IV than in stage I, indicating that some cells may arrest their cell cycle as the 
disease progresses, consistent with senescence. In the mitochondria oxidative stress module, we observed 
increased expression of the pro-oxidant genes MPO, NOX4, NOX5 in stage IV and decreased expression 
of SDHA and SDHB, which encode subunits of complex II of the mitochondrial respiratory chain. Genes In 
the lysosome–endosome module, CLN5, CTSF, GALNS, IDS and LAMP1 tended to be more highly 
expressed in stage IV, all of which encode proteins contained in lysosomes. Notably, LAMP1 was highly 
expressed; it encodes LAMP1, the main marker of lysosomes. These data together indicate that 
senescence is related to EMT (Supplementary Tables 1-4). 

 

MODULE EMT REGULATORS 

POSITIVE CONTRIBUTION NEGATIVE CONTRIBUTION 

Gene Correlation Gene Correlation 

MSN 0.9101 CRB3 -0.4298 

ZEB2 0.9033 GNG5 -0.3736 

LAMC1 0.8809 MYB -0.3662 

ARHGAP31 0.8801 MAPK13 -0.3643 

LAMA4 0.8774 MYL5 -0.3225 

Table 1. Top contributing genes from the ROMA analysis in the module EMT regulators 
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 Table 2. Top contributing genes from the ROMA analysis in the module senescence 

 

 Table 3. Top contributing genes from the ROMA analysis in the module lysosome-endosome. 

 

Table 4. Top contributing genes from the ROMA analysis in the module mitochondria oxidative stress. 

 

 

 

MODULE SENESCENCE 

POSITIVE CONTRIBUTION NEGATIVE CONTRIBUTION 

Gene Correlation Gene Correlation 

HIF1A 0.8906 CDK4 -0.5641 

ROCK1 0.6734 NME1 -0.5357 

IL6ST 0.6425 BAX -0.3567 

SNAI2 0.6235 AKT2 -0.3498 

NOTCH2 0.5925 RCE1 -0.3315 

MODULE LYSOSOME-ENDOSOME 

POSITIVE CONTRIBUTION NEGATIVE CONTRIBUTION 

Gene Correlation Gene Correlation 

NOTCH1 0.9885 UBE2D2 -0.4482 

NOTCH3 0.4551 UBE2D1 -0.4297 

NOTCH4 0.3255 PSEN1 -0.3825 

NOTCH2 0.2028 CTNND1 -0.102 

DLL1 0.1901 
  

MODULE MITOCHONDRIA OXIDATIVE STRESS 

POSITIVE CONTRIBUTION NEGATIVE CONTRIBUTION 

Gene Correlation Gene Correlation 

PIK3C2A 0.6401 MAP2K2 -0.8246 

PIK3CA 0.6101 MAPK3 -0.6443 

PIK3CB 0.5821 AKT2 -0.6432 

MAPK1 0.5096 HRAS -0.5946 

EIF4E 0.4815 MKNK2 -0.5884 
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D. DISCUSSION 
We have presented a systems biology approach using different tools to investigate the relationship 

between EMT and Senescence. First we have showed the reduced network of the NME1 connections in 
EMT and Senescence from a larger signalling network. The reduction of mitochondrial ROS, and the 
subsequent oxidative stress, by NME1, prevents the occurring of the EMT and Senescence. It has been 
observed that reduced ROS, from targeting the mitochondrial complex I resulted in less EMT in colorectal 
cancer 24. Also in breast cancer cells, it has been observed that reduced ROS also result in reduction of 
EMT markers 25. Mitochondrial oxidative stress, induced by an excessive amount of ROS, can also result 
in Senescence 26. The downstream induction of NF-κB resulted in the induction of both cell programs. This 
transcription factor has been widely studied for inducing both programs 7,27 but also as a target, for instance 
NF-κB targeting has resulted in reduced metastases in colorectal cancer in murine models 28. From this 
obtained results, we can then conclude that Mitochondrial ROS production and NF-κB activation, that can 
be activated by different proteins, are key in both processes.  

The activation of different programs, through the progression of the disease, has been shown 
exploring transcriptomics data from patients with colorectal cancer. From this, we saw an activation of 
Senescence in the most advanced stages. It has been proposed that tumor cells as well as cells from the 
TME, like CAF, can induce EMT if they are in a senescent state 29,30, specifically by signaling of the SASP 
molecules. Taken together the results presented, from the systems biology application, we could conclude 
that these two processes are strongly linked. 

From this collaborative project, there were experiments using senolytic agents to treat cells. They 
have used NME1 depleted cells as well as aerotactic EMT-positive MCF10A cells. Both presented features 
of cell senescence and they became sensitive to senolysis. The treatments with senolytics its being 
reviewed lately in combination with other treatments having promising results in cancer but also in the 
context of other diseases 31–33.  

 Finally, in this study we can see that applying systems biology tools, like these molecular networks, 
result in a comprehensive overview of the studied system. We have shown the crosstalk of different proteins 
that have common effectors between EMT and senescence. In the future, it could be interesting to apply 
this type of approach to study the inverse process, the Mesenchymal-epithelial transition that has an 
important role in the establishment of metastasis. 
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E. SUPPLEMENTARY TABLES  
STAGE I (n = 74) STAGE IV (n = 61) 

 

Gene Mean S.D. Mean S.D. T-test (1 tailed) 

CLN5 612.7559 211.0769 818.8901 511.5455 0.002122 

CTSF 252.3945 187.9283 356.8917 253.6308 0.004377 

GALNS 426.6519 201.8659 527.625 248.038 0.005927 

GLB1 2531.1788 735.9242 2432.854 876.5544 0.2436685 

IDS 1834.864 705.3488 2497.207 1873.816 0.005442 

LAMP1 8114.744 3698.366 9895.907 4132.787 0.00506 

NEU1 2371.771 1243.812 2867.703 1450.249 0.018597 

PLA2G15 497.0409 164.748 566.8375 219.7297 0.021339 

SLC11A1 116.7673 130.1934 177.2104 235.6541 0.038371 

SMPD1 525.4288 311.6779 670.5865 426.9186 0.014491 

Supplementary table 1. Mean expression and standard deviation (S.D.) of genes related to lysosome 

 
STAGE I (n = 74) STAGE IV (n = 61) 

 

Gene Mean S.D. Mean S.D. T-Test (1 tailed) 

CDH1 14069.13 4527.126 14178.64 5116.672 0.448265 

CDH2 27.29264 42.85729 65.18369 99.31203 0.003455 

KRT18 30410.46 16224.48 33602.91 19817.77 0.157359 

MKI67 4426.73 2232.476 3798.055 1996.179 0.043346 

MMP14 5299.444 3531.589 7097.619 6190.865 0.023458 

SNAI1 127.2326 69.574 199.1302 147.7709 0.000385 

SNAI2 124.6267 90.475 194.2126 310.096 0.047388 

TWIST1 45.13247 40.24358 97.01585 130.069 0.001877 

TWIST2 7.392951 7.690907 8.616046 9.308008 0.206676 

VIM 5986.839 4004.615 10247.35 20599.3 0.058302 

ZEB1 268.6577 150.6874 331.8404 216.2262 0.028255 

ZEB2 308.2077 204.1187 356.9129 359.3997 0.174669 
Supplementary table 2. Mean expression and standard deviation (S.D.) of genes related to EMT. 

 

 
STAGE I (n = 74) STAGE IV (n = 61) 

 

Gene Mean S.D. Mean S.D. T-Test (1 tailed) 

CCL2 247.4911 221.1236 267.6956 247.6051 0.310735 

CDKN1A 3451.997 2366.18 3271.928 2263.136 0.326477 

CDKN2A 66.48832 70.59072 143.0202 201.9057 0.003084 

IL1A 42.62975 50.89968 57.65319 107.4554 0.159377 

IL1B 444.8082 423.7025 1005.227 3727.429 0.123652 

IL6 94.24523 222.542 180.3197 623.1458 0.154096 

IL8 1997.696 2808.659 3845.274 9744.384 0.078267 

MKI67 4426.73 2232.476 3798.055 1996.179 0.043346 

RCE1 534.5684 140.4531 540.4699 116.7111 0.395083 
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RELA 2266.317 456.3211 2400.623 474.9218 0.049258 

ZMPSTE24 1855.751 610.9636 1945.991 917.2856 0.256187 
Supplementary table 3. Mean expression and standard deviation (S.D.) of genes related to Senescence. 

 
STAGE I (n = 74) STAGE IV (n = 61) 

 

Gene Mean S.D. Mean S.D. T-Test (1 tailed) 

CAT 2107.433 795.6023 2129.124 758.3643 0.435874 

MPO 3.64546 3.457329 6.867098 7.06524 0.000821 

NDUFA6 1132.865 459.0848 1011.248 379.7705 0.047215 

NDUFA9 2585.076 1095.751 2264.513 992.3116 0.038543 

NDUFS1 1739.007 526.9671 1580.16 392.4974 0.023519 

NDUFS6 1240.129 427.4574 1401.002 567.2077 0.035121 

NDUFV2 1524.589 731.1335 1248.692 580.5896 0.007931 

NOX1 4556.063 4016.479 4437.768 4051.885 0.43284 

NOX3 0.005731 0.049301 0.014189 0.077704 0.231565 

NOX4 31.15232 49.10578 54.47589 61.82838 0.009254 

NOX5 0.564588 1.098879 1.339283 3.458093 0.048599 

SDHA 3279.756 1244.83 2825.529 1207.833 0.016923 

SDHB 1892.078 482.6642 1628.689 515.9744 0.001448 

SDHC 2192.25 617.6359 2238.32 780.5585 0.354411 

SDHD 2535.223 830.9403 2359.993 857.7037 0.116557 

SOD1 4133.309 1869.557 3778.076 1797.311 0.131906 

SOD2 5214.081 2555.736 4941.316 3776.505 0.315904 

TXNRD1 2629.202 758.8631 2745.945 885.686 0.209046 

TXNRD2 462.5513 178.6488 442.9827 155.2277 0.248607 

UQCR10 1423.37 567.8754 1248.83 495.3033 0.029361 

UQCR11 1869.928 712.4046 1888.611 702.8836 0.439413 

UQCRB 3116.407 1244.37 3220.984 1391.338 0.324702 

UQCRC1 6138.42 2781.906 5199.232 2327.253 0.017265 

UQCRC2 5380.364 1438.112 5103.237 1421.73 0.132129 

UQCRFS1 2307.227 758.6101 2041.226 611.4379 0.012861 

UQCRH 2604.092 1059.385 2468.571 1390.717 0.266316 

UQCRQ 2815.721 1303.159 2897.487 1396.979 0.363901 
Supplementary table 4. Mean expression and standard deviation (S.D.) of genes related to Oxidative Stress. 
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CHAPTER IV: KNOWLEDGE FORMALIZATION TO TACKLE AN 

EMERGENT PANDEMIC 
 

A. INTRODUCTION 
The coronavirus disease 2019 (COVID-19) was an emergent and rapidly spreading disease that 

had begun in late 2019. This disease which is caused by the severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) had 446,260 confirmed cases and caused 36,847 deaths worldwide at the end of March 
of 2020 1.  

Due to the rapid increase of the epidemic across the world, that led to a major confinement 
worldwide, it resulted to be a topic of interest for researchers. Hence, as a part of disease maps 
(https://disease-maps.org) consortium2,3, a large-scale community dedicated to the biocuration, 
construction and exploitation of molecular networks represented as maps in different diseases, we have 
gathered together to construct the COVID-19 Disease map (https://disease-maps.org/covid-19/). This map,  
is composed of many diagrams and has been used to analyze omics data, and has been already published4. 
However, for clarity of this chapter, I will focus it on my main contribution to this effort, i.e. the construction 
and refinement of the endoplasmic reticulum (ER) stress map.  

The endoplasmic reticulum, is a vast organelle with many functions for cell homeostasis, such as 
Ca2+ storage, synthesis and folding of proteins as well as carbohydrate and lipid metabolism. Many 
conditions, such as oxidative stress, altered Ca2+ homeostasis, fails on protein folding can cause the 
accumulation of unfolded or misfolded proteins in the ER, leading to the stress of this organelle. The ER 
has many pathways to resolve this stress, however, when it fails to restore its function can trigger cell 
apoptosis 5,6. 

The expression of some human coronavirus (HCoV) proteins during infection, specially the S 
glycoprotein, might induce the activation of the ER stress in the host’s cells 7. The unfolded protein response 
(UPR) pathways are key to assure the ER homeostasis, these pathways are activated by the protein kinase 
RNA-activated (PKR)-like ER protein kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating 
transcription factor 6 (ATF6) 8. During SARS-Cov-1 infection, it has been proved the activation of PERK9, 
IRE110 and, ATF6 pathways11.   

IRE1 is the most evolutionary conserved UPR protein. IRE1 by a luminal domain and a cytoplasmic 
effector domain. It has kinase and endoribonuclease activity. In absence of stress it is maintained as a 
monomer and bound to the chaperone BiP towards the lumen. When there is an accumulation of unfolded 
proteins, IRE1 is activated by detachment of BiP and subsequent oligomerization and autophosphorylation. 
Then it exerts ribonuclease activity on XBP1 mRNA that results in the translation of the transcription factor 
XBP1 in its active form that induces the transcription of response proteins. IRE1 can also degrade mRNAs 
and miRNAs to decrease the quantity of proteins incoming the ER, this process is called IRE1-dependent 
decay (RIDD). Additionally, when phosphorylated, it can bind to TRAF2 to promote c-Jun N-terminal kinase 
(JNK) resulting in activation of cell death programs 12–14.  

PERK, Similar to IRE1, also is a monomeric protein that as a cytoplasmic domain and a luminal 
domain that is also bound to BiP. Upon unfolded protein accumulation, BiP dissociates from PERK, leading 
to dimerization and autophosphorylation, making PERK activated. PERK then phosphorylates the α subunit 
of the eukaryotic initiation factor 2 (eIF2α), reducing thus eIF2-GTP resulting in a decreased translation as 
well as activation of  stress proteins such as ATF4 and CHOP8,13,15.  
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ATF6 is a transmembrane protein in the form of monomers and dimers with intra- and inter-
molecular disulfide bonds. These are bound to the chaperon BiP. Upon an insult, BiP dissociates and the 
disulfides are reduced by protein disulfide isomerases. This leads to monomeric forms of ATF6 that traffic 
to the Golgi apparatus, where they are proteolytically processed, releasing the cytosolic active part of ATF6, 
a bZIP transcription factor, that localizes to the nucleus and induces the expression of genes related to ER 
quality control 8,13,16. 

This map depicts the activation of the main UPR actors (ATF6, IRE1 and PERK) upon unfolded 
protein accumulation, and their role of this response to Ca2+ release into the cytoplasm as well as the 
activation of molecules that can lead to apoptosis and cell death.  

 

B. MATERIALS AND METHODS 
 

Obtaining related key players from a larger network  

 To construct the ER Stress map, in the context of SARS-CoV-2 infection, we have started from an 
already existing map to gather the key elements relevant for the infection. This larger map was the regulated 
cell death (RCD) map 17, which is available online: https://acsn.curie.fr/navicell/maps/rcd/master/index.html. 
In this map, we find the module ER stress under the stress response layer. We have centered the focus in 
the three main players of the UPR: ATF6, IRE1 and PERK. Then by using Cytoscape v2.8 18 and the BiNoM 
plugin 19, we could extract a subnetwork with the entities related to these key players. 

Literature curation and map annotation 

 The previously obtained network was manipulated using the CellDesigner20 software. Entities and 
reactions were annotated using the MIRIAM registry21. The curation rules were established to have a 
homogeneous process in the community. A summary of the biocuration guidelines is available in Appendix 
1. After having the reduced network, we refined it by reviewing the literature regarding similar diseases, 
such as SARS-CoV infection, which caused an outbreak in 200222 or HCoV in general.  

 
C. RESULTS 

 

 The ER stress map consisted of 121 species from which 64 corresponded to proteins, 9 genes, 9 
RNAs, 2 simple molecules, 19 complexes, 15 phenotypes, 3 ions, 83 reactions and is based on 23 scientific 
papers (between reviews and original papers). Inside the map, there were 7 compartments, comprising the 
endoplasmic reticulum, the nucleus, the Golgi apparatus, the mitochondria, the mitochondria inner 
membrane, the cytoplasm and the autophagosome Figure 1.  
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Figure 1. Overall view of the ER-stress map. This map was constructed based on the main players of the UPR: ATF6, IRE1 and 
PERK.  

 The ER stress map depicts in a simplified manner the main actors of the UPR response and their 
downstream effects. This map was then enriched with the mitochondria-associated ER membrane (MAM) 
and calcium homeostasis (collaboration with Barbara Brauner, Helmholtz Zentrum, Germany). As a result, 
this extension have connected the ER Stress and the Mitochondria in  a more integrative manner. The top 
level view is in Supplementary figure 1.  

 This map was integrated to 20 other manually curated maps to assemble the COVID-19 map 
(available at: covid19map.elixir-luxembourg.org). The maps integrated 4 groups which were the virus 
replication cycle, with the attachment and entry, the transcription, translation and replication as well as 
assembly and release. The viral subversion of the host defense, where ER stress was integrated with 
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apoptosis and autophagy. The integrative stress response that had the renin-angiotensin system, 
coagulopathy and the Innate Immune Response: with PAMP signaling, Induction of interferons and the 
cytokine storm and altered host metabolism, the top level view of the COVID-19 map is in Figure 2.  

 

 The construction of these maps has helped to analyze some omics data that have been reported 
as case studies4. For instance, there was a case study using RNA-Seq data from nasopharyngeal swabs23 
from cases of COVID-19 and controls, were they focused on the apoptosis pathway (from the apoptosis 
map). They observed an overall downregulation of CASP3 and CASP7 sub pathways and inhibition of the 
circuit that ended in CASP3 probably due to the downregulation of AKT1 and BAD with the downstream 
inhibition of BAX. Although the BAX downstream genes appeared up-regulated, the signal arriving at them 
was reduced due to the effect of the previous nodes. Although CASP8 was up-regulated, the aggregated 
effect of the individual node activities resulted in the inhibition of CASP7. In fact, inflammatory response via 
CASP8 has been reported to occur with SARS-CoV-2 infection24, and the caspase-induced apoptosis 
together with the ripoptosome/caspase-8 have been considered as a pro-inflammatory checkpoint25, which 
in turn, could trigger the activation of other pathways that result in the progression of the disease 
(Supplementary figure 2).  

D. DISCUSSION 

 In this chapter I have presented a work of biocuration applied to a viral respiratory disease that was 
part of a large, international, community effort. This effort gathered scientists from different fields, like 
biology, bioinformatics, computer science, medical sciences among others. This allowed to develop an 
integrative, comprehensive and powerful tool that was the COVID-19 map.  

 My contribution working in the ER stress map involved the revision and curation of scientific 
literature that could be relevant for SARS-CoV-2 infection and the progression to COVID-19. The resulting 
ER stress map, ensembled with the other curated maps, resulted in a comprehensive tool depicting the key 

Figure 2. Top level view and contents of the COVID-19 map. This integrative map has covered different aspects of the disease.  
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mechanisms and molecular relationships taking place during the disease. Nevertheless, the information 
contained in this type of tools, can also serve as a starting point to study other diseases, in the case of my 
map, the core was the three components of UPR, that can take place in any cell undergoing ER stress. 
Using transcriptomics data analysis, it was presented the different activation levels of the apoptosis 
pathway. The results could give explanations of interactions on pathway elements, that can give rise to new 
hypotheses.  

 Overall, I have expose an application of biocuration to construct a tool that could be applied to a 
disease. This tools have the properties that can be human and computer readable, so that they can be 
applied for other in silico approaches. Currently, the community effort is ongoing, however, the focus on 
COVID-19 has decreased. Noteworthy, all the teams participating in the disease maps community are 
specialized in a disease or related diseases, in the case of E. Barillot’s team, it is cancer.  
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E. SUPPLEMENTARY FIGURES 

Supplementary figure 2. Representation of the different activation levels for the apoptosis pathways in nasopharyngeal swabs. 

Supplementary figure 1. Top level view of the ER stress map after the integration of the mitochondrial-associated ER membrane.  



98 

 

F. REFERENCES 

1. WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. 
https://data.who.int/dashboards/covid19/cases. 

2. Ostaszewski, M. et al. Community-driven roadmap for integrated disease maps. Brief. Bioinform. 20, 659–670 (2019). 

3. Mazein, A. et al. Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms. 
NPJ Syst. Biol. Appl. 4, (2018). 

4. Ostaszewski, M. et al. COVID19 Disease Map, a computational knowledge repository of virus–host interaction mechanisms. 
Mol. Syst. Biol. 17, e10387 (2021). 

5. Oakes, S. A. & Papa, F. R. The role of endoplasmic reticulum stress in human pathology. Annu. Rev. Pathol. 10, 173–94 
(2015). 

6. Senft, D. & Ronai, Z. A. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. 
Sci. 40, 141–148 (2015). 

7. Fukushi, M. et al. Monitoring of S Protein Maturation in the Endoplasmic Reticulum by Calnexin Is Important for the Infectivity 
of Severe Acute Respiratory Syndrome Coronavirus. J. Virol. 86, 11745–11753 (2012). 

8. Fung, T. S. & Liu, D. X. Human Coronavirus: Host-Pathogen Interaction. Annu. Rev. Microbiol. 73, 529–557 (2019). 

9. Krähling, V., Stein, D. A., Spiegel, M., Weber, F. & Mühlberger, E. Severe Acute Respiratory Syndrome Coronavirus Triggers 
Apoptosis via Protein Kinase R but Is Resistant to Its Antiviral Activity. J. Virol. 83, 2298–2309 (2009). 

10. DeDiego, M. L. et al. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and 
apoptosis. PLoS Pathog. 7, (2011). 

11. Sung, S. C., Chao, C. Y., Jeng, K. S., Yang, J. Y. & Lai, M. M. C. The 8ab protein of SARS-CoV is a luminal ER membrane-
associated protein and induces the activation of ATF6. Virology 387, 402–413 (2009). 

12. Cabral-Miranda, F. et al. Unfolded protein response IRE1/XBP1 signaling is required for healthy mammalian brain aging. 
EMBO J. 41, e111952 (2022). 

13. Wiseman, R. L., Mesgarzadeh, J. S. & Hendershot, L. M. Reshaping endoplasmic reticulum quality control through the 
unfolded protein response. Mol. Cell 82, 1477–1491 (2022). 

14. Park, S. M., Kang, T. Il & So, J. S. Roles of XBP1s in Transcriptional Regulation of Target Genes. Biomedicines 9, (2021). 

15. Donnelly, N., Gorman, A. M., Gupta, S. & Samali, A. The eIF2α kinases: their structures and functions. Cell. Mol. Life Sci. 
2013 7019 70, 3493–3511 (2013). 

16. Chen, X., Shen, J. & Prywes, R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes 
translocation of ATF6 from the ER to the Golgi. J. Biol. Chem. 277, 13045–13052 (2002). 

17. Ravel, J. M. et al. Comprehensive Map of the Regulated Cell Death Signaling Network: A Powerful Analytical Tool for 
Studying Diseases. Cancers (Basel). 12, (2020). 

18. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome 
Res. 2498–2504 (2003) doi:10.1101/gr.1239303.metabolite. 

19. Zinovyev, A., Viara, E., Calzone, L. & Barillot, E. BiNoM: a Cytoscape plugin for manipulating and analyzing biological 
networks. Bioinformatics 24, 876–877 (2008). 

20. Funahashi, A. et al. CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks. Proc. IEEE 96, 1254–1265 (2008). 

21. Juty, N., Le Nover̀e, N. & Laibe, C. Identifiers.org and MIRIAM Registry: community resources to provide persistent 
identification. Nucleic Acids Res. 40, (2012). 

22. Hui, D. S., Azhar, E. I., Memish, Z. A. & Zumla, A. Human Coronavirus Infections—Severe Acute Respiratory Syndrome 
(SARS), Middle East Respiratory Syndrome (MERS), and SARS-CoV-2. Encycl. Respir. Med. 4, 146 (2022). 



99 

 

23. Lieberman, N. A. P. et al. In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age. PLoS 
Biol. 18, (2020). 

24. Li, S. et al. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduct. 
Target. Ther. 5, 235 (2020). 

25. Chauhan, D. et al. BAX/BAK-Induced Apoptosis Results in Caspase-8-Dependent IL-1β Maturation in Macrophages. Cell 
Rep. 25, 2354-2368.e5 (2018). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



100 

 

CONCLUDING REMARKS AND PERSPECTIVES 
 In this manuscript, I have described the fundamentals of systems biology and omics sciences, as 
well as some examples where these approaches were used to investigate different questions regarding 
biological processes in human diseases.  

 I presented an integrative study that was performed in collaboration with different partners at the 
Insitut Curie and the Centre de Recherche Saint-Antoine. This study represented a series of challenges for 
all the partners participating on it. By using the transcriptomics data from diverse tissue samples, I could 
identify some likely mechanisms to be indicators of presence of the cancer associated adipocytes. The 
found mechanisms, thermogenesis and matrix metalloproteinases, shall be further investigated  and 
validated. In this project it is envisaged to perform lipidomics/metabolomics in a vast array of samples, in 
order to add another molecular layer and have a better approximation of the underlying biology. Additionally, 
spatial transcriptomics analyses are planned for a set of samples, in order to profile the adipocytes that are 
in close contact with tumor cells. Nevertheless, in another branch of this large collaborative project, cell co-
cultures using primary adipocytes from patients and cancer cell lines are being carried out. There are some 
indicators that suggest that the cancer cells co-cultured with adipocytes shown increased expression of 
invasion markers. In this co-cultured cells, it is planned to perform RNA-Seq, so that we can compare the 
results that were obtained in the bulk data. In conclusion, for this part of the thesis, the used approach gave 
us an insight in the mechanisms that could characterize the cancer associated adipocytes. A paper 
regarding these findings is being prepared. 

 Then, I described a project that was done in collaboration with M. Boissan, where we investigated 
the relationship between EMT and cellular senescence. My contribution to this project, was to depict the 
players of NME1, metastatic suppressor, in both processes. I have found different players of interest that 
can relate both processes. Then I analyzed some colorectal cancer data, corresponding to different stages, 
to see the differences in terms of gene-sets from an already existing signaling network diagram of EMT. 
The results indicated that in later stages of the disease, key genes of senescence and EMT were 
overexpressed in the stage IV when compared to stage I. On the other hand, the biological experiments 
that have been performed suggest a strong relationship between both processes, indicating a senolytic like 
phenotype in cells with positive markers of EMT. My contributions to this project, together with the 
experimental findings are already in the form of a manuscript that soon will be submitted.  

 Lastly, as a complementary chapter, I described my contribution to a project that occurred at the 
beginning of the PhD, regarding the knowledge formalization and description of the endoplasmic reticulum 
stress in cells infected with SARS-CoV2, this network diagram has helped efforts for many groups applying 
other systems biology approaches, such as modelling. The integrated network has been mentioned in a 
series of publications.  

  To conclude, systems biology offers many opportunities to address different biological questions, 
the exploitation of transcriptomics, can provide valuable information regarding the characteristics of certain 
cells, the relationships between two processes, among others that result in connections to wire the 
molecular networks that occur during the human diseases.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MOTS CLÉS 

 
Biologie des systèmes, transcriptomique, maladies, réseaux moléculaires 

RÉSUMÉ 

 Les systèmes biologiques sont des structures complexes avec des interactions 
complexes entre leurs composants. Grâce à la combinaison de différents domaines 
scientifiques, il est désormais possible d'étudier ces systèmes et de répondre à différentes 
questions qui ont des applications différentes. Dans cette thèse, j'ai exploré des outils et des 
approches utilisés en biologie des systèmes afin de trouver des acteurs moléculaires ainsi 
que des mécanismes importants dans les réseaux moléculaires des systèmes biologiques. 
J'ai intégré des techniques d'analyse de données transcriptomiques. J'ai également utilisé 
des approches de formalisation des connaissances afin de construire ou d'étendre des 
réseaux moléculaires descriptifs existants dans différentes maladies.  

 J'ai principalement étudié le rôle du tissu adipeux dans le cancer du sein. Le tissu 
adipeux constitue une partie fondamentale et importante de l’anatomie du sein. Il a été 
suggéré que ce tissu adipeux, principalement composé d’adipocytes blancs, interagit avec 
les cellules cancéreuses au front invasif de la tumeur, favorisant ainsi la progression 
tumorale. Ces cellules ont été appelées “Adipocytes associés au cancer (CAA, en anglais)”. 
Il a été émis l’hypothèse selon laquelle l’interaction entre CAA et cellules tumorales serait 
amplifiée en cas d’obésité. Ainsi, une cohorte de patientes atteintes d’un carcinome canalaire 
mammaire et classées comme obèses ou normo-pondérales a été constituée.  J'ai analysé 
des échantillons de tissu adipeux de ces patients, proches (proximaux) ou éloignés (distal) 
de la tumeur, au niveau du transcriptome. Les deux types de tissus présentaient des motifs 
d’expression génique similaires. Cependant, avec l’analyse d’enrichissement, les 
échantillons proximaux présentaient des voies de signalisation des œstrogènes enrichies et 
des voies liées à l’épithélium par rapport aux échantillons distaux. Par rapport aux 
échantillons de tumeurs, les échantillons proximaux montraient principalement des voies 
menant à la fonction du tissu adipeux, telles que l'adipogenèse, le métabolisme des acides 
gras, la signalisation de PPAR entre autres. J’ai appliqué l'analyse ROMA pour déterminer 
l'activation des voies d'intérêt à partir des résultats d'enrichissement, et nous avons constaté 
que la thermogenèse et les métalloprotéinases matricielles étaient plus actives dans les 
tissus adipeux proximaux. Les gènes MMP7, MMP16, MMP3, SMARCC1, CREB3L4, 
MAPK13, RPS6KA6, SMARCA4, ZNF516, ACTG1, SLC25A9 sont apparus comme 
contributeurs majeurs.   

 Les réseaux moléculaires peuvent être représentés sous forme de diagrammes. Les 
informations contenues dans ces réseaux peuvent servir à exploiter l'analyse des données 
transcriptomiques. Auparavant, l'Atlas du réseau de signalisation du cancer avait été 
constitué. Cette ressource est composée de processus biologiques pour le développement 
et la progression du cancer sous la forme de cartes. J'ai utilisé l'une des cartes, la 
sénescence cellulaire et la transition épithélio-mésenchymateuse (EMT, en anglais), pour 
explorer le rôle du prototype gène suppresseur de métastase, NME1 (appelé auparavant 
NM23-H1) dans ces processus. J'ai enrichi la carte avec les fonctions de la protéine NME1 
et utilisé les informations pour compiler les acteurs impliqués dans la sénescence cellulaire 
et l'EMT. Certains acteurs intéressants liés aux deux processus ont été identifiés, comme 
NF-κB, montrant que la sénescence a une relation avec l'EMT. Ensuite, j'ai utilisé des 
données transcriptomiques provenant de patients atteints d'un cancer colorectal pour 
observer l'activité des différents modules du réseau afin d'observer la progression à travers 
les différents stades de la maladie. 

 Finalement, en raison de l'épidémie de COVID-19, j’ai participé à un effort où nous 
avons construit une carte de l’interaction hôte-virus, la carte COVID-19. Ma contribution s'est 
concentrée sur la construction du réseau représentant le stress du réticulum endoplasmique.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 Biological systems are complex structures with multiple interactions between their 
components. Thanks to the combination of fields such as mathematics, computational 
science, biology, physiology etc. it is now possible to study  these systems and answer 
different questions that have different applications, like in human health. In this thesis I have 
explored some tools and approaches used in systems biology in order to find molecular 
players as well as mechanisms that are important in the molecular networks for the biological 
systems. For this thesis, I have integrated data analysis techniques to transcriptomics data in 
different diseases. Also, I have used knowledge formalization approaches in order to 
construct or extend existing descriptive molecular networks in different diseases.  

 I have studied the role of adipose tissue in breast cancer. The adipose tissue 
constitutes a fundamental and large part of the breast anatomy. Mammary adipocytes have 
been hypothesized to interact with cancer cells at the invasive front of the tumor, supporting 
the progression of the disease. These adipocytes have been termed “Cancer Associated 
Adipocytes (CAA)”. The interaction of these CAA and the progression of the disease have 
been suggested to be worse in obese patients. Therefore, to have an insight on the 
mechanism , a cohort of patients that had ductal breast carcinoma and that are considered 
as obese or normal-weight was created. I have analyzed adipose tissue samples of these 
patients, that were either close (proximal) or far (distal) from the tumor, at the transcriptome 
level. Both tissue types showed similar gene expression patterns. However, with the 
enrichment analysis, proximal samples had enriched estrogen signaling pathways, and 
pathways related to epithelium when compared to distal samples. When compared to tumor 
samples, proximal showed mostly pathways to their adipose tissue function, as adipogenesis, 
fatty acid metabolism PPAR signaling among others. We applied ROMA analysis to determine 
activation of pathways of interest from the enrichment results, and we found thermogenesis 
and matrix metalloproteinases to be more active in the proximal adipose tissues. The genes 
MMP7, MMP16, MMP3, SMARCC1, CREB3L4, MAPK13, RPS6KA6, SMARCA4, ZNF516, 
ACTG1, SLC25A9 appeared as major contributors.  

 Molecular networks can be depicted as diagrams in order to facilitate their exploration 
and visualization. The information contained in these networks may serve to exploit the 
analysis of transcriptomics data using techniques such as gene-set enrichment analysis. 
Previously, the Atlas of Cancer Signaling Network was assembled. This resource is 
composed of known biological processes that are relevant for cancer development and 
progression in the form of maps depicting molecular interactions. I have used one of the maps, 
cellular senescence and Epithelial to Mesenchymal Transition (EMT), to explore the role of 
prototypic metastasis suppressor gene NME1 (previously called NM23-H1) in these 
processes. I had enriched the map with functions of the protein and also used the information 
to compile the players that are involved in cellular senescence and EMT. Some interesting 
players that are related were identified to both processes, like NF-κB, showing that 
senescence has a relationship with EMT. Then, I used transcriptomics data from colorectal 
cancer patients to observe the activity of the different modules in the network to observe the 
progression through the different stages of the disease.  

 Lastly, due to the COVID-19 epidemic, I have participated in a multi-research groups’ 
effort where we constructed a map of the host-virus interaction, the COVID-19 map. My 
contribution was focused on building the network representing the endoplasmic reticulum 
stress. 
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