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Abstract

Neuromorphic engineering is a field of research that leverages the latest technologies to build
the next generation of computing and sensing systems inspired by biological neural systems.
The term neuromorphic was coined in the late 1980s by Carver Mead, referring to electronic
circuits closely matching the principles of biological computation. Today, neuromorphic
research evolved into a multidisciplinary field gathering scientists from different fields
and working towards different goals. In recent years, neuromorphic has gained popularity
after the surge of deep learning with part of the computer science community drawing
inspiration from biology for innovative computation. Neuromorphic engineering has also
attracted many material scientists seeking applications for unconventional devices. The
recent slowing down of Moore’s law and the increasing costs of improving technological
nodes have boosted the interest in unconventional computing strategies. Neural network
algorithms, the backbone of artificial intelligence, are not conveniently implemented
with Von Neumann computers, and In-memory-computing is emerging as a promising
alternative architecture for artificial intelligence. This context motivates a paradigm shift
for computing systems and the works in this thesis.

This thesis explores the field of in-memory computation with non-volatile-memories
for neuromorphic systems. Resistive random access memories (RRAMs) are embedded
into an analog architecture implementing a spiking neural network. Modern training
techniques from deep learning unleash the full potential of analog in-memory computing.
A modular architecture is proposed to scale the system to large-size graphical networks.
RRAM-based computing is utilized to efficiently perform the localization task with auditory
stimuli. A sensing system based on state-of-the-art piezoelectric-micromachined-ultrasound-
transducers (pMUT) is paired to a bio-inspired spiking neural network, minimizing energy
consumption. In-memory computing based on RRAMs is also applied to artificial olfaction,
where an array of chemically functionalized Mach-Zender interferometers constitutes an
innovative gas sensor. On-line learning with a dedicated circuit enables the adaptation
of artificial olfaction at the edge. Non-volatile memories are also involved in novel forms
of computations, going beyond the conventional schemes of neuromorphic computing.
RRAMs endow synapses and neurons with plasticity mechanisms that coexist in an
unsupervised learning procedure. Inspired by the intricate structures of biological neurons,
dendritic circuits are proposed, extending existing network architectures constituted by



neurons and synapses. Dendrite circuits improve the efficiency and memory footprint of
neuromorphic spiking neural networks. This thesis results are significant in the fields of
in-memory computing and neuromorphic systems.



Résumé

L’ingénierie neuromorphique est un domaine de recherche dans lequel les derniéres tech-
nologies sont utilisées pour construire la prochaine génération de systémes informatiques
et de détection, inspirés par les systémes nerveux biologiques. Le terme neuromorphique a
été inventé dans les années 1980 par Carver Mead, faisant référence aux circuits électron-
iques s’inspirant étroitement des principes du calcul biologique. Aujourd’hui, la recherche
neuromorphique est devenue un champ multidisciplinaire regroupant des scientifiques de
différents domaines et travaillant vers des objectifs différents. Ces derniéres années, le
neuromorphique a gagné en popularité apres I'essor de 'apprentissage profond, avec une
partie de la communauté informatique s’inspirant de la biologie pour du calcul innovant.
L’ingénierie neuromorphique a également attiré de nombreux scientifiques des matériaux
cherchant des applications pour des dispositifs non conventionnels. Le ralentissement
récent de la loi de Moore et les cotits croissants pour améliorer les noeuds technologiques
vont encore plus stimuler l'intérét pour des stratégies de calcul non conventionnelles. Les
algorithmes de réseaux de neurones, qui constituent la colonne vertébrale de I'intelligence
artificielle, ne sont pas commodément implémentés avec les architecture de type Von
Neumann, et le calcul en mémoire est en train de devenir une architecture alternative
prometteuse pour 'intelligence artificielle. Ce contexte motive le changement de paradigme
dans les systémes informatiques et les travaux de cette thése.

Cette thése explore le domaine du calcul dans la mémoire avec des mémoires non volatiles
pour les systémes neuromorphiques. Des mémoire résistive de type RRAM (Resistive-
Random-Access-Memories) sont intégrées dans une architecture analogique qui réalise un
réseau de neurones & impolsions. Les techniques de apprentissage profond libérent tout
le potentiel du calcul analogique avec RRAMs. Une architecture modulaire est proposée
pour étendre le systéme a des réseaux graphiques de grande taille. Le calcul basée sur les
RRAMs est utilisé pour effectuer efficacement la tache de localisation avec des signaux
auditifs. Un systéme de détection basé sur des transducteurs piézoélectriques micro-usinés
a ultrasons (pMUT) a la pointe de la technologie est couplé & un réseau de neurones a
spike bio-inspiré, minimisant la consommation d’énergie. Le calcul en mémoire des RRAM
est également appliqué a 'olfaction artificielle, ol un réseau d’interférométres Mach-Zender
chimiquement fonctionnalisés implémente un capteur de gaz innovant. L’apprentissage en
ligne avec un circuit dédié permet une nouvelle implementation de I'olfaction artificielle.



Les mémoires non volatiles sont également impliquées dans de nouvelles formes de calcul,
dépassant les schémas conventionnels du neuromorphisme. Les RRAM dotent a la fois les
synapses et les neurones de mécanismes de plasticité qui coexistent dans une procédure
d’apprentissage non supervisée. Inspirés des structures complexes des neurones biologiques,
des circuits dendritiques sont proposés, prolongeant les architectures de réseaux existantes
constituées de neurones et de synapses. Les circuits dendritiques améliorent 1’efficacité et
I’empreinte mémoire des réseaux de neurones a spike neuromorphiques.

Les résultats de cette thése sont significatifs dans les domaines du calcul en mémoire et
des systémes neuromorphiques.
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Chapter 1

Introduction

1.1 Neuromorphic engineering

Neuromorphic engineering [8, 9, 10|, or also neuromorphic computing, is a relatively young
field of research in which advanced technology is used taking inspiration from, mimicking
or seeking to understand biological neural architectures. Modern neuromorphic engineering
is a broad, multi-disciplinary field unifying scientists with different backgrounds and with
different scopes. The term "neuromorphic" has evolved through time and now embraces
many novel approaches for unconventional, bio-inspired sensing and computing. To gain
perspective on what neuromorphic engineering is and to understand where it is evolving,
one has to look for the historical backgrounds. Starting from the precursor of neuromorphic
computing - bio-inspired engineering - passing through the late 1980s and 1990s when
the term was coined, and reaching the modern days where neuromorphic is one of the
most popular research topics, with the promise of entering the market with competitive
products.

History of neuromorphic engineering Inspiration from the models of neural compu-
tation and information processing taking place in the brain dates back to the foundation of
computer science [11], in the 1950s. The spiking behavior of the nervous system inspired
the abstract concept of point-neuron, postulated by McCulloch [12]| in 1943. In 1958
[13], Rosenblatt proposed the first neural network inspired by the connectivity between
neurons observed in the brain. This led to the flourishing field of Artificial Intelligence
(AI), bloomed in the 1960s and 1970s |14]. An early example of physical implementation
of a nervous system’s element is the electronic retina, by Fukushima, in the 1970|15]. It is
worth mentioning that the 1970s was the period of the first Al winter, in which funding
and interest towards bio-inspired computation decreased. With novel advancements on
neural network architectures [16] and gradient-descent learning [17], Al and bio-inspired
computation re-gained traction as a research topic in the 1980s and 1990s. However, the

11
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Early Bio-Inspired Carver Mead coined the Development of Mixed- Emergence of
engineering term Neuromorphic Signal processors neuromorphic startups
2008) "Neuromorphic
silicon neuron
Introduction of circuit" reviews Intel debuts in
Fukushima the Address- analog and digital neurmorphic
introduces the Event neuron with the Loihi
electronic retina Representation implementations project
Rosenblatt "The Silicon The DVS128 Neurogrid is Neuromorphic
invents the Retina" camera is one of the first approaches the
Perceptron introduces presented Mixed-signal market with different

neuromorphic

@ vision @ @ processors @ GrAl, Brainchip,...)

neuromorphic startups (Synsense,

(a)
Electronic
Engineering Neuroscience Goals of Neuromorphic:

A' - Energy-efficient Edge AI
(G} - Understanding of the brain
\/

- Bio-inspired learning

Material Machine .
Science Learning - Nano-scale plasticity
(b) (c)

Figure 1.1: History and Definition of neuromorphic computing. @ Timeline of the
main events characterizing neuromorphic engineering, from the early days of bio-inspired
engineering, through the development of the field under Carver Mead in the 1990s, up
to the modern days with neuromorphic startups entering the market. (]E[) Neuromorphic
can be defined as the field between 4 major disciplines, such as Electronic Engineering,
Neuroscience, Machine Learning and Material Science. As the neuromorphic field is
highly heterogeneous, the objectives are as well. Among the main goals of neuromorphic
the main ones are: building energy-efficient AI hardware, understanding the brain in a
bottom-up manner, perform bio-inspired learning in machines and accomplish nano-scale
plasticity.

utilization of very-large-scale-integration (VLSI) technology for bio-inspired computation
and the emphasis on the non-linear and dynamical properties of biological computation
only began in the late 1980s. A group of leading scientists involving Richard Feynman,
John Hopfield and Carver Mead started the course "Physics of Computation", initiating
the interest in unconventional computational methods. It was Carver Mead, especially
fascinated by the biological aspects of computation and in collaboration with biologist
Max Delbriick, who coined the term "Neuromorphic". Mead also contributed to some of
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the first implementations of neuromorphic vision sensors (silicon retina [18] in 1991) and
neuromorphic audition sensors (silicon cochlea [19]). It was in these years that the idea of
building analog electronic circuit emulating the dynamics of biological neural elements
was born, culminating with the Nature paper |20] presenting a "silicon neuron". With
this legacy, neuromorphic engineering developed in the 1990s and early 2000s around
Mixed-Signal processors and sensors. The creation of neuromorphic chips was accelerated
by the invention of the Address-Event-Representation (AER) [21], efficiently communi-
cating spikes across large areas. Among the most notable advancements of this period of
neuromorphic research are the Dynamic-Vision-Sensor-128 |22] - an event-based camera
featuring 128x128 pixels -, the Differential-Pair-Integrator neuron [23] and Neurogrid
[24] - a large scale mixed-signal neuromorphic chip. Neuromorphic engineering is not
bound to analog electronics, in fact digital versions of spiking-neural-networks (SNN)
accelerators have gained traction in the last years. The ease in designing and producing
such application-specific-integrated-circuits (ASICs) guided by neuromorphic principles,
led to a new phase in which neuromorphic computing became promising as a profitable
computing paradigm. In 2018, a major actor in the semi-conductor industry such as
Intel launched the Loihi project [25]. Multiple neuromorphic startups (Synsense, GrAl,
Brainchip, ...) populate the market today, mainly proposing digital ASICs. However,
neuromorphic engineering is still mainly a research topic in universities, reaching many
research groups across the entire world. Figure sums up the main stages of the history
of neuromorphic engineering.

Neuromorphic today The term neuromorphic has evolved particularly in this last
decade, after the rise of Deep Learning [26]. More and more people from the Computer
Science community have looked into biology to incorporate improvements in deep neural
networks [27]. At the same time, engineers implemented these Al models mainly with
digital electronic chips. Also, the advent of novel nano-scale electronic devices offered new
hardware solutions onto which developing bio-inspired computation. All these influences
make neuromorphic a highly heterogeneous field, that can be identified at the interface
between 4 main disciplines (Fig. : Electronic Engineering, Neuroscience, Machine
Learning and Material Science. Giacomo Indiveri - one of the leading scientists in
neuromorphic - claims in 9] that neuromorphic computing "aims to reproduce as faithfully
as possible the detailed biophysics of the nervous system" and that neuromorphic systems
make use of "spike for representing and processing signals". While this is certainly adherent
to the spirit of the founders of neuromorphic, it has lately become usual to loosen the
definition of the term and include a wider range of low-power computing solutions vaguely
inspired by biology.

The mission of neuromorphic engineering is also not unique. In general, neuromorphic
engineering aims at developing systems inspired by the neuro-physiology of the brain. This
is differentiated in as many versions as the communities that populate the neuromorphic
field. The result is that at least four main objectives can be identified (Fig. : Energy-
efficient Edge Al system, bottom-up understanding of the brain, perform bio-inspired
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Figure 1.2: Neuromorphic as a research subject. Data collected from Scopus.com @
Papers published about neuromorphic per year, from 1984 to 2022. The interest is
exponentially increasing over the years, especially in the last 8 years. (]ED Affiliations with
the most publications in the field of neuromorphic. CEA Leti is a relevant research center
in neuromorphic. Subject related to the papers published on neuromorphic. The field
truly multidisciplinary, with the largest contributions from (electronical) Engineering,
Computer Science and Material Science.

learning in machines and novel devices capable of miniaturizing plasticity and learning.
Neuromorphic engineering today is a very popular research topic, with exponentially
increasing number of published paper every year, as demonstrated in Fig. [1.2al Fig. [T.2h]
shows the most popular affiliations to papers published about neuromorphic engineering.
CEA Leti is well positioned in the landscape of the research topic contributing with more
that 80 papers. Fig. reveals the multi-disciplinary nature of neuromorphic research,
with most papers being about (electronic) engineering, computer science and material
science. These statistics are available at "Scopus.com" .
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1.1.1 Neuromorphic processors

At the heart of neuromorphic computing are neuromorphic processors. To build VLSI
circuits tightly inspired by the neuro-physiology and faithfully reproducing the complex
non-linear dynamics observed in the brain was one of the main goal of the founders of the
subject. Different groups have come up with several solutions to build neuromorphic proces-
sors. In the first wave of neuromorphic, processors were mainly based on the Mixed-Signal
paradigm, where analog neurons and synapse circuits are put in communications by AER
or other digital communication protocols. More recently, fully digital implementations of
spiking neural networks have gained traction and are nowadays commercially available.
The main example of neuromorphic processors are presented and briefly in Table [I.1]

Mixed-Signal Closer to the spirit that initiated neuromorphic computing, mixed-signal
processors utilize analog circuits that mimic the behavior of biological neurons and synapses.
Analog circuits generally feature capacitor-based integrators, which emulate the charge
integration of the soma, while synapses are conventionally implemented by voltage or
current-gated circuits, modulating the charge transfer between neurons. While computation
is perfomed in the analog domain, spikes are generally routed with digital communication
protocols, among which the most common is the Address-Event representation (AER).
In AER, spikes are assigned an address which represents the post-synaptic neuron. The
address allows the spike-packet to pass from core to core and finally be delivered to the
target neuron. One of the earliest and most representative mixed-signal neuromorphic
processors is Dynap-SE [29]|. Developed in the Institute of Neurinformatics (ETH and
UZH) under the supervision of Prof. Indiveri, the processor is the basic version in a family
of other similarly built chips (Dynap-SE2, Dynap-CNN, Dynaps-SEL). The processor
features 4 cores with 256 neurons in each core, and up to 64k synaptic connections.
Communication between neurons is mediated by AER protocol, divided in 3 routers.
The chip can be interfaced by USB and can take AER spike packets coming from other
event-based sensor or chips. Braindrop|30] is one of the very few Mixed-Signal chip
fabricated with an advanced technology node (28 nm). Its simplified Integrate-and-Fire
neurons and optimized AER routing scheme minimize energy consumption, reaching
an impressive 388 fJ per synaptic operation (energy per hop). The architecture is also
one of the most compact, at 0.65 mm?. BrainScaleS-2 [31] is a processor fitting in
the Human-Brain-project [32], and it has been developed at the Heidelberg University.
The processor is built in a modular design where different chips are placed and put in
communication forming a big cluster. The analog neurons and synapses in BrainScaleS are
designed in the analog domain utilizing 65 nm technology and work in accelerated time
(1000x respect to real-time). This means that the time constant of a neuron in BrainScaleS
is 3 orders of magnitude faster than that of the biological counterpart it emulates.
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Digital Closer to conventional computers in the physics of computation, but running
neuromorphic algorithms, digital neuromorphic processors simulate spiking neural networks.
Neurons and synapses are built with different degrees of complexity and are free of the
mismatch issue, typical of analog circuits. As they don’t require capacitors to emulate
the membrane potential behavior, neurons and synapses generally occupy much smaller
sizes than their analog counterparts, so digital chips tend to scale to larger network sizes.
Digital neuromorphic processors can benefit from the highly developed infrastructures of
Computer-Aided-Design (CAD) tools to efficiently design large scale chips. This is why
digital architectures are the preferred choice for big electronic manufacturers approaching
neuromorphic, or startups envisioning new innovative products. One of the first digital
chips is TrueNorth|33] from IBM, 2014. The chip features 1 M neurons packed in 4.3 cm?
(full chip size). Neurons are arranged in 4096 cores forming a 2D mesh, made to optimize
the communication at the network level. The physical neuron block in TrueNorth uses
time-division multiplexing to compute the states of 256 logical neurons for a core with
a single computational circuit. TrueNorth was built with a modular architecture, where
several chips can work together. As demonstrated in [33] 4 TrueNorth chips can perform
an object detection task on a High-Definition video in real time, consuming less than a
Watt. Loihi [25] is the neuromorphic processor from Intel, presented in 2018. The chip is
based on a 14 nm FinFET process, comprehending over 2 billion transistors and 33 MB
of memory, in the size of 60 mm?. The neurons are grouped in 128 cores, composing a
2D mesh. Neurons can be programmed to simulate different neuron types, from simple
Integrate-and-Fire to complex multi-compartment models. Loihi exploits time-multiplexing
to compute the state of multiple neurons within the same neuron circuit. Also, the chip
contains three x86 processing units devoted to routing and controlling the communication
between the cores. Loihi also features on-line learning capabilities with simple learning
rules such as Spiking-Timing-Dependent-Plasticity.

These chips constitute the first generation of neuromorphic processors. The aim of the chips
is to explore the power of event-based computation, offering versatility and accessibility
to users in research. This is why they are not tailored to a specific task and thus not
competitive to highly optimized architectures, such as ASIC accelerators for Artificial
Intelligence. Nonetheless, they had a key role in popularizing neuromorphic computing
to people outside electronic engineering, providing easy access to biologically inspired
computational models.

With the field of Edge-Al blooming in the last decade, more and more ASICs have been
built, some of them running spiking neural networks. Most of these architectures are not
strictly adherent to the initial spirit of neuromorphic computing, but are rather guided by
the optimization of figures of merit such as performance and energy efficiency. Some others
made the choice of incorporating elements of neuromorphism, such as spiking neurons
and event-driven computation. Emulating Leaky-Integrate-and-Fire neurons and running
Spiking-Neural-Networks, ODIN [34] and ReckON |35] are two chips implemented with
digital electronics, simulating task-agnostic recurrent network architectures. ODIN features
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DYNAPSe|29] TrueNorth[33]  Braindrop|30] BrainScaleS 2|31] Loihi[25]
Producer INI (ETH/UZH) IBM Stanford Heidelberg Intel
University
Year 2017 2014 2018 2022 2018
Process Mixed-Signal Digital (ASIC) Mixed-Signal Mixed-Signals Digital (ASIC)
Technology 180nm 24nm 28nm 65nm 14nm
2
Die Size 43.79 mm? 4.3 em 0.65 mm? - 60 mm?
(chip size)
Number of 1024 1M 4096 512 per core 130k
Neurons
Number of 64k 265M 16M 130k 130M
Synapses
12.75kB
Total Memory 64kB CAM + per core - - 256MB SRAM
4kB SRAM
4096 cores
Energy per hop 17pJ 2.3p] 381fJ - 15pJ

@QVdd = 1.3 @ Vdd= 0.77

Table 1.1: Comparison of the main neuromorphic processors. Mixed-Signal processors
such as DynapSE, Braindrop and BrainScaleS are closer to the original neuromorphic
spirit. Truenorth and Loihi are digital architectures achieving greater density of integration,
featuring larger numbers of neurons and synapses. The low-power nature of these processors
is expressed by the energy for transmitting a spike (energy per hop) which is in the 1-10 pJ
range for most architectures.

learning in the form of Spike-Time-Dependent-Plasticity and ReckON features on-line
learning capabilities with the E-Prop learning rule (more on that in Section . Both
chips are implemented in 28 nm technology and present high energy efficiency per synaptic
operation: 8.4-14.2 pJ for ODIN and 0.6-42 pJ for ReckOn. ODIN was demonstrated
on image recognition, ReckON on key-word-spotting, image recognition and navigation.
NullHop [36] is a FPGA-based implementation of an accelerator based on conventional
artificial-neural-networks, but enhanced by the neuromorphic concept of temporal and
spatial sparsity in the architecture. The concept runs a heavily optimized convolutional
neural network performing computer vision tasks, where activations of hidden layers are
sparsified. The concept is tested on a 28 nm technology emulator yielding 450 GOp/s
operating a VGG19 network at 500 kHz. The neuromorphic concept of sparsity also
inspired Spartus [37], an accelerator for recurrent neural networks. The idea of Spartus is
to communicate activations between neurons just when a large enough change occurs. This
minimizes communication and optimizes energy efficiency. The Spartus concept reaches
1.1 TOp/s/W on a FPGA implementation.

In general, a lot of work has been devoted in the last few years to lower the power budget
of Edge Al accelerators. Neurormorphic not only paved the way for efficient computation
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with the processors presented in Table but also inspired other efficient implementations
of digital accelerators.

1.1.2 Neuromorphic sensors

As important as neuromorphic computing is neuromorphic sensing. In analogy to the
nervous system, while a neuromorphic processor would represent the brain, neuromorphic
sensors emulate the biological senses. Sensors provide the stimuli and information computed
by the processor, so it is fundamental that they work well together. From the beginning,
neuromorphic engineers have focused on mimicking biological senses. Carver Mead, in the
late 1980s and early 1990, put a lot of efforts to design circuits that would reproduce the
retinal cells [18] and the cochlea [19]. Neuromorphic vision and audition were born. Starting
at the circuit level and developing into full systems in the late 1990s and early 2000s,
neuromorphic sensors are now wide-spread in research laboratories and have also entered
the market. Neuromorphic sensors are designed around the core neuromorphic concept of
being event-based. This means that sensors don’t communicate signals while information
is not detected, rather only when a stimulus is present. This is the distinguishing factor of
neuromorphic sensing.

Converting information to the spike-domain

In neuromorphic sensors, analog input stimuli are encoded into spikes. The same happens
in biology. This is necessary in the nervous systems of animals - particularly mammals -
as sensory stimuli have to travel long distances to reach the central processor, the brain.
Analog dynamical information would be lost by travelling across the nerves, while spikes
can carry information more faithfully in the form of either frequency or precise timing.
Receptors of biological sensors feature different mechanisms to translate information into
electricity, and signals all converge in the brain in the form of action potentials, also said
spike. Similarly, neuromorphic sensors all feature different technologies to capture input
stimuli, but all translate it to the spike-domain. It is then evident that the conversion of
analog information to spikes is the key aspect in common between neuromorphic sensors.
How to represent analog signals with spikes?

A number of different techniques has been developed to convert information to the spike
domain, trying to optimize two key factors:

e Information retention
e Energy efficiency

The most basic technique to translate analog intensity to the spike domain is Rate coding.
Intensity of a signal is matched to the frequency of spikes. Similar spike conversion
mechanisms are observed for muscle activation and tactile sensing in biology [38]. This
technique requires large latency to optimize information retention and it generally results
in poor energy efficiency. A more effective spike encoding technique is Temporal coding
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Figure 1.3: Conversion of information to the spike domain. @ Delta Modulator, simplified
circuital implementation. (]ED Output Gain profile as a function of the input audio frequency,
from all the 64 filters in the DAS’s filter back. From [40].

[39], where intensity in the analog domain is translated into latency in eliciting a spike.
The stronger the analog signal, the earlier the spike is elicited. This technique is efficient
to encode static images into spikes, but less adapted for temporal signals.

The most popular circuit to convert information from the analog to the spike domain is
the Delta Modulator. Delta Modulation is a well known analog-to-digital and digital-to-
analog technique to translate analog signal by means of pulses. In the delta modulator,
an input signal is processed by analysing its derivative and producing spikes only when
the signal changes over time. For this reason, the technique is event-based. A simplified
realization of the delta modulator circuit is shown in Fig. An input signal is presented
at Vj, and passes through C; to remove the DC component. An integrator circuit sums the
increments of the input signal V,, on the capacitor C5. When these increments overcome
either the positive or negative thresholds Vi, vp, Vinr pw, the two output comparators emit
an output spike at the UP or DW outputs. Figure sums up the working principles of
the circuit. Vj, is represented in blue and the signal reconstructed from the spikes emitted
by the delta modulator circuit, is in red. Green and Violet spikes are the output of the
delta modulator circuit.

This circuit, in different forms and with different features is the basic building block in
common with most neuromorphic sensors.
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Figure 1.4: Neuromorphic sensors. (Vision) Event-based camera are commercially available
and feature unmatched dynamic range, low latency and low power consumption. The inset
on the left shows a DAVIS128, one of the first prototypes of event-based camera. On the
right, a waving hand is recorded on a DAVIS128. Images from inivation.com. (Audition)
Neuromorphic audition is inspired by the biological cochlea, differentiating acoustic stimuli
based on their frequencies. A model of a stereo Dynamic Audio Sensor (DAS) is shown,
taken from inivation.com. The response of the sensor is a train of spikes for each of the
channel it features, where each channel encodes the intensity of a particular frequency of
the input audio. In the inset on the right, the word "four" was spelled. (Touch) Tactile
sensors can utilize different technologies, among which capacitive and optical readout.
These sensor mimic the biological response of sensory cells in the skin, eliciting a train of
spike under stimulation. Figure from . (Olfaction) The concept of electronic nose is
conjugated in the neuromorphic domain with an array of gas sensors producing trains of
spike in response to the presence of a particular molecule. The gas-sensor in the inset shows
a Metal-oxide gas sensor from Alpha MOS. The figure on the right shows the response of
different receptor to different olfactory stimuli, observed in the Drosophila \|

Neurorphic senses

While in the first phase of neuromorphic engineering research has focused around models of
the retina and cochlea, neuromorphic sensing is nowadays divided in 4 blocks, covering the
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main biological senses: Vision, Audition, Touch and Olfaction. Figure shows the most
prominent examples of neuromorphic sensors. Neuromorphic vision is mainly performed
by event-based cameras (DVS128 |22] in the inset) producing spikes at each pixel when
the luminosity changes over time. Audition generally exploits conventional microphones,
whose output is translated to the spike domain and later processed. The figures shows a
dynamic-audition-sensor [43] and the spiking output it produces when listening the word
"three". Touch is a less investigated sense in neuromorphic. The figure shows a capacitive
touch sensor built over a prosthetic finger [41]. To follow the behavior of biological tactile
receptors, the sensor can be calibrated to respond at the onset of a stimulus and to decay
its activation over time. Gas receptors are common sensors commercially available in the
market. In the last years they received interests from the neuromorphic community and
different solutions have been developed to convert olfactory stimuli to the spike domain.
As shown in the figure, certain population of neurons can respond maximally to a specific
input pattern registered by the gas sensor and poorly to others, thus helping in classifying
olfactory stimuli.

Neuromorphic is extremely relevant for embodied intelligence and robotics |44} 45| too.
To endow robots with artificial intelligence is perhaps one of the leading themes of the
next phase of research in neuromorphic. In this sense, neuromorphic intelligence is more
explainable and trustworthy than its artificial counterpart. Neuromorphic sensing, with it
low-power and low-latency nature is a perfect fit in power- and latency-constrained use
cases such as robotics.

Vision Vision is certainly the most developed field in neuromorphic engineering. From
the early implementation of the silicon retina [18] in 1991, to the pioneer dynamic-vision-
sensor [46, [22], event-based cameras are nowadays commercially available. Compared to a
conventional camera, neuromorphic vision offers unmatched dynamic range (up to 120 dB),
low latency (in the order of 10 us) and low power consumption (down to the 10 mW range).
The general operation of even-based camera is that of a conventional photo-receptor paired
with a Delta-Modulator circuit. The logarithm of the produced photocurrent in a pixel is
buffered and converted to the spike domain. This means that when the scene presents
no changes in luminosity over time, the camera produces no output, according to the
event-based nature of the pixels. Neuromorphic cameras communicate the stream of output
events sensed by the pixels making use, in most cases, of a AER protocol. This allows
them to be paired to a neuromorphic processor. State-of-the-art event based cameras are
approaching the High-definition resolution and are implemented using advanced technology
nodes. Table shows the most advanced versions of event-based cameras, produced by
IniVation, Prophesee, Samsung and CelePixel.

Audition Research in neuromorphic audition began when Lyon and Mead developed
an auditory model inspired by the human cochlea [19]. Unlike a conventional signal
processing model for audio, sampling sound at a certain rate, a silicon cochlea is formed by
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Supplier iniVation  Prophesee Samsung CelePixel
model DAVIS346 Gen 4 CD[#7] DVS-Gen3[d8] CeleX-IV[49]
year 2017 2020 2020 2019 B
resolution 346 x 260 | 1280 x 720 1280 x 960 1280 x 800
dynamic range (dB) 120 >124 100 120
power consumption (mW) | 50-175 32-84 130 400
chip size (mm?2) 8x6 6.22x3.5 8.4x7.6 5.3x5.3
CMOS technology (nm) 180 90 65/28 65

Table 1.2: Comparison of commercially available event-based cameras.

a cascade of filters selective to a certain frequency band. The filters encode the intensity of
input frequencies which are later transformed to the spike domain with a delta modulator
circuit, just like what an inner-hair cell would do in a biological cochlea. By tackling
the issue of mismatch and refining the design, modern cochlea implementation reach
> 60 dB of dynamic range, feature high quality factor overlapping filters and consume a
fraction of a milli-Watt. The latest silicon cochlea communicate the output spikes with the
AER protocol, ensuring a perfect match with neuromorphic processors. Combining the
silicon cochlea circuit with Micro-Electric-Mechanical-System (MEMS) microphone, the
EARAER |[40] is one of the most advanced audition sensors. It features 32 output channels,
biologically inspired filter cells, and ensure sparse output activation with Integrate-and-Fire
neurons to translate the channel activation into spike. The sensor has been tested in
a localization task [50]. Further improvements of this sensor led to the development of
EARAER?2 [43], 51|, which comes with 64 output channel, improved tunability of the filter
bank, greater tolerance to temperature changes and improved dynamic range.

Touch The electronic skin is an innovative concept for artificial tactile sensors with
applications in robotics [52| and prosthetics [41]. Leveraging state-of-the-art technology,
the electronic skin aims at reproducing the precision and dynamic range of human touch.
Biology guides the advancements in artificial touch. For example, tactile receptors are
not uniformly distributed across the skin, so do in the latest electronic versions [53].
Humans possess different types of tactile receptors, each with different sizes and shapes,
responding to different stimuli: it would be desirable that electronic skin integrates different
technologies to enhance touch precision and dynamic range. The most commonly adopted
sensing modes are capacitive, resistive, piezoelectric [54|, optical and magnetic. Current
sensors mainly measure pressure, altough it would be desirable to also capture stress, shear
and vibrations. A key property to perform touch sensing in robots and prosthesis is that the
substrate onto which the sensors are distributed have to be flexible and resistant to stress
and pressure, as mentioned in [55]. Exploiting the available technology, neuromorphic
touch sensors could improve robots performance in object sensing and manipulation, as
well as enhancing the sense of touch in humans.
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Olfaction The development of electronic sensors for measuring odors began in the 1960s
[56] and the concept of electronic nose was introduced in the the 1980s [57]. From that
point on, research focused on portability and low power solution for artificial olfaction. The
most popular sensors in electronic noses are Metal-Oxide-Sensors (MOX) [58], Conductive
Polymers, Quartz-Crystal Mircobalance (QCM) and Acoustic-Wave Sensors. Lately,
optical sensors have been proven as compact and low-latency solutions for odor sensing
[59]. Neuromorphic engineering has contributed to artificial olfaction mainly from the
algorithm side. A conventional modern electronic nose features arrays of gas sensors with
low selectivity and extracts a signature from this high dimensional measurement with
machine learning algorithms. While most electronic nose implementations do not include
a stage of conversion of information to the spike domain, biologically inspired models of
odor classification and learning rules have been proposed [60].

1.2 Analog computing and memristors

Computers are programmable machines that can perform logic or arithmetic operations.
Despite only being popularized in the second half of the twentieth century, early example
of computers have been built thousands of years ago. They were very different from what
computers look like now, and mainly exploited mechanical principles. Examples of pre-
historic computers are the abacus used to ease the counting, the Antikythera mechanism
believed to be the first analog computer and capable to compute the astronomical position
of stars, the tide-prediction machine built in the late nineteenth century by William
Thomson. One of the first modern electronical computers was built during the second
world war: ENIAC [61] (electronic numerical integrator and computer), acted as a catalyst
in developing electronic systems by convincing many about the potential of numerical
computation. At the same time, in 1946, the transistor was invented: this electronic device
transformed the computing industry, driving the development of digital computers from
the 1960s up to these days. The improvements of the performance and size of transistors
- called transistor scaling - allowed computer to pack more and more components while
consuming less power. Transistor scaling was studied by Gordon Moore, which stated the
famous "Moore’s law" 62|, claiming that - among other predictions about the performance
of computers - the number of transistors on a microchip doubles every two years. The
rule proved true throughout the whole development of Very-large-scale-integrated (VLSI)
technology, and is only lately showing a departure from the prediction. Technology
has reached an impressive rate of innovation, having evolved multiple times to maintain
momentum in improving performance. From the early planar bipolar technology, transistors
have then evolved to the complementary-metal-oxide-semiconductor (CMOS) technology,
taking the shape of fully-depleted-silicon-on-insulator (FD-SOI), FinFETs and lately Gate-
All-Around [63] transistors. Transistor size has shrunk considerably and now reached
critical dimensions. While consumer electronics runs 7 and 5 nm processes [64], IBM
claimed a new technological node called 2 nm in 2021 [65]. Despite the impressive scaling
of transistor size, technology is struggling to keep up with the Moore’s Law, particularly
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concerning the advancement in frequency of operation and power consumption [66]. A
recent article from the IEDM conference highlights the limitation in Static-Random-
Access-Memories size and performance improvements in the latest technological nodes
[67].

Von-Neumann Non Von-Neumann
architecture architecture
CPU CPU
Input f—I» Control Unit --PIOutput Input =3 Control Unit --PIOutput
- 2 - A - A
Arithmetic Unit ALU + 3 | ALU +
Memory Memory
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Figure 1.5: Central-Processing-Unit Von Neumann simplified architecture with its memory
bottleneck. @ Simplified schematics of the architecture of a CPU. Inputs interact with
a control unit which activates the arithmetic and logical unit to perform the required
computation. To perform such computation, memory data have to be fetched from the
memory unit, constituting the memory Von Neumann bottleneck. (]E[) By embedding
together the memory and arithmetic, the Von Neumann bottleneck is overcome. In general,
in Non-Von-Neumann architecture, computation and memory is co-located and distributed.
This architecture is often referred to as In-Memory-Computing (IMC).

Computer performances are getting harder and harder to improve and some say they
will eventually saturate with the current technology. On top of this technological limita-
tion, conventional digital processors have an architectural constraint: the Von-Neumann
bottleneck. Most of the computers in the market follow the Von-Neumann architecture
(Fig. , thus fetching data from memory blocks which is then used for computation.
This data movement is the main source of energy consumption in modern processors |68,
69]. This limitation is particularly severe when running deep learning models, constituted
by millions or even billions of parameters needed to be fetched from memory. To overcome
this limitation, a new class of architectures has been proposed, under the umbrella-term
Non-Von-Neumann architectures. The general scheme of such design distributes both
computation (Arithmetic-Logic-Units, ALU) and memory and integrates them together
(Fig. . The result is that such inherently parallel processing scheme does not impose
data movement in favour of a more distributed and local computation. When computation
and memory are truly co-located, one refers to such architecture as In-Memory-Computing
(IMC).

Innovating forms of computation not only concern architectural paradigm, but also
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re-purpose the role of transistor. Analog computing exploits the highly non-linear sub-
threshold region of transistor and makes full use of the analog representation of values,
rather than their digitized versions in conventional computers. Analog electronic circuits
naturally implement complex dynamical systems evolving with according to differential
equations, requiring high computational power and precision when computed in the digital
domain. In neuromorphic computing, the properties of analog circuits are leveraged to
reproduce the complex dynamics of neural systems.

This context of slowed down technological scaling and the relevance of the Von Neumann
bottleneck for artificial intelligence applications form the perfect conditions for a paradigm
shift in computation. Neuromorphic is a possible solution to improve in particular areas
in computation, such as artificial intelligence at the edge. However, neuromorphic and
non-Von-Neumann architectures are not to replace conventional computers for general
purpose use-cases. They are meant to be an improvement in the specific cases where data
movement causes severe performance limitations.

Neuromorphic computing requires new technological and architectural substrate that
exploit the parallel and non-linear nature of biological computation. Analog In-Memory
Computing is a promising candidate to become the paradigm of choice for the next gener-
ation of neuromorphic processors. This computational paradigm joins the sub-threshold
circuits mimicking neural elements together with novel devices with exotic properties.

1.2.1 Neuromorphic sub-threshold circuits

The shift of paradigm in computation does not only involve an architectural change, but
also a technological one. Since transistor scaling has slowed down, the natural consequence
is to look for more performance out of the single transistor, going beyond the digital regime.
This is also what Carver Mead advocated when founding neuromorphic computing. By
making use of the sub-threshold regime, the high non-linearity of the transistor can be
exploited for computation. Following this principle, Mead and his team developed the
silicon neuron and synapse [20] in 1991. Over the course of the following two decades,
several circuit implementations of neurons and synapses have been proposed. Today,
the most popular sub-threshold neuromorphic circuits are based on the differential-pair-
integrator (DPI). The DPI is a two-transistor circuit that scales an input current and
drives it towards a capacitor, where it is integrated. This circuit has become popular as
it constitutes the sweet-spot between complexity of circuit and fidelity with respect to a
biological neuron.

DPI Neuron and Synapse The DPI neuron [23] is perhaps the most relevant silicon
neuron circuit and it implements a generalized Leaky-Integrate-and-Fire model. In its
most complete form, the DPI neuron is composed of 4 blocks which implement various
functions: Integrating the input current from synapses, Generating Spikes Event with
aid by a positive feedback, Resetting the membrane voltage to the resting potential after
a spike and Adaptation to the past activity. With reference to Fig[I.6a] this blocks are
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respectively colored in Yellow, Red, Blue and Green. Simpler versions of the circuit might
only feature the Yellow and Red blocks.
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Figure 1.6: Neuromorphic sub-threshold CMOS circuits. @) Differential pair integrator
neuron circuit, from [23|. The circuit is composed of 4 main blocks, highlighted with
different colors. The yellow block the is the DPI, taking the input current [;,, and charging
it over the capacitor. The red block generates an output when the threshold voltage is
overcome. The refractory period is generated by the blue block and adaptation by the
green one. (b)) Differential Pair Integrator Synapse circuit, from [70]. An input voltage
pulse is scaled by My and integrated on Cjy,. The circuit outputs a synaptic current Iy,.

From a qualitative point of view, the behavior of the circuit can be described as follows,
as from [23|. Input currents I, are modulated by the differential-pair circuit (Yellow),
as a function of the bias voltage V.. The modulated input charges the membrane
voltage capacitor C,,.,,, Which is in parallel to the leakage transistor M Ls. This transistor
determines the time-constant of the neuron, by controlling its gate with the bias Vj;. As
Vimem approaches the switching voltage of the inverting amplifier Mgy — Mas (Output
section, Red), the feedback current I, starts to flow through M5 — M 4g, increasing Vi,em
more sharply. The output spike triggers the refractory period circuit (Blue), in which Mgg
maintains V., to ground, as long as the voltage across the capacitor Cg is high. During
the spike emission period (occurring when terminal REQ exceeds the voltage threshold),
a current with amplitude set by Vi, is sourced into the adaptation section (Green) of
the DPI neuron, with a gain set by the gate bias voltage Vipyanp, and a time constant
set by Vikanp. The adaptation current I, increases with every spike, following the same
first-order dynamics of I,,.,,. Following the approach of the Translinear Principle, one can
extract the equation regulating the whole circuit in its sub-threshold dynamics. Before
the positive feedback is activated, generating the spikes, the circuit behaves according to
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the following equation.
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In this equation, the non linear term f(Iyem) = %(Imem + I;,) depends on both the

membrane current and the positive feedback current. The two time-constants 7, 7, and
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The DPI synapse (Fig. follows similar dynamics, as it shares the same differential-
pair-integrator input circuit. Inputs arrive in the form of voltage pulses at the transistor
M,.. They are weighted by the transistor My, biased with a voltage representing the
synaptic weight (V). Voltage bias Vip,, modulates the current generated by My, and M.,
which is then integrated onto Cj,,,. The transistor M, sets the time constant of the circuit,
by the leakage current I.. The output is the first order filtered and weighted response of

the input pulse and it converted to the current domain by means of the transistor Ms,,.

Such circuits are the basis of most of the works involving sub-threshold neuromorphic
circuits utilized in this thesis. They promise to lower the cost of computation in biologically
inspired machine learning, in the context of spiking neural networks.

1.2.2 Memristors for Neuromorphic computing

While sub-threshold circuits constitute non-linear and dynamical computational elements,
memristor can play the major role of memory element in In-Memory-Computing, going
beyond Von Neumann architectures. Memristors - theoretically conceived by Chua in 1971
[71] - are electronic devices modulating charge transfer across them, whose conductivity
depends on its past states. Memristors have been experimentally demonstrated in 2008
by HP [72] and have ever since been fabricated utilizing a number of different designs,
material, exploiting several physical effects. For beyond Von Neumann architectures,
memristors are particularly interesting as memory elements that can be integrated with
logical units. Material scientists have developed different memristors that can be integrated
with CMOS technology and enable analog In-Memory-Computing architectures |73} 74].
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A particular interesting class of memristor are Non-Volatile-Memories (NVM). These are
two or three terminal devices with programmable conductance, retaining information in
their conductive state without the need of stand-by power consumption. By contrast, the
static-random-access-memories (SRAMs) and dynamic-random-access-memories (DRAMs)
require a voltage to maintain information stored in the form of a digital bit. Instead, Flash
Memory - based on floating gate transistor technology - is non-volatile, but it requires
high voltage for programming and presents limited endurance. Innovative Non-Volatile-
Memories offer more compact, CMOS compatible and better performing memory devices
that could replace conventional memory units.

Matrix-Vector Multiplication
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Figure 1.7: In-Memory-Computing with memristive crossbars. The crossbar efficiently
performs the Matrix-Vector-Multiplication (left), ubiquitous in neural networks. The
operation involves an input (X) that is encoded as an array of voltages (V) set as the
potential at the rows of the crossbar. The matrix term (W) is translated into the
conductance (G) of the memristors in the crossbar array. The output (Y) results from the
current at the columns of the crossbar (I).

NVMs for In-Memory-Computing are particularly suited for neural network implementa-
tions. In artificial intelligence, the most common operation is multiply-and-accumulate
(MAC), involved in matrix-vector-multiplication (MVM). In conventional Von-Neumann
machines; this operation requires fetching the inputs (input vector and matrix elements)
from memory, performing the multiplication and partial summations. Exploiting the
benefits of In-Memory-Computing with NVMs this operation is conveniently carried out by
the Ohm’s law on a crossbar of memristive devices. Summation is replaced by the union of
two currents converging at the same wire (15, = I; + I;), multiplication is performed by
applying a voltage to a NVM with a certain conductance G: I,,,;, = V x G. The crossbar
architecture is depicted in Fig. (1.7l The input vector (X) is input to the crossbar’s rows as
an array of voltages (V). The matrix (W) is encoded by the conductance of the devices
(G). The output of the MVM operation (Y) is the resulting current at the columns of the
crossbar (I). Performing this operation in-memory results in much higher energy efficiency
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when running machine learning models.

Non-Volatile-Memory types From the inception of memristors in 2008 |72|, mate-
rial scientists have developed numerous devices exploiting different materials and phys-
ical effects. The four main classes of non-volatile-memories are depicted in Fig.
resistive-random-access-memories (RRAMs), ferroelectric-random-access-memories (FeR-
AMs), phase-change-materials memories (PCMs), and magnetic-random-access-memories.

RRAM devices store information in a conductive filament that is formed across an
insulating material. The filament can be controlled with SET and RESET operations,
equivalent of WRITE and ERASE operations in conventional digital memory cells. One
of the most common process integration stack to build RRAMS is T%/TiN/H fOy/T1i, in
which a hafnium-dioxide insulating layer is sandwiched between 2 titanium electrodes.
Thanks to its ease of integration, RRAMs offers low production cost compared to other
NVMs. RRAMs also have scaled down in size down to 10 nm in lateral dimension |76,
making them interesting for advanced technological nodes as well. The nanoscopic scale of
the conductive filament and its imperfect stability make RRAMs conductance imprecise
both when the filament is formed and when its disrupted.

FeRAM |[77] is a recently developed class of NVMs exploiting the ferroelectric effect
to store information. SET and RESET operations change the state of the device as
the ferroelectric domain in the ferroelectric material sandwiched between two electrodes.
Similarly to DRAMs, reading FeRAM device is a disruptive process, meaning that the
information contained by the device is removed. FeRAM offer much higher data retention
(10 years at 85 K) and read /write endurance (up to 10*°cycles) than Flash device |78]. The
most common material used to fabricated FeRAM is lead-zirconate (PZT), even though
recently Si-doped H fO, has also been demonstrated exhibiting ferroelectric properties.
The advantages of FeERAMs are their low-energy, high endurance, fast write operation
and its resistance to magnetic fields. Notably, ferroelectric materials have also been used
as insulators in transistors, forming the ferroelectric-field-effect-transistor (FeFET) [79]
and the ferroelectric-tunnel-junction (FTJ) [80] device. The FeFET is a three terminal
device with tunable threshold voltage, depending on the orientation of the ferroelectric
domains in the insulator. The FTJ is similar to a FeERAM in construction, but it features
an additional non-ferroelectric insulator layer which allows current to pass exploiting the
tunneling phenomena only. This yields low conductance and thus extremely low current
(and power) when reading the device state.

PCM devices are based on phase-change materials. The most commonly used material
in PCMs is the GST (GeySbyTes). This class of materials, also said chalcogenide, can be
in a crystalline or amorphous phase. These two states of the material are characterized by
different conductivity which result in two main conductive states of the device, representing
the stored information. The crystalline phase is a high conductance state (HCS) and
the amorphous phase corresponds to a low conductance state (LCS). The switching
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Figure 1.8: Non-Volatile-Memories @ [lustration of the stack of the 4 main NVM types:
RRAM, FeRAM, PCM and MRAM. They respectively exploit the Redox, ferroelectric,
Phase Change and Magnetoresistance effects to encode and store information in the device.
(]E[) Comparison of performance between the 4 mentioned NVMs, from .

mechanisms between the two states requires a current flowing between the electrodes
heating the chalcogenide by the Joule phenomena. As a drowback, PCM suffer from a
structural relaxation mechanism that makes the conductance of the devices drift in time
when in the amorphous state [31].

MRAM devices utilize the magnetic domains to store information. The integration
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stack of MRAMSs is rather complex. In its basic configuration, two metal electrodes
sandwich a device composed by multiple layers. An Antiferromagnetic layer (A) at the
bottom supports a pinned ferromagnetic layer which never changes its magnetic domain.
On top of that, an insulating layer is deposited. Finally a second ferromagnetic layer,
called Free Layer (FL), is the one responsible for storing information in the cell. When its
magnetic domain is parallel to the pinned layer, conductance in the device is high due to
the tunneling magneto-restistance phenomenon. When the orientation of the magnetic
domain in the free layer is anti-parallel to the pinned layer, the conductance is low. The
switch in magnetization in MRAM happens via the programming current that induces
a magnetic field, capable of switching the free layer magnetization. This leads to high
current densities during programming which have limited the scalability of MRAM arrays.
A possible solution is the introduction of spin-torque-transfer devices, in which a polarized
current is used to turn the spin of the free layer and thus change its magnetization.

Figure compares the mentioned NVM technologies in 7 main performance metrics.

RRAMs and PCMs are the ones with the highest potential in scaling the dimension of the
bit cells and also provide high number of distinguishable conductance levels. FeRAMs and
MRAMSs lead in switching energy, which is down to 100fJ. All the technologies offer great
endurance (> 10° cycles) and retention at room temperature (> 10 years). This shows the
great potential of Non-volatile-Memories as memory devices.
Thanks to the performance of NVMs, they have been utilized in commercial products.
Intel and Micron released in 2015 the 3DXpoint memory, based on PCM devices, re-
sulting in the Intel Optane [82] product. Panasonic released microcontrollers utilizing
RRAMs as read-only-memories [83]. ST-Microelectronics unveiled a microcontroller for
automotive applications featuring a 16 Mb PCM array in 2018 [84]. Samsung started the
commercialization of MRAMs embedded on a 28 nm FD-SOI node in 2019 [85].

RRAM characterization As described before, RRAM devices are two terminal NVMs
featuring Top Electrode (TE) and Bottom Electrode (BE) sandwiching an insulator
material. Via redox reaction, a filament is formed under high enough electric field across
the insulator. The conductive filament can be disrupted by with an electric field of opposite
polarity. SET and RESET operations are performed to write and erase the device, thus
forming and disrupting the filament. After a SET operation, the information is stored
as a high conductance value and RESET brings the device back to a low conductance
state. RRAMSs exist in many configurations of different materials for both electrodes
and storage structure. The electrodes can adopt metals such as Cu, Ag, Pt and Au |86,
carbon nanotubes [87] and nitrides such as TiN [88]. The insulator is commonly built as
a binary oxide containing HfOx [89], MgOx [90], SiOx [91] or AlOx [92]. At CEA-Leti,
RRAMs are mainly based on H fO, oxides, with thickness between 5 and 20 nm. This
type of stack reports an ON/OFF ratio of up to 10°, nano-second scale read operation and
endurance cycles from 10° to 10° [93]. This technology can achieve up to 10 years of data
retention at 125°C'. RRAM devices are paired with an access transistor, which allows to
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individually select the cell for programming and reading. Paired to an access transistor,
RRAMs form the 1T1R device. Figure shows a scanning-electrons-microscope figure
of a 1T1R device fabricated at CEA Leti in the Back-End-of-Line (BEOL) of a 130 nm
CMOS process. With this type of technology, devices are fabricated with crystalline H fO,
insulating layer. At this stage, the insulator presents low defects density and no conductive
filament, thus being in the so-called Pristine State. In order to form a conductive filament
a first one-off programming operation has to be performed: the Forming operation. When
forming is successful, a filament has been generated and the RRAM enter its normal
programming loop where SETs and RESETs are alternated to write and erase the memory
cell (Fig. [1.9b). High and low conductive states (HCS and LCS) are characterized by
variability, inherent to the intrinsic random atomic arrangement of the conductive filament.
The result is that LCS and HCS measured from 1024 RRAM devices programmed all with
the same conditions present a distribution of conductance values (Fig. . Variability
is both at the device level and at the population level. In the first case, one refers to
the cycle-to-cycle (C2C) variability. The same device is programmed alternating SETs
and RESETSs in the same conditions while the device conductance is recorded. Due to
the stochasticity of the filament, distributions similar to those in Fig. appear. An
analogous affect is obtained when programming a population of devices with the same
programming condition. In that case one refers to device-to-device (D2D) variability. To
overcome variability, particular programming techniques have been developed. Enhanced
programming strategies are particularly useful to extract more bits of information out of
the RRAM cell. While the LCS is weakly modifiable, the HCS state can be controlled
with the current imposed during the SET operation, the compliance current. It has been
shown in [94] that RRAMSs can reach up to 32 distinguishable levels. Exploiting the whole
conductance range is particularly desirable for artificial intelligence applications, in which
RRAMs are involved in neural network computations. The more distinguishable levels
and the more precision in conductance, the higher the accuracy of the model. Later in this
thesis, the effect of variability of RRAMs in a neural network will be analysed in details.

1.2.3 In-memory-computing accelerators

Recent advancement in non-volatile-memory technologies for In-Memory-Computing have
pushed different research groups and industry divisions to implement their IMC Edge Al
accelerator. The common ground in these implementation is the crossbar architecture,
where NVMs are organized in a array performing the matrix-vector-multiplication. A
team in CEA-Leti built Spirit [95], a IMC RRAM-based accelerator implementing a
spiking-neural-network. This chip features Integrate-and-Fire neurons and classifies the
MNIST dataset with 88% accuracy. Thanks to the non-volatility and low power nature
of SNNs, the chip - built on a 130 nm process - consumes 180 pJ per synaptic operation.
However, the team estimates that the energy per hop can be lowered at 17 pJ with a more
advanced technological node (28 nm). RRAMs are at the heart of another impressive
Edge Al accelerator from the Tsinghua University and University of Massachusetts [94].



CHAPTER 1. INTRODUCTION 33

BLT 100F r=
Pristine State . 75} HCP

RRAM =,

lFORMING ~ 5o}
L

Selector SET<HCS) RESET © 25

O-él 1 1 1 1 1
WL e— LCS 0 25 50 75 100125150

Conductance [uS]
(b) (c)

SL

Figure 1.9: Non-Volatile-Memories @) Scanning Electron Microscopy image of a RRAM
device built in the Back-End-of-Line of a 130 nm CMOS process. (]ED 1TR configuration
of the RRAM device, with the NVM device connecting to the bit line and the access
transistor (selector) connected to the word line and source line. The device is initially in
the Pristine state, and can be initialized or "formed", forming the conductive filament.
High-Conductive-State is when the filament is formed and is obtained through a SET
operation, Low-Conductive-State is when the filament is disrupted and is obtained with
the RESET operation. SET and RESET characteristic yielding the HCS and LCS
distribution. This plot shows the large memory window of RRAMs programmed in a
binary fashion.

The chip is built with a 130 nm process and can emulate both a multi-layer-perceptron
classifying handwritten digits at 98% accuracy or convolutional-neural-networks (CNN)
classifying the CIFAR-10 dataset with 88% accuracy. Thanks to the clever mapping of
the CNN on to a 2,048 element array of RRAM, the chip performs 11 TOP/W (tera-
operations-per-Watt). IBM efforts in PCM-based in-memory computing culminated with
Hermes [96]. The chip is built with 14 nm, one of the most advanced nodes ever integrated
with NVMs, and performs 10.3 TOP/W. Notably, the chip features current-controlled-
oscillators as sense-amplifiers for the PCM devices, taking advantage of their analog
conductance levels. Samsung presented a chip in 2022 [97] featuring MRAMs employed
for IMC. This implementation is innovative as it solves one of the main limitations of
MRAM: their high conductance range, leading to large currents. By performing the MAC
operation by summing the resistances instead of the currents, the chip drastically lowers
the currents along the rows of the devices and thus the power consumption. The chip
reaches a record-breaking 405 TOP/W with a binary-neural-network performing image
classification. NeuRRAM [98] is a prototype chip presented by a research group lead by
Gert Cauwenberghs at the University of California, San Diego. The chip features RRAM
devices and is built with a 130 nm technology node. It is one of the first large-scale
implementation of IMC, involving 48 cores each with a 64 kbit RRAM array. Key to the
performance of the chip is a clever communication protocol between the cores and the
clever layout of neurons and programming circuits for the RRAMs array..
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Spirit [95] [94] Hermes [96] [97] NeuRRAM [98]
Producer CEA Leti Ts¥ngh1.1a IBM Samsung U.CSD/ P1tt§burg/
University Tsinghua University
Year 2019 2020 2021 2022 2022
Memory technology | RRAM RRAM PCM MRAM RRAM
Process node 130nm 130nm 14nm 28nm 130nm
10.3 405
TOP/W / 1 (8bits ops) | (1bit ops) /

Table 1.3: In-Memory-Computing accelerators for Edge Artificial Intelligence applications.
IMC architectures have employed RRAMs, PCMs and MRAMSs, showing competitive
power efficiency, evaluated as Tera-operation per Watt (TOP/W).

1.3 Learning in Neuromorphic Computing

Learning is the process of acquiring understanding, knowledge, skills and behavior. From
the point of view of neuromorphic computing, learning is adapting to new environments
and inputs, understanding and solving new tasks. While in the theory of computer science
many learning algorithms have been developed, here we focus on the ones that are - to
some extent - inspired by the brain or that are relevant for neuromorphic computing.
Back-propagation for gradient descent - the bread and butter of machine and deep learning,
is biologically implausible and computationally intensive: the algorithm requires to store
to memory the activation of each neurons, the weight updates are non-local and, in
most cases, the algorithm involves the parallel computation of multiple input data points
(batches). On top of these hardware-related issues, gradient descent applied to deep neural
network generally requires huge amount of input data to take advantage of the size of
the network. It follows that despite reaching unprecedented and impressive results in
artificial intelligence, the back-propagation algorithm is very inefficient both at utilizing
hardware resources and in generalizing with few data points. It is well known that the
state-of-the-art deep learning models are trained on clusters of graphical-processing-units
and consume enormous amounts of energy to get trained. For example, GPT3 99| - one
of the most powerful language models, with up to 170 B parameters - was trained on a
cluster of V100 NVIDIA GPUs - taking approximately 27 years of GPU time - for an
estimated total cost of >4.6 M dollars. The problem is not only economical: the C'O,
released to train GPT3 is calculated at around 35’000 kg, the equivalent to that emitted
by 5 households in a year [100]. Modern deep learning based on back-propagation requires
more and more computational power, energy and money to keep growing. On top of
that, deep learning models are also a lot less efficient that humans to learn. In computer
vision, the state-of-the-art image classification models have for long been trained on the
Imagenet [101] dataset. 14 millions images are presented to the deep learning models
multiple times, over the course of several training epochs. Despite this data-intensive
method, computer vision models only recently have approached human-level abilities at
classifying the Imagenet dataset [102, |103|, while humans only required a handful of sample
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images to abstract the concepts of - say - cat, dog or car. These issues call for a shift of
paradigm in learning algorithms and the human brain is an example where learning is
extremely efficiently with respect to the the low power budget and to the little data it
receives. Neuromorphic computing aims at joining forces with computational neuroscience
and machine learning to find out more about learning and plasticity in the brain and to
transfer this knowledge into neuromorphic processors.

Following the conventions of machine learning, learning algorithms can be grouped into
3 main categories: unsupervised, supervised and reinforcement learning. Unsupervised
learning algorithms make use of unlabelled input data and group them into clusters.
Supervised learning exploits labeled data to learn the mapping function between the input
and its labels. Reinforcement learning involves an agent in an environment whose aim is
to explore and maximise reward for taking specific actions. The following is a brief review
of the main neuromorphic approaches to the learning dilemma. Neuromorphic learning
mainly aims at satisfying two main issues: the spatial and temporal credit assignment.
The issues deal with how to modify each synapse in a network (from the input layers to
the output) and when to perform such update, still being compatible with on-line learning
requirements (batch size of 1), retain biological plausibility (locality of weight update)
and aware of the computational substrate, i.e. neuromorphic processors. Neuromorphic
reinforcement learning is not explored in this section as not an important part in the rest
of the manuscript.

1.3.1 Unsupervised Learning

The motivation for developing biologically plausible unsupervised learning is the assumption
that most of the stimuli presented to biological systems are non-labelled, yet mammals -
and humans in particular - still exhibit astounding intelligent behaviors. In computational
neuroscience, unsupervised learning was founded by Hebb in 1949 [104]. Following the
so-called hebbian principle "neurons that fire together, wire together", many unsupervised
learning rules have been proposed: spike-timing-dependent-plasticity (STDP), Oja’s
rule, spike-drive synaptic plasticity (SDSP) and others. Most of them are based on the
correlation between two synaptic layers, as stated by the hebbian principle. The hebbian
principle has been observed in in-vitro experiments [105] and is non-local. For this reason,
hebbian learning is compatible with neuromorphic processors and does not require high
computational loads. STDP is the most popular form of unsupervised learning and it is
based on the precise timing of the post-synaptic neuron respect to its pre-synaptic neuron.
If the post-synaptic neuron’s activity is positively correlated with its afferent, the weight
between the two is to be incremented. Otherwise, the weight is depressed. In its basic
formulation, the weight change exponentially decreases with the spike time difference
between pre- and post-neuron. The formula expressing such learning rule is then:

(1.3)

Auw;(s) Ajexpls/Ty] ifs<0
Wi\S) =
! A_exp|—s/T_] ifs>0
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where w;; is the synaptic weight between the pre (j) and post (i) neurons. 74 are the time
constant of the positive and negative correlation between spike timing.
While STDP is still the main form of unsupervised learning, it suffers from some well
known issues such as weight-saturation and stability. Oja’s rule was introduced to solve
these problems, adding little complexity tot STDP. The formula of the Oja’s rule can be
expressed as:

Awij = uai(aj — aiwij) (14)

where q; ; is the activity or firing rate of the pre and post neuron respectively. Despite its
superiority respect to STDP, the added complexity made the introduction of the Oja’s
rule limited in neuromorphic computing.

Spike-Dependent Synaptic Plasticity (SDSP) is a modification of the STDP learning rule,
where at the post-synaptic spike, a weight update is computed based on the activity of
the pre-synaptic neuron. Membrane potential and spike frequency are common proxies
of the activity of the pre-synaptic neuron in SNNs. A two threshold system determines
whether to perform a positive or negative weight update, or whether not to perform one.
The learning rule can be summarized in the following equation:

—p ifa; <O_
0 itO_ <a; <Oy

where q; is the activation of the pre-synaptic neuron, ©+ the positive and negative threshold
of activation to enable the learning rule. SDSP, thanks to its hardware friendly learning
rule, has been widely implemented in neuromorphic hardware [106] [107].

Hebbian learning rules have been dominant in the first phase of neuromorphic learning
but have lately decreased in popularity. In fact, hebbian learning is not compatible with
deep networks, and especially fails in the spatial credit assignment problem. For this
reason, it is hopeless to train a deep network - either a spiking or artificial one - with
unsupervised learning solely. After all, despite in small amounts, humans receive labelled
data in the form of textbooks, spoken lessons and annotated figures from a young age. For
neuromorphic learning to be successful, unsupervised plasticity has to be supported by
supervised learning.

1.3.2 Supervised Learning

The domain in learning that saw the greater development in neuromorphic computing is
certainly supervised learning. Gradient descent based algorithms are the ones achieving the
best performance and their popularization over the course of last decade, the deep learning
era, involved neuromorphic computing as well. However, neuromorphic networks, SNNs,
present a problem: they are non-differentiable models. The activation function of neuron
is a Heaviside function, which has 0 derivative except in the threshold of the activation,
where the derivative is not defined. Such activation function blocks the gradients and the
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disables the back-propagation algorithm. To work around the problem, different techniques
have been proposed: [108] first train an equivalent differentiable ANN and then convert
it to SNN; [109] worked on the exact spike timing and derived an analytical model for
leaky-integrate-and-fire neurons so to compute a gradient based on the membrane potential;
[110] also developed a differentiable model based on the membrane voltage of neurons
allowing an approximated gradient to flow. All these technique had severe shortcomings:
[108] was limited to work in the rate coding regime, eliminating the temporal sparsity
of SNNs; [109] method only allowed neurons to spike once during training and imposed
high computational complexity to back-propagate the gradient; [110] also required heavy
computational loads to perform the back-propagation. It wasn’t until 2019 that SNNs
found a good implementation of the back-propagation algorithm.

Surrogate Gradient technique With the Surrogate Gradient technique [111], spiking
neural network could finally take on deep learning models. The simple idea enabling
back-propagation in SNNs is to replace the zero-derivative activation function of neurons
with a surrogate function, only used in the back-ward pass. This function allows a ficti-
tious gradient to flow across the layers of the SNNs, despite the zero-derivative activation
function of neurons. It has been thoroughly demonstrated that this technique can reach
performance at the same level of artificial neural networks [112]. More on this technique
will be described in Chapter 2. While this technique is certainly not biologically plausible -
as it is an extension of the back-propagation algorithm - it has been fundamental in the de-
velopment of neuromorphic computing in the last 3 years. Thanks to this learning scheme,
neuromorphic processors have reached unprecedented performance and have been proven
competitive to Edge-Al accelerators [113]. However, the surrogate gradient technique is
not the end-goal of neuromorphic learning and it presents several shortcomings: first, it
i not biologically plausible; second, it requires high computational loads; third, just like
conventional gradient descent techniques, it requires a lot of data and a lot of iteration to
learn effectively.

Avoiding Back-Propagation To overcome the limitations mentioned above, computa-
tional neuro-scientists and researches in computer science have come up with alternative
algorithms that avoid the back-propagation of gradients in neural network, still performing
gradient descent. An early version of such techniques is Real Time Recurrent Learning, or
RTRL |114] which is an algorithm computing the gradients across a network during the
forward pass. The algorithm has only been rarely used as it requires O(n?) computational
complexity, where n is the number of neurons. Other methods are three-factor-learning-
rules. They are called that way as they involve a pre-synaptic, a post-synaptic and a
global term in the weight update. An particular version of such algorithms has gained
tremendous popularity in the neuromorphic community: e-prop [115]. E-prop is a bio-
logically plausible learning rule compatible with on-line learning and with neuromorphic
processors. With a computational complexity of O(n?), e-prop makes use of eligibility
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traces, as synaptic storage units of the activity of neurons. Making use of the eligibility
trace, post-synaptic activation and a global error signal, e-prop has been demonstrated to
approximate the back-propagation algorithm, thus yielding great performance. E-prop is
also compatible with reinforcement learning. Different solutions have been proposed to im-
plement E-prop with neuromorphic hardware [35]. The limitation of e-prop is mainly that
it is not optimized for deep networks. While technically applicable to any architecture, it
introduces more and more approximations with increasing number of layers, thus lowering
its performance compared to back-propagation.

In the family of energy-based algorithms, Equilibrium propagation [116] or Eq-prop is an
emerging learning rule in neuromorphic computing. Eqg-prop is based on a re-formalization
of neural networks into dynamical systems where weights are bi-directional. The learning
scheme is divided in two phases: forward and nudging. In the forward pass, the network
converges into an equilibrium state. In the nudging phase, the correct label nudges the
corresponding output neuron by a certain amount, causing a perturbation in the network.
The network finds another equilibrium state. Based on the two equilibria, the weights are
updated with local information only. This learning rule approximates back-propagation
and has been demonstrated on complex datasets [117} [118§].

Very recently, Hinton - one of the godfathers of deep learning - proposed the Forward-
Forward algorithm [119]. The algorithm avoids back-propagation and proposes two
separate forward passes. In the first pass, the algorithm makes use of the input data and
the weight updates aim at improving the "goodness" of any hidden layer. The second
forward pass is based on "negative" input data and aims at decreasing the goodness of
the hidden layers. The algorithm is in its first steps of evolution and has already been
demonstrated to efficiently solve modestly challenging computer vision tasks. Hinton
claims that the algorithm is particularly suited for a novel class of computers in which
software and hardware are co-designed.

Meta-Learning and Meta-Plasticity Still in the category of supervised learning,
meta-learning focuses on exploiting meta-data to improve upon conventional learning
procedures. Well established meta-learning procedures are MAML [120] and Reptile [121].
They are based on the idea to use meta-tasks to meta-train a neural network. After
the meta-training, the network is in a state in the parameter space where it is easier to
learn new tasks. This endows the network with few-shot learning abilities, closer to that
of humans, thus enhancing the efficiency of learning compared to standard supervised
methods. The method also has important hardware positive implications as it promises to
lower the precision requirements for the weight updates when learning new tasks [111].
Memristive based neural network might benefit from such learning scheme.

Another form of enhanced learning is meta-plasticity. Meta-plasticity involves different
learning rules with the aim of including the history of synaptic efficacy in the weight
update, so to improve memory formation in neural networks. A popular implementation
of this concept is reported in [122]|, where the authors implemented meta-plasticity in
binarized neural network to mitigate the issue of catastrophic forgetting. The authors
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claim that with a bio-inspired meta-plastic learning rule, a neural network can learn
multiple tasks incrementally, without forgetting the previously learned ones.

Self-Supervised Learning Self-supervised learning is the paradigm that boosted deep
learning in its latest phase of development. Taking supervised learning a step forward,
self-supervised learning does not require labelled data, it rather exploits the features in
unlabelled data to acquire knowledge. This enabled to scale up the size of datasets and
not require human supervision for producing labels. In self-supervised learning, after a
first phase of pre-training on unlabelled data, the model is generally fine-tuned over a
small set of labelled data. In deep learning, self supervised learning has been used in
state-of-the-art vision and language models. Only recently, such learning paradigm has
been explored for neuromorphic models [123|. This paradigm is potentially fundamental
to enable a new level of performance in neuromorphic model. Neuromorphic datasets are
scarce and labelled data even rarer. Self-supervised learning will hopefully promote the
creation of large scale unlabelled neuromorphic datasets, which are more easily generated,
and will boost the performance of neuromorphic computing.

1.4 Scope of this thesis

The scope of the thesis project is to contribute to the field of neuromorphic engineering
proposing novel systems integrating computing and sensing for applications in Edge Al
The common ground to the projects explored throughout the thesis is the exploitation
of the Non-Volatile-Memories developed by CEA Leti. The focus is on RRAM devices
due to their characteristics and process maturity. Resistive memories are employed in
event-driven in-memory computing architectures, taking advantage of the non-volatility
of the devices and the temporal sparsity of spiking-neural-networks. Interest towards
biological solutions to perform efficient computation guides most of the projects in this
thesis, with the idea that neuromorphic systems are a potentially disruptive technology.
Given that neuromorphic is a highly multi-disciplinary field, this thesis spans over different
topics and investigates aspects that belong to integrated circuit design, device characteri-
zation, and novel algorithms development. Projects in this thesis created new interactions
with experts in material science, to follow the latest developments in integrated devices,
biologists, from which to gain knowledge about biological systems, electronic designers, to
help transform the acquired knowledge into electronic circuits.

The thesis is organized in four chapters addressing independent projects. However, the
projects share the same intention to develop biologically inspired electronic systems cen-
tered around RRAMs. Altogether, they provide a proposition for the next generation
of Edge AI systems, shifting computational paradigm from digital Von-Neumann archi-
tectures to analog In-Memory computing. The benefits but also the limitations of the
proposed systems are analysed and addressed, strengthening the propositions.

The first chapter is dedicated to the development of a RRAM-based spiking neural network
circuit. Exploiting the latest advancements in learning algorithms, the problematic of
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variability in RRAMs and analog circuits is mitigated. A RRAM array is used as the
basis for a memristive SNN and the concept of a modular design is proposed to increase
the scale of SNN hardware implementations. Similar circuits are employed in an object
localization task - in the second chapter - performed by combining advanced miniaturized
ultrasound sensors and a neural network topology inspired by that of the barn owl. A
second system combining innovative sensors and analog computing is presented in the third
chapter, dedicated to artificial olfaction and on-line learning. An RRAM array is endowed
with the ability to learn from its incoming stimuli thanks to a circuit that implements the
Delta learning Rule. Finally, the fourth chapter introduces innovations to conventional
neuromorphic computing architectures. RRAMs find an application as plastic elements
in neurons and intrinsic neuronal plasticity is combined with spike-dependent-synaptic-
plasticity to form an unsupervised learning rule that boosts the performance of spiking
neural networks. The structure of neurons is then expanded with dendritic circuits, in
which RRAMs are used as both synaptic weights and delay elements. The latter enable
new capabilities when processing temporal signals and make spiking-neural-networks more
efficient and less memory consuming. All the projects in this thesis open to extensions
of what hereby presented. Developments in all the areas - design, device performances,
algorithms - will enable to radically improve the results achieved in the different projects.
It is with this hope that the work presented in this thesis aim to be the basis for a new
wave of neuromorphic systems.

The thesis concludes with a vision for analog, bio-inspired in-memory computing. The
field is moving rapidly and major actors in the market are joining to explore new solutions.
It is difficult to make long-term predictions but it is tangible that the subject is growing
and the future looks bright ahead.



Chapter 2

Building a Spiking Neural Network with
RRAM

This chapter presents the process of building a Spiking Neural Network with analog
electronics and with RRAM devices. An introductory section motivates the choice of such
a computational model and highlights its strengths as well as its weaknesses. The chapter
is divided into three parts. The first introduces the Neuromorphic Hardware Calibration
procedure which proposes an Off-Line learning scheme for SNNs built with analog circuits.
A thorough characterization of fabricated analog circuits and RRAM devices assesses
the performance of such architecture. Then, the building blocks of a SNN designed in
130 nm technology are presented, ranging from the small analog circuits that implement
neurons and synapses, to the RRAM array and to the assembled system. The last part
of the chapter is dedicated to the expansion of the work to a larger scale SNN and the
presentation of the Mosaic concept.

2.1 Motivation

Edge AI promises to bring the computational power of Machine Learning and Deep
Learning to mobile devices. Embedded computing devices bring several advantages, among
which privacy, energy efficiency and adaptability to the environment. Privacy is potentially
threatened by cloud computing, as data collected by users has to be handed over to a
server in order to be processed and analysed. Communicating data is not energetically
convenient either, as one would have to exploit - for example - a wireless infrastructure
like 4G or 5G. At last, cloud servers are generally utilized by a large number of users and
can’t be optimized to the need of the particular use-case. All these problems are solved
by moving computation closer to the user and, in particular, to the sensor producing the
data. This is why it is called near- or in-sensor computation. The advantages of such a
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practice are obvious: the data do not leave the device which produced them, avoiding
communicating to third parties for processing and analysis; data movements are thus
minimized and the energy efficiency is radically improved.

Selecting what model is best suited for an Edge Al application is a difficult choice depend-
ing on what task is to be performed, what sensor is feeding the model and which hardware
constraints are imposed by the environment. This is where the field of Edge AI branches
into multiple subcategories, depending on the hardware platform running the machine
learning models. The main categories are developed around: I) microprocessors and
microcontrollers, 1) digital application-specific integrated circuits (ASICs) and III) custom
analog solutions. The I) class is certainly the most popular and commercially exploited,
but the least advanced in terms of power consumption and computational capacity, while
ASICs (IT) are slowly taking over as they allow to optimize computation for a given
application. Systems based on the I) (and sometimes on the II) class too) are conventional
Von-Neumann architectures, where memory and computation are physically separated
and energy consumption is dominated by memory access. It appears evident that moving
beyond from the Von-Neumann architecture represents the most urgent structural change
in Edge-Al to reduce energy consumption. In-Memory computation is a novel concept
of computing based on the utilization of memory elements directly for the computation.
This paradigm is particularly useful for neural network applications where large weight
matrices are involved in matrix-vector-multiplications (MVMs). RRAMs, as well as other
Non-Volatile-Memories (NVMs), are particularly suited to perform In-Memory computing
(IMC), as they are compatible with the Back-End-of-Line (BEOL) of a CMOS process.
Many groups have reported the energy benefit of overcoming the Von-Neumann architec-
ture with Non-Volatile-Memories |73}, |124, 125, 126, 127, [128|. The solution presented
in this chapter locates in the III) class and it’s an analog, RRAM-based Spiking Neural
Network (SNN).

The presented system involves 3 technologies that are highly promising for Edge Al and
that constitute a departure from a classical approach to computation. It is important to
point out why a combination of these technologies is crucial to build an extremely efficient
inference engine for Edge Al

e Why analog electronics? The proposition is that the information coming from a
sensor should not be translated to the digital domain, it should rather be computed in
the analog domain. Translating analog information to the digital domain always bears
an energy cost, which is not devoted to computation. This energy cost becomes even
more problematic when the sensory information has a relevant temporal component
and a periodic sampling of the signal is necessary. Analog computation avoids the
cost of periodic sampling and translation of the information.

¢ Why RRAMs? RRAMs are analog, non-volatile memories that can store up to
3-bits of information [129] per device. RRAMs can be grouped in arrays that perform
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the Matrix-Vector-Multiplication, ubiquitous in machine learning, very efficiently
(130} (131} (132} {133}, |27, 134} [135]. RRAMs represent a competitive alternative in
memory density to more conventional DRAMs and Flash NANDs,; and don’t require a
voltage (and static power consumption) to maintain their state. This makes RRAMs
a perfect fit with SNNs, where memory is read asynchronously and sparsely in time
and space.

e Why a Spiking Neural Network? From the point of view of Edge Al engineering,
SNNs promise to improve energy efficiency by compressing the activation function
of neurons to a delta function, thus minimizing the communication between neurons
and making the model robust to noise and weight variability [136].

The 3 technologies mentioned above seem to be the perfect fit for each other. In fact,
the proposed analog RRAM-based SNN solves two major issues of more conventional
RRAM-based accelerators, that are analysed hereafter.

2.1.1 The limitations of RRAM-based ANNs

SNNs solve the problem of high column current density in RRAM arrays. This issue limits
the scalability of the ANN approach. As visually described by Fig. a, ANNs activate all
the rows of the array at once, thus producing high output current at each column, and the
overall power budget increase linearly with the number of devices being read (i.e. number
of activated rows). Another limitation is due to the conventional hybrid analog/digital
nature of ANN accelerators, which perform the Matrix-Vector-Multiplication operation
in the analog domain, exploiting RRAMSs, and then compute the neuron activations and
communicate data in the digital domain. The overhead circuits required to convert back
and forth between digital and analog domains - Digital-to-Analog (DAC) and Analog-to-
Digital (ADC) circuits - significantly increases the area and power consumption. SNNs
computation, instead, is sparse in time, so the number of activated rows at any instant
of time is very small, significantly reducing the current and power consumption at each
column (Fig. b). Moreover, analog neurons and synapses in SNNs do not require DACs
and ADCs, resulting in a further reduction of energy consumption and area [95].

These points don’t configure the proposed solution as ideal for all Edge Al applications,
they rather frame analog RRAM-based SNNs as the optimal solution for a particular class
of cases. The perfect use-cases are the ones where maximal energy efficiency is required
(i.e. the power budget is as low as <1mW) and the input signal features relevant temporal
components and is sparse in time and space (input dimension). For other conditions
and applications, other solutions might be preferred. For example, convolutional neural
network (CNN) ASICs are the most popular solution for image processing and in embedded
applications |137]. ASICs running particular recurrent neural networks (RNNs) and CNNs
are the best choice for key-word spotting and speech recognition [138], and biomedical
signal processing and classification [139).
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Figure 2.1: RRAM crossbar arrays in artificial neural network (ANN, a) and spiking neural
network (SNN, b). ANNs conventionally activate the whole array to make the MVM
operation, yielding high current density that limit scalability of the array itself. ANNs also
require DACs and ADCs to convert between the digital input/output information and the
analog nature of RRAM in-memory computation. SNN solves both issue as it computes
with sparse temporal events processed by analog circuits, Leaky-Integrate-and-Fire neurons
and Differential-Pair-Integrator synapses. (c¢) Quantification of current magnitude per
column for different average RRAM conductance. (d) Visualization of the temporal sparsity
of SNN, as the row access frequency distribution for ANN and SNN. The SNN rarely
access the rows of the array with high frequency, lowering the column current.

The limits of our approach are related to the low maturity of the technology. SNN models
are rapidly growing in terms of computational capacity and have been demonstrated to
reach good results in a large number of benchmarks [112], however still fall short respect
to the state-of-the-art deep learning models. Analog electronics holds great promise in
reducing the cost of computation, but the realization of an analog chip is much harder
than its digital counterpart. Furthermore, both analog electronics and RRAMs are subject
to variability which is detrimental to the model’s performance: this will be discussed in
details later in the chapter. In general, our approach does not fit applications in which
the data to be processed is static and dense of information, such as the case of image
processing.
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In the following, the details of building an RRAM-based Spiking Neural Network processor
for Edge-Al are explained. The chapter opens on why choosing Spiking Neural Networks
over conventional Artificial Neural Network, it then confronts the problems of RRAM-
based analog electronics computation, and then proposes the solution to calibrate the
training procedure to the hardware defects. At last, the proposed model is analyzed on its
performance and energy efficiency, comparing to other state-of-the-art systems.

2.2 Variability in analog electronics and RRAMs

Analog electronics circuit often utilize transistors in their sub-threshold regime, expanding
the range of possible behavior while minimizing drain-source currents, and energy con-
sumption in turn. Analog circuits are appealing for multiple reasons, among which the fact
that they directly process natural analog signals, without loss of information in the signal.
This is particularly attractive when treating audio and radio information, as information
density of analog signals is higher than the digital counterpart. Furthermore, analog
circuits can more faithfully emulate biological systems and components, such neurons and
synapses. This supports the efforts in neuromorphic engineering to design analog circuits
that behave similarly to biological circuits. |70} 140].

However, analog circuits also have major flaws which present great challenges in neu-
romorphic engineering. The main issue is the variability between transistors, amplified
by their usage in the sub-threshold regime. Process variation in doping density, oxide
thickness and transistor size [141] have a strong impact on the threshold voltage of analog
transistors. These defects become worse and worse as one scales down the technology node.
Variability of the threshold voltage radically affects the Current/Voltage characteristics
of the transistor, issue that spread across analog circuits with multiple transistors. This
makes the behavior or neuromorphic circuits slightly unpredictable and rises challenges
when designing a large scale system.

Different methods have been proposed to mitigate variability in the behavior of neuromor-
phic circuits: most concern the design phase [142], other the algorithm that utilize the
circuits, like population coding.

It is well known in the literature that RRAMs are stochastic devices [129]. The variability
of RRAMs is related to the nanoscopic scale in which atoms are arranged to form or
disrupt the conductive filament. The conductance of the filament results being dependent
on the programming conditions - which assures a good degree of control over the device -
but is inevitably subject to stochastic phenomena. These stochasticity is often described
as Cycle-to-Cycle (C2C) and Device-to-Device (D2D). C2C variability is the result of
iterative programming of the same device, under the same programming conditions: the
stochasticity of the arrangement of the filament under the same electric field results in a
distribution of conductance values. D2D variability is observed when a number of different
devices is programmed with the same procedure, obtaining a distribution of conductance
levels for the same reason mentioned before. Furthermore, RRAMs also present tem-
poral variability, meaning that their conductive state changes over time. The extent of
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this temporal variability is studied in the next paragraph. These phenomena have to
be accounted for when utilizing RRAMs for Machine Learning or neuromorphic computing.

2.2.1 Heterogeneity in Neurons and Synapses

To assess the variability of analog circuits, we designed, fabricated, and tested analog
CMOS-based LIF neuron and DPI synapse circuits (Fig. built in 130 nm technology.
The LIF neuron (Fig. [2.2h), inspired by [70] receives input pulses (Vin) and weights them
with a DPI circuit biased by Vgain. Input current pulses are accumulated in the membrane
capacitor Cmem, increasing the membrane voltage Vmem. At the same time, a small
amount of current leaks from the transistor biased by Vlk, which determines the time
constant of the neuron. At the crossing of a threshold voltage (the Inverter threshold,
half of the supply voltage), a voltage pulse is elicited at the output (Vout). This voltage
pulse charges the refractory period capacitor (Crp), coupled to a transistor biased by Vrp,
determining the refractory period. During the refractory period, a N-transistor is open,
discharging Cmem and impeding input currents to charge the membrane capacitor.

The DPI synapse (Fig. [2.2b) is a circuit presented in [140], in this case modified to integrate
an RRAM as synaptic weight. Input signal are presented as voltage pulses (Vin) and
some current is read from a RRAM device. The magnitude of the current depends on
the conductance of the RRAM. The input pulse is weighted by a DPI, biased by Vthr.
Later, the current discharges a synaptic capacitor Csyn, coupled with a leakage transistor
controlled by Vtau. This latter bias modulates the time constant of the synapse. The
voltage of the Csyn capacitor is the output of the circuit.

Both circuits have been measured to verify their correct behavior. For the LIF neuron
(Fig. ), the experiment consisted in monitoring the response of a neuron’s membrane
voltage (Vmem in dark blue) to a train of input pulses (Vin in black). The membrane
capacitor reacts to each input by increasing its voltage, up to the point in which it
overcomes the threshold and emit an output spike (Vout in light blue). The experiment
to assess the correct behavior of the DPI synapse (Fig. [2.2d) consists on monitoring the
synaptic voltage response to a single input voltage pulse at t=0s. The Vsyn potential
depolarizes with a magnitude proportional to the RRAM conductance, and then relaxes
back to the resting potential.

A similar experiment is repeated for both the neuron and the synapse, analysing the effect
of the leakage bias (Fig. 2.2¢,f). Modulating the Vlk (neuron) and Vtau (synapse) biases,
the leakage rate is controlled, resulting in different time constants. The measurements have
been repeated over 100 samples and the time constant extrapolated from the response of
Vmem/Vsyn in time. For both neurons and synapses, the variability in the time constants
is about 30% in standard deviation over the mean, while the mean of the distribution can
be easily controlled in the [10~* — 10%] ms range.
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Figure 2.2: Leaky-Integrate and Fire (LIF) neuron circuit (a) and Differential-Pair-
Integrator (DPI) RRAM synapse (b) circuits. The circuit have been designed and fabricated
in 130 nm technology. (c) Test of the LIF Neuron with an input spike train (black) at
1 kHz: the membrane voltage (dark blue) increases upon the arrival of each input spike;
when crossing the threshold voltage, the neuron produces an output spike (light blue).
(d) Test of the depolarization of the DPI synapse; an input spike is presented at time 0 s
and the voltage on the capacitor is recorded; the amount of depolarization depends on
the conductance of the RRAM, reported in the inset. (e,f) Time constant of the LIF and
DPI synapse as a function of the Vj;/V4, (neuron/synapse) biases. To measure the time
constant, the circuit response to a single input spike is recorded. The bias voltage Vii/Viau
controls the leakage rate of the capacitor, determining the time constant of the circuit.
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Figure 2.3: Variability in RRAMs. (a, b) Multilevel programming achieves 8 conductance
levels. Right after the programming operation, at t=0s, the levels at tightly distributed
and non-overlapping. After some time, at t=60s, distributions have widened due to
Relaxation and are overlapping. (¢) Temporal evolution of the single RRAM device as a
function of time, distinguishing between different variability forms: Relaxation, Retention
and Read-to-Read noise. (d) Retention: the mean of distribution for each of the 8 levels
is measured over time; the levels 1 and 2 are less stable and slowly drift along time. (e)
Read-to-Read noise: measured AG/G as a function of the programming current (AG
is due to RTN and is defined in (b)). (e) Power Spectral density of the noise in the 8
conductance levels,showing a 1/f spectrum.

2.2.2 Variability in RRAMs as Synaptic weights

RRAMSs hold the potential to be high density non-volatile memory elements. However,
only an appropriate programming procedure and an accurate analysis of their stochasticity
allow to exploit them in In-Memory neuromorphic computing. To achieve maximal memory
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density, a 4kb array of 1T1R devices is programmed with a multilevel smart programming
procedure. This procedure described in [129] allows to obtain 8 conductance levels per
RRAM device (Fig. [2.3p). The levels are all well separated from each other and narrowly
distributed at t=0 s, right after programming. However, RRAM suffer from temporal
variability as the conductive filament is re-arranging itself in different configurations over
time, leading to a variation of conductance [143|. This is why measuring the same 4kb
array 60 s after programming, the 8 conductance levels have widened and collide with
each other.

RRAMSs show 3 degrees of temporal variability that take place at different time scales
(Fig. . Relaxation takes place just after programming (milliseconds) and broadens
the conductance distributions (Fig. 2.3¢). Retention causes long-term (hours) variation
of the conductance. The lower conductance levels shift their average toward lower values
(Fig. [2.3d). Read-to-Read (R2R) noise does not affect the shape of the conductance
distribution, although when looking at individual devices there are fluctuations around the
average due to reading disturbances and Random Telegraph Noise (RTN) (Fig. 2.3k). We
evaluate the RTN component in R2R via the AG/G figure of merit (Fig. 2.3f), measuring
the conductance jumps AG/G due to RTN. The result is in line with the literature [143].
Finally, the Power Spectral Density of the 8 conductance levels shows that the amount of
noise is inversely proportional to the conductance and is general of the 1/f type (Fig. ,
as also observed in [144].

2.3 Neuromorphic Hardware-Calibrated Off-Chip train-
ing

Variability is a dangerous defect for neuromorphic analog system, which, if not treated
correctly, results in unpredictable behavior and poor performance. Tackling variability is
a priority when designing and deploying neuromorphic circuit and this is demonstrated in
this section. The latest techniques to train Machine Learning models can be transferred
to neuromorphic circuits. The benefit is that gradient-descent methods can work around
the defects of the hardware and cope with variability of both analog circuits and RRAMs.

2.3.1 Off-Line learning on SNNs

SNNs are powerful models mimicking the computational principles of the brain, in which
communications happens via stereotypical asynchronous voltage pulses called spikes. SNNs
models are formed by different spiking neurons, whose activation function is a delta
function, connected by synapses, whose role is to route and weigh the spikes across the
network. SNNs models can be configured in several architectures, some of them inspired
by biology (Liquid State Machine |145] and Attractor networks [146]) some other borrowed
from deep learning (feed-forward, CNNs and others). The most common architecture
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for SNN is the recurrent network (RSNN) where a hidden recurrent pool of neurons has
recurrent connections between each other. This closely resembles the Liquid State Ma-
chine, but in the RSNN the recurrent connections are learnt and not randomly established.
From the point of view of machine learning, a RSNN (Fig. [2.4a) can be formalized as a
Artificial Recurrent Neural Network (RNN) in which artificial neurons are swapped by
more biologically plausible neuron models. In this chapter, Leaky-Integrate-and-Fire (LIF)
neurons are assumed as the standard choice for all the models.

Input layer Hidden layer Output layer
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Figure 2.4: Spiking Neural Network offline learning. a) SNN model depiction with the
recurrent connections in the hidden layer. b) Computational Graph of the RSNN with
input cells in yellow, hidden cells/neurons in grey, output cells in red. W, Wiee, Wou are
the input, recurrent and output weights respectively. Recurrent connections are depicted
by the down-facing arrows from S,.. - the neurons’ spikes - to the Iy, cell, the synaptic
dynamic state. SG in green stands for Surrogate Gradient. ¢) The activation function
of hidden cells (neurons) is the Heaviside function with Surrogate Gradient, which is a
step function for the forward pass (inference) and a smooth, differentiable function for
the backward pass (gradient descent learning). Here, the differentiable function for the
backward phase is reported for different 5 coefficient. Activation is the neuron’s membrane
voltage for the physical realization of the circuit.

As described in the Introduction, several techniques are used to train SNNs for a given
task, ranging from STDP to ANN-SNN conversion, to biologically inspired approximations
of gradient descent [115|. We propose the Surrogate Gradient (SG) technique as the
optimal choice for Off Line learning: SG assures the best performance for SNN in a
wide variety of tasks and benchmarks, and it allows for maximal model flexibility and
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adaptability to the specifications of the hardware. This technique simply applies standard
gradient descent to SNN, overcoming the issue of non-differentiable activation function
of spiking neuron with a trick. In the computational graph of a RSNN (Fig. [2.4p), each
step in the graph is differentiable, less for the activation function of neurons. The SG
technique enriches the activation function so that it is a normal Heaviside function for
the forward pass, but a smooth differentiable function for the backward pass (Fig. )
Multiple differentiable functions have been tested and give good results, and their role is
solely to allow the gradient to keep flowing back in the computational graph. In our case
we chose the following smooth function:

1
&)= T3 —op)
where x represents the activation or membrane voltage in the LIF neuron, [ is the steepness
of the function, as seen in (Fig. 2.4k).
The shortcomings of the SG techniques are that SNN training takes a lot of memory
in GPU and is in general computational intensive. However, the process of learning is
performed only once, before deploying the model to the edge.

(2.1)

The SG technique is particularly interesting for neuromorphic systems as it allows

to take into account the non-idealities of the hardware substrate in the learning phase.
Based on this principle, the Neuromorphic Hardware Calibration procedure is presented
in Fig. [2.5] The procedure starts with the fabricated RRAM-based analog RSNN chip,
whose analog circuits are characterized one by one. Heterogeneity of neuromorphic circuits
is introduced by assigning each neuron and synapse a different time constant value based
on the experimental data, as in Fig. [2.2k,f. Once the hardware heterogeneity is loaded in
a server, a computer performs the SG-based gradient descent optimization of the network,
depending on the task of choice. The resulting model features floating-point weights with
32bit precision (Fig. 2.5][)). The weights are quantized to 15 levels (4bits), as allowed by 2
RRAMs with different polarization and with 8 conductive levels each (Fig. 2.5[1)). At last,
the quantized weights are mapped to the RRAM array by selecting the appropriate reading
voltage, which acts as a normalization coefficient for the synaptic weights (Fig. II)).
The procedure concludes with the programming operation of the RRAM array in the
RSNN chip, which is then ready for deployment.
To evaluate the approach, this procedure is performed for 3 different benchmark tasks with
different degrees of temporal structure: MNIST [147] (static visual image of handwritten
digits), ECG [148] (heart arrhythmia classification), and SHD [149] (spoken digits). As SNN
take input information in the form of spike-trains, a little description for the pre-processing
required to feed the dataset to the SNN is provided.

N-MNIST The popular MNIST dataset consists of images of hand-drawn numbers from
0 to 9. In order to feed this dataset with SNN, the static images have to be converted to
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Figure 2.5: Neuromorphic Hardware Calibration procedure. Based on a RRAM-based
analog SNN chip, analog circuits are characterized and the resulting data calibrate an Off
Line learning procedure in a server (left). I) The weights in the SNN model are trained in
fp32 precision. II) Later, the parameters are quantized on N levels, as many as admitted
by the RRAMs. III) At last, the quantized weights are converted to RRAMs, where the
conversion factor Vpy, represents the reading voltage of the RRAM. The process ends with
the Post-Learning transfer of learned weights to the chip. The NHC can be repeated when
the functionalities of the model need to be updated.

dynamical trains of spikes. The conversion method chosen in this case is the time-to-first-
spike encoding, where each pixel’s intensity is converted with inverse proportion to the
time-step of the single spike produced by that pixel channel.

ECG dataset The ECG dataset was downloaded from the MIT-BIH arrhythmia reposi-
tory |150]. The database is composed of continuous 30-minute recordings measured from
multiple subjects. The QRS complex of each heartbeat has been annotated as either
healthy or exhibiting one of many possible heart arrhythmia by a team of cardiologists.
One patient exhibiting approximately half healthy and half arrhythmic heartbeats was
selected. Fach heartbeat was isolated from the others in a 700 ms time-series centered on
the labelled QRS complex. Each of the two 700 ms channel signals were then converted
to spikes using a delta modulation scheme [151]. This consists in recording the initial
value of the time-series and, going forward in time, recording the time-stamp when this
signal changes by a pre-determined positive or negative amount. The value of the signal at
this time-stamp is then recorded and used in the next comparison forward in time. This
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process is then repeated. For each of the two channels this results in four respective event
streams - denoting upwards and downwards changes in the signals. During the simulation
of the neural network, these four event streams corresponded to the four input neurons to
the spiking recurrent neural network implemented by the SNN.

SHD dataset Spiking Heidelberg Dataset (SHD) [149], which is a recently-proposed
benchmark for SNN, based on the recording of spoken digits from zero to nine in English
and German (20 classes). The Mosaic-based model was trained using the same surrogate
gradient approach as in the ECG task, and we compare its performance to a software-based
RSNN. The Spoken Heidelberg Dataset was created in 2020 with the aim of being a chal-
lenging task for SNNs in the class of keyword spotting. Data captured from a microphone
is pre-processed with the Lyon-ear model, yielding a N-channels input in the form of spike
trains. The dataset is based on the recording of spoken digits from zero to nine in English
and German (20 classes).

To solve such tasks, a RSNN as sketched in Fig. is used, with two different config-
urations. In is the input size, Hid the hidden layer size, Out the output size. For the
N MNIST dataset the recurrent connections in the hidden layer are switched off: the
network is In 784-Hid 128-Out 10. For the ECG and SHd tasks, recurrent connections
are switched on and the network has the form In 4-Hid 128-Out 5 for ECG and In 784-
Hid 128-Out 20 for the SHD.

Table I compares the NHC SNNs results with ideal software-based ANNs and ideal SNNs
(i.e. with homogeneous time constants). Non-Calibrated (NC) SNN, instead, is the case
where the neuromorphic circuit present variability but this is not considered during the
learning phase. The effect of variability on the circuits will then be felt during deployment
of the neuromorphic chip. As expected non-calibrated SNN chips perform poorly during
deployment, as the variability of neuromorphic circuits make the SNN behave differently
than expected in the learning phase. This reinforces the need for the NHC procedure.
Homogeneous (Hom.) SNN represents the unrealistic scenario in which neuromorphic cir-
cuits do not suffer from variability. Learning and deployment share the same ideal circuits
and performance of the SNN are excellent, even when comparing to ANNs. converting
such models to 4bits quantized weights leads to a small drop in accuracy, due to the lower
precision of the weights.

NHC SNNs score the highest accuracy across spiking models. High precision weights
(fp32) allow to maximise performance. Little accuracy is lost when quantizing the weights
to 4 bits. Further accuracy drop is caused by the transfer to an RRAM array, which
introduces variability in the weights over time. Indeed, accuracy drops as a function of time.

Impact of neuromorphic circuits variability on performance NHC good perfor-
mance not only highlight the need for a calibration procedure to account for neuromorphic
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circuits’ variability, it also reveals an unexpected point: variability is beneficial for the net-
work performance. In similar experiments, [152| show that heterogeneity in neurons leads to
better performance. This phenomenon could be explained by the richer temporal dynamics
offered by heterogeneous networks of neuron, exploited for tasks with relevant temporal
features like ECG and SHD. Such a result represents an incentive to neuromorphic engi-
neers to embrace variability in their circuit, trying to exploit it as a feature for their systems.
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Figure 2.6: Accuracy for the three benchmark tasks, tested with the RRAM array measured
across time. (a) Data Retention acts over the course of hours, reducing accuracy. Network
used for easier tasks like MNIST and ECG retain accuracy better than those used for harder
tasks like SHD. (b) Relaxation induces an accuracy drop immediately after programming.
The following measurements show much smaller accuracy drops. (¢) R2R causes small
variations of conductance each time RRAMs are read, slightly perturbing performance.

Impact of RRAM Non-Idealities on performance The RRAMs support up to 8
distinct conductance levels right after programming, enough to avoid relevant performance
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Weights N-MNIST ECG SHD
ANN float32 97.5% 95.5% 89.0%
NC SNN float32 90.2% + 2.5% 63.7% + 11.2% 58.4% + 2.9%
Hom. SNN float32 97.4% £ 0.1%  94.5% £ 1.2%  72.5% £ 2.5%
4bits 96.7% £ 0.3% 91.4% £ 1.2% 71.6% £ 1.8%
float32 97.5% + 0.1% 94.9% + 0.4% 74.9% + 0.9%
4bits 96.9% + 0.3%  91.4% + 1.5% 73.2% + 2.2%
NHC SNN  RRAM t=0s 96.8% + 0.4% 91.2% + 0.8%  71.2% + 2.4%
RRAM t=5s 96.2% + 0.6%  90.2% £+ 1.8% 67.5% + 9.3%
RRAM t=1h 95.3% + 0.7%  89.9% + 1.8% 60.4% + 7.6%

Table 2.1: Accuracy results of different model, NHC SNN included, over 3 tasks (N MNIST,
ECG, SHD). The mentioned models include ANN, Non-Calibrated SNN (NC SNN),
Homogeneous SNN (Hom. SNN) and NHC SNN. Results are reported with float32, 4bits
and RRAM weight precision. The NHC results for RRAM weight are reported for the
cases of weight just being programmed (t=0s) and after some time from that moment
(5s, 1h).

drops for the 3 applications of choice, as shown in Table 2.1 However, the main source
of accuracy loss stems from the temporal variability of RRAMs. The impact of such
variability is studied in Fig.[2.6] Poor Retention in RRAMs impacts the lower conductance
levels of RRAMs causing a slow drift of weights over time. This is mirrored in the accuracy
of the SNN models, which slowly decreases. The loss is amplified for difficult tasks such as
SHD, while less impactful for MNIST and ECG.

Relaxation causes an immediate decrease in performance (Fig. [2.6p). This is because the
change of conductance is higher right after programming, when the state of the RRAM’s
filament is more unstable. After that first drop, RRAMs land on more stable states and
accuracy of the SNN changes less over time.

R2R noise slightly varies the conductance values at each inference operation (Fig. )
Due to the peculiar characteristics of RRAMs, the conductance state of the devices changes
slightly any time they are read and so do the weights of the network. The behavior of the
SNN marginally changes every time. This is not problematic, though, as the amount of
the RRAM R2R variability does not impact the accuracy too much.

Failures in RRAM-based neuromorphic chips RRAMSs and neuromorphic chips can
be subject to failures, which threaten the performance of the SNN chip. It is important
to know how to deal with such defects so to ensure the longevity of the chip. Failures
can occur to multiple components of the chip, for simplicity we limit the analysis to
neurons and synapses. 3 different scenarios are proposed. First, the case of RRAM failures:
a failure is represented by a device stuck at either low (1uS +- 0.5uS) or high (200uS
+-25uS) conductance. The accuracy as a function of the RRAM’s failure Rate is shown in
Figure 2.7: SNN models are resilient up to RRAM error rates of 1073, independently of
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the task. Similarly, the accuracy as a function of neuron failures is analyzed (Fig. )
In this case, a failure causes neurons in the hidden layer to either never spike or to spike
at very high frequency (750Hz). Again, SNNs can stand failures up to 10% of neurons
(over a total of 128 in the hidden layer), before reducing performance considerably. This
happens similarly for the 3 tasks considered.

However, even in the cases of strong damages to the chip, the NHC procedure can be
repeated to recover good performance. The off-line learning phase has to be informed with
the damaged circuits and RRAMs and SG gradient descent works around the defects and
failures and optimizes the chip for the task of choice. In an experiment, SNN models are
artificially damaged with a RRAM error rate of 1072 and the NHC procedure retrains
them off line (Figure 2.7c) . MNIST is re-learned with just one learning epoch, while ECG
and SHD require a few more epochs to recover. Overall, the performance is almost fully
restored in all cases. This ensures a heavily damaged chip is not to be discarded, it is just
to be taken more care of, with the NHC procedure.
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Figure 2.7: Analysis of performance with RRAM failures and re-training taking the failures
into account. (a) Accuracy as a function of the Bit-Error-Rate (BER) of RRAM weights.
Failures in RRAMs are considered to be the case in which the device is stuck at either
low conductance (around 5uS) or high conductance (around 150us). (b) Accuracy as a
function of the failures of neurons, considered to be the case where neurons lose the ability
to spike. (c) Networks with high degree of RRAM failures (error rate of 1072) re-trained
considering the weight defects. The NHC helps working around the hardware failures to
recover good accuracy.
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2.3.2 Energy Assessment

To assess the efficiency of an RRAM based neuromorphic processor we compare their
energy per inference sample with a mixed-signal neuromorphic processor, DYNAP [29].
DYNAP uses similar LIF neuron and DPI synapse circuits, implemented in 180 nm
technology, but employs an asynchronous digital communication protocol to implement
network connectivity. Address Event Representation (AER) is the name of the digital
communication protocol. The energy consumption for the RRAM based system is estimated
by means of SPICE simulations and is more than 1 order of magnitude lower than that of
DYNAP (Fig.[2.8h). Energy figures are reported per inference operation, meaning that
a single data point (MNIST image, ECG heartbeat or SHD digit) is passed through the
network and the output is read. Inference takes different time for the different task, hence
the choice of energy per inference rather than power consumption.

In the simulations of the RRAM-based SNN, spikes are squared pulses at 1.2 V of peak
voltage and 100 ns of duration. Spike-width is a fundamental parameter determining
the energy consumption of the system: long pulses drain currents from RRAM and the
neuromorphic circuits’ capacitor for longer, decreasing the energy efficiency; however, too
short pulses are hardly handled by analog circuit affected by variability. Variability in
analog circuit affects the correct transmission of spikes, so that a safe - large enough -
pulse-width must be chosen.

Energy is dominated by RRAM readings, that access the synaptic weights. Conductance
in RRAM is in the range [1-150|uS and such high values produce large currents even when
reading the device with as low as 100 mV. However, the energy related to read RRAMs
is still about 1 order of magnitude less than that of the communication protocol used in
DYNAP (Fig. [2.8b). Analog neuromorphic circuits confirm their ultra-low power nature
by consuming less than 600 nW per inference. This is also explained by the great sparsity
of SNN computation. (Figure. reports the distribution of the frequency of spikes,
which in turn access the rows of the RRAM array, for each of the 3 considered tasks. Most
of the time, spikes are sparse and peak spike density is rather sporadic and limited to
50 kHz. It is reminded that reducing the number of simultaneously activated rows of the
RRAM array, has the added benefit of not overcharging the columns of the array.
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Figure 2.8: Energy assessment of the analog RRAM-based RSNN trained with the NHC
procedure. (a) Energy per inference of RRAM-based SNN, compared to DYNAP [29],
for the 3 datasets used in this work. The same number of spike is assumed for the two
hardware platforms. (b) Energy contributions of the RRAMs and analog circuits (DPI-LIF)
per MNIST inference, compared to the routing in DYNAP. (¢) Assessment of the sparsity
of the network. Assuming to discretize time in bins of 1ms, spikes are gathered in these
bins. Each spike results in an access of a row of the RRAM array.

2.4 Design of a RRAM-based SNN

This section of the chapter presents the guidelines to assemble a Recurrent SNN built
around a RRAM array and with analog electronics. The system is divided in blocks:
RRAM array, Array Periphery and Neuron Periphery. Additional blocks are required
to input and output information to/from the system and are only rapidly mentioned.
The section analyzes the main blocks composing a RSNN and explains the choices made
during the layout phase. A 130 nm CMOS technology node is used, featuring 2 types of
transistors: GO1 thin oxide core device, and GO2 thick oxide devices as the input/output
option. GOls are generally used for logics and the analog computation (neurons and
synapses) and have a power supply voltage up to 1.2 V; GO2s are used to handle the
programming operations of RRAMs, which require higher voltages, up to 5 V. The end
of the section shows how the blocks are assembled to form the RSNN chip, which is
described in details. The chip includes different versions of the RSNN with different sizes
ranging from 8 up to 32 neurons. Future works might extend the network size to verify
the limits of the approach when scaling up the system. This design is one of the first fully
analog RRAM-based SNN and is not optimized to be the benchmark for energy efficiency
and footprint area. It is rather to be analysed as a first prototype, where the concept is
implemented, with a big room for improvement on different aspects, among which the
main one is certainly the footprint area. Also, scaling to a more advanced technological
node will allow to improve in this sense, and to reduce the energy consumption by a
relevant amount.
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2.4.1 RRAM Array

1T1R devices are the core elements of an RRAM array. RRAMs are tiny nanodevices
which are appealing as dense memory elements. However, the limiting factor for footprint
area in 1T1Rs is the access transistor, which is utilized as a switch to address the device
during the programming, forming and reading phase. Such transistor then has to withstand
the current flowing through the device and the high voltages during forming: it happens
to be relatively big compared to the RRAM. To comply with the current and voltage
requirements, the transistor is of the thick-oxide type (GO2) with 1pm width and 500nm
length. The RRAM has lower sizes, at 300x450 nm. In this design, area optimization
was not the focus, as the chip was produced as a demonstrator of the RRAM-based SNN
concept. It follows that the 1T1R device designed for the project is not optimized for
density, with a pitch of 6.56um both in the x and y dimensions. The large dimension of
the 1T1R cell is chosen to ease the layout of more complex blocks at the periphery of the
array, choosing a common pitch for all the blocks in the design.

The RRAM array block is the one responsible for the Matrix-Vector-Multiplication op-
eration (MVM) which occurs with temporal sparsity in SNNs. To benefit from the
parallelization of the operation, RRAMs have to be arranged in a crossbar architecture,
where source lines and bit lines are shared across multiple devices, but are perpendicular
to each other. Word lines can be shared in either of the directions. Conventionally, the
source line is assumed as the top-electrode of RRAMs and is the common terminal - from a
line of N RRAMSs - on which currents are summed. On a ANN, inputs are fed to the array
through the bit lines, with all the word lines open and result with the MVM to occur by
summing currents along the source lines. On SNN, inputs are stereotypical voltage pulses
with fixed voltage, normally set at the supply level. A different wiring of the 1T1R devices
is preferred to perform the MVM sparsely in time. Bit lines are all set to either ground
or a fixed voltage Vpr,, while source lines are all fixed at the same potential Vg, defining
the reading voltage V,eqq = Vs — V. Source lines and word lines run perpendicularly
across the array. Spikes activate the word lines with a voltage pulse and allow a current to
flow through a single device at the time, unless two or more spikes are synchronous. Each
device contributes for a current unit summed on the source line, performing the temporal
sparse MVM.

The density of the RRAM array is an aspect which deserves special attention. While it’s
trivial to prefer a more compact design, selecting the pitch of the array needs to take into
account more factors than the size of the RRAM unit cell. The array has to be connected
to both the Array Periphery - which is used during the RRAM programming phase - and
the Neuron Periphery blocks, working during inference. Matching the pitch of the array
to those of the other blocks is fundamental not to incur to area inefficient routing. For
this reason, a pitch of 6.56m is chosen: this allows the area-hungry capacitors in the DPI
synapse and LIF neurons to fit in a row of the array. However, it is recalled that RRAM
arrays might reach much higher density when used as binary memories in conventional
Von-Neumann architectures [76].

The resulting RRAM unit cell is depicted in Fig. along with the full RRAM array. The
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final dimension of the array are [209x223| pum. One notes that the array is not squared, it
has 32 rows and 34 columns. This is because 32 rows are dedicated to connect to a neuron
each, part of the hidden recurrent layer. The input is fed to the network via additional
columns of the array, implementing the input layer of the network. In this case, 2 columns
are dedicated to external inputs, 32 to recurrent connections from the neurons, making a
total of 34 columns.

1T1R 1T1R array
34x

32X

223um

Figure 2.9: RRAM array layout. (Left) The bit-cell for the 1T1R device is designed
with a pitch of 6.56um both horizontally and vertically. Word lines (WL) run vertically,
while source and bit lines (SL, BL) are horizontally disposed. The SL connects to the top
electrode of the RRAM, BL to the bottom electrode. The access transistor is indicated by
a "T" and is 1pum wide and 500 nm long. (Right) The array is made of 34 columns and 32
rows of 1T1R devices and measures [209.2x223|um?.

2.4.2 Array Periphery

RRAMs need to be accessed from dedicated pads to program them into the desired state.
To achieve this a peripheral circuit has to be designed to access one or more device at the
time. The solution of choice is a conventional Scan Chain made of flip-flop circuits whose
output is buffered and enabled by a dedicated signal (Enable, EN). the enabled signal is
then the selector of an analog multiplexer (MUX) which connects to either the BL or the
SL of the RRAM array. The other end of the MUX drives the wire to two pads, one is
operated at the programming voltage (Prog) and other is left floating (Float).

The scan chain allows for parallel programming and reading, while optimizes the number
of pads required to address one or more RRAM cells. It works as follows: a Clock keeps
track of time and is presented to all the flip-flops in the chain; an input binary sequence
is presented to the first flip-flop at the D port. At each clock cycle, the D state of the
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Figure 2.10: Periphery of the 1T1R array. a) Scan Chain block composed of a Flip
Flop, a Buffer, a AND and a MUX. b) Layout of the Scan Chain block with all the
components respecting the 6.56 ym pitch imposed by the RRAM array. c¢) 32x Periphery
block dedicated to controlling either Word, Source or Bit Lines of the array.

flip-flop is output as Q state and propagated to the next element of the chain. If one has N
columns/rows to select, one needs N clock cycles and a sequence of N bits (with appropriate
synchronization with the clock), to fill the scan chain. The elements of the sequence filled
with a logical 1 (high voltage) are enabled by the EN signal through an AND port. In this
way, the logical 1s in the sequence select which columns/rows to program or read.

The circuit schematics is presented in Fig. [2.10l The sensitive element in this circuit is the
MUX, as its terminals have to sustain the programming and forming voltage of RRAM,
which can approach 5V. For this requirement, GO2 transistors from the 130nm design kit
are chosen: these transistors possess a thicker oxide and need to be adequately sized in
order to allow the large programming currents to flow. This is also why a large pitch of
6.56um is chosen. For simplicity, also the rest of the components in the scan chain are
implemented with GO2 standard cells. The resulting element of the scan chain is 52.53um
wide. The scan chain element are stacked in blocks of 32 for source line and bit lines, in
blocks of 34 for word lines.
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Figure 2.11: Neuron Column design. a) The Neuron Column is composed by a Front-End
(Sense Amplifier) connected to the 1T1R array, a DPI Synapse, a LIF Neuron and a
Pulse Extender. b) Experimental characterization of the neuron column circuit. An input
is presented to the gate of the n'* 1T1R device, generating a current Lyeight from the
Front-End circuit. This current stimulates the DPI synapse’s depolarization (middle plot),
as a function of the RRAM conductance. In turn, the neuron is excited by an amount
proportional to the RRAM conductance (right plot). ¢) Layout of the Neuron Column,
where all the components respect the pitch of 6.56um. The large capacitors in the DPI
synapse and LIF neuron result in a narrow rectangular shape. d) The array of neuron
column is obtained by stacking each circuit on top of each other, 32 times.

Neuron column circuit The neuron column features a front-end circuit in Fig. [2.11
which reads the conductances of the RRAM devices. The RRAM bottom electrode has
a constant DC voltage V;,; applied to it and the common top electrode is pinned to the
voltage V., by a rail-to-rail operational amplifier (OPAMP) circuit. The OPAMP output is
connected in negative feedback to its non-inverting input (due to the 90 degrees phase-shift
between the gate and drain of transistor M; in Fig. and has the constant DC bias
voltage Vi, applied to its inverting input. As a result, the output of the OPAMP will
modulate the gate voltage of transistor M; such that the current it sources onto the node
V., will maintain its voltage as close as possible to the DC bias V;,,. Whenever an input
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pulse In, arrives, a current i;, equal to (V, — Vip )G, will flow out of the bottom electrode.
The negative feedback of the OPAMP will then act to ensure that V, = V,,,, by sourcing
an equal current from transistor M;. By connecting the OPAMP output to the gate of
transistor Ms, a current equal to %;,, will therefore also be buffered, as Ieigns, into the
branch composed of transistors My and M3 in series. This current is injected into a CMOS
differential-pair integrator synapse circuit model [153| which generates an exponentially
decaying waveform from the onset of the pulse with an amplitude proportional to the
injected current. Finally, this exponential current is injected onto the membrane capacitor
of a CMOS leaky-integrate and fire neuron circuit model [154] where it integrates as a
voltage. Upon exceeding a voltage threshold (the switching voltage of an inverter) a pulse
is emitted at the output of the circuit. This pulse in turn feeds back and shunts the
capacitor to ground such that it is discharged. Additionally, a Pulse Extender circuit
assures that the pulses emitted by all the neurons in the system have equal pulse-width.
This simple circuit has been designed and fabricated in STM 130nm bulk CMOS technology
and tested to verify its behavior. A gray voltage pulse is the input of the circuit and
applied to the gate of the i RRAM. The depolarization of the DPI synapse depends on
the conductance G; on which the pulse is applied. In this case, the RRAM conductance
is varied in the [4-150|uS range. The time constant is set by the Vj; bias and results in
some 200us. The ripples in the synapse’s voltage are due to measurements artifacts. The
depolarization of the synapse stimulates the membrane voltage. Again, the stronger the
conductance of the RRAM, the higher the response of the LIF neuron, as demonstrated in
Fig. [2.11] where the conductance is changed in the [50-130]uS range.

The difficulty of laying out this circuit is that of placing the large neuron’s and synapse’s
capacitors, while respecting the pitch of the RRAM array. Again, this is why a too
aggressive size of the array results unnecessary or even detrimental for the area footprint
of the chip. The pitch of 6.56um is a reasonable compromise. Nonetheless, the neuron
column circuits ends up with a rather narrow rectangular shape. Stacking multiple neuron
column circuits results in the Neuron block, which is one of the three building blocks of

the RSNN.

2.4.3 Assembling the RSNN chip

When all the components of the RSNN are matched to the same pitch, assembling the
chip is relatively easy. Word lines, source lines and bit lines of the array all require their
dedicated peripheral array. Word lines are disposed vertically, while source/bit lines are
horizontal. It follows that word lines periphery is placed above the array, bit and source
lines are on the left and right of the array respectively. Neuron columns connect to the
source lines and are thus placed to the right of the SL periphery block. The top level view
of the chip in Fig. highlights the large dimension of the periphery circuits respect to
the RRAM array itself. This is one of the weak points of this approach, where a large
periphery circuit is required to apply high voltages (up to 5V) to the devices and to sustain
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large currents (up to 300uA per device, with N devices in parallel). The price to pay for
the high capability offered by such circuit is that they take up a considerable amount of area.

assembly
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Figure 2.12: Assembly of the RSNN chip. The Periphery of the WL, BL and SL surround
the 34x32 array in the middle. Neuron Columns follow to the right and drive the Recurrent
Connection realized with metal wires.

When source lines are not selected for programming, they can be operated in "Inference"
mode, meaning that the array is connected to the neuron columns and the chip works as a
RSNN. A simple MUX is placed between the SL periphery and the Neuron Column to
switch the connection between the two blocks and the RRAM array’s SLs, differentiating
between "programming" and "inference" mode. The output of the neuron columns are the
voltage spikes which are fed back recursively to other neurons. This physical connection is
made by routing outputs from neuron columns to the word lines of the RRAM array, by
means of the metal wires highlighted by the blue arrow in Fig. 2.12] Such routing is not
the most compact in terms of footprint area, but it was selected for its simplicity.

The chip also features a small block which selects 1 of the 32 neuron columns and buffers
3 states to as many output pads. The 3 states of the neuron column are the DPI synapse’s
voltage, the LIF neuron’s membrane voltage and the output spikes. This is fundamental
to retrieve the output of the RSNN network. To do this, a 3-way MUX is stacked 32
times (one per neuron column) with 32 selectors. The selectors are driven by a scan chain
similar to that utilized in the array peripheral circuit. The block is adjacent to the neuron
columns.

Overall, the chip has a footprint area of |708x336]um?.

Testing RRAM-based fully analog systems is complicated because asynchronous analog
signals have to be transmitted in and from the chip. Furthermore, the limited number of
pads in the test structures (25 in this case) imposes limits to what can be read during
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the functioning of the circuit. For this reason, the circuit has been rescaled to different
sizes, from a 1x, to 8x up to a 36x32 RSNN. In the AxB nomenclature, A represents
the word line count and B the bit/source line count. B is also the number of recurrent
neurons. Smaller circuits will permit a better understanding of the neuron column circuit.
Larger arrays are dedicated to perform inference on the RSNN they implement. To recall
the NHC procedure, this circuit’s test will feature a first phase of characterization of
the neuron columns (DPI synapse and LIF neurons). Then, a second phase where the
network is trained off-line with the surrogate gradient technique. Lastly, the weights are
transferred to the RRAM array and the input are fed. The expected result is that the
chip will correctly classify the ECG dataset. This dataset is chosen as it only features 2
(or 4) input channels.
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Figure 2.13: Top view of the submitted mask. This includes 5 circuits with different scales
of the RSNN circuit design described in the previous section, ranging from a 1x neuron
column to a 36z32 RSNN.

Limits of this approach Analog electronics and RRAM-based computations are
extremely interesting technologies with a lot of potential, but are not perfect. Such
approaches present fundamental technical difficulties which set some limitations. At the
same time, the design choice made to build the chip are far from optimal and the RSNN
design presented in this section has a lot of room for improvement. The main limitations
of this approach are the following:

e IR drop
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e Capacitive effects
e Large footprint area
e High RRAM conductance

IR drop is a problem affecting large arrays in particular, and manifests in a loss of voltage
along a long line in an array. If, for example, one needs to program a device at the end
of a line in a RRAM array with a voltage V4, the effective voltage across of the device
will be inferior. This is because of the resistive losses across the array’s metal wire. IR
drop is a well-known problem in integrated circuits and in RRAM array design [155]. The
limitation due to IR drop is that the array cannot be scaled indefinitely.

Capacitive effects are also related to long metal lines which need to be driven with large
current to transmit voltage pulses. In the presented RSNN, critically long wires are present
both in the array (word lines) and as the recurrent connections. Capacitive effect limits the
minimum voltage pulse-width of spikes, which need to be long enough to be transmitted
correctly. However, long pulses increment power consumption.

Footprint area is a key aspect of integrated circuits as it dramatically impact their costs.
The presented RSNN features LIF neurons and DPI synapses which are based around
bulky capacitors. The capacitors have to be big enough to assure large time constant of the
membrane and synaptic potentials. Long time constant are important for the performance
of the RSNN as the temporal dynamics of the network has to be comparable to that of
the sensory input signals. Possible solution of such problem might rely in the utilization
of high-k dielectrics or special devices featuring capacitive effects [156, [157].

RRAM’s conductance is an important factor impacting power consumption. A lower con-
ductance range would reduce the current read from the device and the power consumption
in turn. Energy associated to reading RRAM is instead an important factor in the RSNN
design, as seen in Figure [2.6] Utilizing different devices with lower conductance range is a
possible improvement of the design. Possible alternatives to RRAMs are PCM, FTJ [80]
and FeRAMs |[78].
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2.5 Scaling up with the Mosaic concept

Analog electronics, RRAM-based implementations of neural network offer great benefits
regarding the energy consumption, but also come with the mentioned limitations. Despite
event-based models don’t overcharge the column current in RRAM arrays (Fig. , scaling
networks to large sizes faces the challenges due to IR drop and detrimental capacitive
effects. The question then is: is a single RRAM array an effective implementation of
a large RSNN? At the same time, one aims at improving the efficiency of computation
and a questions arises: s the fully-connected architecture in RSNN the most effective
computational method?

Both question find an answer in a novel modular architecture called Mosaic, a novel
approach for building RSNNs based on a systolic array of memristor crossbars. The
Mosaic concept is based on breaking a single larger RRAM array into smaller tiles that
distribute computation, overcoming the issues of IR drop along large word and course
lines. Furthermore, the Mosaic architecture introduces special tiles dedicated to route
spikes across the large systolic array. While the tiles dedicated to computation are called
"Neuron Tiles", the ones dedicate to routing are defined as "Routing Tiles". In the routing
tiles, RRAM are used in a binary fashion to either transmit or block spikes across the
chip. These router mitigate the problem of the detrimental capacitive effects of long metal
wires for communication on the chip. Also, as RRAMs are plastic element, the Mosaic
is a re-configurable architecture onto which the connectivity of the underlying neural
network can be mapped. Thanks to its topology, Mosaic is particularly well-suited for
the implementation of small-world graphical models, with dense local and sparse global
connectivity - found extensively in the brain. We mathematically show how Mosaic exploits
this connectivity to reduce the memory footprint, an advantage which becomes greater as
the neural network size scales up.

The proposed architecture is tested to solve Electrocardiogram anomaly detection and
spoken digit recognition tasks. The advantage of Mosaic is evident in the total energy
required for communication relative to other approaches. Mosaic promises to open up a
new approach to designing neuromorphic hardware based on graph-theoretic principles
with less memory and energy.

2.5.1 The opportunities of small-world graphs computation

Graphs are omnipresent data structures which capture interactions (i.e., edges) between
multiple units (i.e., nodes). They are the backbone of many computational systems that
represent relational information between their interacting entities [159]. Graphs can be
used to study and represent both biological and artificial neural networks, where neurons
correspond to the nodes of a graph and the connections between them (i.e., weights
or synapses) correspond to edges. Biological nervous systems, shaped over millions of
years of evolution, have developed many computational principles that can be captured
using graphical networks. Therefore, building computing architectures based on the
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Figure 2.14: Small-world graphs in biological and graphical neural networks. (a) Depiction
of small-worldness in the brain with highly clustered neighboring regions highlighted with
the same color. (b) An example network model characteristic of a small-world graph. Five
local clusters of nodes connect densely with each other and are interconnected with a
sparse set of hub-like nodes. (c¢) (adapted from [158]). The functional connectivity matrix
based on data from human functional Magnetic Resonance Imaging showing the properties
of a small-world graph. The rows and columns represent neuron indices. The diagonal
region of the matrix contains the strongest connectivity which represent the connections
between the neighboring neurons. The off-diagonal elements are not connected. (d) High
level representation of the Mosaic architecture. Small tiles are disposed into a mesh, where
communication occurs between neighbouring tiles only, as shown by the inset of the image .
(e) The Mosaic architecture features types of "tiles": computation is performed in neuron
tiles, while routing is performed by routing tiles.

same organizational principles is a promising path towards realizing powerful artificially
intelligent systems.

One such important organizing principle is “small worldness” which is found extensively
in empirical studies of structural and functional biological neural networks [160, [161]
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(Fig. 2.14h). In such a structure, short paths connecting neighboring nodes (neurons) are
more common than long-range connections, which are sparse (Fig. ) The mix of
dense local and sparse distal connectivity gives rise to efficient global coordination and
information flow based on local interactions [162]. A connectivity matrix of an example
small-world graph is plotted in Fig. 2.14f. It is characterized by heavy connectivity along
the matrix diagonal, with increasingly fewer connections between the further off-diagonal
neuron pairs.

Therefore, going beyond traditional RRAM crossbar architectures has been receiving
increasing attention [163, 164} [165, 166|. To implement artificial spiking small-world graphs
more efficiently, architectures with more local connectivity is required which results in a
better utilization of the allocated memory resources. For example, the CMOL Crossnet
architecture |167] permits local neuron connectivity through small tilted distributed RRAM
crossbars. However, the required tilt makes the integration challenging. Moreover, long
range global connections can only be obtained through 3D stacking of successive layers of
memory devices.

To solve these challenges in a practical fashion, we propose and experimentally demon-
strate a new re-configurable neuromorphic computing architecture called the “Mosaic” (Fig.
2.14(d)). The Mosaic is a two-dimensional systolic matrix of distributed “tiles”, each based
on a small crossbar of RRAM, that can serve either as analog spiking or spike routing
elements. Effectively, the Mosaic dices up one large crossbar into numerous smaller tiles
with different functions (Fig. [2.14(¢)). Importantly, the Mosaic uses RRAM not only
to store synaptic weights and carry out neural processing, but also to define the routing
patterns linking up neighboring tiles. The Mosaic is configurable on-the-fly and can be
implemented with standard CMOS technology integrated with a single layer of RRAM.
Moreover, the Mosaic introduces a novel routing approach different from the conventional
AER scheme in SNN hardware [168], |29] without the need for storing each neuron’s con-
nectivity information in local memories that draw static power and can consume a large
chip area.

2.5.2 The Mosaic architecture

The Mosaic architecture is illustrated in Fig. as an array of tiles which are distributed
in a two-dimensional systolic fashion. Each of the tiles consist of a small memristor crossbar
which can receive and transmit spikes to and from their neighboring tiles to the North
(N), South (S), East (E) and West (W) directions. The green squares represent “neuron
tiles” and correspond to small crossbars (Fig. [2.14k) that store the synaptic weights of
several LIF neurons. These neurons are implemented using analog circuits and are located
at the termination of each row, emitting voltage spikes at their outputs |23]. Effectively,
when recurrent connections are enabled, neuron tile work as small RSNNs. The spikes are
communicated between neuron tiles through a mesh of blue squares which represent “routing
tiles”. Routing tiles are also small crossbars that determine the connectivity patterns
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between neuron tiles. The state of each device in a routing tile crossbar determines the
output direction (i.e., N, S, E, W) towards which its input spike propagates, i.e. steering
it towards its intended target neuron elsewhere in the Mosaic. Together, the two tiles
give rise to a continuous mosaic of neuromorphic computation and memory for realizing
spiking small-world neural networks.

An example of small-world neural network topology, obtained by randomly programming
memristors in a computer model of the Mosaic is shown in Fig. 2.15al The resulting
graph exhibits an intriguing set of connection patterns that reflect those found in many
of the small-world graphical motifs observed in animal nervous systems. For example,
central ‘hub-like’ neurons with connections to numerous nodes, reciprocal connections
between pairs of nodes reminiscent of winner-take-all mechanisms, and a number of heavily
connected local neural clusters [161]. If desired, these graph properties could be adapted
on-the-fly by the re-programming the RRAM states in the two tile types. For example, a
set of desired small-world graph properties can be achieved by randomly programming the
RRAM devices into their HCS with a certain probability. Random programming can for
example be achieved elegantly by simply modulating RRAM programming voltages [154].

For Mosaic-based small-world graphs, we estimate the required number of memory
devices (synaptic weight and routing weight) as a function of the total number of neurons
in a network, through a mathematical derivation. Fig. plots the memory footprint
as a function of the number of neurons in each tiles for different network sizes. Horizontal
dashed lines show the number of memory elements using one large crossbar for each
network size, as has previously been used for RNN implementations [169]. The cross-over
points, at which the Mosaic memory footprint becomes favorable, are denoted with a
cross. While for smaller network sizes (here 128 neurons) no memory reduction is observed
compared to a single large array, the memory saving becomes increasingly important as
the network is scaled. For example, given a network of 1024 neurons and 4 neurons per
neuron tile, the Mosaic requires almost one order of magnitude fewer memory devices than
a single crossbar.

Calculation of memory footprint We calculate the Mosaic architecture’s Memory
Footprint (MF) in comparison to a large crossbar array, in building small world graphical
models.

To evaluate the MF for one large crossbar array, the total number of devices required to
implement any possible connections between neurons can be counted - allowing for any
SRNN to be mapped onto the system. Setting N to be the number of neurons in the
system, the total possible number of connections in the graph is M F,.; = N2.

For the Mosaic architecture, the number of RRAM cells (i.e., the MF) is equal to the
number of devices in all the neuron tiles and routing tiles: M Fos0ic = M FneuronTites +

MFRoutingTiles .



CHAPTER 2. BUILDING A SPIKING NEURAL NETWORK WITH RRAM 71

Considering each neuron tile with k& neurons, each neuron tile contributes to 4 x k?
devices (where the factor of 4 accounts for the four possible directions to which each
tile can connect). Evenly dividing the N total number of neurons in each neuron tile
gives rise to T = ceil(N/k) required neuron tiles. This brings the total number of devices
attributed to the neuron tile to T x 4 x k2. The number of routing tiles which connects all
the neuron tiles depends on the geometry of the Mosaic systolic array. Here, we assume
neuron tiles assembled in a square, each with a routing tile on each side. We consider R
to be the number of routing tiles with 4k? devices in each. This brings the total number
of devices related to routing tiles up to M Froutingrites = R X (4k)?. The problem can then
be re-written as a function of the geometry. Considering Fig[2.14(d, let i be an integer
and (2 + 1)? the total number of tiles. The number of neuron tiles can be written as
T = (i + 1), as we consider the case where neuron tiles form the outer ring of tiles. As a
consequence, the number of routing tiles is R = (2i + 1)* — (i + 1)%. Substituting such
values in the previous evaluations of M Fixcurontites + M FroutingTites @a1d remembering that
k<N x T7 we can impose that MFMosaic = MFNeuronTiles + MFRoutingTiles < MFMFm]w
This results in the following expression:

MFMosaic = MFNeuronTiles + MFRoutingTiles < MFreference (22)
(i +1)%4 x B>+ [(20 + 1)* — (i + 1)?]((4k)*) < (k(i + 1)%)? (2.3)

This expression can then be evaluated for ¢, given a network size, giving rise to the
relationships as plotted in Figf2.15b]

Neuron tile circuits: small worlds

Each neuron tile in the Mosaic is composed of multiple “neuron columns”; a circuit that
models a LIF neuron and its synapses. To realize a small RSNN, neuron columns are
agglomerated into a ‘tile’. This is done through stacking consecutive columns side-by-side
and connecting their gates row-wise to common input lines (i.e., a crossbar architecture).
A simple neuron tile, composed of only two neuron columns receiving two inputs, is shown
in Fig. [2.16a] The top two rows of the crossbar represent the neurons’ synaptic weights
corresponding to external inputs, while the bottom two represent those of the recurrent
connections between neurons within the tile. Following a systolic organization [170], each
input or output spike can enter from, and exit towards, the neighboring N, S, E, W tiles.
We mapped a simple network topology onto a fabricated neuron tile circuit depicted in
Fig. [2.16al Two devices highlighted in bold black were programmed to be in their HCS
while the gray shaded ones were programmed in their LCS. We then applied a train of input
voltage spikes to Vj, < 0 >. The experimental measurements are plotted in Fig.
whereby the membrane potential of neuron 0 is observed to periodically increase upon
the arrival of each pulse. After the 6** input pulse, V,,em exceeds the threshold V;,, and
the circuit generates an output spike. Because of the recurrent connection between the
two neurons defined in the neuron tile, the membrane of neuron 1 integrates an excitatory
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Figure 2.15: @ An example graph resulting from the random programming of devices in
each of the tiles in the Mosaic pictured in part. The green circles correspond to neurons
which exist in the neuron tiles and the blue edges are defined by the resulting paths that
are formed between neuron tiles through the routing tiles. (@ Plot showing the required
bits of memory for different number of total neurons in a network model depending on
the size of the neuron tile. The number of bits of memory is referred to as resistive
memory devices programmed in a binary fashion. The horizontal dashed line indicates
the number of required memory bits using a fully-connected RRAM crossbar array for
different network sizes. The cross (X) illustrates the cross-over point beyond which Mosaic
approach becomes favorable.

post-synaptic potential at the same instant (shown in orange). Neuron 0 then enters a
temporary refractory period, during which it does not integrate incoming spikes.

Routing tile circuits: connecting small-worlds

A routing tile circuit is shown in Fig. It acts as a flexible means of configuring how
spikes emitted from neuron tiles propagate locally between small-worlds. The functional
principles of the routing tile circuits are similar to the neuron tiles. The principal difference
is the replacement of the biological synapse and neuron circuit models with a simple
current comparator circuit. On the arrival of a spike on the column, it compares the device
read current to a reference. If it is larger than this reference, it generates an output spike.
Otherwise the output remains at zero. Therefore, the state of the device serves to either
pass or block input spikes: in Fig. [2.16d, each device determines whether input spikes
arriving from different input ports (N, S, W, E') are propagated, or not, to each output
port.

Using a fabricated routing tile circuit, we demonstrate its functionality experimentally.
Two devices (colored in green and red in Fig. were programmed in HCS and LCS
respectively. The other devices were left in the pristine state. This has the effect of
allowing incoming pulses from N to propagate out to E, while blocking pulses coming
from S direction. A pair of pulses were applied to NV and S input ports of the fabricated
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Figure 2.16: Experimental measurements of the fabricated tile circuits. @)
Depiction of a neuron tile. Devices are colored in black or gray to indicate respectively
whether they were in HCS or LCS during our experimental results plotted in part [bl
Colored voltage labels and input voltage pulses are also in reference to plots in part b. The
input and output voltage pulses can come from or be propagated to the neighboring tiles
to the North (N), South (S), East (E) and West (W). (b)) Voltage traces measured from a
fabricated implementation of the neuron tile circuit in @ Due to an input pulse train (gray
pulses) at V;, < 0 > the membrane of the zeroth neuron column in the tile integrates an
increasing amount of voltage (purple trace) until, after six pulses, the neuron fires (light
blue trace). As a result of the feedback connection to the other neuron column, neuron
1 also exhibits an increase in its membrane voltage. Circuit schematic of a routing
tile. Two devices colored green and red denote respectively the devices programmed in the
HCS and LCS in the experiment of part (b). Rectangular pulse waveforms depicted on the
left-hand side indicate where the input voltage pulses were applied during this experiment.
(d) Experimental results from a fabricated version of the routing tile shown in part (c).
Continuous and dashed blue traces show the waveforms applied to the N and S inputs
while the orange trace shows the response of the output towards the E port. The E output
port follows the N input resulting from the device programmed into the HCS in part (a).



CHAPTER 2. BUILDING A SPIKING NEURAL NETWORK WITH RRAM 74

circuit, plotted respectively in solid and dashed blue lines in Fig. While the F
output port remains at zero due to the incoming pulses from the S input port, it switches
to a high voltage as a result of incoming pulses from the N input port. This output pulse
propagates on-wards to the next tile. Note that in Fig. the output spike does not
appear as rectangular due to the large capacitive load of the probe station. To allow for
greater configurability, more channels per direction can be used in the routing tiles.

Calculation of routing energy In state-of-the-art event-based neuromorphic chips,
the information is communicated through the AER scheme [168]. Whenever a spiking
neuron in a chip (or module) generates a spike, its “address” (or any given ID) is written
on a high-speed digital bus and sent to the receiving neuron(s) in one (or more) receiver
module(s). In the Mosaic structure, we have distributed the routing information in a
two-dimensional matrix along with the computing units. To compare the routing energy
and latency of Mosaic with the AER systems, we have calculated the energy per spike
routing in the best and worst case scenarios in both systems.

In Mosaic, routing is performed by Routing Tiles, and an input spike is passed onto a
neighbouring Neuron Tile by activating the circuit in Fig. To assess the energy
efficiency of such circuit, a SPICE simulation is performed. The simulation involved
an input spike activating a RRAM set at 10 k€2 and activating the output comparator,
buffering the spike at the output. The input spike is assumed as a voltage pulse of 10 ns
of duration and 1.2 V of voltage. As intuitive, the duration of the pulse is a critical design
parameter affecting the energy consumption. The pulse-width of the spike was chose to
satisfy the requirement of the correct working of the circuit under process variation: such
pulse-width allows correct the functioning of the routing tile circuit 97% of the times,
as verified in Monte-Carlo simulations. The resulting energy per routing operation is
as low as 60 pJ. For AER-based systems, we are using the energy and latency numbers
reported in Dynap-SE, as one of the most recent and optimized AER routing schemes [29].
It is a multi-core neuromorphic circuit comprising four cores; each core includes 256
neurons. It has a hierarchical asynchronous routing, combining a source-based routing
mesh architecture with a destination-based hierarchical tree routing method. SRAM cells
store the routing structure in the tree and the CAM cells store the tag of the source
address to which each neuron is connected.

Therefore, once a spike is generated, the least energy consumption happens in a scenario
where the events should be routed locally, and thus 256 10-bit CAM cells are accessed. In
the worst case, events have to travel from the first-level router to the higher levels and
thus the energy of reading SRAM cells are added. Therefore, the energy of routing one
spike in Dynap-SE can be calculated by the following equation:

Fiotat = Espike + Epuise + Epn + Epc + RT . Egr (2.4)

Where Egpre is the energy to generate one spike, Epyse is the energy of the pulse extender
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circuit, F,, is the energy to encode one spike and append destination, Eg¢ is the energy
to broadcast the event to the same core, RT is 1 if the spike has to be routed to other
cores, otherwise zero, and Egrr is the energy to route the events to other cores. If RT = 0,
total energy to route the event to the core sums up to 7.68nJ. In case of the event routing
to other cores, multiples of 360 pJ should be added to the energy consumption (energy
required for reading SRAM at each hierarchical router level.

2.5.3 Application to real-time sensory processing

The small-world connectivity and the spiking nature of the Mosaic architecture imposes
spatial and temporal sparsity on the network. Additionally, the use of RRAM devices
as synaptic weight elements imposes a severe limitation on the precision of the stored
weights relative to an equivalent software model. To evaluate the effect of the sparsity
in combination with our fabricated circuit characteristics on the Mosaic performance, we
benchmark it on two real-world sensory applications against software solutions. Specifically,
we compare the prediction accuracy of an ideal software RSNN [171, 110} |112] to that of
a small-world RSNN implemented with the Mosaic approach, (i) to detect arrhythmic
heartbeats within ECG signals [150], and (ii) to classify spoken digits [149].

ECG anomaly detection First, we encode the continuous ECG time-series into trains
of spikes using a delta-modulation technique, which describes the relative changes in
signal magnitude [172, [173]|. These spikes are fed as input into the Mosaic small-world
RSNN. As outputs, we designated two sub-populations of neurons within two pairs of the
Mosaic’s neuron tiles. Elevated spiking activity in either sub-population denotes a normal
heart beat (black), or an anomalous one (red) (Fig. [2.17a)). Relative to other approaches
(e.g. in reservoir computing [166, 174, [175]), this scheme avoids the need for an output
feed-forward layer, simplifying the read-out to monitor the state of the output neurons.

We train the RSNN in an ex-situ fashion [135], using BPTT [176] with surrogate
gradient approximations of the derivative of a LIF neuron activation function [111].
We then transferred the resulting floating-point precision weights to the low-precision
conductance states of memristors in an experimental crossbar using a closed-loop iterative
programming algorithm [129]. The resulting conductances, corresponding to an equivalent
large-scale implementation of the Mosaic, are then read during a mixed hardware-software
co-simulation of the system.

An example of the resulting spike trains produced in the Mosaic, due to an ECG time-
series of the arrhythmic heartbeat plotted in Fig. [2.17a] is shown in Fig. The
activity of the neurons in each predictive sub-population are bounded within red and black
horizontal dashed lines. The neurons in the red sub-population fire more frequently than
those in the black sub-population, here correctly identifying the heartbeat as arrhythmic.
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The accuracy over the test set for 100 iterations of training, transfer and test is plotted
in Fig. using a boxplot. The median detection accuracy of the Mosaic is 96.9%.
To gauge the effect of the spatial and temporal sparsity in the Mosaic architecture, we
compare it to two networks: one network without spatial sparsity, but including temporal
sparsity (Software SNN), and the other one without any sparsity (Software RNN). While
compared to the Software SNN, with a median accuracy of 97.0%, the Mosaic suffers
a negligible difference in average accuracy, it outperforms the Software RNN (with the
median accuracy of 96.1%). This result is consistent with other observations whereby
RSNN have outperformed non-spiking equivalents [177]. This illustrates that, not only the
imposed sparsity of the Mosaic does not have a negative effect on the accuracy, but that
the model is also robust to a severe degradation in the precision of the weights for this
task.

Spoken digit classification We next apply the Mosaic to the more challenging Spiking
Heidelberg Dataset (SHD) [149]. The Mosaic-based model was trained using the same
NHC approach as in the ECG task, and we compare its performance to a software-based
RSNN. To classify the SHD dataset, a SNN network featured 144 neurons, 20 of which
representing the outputs, distributed across 36 neuron riles. Connections between neurons
in the Mosaic are enabled given the SET probability for the neuron and routing tile devices,
assuring sparse connectivity. From the Mosaic’s neurons, 20 output neurons are chosen in
uniformly spaced fashion, and are isolated from the rest of the neurons by disabling their
recurrent connections to other neuron tiles. The readout of the output is conveniently
performed by monitoring the state of the 20 output neurons in the Mosaic architecture,
without requiring external computation. The results are reported in Fig. [2.17dl Mosaic
suffers from a slight loss of accuracy compared to the unconstrained software model [149].
The difference can be attributed to the fact that the Mosaic’s output neurons are chosen
inside the recurrent pool without an explicit output layer. Representing the weights in the
Mosaic architecture with 8-levels RRAM values results in a slight drop of performance,
due to the reduced precision of the weights. This is compensated by the advantages in
energy consumption and density that the RRAM devices bring to the Mosaic architecture.

Efficiency of Mosaic compared to a fully-connected RSNN Fig. and
Fig. respectively depict the required memory and energy footprint of Mosaic compared
to a fully-connected RSNN for ECG and SHD tasks. For the smaller size network required
for the ECG task, Mosaic requires slightly higher memory and energy consumption.
However, as the size of the network increases, i.e. in the case of SHD task, Mosaic shows
significant benefits, i.e. about 66% less memory and energy footprint. This is in agreement
with the mathematical estimations of the memory (and thus power) consumption in

Fig. [2.15b}
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Table 2.2: Comparison of routing performance

True
. SpiNNaker Neurogrid Dynap- Loihi | Crossnet .
Chip North [179] [180] SE [29] | [25] [isy] | Mosaic
[178]
Techn. 28 nm 130 nm 180 nm 180 nm 14 nm 45nm° | 130 nm
. : . on/off- : on- : on-
Routing on-chip on-chip chip on-chip chip on-chip chip
Routing 2.3pJ @ 360 pJ 4pJ @ 60 pJ
energy 0.775V 4nJ 18.8n] a1sv | osv | 0P | arav
Energy
Scaled to 49.5pJ 4nlJ 9.74nJ 190 pJ 344 pJ 18 pJ 60 pJ
130 nm
Routing
6.251ns 200 ps 20ns 40 ns 6.51s N/A 291ns
latency
Latency 60.35
Scaled to 29 ns 200 ps 14.4 ns 28.88 ns ' N/A 29ns
ns
130 nm

° For a 64-bit crossbar with Fpano = 10 nm.

Comparison to other approaches

We compare the efficiency of the Mosaic architecture against existing approaches. We
take into account the energy and latency required to route one event to the neighboring
computing core. Table shows this comparison.

In the table, we have scaled the energy and latency figures of all the platforms to 130 nm
technology using general scaling laws|182] for a fair comparison. The scaled energy figures
show that although the Mosaic’s design has not been optimized for energy efficiency, it
outperforms all platforms except for TrueNorth with comparable figures to the Mosaic,
and the Crossnet. This efficiency can be attributed to the Mosaic’s in-memory routing
approach resulting in low-energy memory access distributed in the space. This distributed
architecture reduces the size of each router, compared to larger centralized routers in
other platforms and thus reduces the access energy. Moreover, it avoids the use of content-
addressable-memory (CAM) used in many spike routing platforms which are the main
source of routing energy. It is worth noting that the energy figures reported for Crossnet
are not for routing per se, as the architecture does not include any routers, but rather it
can send events to any neurons in a local connectivity domain, with their own connectivity
domains. The Mosaic’s implementation does not require the tilted crossbars in Crossnet,
and hence facilitates the fabrication of small-world networks with configurable routers. The
Mosaic’s latency figure per router is comparable to the average latency of other platforms,
which is most often a negligible factor in real-time sensory processing applications.
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Figure 2.17: Benchmarking the Mosaic against two tasks of ECG arrhythmia
detection and Spoken digit classification (SHD dataset). (a) A depiction of the
ECG classification use case, addressed with the Mosaic architecture. Two-channel ECG
waveforms are delta-modulated into four channels. Two groups of two neuron tiles (colored
in black and red) are designated as the output neuron populations. (]ED An example raster
plot of all neurons in the Mosaic in ECG task. Green points indicate the spike times of
each neuron. Red and black dashed horizontal lines respectively indicate the anomalous
and normal population activity used as the output neurons. A comparison of the
accuracy of the ECG anomaly detection task. Boxplots show the accuracy distribution over
10 iterations of a software-based recurrent neural network (left, orange), a software-based
spiking neural network (center, red) and the experimental Mosaic model with multi-level
resistive memory devices acting as the synapses (right, green). The colored boxes span
the upper and lower quartiles of accuracy, while the upper and lower whiskers extend to
the maximum and minimum accuracies. @ Comparison of the accuracy of the SHD task.
Boxplots show the accuracy distribution over 10 iterations of a software-based recurrent
neural network (red) and the experimental Mosaic model.. (E[) Required memory footprint
for two tasks of ECG and SHD using a fully connected RSNN, compared to the Mosaic. As
the size of the network increases (SHD case), the memory savings for Mosaic is significant
(one third of the RSNN). (]ﬂ) Energy consumption for the two tasks using a fully-connected
RSNN compared to the Mosaic architecture.



Chapter 3

Neuromorphic system for object
Localization

Neuromorphic engineering is as much about sensing as it is about computation. The
previous chapter focused on a computing platform, based on neurons and synapses making
use of RRAMs. This computational primitives are now utilized in the context of a neu-
romorphic system where sensing and processing are co-designed to yield unprecedented
energy efficiency. For the first time, advance miniaturized acoustic sensor such as pMUTs
are utilized for object localization in a neuromorphic system. Inspiration from biology
guides the development of a computational map based on the Owl’s auditory cortex. The
result is a system - described in this chapter - that leverages advanced technologies such
as pMUTs and RRAMs and is based on biologically derived algorithms to optimize the
energy efficiency.

3.1 Motivation

We are entering an era of pervasive computing devices where an exponentially increasing
number of autonomous devices are being deployed to assist us in our daily lives. These
autonomous machines will have to operate continuously, dissipating the lowest possible
amount of energy while learning to interpret the data they capture from several sensors in
real-time. The first step to this objective is to extract useful and compact information
from noisy and often incomplete sensor data [183]. Conventional engineering approaches
sample the output sensor signal at high rates, thus generating huge amounts of data,
even in the absence of useful input stimuli. Moreover, these approaches require complex
techniques to pre-process the noisy data. Biology offers alternative solutions for processing
noisy sensory data, using energy-efficient, asynchronous, event (spike)-driven methods [184,
185]. Neuromorphic computing draws inspiration from biological systems to reduce the
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computational cost in terms of energy and memory requirements, relative to conventional
signal processing techniques [186} [187]. Innovative general-purpose brain-inspired systems
that implement spiking neural networks (TrueNorth|33|, BrainScaleS|188|, DYNAPs|29|,
Loihi|25], Spinnaker|189]) have recently been demonstrated. These processors offer low-
power and low-latency solutions for implementing machine learning tasks, and for modeling
cortical circuits. To take full advantage of the energy efficiency of these neuromorphic
processors they have to be connected directly to event-driven sensors [190, 191]. However,
only few event-driven sensors exist today. Prominent examples are the Dynamic Vision
Sensor (DVS) used for motion detection [192} |193, 194] and object tracking [195], the
silicon cochlea sensor [196] and the Neuromorphic Auditory Sensor (NAS) [197] used to
recognize phonemes, the olfactory sensor [198|, and the touch sensor for texture recognition
[52, [199].

In this chapter, we developed an event-driven auditory sensor for object localization. Here,

for the first time, we present an end-to-end system for object localization which is obtained
by coupling the state-of-the-art piezoelectric micro-machined ultrasound transducers
(pMUTS) to a neuromorphic resistive memory (RRAM)-based computational map. In-
memory computing architectures employing RRAMs, otherwise known as memristors, are
a promising solution to reduce energy consumption [134, 200, 201}, [74} 130, |129]. Their
inherent non-volatility - not requiring active power consumption to store or refresh the
information - matches the asynchronous event-driven nature of neuromorphic computation
perfectly, resulting in virtually no power consumption when the system is idle. pMUTs are
low-cost, miniaturized silicon-based ultrasound sensors able to act as emitters and receivers
[202}; 203, 204, [205], 206]. To process the signals captured by the embedded sensors, we
have taken inspiration from the neuroanatomy of the barn owl [207] 208, 209].
The barn owl Tyto alba is known for its exceptional night hunting capabilities made
possible by a very efficient auditory localization system. To calculate the position of a prey,
the Barn owl’s localization system encodes the Time-of-Flight (ToF) of the sound wave
coming from the prey when it reaches each of the owl’s ears or sound receptors. Given the
distance between the ears, the difference between the two ToF measurements (Interaural
Time Difference, ITD) makes it possible to compute the azimuthal location of the target
analytically. Although biological systems are not adapted to solve algebraic equations,
they perform localization tasks very efficiently. The barn owl’s nervous system makes
use of an array of Coincidence Detector (CD) neurons [207] (i.e. neurons able to detect
temporal correlations between spikes propagating down converging excitory terminals)
[210} [211] organized into a computational map to solve the localization task.

Previous studies have shown that complementary metal-oxide-semiconductor (CMOS)-
based neuromorphic hardware inspired by the inferior colliculus (’auditory cortex’) of barn
owl constitute an efficient way to compute the position from the ITD [191] 212, [213, [214].
However, the potential of a full neuromorphic system that couples auditory signals to the
neuromorphic computational map has not yet been proven. The main challenge is the
intrinsic variability of analog CMOS circuits, affecting the coincidence detection precision.
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In this work we propose to exploit the ability of RRAMs to change their conductance
value in a non-volatile manner to counteract the variability in analog circuits.

We implemented an experimental system consisting of a single emitting pMUT mem-
brane working at 111.9kHz, two reception pMUT membranes (sensors) that emulate the
barn owl’s ears, and a neuromorphic computational map fabricated by co-integrating
a 130nm CMOS processor with hafnium dioxide RRAM devices. We experimentally
characterized the pMUT sensory system and the RRAM-based I'TD computational map to
validate our localization system and to estimate its resolution. We compared our approach
to a microcontroller performing the same localization task using either conventional beam-
forming or neuromorphic techniques. We find that the proposed neuromorphic system
achieves a reduction in power consumption of five and four orders of magnitude with
respect to the two microcontroller-based solutions.

3.1.1 Biological background

One of the most striking examples of precise and efficient object localization systems can be
found in barn owls [216, 207, 209|. At dusk and dawn, barn owls ( Tyto Alba) actively search
for small prey such as voles or mice relying mostly on passive listening. These auditory
specialists can locate auditory cues incoming from their prey with astonishing accuracy
(about 2°) [207], as shown in Fig. [3.1h. Barn owls infer the localization of a sound source
in the azimuthal (horizontal) plane from the difference between the ToF incoming from
the source on the two ears (ITD). The ITD computation mechanism has been postulated
by Jeffress [217] 218|, it relies on neural geometry and requires two key ingredients: axons,
neuron’s nerve fibers, that act as delay lines, and an array of Coincidence Detector neurons
organized into a computational map, as depicted in Fig. [3.1b. The sound reaches the
ears with an azimuth-dependent time delay (Interaural Time Difference, ITD). In each
ear, the sound is then converted into a spike pattern. Axons from the left and right ears
act as delay lines and converge at CD neurons. In theory, only one neuron of the array
of coincidence neurons will receive simultaneous inputs (where the delay is compensated
exactly), and will fire maximally (neighboring cells will fire too, but at a lower rate). This
concept is summarized in Fig. [3.Ic: for example, if the sound originates from the right, a
coincidence will occur when the input signal from the right ear travels a longer path than
from the left ear by an amount compensating the ITD, e.g. at coincidence neuron 2. In
other words, each CD responds to a specific ITD (also called Best Delay) because of axonal
delays. In this way, the brain transforms temporal information into spatial information.
Anatomical evidence has been found for this mechanism [209} 219|. There are phase-locked
neurons of the Nucleus Magnocellularis who preserve the temporal information of the
input sound: as their name indicates, they fire at a specific phase of the signal. The
coincidence detector neurons of the Jeffress model can be found in the Nucleus Laminaris.
They receive input from neurons of the Nucleus Magnocellularis, whose axons serve as
delay lines. The amount of delay provided by delay lines may be explained by axonal
lengths, but also by differential myelination patterns, changing the conduction speeds.
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Figure 3.1: Object localization system in barn owls and the proposed bio-inspired tech-
nology. (a) The barn owl receives a sound wave from a target, a moving prey in this
case. The Time-of-Flight (ToF) of the soundwave at each ear is different (unless the prey
is exactly in front of the owl). The dash-dotted lines represent the path of the sound
wave towards the barn owl’s ears. Based on the difference in the two soundwave path
lengths and the corresponding Interaural Time Difference (ITD), it is possible to locate
the prey precisely in the horizontal plane, figure inspired by , Copyright 2002 Society
for Neuroscience). In our system the pMUT emitter (in dark blue) produces a sound wave
that bounces off the targeted object. The reflected ultra-sound wave is sensed by 2 pMUT
receivers (in light-green) and processed by the neuromorphic processor (right). (b) The
ITD computation model (Jeffress model) describes how sounds reaching the barn owl’s
ears are first encoded into phase-locked spike trains in the Nucleus Magnocellularis (NM),
and then processed using a grid of geometrically arranged coincidence detector neurons
in the Nucleus Laminaris (NL) (left). Illustration of the neural ITD computational map
combining delay lines and coincidence detector neurons that can be implemented using
RRAM-based neuromorphic circuits to model the owl’s biological sensing system (right).
(c) Diagram of the basic Jeffress mechanism, where the two ears receive a sound stimulus
at different moments due to a difference in the ToF and send axons to detectors from
opposite ends. The axons are afferent to an array of coincident detector neurons (CDs),
each of which is selective to highly temporally correlated inputs. As a result, only the CDs
whose inputs arrive with the smallest time difference (the ITD is exactly compensated)
will be maximally excited. The CDs will then encode the angular position of the target.
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Inspired by the auditory system of the barn owl, we developed a biomimetic system for
object localization. The two ears are represented by the two pMUT receivers. The sound
source is a pMUT emitter located in between (Fig. ), and the computational map is
formed by a grid of RRAM-based CD circuits (Fig. [3.1p, in green) taking the role of CD
neurons, whose inputs are delayed by delay line circuits (in blue) which act as the axons
in the biological counterpart.

3.2 PMUT sensors for Time-of-Flight measurement.

Piezoelectric micromachined ultrasonic transducers are scalable ultra-sound sensors that
can be integrated with advanced CMOS technology|203, |204], 205| 220], and have lower
actuating voltage and power consumption than conventional bulk transducers [221]. In
our work, the diameter of the membrane is 440um and the resonance frequency spreads
in the range [110 — 117]k Hz (Fig. [3.2h). Over a batch of 10 tested devices, the median
quality factor is around 50 [203]. Combining the information of different membranes
is a well-known technique to infer angular information from pMUT devices, using for
instance beamforming techniques [203, 222]. The potential of this technology for air-borne
pulse-echo measurements has been demonstrated using a beamforming strategy on a system
composed of a pMUT emitter (composed of 1 membrane) and a pMUT receiver system
(made of 5 pMUT membranes arranged in an array with a pitch of 1.5 mm), located
few centimeters apart from each other[203]. We conducted an experiment locating two
pMUT sensors about 10cm apart from each other, thus fully taking advantage of the
different ToF of sound being sensed by the two receiving membranes. A single pMUT
working as an emitter is located in between the receivers. A 12 cm-wide PVC plate
located in front of the pMUT devices at a distance D was used as a target (Fig. 3.2p).
The receivers record the sound reflected from the object and respond maximally at the
Time-of-Flight of the sound wave. The experiment was repeated varying the position
of the object, defined by its distance D and its angle ©. Inspired by [223|, we propose
a neuromorphic pre-processing of the pMUT raw signal, as described in Fig. [3.2k: for
each of the two pMUT receivers, the raw signal is band-pass filtered to smooth it out,
rectified, and later passed to an Integrate-and-Fire (IF) neuron, which converts the signal
into a spike train. This in turn feeds a second Leaky-Integrate-and-Fire (LIF) neuron that
produces an output event (spike) in case of overcoming a dynamical threshold (Fig. [3.21):
the timing of the output spike encodes the detected Time-of-Flight. The threshold of the
LIF is calibrated to the pMUT response mitigating the pMUT’s device-to-device variability.
Thanks to this approach, instead of storing the whole sound wave to memory and process
it later, we simply generate a spike at the reception of the sound wave, which constitutes
the input of the resistive memory-based computational map. To assess the localization
angular precision allowed by the pMUTs and the proposed signal processing technique, we
measured the ITD (i.e. the time difference between the spike events generated by the two
receivers) when varying the distance and angle of the object. The ITD is then analytically
converted into an angle and plotted as a function of the object position: the uncertainty
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Figure 3.2: Sensory system assessment. (a) Picture of a pMUT die with six 880 pum-
diameter membranes integrated with a 1.5 mm pitch. (b) Diagram of the measurement
setup. A target object is located at an azimuthal position 6 and distance D. An emitter
pMUT produces a wave-form at 117.6 kHz that is reflected by the object and arrives at
the 2 pMUTSs receivers with different Time-of-Flight (ToF). Such difference, defined as
Interaural Time Difference (ITD), encodes the position of the object and can be estimated
evaluating the peak of the response in the two receiver sensors. (c) Diagram of the
pre-processing steps to convert the raw pMUT signal into a train of spikes (i.e. the input
for the neuromorphic computational map). The pMUT sensors and the neuromorphic
computational map have been fabricated and tested, while the neuromorphic pre-processing
is based on software simulations. (d) Response of the pMUT membrane upon arrival of
a signal and conversion to the spike domain. (e) Experimental angular precision of the
localization as a function of the object angle (©) and the distance (D) of the target object.
The minimum angular resolution imposed by the I'TD extraction method is of about 4°.
(f) Angular precision (blue line) and corresponding Peak-to-Noise Ratio (green line) as a
function of the object distance for ©=0.
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Figure 3.3: PMUT data treatment assessment. From left to right, the Raw signal of the
pMUT is converted to a Voltage: at this stage it is hard to retrieve any information from
the signal. A Band-Pass Filter (BPF) centered around the pMUT resonance frequency is
applied to remove most of the noise and smoothen the signal. Later, the BPF signal is
Half-Wave-Rectified to remove the negative component. The resulting signal is feeding
a Leaky-Integrate-and-Fire (LIF) neuron. This LIF neuron features an exponentially
decreasing threshold which, once overcome, induces a single output spike emitted at the
Time-of-Flight of the sound wave detected by the pMUT receiver. Circuits on the lower
part of the figure are taken from[223].

over the measured ITDs grows with both the object’s distance and angle (Figs. and
f). The main challenge is the noise in the pMUT response. The more distant the object is
located, the higher the noise, thus lowering the Peak-to-Noise ratio (Fig. |3.2f, green line).
The decrease in the Peak-to-Noise Ratio (SNR) leads to an increase in the uncertainty over
the estimated ITD and consequently on the precision of the localization (Fig. , blue
line). For an object located 50 cm away from the emitter, the system’s angular precision
is about 10°. This limit, imposed by the sensor’s characteristics, can be improved. For
example, the emitted signal can be strengthened by coupling several emitters, and/or by
using multiple receivers to average the information on the detected Time-of-Flight, and
thus lowering the uncertainty. This would extend the range of detection, as demonstrated
in [206], at the price of an added energy cost.

Acoustic measurement setup and pMUT characterization. pMUT sensors are
arranged in a printed circuit board, separating the two receivers of about 10 c¢m, with
the emitter between the receivers. In this work, each membrane is a suspended bimorph
structure made of two 800 nm-thick piezoelectric Aluminium Nitride (AIN) layers sand-
wiched between three 200 nm-thick Molybdenum (Mo) layers, covered by a 200 nm-thick
top SiN passivation layer, as reported in [224]. Inner and outer electrodes are patterned
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Figure 3.4: PMUT characterization and Object Angle as a function of ITD. (a) Reso-
nance voltage amplitude of the 3 pMUT membranes as a function of the input driving
voltage frequency. Each membrane shows a slightly different resonance frequency, due
to imperfections in fabrication. This mismatch does not affect the quality of the mea-
surements. (b) Analytical relationship between the Interural Time Difference (ITD) and
angular /azimuthal object position.

on the bottom and the top Mo layers, while the middle Mo electrode is not patterned and
used as the ground, resulting in a membrane with four electrodes pairs. This architecture
enables to exploit the whole deformation of the membrane, resulting in a enhanced drive
and receive sensitivity. Such a pMUT typically presents a drive sensitivity of typically
700 nm/V as an emitter, delivering a surface pressure of 270 Pa/V. As a receiver, a single
pMUT membrane presents a short-circuit sensitivity of 15 nA /Pa, directly related to the
piezoelectric coefficients of AIN. The technological variability of the stress within the AIN
layers results in a resonant frequency variation which is compensated by applying a DC
bias to the pMUT. The DC sensitivity has been measured at 0.5 kHz/V. For acoustic
characterization, a microphone is used in front of the pMUT. For pulse-echo measurements,
we positioned a rectangular plate of about 50 cm? in front of the pMUTs, reflecting the
emitted sound wave. Both the distance of the plate and the angle with respect to the
pMUT plane are controlled utilizing dedicated supports. Tectronix CPX400DP voltage
sources bias the three pMUT membranes to tune the resonant frequency to 117.6 kHz[203)|,
while the emitter is controlled by a Tectronix AFG 3102 pulse generator set close to the res-
onance frequency (117.6 kHz), and a duty cycle of 0.01. The currents read at the 4 output
ports of each pMUT receiver is converted into a voltage by a dedicated differential current-
to-voltage architecture and the resulting signal is digitized by a Spektrum acquisition
system. We characterized the limit of detection by collecting the pMUT signal in different
conditions: we moved the reflecting plate at different distances [30,40,50,60,80,100] cm
and varied the angle of the pMUT support ([0, 20,40] ©). Fig.|3.4b shows the relationship
between the temporal resolution in detecting Interaural Time Difference (ITD) and the
corresponding angular position in degrees.
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Figure 3.5: Role of RRAM devices in neuromorphic circuits. (a) Scanning Electron
Microscopy (SEM) image of a HfO, 1T1R RRAM device, in blue, integrated on 130 nm
CMOS technology, with its selector transistor (width of 650 nm) in green. (b) Basic
building block of the proposed neuromorphic circuit. Inputs voltage pulses (spikes), Vj,o
and Vj,1, draw a current [,,egn: proportional to the conductance states, Gy and G, of the
1T1R structures. This current is injected into a DPI synapse that excites a LIF neuron.
The RRAMs Gy and G are set in the HCS and LCS respectively. (¢) Cumulative Density
Function of the conductance of a population of 16 kb RRAM devices, as a function of the
compliance current I, which effectively controls the conductance level. (d) Measurement
of the circuit in (a), showing that G (in LCS) effectively blocks inputs from Vj,; (green),
in fact the output neuron’s membrane voltage only responds to the blue input of V.
RRAMs efficiently define the connections in the circuit. (e) Measurement of circuit in (b)
showing the effect of the conductance value GGy on the membrane voltage Ve, following
the application of a voltage pulse Ving. The larger the conductance, the stronger the
response: the RRAM device thus implements the weight of the input-to-output connection.
Measurements have been performed on one circuit and demonstrate the dual function of
the RRAMSs, they route and weigh the input pulses.

3.3 RRAM-based neuromorphic computational map.

Resistive memories store information in their non-volatile conductive states. The basic
working principle of this technology is that modifying a material at the atomic level
results in changes of its conductance . Here we use an oxide-based resistive memory
composed of a 5 nm hafnium-dioxide layer sandwiched between a top and a bottom
electrode of titanium and titanium nitride. The conductivity of an RRAM device can
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be modified by the application of current/voltage waveforms, which create or break a
conductive filament composed of Oxygen vacancies between the electrodes. We have
co-integrated such devices in a standard 130 nm CMOS process [226] to build a fabricated
re-configurable neuromorphic circuit implementing coincidence detectors and the delay
lines circuits (Fig. ) Both the non-volatility and analog nature of the devices perfectly
couple with the event-driven nature of the neuromorphic circuits, minimizing power
consumption when idle. The basic building block of the proposed circuit is presented
in Fig. . It is composed of N parallel one-resistor-one-transistor (1T1R) structures,
encoding the synaptic weights, from which a weighted current is extracted and then
injected to a common differential pair integrator (DPI) synapse |70], and finally into a
Leaky-Integrate-and-Fire (LIF) neuron [23].

RRAM-based neuromorphic circuits present the challenge of designing a fully analog
electronic system in which the RRAM devices coexist with conventional CMOS technology.
In particular, the conductive state of the RRAM devices has to be read and utilized as a
functional variable of the system. To do so, a circuit that reads a current from a device
upon arrival of an input pulse and that uses such current to weight the response of a
Differential Pair Integrator (DPI) synapse has been designed, fabricated, and tested. The
circuit is shown in Fig. and it represents the basic building block of the neuromorphic
platform in Fig. [3.6h. The input spikes are applied at the gates of the 1T1R structures
as trains of voltage pulses, with a pulse-width on the order of hundreds of nanoseconds.
Input pulses result in a current flow through the RRAM proportional to the conductance
of the device, G' (Lyeight = G(Viep — Vi)). The operational amplifier circuit (OPAMP) has a
constant DC bias voltage Vr,, applied to its inverting input. The negative feedback of the
OPAMP will act to ensure that V, = V,,,, by sourcing an equal current from transistor M.
The current extracted from the device, Iyeignt, is injected onto the DPI synapse. Stronger
currents will result in greater depolarization, thus the RRAM’s conductance effectively
implements the synaptic weight. This exponential synaptic current is injected onto the
membrane capacitor of a leaky-integrate and fire (LIF) neuron where it integrates as a
voltage. If the threshold voltage of the membrane (the switching voltage of an inverter)
is overcome, the output section of the neuron is activated, producing an output spike.
This pulse feeds back and shunts the neuron membrane capacitor to ground such that
it is discharged. The circuit is then complemented by a pulse extender, not shown in
Fig. [3.5h, that reshapes the output pulse of the LIF neuron to the target pulse width.
Further multiplexers were integrated on each line in order to be able to apply voltages to
the top and bottom electrodes of the RRAM devices.

The resistive memories can be SET into a high conductance state (HCS) by applying
an external positive voltage reference on V., while grounding Viyettom, and RESET into
a low conductive state (LCS) by applying a positive voltage on Vigttom While grounding
Viop- The mean value of the HCS can be controlled by limiting the SET programming
(compliance) current (/o) via the gate-source voltage of the series transistor (Fig. [3.5¢).
The function of RRAMs in the circuit is dual: they route and weigh input pulses.
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Figure 3.6: Experimental measurements of the RRAM-based neuromorphic circuital
platform. (a) Diagram of the circuit formed by two output neurons, Ny and Ny, receiving
two inputs 0 and 1. The four devices on the top of the array define the synaptic connections
from inputs to outputs and the four cells on the bottom define the recurrent connections
among neurons. Colored RRAMs represent devices set in the HCS on the diagrams to the
right: a device in the HCS allows a connection to be formed and expresses a weight, while
a device in the LCS blocks the input pulse and disables the connection to the output. (b)
Layout of the circuit in (a), with the 8 RRAMs highlighted in blue. (¢) A delay line is
formed by simply exploiting the dynamics of a DPI Synapse and a LIF Neuron. The green
RRAM is set to high enough conductance to allow the output spike to be elicited following
the input spike by a delay At. (d) Diagram of the direction insensitive CD detecting
temporally correlated signals. The output neuron 1, /N7, spikes upon arrival of input 0 and
input 1 with small delay. (e) Diagram of the direction-sensitive CD, a circuit that detects
when input 1 arrives in close proximity and after input 0. The output of the circuit is
represented by neuron 1 (V).

First, thanks to the two main conductive states (HCS and LCS), the RRAMs can
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either block or pass the input pulses when they are respectively in the LCS or HCS
state. As a consequence, RRAMs efficiently define the connections in the circuit. This is
fundamental to allow the architecture to be re-configurable. In order to prove that, we
characterized a fabricated circuit implementation of the circuit block in Fig. [3.5b. An
RRAM corresponding to GGy was programmed into the HCS and a second RRAM, G, was
programmed in the LCS. Input pulses were applied to both Vo and V.. The effect of
two input trains of pulses was analyzed in the output neuron, by collecting the membrane
voltage and output of the neuron with an oscilloscope. The experiment is successful when
only the pulses connected to the neuron by the HCS device (Gy) excite the membrane
voltage. This is demonstrated in Fig. [3.5d, where the blue train of pulses makes the
membrane voltage accumulate charge on the membrane capacitor, whereas the green train
of spikes leaves the membrane voltage unperturbed.

The second important function of RRAMs is implementing the weight of the connections.
By exploiting the analog adjustment of the RRAMs conductance, the input-to-output
connection can be appropriately weighted. In a second experiment, the device Gy is
programmed in different HCS levels and an input pulse is applied to the input Vp,.
The input pulse extracts a current from the device (Iyeignt) Which is proportional to the
conductance and the corresponding potential drop Vi,, — Viet. This weighted current is
then injected into the DPI synapse and output LIF neuron. The membrane voltage of
the output neuron is recorded with an oscilloscope and plotted in Fig. [3.5e. The peak
of the neuron membrane voltage responding to a single input pulse is proportional to
the conductance of the resistive memory, confirming that RRAMs can be exploited as
programmable synaptic weight elements. These two preliminary tests demonstrate that
the proposed RRAM-based neuromorphic platform is able to implement the basic elements
of the Jeffress basic mechanism, namely the delay line and coincidence detector circuits.
The circuital platform is constituted by stacking consecutive blocks, as the one in Fig. [3.5p,
side by side and connecting their gates to common input lines. We designed, fabricated,
and tested a neuromorphic platform composed of two output neurons and receiving two
inputs (Fig. [3.6h). The layout of the circuit is shown in Fig. [3.6b. The upper 2 x 2 RRAM
matrix allows to route the input pulses to the two output neurons, while the lower 2 x 2
array allows the two neurons (Ny, N7) to be recurrently connected. We demonstrate that
this platform can assume a delay line configuration and two distinct coincidence detector
functionalities, as summarized by the SPICE simulations in Fig. [3.6f, d, and e.

The Delay Line (Fig. [3.6c) simply exploits the dynamical behavior of the DPI synapse
and LIF neuron to reproduce the input spike from Vi, to V1 with a delay Tqe. Only
the RRAM connecting Vi, to Voui, G, is programmed into the HCS, while the other
RRAMs are in the LCS. The G5 device is programmed to 140 S to ensure that each
input spike increases the membrane voltage of the output neuron sufficiently to reach
the threshold and to generate a delayed output spike. The delay T4¢ is defined by both
the synapse and neuron time constants. A coincidence detector detects the occurrence
of temporally correlated but spatially distributed input signals. A direction insensitive
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CD relies on separate inputs converging to a common output neuron (Fig. ) The two
RRAMSs connecting Vo and Viy to Voui, Go and Gy respectively, are programmed into
the high conductance state. Synchronous arrival of spikes at Vi,0 and V;,; pushes the
membrane voltage of the neuron N; over the threshold required to generate an output
spike. If the two inputs arrive too far apart in time, the charge on the membrane voltage
accumulated by the first input may have time to decay away, preventing the membrane
potential of /V; to reach the threshold. The Gy and G5 are programmed to 70 pS, ensuring
that a single input spike does not increase the membrane voltage enough to generate
an output spike. The direction-sensitive CD is a circuit sensitive to the spatial order
of arrival of impulses: from right to left or vice versa. This is a basic building block in
the elementary motion detection network of Drosophila’s visual system to compute the
direction of motion and detection of collisions [227]. To implement a direction-sensitive
CD the two inputs have to be routed to two different Neurons (Ny, N7) and between those,
a directional connection has to be established (Fig.[3.6k). Upon the arrival of the first
input, Ny responds by increasing its membrane voltage up to overcoming its threshold and
emitting a spike. Thanks to the directional connection in green, this output event in turn
excites Ny. If the Vi, input event arrives to excite N; when its membrane voltage is still
high, N; will produce an output event, signifying the detection of coincidence between the
two inputs. The directional connection allows N; to emit an output only if input 1 arrives
after input 0. The Gy, G3, and G are respectively programmed to 140 .S, 70 ©S, and
70 1S, ensuring that a single input spike at Vo generates a delayed output spike, while
the membrane potential of N; reaches the threshold only upon the synchronous arrival of
two input spikes.

Circuit measurement setup and RRAM characterization. The electrical tests
involved analysing and recording the dynamical behavior of analog circuits as well as
programming and reading RRAM devices. Both phases required dedicated instrumentation,
all simultaneously connected to the probe card. RRAMs devices in the neuromorphic
circuits are accessed from the external instrumentation by means of multiplexars (MUXs).
The MUXs decouple the 1T1R cell from the rest of the circuit where they belong, allowing
to read and/or program the device. For programming and reading the RRAM devices,
a Keithley 4200 SCS machine was used combined with an Arduino microcontroller: the
first for precise pulse generation and current reading, the second to fast access a single
1T1R element in the memory array. The first operation is the forming of the RRAM
devices. The cells are selected one by one and a positive voltage was applied between
the top and bottom electrodes. At the same time, the current is limited to the order of
tens of micro-amperes by applying an appropriate gate voltage to the selector transistor.
Afterwards, the RRAM cells can be cycled between the Low Conductance State (LCS)
and the High Conductance State (HCS) through RESET and SET operations, respectively.
SET operations are performed with a positive square voltage pulse of 1us width and
[2.0 — 2.5]V peak voltage applied to the Top Electrode, and a similarly shaped synchronous
pulse with [0.9 — 1.3]V peak voltage applied to the gate of the selector transistor. Such
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values allow to modulate the RRAM conductance in the [20 — 150]|u.S interval. For the
RESET, a pulse of 1us width and 3V peak is applied to the Bottom Electrode (Bit Line)
of the cell while the gate voltage is in the [2.5 — 3.0]V range. Inputs and outputs of the
analog circuits are dynamical signals. In the case of the input, we have alternated two HP
8110 pulse generators with a Tektronix AFG3011 waveform generator. Input pulses have a
width of 1us and rise/fall edge of 50 ns. This type of pulse is assumed as the stereotypical
spiking event in the spike-based analog circuit. Concerning the outputs, a 1 GHz Teledyne
LeCroy oscilloscope was utilized to record the output signals. The acquisition speed of the
oscilloscope has been proven not to be a limiting factor analysing and collecting data from
the circuits.

3.3.1 Variability in neuromorphic circuits and RRAM-based cali-
bration procedure.

Variability is a common source of non-ideality in analog neuromorphic systems [142, 228,
229|. It results in heterogeneous behaviors among neurons and synapses. Examples of such
imperfections include for example 30% (mean value over standard deviation) of variability
on input gain, time constants and refractory period, to name a few. This issue is more
pronounced when several neuron circuits are connected together, as in the case of the
direction-sensitive CD, which consists of two neurons. To function properly, the input gain
and decay time constants of the two neurons should be as similar as possible. For example,
large differences in input gain may result in a neuron responding excessively to an input
pulse, while the other being almost insensitive. Fig. shows that randomly selected
neurons respond differently to the same input pulse. This neuron variability has an impact
on e.g. the functionality of the direction-sensitive CD. In the circuit characterized in
Fig. and ¢, neuron 1 presents a much higher input gain than neuron 0. As a result,
neuron 0 requires 3 input pulses (instead of 1) to reach the threshold, while neuron 1
reaches the threshold with two input events, as expected. We propose to exploit the plastic
behavior of the resistive memory as a mean of acting on the input gain of neurons and
reduce the impact of the neuromorphic circuit variability.

3.3.2 Mitigating RRAM variability with a dedicated programming
strategy

Resistive Random Access Memories are electronic devices based on the formation and
rupture of a conductive filament across an insulator material. Here we consider an oxide-
based resistive memory composed of 5 nm of hafnium-dioxide sandwiched between a top
and bottom electrode of titanium and titanium-nitride. The cells can be programmed in
different conductance states by applying appropriate voltage and current waveforms over
the device. The change in the geometry of the filament results in different conductance
states in the device.
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Figure 3.7: Characterization of the RRAM devices from a 16kb array. a) HCS conduc-

tance and Normalized Standard Deviation as a function of the compliance current. b)

Visualization of some distribution of HCS states with different Compliance current. c)
Smart Programming operation solving the problem of variability of the conductive state.
d) Description of the recursive programming operation called Smart Programming, with
a hint of the Relaxation Correction procedure. e, f) Effect of the Relaxation Correction
on the SP procedure. Adding a 5s waiting time between programming iterations reduced
the effect of Relaxation and Retention. Left, difference between Standard SP (blue) and
RCSP (green) on 1096 devices measured after 1h. Right, distribution of the conductance
difference between those measured after programming (G;—os) and after 1 hour (Gy=1).
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By applying a positive /negative SET /REST voltage between top and bottom electrode,
a conductive filament is formed/disrupted, thus increasing/decreasing the conductance.
When the filament is formed the cell is in the High Conductive State (HCS), otherwise
the cell is in the Low Conductive State (LCS). Resistive memory technologies suffer from
conductance variability: if a device is repeatedly cycled under the same programming
conditions a conductance distribution emerges. The median conductance and the standard
deviation of this distribution are determined by the compliance current (i.e. programming
current) applied during the SET operation (Ic¢). Figs. and b show the modulation
of the median conductance and standard deviation of the HCS distributions as a function
of the compliance current. The measurements have been performed on a 16 kb array
of one transistor-one resistor (1T1R) devices. The cells are SET using 15 programming
conditions (Vgg in [1.4 — 3.0]V), resulting in different compliance currents, and 2V on
the top electrode. The cycle to cycle variability prevents programming of an RRAM cell
to a precise conductance value. Numerous techniques have been developed to cope with
cycle-to-cycle variability when programming RRAM devices. In [129)], a technique has been
developed to yield up to 8 different separated levels of conductance from a single RRAM
device, by means of an iterative procedure alternating Resets and Set operations. We will
refer to it as Smart Programming (SP). Fig. shows the difference between a single shot
SET operation and the Smart Programming applied to the 16kb array, the latter obtaining
a much tighter distribution of devices. The Smart Programming procedure involves
recursive programming of a single device, alternating carefully modulated Set and Reset
operations, until the conductance of the device falls within a predetermined target range.
Nonetheless, this procedure still suffers from relaxation: the conductance distribution
obtained just after programming (t=0, black in Fig. ) rapidly spreads toward both
higher and lower values. After 1 hour more than 45% of the programmed devices are
out of the target conductance range. A fix for this problem is found in the Relaxation
Correction Smart Programming procedure: the flow of this operation is the same as in the
standard SP, but a waiting time of 5 s is added between each re-programming operation.
Cells that suffer from conductance instability during the waiting period are rescheduled to
the next programming iteration, allowing the algorithm to take into account and correct
the conductance relaxation. Fig. shows the difference between Standard SP (blue)
and Relaxation Correction SP (green) on 1096 devices programmed with the same target
conductance interval. The black line represents the tight conductance distribution right
after the last programming operation (t=0), and the colored ones are measured after 1 hour.
Relaxation Correction SP greatly reduces the temporal variability. Fig. visualizes
the same data plotting the difference of the conductance after 1h with that at ¢ = 0Os
(G1p, — Gos). This highlights how single devices were changing their conductance over the
course of 1 hour. The green distribution is much tighter that the blue one, meaning that
the Relaxation Correction procedure effectively reduced the temporal instability.



CHAPTER 3. NEUROMORPHIC SYSTEM FOR OBJECT LOCALIZATION 95

3.3.3 A calibration procedure to minimize the impact of variability
at the system level

The analog programming property of RRAMs can be exploited to mitigate the problem of
variability in analog neuromorphic circuits. We developed a simple calibration procedure
that consists in re-programming the RRAM device until the circuit under analysis meets
certain requirements. For a given input, the output is monitored and the RRAMs are
re-programmed until the target behavior is achieved. A 5s waiting time is introduced
between programming operations to mitigate the RRAM Relaxation issue, causing temporal
fluctuations of the conductance. The synaptic weights are adapted or calibrated to the
requirements of the analog neuromorphic circuit. Focusing on the two basic functionalities
of the Neuromorphic Platform, the delay lines and direction insensitive CD, the calibration
procedure is summarized in Algorithms [I} [2]. For the delay line circuit, the target behavior
is to deliver the output pulse with a delay At. If the actual delay of the circuit is smaller
than the target, the synaptic weight G'3 has to be decreased (the G3 has to be RESET and
then SET with a lower compliance current, I..). Contrarily, if the actual delay is longer
than the target, the conductance of G3 has to be reinforced (the G5 has to be RESET and
then SET with a higher I..). This procedure is repeated until the delay produced by the
circuit matches the target, with a tolerance set to stop the calibration procedure. For the
direction insensitive CD, the calibration procedure involves two RRAM devices, G; and
(G3. The circuit is provided with two inputs, Vj,o and Vj,; delayed by dt. The circuit must
only respond to delays lower than the coincidence range [0,dtcp|. When an output spike
is absent whereas the input spikes are close, both the RRAM devices must be reinforced
in order to help the neuron reach the threshold. Conversely, if the circuit responds to
delays larger than the target range dtcp, the conductances have to be decreased. The
procedure is repeated until the correct behavior is obtained. The compliance current can
be modulated by the embedded analog circuit presented in |230, 231|. Exploiting this
embedded circuit, one could perform such procedure periodically to calibrate the system
or to re-purpose it for different applications.
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Algorithm 2: Direction Insensi-

Algorithm 1: Delay Line RRAM tive CD calibration
calibration 1: Go,Gq + SETHCS(I/CC)
1: Go + SETycs(Ioc) 2: [0, Atep] : target detection range
2: Tyer - target delay 3:
3: tger + apply input pulse 4: CDyesponse < apply input pulses
4: tol: tolerance for the delay 5
5: while CD does not respond to [0, Atc D] only:

while ;4. < Tyep — tol or tge > Tyer + tol:  6: CD'response < apply input pulses

6: tqer < apply input pulse :
7 if tge > Tye + tol: if CD not responding to dt in [0, Atcp] :
8: Ioe = Icc + A 8: Ioo = Icc + Al
9: Go + SETucos(Ipe) 9: Go, Gy + SETyos(Ipe)
10: Wait 5s (Relaxation correction) 10: Wait 5s (Relaxation correction)
11: elif t o < Ty — tol : 11:
12: I/CC =Icc — Al elif CD responding to dt in dt > Atop :
13: Go SETHCS(I,CC) 12: I,CC' =Icc — A
14:  end 13: Go,G1 + SETres(Ipe)
15: end 14: end
15: end

The two elements employed in the I'TD computational map are the delay lines and
direction insensitive CD. Both circuits need to be precisely calibrated to ensure good
performance of the object localization system. The delay line has to precisely deliver a
delayed-version of the input spike (Fig.[3.9h), the CD must be activated only when the
inputs fall within the target detection range. For the delay line, the synaptic weight of the
input connection (G5 in Fig. ) is re-programmed until the target delay is obtained. A
tolerance around the target delay is set to stop the procedure: the smaller the tolerance, the
harder it is to successfully tune the delay line. Fig. shows the result of the calibration
procedure for the delay line: as it can be seen the proposed circuit can provide all the
delays required in the computational map (from 10 to 300 ps). The maximum number
of calibration iterations affects the quality of the calibration procedure: 200 iterations
allow the error to be reduced to less than 5%. One calibration iteration corresponds to
a SET/RESET operation of the RRAM cell. The tuning procedure is crucial also to
improve the accuracy of the detection of the temporally close events of the CD module.
Ten calibration iterations are needed to reach a true positive rate (i.e. rate of events
correctly detected as correlated) higher than 95% (blue line in Fig. [3.9¢). However, the
tuning procedure has no effect on false positive events (i.e. rate of events incorrectly
detected as correlated). Another technique observed in biological systems which solves
the time constraint of rapidly activated pathways is redundancy (i.e. many copies of the
same entity are used to fulfill a given function). Taking inspiration from biology [232|,
we stacked multiple CD circuits in each CD module between two delay lines to reduce
the effect of False Positive detection. As shown in Fig. (green lines) stacking 3 CD
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Figure 3.8: Variability in analog neuromorphic circuits. (a) Experimental measurements
of the response of 9 randomly selected individual neurons to the same input spike. The
response varies across the population impacting both the input gain and the time constant.
(b) Experimental measurements of the impact of the neuron to neuron variability affecting
the direction-sensitive CD. Due to the neuron to neuron variability the two output neurons
of the direction-sensitive CD respond differently to the input stimuli. Neuron 0 presents a
lower input gain than neuron 1, thus requiring 3 input pulses (instead of 1) to produce
an output spike. Neuron 1 reaches the threshold with two input events, as expected. If
input 1 arrives At = 50us after neuron 0 has been excited, the CD remains silent because
At is larger than neuron 1’s time constant (about 22us). (c¢) Decreasing the At = 20us,
makes input 1’s spike to arrive when neuron 1’s excitation is still high, resulting in the
coincidence detection of the two input events.

elements in each CD module allows reducing the False Positive rate to less than 1072,

3.4 System assessment

We now assess the performance and energy consumption of the object localization system
using the results of the electrical characterization of the pMUT sensors, the CD, and
the delay line circuits composing the neuromorphic computational map inspired by the
Jeffress model (Fig. a). Regarding the neuromorphic computational map, the higher
the number of CD modules, the better the angular resolution, but also the higher the
system energy (Fig. [3.10p). A trade-off is reached by comparing the precision of the single
components (both pMUT sensors, and neuron and synapse circuits) with that of the whole
system. The resolution of delay lines are limited by the time constants of the analog
synapses and neurons, which are greater than 10 us in our circuits, corresponding to an
angular resolution of 4°. A more advanced CMOS technology node would enable the design
of neuron and synapse circuits with lower time constants and consequently higher precision
of the delay line element. However, in our system, the precision is limited by the pMUT
uncertainty in the estimation of the angular position, that is 10° (dark-blue horizontal
line in Fig. [3.10p). We fixed the number of CD modules to 40, corresponding to an
angular resolution of about 4°, that is the computational map angular precision (light-blue
horizontal line in Fig. [3.10a). At the system level, this results in a 4° resolution and 10°
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Figure 3.9: Performance of the delay line and direction insensitive CD circuits and impact
of the RRAM calibration procedure. (a) Impact of the neuron variability on the delay
line circuit. (b) The delay line circuit can be scaled up to larger delays, setting the time
constant of the corresponding LIF neuron and DPI synapse to larger values. Increasing
the iterations of the RRAM calibration procedure enabled us to substantially improve the
precision on the target delay: 200 iterations allow the error to be reduce to less than 5%.
One iteration corresponds to a SET/RESET operation on the RRAM cell. (¢) Each CD
module in the Jeffress Model can be implemented with N-parallel CD elements, to be more
resilient to system failures. (d) More RRAM calibration iterations allow to improve the
True Positive rate (blue line), while the False Positive rate is independent of the number of
iterations (green lines). Stacking more CD elements in parallel enabled us to avoid False
Coincidence Detection from a CD Module.

precision for an object located in front of the sensory system at a distance of 50 cm. The
single bank power consumption for the pre-processing of the pMUT signal is evaluated at
12.3 nW, according to . Accounting for the 40 CD modules in the computational map,
the energy per operation (i.e. energy to localize an object) estimated by SPICE simulations
is 21.6 nJ. The neuromorphic system is activated only at the arrival of an input event, i.e.
when the sound wave reaches any of of the pMUT receivers and overcomes the detection
threshold, and kept idle otherwise. This allows avoiding unnecessary energy consumption
when no input signal is present. Considering a rate of localization operations of 100 Hz
and an activation period of 300 us per operation (maximum possible ITD), the power
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Figure 3.10: Power consumption and angular resolution of the presented neuromorphic
sensory and signal processing system. (a) Angular resolution (blue) and energy consumption
(green) of one localization operation as a function of the number of CD modules. The
dark-blue horizontal bar represents the angular precision of the PMUTs while the light-blue
horizontal bar represents the angular precision of a the neuromorphic computational map.
(b) Power consumption of the proposed system and comparison with the two discussed
implementations on a microcontroller and the digital implementation on an FPGA of the
Temporal-Difference-Encoder (TDE)|[234]

consumption of the neuromorphic computational map results being of 61.7 nW. Accounting
for the neuromorphic pre-processing applied to each of the pMUT receivers brings the total
system’s power consumption at 86.3 nW. To gain a perspective on the energy efficiency of
the proposed neuromorphic approach compared to conventional hardware, we benchmark
this figure to the energy required for running the same task on a state-of-the-art low-power
microcontroller [233] using either neuromorphic or conventional beamforming techniques.
The neuromorphic method accounts for an Analog-Digital-Converter (ADC) stage followed
by a Band-Pass filter and an envelope extraction stage (Teager-Kaiser method). Finally, a
thresholding operation is performed to extract the ToF. We omit the computation of the
ITD based on the ToF and the conversion to the estimated angular position as it happens
once per measurement. Assuming a sampling frequency of 250 kHz on the two channels
(pPMUT receivers), 18 operations for the band-pass filter, 3 operations for the envelope
extraction and 1 operation for the thresholding per sample, the estimate of the overall
power consumption leads to 0.9 mW. The power consumption for the beamforming signal
processing solution proposed in , accounting for 5 pMUT receivers and 11 beams
equally distributed in the [-50°, +50°] azimuthal plane is 11.71 mW.

Estimation of the power consumption on a microcontroller We estimate the
power consumption of a neuromorphic signal processing approach on an off-the-shelf
32-bits microcontroller . In this estimation, we assumed to operate with an identical
setup to the one presented in this work, with 1 pMUT emitter and 2 pMUT receivers.
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The method accounts for a Band-Pass filter followed by an envelope extraction stage
(Teager-Kaiser method), and finally a thresholding operation applied to the signal to
extract the Time-of-Flight. The computation of the ITD and its conversion to the detected
angle are omitted in the estimation. We consider the Band-Pass filter to be implemented
with a 4*" order Infinite Impulse Response filter, requiring 18 floating-point operations.
Envelope extraction makes use of further 3 floating-point operations, and a final operation
is due for thresholding. In total, 22 floating-point operations are required for pre-processing
the signal. The signal sent is a short pulse of a 117.6 kHz sine wave, produced every 10 ms,
resulting in a 100 Hz localization operation frequency. We adopt a 250 kHz sample rate to
respect the Nyquist theorem and a 6 ms window per measurement to capture a range of
1 m. Note that 6 ms is the Time-of-Flight for an object located at 1 m distance. This gives
a power consumption of 180 pW for the analog-to-digital conversion of 0.5 MSPS. The
pre-processing of the signal accounts for 6.60 MIPS (instructions per second), resulting in
0.811 mW. However, the micro-processor can be switched to the Low-Power-Mode|235|
while not performing the algorithm’s operations. This mode allows for a static 10.8 yW
power consumption and has a wake-up time of 113us. Considering the clock rate of
84 MHz, the microprocessor terminates all the operations of neuromorphic algorithm
well within the 10 ms period, with a 6.3% duty cycle for the algorithm computation,
thus taking advantage of the Low-Power-Mode. The resulting power consumption is of
244.7uW (233.9 uW dynamic and 10.8 W static power consumption). Adding those two
contributions makes for a total of 0.93 mW of power consumption. Note that we omit
the derivation of the ITD from the ToFs and the conversion to the detected angle, thus
underestimating the power consumption in the microcontroller. This gives further value
to the energy efficiency of the proposed system. As a further term of comparison, we
estimate the power consumption of a classical beamforming approach, presented in |203],
222|, when embedded on the same microcontroller [233] under a 1.8 V supply voltage. Five
evenly spaced pMUT membranes are used to provide data for the beamforming. About the
processing itself, the beamforming technique used is the Delay-and-Sum. It simply consists
in applying a delay to the channels corresponding to the expected time difference of arrival
between one channel and a reference channel. If the signals are in phase, once time-shifted,
the sum of these signals will exhibit high energy. If they are not in phase, destructive
interference will limit the energy of their sum. In [203], a 2 MHz sample rate is chosen to
time-shift the data by an integer number of samples. A more frugal approach consists in
keeping a coarser 250 kHz sample rate and using Finite-Impulse-Response (FIR) filters to
synthesize fractional delays. We will consider that the beamforming algorithm complexity
is dominated by the time-shifting because of the convolution of each channel with a 16 taps
FIR filter for each direction. To calculate the number of MIPS required for this operation,
we consider using a 6 ms window per measurement to capture a 1-meter range, 5 channels,
11 beamforming directions (+ /-50° range with a 10° step). Already 75 measurements per
second push the microcontroller to its maximum of 100 MIPS. According to [233], this
results in a power consumption of 11.26 mW, which gives a total power consumption of
11.71 mW when adding the on-chip ADC contribution.
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Estimation of the power consumption on the RRAM-based analog system
Based on these estimations, the proposed neuromorphic approach achieves a reduction
of five orders of magnitudes in power consumption relative to a microcontroller adopting
a classical beamforming technique for an object localization operation. Adopting a
neuromorphic signal processing approach on a classical microcontroller reduces the power
consumption of about one order of magnitude. The efficiency of the proposed system
can be attributed to the combination of the asynchronous, resistive memory-based analog
circuits able to perform in-memory computing, along with the absence of analog-to-digital
conversion of the sensed signal.

Przybyla [2015][236] ~ Chiu [2021]|237 Jin [2014][238]  Gao [2022] [239 This work
L Object ) . Sound Sound Object
Application localization 3D Rangefinding 1D localization 2D localization 2D localization 2D
Processing type Beamforming TOF estimation  Cross-correlation I\V’Iemrlstor—basjed I\V’Iemrlstor—based
Neuromorphic Neuromorphic
Sens vt pMUT pMUT 3 Micronk 9 Mi hones pMUT
ensory system (2 TX, 7 RX) (1TX, 1 RX) icrophones icrophones (1TX, 2 RX)
L .. 0.2° @ 50 cm 0.63 mm @ 50 cm 1.45° @ 1m 9.0°Q@1m 10.0° @ 50 cm
Localization precision . ) )
(angular) (distance) (angular) (angular) (angular)
. 1.36 mW 363 pW . 81.6 nW
Power consumption @ 100 fps @ 100 fps 5.63 mW 30.6 uW @ 100 fps

Table 3.1: Benchmarking results for the resistive memory based object localization system
of this work compared to two pMUT-based systems for object localization and rangefinding,
and with a neuromorphic memristor-based system for sound localization.

Comparison of our memristor-based object localization system with the state-of-
the-art The precision on the target object angular position, i.e. the standard deviation
of the measurements, was assessed at 10° at 50 cm for the proposed 2D object localization
system for a total system power consumption of 81.6 nW. Table presents a comparison
with previous works, namely two pMUT-based systems for object localization [236] and
rangefinding [237], and a neuromorphic memristor-based system for sound localization [239).
The 3D system leverages multiple pMUT devices (2 emitters and 7 receivers) and classical
frame-based signal processing to obtain the best localization precision, at the expense of
orders of magnitude more power consumption for the same measurement rate [236).



Chapter 4

On-Line learning and Artificial Olfaction

The ability to adapt a neuromorphic system in situ is key for certain applications where
the environmental conditions and input stimuli are ever-changing. It is the case of artificial
olfaction. The particular gases to sense, humidity levels, and sensor drift over time are
issues that are difficult - or impossible - to tackle with a single calibration before operating
the system. In these cases, learning on-line with dedicated circuitry is necessary. This
chapter introduces a system for artificial olfaction capable of on-chip learning, coupling
innovative gas sensors from Aryballe - a french startup - and a RRAM-based neural network.
Training is based on a hardware implementation of the Delta Rule, a simple supervised
learning rule. The system is presented in detail in this chapter and a computer-in-the-loop
experiment proves the capability of the proposed on-chip learning procedure. Simulations
on larger-scale networks and datasets validate the concept for more challenging tasks.

4.1 Motivation

Biological intelligence is fundamentally different from artificial intelligence (AI). One of the
main reasons is the way learning occurs. In deep neural networks, learning is characterized
by a training phase, where the model is confronted with a task and learns to improve
at it by - mainly - gradient descent. Once the training phase terminates, the model is
ready for its deployment, called inference phase. Biology operates differently: learning is
not systematically scheduled and training is mixed with experiencing the context. This
allows animals and humans to adapt through changing environment and to learn new tasks.
While the nature of biological learning has not yet been fully understood, neuromorphic
engineering and computer science have proposed methods to learn on-line, i.e. while the
model is deployed in its operating context. The most straight-forward approach is to apply
the same algorithms used for off-line training (performed on an external computer), for
on-line learning too. However, this would require high computational power, going beyond
the hardware constraints imposed to embedded systems. For this reason, chips performing
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on-line learning are scarce and the general trend in on-chip learning is to simplify the
training procedure to minimize the additional hardware complexity. On-chip training in
neuromorphic processors mainly involves unsupervised learning rules |29, 34] or supervised
learning rule with constraints to the model architecture |35]. On-line learning solutions
are particularly rare for memristive systems. [230] proposes a circuit that implements the
Delta Rule [240] on a RRAM-based neural network. The circuit is compatible with both
artificial and spiking neural networks and trains the last layer of a neural network model.
While it is arguable that such solution does not exploit the full potential of deep neural
networks, the Delta Rule could represent the sweet-spot between circuit complexity and
on-chip training efficacy.

To contextualize the proposition of on-chip learning for artificial olfaction, two important
questions have to be answered.

Why an integrated system for olfaction? Artificial olfaction is a less developed field
than vision and audition, and integrated olfaction systems that incorporate sensing and
processing are rare. Conventionally, olfaction is performed with discrete sensors whose
output is read and processed by a separate computer. While this scheme certainly offers
flexibility and is user-friendly, it is not optimized for portability and energy consumption.
However, olfactory information are important in many embedded applications: drones for
fruit picking, robots navigating the environment, control systems in the food industry,
to name a few. Aryballe is a french startup company in artificial olfaction presenting a
complete set of gas sensing products. They envision a concept for artificial olfaction in
robotics and even built a system where a robot navigates a simple environment recognizing
odor cues [242]. For such applications it is desirable to minimize the size and energy
consumption of the system. With reference to Figure this chapter proposes an
embedded olfaction system featuring an array of Aryballe’s Mach-Zender interferometers
[59] as sensing elements, converting their information to the electronic analog domain with
photodetectors and finally processing the information with a RRAM-based neural network.
The integration of the sensing technology of Aryballe and the In-Memory processing,
with RRAMs, of CEA Leti (Fig. takes artificial olfaction at the edge, targeting

applications related to drones and robots.

Why on-chip learning? A legitimate question is whether on-chip learning is truly
necessary. Indeed, most neuromorphic processors exploit off-line learning, where the
model is trained on a computer simulation with a given dataset that models the operating
conditions of the system. There are applications where this scheme fails: olfaction is a
particularly interesting example. To understand the issue, one can consider the case of
Aryballe’s gas sensing products. When a customer purchases a sensor, the application
in which the sensor will be involved in is not know a priori. Olfaction sensors respond
differently to different gases and the response is unpredictable for an unknown gas. It
is thus problematic for Aryballe to propose a model that correctly identifies the gases
for the customer, without accessing their particular operating conditions. Even in the
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Figure 4.1: Delta Rule on-line learning of the olfactory data @ Artificial Olfaction with
a system-on-chip where optical sensing is coupled with RRAM-based analog electronics.
The system is formed by 3 main components: the Sensing part, composed of an array of
chemically functionalized Mach-Zender-modulators; a Transduction layer with low-power
photo-detectors; an RRAM-based classifier. @ Aryballe’s photonic sensors (image from
241]) can be integrated with CEA’s RRAM-based electronics to form a system-on-a-chip
that performs artificial olfaction. The end-goal is to shrink the size and energy consumption
of such an olfactory system to satisfy the requirements of Edge-AI (drones or Robots).

case where the gases of interest are well known, the customer might deploy the sensor
in a peculiar environment, with given humidity and gas concentration, influencing the
response of the sensor. On top of that, gas sensors present some variability from one
another, making the response of each specific instrument slightly unique. One strategy
can be to find a computational model that is so powerful and general that it is valid in
any operating condition and with any instruments. This is the approach of deep learning:
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for example, computer vision models are trained on gigantic datasets featuring thousands
of classes and images from different cameras [101]. However, collecting such large datasets
is expensive. It follows that it is highly desirable to tailor the computational model to the
specific use-case, in the exact operating conditions required for the application. This is
why on-line learning is desirable for artificial olfaction.

Artificial olfaction is the perfect use-case for on-line learning with the delta rule circuit.
In this chapter, an integrated system for artificial olfaction is endowed with on-line learning
capabilities. First, the characteristics of an optical gas sensors are explained, then the
delta rule circuit is presented. A computer-in-the-loop experiment is performed to validate
the proposed concept on a 1kb RRAM array, training a neural network to classify odors
from input stimuli recorded from Aryballe’s sensor. At last, the delta learning rule is
tested in simulation on more complex benchmarks with a Transfer Learning procedure.

4.2 Aryballe’s Gas sensors

Among different other products in its lineup, Aryballe utilizes silicon photonics for gas
sensing [59]. Silicon photonics is a well-established technology with various applications,
including telecommunications [243| and biosensors [244]. It relies on the use of silicon
or silicon-nitride waveguides, making it compatible with CMOS technology. Artificial
olfaction, or the ability to detect and identify odors, involves the detection of volatile
organic compounds (VOCs) using a limited number of non-specific sensors with different
physical and chemical properties [245]. The global response of these sensors to a particular
VOC or mixture of VOCs, known as the signature, is associated to a specific odor. Unlike
analytical methods, artificial olfaction does not aim to identify the individual molecules that
make up an odor or their relative concentrations. Instead, odor identification is performed
using algorithms, mainly from the field of machine learning, that recognize the signature of
the stimulus [60]. For example, humans can differentiate millions of different odors using
nearly 400 different types of olfactory receptors [246|, some at concentrations as low as a
few particles per billion. Electronic noses traditionally use metal oxide semiconductors or
polymers [58]. Aryballe’s silicon photonics gas sensor consists of an array of Mach-Zehnder
interferometers (MZI) that have been bio-functionalized with chemical receptors.

The physical principle used to detect gases is refractive index sensing. A waveguide surface
is functionalized with specific receptors that bind to a particular group of molecules. When
this occurs, the refractive index of the waveguide changes. Mach-Zender interferometers
have been demonstrated effective at implementing this sensing principles and present easy
read-out [247]. To enhance the sensitivity, the thickness of the functionalization layer can
be extended so to be interacting with the electric field around the waveguide. By using
porous Si0, layers, ethanol vapor measurement in the particle-per-billions range has been
recently demonstrated [248|. However, the thicker the film, the longer the VOC will take
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Figure 4.2: Aryballe gas sensor and its extracted information. @ Mach-Zender interfer-
ometers (MZI) feature two waveguide, one of having a chemically functionalized surface.
Light from a laser passes through both waveguides and a de-phasing is producing at the
common output. To improve performance, Aryballe MZIs feature a 3-way interferometer
outputting 3 light intensities. On the right, the waveguide structure with the optically
confined laser light. (]ED The 3 raw outputs from the functionalized mach-zender modulator,
in time. An input stimulus is presented at around 15s and is removed at about 30s. ({c|
The 3 raw outputs from the sensors can be treated to yield the information about the
intensity sensed by the Mach-Zender modulator. This preprocessing normally involves
frequent sampling and conversion of the 3 outputs to the digital domain. @ Based on the
preprocessed data, Principal-Component-Analysis is performed over a dataset including 6
input stimuli. Each gas is distinguishable in the 2D PCA plane.
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to diffuse down to the waveguide surface where the evanescent field is maximum. For films
that are hundreds of nanometers thick, it can take tens of seconds to achieve full response,
which is a limitation for real-time assessment of intermittent odor sources, tracking odors,
or analyzing small volume samples. In addition, porous layers can make it more difficult
to perform localized bio-functionalization. However, the solution maximizes precision in
detecting gases and makes the response of the sensor easier to be classified.

4.2.1 Mach-Zender interferometer

An integrated MZI is schematically represented in Fig. [4.2a] Light from a continuous-wave
laser (Laser IN) source at a fixed power and wavelength is split between the reference
arm and the sensing arm with length L, and L, and effective index n.fs, and nesy,s,
respectively. The reference arm in the MZI is buried in oxide while the sensing arm is
exposed to the sensing layer through an oxide-opening window. In each arm, the light
accumulates a phase delay ¢, and ¢, proportional to the arm length and effective index.
The initial phase has no importance, and only the phase shift A® stores the information.
The de-phasing can be expressed as:

2m
Ad = ¢s - ¢7‘ = T(Lsneff,s - Lrneff,r) (41)

where L, /s is the referencing or sensing branch length of the waveguide and n.yy,/, the
refractive index at the reference or sensing branch. As gases diffuse in the environment
and penetrate the functionalized layer, the de-phasing evolves along time:

AD(t) = QWALS Angsso(t) (4.2)

To be detected by the MZI, gases reach the functionalized surface and diffuse in the porous
S0, layer. Recombining the light from the two arms results in interferences, leading to
an output light intensity [, varying with the phase delay difference A® between the two
arms. The relationship is as follows:

AD
Lo o 0032(7) (4.3)

To enhance the read-out, a 120° coherent detection scheme is adopted at the output of the
MZI (Fig. [£.2a]). This adds two output intensities to the detectors which are experimentally
demonstrated improving the average detection limit compared to a conventional read-out
[249]. The detection scheme combines the reference and sensing branches with phase
difference shifted by 120° at each output. Information on the de-phasing is obtained with
an algorithm computing over the evolution of the outputs along time and an arc-tangent
transformation, as described in [250|. To perform such algorithm, it is customary to
sample the output intensities of the MZIs with a charge-coupled-device (a rate of 30 Hz is
sufficient, as described in [59]), to convert the information to the digital domain and to
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process it with a micro-controller. The outputs computed by the micro-controller are said
to be the Preprocessed data. We propose to avoid this algorithm and to work directly with
the output powers of the MZI devices. After translating the optical power information
to the electronic domain with a photo-detector, the information is available as a voltage,
this constituting the Raw data. This approach minimizes the pre-treatment of the sensed
information and is in the spirit of energy-efficient systems. However, taking the proposed
approach suffers from some limitations which are explained below.

Limitations of this approach Directly utilizing the Raw data and avoiding sampling
the signal to extract information is certainly adherent to the low-power spirit of Edge
Al Its field of validation is however constrained to low de-phasing A®. When the initial
state of the outputs from the MZI is known and the variation of the phase is less that
360°, the relative de-phasing can be uniquely decoded from the three MZI Raw outputs.
However, when the de-phasing is equal to 360°, the Raw output returns to the initial
state and the information on a further de-phasing is lost. For such cases, the classical
pre-processing technique explained in |250] is necessary to extract the temporal evolution
of the gas concentration. To avoid large de-phasing of the sensed branch one can act on
the functionalized layer to decrease the surface sensitivity. Alternatively, one can limit
the analysis to low gas concentrations so that the de-phasing results small enough not to
overcome the 360° barrier.

4.2.2 Collecting a dataset

An Aryballe instrument for gas sensing is used to collect a dataset. The reference instrument
is called NeOse [251] and it features 64 MZIs functionalized with different chemicals. 6
instruments are involved in the dataset, each built with the same process and functionalized
with the same chemicals. In theory, the instruments are all responding in the same way to
the same stimuli, however process variations in the MZIs makes each instrument slightly
unique. The 6 sensors are exposed to 7 gases in a controlled environment, a chamber
where the chemicals are released and flushed out. Each gas is presented for a period of
about 20 s and a 15 s interval is interleaved between measurements. In each session, the
gases are recorded for 8 times each, for a total of 56 data-point per session. 5 sessions
per instrument are repeated thus bringing the data-point count to a total of 1680. To
acquire the information, MZI’s three outputs are captured by Charge Couple Device
pixels and converted to the digital domain, where the data is sampled at 30 Hz. The
response of the MZI’s three outputs in instrument 1 is plot along time in Fig. [£.2b] The
three green traces correspond to the Raw data from the sensor. As it can be seen, they
oscillate from about 14 s - when a gas is allowed in the chamber - and start reverting
back to the initial state at 32 s, once the gas is flushed out. The information from the
three outputs can be treated to yield the Pre-processed data, shown in Fig. The
oscillations of the 3 output branches are combined to sense the intensity of the response
of the MZI. As for the Raw data, the Pre-processed data is activated at 14 s and the
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stimulus is sensed up to the 32 s mark. The MZI then returns to its initial condition. To
assess the efficacy of the sensing system, the Pre-Processed data from instrument 1 is
analysed with a Principal-Component-Analysis (PCA), Fig. [£.2dl The seven gases result
well separated in the first two principal components. This is a testament to the quality of
the sensing instrument, which makes the input olfactory information linearly separable
and thus easy to classify. Similar results are obtained with all the instruments in the
dataset. However, a drift in each of the clusters is visible, due to the temporal drift of
the base-line activation of the sensor. This phenomenon is mainly due to temperature
variations in the instrument: a thorough experimental evaluation of the response of the
sensor depending on the temperature is carried out in [241]. A first analysis of the dataset
involves software model of classifiers, to investigate how well the registered olfactory cues
can be distinguished. Software logistic regression algorithm is performed on portions
of the datasets: when possible, the subsets are split into 50% for training and 50% for
testing. Results are reported in Table. [£.2.2] Two sets of experiments are performed:
in the first case, the training and testing occurs with data from the same instrument,
considering one instrument only; in a second run, all the instruments are considered and 5
of them are used as the training set, the remaining one as the test set. For the first case,
classification results are generally very high, 100% for Pre-processed data and an average
97.07% for the Raw data. This means that when training on the same instrument in which
one performs inference, results are always satisfactory. However, performance change
when training and testing involve different instruments and specifically when the test
instrument is not included in the train set. On the right side of the table, training occurs
on all the instruments except for the one indexed by the number in the column. For the
Pre-processed data, performance oscillates depending on which instrument the algorithm
is tested on: data from instrument 6 is still easy to classify, while instrument 2 falls below
30% of accuracy. This is due to the variability in the response of each instrument which
slightly changes the signature of the gases. Classification accuracy on Raw data is at
chance-level (16%) for all instruments. The reasons for such bad performance could be that
device-to-device variation between instruments impact even stronger on the unprocessed
inputs. These results reinforce the message that on-line learning is important to artificial
olfaction. While considering a wide dataset with multiple instruments is not helpful when
testing on a different instrument (right column of Table. [£.2.2), it suffices to add data to
the train set from the same instrument performing inference to recover good performance

(left column of Table. [4.2.2)).

4.3 The Delta Rule for RRAMs

The Delta Rule is a simple algorithm to learn in a supervised manner on a single layer
neural network [240|. The algorithm performs gradient descent on a perceptron network,
and can be considered as a special case of the back-propagation algorithm [17]. The
delta rule minimizes the mean squared error (MSE) of the perceptron respect to its
target outputs: MSE = >, y? — t?, where ¢;,y; are the target and output at the "
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Training and testing on the same Training on all Instruments but one,
Instrument testing on the remaining Instrument

Train Instrument ID Test Accuracy [7] Test Instrument 1D Test Accuracy [7]

Processed ‘ Raw Processed ‘ Raw

1 100.00 97.16 1 83.55 14.84

2 100.00 88.90 2 76.45 16.77

3 100.00 99.48 3 29.03 9.03

4 100.00 98.06 4 92.90 9.35

5 100.00 98.97 5 90.00 14.19

6 100.00 99.87 6 100.00 13.87

Table 4.1: Classification accuracy on the Aryballe olfactory dataset, based on two partitions
of the data. On the left, the training and testing sets include one instrument only. On the
right, training involves all instruments but one, the remaining one being used as the test
set. Green color highlights good results on Raw data, while the red color is used in case of
bad accuracy.

dimension. It does so acting on the weights W, with a weight update that can be derived
as AW = u(T — Y)X, where p is the learning rate, X is the n-dimensional input, Y and
T are the m-dimensional output and target. In classification, the target is encoded as the
activation of a specific output neuron, while the rest is set at 0.

4.3.1 From the algorithm to the circuit

This algorithm was proposed in [230] as an effective way to perform on-line learning for
in-memory-computing (IMC) architectures. The delta rule is perhaps a good compromise
between effectiveness of the on-line learning and its complexity added to the architecture.
Implementing the back-propagation algorithm on-line requires to store into memory the
activation of all the neurons in the model and to compute matrix-vector-multiplications
involving the transpose of the weight matrices [17]. On top of this, back-propagation
is problematic in IMC architectures as one has to deal with low-bit precision and noisy
devices. IBM has embarked in this challenge proposing a 1T1C2R device, a capacitor
next to two PCM devices, with the capacitor acting as an analog volatile memory. The
capacitor integrates the weight updates and thus increases the combined capacitor+PCM
bit precision while learning [131]. This approach suffers from the large area overhead of
the capacitor that is needed per synapse. Another approach on in-situ learning is proposed
by Dalgaty et al. in [134]. The bayesian learning algorithm Markov-Chain-Monte-Carlo
(MCMC) is compatible with most NVM, as it exploits the inherent cycle-to-cycle and
device-to-device variability to explore the parameter space and converge to a collection of
well performing models in the posterior distribution. However, the MCMC algorithm is
very slow to converge, meaning it is adapted to small networks and easy tasks. Furthermore,
MCMC requires multiple devices per synapse, resulting in large memory footprint and area
consumption. The delta rule approach [230] combines the effectiveness of gradient-descent
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learning, making use of 2 devices per synapse, and mitigating the variability issue of NVMs
with the learning procedure it-self. In particular, [230] focuses on a RRAM-based imple-
mentation, even though the learning scheme is applicable to any Non-Volatile-Memory,
except for the programming circuitry which has to be device-specific. The learning algo-
rithm can be summarized in Algorithm [3] Weights, implemented by the RRAM array, are
initialized with a SET operation. With a differential architecture of the array, the weights
are obtained by subtracting positive and negative conductances. The latter are obtained
with a negative reference voltage applied at the sense amplifier reading the array column.
A scaling factor sy ¢ converts conductance to the weight matrix. At every input presented
to the array corresponds an output target. The delta rule circuit computes the weight
update accordingly, and performs the update on the RRAM devices with a probability
Dprog- A weight update occurs by a first RESET operation and then a SET operation
with Vsgr calculated by the delta-rule circuit. The weight update is avoided when the er-
ror (Y —T) is lower than a certain threshold AY’, this helping the stability of the algorithm.

Algorithm 3: Delta Rule algorithm
1: Go < SET(Vsgrinit)

2: Wour = (Ga_ — Ga)SWG

3: swq: scaling factor between weight and conductance
4: Pprog : Probability to make weight update

5: Ay: error threshold

6: p @ learning rate

7. for X, Y in train_loader:

8: # X: input, T: target output

9: Y =X xWyyu

100 AWy = pX x (T'=Y) - [Delta Rule circuit]
11:  Vspr <+ AW,y |Delta Rule circuit]

12:  With probability p_prog:

13: # perform weight update on RRAM

14: RESET selected devices

15: SET selected devices with Vggr

16: G« SET(VSET)

17: Wout = (Gar — G&)SWG

18  end

19: end

The algorithm is also compatible with Spiking-Neural-Networks with an additional circuit
that enables the delta-rule circuit at the output neuron’s spike. The learning rule has
been demonstrated on the MNIST dataset, with a simulation calibrated on experimental
data, performing at 92.68%. The probability of programming the RRAMs in the weight
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update (P,o4) revealed to be an important parameter of the learning scheme. In fact, the
variability in the High-Conductance-State makes low weight-update ineffective, especially
where the update is lower than the standard deviation of the device variability. This is
why the RRAM-compatible delta rule operates with high learning rate (). To avoid
sharp variations of the weights, the probability of weight updates (P,.,,) assures that
such important variations of the weight only occur at a fraction of the total devices. This
reduces the effect of a large learning rate, while still assuring the descent of the gradient.

Figure 4.3: Delta Rule circuit, from [230]. The circuit is divided into three blocks. The
green one is a Bump circuit taking Vy (the output of the neuron) and Vi (the target for
that neuron) and determining the direction of the weight update (UP or DW), or engaging
the STOP signal when no update is to be made. The yellow block is a scaling circuit to
normalize the different between Vy and Vi and produce a scaled current Iy.,.. The blue
block is a second scaling section, where the current is controlled by the bias V., modulating
the compliance current for the weight update Io¢

At the heart of the delta rule implementation, is the delta rule circuit (Fig. [4.3)).
Considering a neuron in the output layer, this will output a voltage Vy and will have
a target activation expressed by the voltage V. These voltages are subtracted using a
subthreshold "Bump” (subBump) circuit [252] highlighted in green, and an above-threshold
"Bump” circuit (abvBump) in orange. The subBump circuit compares Vy and Vi giving
rise to the error currents when neuron and the target frequencies are far apart and generates
the STOP signal when the error is small and in the stop-learning range (d:,) [253) 231].
STOP signal gates the tail current of all the above-threshold circuits and thus substantially
reduces the power consumption when the learning is stopped. The abvBump circuit
subtracts Vy and Vr and scales it to Iscale, equal to the maximum Io¢ required to SET a
RRAM device. Based on the error sign (UP), the scaled error current is summed with
or subtracted from the scaled device current generating the desired Ioc. This circuit is
highlighted in purple. The compliance current can be converted to the gate programming
voltage Vspr with a simple diode (not shown in the schematics).

The delta-rule circuit is embedded in a conventional RRAM array as shown in Figure
An RRAM array is designed with the differential configuration, where source lines are
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Figure 4.4: RRAM array featuring the Delta Rule circuit. @ Schematics of the array.
Inputs are fed by the bit lines and source lines carry the output current implementing the
MAC operation. The output from each column is compared to a target value and scaled
by the input (BL,,), to yield a SET gate voltage (Vsgrmn) - with the Delta Rule circuit -
for each device’s weight update. (]ED RRAMs characteristics depending on the gate SET
voltage (VG). The plot shows the linear behavior of the RRAMs conductance after the
SET operation, highlighted by the yellow line and the linear equation on the upper part
of the figure. First and second standard deviation reporting the variability of RRAMs are
shown with the shaded areas around the mean conductance value. () RRAMs’ variability
is also in the temporal domain, in the form of Relaxation. The array’s conductance is
plot after programming (t=0s) and after 5 seconds (t=>bs) for different gate voltages (VG).
While the mean conductance is stable, devices tend to change conductance, especially
when programmed with weak VG.
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biased with either positive or negative voltages when reading the array. Inputs are provided
to the array by means of voltages applied to the bit lines (BL). Currents sum at the
source lines (SL) performing the multiply-and-accumulate operation, and are read down
the columns with a sense amplifiers. The outputs are obtained by subtracting the currents
from the positive and negative columns of the array. The outputs are first compared to
their targets and then scaled by the inputs by the Delta Rule circuit. This generates the
set gate voltage (Vspr ) for the positive (green) and negative (violet) devices. To correctly
generate a weight update that obeys to Equation [reference], it is required that the devices
respond linearly to the programming operating conditions. Different studies analysed
non-linear devices for on-line learning trying to cope with non-linear weight updates [131},
254]. In RRAMs, linearity appears when setting the device with a control over the gate
voltage Vspr or VG. It is recalled that progressive SET operations are not effective on
RRAMs as they are for PCM device 255, 256], so an intermediate RESET operation
is required to gain control over the conductance with a SET operation. To analyse the
linearity of RRAMs, different SET with varying gate voltages are applied to a 1kb array,
measuring the resulting conductances at each device. A linear behavior appears in Fig
as a function of VG, highlighted by the yellow linear interpolation. The coefficients of the
interpolation are reported in the equation on top of the plot. Variation of conductance
characterizes RRAMs’ high-conductance-state as shown in the Fig by the shaded
areas. The standard deviation, especially the second degree, gets larger as the SET gate
voltage is smaller, meaning that stronger SET operation result in tighter distribution of
conductance. RRAMs also present temporal variability. Relaxation is the most critical
form for on-line learning: a fast phenomenon manifesting as the settling of the conductive
filament of the RRAM cell after a SET operation. To quantify relaxation, a measurement
has been performed on the same 1kb array where all the devices have been SET and the
conductance are immediately read. After 5 s the conductances are read again and the
values are compared to the initial ones. The experiment is repeated for SET at different
gate voltages. Difference in conductance over time is plot in Fig. The mean value
of the difference is in dark-green and shows that the mean values do not change over
time, except for the lowest gate voltages: in these cases, it is probable that part of the
devices have their conductive filament partially disrupted. The first and second standard
deviations are shown with the green and violet shaded areas. Notably, the spread of the
distribution changes with the gate voltage, meaning that device SET with higher voltages
are more stable over time.

These measurements frame RRAMs among the most adapted devices for on-line learning
thanks to the linearity of the SET operation and the temporal stability of the high-
conductive-state.

4.3.2 Computer-in-the-Loop experiments

The vision of the project is to combine an RRAM-based network endowed with on-line
learning capabilities to the Aryballe’s gas sensors, so to perform area and energy efficient
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Figure 4.5: Delta Rule on-line learning of the olfactory data @ Sketch of the Computer-
In-The-Loop experiment. The computer inputs the dataset to the RRAM-array, via the
bit lines. The array performs the MVM operation yielding the results through the source
line. Output currents are read by the computer which then calculates the weight update.
The weight update is performed by programming the RRAM devices with the appropriate
conditions. (]E[) On Line learning with the Delta Rule yields good classification accuracy
on RRAM-based network. The reference is the FP32-based model which reaches 100%
after 200 iterations. The software calibrated model of the RRAM network (purple) shows
good performance too, despite the instability due to the C2C and relaxation variability of
RRAMs. The computer-in-the-loop experiment (green) confirms both the problems related
with learning with RRAMs, despite showing that good accuracy can still be achieved after
250 iterations. After training with the computer-in-the-loop experiment, the RRAM
model is repeatedly read to measure the accuracy over the course of time. Even after 1
month, relaxation has not broken the RRAM model, which only suffering from a minor
accuracy decrement.

artificial olfaction. To validate the concept, a computer-in-the-loop experiment has been
performed. A reduced version of the dataset recorded by Aryballe is formed selecting
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data from Instrument 6 and considering four input gases only. The choice of limiting the
data to a single instrument matches the user experience of a customer buying a specific
Aryballe gas sensor. The dataset features 255 data-points, among which 51 are chosen as
the training set and the remaining 204 as the test set. Each data point features 183 inputs,
from the grid of 61 mach-zender interferometers. The model of choice to classify the gases
in the dataset is a logistic regression algorithm, performed with a RRAM-based perceptron.
The IMC hardware platform to implement this algorithm is a 32x32 RRAM array with a
periphery designed for both per-device programming and parallel reading of the matrix.
This allows performing the multiply-and-accumulate operation on the chip. However, a
differential architecture for the device is required by the algorithm to express both positive
and negative weights: to do this, the array is split in positive and negative columns. During
the parallel reading operation, the array is read column-wise and subtraction between
positive and negative values of conductance is performed off-chip, on a computer. To fit
the input data to the 1024 device array, the input is down-sampled from a size of 183 to
128. This is carried out by selecting the most significant input channels with a software
logistic regression algorithm: the 128 input channels with resulting weights with highest
absolute weight values are selected. Accounting for 2 devices per weight, and with an
output layer of 4 neurons (4 gas types), the device count amounts to 128 x 2 x 4 = 1024,
thus saturating the 32x32 array.

The computer-in-the-loop experiment interfaces an Arduino micro-controller and a Keysight
B1500 |257] machine to the RRAM array: the micro-controller is commanded by a python
file run on an external computer and executes the addressing of the array; at the same
time, the computer controls the B1500, which is devoted to programming and reading
the RRAMs. More information on the setup are described in Appendix [7] A simplified
scheme of the experiment is shown in Figure Inputs - from the reduces Aryballe
dataset - are fed to the array in the form of voltages. The RRAM array performs the MAC
operation column-wise yielding the output currents read by the B1500 and stored on the
computer. Here, weight updates are calculated with the delta rule algorithm, preparing
for the programming phase: the micro-controller addresses the appropriate cells and the
B1500 performs the RESET and SET operations with the calculated Vggr. The cycle -
said iteration - begins again and repeats for each input in the dataset.

Results from the Computer-in-the-loop experiments are shown in Figure where the
training procedure lasts for 254 iterations. Along with the experimental results (green),
the test reports the results for a simulation based on hardware data (Calibrated software,
violet) and with floating-point 32-bits (FP32) weights in a pure software model (grey).
In the calibrated software case, RRAM characteristics from Fig[4.4b] and Fig. are
fit and included in the simulation. Notably, the dataset is learned within few hundred
iterations, demonstrating the efficacy of the sensor array at separating the gas cues into
easily classifiable odors. In fact, the test accuracy for the FP32 model saturates at 99%
after 150 iterations. The cycle-to-cycle variability and relaxation effect introduced by
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Figure 4.6: Delta Rule re-training of an model with degraded performance. @ The Delta
Rule on-line learning procedure can be deployed for an model requiring an update. An
ideal FP32 model is capable to recover good performance fully in a few hundred iterations.
Also a RRAM-based model (in purple, in the Calibrate Software experiment) is retrained
with the same speed, and reaches almost the same accuracy in the olfactory dataset
classification task.

RRAMs inevitably reduce the performance of the algorithm: however, the experiment
reaches 90% of classification accuracy on the test set. This is in agreement with the software
model calibrated on the hardware data. Fluctuations of accuracy are partly due to the
nature of stochastic gradient descent (SGD) and partly to variability of RRAMs. Showing
a single data-point per time to the model, and with a large learning rate imposed by the
use of RRAM, means that the model’s parameters oscillate at each iteration, changing the
conductances and weight values abruptly. However, the delta rule training still converges
and the model classifies the inputs with 90.56% mean accuracy over 10 experimental
runs. After training with the delta-rule, the RRAM array is left untouched, and is then
read again multiple times over the course of a month. This tests the Retention of the
accuracy over time. RRAMs are known not only for Relaxation as temporal variability, but
also for longer time-scale instability. Recent studies on RRAMs for Edge-Al have shown
that RRAM-based models suffer from Retention [225| 258] but that is not breaking the
performance of neural networks [129, 94]. For the 10 experimental models, accuracy over 1
month period is shown in Fig. [£.5d The plot highlights a slight decrease of performance
after 1 month, that being of 2.78%. However, the decrease is not incremental in time and
evidence shows that a total collapse of accuracy in the models over longer periods is not
expected.

Degradation of performance is certainly not desirable and has to be minimized, but it
is not catastrophic to a model endowed with on-line learning capabilities. In fact, when
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the performance is not satisfactory, one can resort back to the training phase and recover
performance. To demonstrate the concept, a Re-Training procedure is performed on the
calibrated software and FP32 models over a validation set of 51 data-points, different from
the training set with which the models were originally trained (Fig. [4.6a). 10 trained
models are added a gaussian noise of 20% of standard deviation respect to the maximal
weight absolute values. This decreases the accuracy from about 95% down to around 60%
and emulates a heavy disturbance in the RRAM array. Despite the large decrement of
accuracy, the original level of performance is restored after 100 iterations and consolidated
after 150 iterations.

4.4 Transfer Learning with Delta Rule

On Line learning is a very desirable ability for Edge Al systems, but it introduces complex-
ity at the hardware level. This is why, in practice, on-line learning is still mostly unexplored,
especially in commercially available solutions. The reason is that learning at the edge
requires additional circuits which - in some cases - defeat the purpose of maximally efficient
implementations of neural networks. The most common algorithm to train neural networks
is gradient descent with the back-propagation technique. With this method, the activations
of all neurons have to be stored to memory and the weight matrices are involved in the
computation of the gradients. To get around such an expensive learning algorithm, several
alternatives have been proposed, like RTRL [114], e-prop [115], eq-prop [116]. While these
algorithms all relax the hardware requirements respect to the original back-propagation
algorithm, they introduce additional complexity and challenges for designers: for example,
RTRL increments the complexity of training to O(n'), e-prop requires a state variable
with long time constant per synapse, eq-prop transforms a conventional artificial neural
network to a dynamical system and introduces bidirectional synapses.

This is why the most conventional method for on-line learning is based on Transfer Learn-
ing. Transfer learning is the research problem in machine learning focusing on gaining
knowledge from a task and porting that knowledge over to solve a new - but related -
task. It is customary that the original task for transfer learning is "general" enough that
the particular task which the model is later asked to perform will result easier to solve.
This scheme is particular effective for Edge-Al, in which the power of a model trained
off-line on a server can be specialized in the context of a particular application at edge.
For example, a vision model classifying over thousand of classes of images can be used on
a security camera to recognize intruders. Specializing the model to the edge application
still requires on-line learning abilities, but is less demanding than training the model from
scratch. However, the question of how to fine-tune the model on-line remains open.

We propose to simplify the transfer learning pipeline and restricting learning to the last
layer of the neural network, as in the Delta Rule algorithm [240]. While this might sound
simplistic, it can potentially lead to surprisingly good results. The Delta Rule learning
fits well within the Transfer Learning framework, where one exploit the power of a large
neural network model previously trained on a large dataset. By learning on the last layer
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only, one combines the computational power of a large model with the simplicity of a
linear classifier. Moreover, this works with any neural network architecture and task. The
concept is summarized in Figure [.7al The general neural network model has parameters
Whia, the weights of the hidden layers. These are trained on a large, general training set,
making the model very powerful. However, the network might have to be specialized for a
particular set of data, collected on-line. In this case, one learns the last layer only with
the Delta Rule, as highlighted in Fig

In our case, we are interested to perform the Delta Rule algorithm on RRAMs so the focus
is on whether the devices’ variability and non-idealities hinder the network to learn the
data correctly. In the rest of the section, the performance of the Delta Rule algorithm on
RRAMs in the context of transfer learning is thoroughly analysed, particularly focusing
on what is the variability level allowing good performance on the MNIST and CIFAR10
tasks. Two different networks are used for the two tasks: a Multi-Layer-Perceptron (MLP)
and a Convolutional-Neural-Network (CNN).

MNIST dataset The MNIST dataset is the basic benchmark in computer vision. In this
experiment, the training dataset is divided in 2 parts: 95% of it is used as the training set
and 5% as validation set (3000 images), or second training set. A Multi-Layer-Perceptron
(MLP) is chosen to classify the hand-written digits, having 2 layers of 256 neurons each.
The training architecture is first fully trained with conventional back-propagation using
the Adam optimizer [259]. This allows the network to achieve a classification accuracy of
97.99%. After this first training phase, the output layer is replaced with a new one trained
with the Delta Rule on a software model calibrated on RRAM data. The validation set is
used in the delta rule learning phase. While this is certainly not a realistic use-case of
transfer learning, it is a good benchmark for the RRAM-based delta rule on-line learning
procedure.

Figure shows the evolution of the classification accuracy spanning over the 3000
iterations constituting the validation set. Two different models have been proposed, one
featuring all kinds of RRAMSs variability effects (violet) and one without Relaxation (green).
Interestingly, Relaxations seems to have a large impact to the results, making accuracy
violently oscillate along the training iterations. This is a symptom of the instability of the
classifier to the variations of RRAMs, especially for those devices that are programmed
with a weaker SET operation. When Relaxation is not accounted in the simulation,
performance is still not on-par with the FP32 model, but it converges to 96.06% with an
accuracy loss of less than 2%. This is surprisingly positive considering the cycle-to-cycle
variability of the devices. Furthermore, the classifier is trained over a small subset of the
dataset and the hidden weight exploited the knowledge acquired during the first training
phase and are not modified further. RRAM’s Relaxation is certainly a deal-breaker in
this experiment, however it has been shown that it can be traded off with latency in the
programming operation to make RRAMs more stable [260]. As mentioned before, the
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Figure 4.7: Transfer Learning with the Delta Rule. @ A MLP network with 2 hidden
layers is used to classify handwritten digits (MNIST dataset). The network is fully trained
on FP32 weights and those are later converted to RRAMs. The hidden weights W},;4 are
frozen after training on the training set. Output weights W,,; are trained from scratch on
the validation set with the Delta Rule algorithm, directly on the RRAMs. @ The Delta
Rule transfer training is performed either enabling or disabling the Relaxation effect of
RRAM. Including Relaxation (green) makes the learning unstable and with lower accuracy.
Removing Relaxation (purple) stabilizes the training procedure and allows reaching higher
accuracy. The weight update probability (p_prog) is an important parameter in the
Delta Rule algorithm. When relaxation is disabled, it has little effect, though lower p_prog
yields better results. When relaxation is enabled (green), higher p prog balances the
chaotic effect of RRAM temporal variability. The weight update probability is related to
the total number of programming operations (prog. ops.) as shown in the blue plot.

delta rule algorithm features a probability in making a weight update on the RRAM:s.
This is important to deal with the variability of RRAMs which results in the need of high
learning rates. The programming probability F,,,, mitigates the effect of the large learning
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Figure 4.8: Variability analysis learning MNIST online. @ In this test, the weight update
was performed adding random noise. Noise is injected from a Gaussian distribution with
given standard deviation (x-axis). More noise of course upsets the accuracy of the mode, as
observed in the plot. The Delta Rule learning tolerates noise up 5% of standard deviation.
The yellow bar represents the noise levels of RRAMs. @ Relaxation is the short-term
temporal variability of RRAMs. Here, it has been introduced as a Gaussian noise in the
weights, between any two training iterations. High level of relaxation destroys the ability
to learn the task. The yellow bar shows the relaxation values of RRAMs.

rates and makes the training smoother. This is plotted in Fig where accuracy after
1 epoch of training is analysed as a function of P,.,,. Again, RRAM relaxation (green)
decreases the performance by a large margin respect to the case where only cycle-to-cycle is
accounted for (violet). For the latter case, P, is not as effective, even though performance
decreases with large programming probability, as the large learning rate and variability
of RRAM weights become problematic. When Relaxation is accounted in the RRAM’s
model, the probability of re-programming becomes much more relevant. As the temporal
variability hits most of the devices, not just the ones that have been re-programmed,
lowering P,.,, makes the network unstable as most weights move their values without
being updated by the algorithm. On the other hand, when P, is too high, the effect of
the cycle-to-cycle variability becomes too aggressive. A compromise is found at P,,,, = 0.2.
On the right hand-side of Fig is the number of programming operations performed in
each simulation. Since the programming count is proportional to P4, the blue curve is
linear with the x-axis. This goes to show the importance of keeping P,,., low, so that less
energy is invested in the training operation.

In a second round of experiments, the robustness of the delta rule algorithm is tested by
replacing the RRAM variability model with simple gaussian noise with tunable standard
deviation. Results are reported in Fig. and Fig. [4.8D] First, gaussian noise is applied
to the weight update, recalling the cycle-to-cycle variability of RRAM. Fig. plots the
accuracy in the test set as a function of the weight update noise, showing that - as intuitive
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- variability in weights is detrimental to performance. The horizontal bar reminds the
97.99% accuracy baseline when no variability in the weight update is presented. A yellow
bar shows the variability level of RRAMs and it is evident that RRAMSs’ cycle-to-cycle
is at the edge of breaking the performance of the algorithm, but still allow for good
performance (up to 96%). Increasing the noise to the 10% mark lowers the performance
considerably (84.3%). Next, weight update noise is removed and the effect of the relaxation
is modelled in the form of a gaussian noise added to all the devices. Figd.8D| plots the
accuracy depending on the relaxation noise amplitude. As relaxation involves all the
devices, it is thus stronger and breaks performance earlier than the weight-update noise.
RRAM’s relaxation noise range is shown again with a yellow bar. Relaxation is a more
dangerous and effective non-ideality for devices implementing synaptic weights and it has
to be reduced. As already mentioned, different programming techniques [260] and material
stacks have been proposed to mitigate relaxation in RRAMs.

CIFARI10 dataset The Delta Rule is also tested with a more complex task, classifying
the CIFAR10 dataset. To do so, a Multi-Layer-Perceptron would limit classification
accuracy, so a more powerful Convolutional Neural Network is chosen as the pre-trained
model. Thanks to its favorable compromise between classification accuracy on the Imagenet
dataset [101] and the small memory footprint, EfficientNet B0 [261] is used as the support
model for the transfer learning task. The network features 5.3 Mb parameters and requires
390M floating-point operations per inference. A sketch of a CNN is shown in Fig. [4.9a an
input image is processed with multiple convolution and max-pooling layers, the output of
the CNN is then flattened and passed to a linear classifier, trained with the Delta Rule
algorithm.

CIFAR10 images are scaled to 224x224 pixels and processed with EfficientNet. The
delta rule algorithm is used to train the output layer. Due to the increased complexity
in classifying the dataset, training with a batch size of one is more difficult. Preliminary
tests conducted with different batch-size during training reveal that a batch-size of 1 is
insufficient and satisfactory classification accuracy (>75%) is reached with a batch size
greater than 8 (See Appendix [7). For the following experiments, batch size is fixed at
32. To train on-line with batch-size greater than 1, one would have to store outputs and
activations of the penultimate layer to memory. This certainly imposes limitations to the
energy efficiency and memory footprint of the additional learning circuitry. However, such
batch size is kept so to focus purely on the performance of RRAM-based on-line learning,
trying to find what is the complexity level at which such approach breaks.

To analyse the effect of variability in the algorithm, cycle-to-cycle noise in the weight
update is modelled with gaussian noise with varying standard deviation. Results are shown
in Fig. [4.90] The Baseline accuracy (horizontal dashed line) at 81.3% refers to the case
without variability. The yellow bar highlights the range of variability of RRAMSs and it is
at this level that the accuracy starts decreasing considerably. As variability is correlated
with the resistive level of RRAMs, these results hints to the fact the higher conductances
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Figure 4.9: Variability analysis learning CIFAR10 online.

Relaxation st. dev. [%]
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@ In this test, the weight

update was performed adding random noise. Noise is injected from a Gaussian distribution
with given standard deviation (x-axis). Noise is less tolerated than in the case of MNIST.
The Delta Rule learning tolerates noise up 1% of standard deviation. The yellow bar
represents the noise levels of RRAMs. @ Cycle-to-Cycle variability effect on accuracy.
C2C is modelled as a gaussian noise whose standard deviation is swept between 0.1% and
10%. RRAM noise magnitude is highlighted in yellow. The Baseline value of the Delta

Rule with no variability is plotted with an horizintal dashed line. Effect of RRAM’s
Relaxation on the performance.

are to be preferred. For example, 1T1R devices featuring large transistors allow for higher
compliance currents, thus reaching higher conductive states.

Similarly, an analysis on the Relaxation effect is reported in Fig, [4.9¢, Relaxation acts
on all the devices, i.e. weights, producing a random noise on the conductance levels after
a programming operation. Unlike cycle-to-cycle variability, Relaxation acts on all the
devices and is not mitigated with the P prog parameter, which acts by reducing the
portion of parameters that are updated by the delta rule. The yellow bar highlights the
relaxation levels in RRAMs. In the analysis, relaxation is modelled with gaussian noise
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and results show that performance starts dropping with noise level at 1% of the maximal
weight value.



Chapter 5

A step beyond in neuromorphic
computing

This last chapter groups together two works that have one common aspect: to go beyond
what is normally built in neuromorphic computing. As seen in the previous chapters,
neuromorphic computing is based on the concept of neural networks where neurons are
connected by synapses. In general, synaptic weights are assumed as the only learned
parameters that adapt to a given task.

In the memristive-self-organized-network (MEMSORN) project, this paradigm is overcome
and neurons are endowed with plasticity. An unsupervised learning scheme is developed
where the plasticity of both neurons and synapses results in improved performance.
MEMSORN is also technologically plausible and based on the utilization of RRAMs as
plastic elements in both neuronal and synaptic circuits.

Biological neurons are much more than the point-like structure assumed by both deep
learning and neuromorphic computing. They are complex structures with many parts
and all contribute to computation. One such part is the dendrite, elongated branches
which extend from the neuron’s soma and connect to afferent synapses. Dendrites perform
interesting non-linear and dynamical computations, which is probably fundamental for
efficient information processing. Inspired by the role of dendrites, a dendritic circuit
element was designed and built, forming dendritic networks to extend the functionality of
neuromorphic systems.

5.1 MEMSORN: a memristive unsupervised self-organized
map

Learning is a fundamental component for creating intelligent machines. Biological intelli-
gence orchestrates synaptic and neuronal learning at multiple time-scales to self-organize

125
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populations of neurons for solving complex tasks. Inspired by this, we design and experi-
mentally demonstrate an adaptive hardware architecture SOSN. MEMSORN incorporates
resistive memory (RRAM) in its synapses and neurons which configure their state based
on Hebbian and Homeostatic plasticity respectively. For the first time, we derive these
plasticity rules directly from the statistical measurements of our fabricated RRAM-based
neurons and synapses. These "technologically plausible” learning rules exploit the intrinsic
variability of the devices and improve the accuracy of the network on a sequence learning
task by 30%. Finally, we compare the performance of SOSN to a fully-randomly-set-up
recurrent network on the same task, showing that self-organization improves the accuracy
by more than 15%. This work demonstrates the importance of the device-circuit-algorithm
co-design approach for implementing brain-inspired computing hardware.
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Figure 5.1: SRNN and its hardware implementation. (a) The SRNN is composed of
a recurrent pool of excitatory neurons whose connections are formed by random fixed
weights (static) or through learning (SOSN). The network is excited by spatio-temporal
inputs activating sub-populations, shown in blue. Each of the sub-populations encodes a
particular part of the sequence. The excitatory neurons are connected to an inhibitory
population (shown in red), among which there are no recurrent connections. Both excitatory
and inhibitory populations contribute to the activation of the output, via the readout
connections (green arrow). Each neuron in the readout is assigned to a different prediction
class. (b) A possible hardware implementation of the SRNN. Neuron’s recurrent and
external input connection are implemented by RRAM devices assembled in a crossbar
array. Rows of the crossbar are connected to the inputs, while the neurons are connected to
its columns. (c) Neurons are implemented using a hybrid CMOS/RRAM design. RRAM
hold the parameters of the neurons, such as gain (purple 1T-1R), leak (green 1T-1R) and
refractory period (red 1T-1R).
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5.1.1 Motivation

The hallmark of intelligence is the ability of the brain to adapt and self-organize itself to
sensory information it receives throughout its lifespan. This self-organization is mediated
by a rich set of neuro-cognitive mechanisms that together contribute to sequence learning
and long-term memory formation [262]. While learning, a web of memory forms between
large groups of neurons, leading to coherent dynamic activity patterns that are a function
of the sensory information the system receives.

It has been shown that the combination of brain-inspired learning rules at different
time-scales lend themselves to the self-organization of dynamic networks for behavior
control [263} 264]. This type of self-organization lies in the unsupervised learning realm
where the ground truth is not available for learning. Instead, the memory forms as a result
of clustering information in cell-assemblies [263|. A cell-assembly can be defined as a group
of neurons with strong mutual excitatory connections. Once a subset of a cell-assembly is
stimulated, its neurons tend to be activated as a whole, so that the cell can be considered as
an operational unit of a SRNN. Applying local learning rules to the recurrent connections
forms independent cell-assemblies and makes the SRNN more powerful in extracting
temporal features in the data, compared to a fully-randomly-connected solution [264]. One
example of such a concept has been shown in SORN [264], a recurrent network model
of excitatory and inhibitory binary neurons. It incorporates a Hebbian-based synaptic
plasticity at a shorter timescale, along with Homeostatic plasticity at a longer timescale.
It is illustrated that SORN outperforms random RNN without plasticity on sequence
prediction tasks.

Implementing SORN-like networks on a hardware substrate holds great promise for
machine intelligence and autonomous agents, especially in situations where the agent is
in unknown environments [183, 265|. Neuromorphic technologies with online learning
capabilities can support the hardware implementation of such self-organizing SRNN [25]
266).

On-line learning in electronic devices requires local and distributed memory elements for
storing the learned parameters (e.g., the synaptic weights). RRAM has recently gained
significant attention as a promising memory technology for on-line learning |131} 267, (132,
133,130} 268, 269, 270, [271]. Its non-volatile and multi-state properties makes it a plausible
candidate for employment as adaptive hardware. Importantly, its internal dynamics and
intrinsic stochasticity have been proven beneficial for on-chip learning |5} 229, 272} 273|
which cannot be simply introduced in a digital implementation [274} 25]. As biological
networks rely on small unreliable components for reliable learning, they can provide
guidance for learning with RRAM devices. Brain-inspired unsupervised Hebbian learning
strategies have already been extensively explored in adaptive memristive neuromorphic
architectures [275] [276, 130, |277|. In these works, the RRAM conductance changes towards
a more/less conductive state based on the correlation/anti-correlation between its pre-
and post-synaptic neurons. However, Hebbian learning by itself cannot robustly lead
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to self-organization, as it implements a greedy mechanism which can lead to unstable
dynamics [278|. To achieve self-organization in memristive neuromorphic architectures,
a multitude of plasticity mechanisms need to be at play together, with properties and
dynamics that match the physics of the underlying adaptive hardware substrate [124} |153].

Here we present SOSN: a hardware architecture inspired by SORN with multi-timescale
on-chip plasticity rules. MEMSORN is developed following a device-algorithm co-design
approach exploiting the physics of the employed RRAM devices taking advantage of their
variability. We designed and fabricated the RRAM-based synapse and neurons in 130 nm
CMOS technology integrated with HfOs-based RRAM devices. Based on the statistical
measurements from these designs, we derive the local technologically plausible plasticity
mechanisms (Hebbian and Homeostatic), and apply them in the SOSN architecture. We
benchmark the network on a sequence learning task, and show that this approach exploits
the intrinsic variability of the RRAM devices and improves the network’s accuracy as a
function of sequence length, learning rate, and training epochs. As a control experiment,
we apply the same task to the same exact network, only without learning, whose recurrent
connections are randomly set up. We show that SOSN accuracy outperforms the random
network by about 15%. This work represents a fundamental step toward the design of
future neuromorphic intelligence devices and applications.

Results Inspired by SORN [264], we implemented two recurrently-connected networks of
LIF neurons: one randomly connected with fixed weights (static) and one with connections
that change through learning (SOSN). Other than this difference, the two networks are
identical. Both networks consist of an excitatory pool of recurrently connected neurons,
and an inhibitory pool of neurons that inhibit the excitatory ones, along with a read-out
layer fully connected to the two pools. The inhibitory neurons balance the activity of
excitatory neurons by providing a negative feedback 279, [280]. Inspired by neuro-anatomy
considerations on cortical circuits, we divided the excitatory and inhibitory population to
80% and 20% of the total number of neurons, respectively [281]. Different sub-populations
of neurons are stimulated by different parts of the input sequence. In both networks, the
activities of all the recurrent neurons is fed to a linear classifier at the readout which learns
to distinguish between different classes of input (see Fig. [5.1j).

5.1.2 Endowing both Synapses and Neurons with plasticity: hard-
ware implementation

To implement the network in hardware, we designed a crossbar memory architecture
(Fig. [5.1b). Its rows are connected to the neurons and its columns are connected to either
external inputs or to a recurrent input from another neuron. We employed RRAM both in
the design of the synapses at the cross-points holding their strength (Fig. ), and in the
design of the neurons holding their internal parameters (Fig. ); Each synapse contains
a transistor in series with an RRAM (aka 1T-1R), with the free side of the transistor and
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Figure 5.2: Measurements from our fabricated RRAM array and synapse and neurons in
130 nm technology. a,b,c) Experimental results from the fabricated 4 kb synapse array,
each device is programmed 100 times. a) SET characteristics. The box plot represents
the SET probability as a function of the SET voltage, the green horizontal bar represents
the median value, the box lower and upper limits represent the +25% and +75% quantile
respectively, and the whiskers show the +£95% quantile. (b) RESET characteristics; HRS
measurements as a function of the RESET voltage applied across the devices, for different
gate voltages applied to the transistor (T). (¢) The HRS distribution at Vggsgr = 2.0V
and Vg = 4V which fits well to a log-normal distribution. (d), (e) Experimental results
from the fabricated neuron. The neuron is excited by a train of spikes with a pulse width
of 1us and a magnitude of 450 mV and a frequency of 1 kHz (green). Changing the state
of Ry and R, devices changes the gain and time constant of the neuron, which does not
fire in d) due to a weak Ry value, but fires multiple spikes in e) thanks to a larger Ry
resistance.

the RRAM connecting to the rows and the columns, respectively; Each neuron implements
the LIF model shown in Fig. [5.1c. This hybrid CMOS/RRAM neuron design encompasses
three RRAM whose value set the neuron time constant (shown in green), gain (shown in
purple) and refractory period (shown in red) . The adaptive nature of RRAM allows
for learning both the synaptic and internal neuron parameters in an on-chip and online
fashion.

As soon as an input spike arrives to a column, a voltage is applied across the corresponding
synaptic RRAMs, giving rise to a current, through Ohm’s law. All currents are summed
at the rows, and are integrated by the corresponding neurons [229]. The input to the
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neuron is multiplied by the gain (R1/R2), and is integrated on the membrane capacitance
C7 with a time constant determined by RsC;. As soon as the voltage on C; passes the
threshold Vj;1, the neuron generates a voltage spike, and sends it both to V,,; and to
the feedback path. In the feedback path, the neuron’s spike is integrated on Cy, and the
resulting voltage has a time constant of R3C5. As soon as this voltage passes the threshold
Vine, the membrane capacitance C} is reset, and the neuron awaits the next input current.

Synapse and neuron characteristics We fabricated and measured a 4 kb synaptic
crossbar array along with the hybrid CMOS/RRAM neurons, using 130 nm CMOS tech-
nology integrated with HfOs-based RRAMm in a 200 mm production line. The Front End
of the Line, up to metal 4, has been realized by ST-Microelectronics, while from Metal 5
upwards, including the deposition of the composites for RRAM devices, the process has
been completed by CEA Leti. RRAM devices are composed of a 5nm thick H fO, layer
sandwiched by two 5nm thick T%WN electrodes, forming an TiN/H fO,/Ti/TiN stack.
Each device is accessed by a transistor composing the 1T-1R unit cell. The size of the
access transistor is 650 nm in width. 1T-1R cells are integrated with CMOS-based circuits
by stacking the RRAM cells on the higher metal layers.

In the synapses, we can induce a change by applying a voltage across the RRAM
devices. The device state changes from a HRS to a HRS (SET operation) by applying a
positive voltage between the positive and negative terminals of the 1T-1R, while applying a
voltage to the gate of the transistor, Vju, to control the current passing through it during
programming. Alternatively, the device switches from HRS to HRS, by applying a negative
voltage across the 1T-1R (RESET operation). Both SET and RESET operations produce
changes in a stochastic manner. This results in a distribution over the resistance values
given a programming condition 282, [283| 284|. Typical values for the SET operation are
Vgate in (0.9 - 1.3] V , while the Vtop peak voltage is normally at 2.0 V . For the RESET
operation, the gate voltage is instead in the [2.75, 3.25]V range, while the bottom electrode
is reaching a peak at 3.0 V . The reading operation is performed by limiting the Vtop
voltage to 0.3 V , a value that avoids read disturbances, while opening the gate voltage at
4.5V. We define a threshold at 50 k€) for the resistance marking the border between HRS
and HRS, and characterize the SET and RESET properties; Fig. shows the probability
of the SET operation as a function of the voltage applied to the 1T-1R cell, which follows
a sigmoidal function. The RESET operation is characterized in Fig. as a function of
the voltage applied across the devices, with different gate voltages. The distribution of
HRS values for a RESET voltages of 2V is shown in Fig. [5.2k. The distribution fits well
with a log-normal function [284].

In the neurons, we measured the output firing pattern in response to a spike train as is
shown in Fig. [5.2)d, e and f. Setting Ry and R, with different values increases (Fig. [5.2]d)
or decreases (Fig. [p.2e, f) the neuron’s time constant, and thus changes the likelihood of
the neuron firing. In sensory-motor applications, matching the dynamics of sensory signals
to those of the electronic circuit in the processing hardware can minimize the system power
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consumption and maximize the SNR [183|. Therefore, to obtain neuron’s time constants of
millisecond range, on the order of sensory signals, while limiting the size of the capacitors
(to minimize area usage), the neuron’s RRAM devices should be operated in their HRS

ranging from M Q to GQ (Fig. |5.1p).
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Figure 5.3: Technologically plausible algorithms for static and SOSN networks. (a) An
SRNN with excitatory connections. (b, ¢) Synapse and neuron parameters for static
network. Both values are fixed after an initialization process. (b) Synaptic parameters
are initialized based on comparing the probability of different connections with a random
number. (¢) Neuronal parameters are initialized by resetting the resistors Ry, Ry and R
which is equivalent to sampling from a log-normal distribution around a mean resistance
that is a function of the reset voltage. (d, e) Synaptic and neuron parameters for
SOSN network. Both parameters are learned throughout the input sequence presentation.
(d) Synaptic parameters are learned based on the Hebbian-based SDSP learning rule.
At the time of the pre-synaptic event (t,..), weight (conductance) of the synapses are
increased /decreased, if the membrane potential of the post-synaptic neuron (Vi,em post) 18
higher/lower than Vj. (¢) Neuron parameters are changed based on the IP algorithm which
tries to keep the firing rate of each neuron (< f >) in a healthy regime (fr + 0/2). If the
neuron’s firing rate goes beyond this regime, neurons’ R, is first SET probabilistically
and then RESET. The RESET process samples a new value for R, from the log-normal
distribution of HRS values.
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5.1.3 Technologically-plausible unsupervised learning

With the technologically plausible algorithm design, we aim to optimize the hardware
implementation of algorithms by taking the hardware physics into account while developing
the algorithm. Figure depicts the algorithms for the two static and SOSN networks
which are derived based on the synapse and neuron measurements of Fig.

Static network The algorithm for static network (i.e., with fixed random weights) is
depicted in Fig. [5.3b, c. The synapse and neuron behavior is fixed a priori; the synaptic
connections are set randomly, by comparing the probability of connections in different
populations to a random number, and if higher /lower, induce a SET /RESET to the devices
(Fig. ); The neuron parameters are sampled from the HRS log-normal PDF derived
from the measurements of Fig. 5.2, equivalent to applying Verser = 2V to the devices.

SOSN The SOSN plastic network self-organizes to form multiple cell-assemblies. This is
done through changing the RRAM in the synapse and neuron parameters through learning.
The excitatory synapses undergo a Hebbian-type plasticity, i.e., SDSP, which changes the
synaptic RRAM based on the correlation between the input (pre-synaptic) and output
(post-synaptic) neural activities [285, [266]. In addition, the neuron parameters undergo
Homeostatic plasticity, i.e., IP, which acts as a regulatory mechanism to keeps the neuron’s
firing activity within a desired range [4]. Both forms of plasticity are well suited for the
implementation on CMOS and RRAM hardware.

Following the SDSP rule, the RRAM resistance of a synapse is decreased /increased, on
the onset of its pre-synaptic spike, if the membrane potential of the post-synaptic neuron
is higher/lower than Vj threshold (Fig. [p.3d). The measure of correlation in SDSP is
the difference between the membrane potential of the post-synaptic neuron V., to a
defined threshold, Vj at the time of the pre-synaptic spike ¢,,.. The weight update on ?,,.
is defined as:

Wgg + LR; if Vmem 2 ‘/9
WEE = .
wpg — LR, otherwise
Where wgg is the weight between the excitatory neurons, and LR is the learning
rate. The SDSP rule is thus controlled by two parameters, the thresholds applied to the
post-synaptic neuron membrane voltage (Vj), and the synaptic weight increment (LR).

On the other hand, IP changes the neuron’s RRAM to maintain its output firing rate,
fns close to a target firing frequency, fr, within a tolerance of o (Fig. [5.3g). If f, lies
outside of these boundaries, the RRAMs in their HRS are updated accordingly.

A target firing frequency fr with an error margin o is defined as the desired range, and
the neuron measures its firing rate f,, with respect to the boundaries fr £o0/2. If f,, moves
outside of these boundaries, the value of HRS needs to be updated. To do so, the RRAM
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Algorithm 4: IP algorithm
Initialization: R = RESET;it(VReset)
while t < taskDuration do
for Neurons in the excitatory pool do
if @tpost-' |fneur0n - fT| > 0/2 then
# Sub-threshold Stochastic SET
‘/set = f(’fneuron - fTD
Pset = P subthSET (V)

if Rfinal < 50 kL) then
L 7 RESET

Rurs = RESET()

is SET with a subtheshold SET voltage which is proportional to the difference between
the target and neuron activity. The higher the difference, the higher the SET voltage
and thus the higher the probability of setting the device. If the device is SET (i.e., the
final resistance Ryinq < 50 kS2), we then RESET the device to sample from its internal
distribution and find a new value that sets the time constant and gain of the neuron.

For simplicity, we have chosen to only update Ry which simultaneously changes both the
gain and the time constant of the neuron. Changing the gain will additionally implement
synaptic scaling which is another homeostatic plasticity mechanism, used in conjunction
with IP in the original SORN paper [264]. To tune R, in HRS, it is first SET and then
RESET. SET is done probabilistically proportional to the difference between f,, and fr
(6). Once SET, The RESET operation with a fixed Vgpspr effectively samples a new HRS
value from a log-normal PDF. Therefore, neurons with a frequency deviating significantly
from the target will change their leak and gain by acting on R», to adapt their firing rate.
Note that since the amplitude of Vrgser is fixed, the sampled HRS value is drawn from a
single distribution, which makes the search for the correct resistance values non-guided.
This reduces circuitry overhead with respect to an alternative algorithm in which the
RESET operation is performed by adapting the Vzgpser to the deviation of the f, from

fr (i.e. Vrgser o< |fo — fr|) [4]-

Benchmark

To validate our approach, we used the same benchmark proposed in the original SORN
paper [264]: a sequence learning task based on counting for predicting the next sequence at
the output. The network receives a shuffled alternation of two input sequences of length n+2
of 6 possible characters in [A, B,C, D, E, F|. In both sequences, either characters, B or E
are repeated n times (Fig.[5.4h). Examples of these sequences are S, : [A, By, B, ..., By, C]
and Sy, : [D, Ey, By, ..., B, F]. The goal is to learn to predict the next character given all
the previously-presented ones, i.e P(next — character;| Z;_l shown — character;). After
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Figure 5.4: Static and SOSN performance comparison. (a) Sequence learning task. Two
input sequences of Sy, = ABB...BC and S,, = DEE...EF, with Bs and Es presented n
times, are fed to the network. Each letter represents part of the sequence. The task is
to predict the next symbol in the sequence, for which it needs to keep the count of the
number of presented B and E symbols. (b) Confusion matrix for the static (red) and
MEMSORN (green) networks. The static network is capable of separating only the first
part of the sequence, whereas the SOSN network can successfully predict the next letter
in the sequence resulting in a diagonal confusion matrix. Understandably, performance
drops to chance level between the two sequences, since input symbols are equiprobable and
their temporal succession carries no structure. (c) Histogram of the accuracy in the static
(red) and SOSN (green) networks tested on 1000 different networks, for the counting task
with sequence length (n) of 10. The mean of the accuracy distribution in SOSN network
increases compared to the static network (mean of 0.756 for SOSN network compared
to 0.596 in the static network). Also, the number of low-accuracy networks in SOSN is
greatly reduced compared to the static network (about four times).

fixing the length of the sequence, the network has to learn to count the repetition of
characters B and E by means of a reliable dynamical state.

We applied the counting task to the static and SOSN networks, initialized with the
parameters shown in [5.1] and compared their performance. The network is asked to
differentiate between n = 10 repetitions of the same symbol, presented in the middle
of the two sequences. Each symbol’s position in the two sequence is assigned to one
output neuron in the readout whose activity represents the network’s prediction of the
next symbol. Fig. [5.4p shows the confusion matrix, indicating the predicted, compared
to the expected output.

The static network is capable of separating only the first repetitions, whereas the SOSN
network can successfully resolve all the repetitions, forming a diagonal in the confusion
matrix, matching the output to the target. Since the two sequences are randomly alternated,
the output of the network under the presentation of the last symbol in the sequence cannot
be predicted. This applies to outputs 0, 13 and 25 in Fig. [5.4b. The internal dynamics
in the static network saturates and lands on an attractor state from which no further
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Neurons Synapses SRNN
Excitatory Inhibitory
num. Neurons 160 40 T Ilms | pee 2%
Ry (IP) 1GQ2 Weight (SDSP) | prr 0%
R, 400 M 600 MS2 per 2%
o 10 pF 10 pF pre 10%
TCa 100 ms 100 ms
Vin 02V 02V
R3 1GQ 1GS)
Cs 2pF 2pF
IP SDSP
FT 50Hz ‘/th 0.2V
o 15Hz Vo 0.1V
V®RESET 2V LearningRate 0.01-0.1

Table 5.1: Parameter values for the initialization of the SRNN. Such values are defined
with small-to-absent tuning, with the only aim to guarantee a minimal activation of
the network, so to fully rely on the plasticity mechanisms (SDSP and IP) to improve
performance. Some parameters, such as the magnitude of RRAM resistance in HRS and
the Membrane Capacitance, are forced by technological constraints.

information can be extracted. The SOSN network, instead, is capable of forming more
complex dynamics that allow for fading memory to form and separate the repetitions
in the input sequence. Figure [5.4c illustrates the histogram of the accuracy calculated
over 1000 networks initialized differently for both networks on the counting task with
the sequence length of n = 10. As shown, the mean accuracy of the SOSN network is
increased compared to the static network. (Mean accuracy of 0.756 compared to 0.596
respectively). The standard deviation is due to the random initialization of the connections
and the variability of RRAM, implementing both the weights of the connections and the
parameters of the neurons Taking into account the hardware constraints, our statistical
analysis shows that by enabling learning inside the recurrent network, there is a higher
probability of obtaining a more accurate network; i.e. the number of learned networks
that can correctly predict the next letter with an accuracy of more than 0.8, is four times
that of the static network.

5.1.4 Analysis on the effect of variability in SOSN

RRAM devices undergo cycle-to-cycle and device-to-device variability as was confirmed
with our measurements in Fig. [5.2] To understand the effect of variability in SOSN, we
performed simulations on four cases: (i) No device variability and IP operation off; (ii)
Variability in devices receiving the SDSP rule, and IP operation off; (iii) Variability in
devices receiving the SDSP, and IP operation on without variability; (iv) Variability in both
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Figure 5.5: Performance of our proposed self-organized network (SOSN) under four different
cases of variability in the device models: (i) No device variability and IP operation off
(black), (ii) Variability in devices receiving the SDSP, and IP operation off (red), (iii)
Variability in devices receiving the SDSP, and IP operation on without variability (Blue)
and (iv) Variability in both SDSP and IP learning with standard deviation for the IP
devices set to 0.1, taken from our measurements (green). (a) Histogram of accuracy for
500 networks confirms the higher accuracy for the networks including variability and
IP operation compared to other conditions. (b) Accuracy of the SOSN network on the
counting task with respect to the sequence length. As the sequence length increases,
the task becomes harder: introducing variability, calibrated on measured data, helps the
accuracy of the network as all the cases with variability outperform the case without any
variability. (c¢) Average accuracy of the SOSN network on the counting task with length
of 10 as a function of different learning rates. Introducing variability makes the network
robust to hyper-parameter change. (d) Learning evolution of the network accuracy on the
counting task with sequence length of 10 for the four variability cases. Condition (i) has
much less noise, but has an overall lower accuracy (less than 40%) than the cases where
variability and IP are introduced.

SDSP and IP learning with standard deviation for the IP devices set as 0.1, taken from
our measurements. It is worth noting that in condition (iii), since there is no variability in
IP operation, the same initial value is always applied when IP is acting.



CHAPTER 5. A STEP BEYOND IN NEUROMORPHIC COMPUTING 137

Figure shows the network performance under these four conditions. The figure
demonstrates the positive effect of the regularizing IP mechanism, and how SOSN network
exploits the different sources of variability of the RRAM devices to increase its accuracy
on the sequence learning task; Figure plots the histograms of accuracy for every 100
samples of learning in the SOSN network for all the variability conditions. The histograms
show that introducing IP operation, and any source of variability shifts the mean of the
accuracy of the network to higher values; Figure illustrates the accuracy as a function
of the sequence length. As the sequence length increases, the network needs to remember
increasingly longer sequences which tests its fading memory [286]. Thus, the accuracy
of the network drops with longer sequences. It is worth noting that as the sequence
length increases, the number of output neurons increases, and thus the baseline chance
level accuracy reduces. Figure confirms that the networks including IP and added
source of variability outperform other conditions. Figure depicts the network accuracy
as a function of the SDSP learning rate. Despite that large learning rate results in a
consistent drop in accuracy, introducing variability suppresses accuracy degradation. This
suggests that the noise introduced by the variability of the RRAM devices is beneficial
for the stability of the network making it less sensitive to hyper-parameters and low
bit resolution. This is because through learning with noise, the algorithm finds a set of
parameters that are more insensitive to noise. Figure shows the accuracy evolution
of the SOSN network during learning epochs. Each epoch consists of presenting one of
the two sequences which are presented to the network with a random order. Condition (i)
without any variability and IP operation (black) leads to a more stable learning dynamics,
but also lower performance. Instead, adding noise to SDSP or adding the IP operation
causes some instability in the network, but also allows for much higher overall accuracy.
Finally, combining the variability in SDSP with that of IP leads to the best performance
compared to other conditions.

The positive effect of variability is because a distribution of parameters due to variability
provides a larger space of parameters for search during learning which helps the network
to explore and reach a better set of parameters for the task.

Clustering analysis

To understand the dynamics of the static and SOSN networks, we performed clustering
analysis on the firing activities of the neurons inside the excitatory pool. Figure 5.6 shows
the result of the clustering analysis. First, we reduced the dimensionality of the neural
activity using PCA. Figure plots the PCA of both network activities in response to
50 sequences of length 10. Temporally adjacent letters in the sequence line up next to
each other in the principle component space. This indicates the higher structural richness
in SOSN compared to the static network. Moreover, this helps with the classification
accuracy in the readout layer, since the sequences become more linearly separable as
indicated by the PCA plot. Figure plots the histogram of explained variance in
the firing rate of the random and SOSN networks with respect to the first 20 principle
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Figure 5.6: Clustering analysis on the spiking activity of the networks for static and SOSN
architectures. (a) Principle Component Analysis (PCA) applied to the firing rate of the
two networks in response to 50 sequences of length 10 (600 letters). Each color is assigned
to a different position of the letter in the sequence with similar colors encoding temporal
adjacency of the letters in the sequence. (b) Histogram of captured variance by the first
20 PCs in the static and SOSN networks. The explained variance amounts to 79% for
static network compared to 87% in the SOSN one suggesting more orderly dynamics in
SOSN network. (c¢) Dendogram of static and SOSN networks showing the hierarchical
relationship between clusters of neurons. The normalized height of the dendogram indicates
the distance between the clusters and the links indicate the order in which the clusters
are joined. For any given distance, the number of branch numbers for MEMSORN are
larger than those for the static network, indicating that the clusters in MEMSORN are
better-structured.

components. The explained variance is about 11% more in SOSN network compared to
the random network suggesting more orderly dynamics in SOSN network. Additionally, we
performed a hierarchical clustering analysis on the activity of the SRNN which reveals the
formed cell-assemblies. The result is indicated by the dendogram in Fig. [5.6f, showing an
increase in the number of uncorrelated clusters in SOSN network compared to the random
network. This is as a result of more structure emerging from the learning in the recurrent
network which is in agreement with the unsupervised memory formation in cell-assemblies
as we argued in the introduction.



CHAPTER 5. A STEP BEYOND IN NEUROMORPHIC COMPUTING 139

5.1.5 Energy and latency estimations

The MEMSORN hardware reaches convergence for the sequence learning task within the
presentation of 1000 learning samples (Fig. ), giving rise to & 13 minutes for learning
the task. The power consumption of the MEMSORN’s recurrent network during this task
consists of three components of static power consumption, dynamic power as a result of
the firing of the neurons, and dynamic power due to changing the state of the RRAM
devices for learning. The static power consumption of the recurrent layer, including the
1T-1R array and the 200 neurons is 0.2 uW. The dynamic power due to the firing of the
neurons is about 0.8 uW, and the dynamic power of changing the state of the RRAMs
due to IP and SDSP learning is 0.2 uW. For the duration of the learning, this gives rise
to 936 uJ of energy consumption. These values are well within the energy budget and
real-time online learning requirement of edge devices [287].

Latency and energy calculations

As is shown in Fig. [5.5d, the learning takes about 1000 presentation of samples to
converge. Fach symbol is presented for 50 ms with a 200 ms of wait time in between
pattern presentations. For a pattern of 12 symbols (n=10), that gives rise to 800 ms per
epoch. Therefore, the total latency is 800 seconds, or 13 minutes. We identified three
sources of power consumption in our system: static power, dynamic power due to the
firing of the neurons, and dynamic power due to the state of the RRAM devices changing.

Static power: The static power consumption of each neuron, together with the switches
is 1.4nW. This gives rise to =~ 0.2 uW of static power consumption for the entire population
of the neurons.

Neuron dynamic power Based on our measurements, the energy consumption of
our neuron in 130 nm process is 100 pJ/spike. Our recurrent layer has 160 excitatory
neurons firing at 50 Hz (maintained by the IP algorithm). This gives rise to: 160 X
50 spikes/second x 100 pJ/spike ~ 0.8uW .

RRAM state change dynamic power During the learning operation, the state of the
RRAM devices changes due to the IP and SDSP learning rules. We have counted the total
number of times that the state of the devices are changing during the learning process, which
is &~ 3 x 10° times. As we have previously reported [154], each RRAM SET and RESET
cycle consumes around 50 pJ. For the duration of the learning (13 minutes)x, this gives rise
to 50 pJ x 3 x 109/(13 x 60 seconds) = 0.2 uW. Therefore, for the duration of the learning
process, the total energy consumption is (0.2uW + 0.8uW + 0.2uW) x 13 X 60 seconds =
1.2 uW x 780 seconds = 936 uJ.
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5.2 Dendritic Computation

Neuromorphic computing develops around the idea of bio-inspired computation, following
the brain’s primitive computational elements. At this stage of its evolution, neuromorphic
computing mainly settled for systems composed of neurons and synapses. It is a compro-
mise found by minimizing the system complexity and still obtaining good computational
power. But to develop more advanced neuromorphic solutions, a question arises: is there
more to computation in the brain than neurons and synapses?

The answer is of course yes, as it is well known in neuroscience that neurons are not
point-like structures, but rather complex elements with many parts. So-called "compart-
ments models" [288] of neurons describe most of - but not all - the different components of
neurons, from the dendrites, to the soma and to the axons. These models greatly increment
the complexity of neurons and are not easily simulated by conventional computers, reason
why their usage is limited to small micro-circuit in neuroscience. The purpose of complex
compartment models is explaining or understanding particular dynamics observed in the
brain, rather than it is building efficient computers. However, it is intuitive to think that
such complexity - or some part of it - is what allows a biological neuron (and a brain) to
be so computationally powerful and efficient. More efforts have to be made in order to un-
derstand where the added complexity introduced by these highly non-linear and dynamical
components of biological neurons pays off in pragmatical terms for computation. What
are the features that can be borrowed from biological neurons that allow neuromorphic
computing the next step forward?

A lesson can be learned from Deep Learning: the evolution of Recurrent Neural Network. It
is well-known that vanilla RNNs fail at solving complex task, especially in cases where one
deals with long sequences. It is because of the vanishing or exploding gradient problems.
However, RNNs are among the most used architecture for Deep Learning at the edge, for
speech recognition and temporal signals processing. How have RNNs become so powerful
and ubiquitous? It is because of specific added complexity to the architecture that greatly
improve the potential of the network. LSTMs [289] and GRUs [290] allow to mitigate
the vanishing gradient problem of vanilla RNNs with an ad-hoc construction of feedback
connections and "forget" gates allowing gradients to be propagated easily further back in
time. These mechanisms proved robust to the back-propagation-through-time algorithm
required to train RNNs and induce long term memory. Can Dendrites be for SNNs what
"forget" gates are for RNNs?

Dendrites in biology Dendrites are protoplasmic protrusion extending from the body
of a neuron, receiving electro-chemical stimuli from neighbouring neurons and propagate
them to the neuron’s soma. Action potentials - the neuronal communication signals
called spikes - are generally produced in the soma, transmitted to axons and received
by dendrites, to then be integrated by the receiving neurons. The connection between
axons and dendrites are the synapses, forming a cleft between two lipidic layers, through
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which neurotransmitter and ions travel and communicate spikes across neuronal circuits.
Dendrites provide a large surface on which synapses are formed and adapted over time.
The size and number of dendrites per neuron depends on the neuron’s type, which can
be either multipolar, bipolar or unipolar. Multipolar neurons are commonly found in the
cortex and possess multiple dendrites and one large axonal branch; bipolar neurons feature
one dendrite and one axons; unipolar neuron are mainly used to perceive sensory signals
from a dendritic termination. Dendrites can arborize and form an impressive number
of dendritic spines, post-synaptic connections from afferent axons. Dendritic spines can
be as many as 15000 per neuron and a dendritic branch can receive as many as 100,000
inputs from neighbouring neurons [291} [292|. As much as synapses, dendrites also are
plastic elements: their shape, size and thickness are thought to play a great role in memory
formation [293], 294, 295|. Dendrites tend to modify their characteristics and morphology
more in the early years of a mammal’s life than in the adult life. It has been observed that
degradation of dendrites is a common factor in different neuropsychiatric disorders [296].
However, as neuromorphic engineering, dendrites are mostly interesting for their unique
electrical properties. The most basic of which is the transport of electrical signals from
synaptic ions release. Action potential are propagated through the length of the dendritic
branch as a signal through a cable. Indeed, cable theory is often utilized to describe the
propagation of the action potential from the dendritic spines through the soma [297|. Such
an action results in two main effects on the action potential: a delayed introduced by the
propagation and a modulation due to the lossy transmission on the potential. The length,
width and shape of the dendrites influence the property of propagation of the action poten-
tial to the soma. Furthermore, dendrites also feature ion-gated channels that participate
to complex dynamical processing of the incoming stimuli. It results that Dendrites exhibit
a wide range of behaviors useful for computation. Among the most important: coinci-
dence detection, introduction of transmission delays, non-linear summation of input signals.

5.2.1 The Dendritic circuit element and the Dendritic Network

We take inspiration from such interesting features of dendrite to build a circuit that intro-
duces delays in propagating spikes between neuron as well as modulating the amplitude
of the transmitted signal. Of the many processing features dendrites are endowed with,
we focus on the ability to introduce a delay and to modulate the transmitted spikes.
Biological Dendrites (Fig. [5.7h) receive inputs from afferent axons and those are weighted
by synapses. Then, action potentials are transmitted through the dendritic branch with
given delay, before being integrated by the soma. To endow neuromorphic system with
such computational abilities, we designed the circuit in (Fig. ) The Dendritic Element,
as it is called, is a circuit that divides into two parts: the delay section and weighting
section. Each of the parts is built around a Non-Volatile-Memory element. In the delay
section, an input spike arrives as the input at time ¢;, of the circuit to the gate voltage of a
n-type transistor (READ terminal). The pulse pulls down the voltage of a capacitor (Veap),
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Figure 5.7: Dendritic computation and Dendritic circuit. (a) Depiction of a biological
Dendrite, receiving different synapses from different axon terminations. Each dendrite
subdivides into smaller dendritic spines. Inputs in the form of action potential come from
the axons and transmit through synapses, where they are modulated in magnitude, and
are further processed in the Dendritic branch before reaching the Neuron. (b) Dendritic
Circuit scheme and its basic working as a function of time. The circuit features 2 RRAMs,
with Delay and Weight functions, a Capacitor and a Fall-Edge detector. c¢) Neurons
can feature many dendritic branches, each of which connecting to many synapses. d)
This inspired the Dendritic Network, formed by several Dendrite Circuits, grouped into
Dendritic branches macro-circuit. The branches’ output are processed by their dedicated
DPI synapse and ultimately stimulate a LIF Neuron.

which is in parallel to the Delay-NVM. Note that, except for the programming phse, the
SL terminal of the Delay-NVM is shorted to the voltage on the capacitor Vinit. Depending
on the resistance of the delay-NVM, the capacitor voltage Vcap relaxes back to the resting
potential Vinit with different time constant. 74e1qy = Raer X C the time constant depends
on the delay-NVM’s resistance (Rge;) and on the capacitance C. The temporally decaying
voltage of the capacitor is connected to a Fall-Edge (FE) detector. The FE detects the
Vcap potential crossing the reference voltage Vref, at time #,,;. When this happens, the
FE circuit emits a spike in the output, being delayed in time respect to the input READ
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pulse (Fig. ) Here starts the second section of the circuit, consisting of a simple 1T1R
device, referenced as weight-NVM. The voltage pulse coming from the FE opens the gate
of the weight 1T1R, drawing a current lout proportional to the conductance of the NVM.
This current is the output of the circuit and constitutes a delayed and weighted current
version of the input pulse presented on the READ terminal.

In biology, multipolar neurons in the cortex develop into multiple dendritic branches which
receive a large number of inputs (Fig. ) Each of the branches is highlighted with a
different color and generally. Mimicking such biological structure, the Dendritic Network
(Fig. [5.7d) also shapes into different dendritic branches (highlighted with different color
each) all insisting on the same output neuron. In this network, the same spike train is
in shared across a dendritic branch, which is a collection of N dendritic elements. M
branches can be stacked together in parallel receiving as many input signals. DPI synapses
can be interposed between the dendritic branches and the output neuron to dynamically
process the incoming trains of spikes. The output LIF neurons thus has to its disposal a
highly processed version of the inputs and a lot of degrees of freedom to adapt for a given
task. The aim is to expand the computational power of the single neuron and in turn of
neuromorphic neural network.

5.2.2 Assessing the computational power of Dendritic Networks

Dendritic Networks promise to boost the computational capacity of neuromorphic neural
networks. On one side, dendrite expand the dimensionality of the inputs, on the other
they provide more align the useful temporal information from an input. This last aspect
is potentially disruptive. Conventionally, neural networks make use of recurrent connec-
tions to form complex temporal dynamics that allows to make sense of long temporal
input sequences. Such recurrent dynamics are hardly trained with the back-propagation
techniques. It is highly desirable to avoid complex dynamical systems that are hard to
adapt for a given task. In the deep learning realm, recurrent neural networks have been
overcome by attention-based models [298]|. The ideal behind attention layers is to learn the
importance of the temporal features from a sequence, and to pass them to the following
layers. In this sense, dendritic branches perform similar computation. Each element in a
branch produces a delayed version of the input and, by learning the synaptic weights, one
selects which combination of delays transmit the most relevant features of the input spike
train to the output neuron.

To assess the computational power of such concept, a simple experiment is performed.
Figure shows a single dendritic branch fed by a Random input pattern. The input
spike train is delayed and weighted by N dendritic elements and then integrated by an
output Leaky-Integrator neuron. Such neuron type does not spike and only integrated
input spike onto the membrane voltage with leakages. The task is to reproduce a signal
generated by summing 3 sinusoids with periods [r/1.5,7/2, 7/2.5], with 7 being the length
of the target signal. In the dendritic element, delays are initialized from a distribution
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Figure 5.8: Dendritic Network benchmarked on a pattern regression task. @) A random
input patter is fed to the dendrite, depicted as a collection of dendritic elements in green.
Each of the element delays input spikes of about #4.; ; and weighs the delayed train of spikes
by wger;. The resulting delayed and weighed trains of spikes are linearly accumulated at
the output neuron, in this case a Leaky-Integrator (LI) neuron. Note that this neuron does
not feature a threshold and never spikes. This neurons’ membrane voltage is compared
to an arbitrary time-varying signal. For this task, the target signal is a sum of sinusoids
with given periods. An example of successful learned signal. The generated patter is
depicted in blue and represents a sum of 3 sinusoids with periods equal to 7/1.5, 7/2 and
7/2.5, where 7 is the sequence length. The green signal is the membrane voltage of the LI
output neuron and matches the blue target, as requested by the task. Performance in
the patter reconstruction task as a function of the number of delay element in a dendrite.
MSE stands for Mean Squared Error between the target and the output is selected. As
intuitive, a larger dendrite allows for more information to be available at the output neuron,
increasing the expressivity of the network. @ The importance of the number of delay
elements is confirmed by the behavior of the loss as a function of training iteration, for
different dendrite sizes. Smaller dendrites saturate the capacity of the network way earlier
in the training than larger ones, which can reconstruct the target patter better.
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and fixed afterwards. In this experiment, the distribution from which delays are picked is
a simple uniform distribution in a range from 0 to the length of the target signal. Weights
are instead learned with gradient descents. Fig. shows one such target signals as well
as the output from the neuron’s membrane voltage which closely follows it. Matching
the target signal means that the task was correctly performed. Learning to reconstruct
generated signals is intuitively easier if more dendritic elements are at disposal: this is
proven in Fig. in which the Mean Squared Error (MSE) is plot against the number of
delay elements in the branch. Fig. analyses the behavior of the MSE loss along the
training epochs, in which smaller dendritic branches saturate the capacity of the network
much sooner in the learning phase than bigger networks.

Application to a real task: ECG classification The dendritic network is aimed
at solving real world tasks and this is why it is tested with the ECG dataset, already
mentioned in Chapter 1. This also allows for a direct comparison with a RSNN model.
The dendritic network used for this test is depicted in Figure [5.9a] The ECG signal is
delta-modulated and yields 4 input spike trains. Each of them is fed to each own dendritic
branch having N dendritic elements. Lastly, the delayed and weighted versions of the
spikes are integrated by the output neuron, whose activation determines the presence (or
absence) or arrhythmia. As a first experiments, the 4 dendritic branches are assigned fixed
delays drawn from a narrow distribution centered around different mean delays. Each
dendritic branch contains 10 elements. This permits to identify the most useful range of
time constants needed to solve the task. Figure reports the results of such experiment
where the error rate in the test set of the ECG dataset is plotted as a function of the
delay range in the dendrites. Centering the delays around 160 ms results in the best
performance, despite acceptable error rates are obtained with most delay ranges. Too
short delays don’t increase enough the amount of information available at the neuron,
while too long delays only transmit the information after the neuron is asked to classify
the input. Furthermore, unnecessary delays result in a temporal lag for computation
which is undesirable. The analysis on the importance of the different delays allowed to
calibrate a hardware-plausible version of the Dendritic Network in which Ferro-electric
Tunnel Junctions (FTJ) devices and RRAMs are assumed as the NVM technology of
choice in the architecture and the capacitor size is tailored for the application. FTJs are
chosen are the delay NVMs as they reach mpressive high resistances, well over 10 Gw i
the High Resistive State [299]. RRAMs work as the weight NVMs due to their ease in
programming and multi-level capabilities [129]. To reach delays on the order of 100 ms,
capacitance on the order of C' 1pF are required. A hardware plausible dendritic network
is formed by drawing delays from the HRS distribution of resistance of FTJs, as in |300),
299|. Weights are first trained with floating-point-32 (FP32) precision and later converted
to RRAMs. Results are presented in Fig. [5.9¢ FP32 based dendritic network reaches an
error rate of about 4.7%, which is increased marginally when converting to RRAMs. The
resuls are compared to a conventional RSNN with 128 neurons in the hidden layer. Error
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Figure 5.9: Dendritic Network employed to detected ECG arrhythmia. @) ECG
is recorder by 2 electrodes and converted in 4 trains of spikes. The 4 inputs are all fed to
Dendrite circuits, each with N dendritic elements. The dendritic branches converge onto
an output neuron, a Leaky Integrator. The output neuron receives weighted and delayed
versions of the 4 inputs channels, and increases its membrane voltage when an a case of
arrythmia is presented. (]EI) Considering Dendrites with 10 elements each, the delayed
introduced by the dendritic elements are sampled around a mean value, in the x-axis of
the plot. The accuracy of the network is evaluated for each of the delays, discovering that
a delay of around 150 ms is optimal to solve the ECG task. The performance of the
Dendritic Network with 4 branches and 128 dendritic elements per branch - in the cases of
a pure software model (FP32) and hardware implementation (RRAM) - is compared to an
RSNN with 128 neuron in the recurrent layer, solving the ECG task. The two architectures
reach comparable error rates. In the Dendritic Network, conversion to RRAM results
in a minor accuracy loss. The RSNN, due to its much higher parameter count, reaches
a slightly higher accuracy. @ Number of parameters - or RRAMs - employed in the
network. The Dendrites-based network makes use of Dy, X Ng; RRAMs, Dy, being the
input dimension, Ny the size of the dendrites. RSNN, instead, use N? parameters, N
being the number of neurons in the recurrent layer (omitting the input and output layers
for simplicity). N=25 for the case under consideration.

rate in the RSNN results slightly lower, even though it depends on the number of neurons
in the hidden layer. A smaller RSNN would results in lower accuracy. The size of 128 is
chosen as it matches that of the delay elements in the dendritic network. Because both
neurons in RSNN and delay elements in a the dendritic network feature a capacitor, they
result occupying comparable sizes. However, Dendritic Network result having much lower
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where D, hidout are the input, hidden and output layer dimensions. For the RSNN of
choice, the MF is of 18,176. For the Dendritic Network the MF is evaluated as follows:

MFdendTite =2X Dzn X Delements (52)

where Dejements are the number of dendritic and elements, the factor 2 is beacure there
are 2 NVMs per element. With 25 dendritic elements only, the dendritic network MF is of
just 200, 2 orders of magnitude less than that of the RSNN. These values are shown in

Fig.[5.9d

5.2.3 Hardware implementation of the Dendritic Network

Dendritic Network have proven useful from the algorithmic point of view, but neuro-
morphic engineering is about building powerful bio-inspired hardware solutions. The
advantages of the dendritic circuit element are translated to hardware, making use of
Non-Volatile-Memories. In this section, the dendritic element circuit is presented in a
version featuring 2 RRAM devices as NVM elements. As discussed previously, RRAM are
gret at implementing the synaptic weight of the dendritic circuit element, due to their
low power programming operations and non-volatility. For the delay NMV element, the
main design requirement is for the resistance of the NVM - coupled with the Capacitor -
to produce a large enough time constant, useful for computation. RRAMs can achieve
up to 1 G of resistance in the HRS and even higher resistances in the pristine phase.
Optimization of the stack composing the RRAM can further improve this high resistance.
However, Ferro-electric Tunnel Junction [301} 299] devices are more adapted to reach
higher resistance level, comfortably above the 10G{2 mark. In ferroelectric RAMs, in-
formation is encoded as the ferroelectric polarization of an insulating layer sandwiched
between two electrodes. The polarization of the device, and its resistance in turn, can be
modified with the application of an electric field across the electrodes. Conventionally,
ferroelectric devices yield tiny readout currents. However, when the ferroelectric layer
is thin enough, an FTJ device is formed by allowing a tunneling current to flow and to
produce large ON/OFF resistance ratio, up to 10 [300]. The ferroelectric can be build
based on HZO, oxide topped by a 1.5 nm, sandwiched between two TiN layers [302].
The integration process is compatible with that of RRAMs, making the two technologies
possibly co-integrated in a chip. The combination of FTJs and RRAMs would benefit
from the large resistance of FTJs for the delay NVM element and from the flexibility
of the LRS of RRAMs. For the following, both NVM memories will be referenced as
delay and weight RRAM, since the circuit was originally developed around this technology.
However, the memory elements can be swapped with FTJ devices without modification of
the surrounding circuit elements. As the programming operation is carried out outside of
the chip, no dedicated circuit is calibrated to either of the two memristive technologies.
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Figure 5.10: Dendritic circuit and its physical layout. (a) Detailed circuit scheme with all
the circuit components. (b) Physical layout of the dendritic circuit, with the components
placement highlighted below. ¢) View of 64 Dendritic circuit forming a Dendritic branch.

Dendritic circuit element The Dendritic circuit element is introduced in Fig. [5.7] is
analyzed here in more details. Figure reveals the main components of the circuits:
the Delay and Weight RRAMs, MUXes, a Capacitor, an Inverter and a Fall-Edge detec-
tor. Multiplexers are necessary to decouple RRAM devices with the circuit during the
programming phase. The MUX are indeed controlled by a voltage terminal called Prog,
which is high (at 5V) when the given RRAM is selected for programming. This removes
the SL/WL terminals contacts (for the delay and weight RRAM respectively) from the
rest of the circuit and creates a connection with an external pad, operated by a dedicated
machine for the programming operation. If the circuit is built into an array (as seen on
the Dendritic Branch on the right) these terminals are handled by a peripheral circuit
which selects which RRAM to connect to the pad so to be programmed.

When the Prog voltage is off, the circuit operates as a dendrite. Inputs of the circuit are
presented as voltage pulses at the READ terminal, pulling a current from the capacitor and
causing a voltage depolarization. During the functioning of the circuit, the SL terminal is
connected to the Vref voltage, being the reference or resting voltage of the capacitor. This
puts the delay RRAM in parallel with the capacitor and in that way the voltage across
it will relax back to Vref with a time constant 7 = Rrraym X C. The inverter after the
capacitor has a switching voltage of Vref/2 and changes states both after the arrival of
the READ pulse and in the relaxation phase of the capacitor potential. The Fall Edge
detector block is devoted to capture the latter change of state and produce an output
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Figure 5.11: Layout of a 64-elements, 3-Branches Dendritic Network. The Dendritic array
features all the dendritic circuit (63x3 in this case). BL/SL periphery are sized according
to the dendritic circuits, while the WL periphery is placed on the right and is much smaller,
having to manage 6 columns of devices only. The output neuron appears on the right.

pulse when the capacitor voltage has crossed the inverter’s threshold in the relaxation
phase. The Fall-Edge detector is also equipped with a pulse extender which assures the
correct pulse-width for all the spikes emitted by the dendritic element. Output pulses are
modulated in amplitude through the weight RRAM. The output section of the circuit is
composed of a 1T1R device, whose SL is fixed at the reading voltage, while the bit line is
normally set as ground. A current proportional to the conductance of the weight RRAM
is generated when the voltage pulse from the Fall-Edge opens the word lines of the 1T1R.
A circuit similar to that described in Chapter 1 can be used to read the current and buffer
it to a neuromorphic circuit, like a LIF neuron.

Figure shows the physical layout of the circuit with the components’ placement
highlighted below. The size of [102x9.26]um is dominated by the Capacitor and the Fall
Edge detector. These are the area where some improvements can provide the most benefits
in terms of density. Also, it is reminded that the circuit represents a first prototype for the
Dendrite element concept and presents large margins for improvements in term of density.
The right part of Figure shows the Dendritic Branch circuit featuring 64 dendritici
circuit elements. It size is [592x102|um.

The dendritic circuit element is the building block of a Dendritic network. Several
deendritic elements can be stacked on top of each other and form a dendritic branch, which
in this implementation share the inputs. Several branches are juxtaposed next to each
other to form a dendritic network. In the simplest form, a dendritic layer of a dendritic
network is formed by placing a neuron at the output of all the dendritic branches. However
the concept can be expanded by forming a neural network where each neurons features a
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Top view

a) 1x Dendrite
b) 1x Dendrite + LIF
c) 8x Dendrite + LIF

d) 8x3 Dendrite

e) 64x Dendrite + LIF

f) 64x Dendrite + LI c
a
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h) 64x3 Dendrite + LI

< > vV

2050pm

Figure 5.12: MAD200V6, Dendritic circuit Contribution. 8 circuits have been designed
with different versions and sizes of the Dendritic Network. a,b) feature a single Dendrite
Circuit, with a LIF output neuron. c) is a Dendrite Branch of 8 elements. d-h) represent
different sizes of Dendritic Network (AxB, A number of dendritic elements, B number of
branches).

dendritic network, with multiple dendritic branches. Layers can be stacked one next the
other, with the benefit of producing even larger delays and non-linear computation.

Figure [5.11] shows the construction of a Dendritic Network. Several dendritic elements
are sharing the weight-RRAM’s SL (SLs) and the READ terminal, delivering the input.
Each RRAM in the dendritic branch can be programmed independently by acting on
the selected combination of source/bit line and word lines. During the programming
mode, each source/bit line is treated independently and handled by a SL/BL periphery,
of the same type of those presented in Chapter [2] The periphery of the dendritic array is
a scan chain which connects one selected source/bit line to an output pad to program
the selected 1T1R device. Word lines are share along the dendritic branches, the small
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purple block on the upper right part of Figure [5.11] The SL periphery features a switch
that connects all the source lines from the weight-RRAM to a common node. This node is
feeding the currents read from the weight-RRAMs to the output neuron, on the lower right
portion of Figure Several dendritic branches are grouped together to form a Dendritic
Network. The output of the synapses is integrated by the output neuron. Effectively,
this network replaces and augments the functions of a crossbar array performing simple
Matrix-Vector-Multiplication, endowing the array with dynamical processing properties.
The circuit shown in Figure represents a 64x3 Dendrite network, formed by 3 branches
with 64 elements each. The final size of this circuit is [940x558|pm.

Different versions of the dendritic network concept have been designed and included
in the test chip. Simpler structures like the 1x Dendrite ( Fig. ) feature a single
dendrite circuit element, and are aimed at thoroughly characterize the potential of the
circuit. Progressive size increases should allow to study the effect of scaling up the network
size. Detrimental effect such as IR drop and capacitive effects due to the long wires in
the array might negatively impact the results of the circuit. Both Leaky-Integrate and
Leaky-Integrate-and-Fire neurons are features in the circuit. The first is designed to solve
regression tasks [5.2.2] where a target signal is mapped onto the membrane voltage of the
neuron. LIF neurons can instead be used for classification, like in the case of the ECG task
(.2.20 Overall the controbution includes 8 circuits and fits into an area of [2050x4133]um

5.2.4 Extensions of the project

This section represents the first step into the development of dendritic, analog, memristive-
based neuromorphic systems. The good results shown in are convincing arguments
for dedicating further attention and efforts in dendritic computation. Not only the circuit
can be optimized in footprint-area, as mentioned, there are changes and improvement
that can be beneficial to the concept. Here is a list of the main points for developing the
dendritic network concept.

e Improving footprint-area

e Expanding the Dendritic Network to multiple layers

e Learning the delays to optimize computation

e Endowing the circuit with on-line learning capabilities

Each of this point is a possible research direction that can take the dendritic computation
to the next level.

Improving the footprint area Footprint area is the main issue of the dendritic network,
in its current realization. Improvements can be made on two sides. First, the layout of
the circuit can be substantially optimized. An area improvement of 4/5x can be achieved
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with clever design. Second, technology can help scale down the dimension of the circuit.
The most obvious improvement is to chose a more advanced technological node than
130 nm. This would shrink the size of the peripheral circuit and of the Fall-Edge detector.
Unconventional technologies might enable a more radical scaling of dimensions. Volatile
memristors [157] could replace capacitors - the largest elements in the architecture - and
achieve orders of magnitude of improvements in footprint-area.

Expanding the Dendritic Network to multiple layers A possible weak point of
the dendritic circuit is that is produces delays that are limited to the time constant of
the circuit. However, if one chains multiple dendritic elements, the output spike would be
delayed by the sum of the individual delays at each element. This would allow to obtain
a wider range of delays that are possibly key to solve complex tasks. Furthermore, one
could design a SNN where each synapse features a delay. In this network, the dendrite
arrays would replace conventional synaptic memristive arrays. Such multilayer dendritic
network would endow SNN with unprecedented computational power, avoiding the need
of recurrent connections which make the training phase harder.

Learning the delays to optimize computation In the examples in this sections,
delays of the dendritic networks are set a priori, and not a trainable parameter of the
network. One improvement over this learning scheme would be to learn such delays so to

optimize them for the given task. Learning of synaptic delays is proven effective in these
works [303}, 304].

Endowing the circuit with on-line learning capabilities In the current form, the
dendritic network is a fixed architecture during inference mode. However, it is desirable
that both delays and weights are adapted to the incoming inputs, in a continual learning
fashion. Chapter 3 introduced the Delta Rule learning circuit: such circuit would fit to
adapt the weight memristor. However, a circuit that acts on the delays is to be developed.



Chapter 6

Discussion

This thesis groups different projects about RRAM-based, bio-inspired, in-memory com-
puting. Despite being presented in separate chapters, they constitute a united vision of
neuromorphic memristive systems. Multiple technical aspects have been considered, from
sensory signal treatment to in-memory computing architectures, from circuit design to
device characterization. Chapter 2 begins with an off-line learning algorithm to correct
hardware defects in memristive spiking neural network hardware implementations. The al-
gorithm is called neuromorphic calibration procedure and mitigates RRAM variability and
analog circuit mismatch. Surprisingly, the neuromorphic hardware calibration procedure
turns the defective mismatched analog circuits into a positive feature for computation,
boosting the performance compared to an ideal SNN with perfect circuits. The variability
of RRAMs is thoroughly investigated and classified into three categories: relaxation,
retention and read-to-read. Each of these terms affects performance in different ways.
However, relaxation has the largest impact in the short-term. Retention problems mainly
decrease classification accuracy on complex tasks, read-to-read makes each inference slightly
different. Compared to a processor featuring identical circuits but a digital communication
protocol and digital weights, the RRAM-based SNN is one order of magnitude more energy
efficient in communicating spiking events through the chip. Stimulated by these results,
a RRAM-based SNN is built around a 32x32 array, with dedicated peripheral circuits
for programming and accessing the devices. A custom-made peripheral circuit hosts
Leaky-Integrate and Fire neurons and differential-pair-integrator synapses, thus making
the circuit a 32 neurons recurrent spiking neural network. The circuit takes inputs in the
form of voltage pulses and each of the 32 neurons can be routed to an output read-out pad
via a selector. However, scaling up this architecture goes against a few challenges such as
IR drop and undesired capacitive effects. The Mosaic concept is proposed to solve these
issues and design large-scale RRAM-based SNNs. Mosaic is a systolic array composed of
neuron and routing tiles, the latter being RRAM arrays dedicated to connecting neurons
across the large mesh of tiles. The architecture has been demonstrated effective at solving
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benchmark tasks and Mosaic is proven to make more efficient use of memory elements
compared to a single array of the same size.

Similar circuits to those described in the RRAM-based SNN are deployed to perform
object localization with auditory cues. Chapter 3 presents a bio-inspired system in which
two innovative technologies from CEA Leti are combined: piezoelectric-micromachined-
ultrasound-transducers as sound sensors and resistive memories as computational substrate.
Ultrasound sensors are thoroughly characterized and paired with a dedicated neuromorphic
treatment of their signal. Inputs from the sensors are translated to the spike domain and
then processed by a computational map, inspired by that found in the barn owl. Thanks to
its biologically inspired data treatment, the system is 4 orders of magnitude more energy
efficient than a conventional signal processing algorithm run on a commercially available
MiCro-processor.

Chapter 4 also presents the concept of a system, in this case for artificial olfaction. Silicon
photonics sensors record the presence of olfactory stimuli in the environment. The sensors
are sensitive to operating conditions and react differently to each gas. Furthermore, gas
sensors suffer from slight integration process variation, thus require tailoring the computa-
tional model for gas classification to the specific use case. On-chip learning is proposed as
the solution in the form of the Delta learning Rule. A circuit is developed to work with a
RRAM array. Computer-in-the-loop experiments and system-level simulations assess the
performance of the learning procedure. The delta rule is found to be a good compromise
between the efficacy of the on-chip training and the complexity it adds to the architecture.
Most neuromorphic systems are based around neurons and synapses, and plasticity is
featured only in the latter elements. Chapter 5 proposes novel ideas to go beyond this
scheme and expand the functionalities of neuromorphic architectures. In the memristive-
self-organized-network, neurons are endowed with plasticity thanks to enhanced circuits
featuring RRAM devices. LIF neurons express intrinsic plasticity which is combined with
spike-driven-synaptic-plasticity to form an unsupervised learning rule that boosts the
performance of spiking neural networks in temporal tasks. The learning rule is designed to
cope with RRAMs variability, and results proved that performance even increased when
variability is introduced, compared to when ideal devices are considered. A thorough
analysis of the role of variability and noise in the network confirmed that RRAMs can be
used successfully as plastic elements in neurons. In the second section of the chapter, a
dendritic circuit is presented, performing two main functions in spiking neural networks:
weighting and delaying spikes. These two features are enabled by RRAM devices, thanks
to which both weight and delays are controlled. Dendritic networks are formed when
each input is fed to several dendritic circuits. At first, single-layer dendritic networks
are tested on simple benchmark tasks, though deeper networks can be designed for more
challenging tasks. The dendritic network is proven to reduce the memory requirement in
SNNs, reaching accuracy comparable to that of RSNNs.
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6.1 Perspectives on future work

While the projects in this thesis seek to find solutions and propositions in the context
of neuromorphic in-memory computing, they leave space for future improvements and
expansions. Perspectives on the works are grouped into three main points and discussed
below.

Hardware developments With the surge of ASIC accelerators for Edge Al, it appears
that a solution for energy and area-efficient computation has already been found and
belongs to the digital domain. Indeed, the performance per watt of digital accelerators
has substantially increased in the last 10 years. However, it remains to be seen if the
trend will continue over the next 10 years. Some of the improvements in digital ASICs
are certainly due to ameliorations in the architecture or of the neural network models
they implement, but a large step in performance and efficiency is due to the improved
technology nodes. Evidence is pointing toward a slowed-down continuation of Moor’s
law [67], and the next generation of digital ASICs is likely to use only marginally better
transistors. Even reasoning at the economical level is not reassuring: will Edge Al systems
gain enough scale in production to justify the costs of adopting the latest 2 nm technology
[65]7 If digital ASICs will reach a plateau in performance in the next decade, the analog
in-memory community has to be ready to propose a paradigm shift. However, some key
aspects of analog in-memory circuits have to be drastically addressed in the meantime.

¢ Reading memristors efficiently: the key advantage of NVMs is that they don’t
require static power consumption and some of them store multiple bits per cell. To
extract this information, however, complex circuits are conventionally employed.
Minimizing the circuit complexity and energy consumption to read the devices is
important to enable the potential of NVMs. Samsung [97] and UCSD University 98]
have proposed accelerators for IMC exploiting clever designs to read the conductive
state of MRAMs and RRAMSs respectively. Solutions of the same kind are required
for neuromorphic chips as well.

e Minimizing footprint area: neurons and synapses take a large share of area in
neuromorphic processors |29, [31]. This has to be reduced as large area results in high
costs of production for a chip. The key is to replace or shrink the large capacitors in
neuromorphic circuits |23, [70] with either innovative devices or with advancements
in the algorithms. In the first case, the aim is to develop an integrated device in the
back-end-of-line that features high capacitance, perhaps exploiting high-k dielectrics
or novel materials. In the second case, the need of large capacitance could be avoided
at the algorithm level, finding new computational primitives that are effective on
temporal processing.

e Scaling up network size: deep learning has shown that scaling up neural networks
produces novel interesting behavior and improves the performance [99]. While
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neuromorphic systems are more interesting to edge applications - thus with energy
and footprint-area constraints - network size still plays a big role in increasing
performance. After all, the brain makes use of more than 80 B neurons, yet it
consumes around 20 W [185]. However, scaling is only possible if the two bullet-
points above (reading NVMs efficiently and reducing footprint area) are solved. The
Mosaic architecture presented in Chapter 2 is a promising candidate to explore the
advantages of scaling, but it would be advisable to adopt 3D architectures in the
future to enable higher degrees of connectivity. New process integration technologies
could be the solution for future neuromorphic chips.

Bio-inspired network architectures As much as the hardware, neuromorphic algo-
rithms also require improvements to compete with existing deep learning models. The aim
is not to replace state-of-the-art generative models with hundreds of billions of parameters
[99], but to be able to express the same performance - or more - with comparable hardware
resources. Looking at deep learning, several network architectures have been proposed. In
temporal sequence processing, recurrent neural networks have been updated into LSTMs
[289] and GRUs [290], and now completely replaced by Transformers [298]. This evolution
has not happened for neuromorphic networks, which are stuck with recurrent spiking
neural networks architectures. An update is strongly required or neuromorphic will soon
be obsolete. Changes can be configured in two aspects:

e Architecture: changing the connectivity of neurons, perhaps inspired by biology,
to improve the performance. Particularly, inspiration could be drowned from insects,
the simplest forms of neural systems. Dalgaty et al. [194] [186] proposes a neural
network with fixed sparse connectivity to improve the performance of the network,
while utilizing less parameters. Chapter 3 proposes a computational model inspired
by the auditory pathways of the barn owl to perform object localization. The system
reaches orders of magnitude greater energy efficiency compared to a conventional
signal processing algorithm.

e Computational primitives: chapter 5 presents the dendrite circuit in dendritic
networks, reducing the memory footprint in SNNs and still performing on-par
with RSNNs. Delays are introduced in SNNs to improve the temporal processing
capabilities of the network and to avoid the need for recurrent pathways, typical of
RSNNs. Dendrites could represent a good candidate as a computational primitive
that elevates neuromorphic networks. Nonetheless, there is still a lot to find out in
the brain that can be transferred to neuromorphic chips: biological neurons are much
more complex than their neuromorphic counterparts. Computational neuroscience
will hopefully identify which elements in biological neurons are expressing such high
computational power.

Improved on-chip learning While impressive steps forward have been made in neu-
romorphic learning algorithms that are compatible with the hardware and that can be
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performed on-chip, a major shift in paradigm is necessary. The classical scheme of su-
pervised learning where labelled input data is provided in the learning phase does not
match the way learning occurs in humans and is also limited in edge applications. The
operating conditions at the edge can change throughout the life of a neuromorphic system,
and the chip needs to be able to adapt. In conventional supervised learning, human inter-
vention is necessary to provide labels, but this constitutes a great limitation. On the other
hand, novel learning schemes need to adapt to the continuously evolving computational
substrate in neuromorphic chips, specifically when including novel integrated devices,
like non-Volatile-Memories. New learning procedures need to exploit the non-linear and
dynamical properties of analog electronics and NVMs, including the their mismatch and
variability. The following three points represent the main research paths in neuromorphic
learning.

e Self-Supervised learning: Self-supervised learning is a novel technique relying
on the data itself to produce labels, making the neural network acquire a model of
the input data without external supervision. This has boosted the performance of
deep learning models, as it allowed to scale up datasets without the need to produce
manual labels. The same effect is expected for neuromorphic computing, which
could leverage more data from neuromorphic sensors to build larger datasets. More
importantly, without the need for labels, the model could learn from the stream
input data collected while operating at the edge. Early example of self-supervised
neuromorphic learning have been proposed [123], yet there’s still a lot to be developed
and discovered.

e Meta-Learning: it is difficult to imagine gradient descent methods fully imple-
mented on memristive architectures on-chip, due to the high variability of the devices.
One strategy is to prepare the model for on-chip learning with off-line training, op-
timizing the forthcoming in-situ weight updates. This is among the benefits of
Meta-Learning, a training paradigm that aims at optimizing the learning procedure
itself. Similarly to Transfer Learning, the model is pre-trained off-chip, however
meta-learning involves optimizing the weight updates as well. The goal is to pre-train
the model and provide a meta-initialization of the parameters so that it is then easy
to update the weights to solves a particular task, despite the variability introduced
by the devices.

e Continual Learning: learning new tasks and adapting to the environment is
useless if previously acquired knowledge is forgotten. The well known problem of
catastrophic forgetting [305] hinders edge AI system to perform on-chip learning
when shifting between tasks in a sequential manner. Solutions have been proposed
to mitigate this problem, such as weight consolidation and meta-plasticity [122]. The
theory is that once a network is optimized for one particular task, learning a new
one should not disrupt the weight configuration. Weight updates should account for
the consolidation of important parameters in the network storing the information
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from previously acquired knowledge.



Chapter 7

Appendices

SNN hyper-parameter tuning

Spiking neural networks are computational models in which time plays a key role. Neurons
and synapses are dynamical elements that process the input spikes they receive at a
speed that depends on their time-constant. Given that the physical implementation
of neurons and synapses is made with analog electronic circuits, the time constant is
due to a capacitor that integrates input stimuli and that leaks the accumulated charge
through a leakage element. In the LIF neuron and DPI synapse, a transistor biased with
a sub-threshold gate voltage modulates the leakage rate and thus the time constant. At
the circuit level, the time constant indicates the memory window of the single circuit or,
more technically, the time it takes for the voltage of the capacitor to decrease to about
e~1 ~ 0.37 of the initial value. Evidently, the time constant of neurons and synapses in a
spiking neural network influence the response at the system level. As a rule of thumb, the
time constant of the circuit should be matched to the temporal features the network is
asked to classify of process. For example, the pronunciation of spoken digits between zero
and nine normally lasts for about 1 second, so a dynamical network analysing such inputs
should feature components that get close to this time-constant. However, technological
limitations in capacitor size and transistor leakage current constrain the time constant of
analog circuit. A detailed analysis has been carried out to find out which time constant
in neuron circuits maximises performance at the network level in the different training
procedures described in Section [2.3] The Neuromorphic Calibration Procedure (NHC)
features analog circuit mismatch and RRAM variability in both training and inference
phases, Homogeneous SNNs have ideal - and thus homogeneous - circuit behavior in
both training and inference, Non-Calibrated SNNs are trained on homogeneous circuits
and testes with circuit variability. The characterization results of neurons and synapses
performed in Figure are used in the NHC simulation for hardware-aware training.
Results are summarized in Figure [7.1alb,c.
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Figure 7.1: Accuracy over MNIST @), ECG (]EI) and SHD analysed as a function of
the neuron time constant. For MNIST, which does not involve temporal features in the
dataset, time constant of the neurons does not have a great effect and performance is close
to the ANN reference (horizontal dashed line) as long as the time constant is greater than
1 ms. ECG and SHD tasks demand to process the data in the temporal domain, so the
time constant has a greater effect on accuracy. ECG requires 20 ms, SHD 40 ms, even
though the trend is positive with the time constant and performance could improve further.
However, silicon circuits are limited to the rang shown in the figure. As said in Chapter 2,
the effect of the NHC procedure is to boost performance respect to the Homogeneous case,
while Non-calibrated SNNs perform poorly.

As the MNIST task does not feature relevant temporal content, being static images, the
neuron time constant only modestly influences performance. In fact, the MNIST dataset
is transformed to the spike domain and each pixel intensity is assigned a spike time in a
certain interval, which is set at 100 ms in this experiment. The conversion from intensity
and time-to-spike is linear and only 1 spike is emitted per pixel. This means that the only
temporal factor in the input data is the duration of the stimulus. In other neuromorphic
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vision datasets, like the DVS 128 [306|, inputs are recorded by a DVS camera and thus
capture the natural evolution of the stimuli in time. Still, classifying MNIST does not
require special dynamical properties at the network level and the NHC and Homogeneous
cases almost match in performance. Evidently, the Non-Calibrated case has poor accuracy
as the circuit mismatch introduced in the test phase by the analog circuit is not accounted
for during training.

The ECG and SHD tasks feature more interesting temporal stimuli and require dynamical
processing to reach satisfactory performance. ECG’s data are sourced from the MIT-BIH
dataset and sub-sampled to include the 4 most represented types of arrhythmia, along
with "normal" heartbeats. Each class has about 1000 data-points, for a total of 4802. 70%
of the dataset constitutes the training set, 10% the validation set (used for fine-tuning the
model) and 20% as a training set. ECG data-points present a heart-beat from channel 2
of the MIT-BIH recording, last for 700 ms and are centered around the peak - said R peak
- of the voltage recording. Arrhythmia manifests as an anomaly in the heart-beat rhythm
and in irregularity of the normal phases that composed the signal (P-Q-R-S-T). The
simulation results confirm that temporal dynamics is more important in the ECG task and
optimal performance are obtained with a time constant for neurons of 20 ms. Increasing
or decreasing the temporal response of the circuit - and network in turn - decrements the
classification accuracy. Notably, the NHC procedure yields the best results, higher that
the Homogenous case. This could be explained by the increased dynamics of the network
with variability in analog circuits, each of which features a slightly different time constant.
This heterogeneity in the network can be exploited with gradient-descent technique which
optimize the network given the hardware constraints. As usual, the Non-Calibrated case
yields poor performance.

The spiking Heidelberg Dataset is a collection of recordings from a wide number of speakers
of spoken digits from zero to nine, in both English and German. Digits pronunciations last
for about 1 second. To solve this task, models need to process the temporal information
in the recording. It has been shown that high time constants lead to large classification
accuracy [35, (149]. In the simulations in Figure , results are monotonic with the time
constant, confirming the literature. Higher time constants are not included in the analysis
as not technologically plausible with the analog circuits designed in this work. As the
temporal features in the SHD dataset are even more relevant that for SHD, the advantage
of heterogeneity is even more evident. Non-Calibrated procedure fails at solving the task
with satisfactory accuracy levels.

Characterization of RRAMs and Neuromorphic circuits

The experimental results presented in this thesis are all been performed in CEA Leti
testing facilities and with a setup that is described in this section.
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Measurement setup

Experimental setup for the tests of circuits presented in this thesis is divided into two main
categories: tests of RRAMs (both single devices and arrays) and tests on analog custom
circuits. In both cases, wafers in either 200 mm and 300 mm format are handled with an
automatic chuck holder, featuring step motors that can be commanded by a computer.
The chuck holder hosts the wafer and brings it in contact to a set probes, composed of
25 metallic connectors arranged in a line. The probe is 2 mm in length and it matched
the dimension of the pads with which the chips are fabricated. The chuck holder can be
programmed to switch between dies, when large-scale measurements are to be performed.
To measure a test structure in a single die, the setup described in Figure is employed.

Keysight RRAM
B1500 (PIV) \\ead/prog-
Computer | Arduino | Test Oscill
python program microcontroller “|structure SCIIIoScope
Array control Readout
DC biases/
Pulse generator Inputs

Figure 7.2: Measurement setup scheme. A computer controls the whole experimental
setup with a python script. An Arduino micro-controller receives the commands from
the computer and performs the addressing of the RRAM array in the Test Structure.
At the same time, the Arduino times the action of a Keysight B1500 machine [257]. In
particular, pulsed-current-voltage (PIV) units from the machine are used to read and
program the RRAMs in the array. Pulse generators and DC voltage and current biases
control parameters of the analog circuit and provide the inputs. While the circuit is
working, its outputs are recorded on a oscilloscope, which digitizes the measured traces.

A computer runs a python script with a program that controls most of the instruments
in the setup. If necessary, the program also executes specific algorithm needed in the
test: it is the case for Smart Programming for RRAMs and the Delta Rule algorithm in
Computer-in-the-loop experiments. The computer commands an Arduino Mega2560 micro-
controller, which has the role of performing the addressing of RRAM arrays, interacting
with the peripheral circuits shown in [reference|: the interaction is highlighted with the
blue arrow. Not only, the Arduino also commands a Keysight B1500 [257], used to operate
the RRAM devices (purple arrow in Fig. . To do so, the three Pulsed-Current-Voltage
(PIV) outlets are connected to the three terminals of a 1T1R device and custom pulses -
controlled by the python program - are applied. Conventionally, the bit-line of the device
reading terminal for the READ, FORM and SET operation. For RESETs, positive voltage
pulses are applied to the bit line and the resulting current is read at the source line. In
SET and FORMING operations, positive voltage pulses are applied to the source and
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word lines. Pulses are squared with a standard duration of 1us, though RRAMs have been
demonstrated to require much shorter pulse-widths per operation [75]. Currents read by
the PIVs are digitized and loaded on to the computer. Outputs from the test structures
are instead read by an oscilloscope and later saved on a USB stick.

RRAMs can be analysed with the quasi-static programming method, in which a slowly

varying voltage is incrementally increased and decreased, controlling the current flowing
through the device. During the whole procedure, the word line is kept open, at 4.8V.
Results of such operation on a stand-alone 1T1R RRAM device are reported in Fig. [7.3]
For the positive side of the plot (SET and Forming operations), a positive voltage is
applied at the Top of the device (source line), while the Bottom (bit line) is kept at ground.
The reverse happens for the left side (RESET). The device under test is in the Pristine
state, meaning that no conductive filament has been formed already. Following the green
line, the device exhibits high resistivity up to reaching 1.7V Vyop_pgor where a conductive
filament starts forming and the device is Formed. At that point, the device is in the
High Conductive State (HCS). Inverting the sign of the voltage, the conductive filament
is disrupted at around -1V and the device switches to the Low-Conductive-State (LCS).
Applying a new cycle of positive voltage, the blue curve, the device can be SET when
reaching a voltage of 0.7V, returning to the HCS.
The switching voltages of 1T1R cells depend on the programming strategy and on the
transistor size. For the quasi-static method, switching voltages are generally lower, as the
programming conditions are applied for long times. For pulse-based methods, switching
voltages are traded off with latency and RRAMs can be programmed in this manner in
less than 100 ns |75]. In general, RRAM devices require switching current on the 10uA
order of magnitude. Transistor size changes the voltage applied to the gate, modulating
the current allowed through the device. Such current is called compliance current.

Neuromorphic circuit measurements

Neuromorphic circuits are analog electronic circuits operating in the sub-threshold regime
and with biased transistors. In order to operate correctly, they require inputs in the form of
voltage pulses - representing spikes - and DC biases both as voltages and as currents. CEA
Leti experimental laboratories feature HP /Agilent 8110a programmable pulse generators,
that are used to provide the input spikes. Continuous currents and voltages are provided
by simple DC sources. Outputs are samples by an oscilloscope.

Delta Modulator The Delta Modulator circuit converts analog input signals into trains
of spikes, with minimal information loss and low power-consumption. Inputs are encoded
in two spike trains: the UP channel encodes increments of the inputs signal, DW channels
encodes the decrements. Combining the information from the UP and DW channels, the
input signal can be approximated, less for the DC component which is not encoded.

The circuit in Figure has been designed by Thomas Dalgaty and it features two
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Figure 7.3: RRAM quasi-static characterization. A RRAM in the pristine state is subject
to a voltage applied to its Top and Bottom terminals (Vio,—pot): when this voltage
overcomes the Forming threshold, a conductive filament is formed and the device passes
to the High-Conductive-State (HCS). Applying a negative Vr,,—por weakens the filament,
up to the RESET threshold at which the filament is disrupted: the RRAM is then in
the Low-Conductive-State (LCS). By applying a positive voltage again, the conductive
filament is restore, that being a SET operation.

stages. In the first stage, the input signal is filtered with a capacitor C; which removes
the CD component and passes the signal to two comparators. When the signal increments
by more that Vi, yp, the upper comparator is triggered and an output spike is produced
in the UP channel. If the signal then decreases by more that Vi, yp, a spike is emitted
in the DW channel. In the second stage of the circuit, the two output channels are fed
back to an OR logic gate which, when active, emits a pulse charging the capacitor C,¢,.
This capacitor leaks charge through the p-MOS transistor controlled by Vf,¢,, modulating
the leakage rate and thus the time constant of the capacitor C,.,. During the period in
whic Cy,¢q is loaded, an n-MOS transistor clamps the input node to ground, making the
Delta Modulator unresponsive. This limits the activity of the circuit, and thus the power
consumption. The circuit is produced with 130 nm technology and measured with the
described setup. Two example of the functioning of the circuit are provided in Figures
[7.4D] and In Figures [7.4D] an input voltage of 750 mV peak-to-peak voltage, offset
of 500 mV and frequency of 100 Hz is fed to the Delta Modulator circuit, controlled by
a biased V¢ = 1V. Given the slow oscillations of the input, the circuit is producing a
high number of output spikes in both UP and DW channel during the period of the signal.
Increasing the input frequency of the input to 500 Hz and keeping Vyreq fixed, the stage
two of the delta modulator circuit prevents from emitting more output spikes. This results
in a lower number of emitted spikes in a period of the input stimulus, and a consequential
loss of information.
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Figure 7.4: Delta Modulator circuit and its measurements. @) Delta Modulator circuit
schematics, as designed by Thomas Dalgaty. In input signal Vin is passed through a
decoupling capacitor, which removes the DC voltage component. When either of the two
output comparator is activated, with input voltage being greater then Viy,,.p/pw, a spike
is emitter at either UP or DW. This spike is fed back in the circuit and charges a capacitor
C'treq, which - when charged with a voltage higher than the switching threshold of its
neighbouring buffer - clamps the input node to ground. This hinder the generation of spikes
for a time controlled by V},., which determines is the leakage rate of the capacitor Cy,¢q.
In this way, the Delta Modulator can be made more or less responsive to inputs, adapting
the spike conversion to incoming stimuli. (]ED Measurement of the circuit with an input at
100 Hz, recording both input and outputs from an oscilloscope. Given the slowness of the
input, several spikes are emitted by the circuit, making for a good representation of the
input information. Similar measurement but for a 500 Hz input, keeping the same bias
condition for the delta modulator circuit. This time, the circuit hardly follows the input
oscillations, producing less spikes at the output, thus partially losing its information.

Leaky-Integrate and Fire (LIF) neurons are analog electronic circuits presented in Figure
Measurements presented in this figure shown the dynamical behavior of the circuit,
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Figure 7.5: Characterization of a DPI neuron. The input voltage Vin is swept in a range
of voltages and the output frequency is recorded with an oscilloscope. @ The leakage
parameter VIk is modified during the test, modulating the leakage rate of the membrane
capacitor Cysen,. Higher leakages result in less spikes and thus lower output frequencies.
(]E[) Analysis on the refractory period, controlled by the bias Vrp. When Vrp is low, the
leakage rate of the refractory capacitor C,.f, is higher and the refractory period lower.
This means that the neuron remains inactive for less time, and it can fire more frequently.
During this analysis, the Vlk bias was set at 260 mV. By combining the action of
the Vlk and Vrp biases, the neuron exibists a sigmoid function for the output frequency
depending on the input DC voltage. The sigmoidal behavior is reproduced by 2 neuron
circuits, highlighting the variability between analog circuits.

which integrates input pules on the membrane capacitor C,,.,, and emits output spikes
when the voltage at the capacitor overcomes the switching voltage of an inverter in the
output stage. The circuit features the leakage transistor controlled by Vlk, modulating
the time constant, and the refractory period transistor Vrp, controlling the refracory
period. Experiments have been performed to analyse the input-output behavior of the
circuit, with an input DC voltage and measuring the output spike frequency. Figure [7.5a]
analyses the effect of changing V1k in the range [260mV — 370mV], while Vrp is fixed at
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450 mV. The circuit is not capable of producing output spikes with too low input DC
voltage. The onsed of output spikes varies depending on Vlk: higher leakage rate require
stronger input magnitude to elicit output spikes. In general, output spike frequency tends
to converge when the input becomes stronger, as the input current becomes much stronger
than the leakage current. Figure reports a similar analysis in which Vrp is swept in
the [200mV — 300mV] and VIk is fixed at 260mV. Again, output spikes are not produced
when the input is weak. Output frequency saturates to values that depend on the Vrp:
higher biases make the refractory period shorter and thus allow the neuron to spike at
higher frequencies. Combining these two biases, a sigmoidal input-output relationship can
be obtained. This is shown in Figure in which two neurons belonging to two different
dies are tested with VIk=300mV and Vrp=300mV. The different shape in the two traces
highlights the variability between sub-threshold analog circuits.

Delta Rule on CIFAR10

CIFARI10 is a modestly challenging dataset that is tamed with end-to-end training of
convolutional neural networks. In the framework of on-line learning, additional constraints
are imposed, such as memory requirements of the embedded accelerators. Ideally, learning
on-line is performed with a batch-size of 1, meaning that the updates to the weights
occur after each input streamed to the network. This is convenient to minimize memory
requirements and energy consumption too, however on-line learning can also be performed
accumulating the weight update over multiple input data-points. The delta rule, optimizing
the last layer of a neural network only, does not require to store the activations of all
the neurons into memory. For this reasons, learning over batches of input data-points is
feasible with the delta rule. The requirements to do so are that the activations of the
last layer of the neural network model of choice have to be stored to memory and so do
the outputs. For the case of EfficientNet trained on CIFARI10, the 1280 activations of
the last hidden layer and the 10 outputs should be saved. Considering 8-bits activations,
the memory requirement is 10,320 x B bits, where B is the batch-size. To optimize the
parameters, activations are used to compute the activation, a step that results in large
energy consumption [307]. The Delta Rule circuit relaxes this requirements by directly
calculating the weight update in the analog domain. Batched learning with this circuit
can be performed by directly averaging the weight updates for each parameter, with
the updates AW;; that have to be stored into memory. For 4-bits weight this results in
51k x B bit, a larger memory footprint, but with the advantage of having already computer
the weight update.

The hardware realization of a circuit storing the weight updates values and performing the
programming operation on-chip is beyond the scope of Chapter 4. To assess the importance
learning with batched data-points, a experiments trains the last layer of EfficientNet over
the CIFAR10 dataset with the Delta Rule. Variability and Relaxation are disabled for
this experiment.



CHAPTER 7. APPENDICES

168
80
)
.60
>
O
o©
340
@]
<
20
L L Ll 1411l L Ll 11l L L
107 10+ 10“
Batch size

Figure 7.6: Effect of batch-size when training on the CIFAR10 dataset with the Delta rule.
To yield good accuracy, a batch-size of 8 is required.

Clearly, low batch-size results in unacceptably low classification accuracy on the test-set.

Performance are satisfactory starting from a batch-size of 8. For the experiments in Figure
and Figure [4.9d a batch-size of 32 is utilized.
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